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Abstract

This thesis explores the design and implementation of a Prolog system with

just one mode of program execution rather than the two modes of execution—

interpretation and compilation—present in most Prolog implementations in

use today.

The main contribution of the thesis is such a design, combining reasonably

high runtime performance with the ability to modify, debug and inspect

program code. The design has been realised as Open Prolog, a complete

Prolog environment with an integrated editor and debugger, built for the

Apple Macintosh with a Motorola 68000 instruction set.

The implementation supports the argument that the design offers high

speed compilation combined with reasonably high speed implementation and

simplicity of implementation, and compares favourably, in terms of speed of

execution and ease of program development, with a number of other imple-

mentations.

This work is concerned with the design and implementation of Open Pro-

log: the overall architecture, static and dynamic aspects of the system, in-

cluding code representation, the image machine, compilation, data areas, the

runtime behaviour of the system, built-in predicates and garbage collection.

The performance of the implementation is benchmarked and compared with

a number of other implementations, and the results of a low-level profiling

study are presented.
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Contribution

The principal contribution is a design for a Prolog implementation based

on relatively simple principles that combines high speed compilation and

reasonable runtime performance with the ability to modify, inspect and debug

Prolog code.

Influenced by principles of Direct Correspondence Architectures, the de-

sign is based on an abstract machine with an instruction set such that every

aspect of the source code is represented in the machine code. This facilitates

the decompilation of machine code, i.e. the reconstruction of the source code,

for inspection and debugging purposes. It also simplifies compilation.

A number of subsidiary contributions are made with the intention of

enhancing the design in various ways. These and suggestions for further

development of the implementation are made at the end of the work.
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Chapter 1

Introduction

There are two main approaches to efficient Prolog implementation: emulated

code and native code. Emulated code compiles to an abstract machine and

is interpreted at run-time. Native code compiles to the target machine and

is executed directly. [71, p5]

Most Prolog compilers, whether they target an abstract machine or native

code, do not permit inspection or modification of the compiled code. Compi-

lation usually destroys any obvious correspondence between the source code

and the executable code, and the compilation process can take a considerable

time.

While a program is being developed, outright runtime performance is

often less important that the ability to examine and modify the program, and

it is useful [43, p9] to be able to modify programs even in completed fully-

debugged programs. Compiler-based Prolog implementations typically offer

an interpreted mode of execution to facilitate debugging and to support the

dynamic assertion and retraction of clauses. Programs that are interpreted

on these systems typically run an order of magnitude slower than if they were

compiled; memory requirements may also be high. To speed up the storage

and retrieval of interpreted clauses, interpreters generally perform fast simple

1



transformations of source code to interpreted representation, for instance in

Quintus Prolog, the interpreted representation of clauses is designed so that

an instance of the clause can be created on the global stack as quickly as

possible [20]. So, whereas interpreted programs may execute more slowly,

interpreters generally offer faster reconsult times, fewer runtime restrictions,

and better inspection and debugging facilities than compilers.

A question arises as to whether the advantages of compilation and in-

terpretation could be combined in an implementation with just one mode

of operation. That is, could an implementation be built with one uniform

mode of operation which was fast and memory-efficient and which also offered

facilities for code inspection, modification and debugging?

A single mode of operation is attractive because it has the potential to

simplify both the design and implementation of a complete system. For ex-

ample, instead of requiring one representation for compiled clauses and an-

other for interpreted clauses, a single representation would be conceptually

simpler and could lead to a simpler implementation. As a second example,

arrangements would have to be made to enable compiled code to call inter-

preted code and vice versa; this would be unnecessary with a single mode of

operation. There is also, it is ventured, an aesthetic reason for preferring the

conceptually simpler method of implementation. Gelerntner [34] argues for

the combination of simplicity and power as the essence of what he calls ma-

chine beauty. Certainly the idea that one mode of operation might supplant

two was attractive to this writer.

The aim of this thesis was to design just such a Prolog implementation;

that is, having one mode of operation that would combine the advantages of

compiler-based implementations—speed and memory efficiency—with those

of interpreter-based implementations, which include ease of inspection, ease

of modification and ease of debugging of Prolog programs.

To arrive at this design and the subsequent implementation, the following

2



research questions were addressed:

• Broadly speaking, how should a single mode of operation be imple-

mented? Should it be based on compilers, interpreters, or some com-

bination?

• How should programs, data, data structures and, importantly, dynamic

data structures be represented? For dynamic data structures, two pos-

sibilities are structure sharing [9] and structure copying [13, 51].1

• In view of the requirement that programs be viewable and modifiable

as well as executable—and allowing that Prolog operates in the main

by performing unification—what is the best way to organise program

execution? For instance, should the program be converted into host

machine code or into code for an abstract machine that in turn is

emulated? If the latter, how should the abstract machine be organised?

• How should the system deal with modifiable code? How does this

interact with memory management and clause selection techniques such

as indexing?

• How can Prolog’s control structures, such as disjunction or catch-and-

throw error handling be implemented efficiently?

• How does the resulting implementation compare with others?

• What performance bottlenecks can be identified?

These questions, of course, are inter-related. For instance, the program rep-

resentation scheme and the architecture of the abstract machine, if there is

one, are intimately connected.

1These techniques are discussed in Section 1.5.1 on page 19.

3



1.0.1 Plan of the Thesis

The rest of this chapter introduces logic programming and Prolog, and deals

briefly with the early history of Prolog implementations. Chapters 2 and 3

examine arguably the two most influential Prolog implementation architec-

tures, the DEC10-Prolog Machine—the ‘PLM’—which is based on structure

sharing, and the Warren Abstract Machine—the ‘WAM’, which is based on

structure copying.

Chapter 4 considers the design issues and presents an overview of the

architecture of Open Prolog and this is followed by four short chapters on

aspects of the implementation: compilation, treatment of built in predicates,

control constructs & exception handling and memory management.

Chapter 9 contains some benchmarking and profiling results and Chapter

10 summarises the work and presents some suggestions for further work.

1.1 Prolog and Logic Programming

The thing that distinguishes logic programming from other kinds of program-

ming is that executing a logic program is the same as proving a theorem.

Kowalski [45] characterises logic programming as:

“. . . the use of logic to represent knowledge and the use of deduction
to solve problems by deriving logical consequences.
. . .
It exploits the fact that logic can be used to express definitions of com-
putable functions and procedures; and it exploits the use of proof pro-
cedures that perform deductions in a goal-directed manner, to run such
definitions as programs.”

This ‘liberal’ [45] view of logic programming admits of a variety of for-

malisms and deduction mechanisms, and there are many logic programming

languages. Prolog is perhaps the best known logic programing language.

Other notable logic programming languages include, for instance, general
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purpose logic progamming languages Prolog III [24], Gödel [36] and Mer-

cury [62]; constraint-handling logic programming systems CLP(R) [40] and

parallel-execution languages Concurrent Prolog [61] and PARLOG [35].

In Prolog [23], the formalism is based on Horn Clauses, and the deduc-

tion system is SLD Resolution [46]. Developed by Alain Colmerauer and

Philippe Roussel [58] at the Université Aix-Marsellies2, the name ‘Prolog’

was suggested by Phillipe Roussel’s wife Jacqueline, as an abbreviation for

programmation en log ique [25]. Prolog has been standardised by the Interna-

tional Standards Organisation [39, 28]. See also the on-line entry for Prolog

on the Free Online Dictionary of Computing [80].

A Prolog program3 consists of an ordered set of axioms, represented in

the form of clauses, along with the goal, which is a query or conjecture

the system attempts to prove using the axioms provided. If successfully

proven, the query, along with any values substituted for variables in the

query, is a theorem. Hence, proving a query is the same as deriving a theorem.

Figure 1.1 illustrates the makeup of a Prolog program. Clauses generally have

two main components—a head which contains exactly one term—the head

term—and a body which may be empty. The axiom represented by a clause

is that the predicate represented by the head term is true if the predicates

represented by the body are true. The predicate represented by a clause is

identified by the principal functor of the head term. Thus, for example, the

clauses:

cat(pangur).
animal(X) :- cat(X).

are two axioms, each terminated by a full stop. The principal functor of

the head term of the first clause has the name cat and an arity of 1; the

2See [25], [45] and [23] for interesting accounts of the origins of the language, from
which much of the material in this section is derived.

3For a comprehensive introduction to the language, see [22] or [11].
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Prolog Program

?- f(3,F) .
Query

Data Base

Procedure

f(a,X) :- p(X).
Clause

f(0,0) .
Fact

Subgoal Subgoal

Body

, .g(N,X) h(X,F)

Clause

f(N,F) :-
Head

g(3,4).
Procedure

p(b).
Procedure

Figure 1.1: The layout of a Prolog program. A program consists of a query to be proved, a
conjecture, and an ordered set of axioms, represented as Prolog clauses. Proving the conjecture
is the goal of the Prolog execution mechanism and proving each conjecture it depends on
becomes, recursively, a new subgoal of the execution mechanism. In a similar vein, an ordered
set of clauses with the same head term is called a procedure. The diagram is taken from [31].
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clause is an axiom stating that the predicate cat/1 is true in respect of the

argument pangur.4 Similarly, the second clause is an axiom stating that

the predicate animal/1 is true in respect of some argument denoted by the

universally quantified variable X.5 Clauses with the same head term represent

alternative ways of proving the same predicate and are called, collectively, a

procedure.

The body of a clause lists the predicates that must be true for the predi-

cate denoted by the head term to be true in respect of its arguments. If the

body is empty, the predicate is unconditionally true of its arguments, as it

depends on no other predicates, and the clause is called a fact. For example,

the first clause is a fact that states that cat/1 is always true in respect of

its argument pangur.

If the body of a clause is non-empty, the clause is called a rule and the

body represents the predicates that, when true with the given arguments,

imply that the predicate represented by the clause’s head term is true in

respect of its arguments. The second clause states that animal/1 is true in

respect of its argument X whenever the predicate cat/1 is true in respect of

the same argument.

Kowalski goes on to spell out the significance of using logic:

A consequence of using logic to represent knowledge is that such
knowledge can be understood declaratively. A consequence of using
deduction to derive consequences in a computational manner is that
the same knowledge can also be viewed procedurally Thus, logic pro-
gramming allows us to view the same knowledge both declaratively and
procedurally.” [45]

In Prolog, the knowledge is represented using Horn clauses, and the de-

duction mechanism is SLD resolution [46]; this mechanism is responsible

4The name pangur identifies a simple named constant called an atom. Numbers are
also allowed as constants in Prolog.

5Variables in Prolog are denoted by identifiers starting with a capital letter or an
underscore. The scope of a variable is the clause in which it appears.
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for Prolog’s goal-directed theorem-proving behaviour. Thus, apart from

the static declarative logical interpretation—“this predicate is true if the

predicates in the clause body are true”—Prolog clauses have a prescriptive

interpretation—“to prove the predicate, prove all the predicates in the clause

body”, and this is the basis for executing Prolog programs.

Formally, Prolog works by refutation: that is, to prove a conjecture, the

conjecture is assumed to be false and, taking the negated conjecture and all

the clauses in the program, a sequence of logical steps is sought that leads to

a contradiction. The contradiction refutes the falsity of the conjecture, and

thus proves the conjecture under the circumstances discovered, which may

include assigning particular values to variables in the conjecture. Each logical

step in the proof of the contradiction is made using resolution, a technique

developed by Alan J. Robinson [57].

Here is a statement of the rule of resolution (after [63, p62]): from the

two clauses: P :- Q1, ..., Qj, ..., Qn. and Q :- R1, ..., Rm., if there exists a

substitution s such that Q[s] = Qj[s], a new clause can be derived: P :-

Q1, ..., Qj−1, R1, ..., Rm, Qj+1, ..., Qn. This new clause is the resolvent of the

two clause on Qj under the substitution s, obtained by replacing the literal Qj

in the first clause by the whole body of the second clause and by applying the

substitution s to the whole resulting clause. The substitution s is obtained

by unification of Qj with a private ‘copy’ of the second clause.

Unification operates as follows: two simple terms can be unified if they

are identical. If one term is a variable, it can be made equal to the other;

the terms thus become identical and can be unified. Similarly, if both terms

are variables, their identities can be merged so that they become one vari-

able henceforward and the two terms become identical and can be unified.

If none of the above steps are applicable, unification fails. Compound terms

(i.e. terms containing arguments) are unified by ensuring the principal func-

tors are identical and by recursively unifying each corresponding argument.

8



(A further element of unification is that an element can not be unified with

another element of which it is a component. Testing for this condition—the

occur check—is not performed in Prolog.)

The successful application of the rule of resolution above means that

the newly formed clause—the resolvent—is a logical consequence of the two

clauses. Linear resolution, where every resolution step involves a clause taken

from the program and the goal that was produced in the previous resolution

step, permits a more systematic method of searching for a refutation. The

further restriction of selecting the goals within a literal in a fixed order, yield-

ing Selected-literal Linear resolution for Definite clauses (SLD resolution), is

the basis of the Prolog execution mechanism.

SLD resolution can also be seen as a pattern-matching process: the exe-

cution mechanism searches through the clauses in the program for a clause

with a head term that might be unifiable with the conjecture. On finding

such a clause, a distinct copy of the clause, complete with its own private

variables, is instantiated, or brought into existence. An attempt is made to

unify the conjecture with the clause instance’s head term. If the unifica-

tion is unsuccessful, the execution mechanism discards the clauses instance

and searches for another clause. However, if the unification is successful,

the logical inference is made that the conjecture is provable using the axiom

embodied in the clause instance. If the clause instance is a fact, i.e. if it has

no body, then the inference is unconditional. For example, if the conjecture

is cat(X) (i.e. that the predicate cat/1 is true for some variable X), then

the clause instance cat(pangur) may be chosen to prove the conjecture,

where the conjecture’s variable X is unified with the constant pangur. Since

cat(pangur) is a fact, the conjecture cat(X), where X has the value pangur,

is proved unconditionally by this clause instance.

If a clause instance is a rule, then the inference made by resolving the

conjecture with the clause instance is conditional on the predicates in the
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body of the clause instance being true. For example, if the conjecture is

animal(T), (i.e. that the predicate animal/1 is true for some argument T),

then the clause instance animal(X) :- cat(X) may be chosen, where the

instance’s variable X is unified with the conjecture’s argument T, giving a

complete clause instance animal(T) :- cat(T). Since this is a rule, the

truth of the conjecture animal(T) is conditional on the predicate cat(T)

being true. This can be proved using an instance of the first clause, as

outlined in the previous paragraph, unifying the conjecture’s argument T

with the clause instance’s argument pangur.

As described in the foregoing paragraphs, a Prolog system allows a pro-

grammer to describe a system in terms of things that are true about it—that

is, the facts and rules that capture the essential properties of the system. To

prove something about the system, a conjecture is made which the Prolog

execution mechanism attempts to prove, using SLD resolution to make log-

ical inferences from the axioms supplied and stored as clauses, producing a

result which is a theorem, and which does not depend for its veracity on any

details of the execution mechanism.

The efficiency with which a theorem is proved can be influenced by clause

and goal ordering. Although the order in which the predicates are listed in

the body of clause is unimportant from a logical point of view, (since all

predicates in the clause body must be true for the predicate to be true),

and although the order of the clauses in a procedure is also unimportant

from a logical point of view, (since the predicate is true if any axiom is

true), the Prolog execution mechanism always tries to prove predicates in

the left-to-right order in which they appear in the body of a clause, and

similarly it always selects axioms to be used to prove a predicate in the

lexical order in which they appear. Thus, by the ordering of predicates in

a clause body and of clauses within a procedure, the programmer can affect

the order in which the Prolog system attempts to find proofs. In this way,

10



therefore, a programmer can influence the way in which a proof is attempted

and thus determine, to an extent, the efficiency of a solution. For example,

where a proof is recursive, the clauses representing the base-case axioms

could be placed before the recursive axioms, so that non-recursive proofs are

considered before recursive ones. For example, the definition of membership

of a list represented by the clauses:6

member(X,[X|_]).
member(X,[_|R]) :- member(X,R).

has the base case as the first clause.

Unfortunately, the rather simple-minded way the clauses are chosen means

that the programmer is required to exercise control over program execution—

otherwise, proofs of interest might not be found even when they are implied

by a logical interpretation of the clauses. Consider, for example, proving the

query member(A,B). By considering the first of the two clauses above, the

Prolog interpreter will prove the query by unifying X with A and [X| ] with

B, yielding an immediate proof. However, suppose the clauses were in the

other order:

member(X,[_|R]) :- member(X,R).
member(X,[X|_]).

Now, by considering the first clause, the interpreter will prove member(A,B)

on condition that it can prove member(A, ), leading to infinite regress. Here,

therefore, is a situation where the interpreter is unable to prove something

that is a logical consequence of the axioms. It follows from this that a Prolog

programmer must give consideration both to the logical description of the

problem and also to the way in which the Prolog evaluation mechanism oper-

ates. This is captured neatly in Kowalski’s celebrated aphorism: algorithm

6Here, the square brackets denote a list structure, and the underscore represents an
anonymous variable—a variable that occurs just once in the clause and—since it is not
referred to again—needs no name.
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= logic + control [44]; the desired algorithmic behaviour is achieved by

controlling the way in which deductions are performed on the logic.

Other aspects of a Prolog program not captured by treating it simply as

a set of axioms include deficiencies due to the simplified form of unification

used, (the occur check is omitted, as mentioned on page 9), the use of the ‘cut’

symbol, shortcomings in the treatment of negation, the reliance on predicates

with side effects.7

For a thorough introduction to Prolog, the interested reader is referred

to [22] or [11]. More advanced treatments can be found in [54] and [65].

It could be argued that Prolog is neither a proper logic nor a proper

programming language; however, in many situations it does offer the pro-

grammer the opportunity to develop solutions to problems by considering

logic and control somewhat independently of each other.

1.2 Example

In this section, an adaptive variant of mergesort called runsort is described

that demonstrates the ease—one might even say the elegance—with which a

fairly complex algorithm can be expressed and implemented. For a detailed

analysis of runsort, including a comparison with a similar sorting algorithm

called SAMsort [53] developed by Richard O’Keefe, please refer to [10].

In Prolog, a simple formulation of mergesort would consist of a predicate

to split the incoming list of n items into a list of n singleton lists followed by

predicates to merge these into n/2 lists of ordered pairs, in turn to be merged

into n/4 lists each of four ordered items, and so on until just one ordered

list remains. It is, however, a straightforward matter to make the algorithm

adaptive by splitting the incoming list into lists of the long runs [42] present

(see [32] for a survey of adaptive sorting algorithms). The code for this

7See [54] for an extensive treatment of these and related issues.
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adaptive mergesort, termed ‘runsort’, is presented below.

Firstly, the following code defines runsort/2 as a predicate calling the

split/2 predicate followed by the merge phase/2 predicate:

runsort([],[]).
runsort(X,Y) :-

nonvar(X),
split(X,Fragments),!,
merge_phase(Fragments,Y).

The split/2 predicate identifies the start of rising or falling runs in the

input list and calls splitRisingRun/4 to append the rest of a rising run R

to the two items comprising the start of the the run, X and Y. If a falling run

is detected, splitFallingRun/5 is called to prepend the rest of the falling

run, in reverse order, to the two items Y and X. Thus, the split/2 predicate

breaks the incoming list into lists of each long run, reversing the order of

falling runs to return them in ascending order.

The split/2 predicate is:

%split the incoming list into sublists,
% one for every long run
split([],[]).
split([X,Y|R],[[X,Y|L]|Z]) :-

X@=<Y,
splitRisingRun(R,S,L,Y),!,
split(S,Z).

split([X,Y|R],[T|Z]) :-
splitFallingRun(R,S,[Y,X],T,Y),!,
split(S,Z).

split([X],[[X]]).

%identify the extent of a run that is known to be rising
% (i.e. non-descending)
splitRisingRun([X|R],S,[X|L],K) :-

X@>=K,
!,
splitRisingRun(R,S,L,X).
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splitRisingRun(R,R,[],_).

%identify the extent of a run that is known to be falling
% (i.e. descending) and return a list
% with the run reversed, i.e. in ascending order
splitFallingRun([X|R],S,Ti,To,K) :-

X@<K,
!,
splitFallingRun(R,S,[X|Ti],To,X).

splitFallingRun(L,L,B,B,_).

The merging phase of the algorithm is implemented using the predicates

merge phase/2 to repeatedly call merge pass/2 to merge/3 all pairs of lists

until just one list remains.

The merge... predicates are:

%merge sublists until just one sublist remains
merge_phase([],[]) :- !.
merge_phase([X],X) :- !.
merge_phase(X,Y) :-

merge_pass(X,A),!,
merge_phase(A,Y).

merge_pass([],[]).
merge_pass([X],[X]) :- !.
merge_pass([X,Y|R],[Z|A]) :-

merge(X,Y,Z),!,
merge_pass(R,A).

merge([],X,X) :- !.
merge(X,[],X) :- !.
merge([X|Y],[A|B],[X|R]) :- X@<A,!,merge(Y,[A|B],R).
merge(Y,[A|B],[A|R]) :- merge(Y,B,R).

1.3 The Origin of Prolog

As previously mentioned, Prolog was developed by Alain Colmerauer and

Philippe Roussel at Université Aix-Marsellies. According to Jacques Co-
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hen’s account [23], Colmerauer had been interested in text understanding

using logic deduction. While Alan Robinson’s paper on resolution and unifi-

cation [57] provided a theoretical basis for a language such as Prolog, it was

extremely inefficient as a computational mechanism. Kowalski and Kuehner

had developed a variant of linear resolution called SL resolution [46] and so

Colmerauer invited Kowalski to visit Marsellies in the summer of 1971. As

a result of that visit and another in the spring of 1972, the foundations of

the language were laid, viz. the use of SL resolution on definite Horn clauses.

Together, these features lead to the now-familiar Prolog notation, to goal-

directed deduction by means of inference steps implemented using resolution,

and to the use of backtracking to simulate non-determinism.

With the experience of Colmerauer and Roussel’s first implementation

behind them, the second implementation of Prolog by Gérard Battani and

others [5] included practically all the features of ‘modern’ Prolog, including

the cut and including operator definitions. This implementation was written

in a combination of Fortran and Prolog. In designing Prolog, the Marseilles

group appear to have chosen to make the language similar as possible to a

high level language while still maintaining its claim as a logic programming

language. Those choices were:

• To base Prolog on Horn Clause Logic. This allows resolution to be used

as a means of inference;

• To omit the ‘occur check’. Formally, resolution of two terms is forbid-

den if one term occurs in the other; hence ‘full’ resolution must include

a check called the ‘occur check’ for this eventuality. If the occur check

is omitted, resolution is considerably faster. Even though resolution

without the occur check is unsound, Prolog omits the occur check;

• To use left-to-right subgoal satisfaction. Subgoals are satisfied in the

order they appear in the clause body. If subgoal satisfaction is regarded

15



as a procedure call, then the body of a clause is similar to the code in

a normal procedure, containing sequences of calls to other procedures;

• To use depth first satisfaction of goals. Where a goal reduces to sub-

goals, these subgoals are recursively satisfied before attempting to sat-

isfy any other goals. This means that if goals are regarded as pro-

cedures, depth first satisfaction become depth first procedure calling,

which is exactly what happens in a conventional language: if a proce-

dure calls another, the subsidiary procedure must fully execute before

its caller continues;

• To simulate non-determinism using backtracking. In the course of sat-

isfying a goal, a number of clauses may be found to be suitable for

evaluation. A non-deterministic machine will pick a clause that will

lead to a proof. In Prolog, non-determinism is simulated by choosing

the first suitable clause that occurs lexically in the program text, and

by storing a reference (a ‘choice point’) to the alternatives. If it later

transpires that the clause that was chosen does not lead to a proof,

program execution is said to ‘fail’ and is unwound back to the point

at which the clause was about to be chosen, but this time the next

alternative is chosen, and normal operation resumes. This unwinding

of program execution is called backtracking, and can occur repeatedly

until all the choices stored in choice points have been tried. Choice

points are stored in last-in-first-out order, and, on backtracking, the

most recently made choice is revisited first. If all the choices in the

most recent choice point are tried and found unsatisfactory, further

backtracking will revisit the next older choice point, and so on. (It

should be noted that the backtracking-on-failure mechanism does not

fully simulate non-determinism. So long as the ‘wrong’ choice of clause

eventually results in failure, causing backtracking to occur, then back-
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Prolog Feature Imperative Language Fea-
ture

set of clauses program
predicate; set of clauses
with same name and arity

procedure definition; non-
deterministic case state-
ment

clause; axiom one branch of a nondeter-
ministic case statement; if
statement; series of proce-
dure calls

goal invocation procedure call
unification parameter passing; assign-

ment; dynamic memory al-
location

backtracking conditional branching; it-
eration; continuation pass-
ing

logical variable pointer manipulation
recursion iteration

Table 1.1: Some correspondences between features of Prolog and a conventional High Level
Language (HLL). (From [71]).

tracking will simulate non-determinism. However, if the wrong choice

does not lead to failure, backtracking will not occur, and the possibly

correct alternative choice will not be made.)

Prolog has many points of correspondence with conventional computer languages—

see Table 1.1 for a summary.

1.4 Early Implementations

Colmerauer and Roussel’s original interpreter [58], written in Algol-W, was

followed by Battani and Meloni’s Fortran-based interpreter [5].

A Prolog interpreter was developed in Hungary in 1975 by Péter Sz-
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eredi, based on an example showing how Prolog might be implemented in a

talk given by David H. D. Warren [66]. Maurice Bruynooghe’s Pascal-based

Prolog interpreter [12] appeared in 1976. Grant Roberts also developed an

interpreter at the University of Waterloo, Canada, in 1977 [56].

The first Prolog compiler was developed by David H. D. Warren, produc-

ing DEC10 Assembly Language [72, 73].

The very well-known C-Prolog was an interpreter developed at Edinburgh

in 1982 by Fernando Pereira, Lúıs Damas and Lawrence Byrd [55]. It is based

on EMAS Prolog, a system completed in 1980 by Lúıs Damas. According

to [71], a number of Prolog implementations appeared from Edinburgh over

the next few years, in particular Prolog-X and NIP (New Implementation

of Prolog). DEC10-Prolog was extensively modified sometime around 1980,

incorporating Last Call Optimisation [74, 76].

In 1983, David Warren published his account of what is now known as the

Warren Abstract Machine [75]. The WAM, as it became known, is clearly an

extension of his DEC-10 work. Structure copying is employed for representing

terms and registers are used to hold arguments and terms. The WAM has

formed the basis for many, if not most, subsequent Prolog implementations.

A comprehensive account of developments in Prolog implementations is

given in Peter Van Roy’s report 1983–1993: The Wonder Years of Sequential

Prolog Implementation [71]. In that work, Van Roy traces the themes in Pro-

log implementation in these years: improvements in compilation techniques

for unification, for clause selection and backtracking; compilation to native

code; optimisations arising from global analysis and abstract interpretation;

development of alternative execution models, including the Vienna Abstract

Machine [47] and BinProlog [67].

Virtually all of these start with the WAM, or are based on structure

copying, but interestingly enough, David Warren himself, in a foreword to

Hassan Aı̈t-Kaci’s tutorial on the WAM [1], says:
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Although the WAM is a distillation of a long line of experience in

Prolog implementation, it is by no means the only possible point

to consider in the design space. For example, whereas the WAM

adopts “structure copying” to represent Prolog terms, the “struc-

ture sharing” representation used in the Marseilles and DEC-10

implementations still has much to recommend it’

1.5 Implementation Issues

From the start, speed and memory consumption were the main concerns of

Prolog implementers, e.g. see [16] for coverage of some of these issues. The

move from interpreter-based to compiler-based implementations was intended

to address both issues.

Two ways of representing dynamically constructed data structures evolved:

structure sharing and structure copying. Memory was conserved by treating

short-lived and long-lived memory allocations separately, and by recovering

certain categories of deallocated memory automatically. Garbage collection

was introduced to recover unused memory. Speed was enhanced by special-

ising unification routines as much as possible so as to minimise the amount

of processing required. Some of these issues are considered in the following

sections.

1.5.1 Dynamic Data Structures: Structure Sharing and

Structure Copying

A peculiar feature of Prolog as a computer language is that it has no explicit

data constructs. In fact, no distinction is drawn between ‘program’ and ‘data’

in Prolog. Instead, clauses fill the role of both program and data. Structured

terms, also called compound terms, fulfill the role of dynamic data structures
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Control 
Information

10

20

cpr(R,C)

Code Space

Frame Stack

cpr/2
@var(0)
@var(1)

Read-Only 
Clause Code

Cell for ‘R’:

Cell for ‘C’:

Cell for ‘X’:

Figure 1.2: A clause instance, represented by a pair of pointers, shown in grey—one to the
fixed code of the clause, the second to a frame of data where, along with control information,
the values assigned to variables of that particular instance of the clause are stored.

in a conventional language. For example, the clause makeComplex(R,C,X):-

X = cpr(R,C) contains one compound term, cpr(R,C). A call to this clause,

passing a variable in for X results in the return of a newly-constructed data

structure, the compound term cpr(R,C). The representation technique used

for compound terms—especially compound terms like this one, that are con-

structed by a running program—is an important part of any implementation.

When the goal ?- makeComplex(10,20,T) is executed, (assuming the

clause above is part of the program), an instance of the clause is created.

Conceptually, the clause instance comprises two items: the fixed code for

the clause and a frame of memory locations for the values of the variables

and the control information such as return address, etc. The clause instance

could be represented by a pair of pointers (see Figure 1.2), one to the frame

of memory locations and the second to the clause code.

Once the goal has unified with the head of the clause instance, R has the

value 10 and C has the value 20, both values being stored in the appropriate
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Control 
Information

10

20

Code Space Frame Stack

cpr/2
@var(0)
@var(1)

Read-Only 
Clause Code

Cell for ‘R’:

Cell for ‘C’:

Cell for ‘X’:

X=cpr(R,C)

R=10, C=20

Figure 1.3: A new structure, constructed by structure sharing, is represented by two pointers
shown in grey—one to the structure’s ‘skeleton’ which is part of the clause code, the second
to a frame of data where the values assigned to variables of that particular instance of the
structure are stored.

part of the instance’s frame. The variable T has been bound to the variable

X. At this point, the call X = cpr(R,C) is executed, and a new compound

term, cpr(10,20) must be constructed and unified with T.

If the implementation uses structure sharing, the term will be represented

by a pair of pointers (please refer to Figure 1.3) , often called a molecule: the

first pointer will point to the frame of memory containing the cells that hold

the values of the instance variables, and the second pointer will point to that

part of the clause code that represents the structure cpr(R,C). In fact, the

structure instance is almost identical in form to the clause instance to which

it is related. The difference is that the clause instance’s code pointer points to

an executable part of the clause code, whereas the structure instance’s code

pointer points to that part of the clause code that represents the structure

of the term—the so-called skeleton of the term.

If, on the other hand, the implementation uses structure copying, then

the structure will be represented (please refer to Figure 1.4) by constructing

a completely new copy of the term with the new values of variables in place.
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Code Space
Frame Stack

cpr/2
@var(0)
@var(1)

Read-Only 
Clause Code

Cell for ‘R’:

Cell for ‘C’:

Cell for ‘X’:

X=cpr(R,C)

Structure 
Space

10

20

cpr/2

Figure 1.4: A new structure is constructed in a separate area, here called the Structure Space.
The values of any variables that are known are also copied into the structure. The structure
is referenced with a simple pointer.

In other words, the Prolog interpreter translates the structure instance into

a new copy of the term instance, where instantiated variables are replaced

by the values to which they are bound. This requires an area in which the

new copy of the term can be constructed. The new structure instance may

be referred to with a single pointer.

Each representation technique has its own advantages and disadvantages,

to be considered in later sections of this work. Using structure sharing, for

example, unification of a constructed term with a variable is fast, but if a

structure instance is needed after the clause instance that it is part of has

terminated, the part of the clause instance’s frame containing its variable

value cells must be kept in existence. This complicates the memory manage-

ment of structure sharing implementations. Additionally, a variable could

potentially have to be large enough to accommodate the two pointers of a

molecule.8 If structure copying is used, clause instance frames can be deleted

on termination of the clause instance, but unification of a constructed term

with a variable may be slow due to the copying needed.

8In MProlog, this problem is avoided by constructing molecules as needed on the global
stack and pointing to them from variables [43].
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Of the two techniques, structure sharing is the older in Prolog. According

to Warren [72], the structure sharing technique [9] was first used in Prolog by

Battani and Meloni [5] in 1973. Warren’s 1977 implementation [72] of DEC-

10 Prolog [7] used structure sharing, as did Roberts’ [56] implementation in

the same year.

Structure copying was proposed separately at the Workshop on Logic

Programming in Debrecen, Hungary, in 1980 by Bruynooghe [13] and Mel-

lish [51]. In 1983, Warren published his description of the WAM, the Warren

Abstract Machine [75], which uses structure copying. Virtually all later Pro-

log implementations use structure copying, though Open Prolog uses struc-

ture sharing.

1.5.2 Memory Management

One of the key developments in Prolog implementations was the incorpo-

ration of garbage collection. The earliest implementations, lacking garbage

collection, relied on various programmer stratagems to regain memory, for ex-

ample by backtracking from time to time, having stored partial results from

which to resume operations. Last Call Optimisation (LCO) and garbage

collection were studied intensively [13, 14]. DEC-10 Prolog was the first

to introduce garbage collection, using a mark-compact algorithm9 on the

global stack [72], and LCO was introduced in the later version of DEC10-

Prolog [74, 76].

1.5.3 Early Developments

One of the visitors to Marseilles in early 1974 was David H.D. Warren. When

Prolog ‘escaped’ from Marseilles, in the form of copies of Battani et al’s 1973

implementation, one of its destinations was the University of Edinburgh,

9For a survey of garbage collection topics and techniques, see [41]
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where it was installed on a PDP10 by David H.D. Warren10 with the assis-

tance of the original implementers [25, p. 9]. It would be difficult to overstate

the importance of David H.D. Warren’s own implementation work, starting

with a description of the architecture and implementation of a high perfor-

mance Prolog implementation for the DEC 10 family of machines [72, 73].

DEC-10 Prolog was the first implementation to actually compile Prolog into

machine code, and was very fast and memory-efficient.

There were two major innovations in DEC-10 Prolog. The first was to use

each argument in a clause’s head to generate instructions that would perform

specialised unification with the corresponding goal argument. For example,

if a head argument was an integer, then code would be generated to unify an

integer of that specific value with the corresponding goal argument, thereby

avoiding the overhead of a general unification routine. The second major

innovation was to categorise all the variables in a clause on the basis of their

usage and possible lifetimes. Variables that could be shown to have short

or very short lifetimes could be allocated space in a ‘local stack’—roughly

equivalent to the stack in a conventional language—where the space occupied

by them could be easily recovered without expensive garbage collection. All

other variables were allocated space in a ‘global stack’—roughly the same as

a heap in a conventional language. In some cases, analysis could determine

that a variable was merely a placeholder; in that case, no code was generated

for it at all.

An [unnamed] implementation of Prolog was developed around the same

time in Hungary by Péter Szereidi. This was superseded by MProlog, which

was based on the PLM—see [66, 33].11

10There are two David Warrens in the logic programming community; the other one is
David S. Warren of SUNY.

11The MProlog compiler is based on Warren’s later work [74, 76] where argument reg-
isters and Tail Recursion Optimisation were introduced. MProlog has been enhanced and
refined over the years [43].
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Up to this time, the technique of structure sharing was used to represent

constructed structures. Bruynooghe and Mellish published work on the use

of structure copying in 1980 [13, 51] and Warren published the design of the

Warren Abstract Machine (WAM) in 1983 [75]. The WAM used many of

the techniques developed in his 1980 modification of DEC-10 Prolog, such as

argument registers, but, perhaps more significantly, it used structure copying

to represent constructed structures. The history of Prolog implementations

from this point on is very well treated in [71], to which the interested reader

is referred.
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Chapter 2

The DEC10-Prolog Machine

2.1 Introduction

As mentioned in Section 1.4 (page 17), the development of DEC-10 Prolog

was one of the most important events in the history of Prolog, and was very

influential on later Prolog implementations, including Open Prolog.

DEC-10 Prolog is a compiler-based Prolog implementation for the DEC-

10 [7], and the basis for the implementation is the work described by David

H.D. Warren in his thesis [72, 73]. Source code is compiled into the ma-

chine code of a Prolog-oriented machine architecture called the PLM. From

this, the Prolog compiler generates DEC-10 macro assembler code. Struc-

ture sharing is used to represent constructed compound terms. Clauses are

compiled individually, and the clauses that comprise a procedure are linked

using try instructions, preceded by an enter instruction.1 Figure 2.1 shows

this arrangement schematically for a procedure comprising three clauses.

The arguments of a clause’s head are encoded into executable code—the

head code. Each argument, called a level 0 argument, is compiled into host

1For simplicity, this discussion relates to unindexed clauses. The indexing scheme
devised for the PLM is discussed later.

26



Head Code NeckFoot Literals

Head Code Neck Body Code Foot Literals

Head Code Neck Body Code Foot Literals

Code for

Three

Clauses

try

try

trylast

Procedure

Entry Point

enter

Figure 2.1: Schematic of a PLM procedure. The sequence of try instructions links the
machine code for each separate clause together. The enter instruction partly initialises the
clause instance’s environment.

instructions that will attempt to unify it with a corresponding argument in

the current goal. If an argument is a structure, then the arguments of the

structure—level 1 arguments—are similarly compiled into machine code.

Execution of the head code unifies each head argument with its corre-

sponding goal argument and creates part of a new instance of the clause as

a side effect. This avoids separately instantiating a clause instance before

attempting to unify the current goal with it. The neck code following the

head code completes the construction of the clause instance’s environment

once the head code has successfully completed. Goals in the body of the

clause are compiled into procedure calls, and cut symbols are compiled us-

ing a special cut instruction. Thus, the body code is a sequence of call

and cut instructions. The body code is terminated by the foot instruction

which is the equivalent of the restore-and-return instructions at the end of a

conventional procedure.

Certain common sequences of instructions are replaced by specialised

combinations. For example, a unit clause has no goals in its body, so the neck

instruction that would complete the clause instance’s environment would im-

mediately be followed by a foot instruction which might discard it. According

to Warren, combining the two instructions in a neckFoot instruction saves
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Name Lifetime Ends Criterion
Global Backtracking. Occurs in a skeleton.
Local Procedure completed

successfully and de-
terminately, i.e. no
choices remain within
the procedure.

Multiple occurrences
with at least one in
the body and none in a
skeleton.

Temporary Completion of unifica-
tion with the head of the
clause.

Multiple occurrences, all
in the head of the clause
and none in a skeleton.

Void None. A single occurrence, not
in a skeleton.

Table 2.1: Classification of Variables in the PLM.

space and execution time.2

Along with head, neck, body and foot code, each clause also gives rise to

try instructions. The try instructions of all clauses whose heads have the

same principal functor are linked for fast access to individual clauses within

the procedure. The last clause in the procedure has a tryLast instruction

rather than a simple try.

Structures and goal arguments are compiled into non-executable literals

and stored as data after the foot instruction at the end of the clause.

2.2 Variable Lifetime Analysis

Considerable attention is given in the PLM to reducing the memory require-

ments of running programs. One of the main innovations of the PLM is

the analysis of variables into one of four categories depending on their likely

lifetime. The four categories are listed in Table 2.1, (from [72, p53]).

Broadly speaking, there are two categories of variables, global and local.

2This is not borne out in Open Prolog; the equivalent instruction has a very small effect
on program behaviour.
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• Variables that appear as part of a structure are automatically classified

as global.

• Variables that appear only once, and not in any structure, are voids.

Voids are placeholders, because their values are never referenced or

used, so no memory is allocated for them.

• Variables that occur only in the head of a clause, and not in any struc-

ture, are classified as temporary. Once unification of the calling goal

with the head is complete—i.e. by the time the neck instruction is

executed—temporary variables are no longer needed, since they don’t

occur in the body of the clause. Storage allocated to temporaries can

therefore be deallocated as soon as head unification is complete.

