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Abstract

Personalisation is the process of tailoring application behaviour to the requirements of its users. A

primary concern of personalisation is providing users with behaviour recommendations that will aid

them with their tasks. Making accurate recommendations bene�ts users by facilitating them with their

activities, such as proposing actions preferred by the user, adapting resources to the user's situation,

or informing users about news or events of interest. Accurate personalised recommendations also

enable applications to make more e�ective use of user attention (e.g., by not interrupting users with

irrelevant information) and facilitate greater user acceptance in proposed actions.

In general, context-aware systems use information about the surrounding environment, known as

context, to make behaviour decisions that aid users with their activities. Personalisation in existing

context-aware systems works by adapting to a description of user preferences, which is either explicitly

de�ned by domain experts or users or implicitly learnt by observing user behaviour. Both approaches

are suited to small applications with well-de�ned domains, but are less suited to personalising larger

context-aware applications for two main reasons. Firstly, both approaches rely on human input to

identify, relate, and prioritise di�erent contexts and user preferences (usually as rules or cost/similarity

functions) to ensure correct behaviour. However, context-aware systems are likely to support a large

set of contexts, implying a large set of context relationships and user preferences. The human task

of accurately de�ning this set of information is correspondingly time-consuming, complex, and error-

prone. Secondly, existing approaches rely on the de�nition of algorithms that are inherently static.

Speci�cally, relevant information and the relative importance (or utility) of information, from which

the preferred actions of users is inferred, are de�ned at development time. However, user preferences

are likely to evolve with new experiences, and the mobility of context-aware application users means

they are likely to encounter events, which represent new relationships between existing context that

may a�ect their preferences. Changing user preferences and unconsidered context relationships will

render pre-de�ned information inaccurate, and the static nature of current techniques means that ap-

plications are unable to automatically adapt to the changes in information that are required. Explicit
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user feedback is a possible solution to these challenges. However, explicit feedback is usually unsuit-

able due to the large cognitive load associated with ranking recommendation criteria or alternative

behaviours. In addition, user mobility means that providing input when necessary is not always possi-

ble. Given the limitations of existing techniques, a new approach to personalisation for context-aware

applications is therefore necessary - one which does not rely on static, development-time de�nition

of information or require domain experts or users to explicitly specify and maintain preferences over

time. This motivates the research question addressed by this thesis, which is: what techniques/algo-

rithms are necessary to support the dynamic and implicit determination of user preferences from user

behaviour, including relevant information and correct information utility, to facilitate context-aware

applications in making accurate personalised recommendations to users?

To address this question, this thesis describes an investigation into a novel approach to personal-

isation that supports context-aware applications in making recommendations without explicitly pre-

de�ning the set of context relationships, user preferences and recommended behaviour. Instead, the

solution dynamically relates this information at run-time. It addresses the limitations of existing work

by providing software components that facilitate user autonomy, unconsidered context relationships,

and changing user preferences. At the core of the approach is the identi�cation and examination of

associations between contexts and user choices. These associations, generated from past user inter-

actions, represent patterns in behaviour from which the preferred actions of users, for a particular

context, are inferred. The main contribution of this thesis is the provision of a multi-staged recom-

mendation process consisting of a set of operations and algorithms that: automatically elicits user

preferences from user behaviour; dynamically �lters relevant information and adjusts the relative

utility of information to re�ect the current context and up-to-date preferences of the user; and dy-

namically generates and ranks competing recommendations. The process uses existing techniques and

algorithms (employed in various other �elds), which are adapted and combined in a novel manner to

provide an integrated approach for supporting personalisation in the context-aware domain.

The e�ectiveness of the approach in providing accurate personalised recommendations is evaluated

by comparing recommended behaviour against the preferred choice of users under di�erent contexts.

Two user studies and a set of computer simulated empirical experiments were conducted to assess

accuracy. The results of two implemented recommendation strategies along with the accuracy mea-

sures for information �ltering and utility adjustment algorithms are described. In addition, several of

the most relevant recommendation approaches (rules, preference models, case-based reasoning, and

neural networks) were implemented and evaluated, and the results of a study comparing the accuracy

of these approaches against the solution described in this thesis are presented.
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Chapter 1

Introduction

Personalisation is the process of tailoring application behaviour to the requirements of its users. Per-

sonalisation bene�ts users by facilitating them with their work tasks, making more e�ective use of their

attention, and increasing their satisfaction. Current approaches to personalisation are inadequate for

context-aware applications for two main reasons. They rely on human input to identify and relate

di�erent contexts, user preferences, and appropriate behaviour - a task which is time-consuming, com-

plex, and error-prone. They also rely on speci�cally de�ned algorithms that are inherently static and

therefore unable to automatically adapt relevant decision making information to accommodate chang-

ing user preferences. This thesis examines the challenge of personalising context-aware applications

and proposes an approach that supports the dynamic and implicit determination of user preferences,

including relevant decision-making information and information utility (i.e., its relative importance),

for a particular context. Behaviour recommendations that satisfy these preferences are subsequently

generated, ranked and presented to the user. This introductory chapter provides the background

and motivation to this work, introduces the proposed approach to personalisation of context-aware

applications, presents the contributions of the thesis, and outlines the remainder of the document.

1.1 Background

There are many existing de�nitions of personalisation [181, 114, 95, 85, 31]. A central and common

theme in all de�nitions is that personalisation is a process of adapting to the requirements of users.

Personalisation is increasingly prevalent and necessary in today's applications due to the bene�ts

it provides [95]. It accommodates di�erences between users and facilitates them by assisting with

work goals and enabling better access to information [31]. A primary concern of personalisation is
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providing users with recommendations, tailored to their preferences, that will aid them with their tasks

[86, 95, 31]. The more accurate personalised recommendations are, the more they will bene�t users.

Accurate recommendations will increase user motivation in carrying out their work tasks [144, 31],

make better use of user attention [53], facilitate greater user acceptance in recommended actions

[144, 53], and increase user satisfaction [114]. At the core of personalisation is a description of user

preferences, usually referred to as a user model [100, 11]. User models contain information such as user

preference criteria, the relative importance of criteria, and past user choices. Applications adapt and

make recommendation decisions based on preference data contained in a user model. For example,

the Travelling Salesman Problem (TSP) is a well known recommendation problem where applications

evaluate and recommend travel routes based on a user's preference for the least costly [13].

Like personalisation, the aim of mobile, context-aware computing is to tailor application behaviour.

Mobile, context-aware computing is a computing paradigm in which mobile devices have access to

situational information (e.g., user location, time of day, nearby people, available resources etc.) [167,

201], de�ned initially by Dey as �context� [60]. The increased availability and access to context in a

mobile setting facilitates applications in better adapting to its surrounding environment. In general,

context-aware applications exploit context, to make behaviour decisions that will aid users with their

activities. Many examples of context-aware applications exist including tourist guides [48], reminder

services [61], and teaching/learning systems [76].

In existing context-aware applications and frameworks, personalisation is achieved by adapting

to user preferences in the same manner as other types of context [65, 164, 107, 160]. This follows

a technology-centered de�nition of context (classi�ed by Dourish as a representational problem [63]),

which is found in studies focused on context-aware frameworks, architectures, and components [60,

167]. A technology-centered de�nition de�nes context as a form of information that is delineable (i.e.,

what counts as relevant context can be de�ned in advance) and stable (i.e., the relevancy of context

does not vary for di�erent activities or events and can be made once and for all in advance) [63].

However, by supporting user preferences in the same manner as other forms of context, a technology-

centered approach to personalisation ignores the dependencies that exist between user preferences and

other forms of context i.e., the preferred behaviour of the user is predicated on their context. For

example, users are more likely to accept work recommendations if it was a Monday than if it was a

Sunday. The need to capture the e�ects of context on user preferences when building personalised

systems is well supported [74, 22, 86, 121, 92]. Recent work by Palmisano and Gorgoglione in E-

commerce, for example, concluded that context does matter when modelling the behaviour of people

and that knowing the context in which a customer carries out purchases increases the ability to
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accurately predict the customers preferred behaviour [145, 74]. The context-dependent nature of

user preferences is consistent with de�nitions of user-centered context [144, 22, 24, 63] (classi�ed by

Dourish as an interactional problem [63]) and supports the view of context as a set of conditions or

factors that a�ect user preferences and subsequent behaviour. A user-centered de�nition of context

is distinct from the widely adopted technology-centered approach, and de�nes context as a relational

and dynamic property that may or may not be �contextually relevant� for a particular activity, the

scope of which cannot be de�ned in advance, but should be dynamically determined [63].

Following from these de�nitions, this thesis adopts a user-centered de�nition of context. This work

distinguishes between user preferences and other forms of environmental context (such as location,

time of day, and weather). The thesis examines the context-dependent nature of user preferences

(i.e., the e�ect of environmental context on user preferences) as well as the e�ect of preferences on

the contextual relevance of environmental context in personalised recommendation decisions (i.e., the

current user preference predicates the set of environmental context that is relevant for recommen-

dation decisions). In particular, the thesis investigates possible approaches for implicitly capturing

user preferences in context-aware applications, dealing with large sets of context and user preferences,

identifying and supporting the e�ects of context on user preferences, adjusting the contextual rele-

vance of environmental context to the current user preference, and tailoring context-aware application

behaviour to users.

1.2 Motivation

Current mobile, context-aware applications, like previous personalised desktop applications, adapt

to changing context and user preferences using either explicit or implicit techniques. Explicit tech-

niques rely on users or domain experts to explicitly specify context information and the corresponding

behaviour that is appropriate. With explicit techniques, experts are required to gather information

about how applications should adapt. When adapting to user preferences for example, experts will

require users to prioritise recommendation criteria or to rank alternative behaviours. This informa-

tion is subsequently used to explicitly de�ne the set of contexts (e.g., user preferences) supported by

the application and the corresponding behaviour that should be recommended or executed in that

context. Rule-bases are a common and widely adopted example of explicit techniques (e.g., if Context

A then recommend Behaviour 1 ). Implicit techniques, in contrast, do not require users or domain

experts to explicitly identify and specify how an application should behave under di�erent context.

Instead, applications are trained about how to adapt from past user behaviour or from training exam-
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ples. However, experts are required to de�ne a learning function (e.g., reward function or similarity

function) that trains the application about how to respond to di�erent user preferences or context.

In case-based reasoning (CBR) for example, experts specify the information types and corresponding

similarity measures that make up a similarity function (e.g., a travel application may consider origin,

destination, price, and total time for comparing �ights [55]).

Existing personalisation techniques provide a suitable approach for many current context-aware

systems as they are generally con�ned to well de�ned domains, limited in the number of context types

they support, and restricted to making recommendations of one particular type (e.g., a route rec-

ommendation in TSP). However, both explicit and implicit techniques used for specifying behaviour

in current context-aware systems are limited in personalising larger context-aware applications that

support context-dependent preferences. In particular, they are limited in supporting important person-

alisation tasks such as identifying and representing context-dependent user preferences (i.e., the e�ect

of context on user preferences) and adjusting the contextual relevance and utility of environmental

context in recommendation decisions to match the user's current context and up-to-date preferences.

There are two main reasons for this:

� Current personalisation techniques rely on humans (domain experts or users) to identify, relate,

and prioritise context and preferences to ensure correct behaviour. However, this task is complex,

error-prone, and time-consuming particularly with large sets of information; and

� Current personalisation techniques rely on speci�cally de�ned algorithms or functions that are

inherently static, with information relationships, relevant information, and the relative impor-

tance (or utility) of information used in making recommendations, de�ned at development time.

The de�nition of these algorithms/functions is a non trivial task and they will result in inaccu-

rate recommendations if relevant decision making information or utility changes, which occurs

as a result of a user's preferences changing or when new relationships between existing context,

preferences, or behaviour are required.

Many studies have shown that user preferences are a�ected by context and therefore need to be

considered in order to maintain the utility of recommended behaviour [74, 22, 86, 136, 92]. In partic-

ular, the e�ect of context on user preferences and how preferences predicates the contextual relevance

and utility of other environmental context are important factors that a�ect the accuracy of recom-

mended behaviour (e.g., a user's location will be more relevant and important than the time when

recommending nearby ATMs, but the opposite may be the case when recommending current TV

programmes of interest to the user). To support such context-preference dependencies using existing
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techniques, experts are required to explicitly identify the set of possible user preferences and de�ne

the appropriate relationships between preferences, context and behaviour. However, this human task

is di�cult due to the dynamism of context-aware environments and the growing availability of sensor

information. Context-aware applications operate in highly dynamic environments. The mobility and

spontaneous interaction between di�erent people and devices means that the current situation of the

user is constantly changing [11, 147, 171, 23]. In addition, advances in sensor, mobile, and network

devices are providing context-aware applications with greater availability and access to information.

This dynamism and increased availability will see applications needing to support and respond to a

larger number of more complex contexts, user preferences, and behaviours in order to adapt e�ec-

tively. For example, an application that supports 10 independent contexts types, each with 5 di�erent

values, will need to consider 510 (i.e., almost 10 million) possible di�erent context combinations. To

support context-dependent preferences with existing approaches would require humans (users or ex-

perts) to identify the set of context combinations that are relevant, the e�ect of each combination

on user preference, and the corresponding appropriate behaviour. That is, a user preference will

need to be correctly identi�ed and related to each of the relevant 510 possible context combinations

and the appropriate behaviour recommendation will need to be determined and associated with each

context and user preference pair. The large number of possible cases and the di�culty in accurately

de�ning relationships between context, preferences, and behaviour makes the human task of correctly

capturing this information extremely time-consuming, complex, and error-prone.

The task of accurately de�ning information relationships is further complicated because of changing

user preferences. Various studies have shown that the needs of users are constantly changing [23, 11,

171, 147, 134]. Changes are either abrupt or gradual. An abrupt change is a change in preference as

a result of events [113, 124]. Abrupt changes re�ect the context-dependant nature of preferences and

rea�rms the need to support changes to the preferred behaviour of a user as a result of a change in the

user's context (e.g., a user's preferred mode of transport may change as a result of an abrupt change in

weather). User preferences are also recognised to change gradually or slowly over time [26]. Gradual

changes occur due to a person gaining new experiences or from growing older (e.g., a user's taste in

music is likely to evolve over time). Abrupt changes make it di�cult for developers to identify and

de�ne relationships between context and preferences (as a di�erent preference may be required for each

context combination) while gradual changes may result in de�ned information relationships, which

were previously correct, becoming incorrect and therefore resulting in inaccurate recommendations.

Reusing the previous example, the di�cultly in identifying and representing information relationships

and changing user preferences means that one of the 510 possible contexts is likely to be missed or
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incorrectly de�ned. Inaccurate recommendations will therefore result until the relevant relationship

de�nitions are corrected.

Recommendation algorithms that learn from user behaviour eliminate the limitations associated

with the need to identify, relate, and pre-de�ne all relevant relationships between context and user

preferences. However, these algorithms are also pre-de�ned with details about information relation-

ships, relevance, and utility that are to be considered in application decisions (e.g., a Bayesian network

structure is statically de�ned to represent information relationships that are relevant in an applica-

tion while a CBR similarity function pre-de�nes a set of relevant information used for measuring the

similarity of cases). Changes to user preferences would therefore render pre-de�ned information as in-

accurate and as these approaches rely on statically de�ned functions, they are unable to automatically

adapt to necessary changes and require explicit human modi�cation in order to be corrected (e.g., a

de�ned CBR similarity function would need to be explicitly modi�ed to accommodate any changes to

the relevance or utility of information items used to compare case similarity).

The ability of a person to identify, relate, and de�ne relevant context and preference informa-

tion represents an example of the Information Overload problem [123, 77]. As available information

increases, the human task of identifying, relating, and prioritising relevant context and user pref-

erences to ensure correct application behaviour becomes correspondingly time-consuming, complex,

and error-prone. Di�culties associated with this task such as knowledge discovery (e.g., determining

what user preference and behaviour applies in a certain context), relating and prioritising information,

and maintenance and e�ciency are well recognised [149, 72]. The resultant e�ect is ine�cient and

ine�ective decision-making [68, 187].

Explicit user input is a possible solution to these limitations and is adopted in the personalisa-

tion of traditional desktop applications to correct inaccurate recommendations and to maintain user

preferences over time [157, 44, 174]. However, explicit user input is considered inappropriate as users

are recognised as being poor at providing feedback about their preferences. There are a number of

reasons for this. One reason is Zipf's principle of least e�ort [202], which states that people will adopt

a course of action that involves the least average amount of work. This principle predicts that users

will minimise the e�ort they expend on describing their preferences, even if it leads to inaccurate

recommendations. This principle is supported by the results of various studies in linguistics [202] and

information retrieval [161]. A second reason is the high cognitive load associated with explicit user

input, particularly with tasks such as prioritising criteria or ranking alternative recommendations, re-

sulting in users giving inaccurate feedback about their preferences [54]. A third reason is information

overload. Users are presented with large amounts of preference-related data that they are unable to
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interpret, leading to an inaccurate description of their preferences. In addition, studies have shown

that users do not have conscious access to their own preferences, and are therefore unable to give

accurate feedback about them [159, 25, 170]. The mobility of context-aware users creates further

di�culties for explicit user input. As users are mobile, providing input when necessary is not always

possible and the primitive input capabilities and form factor of many existing mobile devices makes

giving feedback di�cult. In addition, a user's interaction with their device becomes a secondary task

as they are engaged in other surrounding activities. Applications can no longer rely on prompt user

input and any request for feedback may become frustrating and intrusive. In addition, a recent study

by Barkhuus and Dey has shown that explicit user feedback is often inappropriate and that although

users feel a loss of control, they prefer autonomy if accurate results are provided [21]. Other studies go

a step further and indicate that the main reason for the success of personalised applications is because

they do not require users to provide feedback or input [141, 116].

Given the limitations of existing personalisation techniques, a new approach to personalisation for

context-aware applications is therefore necessary - one which does not rely on static, development-

time de�nition of information or require domain experts or users to explicitly specify and maintain

preferences over time. Existing context-aware systems and traditional personalised (recommender)

systems have been analysed with a particular focus on investigating: how current applications acquire

user preferences; how the e�ect of context on user preferences is identi�ed and represented; how

preferences a�ect the contextual relevance and utility of environmental context in recommendations;

and how possible behaviour recommendations are generated and ranked. From this analysis, the

following requirements for supporting the accurate personalisation of context-aware applications are

derived:

1. Context-dependant user preferences - applications must support the implicit identi�cation and

representation of user preferences, the e�ect of context on these preferences, the e�ect of pref-

erences on the contextual relevance of environmental context, and the mapping of context and

preferences to appropriate behaviour. Personalised context-aware applications are required to

support adaptation along two dimensions: user preferences and context. That is, either a pref-

erence change or a context change will in�uence an application's behaviour recommendation.