• Finally, variables that occur in the head or body of the clause, but

don’t occur in any structures, are local variables.

To take advantage of the lifetime analysis of variables, the PLM has a

global stack for global variables and a local stack for local variables. These

and other data areas are examined later in this thesis.

2.3 Variable First Usage Analysis

Variables occurring in the head of a clause are also analysed by usage. As

previously mentioned, the head instructions of a clause unify with the cur-

rent goal while simultaneously constructing a new clause instance. The first

occurrence of a variable in the head is a special case, since it is known that

the variable has never been used before. All that is required is to bind it

to its matching term in the goal—it doesn’t need to be initialised first. If

it happens to be classified as a local, then this operation reduces to simple

assignment—the corresponding goal argument is simply copied into it. This
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is a significant simplification of the general case of unification, and Warren

attributes part of the speed of DEC-10 Prolog to it.

2.4 Data Representation

The PLM uses structure sharing to represent constructed compound terms.

These are represented by a pair of pointers—a molecule—one pointing to a

skeleton literal and the other to a frame of memory locations containing the

values held by the variables referenced from the literal. The representation of

constructed terms is thus different to the representation of literals or source

terms. The PLM therefore has one set of representations for literal terms and

another set for constructed terms, i.e. terms generated by running programs

and assigned to variable cells.

2.4.1 Representation of Literals

There are essentially four kinds of literals to be represented in DEC-10 Prolog:

variables, numbers, atoms and compound terms or skeletons. Variables are

classified into one of five categories: var, global, local, temporary and

void. A var is the identification used for a global variable wherever it occurs

within a structure. Temporary variables are treated as locals, and the PLM

relies on a combination of DEC-10 addressing modes and tags to distinguish

between the resulting seven types.

Each of the seven types is represented initially by a DEC-10 XWD, which

is a 36-bit word that can contain an effective address. The layout of an XWD

is shown in Figure 2.2. As may be seen, the effective address can include an

index register specification. If the upper halfword is zero, the lower halfword

is treated as an absolute address. Particularly worth noting is the I bit. If

this bit is set, the XWD is taken as a memory-indirect reference to another
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CODE A I X Y
0 9 12 14 18

13

CODE = Instruction Code (0 = None)

A = Accumulator (0 = None)

I = Indirection Bit (0 = Off)

X = Index Register (0 = none)

Y = Address

Figure 2.2: Layout of a DEC-10 instruction.

XWD, which might also have its I bit set, indicating that it, in turn, is another

memory-indirect reference. Thus, the DEC-10’s XWD offers direct support for

reference chains.

As we will see below, three PLM registers, Y, X and X1 are index registers

for var, local and global variables respectively.3 Thus, the layout for all

seven distinguished literals is as shown in Figure 2.3.

An atom is represented by a reference to a tag-and-data word, where the

data, according to Warren [73, p6] ‘identifies the atom’ and distinguishes it

from any other. Similarly, the data part of an integer is its binary value, in 2’s

complement form if negative. A structured term or ‘skeleton’ is represented

by a reference to a sequence of terms representing the principal functor,

skel(I), followed, recursively, by representations of the subterms, in order.

Nested structures are thus accommodated via out-of-line references.

The representation is notable for two reasons. First, inline operands

are all the same length. This simplifies many operations, such as finding

the n-th argument. Second, the representation scheme fits very snugly into

the DEC-10 architecture; by making such efficient use of the processor’s

unusual memory-indirect effective address calculation mechanism, access to

3The fact that some PLM registers have the same names as fields in an XWD is
accidental—there is no connection.
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var(I) Y I

IXlocal(I)

global(I) X1 I

0[void] $void 0

I$atom[atom(I)] 0

I$int[int(I)] 0

I$skel[fn(I),…] 0

Source Term DEC-10 Form Extra Data

Figure 2.3: Literals in DEC-10 Prolog. All representations are effective addresses in the DEC-
10 architecture, and are evaluated prior to use. A structure is represented by a pointer to the
$skel followed by the principal functors index followed by the subterms of the structure.
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undef 0 0

0ref

atom(I) $atom I

int(I) $int I

I$skelmol(Frame,Skel)

Constructed Term DEC-10 Form Extra Data

pointer to another 
(older) variable

pointer to a frame 
of memory for 
variables' contents

Figure 2.4: Constructed Terms in DEC-10 Prolog. A structure is represented by a ‘molecule’
of two pointers. The first pointer points to a vector of memory called a frame in which the
values of variables are stored. The second pointer points to the ‘skeleton’ or fixed structural
part of the term.

arguments is fast and efficient.4 Every literal is uniformly defererenced to

access its actual value, considerably simplifying and speeding the resulting

code.

2.4.2 Representation of Constructed Terms

Constructed terms are values given to variables during program execution.

In the PLM, they can have one of five types of value: undefined, bound to

another variable, unified with an atom, unified with an integer and unified

with a constructed compound term or molecule. Figure 2.4 shows the layout

of constructed terms.

4Warren states that the possibilities afforded by the DEC-10 architecture inspired the
development of DEC-10 Prolog.
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2.5 Data Areas

The PLM has four data areas: the code area, the global stack, the local stack

and the trail.5 The code area contains the program code and literals, and is

‘read only’ once the program has been loaded. The trail is a push-down-list

used for resetting variables on backtracking, and its use is described later in

this report.

The global and local stacks are managed jointly to provide memory space

for representing clause instances, including housekeeping information and

space for variables. These areas are called stacks because they are allocated

and deallocated on a last-in-first-out basis as clause instances are created

and destroyed (on backtracking).

A clause instance’s global variables, likely to have long lifetimes because

they appear in structures, are allocated space in a global frame, and space for

the rest of the instance’s environment—local and temporary variables and

environmental information—is allocated in a local frame.

Local frames and the local stack are managed much the same as the stack

in a conventional language implementation. Local frames are allocated space

at the top of the stack, on a conventional last-in-first-out basis. When a

clause instance is finished with or backtracked over, its local stack frame is

deallocated.

Global frames are managed differently. A global frame is allocated on top

of the global stack when a clause is instantiated and is deallocated on back-

tracking, but it is not deallocated when the clause instance finishes. It cannot

be deallocated because it contains all the variables that appear in structures

in the clause instance that are therefore liable to appear in term instances or

‘molecules’. These molecules may be returned to the clause instance’s caller

and some may be referenced during subsequent execution of the program.

5A fifth area for storing functor and atom definitions, is necessary for a functioning
Prolog system, but is not described in the report.
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Thus, the memory space they occupy in the global frame must remain al-

located after execution of the clause instance has terminated. Unreferenced

global frame space can be recovered by garbage collection, detailed later.

Overall, therefore, splitting a clause instance’s environment between a

global and a local frame allows much of the instance’s memory allocation,

specifically the local frame, to be recovered as soon as evaluation of the

goal had been completed deteministically. Only the necessary parts of a

clause instance’s environment need to be preserved after the clause instance

terminates, and they are the global variables. This innovation greatly reduces

the PLM’s appetite for memory.

2.6 Registers

Warren details eleven PLM registers. Of these, three pairs point to the tops

of the stacks, to the frames of the current goal and to the frames of the most

recent choice point. That is, V and V1 point to the tops of the local and

global stacks, X and X1 point to the local and global frames of the current

goal, and VV and VV1 point to the local and global frames of the latest choice

point respectively. Of the remaining five PLM registers, TR points to the top

of the Trail, PC points to the current instruction, A points to the arguments

of the current goal and the continuation, and the pair of registers B and Y

are used to represent a molecule undergoing unification.

In addition, Warren classifies five more registers as part of the DEC-10

implementation.6 The FL register comes in to play if there are alternative

clauses to consider to the clause chosen to satisfy the current goal.

6It appears that these registers are used to improve performance on the DEC-10 but
are not a vital part of the design of the PLM.
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PLM Registers
Register(s) Function
V & V1 Current Clause Frames. Pointers to tops of local and

global stacks respectively. Clause instance frames are
constructed at the top of the stacks.

X & X1 Current Goal Frames. Pointers to the local and
global frames of the Current Goal.

VV & VV1 Latest Choice Point Frames. Pointers to the local
and global frames of the most recent choice point.

TR Top of Trail. TR is a pointer to top of the trail data
area.

PC Current Instruction
A Pointer to the arguments of the Current Goal and

Continuation.
B & Y Pointers to the skeleton and environment of a

molecule involved in unification.
Extra Registers for the DEC-10 Implementation
FL Alternative to Current Clause (if there is one)

T & B1 Argument pointers to unification routine
C Return address for a runtime routine

R1 & R2 Temporary result registers

Table 2.2: PLM Machine Registers.

2.7 Instructions

The Instruction Set of the PLM can be divided into a number of sets, listed

in Table 2.3 and summarised in Appendix A.

The PLM is a compiler target; that is, the compiler generates PLM code

from Prolog source, and the PLM code is macro-expanded into DEC-10 ma-

chine code.
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Clause Selection Instructions
enter

try(L) tryLast(L)

Unification Instructions
uvar(N,F,I) uref(N,F,I)

uatom(N,A) uint(N,I)

uskel(N,S)

uvar1(N,F,I) uref1(N,F,I)

uatom1(N,A) uint1(N,I)

uskel1(N,S)

Other Head & Neck Instructions
neck(I,J) init(I,J)

localinit(I,J) ifdone(L)

Body Instructions
call(L) cut(I)

Foot Instructions
foot(N) neckfoot(J,N)

neckcut(I,J) neckcutfoot(J,N)

fail

Table 2.3: PLM Instructions
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2.8 Operation

The PLM machine operates quite like a conventional machine. In a con-

ventional language implementation, the environment of a procedure instance

that is about to make a procedure call would be at the top of the frame

stack and the environment of the new procedure instance would be built on

top of it. When the new procedure terminates, its environment would be

discarded and the caller’s environment would once again be on top of the

stack. Something like this also happens with the Prolog implementation on

the PLM—when a new procedure is called, its environment is constructed

on the top of the stacks. A crucial difference arises when the new procedure

exits: its stack frame is not discarded if alternative solutions are available for

that procedure call. In fact, in the PLM, an environment is discarded only

after there is no possibility of executing the goal again—i.e. if execution of

the goal is determinate or if backtracking removes the goal itself.

The possibility that a goal’s local frame will be left on the stack after

execution of the clause instance has exited gives rise to a further peculiarity:

the frame of the caller of a goal may not be at the top of the local stack

when the call is made—it may be buried under local stack frames belonging

to goals already executed.

2.8.1 Goal Execution

When a goal is called for execution, it becomes the current goal. As a subgoal

of a clause instance, the current goal’s local and global frames are those of the

current goal’s clause instance. Figure 2.5 depicts the data areas at this time.

V points to the top of the local stack, V1 points to the top of the global stack

and TR points to the top of the Trail. The environment of the current goal is

referenced by X and X1, and it may or may not be the topmost environment

in the stacks. The environment of the most recent choice point (i.e. the goal
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Figure 2.5: PLM data areas just as a goal is called for execution.

to which backtracking will go to if unification fails) is referenced by VV and

VV1. The choice point could be later in the stacks than the current goal, as

shown, or it could be earlier than, or coincident with, the current goal.

The machine is about to attempt to construct an instance of a clause

whose head terms unify with the goal being called for execution. The envi-

ronment for the new clause instance will be constructed on the top of the

stacks. Thus, V and V1, as well as pointing to the tops of the local and global

stacks, are also pointers to the frames of the new clause instance being cre-

ated.

The call instruction firstly executes the enter instruction. The effect of

this instruction is as follows:

• Copies of some PLM registers—VV, X, A, V1 and TR— are stored in the

new environment7

7Warren’s philosophy was to delay ‘housekeeping’ functions as long as possible, in case
a failure occurred that made the housekeeping unnecessary. So the enter instruction does
the minimum housekeeping possible and initialisation is completed as execution of the
head instructions progresses.
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• The VV register is made equal to V and VV1 is made equal to V1. VV

and VV1 point to the most recent choice point, so the significance of

this action is to make this procedure call the most recent choice point.

Having partly initialised the new local frame, the try instruction for the first

clause is executed. This sets the FL register to point to the next try instruc-

tion and then transfers program execution to the first instruction in the head

of the first clause. If the clause is the last clause in the procedure, its try

instruction is replaced by a tryLast instruction. The tryLast instruction

sets the registers in the PLM to reflect the fact that there are no further

choices for the current goal: the previous values of VV and VV1, (that specify

the previous choice point), are retrieved from the environment where they

were stored by the enter instruction. The effect of this is that if the last

clause fails, backtracking will fall back to the previous backtrack point.

At this point, a clause instance has been partly created—a clause has been

selected and an environment has been partly initialised. The goal arguments

are pointed to by register A and the goal’s local and global frames by registers

X and X1; the instructions in the head code can then access goal arguments

via these registers.

The PLM reserves two registers for dealing with arguments that are struc-

tures, registers B and Y, that correspond roughly to registers A and X1. Reg-

isters B and Y are used by level 1 instructions to access structure arguments

and variables, respectively, and are initialised by the uskel instruction.

The uskel instruction is executed where a head argument is a structure.

If the corresponding goal argument is a variable, and is unbound, it is as-

signed a constructed structure, i.e. a molecule, consisting of a pointer to the

structure’s literal and the new clause instance’s global frame, register V1.

If the goal argument is a bound variable, it must be bound to a molecule

having the same functor as the head argument. Preparations are made for

the execution of level 1 instructions by assigning register B to point to the
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Figure 2.6: PLM data areas after the enter instruction.

molecule’s arguments and register Y to its frame.

If the goal argument is a structure, it must have the same principal func-

tor as the head argument, and, to prepare for the execution of the level 1

arguments, register B is assigned to point to the goal structure’s arguments

and register Y is made equal to the goal’s global frame pointer X1.

The instructions in the clause head attempt to unify the clause instance

with the goal, initialising newly-encountered variables as necessary. Struc-

tures containing uninitialised variables are preceded by init instructions

whose function is to initialise just those variables. In this way, as the head

instructions execute, more and more of the clause instance’s environment is

initialised. If all the head instructions execute successfully, (meaning that

the goal unifies with this clause instance), all variables that occur in the

clause head will be initialised. The neck and init instructions complete ini-
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tialisation of the clause instance’s environment by initialising any variables

that occur in the body of the clause but not in its head and by copying in

the remainder of the control information:

• The current goal pointers, X and X1 are copied into the new environment

as the new clause instance’s continuation frame pointers.

• The current value of the PC.

Finally, the new clause instance is complete, and it now becomes the new

‘current goal’. This is accomplished by copying V to X and V1 to X1, by

advancing V beyond the end of the new local frame and V1 beyond the end

of the global frame. The PLM is now ready to execute the first instruction

in the body of the new clause instance.

2.8.2 Failure

If any of the head instructions fail to unify with their corresponding goal

arguments, (meaning that this clause can not be resolved with the current

goal), the PLM will backtrack to the most recent choice point—the goal

whose environment is pointed to by VV and VV1. When backtracking occurs,

the state of the machine is reset to the state it was at the time when the

goal at the backtrack point was about to be executed. All frames constructed

subsequent to the backtrack point are popped from the stacks, so that all the

control information and variable values stored in these frames are discarded.

However, those variables that were not in the discarded frames but that were

instantiated by the execution of discarded clauses must be reset. Such vari-

ables are ‘trailed’ when they are instantiated, that is, a reference is put into

the Trail (referenced by the TR register). Trailing is an expensive operation,

so it is only done when necessary. When backtracking occurs, variables that

must be reset can be identified in the Trail.
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The PLM distinguishes two kinds of failure—shallow failure and deep

failure. If the most recent choice point is the current clause instance (i.e. VV =

V), then it is said to be a ‘shallow fail’. In that case, restoring the environment

is relatively simple:

• Variables that were trailed since the clause instance started execution

are reset. These are easily identified, as their trail entries are above the

value that TR had when it was saved by the enter instruction at the

start of execution of the current goal. Thus, variables referenced in the

trail between the current and the stored values for TR are reset and TR

is then reset.

• Execution is transferred directly to the clause whose try instruction is

referenced by the FL register.

• The Goal Argument Pointer A is reset from the environment.

No other registers need to be reset.

If the most recent choice point is not the current goal, then ‘deep’ back-

tracking occurs, and it is a more expensive operation than shallow backtrack-

ing:

• All stack frames later than the choice point’s frames are discarded.

• All variables trailed since the choice point are reset.

• PLM registers are restored from the control information stored in the

choice point’s local frame.

2.9 Example

In this section, adapted from page 56 of [72], we illustrate the coding for the

member/2 procedure:
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member(X,[X|L]).
member(X,[Y|L]) :- member(X,L).

In the first clause, X and L are both global variables because they appear in

structures. The code for the first clause is:

Code Source Classification
clause1: uvar(0,global,0) member(X, Code

uskel(1,label2) [ Code
init(1,2) Code
ifdone(label1) Code
uref1(0,global,0) X Code

label1: neckfoot(2,2) ) Code
label2: fn(./2) [ Literal

var(0) X| Literal
var(1) L] Literal

The second clause has one local variable, X, and two global variables, Y and

L. The code for the clause is:

Code Source Classification
clause2: uvar(0,local,0) member(X, Code

uskel(1,label4) [ Code
init(0,2) Code
ifdone(label3) Code
uvar(1,global,1) L] Code

label3: neck(1,2) ) :- Code
call(member) member( Code
local(0) X, Literal
global(1) L) Literal
foot(2) Code

label4: fn(./2) Literal
var(0) Literal
var(1) Literal

2.10 Clause Indexing

Clause Indexing is another important innovation in the PLM that potentially

speeds up clause selection and reduces memory requirements. Recall that
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when a goal is called for execution, the clauses in the procedure are tried

sequentially in the lexical order they appear in the program. In the PLM,

the clauses of a procedure are indexed by their first arguments. The first

argument of the goal is used as an index selector, so that only those clauses

in the procedure whose first argument matches the goal’s first argument are

considered. In many cases of interest, just one clause will match, and that

clause may be chosen at once without having to build a choice point.

While the idea of clause indexing is simple, its application is complicated

because it must honour the sequential clause selection mechanism of Pro-

log. If the first argument of the goal is non-variable, and if every clause in

the procedure has a distinct non-variable first argument, then the indexing

mechanism will select the only possible clause, if it exists, or else it will fail.

However, if the first argument of the goal is a variable, it could match the

first argument of every clause, so each clause has to be considered in lexical

order. Also, any clause whose first argument is a variable would have to be

considered for any case.

The approach used in the PLM is to divide the clauses in a procedure into

sequential sections. A lexical sequence of clauses where the first argument

is a variable forms a general section, and a lexical sequence of clauses where

the first argument is a non-variable forms a special section. A procedure can

have any number of special and general sections alternating with one another.

Sections are linked sequentially, and when a goal is called for execution, it

traverses the sequence of sections.

The code for a general section begins by dereferencing the goal’s first

argument; the clauses are tried sequentially, and if none match with the goal,

the next special section is entered, if it exists—otherwise a failure occurs.

The code for a special section consists of two parts, the reference code—

used when the first goal argument turns out to be a reference to a variable—

and the non-reference code, used when the first goal argument is a non-
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call(X or Y) :- call(X).
call(X or Y) :- call(Y).
call(trace) :- trace.
call(notrace) :- notrace.
call(read(X)) :- read(X).
call(write(X)) :- write(X).
call(nl) :- nl.
call(X) :- ext(X).
call(call(X)) :- call(X).
call(true).
call(repeat).
call(repeat) :- call(repeat).

Figure 2.7: This is the procedure whose indexing code is illustrated in Figure 2.8.

variable.

If the section is a special section and the goal’s first argument is non-

variable, the non-reference code is used: a hash index may be computed

from the goal argument and used to select those clauses in the section whose

first argument could match it. Frequently, there is only one such clause, and

that is selected immediately. If there is more than one such clause, each one

is tried sequentially. If the goal’s first argument is a variable, the reference

code in the special section is used to try the clauses sequentially. If none of

the clauses in a special section match the goal, then the following general

section is entered, if there is one—otherwise a failure occurs.

A sample of code from [72] and listed in Figure 2.7 is translated into the

(rather complex) indexing code shown in Figure 2.8.

Although this is a complex example, it has the merit of showing most

of the features of the PLM indexing scheme. The indexing code comprises

three sections: a special section for the first seven clauses, a general section

for the eighth clause and a special section for the remaining four clauses.

The non-reference part of the first special section, being more than five

clauses, uses a hash table whose size—8—is the next-highest power of two.
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SSECT1 ssect(ref1,next) ;start of special section; ref1 points to the reference code

switch(8) ; 8-way hash table for 6 clauses
case(label1) ; note that only 5 entries are used
case(label2) ; because a hash collision occurs...
case(next)
case(label3)
case(label4)
case(label5)
case(next)
case(next)

label1: ifskel(or,list1) ; if first arg is the 'or' functor look at list1
goto(next) ;  otherwise go to the general section labelled 'next'

label2: ifatom(trace,clause3) ; if first arg is the 'trace' atom, execute clause 3
goto(next) ;  otherwise go to the general section labelled 'next'

label3: ifskel(read,clause5) ; if first arg is the 'read' functor, execute clause 5
goto(next) ;  otherwise go to the general section labelled 'next'

label4: ifatom(notrace,clause4); (hash collision) if first arg is the 'notrace' atom, execute clause 4
ifskel(write,clause6) ;  otherwise if first arg is the 'write' functor, execute clause 6
goto(next) ;  otherwise go to the general section labelled 'next'

label5: ifatom(nl,clause7) ; if first arg is the 'nl' atom, execute clause 7
goto(next) ; otherwise go to the general section labelled 'next'

list1: try(clause1)
try(clause2)
goto(next) ; otherwise go to the general section labelled 'next'

;reference code for the first special section - try each clause sequentially or fail to 'next'
ref1: tryskel(or,clause1)

tryskel(or,clause2)
tryatom(trace,clause3)
tryatom(notrace,clause4)
tryskel(read,clause5)
tryskel(write,clause6)
tryatom(nl,clause7)
endssect ;end of special section

GSECT1:next: gsect ;start of general section
try(clause8) ; just one clause with a variable as first argument

SSECT2: ssectlast(ref2) ;start of special section; ref2 points to the reference code
; no hashing done because fewer than five clauses in section

ifskel(call,clause9)
ifatom(true,clause10)
ifatom(repeat,list2)
goto(fail) ; no general section follows, so on failure, fail the call

list2: notlast ;prepare for a possible shallow fail
try(clause11)
trylast(clause12)

;reference code for the second and last special section - try each clause sequentially or fail.
ref2: tryskel(call,clause9)

tryatom(true,clause10)
tryatom(repeat,clause11)
trylastatom(repeat,clause12)

Figure 2.8: Indexing code for the procedure in Figure 2.7. Only the eighth clause has a
variable first argument, so the code comprises three sections: a special section for the first
seven clauses, a general section for the eighth clause and a special section for the remaining
four clauses.
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While Warren does not say so, it seems plausible that the hashing function

uses the first argument’s type, value and arity if appropriate. The hash ta-

ble is followed by code for five active hash codes. One hash code (label1)

maps to the first two clauses, having or/2 as a first argument. The hash

codes of the first arguments of clauses 4 and 6, (notrace and write/1 re-

spectively), collide at label4, and the code that follows resolves the collision.

The reference part of the first special section follows, starting at label ref1.

The general section is the indexing code for the eighth clause, as its first

argument is a variable.

The second special section differs in layout from the first special section

in that it doesn’t include a hash table, as the number of clauses is less than

five. A further difference arises because it is the last section; failure to select

one of its clauses results in failure of the entire call. As a result, the ending

try-type instructions are replaced by tryLast-type instructions.

2.11 Garbage Collection

Garbage collection is implemented in the global stack of the PLM. A rel-

atively conventional mark-sweep system is used. The mark phase consists

of identifying and marking all pieces of data that are part of the program’s

context—all clause instances and everything they can reach. The frames of

all clause instances that are still ‘live’ in the stacks are marked, as are all the

items that are referenced from variables within the frames. Frames are live

if they can be continued into or if they can be backtracked into. Marking is

done in two stages to avoid unnecessary recursion to dereference long chains.

First, all cells in all live frames are marked but not dereferenced. Then, ev-

ery reference from every cell is dereferenced and marked until the end of the

defererence chain is reached or until an already-marked cell is encountered.

The already-marked cell might have been marked as part of a frame marked
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in the first marking stage.

Once the reachable memory locations have been marked, the sweep phase

can begin. The idea is that all the reachable memory locations are ‘swept’,

i.e. moved, to one end of the memory space, closing up all the unused gaps.

Before this can be done, however, the values of the pointers in variables, ref-

erences and structures are remapped—updated to point to the new locations

of their referents. To accomplish this, once marking is finished, the displace-

ment of every frame is calculated and stored in a special cell associated with

the frame. Once this has been done for every frame, every variable, reference

and structure frame pointer is dereferenced and the displacement associated

with its referent’s frame added to it.

When all the references are remapped, the memory locations are swept

to the bottom of the global stack space.

2.12 Last Call Optimisation

The PLM is designed to be able to recover memory after a clause has com-

pleted determinately. Thus, for example, when the foot instruction executes,

that is, after the clause is executed, if the most recent choice point is older

than the current goal, the local frame associated with the current goal is

recovered.

Subsequent to the design of the PLM, Warren discussed Tail Recursion

Optimisation (TRO) [74, 76]. The idea is that it should be possible to recover

the local frame of a determinate procedure just before the last call is made,

because when the last call terminates, it would return to its caller only to

have its caller immediately return to its caller. If the last call could be made

return to its caller’s caller, there would be no need to retain the caller’s

frame, since it would never be used again. In fact, the caller’s frame could

be deallocated before that last call is made, and the space freed up could
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be used by the new clause instance. The scheme outlined applies when any

last call is determinate, not just where the last call is recursive, so it is more

generally called Last Call Optimisation (LCO). If the last call is recursive

as well as determinate, the amount of space deallocated will be exactly the

same as the amount of space needed by the new clause instance, thus leading

to a constant rather than an increasing stack-space requirement.

The problem with this idea is that if any of the arguments of the last

call include local variables, the space they occupy will be deallocated during

the last call and accessed after the call, i.e. local variables in the last call

will become dandling references. To solve this problem, Warren introduced

argument registers, prefiguring their introduction into the later Warren Ab-

stract Machine.8 In this later version of DEC-10 Prolog (dubbed Prolog-10

by Evan Tick [69]), arguments to a call are copied into argument registers

A1..An. This means that arguments to the last call can be local variables, so

long as those variables do not themselves refer to the local stack frame. The

only category of local variables that could be unsafe in this way are local

variables that do not occur in the head of the clause. The solution adopted

was to force such variables to be global at compile time.

2.13 Mode Declarations

DEC-10 Prolog offers the user the option of making mode declarations. These

pragma-like declarations are used to reduce the amount of memory and the

number of instructions necessary to implement the code. The user specifies

whether each argument is ‘input’, ‘output’ or ‘don’t know’.

Consider the clause:

member(X,[X|R]).

8The WAM is discussed in Chapter 3, starting on page 53 of this thesis.
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As it stands, the variables X and R must be declared to be global variables,

since a list structure will be constructed. However, if the second argument

is specified to be ‘input’ using a mode declaration, then the function of the

list [X|R] is only to unify with the pre-existing list that is guaranteed to

be the second argument. The list and the variables X and R are needed

only to check the incoming structure and, in the case of X, to carry a value

between the first argument of the clause and the first element of the incoming

list. Considerable savings can be made therefore: the structure need not

be permanent, saving memory, and the variables can be local rather than

global, facilitating quicker recovery of the memory space used. Indeed, in

this example, R can be implemented with a void, saving execution time as

well as memory.

2.14 Discussion

DEC-10 Prolog was very successful, and for many years it was far and away

the fastest and most reliable implementation of Prolog available. It was

comparable in speed to many mature Lisp implementations of the day [72].

The PLM was designed as a ‘staging post’ between Prolog source code

and DEC-10 Macro Assembler, and hence DEC-10 machine code. The output

of the compiler was DEC-10 machine code and data for each clause, corre-

sponding to the skeleton literals that comprised the structured arguments of

the clause. In addition, machine code was generated for clause selection and

indexing. From the description of the compiler, it appears that the clause

itself was not stored, so that decompilation of the code to reconstruct the

original clause would have been impossible.

The support of dynamic code—Prolog clauses that may be added or re-

moved from the program at run time—is not addressed in the PLM. Dynamic

code affects indexing methods and garbage collection in particular, and of
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course the semantics of assert and retract predicates would have to be

clearly defined.

Perhaps the most intriguing question is how much of its outstanding per-

formance DEC-10 Prolog owes to its tight integration with the slightly un-

orthodox architecture of the DEC-10, bearing in mind that the DEC-10’s au-

tomatic dereferencing property is explicitly used in the design (see page 30).

It would be also be interesting to know whether the extra resources de-

voted to the special treatment of first level structures—the registers B and Y

and the level 1 instructions—and the combining of some frequently-occurring

instruction sequences (such as combining neck and foot to form neckFoot)

were warranted by the improvement in performance observed.

Open Prolog borrows a good deal from DEC-10 Prolog. Like DEC-10

Prolog, Open Prolog is based on structure sharing and is stack based rather

than register based, using global, local and trail stacks in very similar ways.

Variables are analysed in almost the same way, and some instructions and

registers have the same names in both implementations. The garbage col-

lection algorithm used on the global stack in Open Prolog is very similar

to that used in the PLM. The PLM is, however, an intermediate target for

the compiler; as noted above, the final output of the compiler is DEC-10

machine code. The Open Prolog compiler, by contrast, produces code for an

abstract machine which supports dynamic code, code inspection, Last Call

Optimisation and catch-and-throw error handling.
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Chapter 3

The Warren Abstract Machine

3.1 Introduction

In 1983, David H.D. Warren published a description of what has come to be

known as the Warren Abstract Machine [75], more succinctly known simply

as the WAM.1 The WAM and the PLM are similar in many ways; in both

machines, Prolog source code is compiled into instructions for an abstract

machine; both have two main stack areas and a trail; both use tag-and-data

representations of literals. The biggest differences are:

• Structure copying is used instead of structure sharing to represent com-

pound terms;

• The WAM is a register-based machine; the PLM is stack-based. The

WAM uses argument registers and temporary registers to hold Prolog

literals. The PLM has no such data registers.

These differences are very far-reaching in their effects, and for all their simi-

larities, the WAM and the PLM are very different in their operational char-

1See [1] for a tutorial-style introduction to the WAM. For an overview of the PLM and
the WAM, see [38].
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acteristics. This section gives a brief summary of the WAM.

3.2 Overview

Source code is compiled into the machine code of the WAM. The machine

code is classified as consisting of:

• get instructions, corresponding to the arguments in the head of the

clause;

• call instructions, corresponding to goals in the body of the clause, each

preceded by

• put instructions, corresponding to the arguments of the goal.

In addition, unify instructions correspond to the arguments of a structure or

list. Warren also includes the classification of procedural instructions, such

as the call instruction, and indexing instructions, used to select clauses.

The unify instructions correspond to the arguments of a structure or

list. If a goal argument is to be unified with a structure whose arguments

are represented by these instructions, then two possibilities exist:

• If the goal argument is already a structure, then the unify instructions

simply check that the structure and its arguments match.

• If the goal argument is an uninstantiated variable, then the unify in-

structions construct a copy of the structure they represent and assign

it to the variable.

The WAM addresses the two possibilities using two modes. In the first case,

the machine is placed in the read mode, and in the second case, it is placed

in the write mode.
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3.3 Variables and Data Areas

As with the PLM, a great deal of attention is devoted to reducing memory

usage. The two main differences between the PLM and the WAM come into

play here; the WAM uses structure copying and is register based whereas the

PLM uses structure sharing and is stack-oriented.

Because the WAM uses structure copying, structures are copied as needed

into a special data area called the heap. If a structure contains an uninstanti-

ated variable when copied, space is allocated in the structure’s representation

on the heap for the value of the variable. If the variable is instantiated later,

its new value is stored in that space. In this discussion, let us call these

variables structure variables.

The other kind of source variables—variables that appear in Prolog source

code—are variables that appear as arguments in the head or in goals. Let

us call these arguments argument variables. Argument variables are assigned

to argument registers in the WAM; before a goal is called, the appropriate

arguments are loaded into argument registers. There is a clean distinction

between structure variables and argument variables: structure variables are

assigned space in situ in the structure in the heap; argument variables are

assigned into argument registers. A source variable that is both a structure

variable and an argument variable gets space in the structure in the heap

and an argument register at the appropriate time; the argument register will

contain a reference to the variable in the structure. For example, we can

classify the variables in the clause member(X,[Y|Z]) :- member(X,Z). as

follows:

• The source variable X is an argument variable in the head and in the

goal.

• The source variable Y is a structure variable only.
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• The source variable Z is a structure variable in the head and an argu-

ment variable in the body.

As we have seen, the WAM dispenses with the PLM’s global frame by allocat-

ing storage for structure variables in the heap. Likewise, the use of argument

registers dispenses with the need for the PLM’s local variables. However,

argument variables must be stored in memory under some circumstances.

Consider the variable S in the clause:

quicksort([K|T],S) :-
partition(T,K,L,G),
quicksort(L,S1),
quicksort(G,S2),
append(S1,[K|S2],S).

The value of the variable S that is present when the clause is called must be

stored in memory so that when the intervening calls— to partition/4 and

to quicksort/2—have concluded, it can be loaded into an argument register

prior to the call to append/3.

Variables that do not need to be stored in memory are called temporary

variables in the WAM. A temporary variable has its first occurrence in the

head or in a structure or in the last goal, and does not occur in more than

one goal (where, for this purpose, the head of the clause and the first goal

are taken as one goal).

Argument variables that must be stored in memory (i.e. argument vari-

ables that are not classifiable as temporary variables) are called permanent

variables in the WAM and are stored in the clause instance’s environment in

a data area called the stack, along with the control information.

Similarly to the earlier DEC-10 Prolog implementation, where a local

variable could be unsafe (see page 50), a permanent variable can be unsafe.

A permanent variable that references an unbound permanent variable at the

time it is deallocated will leave a dangling reference, and deallocation can
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occur due to environment trimming or to the deallocation of all permanent

variables prior to a last call. The only permanent variables that could do this

are variables that do not occur in the head of the clause or in an inner literal

of a structure. Unsafe variables are detected at compilation time and are

allocated space on the heap if necessary at run time to avoid this possibility.

Finally, in his description of the WAM, Warren sometimes refers to per-

manent variables as stack variables or local variables, and similarly he some-

times refers to variables placed in the heap as global variables.

Backtracking presents a difficulty for argument variables stored only in

argument registers. When a goal is called, the appropriate arguments are

copied into argument registers. If backtracking subsequently attempts to re-

satisfy the goal using a different clause, these arguments must be reloaded

into the argument registers. To facilitate this, the WAM uses a choice point

data structure, which is constructed when needed on the stack. The choice

point stores the goal arguments in memory so that the argument registers

can be restored on backtracking.

As with the PLM, the analysis of variables takes into account whether a

particular use is the first use or a subsequent use. In addition, if the variable

is classified as permanent, account is taken of its last use. As soon as a

permanent variable has been used for the last time, the space it occupies

in the environment could potentially be recovered by ‘trimming’ it from the

environment, described later.

3.4 Data Representation

Warren envisaged the WAM being implemented in a 32-bit machine, and

suggested a ‘provisional’ tag-and-data format for data items, shown in Fig-

ure 3.1. Lists have their own distinct tag, and floating point numbers are

handled as variants of structures.
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Reference Address 00
31 02

Structure/Real Address 01
31

Structure or Real
02

List Address 10
31List 02

Integer Value
31

Atom or Functor

03
011±

Atom or Functor Number
31 03

111

Variable

Integer

Real Box “FRACTION”
31 03

111

Floating Point Number

Figure 3.1: Suggested Data Formats for the WAM. An unbound variable is represented as a
reference to itself.

Code Area Heap Stack Trail PDL

P H TRHB B E

Figure 3.2: Layout of the WAM’s memory areas. When unifying two variables, the higher
addressed location is assigned a pointer to the lower addressed cell. This, combined with the
low-to-high ordering of the heap and stack, and the fact that both grow upwards, is sufficient
to prevent dangling references.

3.5 Data Areas and Structures

The main data areas (see Figure 3.2) are the code area, the heap, the stack

and the trail, with a small push-down-list space used during unification. As

with the PLM, Warren doesn’t describe how the textual names of atoms and

functors are represented, as it is not important to the overall function of the

machine. The code area contains instructions and other data representing

the program itself.

The heap is used to store newly constructed structures and lists. It may
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Goal Argument M

Goal Argument 1

:

:

(Am)

(A1)

(BCP)

Continuation Environment

Continuation Code Pointer

Previous Choice

Next Clause

Trail Point

Heap Point

(BCE)

(B')

(BP')

(TR')

(H')

Continuation Environment

Continuation Code Pointer

Variable 1

Variable N

:

:

(CE)

(CP)

(Y1)

(Yn)

Choice Point Environment

Figure 3.3: Layout of WAM Choice Point and Environment data structures.

also store what Warren calls global or heap variables. These are variables

whose lifetime exceeds the lifetime of a clause instance’s environment, but

which do not form part of a structure.

The stack is used to contain environments and choice points, the format

of which is shown in Figure 3.3.

3.6 Registers

Warren details nine special purpose registers and an indefinite number of

argument registers and registers for temporary variables, as listed in Table 3.1

The Argument Registers (the An registers) and the Temporary Variable

Registers (the Xn registers) are the same registers (i.e. Ai is the same register

as Xi), named differently to reflect their different usages. The WAM makes

use of this fact to minimise data movements within the register set.

59



Name Description
P Program Counter (points into the Code Area)
CP Continuation Program Counter (points into the

Code Area)
E Pointer to the last Environment (on the Stack)
B Pointer to the last Choice Point (on the Stack)
A Pointer to top of Stack
TR Pointer to top of Trail
H Pointer to top of Heap; used, e.g., when writing

structures into the Heap
HB Pointer to Heap Backtrack Point, i.e. the top of the

Heap if execution had backtracked to B

S Structure Pointer, points to a structure in the Heap;
used by unify... instructions in read mode)

A1,A2,. . . Argument Registers
X1,X2,. . . Registers for Temporary Variables

Table 3.1: WAM Registers.

3.7 Instruction Set

In his report, Warren classifies the WAM’s instruction set into get instruc-

tions, put instructions, unify instructions, procedural instructions and index-

ing instructions. Table 3.2 lists all the instructions.

3.8 Program Representation

Each clause in a Prolog program is separately encoded. Clauses having the

name name and arity, i.e. clauses belonging to the same procedure, are linked

together using indexing code. The general scheme for encoding clauses is

described in this section, and indexing is described later.
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Get Instructions
get_variable Yn,Ai get_variable Xn,Ai

get_value Yn,Ai get_value Xn,Ai

get_constant C,Ai get_nil Ai

get_structure F,Ai get_list Ai

Put Instructions
put_variable Yn,Ai put_variable Xn,Ai

put_value Yn,Ai put_value Xn,Ai

put_unsafe_value Yn,Ai

put_constant C,Ai put_nil Ai

put_structure F,Ai put_list Ai

Unify Instructions
unify_void N

unify_variable Yn unify_variable Xn

unify_value Yn unify_value Xn

unify_local_value Yn unify_local_value Xn

unify_constant C unify_nil

Procedural Instructions
proceed allocate

execute P deallocate

call P,N

Indexing Instructions
try_me_else L try L

retry_me_else L retry L

trust_me_else fail trust L

switch on term Lv,Lc,Ll,Ls

switch on constant M,Table

switch on structure M,Table

Table 3.2: The WAM Instruction Set. The abbreviations Xn, Yn, C and F represent, respectively,
a temporary variable, a permanent variable, a constant and a functor. P is the address of a
procedure and N is the number of variables. L, Lv, Lc, Ll and Ls are addresses of clauses or
clause sequences, and Table is a hash table of size M.
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P P :- Q P :- Q,R,S.

get args of P get args of P allocate

proceed put args of Q get args of P
execute Q put args of Q

call Q,N

put args of R
call R,N1

put args of S
deallocate

execute S

Figure 3.4: WAM Encoding Schemas for three different types of clauses.