2. Changeable user preferences - personalisation in context-aware systems must implicitly accom-

modate changes to user preferences, which occur either abruptly in response to a change in

context, or gradually over time as the user evolves with experience. User preferences encap-

sulate how users decide between alternative behaviours. An important element of a user's

preference therefore, is the set of information and the relative importance of information users
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consider when making decisions, sometimes referred to as a multi-attribute utility estimation

problem [183]. In personalised context-aware applications, this set of information will need to

be dynamically adjusted depending on the user's recommendation problem (e.g., determining a

travel route between two locations) and context.

3. Complex context-aware environments - advances in sensor and mobile devices and the myriad

of interactions between devices and people mean that accurately capturing all possible relation-

ships between context, preferences, and behaviour is di�cult. Applications must accommodate

a large set of di�erent context types, values, and combinations and also adapt to previously un-

considered or inaccurate context relationships while maintaining the utility of recommendations.

The complexity of the environment also means that users will necessitate recommendations con-

sisting of di�erent output types (e.g., recommend both the preferred route and preferred mode

of transport). Personalisation support in context-aware applications should therefore support

the evaluation of multiple di�erent output types, recommending those that are most appropriate

for the current context and preference of the user.

4. Dynamic execution (to support developers) - the ability of a developer/domain expert to accu-

rately pre-de�ne the set of information relationships necessary for personalising context-aware

applications is di�cult due to the large number of possible contexts, the probability of discover-

ing previously unsupported context relationships, and the diverse and changeable nature of user

requirements. A dynamic approach eliminates the need for experts to specify relevant informa-

tion relationships. Instead, relevant relationships between context, preferences, and behaviour

are dynamically determined at run-time, when required (e.g., when a user's task changes) and

tailored for the current context and user preference. Dynamic execution also enables applications

to evolve to support changing user preferences or previously unconsidered context relationships,

without explicit input, as relationships are generated from up-to-date information.

5. Autonomous execution (to support users) - explicit user input is used by personalised appli-

cations to start a recommendation process or to correct any inaccuracies in developer-de�ned

preferences or recommendations. However, the problems associated with explicit user input

necessitate applications to act with autonomy. Applications will have greater responsibility to

automatically infer the desires of its users and act transparently on their behalf. Autonomous

execution facilitates a move to achieving the aim of pervasive �invisible� computing [143].

These requirements motivate the research question addressed by this thesis, which is: what tech-

niques and algorithms are necessary to support the dynamic and implicit determination of user pref-
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Figure 1.1: Context-aware Personalised Recommendation Process

erences from user behaviour, including relevant information and correct information utility, to facilitate

context-aware applications in making accurate personalised recommendations to users?

1.3 Approach

To address the research question, this thesis describes an investigation into a novel approach to per-

sonalisation. This approach does not require information about relationships between context, user

preferences, behaviour, or about the relevance and utility of information to be explicitly pre-de�ned.

Instead, the approach dynamically determines context-dependant user preferences and relevant deci-

sion making information by implicitly identifying and reasoning appropriate information relationships

at run time. It addresses the limitations of existing work by providing techniques and algorithms that

facilitate user autonomy, unconsidered context relationships, and changing user requirements. Figure

1.1 illustrates the aim of the personalisation approach proposed in this thesis, which is to dynamically

determine the preferences of a user for a particular problem and context. Information relevance and

utility, tailored for the given problem and context, is subsequently inferred from the user's preferences

and inferred knowledge is used to rank candidate recommendations. The run-time, implicit execution

of these functions is designed to support applications in making recommendations that are speci�cally

tailored to the problem, context, and preferences of users.

The approach uses existing techniques and algorithms (employed in other �elds such as context-

awareness, user modelling, information retrieval, and data mining) for tasks including the acquisition

and management of context information, the �ltering of large amounts of information, and the identi-

�cation of patterns in context information and user behaviour. These techniques and algorithms are

used, adapted, and combined in a novel manner, to provide an integrated approach for supporting

personalisation in the context-aware domain. At the core of the approach is the identi�cation and

9



Chapter 1. Introduction

Figure 1.2: Personalisation of Context-aware Applications

examination of associations between contexts and user behaviour choices. These associations, gen-

erated from a user model of past user interactions, gathered from implicit user feedback, represent

patterns in behaviour from which the preferred actions of users, for a particular context, are inferred.

Details about relevant information, information utility, and criteria for ranking recommendations are

also inferred from these patterns. The main contribution of this thesis is the provision of a multi-

stage recommendation process consisting of a set of operations and algorithms that: automatically

determines user preferences from past behaviour; dynamically �lters relevant recommendation infor-

mation and adjusts the relative utility of information to re�ect the current context and up-to-date

preferences of the user; and dynamically generates and ranks competing recommendations. Figure 1.2

illustrates this multi-stage process including the series of operations that support the personalisation

of context-aware applications.

1.3.1 Implicit Preference Determination

At the core of personalisation is a description of user preferences. To ensure accurate tailored rec-

ommendations, applications must correctly determine the preferred behaviour of users for di�erent

contexts. Implicit preference determination is concerned with inferring the preferences of a user given

their recommendation problem and context, without requiring explicit user input about preferences.

Determined preferences should be up-to-date, capturing any abrupt or gradual changes to user pref-

erences that occur with application use. Implicit preference determination is achieved by dynamically
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identifying behaviour patterns from past user behaviour stored in a user model (i.e., recurring asso-

ciations between context and user choices). Several techniques adopted from other research �elds are

adapted and combined to complete the various tasks necessary for implicit preference determination.

Methods from context-awareness are adopted for the acquisition, reasoning, and management of con-

text [18, 132, 12, 42]. Functions from the Hermes framework [65] have been used for context-related

tasks. User modelling techniques [100] and user pro�les applied in content-based systems [6] were

examined for representing user model data. User information such as past behaviour is gathered from

implicit user feedback, therefore eliminating the need for users to explicitly specify details about their

preferences. The user model is extended to also store the context at the time of each behaviour. User

model data is represented in the form of cases in a similar manner as that used in case-based reasoning

(CBR) [1]. Association data mining [8, 45] is used for mining user model data. Mining eliminates

the need for explicit human input to identify and relate context and preferences. Instead, mining

enables the autonomous and dynamic determination of association between context and user choices,

which represent the context-dependent preferences of a user. These associations represent patterns in

behaviour from which the preferred actions of users, for a particular context, are inferred. New user

interactions and behaviour in addition to the context at the time of the behaviour are added to the

user model with application use. As associations are generated at run-time using an up-to-date set

of user interactions, the application can accommodate previously unconsidered context relationships

or any changes to user preferences. Associations are also in a form that provides an intuitive and

descriptive way of representing user behaviour and are compatible with explanation methods that

enable users to query and scrutinise applications about their behaviour [27, 96]. Associations between

di�erent context types and values and user choices are generated, facilitating user preferences to be

determined for multiple di�erent combinations of context and multiple di�erent types of recommenda-

tion problems. The CBR concept of using past similar cases to solve the current problem is adopted to

determine user preferences from historic behaviour cases. The assumption is that behaviour patterns

represent the preferred actions of users in a particular context [1, 53].

1.3.2 Information Selection

A user-centered de�nition of context de�nes context as a relational and dynamic property, which may

or may not be contextually relevant depending on the particular activity, and should therefore be

determined dynamically [63]. The growing availability of sensor information requires context-aware

applications to support an increasing number of di�erent context types and values. However, not all

information available to and supported by an application is relevant for decision making [123, 4, 74].
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Depending on their goal and their context, users will vary in the types of information they use

for making decisions. An important task is therefore to dynamically and autonomously determine

the subset of all context, preferences, and behaviour that are relevant for making recommendation

decisions. Information selection (often referred to as feature selection [118]) is concerned with �ltering

information to determine the subset that is relevant to the current recommendation problem, context,

and preference of the user.

Association mining techniques are used to discover patterns in user behaviour, which are itera-

tively compared to determine relevant information. Speci�cally, the user's action choice under various

context settings is compared. From the analysis of similarities and di�erences that exist in patterns,

relevant information that signi�cantly in�uences use behaviour choices, and therefore should be con-

sidered in recommendation decisions, is inferred. Metrics from association mining, such as support

and con�dence [45] are used to �lter generated association rules, ensuring only those that meet a

particular accuracy and interestingness threshold are retained before comparisons. Techniques for

textual matching and fuzzy comparisons used in information retrieval [17] and CBR [1] are facilitated

for comparing information stored in behaviour patterns.

Determining the set of contextually relevant information for a particular context can also address

the question of when to begin the recommendation process [65]. Starting the recommendation process

at the incorrect time can lead to inaccurate recommendations, be intrusive to users, and result in

sub-optimal performance (e.g., using a device's processing and battery power when unnecessary). By

identifying the set of relevant information, information selection can be used to signal when a new

recommendation should be evaluated and presented to the user. That is the preferred action of a

user is likely to change when the value of a relevant context type changes (e.g., if a user's preferred

transport option is based on the weather context, then a change in the value of the weather context

(e.g., from dry to wet) will require making a new transport recommendation to the user).

1.3.3 Utility Assignment

As the set of information considered relevant for recommendation decisions varies depending on the

user's preference and context, so also does the relative importance or weight information has in

recommendation decisions. This is evident in existing recommender systems where users rank recom-

mendation criteria di�erently in di�erent context [114, 74]. While information selection is concerned

with determining the set of environmental context that is relevant, utility assignment, in contrast,

is focused on determining how contextually relevant each environmental context type is (i.e., the

relative importance of each context type for the recommendation decision). The utility assignment
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stage therefore provides functions and algorithms for dynamically determining and assigning the cor-

rect weight (or utility) to information without the need for explicit user input, so that its relative

importance re�ects the preferences of a user in a particular context. The algorithm and heuristics

used to dynamically determine the appropriate weight to assign to information for a particular con-

text is constructed using information quality metrics from information retrieval [17] and data mining

[45]. Precision, recall, con�dence, support, and lift measures are combined and aggregated to create

a customisable algorithm that determines the strength of user behaviour patterns, with information

stronger rules given more weight in recommendation decisions. Multi-attribute utility theory [183]

and decision theory [70] techniques that assign numeric weight values (or scores) to prioritise the

importance of items are adopted to represent the utility of context information.

1.3.4 Recommendation Generation and Ranking

A primary goal of personalisation in context-aware applications is to provide users with behaviour

recommendations that will aid them with their activities. The �nal stage of the recommendation

process is concerned with generating and ranking candidate behaviours that best accommodate the

current context and preference of the user. The implicit preference determination stage generated

association rules representing the context-dependent preferences of users. These rules are then �ltered,

aggregated, and prioritised at the information selection and utility assignment stages to ensure that

the most relevant and suitable rules that match the current user preferences and context are considered

at this recommendation stage. Retained rules are used to rank any competing alternatives. Possible

recommendations are generated from the current context from the domain (e.g., what actions are

possible given the current context), determined using context-aware functionality [65], and a list of

past actions chosen by the users, which are stored in the user model. The multi-attribute utility

technique [183] is used to rank each of the possible behaviours using the outputs of information

selection and utility assignment. The integration of this technique with the personalisation approach

proposed in this thesis facilitates candidate behaviours to be scored using multiple dimensions with

di�erent levels of relative importance. The highest ranked behaviour (or a number of highest ranked

behaviours) is then presented as recommendations to the user. Rules generated at the preference

determination stage support the association of multiple di�erent context and problem types, therefore

facilitating the ranking and recommendation of multiple di�erent recommendations (e.g., recommend

both the preferred route and preferred mode of transport).

Presenting recommendations to users represents a passive approach, which enables user's to ul-

timately decide whether recommended behaviour should be executed or not [21]. It lies in between
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complete personalization, where users are in full control and specify how an application should behave,

and an active approach, where applications act with full autonomy including making actual changes

to application behaviour. Users have been shown to prefer a passive approach over personalization,

while no signi�cant preference was concluded between passive and active approaches [21].

1.4 Contributions

The personalisation approach described in this thesis contributes to the state of the art in the area of

mobile, context-aware personalisation by addressing the following issues:

� Current approaches for determining context-dependant user preferences require users or domain

experts to explicitly identify and represent relationships between context and preferences (typi-

cally as rules or learning functions) to ensure correct behaviour. However, the accurate de�nition

of this information is di�cult due to the large set of (complex) context and preferences relation-

ships and the changeable nature of user preferences. This thesis describes a dynamic approach to

determining context-dependant preferences, where preferences for a particular recommendation

problem and context are automatically inferred from past user behaviour.

� Current approaches to personalisation require domain experts or users to statically specify the set

of information to be considered relevant in recommendation decisions, typically at development

time. However, when context, preference or behaviour de�nitions are incorrect, when previously

unconsidered context relationships arise, or when user preferences change, a static approach is

unable to automatically adapt and will therefore result in inaccurate recommendations. This

thesis describes an approach that addresses this limitation by providing a technique that dynam-

ically and autonomously determines, from past user behaviour, the set of relevant information,

which is tailored for di�erent recommendation problems, context, and user preferences.

� Current approaches to personalisation require domain experts or users to statically specify the

relative utility of information considered in recommendation decisions. As with statically de�n-

ing relevant decision-making information, a static approach to specifying utility means that

applications are unable to automatically adapt when utilities, which represent user preferences,

are incorrectly de�ned or when user preferences change, therefore resulting in inaccurate rec-

ommendations. This thesis describes an approach to utility assignment, where the relative

weight attributed to information considered in recommendation decisions is dynamically and

autonomously adjusted according to the problem, context, and preferences of the user.
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� Current approaches for generating and ranking competing recommendations require explicit in-

put from users or domain experts and are limited by the number of recommendations types they

can evaluate. However, accurately determining and ranking behaviour is di�cult due to the de-

pendency between context and preferences as well as the changeable nature of user preferences.

This thesis describes a technique which dynamically generates and ranks multiple recommen-

dation types. The approach considers user preferences, context, and possible behaviours and

prioritises recommendations by examining the strength of user behaviour patterns.

In summary, this thesis describes the development of a multi-stage recommendation process, which

uses, adapts, and combines existing techniques and algorithms in a novel manner, for implicit pref-

erence determination, information selection, utility assignment, and recommendation generation and

ranking to provide an integrated approach for supporting personalisation in context-aware applica-

tions.

The contributions of the thesis are evaluated by comparing behaviour recommendations against the

preferred choice of users under di�erent context. The ability of the approach to make recommendations

which match actual user choices validates the contributions regarding the multi-stage recommendation

process and the determination of context-dependant user preferences. The e�ectiveness of information

selection, utility assignment, and recommendation ranking algorithms are also evaluated by comparing

them with user choices. Two user studies and a set of computer simulated empirical experiments were

conducted to assess the accuracy of two developed recommendation strategies. In addition, several of

the most relevant recommendation approaches (rules, preference models, case-based reasoning, and

neural networks) were implemented and evaluated, and the results of a study comparing the accuracy

of these approaches against the algorithms described in this thesis are presented.

1.5 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 presents an overview of the state

of the art in personalisation of context-aware applications. Chapter 3 describes the design of the

personalisation approach proposed in this thesis, including the techniques and algorithms designed for

di�erent stages of the approach. Chapter 4 describes the implementation of the approach. Chapter

5 presents its evaluation, including a description of user studies and simulated empirical experiments

conducted to assess the accuracy of the approach in making personalised recommendations to users.

Finally chapter 6 summarises the contributions of this thesis and discusses several directions for future

work.
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State of the Art

This chapter examines state of the art projects that provide an approach to support personalisation in

context-aware applications. Recommender systems, context-aware applications and frameworks, and

projects that focus speci�cally on personalisation in context-aware systems are reviewed. A critical

evaluation of how these projects support the requirements described in Section 1.2 is also presented.

While a number of state of the art projects o�er support for the development of personalised context-

aware applications, this thesis concludes that no single approach o�ers support for the full set of

requirements needed for e�ective personalisation in context-aware applications.

2.1 Recommender Systems

This section presents an overview of recommender information systems and discusses the approaches

they provide to tailor behaviour recommendations to the preferences of users. An analysis of how

these systems address the requirements outlined in Section 1.2 is also presented.

2.1.1 Overview

Recommender systems are designed to aid users by recommending items that match their preferences

in situations where they have too many options to choose from [6, 134].

At the core of recommender systems is a description of user interests/preferences represented

in a user model. Several techniques in existing recommender systems have been adopted for the

representation of user models. The most commonly used representation approaches are history-based

models, user-item ratings, and vector (or feature) space models: history-based models keep a list
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of a user's past interactions such as their purchasing history or navigation history to represent user

interests; user ratings contain a record of user-item ratings that are explicitly inputted by users; and

vector space models represent user preferences as a vector of features with an associated utility value

(e.g., a song will have features such as artist and genre and an associated preference rating).

As user preferences and interests change over time [23, 11, 171, 147, 134], a user model should

also change in order to maintain the utility of recommendations. Relevance feedback from the user

is required for systems to monitor how user preferences change. Feedback is either explicit, which

requires users to explicitly maintain user model information, or implicit, which automatically infers

changing user's preferences by monitoring their behaviour.

There are three main methods for �ltering and recommending candidate items so that only those

that match the user's preferences are recommended. They are: content-based (or case-based), collabo-

rative, and hybrid approaches [6, 134]. With content-based recommendations, users are recommended

items similar to those they preferred in the past. A user pro�le is built from descriptions of items a

user previously expressed interest in (e.g., by purchasing or rating a particular item). Recommenda-

tions are made by comparing features of candidate items with features contained in the user pro�le.

Those that match or are su�ciently similar are recommended to the user. With collaborative recom-

mendations, users are recommended items that other people with similar preferences have selected in

the past. That is, the utility of items for a particular user is based on items previously rated by other

similar users. A user pro�le is built from the behaviour of a group of similar users, which is then

used to make recommendations for an individual user. A hybrid approach combines content-based

and collaborative methods.

Many recommender systems from various domains are currently available. For example, the Per-

sonal TV system (PTV) [52] is a system that provides personalised TV listings based on the viewing

preferences of users. User pro�le information is collected by asking users to explicitly provide feedback

about TV programmes they like and dislike. A hybrid recommendation strategy using both collabora-

tive and content-based methods is used when making programme recommendations to users. News4U

[93] is a personal newspaper, which selects news items from a variety of sources based on the interests

of its user. User models are built and maintained by explicit user feedback, which require users to

express their topics of interest. News4U uses a content-based approach whereby topic keywords in the

user model and news items are compared and when matched, are presented to the user. Letzia [115] is

a system that recommends web-page hyperlinks by comparing them with pages previously visited by

the user. The user's pro�le is constructed by extracting keywords from visited pages. These keywords

are subsequently used to grade new pages to determine those to recommend to the user. Finally, Ama-
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Name Domain Preference
Representation

Recommendation
Approach

Amazon [116] E-Commerce History Hybrid
CASPER [33] Recruitment History Content-based
CDNow [40] E-Commerce History, User-item

rating
Hybrid

Entree [37] Restaurant
Recommender

Feature Vector Content-based

GroupLens [106] News User-item rating Collaborative
I-SPY system [19] Web Search History Collaborative
Letzia [115] Web Recommender History Content-based
LIBRA [30] Book Recommender User-item rating Hybrid
MovieLens [73] Entertainment Feature Vector Hybrid
Musicmatch jukebox [191] Entertainment Feature Vector Content-based
News4U [93] News Feature Vector Content-based
NewT [123] News Feature Vector Content-based
PResTo [97] Web Search History Content-based
PTV [52] Entertainment User-item rating Hybrid
SmartRadio [82] Entertainment User-item rating Content-based
SMMART [112] E-Commerce Feature Vector Content-based
TURAS [127] Travel Route

Recommender
History Content-based

WebSail [46] Web Search Feature Vector Content-based
Table 2.1: Recommender Systems Overview

zon [116] supports personalisation by maintaining a user's set of purchased products and other similar

products purchased by similar users are recommended. Table 2.1 illustrates the domain, preference

representation method, and recommendation approach of a number of state of the art recommender

systems.

2.1.2 Analysis

The set of surveyed systems are examples of recommender systems that adapt to user model infor-

mation such as user interests and user preferences. However, user preferences only give a partial

expression of a user's needs. Studies such as those by Gorgoglione [74] and Barnard [22] show that

other types of (environmental) context such as location and time (in addition to user preferences)

are also important as they impact on user preferences and a�ect the accuracy of recommendations.

Consequently, the main limitation of these existing recommender systems is the limited support for

environmental context in their design. For example, in the PTV application the fact that people watch

TV with other people is not taken into account and shopping systems such as Amazon and CDNow do

not consider that users may be shopping for other people who have di�erent interests. Several appli-
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Name Preference Feedback Supported Context

Amazon [116] Explicit, Implicit (purchase history) purchased items
CASPER [33] Implicit (job application history) search terms
CDNow [40] Explicit, Implicit (purchase history) purchased items
Entree [37] Explicit food preferences
GroupLens [106] Explicit, Implicit (time spent) movie features
I-SPY system [19] Implicit (search history) search terms
Letzia [115] Implicit (links, time spent) web page content
LIBRA [30] Explicit search terms
MovieLens [73] Explicit music features
Music Match jukebox [191] Explicit, Implicit (playlist history) music features
News4U [93] Explicit news topics
NewT [123] Explicit news topics
PResTo [97] Implicit (search terms, links) search terms
PTV [52] Explicit programme ratings
SmartRadio [82] Explicit, Implicit (playlist history) music ratings, current

playlist
SMMART [112] Explicit, Implicit (purchase history) item ratings, purchased

items
TURAS [127] Implicit (travel history) start, end location,

travel history
WebSail [46] Explicit search terms

Table 2.2: Recommender Systems Supported Feedback and Context

cations such as CASPER and Entree provide limited support for context by enabling user to explicitly

specify their current context through search terms. Other applications such as Letzia and SmartRadio

provide support for implicitly inferring user context by recording the user's current behaviour. How-

ever, these applications are limited by the number of context types they support. Existing approaches

for representing user models such as user history, user-item ratings, and vector spaces also are limited

in their support for context in their representation. As an extension to the limited support for con-

text, methods that will aid users and developers to identify and represent dependencies between user

preferences and context are also unsupported by current recommender systems, therefore restricting

the ability of recommender applications to adapt user preferences to di�erent context.

Content-based and collaborative approaches used in recommender systems are also inherently static

and rely on users or developers to de�ne relevant information and information utility. In state of the

art projects, relevant user model features (content-based) and similarity measures (collaborative) are

explicitly de�ned by developers. Preferences information such as the utility of features and item

ratings typically require explicit user feedback or input. The static nature of content-based and

collaborative approaches also means that human input is required to accommodate any changes to

user preferences. That is, users are required to re-rank items or developers are required to re-de�ne
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relevant information and information utility to ensure that the system evolves with user preference

changes. Some systems (e.g., Letzia and SmartRadio) do provide implicit techniques for acquiring and

evolving user preferences, but these are restricted to very speci�c application types such as history of

purchases or navigation history, and more importantly are limited by the number of context types they

consider when determining preferences. While human input is acceptable for many traditional desktop

based personalised systems, the problems outlined in Section 1.2 show that autonomous techniques for

identifying and maintaining context-dependent user preferences are required. This view is supported

by Keenoy and Levene [97]. As part of their survey of web search personalisation techniques, they

outlined a set of requirements for an �ideal � personalised search system. Central to these requirements

are the need for the implicit collection of user preference information and the automatic adaptation

to current up-to-date user preferences. Table 2.2 summarises the preference feedback approach and

context types supported by the surveyed state of the art personalised recommender systems.

Other limitations with content-based and collaborative approaches also exist. A content-based

approach is limited by its tendency to over specialize to particular items described in the user's pro�le

and the need to represent features as textual descriptions. Collaborative approaches are limited by

their lack of scalability in terms of e�ciency and the sparse nature of data. They are also restricted

by privacy concerns associated with sharing data and the di�culty in identifying similar users.

The limited support for context and dependencies between context and user preferences, and the

reliance on explicit human input limits the support for personalisation techniques used in existing

recommender systems to provide accurate personalised recommendations in context-aware applica-

tions. However, a survey of these personalised systems, along with the techniques and approaches

they utilise, provide a useful insight into how preferences can be identi�ed, captured, and represented

in context-aware applications.

2.2 Context-aware Applications and Frameworks

The aim of context-aware systems, like personalised recommender systems, is to tailor application

behaviour. However, context-aware applications generally consider more types of situational informa-

tion (e.g., location, time, weather) when making behaviour recommendations. This section presents a

description of the basic functionality of several context-aware applications and frameworks along with

an analysis of how they support the requirements outlined in Section 1.2.
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Figure 2.1: Layered Conceptual Structure for Context-aware Systems [18]

2.2.1 Overview

A large body of research in the context-awareness domain has focused on creating architectures, infras-

tructures, middlewares and frameworks that provide functionality to support developers in building

context-aware applications. The primary goal of these frameworks is to make context information

available to application developers so that they do not need to concern themselves with the complexi-

ties of context-related tasks. These frameworks provide �uniform abstractions of common functionality

and reliable services for common operations� [88]. Core context-related functionality provided by these

frameworks includes operations for the collection, management, and use of context information, which

serve as the building blocks for developing context-aware applications.

The functionality provided by existing context-aware frameworks and applications have been re-

viewed and categorised in many recent studies [18, 132, 12, 42, 2, 117]. The conceptual structure

de�ned by Baldauf et al. (shown in Figure 2.1) illustrates the set context-aware functionality common

to existing context-aware applications and frameworks. The structure consists of the following layers

(from bottom to top):

� Sensors - this layer consists of a collection of data sources that may provide context informa-

tion. Sensors are classi�ed as physical, virtual, or logical. Physical sensors are hardware devices

such as colour sensors, microphones, and GPS systems, which provide light, audio, and loca-

tion context respectively; virtual sensors are software applications or services such as electronic

calendars, emails, and keyboard input; and logical sensors combine physical and logical sensors

e.g., determining user location by analysing logins at desktop PCs and subsequently querying a

mapping database about the location of devices.

� Raw data retrieval - this layer encapsulates functionality associated with the retrieval of raw

21



Chapter 2. State of the Art

context data. It uses appropriate drivers and APIs to provide reusable methods that hide the

low level details of sensor access, which supports the exchange of underlying sensors (e.g., a

RFID system can be replaced by a GPS system) without a�ecting current and upper layers.

� Preprocessing - this layer is responsible for reasoning and interpreting context information and

for transforming context into a high-level representation that is internally understood by the

application.

� Storage/Management - this layer organises context data acquired from lower levels and provides

clients (i.e., applications) with synchronous or asynchronous access to context.

� Application - this layer de�nes the actual reaction to di�erent context events such as the suitable

behaviour to recommend to application users.

Personalisation is not a primary concern of existing context-aware applications and frameworks -

context-related functionality such as acquiring, reasoning, and managing context information is. How-

ever, personalisation is supported by existing context-aware applications and frameworks and this is

achieved by supporting user preferences in the same manner as other types of context. User prefer-

ences, like other context types, are acquired through the sensor and raw data retrieval layers (e.g.,

through user keyboard input), are interpreted and modelled at the preprocessing and storage/man-

agement layers, and used by applications to recommend appropriate personalised behaviour.

Several existing context-aware applications explicitly mention user preferences in their design. For

example, the GUIDE system [48] is a mobile context-aware tour guide that provides city visitors

with information about tourist attractions based on their location and pro�le information. User

pro�le information is captured by asking users about their preference for architecture, maritime, or

history and about their preferred reading language. Environmental information such as the time of

day and opening/closing time of attractions are also considered when personalising information to

present to users. Similarly, P-Tour [125] is a personal navigation system for tourism, which computes

a personalised travel schedule for tourists that maximises the number of destinations they can visit,

considering both user preferences and other environmental context. User preferences are acquired

by requesting users to assign rankings to candidate destinations and their preferred staying time for

each destination. Environmental context such as the user's current location, the location of each

destination, and the destination time restrictions (i.e., opening and closing times) are also considered

when scheduling destinations. Schedules are automatically modi�ed based on context changes, which

are detected by monitoring the time and current user location or by users modifying their preferences

(e.g., a user changing their staying duration at a destination). Other context-aware tourist guide
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applications and smart home applications which adapt their behaviour to both user preferences and

context in a similar manner to GUIDE and P-Tour include Dynamic Tourist Guide [109], the museum

guide by Zancanaro et al. [196], CRUMPET [148], Personal Home Server [139], Smart Home [122],

Aware Home [179], and Microsoft Easy Living [129].

Several context-aware frameworks also explicitly mention user preferences in their design. User

preferences in these frameworks are also supported in the same manner as other types of context

information. For example, the Stick-e Document [35] and Stick-e Note frameworks [146] enable items

(documents or notes) to be attached to particular context, so that when a user enters such a context,

these items will be invoked. Users express their preferences by indicating the types of documents

or notes they wish to receive. Only document and note types speci�ed as part of these preferences

are triggered and presented to the user when detected by the system. In the Gaia project [160], the

user centrism property requires applications to provides mechanisms that allow users to con�gure

applications to their personal preferences and ensures that applications move with the users and

adapt according to changes in the available resources. User preferences are mounted onto the Context

File System and are accessed by applications when necessary. Rule-based and machine learning

approaches (Bayesian Networks, Neural Networks, and Reinforcement Learning) are supported for

adapting application behaviour to context such as user preferences. Personalisation in MyCampus

[164] is supported by providing users with access to a personal environment from which they control

access to their personal preferences and contextual attributes such as calendar information and current

user location. Users can personalise the operation of their personal environments on their PDAs by

installing context-aware agents (in a similar way to mobile phone users downloading new ring tones)

to perform speci�c tasks while taking into account relevant user preferences and context. For example

a restaurant concierge agent would provide suggestions about where to have lunch depending on

the user's food preferences, time available before the next class, and the weather. Ontologies are

used to describe context data and user preferences. A STRIPS -like (Stanford Research Institute

Problem Solver) [69] formalism is used to de�ne behaviour. The Hermes framework [65] supports

user preferences using multi-attribute utility estimation techniques [183], enabling users to specify

preferences regarding activity scheduling in context-aware trails-based applications. Users express

their preferences by adjusting the relevance and utility of context considered in recommendation

decisions. For example, users can express their preference for activities that are close to their current

location by increasing the utility of the proximity variable. Finally, Merino [111] provides a layered

architecture for context-awareness. User models are stored in a distributed context database using the

Personis user modelling framework [96]. User model data such as user location or preferences, termed
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evidence, are acquired from sensors or user input. Resolvers enable the user to control the classes of

evidence made available while the view mechanism enable subsets of the user model to be queried.

A critical element of the Personis framework is to provide interfaces, enabling users to query any

part of the user model and make changes where necessary. Other context-aware projects, like Merino

and Personis, have also focused on providing appropriate interfaces that support users in specifying

preferences such as those by Weis [185], Riekki [156], and Korpipaa [107].

Other context-aware frameworks such as the Context Toolkit [62], the Java Context-Awareness

Framework (JCAF) [20], the Sentient Object Model (SOM) [29], and the Technology Enabling Aware-

ness (TEA) layered architecture by Chen [41] do not explicitly mention user preferences in their design.

However, personalisation can be achieved by these frameworks in a similar manner to the previously

described applications and frameworks (i.e., by acquiring and adapting to preferences in the same

manner as other context types). For example, in the Context Toolkit, widgets and interpreters can

be applied to the acquisition and interpretation of user preferences as they would other context such

as user location. Similarly JCAF provides Java-based operations, SOM provides context modelling

and rule-based inference functionality, and TEA provides a set of commands organised in a layered

fashion that can be applied to support the gathering and management of, and adaptation to, user

preferences. Other examples of frameworks which do not explicitly include user preferences in their

design but support preferences as they do other context types include ContextFabric [89], Context

Shadow [94], Hydrogen [87], HyCon [32], SOCAM [78], and CoBrA [43].

2.2.2 Analysis

A review of existing context-aware applications and frameworks has shown that personalisation is

provided by supporting user preferences in the same manner as other types of context. This enables

operations designed for context acquisition, reasoning, and adaptation to be reused and applied to

the management of user preferences.

However, by supporting preferences in the same manner as other types of context, existing frame-

works are limited in their support for expressing the dependencies that exist between user preferences

and other environmental context. Speci�cally, users or developers are responsible for identifying and

representing a user's behaviour preference under di�erent context settings. This requires identifying

the set of relevant context relationships and subsequently associating these relationships with user

preferences and appropriate behaviour. Identifying and de�ning the utility of di�erent context (and

context relationships) for recommendation decisions is also required. No methods or techniques are

currently provided by existing context-aware applications and frameworks to aid users or developers
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in dynamically identifying and representing the e�ect of di�erent and changing context on the pre-

ferred actions of users. For example, with rule-based adaptation in SOM, developers are responsible

for specifying and prioritising a set of context-action rules to ensure correct personalised behaviour.

Similarly, with Bayesian Network adaptation in Gaia, expert knowledge and input is required to de�ne

the structure of the network, including modelling the relevant set of context relationships and calcu-

lating the associated set of probability distributions. The di�culty of this human task of identifying

and specifying context-dependent preferences highlights the need for techniques and algorithms that

will automatically identify and represent the preferred actions of a user in di�erent contexts.

In addition, any changes to user preferences are not autonomously supported by existing context-

aware applications and frameworks. To accommodate changing user preferences and to maintain the

utility of recommendations over time, existing approaches currently require explicit human (developer

or user) knowledge and input. Updates to de�ned context, preference, or behaviour information as

well as to the relevance and utility of information in recommendation decisions will be necessary.

State of the art frameworks require users or developers to manually modify preference details such

as rule de�nitions or model structures to cater for preference changes. For example, the Hermes

framework enables users to modify their preferences by adjusting the relevance and utility of context

in recommendation decisions. In SOM, rules will need to be re-de�ned or re-ordered. In Gaia,

the Bayesian Network structure will require re-modelling or the probability distribution tables will

require updating. Online learning facilitates applications to automatically adapt to changing user

preferences. However, online machine learning also requires extensive expert knowledge and current

context-aware applications and frameworks do not explicitly support online learning in their designs.

Explicit human input provides a possible approach to maintaining user preferences over time (and is

the approach adopted by existing context-aware applications and frameworks). However, this thesis

contends that explicit user feedback is not always accurate or possible (as described in Section 1.2),

and dynamic methods that autonomously react and adapt to changing context and user preferences

at the appropriate time are required for e�ective personalisation in context-aware applications.

Logically, the autonomous determination of context-dependent user preferences would occur at the

preprocessing stage of the conceptual structure of context-aware functionality; the storage/manage-

ment layer would provide methods for representing and accessing these preference; and the application

layer would support functionality that interprets the preferences of a user for the current context,

including the determination of context relevance and utility, for making personalised behaviour rec-

ommendations to users.
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Figure 2.2: MobiLife Contextual Personalisation Architecture [176]

2.3 Approaches to Context-dependant Personalisation

While current context-aware applications support adaptation to context and user preferences, they

are not speci�cally focused on supporting dependencies between user preferences and other types of

context. This section reviews the most related state of the art projects in context-awareness that focus

directly on addressing the challenge of supporting personalisation (and in particular identifying, rep-

resenting, and adapting to context-dependent user preferences) in context-aware applications. These

projects are evaluated against the requirements described in Section 1.2.

2.3.1 MobiLife

The EU-IST MobiLife project [176, 165] conducts research aimed at developing an architecture to

support the contextual and personalised adaptation of multimodal mobile applications for users. The

architecture of MobiLife is based on a generic context management framework, which provides ap-

proaches for managing, reasoning about, and exchanging context data.

A primary element of MobiLife is the Contextual Personalization Architecture, developed as part

of the overall MobiLife architecture, which provides personalisation support for services and applica-

tions. The central aim of the architecture is to provide support for developers so they do not have

to repeatedly tackle the challenges associated with context processing and personalisation. The ar-

chitecture provides components to support tasks such as acquiring and interpreting context, inferring

appropriate behaviour, and storing and learning user preferences. At present, several components

of the architecture have been developed and are illustrated in Figure 2.2: Context Gathering and

Interpretation (CGI), Basic Usage Record Provider (BURP), Individual Pro�le Management (IPM),
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and Recommender. The CGI component is responsible for collecting sensor data and determining

the user's current context from this data; the BURP stores historical user behaviour; the IPM man-

ages user preferences and is responsible for linking user preferences with a particular context; and

the Recommender uses data from BURP and IPM to model user behaviour patterns for a particular

context (i.e., context-dependent user preferences) and makes recommendations accordingly. User data

is described in user models, which contain domain submodels and conditional submodels. Domain

submodels describe user preferences for a particular domain or function (e.g., a user's preferred news-

paper content) and conditional submodels describe user information for a particular context (e.g., user

preference for newspaper content at a particular time of day). User data is represented using RDF(S)

and OWL representation languages. Two approaches are currently supported by the Recommender -

rule bases and Bayesian Networks - to provide personalised service adaptation to users.

2.3.1.1 Analysis

The main aim and contribution of the MobiLife project is the provision of a context management

architecture that supports the collection, management and adaptation of context and preference in-

formation. However, while MobiLife provides a high level architecture for context-awareness and

personalisation support, implementation is ongoing and precise descriptions about supported func-

tionality are currently unavailable. MobiLife does not currently support the implicit elicitation of

user preferences. The use of RDF(S) and OWL indicates that developers are required to explicitly

identify and statically specify the set of context relationships and preferences that are relevant and

supported by the application. Rule-based and Bayesian Network adaptation approaches currently

supported also require explicit expert input, either to construct rules or structure network models.