3.8.1 General Clause Schemas

First, the general scheme for encoding clauses is illustrated in Figure 3.4. In

the first case, a unit clause, the clause code simply gets the arguments of the

clause instance; the proceed instruction terminates the clause by returning

program execution to the location pointed to by CP. In the second example—

a clause having just one goal in the body—an environment is definitely not

needed, so the clause code consists of instructions to get the arguments of

the clause instance, to put the arguments of the single goal and then to

transfer execution to that procedure using the execute instruction. In the

third example, an environment is needed because there is more than one goal

in the body. Thus the first instruction is to allocate the environment, and

the second-last instruction is to deallocate it.

One other thing worth noting here is that the call instruction takes two

arguments. The first argument is the address of the called goal’s first clause

or index code, as might be expected. The second argument, however, is used

to help ‘trim’ the environment: it represents the number of variables that

must be retained in the current environment. At the point when a call is

made, certain permanent variables may no longer be needed, and if they are
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at the edge of the environment data structure (see Figure 3.3), they can be

trimmed off. If the environment happens to be at the top of the stack, the

space trimmed in this way is immediately reusable; thus it can be viewed as

a generalisation of last call optimisation.

3.8.2 Get Instructions

The get instructions encode the arguments of the head of a clause and are

executed just after a clause instance has been invoked. At that time, the

arguments being passed to the clause instance have already been placed in

the argument registers A1, A2, ... , and the function of the instructions is

to unify the head arguments they represent with the arguments in the goal.

For example, the instruction get constant C,Ai represents the ith head ar-

gument, which is the constant C. When executed, it unifies the constant with

the ith incoming goal argument, which is in argument register Ai. The in-

struction get nil Ai is a special case of this instruction, where the constant

is the empty list [].

Instructions representing variable head arguments come in two varieties:

get variable Vn,Ai for the first occurrence of a variable and get value

Vn,Ai for subsequent occurrences of a variable. The difference between the

two is very significant; in the first case, it is known that Vn is unbound. As

a runtime optimisation, such variables are not explicitly initialised; instead,

when first encountered, Vi is simply assigned the value contained in Ai. In

the second case, it is known that Vi contains a value, so the contents of

the two registers are unified and dereferenced, a considerably more complex

operation than simple assignment.

The remaining two get instructions are related; get structure F,Ai and

get list Ai represent, respectively, the start of a structure or list as a head

argument. Both instructions are responsible for setting the WAM up for
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unifications of the structure or list’s subterms. Given that the WAM is a

structure copying implementation, these instructions may cause the WAM

to start constructing a new structure or list on the heap. The instructions

dereference the incoming argument Ai and operate as follows:

• If it is a variable, then a new structure or list must be constructed, or

‘written’ to the heap. Hence, the WAM is put into the ‘write’ mode,

which affects the operation of the unify... instructions.

• If it is not a variable, if the result is either a structure with a matching

principal functor or a list, as appropriate, then the existing subterms

of the head and goal arguments must be checked, and the WAM is

put in the ‘read’ mode, again affecting the operation of the unify...

instructions. (If the functors don’t match or the item is not a list,

execution fails.)

3.8.3 Unify Instructions

The unify... instructions represent structure and list arguments, and their

operation is affected by whether the WAM is in the read mode or the write

mode. Depending on which mode these instructions are executed in, they

make use of two of the WAM’s special purpose registers, the S (for struc-

ture) register or the H (for heap) register. For example, if the instruction

unify constant C is executed in read mode, the instruction unifies the cor-

responding structure argument, pointed to by register S, with the constant

C. In the write mode, however, the instruction writes the constant C onto the

heap, as pointed to by register H.

Instructions representing variables in a structure come in four varieties:

unify variable Vn, unify value Vn, unify void N and

unify local value N. Of these, unify variable Vn and unify value Vn

work similarly enough to get variable Vn,Ai and get value Vn,Ai but
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with the difference that in the write mode, something has to be written to

the heap to be part of the structure being created. With unify variable, a

new structure variable is created on the heap and a reference to it placed in

Vn. With unify value the situation is a little more complex. The simplest

thing would be to copy the contents of Vn into the heap, but the problem is

that this might result in a dangling reference. If Vn can not be guaranteed

to contain either a constant or a reference to another structure variable,

it could contain a reference to a permanent variable, i.e. a stack variable,

which could be deallocated before the structure that is being constructed is

discarded. Consequently, the unify value Vn instruction is only used where

the compiler can guarantee that the contents of Vn will be ‘safe’ in this sense.

Where the guarantee of safety can not be given, the instruction

unify local value Vn instruction is used instead. This instruction per-

forms a check to ensure that Vn does not reference a stack variable; if it does,

a new unbound structure variable is written to the heap, and the stack vari-

able in question is set to reference the new variable. (See also the instruction

put unsafe value Yn,Ai below, where a similar situation may arise.)

The unify void N instruction is used where one or more void variables

occur in a structure. There is no corresponding instruction get void Ai

because the argument Ai would never be used, so there is no need to examine

it. Analogously, the read mode, unify void N just skips N arguments, but

in the write mode, N unbound variable are initialised in the heap as part of

the structure being created.

3.8.4 Put Instructions

Put instructions are the third category of instructions corresponding to ar-

guments in the WAM. As their names might suggest, these instructions are

concerned with putting arguments into registers, either argument registers
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or temporary variable registers. For example, the instruction put const

C,Ai puts the constant C into register Ai (equivalently, register Xi). The

instruction put nil Ai is a specialised version of this instruction, where the

constant is the empty list: [].

Again, there are four instructions for representing variables. First,

put variable Yn,Ai initialises Yn and puts a reference to it into Ai. The

instruction put variable Xn,Ai is used in the final goal of a clause, where

the environment—if it existed—is gone, and all that remains are temporary

variables and argument registers. The problem is that the registers holding

temporary variables will no longer be available as soon as the execute in-

struction is executed. Therefore, this instruction initialises a new variable

on the heap, and places a reference to it in Xn and Ai. Next, the instruc-

tion put value Vn,Ai simply copies the value of Vn into Ai. Finally, the

put unsafe value Yn,Ai instruction encodes the last occurrence of a vari-

able that may still reference a stack variable. If so, a new heap variable is

created and the register Ai is set to reference it.

3.8.5 Nested Structures

The WAM instruction set does not support nested structures or sublists

directly. Instead, where a nested structure or sublist is required, a temporary

variable is substituted for it, and the temporary variable itself is unified with

the nested structure or list. If the nested structure or sublist is part of

the head, and is therefore to be unified with terms being received from the

caller, the instructions to unify the stand-in variable with the nested item

follow the sequence of unify instructions in which it appears. If the nested

structure of sublist is part of the body, and is therefore part of an argument

to be passed to a subgoal, the instructions to unify the nested item with its

stand-in variable precede the sequence of instructions in which the variable
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concatenate([],L,L).

concatenate([X|L1],L2,[X|L3]) :- concatenate(L1,L2,L3).

concatenate/3: switch_on_term C1a,C1,C2,fail.

C1a: try_me_else C2a % concatenate(

C1: get_nil A1 % []

get_value A2,A3 % L,L

proceed % ).

C2a: trust_me_else fail % concatenate(

C2: get_list A1 % [

unify_variable X4 % X|

unify_variable A1 % L1],L2

get_list A3 % [

unify_value X4 % X|

unify_variable A3 % L3]) :-

execute concatenate/3 % concatenate(L1,L2,L3).

Figure 3.5: WAM Encoding of concatenate/3, from [75].

appears. Thus, nested structures give rise to chains of get... or put...

instructions, ‘connected’ via temporary variables.

3.9 Examples

Figure 3.5 lists the WAM code for the concatenate/3 predicate, and Fig-

ure 3.6 is an example of the encoding of nested structures.

The concatenate/3 example highlights many of the advantages the WAM

has over the PLM. Perhaps the most significant advantage is this: if the call

to concatenate/3 is determinate on the first argument, no choice point is

allocated, and, because there is only one goal in the clause body, the WAM
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d(U*V,X,(DU*V)+(U*DV)) :- d(U,X,DU),d(V,X,DV).

try_me_else... % d(

allocate

get_structure ‘*’/2,A1 % *(

unify_variable A1 % U,

unify_variable Y1 % V),

get_variable Y2,A2 % X,

get_structure ‘+’/2,A3 % +(

unify_variable X4 % SS1,

unify_variable X5 % SS2),

get_structure ‘*’/2,X4 % SS1 = *(

unify_variable A3 % DU

unify_value Y1 % V),

get_structure ‘*’/2,X5 % SS2 = *(

unify_value A1 % U,

unify_variable Y3 % DV)) :-

call d/3,3 % d(U,X,DU),

put_value Y1,A1 % d(V,

put_value Y2,A2 % X,

put_value Y3,A3 % DV

deallocate

execute d/3 % ).

Figure 3.6: WAM Encoding of d/3, with the addition of the allocate and deallocate
instructions inadvertently omitted from [75]. This is an encoding of a differentiation rule in
Prolog, from [72].

completely avoids having to construct an environment.2 The second notice-

able advantage is that pass-through variables, such as the second argument

in the second clause of the predicate, incur no run time overhead; notice that

the second argument, in register A2, is not manipulated at all in the code

beginning at label C2.

The second example highlights how the WAM deals with nested struc-

2The PLM’s local stack frame encompasses the functionality of both the WAM’s envi-
ronment and choice point data structures.
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tures. The code for a nested structure follows the structure’s first appear-

ance in a head argument, and precedes the structure’s first appearance in

a body argument; in each case, the structure’s place is taken by a stand-in

variable—a temporary register. By comparison with the PLM, the WAM

is at a disadvantage if large amounts of deeply nested structures are to be

processed, as it will have to execute code to construct new copies of these

structures, whereas the PLM will simply have to make a reference to the

existing term.

3.10 Indexing

The indexing scheme is similar to that of the PLM in many ways. As with

the PLM, clauses are indexed by their first arguments, clauses are grouped

into sections, hashing may be used to select viable clauses within a section,

and finally sequential selection if more than one viable clause results. The

details are somewhat different, however.

The sequence of clauses in a procedure is partitioned into sections cor-

responding exactly to the PLM’s general and special sections (see page 44)

each of which contains either one clause whose first argument is a variable

or a maximal subsequence of consecutive clauses whose first argument is a

non-variable. For example, the call/1 procedure used as an example for the

PLM (page 46) is divided into three clause blocks, S1 to S3:
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S1



call(X or Y) :- call(X).

call(X or Y) :- call(Y).

call(trace) :- trace.

call(notrace) :- notrace.

call(read(X)) :- read(X).

call(write(X)) :- write(X).

call(nl) :- nl.

S2
{

call(X) :- ext(X).

S3


call(call(X)) :- call(X).

call(true).

call(repeat).

call(repeat) :- call(repeat).

Each clause block may be visited in sequence during clause selection using

try me else, retry me else and trust me WAM instructions. For example,

for the above procedure, the code would be:

try_me_else(S2)
Code for Major Segment S1

S2: retry_me_else(S3)
Code for Major Segment S2

S3: trust_me
Code for Major Segment S3

Viable Clauses

Once a section has been selected, (and if it is not a single clause with a

variable as its first argument), a switch on term instruction selects one of

four outcomes depending on whether the first argument of the goal is a

variable, a constant, a list or a structure.
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If the first argument is a variable, all clauses in the section could poten-

tially match so control is transferred to a sequence of try me, . . . , retry me,

. . . , trust me instructions to allow each clause in the block to be visited in

sequence.

If the first argument is a constant or a structure, a further selection

instruction is executed: a switch on constant or switch on structure in-

struction selects a sequence of clauses on the basis of the actual value of the

first argument. The selection may be done using hash tables.

For non-variables (lists, constants or structures) at this point, three out-

comes are possible: first, if there is no match, execution fails in this clause

block; second, if exactly one clause matches, it becomes the only clause in

the clause block that is visited; third, if a number of clauses match, each

is visited using the familiar try me, . . . , retry me, . . . , trust me chain of

instructions.

Overall, therefore, clause indexing comprises up to three stages: selection

of a clause block (omitted if there is only one clause block), selection of

viable clauses within the clause block (omitted if there is only one clause in

the block), and finally, selection of a clause from the viable clauses (omitted

if there is only one viable clause).

3.11 Discussion

The WAM represents a considerable advance over the PLM. The use of argu-

ment and temporary registers, the splitting of the environment frame from

the choice point frame (versus the local stack frame of the PLM) are no-

table. The elimination of the PLM’s structure skeletons by compiling them

into unify... instructions is another notable change, as is the attendant

elimination of the need for the rather awkward molecule needed in the PLM

to represent a constructed structure. In this writer’s view, two features stand
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out. These are the potential to avoid completely the generation of an envi-

ronment or choice point and the ability to avoid the generation of instructions

for arguments that are present but unused. Both these features come into

play in the concatenate/3 predicate (Figure 3.5). Because the clause con-

sists of only one goal, no environment needs to be generated; if the call is

determinate, no choice point will be generated either. The second argument,

L2, occupies argument register A2 and remains there throughout execution

of the clause; no instructions are generated for it.

With respect to the aims of this thesis, however, the WAM presents some

difficulties, principally with regard to decompilation. When a clause is com-

piled to WAM code, what is produced is a sequence of instructions. In

particular, neither structures nor variables are retained explicitly. In place

of the structures present in the source code, instructions are generated which

construct or test for the presence of these structures at runtime. It would

be necessary to ‘play back’, i.e. symbolically execute, these instructions to

reconstruct the structures.

Similarly, variables in the clause give rise to instructions that manipulate

argument registers, temporary registers, stack variables and heap variables.

To reconstruct the variables, it would be necessary to perform, effectively,

a liveness analysis of all the registers used by the clause code, beginning

with the argument registers. The presence of void, unused and anonymous

variables would have to be inferred.

While the two problems referred to above are not insurmountable, they

are reasonably complex and would represent quite a significant effort. See [15]

for another view of this.

Similarly to the PLM, the support of dynamic code—Prolog clauses that

may be added or removed from the program at run time—is largely omitted

from the WAM.

72



Chapter 4

Open Prolog

4.1 Summary

In this chapter, the motivation behind the design is discussed and the design

choices are set out. Contributions covered in this chapter include all major

aspects of the design—the overall design philosophy, the use of two PCs while

performing unification, the selection of structure sharing.

4.2 Design Considerations

As stated in the introduction, the aim of the work described here was to

design an implementation of Prolog that would combine the advantages of

compiler-based implementations—speed and memory efficiency—with those

of interpreter-based implementations—ease of inspection of programs, ease of

modification and ease of debugging—in one mode of operation. In addition,

of course, it was hoped that the resulting implementation would be compact1

and relatively easy to implement.

1Or at least ‘compact’ in the sense of an economy of concepts.
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4.2.1 Overall Design

Consider an informal implementation ‘schema’ where source code is trans-

lated into an intermediate form which is interpreted on the host machine.

There would be a ‘translation gap’ between the source code and the inter-

mediate form and an ‘interpretation gap’ between the intermediate form and

the host processor. The translation gap would be absent in the case of a

pure interpreter, and the interpretation gap would be absent in the case

of a host-code-producing compiler. It seems that every high-level language

implementation could be mapped onto this schema.

An implementation with some element of compilation will, in principle,

always be better than a pure interpreter because the compiler will be able to

take advantage of information available in the source code to produce an in-

termediate code that will consume less resources at runtime. For example, in

the PLM and the WAM, variable analysis carried out at the time of compila-

tion identifies variables that need not be allocated any memory space, saving

memory. The same analysis performed at runtime—where possible—will of

necessity take execution time. It is apparent, therefore, that our design must

incorporate some level of compilation, so, in the schema above, the transla-

tion gap will be bridged by some form of compilation. Aggressive compilation

techniques, on the other hand, while improving execution and memory per-

formance, increase compilation time and typically produce output code that

can not be related back to the source code. In these cases, it is impossible

to inspect or modify the compiled Prolog code. Of course, the code could be

annotated with information to enable sections of the code to be related back

to sections of the source code. This is not a completely satisfactory solution

for Prolog however, because if a source file is consulted, modified and then

reconsulted, code from the original consultation could still be active, while

its source text could be gone from the file.

Thus, it seems that the single mode of operation desired for the imple-
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mentation should incorporate just enough compilation to give it high perfor-

mance, but not enough to destroy the correspondence between source and

intermediate code nor to unduly delay clause assertion.

Ideal Architectures and particularly Direct Correspondence Architectures

(DCAs) offer a coherent framework within which to consider these and re-

lated issues.

An Ideal Computer Architecture2 is an architecture, specific to a particu-

lar high level language, which exhibits a one-to-one correspondence between

the high level language representation of a program and the associated ma-

chine coding. It is also designed to minimise instruction size, execution time

and compilation time. A Direct Correspondence Architecture is an imple-

mentable architecture that approaches the ideal by adhering to the principles

of Ideal Architectures.

In the Ideal Architecture computing model, computation is considered a

two phase process, translation and interpretation. Translation is the process

of changing or translating the description of a task in a high level language

into an intermediate form. The intermediate form is a sequence of instruc-

tions where an instruction is a function that changes execution state. In-

terpretation is the act of evaluating the instructions to effect execution. It

is performed by an image machine. The image machine corresponds to the

image of the machine that translation from the source is targeted to, and the

set of instructions of the image machine are the execution architecture. The

individual instructions are called the image instructions. The image machine

is implemented on a host processor using an emulator.

A requirement of Ideal Architectures and DCAs is that there should be

a one-to-one relationship between the image architecture and the high-level-

language encoding. This means that there should be a one-to-one correspon-

dence between the source code and the image code representation, but also

2This account of Ideal Computer Architectures is based on [37] and [77].
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that there be a direct correspondence between the state of the image machine

as it performs the image program, and the state of the source program as it

would be performed according to the language’s operational semantics.

These principles offer an attractive basis for partitioning the design of the

implementation into the translation and execution phases and were broadly

adopted in the design of Open Prolog. As a consequence, the design incorpo-

rates compilation techniques to bridge the translation gap and an emulator

to bridge the interpretation gap. In the middle is an abstract machine whose

instructions are emulated for execution and decompiled to provide code in-

spection facilities.

4.2.2 Clause Representation

Perhaps the first thing to realise is that a clause is both program and data.

Clearly part of a program, a clause is also data for, say, a program that

lists clauses. Thus, its representation must facilitate execution as part of a

program and identification as a piece of data. If it is represented simply by

the code needed to fulfil its function when executed, it would not be possible

to list or inspect it. It was therefore decided to represent code using a tagged

representation scheme, with a tagged representation for every component of

the clause, including arguments, data structures, the neck, the foot, control

instructions and the cut.

To incorporate information gleaned from compilation, the instruction set

was enriched to represent different types and usages of variables, to specially

signify the last subterm in a structure and to amalgamate certain frequently

occurring sequences of instructions, e.g. a clause body consisting of a cut

could give rise to just one instruction neckCutFoot rather that three neck,

cut and foot. While this increases the size of the abstract machine’s in-

struction set, the benefits in terms of performance and memory consumption
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would surely be worthwhile. As far as decompiling the code back to source,

the extra complexity is minimal—often a question of adding some extra en-

tries to a table.

4.2.3 Implementation of Unification—Dual PCs

Unification generally occurs between a goal and a clause head. Each argu-

ment in turn is unified with its corresponding argument. In the PLM, the

head terms are compiled into host machine code, and are responsible for

fetching their corresponding goal arguments, which are treated as data. One

could envisage a similar situation here: the emulator would take the instruc-

tion from each head term and execute it. This would locate and fetch its

corresponding goal argument and process it. In most cases the goal term to

be fetched by the next head term would be adjacent to the term just fetched.

If the pointer was stored and left for the next head term, the overhead of

locating the next goal term would be obviated. Thus it seems natural to

reserve a special goal argument pointer for ‘walking’ the sequence of goal

term instructions as well as the existing PC which likewise walks the head

term instructions.

Given that there is little or no distinction between the codes used to rep-

resent terms in the head and those in the goal, it seems artificial to distin-

guish between the the ‘PC’—i.e. the head argument pointer—and the goal

argument pointer. Accordingly, it was thought appropriate to treat both

pointers equally, resulting in a system that employs two program counters

during unification. The PCs are termed the Head PC (HPC) and the Body

PC (BPC).
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4.2.4 Structure Sharing and Structure Copying

As discussed in Chapter 1 on page 19, there are two well-establised schemes

for representing dynamically constructed data—structure sharing and struc-

ture copying. Without doubt, either technique could be applied to the im-

plementation. For Open Prolog, structure sharing was chosen because of

its affinity with the standard scheme for representing procedure- or clause-

instances. Recall (see page 20) that a clause instance could be represented

by a pair of pointers, one to the clause code and the other to a frame of

information specific to the particular clause instance. In structure sharing, a

constructed term is represented in a very similar way: a pointer to the struc-

ture’s skeleton and another pointer to a frame of information specific to that

particular term. By adopting structure sharing, it was hoped that the sim-

ilarity between how clause instances and constructed terms are represented

would result in a simpler abstract machine and a simpler overall implemen-

tation. The fact that clause instances can require two frame pointers and

may hold various ‘housekeeping’ information does complicate matters, and

it is moot whether structure sharing ‘pays off’ in that sense. Nevertheless,

this was the reason for selecting structure sharing over structure copying. It

would be interesting indeed to rebuild Open Prolog on a structure copying

platform.

4.2.5 Dynamic Code Support

One of the aims for this design is to support the modification of a program by

way of adding or removing clauses, that is, that it should offer dynamic code

support. This means, of course, that procedures are no longer ‘monolithic’

entities that don’t change once consulted. Thus:

• Compilation schemes that treat the whole procedure at once(e.g. see [70,

68]) will not be usable.
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• Clause indexing schemes such as used in the PLM and WAM (described

on pages 44 and 69 respectively), where the index code is constructed

once at the time of compilation are likewise ruled out.

Clause indexing is a particularly serious issue, because apart from speed-

ing up procedure execution, the information obtained at runtime through

clause indexing can frequently make a call determinate, yielding very consid-

erable savings in memory consumption.

One solution is to replace indexing with a lookahead feature, whereby

when a clause has been selected for execution the machine looks ahead to

see in an alternative clause might be available; if not, the selected clause is

executed determinately. Unfortunately, this entails a further complication:

an alternative might be retracted, giving, effectively, a ‘dangling alternative

reference’. Or, an alternative clause might be asserted after the lookahead

process concluded that no alternative was available.

Over the years, many differing solutions have been adopted [52], but a

paper by Linhholm and O’Keefe [49] showed that the logical update view

proposed by Moss in [52] could be implemented efficiently. Thus, this de-

sign, being unable to use true indexing in the style of the WAM or PLM,

implements the logical update view proposed by Moss.

At this point, the most significant features of the design are decided:

• A DCA-influenced design, intended in one mode of operation to facili-

tate efficient execution and straightforward compilation and decompi-

lation,

• A uniform tag-and-data intermediate code with a one-to-one correspon-

dence between source code and intermediate code elements, enhanced

to include or encode compiler-derived optimisations.

• A dual-PC arrangement for implementing unification in an efficient

manner while preserving the uniformity of the encoding scheme,
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• The use of structure sharing to represent constructed terms, in the ex-

pectation that the similarities between clause instance and constructed

term representation would lead to a simpler design and consequently,

a more compact implementation.

• Support for dynamic clause code using clause lookahead rather than

clause indexing, and using the logical update view of clause assertion

and retraction.

The remainder of the chapter describes of how these decisions were carried

over into the design.

4.3 Overview

Open Prolog is a structure-sharing stack-based implementation based on an

abstract machine called the Open Prolog Abstract Machine (OPAM). The

OPAM is designed to minimise the ‘compilation gap’ between source code and

OPAM code, and an OPAM emulator is written in 68000 assembler and also

partly in Pascal, C and Prolog for execution on a Macintosh. Assembler was

chosen for full control over the exact mapping between the OPAM and the

host processor. Pascal and C were used where such control was not critical.

Many of the built-in predicates lent themselves naturally to implementation

in Prolog, with the lowest level facilities being implemented in a procedural

language.

When programs are consulted, OPAM code is produced for each clause,

corresponding to (i) the arguments in the head of the clause, (ii) each call and

its arguments in the body of each clause, (iii) certain features of the clause

itself, (for instance, a neck instruction is produced to go between the code

for the head and the code for the body), and (iv) the name of the clause—

used to form its index code. As each clause is compiled, it is added to the
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code base of the system and linked safely to index code for the procedure it

belongs to.

OPAM code is both representational and executable. Each component

of a clause, apart from comments and variable names, is represented by

OPAM code, so that it may be decompiled directly to Prolog source. The

code is executable on the OPAM. The OPAM itself is unusual in that it

has two program counters—the Head Program Counter (HPC) and the Body

Program Counter (BPC)—and operates in one of three modes: fetching from

both PCs when unifying terms, and fetching from the HPC or the BPC when

executing normally.

Clauses are linked by index code. This code allows a candidate and

alternate clause to be identified by reference to the first argument of the

goal, thus identifying the determinacy of calls. Allowance is also made for

the currency of clauses on the basis of their assertion and retraction time

stamps and on the time stamp of the program execution. Garbage collection

operates on the data areas and on the code space. Built-in predicates are

written in Prolog and in host code, and plug-in ‘external’ predicates can be

added as Macintosh resources, communicating with Open Prolog through

a parameter block-based interface. Included in the implementation is an

integrated text editor, providing a complete development environment for

the programmer. A rudimentary external events interrupt mechanism is also

incorporated.

4.4 Variable Analysis

With one modification, OPAM follows the PLM in classifying variables as

global, local, temporary or void.

• Variables that appear only once, and not in any structure, are voids.
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The following rules then apply to non-voids:

• Variables that appear in a structure or as arguments of the last goal

are classified as global.

• Variables occurring only in the head of a clause, and not in any struc-

ture, are classified as temporary.

• Variables occurring anywhere but in the last goal, and not in any struc-

ture, are locals.

The difference between OPAM’s classification scheme and that of the PLM is

that any variables occurring in the last goal of a clause are always classified

as global in OPAM, whereas in the PLM, local variables are permitted in

the last goal, which prevents recovery of the local frame before the last call

is made (i.e. prevents Last Call Optimisation).3

Variables are analysed to reveal first and subsequent usage. Variables

whose first occurrence is in a structure or in the body of the clause must be

initialised before use, but variables whose first occurrence is in the head, and

not in a structure, need not be.

4.5 Representation of Prolog in OPAM Code

In this section is described the scheme by which Prolog source code is rep-

resented in OPAM code. Figure 4.6 on page 94 shows how the standard

concatenate/3 predicate is encoded, and figure 4.7 on page 95 depicts how

the OPAM code is laid out in memory.

3Subsequent to the PLM, Warren made extensive changes to DEC10-Prolog [74, 76],
introducing argument registers to facilitate Last Call Optimisation. This new architecture,
called Prolog-10 by Tick [69], seems to be an intermediate architecture between the PLM
and the WAM, based on structure sharing like the PLM, but using argument registers
similar to the WAM.
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Term Code
local refL Local Variables
global void Global & Void Variables
var varLand Global Variables
atom atomLand Atoms
integer integerLand Integers
structure structureLand Structures

Clause Code
call lastCall Goal Calls
privateCall privateLastCall Private Calls
neck foot Start and end of body
neckFoot neckCutFoot Special Cases
cut The cut symbol
andCall orCall Start of conjunction & disjunction
catchCall punctuation Start of catch/3 and no-op
ifThenCall ifThenCommit Start & end of if-then
notCall notSucceed Start & end of a negation

Table 4.1: OPAM Codes

Every item of Prolog source code is stored as an OPAM instruction in

tag-and-data form: a one-word (16-bit) tag followed by zero to two words

of data. To avoid the runtime overhead of recognising when a term is being

used as a clause, there are two categories of OPAM code: clause code for the

principal components of clauses and term code for everything else. Table 4.1

lists all OPAM tags, both for term code and clause code.

4.5.1 Terms

Simple terms are encoded using a tag-and-data instruction format, as shown

in Figure 4.1 on page 85. Instructions comprise a one-word tag followed

by between zero and two words of data. Voids need no extra data, local

and global variables have one word of data—an offset into the local or global

frame respectively—and atoms and integers have two words of data, to store a
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longword offset into the name table or a longword signed integer respectively.

A structure is represented by a combination of a structure instruction and

a structure sequence. The structure instruction comprises the structure tag

followed by a one word offset to a structure sequence.

A structure sequence is simply a reference to the structure’s principal

functor followed by each subterm encoded sequentially in memory, and ter-

minated by word denoting its size. The last subterm of a structure is specially

tagged with a land tag.4 Thus, for instance, if the last subterm was an atom,

its tag would be atomLand as distinct from atom, land. While this signifi-

cantly increases the number of tags, and thus the number of instructions the

OPAM must be capable of executing, considerable space and execution time

is saved by this optimisation, particularly with structures such as lists.

4.5.2 Clauses

Clause Code

Given that Prolog clauses are themselves terms, it would be possible to rep-

resent clauses in term code. However, it is very advantageous to represent

clauses specially. Features of a clause can be detected at compile time which,

if encoded suitably, can save time and memory at run time. As with the

PLM, a clause is viewed as having head arguments, a neck, possibly a body

and a foot, and extra OPAM instructions are used to represent those compo-

nents of a clause. This extra code is called clause code; since clauses contain

terms, a clause will be represented by a combination of clause code and term

code.

Clauses are compiled separately and converted into a sequence of OPAM

instructions and a descriptor record called a clause descriptor record. In

4This term is borrowed from the name used for the mark left on the cylinder wall of an
engine by the piston rings; it signifies the limit of the piston rings’ movement. Analogously,
it marks the limit of a structure’s subterms.
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global variable (first use) global

frame offsetvarglobal variable (later use)

local variable (first use) local

Source Term OPAM Form

frame offset

frame offset

local variable (later use) refL frame offset

void void

atom atom name table offset

integer integer 2's complement value

16 bits 16 bits 16 bits

structure structure code offset

name table offset

subterms of the 
structure, the last 

of which is ‘landed’

frame offsetvarLandglobal variable & land

structure & land structureLand code offset

atom & land atomLand name table offset

integer & land integerLand 2's complement value

Figure 4.1: The complete set of OPAM Term Code Instructions. Since local variables and
voids can not be part of a structure, there is no need for a landed variant of those tags.
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Head Code Neck Body Code Foot Structures<descriptor>

Figure 4.2: In the OPAM, a clause is encoded into a descriptor called the clause descriptor
record, head code, neck, body code, foot and the code size, followed by structure sequences.

this section the encoding scheme is introduced and discussed. A clause is

encoded into a head part, a neck, a body part and a foot, preceded by a

clause descriptor record and followed by a word denoting the size of the

code, as shown in Figure 4.2.

The Clause Head

The head code represents the arguments of the principal functor. Structure

sequences are stored at the end of the clause. At the end of the head code,

the first clause code instruction we encounter is the neck instruction. This

represents the neck of the clause, and is responsible for initialising part of the

clause instance’s environment. The instruction takes three arguments: the

size of the global frame, the number of local variables yet to be initialised,

less one, and the total number of bytes allocated for local variables.

The Clause Body

A clause body comprises a sequence of predicate calls, cuts, the standard

control constructs in Prolog: negation, nested conjunction, disjunction, if-

then and if-then-else, and finally, the predicate catch/3, specially encoded,

may be present in the body of a clause. Each of these items is encoded

uniformly, irrespective of the level of nesting within control constructs. This

approach facilitates high performance and simplifies implementation of the

inter-related semantics of the cut and the control constructs. The conjunction

of terms in the clause body is not explicitly encoded—it is implicit in the

sequence of the OPAM encodings.
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Public and Private Predicates

Clauses loaded into Open Prolog by the user are public—they can be in-

spected, debugged, modified, supplanted or replaced. However, much of the

Open Prolog runtime system is itself written in Prolog, and it is desirable that

this private code should be hidden and protected from modification or dele-

tion. Private code is almost identical to public code. The difference is that

calls made from private clauses to other private clauses bypass the Name

Table; that is, they reference their target predicates’ first clauses directly,

without having to locate them through the Name Table. Thus, changes to

Name Table entries can not affect private calls. Built-in predicates written

in Prolog are compiled into private code; however, an unmodifiable reference

to each such predicate’s [first] clause is placed in the Name Table to enable

public clauses to reference it.

Predicate Calls

Predicate calls are encoded as shown in Figure 4.3. A call is encoded with a

call or lastCall tag followed by a one-word offset to a sequence that begins

with a reference to the predicate in the name table, is followed by the call

arguments and is terminated by a land and a size word. This is similar to the

encoding scheme for a structure, where the structure or structureLand tag

is replaced by a call or lastCall tag. There are three differences however.

First, to assist implementation of the OPAM emulator, the land tag is not

merged into the tag of the call sequence’s last argument, as would be the case

with the last subterm of a structure sequence. Second, this encoding scheme

is used even if the call is to a predicate with no arguments, which might

otherwise be expected to be encoded similarly to an atom. Third, Open

Prolog allows for private calls to private predicates—predicates that cannot

be listed or modified by the user. Private calls bypass the name table; they
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Source Term
OPAM 
Form

16 bits 16 bits

predicate call call code offset name table offset

call arguments

predicate call 
(last in body) 

lastCall code offset

land

Source Term

16 bits 16 bits

private predicate call call code offset clause descriptor 
record offset

call arguments

private predicate call 
(last in body) 

lastCall code offset

land

Figure 4.3: Predicate calls are encoded as a call/lastCall tag followed by a one-word offset
to the call sequence representing the predicate and its arguments, terminated by a land and
a size word.

are linked directly to the descriptor of the first clause in the predicate. To

facilitate this, the predicate call variants privateCall and privateLastCall

exist. For private calls, the first argument in the call sequence is a pointer

to the descriptor of the first clause of the predicate rather than to a name

table entry.

Control Constructs and catch/3

Common to the control constructs and to catch/3 is the fact that some of

the arguments to these constructs are themselves sequences of calls, cuts and

control constructs, the same as might appear in any other part of the body of

the clause. Thus, even though lexically the arguments are distinct from the

conjunction of clauses that forms the body of the clause, from a procedural

point of view they are part of it. The approach adopted therefore was to

compile such arguments as if they were part of the clause body. The control

constructs are then represented by distinct codes bracketing their compiled
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Source
Term

OPAM
Schema

conjunction andCall code for first conjunct

disjunction orCall

negation

if-then ifThenCall ifThenCommit

jump to end

notCall notSucceed

punctuation code for second conjunct punctuation

code for first disjunct code for second disjunct punctuation

code to be negated

code for 'if' part code for action part punctuation

catch catchCall code for predicates to be called catchSucceed

code for catcher term cut code for handler punctuation

jump to end

Figure 4.4: Control constructs, like disjunction, and the built-in predicate catch/3 are encoded
according to the schemas depicted.

arguments. Figure 4.4 depicts the schemas used for nested conjunction, dis-

junction, negation, if-then and the catch/3 predicate.

For example, consider the clause body:

member(X,[a,b]),(jack(X);jill(Y)),write(Y).

The disjunction is encoded (in pseudocode) as:

orCall(L1,L2) %start of disjunction
call jack(X)
jump(L2) %end of first disjunct, start of second

label(L1)
call jill(Y)
punctuation %end of disjunction

label(L2) %continuation
...

Control constructs are encoded as follows:

Nested conjunction. A nested conjunction is preceded by an andCall; the

encodings for predicates in the conjunction follow and the conjunction

is terminated by a punctuation.
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Source
Term

OPAM
Form

andCall expandA3 andCall

orCall expandA3 orCall fail offset succeed offset

catchCall

ifThenCall expandA3 ifThenCall

jump expandA3 jump

expandA3 notCallnotCall

ifThenCommit expandA3

expandA3punctuation

expandA3notSucceed

0

0

0

expandA3 catchCall catch offset succeed offset0 0

variant succeed offset0

ifThenCommit

punctuation

notSucceed

16 bits 16 bits 16 bits16 bits 16 bits 16 bits

jump offset

variant

expandA3catchSucceed catchSucceed

Figure 4.5: Control construct components

Disjunction. A disjunction is begun by an orCall; the encoding for the first

disjunct follows; next comes a jump instruction; this is followed by the

encoding for the second disjunct. The disjunction is terminated by a

punctuation followed by a label being the destination of the jump.

Negation. Four negation predicates are recognised in Open Prolog: \+ /1,

¬/1, not/1 and fail if/1. They are encoded using separate variants

of notCall. For example:

fail_if(jack(X)).

is encoded as:

notCall(3,L1) %start of negation (variant 3)
call jack(X)
notSucceed %end of negation

label(L1) %continuation
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If-then. This is encoded as shown by the following example:

jack(X)->jill(Y).

is encoded as:

ifThenCall %start of if-then
call jack(X)
ifThenCommit
call jill(Y)
punctuation %end of if-then

The catch/3 predicate. The three arguments taken by this predicate are,

first, a goal to be called, second a term to attempt to unify with if a

term is thrown by the goal or its subgoals, and third, a goal to be called

if the term thrown unifies with the second term. Thus, the first and

third terms are predicates to be treated as first class members of the

clause body, and the second argument is a regular term. A catch call

is encoded as shown in the following example:

catch(special(X),E,write(E))

is encoded as:

catchCall(L1,L2) %start of catch
call special(X) %goal called
catchSucceed
jump(L2)

L1
call skip(skip(E)) %E is the term to catch
cut
call write(E) %goal called if term thrown
punctuation %end of catch

L2

The code descriptions listed above for are control constructs are pseudocode;

Figure 4.5 shows the actual encodings used in OPAM.
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Clause Descriptor Records

Along with the code representing the clause itself, each clause has a fifty-byte

descriptor called a clause descriptor record associated with it. This contains

information about when the clause was asserted and retracted, a simplified

copy of its first argument, fields used during garbage collection, some flags,

a pointer to the next clause in the procedure and the size of the clause code

in bytes. Table 4.2 details the contents of a clause descriptor record.

4.5.3 Examples

As seems traditional, Figure 4.6 displays a listing of the encoding of the

standard concatenate/3 predicate.5

4.6 Data Areas

As a Macintosh application program, Open Prolog is allocated a contiguous

range of main memory as its application zone. The zone holds the appli-

cation’s stack at the top end and the heap at the bottom. The heap ac-

commodates dynamically allocated memory allocated in relocatable or non-

relocatable blocks. When a non-relocatable block is assigned, it is referenced

by a pointer to the first byte in the block. A relocatable block is referenced

via a ‘handle’ which is a pointer to a ‘master pointer’ which points to the

present location of the first byte in the block. If a relocatable block is moved

by the OS, the master pointer is updated to point to the first byte’s new

location.

The heap is used extensively by the Mac OS to manage so-called ‘re-

sources’. A resource is a sequence of bytes of any length, tagged with a

5The concatenate/3 predicate is the same as the append/3 predicate.
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Item Function
Functor Ref A reference to the name and arity of this

clause, zero if the clause is private
Delta Used during garbage collection. It’s the dis-

tance the code must be relocated during the
‘sweep’ phase

Reachable Used during garbage collection. True if the
clause is still alive, false otherwise.