Context-dependent preferences are supported by developers de�ning all possible context and corre-

sponding user preferences, therefore limiting the number of context and output (behaviour) types an

application can accurately consider. Techniques such as association mining could be applied to the

architecture to implicitly link user actions and context to determine context-dependent user prefer-

ences. However, this is not supported and existing functionality would need to be extended in order

to incorporate techniques for implicit preference elicitation with RDF(S) and OWL representation

languages used by the architecture to model context. Learning from user feedback (i.e., online learn-

ing) is also not supported by the MobiLife architecture and the static nature of supported adaptation

approaches therefore means that applications are unable to adapt if pre-de�ned context, preference,

and behaviour information is incorrect or if a user's preferences change over time. In addition, the con-

textual relevance and utility of information is also de�ned at development time, and no techniques are
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provided to support changes to the contextual relevance of information in recommendation decisions

that occur when a user's context or preferences changes.

2.3.2 Daidalos

Daidalos is an ongoing European research project that provides a platform architecture consisting of

features for context-awareness and personalisation for telecommunication systems and services [186].

The architecture consists of six main software components. Context Management, Pervasive Service

Management, Event Management, Rule Management, Security and Privacy Management, and Per-

sonalisation Module. The �rst �ve components are responsible for managing context information,

discovering and composing services depending on the current context, �ring events to signal relevant

context changes, maintaining the set of rules that control the systems, and tracking user identities to

ensure security and privacy protection respectively. In terms of personalisation support, the Person-

alisation Module component provides functionality for handling personalisation tasks such as learning

user preferences, monitoring user preferences, and selecting and composing services. A number of

subcomponents are responsible for these tasks: Personalized Selection, Adaptation of Composition

Process, Parameter Con�guration, Preference Manager, User Monitor, and Inference Engine [192].

The current implementation of Daidalos requires user preferences to be manually speci�ed by users

through the device interface and preferences are stored in a rule-based format. Future implementations

plan to support other means of establishing user preferences such as the use of stereotypes and the

learning of preferences from user behaviour [126]. Personalisation in Daidalos is adopted for a number

of functions including personalised call redirection, personalised service selection, and personalised

network or device selection.

2.3.2.1 Analysis

The platform architecture developed by the Daidalos project provides functionality to manage context

information and to personalise telecommunication services such as service selection and call redirec-

tion. Like MobiLife, research work in Daidalos is ongoing and precise implementation details are

currently unavailable. While Daidalos provides personalisation support in context-aware applications,

the developer's current view is that �the process of managing user preferences was regarded as less

important than that of using them, and hence the simplest approach was adopted, namely manual

entry of preferences� [126]. The main limitation of personalisation in the current Daidalos imple-

mentation is the reliance on system users to provide details about their preferences. No techniques

are currently provided for automatically eliciting user preferences (although this is planned for future
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implementations, the details of which are yet to be published) and context-dependent preferences are

currently acquired from users who explicitly rank candidate services in di�erent context. There is

also no support for dynamically adjusting the relevance and utility of information in recommendation

decisions for di�erent context. Users are again required to explicitly specify this information. Prefer-

ences are represented as rules and the manual modi�cation of these rules is required to accommodate

changing user preferences. A rule-based approach to store preferences also su�ers from maintenance

and scalability problems [149].

2.3.3 Multidimensional Recommendation Model

Adomavicius et al. [4] present a Multidimensional Recommendation Model (MD model) that provides

personalised recommendations while incorporating context information. The MD model extends the

traditional two dimensional (2D) Users x Items paradigm to make recommendations based on multiple

dimensions. Systems using the 2D paradigm support only two types of entities, users and items. The

MD model di�ers as it is extended to support multiple other entities such as context information in

the recommendations process. The model is based on an adjusted version of the multidimensional

Online Analytical Process (OLAP) model. User preferences are expressed by providing ratings for

each dimension in the MD model. For example, a three dimensional recommendation space User

x Item x Time with a rating R(101, 7, 1) = 6 represents a rating of 6 for a given User 101 to

Item 7 for weekday (represented by the value 1). Figure 2.3 illustrates the speci�cation of this user

preference in the MD model [4]. Dimension hierarchies (e.g., the Time dimension may be broken down

into minutes, hours, days, months) and the aggregation of multiple dimensions (through aggregation

functions such as summation) are also supported by the MD model. A rating estimation method

based on the reduction-based approach is provided to estimate unknown ratings in a multidimensional

recommendation space. Reduction enables ratings to be �ltered based on a particular dimension (e.g.,

�ltering movie recommendations by time) or expanded to include some superset of the context (e.g.,

predicting movie ratings for a Monday could use ratings given for weekday). A Recommendation

Query Language (RQL) is supported as part of the MD model approach and enables users to create

complex recommendations queries that consider multiple dimensions of context and user preference

information.

2.3.3.1 Analysis

The MD model supports the representation of context-dependent preferences by representing context

as dimensions in a multidimensional space, and preferences as item (behaviour) ratings. However,
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Figure 2.3: Multidimensional Recommendation Model [4]

explicit user input is currently required to acquire user ratings for items under di�erent dimensions,

which is a complex and di�cult task, particularly when there are a large number of di�erent dimen-

sions. Similarly, users are required to explicitly modify ratings in the appropriate dimension space to

accommodate any changes in their preferences. Automatic preference elicitation techniques are not

provided by the MD model, but could (according to our analysis) be integrated to determine user

ratings. There are no provisions for supporting di�erences in dimension utility (i.e., in a particular

multi-dimensional space, all the context types that make up that dimension have the same utility),

and the utility of di�erent dimensions are not adaptable to di�erent context or user preferences (i.e.,

the utility of context remains the same regardless of the value of other context types). RQL enables

context-dependent user preferences to be retrieved by supporting the construction of complex recom-

mendation queries consisting of di�erent relevant dimensions. However, the set of context to include

in RQL queries requires explicit human input as there are no provisions for automatically determining

or adjusting the set of dimensions that are relevant for recommendation decisions for a particular

context.

2.3.4 The Personal Digital Secretary

The Personal Digital Secretary (PDS) is a context-aware personal assistant application designed by

Byun and Cheverst at Lancaster University [39, 38]. The central aim of this work is to investigate the
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integration of user modelling, machine learning, and context-awareness as an approach for providing

proactive personalised behaviour recommendations that will aid users with their daily activities. In

particular, their approach is based on utilising context history together with user modelling and

machines learning to infer patterns from user behaviour, which are then used to dynamically adapt to

changes in the user's situation or their lifestyle. An important element of their work is the provision of

explicit and understandable explanation enabling users to query the application about recommended

behaviour.

The conceptual structure of the PDS is made up of �ve main modules and is illustrated in Fig-

ure 2.4: context management agent, user modelling agent, recommender agent, and remembrance

controller.

� The Context Management Agent is responsible for the acquisition and merging of context gath-

ered from sensors, the representation of context using XML technologies, and the storage of

context in a persistent database.

� The Scheduler controller requests explicit user input regarding their future events (e.g., a users

lecture timetable).

� The User Modelling Agent is responsible for predicting a user's future behaviour, using machine

learning algorithms, from combined information about the user's past events, their explicit

schedules, their current context, and explicit user feedback.

� The Reminder/Recommender Agent informs users of events based on their schedule and current

context. It can also proactively recommend behaviour to users based on information learnt from

the user model (e.g., if a user had left to play tennis at 5pm everyday for a week, the application

can notify the user of this behaviour the following week).

� The Remembrance Controller stores a user's current context and enables the user to retrieve

past events based on similar current context.

Three types of inferences designs are supported for predicting user behaviour and the correspond-

ing behaviour recommendation: single learning algorithm, single learning algorithm with pre-de�ned

rules, and multi-learning algorithms. The single learning algorithm design uses a single machine learn-

ing algorithm to infer the correct behaviour for the current context from a user's context history. The

Näive Bayes Classi�er machine learning algorithm has been selected in their implementation. A single

learning algorithm with pre-de�ned rules uses rules, pre-de�ned by the developer, to specify appro-

priate adaptation behaviour with machine learning used only to determine behaviour in more speci�c

31



Chapter 2. State of the Art

Figure 2.4: Conceptual Structure of the PDS [39]

exceptional cases. A multi-learning algorithm design supports the composition of several learning

algorithms depending on the characteristics of the situation to be learnt. Example scenarios that have

been implemented include reminder notices informing users of regular meetings and determining when

a user will return to their o�ce given the state of their o�ce door and temperature of their co�ee.

2.3.4.1 Analysis

The Personal Digital Secretary application and its design provides a valuable contribution by demon-

strating the e�ectiveness of integrating techniques from user modelling, machine learning and context-

awareness to support proactive, personalised behaviour. The inference of context-dependent user pref-

erences is achieved by learning from past user actions. However, explicit expert knowledge and input

is required to pre-de�ne rules and design learning functions used to infer user behaviour. For Näive

Bayes Classi�ers, the probabilities for each possible context are calculated by experts in order to train

the application. As the result, the current implementation is limited to supporting a small number

of context types and values. The system does not support learning from user feedback (i.e., online

learning), and therefore will result in inaccurate behaviour when rules and machine learning de�ni-

tions are incorrect, or if a user's preferences change. Support for changing user preferences could be

possible through addition of new user actions to the user model. However, domain expert input would

be required to re-calculate probabilities of a particular context occurring to include new user actions.

In addition, the de�nition of rules and machine learning algorithms by experts is at development time,

whereby experts are required to explicitly determine the set of relevant attributes (context), the set

of hypotheses (context and appropriate behaviour), and the explicit probabilities of each hypothesis.

32



Chapter 2. State of the Art

The contextual relevance and utility of di�erent environmental context types are therefore static, and

do not dynamically adjust to di�erent context or user preferences. Adjusting the contextual relevance

to the current situation and user preference will enable applications to extract more precise patterns

in user behaviour and consequently provide more accurate recommendations. For example, using

the scenario for determining when a user will return to their o�ce presented in this work [39], the

TempCup context should be considered more contextually relevant than other environmental context

(such as user location) in the current context as history indicates that the user usually returns to the

o�ce when the value of the TempCup context changes.

2.3.5 Pervasive Autonomic Context-aware Environments

As part of the Pervasive Autonomic Context-aware Environments (PACE) project, Henricksen and In-

dulska at the University of Queensland, developed a software engineering framework for context-aware

pervasive computing [84, 86]. Their framework contains a number of layers that provide components

to support the acquisition, management, storage and dissemination of context information:

� The Context Gathering layer acquires context from sensors, decouples sensors from processing

components, and minimises problems associated with sensor or network disconnection.

� The Context Reception layer translates inputs from sensors into a fact-based representation.

� The Context Management layer maintains a set of context models, integrating information from

heterogeneous context sources.

� The Query layer enables applications to query for context information from the Context Man-

agement layer, using context modelling abstractions supported by the framework.

� The Preference Management layer stores user preferences and evaluates preferences on behalf of

applications.

� The Application layer provides toolkit support that enables applications to query the framework

for context as well as providing methods for preference-based adaptation, known as branching.

A novel contribution of this work is the provision of a preference model that enables users to specify

context-dependent preferences. Speci�cally, the model enables users to link preferences to context and

to combine preferences into composite preferences and preference sets. Users express their preferences

by assigning a score to possible (candidate) behaviour choices for a particular context. A central

requirement of the model is usability, enabling users to easily link preferences to context and to
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Figure 2.5: Context- and Preference-based Decision Process in PACE [85]

p1 = when Urgent (priority) ∧ SynchronousModel(channel)
rate \

p2 = when Urgent (priority) ∧ ¬SynchronousModel(channel)
rate 0.5

Figure 2.6: Example Communication Preferences in PACE [86]

combine preferences into sets or composite preferences. The model considers user preferences, context

information, candidate choices and application state when making behaviour decisions. Figure 2.5

illustrates this decision process. Preferences are speci�ed as context and score pairs, where a score

is either a numeric value or a special score supported by the model (e.g., the \ symbol represents

veto and the ⊥ symbol represents indi�erence), and represents the score assigned to a candidate

choice. Preferences are either simple, which express atomic user preferences, or composite, where

di�erent preferences are combined into a single score. Preferences can also be grouped into preference

sets to re�ect certain choice problems or the application domain. Figure 2.6 illustrates two example

preferences for a context-aware communication tool [86]. A branching model examines the scores

assigned to di�erent candidate choices for a particular context and recommends the highest scoring

behaviour to the user. The approach has been applied for specifying preferences in various application

types such as a context-aware email client and a context-aware communication tool (which assists

users in selecting an appropriate communication channel, such as telephone, email, text. etc. to

interact with others).

2.3.5.1 Analysis

The PACE project provides an e�ective model for representing context-dependent preferences. How-

ever, the main limitation of this work is that explicit human input is required to specify, prioritise

and combine user preferences. Manual modi�cation of preferences by human input is also used as a

means to accommodate any changing user preferences. Their evaluation results show that inaccurate

recommendations do occur and are mainly due to the di�culties involved with users writing prefer-

ence sets, especially when the set of context or preferences is large or complex. The adjustment of

34



Chapter 2. State of the Art

context relevance and utility for di�erent contexts and preferences is also reliant on explicit user input

and is explicitly expressed by users through ranking scores to various possible behaviours. Currently,

no techniques are supported for the automatic preference elicitation or the dynamic adjustment of

information relevance and utility, although the authors have highlighted these as possible avenues for

future work [86].

2.3.6 SenSay

SenSay is a context-aware mobile phone developed by Krause, Smailagic, and Siewiorek at Carnegie

Mellon University [110]. SenSay adapts its behaviour to the user's context and preferences using

wearable sensors. This research focuses on how machine learning techniques can enable applications

to identify the current user state (context) and learn context-dependent user preferences to auto-

matically modify behaviour from experience. A two stage approach is described. At the �rst stage,

Context Identi�cation, the current user context is identi�ed using Kohonen Self-Organising Maps.

The second stage is concerned with personalisation and the learning of context dependent user pref-

erences from context variables (which describe evidence about a user's context) and system variables

(which describe evidence about a user's preferences). Bayesian networks are used at this second stage.

Speci�cally, the K2 algorithm, a fast algorithm for structure learning, is adopted to construct their

Bayesian network model. Three studies were performed to evaluate the approach. The �rst study

illustrates that a näive threshold-based approach (which requires experts to explicitly de�ne context

and corresponding behaviour) does not generalise to support larger sets of context and users. The

second study con�rms that their approach to context identi�cation is as successful with clustering

results as manual annotation is. The �nal study concludes that their approach can reliably determine

contexts and learn user preferences.

2.3.6.1 Analysis

The SenSay application contributes to existing work by investigating the use of wearable sensors to

identify a user's context and context-dependent preferences. Their work also highlights the di�-

culties associated with generalising a threshold-based approach to adaptation, where context-aware

behaviour is pre-de�ned. The proposed approach supports the dynamic and autonomous determi-

nation of context-dependant user preferences. However, a large amount of domain expert/developer

knowledge is still required to explicitly construct the Bayesian network model necessary for learning a

user's preferences. Di�culties associated with Bayesian network construction include identifying the

correct dependencies between variables and estimating probabilities and joint distribution values of
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relevant context variables. The large numbers of context variables supported by SenSay means that

typical techniques used to describe Bayesian networks, such as acyclic graphs, are unsuitable. Conse-

quently, the K2 structure learning algorithm was adopted for learning the appropriate structure of the

network. However, a strong limitation of this approach is that the ordering of variables needs to be

known, which in reality is often not possible. Hence, assumptions regarding the ordering of variables

are assumed by the authors. Learning user preferences is supported, but this learning requires the

explicitly de�nition of a Bayesian network structure, which is inherently static. Consequently, changes

to user preferences are not automatically captured and may lead to inaccurate behaviour. Adapting

to changing user preferences could be possible but would require explicit developer modi�cation of

the Bayesian network structure and/or probability distributions. A better understanding of relations

between context and preferences, such as the adjustment of context relevancy and utility for recom-

mendations under di�erent context, is also currently unsupported, but highlighted as an important

avenue of future work [110].

2.3.7 A Context-aware Preference Database System

At the University of Ioannina, Stefanidis et al. [172] investigate the integration of context into database

management systems. A central aim of their work is to provide a logical model for the representation

of context-dependent user preferences. Users explicitly express their basic preferences, using a rating

score between 0 and 1, based on single context parameters (such as location or weather). Basic

preferences can be combined to compute aggregate preferences. For example, a user may give a

restaurant a higher score when it is raining than when it is sunny. An independent score would also be

given to the same restaurant by the user depending on their current location. The basic preferences

for each are then combined to provide an aggregate score that depends on more than one context

parameter. Data cubes are used to store basic user preferences (i.e., an association between a single

context parameter and user preference) and Online Analytical Process (OLAP) techniques are used

to process context-aware database queries. Each cube contains a dimension for the user, a dimension

for an output (e.g., restaurant), and a dimension for a context parameter (as shown in Figure 2.7).

Each cell of the cube contains a rating, representing the user's preference for that output and context

parameter value. Hierarchies of preferences are supported by using cubes, enabling di�erent levels

of abstraction of context. A context tree structure, where the path in the context tree corresponds

to an assignment of scores to context parameters, is used for evaluating aggregate preferences. To

retrieve context-dependent preference information, users are required to explicitly construct queries

using either SQL or OLAP operators. A similar approach is supported by the MD Model, however
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Figure 2.7: Context Parameter Data Cubes [172]

the MD Model supports multiple dimensions space for any number of context types, while the OLAP

approach here requires a separate cube for each context type.

2.3.7.1 Analysis

The Context-aware Preference Database System provides a novel means to represent context-dependent

preferences using data cubes. The main focus of their work is on e�ciently combining context, prefer-

ence and database operations. The approach is therefore limited in supporting personalisation tasks

such as implicitly determining user preferences or adjusting the relative importance of information

to re�ect the preference of a user in di�erent context. The main limitation is the need for users to

explicitly specify their preferences by rating possible outputs (e.g., rating restaurants). Adjusting

the relative importance of context parameters also requires explicit user input whereby users specify

weights for individual context parameters when computing aggregate preferences. While not sup-

ported or discussed, techniques for automatically eliciting user preferences could be integrated with

this work, although extensions would be required to integrate preference elicitation techniques with

the data cube representation of context and preferences. Specifying context-dependant preferences as

cubes also poses a scalability problem as a separate cube is required for each context parameter. It

becomes more di�cult for users to provide preference details as the number of context parameters

(and therefore number of cubes) increases. There are also no provisions for automatically adapting the

relevance and utility of context parameters. Users are currently required to explicitly construct queries

to retrieve context-dependent preferences and the approach does not support the use of preferences

as part of a recommendation process.

37



Chapter 2. State of the Art

2.3.8 Context-aware Content Filtering and Presentation

Xu et al. [190] investigates the adaptation of content information based on context-dependent pref-

erences. The central aim of this work is to select the right type of content and presentation format

based on the user preferences for the current context. Similar to the approach developed by Stefanidis

et al. for their Context-aware Preference Database, the approach by Xu et al. for discovering context-

dependent preferences is based on Online Analytical Process (OLAP) techniques. The history of a

user's application usage is stored as data (OLAP) cubes, which model di�erent context parameters

and the content type and format desired by the user for that corresponding set of context parameters.

Co-occurrence analysis is used to compare the current context with context parameters stored in the

cubes to determine the appropriate content and format for presentation. Content and format are

ranked by counting the number of entries in the data cubes that match the current context.

2.3.8.1 Analysis

The main contribution of the work by Xu is the use of OLAP techniques to determine contextual

preferences from usage logs. Their approach is also designed to support multiple arbitrary information

types, which alleviates the need for developers to de�ne a �xed set of context parameters and models.

Changing user preferences are supported by executing OLAP queries on up-to-date usage data. While

OLAP techniques eliminate the need for developers to pre-de�ne the relationships between context

parameters and user preferences, representing context-dependent preferences as data cubes presents

a scalability problem. As separate cubes are required for each context parameter, the storage and

maintenance of these cubes becomes correspondingly di�cult as the number of context parameters

increase. The ranking of alternative behaviours (in this case content and format) by counting the

occurrences of a speci�c behaviour for a particular context does not accommodate di�erences in the

relative importance of di�erent context parameters. Methods for weighting according to how recent

a user action is have been suggested, but selecting and weighting parameters according to di�erent

context and user preferences is also necessary.

2.3.9 Amigo

The EU Amigo project presents work on a user modelling service that enables personalised services

to be provided in smart home environments [150, 182]. Amigo home is designed to recognise users,

their preferences, their location and other context when executing services in the home such as au-

tomatically recording movies or supporting communication between home inhabitants. A primary
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element of the Amigo project is the User Modelling and Pro�ling Service (UMPS) architecture, which

has been developed to support two main functions for capturing and representing context-dependent

user preferences. Users can control the system via a GUI (static modeller component), allowing them

to explicitly edit personal details and to specify and maintain context-dependent preferences, which

are modelled in a tree-based ontology representation. Alternatively, a dynamic approach to user

modelling, which eliminates the need for explicit user input is also supported. Dynamic user mod-

elling stores interaction history as context-action tuples and context-dependent preferences are learnt

(dynamic modeller component) using Case-based Reasoning techniques (CBR) and Support Vector

Machines (SVM).

2.3.9.1 Analysis

The UMPS architecture of the Amigo project provides a set of services that aid developers to person-

alise context-aware systems for smart home environments. Both static and dynamic techniques are

provided to support the acquiring and modelling of context-dependent user preferences. Both CBR

and SVM provide a viable approach to automatically learning context-dependent user preferences in

a smart home environment, but both have limitations when applied to large context-aware systems

or when user preferences are likely to change. The accuracy of CBR is reliant on an accurately pre-

de�ned similarity function, the construction of which is a non-trivial process, particularly when a

large number of context types and values are supported. CBR also requires context relevance and

utility to be statically de�ned as part of a similarity function. Consequently, the relevance and utility

of information is not dynamically adjusted when determining recommendations in order to re�ect

the di�erent context or changing user preference. Similarly, SVM (which is a method that classi�es

items between positive or negative classes) does not support the adjustment of relevance and utility

to di�erent context and user preferences. Large amounts of training data, memory and processing

power are also required to train SVMs to a suitable level of accuracy [197]. SVMs will also require

o�ine retraining by experts to accommodate changing user preferences.

2.3.10 Passepartout

Passepartout is a personalised digital TV guide developed by Berkovsky et al. that recommends

programs to users that match their context-dependent preferences [28]. Context-dependent preferences

in Passepartout are termed experience, which is described as user feedback (explicit or implicit) as a

result of consuming a particular item in a particular context. Feedback is in the form of a rating. The

work is focused on providing semantically-enriched descriptions of experiences for the construction
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context.motivation=work
context.time=afternoon
item.meal.price=moderate
rating=0.8

Figure 2.8: An Example Experience in Passepartout [28]

of user models and a means to reason about user models for providing personalised behaviour. An

extension of the GUMO user modelling ontology (RDF/OWL format) [83] is provided to facilitate

various dimensions of context. Ratings represent a user's desire for a particular item in a speci�ed

context. Figure 2.8 provides an example of an experience E, representing a situation, an item, and

a rating, where the user gives a rating of 0.8 to represent their preference for a moderately priced

meal in the afternoon or a workday [28]. Rules and CBR are supported for reasoning and making

recommendations.

2.3.10.1 Analysis

Passepartout highlights the need to include context in the personalisation process and their concept

of an experience provides a viable means for describing context-dependant user preferences. However,

the automatic determination of user experiences is not supported and no provisions are provided for

automatically determining or prioritising context features most relevant for recommendations in a

particular context. The use of RDF/OWL suggests that experiences, including the relevance and

utility of context features, are required to be explicitly identi�ed and de�ned by users or experts. The

approach is �exible and di�erent reasoning mechanisms can be integrated, however current reasoning

approaches based on rules and CBR are limited for personalising context-aware applications due to

their reliance on explicit human input.

2.3.11 Context-aware Case-based Reasoning Applications

This section evaluates projects that extend the case-based reasoning (CBR) concept for making per-

sonalised recommendations to users in context-aware applications. These projects are evaluated and

grouped together as they support the implicit determination of context-dependent user preferences by

determining the preferred actions of users using past cases that have a similar context to the current

recommendation problem.
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2.3.11.1 AmbieSense

AmbieSense is a project conducted as part of the Information Society Technologies (IST) Programme,

the goal of which is to develop a set of tools to facilitate context-aware computing [101, 102]. Am-

bieSense makes use of context information provided by its system architecture and CBR for making

behaviour recommendations to users. The AmbieSense system architecture is divided into three major

parts: the Context Middleware, the multi-agent systems, and reasoning. The Context Middleware pro-

vides a context management infrastructure, which collects and maintains context. Context is modelled

as a semantic network based on �ve main aspects: personal context, task context, social context, spatio

temporal context, and environmental context. The multi-agent system, based on the Jade platform,

maintains a set of autonomous application agents capable of executing actions associated with the

current situation (e.g., a context agent receives new current context noti�cations from the Context

Middleware and sends them to the relevant receivers). An extended version of the Creek CBR system,

is used at the reasoning stage. The CBR cycle begins when new context arrives from the Context

Middleware. The system classi�es the current situation and the appropriate sequence of actions from

past cases that match the current context, are executed. Cases are stored as a triplet consisting of the

context describing the situation, the problem (goal) associated with the situation, and the solution

employed by the system's application agents. Applications of this approach have been demonstrated

as part of a tourist guide and a healthcare patient diagnosis and treatment scenario.

2.3.11.2 LISTEN

The LISTEN project conducted at the Fraunhofer Institute provides a system that personalises audio

pieces to the time, position and head orientation of its users [200]. A LISTEN prototype has been made

available to visitors of the Kunstmuseum in Bonn, enabling visitors to experience personalised audio

information about exhibits through their headphones as they move through the museum. The design

and implementation of LISTEN is based on general layered framework for context-aware systems

(sensor layer, semantic layer, control layer, and actuator layer) which provides functionality for the

acquisition and management of context and for personalising behaviour. CBR is used to personalise

adaptation behaviour (i.e., which audio clip to play) by comparing the current context with past

similar cases. Context contains four dimensions: identity, location, time, and environment/activity;

and integrated with CBR cases. The similarity assessment used places a high weight on the location,

the time, and the interests of the user. Cases are represented by mapping problem-solution pairs of a

CBR case description to context-recommendation pairs.
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2.3.11.3 Personal Travel Assistant

The Personal Travel Assistant (PTA) is a recommender system that takes requests from a user and

recommends a set of �ights that match the user's request. In PTA, user preferences are implicitly

inferred from their past behaviour (i.e., previously purchased �ights). The context-dependent nature

of preferences is supported by considering features of a �ight request (e.g., is a request for a long

haul or a short haul �ight). Two recommendation strategies based on CBR are provided: o�er-

based and session-based. O�er-based recommendations are made on the basis that a user prefers

similar o�ers to those they previously purchased (i.e., the context of the request is not considered).

Session-based recommendations, in contrast, are made on the basis that a user prefers similar o�ers to

those they selected in similar previous interactions (i.e., past purchases that are similar in context).

A technique to adjust the relative utility of features in recommendation decisions is also provided.

Feature utilities are adjusted according to a user's �ight purchases such that selected cases are ordered

highest. This technique adjusts feature weights according to individual users, but there is currently

no support for adjusting weights for di�erent context. Evaluation results show that an o�er-based

strategy averages 61% accuracy and the session-based recommendation with feature weight learning

averages 67% accuracy.

2.3.11.4 Ticketyboo

The Ticketyboo system is a case-based music concert recommender system. When making recommen-

dations, Ticketyboo takes into account the user's music preferences and other context such as concert

dates and user's location context. The system acquires its context information from the Construct

context-aware infrastructure [173]. Ticketyboo operates in two stages; the �rst stage selects informa-

tion about upcoming concerts (artist, location, date, time, ticket price), while the second stage �lters

the number of concerts by the user's music preferences and their location at the time of the concert.

Music preferences are automatically inferred from the user's media play while location information is

acquired from the user's calendar. Concerts remaining after this �ltering stage are recommended to

the user.

2.3.11.5 Analysis

In each of the projects described in this section, the CBR method is used for making personalised

behaviour recommendations to its users. Context-awareness is supported by extending the traditional

CBR case to include context information (such as location, time, and weather). Similarity func-

tion de�nitions incorporate relevant context types, enabling applications to automatically infer the
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preferred behaviour of users in past similar context (i.e., context-dependent user preferences). CBR

therefore enables the autonomous determination of context-dependent preferences (from historical)

behaviour. However, the e�ectiveness of CBR to accurately personalise behaviour recommendations

requires extensive domain knowledge and relies on experts to de�ne an accurate similarity function.

Experts are required to identify and represent the set of information that is relevant, its relative

importance (i.e., utility), the relationships between di�erent information types, and the threshold

values that measure similarity as part of the construction of a similarity function. However, this is a

non-trivial task that is time-consuming and error-prone, particularly when large amounts of context

and values are to be supported. The need to de�ne a CBR function at development time also means

that the approach is inherently static with context relevance and utility statically de�ned as part of a

similarity function. While CBR can adapt to di�erent context by selecting contextually similar past

cases, the speci�cation of what context is relevant and how relevant it is, is static (i.e., the similarity

function remains the same regardless of the current context). Consequently, the relevance and utility

of information is not dynamically adjusted in recommendation decisions in order to re�ect di�erent

context or changing user preference. However, in reality, the contextual relevance and utility of in-

formation varies depending on the context, meaning that in di�erent situations, a user's de�nition of

what more similar is likely to change (i.e., similarity functions should be context-dependent). For ex-

ample, when recommending �ights, context types such as �ight duration, departure time, destination,

price, and carrier are considered, but depending on the context values, certain context types may be

considered more relevant than others by the user. A user, for example, may consider the departure

time of the �ight as irrelevant when the �ight duration is over 8 hours, but for short haul �ights the

user historically prefers to travel during the morning. Therefore, to ensure accurate recommendations,

a means to adjust the relevancy and utility (attribute weights) in similarity functions depending on

the context are also necessary. That is, CBR can automatically accommodate gradual changes in user

preferences through the addition of new cases to the case base. However, more signi�cant preferences

changes, which a�ect what users consider similar context, would require experts to explicitly modify

the similarity function in order to maintain the utility of recommendations. Zimmermann refers to

this as �realizing di�erent views on cases� [199].

2.3.12 The 1:1 Pro System

The 1:1 Pro System builds personal pro�les based on a customer's previous transactions in order to

make personalised recommendations about future purchases [5]. Data mining rule discovery algorithms

such as Apriori for association rules and CART (Classi�cation and Regression Trees) for classi�cation
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Figure 2.9: Rule Discovery Pro�le Building in 1:1 Pro System [5]

rules are used to discover and model user behaviour. An example of customer behaviour as a rule is

�when purchasing cereal, John usually buys milk�. Experts post analyse rules to determine those that

are trivial, con�icting, or irrelevant. Several validation operations are supported to aid human experts

to validate large numbers of rules. A similarity based rule grouping operator puts similar rules into

groups based on expert-de�ned similarity criteria, a template-based rule �ltering operator �lters rules

that match expert speci�ed rule templates, and a redundant rule elimination operator eliminates rules

that can be de�ned from other rules. Figure 2.9 illustrates the process of building user pro�les from

rule discovery in the 1:1 Pro System.

2.3.12.1 Analysis

This work demonstrates that mining is a viable approach for discovering and modelling user behaviour

from historical data. The rule based format for modelling behaviour is also an intuitive and descriptive

way to represent behaviour. Support for various environmental context types (e.g., location, weather)

is not explicitly described in this work. However, context could be supported by adding context values

to a user's transactional history. The main limitation of this approach for context-awareness is the

need for human experts to validate rules at development time. Techniques have been developed to

aid human experts in selecting relevant rules, however support for autonomous methods to validate

and prioritise rules (to represent the utility/preference of user behaviour in a particular context) and

to select those rules most appropriate for recommendation is not provided. The validation of rules at

development time also limits the ability of applications to evolve as they are unable to autonomously

correct invalid rules or adapt to changing user preferences. The application of mined rules to a

recommendation process is also not supported.
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2.3.13 Summary and Analysis

A survey and evaluation of the state of the art projects shows that there are a range of approaches that

aid developers in personalising context-aware applications. Table 2.3 summarises the extent to which

these approaches support the requirements described in Section 1.2. While each of these projects

provide some level support for the outlined requirements, the techniques they provide are limited and

no approach fully supports all requirements.
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Recommender Systems ◦ - - - ◦ -
Context-aware applications and frameworks ◦ ◦ ◦ - ◦ -
MobiLife ◦ ◦ ◦ - ◦ -
Daidalos ◦ ◦ ◦ - ◦ -
The MD Model

√
- ◦ - ◦ -

The Personal Digital Secretary
√

◦ ◦ - ◦ -
PACE

√
◦ ◦ - ◦ -

SenSay
√

◦ ◦ ◦ ◦ -
Context-aware Preference Database

√ √
◦ - ◦ -

Context-aware Content Filtering and Presentation
√

◦ ◦ - ◦ -
Amigo

√
◦ ◦ ◦ ◦ ◦

Passepartout
√

◦ ◦ - ◦ -
Context-aware Case-based Reasoning Applications

√
◦ ◦ ◦ ◦ ◦

The 1:1Pro System ◦ ◦ ◦ ◦ ◦ -√
= support ◦ = limited support − = no support

Table 2.3: Summary of Context-aware Personalisation Support

Recommender systems provide methods for adapting to user preferences. Progress has been made

in recommender system in recent years to incorporate user and item pro�les into recommendations.

However, preference data used in these systems are quite basic (based on features such as keywords)

and in particular, these systems are limited by the types of context they consider when making
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behaviour recommendations. In many cases such as Amazon, PTV, and LIBRA no context information

other than user preferences are considered. Many state of the art recommender systems are also limited

by the need for explicit user input when acquiring preference data. More advanced, implicit feedback

techniques have been used but are mainly restricted to the context of web usage analysis i.e. to

discover patterns in a user's page viewing sequence and use this information to make better web page

recommendations.

State of the art context-aware applications and frameworks support personalisation by adapting

to user preferences in the same manner as other context types. Relevant context relationships and

the de�nitions regarding utility of information that in�uence recommendation decisions are statically

speci�ed by experts at development time. No techniques are provided to aid experts with identify-

ing or representing context and preference relationships and utility. Accommodating changing user

preferences also requires explicit expert or user input. For example (as described in Section 2.2),

Hermes enables users to modify their preferences by adjusting the relevance and utility of context in

recommendation decisions. Other frameworks require developers to manually modify rule de�nitions

or the structure of behaviour models (e.g., Bayesian Networks) in order to facilitate changing user

preferences.

Other projects have speci�cally focused on the challenge of personalising context-aware applica-

tions. Architectures such as MobiLife and Daidalos provide components that facilitate user preferences

as part of an overall context-aware architecture. Other projects such as PACE, and the OLAP based

techniques used by the MD Model, by Stefanidis, and by Xu aid users and developers by providing

novel representation models that ease the task of specifying dependencies between context and user

preferences. However, these projects remain limited by their need for users to input preference details

and support for techniques that enable the automatic inference of user preferences at run time are

not provided. Methods for dynamically adjusting the relative relevance and utility of information in

recommendation decisions depending on the current context are also unsupported. Approaches for

implicitly determining user preferences at run time from past behaviour such as CBR are available and

go some way to supporting personalisation and context-dependent user preferences. However, these

techniques are limited by their static developer de�ned similarity functions, the de�nition of which

does not automatically adapt to di�erent context or changing user preferences. The rule discovery

approach proposed in the 1:1 Pro System supports the automatic identi�cation of context-dependent

user preferences without the need for experts to explicitly identify context, preference, and behaviour

relationships. However, explicit expert input is required to validate and identify those preferences that

are relevant and interesting. The lack of automated techniques for identifying and specifying context
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and preference relationships (which currently require human input) also limits the amount of con-

text and recommendation types existing state of the art projects support. Rule-based, model-based,

and CBR techniques all require signi�cant expert knowledge and input to construct, which becomes

corresponding time-consuming, complex and error-prone with the number of context and preference

types/values to be supported. OLAP based cubes also su�er from storage and processing problems.

2.4 Chapter Summary

This chapter has presented a number of state of the art approaches to support the personalisation of

context-aware applications. In particular, the chapter has examined state of the art projects in the

areas of recommender systems, context-aware applications and frameworks, and projects that focus

speci�cally on personalisation in context-aware systems. Each of the surveyed projects have been eval-

uated against the requirements outlined in Section 1.2. While a number of state of the art projects

exists that o�er support for the development of personalised context-aware applications, this thesis

concludes that no single approach o�ers full support for the complete set of requirements. These

projects therefore cannot, without signi�cant extension, be used to support accurate and e�ective

personalisation in context-aware applications. Speci�cally, support for personalisation functionality

such as techniques for identifying context-dependent user preferences, adjusting relevance and utility

of information for recommendation decisions, and adapting to changing user preferences, which will

aid developers in building personalised context-aware applications, remains limited. The next chapter

describes the design of a novel approach to personalisation for context-aware applications. It discusses

techniques and algorithms that provide implicit determination of context-dependent preferences, sup-

port the automatic identi�cation of relevant context information and the adjustment of information

utility for the current user preference and context, and facilitate the generation and ranking of candi-

date behaviours that are personalised to the current context-dependent preferences of users.
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Design

The analysis of the state of the art approaches to personalisation in context-aware applications in

the previous chapter shows that they are limited in their support for the requirements outlined in

Section 1.2. An approach to context-aware personalisation is required to support the determination of

user preferences for di�erent context settings, including the determination of relevant information and

information utility for di�erent recommendation problems. State of the art approaches are limited by

the need for explicit human input (from users or developers) to identify, prioritise, and maintain rele-

vant relationships between context and user preferences to ensure correct recommendation behaviour

- a human task which is complex, time-consuming, and error-prone, especially when applications are

to support a large number of context types or values. An approach to context-aware personalisa-

tion should also support applications to autonomously adapt to any changing user preferences or

unconsidered relationships between context and preferred user behaviour, which is necessary in order

to maintain the accuracy of recommendation decisions over time. The state of the art approaches

use algorithms or functions that are inherently static and do not automatically adapt to newly ac-

quired relationship information. Users or developers are required to manually modify context and

behaviour relationship de�nitions as well as de�nitions of information relevance and utility in order

to accommodate changing user preferences or previously unconsidered information relationships.