Speed Flags Used to simplify and speed up clause access
during execution

File Number Not Used
Start Offset Not Used
Stop Offset Not Used

Flags These classify the clause type
Tag The tag information for the clause’s first ar-

gument
Data The data information for the clause’s first ar-

gument
Assert Time The database event number when the clause

was asserted
Retract Time The database event number when the clause

was retracted
Next Pointer to the next clause in the procedure,

or zero
Code Size Size of the clause code in bytes

Table 4.2: Fields in a Clause Descriptor Record. The record is fifty bytes long.
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; code for concatenate([],X,X).
C1: ; concatenate(

-1, ; %initialise no globals
atom([]), ; []
local(0), ; X,
refL(0), ; X
neckFoot(1), ; ).
clauseSize(24),

; code for concatenate([H|T],X,[H|R]) :- concatenate(T,X,R).
C2: ; concatenate(

2, ; %initialise globals 1, 2 and 3
structure(L1), ; <ref> [H|T],
global(4), ; X,
structure(L2), ; <ref> [H|R],
neck(5,-1,0), ; ) :-
lastCall(L3), ; <ref> concatenate(T,X,R)
foot, ; .
clauseSize(32),

L1:
functor(./2), ; [
var(1), ; H|
varLand(2,12), ; T] (12 is the size of the structure)

L2:
functor(./2), ; [
var(1), ; H|
varLand(3,12), ; R] (12 is the size of the structure)

L3:
functor(concatenate/3), ; concatenate(
var(2), ; T,
var(4), ; X,
var(3), ; R
land(18) ; ) (18 is the size of the structure)

Figure 4.6: OPAM code for the concatenate/3 predicate. The entry points are labeled C1
and C2.
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-1
atom offset to atom entry '[]'
local 48
local 48

neckFoot$ 8
clauseSize 24

2
structure offset (28)

global 32
structure offset (34)

neck 40 -1 0
lastCall offset (36)

foot
clause_size 32
offset to functor entry '.'/2

var 8
varLand 16

12
offset to functor entry '.'/2

var 8
varLand 24

12
offset to 'concatenate/2'

var 16
var 32
var 24

landZone
18

<Fifty-Byte Clause Descriptor Record for C1 goes here>

<Fifty-Byte Clause Descriptor Record for C2 goes here>

Figure 4.7: Layout of the encoding of the concatenate/3 clauses. Each short box represents
a two-byte item, the longer boxes represent four-byte items. The lines highlighted in grey
indicate that each clause’s OPAM code is preceded by a fifty-byte Clause Descriptor Record
(described on page 92).
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four-byte code (often four mnemonic ASCII characters), an index number (a

signed 16 bit integer) and one byte of attribute bits used by the Mac OS.

Resources are managed by the Mac OS on behalf of the application. Every

file in the Macintosh file system has the potential to have two sections or

‘forks’, a data fork containing an unmanaged stream of bytes, and a resource

fork which stores only resources. Resources can be loaded into the heap,

relocated, modified, written out, and so on. A set of APIs called the Resource

Manager is available to facilitate the use of resources and an Apple Computer

tool called ResEdit [84] can be used as a graphical inspector and editor. By

convention, the executable code of a program is segmented and stored in

CODE resources, i.e. resources with the four-byte code comprising the ASCII

codes of the letters C O D and E. Moreover, many standard items of data are

stored as resources, such as dialog box specifications, pictures, etc. (External

predicates are also stored as resources, and are discussed in Chapter 6.2,

starting on page 148.) Resources can be preloaded at startup or loaded on

demand; they can be locked in place and made immovable; they can be

marked ‘purgable’ so that they can be deallocated by the Mac OS under low

memory conditions. CODE resources are typically locked and non purgable.

Considerable opportunity therefore exists for serious and sustained mem-

ory fragmentation on the heap, and Open Prolog sidesteps this by allocating

a large non-relocatable block of memory in the heap as early as possible

after startup, as depicted in Figure 4.8. This block, ‘OPAM memory’, is

managed internally by the runtime system, and can change size during mem-

ory management to ensure enough space is left in the heap for the rest of the

application’s needs. Within the OPAM block, five data areas are maintained:

the Name Space, the Code Space, the Global Stack the Local Stack and the

Trail.

The Name Space contains information about all the functors and atoms

known to the program. It comprises two main components—a hash table
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Legend:    ◊ Subject to Garbage Collection (GC)           Adjustable at GC time

Figure 4.8: The Open Prolog Memory Map. The diagram shows the layout of the complete
application zone allocated to Open Prolog by the Mac OS. The OPAM Memory Block is
allocated in the heap and partitioned as shown. The heap is used in the normal way to hold
relocatable and non-relocatable blocks of memory, including application code and code for
built-in and ‘external’ predicates.

and a functor table. The hash table is conventional, and is used to locate a

functor’s entry by name and arity in the functor table.

The functor table contains the following information about each individ-

ual name: a pointer to first clause (if any), number of clauses, a flags byte

containing two flags (isSpyPoint is used by the debugger and isPredicate

indicates if this functor is a predicate), arity, spelling, operator definitions (if

any), and most general skeleton, as shown in Figure 4.9. The most general

skeleton is used to provide a structure for a term constructed dynamically

using the ‘univ’6 and functor/3 built-in predicates. The length of the most

general structure is 8 + arity ∗ 4 bytes. The Name Space is neither resizable

nor garbage-collected.

The Code Space contains the OPAM code for every clause. All private

code is loaded at initialisation, and placed at the start of the Code Space.

6The ‘univ’ predicate is used to construct terms from lists and vice-versa. It has the
name =.. and an arity of 2.
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Figure 4.9: Layout of an entry in the Functor Table in the Name Space. The Operator
Definitions section is present for unary and binary functors.
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Figure 4.10: The layout of a global frame.

Private code can not be retracted, and so does not need to be garbage col-

lected. User code—the code corresponding to the user’s program and clauses

asserted during execution—is loaded into the Code Space above the private

code. Since user code can be retracted, this part of Code Space is subject to

garbage collection and may be resized.

Next to the Code Space is the Global Stack. The Global Stack is used to

hold the global frame of each clause instance. A global frame, see Figure 4.10,

starts with a special gcMark cell (used during garbage collection) and is

followed by cells for each global variable. Each cell must be capable of holding

a molecule, and is therefore 8 bytes in size. To preserve 64 bit alignments,

the gcMark cell is also 8 bytes wide. The Global Stack is subject to resizing,

garbage collection and remapping, that is, it can be moved up or down within

the OPAM Memory Block.
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Figure 4.11: The layout of a local frame.

Above the Global Stack is the Local Stack. The Local Stack is used

to hold the local frame of each clause instance. A local frame, as shown

in Figure 4.11, contains the clause instance’s environment followed by cells

for each local variable. The X, X1 and CA (for Continuation Address) fields

are used to restore the X, X1 and BPC registers to the values appropriate to

the goal within the clause instance at which program execution is continuing.

The VpC field contains the value to which Vp should be set if a cut is executed

in the body of this clause instance.

The T field contains the one-byte tag of the first goal argument, and the D

field contains the corresponding data. The fields are valid only if the frame is

a choice point and are used upon backtracking to help choose an alternative.

The encoding of the first goal argument is slightly different to source term

encoding, and is given in Figure 4.12.

The IT (Instantiation Time) field records the database event clock value

when the clause instance was invoked. This is used during garbage collection.

The VV field contains a pointer to the next oldest choice point to this one,

and the FL field contains the address of the next alternative clause at this

backtrack point, or zero otherwise. The V1 and TR fields contain values for
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0

atom

<Address of Cell>

integer

structure

Functor Table Entry

2's Complement Value

Functor Table Entry

1 byte 4 bytes

Figure 4.12: Encoding of the first argument of the calling goal. This is stored in the local
frame if it is a choice point. Notice that, in the case of a structure, just the principal functor
is encoded .

Bit(s) Significance
7 This is the notFirstUseBit, used by certain

68000 built-in predicates
6 Set if the frame is ‘transparent’ to cuts

5–0 If the frame is special, these bits encode its
kind, as follows:

Code Kind of Frame
000001 OrFrame
000010 NotFrame
000011 IfThenFrame
000100 CatchFrame

Table 4.3: Flag Byte of a Local Stack Frame. In a normal frame, all bits in the Flag Byte are
zero. The use of the notFirstUseBit is explained in section 6.4 and the use of the other fields
is explained in Section 7 on page 159.
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Xp (D7) X1 (D6)

Vp (A2) V1 (D5)

BPC (A3) HPC (A4)

VV TR

DBC

Current Goal Frame Pointers

Current Clause Frame Pointers

Body and Head Program Counters

Other Registers

NR CCR Chain Pointer Registers

Figure 4.13: The OPAM Register Set. Each register is 32 bits long. The topmost six registers
are implemented with the 68000 registers shown in brackets. Vp and V1 point to the top of
the local and global stacks respectively, where new clause instance frames are constructed.

register V1 and TR, to be loaded into them on backtracking, and similarly, the

GAP (Goal Argument Pointer) contains the value to be loaded into the BPC

register on backtracking to this choice point. The F field is a one-byte flags

field, indicating the category and other properties of the frame, as shown in

Table 4.3.

4.7 Registers

The OPAM has eleven registers, as shown in Figure 4.13. Each register is

32 bits long. Xp and X1 point to the global and local frames of the clause

instance from the body of which the current goal is being called. Hence, Xp

and X1 specify the current goal’s environment.

Vp points to the top of the local stack, and V1 points to the top of the

global stack. While a goal is being unified to a clause head, a new clause

instance is being created, and its frames are being built on the top of the

stacks. Thus, Vp and V1 also point to the local and global frames of the

clause instance under construction, i.e. the current clause instance.

BPC and HPC are program counters to the current goal and the current
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clause instance respectively. The BPC is always pointing to part of the body

of the current goal’s clause instance, hence BPC, the Body Program Counter.

Similarly, HPC is always pointing to part of the head of the current clause

instance, hence HPC, the Head Program Counter.

VV points to the first backtrack frame or choice point. TR points to the top

of the Trail, used to record variable cells that must be explicitly reset upon

backtracking. DBC is a database event clock. The clock is incremented every

time a clause (sometimes, a group of clauses) is asserted or retracted, and is

used to implement the ‘logical’ assert and retract semantics of Lindholm &

O’Keefe [49].

NR and CCR point to the tops of two ‘chains’ of local stack frames that

need special treatment; NR points to the start of a chain of non removable

frames, also called NR frames and CCR points to the start of a series of local

stack frames called the Catch Chain Each chain is a one-way linked list of

frames where each frame contains a link to the next oldest frame in the

chain. NR frames are used in the implementation of control constructs such

as negation, if-then and if-then-else, and also in the implementation of catch

and throw. Each frame in the catch chain points to the local stack frame of a

catch/3 predicate and to the next oldest frame in the catch chain. When an

exception is thrown, the catch chain, accessed via the CCR, is used to find the

newest, i.e. most local, exception handler capable of handling the exception.

The host processor, a Motorola 68000, has sixteen general purpose regis-

ters: eight data registers, D0–D7, and eight address registers, A0–A7. Of these,

A7 is used by the processor itself as a stack pointer and A5 is used by the Mac

OS, leaving a total of fourteen registers. Of these, seven (A0–A2 and D0–D3)

are ‘volatile’ across calls to the Mac OS, i.e. their contents are not preserved

(see section 4.10). This leaves just three non-volatile address registers and

four non-volatile data registers of which six are used to implement OPAM
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processor registers.7 For example, Vp is implemented in A2 (see Figure 4.13

on page 101).

Naturally, it would have been preferable to implement all OPAM registers

in host processor registers, but the 68000’s register set just isn’t big enough,

so an attempt was made to select the most heavily used OPAM registers to

be implemented in host processor registers.

4.8 Operation

As mentioned in the overview (page 81), the OPAM has two program coun-

ters, the BPC (Body PC) and the HPC (Head PC). These are used in parallel

while the OPAM is attempting to unify the arguments of the goal with the

arguments of the head of a clause instance. To unify two corresponding ar-

guments (one in the goal and one in the clause head), the tag of the goal

argument is fetched via the BPC and the tag of the head argument is fetched

via the HPC. The two tags combine to form an OPAM instruction which

is then executed. Another way of putting this is that while in this ‘dual

PC mode’, the OPAM fetches instruction fragments via the BPC and the

HPC; the fragments are then combined and executed. If the fragments rep-

resent terms that are unifiable, execution is successful. For example, if the

goal term is atom(a) and the head term is atom(a), then the instruction is

atomAtom(a,a) and succeeds. Likewise, if the goal term is integer(21) and

the head term is local(0), then the instruction is integerLocal(21,0), and

the instruction succeeds by assigning the value 21 to local variable 0 (the tag

local means this is the first occurrence of the local variable, so it doesn’t

need to be dereferenced; it simply needs to be assigned). If the terms are not

7When the implementation of Open Prolog was started, it was thought that this non-
volatility would be very important for speed, as it would allow access to, say, built-in
predicate code without having to save and restore the OPAM processor’s register set. In
hindsight, it may not have been all that important at all.
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unifiable, then execution fails. For example, if the goal term is integer(21)

and the head term is structure(concatenate/3), the resulting instruction

integerStructure(21,concatenate/3) fails immediately.

When the OPAM executes structures, it recursively executes their sub-

terms, having ensured the principal functors are identical. The end of a

sequence of subterms, indicated by a tag incorporating a land, unwinds the

recursion.

Along with the dual PC mode of operation, the OPAM has two single-PC

modes of operation: executing instructions referenced via the BPC—‘BPC

mode’—and executing instructions referenced via the HPC—‘HPC mode’.

Most of the time, the OPAM alternates between dual PC mode and BPC

mode, with HPC mode being used very seldom; call instructions switch from

BPC mode to dual PC mode and neck instructions switch back to BPC mode.

Consider the call concatenate([a],[b],X), encoded as in Figure 4.14.

The sequence of instructions executed as a consequence of this call is as

shown in Figure 4.15 on page 105.

4.8.1 Clause Indexing and the Call Instructions

One of the design aims for Open Prolog was that programs should be easy

to modify. In a Prolog context, that means that it should be possible to

assert and retract clauses, just as in a more conventional interpreter. If one

wishes to use some form of clause indexing (e.g. to detect determinacy), then

a problem immediately arises: one can not be certain that just one clause in a

procedure is viable, (and thus that the call is determinate), if another clause

could be added later. Even worse, a clause that formed part of procedure

could be removed, potentially leaving a choice point behind that referred to

it.

A coherent and practical solution to this problem was developed by Lind-
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call(L1), ; call <ref> concatenate([a],[b],X).
...
...

L1:
functor(concatenate/3), ; concatenate(
structure(L2), ; <ref> [a]
structure(L3), ; <ref> [b]
var(1), ; X
land(18), ; )

L2:
functor(./2), ; [
atom(a), ; a |
atomLand([],16), ; [] ]

L3:
functor(./2), ; [
atom(b), ; b |
atomLand([],16) ; [] ]

Figure 4.14: Sample call to concatenate/3. The call is concatenate([a],[b],X).

;; Instruction ; PC Mode ; Level
call(concatenate/3) ; BPC->Dual ; 0
structureStructure(./2,./2) ; Dual ; 0->1
atomVar(a,1) ; Dual ; 1
atomLandVarLand([],2) ; Dual ; 1->0
structureGlobal(./2,4) ; Dual ; 0
varStructure(1,./2) ; Dual ; 0
landNeck(5,-1,0) ; Dual->BPC ; 0
lastCall(concatenate/3) ; BPC ; 0
varAtom(2,[]) ; Dual ; 0
varLocal(4,0) ; Dual ; 0
varRefL(3,0) ; Dual ; 0
landNeckFoot(1) ; Dual->BPC ; 0
... ; BPC ; 0

Figure 4.15: This is the sequence of instructions executed by the call
concatenate([a],[b],X) in Figure 4.14.
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call

BPC

… "check/1" atom "joe" land …

Figure 4.16: The BPC points to the next instruction to be fetched, a call instruction followed
by its operand and by subsequent instructions. The call’s one-word operand is an offset to
the call sequence—the predicate’s functor entry followed by its arguments and terminated by
a land.

holm and O’Keefe in [49] using a database clock8 and time stamps to indicate

when a clause is asserted and retracted and which clauses are or were in ex-

istence when a call or retry is made.

In this section, the operation of the call instructions is explained. These

instructions are at the heart of the operation of the OPAM, and are important

in the implementation of last call optimisation and the memory management

of the code space.

A high proportion of OPAM execution time is spent executing proce-

dure calls and a number of call instructions exist to reduce that time by

taking advantage of special cases. The call instructions are call, lastCall,

privateCall and privateLastCall. Additionally, much of the functionality

of the call operation is delegated to call action procedures, as will be detailed

in the following sections.

We begin examination of the operation of the OPAM just when a new

goal is about to be called. Figure 4.16 displays a schematic of a call to the

predicate check/1. The call, check(joe), is pointed to by the BPC.

Operation of the Call Instructions

The call instructions operate as follows:

8It seems traditional to refer to the clause store as a ‘database’, irrespective of how it
is actually implemented.
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• The continuation is identified. The continuation is the next goal to

be executed once the current goal has been completed. Normally, the

continuation is simply the goal following the current one in the body

of the parent clause. However, if the current goal is the last goal in

the body of the parent clause (i.e. if the instruction is lastCall or

privateLastCall), then the continuation is the parent’s own continu-

ation. This is one part of the implementation of Last Call Optimisation.

• If the current goal is the last goal, and if program execution is determi-

nate, then the memory allocated to the local frame of the current goal’s

clause instance (the ‘current local frame’ in the sequel) is recovered and

may be reallocated. This is because the following conditions hold:

– The frame of the current goal’s clause instance is effectively at the

top of the local stack. Since program execution is determinate,

the most recent choice point must be older than the current local

frame. Likewise, the continuation frame must either be the current

local frame’s direct parent or an older ancestor, so it is deeper

within the stack. Hence, frames newer than the current local

frame can be discarded and their space recovered.

– The current local frame itself is recoverable, because nothing re-

maining in it is needed:

∗ None of the variables in the last goal are local, so no local

variable cells are used.

∗ None of the choice point information stored in the local frame

will be used because the program is determinate at this point.

∗ The only piece of important information in the frame is the

continuation address, which will have been processed in the

first step above.
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Thus, nothing in the current local frame is needed, and the memory

allocated to the frame is recovered. This is the second part of the

implementation of Last Call Optimisation.

• The procedure to be called is located. Recall that the clause descriptor

records of all clauses in the same procedure (i.e. clauses with the same

principal functor) are linked together. If the procedure is public, the

clause descriptor record of the first clause in the chain is obtainable via

the Name Table entry of the procedure’s principal functor. Accordingly,

the call and lastCall instructions use the functor reference at the

start of the call sequence to locate the functor’s entry in the name

table, and from there the location of the clause descriptor record of the

first clause in the procedure is retrieved. (If no clause exists and the

isPredicate flag is set, the call fails; otherwise, an unknown predicate

exception is thrown.)

The privateCall and privateLastCall instructions operate

slightly differently. When private calls are linked to private procedures

at system startup, the functor at the start of each private call sequence

is replaced by a reference to the clause descriptor record of the first

clause in the private procedure.9 Private calls therefore bypass the

name table completely, and when a privateCall or privateLastCall

is executed, the location of the clause descriptor record of the first

clause in the procedure is retrieved from the start of the private call

sequence.

• At this point, the call instruction has:

– Located the clause descriptor record of the first clause in the pro-

cedure being called,

9This is safe because private procedures are never retracted or moved by garbage col-
lection.
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– Located the continuation address and the continuation frame to

be used after this procedure has exited,

– Recovered local stack space in the case of a determinate last call.

The call instruction now locates the call action procedure in the first

clause’s clause descriptor record and transfers execution to it.

This completes the operation of the call instruction, but a good deal of

further processing may yet be performed by the call action procedure before

execution begins on a clause.

Operation of the Call Action Procedure

The call action procedure is a parameter within the clause descriptor record

of a clause, so it can be tailored to the clause’s requirements; in the current

implementation, though, the call action procedure of the first clause is used

for all the clauses in the procedure.

The standard call action procedure, which is the most general action

procedure in use, searches the linked list of clause descriptor records for up

to two ‘live’ clauses whose first argument might unify with that of the goal.

The check for liveness is part of the implementation of the ‘logical’ database

assert/retract semantics of Lindholm and O’Keefe.[49] A clause is ‘live’ if the

current value of the DBC register is bracketed by the clause’s assertion date

and retraction date—in other words, if the clause was asserted before the

current time and has not yet been retracted, it is live.

The standard action procedure calculates the goal’s first argument tag

and data information if necessary, and checks it against each candidate. If a

clause is ‘live’, as described above, and if its First Argument Tag and First

Argument Data (part of its clause descriptor record) match the goal’s first

argument tag and data, or if either term is a variable, then the clause is

selected. The standard action procedure thus selects a live clause whose first
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argument might match the goal’s first argument. In addition, a candidate

alternate clause is identified, if it exists, so it is known if a choice point needs

to be constructed.

At this point, the Continuation Address (effectively the return address)

is stored in the CP field of the local frame. If the frame is to be a choice

point, then the additional information necessary to restore the environment

on backtracking is placed in the local frame:

• The goal’s first argument tag and data, already calculated, are stored

in the T and D fields respectively;

• The current value of the DBC register is stored in the IT field, to denote

the database instant at which the goal was called. This is part of the

infrastructure needed to implement ‘logical’ database semantics;

• The address of the alternative clause is stored in the FL field;

• The address of the sequence of goal arguments is stored in the GAP field;

The standard call action procedure initialises the number of global variables

specified as the first part of the clause, starting from the bottom of the global

frame, before finally changing OPAM to dual PC mode.

Specialised Call Action Procedures

The full rigours of the standard action procedure are unnecessary in a number

of important situations. For instance, if there is exactly one clause in a proce-

dure, it is not really useful to calculate or check for first argument matching.

This situation is accommodated within the standard action procedure.

If the clauses are private (and so cannot be retracted), or if it is otherwise

known that no clauses have been asserted or retracted, then the expensive

check for liveness can be omitted. This improvement is accommodated in
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a call action procedure called the ‘faster action procedure’. After garbage

collection, the standard call action procedures of clauses in a procedure that

contains no remaining retracted clauses are replaced by the faster action

procedure, and whenever a new clause is added to a procedure, the standard

call action procedure is attached to each clause.

Another important situation is where a call is being made to a built-in

predicate. Built-in predicates can’t be retracted and in many cases there will

only be one clause. Furthermore, the predicate code itself may be able to

check the goal’s first argument faster than the standard action procedure.

Thus, none of the functionality of the call action procedures is useful, and

represents useless overhead. In these cases, therefore, the call action proce-

dure is omitted and replaced by the built-in predicate code itself. That is,

once the call instruction has identified the continuation address and frame

and has identified the predicate to be executed, the predicate’s code is imme-

diately called. This fast dispatch mechanism is a considerable improvement

for many built-in predicates, where the amount of processing to be done is

very small and where the overhead of a normal call action procedure would

be disproportionately high.

4.9 Extended Example

This example is identical to the standard naive reverse benchmark except that

the list has just two elements. It will be referred to later during the discussion

of profiling. The example consists of the clauses listed in Figure 4.9.

These are compiled into three procedures, nreverse/0, nreverse/2 and

concatenate/3, show in figures 4.18, 4.19 and 4.6 respectively.

Executing the goal nreverse gives rise to a sequence of operations shown

in Figure 4.20. It shows the standard [Prolog] trace of the execution of the

goal nreverse annotated with the trace of the execution of the corresponding
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nreverse :- nreverse([1,2],_).

nreverse([X|L0],L) :- nreverse(L0,L1), concatenate(L1,[X],L).
nreverse([],[]).

concatenate([X|L1],L2,[X|L3]) :- concatenate(L1,L2,L3).
concatenate([],L,L).

Figure 4.17: Extended Example of OPAM Encoding. These clauses are encoded in OPAM
code as shown in Figures 4.18, 4.19 and 4.6.

;code for nreverse :- nreverse([1,2],_).
C3: ; nreverse

-1 ; %initialise no globals
neck(1,-1,0) : :-
lastCall(L4) ; <ref> nreverse([1,2],_).
foot ;
clauseSize(20) ;

L4:
functor(nreverse/2) ; nreverse(
structure(L5) ; [1,2]
void ;
land(12)

L5: functor(./2) ; [
int(1) ; 1|
structureLand(L6,14) ; <ref> [2]] (14 is size of structure)

L6:
functor(./2) ; [
int(2) ; 2 |
atomLand([],16) ; []]

Figure 4.18: OPAM code for the nreverse/0 predicate.
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;code for nreverse([X|L0],L) :- nreverse(L0,L1), concatenate(L1,[X],L).
C4: ; nreverse/2(

2 ; initialise 3 globals
structure(L7) ; <ref> [X|L0]
global(4) ; L
neck(5,-1,0) ; ) :-
call(L8) ; <ref> nreverse(L0,L1)
lastCall(L9) ; <ref> concatenate(L1,[X],L)
foot
clause_size(32)

L7:
functor(./2) ; [
var(1) ; X|
varLand(2,12) ; L0]

L8:
functor(nreverse/2) ; nreverse(
var(2) ; L0,
var(3) ; L1
land(14) ; )

L9:
functor(concatenate/3) ; concatenate(
var(3) ; L1,
structure(L10) ; <ref> [X]
var(4) ; L
land(18) ; )

L10:
functor(./2) ; [
var(1) ; X
atomLand([],14) ; | [] ]

;code for nreverse([],[]).

C5: ; nreverse(
-1 ; initialise no globals
atom([]) ; []
atom([]) ; []
neckFoot(1) ; ).
clause_size(22)

Figure 4.19: OPAM code for the nreverse/2 predicate.
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OPAM instructions.

4.10 Runtime Environment

As a Macintosh application, Open Prolog conforms to a number of conven-

tions and requirements:

• The code is Motorola 68000 code, with a register usage convention:

– A7 is always the Stack Pointer

– A5 is always used to reference global variables,

– A6 is often used as a stack frame pointer

– Registers A0–A2 and D0–D3 are volatile across an API call or across

a call to code compiled from a high level language.

Thus, of the 16 processor registers available, two are used by the Mac

OS and a further seven are volatile across API and high-level rou-

tine calls. As many of Open Prolog’s OPAM registers as possible are

mapped to the non-volatile 68000 registers, and the OPAM register Vp

is mapped to A2.

• The application is given a fixed amount of memory—its ‘application

zone’—to accommodate the stack and heap. It is possible to borrow

extra memory from time to time, but the application must basically

operate within the fixed allocation. A further issue is that the allocation

and deallocation of memory is time-consuming, and may well fail due

to memory fragmentation, and is best avoided. To minimise these

difficulties, Open Prolog allocates a proportion of the zone to the stack

at startup, allocates most of the heap to the OPAM Memory Block,

and leaves the rest for the normal use of the Mac OS.
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Prolog Execution Trace OPAM Instruction Sequence
1 | 1 call nreverse call%(nreverse/0)

neck%
2 | 2 call nreverse([1,2],A) lastCall%(nreverse/2)

structureStructure(./2,./2)
integerVar(1,1)
structureLandVarLand(./2,2)
voidGlobal(4)
neck%

3 | 3 call nreverse([2],B) call%(nreverse/2)
varStructure(1,./2)
integerVar(2,1)
atomLandVarLand([],2)
globalGlobal(2,4)
neck%

4 | 4 call nreverse([],C) call%(nreverse/2)
varAtom(1,[])
globalAtom(2,[])

4 | 4 exit nreverse([],[]) neckFoot%
5 | 4 call concatenate([],[2],B) lastCall%(concatenate/3)

varAtom(3,[])
structureLocal(./2,0)
varRefL(4,0)

5 | 4 exit concatenate([],[2],[2]) neckFoot%
3 | 3 exit nreverse([2],[2])
6 | 3 call concatenate([2],[1],A) lastCall(concatenate/3)

varStructure(3,./2)
varVar(1,1)
atomLandVarLand([],2)
structureGlobal(./2,4)
varStructure(4,./2)
neck%

7 | 4 call concatenate([],[1],D) lastCall%(concatenate/3)
varAtom(2,[])
varLocal(4,0)
varRefL(3,0)

7 | 4 exit concatenate([],[1],[1]) neckFoot%
6 | 3 exit concatenate([2],[1],[2,1])
2 | 2 exit nreverse([1,2],[2,1])
1 | 1 exit nreverse

Figure 4.20: Prolog trace and OPAM execution trace of OPAM code of nreverse/0.
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• The application has a user interface that is responsive at all times,

but the Mac OS doesn’t support multiprocessing. This is addressed in

Open Prolog using a section of code called the ‘juggle code’ described

in section 4.10.2 below.

4.10.1 OPAM Emulation Code

The instructions and core facilities (e.g. the garbage collector) of the OPAM

are implemented in Motorola M68000 Assembly Language, as is much of

the user interface code. Most of the rest is written in Pascal, with a small

amount written in C. The development system was MPW, the Macintosh

Programmers Workshop [82].

At the heart of the machine is the dispatch mechanism, the code used

to dispatch the next OPAM instruction. The machine operates as an indi-

rect threaded code [29] interpreter in one of three modes: dispatching an

instruction whose components are referenced by two program counters, or

dispatching an instruction from one or the other program counter. The pro-

gram counters are implemented in the 68000 by A4 for the Head Program

Counter (HPC) and A3 for the Body Program Counter (BPC). To dispatch

an instruction in Dual-PC mode, the body fragment is fetched and used to

select the dispatch table appropriate for that fragment. For example, if the

fragment is atom then the ‘Atom’ dispatch table is chosen. The head frag-

ment is then fetched and used to select an entry in the chosen dispatch table.

The entry chosen is the address of the first instruction of the emulator code

for that instruction. Thus, continuing the example, if the head fragment is

local, the address of the emulation code for the instruction atomLocal is

selected.

Every OPAM instruction has a section of emulator code, and each section

consists of the code that actually emulates the OPAM instruction followed
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by the dispatch code for fetching the next instruction. For example, here

is the code for the OPAM instruction atomGlobal, with the last four lines

comprising the dispatch code:

;atomGlobal
move.w (a4)+,d0
ext.l d0
move.l d0,a0
add.l V1,a0
moveq #atom,d0
move.l d0,(a0)+
move.l (a3)+,(a0)+

move.w (a3)+,d0
move.w primaryDispatchTableBottom-zeroDataOffset(a5,d0.w),d0
move.l -4(a5,d0.w),a0
jmp (a0)

Related Work

Krall and Neumerkel independently developed a similar arrangement for a

structure copying implementation called the Vienna Abstract Machine (the

VAM2P [47]).10 Where the OPAM has a HPC and a BPC, the VAM2P has

the headptr and the goalptr. In the VAM, terms in the head and goal

are encoded differently so that simply adding the head term and goal term

gives a unique result that can be used to reference the routine needed. On

the other hand, part of the motivation of dual PCs in Open Prolog was to

preserve the uniformity of the encoding of terms, be they in the head or in

the body of a clause.

In assembly language, the VAM2P is implemented using direct threaded

code [6], and in C, a switch statement is used. Garbage collection is per-

formed, but there does not appear to be support for dynamic clauses or

10The subscript 2P indicates a two-PC implementation, and a single-PC variant, the
VAM1P , was also described.
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associated garbage collection.

Xining Li describes an emulator based on a representational technique

called Program Sharing [48] in which an emulator with two PCs is used for

unification and one PC for executing ‘control’ instructions.

Development Environment

The MPW development offers macro assembler, and so it was possible to

devise macros for many of the repetitive sections of the emulator code; for

instance, the code for atomGlobal above is almost the same as the code

for atomLocal, integerGlobal and integerLocal, and a macro was used

to define the common code once. In all, the ‘engine’ part of Open Prolog,

comprising the emulation code for the OPAM instructions, is a little less

than 4,000 lines of macro assembler. The inner core of the implementation,

comprising the emulator, the garbage collector and a subset of the faster

built-in predicates, is written in less than 10,000 lines of macro assembler.

4.10.2 User Interface

As a Macintosh application, Open Prolog must have a user interface that

is responsive at all times. A convenient way to organise this would be to

have two separate threads (or processes), one running a user interface and

the other running the conventional Prolog listener. Data would be trans-

ferred between the threads during interaction with the user. The problem

is that the Mac OS does not support threads, processes or even pre-emptive

multiprocessing, so the application had to be written to explicitly allow the

user interface to share the processor with the Prolog listener at frequent in-

tervals. This is done in a slightly unconventional way, to minimise the over-

head required. The event processing code is written as a subroutine called

userInterface. While the Prolog listener is waiting for input from the user,

userInterface is repeatedly called, implementing the conventional event
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loop. However, if the Prolog listener is executing a program, then a timed

interrupt every one hundred milliseconds (fifty milliseconds if Open Prolog

is running in the background) ‘diverts’ the OPAM emulator’s dispatch code.

The diversion redirects the dispatch of call%, lastCall%, privateCall%

and privateLastCall% OPAM instructions to a section of code called the

‘juggle code’. The juggle code calls the userInterface subroutine to service

the user interface. On exit, the juggle code resets the emulator’s dispatch

mechanism and executes the OPAM instruction originally dispatched.

Effectively, therefore, if the Prolog listener is idle, the user interface event

loop runs in the normal way. On the other hand, if it’s executing a Prolog

program, user interface events are processed every hundred milliseconds.

The user interface code deals with everything that doesn’t need the Prolog

listener’s involvement, including text editing, menu handling, co-operative

multitasking, etc.

4.10.3 Program Startup

At startup, Open Prolog firstly attempts to maximise the amount of con-

tiguous free space available in the Application Zone (the memory space as-

signed to it by the Mac OS). Next, it reserves the OPAM Memory Block

(see section 4.6) and initialises it to contain the Name Space, Code Space,

Global Stack, Local Stack and Trail areas. Next, resources containing OPAM

and 68000 code—comprising support code, built-in predicates and ‘external’

predicates—are located and loaded, linked and initialised, and execution is

transferred to the traditional Prolog listener communicating with the user

through a text-oriented window-based user interface. Each time through the

user interface event loop, pending ‘interrupts’ from external code will be

processed, and interrupt handlers will be launched if appropriate.
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4.11 Compilation

Clauses are compiled individually, each clause being converted into a se-

quence of OPAM codes and a clause descriptor record. Procedures are formed

by linking the clause descriptor records of clauses having the same principal

functors together. Names—atoms and functors—are stored in a name ta-

ble. Included with each name is a reference to the clause descriptor record

of the first clause bearing its name. The principal functor is not needed in

the clause code itself, and is omitted. Private clauses can exist without any

references in the name table; they are accessed directly by their callers using

privateCall and privateLastCall clause code. Linking of private calls to

private clauses is done at startup time.

4.12 Memory Management

The size of the Name Space is fixed at startup; it can not be adjusted af-

ter that time, so it is possible to overflow the Name Space. All the other

spaces—Code Space, Global Stack, Local Stack and Trail Stack—are ac-

tively managed at runtime. If any one of them runs low on spare capacity,

memory management is performed.

• If sufficient spare capacity is available elsewhere, the space allocations

are adjusted, moving the stacks around as necessary.

• If there is not sufficient free space, garbage collection is performed on

the Global Stack and on the Code Space, after which stack allocations

will be adjusted. If insufficient space is available after a garbage col-

lection, the system aborts.

Memory management is discussed in detail in Chapter 8, on page 176.
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4.13 Built-In Predicates

Open Prolog has a fairly extensive set of built-in predicates, somewhat com-

patible with ISO Prolog. Many of these predicates are implemented at least

partly in Prolog. The rest are implemented in host (i.e. Motorola 68000)

code, either written in assembly language, in Pascal or in C. An external

compiler is used to compile built-in predicates written in Prolog into OPAM

code. These are stored as Mac OS PRLC resources for access at startup time.

In addition, many procedural built-in predicates are assembled or compiled

as part of the complete system, and are stored as PRLC and CODE resources.

A special category of host-coded built-in predicates, called ‘External Predi-

cates’ are compiled completely separately to the system. These routines too

are stored as PRLX resources.

The implementation of built-in predicates is discussed in Chapter 6, on

page 148.

4.13.1 Private Built-In Predicates

As mentioned in Section 4.5.2 on page 87, much of Open Prolog’s run time

system is written in Prolog, and is kept private so that it can not be seen or

modified by the user. Calls to private clauses are made by privateCall or

privateLastCall instructions, which bypass the Name Table and reference

the [first] clause of their target procedures directly. Linking private calls to

their clauses is done at startup time as follows. At startup time, all calls made

in clauses, whether made by call/lastCall or privateCall/privateLastCall

instructions, reference their targets by name. Once all built-in predicate code

has been loaded, whether host-coded or Prolog coded, all private call des-

tinations are dereferenced through the name table and the name references

are replaced by the location of the first clause having that name. Once all

private calls have been linked in this manner, the names of private predicates
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are removed from the name table.
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Chapter 5

Compilation

5.1 Summary and Contributions

Given the straightforward connection between Prolog source code and OPAM

machine code, compilation is a relatively simple process, and is implemented

in procedural code. The two-phase process by which a term is read from text

and converted to constructed term representation is described. The process

of compiling clause code from term code is also described.

The call/1 built-in predicate is described, where the sequence of goals

to be called is compiled before execution.

The contributions in this section are the design of the tokeniser, the parser

and the clause code compiler.

5.2 Introduction

In Open Prolog, terms are represented in OPAM Term Code and clauses are

represented in OPAM Clause Code. Thus, for example, when the read/1

predicate reads a term, it is actually compiling an OPAM Term Code rep-

resentation of the term from its textual form. Similarly, when a clause is
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Predicates Form of Compilation
read/1 Text 7→ OPAM Term Code
assert/1, findall/3, etc. OPAM Term Code 7→ OPAM

Clause Code
call/1, catch/3, etc. OPAM Term Code 7→ OPAM

Clause Code

Table 5.1: Forms of Compilation in Open Prolog. The symbol 7→ indicates compilation,
e.g. Text 7→ OPAM Clause Code means text is compiled to OPAM Clause Code.

asserted using, say, the assert/1 predicate, a compilation from OPAM Term

Code to OPAM Clause Code is performed.

OPAM code is generated in a number of different situations in Open

Prolog (see also Table 5.1):

• When terms are input using the read/1 and related predicates. Textual

representations of Prolog terms are compiled into the internal represen-

tation of such terms, which is constructed terms of OPAM Term Code.

• When clauses are asserted, the Prolog term representing each clause is

compiled into OPAM Clause Code.

• When a goal sequence is called for execution using a call/1 or similar

predicate, the Prolog term representing the goal sequence is compiled

into OPAM Clause Code for execution. (This code is discarded when

no longer needed.)

A separate compiler is used for built-in predicates written in Prolog (see

section 6.2). This compiler was initially used to cross-compile Prolog source

code into OPAM code before Open Prolog was working, but is still used to

compile any built-in predicate code written in Prolog.

There are many ways to implement
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In the next sections, the processes involved in compiling text to OPAM

Term Code and compiling OPAM Term Code to OPAM Clause Code will be

described.

5.3 Compiling Text to OPAM Term Code

This process occurs when the read/1 predicate is called, and it consists

of two phases. In the first phase, the text is tokenised and parsed using

a simplified intermediate tag-based representation scheme. In the second

phase, this intermediate representation is translated into constructed terms

of OPAM Term Code.

5.3.1 Phase One—Text to Intermediate Representa-

tion

Text is tokenised and parsed into a structured tag-based representation by

two separate assembly language routines, readRawTokens and getSubterm.

The tags are listed in Table 5.2.

The routine readRawTokens, based on the finite state machine shown in

Figure 5.1, analyses incoming text to produce a list of tagged tokens—the

Token Sequence. The Token Sequence indicates the type, location and length

of each token in the text, along with one piece of data.

The Token Sequence is provided as input to getSubterm, which parses the

tokens into Prolog terms, taking current operator definitions into account,

returning the Prolog term, still token-based. The token-base term will then

be translated into constructed term or source term form as necessary.
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Token Tag Contents of Data Field of Token
tokenNothing –
tokenAtom Name Table Entry
tokenInteger 32-bit Unsigned Value
tokenString Name Table Entry
tokenVar Name Table Entry
tokenStop –
tokenPunctuation –
tokenSpace –
tokenEOF –
tokenError Error Code
tokenStructure Pointer to Structure Description
tokenEndOfStructure –

Table 5.2: Tokeniser Tokens. These tokens are used to annotate the incoming text, classifying
sequences of characters in the incoming text stream into tokens. Each token record includes
the start and the length of the token as well as a piece of data as listed here. The ‘Name
Table Entry’ for atoms, variables and strings is the location in the Name Table where the
atom name, variable identifier or character sequence, respectively, is placed. A structure
is represented by a tokenStructure token followed by a pointer to a sequence containing
the structure’s principal functor followed by tokens for each argument and terminated by a
tokenEndOfStructure token.
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Figure 5.1: This Finite State Machine diagram outlines the design and output of the ‘raw’
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represent ending states, where a token is emitted. Arrows are state transitions, labelled with
the conditions for taking them. Other details like error handling arrangements are omitted for
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127



The Parser

As previously mentioned, the parser, called getSubterm, takes a sequence

of ‘raw’ tokens and produces an appropriately structured Prolog term, also

expressed in a token-based notation. The Prolog language presents special

difficulties with regard to parsing because it allows the programmer to define

unary and binary operators. Any unary functor can be declared to be a

prefix and/or postfix operator, and any binary functor can be declared to be

an infix operator.1 As well as the type of an operator, its precedence and

associativity with respect to other operators can be defined.