This chapter describes the design of a novel approach to support personalisation in context-aware

applications. This approach provides techniques and algorithms that address the requirements outlined

in Section 1.2. At the core of the approach is a set of techniques and algorithms that: implicitly

determines the preferred actions of users for di�erent context; identi�es the set of relevant context

information for di�erent recommendation problems; adjusts the utility of information for di�erent
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problems and context; and generates a set of candidate behaviours and ranks them according to

the inferred context-dependent preferences of the user. These techniques combine to form a multi-

stage recommendation process that addresses the limitations of existing personalisation approaches

in context-awareness by eliminating the need for experts to explicitly de�ne relationships between

context and preferred user behaviour and details about information relevance and utility. The need

for users or developers to explicitly modify de�ned information to cater for new relationships between

context and user preferences is also removed.

The remainder of the chapter provides a detailed description of the personalisation approach

proposed in this thesis. A description of the Hermes project, the umbrella project under which the

work presented in this thesis was conducted, is also presented. The majority of the chapter is dedicated

to describing the personalisation approach and the individual techniques and algorithms that have

been designed for speci�c personalisation functionality. The chapter concludes with a summary of

how the approach is designed to address the requirements outlined in Section 1.2.

3.1 Overview

This section describes the design methodology used for the development of the personalisation ap-

proach proposed in this thesis. It also provides an overview of the Hermes project including a de-

scription of the set of applications and the application framework developed under Hermes.

3.1.1 Design Methodology

The personalisation approach described in this thesis has been developed as part of the Hermes project

with the aim of providing generic support for user preferences for mobile, context-aware applications.

Like other research work conducted as part of Hermes, the proposed personalisation approach is devel-

oped using the Three Examples methodology proposed by Roberts and Johnson [158]. Three Examples

is built on the rationale that people develop abstractions about functionality by generalising from con-

crete examples. The general rule proposed by this approach is to develop at least three prototype

applications whereby each subsequent application is extended and builds on the lessons learnt from the

previous one. Although speci�cally focused on the development of application frameworks, the Three

Examples methodology provides an e�ective and iterative approach that enables the identi�cation

and design of techniques, algorithms, and models required for the e�ective development of particular

processes and application types. Consequently, Three Examples provides an e�ective means for de-

veloping novel personalisation algorithms and techniques by supporting the investigation of a variety
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of personalisation methods and their applicability to context-aware applications. It also supports the

assessment of a collection of personalisation theories and concepts, a comparative analysis of di�erent

personalisation approaches, and an evaluation of individual personalisation methods.

3.1.2 Hermes

The Hermes project investigates models, techniques, and algorithms for supporting the development

of mobile, context-aware applications1. As part of the project an application framework has been

developed, which provides developer support for common context-aware functionality, organised in

a layered structure. The Hermes architecture distinguishes itself from other context-management

frameworks through its support for trails-based applications [50]. A trail is a set of activities or tasks,

together with associated information (e.g., spatial and temporal information or user preferences) and a

dynamically recon�gurable recommended visiting order. Activities in a trail are contextually scheduled

and adapt to changes in personal and environmental context [65]. An example is an application to

optimally schedule ward rounds for physicians [66].

3.1.2.1 Applications

The initial requirement for personalised recommendations in context-aware applications was identi�ed

from the experience of investigating and designing several context-aware applications. From the

development of these applications, user preferences and the e�ect of context on these preferences

was investigated and a suitable approach for personalising context-aware applications was developed.

The following personalised mobile, context-aware applications have been investigated in the Hermes

project:

� A Campus-based Student Support System - this application supports students in completing

a set of compulsory and optional activities on their �rst day on a new college campus. The

application makes use of environmental context and user preferences to order activities and

generate a suitable route between activities. Environmental context such as the user's location,

the location of activities, activity obligation (i.e., activities are either compulsory or optional),

and activity opening hours are considered. A student's preferences regarding activity obligation

and routes types (e.g., shortest, most scenic) are also considered.

� A Riddle Hunt Game - this application supports users with navigating between di�erent riddle

locations. Activity order and routes between riddles are generated based on a player's preferences

1http://www.dsg.cs.tcd.ie/hermes
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for factors such as riddle type and di�culty level.

� A Scheduler Application for Healthcare Professionals - this application facilitates healthcare

professionals with task scheduling such as ordering the set of tasks that require completion on

a doctor's ward round. Tasks are ordered according to a stated policy such as the most urgent

or shortest path between patients. A doctor's preferences such as being alerted when behind

schedule, preference for visiting new patients �rst, and minimal walking are also considered.

� A Restaurant Recommender System - this application evaluates and presents restaurant recom-

mendations to users using information about their dining preferences and their current context.

The application supports dining preferences by making recommendations about cuisine type,

food quality and service rating, while context types that are supported are the user's location,

the type of meal (i.e., breakfast, lunch or dinner), and the type of day it is (i.e., weekday or

weekend).

� A Travel Recommender System - this application facilitates users with travelling between two

locations by recommending a suitable travel route and transport option. Unlike, the Travelling

Salesman Problem [13], which evaluates routes using a single static cost metric, this application

evaluates the users preferred travel route and transport using their past travel habits under

di�erent context settings. Di�erent travel route optimisations are supported: distance, time,

number of turns, and number of junctions; while transports options for travelling by bus, by

car, or by walking are supported. Context types supported include, start and end locations, the

type of day, time of day, and weather. This application also supports the evaluation of multiple

recommendation types (i.e., provides both route and transport recommendations).

The design and analysis of each of these applications has shown the presence of dependency re-

lationships between context and user preferences and that di�erent users consider di�erent sets of

information with varying degrees of relative importance when making behaviour decisions2 [118]. Fol-

lowing the Three Examples methodology, the development of each application is built on the �ndings

of the previous ones and provides improved support for personalisation behaviour. To this end, the

�nal two applications provide the most sophisticated level of personalisation support including the set

of algorithms and techniques developed for automatically determining user preferences and ranking

candidate behaviours. The �nal application also supports functionality for dynamically determining

information relevance and information utility. These two applications were used as part of the user

2These �ndings are validated by user studies conducted as part of the evaluation of this personalisation approach
described in Chapter 5.
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study evaluations conducted to assess the accuracy of the personalisation approach described in this

thesis. These results are outlined in the Evaluation chapter (Chapter 5).

3.1.2.2 Application Framework

As part of the Hermes project, a layered application framework, which provides developer support

for common context-aware functionality, has been developed. Functionality provided by this frame-

work is utilised by techniques and algorithms for personalisation described in this thesis. Speci�cally,

integration with Hermes makes available a set of services for: ad hoc discovery and exchange of infor-

mation with mobile devices and �xed infrastructures; �ltering and transforming acquired information

from heterogeneous information sources; and on-demand access to context information. Figure 3.1

illustrates the Hermes application framework.

Figure 3.1: The Hermes Application Framework

Communication, Collaboration and Context Management layer functionality provides the set of

services responsible for gathering, modelling, and providing access to context information. At the

lowest level of the architecture is the Communications and Service Discovery layer, which is responsi-

ble for discovering and managing communication with sensors and �xed infrastructures over a variety

of networks. Above this layer is the Collaboration layer. Collaboration divides its functionality into

inbound (Acquisition and Trust) and outbound (Sharing and Privacy) operations. Acquisition and

Sharing functionality act as a gateway for the transfer of information and are responsible for control-

ling the exchange of context information with other devices. Speci�cally, Acquisition is responsible for

proactively acquiring speci�c types of context on behalf of the application while Sharing is responsible
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for responding to incoming requests for context. Trust and Privacy control the set of information

that is acquired or shared. Trust interacts with Acquisition and augments incoming context with

trust-related meta-data. Similarly, Privacy works with Sharing and protects personal data by con-

trolling which types and values of context are exchanged with which peers. The Context Management

layer is responsible for converting, reasoning, modelling, and storing context information. Context

Management contains Modelling and Context Container. Modelling is responsible for fusing di�erent

types of context and its conversion into the framework's internal context representation while Con-

text Container stores current context and persists information as history when new context arrives.

The Context Container also provides functions that enable applications to retrieve information using

either push or pull techniques [49]. Unique to the Hermes framework are layers for Trails and Spatial

Toolkit functionality. Trails functionality is responsible for the generation and management of trails

and Spatial Toolkit provides functionality for the representation and interpretation of spatial (geo-

graphical) properties of the user's environment. Finally, applications operate above this layer and use

functionality provided by the lower layers to adapt or make recommendations about behaviour most

appropriate for the current context and user preference.

The personalisation approach described in this thesis is designed to integrate with the Hermes

framework. Speci�cally, personalisation techniques directly collaborate with Acquisition in order to

specify the context types that are to be acquired. It also interacts with the Context Management layer,

which provides personalised applications with access to both current and historic context information.

The initial version of the Hermes framework supports user preferences as part of Trails function-

ality. However, this initial version requires users to explicitly specify preference information including

relevant decision making information and their associated utilities. The personalisation approach pro-

posed in this thesis is designed to extend personalisation functionality in Hermes and provide more

generic support for user preferences. In particular, it provides functionality that enables user pref-

erences, including information relevance and utility, to be dynamically determined from past user

behaviour for di�erent recommendation problems and context settings.

3.2 Multi-Stage Recommendation Process

This section describes the personalisation approach proposed in this thesis, including a description

of the set of techniques and algorithms provided to support context-aware applications in making

accurate personalised recommendations to users.

53



Chapter 3. Design

3.2.1 Overview

The research question addressed by this thesis is: what techniques and algorithms are necessary to

support the dynamic and implicit determination of user preferences from user behaviour, including rel-

evant information and correct information utility, to facilitate context-aware applications in making

accurate personalised recommendations to users? To address the research question, this thesis de-

scribes an investigation into a novel approach to personalisation. Following a user-centered de�nition

of context discussed in Section 1.1, a user, depending on their preferences, is likely to consider di�erent

types and combinations of context information with di�erent levels of relative importance when de-

ciding on their preferred behaviour. This approach does not require information about relationships

between context, user preferences, behaviour, or information relevance and utility to be explicitly

pre-de�ned and maintained. Instead, the approach determines and ranks candidate behaviour choices

by dynamically inferring knowledge about user preferences, information relevance, and information

utility for a given problem and context. Relevant relationships between context and user behaviour

are determined at run-time when required e.g., when a user's activity changes. Relevant decision

making information and utility are also determined when the application is executed using knowledge

inferred from user behaviour patterns and implicit user feedback. The approach is designed to support

applications to dynamically adapt to the varying e�ect of context on the preferred behaviour of users.

Limitations of existing work are addressed by providing techniques and algorithms that facilitate user

autonomy, unconsidered context relationships, dynamic determination of information relevance and

utility, and changing user preferences.

Figure 3.2 illustrates the design of the personalisation approach described in this thesis3. The

approach is organised as a set of processes that execute in sequence to support personalised recom-

mendations in context-aware applications. Existing techniques from various other �elds, along with

newly developed techniques and algorithms, are used, adapted and combined in a novel manner to

provide a set of techniques and algorithms that: automatically determines user preferences from past

behaviour; dynamically �lters relevant recommendation information; adjusts the relative utility of

information to re�ect the current context and up-to-date preferences of the user; and dynamically

generates and ranks competing recommendations. Context information and information about rec-

ommended behaviour selected by the user is acquired from sensors and from user-device interactions

using Hermes framework functionality. User recommendation selections and the context at the time

of these actions are stored in a user model along with other past user interactions. At the core of

3 * indicates functionality that was added and # indicates functionality that was improved for the extended strategy.
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Figure 3.2: Personalisation Support for Context-aware Applications

the approach is the identi�cation and examination of relevant relationships between contexts and user

behaviour choices. Relevant relationships discovered on �ltered user model cases represent the pre-

ferred behaviour of a user for a particular context. Relevant information, information utility, and the

ranking of candidate choices, are determined at subsequent stages using techniques and algorithms

that utilise knowledge inferred from discovered user behaviour patterns. The set of techniques and

algorithms designed for each stage of the recommendation process will be discussed in greater detail

in later sections of this chapter.

While relationships between context and user choices and relevant decision making information

and utility are dynamically determined, the approach does require the development time speci�cation

of the types of context and recommendation information supported by the application. Speci�cally,

the following set of information is to be de�ned:

� the set of context types and their possible values supported by the application e.g., day context

has values for weekdays and weekend ; weather context has values such as rain, sun, cloudy.

� the set of recommendation problems/output types, features of each output type, and their set

of possible values supported by the application e.g., a restaurant recommendation output type

has features such as cuisine, food quality, service/atmosphere rating, and price while a route
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recommendation type has features such as distance, travel time, and number of junctions.

Both context and output information are stored as type-value tuples (e.g., day=Monday, cuisine=

Italian). A boolean approach is currently used to compare information types but more fuzzy based

comparisons such as similarity measures used in case-based reasoning can also be applied. Context

types with sequential values are supported by aggregating a series of values into a higher level value

e.g., time between 12.00pm and 5.00pm is grouped together in an afternoon value.

3.2.1.1 Recommendation Strategies

Following the three examples design methodology (Section 3.1.1), the personalisation approach de-

scribed in this thesis was developed in an interative manner with improvements made to techniques

and algorithms with each iteration. As part of this process, two main recommendation strategies

were constructed. The �rst (i.e., original) strategy provides personalised recommendations using

context-dependent user preferences inferred at the Implicit Preference Determination stage (Section

3.2.5). The determination and ranking of candidate behaviour choices to recommend is executed at

the Recommendation Generating and Ranking stage (Section 3.2.8). With this strategy, all context

supported by an application is considered relevant and of equal utility in recommendations decisions.

While this �rst strategy produces accurate personalised recommendations (illustrated in Section

5.2 in Chapter 5), its limitation is its assumption that users use the same set of context types and

place the same relative importance to di�erent context types when making behaviour decisions. Con-

sequently, Information Selection (Section 3.2.6) and Utility Assignment (Section 3.2.7) techniques and

algorithms were developed to provide functionality that adjusts the relevance and utility of informa-

tion for di�erent recommendation problems. The second (i.e., extended) recommendation strategy

therefore builds on the �rst by providing techniques to dynamically determine information relevance

(Information Selection) and utility (Utility Assignment). Figure 3.2 illustrates the set of techniques

and algorithms that are supported in each recommendation strategy.

3.2.2 Context Management

The personalisation approach proposed in this thesis assumes the availability of context data as in-

put for personalisation tasks. Functionality that supports the timely access to context information is

provided by the Hermes framework. The framework supports the acquisition of context from sensors

and �xed infrastructures and also processes and transforms context data from its raw form into an

internal representation that can be queried by personalised applications. These tasks, which make
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context available to applications, are the responsibility of the Hermes Communications, Collabora-

tion, and Context Management layers. Although not a contribution of this thesis, work on context

acquisition and modelling provided by the Hermes framework has been conducted in conjunction with

work on personalisation functionality. As a note, the proposed personalisation approach is not limited

to the acquisition and modelling functionality supported by the Hermes framework. Approaches pro-

vided by other frameworks and architectures such as the Context Toolkit [62] or the ACoMS context

management system [91] can be adopted as an approach to obtaining context data. The following

sections brie�y describe the context acquisition and modelling functionality provided by the Hermes

framework and how they provide context information to personalisation functions.

3.2.2.1 Context Acquisition

Hermes provides services that enable applications to discover and communicate with remote devices

in a generic manner by hiding the complexities associated with interacting with heterogeneous devices

with di�erent communication protocols and interfaces. Hermes provides functionality for acquiring

both local and remote context. Local context is collected from sensors that are directly connected

to the user's personal mobile device. For example, the user's location is acquired from a connected

or integrated GPS device and the current time is acquired from the system clock on the mobile

device. Local context can also be inputted by the user directly. For example, the user can input

details about their current task or select a given behaviour recommended to them. In contrast,

remote context is gathered from sensors or infrastructures not directly connected with the user's

device, but require collaboration with remote context sources. For example, the location of a friend

is acquired by communicating with that person's mobile device. Other information services may also

act as remote sensors, such as a weather service, which would provide information about the current

(and future) weather context. Peer-to-peer ad-hoc service discovery provided by the Hermes Service

Discovery and Communication function are used to locate and communicate with remote context

sources. Remote devices within proximity are discovered via an ad hoc service discovery protocol.

Devices are subsequently directly connected to share context.

The Service Discovery and Communication functions support the receiving of advertisement and

context information messages and the sending of context request messages. An application is aware of

the context it requires in order to complete its operating tasks, which is usually a subset of the context

types supported by the application, and when necessary, it explores the environment for context

advertisements to determine the context that is available. Devices advertise context by sending a

service description message containing the context types the application is to share to remote devices
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that are in proximity. Once a device discovers context it wishes to receive, a context type request

message is sent to the remote device advertising that context type. The remote device handles this

request message by responding with the requested context value. Figure 3.3 illustrates the service

discovery and communication of context between devices as supported by the Hermes application

framework.

Figure 3.3: Context Acquisition in Hermes

The following incoming and outgoing messages are supported by the Hermes framework: context

data messages from di�erent context sources; context request messages from remote devices; service

description (i.e., context advertisement) messages to remote devices, application messages; broadcast

messages advertising IP address and port information used to communicate with the user's device.

Both pull and push communication approaches [49, 154] are supported by the Hermes framework.

A pull approach enables remote devices to request for information on demand, while a push approach

enables devices to register with remote devices for context updates. Each time relevant context types

are updated locally, remote devices which have registered an interest in these context types will be

sent the updated context value (including the current time stamp). This therefore prevents devices

from having to repeatedly request certain context types that are of interest. A queue based mechanism

enables applications to send and receive multiple messages at once without hindering an application's

processing response.

3.2.2.2 Context Modelling

The Context Management layer of Hermes provides functionality for modelling, storing, and accessing

context information through its Modelling and Context Container functionality. Modelling functions

reason and combine di�erent context types and converts context into an internal representation.