Operators can be defined, undefined or modified within a file as it is being

consulted, so it is clearly imperative that the parser must have immediate

access to the current operator definitions at all times, and that the parser be

structured so that it can deal with any legal operator definitions. A desirable

characteristics of the parser is that it should give accurate error messages.

The approach taken in Open Prolog is to base the parser on a state

machine which passes through a small number of states while parsing the

incoming tokens and which is called recursively to handle subterms. An

Operator Stack deals with operators, based on their type, precedence and

associativity. The Operator Stack is also used for dealing with principal

functors of regular terms. An Operand Stack and a Structure Stack are also

used. The routine has eight states and uses four principal data structures

and a number of other pieces of data, all of which are listed in Tables 5.3

and 5.4.

The parser uses the Operand Stack to store representations of terms,

including the output of the routine and terms that, temporarily, are not part

of any structure. Since it’s a stack, operands are retrieved in the reverse

order to that in which they are stored.

1It is possible in Prolog for a name to be the name of a prefix, postfix and infix operator
simultaneously.
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State Significance
SubtermStart Starting to parse a token
SubtermPost After parsing a token
SubtermFollowAtom After parsing an atom token
SubtermFollowMinus After parsing the ‘-’ atom token
SubtermFollowPost After parsing a postfix operator
SubtermGetCloseBracket After parsing a bracketed term
SubtermGetCloseChain After parsing a chain-bracketed term

Table 5.3: Parser States.

Data Structure Usage
Token Sequence ‘Raw’ tokens from Tokeniser
Operator Stack Operators & Principal Functors
Operand Stack Simple Terms & Structure Tokens
Structure Stack Structures
op_store Temporary store for the last operator

Table 5.4: Parser Data Structures and Data Items.

129



The Operator Stack accepts operator and all principal functor tokens,2

processing them according to their arity, precedence and associativity. If

an incoming token’s priority is less than that of the operator at the top of

the stack, the token is pushed onto the stack. Similarly, if the incoming

token’s priority equals that of the operator on top of the stack, and if it

is left associative, the token is simply pushed onto the stack. Otherwise,

the incoming operator triggers a consolidation (a reduction) of the Operator

Stack.

The Operator Stack is reduced by removing the topmost operator and

by pushing the structure corresponding to it onto the Operand Stack. The

structure is actually formed in the Structure Stack by pushing a

tokenEndOfStructure followed by the appropriate number of arguments

(popped from the Operand Stack), followed by the Name Table Entry of

the operator. All that remains is for a tokenStructure to be pushed onto

the Operand Stack, with its data field pointing to the start of the structure

in the Structure Stack.

When this is complete, the operator that was top of the Operator Stack

is gone, converted to a structure, and another attempt is made to accept the

incoming item.

Operation of the Parser The parser starts with a priority, (which, in

standard Prolog, can range from 0 to 1200), and attempts to parse from the

token sequence a Prolog term, whose priority does not exceed the priority

given. The parser may return with a valid term or with an error. It may also

return with a valid term but without reaching a tokenStop token.

The states and procedures the parser uses are described in the following

paragraphs:

2The Operator Stack should perhaps be called the Functor Stack, as it handles all
principal functors, whether they are operators or not. A functor that is not defined as an
operator is taken to have zero precedence and no associativity.
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getSubterm This is the start of the getSubterm routine, and a priority

value is supplied as a parameter. This indicates that a term (or subterm)

is sought whose priority is less than or equal to the priority supplied. An

operator of this precedence, plus one, is pushed onto the Operator Stack.

(Later, when the routine exits, another operator of the same precedence

is pushed onto the stack, reducing all the operators remaining there after

execution of the routine.)

int getSubterm(int in_priority) {

int subterm_priority = in_priority // subterm_priority is the maximum priority of the term

operator_store op_store; //used to store a token provionally identified as postfix

int result_code = ok;

// push_operator(<priority>,<precedence>,<name>,<arity>)

push_operator(in_priority+1,nil,nil,0); // push this marker onto the stack to begin with...

int state = SubtermStart;

boolean operand_required = false; // set to true when an operand is really needed,

// e.g. after an infix operator.

do { // exit by a goto

get_next_token();

switch {state} {

SubtermStart In this state, the parser attempts to parse a term by read-

ing a token. If the token is a tokenVar, a tokenString or a tokenInteger,

then the parser pushes it onto the Operand Stack and transitions to the

SubtermPost state. If the token is a tokenPunctuation, then if it is an

open bracket or an open chain bracket, the parser recursively reads in a

subterm of priority 1200, and transitions to the SubtermGetCloseBracket

or SubtermGetCloseChain state respectively. If the punctuation item is an

open square bracket, the parser calls the GetList procedure to read a (pos-

sibly empty) list and then transitions to the SubtermPost state. Finally,

if nothing can be parsed, the parser returns a no_token status, unless the

current token is tokenEOF, in which case the unexpected_eof status is re-

turned.

case SubtermStart:

if (the current token is a variable or string or number) { // an ordinary operand, for sure

push_operand(current_token); // push it onto the operand stack

next_state = SubtermPost;
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} elseif (current_token==’(’) { // a bracketed subterm

if (getSubterm(1200)==no_token) {

goto LabelSubtermBadCharError;

}

next_state = SubtermGetCloseBracket;

} elseif (current_token==’{’) { // a chain-bracketed subterm

if (getSubterm(1200)==no_token) {

goto LabelSubtermBadCharError;

}

next_state = SubtermGetCloseChain;

} elseif (current_token==’[’) { // a list, maybe empty

if (GetList()!=ok) {

goto LabelSubtermErrorExit;

}

next_state = SubtermPost;

} elseif (current_token is an atom) {

if (current_token==’-’) {

next_state = SubtermFollowMinusAtom; // if it’s followed by a number, it’s special

} else {

next_state = SubtermFollowAtom; // it’s an atom, but it could be an operator

}

} else {

// nothing parsed, but check for EOF

if (current_token is the EOF token) {

backup_token(); //return EOF token as unused

result_code = unexpected_eof;

goto LabelSubtermExit;

} else {

backup_token(); //return the token unused

result_code = no_token;

goto LabelSubtermExit;

}

} else {

goto LabelSubtermBackupAndExit; // nothing parsed, but that’s ok.

}

break;

SubtermPost Here, the parser has already seen what could be a complete

term, reads the next token, and looks for a tokenStop, a postfix operator,

an infix operator or a comma (treated as an infix operator of priority 1000).

If the token is an operator, its priority must not be greater than that of the

subterm as a whole; if it is, then it is not consumed: instead, the token is

returned to the start of the Token Sequence and the tokeniser exits with the

term already parsed as a result.

There is always the possibility that the token could be defined both as

a postfix operator and as an infix operator. In that case, if the priority of
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the postfix operator is suitable, the parser provisionally accepts the postfix

interpretation and defers a final choice until the next token is read in the

SubtermFollowPost state. Since the token is only provisionally accepted as

postfix, it is premature to apply it to the operator stack. Accordingly, the

token is stored temporarily in the op_store where it may be accessed in the

SubtermFollowPost state.

case SubtermPost:

if (the current token is the stop token) {

goto LabelSubtermBackupAndExit;

} elseif (current_token = ’,’) {

if (subterm_priority>1000) { // the subterm we’re asking for must have

// a priority > 1000 to include an infix comma

push_operator(1000,xfy,’,’,2);

operand_required = true;

next_state = SubtermStart;

} else {

goto LabelSubtermBackupAndExit;

}

} elseif (

(current_token is defined as a postfix operator) &&

(its postfix priority < subterm_priority)

) {

// here, an atom defined as a postifx operator is in the right place

// with an appropriate priority

// but it might still ’really’ be an infix operator.

// We note it’s existence as a valid postfix op

// and wait for the next token, in SubtermFollowPost

// to decide finally if it’s posfix or infix.

// We prefer infix by virtue of the eager consumer rule.

op_store = current_token; // store priority, precedence, name and arity for later

next_state = SubtermFollowPost;

} elseif (current_token is an infix operator && (its infix priority < st_priority) {

with current_token.infix_properties

push_operator(priority,precedence,name,2); // this may reduce the operator stack

operand_required = true;

next_state = SubtermStart;

} else {

goto LabelSubtermBackupAndExit;

}

break;

SubtermFollowAtom Having read a tokenAtom, the next token is read to

determine whether the tokenAtom is the principal functor of a structured

term written in standard form or something else. If the token is followed

immediately—without white space—by an open round bracket, it is taken to

be the principal functor of a structured term, and the routine getArguments
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is called to read the arguments onto the Operand Stack. Following this,

an operator of zero priority, having an arity equal to the number of argu-

ments returned by getArguments, and with a name equal to the name of

the tokenAtom, is pushed onto the Operator Stack. The structured term is

actually constructed when the stack is next reduced.

If the token following the tokenAtom is not an open round bracket, it

is not consumed, but is pushed back into the start of the Token Sequence.

Consideration returns to the original token. If the original token is not a

prefix operator, then it is simply pushed onto the Operand Stack and the

machine transitions to the SubtermPost state. If it is a prefix operator, then

if its priority is not greater than that of the subterm sought, it is pushed

onto the Operator Stack and a recursive call to getSubterm is made, with

a priority equal to that of the operator. If the procedure returns normally,

then the state machine transitions to the SubtermPost state.

It is legitimate in Prolog to have a prefix operator without an argument,

so it is not an error for the call to getSubterm to return with the no_tokens

status. Consequently, in the event of a no_tokens status being returned,

the prefix operator is removed from the operator stack, and instead the

tokenAtom itself is pushed onto the Operand Stack.

case SubtermFollowAtom:

next_state=SubtermPost; // continuation

if (current_token = ’(’) { // an atom followed by an open bracket is a functor

GetArgumentsAndArity();

// push the principal functor onto the operator stack with a precedence of zero

// and an arity equal to the number of arguments. It will be reduced later.

push_operator(0,nil,previous_token name,arity);

} else {

// here, the situation is an atom and its following token have been read,

// but the following token is not a ’(’

// We now go back to see if the atom was a prefix operator

backup_token(); //return the token read after the atom

if (current_token is a prefix operator) {

if (current_token prefix op priority > subterm_priority) {

// priority too high for subterm requested

goto LabelSubtermBackupAndExit;

} else {

// commit to the fact that the atom was a prefix operator

operand_required = true;
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with current_token.prefix_properties

push_operator(priority,precedence,name,1);

if (getSubterm(current_token.prefix_properties.priority)==no_token) {

// i.e. if we have a prefix operator and its argument

// it turns out that the prefix operator has no arguments.

// we have already used it to possibly reduce the operator stack,

// which is legal,

// but we don’t want it to consume any later tokens on reduction

// so we remove it from the operator stack and push it on as an atom

pop_operator();

push_current_operand();

}

}

} else {

push_current_operand(); // it was an ordinary atom

}

}

break;

SubtermFollowMinus The next token is read. If it is a tokenInteger, then

a tokenInteger operand is pushed onto the Operand Stack with a value of

the negative of the tokenInteger token just read from the Token Sequence.

The machine then transitions to the SubtermPost state. Otherwise, the

machine executes the

SubtermFollowAtom code.

case SubtermFollowMinus:

// if the minus sign is followed by an integer, take it as a negative integer;

// otherwise, treat the minus sign as an atom

if (current_token is an integer) {

if (range is ok) {

push_operand(negative of value of current_operand);

// the negative integer is now treated the same as a regular integer, var or string

next_state = SubtermPost;

} else {

result = range_error;

next_state = SubtermExit;

}

} else {

backup_token(); // push back the token, now we know it’s not an integer

next_state = SubtermFollowAtom; // treat the minus sign as an atom

}

break;

SubtermFollowPost This state is entered to support or refute the tentative

identification of a tokenAtom in the previous state as a postfix operator. That

atom is stored in op_store. The next token is read. If it can be parsed as
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part of the term, then the tentative identification of the previous atom as

a postfix operator is confirmed; otherwise, the identification of the previous

token as a postfix operator is refuted, and the token just read is returned to

the start of the token sequence.

If the token just read is either a tokenStop, a token that could be an-

other postfix operator, or an infix operator (including a comma) of appropri-

ate priority, the previously identified postfix operator itself is copied from

the temporary op_store—where it had been placed during the previous

SubtermPost state—and pushed onto the operator stack.

Next, if the token is tokenStop, the routine exits; if the token is a postfix

operator, the machine executes the SubtermPost code; if the token is an infix

operator, the operator is pushed onto the operator stack and the machine

transitions to the SubtermStart state.

case SubtermFollowPost:

// here, a postfix operator has been seen and provisionally accepted.

// It might turn out to be an infix operator

// which is preferred. We look at the next token to see.

// The next token could be a stop, a comma, another postfix operator,

// an infix operator, or none of them

if (current_token is a ’stop’) {

goto LabelSubtermFollowPostBackupAndExit; // yep, it was a postfix op. Take it and go.

} elseif (current_token==’,’) {

if (op_store.priority>999) { // if it’s a postfix operator then its priority is too high

goto LabelSubtermFollowPostBackupAndExit; // can only be an error --

// Accept postfix and complain about the comma

} else {

with op_store // accept the previous token as postfix...

push_operator(priority,precedence,name,1);

push_operator(1000,xfy,’,’,2); // push the comma

operand_required = true;

next_state = SubtermStart; // continue

}

} elseif (

(current_token is a postfix operator) &&

(current_token.priority>op_store.priority) && // is greather than previous

(subterm_priority>current_token.postfix_properties.priority) // is low enough

// to include in current subterm

) {

with op_store // accept the previous token as postfix...

push_operator(priority,precedence,name,1);

backup_token();

next_state = SubtermPost; // reconsider the current token on the next state transition

} elseif (

(current_token is an infix operator) &&
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(current_token.priority<subterm_priority) &&

(current_token.priority>op_store.priority) // a new postfix operator,

// of higher priority than the stored one

// follows it, so commit to interpreting the stored one as a postfix operator

) {

with op_store // commit to the previous token as postfix...

push_operator(priority,precedence,name,1);

with current_token.infix_properties // commit to the current token as infix

push_operator(priority,precedence,name,1);

next_state = SubtermStart; // reconsider the current token

} else {

// getting here means that is was not possible to sustain the idea that

// the previous token was a postfix operator

// because the token following it (i.e. the current token) could not be accommodated

// -- either it was the wrong kind, or the not a suitable postfix or infix operator.

// Therefore, we reconsider the previous token now to see if it was infix.

// If it’s not infix, it’s a syntax error

// If it is infix and its priority is too high, we just stop parsing before it --

// it’s not an error we can deal with here.

backup_token(); // get back to the previous token

if (current_token is an infix operator) {

if (current_token.infix_properties.priority<subterm_priority) {

with current_token.infix_properties

push_operator(priority,precedence,name,2);

next_state = SubtermStart;

} else {

goto LabelSubtermBackupAndExit; // can’t use it because its priority is too high

}

} else {

// if it’s not infix, it’s at error

goto LabelSubtermBackupAndError;

}

break;

SubtermGetCloseBracket Having recursively called getSubterm to read a

Prolog term of priority 1200, the machine enters this state and reads the next

token. If it is a close round bracket punctuation token, the machine transi-

tions to the SubtermPost state; otherwise it exits with an unexpected_char

status.

case SubtermGetCloseBracket:

if (current_token==’)’) {

next_state = SubtermPost; // accept the bracketed term and continue

} else {

backup_token();

result = unexpected_char;

next_state = SubtermExit;

}

break;

137



SubtermGetCloseChain Having recursively called getSubterm to read a

Prolog term of priority 1200, the machine enters this state and reads the

next token. If the token turns out to be a close chain bracket, a structured

term whose principal functor is {}/1 is composed by pushing an operator of

name {}, with zero priority and an arity of 1 onto the Operator Stack. (The

structure is actually composed when the Operator Stack is reduced.)

If the token is not a close chain bracket punctuation token, the machine exits

with an unexpected_char status.

case SubtermGetCloseChain:

if (current_token==’}’) {

push_operator(0,nil,’{}’,1); // to compose the chain-bracketed unary term

next_state = SubtermPost; // accept the chain-bracketed term and continue

} else {

backup_token();

result = unexpected_char;

next_state = SubtermExit;

}

break;

End There remains the last part of the parser that is accessed on exit from

the state machine.

} // end switch

state = new_state;

} while (true); // loop until it jumps out

// these are all destinations of branches inside the switch. They exit the while loop too.

// Normal Exit Points

label LabelSubtermFollowPostBackupAndExit:

// we want to exit, but there’s a provisionally identified postfix operator in the op_store

// push it onto the operator stack and exit...

label LabelSubtermBackupAndExit:

backup_token();

label LabelSubtermExit:

// push on this operator to reduce the operator stack

push_operator(subterm_priority+1,nil,nil,nil);

// remove the starting and ending operator -- stack is back to original state

(operator_stack++)++;

return result_code;

// Error Exit Points

label LabelSubtermBackupError:

backup_token();

label LabelSubtermBadCharError:

result_code = unexpected_character;
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clean up operator stack by removing all operators up to

and including the marker operator

placed at the start of the call to getSubterm

return result_code;

}

GetList Having seen an open square bracket in the state SubtermStart,

this procedure is called to read the rest of a (possibly empty) list.

5.3.2 Phase Two—Intermediate Representation to OPAM

Term Code

Once the text has been parsed into a term in intermediate representation, it

must be transliterated into an OPAM constructed term. This is facilitated

by the correspondence between the way structures are referenced out-of-line

in both representations. Transliteration is simply a matter of traversing the

intermediate representation of the term, converting each item into an equiv-

alent constructed term, recursively generating molecules for the structures

encountered in the term. The other task performed in phase two is to alias

identically-named variables in the parsed term to the same OPAM variable.

The output from phase two is therefore a constructed term version of the

term and a list of the variable to variable-name pairs.

5.4 Compiling Prolog to OPAM Clause Code

OPAM clause code is generated by separate programs in three situations:

• When a call/1 is executed, the goal sequence represented by the ar-

gument is compiled into OPAM code for execution. A special feature

of this situation is that the code is discarded when no longer needed;
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• When a clause is asserted, say by the asserta/1, assertz/1 or

findall/3 predicates.

• When built-in predicates are being compiled into PRLC resources using

a separate compiler;

The process is essentially the same in all cases, and consists of three phases.

In the first phase, like the first pass of an assembler, the size of the code and

a variable table is built up; next, the variable table is analysed to calculate

the classification and ordering of the variables; then, in the third phase, the

source code is actually generated.

In the following sections, these processes, by which a Prolog term (in

OPAM Term Code) is compiled to a Prolog clause (in OPAM Source Code),

are described.

5.4.1 Phase One—First Pass

Just as in an ordinary assembler, in phase one the source (a Prolog term in

OPAM Term code) is traversed to determine the maximum size of the output

code. In addition, each time a variable is encountered, information about it

is entered into a Variable Table, as listed in Table 5.5.

5.4.2 Phase Two—Variable Analysis

Variables are analysed into local, global or void according to the following

rules, taken in order:

1. If a variable is used only once, and is not used in a structure, then it

is a void;

2. If a variable is used more than once, does not occur in a structure and

is not used in the body, then it is a temporary, which will be encoded

as a local;
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Item Significance
identity The location of this variable, used to iden-

tify it uniquely.
usage Number of times the variable is used.
firstUse Usage flags detailing where it was first

used.
allUses Usage flags detailing all circumstances of

its use.
firstUseCode Source Term code to use for first use of

variable
restUseCode Source Term code to use in subsequent

uses.
firstUseCodeSize Length of first use code
restUseCodeSize Length of subsequent use code

Table 5.5: Variable Table Entry. The Variable Table is constructed during Pass 1. Information
about a variable’s first and subsequent uses is recorded. After Pass 1, the kind of variable is
determined, and the codes used for the first and subsequent uses are recorded in the table for
use during Pass 2. Table 5.6 details the usage flags used in the firstUse and allUses fields.

Flag Significance
varHeadUse The variable is used in the head of the

clause.
varGoalUse The variable is used in a goal.
varLastGoalUse The variable is used in the last goal.
varStructUse The variable is used in a structure.
varEnumerated The variable has been assigned a location

(used during code generation).
varUsed The first occurrence of the variable has al-

ready been encoded (used during code gen-
eration).

firstUseCodeSize Length of first use code
restUseCodeSize Length of subsequent use code

Table 5.6: Variable Usage Flags. The firstUse and allUses entries in the Variable Entry
Table (Table 5.5) use these flags to register the types of usage of the variable.
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3. If a variable is used more than once, and does not occur in a structure

nor in the last goal, then it is a local;

4. Otherwise it is a global variable.

The number of variables of each kind that must be initialised before use

is calculated. Globals and locals that appear first in a head and not in a

structure do not need initialisation, as they will receive values when they are

first used.

Once variables have been classified, their relative positions within their

frames are determined, allowing for whether they must be explicitly ini-

tialised before use. Variables that need initialisation are numbered so that

they occupy the bottom of each frame.

The actual numbering of each variable is actually its offset from the bot-

tom of its frame. Global variables begin eight bytes up from the bottom

of the global frame, and local variables begin forty-eight bytes up from the

bottom of the local frame. Each variable occupies eight bytes.

• Voids have no numbering;

• Globals needing initialisation are numbered from 8 upwards, in steps

of 8, in order of appearance;

• The remaining globals are numbered in order of appearance, starting

above the highest global that must be initialised;

• Locals needing initialisation are numbered from 48 upwards, in steps

of 8, in order of appearance;

• The remaining locals are numbered in order of appearance, starting

above the highest local that must be initialised;
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5.4.3 Phase Three—Code Generation

At the start of this phase, the variables have been classified and the maxi-

mum size of the output code has been calculated. Taking advantage of the

latter, a memory block is allocated to accommodate the resulting code. In

an arrangement somewhat reminiscent of the organisation of an application

zone into a heap and a stack, this memory block is organised into a fragment

space at the low end, growing upwards, and a code space at the high end,

growing downwards. Briefly, code is generated in the fragment space but

stored in the code space. This arrangement allows the generation of code in

a recursive fashion to facilitate the generation of code for nested structures.

Code generation proceeds as follows:

• The number of globals needing initialisation, less 1, is written to the

fragment space;

• The code for each argument, if any, of the clause head is output:

– If the argument is a simple term such as an atom or integer, its

code is placed sequentially in fragment space.

– If the argument is a variable, then the Variable Table is consulted

to determine the correct code to emit. Again, its code is placed

sequentially in fragment space.

– If the argument is a structure, two distinct sets of code must be

emitted: the code for the structure itself and a structure token

followed by an offset referencing the structure.

The structure code is generated as described below, and is placed

at the upper end of the memory block, in code space. Once placed,

its location is known, so the structure token and the offset can

now be emitted in fragment space. In this way, fragment space

grows upwards and code space grows downwards.
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• The code for the neck structure is emitted in fragment space.

• The code for each goal, if any, is emitted. Again, if any argument is a

structure, it is constructed in code space, and a reference to it is placed

in fragment space.

• The code for the foot structure, if necessary, is emitted.

• Any remaining space between the end of the foot code and the start

of the structure code is closed up by moving the structure code down-

wards.3

Recursive Generation of Structure Code

A structure is generated using the fragment space pointer and the code space

pointer:

• The functor table entry for the principal functor is emitted in fragment

space;

• Each argument of the structure is emitted in fragment space. If it is

a simple term, the appropriate code is emitted; if it is a variable, the

Variable Entry Table is consulted. If it is a structure, the structure

code is generated in code space by a recursive call, and a structure

(or structureLand) tag followed by the offset to the location of the

new structure code in code space is emitted in fragment space.

• When the structure code has been fully emitted (in fragment space), it

is copied up to the code space, freeing the fragment space and occupying

the top of the code space stack where it can be referenced from code

still in fragment space.

3This is not really necessary, as all that will be saved is space due to the replacement
of regular variables with voids, and is probably quite an expensive operation.
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It can be seen that code is generated in fragment space but is moved to

code space when finalised. In this sense, the memory block fills from the top

down.

5.4.4 The call/1 predicate

The other place that a form of OPAM Source Code is generated is in the

call/1 predicate: the goal or goals to be called are compiled into OPAM

Source Code for evaluation. The alternative approach of implementing call/1

with a Prolog metainterpreter was discarded since it departed from the idea

of having just one mode of operation. Secondly, a significant amount of work

would be needed to get the operation of the metainterpreter to match that of

the system itself, particularly in regard to negation, the cut and the control

constructs. Thirdly, given the relative ease with which compilation can be

done, it was overall considered best to compile and then the call argument.

This is different from the general case because the clause is formed from

a number of goals and has no head. Moreover, since the code is used just

once, it is argued that the classification of variables into local and global is

not important. A further feature of this code is that it is not placed in the

OPAM Code Space—in view of its transient existence, it is placed in a local

stack frame, which can be deallocated readily as soon as the code is no longer

needed. This makes it necessary to ensure that no future molecule can be

comprised of any structures within the ‘temporary’ call code. This is done

by ensuring that all structures defined in the call are realised as constructed

terms.

The call/1 predicate is implemented using a combination of Prolog and

assembly language predicates, as shown in the following code:

call(Term) :-
assembleGoalSequence(Term,
IntermediateCode-[foot,clause_dont_mark|DeferredCode],
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DeferredCode-[],0),
computeOffsets(IntermediateCode,Ic2,0,Size),
resolveOffsets(Ic2,Code),!,
‘new$system$call’([Size|Code]).

The term to be called is assumed to be a sequence of goals, and is assembled

in one pass by assembleGoalSequence/4.4 This takes the term Term and the

location counter to produce two difference lists, the first of which is the code

for the goals, and the second of which is all the deferred code, i.e. the call

sequences and nested structures. In turn, assembleGoalSequence/4 calls

a predicate called assemble/4 to generate code for each item in the goal

sequence.

For example, the goal sequence

a(X),!,b(c,d)

yields the joined difference list:

[call,offset(A),cut,call,offset(B),foot,clause_dont_mark,
label(A),callFrame,a(C),label(B),callFrame,b(c,d)]

The locations of the labels in the difference list are calculated using

computeOffsets/3, the offset elements replaced with word elements and the

labels removed.

This yields the following for our example:

[call,word(14-2),cut,call,word(24-8),foot,clause_dont_mark,
callFrame,a(C),callFrame,b(c,d)]

Finally, the list is converted into a list of the numeric codes using equ

statements (not shown) to equate names with the code numbers correspond-

ing to each instruction, with the call sequences at the end.

This gives the following result:

4The code for the predicates described here is listed on page 237.
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[4,12,28,4,16,32,68,a(C),b(c,d)]

The size of the code is prepended to this and the entire list is passed to

‘new$system$call’ for loading and execution.

All the body code is assembled by these simple routines, and the predicate

copies these codes into space it reserves in the local stack. For each atom or

structure designating a call sequence at the end of the list, the predicate con-

structs call sequence code comprising the functor name followed by a global

variable for each argument, each unified with the corresponding subterm in

the list.

General compilation is organised along the same lines as compilation of

call/1 arguments, but with the added complexity of variable analysis, clause

head argument generation, neck and foot code generation and finally the

generation of a clause descriptor record and the installation of the code in

the code space. The compilation of clauses being asserted is done in one

assembly language program called sourceAssemble.

Separately, a cross-compiler, ecompile/1, or the compilation of built-

in predicates into PRLC resource code was written entirely in Prolog. The

OPAM object code output is stored in a text file format called S-Records.

A simple Macintosh-specific utility program converts S-Record object files

into resource files containing the PRLC resources.
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Chapter 6

Built In Predicates

6.1 Summary and Contributions

Five different schemes for implementing built-in predicates are described.

Modules of Prolog code are separately compiled and stored as Macintosh

OS ‘resources’. The ‘standard’ procedural built-in predicate arrangements

are described and a considerably faster but more restrictive scheme (‘fast

predicates’) is described. Arrangements for plug-in built-in predicates (‘ex-

ternal predicates’) are also described, including the ability to deal with ersatz

interrupts. Finally, the idea of input/output ‘streams’ is introduced as an

extension to external predicates.

Perhaps of most interest here is how external predicates are organised.

6.2 Introduction

Prolog incorporates built-in predicates serving a range of purposes. For ex-

ample, the built-in predicate write/1 is a built-in predicate that always

succeeds when called, but which has the [desired] side-effect of outputting a

textual representation of the term supplied to it as an argument. Similarly,
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the built-in predicate read/1 has the side-effect of inputting sufficient char-

acters to represent a Prolog term. If this term unifies with the predicate’s

single argument, then the predicate succeeds; otherwise, it fails. Whether

it succeeds or fails, the side effect of ‘consuming’ characters from the input

remains unchanged. Other built-in predicates exist to perform arithmetic,

to form new terms and to extract arguments of terms, to do comparisons,

to examine and set environmental flags, and so on. Some built-in predi-

cates can be written in Prolog, and it is necessary to hide the Prolog code

used to implement them from the user. Many built-in predicates are entirely

procedural, and are most conveniently written in a conventional procedural

language. And of course, a considerable number of built-in predicates are

built from a combination of Prolog and procedural code. In these cases, the

procedural code is built in to private built-in predicates that are in turn used

by the Prolog code to implement the built-in predicates in question.

Reflecting this, and reflecting the experience gained as Open Prolog was

implemented, built-in predicates are implemented in five ways in Prolog:

• Modules of Prolog code

• ‘Standard’ Predicates

• ‘Fast’ Predicates

• External Predicates

• Streams

Built-in predicates of first category above—modules of Prolog code—are writ-

ten in normal Prolog; they are discussed in Section 6.3 on page 150 below.

The other four kinds of built-in predicates are implemented in 68000 code,

and are described in the later sections of this chapter. The basic ideas for

these four types are simple. Standard predicates are implemented as hy-

brid clauses where the OPAM code for a Prolog clause head is followed by
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a 68000 routine rather than OPAM code for the clause body. This is done

by replacing the neck by an OPAM instruction to switch to host processor

instruction execution. In many cases, the calling overhead of this arrange-

ment was high relative to the amount of useful processing, so the fast built-in

predicate schema transfers execution to host processor almost as soon as the

procedure is called, bypassing most of the standard predicate’s overhead.

In an effort to facilitate development of procedural predicates without hav-

ing to have knowledge of the low-level architecture of Open Prolog, external

predicates allow the development of predicates to interact with Open Prolog

through a shared parameter block and a well-defined set of commands and

protocols. These can conveniently be written in a high-level language like

C++. The calling overhead for external predicates is very high, however, so

the final built-in predicate schema, streams, is an extension of external pred-

icates that seeks to confine the high overhead to the setting up and tearing

down of data streams such as files, while the actual transfer of data is fast.

Open Prolog uses PRLC resources to hold built-in predicates implemented

in Prolog and encoded in OPAM code. Standard and fast predicates have an

OPAM code stub as well as the actual 68000 code itself. The OPAM stub

code is stored in PRLC resources and the 68000 code is stored in regular CODE

resources. External predicates have an OPAM stub generated dynamically

at system startup time; the 68000 code is stored in PRLX resources.

6.3 Modules of Prolog Code

Many built-in predicates are themselves written in Prolog. These procedures,

having been compiled into OPAM instructions, are stored, along with link

data, in PRLC resources in the resource fork of Open Prolog or in files stored in

the Open Prolog Additions folder. At startup, the contents of these resources
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are copied into the Code Space and linked together.1

The modularity of PRLC resources enables modules of built-in predicates

to be added easily to Open Prolog. A special Prolog compiler and resource

formatter is used for building Prolog code modules. ResEdit is used to trans-

fer the resulting PRLC resources into the Open Prolog resource fork.

6.4 Standard Predicates

The first of the four schemes for dealing with procedural 68000 code is

straightforward — a standard predicate is called in the normal way, and

the procedure’s head code is normal OPAM code, where each argument is a

local variable. Thus, when a standard predicate is called, a new local frame

is partly constructed for the predicate. However, instead of the head code

being followed by a neck instruction, as would be the case for a clause writ-

ten in Prolog, it is followed by a proc instruction, which begins execution of

68000 code at the location immediately following. This code fully derefer-

ences the argument in each local variable, then transfers program execution

to the 68000 code that forms the body of the procedure, located in a CODE

resource. Standard predicates can be determinate or non-determinate, and

upon exit, the appropriate procedureExit or indetProcedureExit OPAM

instruction is executed to resume OPAM operation.

Originally, this was the only way in which 68000 procedures could be

written. Although it is a general solution, problems include its high overhead

and its tight connection with the Open Prolog runtime environment:

• The high overhead is because a full call action procedure2 is executed

when the procedure is called, which checks for first argument matching

1In the present release of Open Prolog, there are eighteen PRLC resources. The largest
resource contains a large number of built-in predicates and also contains the familiar
interactive command-line ‘listener’.

2Call instructions and call action procedures are discussed on page 104
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and alternative clauses—almost always unnecessary for built-in proce-

dural predicates. In addition, a new local stack frame is partly con-

structed for the predicate, and the goal arguments are unified with local

variables and then fully dereferenced before the procedure’s 68000 code

begins to execute. So while these operations certainly do no harm, and

make programming a little easier, the time overhead they introduce

is excessive; for some simple determinate procedures, the overhead is

greater than the ‘useful’ execution time.

• The tight connection with the Open Prolog runtime meant that writing

procedures was in many situations unnecessarily difficult, and essen-

tially impossible in a high level language.

The next two schemes were designed to overcome these deficiencies, the first

by minimising the calling overhead, and the second by defining a standard

interface so that predicates could be written in a high level language, without

exposure to Open Prolog’s runtime structures.

6.5 Fast Predicates

Fast predicates dispense with almost all of the calling overhead incurred

by standard predicates. Recall that when a standard predicate is called, a

normal call action procedure is invoked by the call instruction. This is re-

sponsible for checking for first argument matching and for alternative clauses.

In a fast predicate, the predicate code itself becomes the call action proce-

dure. In this way, the minimum possible overhead for a call is encountered,

and control passes to the ‘useful’ code of the predicate with greatly reduced

overhead. Since a fast predicate has no local frame of its own, arguments

must be accessed and dereferenced in the caller’s environment. In the present

version of Open Prolog, most determinate predicates are implemented as fast
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predicates.

6.6 External Predicates

The third scheme—‘External Predicates’—uses The Macintosh OS’s imple-

mentation of resources to implement ‘plug-in’ predicates. External predicate

source files, together with a number of interface files, are compiled into PRLX

resources that are then added to the Open Prolog resource fork itself, or

placed in files in the Open Prolog Additions folder which is searched at

startup. Predicate code is activated by transferring program execution to

the start of the resource, having pushed the address of a parameter block

onto the stack.

The parameter block is the conduit through which an external predicate

communicates with Open Prolog. A command is placed in the parameter

block when a resource is activated. The commands available are:

GetPRLXInfo This returns the number of predicates defined in this PRLX

resource. This is used at system startup, when the system identifies all

the predicates available. In all subsequent commands, the predicate to

which the command is addressed is specified with a one-based index

number.

InitialisePredicate The code associated with the indexed predicate is

given this opportunity to initialise itself. Three important parameters

are supplied. The first is the address of a routine that can be used to

make an interrupt request (see section 6.6.1). The second is a parameter

block longword whose value will be available every time the predicate is

called in the future. Typically during initialisation, a block of storage

could be reserved and its pointer or handle stored in the parameter

block so that it can be accessed whenever that predicate is called. The
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third is another parameter block longword whose value will be available

to every predicate in the PRLX resource so that all the predicates in the

resource could have access to shared data. The InitialisePredicate

command is issued to the predicates in a resource in index order, so

that the first predicate could initialise the shared longword on behalf

of all predicates.

CallPredicate This command is issued when the predicate is called in the

course of executing a Prolog program. When this command is issued,

the private longword and the shared longword are guaranteed to be

available, enabling the predicate to access private and shared data.

Callback commands or callbacks enable the predicate code to access and

modify its arguments and to interact with the Open Prolog system. The

system itself is suspended during this time, thus callbacks have access

to the suspended ‘snapshot’ of the system.

Variables may be unified with other Prolog terms, with numbers, with

atoms (specified by a character string) or with structures, where the

principal functor is specified by a character string and number, and

where the subterms are uninstantiated variables. The subterms can be

accessed using further callbacks. By this means, complex structures

can be built, and terms and subterms accessed and modified by the

predicate code, without having direct access to the runtime structures.

On completion, the predicate sets a return code indicating success, fail-

ure, an ISO Prolog error or an unclassified error or a user interrupt.

If an error is returned, it is accompanied by a host error code, an ar-

gument number and a message string.

ClosePredicate This command has not been implemented. The intention

is to issue this command just before Open Prolog shuts down to give
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the predicate an opportunity to terminate cleanly.

GetEventsVersion This command returns the version number of the in-

terface that the external predicate was compiled with. If this doesn’t

match the interface version number of Open Prolog, the external pred-

icate is disabled.

PRLX resources are loaded at startup, and the predicates they contain are

identified and initialised at that time. These predicates cannot be retracted

or removed.

The overhead in executing external predicates can be high. When an

external predicate is executed, the resource containing the predicate may

have to be loaded from disk. Additionally, getting and setting arguments

using callbacks is certain to be slower than accessing them directly as a

normal built-in predicate would. A further disadvantage is that, since the

application itself is suspended while the external procedure is running, its

user interface receives no processor time, causing it to appear to freeze if

the external predicate takes too long to return. This is partly due to the

architecture of the Mac OS for which Open Prolog was developed, in that

the Mac OS does not support threading or preemptive multitasking at the

application level.

6.6.1 Events and Interrupt Handlers

While the Open Prolog application is running, the user interface code is

capable of receiving ‘events’ from the Mac OS. Events are data structures

containing information about recent user interface events, such as a mouse

click, a window moving and so on. In addition, other Mac OS messages

(including inter-process messages) can be made available to the application

as events. One could imagine an external predicate with two components:

the predicate code itself, callable from Open Prolog and returning relatively
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quickly, and a separate asynchronous event handler which communicates back

to the predicate code via a shared data structure such as a simple flag. In

this scenario, the asynchronous event handler code could set the shared flag

to indicate to the predicate code that an event had happened. However,

the predicate would need to be activated by being called by Open Prolog to

detect the flag. To avoid having to poll for such changes, an ersatz interrupt

mechanism is implemented.

The Interrupt Handling Mechanism

When an external predicate is initialised at startup, the address of an in-

terrupt requester is provided. When called, the requester puts a prioritised

interrupt request in a global interrupt request data structure. The priority

is between 1 and 7, and associated with the request is one atom. Interrupt

requests are examined each time the user interface code is run, and, if the

priority of a request is high enough, an interruptRequested flag is set. The

next time the juggle code (section 4.10.2) runs the user interface, this flag is

reset. If it was already set, then, rather than return to call the predicate that

was about to be called when the juggle code was run, the special interrupt

handler system$start$interrupt$handler/2 is called which retrieves the

atom that was supplied by the interrupt requester and the current interrupt

priority level. It then sets the interrupt priority level to that of the interrupt

request to block other interrupt requests of the same or lower priority. The

atom can then be used as a selector for a Prolog procedure to actually service

the interrupt request.

This mechanism is used, for example, for the Apple Event handler predi-

cate apple event/2. Upon initialisation, the predicate code installs an Apple

Event handler in the host operating system’s event handling system. When

an Apple Event is received for Open Prolog, the predicate’s Apple Event

handler is activated. This stores a reference to the Apple Event and sends
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an interrupt request to Open Prolog. The interrupt handler should then

execute apple event/2 to get access to the input stream of text and to an

output stream in which to write a reply.