Context acquired from both local and remote sources are transformed into a single representation

structure. Hermes adopts a hierarchical, object-oriented (OO) model to represent context information.

An OO approach lends itself to modelling real-world objects and their relationships and provides a
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high level of formality through the use of well-de�ned interfaces [175]. New types of context can also

be easily added while limiting the impact on other existing context types. The Context Container

is responsible for maintaining the context model, such as updating the values of current context

and persisting context to history when new context arrives. Like acquisition from sensors, current

context and context history can be accessed through the Context Container using either pull or push

techniques. The context model, stored as part of the Context Management layer, is hierarchically

structured with the following four context types at the root of the hierarchy as illustrated in Figure

3.4.

� Activity - information about real world tasks that users complete e.g., travelling to a certain

location. Behaviour recommendations evaluated by applications are designed to aid users with

completing these tasks.

� People - information about people e.g., user preferences.

� Artefact - information about real-world objects or services e.g., a particular restaurant or travel

Route.

� Feature - information about the environment e.g., weather or latitude-longitude coordinate.

Application speci�c context types are represented as subclasses of one of these context types. Context

information retrieved from the context model as part of this personalisation approach are in type-value

tuple form.

Figure 3.4: Hermes Context Model

3.2.3 User Modelling

A user model is de�ned as �collections of information and assumptions about individual users (as well

as user groups) which are needed in the adaptation process [...] if a system is supposed to automatically

adapt to the requirements of the current user� [99]. The construction of an accurate user model is
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therefore a critical element of personalised systems, the success of which is largely dependent on the

ability to accurately represent a user's preferences [134].

Existing personalised recommender systems have adopted two main types of user models: feature

vector models and history-based models4 [134]. Common to both of these model types is a collection of

features or items. A feature vector model contains a set of features where each feature has an associated

rating. For example, a restaurant recommender system (e.g., Entree) would contain features such as

cuisine type, cost, service/atmosphere, and food quality. Each instance of a feature value (e.g., Italian

food or low cost) would have a corresponding rating to represent a user's preference for that feature.

In contrast, history-based models contain information about a user's past experiences, which are

represented as a set of cases. Cases are typically described as problem-solution pairs - the problem

represents a description of the previous situation and the solution represents the recommendation

selected by the user for that situation. Re-using the restaurant recommender example, a sample case

in such a system would contain a restaurant name (e.g., Roma) in the solution portion of the case and

properties associated with that restaurant are stored in the problem portion of the case (e.g., Italian

food or low cost). In future, when the user queries for a low cost Italian restaurant, Roma will be

recommended.

The user model constructed for the personalisation process proposed in this thesis borrows prop-

erties from both feature vector and history-based user models. This user model, like feature vector

models contains a set of features and associates ratings with each feature. In this model, ratings rep-

resent the relative importance (or utility) of features in past decisions. Speci�cally, this user model is

concerned with attaching utility values to environmental context information to represent how much

weight di�erent context types have in deciding the appropriate behaviour to recommend. The process

of determining the utility value to associate with di�erent context is described in Section 3.2.7.

Like history-based models, this user model is designed to store a set of cases that capture the past

behaviour of a user, gathered from implicit feedback. However, where history-based cases are mainly

structured as problem-solutions pairs, the structure of this user model case is extended in a number

of directions. Firstly, the user model cases record information about environmental context that

existed at the time of each behaviour (e.g., user location, weather). Secondly, each case is extended

to store information about features of a particular solution (e.g., cuisine type, cost for a restaurant

solution). Finally, cases are extended to store information about multiple di�erent recommendation

problem types and correspondingly multiple di�erent solution features. For example a restaurant

recommendation problem has solution features such as cuisine, food quality, and cost, while a route

4Due to their similarity, feature vector models and user item rating models as outlined in Section 2.1 are grouped
together here.
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recommendation problem will have solution features such as distance and travel time.

To support the extended set of information, the user model used for this personalisation approach

consists of �ve main parts5: a problem type, a solution, a set of solution features, a set of environmental

context information, and a set of weights that represent the utility of context information that was

considered for that case. The problem type part of the case records the type of recommendation

problem that case refers to (e.g., a restaurant recommendation problem), the solution records the

recommendation that was selected by the user (e.g., Roma), and the solution features represent the

characteristics of the selected solution (i.e., the characteristics of Roma restaurant, e.g., Italian cuisine,

low cost). Di�erent problem types will have di�erent solutions and di�erent sets of solution features

that correspond to the problem type. For example, cases associated with restaurant recommendations

will have one set of (restaurant related) features, while cases about travel routes will have a di�erent

(route-related) set of features. The set of context feature values records the values of environmental

context at the time of the problem (e.g., user at work, dry weather) and the set of weights represent

the utility assigned to relevant context features for that recommendation problem.

The structure of this user model is more formally de�ned as:

U = {Cs1, Cs2, Cs3... Csn} (3.1)

where Cs is a user model case. Each Cs is de�ned as:

Cs = {Pt, S, (F1, F2, F3... Fx), (C1, C2, C3... Cy), (W1, W2, W3...Wy)} (3.2)

where Pt is the problem type, S is the solution selected by the user, {F1, F2, F3... Fx} are the set of

features associated with a given solution, {C1, C2, C3... Cy} are the set of environmental context, and

{W 1, W 2, W 3...Wy} are the set of weights representing the relative importance of context features.

Figure 3.5: User Modelling Inputs and Outputs

Figure 3.5 illustrates the set of inputs required for populating user model cases, which consist

of user recommendation selections and environmental context information. This set of information
5Note that, in addition, a time stamp value associated with each case is also stored.
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is acquired from users and from context sources using the Hermes framework and is accessed by

applications through Context Management layer functionality. The output of User Modelling is a

set of user model cases, which are created for each recommendation problem and persisted when

a user selects a particular recommendation solution. For example, when requesting a restaurant

recommendation, the application will make a recommendation using the user's context and their

preferences (inferred from their past restaurant selections using techniques and algorithms provided

by the multi-stage process described in subsequent sections of this chapter). When the user selects

one of the recommended restaurants, their selection, including its feature values, the environmental

context of the recommendation problem, and the weights assigned to di�erent context features as

part of the recommendation decisions are stored as a new case in the user model. This is viewed as

recording a snapshot of the environment and the associated behaviour selected by the user [199].

The current design assumes that users explicitly select their preferred solution when presented with

a set of di�erent recommendations. However, it is important to note that users are not required to in-

put any preference related information such as providing ratings for candidate solutions. The solution

selected by the user is the only form of feedback the application receives from the user. Approaches

for monitoring user actions to determine their selected behaviour are currently not provided but have

been investigated. Existing approaches to monitoring user behaviour such as those in the area of

activity recognition e.g., the CIGAR framework by Hu et al. [90] and the RFID-based approach by

Liu et al. [119] can be supported and integrated with the approach to automatically determine the

recommendation selected by the user.

To support applications in addressing the requirements outlined in Section 1.2, this user model

extends the set of information stored in previous models by recording information about solution

features, environmental context, and context utility. Firstly (Requirement 1, Section 1.2), support

is provided to applications to tailor decisions to di�erent context values and relationships because

information about the environmental context at the time of each behaviour is recorded as part of

user model cases. The combination of problem types and environmental context enables applications

to focus on a speci�c set of relevant cases. Storing environmental context information along with

solution information also provides a set of information from which dependencies between context and

user behaviour selections can be identi�ed. This supports applications to infer knowledge about the

e�ect of di�erent context on the preferred behaviour of users and applications can therefore provide

more accurate recommendations. Secondly (R2), new user behaviour selections along with the context

at the time of the behaviour, which are automatically acquired, are added to the user model with

application use. Storing cases as the application is used ensures that the user model remains up-to-date
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without necessitating explicit user input and enables the application to evolve to support previously

unconsidered context relationships and any changes to user preferences (as a series of cases will

capture how a user's habits change over time). Thirdly (R3), storing cases for di�erent problem types

supports applications in making recommendations about di�erent types of problems (e.g., a restaurant

recommendation di�ers from a route recommendation). The design also facilitates applications to

make recommendations about multiple di�erent types of problems using the same process (e.g., present

a restaurant recommendation and a route recommendation). Also, by storing features of a solution,

and not only a solution identi�er, the user model accommodates changing properties associated with

a particular solution. Therefore, if certain properties a restaurant were to change (e.g., from low

cost to high cost), or if the restaurant no longer exists, the application would still be able to make

useful recommendations (i.e., by recommending a restaurant with similar characteristics). This also

supports applications in making diverse recommendations (i.e., by recommending a restaurant with

similar preferred features that was not previously recommended) minimising the problem of over-

specialisation6 [6, 134]. The application of this user model with techniques and algorithms described

in later sections supports the requirements for dynamic (R4) and autonomous (R5) execution.

3.2.4 Association Determination

Once a set of user model cases is available, they can be analysed to determine patterns in user

behaviour that will aid with personalised recommendation decision making. The personalisation

approach proposed in this thesis adopts data mining [80, 188, 79], and in particular the association

discovery technique [8] for identifying user behaviour patterns.

Data mining, also referred to as knowledge discovery, is the process of �nontrivial extraction of im-

plicit, previously unknown and potentially useful information� [45]. Mining enables interesting knowl-

edge, high level information, and relevant patterns to be extracted from large sets of information and

provides a valuable and reliable source for knowledge generation and veri�cation [105, 45]. One of the

main techniques of data mining is association rule discovery. Association rule discovery is a process

that discovers associations or correlations among sets of items in a data structure [7, 8]. The discovery

of association rules was �rst introduced for market basket analysis where a large collection of basket

items is mined with the aim of increasing sales by knowing what items people bought together [7].

For example, an association rule bread⇒ milk indicates that when a user purchases bread, they also

purchase milk.

6over-specialisation results when applications are restricted to only providing recommendations that have been
presented to the user in the past [134].
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While association rule discovery is e�ective at discovering associations between items in a collec-

tion [8], its main limitation is that generated associations may be irrelevant or redundant [15, 195].

Therefore, an important challenge is to analyse and �lter discovered rules to ensure that only those

that are useful are retained.

The personalisation approach proposed in this thesis includes an Association Determination process

as part of its multi-stage recommendation process. It consists of two sub-processes: association

discovery and rule elimination. Association discovery adopts the association rule discovery technique

as a method for identifying patterns in user behaviour. Speci�cally, this technique is applied to

discover associations between context and user behaviour choices from relevant user model cases,

which provides the knowledge from which the preferred behaviour of a user in a particular context is

inferred. Rule elimination provides techniques responsible for removing uninteresting and redundant

rules from the discovered rules set. A newly developed technique for removing rules that do not

represent relationships between context and user actions is combined with existing techniques designed

to remove uninteresting and redundant rules. As input, Association Determination requires a set of

user model cases and outputs a set of non redundant association rules representing dependencies

between context and user actions that are present in user model cases (Figure 3.6).

Figure 3.6: Association Determination Inputs and Outputs

3.2.4.1 Association Discovery

Associations between information items are discovered by determining the frequency of items occurring

together (known as itemsets) in a data collection. More formally, the process consists of the following:

I = {i1, i2, i3... in} is the set of distinct attributes, called items; T is the set of transactions (i.e.,

user model cases), where each transaction t contains a set of items such that T ⊆ I; an association

rule is an implication of the form X ⇒ Y (i.e., X implies Y ), where X, Y ⊂ I called itemsets in I

and X ∩ Y = φ [7]. The left hand side of the rule X is known as the antecedent or premise and the

right hand side of the rule Y is known as the consequent. This process of discovering association rules

generally consist of the following steps [45]:

� discover the set of large itemsets i.e., the sets of itemsets that have a support value above a

speci�ed minimum s. Itemsets that do not have the minimum support are discarded
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� use the large itemsets to generate association rules.

The Apriori algorithm [8] is adopted as the association rule discovery algorithm used in the person-

alisation approach7. Apriori discovers associations by iteratively constructing candidate sets of large

itemsets, counting the number of occurrences of each candidate itemset, and determining large item-

sets based on a pre-determined minimum support. Figure 3.7, drawn from information in [80, 188],

illustrates the Apriori algorithm.

Figure 3.7: Apriori Algorithm

The �rst pass of the algorithm counts the number of occurrences for each item (i.e., 1-itemsets/

itemsets with 1 item). Those that do not meet the speci�ed minimum support are discarded. Each

subsequent pass k consists of two phases. First, the large itemsets Lk−1 are used to generate the

candidate itemsets Ck. Apriori uses Lk ∗ Lk to generate candidate sets of itemsets where ∗ is a

concatenation operation of the form:

Lk ∗ Lk = {X ∪ Y |X, Y ∈ Lk, |X ∩ Y | = k − 1} (3.3)

The second phase scans each transaction and the support of each candidate itemset in Ck is counted.

Those that do no meet the minimum support are again discarded. This process continues with

increments to k until no more large itemsets can be generated. Once complete, non empty itemsets

are scanned and association rules are outputted.

The example taken from [45] shown in Figure 3.8 illustrates the generation of itemsets for the

Apriori rule discovery process with sample values. The �rst pass generates the set of candidate 1-

itemset C1. Assuming a minimum support of 2, those itemsets that do not meet this support value
7Apriori is the original association algorithm and provides the basis for other association mining algorithms that

have been developed [108]
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Figure 3.8: Apriori Candidate and Large Itemsets Generation [45]

are discarded. The large itemsets L1 are then used to discover the set of 2-itemsets and candidate

itemsets C2 using the * operation. From C2 the set of large 2-itemsets L2 are generated. This

process is repeated for the generation of candidate itemsets C3 and large itemset L3. As there are no

4-itemsets to be discovered from L3, the Apriori process of discovering large itemsets ends.

Figure 3.9 illustrates a sample set of association rules with real values generated for a restaurant

recommendation problem. Rules generated show associations between context and past user choices

for solutions and individual solution features (i.e., the solution and solution features portion of a user

model case).

Figure 3.9: Sample Association Rules
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3.2.4.2 Rule Elimination

A limitation of association discovery is that it outputs a large number of associations, many of which

are uninteresting and/or redundant [15]. Rule elimination is the second part of Association Determi-

nation, and provides functionality to remove uninteresting and redundant rules. The personalisation

approach proposed in this thesis uses three di�erent methods to remove unnecessary association rules.

Firstly, measures of interestingness are used to restrict the number of association rules. In associ-

ation mining, there are two main metrics for measuring the interestingness of rules: con�dence and

support [45]. Generally speaking, con�dence measures the signi�cance of a rule as the number of times

a rule is correct and support measures how often a rule occurs in a data set . In mathematical terms,

con�dence is the percentage of transactions that contain X and Y to the total number of transactions

that contain X. Support is the percentage of transactions that contain X and Y together to the total

number of transactions in the database.

Confidence (X ⇒ Y ) =
number transaction containing X ∩ Y

total number of transactions containing X
(3.4)

Support (X ⇒ Y ) =
number transaction containing X ∩ Y

total number of transactions
(3.5)

More formally, the rule X ⇒ Y has a con�dence c if c% of transactions in T that contain X also

contain Y . The rule X ⇒ Y has support s if s% of transactions in T contain X ∪ Y . Con�dence

indicates the strength of the implication, so an association rule X ⇒ Y with 80% con�dence means

that 80% of transactions that contain X also contain Y , while support denotes the frequencies of

recurring patterns in a rule. Strong rules have high con�dence and high support and the higher the

support and the con�dence the more accurate and reoccurring the rule [45]. Values of con�dence near

value 1 are expected for important association rules. As the number of transactions and items may

be large, support and con�dence threshold values are useful for constraining rules so that only those

that are interesting or useful (i.e., strong rules) are selected for decision making.

Secondly, this personalisation approach provides a technique that �lters rules by restricting re-

tained rules to a certain form. The execution of association rule discovery is designed to discover

relationships between any items in an itemset. Consequently, rules of the form context ⇒ context

or solution/solution feature ⇒ solution/solution feature may be generated. However, context-

aware personalisation is interested in rules that represent patterns in user behaviour. In partic-

ular, personalisation is interested in association between context and user behaviour choices (i.e.,
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context ⇒ solution/solution feature). Rules in the rule set that do not conform to the form

context ⇒ solution/solution feature provide no useful knowledge and can therefore be discarded.

Remaining rules will be of the appropriate form where the antecedent part of the rule consists of con-

text types and the consequent part of the rules consists of solutions and solution features. Reducing

the number of rules to be considered in this way enables applications to focus on those that provide

relevant user preference knowledge.

The third approach to rule elimination, that was added as part of the extended strategy (shown in

Figure 3.2), is designed to remove redundant rules from the rule set. While selecting rules using their

support and con�dence measures and restricting rules to the context ⇒ solution/solution feature

form will reduce the number of rules that are retained, redundant rules (i.e., rules that have the same

meaning) may still exist in the rule set [47, 14]. For example, consider three rules X ⇒ Y , X ⇒ Z,

and X ⇒ Y Z. As the third rule is a simple combination of the �rst two rules, either the �rst two rules

or the third rule can be marked as redundant as the two sets of rules convey the same information.

The design was extended to remove redundant rules to ensure that recommendation decisions are not

biased as a result of considering more than one rule with the same meaning. An approach proposed

by Ashra� et al. [15] is adopted to remove redundant rules from the rule set. Ashra� provides two

algorithms for removing redundant rules - one algorithm is designed for rules with multiple antecedents

and the other for rules with multiple consequences - which eliminate redundant rules without losing any

higher con�dence rules that cannot be substituted by other rules. Figure 3.10 illustrates the algorithm

for removing redundant rules with multiple consequence items but have the same antecedent items,

drawn using information in [14]. The algorithm begins by selecting a rule from the rule set that has

multiple consequence items, referred to as the proper rule (e.g., X ⇒ Y Z). Once it �nds such a

rule, a check is carried out to determine if there are other rules in the rule set that have the same

antecedent, referred to as sub-consequence rules (e.g., X ⇒ Y , X ⇒ Z). If so, the consequence items

of these rules are examined to determine if their combination equals the consequence of the proper

rule. If this applies, either the proper rule or the set of sub-consequence rules is considered redundant.