6.7 Streams

The fourth scheme—‘Streams’—is an extension of External Predicates to deal

with plug-in Input/Output Handlers. The idea here is to have Input/Output

Handlers (IO Handlers in the sequel) dedicated to different types of data

sources and sinks, such as files, blocks of memory, dialog boxes, Apple Events

etc.

Whenever a connection is made to a data source or sink, the handler

that deals with that type of source or sink is associated with a descriptor

that becomes the connection’s ISO Prolog stream identifier. Requests for

data transfer are then made directly to the handler through the connection

descriptor. This scheme offers speed and flexibility; speed because when data

is required, the appropriate handler method can be called immediately, and

flexibility because the special needs of a source or sink can be catered for

with dedicated extra external predicates.

These handlers are contained in PRLX resources along with associated

external predicates. At startup, the handlers are registered by an associated

external predicate, and a unique register four-character code is registered for

each handler.

Whenever a connection is opened to a data source or sink, a descriptor of

the connection is registered in the IO Registry, and the code of the hander

for that particular stream is stored as part of the connection descriptor. The

ID of the connection descriptor becomes the stream identifier to be used by

ISO Prolog-compliant input/output predicates.

External Predicates have the ability to register IO Handler objects. These
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handlers can then be called to perform text-based Input/Ouput through a

fast interface, independent of the PRLX interface. Further, by assigning

a tokeniser procedure and table to the object, input could be in the form

of low-level tokens. At this time, the tokeniser functionality has not been

implemented, so the IO Handler can only return sequences of characters.

Consequently, IO Handlers are not fully integrated into Open Prolog. A

finite state machine-based tokeniser has been developed and is used for ex-

perimental purposes.
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Chapter 7

Control Constructs and

Exceptions

7.1 Summary and Contributions

This chapter describes how the control constructs such as disjunction, nega-

tion, if-then, if-then-else and the catch/3 predicate are implemented. Catch-

and-throw error handling is also described in this chapter. A novelty of

the design is the use of special purpose non-removable local stack frames to

control the operation of the constructs and the use of linked lists of non-

removable frames for efficiency. A linked list of catch-and-throw destination

pointers is also maintained.

7.2 Introduction

In the typical Prolog clause body, goals are separated by commas, indicating

conjunction, or possibly by semicolons, indication disjunction. Negations are

represented by the not, fail if or \+ symbols. To this set must be added a

small number of additional control constructs. The control constructs in ISO
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Prolog are disjunction, conjunction, negation, if-then and if-then-else. Fi-

nally, most Prolog implementations now have—and ISO Prolog stipulates—

catch-and-throw error handling.

Given that a close correspondence is to be maintained between the Prolog

source code and the OPAM code, it follows that transformations of these

constructs that alter the structure of the code are not permissible. Instead,

a representation of the control constructs must allow them to be faithfully

decompiled, and at the same time, the implementation must comply with

the sometimes intricate semantics of the constructs. Open Prolog uses a

novel and flexible scheme to represent the constructs and to implement their

semantics faithfully.

While the ISO Prolog standard [39] now defines the semantics of these

constructs fully, there was considerable variation in the semantics and per-

formance of early implementations of these constructs [52]. Consider, for

example, the following program:

a :- b,(c,!;d),e.
b :- write(b1). b :- write(b2).
c :- write(c1). c :- write(c2).
d :- write(d1). d :- write(d2).
e :- write(e),nl.

Some implementations used a built-in predicate to implement disjunction, as

if disjunction was defined as follows:

(X;Y) :- call(X).
(X;Y) :- call(Y).

Two immediate issues arise here, semantics and efficiency.

Semantics. A question arises about the effect of the cut. One reading of

the cut in the first clause is that it removes all choice points made by

the preceding goals in the clause instance. That is, (working backwards
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through the choice points), the alternative solution to c is discarded, the

alternative in the disjunction (i.e. the solution involving d) is discarded

and the alternative solution to b is discarded, leaving the clause instance

determinate up to that point. Thus, if the call a,fail was made, the

result should be the single line:

b1c1e

However, if disjunction was implemented using the procedure above,

the disjunction (c,!;d) would result in call((c,!)), where the ef-

fect of the cut would just be to discard the alternative solution to c,

so for the same call a,fail, the result would have multiple solutions

(separated here by commas):

b1c1e, d1e, d2e, c2e, d1e, d2e,
b2c1e, d1e, d2e, c2e, d1e, d2e

ISO Prolog supports the former interpretation, and a useful rule of

thumb relates to the ‘transparency’ [54] of a construct: if the name of

a construct contains alphanumeric characters, it is ‘opaque’ to a cut,

i.e. the scope of a cut inside the construct is limited to within it. On the

other hand, if the construct’s name is exclusively non-alphanumeric, it

is ‘transparent’ to a cut, and the scope of a cut inside the construct

extends out into the clause instance that contains it. Thus, for example,

disjunction, with the functor ;/2, is transparent, whereas fail_if/1

is not.

Efficiency. Even if the semantics of the cut were not an issue, implementing

control constructs with built-in predicates as outlined above is likely

to be computationally expensive, because of the processing typically

necessary for the call/1 predicate. In Open Prolog, for example, the

argument to the call/1 predicate must be turned into a procedure call
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before it can be executed. In some compiler-based implementations,

calls made from a call/1 are interpreted, and compiled code has to be

made public so that it can be called from the interpreter.

One way to implement control constructs efficiently is to transform the source

code containing control constructs into equivalent ‘canonical’ construct-free

code, preserving the original semantics. This approach is taken in many

compilers, for example, in Prolog by Peter Van Roy in [70] and Andrew

Taylor in [68], and by the implementors of Gödel [36], but it is not suitable

here since the correspondence between the original source and any resulting

image code would be difficult or impossible to identify later.

The approach taken in Open Prolog is conceptually straightforward—

goals within control constructs are compiled normally, the control constructs

themselves are compiled into instructions that bracket (i.e. precede and fol-

low) the instructions for the goals they control. This approach eliminates the

performance penalty that would be incurred if a variant of call/1 was used.

One other concept was introduced to help implement control constructs, the

idea of Non-Removable Frames.

Non-Removable Frames, or NR Frames, are so called because they can

not be automatically deallocated or discarded during normal execution, e.g.

by last call optimisation. (They can be discarded on backtracking, however.)

Furthermore, an NR frame can be made transparent or opaque to cuts, and

this is signified by a flag bit in the frame.

7.3 Non-Removable Frames & Transparency

As stated, an NR frame can not be removed automatically in normal execu-

tion, either by last call optimisation or by the cut. This is accomplished at

very low runtime cost by making an NR frame a choice point and by modify-

ing the operation of the cut to honour the existence of NR frames. When an
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NR frame is no longer needed, it can be made determinate (i.e. no longer a

choice point), and is then available for deallocation by last call optimisation

in the normal way. If it’s at the top of the local stack, it can be deallocated

straight away.

To enable the cut to handle NR frames efficiently, a new OPAM register,

the NR register, is introduced. This register always points to the most recently

allocated NR frame. By comparing the cut frame address with the NR register

contents, the presence of NR frames above the cut frame can be established

quickly.

If no NR frame is newer than the cut frame, the cut deallocates all frames

newer than the cut frame, and the cut frame itself is made determinate—this

is the cut’s ‘normal’ behaviour. If the topmost NR frame is newer than the

cut frame, (established by a comparison of two OPAM registers), then, as a

preliminary step, stack frames newer than the NR frame are discarded. The

NR frame itself remains a choice point, and whatever alternatives exist at

that frame are unaltered.

If the frame is opaque to cuts, nothing further is done—no more choice

points are discarded. If the frame is transparent to cuts, then all the choice

points below the NR frame, but above the cut frame, (or another opaque

NR frame if that comes first), are made determinate. Thus, the normal

semantics of the cut are preserved, but it doesn’t remove any NR frames.

The non-removable property of NR frames is central to the implementation

of the negation, if-then, if-then-else and catch constructs.

7.4 Disjunction

Consider the clause:

trial(X,Y) :-
member(X,[a,b]),(jack(X);jill(Y)),write(Y).
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This disjunction in this clause is encoded (in OPAM-like pseudocode) as:

orCall(L1,L2) %start of disjunction
call jack(X)
jump(L2) %end of first disjunct

%and start of second
label(L1)

call jill(Y)
punctuation %end of disjunction

label(L2) %continuation
...

The calls to jack(X) and jill(Y) are preceded, separated and terminated

by the code for the disjunction, orCall(L1,L2), jump(L2) and punctuation

respectively. Assuming the call jack(X) will succeed, the instructions execute

as follows:

orCall(L1,L2) A built-in predicate called ‘system$disjunction’ is called.

This predicate has two alternatives, so a normal choice point is con-

structed. The first alternative tags the choice point as a Disjunction

Frame1 and succeeds.

call jack(X) This is a normal call to the predicate jack/1. this goal is

part of the body of the original clause, and executes in that clause

instance’s environment. The only effect of the disjunction has been to

put a newer choice point on the stack. We assume jack(X) succeeds.

jump(L2) This instruction skips the code for the second alternative.

If backtracking should later cause the alternative of the disjunction to be

called, the following will happen:

1This is needed as the OPAM distinguishes between the if-then and if-then-else at
runtime by looking for a Disjunction Frame tag in the most recent choice point. See
section 7.6.
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orCall(L1,L2) Since this is the second and last call to

‘system$disjunction’, the choice point becomes determinate and the

second procedure for ‘system$disjunction’ is called, which simply

jumps to the label L1, i.e. the start of the second alternative.

call jill(Y) Again, this is a regular call, being made from the body of the

original clause, and may succeed or fail. Should it fail, backtracking

occurs as normal, since the choice point placed on the stack by the

orCall is no longer a choice point. If the call to jill(Y) is successful,

the next instruction is executed:

punctuation This is a no-op instruction, used in the reconstruction of the

source code; it marks the end of the disjunction.

Disjunction and the Cut

Whether a cut is placed inside the disjunction or elsewhere in the clause body,

it will be compiled as part of the clause body containing the disjunction,

and will cut choice points back to the same frame, i.e. the frame of the

clause instance of which it is a member. Thus, the presence or absence of

a disjunction makes absolutely no difference to the cut’s operation. In this

sense, the disjunction is transparent to the effects of the cut, and no special

handling has proven necessary.2

7.5 Negation

Open Prolog implements four variants of negation. Two are transparent to

cuts, viz. \+ /1 and ¬/1; two are opaque, viz. not/1 and fail if/1. Each

is encoded as a variant of the notCall. Consider the clause:

2If it was necessary to implement an ‘opaque’ disjunction, the frame placed on the
stack by the orCall would have to be made into an opaque NR frame.
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test(X) :-
fail_if(jack(X)).

This is encoded as:

notCall(3,L1) %start of negation
%(fail_if is variant 3)
call jack(X)
notSucceed %end of negation

label(L1) %continuation

The call to jack(X) is preceded and terminated by the code for the nega-

tion, notCall(3,L1) and notSucceed respectively. The general plan of the

implementation is somewhat similar to that of disjunction, and is described

in the following paragraphs.

notCall(3,L1) A built-in predicate called ‘system$not’ is called. This

predicate has two alternatives, so a normal choice point is constructed.

However, the first alternative turns the choice point into an NR frame

by storing the current value of the NR register in the NR field of the

frame, and updating the NR register to point to itself. Next, since this

is an opaque variant of negation, the frame’s transparency bit is turned

off and the predicate succeeds.

call jack(X) This is a regular call, being made from the body of the orig-

inal clause, and will succeed or fail. If it succeeds, the next instruction

will be notSucceed; if it fails, program execution will backtrack to the

second ‘system$not’ predicate. Now, this being negation-as-failure,

if jack(X) succeeds, fail_if(jack(X)) must fail; if jack(X) fails,

fail_if(jack(X)) must succeed.

If jack(X) succeeds, the instruction notSucceed is executed. This

instruction makes jack(X) determinate, resets the NR register to the

value of the NR field of the NR frame, thus removing the frame, from
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the NR chain and effectively removing its special status as an NR frame.

The instruction concludes by executing a failure; thus, the success of

the predicate jack(X) causes failure.

If jack(X) fails, program execution backtracks to the second

‘system$not’ procedure. This procedure also resets the NR register,

relinquishing the frame’s NR frame status. OPAM program execution

is transferred to the instruction following the negation, labelled L1;

thus, the failure of the predicate jack(X) causes success, and program

execution continues at the instruction following the negation.

7.5.1 Negation and the Cut

Consider the clause:

test(X) :-
fail_if((!,jack(X))).

The cut is placed inside the negation will be compiled as part of the clause

body containing the negation. Now, if the frame placed on the stack for a

negation was not an NR frame, execution of the cut would incorrectly make

its clause body determinate, as if the negation was transparent. Even, how-

ever, if the variant of negation used was transparent, the cut would also

remove the negation’s own choice point, and if jack(X) were then to fail,

(meaning that fail_if(jack(X)) should succeed), the second ‘system$not’

procedure would not be called, and the negation would thus, incorrectly, fail.

7.6 If-Then and If-Then-Else

The control constructs if-then and if-then-else, widely used in Prolog, and

standardised in ISO Prolog, are closely related.
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The if-then construct is the infix functor ->. Its first argument may be

thought of as a test predicate, and its second argument an action predicate.

Informally, the semantics of if-then are that if the test predicate succeeds,

its alternatives are discarded and the action predicate is executed. Thus, for

example, the informal meaning of the term try(T)->do(X) is that if try(T)

is true, discard its alternatives and call the goal do(X). Backtracking will not

attempt to re-prove try(T), as its alternatives will have been discarded.

The if-then-else construct is a combination of the if-then functor with

a disjunction. The construct takes three arguments that can be thought of

as a test predicate, an action predicate and an alternative action predicate.

Informally, the semantics of an if-then-else construct are that if the test

predicate succeeds, its alternatives are discarded and the action predicate is

called; otherwise the alternative action is called. For example, the informal

meaning of the construct try(T)->do(X);do(Y) is that if try(X) is true,

discard its alternatives, discard the disjunction’s alternative (i.e. discard the

possibility of proving the disjunction later by executing its second alternative)

and call the goal do(X), else call the goal do(Y).

Structurally—that is, looking at these constructs as structured Prolog

terms—if-then-else is a disjunction in which the first alternative is an if-

then term. For example, the if-then-else term try(T)->do(X);do(Y) can be

rewritten to emphasise its structure thus: (try(T)->do(X));do(Y), where

the first alternative is the if-then term try(T)->do(X).

Semantically, if-then-else is more than just the combination of the in-

dependent semantics of a disjunction with a subsidiary if-then because an

if-then within a disjunction makes the disjunction determinate.
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7.6.1 Implementation

Implementation of if-then and if-then-else follows the format of the other

control constructs. If the construct is if-then-else, then the disjunction is

compiled as described in Section 7.4. To encode the if-then construct, the

test and action predicates are preceded, separated and terminated by the

OPAM instructions ifThenCall, ifThenCommit and punctuation. As an

example of if-then, consider the clause:

trial(T,X) :-
try(T)->do(X).

The if-then is encoded as follows:

ifThenCall
call try(T)
ifThenCommit
call do(X)
punctuation

Assuming try(T) succeeds, the instructions operate as follows:

ifThenCall A built-in predicate called ‘system$if$then’ is called. This

predicate has two alternatives, so a choice point is allocated. The first

alternative converts the choice point into an NR frame. (The frame

is used only for the test predicate, and is then discarded.) The if-

then construct is transparent to cuts, so the frame’s transparency bit

is turned on.

call try(T) This is a regular call, being made from the body of the original

clause. If it succeeds, the next instruction will be ifThenCommit; if it

fails, program execution will backtrack to the second ‘system$if$then’

predicate.
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ifThenCommit First, the test predicate is made determinate by removing

the NR field constructed by the ifThenCall. Then, the behaviour of

the instruction depends on whether the construct is an if-then or an

if-then-else. The most recent choice point is examined, and if it is the

choice point of a disjunction, then this code is taken to be part of an

if-then-else construct; in that case, the disjunction is made determinate

and the instruction succeeds. If the most recent choice point is not a

disjunction, the instruction does nothing further and succeeds.

call do(X) This is a regular call, being made from the body of the original

clause, and will succeed or fail. Since the outcome of the test predicate

try(T) has been made determinate, the test can never be re-satisfied

on backtracking.

punctuation This is a no-op, used to assist in the reconstruction of the

source code.

If the test predicate (try(T) in this example) fails, then backtracking causes

the second alternative ‘system$if$then’ to be called. This instruction re-

moves the NR field placed on the local stack by the ifThenCall instruction

and fails. If it’s an if-then-else construct, then this failure will backtrack to

the second alternative within the disjunction as required.

7.7 Catch-and-Throw Exception Handling

Catch-and-Throw exception handling is a familiar technique in conventional

procedural languages and was adopted as part of the ISO Prolog standard.

The technique is based on the metaphor of a message or signal being ‘thrown’

from where an exception occurs back to a line of ‘catchers’, arranged with the

newest catcher first and the oldest catcher last. If the first (i.e. the newest)

catcher can deal with the error, then it retains the message and processes
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it. If not, the message continues on its ‘flight path’ back to the next catcher

which repeats the process, and so on down to the last (and oldest) catcher—

typically part of the runtime system—which aborts the offending program.

Overall, the idea is that the most local catcher that can handle the exception

gets the first opportunity to deal with it.

In Prolog, the message is a Prolog term, and catchers are catch/3 pred-

icates. The arguments of the catch/3 predicate are as follows:

• The first argument is the goal—the subject—that is executed, and ex-

ceptions thrown by this goal or its subgoals will be processed by this

catch/3, unless newer catch/3 instructions within the goal or subgoal

catch the exceptions first.

• The second argument is a term with which the message term that has

been thrown must unify for this catch/3 predicate to be able to deal

with the exception in question.

When an exception occurs during the execution of the subject or one of

its subgoals, a message term is thrown and may make its way back to

this catcher. The message term is unified with this, the catcher’s second

argument; if unification is successful, the third argument is called as a

goal. If the message term fails to unify with this argument, then the

message is passed on to the next oldest catch/3 predicate, and this

catcher is effectively bypassed.

• The final argument is a goal—the exception handler—that is called

if the message term thrown by the exception unifies with the second

argument.
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7.7.1 Implementation

The catch/3 predicate is implemented similarly to the control constructs. It

contains two goal calls, the subject and exception handler, and the second

argument is a term. These three items are compiled as part of the body

code of the clause containing the catch/3 call. To ensure that the second

argument is compiled as a term rather than a goal, and to force any variables

it contains to be globals, it is made the subterm of a structure (skip/1)

which becomes the only argument of a call to a predicate (also skip/1).3

For example, consider the following clause:

trial(X,Y,Z) :-
catch(do(X),catch(Y),handler(Z)).

The catch predicate is compiled into the following OPAM code:

catchCall
call do(X)
catchSucceed
jump L1
call skip(skip(catch(Y))) % force catch(Y) to be a term
cut
call handler(Z)
punctuation

label(L1)

When an exception throws a term, the term must be tested for unification

against each catcher’s second argument in newest-to-oldest order until a suc-

cessful unification is performed. To do this, the catcher’s environment, (or

part of it), must be restored so that the unification can be attempted. This

is done by locating the local frame of the catcher, restoring from it the local

and global stack pointers that were current for that clause instance. To im-

plement this efficiently, the OPAM uses a chain of special local frames called

3The structure and the predicate chosen have no function or significance beyond forcing
the compiler to compile the second argument as a term containing no local variables.
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Catch Chain Frames each of which points to a particular catcher’s frame

and also to the next oldest member of the catch chain frame. In addition,

an OPAM register called the CCR, the Catch Chain Register, always points

to the newest catch chain frame. Thus, the unification environment for each

catcher can be located rapidly when an exception occurs.

The instructions operate as follows:

catchCall The local stack frame of this instruction’s clause instance be-

comes the newest catch frame (i.e. the local frame of the catcher’s

environment); the purpose of the instruction is to update the catch

chain with this information. To accomplish this, the instruction calls a

built-in predicate named ‘system$catch$predicate’, which has two

alternatives, so creating a new choice point is placed on the local stack.

This new choice point becomes the latest element of the catch chain

and is linked into the catch chain, as follows:

• The current value of the CCR is stored in the frame,

• The CCR is made point to this frame,

• The frame’s Continuation Frame pointer (the Xp/CF field of the

frame) already points to the catch frame it refers to,

• To ensure the correct semantics of the cut, the new frame is turned

into an opaque NR frame.

call do(X) This is a normal call to do(X).

catchSucceed At this point, the subject of the catch has succeeded, so the

catch/3 instruction must be removed from the top of the catch chain

and the previous catch frame restored to the top of the catch chain.

If the subject of the catch/3 is determinate, the catch chain frame con-

structed by the catchCall instruction is no longer needed and is dis-

carded. It is removed from the catch chain and the NR chain, restoring
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both the CCR and the NR registers to the values they held prior to exe-

cution of the catch/3 predicate. If the subject of the catch/3 is non-

determinate, however, the possibility exists that program execution

could backtrack to the subject in the future, and the catch chain would

then have to be restored to its present state. In the non-determinate

case, therefore, the catch chain frame created by the catchCall in-

struction is removed from the NR chain but not deallocated. This also

restores NR to its prior value, before the catch/3 predicate was exe-

cuted. A built-in predicate ‘system$catch$succeed’ creates a new

choice point. The current value of the CCR is stored in it, and the

previous value of the CCR is restored from the catch chain frame cre-

ated by the catchCall. The new local frame now contains sufficient

information to reconstruct the catch chain and the NR chain if back-

tracking returns program execution to the non-determinate subject of

the catch/3 predicate.

The catch-and-throw mechanism as described does not comply with the se-

mantics prescribed in ISO Prolog. Consider the following sequence:

\verb"catch((X=4,throw(X)),J,write(J)),write(’,’),write(X)".

The ISO Prolog standard calls for the following result: 4,Q, where Q is an

unbound variable. Open Prolog will, however, respond with 4,4; that is, X

remains bound to 4 after the catch has been made. Operationally, the differ-

ence between the two is that when the ‘ball’ has been thrown and successfully

‘caught’, all variable bindings made since the first argument was called are

undone to conform to the ISO requirement. So, while X was unified with 4

while the X was thrown, as soon as it was received, X was uninstantiated.

Crucially, Open Prolog does not undo the bindings of variables made since

the first argument was called.
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7.7.2 Related Work

The scheme adopted here of NR frames and bracketed code sequences is sim-

ilar to, (but developed separately from), the scheme used to implement dis-

junction in MProlog [43, Section 9, p8]. In MProlog. In MProlog, alternatives

in a disjunction form ‘groups’ that are treated as parameterless procedures

which create a stack frame to store the choice point needed. In Open Pro-

log, alternatives in a disjunction are compiled in the normal way but are then

surrounded by special instructions, effectively forming them into groups also.

The special instructions have the effect of generating and managing stack

frames, just as the parameterless procedures do in MProlog. In Open Prolog

as in MProlog, special care is taken of the interaction between the cut and

the disjunction. The scheme is more generally applied in Open Prolog how-

ever, being used, with modifications, to handle negation, if-then, if-then-else

and, trivially, nested conjunction. It seems that disjunctions of more than

two alternatives are contemplated in MProlog, whereas only two are allowed

in Open Prolog.

Another approach to implementing if-the, if-then-else and negation is

described by Bowen et al in [8]. Cut is compiled to instructions that take

an explicit argument defining the scope of the cut, obviating the need for NR

frames or the like in such circumstances.
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Chapter 8

Memory Management

8.1 Summary and Contributions

This chapter describes how memory usage is handled in Open Prolog. Mem-

ory is reallocated dynamically to four sections: code space, global stack, local

stack and trail. Management of the adjustment of the sizes of the spaces is

discussed, garbage collection of the global stack is described and garbage

collection of the code space is discussed.

The contributions are: the implementation of garbage collection in a

structure sharing implementation using the logical update view of dynamic

code, and a simple scheme for the avoidance of some of the runtime over-

head due to the logical update view. Reference chains are ‘rolled up’ where

possible.
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8.2 Memory Management

The layout of OPAM memory is shown in Figure 4.8 on page 97. The Name

Space is allocated a fixed amount of memory at startup1 and is not managed

at runtime. In particular, the amount of memory is not changed at runtime,

and functors and atoms added to the name space at runtime are never re-

moved; thus the possibility of name space overflow exists. All other parts

of OPAM memory are actively managed at runtime: the global and locals

stacks and trail are dynamically adjusted—resized and remapped, the global

stack is garbage collected and retracted clause space is garbage collected from

the code space.

Triggering Memory Management Activity

Each space in OPAM Memory has three parameters: pointers to the lower

and upper bounds of the space and a pointer to the upper operating limit.

During a neck instruction, a check is made to see if the operating limits are

being exceeded in the stacks or in the trail. Similarly, when a clause is about

to be asserted into the Code Space, a check is made to ensure that the upper

operating limit of the stack space would not be exceeded by the addition of

the extra code. If necessary, a ‘stack adjustment’ is started which will resize

and remap these spaces. If insufficient space is available to make the process

worthwhile, a garbage collection will be attempted first. In Open Prolog,

two different kinds of garbage collection are done—one on the global stack,

the other on the code space, recovering space from clauses that have been

retracted and are no longer accessible from a running program.

1Memory allocation parameters, including initial allocations and memory management
parameters, are set in STR# resource 130 in the application.
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8.3 Stack Adjustment

Stack adjustment is the first and computationally the cheapest form of mem-

ory management, and involves the code space, the global stack, the local stack

and the trail. These occupy a contiguous block of memory at the upper end

of OPAM memory and inside that block there are three boundaries—between

the code space and the global stack, between global stack and the local stack

and between the local stack and the trail. Stack adjustment involves recal-

culating the boundary points, safely moving the global and local stacks and

the trail to their new locations and finally remapping pointers to elements

of the local stack and the trail. Code in the code space is not moved during

stack adjustment.

8.3.1 Implementation

Recall that a stack adjustment can be sought for two reasons: if one of the

stacks exceeds its operating limit or if a clause is about to be asserted. In

the latter case, a specific extra amount of code space will be sought.

• If the amount of free space at the top of the code space would be less

than the minimum threshold, an allocation of code space equal to the

threshold plus the size of the code about to be added, if any, is sought.

• The total amount of space used by the three stacks is calculated.

• The total amount of space that would be available to the three stacks

is calculated, allowing for the demand for extra code space.

• If the total amount of free space available relative to the amount of

space used by the three stacks falls below a set threshold,2 a garbage

2This is set by item 3 in STR# resource 130; at present, it is 200 bytes free space for
every kilobyte in use.
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Begin

Calculate change in OPAM 
Memory Block size; 

increase size if necessary

Calculate new stack 
sizes needed

Enough 
Space

Perform Garbage 
Collection

Remap Trail, Local, 
Global Entries

Garbage 
Collected?

Compact Trail, Global 
Stack and Code Space 

if Garbage Collected

Move Global & Local 
Stacks and Trail to new 

locations

Reduce size of OPAM 
Memory Block if 

necessary

End

Yes

No

No

AbortYes

Figure 8.1: Stack Adjustment and Memory Management. Each time a neck% instruction is
executed, a check of the stacks and trail is made. If there is insufficient free space, a stack
adjustment, outlined here, is started.
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collection is performed. Afterwards, if the free space is still below the

threshold, the program is considered to have run out of memory and is

aborted.

• The new allocations for the stack spaces and the code space are calcu-

lated: the code space is resized exactly as requested, and the remaining

space divided among the three stacks according to their current usage.

A stack adjustment may move the base of all three stacks, though the

global stack will normally only be moved if code is about to be added

or has been garbage collected from the code space; the base address of

code space itself is never affected.

• The local stack is traversed from newest frame to oldest, and every

pointer associated with each frame is remapped. With a simple stack

adjustment, remapping simply has to allow for the new base address

of each stack, and no code space remapping is necessary; however, if

a garbage collection has been performed, remapping must also allow

for the amount of garbage recovered below each pointer in its stack or

space. The calculations necessary to determine these amounts during

remapping are performed during garbage collection.

8.4 Garbage Collection

One of the delights of Prolog is that the programmer doesn’t have to be con-

cerned with the minutiae of data structures; in many cases, the programmer

can remain unaware of the management issues and processes. One of those

issues is garbage collection, the recovery of areas of memory that have been

brought into use, but which are no longer needed and have to be released

back to the system for reuse. For a thorough survey of garbage collection

techniques, the reader is referred to [41]. In Open Prolog, garbage collection
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is done on the Global Stack and on the Code Space. The process is described

in this section.

From the previous section, recall that garbage collection is initiated during

a stack adjustment when the combined amount of free space available in the

Code Space, Global Heap, Local Heap and Trail is less than a set threshold.

Garbage collection activity always starts at a neck instruction or just

prior to asserting a clause, so the state of execution of a program is captured

in the state of the stacks and the OPAM registers. The local stack contains

the frames of all goals that are still active, in addition, possibly, to some

inactive frames. A frame is active if it can be reached by normal execution

or by backtracking. Thus, the chain of forward execution that can be followed

by dereferencing the Xp/CFP fields of successive local frames, and the chain

of ‘backward’ execution that similarly can be followed via the VV fields of

local frames must both be followed to locate all reachable items in memory.

(The Non-Removable Frame Chain and the Catch Chain do not need to be

followed, as the frames in these chains are guaranteed to be in the forward

or backward execution chain.)

The global stack contains frames of global variables associated with active

local frames, and in addition may contain frames of global variables whose

local frames have been deallocated because the goal completed determinately.

Garbage collection is done in the following steps:

Variable Cell Marking A reachability analysis marks every variable cell ac-

cessible to the program. In a scheme due to Warren in [72], marking is

done in two phases to minimise the risk of deep recursion while marking

constructed terms.

Code Marking If there has been database activity (i.e. the assertion or re-

traction of clauses), a reachability analysis is also performed on public

clauses in the code space to identify clauses that have been retracted
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but that are still accessible to the program.

Remapping Calculations Preliminary calculations are made to enable point-

ers to be remapped. For instance, the offset by which each global frame

will be moved—and hence the offset to be added to every pointer to

variable cells within the frame—is calculated.

Remapping The local stack is traversed from newest frame to oldest, and ev-

ery pointer associated with each frame is remapped, making allowance

for the removal of garbage and the moving of the stack itself.

Compaction The stacks are compacted by copying all marked items to the

low end of the stack space. Similarly, the code space is compacted by

moving all accessible clause code to the low end of the code space.

Moving Having been compacted, the stacks are now safely moved to their

new locations.

Reset Call Action Procedures The call action procedures used to access

clauses are reset.

As a preliminary to the marking phase, a Clause Retraction List—an ordered

list of the start and end addresses of every clause that has been retracted—is

generated. Even though a clause might be retracted, it might not be possible

to actually remove a clause’s code, as it may still be in use. Thus, the list

represents all potentially removable clauses.

8.4.1 Marking

Marking is done in two phases to reduce the amount of recursion likely to be

needed to trace reachability through deeply nested structures.
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Phase One

In the first phase, variables in active frames are marked. Starting with the

frame at the top of the local stack, the local variables in the frame are

marked; space for them lies between the Vp_CutField and the memory loca-

tion the Vp_CutField points to. This space may hold local variable cells or

it may hold ‘reserved’ local stack space; if so, the reservation is preceded by

a cell containing the gcReserved tag and the length of reservation in bytes.

Reserved space is not marked.

The local frame’s global frame is reached via the frame’s V1_Field and

the global frame of the continuation is reached via the frame’s X1_Field.

The number of variables in a global frame is not known in advance; instead,

a cell marked with the code gcMark is always placed at the start of each

global frame, and the end of the frame is found by encountering the gcMark

cell of the next frame.

Clause Code Marking

Also in the first phase, clause code used in active clause instances is marked.

If clauses have been asserted or retracted since the clause instance was

instantiated—easily determined by comparing the frame’s IT field with the

current DBC register—the clause code used by the clause instance is marked.

To locate the start of the clause code, the body of the clause is ‘walked’ to

the end, where the size of the clause code is to be found.3 This is subtracted

from its own location to give the location of the start of the clause’s clause

descriptor record, where the mark is recorded. If the local frame is a choice

point, then each remaining alternative clause is also marked. When the code

space is finally compacted, only retracted clauses that have not been marked

will actually be removed.

3This is similar to a technique used (but unpublished) in Quintus Prolog: compiled
clause code ends with an ‘end-of-clause(size)’ marker [20].
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When a local frame has been processed, the next local frame is located

using the greater of its continuation frame pointer and the current backtrack

pointer.

Phase Two

In the second marking phase, variables referenced through constructed terms

are marked. Iterating down the local stack, every frame variable, though

marked in the first phase, is dereferenced; if it dereferences to a variable

that’s already marked, nothing further is done, because either the dereferent

is marked because it is part of a frame, and will therefore be processed in

its own right as a frame variable, or it has already been marked during

the reachability analysis. Otherwise, the dereferent is marked, and, if a

constructed term, it is recursively analysed for reachability.

As an optimisation, dereference chains are ‘rolled up’ during garbage col-

lection. A dereference chain is a maximal length chain of unmarked reference

cells, ending with a non-variable or with an uninitialised variable, which is

represented as a cell that references itself. Each dereference chain is replaced

by a single link when remapping is being done, so intermediate variables on

a dereference chain are not marked. A similar technique for the WAM, called

Variable Shunting is described by Sahlin and Carlsson in [59]. Apart from

shortening the dereference chain, and possibly speeding up later access to it,

the removal of intermediate references in a dereference chain has the specific

benefit in a structure sharing implementation of improving the likelihood of

being able to remove the global frame in which the intermediate reference is

held, so long as the global frame is inactive.

The Trail Stack is then traversed, marking entries that point to unmarked

items (i.e. garbage). These are entries that will be removed from the Trail

Stack during the compaction phase.
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Clause Code Marking

Also during the second marking phase, the clause containing the skeleton

code of each constructed term is marked if there have been assertions or

retractions since the last garbage collection. The marking process is slightly

different to that described for phase one. At the start of garbage collection,

a list of the starting and ending addresses of every clause that has been

retracted is made. During phase two, each time a constructed term is marked,

a binary search is made of the list, to see if the skeleton’s address lies within

a clause that has been retracted; if so, the skeleton is part of the clause,

which is therefore still reachable and is marked for retention.

While Warren’s scheme for reducing the depth of recursion during the

marking phase certainly works, it relies on deeply nested structures being

associated with active frames. Unfortunately, aggressive memory manage-

ment techniques have the side effect of reducing the number of active frames,

reducing the likely effectiveness of the technique. Accordingly, a separate

stack, which is allocated space in a relocatable block on the heap in the ap-

plication zone, is used to accommodate the very deep recursion sometimes

encountered during the marking phase.

8.4.2 Remapping Calculations

At this point, all reachable local stack items, global stack items and clauses

marked for retraction but still in use have been marked. Garbage trail en-

tries have also been located and marked. The space currently occupied by

‘garbage’ can thus be readily identified. This space will be recovered by

moving—‘compacting’—non-garbage items to one end of the stack they oc-

cupy. In Open Prolog, compacting is done on the code space, the global stack

and the trail. No attempt is made to recover space from the local stack.

Before the compacting phase, however, it is necessary to adjust pointer
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values to the new locations of their targets. To do this, it is necessary to

calculate the offset of each pointer or group of pointers.

Trail

The total number of bytes by which the trail will be compacted is calculated—

this is the amount by which the stack will contract due to the removal of

garbage trail entries.4 This is also the amount by which the very last trail

entry will move when the stack is finally swept, so it represents the amount by

which a pointer to the last trail entry must be offset when it is updated. Thus,

the TR field in the topmost frame will be adjusted by the trail compaction

less the space occupied by any garbage trail entries in the frame’s list of trail

entries. This is found by traversing the trail from the top (i.e. the newest

end) to the entry pointed to by the frame’s TR field. This calculation also

yields the amount by which the rest of the stack will be compacted, and this

can be applied to the next frame in the same way as the overall compaction

was applied to the first one. At all times, therefore, it a ‘running’ compaction

figure is maintained, frame by frame, that is easily adjusted to become the

offset to be applied to each frame’s TR field.

Global Stack

Every global frame has a one-cell sized reservation at the start of it for use

during garbage collection called the GC Cell. It contains a tag and a 4-byte

data field. The tag is normally gcMark, and the data field is initially unused,

though some built-in predicates put a four character signature there to assist

low-level debugging. During this phase of the garbage collection, the global

stack is traversed from bottom to top, identifying the offset by which each

global frame will be displaced when the stack is compacted and storing it

4These are entries in the trail stack that point to variables that have not been marked
and are thus garbage.
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in the data field of the GC Cell of each frame. If a frame is all garbage, its

GC Cell’s tag is set to gcDiscard, indicating that this entire frame will be

discarded completely during compaction. (A frame is considered all garbage

if there are no marked cells between it and the GC Cell of the next frame.)

Code Space

The entries in the name table for clauses in the code space must be adjusted

to point to the clauses at their new locations.

First, a traversal of the public code space is made and the amount by

which each clause will be moved during the compacting phase is calculated

by adding up the amount of space to be recovered below each clause in the

code space. This offset, calculated for each clause, is stored in the delta

field of the clause’s descriptor record.

Next, a traversal of the name table is done, looking for functors with

associated clauses. The pointer to the first clause that is stored in the functor

entry is adjusted by the clause’s delta value.

8.4.3 Remapping

Once again, every local frame is traversed, starting at the newest and working

backward through the local stack. For every local frame, every pointer in it,

and every pointer that can be reached from it is remapped.

Trail Pointers

Each choice point has a valid TR field which must be adjusted by the number

of bytes of garbage that will be removed from below it in the trail stack, as

well as by the offset to the new base address of the trail. The garbage count

starts with the total number of bytes to be removed from the trail. This is

updated as each choice point frame is processed by traversing the trail entries
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for the choice point, reducing the garbage count for each garbage trail entry

found.

Local Frame Pointers

No garbage is removed from the local stack, so remapping local stack pointers

only involves adjusting for the new location of the local stack base.

Global Frame Pointers

References are dereferenced to the first marked item in the chain and replaced

by a reference to that dereferent. Of course, the dereferent may itself be a

reference or a constructed term, in which case it must be remapped.

As with remapping of other pointers, the remapping offset is the sum

of the stack removal offset and the garbage offset. The garbage offset of a

global pointer is the garbage offset of its global frame, which has already

been calculated and stored in a GC Cell just below the first active cell in the

frame. Thus, to find the garbage offset of a global reference, it is necessary to

iterate down the frame containing the reference until the GC Cell containing

the frame’s garbage offset is found.

Molecule Frame Pointers

In the current version of Open Prolog, all constructed terms are global, and

this means that the frame of variables referenced in a constructed term must

be on the global stack. Since these variables are referenced using the frame

pointer as a base address, frame pointers must be remapped in the same way

as other global stack pointers.

It is not safe to assume that a frame pointer still points to an active

global frame, as the clause instance that gave rise to the global frame may

have completed determinately. This being so, the bottom of global frame
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may have been trimmed in a previous garbage collection and the frame’s GC

Cell, containing its garbage offset, would have been moved upwards towards

the remaining variable cells in the frame. Consequently, a constructed term’s

frame pointer could be pointing into a different global frame, and the garbage

offset for that frame would be inappropriate.

To be certain that the correct global frame is accessed, the skeleton of

the constructed term is ‘walked’ until the first variable reference, if any, is

found. This reference gives the offset from the base of the global frame to the

variable, and so the corresponding variable cell can be accessed. By iterating

downwards from this cell, the garbage offset of the cell’s global frame, and

hence of the constructed term’s global frame is located.

Code Space Pointers

Pointers to code space need to be adjusted by the delta value stored in their

Clause Descriptor Record. If a code space pointer is below the address of

the first retracted clause, its location is unchanged. If it is above the highest

retracted clause, its new location is offset by the total saving of code space. If

it is between the first and last clause, a binary search of the Clause Retraction

List is performed to determine the delta value to be added.
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Chapter 9

Evaluation

In this chapter, the performance of Open Prolog is firstly compared with other

implementations on the same machine, using widely-available benchmarks.

Next, the profiling mechanism built in to Open Prolog is described. Finally,

profiling results for some standard benchmarks are presented and discussed.

Background

The first Prolog implementation available on the Macintosh was MacPro-

log, written by Frank McCabe originally for the Apple Lisa computer [21].

This was available in a free version and a considerably faster commercial ver-

sion. In the mid-90s, according to Brian D. Steel [64], the inference engine

was replaced by one derived from Steel’s 386-PROLOG design and renamed

MacProlog32. This is still available from Logic Programming Associates [81],

though it is not a commercial product anymore. It still features two modes

of operation, normal and ‘optimised’.

Open Prolog was first posted to the internet in the middle of 1991. It

ran on Macintoshes with 68000 processors or better, having a minimum of 1

MB of physical memory—i.e. any Macintoshes from a Mac Plus onwards. An

implementation of Tricia Prolog [87] was ported to the Macintosh by a team
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at Uppsala University,1 based on work by Mats Carlsson and others [17, 4, 3]

in the years 1989–1993. Later on, but before 1995 [19], SICStus Prolog [18, 2]

was ported to the Macintosh 68020. Subsequently, the Macintosh moved

from the Motorola 68000 family of processors to the Motorola/IBM PowerPC

family. An emulator for the Motorola 68LC020 instruction set provided as

part of the Mac OS allowed programs written for the older processor family

to run on the new one.

For a considerable number of years, therefore, there were two free Prologs—

Tricia and Open Prolog—and two licensed/commercial Prologs—MacProlog

(or MacProlog32) and SICStus—available on the Macintosh, all running on

the 68LC020 emulator. During this time, Open Prolog was widely used.

To the author’s knowledge, no other Prolog implementations were released

for the Macintosh until the more recent transition of the Macintosh operat-

ing system itself to a platform based on FreeBSD. This enabled the porting

of popular UNIX implementations of Prolog, notably GNU Prolog [30], SWI

Prolog [86] and SICStus Prolog. Thus it is now possible to run UNIX imple-

mentations of Prolog alongside earlier Prolog implementations in the Classic

Mac OS environment on the same machine.

Performance Evaluation

The performance of Open Prolog was evaluated in terms of its speed relative

to other implementations. In addition, performance bottlenecks were identi-

fied by running programs on a version of Open Prolog that was instrumented

with profiling code. This code recorded usage and timing data for different

sections of the application and the data was used to identify the most time-

consuming parts of a program’s operation. Profiling and profiling results are

discussed in section 9.3 below.

1The developers and contributors to Tricia are listed in a splash screen reproduced on
page 261.
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9.1 Benchmarks

Tests were performed on a Macintosh PowerBook. The tests were suggested

by results quoted on the performance summary page [85] on SICStus Prolog’s

web site. The benchmarks referenced on that page were downloaded and used

with slight modifications. The benchmarks comprise the classic naive reverse

benchmark and eight further benchmarks—crypt, deriv, poly, primes, qsort,

queens, query and tak—referred to here as the harness benchmarks, as they

are run within a ‘harness’ of test code.

9.1.1 The Naive Reverse Benchmarks

The Naive Reverse benchmark is the ‘classic Prolog benchmark’ and measures

logical inferences per second while executing the naive reverse procedure

nrev/2. Here is the code of the benchmark itself:2

nrev([],[]).
nrev([X|Rest],Ans) :- nrev(Rest,L), append(L,[X],Ans).

append([],L,L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

The benchmark measurement is the time it takes to execute the call nrev(X, ),

where X is a list of numbers from 1 to 30. Since 496 calls are made, the num-

ber of logical inferences per second (LIPS) can readily be calculated.

The nrev and nrev2 Benchmarks

Due to the low resolution of the system clock (16.625 milliseconds for early

versions of the Mac OS and 10 milliseconds for UNIX), the benchmark must

be iterated to build up sufficient execution time to enable a reasonably ac-

curate average execution time to be calculated.

2The full benchmark code is listed on page 239.
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In the nrev benchmark, an attempt is made to compensate for the over-

head of iterating the call to the benchmark each time by performing the same

number of iterations to call a dummy predicate. The time expended in doing

so is deducted from the total to estimate the actual iterated benchmark time.

This benchmark was used to generate the nrev benchmark data.

To check the accuracy of the figures generated by nrev, a more direct

timing test was performed by constructing a clause with many sequential calls

to nrev/2, and by measuring the time taken to execute the entire sequence

of these calls. The clause:

timeTrial(X) :-
data(L),
statistics(runtime,_),
nrev(L,_),nrev(L,_),...,nrev(L,_),
statistics(runtime,[_,X]).

was generated, where the nrev(L, ) call is repeated 1000 times, using the

prepare/3 predicate on page 243, and this was used to generate the results

in columns nrev2.

The dynamic/1 Directive In most Prolog implementations, it is assumed

that, once compiled or consulted, procedure code will not be altered by as-

serting or retracting clauses—procedures are assumed to be static. For a

procedure to be alterable at run time, it must be declared to be dynamic.3

To examine the effect of declaring a procedure dynamic, the nrev and nrev2

benchmarks were repeated (as nrev(D) and nrev2(D) respectively) with the

relevant predicates declared dynamic. (Open Prolog does not [need to] dis-

tinguish between static and dynamic clauses.)
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Performance in kLips
Implementation nrev nrev(D) nrev2 nrev2(D)

Open Prolog 806 806 758 758
Open Prolog, no GC 751 751 587 587

Tricia (C) 230 15 — —
MacProlog32 (Opt) 1984 214 — —

MacProlog32 213 213 — —
SICStus 2 (C) 1462 162 1417 150
SICStus 2 (I) 158 158 153 151

GNU Prolog 1002 n/a 978 n/a
SWI Prolog 755 515 634 459

SICStus 3 (C) 4429 480 4299 454
SICStus 3 (I) 477 480 451 444

Table 9.1: ‘Naive Reverse’ benchmark results for Prolog implementations running on a 550
MHz Macintosh PowerBook G4. Results are kLips—thousands of logical inferences per sec-
ond. Implementations above the double horizontal line are ‘classic’ implementations written
in Motorola 68000 or 68020 code; these are executed on an MC68LC020 emulator built into
the Mac OS. The other implementations run on the computer’s PowerPC processor.
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Figure 9.1: Naive Reverse Performance Chart. The performance of different Prolog implemen-
tations is charted for static code (clear bars, nrev) and for dynamic code (grey bars, nrev(D)).
Open Prolog is faster than any other Prolog implementation in interpreted mode while offering
the same ability to assert, inspect, debug and retract code. Likewise, Open Prolog is faster
than other implementations where they are dealing with dynamic code. In terms of outright
speed, however, and where these abilities are not needed, Open Prolog is considerably slower
than SICStus 3 and 2 (compiled) and MacProlog32 (optimised).

9.1.2 nrev and nrev2 benchmark results

Table 9.1 lists the performance of various Prolog implementations on a Mac-

intosh PowerBook, and this is summarised in Figure 9.1. The four columns

list performance in the standard nrev benchmark (column “nrev”), the same

benchmark with append/3 and nrev/2 declared dynamic (column “nrev(D)”),

the more direct nrev2 benchmark (column “nrev2”) and the same benchmark

with append/3 and nrev/2 declared dynamic (column “nrev2(D)”).

Four of the implementations tested—Tricia, MacProlog32, SICStus 2 and

Open Prolog—were written for the Motorola 68000 or 68020, so they run on

the MC68LC020 emulator provided as part of the Mac OS, and they also

run within the ‘Classic’ compatibility environment of Mac OS X. Results for

3GNU Prolog doesn’t permit dynamic predicates—all predicates must be static.
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these ‘classic’ implementations are presented above the double horizontal line;

results for implementations running directly on the host processor appear

below it.

The annotation (C) means that the code was compiled; (I) means it was

interpreted. MacProlog32 has a code optimiser—the annotation (Opt) means

the optimiser was used on this benchmark.

MacProlog32 was version 1.25 running in 70,000 KB of RAM; Tricia was

version 0.9.5a1 running in 4096 KB; Open Prolog was version 1.1b15 running

in 4096 KB and SICStus 2 was version 2.1#9 running in 5000 KB of RAM.

SICStus 3 was version 3.11.0, GNU Prolog was version 1.2.16 and SWI Prolog

was version 5.2.0.

Some tests could not be performed on some of the implementations:

GNU Prolog does not support dynamic predicates, and Tricia and MacProlog

proved incapable of consulting or compiling the nrev(2) benchmark.

The test machine was a 550MHz Macintosh PowerBook G4 running Mac

OS X 10.3.1 in 512MB RAM, hosting Classic Mac OS 9.2.2.

The first two rows of the table show Open Prolog’s performance in two

situations. The first is where a garbage collection is performed in between

consulting and executing the benchmark code, and the second row shows the

result if a garbage collection is not performed. The difference between the

two—about 7%—is due to an optimisation performed at the end of garbage

collection. After garbage collection, the call action procedures for all proce-

dures that do not still contain retracted clauses are reset to avoid performing

a liveness test, since it is known at that time that all clauses are live.

The results show that Open Prolog offers high performance compared

to other classic implementations. Open Prolog’s single mode of operation

compares very well with compiled Tricia, interpreted SICStus 2, compiled

SICStus 2 for dynamic code and MacProlog32. In fact, Open Prolog is the

fastest implementation that offers dynamic code facilities. It performs less
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well against static compiled SICStus 2 code, being a little over half as fast,

and is less than half as fast as static optimised MacProlog32 code.

As a ‘classic’ implementation Open Prolog’s performance must suffer the

overhead of emulation on the MC68LC020 by comparison with applications

running directly on the host processor. Even when compared directly with

Prolog implementations running directly on the host, however, Open Prolog

continues to display a considerable speed advantage over interpreted or dy-

namic code. Against compiled code, it is a little slower than GNU Prolog

and a little faster than SWI Prolog. Against SICStus 3 compiled static code,

however, Open Prolog is much slower.

9.1.3 The Harness Benchmarks

This collection of benchmarks—so named because they are invoked by a

‘harness’ of test code in the file harness.pl—comprise eight separate bench-

marks. In contrast to the nrev benchmark, no attempt is made to compensate

for the overhead incurred in iterating the benchmark—the result is simply

the elapsed time to perform the benchmark, overhead included.

The benchmark programs are crypt by Peter Van Roy, deriv, qsort and

query by David H.D. Warren, poly by Ralph Haygood, tak by Evan Tick,

with primes and queens of unknown authorship.4

9.2 Benchmark Results

Table 9.2 contains benchmark data for Open Prolog, Tricia, SICStus Prolog

versions 2 and 3 both compiled and interpreted, SWI Prolog and GNU Prolog.

Results are similar to the results for the naive reverse benchmark: Open

Prolog compares well with the other Prologs, apart from the compiled version

4According to the SICStus web site, these benchmarks were used in the Mercury
project.
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Execution Time in Milliseconds
Implementation crypt deriv poly primes qsort queens query tak
Open Prolog 27.3 0.12 65.2 2.8 1.01 665 5.5 339
Tricia (C) 100.6 0.695 320.6 10.7 4.39 2459 20.5 1192
MacProlog32 (Opt) 168.8 0.372 179.5 17.8 5.02 4136 27 1835
MacProlog32 202 0.785 292.3 23.4 7.67 5335 27.5 2495
SICStus 2 (C) 19.5 0.126 47.3 1.5 0.57 312 4.9 126
SICStus 2 (I) 120.4 0.756 304.4 14.3 5.37 2965 25.3 1837
GNU Prolog 18 0.123 51 1.8 0.8 432 3.6 199
SWI Prolog 23.9 0.126 64.1 2.1 0.83 556 4.6 234
SICStus 3 (C) 4.8 0.045 16.4 0.4 0.21 96 1.4 36
SICStus 3 (I) 42.7 0.245 108.2 4.7 1.61 1011 7.8 573

Table 9.2: Some benchmark performances for Prolog implementations running on a 550 MHz
Macintosh PowerBook G4. The figures are milliseconds of elapsed time. No predicates are
declared to be dynamic. Implementations above the double horizontal line are ‘classic’ imple-
mentations written in Motorola 68000 or 68020 code; these are executed by an MC68LC020
emulator built into the Mac OS. The other implementations run directly on the computer’s
PowerPC processor. Open Prolog is the fastest implementation that offers dynamic code
facilities, but is slower than compiled static SISCtus code.6

of SICStus 3. Open Prolog is faster than any interpreter, while offering

similar facilities. In addition, it is usually within a factor of two of SICStus

Prolog 2 (Compiled), and is somewhat closer in speed to GNU Prolog and

SWI Prolog; SICStus Prolog 3 (Compiled), however, is much faster, being

between about three times (deriv) and about nine times (tak) faster.

9.3 Profiling

A special version of Open Prolog incorporates profile vectors of usage and

‘hit’ counters for interesting sections of code. A usage counter is incremented

every time the section of code it is associated with is used. A hit counter

work as follows: a special routine interrupts normal program execution at

preset intervals, (perhaps every millisecond). The function of the interrupt

is to increment the hit counter associated with the code section that was
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Hit Count
GoalArgumentDefererenceLength=1

Use Count

GoalArgumentDefererenceLength=2

GoalArgumentDefererenceLength>2

HeadArgumentDefererenceLength=1
HeadArgumentDefererenceLength=2

HeadArgumentDefererenceLength>2

GoalArgumentDefererence Hits

HeadArgumentDefererence Hits

Trail Check Count
Global Trail Entries Count

Local Trail Entries Count
Trailing Hits

Figure 9.2: Layout of a Profile Vector. The profiling version of Open Prolog records information
about sections of implementation code. Each section has an associated profile vector, the
layout of which is depicted. The fourteen fields are used to record usage counts, hit counts,
dereferencing behaviour and trailing behaviour. Sections of Open Prolog that are profiled
include the code for every OPAM instruction and certain important subroutines.

interrupted, if any. Over a relatively long period, and assuming that the

sampling process is independent of the operation of the program being pro-

filed, the value in a hit counter reflects the amount of time the code section

it corresponds to was active. The total execution time of a code section is its

hit count multiplied by the sampling interval. Dividing the total execution

time by the usage count gives the code section’s average execution time. Di-

viding it by the total program execution time gives the proportion of total

execution time the code section takes up, and thus its relative significance

for the overall speed of the program.

The machine code for each individual OPAM instruction and some im-

portant subroutines are profiled in Open Prolog. A full profile vector of data

is gathered for each code section. A profile vector includes information about

head- and goal-argument dereferencing and trailing behaviour, as shown in
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Figure 9.2.

Operation

While the profiling version of Open Prolog is running, usage and hit counters

are updated all the time—the profiler is ‘free-running’. To gather profile data

for, say, the execution of a sample program, the change due to execution of

the sample program is recorded by bracketing the call to it with two profiler

control calls. The first call, to ‘start$profile’/0, copies the contents of

each entry of every profile vector into a results buffer. After the program has

been executed, a call to ‘stop$profile’/0 subtracts the current value of

each entry of every profile vector from its previously-captured counterpart in

the results buffer. This yields the negative of the change in each count due

to the execution of the sample program.

Another built-in profiling predicate, ‘get$profile$data/2’, gives access

to the profile information gathered in the results buffer. The first call to this

predicate returns the name and profile vector of a section of code as its first

and second arguments. Each retry returns the ‘next’ profile vector until all

profile vectors have been returned, at which point the predicate fails.7

Two other profiling built-in predicates are used. The predicate

‘profile$sample$interval’/2 unifies the first argument with the current

sampling interval and sets the new sampling interval to the second argument.

The interval is understood as milliseconds if the argument is positive and mi-

croseconds if the argument is negative. Finally, ‘get$profile$tick$count’/3

unifies the first argument with the number of samples taken when a profiled

code section was interrupted (i.e. a hit), when Open Prolog was not the cur-

rent process according to the Mac OS (a miss), and thirdly when another

7The order in which the profile vectors is returned depends on the order in which the
code sections was assembled.
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part of Open Prolog was interrupted (i.e. a nil).8

Summarising, the profiling predicates are:

• ‘start$profile’/0

• ‘stop$profile’/0

• ‘get$profile$data/2’

• ‘profile$sample$interval’/2

• ‘get$profile$tick$count’/3

Setting up a Profile Run

Given a minimum realistic sampling interval of the order of hundreds of mi-

croseconds and likely code section execution times of the order of microsec-

onds, programs typically need to be executed many times to accumulate

enough ‘hits’. To prepare for a profile run, therefore, a clause is constructed

with a body containing a sufficient number of calls to the code to be profiled,

preceded by ‘start$profile’/0 and followed by ‘stop$profile’. For ex-

ample, to profile five runs of the naive reverse benchmark nreverse, the

clause body to be generated would be:

...
‘start$profile’,nreverse,nreverse,
nreverse,nreverse,nreverse,‘stop$profile’,
...

One problem with this scheme is that the garbage produced during each run

accumulates and may trigger a garbage collection during one of the runs.

8The idea was that the ratio of the sum of hits and nils to misses might give a rough
idea of the proportion of processor time allocated to Open Prolog. In practice, the results
didn’t seem to make much sense, possibly because the Classic Mac OS was itself running in
effectively a virtual machine and could be swapped out without being aware of it, though
this is just speculation.
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The chance of this happening can be minimised by allocating more memory.

In any case, it does not affect the recorded usage and hit counts of those

code sections that are not involved in memory management.

Recording Profile Data

The emulation code for every OPAM instruction and a number of important

code sections were profiled in Open Prolog, amounting to 112 code sections in

all. A profile vector of fourteen items was gathered for each section, yielding

a matrix comprising 112 rows each of 14 data items generated by each profile

run. Fortunately, in many cases the matrix is very sparse. Code sections

with zero usage counts can be omitted, and trailing activity and head- and

goal-dereferencing behaviour data can be omitted if there is zero usage.

9.3.1 Profile Interpretation—An Example

As an example, we take the extended code example from section 4.9 on

page 111. This is identical to the naive reverse benchmark, except that the

list contains just two elements to reduce the amount of code to be considered.

Table 9.3 shows the basic information recorded during the profile run, where

hits were recorded at 200 microsecond intervals.

Each row contains profile vector data for the code section named in the

first column, (which must have been used at least once to be listed). The sec-

ond and third columns contain the usage and hit counts for each section. The

remaining columns contain goal- and head-variable dereferencing information

and trailing activity. Head dereferencing information can include the number

of times a dereference occurs of length 1 (‘HD1’), length 2 (‘HD2’) or more

than 2 (‘HD>2’) dereferences, and a hit count (‘HH’). The same information

can be recorded for goal dereferencing, in columns labelled ‘GD1’, ‘GD2’,

‘GD>2’ and ‘GH’ respectively. Trailing activity information can include the
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Name Uses Hits GD1 GH HD1 HH TA TH
expand% 1 0 0 0 0 0 0 0
juggle% 1 28 0 0 0 0 0 0
call% 7501 44 5000 0 0 0 0 0
lastCall% 10000 72 7500 0 0 0 0 0
proc% 1 2 0 0 0 0 0 0
neck% 10000 28 0 0 0 0 0 0
procExit% 1 0 0 0 0 0 0 0
neckfoot% 7500 13 0 0 0 0 0 0
globalGlobal 2500 9 0 0 0 0 0 0
globalAtom 2500 8 2500 0 0 0 2500 0
varLocal 2500 5 0 0 0 0 0 0
varAtom 7500 15 7500 0 0 0 0 0
varStructure 7500 44 7500 0 0 0 2500 0
varVar 2500 7 0 0 2500 0 0 0
varRefL 5000 11 5000 0 5000 0 5000 0
voidGlobal 2500 6 0 0 0 0 0 0
atomLandVarLand 5000 11 0 0 5000 0 5000 0
integerVar 5000 9 0 0 5000 0 5000 0
structureGlobal 2500 7 0 0 0 0 0 0
structureLocal 2500 6 0 0 0 0 0 0
structureStructure 2500 12 0 0 0 0 0 0
structureLandVarLand 2500 9 0 0 2500 0 2500 0

Table 9.3: Profile results for 2,500 iterations of the extended code example from section 4.9,
which is identical to the naive reverse benchmark, except that the list contains just two ele-
ments. Column ‘GD1’ is the number of goal variables dereferenced with a reference chain of
length 1. ‘GH’ is the number of hits associated with goal dereferencing. Similarly ‘HD1’ is the
number of head variables dereferenced with a reference chain of length 1 and ‘HH’ is the num-
ber of hits associated with head dereferencing. ‘TA’ is the number of times a check was made
to determine if a unification needed to be trailed, and ‘TH’ is the number of hits associated
with trailing activity. The size of the table is reduced by omitting profile data for unused code
sections. Also omitted are columns for goal- and head-variable dereferencing activity where
the dereference chain was greater than one, and the columns of numbers of global and local
variables trailed, since no such activity was recorded. Hits were counted at 200 microsecond
intervals.

203



number of times a trail was attempted (‘TA’), the number of global and local

variables actually trailed in the Trail Stack (‘TG’ and ‘TL’) and the number

of hits (‘TH’) recorded while trail activity was in progress. Dereferencing and

trailing activity columns may be omitted if they only contain zero values.

Each code section, except for juggle%, is the emulation code for one

OPAM instruction, and is named after it. The juggle% code section contains

the juggle code explained in Section 4.10 that implements the user interface

while the OPAM is running.

It will be recalled that the code to be profiled is preceded by a call to

‘start$profile’/0 and followed by a call to ‘stop$profile’/0.

The ‘start$profile’/0 predicate preceding the calls to nrev effectively

begins recording the profile data by copying the usage and hit counts. The

predicate is entered via a proc instruction, but this instruction’s use is

recorded before the usage and hit counts are copied, so it is not counted in the

difference between the before-and-after counts calculated by ‘stop$profile’/0.

By contrast, a hit recorded during ‘start$profile’/0 itself subsequent to

the copying of the relevant hit counters is included in the profile. The pred-

icate exits by executing a procExit% instruction—the only such instruction

in the table.

Similarly, the start of the ‘stop$profile’/0 call is profiled and included

in the profile because profiling effectively continues until the differences be-

tween the counter values and the corresponding values stored in the buffer

are actually calculated; this happens after execution has begun, i.e. after the

predicate has executed the OPAM instructions call%, expand%, proc%.

The profile data can readily be processed to obtain the average execution

time per code section and the proportion of execution time spent on any

code section. Table 9.4 shows this information derived from the usage and

hit counts in Table 9.3. The fourth column is an estimate of the average

execution time, in nanoseconds, of each code section, and is calculated as
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the number of hits multiplied by the interval between them (200 µseconds)

and divided by the usage count. The final column is the percentage of total

execution time taken by each code section; this is the ratio of the number of

hits over the total number of hits.

It appears from Table 9.4 that the Mac OS and user interface code

amounts to about 8% of overall execution time. Almost half (42%) of the ex-

ecution time is taken up by three instructions: call%, lastCall% and neck%,

and it would seem that the performance of these instructions is key to overall

performance.

9.3.2 Profile Results

Profiles were generated of benchmark programs using the profiling code re-

produced in Appendix B.4 on page 244. This code is based on the principles

described in the previous section, and modelled on the code used in the nrev2

benchmark in section 9.1.1.

The programs profiled were nrev2, (benchmarked on page 192), tak, (bench-

marked on page 197), and boyer, a benchmark program due to Evan Tick

from Lisp code by R. P. Gabriel (listed on page 249). Profiles were carried out

under the same conditions as the benchmarks reported in section 9.1, i.e. a

550 MHz Macintosh PowerBook G4 running Mac OS X 10.3.1 in 512MB

RAM, with Classic Mac OS 9.2.2.

The nrev2 Profile

Beginning with the naive reverse benchmark, Table 9.5 presents usage and

hit count data for 1000 runs of the naive reverse program. Average execution

time and the proportion of overall execution time figures are derived from

usage and hit count.
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Name Uses Hits nS %
expand% 1 0 0 0
juggle% 1 28 5,600,000 8
call% 7501 44 1,173 13
lastCall% 10000 72 1,440 21
proc% 1 2 400,000 1
neck% 10000 28 560 8
procExit% 1 0 0 0
neckfoot% 7500 13 347 4
globalGlobal 2500 9 720 3
globalAtom 2500 8 640 2
varLocal 2500 5 400 1
varAtom 7500 15 400 4
varStructure 7500 44 1,173 13
varVar 2500 7 560 2
varRefL 5000 11 440 3
voidGlobal 2500 6 480 2
atomLandVarLand 5000 11 440 3
integerVar 5000 9 360 3
structureGlobal 2500 7 560 2
structureLocal 2500 6 480 2
structureStructure 2500 12 960 3
structureLandVarLand 2500 9 720 3

Table 9.4: Profile of 2,500 runs of the Extended Example program on page 112. The first
column gives the name of each code section profiled; except for juggle%, code sections are
named after the OPAM instructions they implement. (The juggle code time is effectively the
time taken by the Mac OS and the user interface while the OPAM is running.) The second
column is the usage count and the third column is the hit count. The fourth and fifth columns
are calculations based on the usage and hit counts: the fourth column is an estimate of the
execution time of each code section in nanoseconds, and the last column is an estimate of the
percentage of total execution time taken up by each code section.
One procExit%, an expand%, a proc% and a call% instruction are artefacts and should be
ignored.
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Name Uses Hits nS %
expand% 1 0 0 0
juggle% 15 528 7,040,000 5
call% 31,001 194 1,252 2
lastCall% 466,000 2,787 1,196 25
proc% 1 2 400,000 0
neck% 466,000 1,083 465 10
procExit% 1 0 0 0
neckfoot% 31,000 61 394 1
globalGlobal 29,000 39 269 0
globalAtom 1,000 11 2,200 0
varGlobal 406,000 716 353 6
varLocal 29,000 43 297 0
varAtom 31,000 54 348 0
varStructure 899,000 2,582 574 23
varVar 435,000 1,234 567 11
varRefL 30,000 106 707 1
varLandVarLand 406,000 1,538 758 14
voidGlobal 1,000 7 1,400 0
atomLandVarLand 30,000 90 600 1
integerVar 30,000 123 820 1
structureGlobal 29,000 51 352 0
structureLocal 1,000 8 1,600 0
structureStructure 1,000 13 2,600 0
structureLandVarLand 29,000 82 566 1
Totals 3,381,019 11,352 100

Table 9.5: Profile of 1000 runs of the naive reverse benchmark program. The first column
gives the names of each code section profiled; except for juggle%, code sections are named
after the OPAM instructions they implement. The second column gives the number of times
each code section was used. The third column records this number of hits (recorded at 200
µsecond intervals) for each code section. The fourth column is an estimate of the execution
time of each code section in nanoseconds. The fifth column is an estimate of the percentage
of total execution time taken up by each code section.
The OPAM instruction procExit% is executed at the end of the ‘start$profile’/0 call
and the instructions expand% and proc%, along with one call%, are executed at the start of
the ‘stop$profile’/0 call; they should be ignored. The time associated with the juggle%
code section is used by the Mac OS User Interface.
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Interpretation The profile of the naive reverse program shows that the

overhead for user interface activity was about 5% of elapsed time. More

importantly, it shows that approximately 40% out of the remaining 95%—

almost half the time—is spent by the call%, lastCall%, and neck% instruc-

tions, which are concerned with locating the correct clause and constructing

a local frame for it. In any search for improved performance, these are the

areas that should pay dividends.

The tak Profile

The tak benchmark is a small benchmark generating many calls to arithmetic

built-in predicates. Table 9.6 lists profile results for ten runs of the tak

benchmark.

Interpretation The tak profile shows that over half the execution time

was taken by code associated with built-in predicates, all of which are imple-

mented as ’fast built-in predicates’. The asterisked entries show the number

of such predicate calls (‘**fastBips’) and the number of hits incurred. The

**evaluator code is executed when an expression structure needs to be

evaluated. The **getNextArg and **getNextArgInteger entries relate to

subroutines used to dereference arguments to built-in predicates. Thus, the

four bottom rows, accounting for over 50% of execution time, are associated

with the execution of the build-in predicates =</2, =/2, >/2 and is/2. It is

clear that performance on the tak benchmark could be improved by further

speeding up built-in predicates like these.

The boyer Profile

The boyer benchmark, shown in Table 9.7, is interesting because it is a

larger program. It uses a number of built-in predicates heavily, viz. arg/3

and functor/3.

208



Name Uses Hits nS %
expand% 1 0 0 0
juggle% 48 1,111 4,629,167 3
call% 1,749,241 4,393 502 12
lastCall% 636,100 1,622 510 4
cut% 477,070 2,290 960 6
efailEntry 159,020 374 470 1
proc% 1 0 0 0
neck% 795,120 1,487 374 4
procExit% 1 0 0 0
globalGlobal 611,100 1,044 342 3
varGlobal 1,163,060 2,050 353 6
varLocal 795,100 1,169 294 3
refLGlobal 134,040 263 392 1
refLLocal 477,060 366 153 1
voidGlobal 20 0 0 0
integerGlobal 40 0 0 0
integerLocal 20 0 0 0
**fastBip 1,749,240 11,419 1,306 32
**evaluator 477,060 4,607 1,931 13
**getNextArgInteger 477,060 286 120 1
**getNextArg 3,021,420 3,602 238 10

Table 9.6: Profile of 10 runs of the tak benchmark program. The layout and significance of
the columns is the same as for the naive reverse profile, Table 9.5. The four entries on the
bottom row are for sections of code associated with the built-in predicates =</2, =/2, >/2 and
is/2.
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Name Uses Hits nS %
expand% 1,537,631 2,524 328 1
orCall% 387,050 3,990 2,062 1
juggle% 537 15,354 5,718,436 4
call% 6,635,651 44,496 1,341 11
lastCall% 1,092,850 9,773 1,789 2
cut% 951,270 10,547 2,217 3
fail% 507,950 4,176 1,644 1
proc% 1,537,631 35,817 4,659 9
neck% 2,427,600 10,253 845 3
foot% 951,270 2,030 427 1
neckCutFoot% 384,530 2,129 1,107 1
localLocal 1,150,440 2,774 482 1
varGlobal 1,844,600 5,660 614 1
refLGlobal 1,152,360 5,577 968 1
refLLocal 2,867,550 5,385 376 1
refLRefL 950,150 3,753 790 1
**fastBip 4,146,890 64,345 3,103 16
**lookup name 766,960 126,941 33,102 32
**evaluator 940,560 19,592 4,166 5
**getNextArgInteger 2,821,680 4,722 335 1
**getNextArg 3,571,480 4,903 275 1

Table 9.7: Profile of a run of the boyer benchmark program. Only entries accounting for 1%
or more of the execution time are listed; otherwise the layout and significance of the columns
is the same as for the naive reverse profile, Table 9.5. The five entries on the bottom row are
for sections of code associated with the built-in predicates, mainly arg/3 and functor/3.
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Interpretation Similarly to the tak profile, the boyer profile shows that

a great deal of time—over 50%—is spent executing built-in predicates. In

particular, the code section entitled **lookup name accounts for almost one

third of overall execution time.9 It turns out that this is due to the frequent

use of the functor/3 built-in predicate, which associates an atom and an

arity with a term having a functor with the same name as the atom but with

the arity given. In Open Prolog, to make the association between, say, the

atom and the functor, it is necessary to retrieve the atom’s spelling, combine

it with the arity and use it to locate the functor’s entry using the hash table.

This is a very costly operation, but it could be avoided by modifying the

Name Table to associate all atoms and functors that have the same spelling.

This would significantly improve Open Prolog’s performance in programs

such as the boyer benchmark.

9A similar result was observed for the boyer benchmark with BIM Prolog [27].
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Chapter 10

Conclusions & Further Work

10.1 General Conclusions

As stated in the introduction and again in Chapter 4, the aim of the work

described here was to build an implementation of Prolog that would com-

bine the advantages of compiler-based implementations—speed and memory

efficiency—with those of interpreter-based implementations—ease of inspec-

tion of programs, ease of modification and ease of debugging—in one mode

of operation.

Open Prolog shows that a conceptually simple structure-sharing imple-

mentation of Prolog can be built that is compact and reasonably fast.

Control constructs, catch-and-throw exception signalling, ‘logical’ database

semantics, a variety of external predicate interfaces and a form of interrupt

handling have all been incorporated without significant loss of efficiency. The

‘dual-PC’ approach to executing image machine instructions appears to offer

a simple and orderly way to organise the emulation.
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10.2 Speed

The comparisons between Open Prolog and existing implementations on the

Macintosh show that, despite running on a MC68LC020 emulator, Open Pro-

log is fast, and is quite comparable to SWI Prolog and GNU Prolog running

directly on the host processor. Compared to SICStus Prolog 2 (running on

the MC68LC020 emulator), Open Prolog is about half as fast, and SICStus

Prolog 3, running on the host processor directly, is between three and nine

times faster. Of all implementations tested offering dynamic code facilities,

Open Prolog is fastest.

The profiling analysis shows that a high proportion of the execution time

is spent in the call, lastCall and neck instructions, all instructions that

are connected with selecting a clause to execute and then constructing an

instance of it. In particular, call and lastCall are long and frequently used

instructions. In many cases of interest, the WAM avoids these instructions

(or their equivalents) completely. For example, in the append/3 code, the

WAM uses indexing to avoid a large overhead in selecting a clause, and

avoids having to construct an environment for the last call; thus, the main

business of the call and neck instructions in the OPAM is sidestepped in the

WAM. Looking rather crudely at the profile data in Table 9.5 on page 207,

if the call, lastCall and neck instructions—those instructions concerned

with searching for clauses and constructing environments—were removed,

execution time would be reduced by more than one third. See section 10.4.3

on page 218 for a preliminary discussion as to how this might be approached.

The profiling results also show considerable room for improvement in the

speed of built-in predicates, which show up in the tak and boyer benchmarks.

Another problem specific to the OPAM is related directly to the dual-PC

mode of execution. In the absence of branch instructions, it would be possi-

ble to replace a fixed sequence of instructions, separately compiled, with an
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equivalent sequence of instructions to do the same thing more quickly. Now,

this approach, commonly taken in compilers, is unsuitable for Open Prolog,

since the separate identity of the individual instructions, and hence the cor-

respondence between the source code and the machine code, is normally lost.

However, if it was suitable, say for private code, it still isn’t possible in the

OPAM because all that is available is a sequence of instruction fragments.

Since not all the instructions are available, the scope for optimisation seems

limited.

10.3 Contributions

The principal contribution is a design for a Prolog implementation based

on relatively simple principles that combines high speed compilation and

reasonable runtime performance with the ability to modify, inspect and debug

Prolog code.

Influenced by principles of Direct Correspondence Architectures, the de-

sign is based on an abstract machine with an instruction set such that every

aspect of the source code is represented in the machine code. This facili-

tates the the reconstruction of the source code, for inspection and debugging

purposes. It also simplifies compilation.

Given the special requirement that the conformation of the original clauses

was to be preserved, for listing, debugging and assertion/retraction, the fol-

lowing innovations are employed:

• Dual PCs are used to allow the OPAM code to be simplified. The

use of dual PCs facilitates a more straightforward representation of the

code for each clause, and the core of the OPAM interpreter is simplified

by this design feature. It is necessary to make the interpreter switch

between dual- and single-PC modes; this is accomplished as a side-effect

to the appropriate instructions.
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• Control constructs such as disjunction and if-then are represented spe-

cially so that their constituent goals are compiled at the same level as

regular goals in a clause body. Combined with Non-Removable (NR)

frames and Catch Chains, this facilitates fast implementation of control

constructs while ensuring that the interplay between control constructs

and the cut is correctly and flexibly handled.

• The number of tags used to represent Prolog terms is almost doubled

by adding ‘landed’ variants. However, incorporation of landed tokens

at the ends of structures reduces the amount of stack space required

and speeds access to right-tail-nested structures.

• The application of Lindholm & O’Keefe’s ‘logical semantics’ is limited

to clauses that have been modified since the last garbage collection.

This is made possible by using specialised call action procedures for

modified and unmodified procedures. This appears to improved per-

formance by about 7%.

• Garbage collection of retracted clauses is facilitated by the addition of

non-executable clause-crawling data to the OPAM code of each clause.

This data allows the garbage collector to locate the start of the clause

while scanning forward from an embedded skeleton.

• A variant of reference chain cleanup or shunting is used to avoid re-

taining intermediate references that are otherwise unused.

Finally, the actual implementation was robust and complete enough to be

widely used, it has offered a tested that demonstrates the traditional virtues

of interpretation—the ability to modify Prolog programs by asserting and

retracting clauses, and the ability to inspect, list and debug clauses—can be

had while still having a reasonably high performance. Results from profiling
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reveal bottlenecks that could be relieved with minimal changes to Open Pro-

log’s design and that would considerably improve its performance in certain

benchmarks.

10.4 Future Work

10.4.1 Reimplementation & Porting

The most immediate requirement is for Open Prolog to be ported to Mac OS

X. As previously mentioned, much of the present implementation is written

in 68000 Assembly Language with some written in Pascal. When running on

a Mac OS X based machine, it runs on a Motorola MC68LC020 emulator in

the ‘Classic’ Mac OS environment. To port Open Prolog so that it runs in

the Mac OS X environment, directly on the host processor so that it does

not need an MC68000 emulator, it will essentially have to be rewritten. It

is not clear how much Open Prolog suffers from running on the MC68LC020

emulator as opposed to running natively. A rather crude attempt to quantify

this, by writing very simple dispatch code in C++ and compiling it into

68000, 68020 and generic PowerPC code shows a ratio of approximately 2.5

and 2 to 1 in execution time. However, as the execution code of Open Prolog

is hand-written in 68000 assembly language, it is not clear that that factor of

improvement is even attainable, since hand-written PowerPC code is difficult

to write well. Nevertheless, there appears to be some scope for improvement.

Since Apple has very recently announced a transition to Intel processors, the

target of the re-implementation will likely be the Intel X86 architecture.

10.4.2 Implementation Improvements

Clearly, the profile results point towards areas in which improvements could

be made: built-in arithmetic and name-handling predicates in particular.
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The point is made in [43, p9] that high speed built-in predicates are impor-

tant to the real-world performance of a Prolog implementation. One obvious

way to improve performance in built-in predicates is to enrich the instruc-

tion set with, for example, a selection of heavily used special-case built-

ins. Along the same lines, a more direct dispatch mechanism for built-in

predicates, bypassing the call... instructions completely would undoubt-

edly improve performance. In [43], consideration is given to reducing the

amount of operand type checking necessary. A simple analysis of a sequence

of goals might reveal where special variants of built-ins with reduced or ab-

sent operand type checking could be used safely. For instance, a predicate

using an argument assigned a value by the is/2 predicate can be guaranteed

that the argument is an integer.

Following on from that idea, recall that structures are are always con-

structed as molecules, and variables within structures are always global.

However, there may be circumstances where it can be ascertained that the

structure will never be accessed from outside the scope of the clause instance

in which it is generated. In that case, the structure variables can be local.

Moreover, if it can only be accessed from its parent clause instance, it does

not need to be represented as a molecule; a pointer to its skeleton would

be sufficient. This idea of a local structure would likely save memory and

improve execution speed.

There are some obvious improvements possible from removing branch

instructions from call instructions. The original intention here was to make

call instructions as similar as possible to structure literals, since they both

represent terms. A similar ‘linearising’ approach to structure literals, and

possibly the addition of a special ‘list’ literal might also pay speed dividends.

This would be similar in spirit to Cdr Coding, a technique used in Lisp

implementations.

A much more radical experiment would be to redesign Open Prolog as a
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structure copying implementation, but along the same principles otherwise.

It would be most interesting to see how well the two implementations would

compare.

10.4.3 Architectural Improvements—Local Frame Reuse

In the following paragraphs will be outlined a suggestion for improving the

speed and memory management of Open Prolog which would be a very in-

teresting project. In a nutshell, the technique is of local stack frame reuse, as

distinct from reallocation. The distinction is that in the case of reallocation,

memory is recovered and then reallocated, but the contents of the memory

cells in question is not used. By contrast, reuse also makes use of some or

all of the contents of the memory cells, reducing the amount of initialisation

required. In related work, Köves and Szeredi discuss the potential for identi-

fying situations where stack frames can be reused for passing arguments [43,

p4]. Debray discusses environment reuse in [26] and cites work by Meier [50].

Zhou explores reuse in the context of ATOAM, a development of the WAM,

in [78].

Local Frame Reuse

If a determinate last call is about to be made, and if certain assumptions can

be made about the disposition of local variables, then the caller’s local stack

frame can be progressively turned into the callee’s frame, possibly reusing

some of the information contained in the caller’s frame.

Consider the unification of arguments in the last call depicted in Fig-

ure 10.1. The diagram shows the sequence of events that occurs when a

three-argument last call is made. In each of the four steps in the sequence,

the goal’s arguments are on the left and the clause instance’s head arguments

are on the right. An argument in grey is part of the callee’s environment.
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Figure 10.1: This sequence of four diagrams depicts the sequence of events when a three-
argument last call is made. In each diagram, the goal’s arguments are on the left and the
clause instance’s head arguments are on the right. An argument in grey is part of the callee’s
environment. Higher numbered variables are ‘newer’ than, and could therefore potentially
contain references to, lower numbered variables.

Assume that all the arguments are local variables and that higher numbered

variables are newer than lower numbered variables. In what follows, all ref-

erences will be to local variables in the frame that is being reused. The term

‘head variable’ means a local variable as a head argument; likewise the term

‘goal variable’ refers to a local variable in a goal argument. Unification of

the arguments begins at the top and moves downwards. Once the first head

argument, v5, is unified with the first goal argument, v3, it becomes part of

the callee’s environment. When the next head argument, v2, is unified with

its corresponding argument, v2 (i.e. with itself—a null operation), it too be-

comes part of the new callee’s environment. It must be noted that newer local

variables such as v3 might reference v2. Therefore, one rule of the transition

process is that caller variables that are newer than the variables that have

become part of the callee’s environment are unsafe. The transition continues

as the arguments are successively unified, until, at the end, the local stack

frame belongs completely to the callee.
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Conditions for reusing a Local Stack Frame

The conditions under which a progressive transition from caller frame to

callee frame occur ensure that, when a head argument is being unified with a

goal argument, variables referenced in the goal argument are guaranteed to

be part of the caller’s section of the frame—they must not be newer than the

variable in the head argument and they must not reference older variables

that are already part of the callee’s environment. To ensure these conditions

are met, the following must hold:

• A local variable appearing as a head argument must never be older

than a local variable in its corresponding goal argument,

• If a local variable appears as a goal argument, it must do so before any

older local variables appear as head arguments.

The compiler can attempt to arrange variable allocation to fulfil these con-

ditions. If it is unable to make such an allocation, it can reallocate variables

as global until the conditions are met for the remaining variables.

Unbound Local Variables

One problem not addressed so far is what happens if a head variable deref-

erences to an unbound goal variable. The head variable would be bound

to a variable in a frame that was about to disappear. The solution is to

reverse the direction of referencing in a case like this—that is, if a head vari-

able dereferences an [older] goal variable, then the goal variable should be

made point to the head variable, which should be unbound. Later on, when

the caller’s environment is phased out, the goal variable will be effectively

deleted, leaving the head variable unbound, as required. This solution also

works where two or more head variables are bound to the same unbound

goal variable. The first binding will result in the goal variable pointing to
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the first head variable; the second binding will dereference the goal variable

to the first head variable and thus bind the two head variables together as

required.

The biggest problem may be the limited applicability of this technique.

In order to comply with the conditions for reusing a stack frame, the compiler

has to have knowledge of both the caller and the callee. In the context of a

clause-by-clause compiler, such as Open Prolog, this means that the caller

clause and the callee clause must be the same—that is, the technique can

readily be applied to determinate tail recursive calls . This may not be such

a drawback as it seems, as many Prolog procedures are determinate and tail

recursive.

The Benefits of Stack Frame Reuse

Firstly, the functions carried out by the neck, call, lastCall and neck

instructions would be greatly simplified, leading to the elimination of some

or all of them. It would be necessary to ensure the call was determinate

and it would be necessary to update the global frame pointer, but no new

environment would need to be generated.

Secondly, local variables could be used in last call arguments. The cir-

cumstances of their use might have to be restricted to allow the phased

transition of the frame, but in practice a graceful fall-back is available since

local variables can be reallocated as global if necessary.

Thirdly, scope exists for the ‘nulling’ of data movements. For example,

if a local variable occupies the same argument number in the head as in

the last call, then it doesn’t have to be moved, and so the instructions for

moving it can be omitted. This should result in a significant speedups in

many cases of interest, just as it does in the WAM. It would be necessary to

ensure that such variables were not unsafe, in the sense that they could not

become bound to some other unbound variable in the frame. If this could be
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done at compile time, then the full benefit of nulling would accrue.

Beyond the advantages alluded to, another possibility comes into view.

First, if local variables in a fixed local frame are being re-used, they could

easily be realised with processor registers. Second, if the same clause is being

called by the same goal each time, the sequence of instructions executed

is known, and might possibly be compiled as a sequence. This is similar

to Krall and Neumerkel single-PC variant of the Vienna Abstract Machine

(the VAM1P [47]). Whereas the two-PC variant of the VAM (the VAM2P )

combines instructions at runtime, the VAM1P arranges to combine them at

compilation time.

Taken together, the possibility of register-based compilation of sequences

of OPAM instructions arises. It would be very interesting indeed to explore

and develop this possibility.
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Appendix A

PLM Instruction Set Summary
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Clause Selection Instructions
enter Initialises the control information in a new

environment—the contents of VV, X, A, V1 and TR

are copied into the local frame. Then VV and VV1 are set
to the values of V and V1, making the partly constructed
new environment the current choice point.

try(L) Updates the current instance’s choice point data by stor-
ing the address of the next try or trylast instruction
in the FL register. Execution is transferred to the clause
code at label L.

trylast(L) Ends use of the current instance’s environment as a choice
point by setting VV and VV1 to the values they had when
the current goal was called. Execution is transferred to
the clause code at label L.

Table A.1: Clause Selection Instructions

Unification Instructions
uvar(N,F,I) Unify argument N with the first occurrence of variable I

of type F (local/global).
uref(N,F,I) Unify argument N with a second or later occurrence of

variable I of type F (local/global).
uatom(N,A) Unify argument N with atom A

uint(N,I) Unify argument N with integer I
uskel(N,S) Unify argument N with structure S. (The structure is en-

coded as a literal after the foot instruction.)

Table A.2: PLM Unification Instructions
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Other Head & Neck Instructions
neck(I,J) Marks completion of unification of the current goal with

the new clause instance. Turns the environment of the
new instance into the environment for the new current
goal by setting X and X1 from registers V and V1. Reg-
isters V and V1 are updated to point to the top of the
stacks, beyond the new frames.

init(I,J) Global variables I to J are initialised to undef.
localinit(I,J) Local variables I to J are initialised to undef.
ifdone(L) Used before level 1 argument instructions. If the struc-

ture unified with a reference, no unification of level 1 ar-
guments is needed, so the level 1 instructions are skipped
by transferring to label L.

Table A.3: Neck and Head Instructions

Body Instructions
call(L) Calls the procedure whose enter instruction is at label

L. Sets register A to point to the goal argument literals
and to the continuation, effectively the return address.

cut(I) Discards all local frames newer than the current one, ti-
dies up the Trail to remove redundant trail entries. Re-
sets VV and VV1 from the relevant fields of this clause’s
parent.

Table A.4: Body Instructions
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Foot Instructions
foot(N) Returns to the caller. If the goal has executed determi-

nately, the local frame is deallocated. Registers A, X and
X1 are reset from the local frame; thus control is trans-
ferred to the parent.

neckfoot(J,N) For a unit clause with no body, replaces two instructions
neck(I,J) and foot(N). Faster.

neckcut(I,J) Replaces two instructions neck(I,J) and foot(I).
Faster.

neckcutfoot(J,N) For a clause with just a cut as its body. Replaces three
instructions neck(I,J), cut(I) and foot(I). Faster.

fail Starts backtracking.

Table A.5: Foot Instructions
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Appendix B

Programs

This appendix contains programs and procedures referred to in the main

text.

B.1 Assembly Predicates used in the call/1

built-in predicate
assembleGoalSequence(G,I,D,Variant) :-

var(G),!,

assemble(G,I,D,Variant).

assembleGoalSequence((G1,G2),I-Id,D-Dd,Variant) :-

!,

assemble(G1,I-I1,D-D1,Variant),

assembleGoalSequence(G2,I1-Id,D1-Dd,Variant).

assembleGoalSequence(G,I,D,Variant) :-

assemble(G,I,D,Variant).

assemble(V,X,Y,Variant) :-

var(V),!,

assemble(call(V),X,Y,Variant).

assemble(V,X,Y,Variant) :-

integer(V),

throw(

error(permission_error,[error_message([’Can’’t use an integer as a goal’,V])])).

assemble(!,[cut|R]-R,D-D,Variant) :- !.

assemble((X->Y),[expandA3,ifThenCall,landZone|R]-Rd,D-Dd,Variant) :-

!,

assembleGoalSequence(X,R-[expandA3,ifThenCommit,word(Variant)|R1],D-D1,0),

assembleGoalSequence(Y,R1-[expandA3,punctuation|Rd],D1-Dd,Variant).

assemble((X;Y),[expandA3,orCall,landZone,word(0),offset(F),offset(S)|R]-Rd,D-Dd,Variant) :-
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!,

assembleGoalSequence(X,R-[expandA3,jump,offset(S),label(F)|R1],D-D1,1),

assembleGoalSequence(Y,R1-[expandA3,punctuation,label(S)|Rd],D1-Dd,0).

assemble((X,Y),[expandA3,andCall,landZone|R]-Rd,D,Variant) :-

!,

assembleGoalSequence((X,Y),R-[expandA3,punctuation|Rd],D,Variant).

assemble(\+X,[expandA3,notCall,landZone,word(0),offset(F)|R]-Rd,D,Variant) :-

!,

assembleGoalSequence(X,R-[expandA3,notSucceed,label(F)|Rd],D,Variant).

assemble(X,[expandA3,notCall,landZone,word(1),offset(F)|R]-Rd,D,Variant) :-

!,

assembleGoalSequence(X,R-[expandA3,notSucceed,label(F)|Rd],D,Variant).

assemble(not(X),[expandA3,notCall,landZone,word(2),offset(F)|R]-Rd,D,Variant) :-

!,

assembleGoalSequence(X,R-[expandA3,notSucceed,label(F)|Rd],D,Variant).

assemble(fail_if(X),[expandA3,notCall,landZone,word(3),offset(F)|R]-Rd,D,Variant) :-

!,

assembleGoalSequence(X,R-[expandA3,notSucceed,label(F)|Rd],D,Variant).

assemble(call(X),Y,Z,Variant) :- nonvar(X),!,assemble(X,Y,Z,Variant).

assemble(X,[call,offset(L)|R]-R,[label(L),callFrame,X|D]-D,Variant).

computeOffsets([],[],Lc,Lc).

computeOffsets([label(Lc)|R],S,Lc,Size) :-

computeOffsets(R,S,Lc,Size).

computeOffsets([offset(L)|R],[word(L-Lc)|S],Lc,Size) :-

!,

Lci is Lc+2,

computeOffsets(R,S,Lci,Size).

computeOffsets([callFrame,X|R],[callFrame,X|S],Lc,Size) :-

functor(X,_,Arity),

Lco is Lc+4+2+Arity*4,

!,

computeOffsets(R,S,Lco,Size).

computeOffsets([Token|R],[Token|S],Lc,Size) :-

Lci is Lc+2,

computeOffsets(R,S,Lci,Size).

resolveOffsets([callFrame,X|R],[X|S]) :-

!,

removeCallFrames(R,S).

resolveOffsets([],[]).

resolveOffsets([word(X)|R],[V|S]) :-

V is X,!,

resolveOffsets(R,S).

resolveOffsets([T|R],[E|S]) :-

T equ E,

resolveOffsets(R,S).

removeCallFrames([],[]).

removeCallFrames([callFrame,X|R],[X|S]) :-

removeCallFrames(R,S).
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B.2 The nrev Benchmark

This is a complete listing of the file used for the nrev benchmark [83] with

small modifications to suit Open Prolog.

/* BENCH.PL : The classic Prolog benchmark

Supplied by Quintus Computer Systems, Inc.
April 30th 1984

*/

/* ======================================================================
This benchmark gives the raw speed of a Prolog system.

The measure of logical inferences per second (Lips) used here is taken to
be procedure calls per second over an example with not very complex
procedure calls. The example used is that of "naive reversing" a list,
which is an expensive, and therefore stupid, way of reversing a list. It
does, however, produce a lot of procedure calls. (In theoretical terms,
this algorithm is O(n^2) on the length of the list).

The use of a single simple benchmark like this cannot, of course, be
taken to signify a great deal. However, experience has shown that this
benchmark does provide a very good measure of basic Prolog speed and
produces figures which match more complex benchmarks. The reason for
this is that the basic operations performed here: procedure calls with a
certain amount of data structure access and construction; are absolutely
fundamental to Prolog execution. If these are done right, then more
complex benchmarks tend to scale accordingly. This particular benchmark
has thus been used as a good rule of thumb by Prolog implementors for
over a decade and forms a part of the unwritten Prolog folklore. So -
use this benchmark, with this in mind, as a quick, but extremely useful,
test of Prolog performance.

In a complete evaluation of a Prolog system you should also be taking
account speeds of asserting and compiling, tail recursion, memory
utilisation, compactness of programs, storage management and garbage
collection, debugging and editing facilities, program checking and help
facilities, system provided predicates, interfaces to external
capabilities, documentation and support, amongst other factors.

====================================================================== */

/* ----------------------------------------------------------------------
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get_cpu_time(T) -- T is the current cpu time.

** This bit will probably require changes to work on your Prolog
system, since different systems provide this facility in
different ways. See your Prolog manual for details.

** Also check the code for calculate_lips/4 below.
---------------------------------------------------------------------- */

get_cpu_time(T) :- statistics(runtime,[T,_]). /* Quintus Prolog version */

/* get_cpu_time(T) :- T is cputime. C-Prolog version */

/* ----------------------------------------------------------------------
nrev(L1,L2) -- L2 is the list L1 reversed.
append(L1,L2,L3) -- L1 appended to L2 is L3.
data(L) -- L is a thirty element list.

This is the program executed by the benchmark.
It is called "naive reverse" because it is a very expensive way
of reversing a list. Its advantage, for our purposes, is that
it generates a lot of procedure calls. To reverse a thirty element
list requires 496 Prolog procedure calls.

---------------------------------------------------------------------- */

nrev([],[]).
nrev([X|Rest],Ans) :- nrev(Rest,L), append(L,[X],Ans).

append([],L,L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

data([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30]).

/* ----------------------------------------------------------------------
lots -- Run benchmark with a variety of iteration counts.

Call this to run the benchmark with increasing numbers
of iterations. The figures produced should be about the same -
except that there may be inaccuracies at low iteration numbers
if the time these examples take to execute on your machine are
too small to be very precise (because of the accuracy the
operating system itself is capable of providing).
If the time taken for these examples is too long or short then
you should adjust the eg_count(_) facts.

---------------------------------------------------------------------- */
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lots :-
% %add in a garbage collect
% garbage_collect,

eg_count(Count),
bench(Count),
fail.

lots.

eg_count(10).
eg_count(20).
eg_count(50).
eg_count(100).
eg_count(200).
eg_count(500).
eg_count(1000).
eg_count(2000).
eg_count(5000).
eg_count(10000).

/* ----------------------------------------------------------------------
bench(Count) -- Run the benchmark for Count iterations.

bench provides a test harness for running the naive reverse
benchmark. It is important to factor out the overhead of setting
the test up and using repeat(_) to iterate the right number of
times. This is done by running some dummy code as well to see how
much time the extra operations take.

---------------------------------------------------------------------- */

bench(Count) :-
get_cpu_time(T0),
dodummy(Count),
get_cpu_time(T1),
dobench(Count),
get_cpu_time(T2),
report(Count,T0,T1,T2).

/* ----------------------------------------------------------------------
dobench(Count) -- nrev a 30 element list Count times.
dodummy(Count) -- Perform the overhead operations Count times.
repeat(Count) -- Predicate which succeeds Count times

This is the supporting code, which is reasonably clear.
---------------------------------------------------------------------- */
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dobench(Count) :-
data(List),
repeat(Count),
nrev(List,_),
fail.

dobench(_).

dodummy(Count) :-
data(List),
repeat(Count),
dummy(List,_),
fail.

dodummy(_).

dummy(_,_).

repeat(_N).
repeat(N) :- N > 1, N1 is N-1, repeat(N1).

/* ----------------------------------------------------------------------
report(Count,T0,T1,T2) -- Report the results of the benchmark.
calculate_lips(Count,Time,Lips,Units) --

Doing Count interations in Time implies Lips lips assuming
that time is given in Units.

This calculates the logical inferences per second (lips) figure.
Remember that it takes 496 procedure calls to naive reverse a
thirty element list once. Lips, under this benchmark, thus means
"Prolog procedure calls per second, where the procedure calls
are not too complex (i.e. those for nrev and append)".

** This version of the code assumes that the times (T0.. etc)
are integers giving the time in milliseconds. This is true for
Quintus Prolog. Your Prolog system may use some other
representation. If so, you will need to adjust the Lips
calculation. There is a C-Prolog version below for the case
where times are floating point numbers giving the time in
seconds.

---------------------------------------------------------------------- */

report(Count,T0,T1,T2) :-
Time1 is T1-T0,
Time2 is T2-T1,
Time is Time2-Time1, /* Time spent on nreving lists */
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calculate_lips(Count,Time,Lips,Units),
nl,
write(Lips), write(’ lips for ’), write(Count),
write(’ iterations taking ’), write(Time),
write(’ ’), write(Units), write(’ (’),
write(Time2-Time1), write(’)’),
nl.

calculate_lips(_Count,Time,Lips,’msecs’) :- /* Time can be 0 for small */
Time is 0, !, Lips is 0. /* values of Count! */

/* --- SICStus, Qunitus, etc. version
calculate_lips(Count,Time,Lips,’msecs’) :-

Lips is (496*float(Count)*1000)/Time.
--- */

/* --- C-Prolog version

calculate_lips(Count,Time,Lips,’secs’) :- Lips is (496*Count)/Time.

--- */

%/* --- Open Prolog version

calculate_lips(Count,Time,Lips,’mSecs’) :- Lips is 496*Count/Time.

% --- *

B.3 The nrev2 code generator

The following code is used to generate and assert a clause containing multiple

copies of the same goal, preceded and followed by timing predicates.

%for preparing very accurate Lips measurements.
%prepare/3 makes up a clause with N calls to X in it preceded by goal F
%dotiming/0 calls the clause.

%use garbage_collect to reset memory & minimise the possibility of
%garbage collection & shifting.

prepare(F,N,X) :-
replicateList(F,N,X,Y-[statistics(runtime,[_,T])]),
formAssertion(timeTrial(T),[F,statistics(runtime,_)|Y],A),
abolish(timeTrial,1),beep,
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assert(A),
write(’Please call ’’dotiming’’ now’),nl.

replicateList(F,N,X,L) :-
assert(’temp$term’(F,X)),
readNCopies(N,L,F).

readNCopies(0,D-D,F) :- retract(’temp$term’(F,_)).
readNCopies(N,[Term|R]-D,F) :-

N>0,!,
’temp$term’(F,Term),
M is N-1,
readNCopies(M,R-D,F).

formAssertion(Head,TailList,(Head:-Tail)) :-
formTail(TailList,Tail).

formTail([],true).
formTail([X],X).
formTail([X|Y],(X,R)) :- \+(Y=[]),!,formTail(Y,R).

dotiming :-
timeTrial(T),
write(’Elapsed time is ’),
write(T),
write(’ mS.’),nl.

B.4 Profiling Programs

This section comprises four subsections containing programs related to the

generation of profile data for Open Prolog.

B.4.1 The Profiling Code

The following code is used to generate profiles of benchmark programs as

specified by the contents of the file ‘benchmark stuff’.

ensure_loaded(_). %dummy

profile :-
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open(’profile manifest’,read,S),
current_input(I),
set_input(S),
read(C),
process(C),
set_input(I).

process(end_of_file).
process(bench(F,C,Q)) :-

name(F,Fs),
my_append(Fs,".pl",Nfs),
name(File,Nfs),
’system$push$display’(message,left,’Now consulting ’,File,’’,’’),
consult(File),
’system$set$display’(message,left,F,’ being profiled ’,’’,’ ’),
run_profile(F,Q,C,-200), %200 microseconds sampling interval
’system$pop$display’(message),
abolishAllPredicates,
consult(profiler),
!,
read(N),
process(N).

abolishAllPredicates :- current_predicate(_,X),functor(X,F,A),abolish(F,A),fail;true.

my_append([],X,X).
my_append([X|Y],Z,[X|A]) :- my_append(Y,Z,A).

%for preparing accurate profiling measurements.

run_profile(Comment,Repeats,Predicate,SamplingInterval) :-
prepare(Comment,Repeats,Predicate),!,
garbage_collect,
’profile$sample$interval’(P,SamplingInterval),
profileTrial(Ticks,Misses,Nils,Cputime),!,
name(Comment,Cs),
my_append(Cs," profile",Rs),
name(Pf,Rs),
current_output(Co),
tell(Pf),
profile(Ticks,Misses,Nils,Cputime),
told,
’profile$sample$interval’(_,P), %reset sampling interval
set_output(Co).
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%prepare/3 makes up a clause with N calls to X in it,
%doprofile/0 calls the clause.

%use ’abort’ to reset memory & minimise the possibility of
%garbage collection & shifting.

prepare(Comment,N,X) :-
replicateList(N,X,Y-[’stop$profile’,’get$profile$tick$count’(T2,M2,N2),!,
C is cputime-S1,T is T2-T1,M is M2-M1,Ni is N2-N1]),

formAssertion(profileTrial(T,M,Ni,C),[’get$profile$tick$count’(T1,M1,N1),
S1 is cputime,’start$profile’|Y],A),

abolish(profileTrial,4),
abolish(’profile run data’,3),
assert(A),
asserta(’profile run data’(Comment,N,X)).

replicateList(N,X,L) :-
assert(’temp$term’(X)),
readNCopies(N,L).

readNCopies(0,D-D) :- retract(’temp$term’(_)).
readNCopies(N,[Term|R]-D) :-
’temp$term’(Term),
M is N-1,
readNCopies(M,R-D).

formAssertion(Head,TailList,(Head:-Tail)) :-
formTail(TailList,Tail).

formTail([],true).
formTail([X],X).
formTail([X|Y],(X,R)) :- formTail(Y,R).

profile(Ticks,Misses,Nils,Cputime) :-
nl,write(’Profile Run on ’),’system$machine$name’(N),write(N),write(’, ’),
’system$seconds’(S),’system$date’(S,Date),write(Date),write(’ at ’),’system$time’(S,Time),
write(Time),nl,
’profile run data’(Comment,Nm,Xm),
write(’File is ’),write(Comment),nl,
write(’Profile of ’),
write(Nm),write(’iterations of the predicate ’),write(Xm),nl,
write(’Hit/Miss/Nil Ticks: ’),
write(Ticks),write(’’),write(Misses),write(’’),write(Nils),nl,
interval_in_microseconds(Iv),write(Iv),write(’uS per tick.’),
write(’Elapsed time: ’),
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write(Cputime),write(’milliseconds.’),nl,
findall([Name,Usage|Rest],
(’get$profile$data’(Name,Data),Data=..[Functor,Usage|Rest],Usage>0),
ProfileMatrix),

%here we have a matrix ordered by rows.
%Empty rows (for code sections with no usages) have been already suppressed. Now
%we need to identify empty columns, i.e. columns with all zeros
%So, construct a list of elements, one per column of the matrix, each of
%which is ’non-zero’ if there is at least one non-zero element, and ’zero’ otherwise

non_zero_elements_list(ProfileMatrix,NonZeroList),
mark_concealed_columns(NonZeroList,ConcealList),

write_concealed_tabbed_list_of_lists([[’Name’,’Uses’,’Hits’,’GD1’,’GD2’,
’G3+’,’GH’,’HD1’,’HD2’,’HD3+’,’HH’,’TA’,’TG’,’TL’,’TH’]|ProfileMatrix],ConcealList),

nl.

mark_concealed_columns(
[N,U,H,G1,G2,G3,G4,H1,H2,H3,H4,T1,T2,T3,T4],
[N,U,H,G1x,G2x,G3,G4x,H1x,H2x,H3,H4x,T1,T2,T3,T4x]) :-

T4x is T1, %display trail hits is any trail activity
H4x is H1+H2+H3,
H2x is H2+H3,
H1x is H1+H2+H3,

G4x is G1+G2+G3,
G2x is G2+G3,
G1x is G1+G2+G3.

interval_in_microseconds(I) :-
’profile$sample$interval’(Iv,Iv),
(Iv>=0->I is Iv*1000;I is -Iv).

write_concealed_tabbed_list_of_lists([],_).
write_concealed_tabbed_list_of_lists([Line|Rest],ConcealList) :-

write_concealed_tabbed_line(Line,ConcealList),nl,
write_concealed_tabbed_list_of_lists(Rest,ConcealList).

write_concealed_tabbed_line([],_).
write_concealed_tabbed_line([X|Y],[0|C]) :-
!,
write_concealed_tabbed_line(Y,C).
write_concealed_tabbed_line([X|Y],[_|C]) :-

247



write(X),
put(9),
write_concealed_tabbed_line(Y,C).

non_zero_elements_list(Matrix,[S|R]) :-
non_zero_column(Matrix,RestOfMatrix,S),!,
non_zero_elements_list(RestOfMatrix,R).

non_zero_elements_list(_,[]).

non_zero_column([],[],0).
non_zero_column([[0|R]|M],[R|N],X) :-

!,
non_zero_column(M,N,X).

non_zero_column([[_|R]|M],[R|N],1) :-
non_zero_column(M,N,_).

B.4.2 The Profile Manifest File

The following is the contents of the file ‘profile manifest’ specifying the pro-

grams upon which the profiles are to be performed. Each term specifies one

profile run; for example, the first term specifies that the file ‘times10.pl’ be

consulted, and that 1000 successive calls to the predicate times10 be profiled.

%bench(File,Command,Times).
bench(nreverse,nreverse,1000).

bench(crypt,do_profile,1000).
bench(deriv,do_profile,1000).
bench(poly,do_profile,1000).
bench(primes,do_profile,1000).
bench(qsort,do_profile,1000).
bench(queens,do_profile,100).
bench(query,do_profile,1000).
bench(tak,do_profile,100).

B.4.3 Sample Program

The file ‘nreverse.pl’—from the Aquarius Benchmarks [79]—is listed here:

% generated: 25 October 1989
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% option(s):
%
% nreverse
%
% David H. D. Warren
%
% "naive"-reverse a list of 30 integers

atoms_nreverse :-
nreverse([a,b,c,d,e,f,g,h,i,j,
k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,a,b,c,d],_).

variables_nreverse :-
nreverse([A,B,C,D,E,F,G,H,I,J,
K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A,B,C,D],X).

indeterminate_concatenate :- concatenate(X,[a,b,c],[1,2,3,a,b,c]).

determinate_concatenate :- concatenate([1,2,3],[a,b,c],[1,2,3,a,b,c]).

nreverse :- nreverse([1,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,
22,23,24,25,26,27,28,29,30],_).

nreverse([X|L0],L) :- nreverse(L0,L1), concatenate(L1,[X],L).
nreverse([],[]).

concatenate([X|L1],L2,[X|L3]) :- concatenate(L1,L2,L3).
concatenate([],L,L).

B.4.4 The Boyer Benchmark

% generated: 20 November 1989
% option(s):
%
% boyer
%
% Evan Tick (from Lisp version by R. P. Gabriel)
%
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% November 1985
%
% prove arithmetic theorem

main :- wff(Wff),
rewrite(Wff,NewWff),
tautology(NewWff,[],[]).

wff(implies(and(implies(X,Y),
and(implies(Y,Z),

and(implies(Z,U),
implies(U,W)))),

implies(X,W))) :-
X = f(plus(plus(a,b),plus(c,zero))),
Y = f(times(times(a,b),plus(c,d))),
Z = f(reverse(append(append(a,b),[]))),
U = equal(plus(a,b),difference(x,y)),
W = lessp(remainder(a,b),member(a,length(b))).

tautology(Wff) :-
write(’rewriting...’),nl,
rewrite(Wff,NewWff),
write(’proving...’),nl,
tautology(NewWff,[],[]).

tautology(Wff,Tlist,Flist) :-
(truep(Wff,Tlist) -> true
;falsep(Wff,Flist) -> fail
;Wff = if(If,Then,Else) ->

(truep(If,Tlist) -> tautology(Then,Tlist,Flist)
;falsep(If,Flist) -> tautology(Else,Tlist,Flist)
;tautology(Then,[If|Tlist],Flist),% both must hold
tautology(Else,Tlist,[If|Flist])

)
),!.

rewrite(Atom,Atom) :-
atomic(Atom),!.

rewrite(Old,New) :-
functor(Old,F,N),
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functor(Mid,F,N),
rewrite_args(N,Old,Mid),
( equal(Mid,Next), % should be ->, but is compiler smart
rewrite(Next,New) % enough to generate cut for -> ?

; New=Mid
),!.

rewrite_args(0,_,_) :- !.
rewrite_args(N,Old,Mid) :-

arg(N,Old,OldArg),
arg(N,Mid,MidArg),
rewrite(OldArg,MidArg),
N1 is N-1,
rewrite_args(N1,Old,Mid).

truep(t,_) :- !.
truep(Wff,Tlist) :- member(Wff,Tlist).

falsep(f,_) :- !.
falsep(Wff,Flist) :- member(Wff,Flist).

member(X,[X|_]) :- !.
member(X,[_|T]) :- member(X,T).

equal( and(P,Q),
if(P,if(Q,t,f),f)
).

equal( append(append(X,Y),Z),
append(X,append(Y,Z))
).

equal( assignment(X,append(A,B)),
if(assignedp(X,A),

assignment(X,A),
assignment(X,B))

).
equal( assume_false(Var,Alist),

cons(cons(Var,f),Alist)
).

equal( assume_true(Var,Alist),
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cons(cons(Var,t),Alist)
).

equal( boolean(X),
or(equal(X,t),equal(X,f))
).

equal( car(gopher(X)),
if(listp(X),
car(flatten(X)),
zero)
).

equal( compile(Form),
reverse(codegen(optimize(Form),[]))
).

equal( count_list(Z,sort_lp(X,Y)),
plus(count_list(Z,X),

count_list(Z,Y))
).

equal( countps_(L,Pred),
countps_loop(L,Pred,zero)
).

equal( difference(A,B),
C
) :- difference(A,B,C).

equal( divides(X,Y),
zerop(remainder(Y,X))
).

equal( dsort(X),
sort2(X)
).

equal( eqp(X,Y),
equal(fix(X),fix(Y))
).

equal( equal(A,B),
C
) :- eq(A,B,C).

equal( even1(X),
if(zerop(X),t,odd(decr(X)))
).

equal( exec(append(X,Y),Pds,Envrn),
exec(Y,exec(X,Pds,Envrn),Envrn)
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).
equal( exp(A,B),

C
) :- exp(A,B,C).

equal( fact_(I),
fact_loop(I,1)
).

equal( falsify(X),
falsify1(normalize(X),[])
).

equal( fix(X),
if(numberp(X),X,zero)
).

equal( flatten(cdr(gopher(X))),
if(listp(X),

cdr(flatten(X)),
cons(zero,[]))

).
equal( gcd(A,B),

C
) :- gcd(A,B,C).

equal( get(J,set(I,Val,Mem)),
if(eqp(J,I),Val,get(J,Mem))
).

equal( greatereqp(X,Y),
not(lessp(X,Y))
).

equal( greatereqpr(X,Y),
not(lessp(X,Y))
).

equal( greaterp(X,Y),
lessp(Y,X)
).

equal( if(if(A,B,C),D,E),
if(A,if(B,D,E),if(C,D,E))
).

equal( iff(X,Y),
and(implies(X,Y),implies(Y,X))
).

equal( implies(P,Q),
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if(P,if(Q,t,f),t)
).

equal( last(append(A,B)),
if(listp(B),

last(B),
if(listp(A),

cons(car(last(A))),
B))

).
equal( length(A),

B
) :- mylength(A,B).

equal( lesseqp(X,Y),
not(lessp(Y,X))
).

equal( lessp(A,B),
C
) :- lessp(A,B,C).

equal( listp(gopher(X)),
listp(X)
).

equal( mc_flatten(X,Y),
append(flatten(X),Y)
).

equal( meaning(A,B),
C
) :- meaning(A,B,C).

equal( member(A,B),
C
) :- mymember(A,B,C).

equal( not(P),
if(P,f,t)
).

equal( nth(A,B),
C
) :- nth(A,B,C).

equal( numberp(greatest_factor(X,Y)),
not(and(or(zerop(Y),equal(Y,1)),

not(numberp(X))))
).
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equal( or(P,Q),
if(P,t,if(Q,t,f),f)
).

equal( plus(A,B),
C
) :- boyer_plus(A,B,C).

equal( power_eval(A,B),
C
) :- power_eval(A,B,C).

equal( prime(X),
and(not(zerop(X)),

and(not(equal(X,add1(zero))),
prime1(X,decr(X))))

).
equal( prime_list(append(X,Y)),

and(prime_list(X),prime_list(Y))
).

equal( quotient(A,B),
C
) :- quotient(A,B,C).

equal( remainder(A,B),
C
) :- remainder(A,B,C).

equal( reverse_(X),
reverse_loop(X,[])
).

equal( reverse(append(A,B)),
append(reverse(B),reverse(A))
).

equal( reverse_loop(A,B),
C
) :- reverse_loop(A,B,C).

equal( samefringe(X,Y),
equal(flatten(X),flatten(Y))
).

equal( sigma(zero,I),
quotient(times(I,add1(I)),2)
).

equal( sort2(delete(X,L)),
delete(X,sort2(L))
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).
equal( tautology_checker(X),

tautologyp(normalize(X),[])
).

equal( times(A,B),
C
) :- times(A,B,C).

equal( times_list(append(X,Y)),
times(times_list(X),times_list(Y))
).

equal( value(normalize(X),A),
value(X,A)
).

equal( zerop(X),
or(equal(X,zero),not(numberp(X)))
).

difference(X, X, zero) :- !.
difference(plus(X,Y), X, fix(Y)) :- !.
difference(plus(Y,X), X, fix(Y)) :- !.
difference(plus(X,Y), plus(X,Z), difference(Y,Z)) :- !.
difference(plus(B,plus(A,C)), A, plus(B,C)) :- !.
difference(add1(plus(Y,Z)), Z, add1(Y)) :- !.
difference(add1(add1(X)), 2, fix(X)).

eq(plus(A,B), zero, and(zerop(A),zerop(B))) :- !.
eq(plus(A,B), plus(A,C), equal(fix(B),fix(C))) :- !.
eq(zero, difference(X,Y),not(lessp(Y,X))) :- !.
eq(X, difference(X,Y),and(numberp(X),

and(or(equal(X,zero),
zerop(Y))))) :- !.

eq(times(X,Y), zero, or(zerop(X),zerop(Y))) :- !.
eq(append(A,B), append(A,C), equal(B,C)) :- !.
eq(flatten(X), cons(Y,[]), and(nlistp(X),equal(X,Y))) :- !.
eq(greatest_factor(X,Y),zero, and(or(zerop(Y),equal(Y,1)),

equal(X,zero))) :- !.
eq(greatest_factor(X,_),1, equal(X,1)) :- !.
eq(Z, times(W,Z), and(numberp(Z),

or(equal(Z,zero),
equal(W,1)))) :- !.
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eq(X, times(X,Y), or(equal(X,zero),
and(numberp(X),equal(Y,1)))) :- !.

eq(times(A,B), 1, and(not(equal(A,zero)),
and(not(equal(B,zero)),

and(numberp(A),
and(numberp(B),

and(equal(decr(A),zero),
equal(decr(B),zero))))))) :- !.

eq(difference(X,Y), difference(Z,Y),if(lessp(X,Y),
not(lessp(Y,Z)),
if(lessp(Z,Y),

not(lessp(Y,X)),
equal(fix(X),fix(Z))))) :- !.

eq(lessp(X,Y), Z, if(lessp(X,Y),
equal(t,Z),
equal(f,Z))).

exp(I, plus(J,K), times(exp(I,J),exp(I,K))) :- !.
exp(I, times(J,K), exp(exp(I,J),K)).

gcd(X, Y, gcd(Y,X)) :- !.
gcd(times(X,Z), times(Y,Z), times(Z,gcd(X,Y))).

mylength(reverse(X),length(X)).
mylength(cons(_,cons(_,cons(_,cons(_,cons(_,cons(_,X7)))))),

plus(6,length(X7))).

lessp(remainder(_,Y), Y, not(zerop(Y))) :- !.
lessp(quotient(I,J), I, and(not(zerop(I)),

or(zerop(J),
not(equal(J,1))))) :- !.

lessp(remainder(X,Y), X, and(not(zerop(Y)),
and(not(zerop(X)),

not(lessp(X,Y))))) :- !.
lessp(plus(X,Y), plus(X,Z), lessp(Y,Z)) :- !.
lessp(times(X,Z), times(Y,Z), and(not(zerop(Z)),

lessp(X,Y))) :- !.
lessp(Y, plus(X,Y), not(zerop(X))) :- !.
lessp(length(delete(X,L)), length(L), member(X,L)).
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meaning(plus_tree(append(X,Y)),A,
plus(meaning(plus_tree(X),A),

meaning(plus_tree(Y),A))) :- !.
meaning(plus_tree(plus_fringe(X)),A,

fix(meaning(X,A))) :- !.
meaning(plus_tree(delete(X,Y)),A,

if(member(X,Y),
difference(meaning(plus_tree(Y),A),

meaning(X,A)),
meaning(plus_tree(Y),A))).

mymember(X,append(A,B),or(member(X,A),member(X,B))) :- !.
mymember(X,reverse(Y),member(X,Y)) :- !.
mymember(A,intersect(B,C),and(member(A,B),member(A,C))).

nth(zero,_,zero).
nth([],I,if(zerop(I),[],zero)).
nth(append(A,B),I,append(nth(A,I),nth(B,difference(I,length(A))))).

boyer_plus(plus(X,Y),Z,
plus(X,plus(Y,Z))) :- !.

boyer_plus(remainder(X,Y),
times(Y,quotient(X,Y)),
fix(X)) :- !.

boyer_plus(X,add1(Y),
if(numberp(Y),

add1(plus(X,Y)),
add1(X))).

power_eval(big_plus1(L,I,Base),Base,
plus(power_eval(L,Base),I)) :- !.

power_eval(power_rep(I,Base),Base,
fix(I)) :- !.

power_eval(big_plus(X,Y,I,Base),Base,
plus(I,plus(power_eval(X,Base),

power_eval(Y,Base)))) :- !.
power_eval(big_plus(power_rep(I,Base),

power_rep(J,Base),
zero,
Base),
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Base,
plus(I,J)).

quotient(plus(X,plus(X,Y)),2,plus(X,quotient(Y,2))).
quotient(times(Y,X),Y,if(zerop(Y),zero,fix(X))).

remainder(_, 1,zero) :- !.
remainder(X, X,zero) :- !.
remainder(times(_,Z),Z,zero) :- !.
remainder(times(Y,_),Y,zero).

reverse_loop(X,Y, append(reverse(X),Y)) :- !.
reverse_loop(X,[], reverse(X) ).

times(X, plus(Y,Z), plus(times(X,Y),times(X,Z)) ) :- !.
times(times(X,Y),Z, times(X,times(Y,Z)) ) :- !.
times(X, difference(C,W),difference(times(C,X),times(W,X))) :- !.
times(X, add1(Y), if(numberp(Y),

plus(X,times(X,Y)),
fix(X)) ).
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Appendix C

Miscellaneous
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Figure C.1: The Splash Screen of Tricia Prolog, listing the authors and contributors.
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