Ashra� et al. describe several analogies to aid with determining the rule(s) (either proper or sub rules)

that should be considered redundant using con�dence and support measures: total dominance, partial

dominance, and indi�erence dominance [15]. For rules with multiple consequences: total dominance

is evident when either the proper rule or sub-consequence rules have higher support and con�dence

values; partial dominance is evident when several sub-consequence rules, but not all, have a higher

con�dence value than its corresponding proper rule; and indi�erence dominance occurs when a proper

rule and its sub-consequence rules have the same support and con�dence. Given the structure of
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rules with multiple consequences (i.e., single antecedent and multiple consequences), total and partial

dominance will result in the proper rule being considered redundant; and indi�erence dominance will

result in the set of sub-consequence rules being redundant [15]. The removal of redundant rules with

multiple antecedents but same consequences follows a similar sequence of steps, except it �rst �nds

rules with multiple items in the antecedent, looks for other rules that have the same consequence

(sub-antecedent rules), and determines if the combination of antecedents of these sub-antecedent rules

equals the antecedent of the proper rule. Ashra� et al. describe similar analogies for rules with

multiple antecedents as outlined previously for rules with multiple consequences. For rules with

multiple antecedents: total dominance is evident when either the proper rule or sub-antecedent rules

have higher con�dence; partial dominance is evident when several sub-antecedent rules, but not all,

have a higher con�dence value than its corresponding proper rule; and indi�erence dominance occurs

when a proper rule and its sub-antecedent rules have equal con�dence. Given the di�erent structure

of rules with multiple antecedents (i.e., multiple antecedents and single consequence), total dominance

considers either the proper rule or sub-antecedent rule, whichever has a lower con�dence, as redundant;

partial dominance will result in sub-antecedent rules being redundant; and indi�erence dominance will

result in the proper rule being redundant [15].

Figure 3.10: Redundant Rule Elimination

The combination of techniques and algorithms adopted at this Association Determination stage

is designed to facilitate context-aware applications with dynamically and implicitly determining in-

teresting relationships between context and user behaviour choices. Data mining, and in particular

association discovery, was selected because it is not a speci�c algorithm that is explicitly de�ned for a

particular application or domain. Instead it provides a general purpose approach that determines key
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relationships in the data by following a data mining cycle (data collection and pre-processing, pattern

discovery, and recommendation) [131]. Association discovery can also concurrently look at numerous

multidimensional information relationships, highlighting those that are exceptional or interesting [137]

and is more scalable than other approaches due to the focus of data mining techniques on e�cient

pattern discovery [131, 137].

The integration of the association discovery technique into the personalisation approach described

in this thesis was taken to ensure greater �exibility (than speci�cally pre-de�ned recommendation al-

gorithms) for supporting di�erent types of applications, recommendation problems, preferences, and

context - therefore facilitating personalisation tasks to be more easily and e�ectively integrated into

existing applications. Its application, along with techniques and algorithms incorporated for rule elim-

ination, to the previously described user model is intended to facilitate applications to address the

requirements outlined in Section 1.2. Firstly, as association discovery is not restricted to discovering

associations between speci�c information types. Therefore its application can facilitate the identi�-

cation of relationships between context and user actions, for multiple di�erent context types/values

and multiple di�erent action types/values, supporting applications with determining user preferences

for di�erent combinations of context and di�erent types of recommendation problems using the same

process. Techniques and algorithms for �ltering and prioritising discovered associations are intended

to ensure that applications focus only on rules that are most accurate (or strongest) and relevant for

a given problem and context (R1 and R3, Section 1.2). Secondly, the approach is designed so that

associations between context and user choices are explicitly identi�ed. This enables inferred knowl-

edge to be used at later stages of the decision making process to infer and tailor information relevance

and utility for di�erent recommendation problems and context (Section 3.2.6 and Section 3.2.7) (R1

and R2). Also, by explicitly identifying associations in rule form, explanation methods can be easily

integrated, enabling users to query and scrutinise applications about their recommended behaviour,

and enabling applications to provide an intuitive and description response to user queries. Thirdly,

the decision to discover associations between context and user actions at run-time from up-to-date

user model data was taken to ensure that context-aware applications have the ability to evolve to

support previously unconsidered context relationships and changing user preferences (R2). Run time

execution, when required, using association discovery and information about past user interaction

also limits the need for developer and user input (R4 and R5). Finally, the application of association

discovery provides an approach to discovering interesting information relationships that is easily con-

�gurable and can be customised in various ways according to the requirements of an application. For

example the number of rules that are discovered can be speci�ed, as can values for minimum support
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used during the candidate generation process. Section 4.3 in the following chapter expands on the

con�guration details related to association discovery.

However, it is important to note that association rule discovery is not without its limitations.

The main limitation, particularly with the Apriori algorithm, is its discovery of large numbers of

often redundant and uninteresting rules and its bottlenecks in terms of its processing and memory

requirements. The association determination in the personalisation approach proposed in this thesis

has been designed to address the �rst problem by including techniques and algorithms that remove and

�lter discovered rules, ensuring that only the most accurate and relevant are retained (Section 3.2.4.2).

No techniques have been integrated to speci�cally address the e�ciency problem of Apriori, but this

approach is designed in a pluggable manner and is not restricted to using the Apriori algorithm.

Other, more e�cient, association discovery algorithms can be applied such as those by Wang and

Tjortjis [184], Wu et al. [189] and Liusheng et al [120]. These algorithms will discover association

rules in a similar manner to Apriori, but are designed to discover rules with greater e�ciency [108].

Apart from association discovery, clustering provides a possible data mining alternative for solving

recommendation problems [71]. The aim of clustering is to divide a data set into groups or clusters

so that the data in each subset shares some similarity, de�ned by some distance measure8. In a

personalised context-aware application, clustering techniques could be adopted to classify problems

based on the type of recommendation to be made. However, the main limitation of clustering is

the need to accurately de�ne the concept of distance. In general, relevant domain expert knowledge

is required to de�ne an optimum concept of distance. When applied to personalisation and context-

awareness, this provides a non-trivial challenge due to the nature of available data such as interactions

between di�erent context types and user preferences and the di�cultly in specifying many context

types in numeric form. Clustering algorithms are also ine�ective when applied to problems with

multi-dimensional data as there are not enough items to populate the vector space [71]. In addition,

clustering does not support the presence of variances in information relevance and utility that exist

as a result of di�erences in context.

3.2.5 Implicit Preference Determination

The primary goal of Implicit Preference Determination is to automatically infer user preferences for

a given problem and context by identifying patterns from past user behaviour stored in the user

model. Implicit Preference Determination determines user preferences from past user behaviour,

without the need for users to specify their preference details explicitly. Instead, preferences are

8distance measures the degree of similarity between data.
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automatically inferred from past user behaviour and implicit user feedback. Current applications of

implicit preference techniques have been restricted to web search and information retrieval (document)

systems, which are limited in the number of environmental context types they consider when executing

(Section 2.1.2). The Implicit Preference Determination technique described in this thesis di�ers as it

supports di�erent types of environmental context and automatically discovers relevant relationships

between them. More importantly for personalisation, the approach also automatically determines how

di�erent context and combinations of context a�ect the preferred actions of users. This knowledge

enables applications to identify the e�ect of di�erent context values on user preferences and therefore

supports applications in providing personalised recommendations to users for di�erent user problems

and context settings.

Figure 3.11: Implicit Preference Determination Inputs and Outputs

The Implicit Preference Determination process begins when a user queries the application for

a recommendation about a particular problem (e.g., a user requests a restaurant recommendation

from the application). As illustrated in Figure 3.11, this process takes a set of relevant user model

cases as input and outputs the preferred actions of the user for the given problem and context (i.e.,

context-dependent preferences). The Association Determination process is used as the technique for

identifying patterns in user behaviour (Section 3.2.4). As previously described, this process does

not require explicit human knowledge or input for identifying relationships between context, user

preferences, and appropriate behaviour. Instead, associations between context and user choices, from

which recommendation decisions are made, are autonomously and dynamically inferred at run time.

Figure 3.12: Implicit Preference Determination Stages

The sequence of steps design for Implicit Preference Determination is illustrated in Figure 3.12.

Association rules are discovered using the previously described Association Determination technique

(Section 3.2.4), while the personalisation approach proposed in this thesis adds techniques that �lter
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both user model cases and discovered associations. These steps are designed to ensure that the most

accurate and relevant set of user preferences for a user problem and context are determined and

applied to ranking candidate solutions. The Filter Cases stage acts as the pre-processing stage for

association discovery and provides the functionality that �lters the set of user model cases so that only

those cases relevant for the given recommendation problem and context are considered. The Pattern

Discovery stage provides the data mining functionality for discovering user behaviour patterns from

selected user model cases using the association determination process described previously (in Section

3.2.4). Finally, the Filter Rules stage, added as part of the extended recommendation strategy, �lters

discovered association rules to ensure only those relevant to the user problem and context are retained.

Figure 3.13: Implicit Preference Determination

Figure 3.13 provides a more detailed illustration of Implicit Preference Determination, including the

sequence of functions that execute. The �rst stage, Filter Cases, provides functionality for determining

the set of cases that should be used in pattern discovery. The aim is to ensure that only the relevant

set of user model cases is considered for recommendations decisions. Two approaches are supported

for �ltering cases: semantic and context -based �ltering. Semantic-based �ltering �lters user model

cases based on the type of recommendation problem being processed. For example, a user model

may have cases pertaining to restaurant recommendations, travel route recommendations, and many

others. The aim of semantic �ltering is to select the correct set of cases for the current user problem
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(i.e., recommendation decisions regarding restaurant should be made on user model restaurant cases).

To achieve this, the type of the current user problem is compared with the problem type value of

user model cases. Those that match are retained. Semantic �ltering can also be adjusted to collect

cases that are semantically similar to the current problem type (for example if there are a limited

number of cases associated with a particular problem type). Semantic similarity is de�ned by an

application's domain model hierarchy structure. For example, take a dining object with restaurant

and cafe children objects. When determining restaurants to recommend, all cases associated with

restaurants are retrieved, but cases related to cafes can also be selected i.e., users who like comfortable

restaurants will prefer comfortable cafes. The approach is �exible and can be adjusted to traverse any

number of levels or particular branches of the hierarchy. This �exibility also enables applications to

easily adjust to di�erent types of user problems.

Context-based �ltering, in contrast, �lters user model cases so that only those that are relevant

to the context of the current user problem are retained. This process compares the values of context

in each case with the context values of the current problem. For example, if the problem context is

afternoon time on a weekend, then only user model cases that contain context features whose values

match these are selected. Cases associated with evening time and weekdays will not be retained for

the remainder of the decision process. The approach is designed to retain cases that match at least one

context type, therefore ensuring that any case that may provide knowledge about a user's preferences

is not discarded. While this is the approach adopted by the current design, it is adaptable so that only

cases that match a certain speci�ed number of context values are retained (Section 4.3). Figure 3.14

illustrates both the semantic and context-based �ltering process9. In the illustrated example, Case

1 and Case 3 will be retained as they semantically match the current problem type, as underlined.

They will also both be retained as they have context values that match the problem context, also

underlined.

The second stage of Implicit Preference Determination, Pattern Discovery, provides functionality

that identi�es patterns in user behaviour using cases retained after the Filter Cases stage. Association

Determination (described in Section 3.2.4) provides the technique used for discovering associations

between context and user behaviour choices. These associations are in rule form and represent the

general context-dependent preferences of a user for the current problem.

The Pattern Discovery stage will generate a large set of rules of the form context ⇒ solution/solu-

tion feature. However, because cases retained at the Filter Cases stage may include context values that

do not match that of the current problem, a certain number of discovered rules will not be relevant.

9weight values stored as part of a user model case are omitted from this illustration
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Figure 3.14: Filtering User Model Cases

Filter Rules was added as part of the extended strategy to further ensure that only rules relevant for

the current recommendation problem and context are considered. Therefore, Filter Rules provides

functionality to �lter irrelevant associations that are generated during pattern discovery. Filtering

is performed in a similar manner to context-based case �ltering. That is, if a rule has any context

value that matches the context of the current problem, then it is retained. This, like case �ltering, is

also adaptable so that only rules that match a certain speci�ed number of context values are retained

(Section 4.3). Figure 3.15 illustrates a set of sample association rules. Given the same context types

and values illustrated in Figure 3.14, Rules 1, 3, and 5 will be retained as part of their antecedent

values match the context of the current problem as underlined. The �nal set of retained rules repre-

sents the unordered and unprioritised context-dependent preferences of a user. Inferred from patterns

in user behaviour, they represent the preferred behaviour of a user that are speci�cally customised to

the current problem and problem context.

The sequence of steps of Implicit Preference Determination is designed to support the automatic

identi�cation of preferred user behaviour for di�erent problems and context. Association determina-
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Figure 3.15: Filtering Association Rules

tion is incorporated as part of this technique to support the automatic determination of user prefer-

ences, eliminating the need for expert knowledge and input for identifying and specifying relationships

between context, user preferences, and recommendation behaviour. The use of association mining is

also intended to facilitate the identi�cation of associations between multiple di�erent data types,

therefore supporting the inference of user preferences for multiple di�erent context combinations and

problem types. The design and incorporation of �ltering techniques before and after this association

discovery process is intended to ensure that applications focus only on cases and discovered rules that

are relevant for the current user problem and context. Also, the implicit preference determination

technique is designed to discover relationships between context and user actions at run-time using an

up-to-date set of user model cases, facilitating the determination of the most up-to-date user prefer-

ences for the current problem and context, and accommodating any changes to preferences that may

have occurred over time.

3.2.6 Information Selection

The availability of information from di�erent sources provides context-aware applications with a myr-

iad of di�erent context types and values. However, not all context types may be relevant at all times

and di�erent subsets of information will be relevant to decision making under di�erent context situ-

ations. In addition, di�erent context relationships (or interacting features [118]) may exhibit varying

information relevance when coupled together, which are not evident in individual context types alone.

One example is the XOR problem [118] in which the e�ect of considering information types separately

di�ers from the e�ect of grouping di�erent types together. This problem is referred to as information

overload or the curse of dimensionality [81].

Information Selection is the technique designed to address this problem by providing functionality

to determine the set of information (i.e., context types) that are necessary to consider when making

recommendation decisions. The ability to select the subset of context types that are relevant from the
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original set of supported context types will lead to more e�ective performance [118, 178, 67].

To understand the issues of information relevance, consider the following movie recommendation

example. Assume that a single context type Location has one of two values Home and Cinema.

Also assume that the ratings given to movies watched at home (Location = Home) have the same

distribution as movies watched at the cinema (Location = Cinema). This indicates that the location

in which movies are watched does not a�ect the user's preferences regarding movies, and therefore the

Location context can be considered irrelevant when making movie recommendations to the user.

Kohavi and John [104] provide three categories of information relevance: strong relevance, weak

relevance, and irrelevance, which are important when determining what information types to con-

serve and what types to eliminate. The strongly relevant types should always be considered by any

information selection process and necessary for an optimal information subset. These types cannot

be removed without inversely a�ecting the e�ectiveness of recommendations. Weakly relevant types

could be important and may be necessary for an optimal subset at certain conditions - depending

on other types and their values already selected. Irrelevant types are not necessary and should not

be considered. An optimal subset should include all strongly relevant information types, none of the

irrelevant types, and a subset of weakly relevant types. The Information Selection technique described

here enables developers to, if necessary, de�ne strongly relevant types. Weakly relevant types (and

irrelevant) types for the current user problem and context are dynamically determined at run-time.

Existing literature broadly classi�es information selection (also commonly referred to as feature

selection) into two categories: a wrapper model approach uses the predictive accuracy of a predeter-

mined learning algorithm to determine the relevance of a selected subset of information types; while

a �lter model approach utilises various measures of generated characteristics of data to determine

relevance [118]. However, both approaches are typically developed as a pre-processing operation and

therefore do not adapt the relevance of information to di�erent context or user problems. In existing

context-aware applications and frameworks, a human expert or developer is typically responsible for

de�ning the set of strongly and weakly relevant context types for recommendation decisions. For ex-

ample, in the Sentient Object Model [29], relevant information types are de�ned as part of behaviour

rules, while in Gaia [151] these types are de�ned as part of Bayesian network structures. The ex-

plicit speci�cation of information is highly reliant on human knowledge, which is di�cult especially

when there are a large number of context types supported. Such an approach also does not adapt to

changing information relevance as a result of changing user preferences.

The goal of Information Selection is to address these limitations by eliminating the need for explicit

developer knowledge and input for specifying information relevance and also by adapting the set of
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Figure 3.16: Information Selection Inputs and Outputs

information used in recommendation decisions to a given user problem and context. To achieve this

goal, a �lter model approach to feature selection is used as part of the personalisation approach

proposed in this thesis. Speci�cally, the approach uses association rules discovered from user model

data to determine information relevance and executes at run-time for each recommendation problem

and problem context, meaning that the relevance of information is dynamically tailored. That is, the

relevance of information is determined for a given recommendation problem and context, and is re-

determined each time this information changes. Unlike the wrapper model approach to information

selection, there is no requirement for a developer to pre-de�ne any speci�c learning algorithm. A

�lter model approach is also more e�cient than a wrapper model approach, which is computationally

expensive for data with a large number of items [118].

Figure 3.17: Information Selection

As illustrated in Figure 3.16, the approach taken to Information Selection in the personalisation

approach described in this thesis requires data about the user's recommendation problem and a set
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of relevant user model cases. It uses this information to determine and output the set of context

types that are relevant and to be considered for ranking candidate choices for the recommendation

problem. Information Selection is divided into two stages, Discover Associations and Determine

Relevance. Figure 3.17 illustrates the set of sub-tasks performed at each stage. The �rst stage,

Discovers Associations, is designed, like Implicit Preference Determination (Section 3.2.5), to discover

associations between context and user actions. User model cases are �rst �ltered so that only those

cases that match the current problem type are retained. Cases, as part of Discover Association, are

not �ltered by context, as the aim is to determine the set of context that in general are relevant

for recommendation decisions of a given problem type. Association rules are discovered using the

previously described Association Determination technique (Section 3.2.4) and the top N rules of

the form context ⇒ solution are retained. N de�nes the number of rules to be compared during

Information Selection and can be con�gured according to the requirements of the application (Section

4.3). The second stage, Determine Relevance, is responsible for determining relevant context types

or sets of types using the set of retained association rules. The design supports the storing of sets of

types to facilitate the relevance of certain types given the presence of other types. At the �rst stage,

a pair of rules in the rule set are selected and iteratively compared in a similar manner to the movie

example outlined previously. That is, the solution of rules are compared and context types present

in both rules are also compared. The aim of comparing context and solutions is to determine the set

of context types that are relevant for making recommendations about a particular type of problem.

Four information selection relevance rules have been designed as part of the personalisation approach

described in this thesis to determine if a context type or set of context types are relevant.

1. When comparing two rules, if the values of a context type/set of context types in each rule are

equal and the value of the solution are equal, then that context type/set of context types is

relevant.

2. When comparing two rules, if the values of a particular context type/set of context types in each

rule are equal and the value of the solution are not equal, then that context type/set of context

types is not relevant.

3. When comparing two rules, if the values of a particular context type/set of context types in each

rule are not equal and the value of the solution are equal, then that context type/set of context

types is not relevant.

4. When comparing two rules, if the values of a particular context type/set of context types in

each rule are not equal and the value of the solution are not equal, then that context type/set
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of context types is relevant.

Figure 3.18 illustrate the Information Selection technique with three example association rules. Each

pair of rules is compared in turn. For each comparison, the solution and the set of corresponding

context types are compared. For example, when comparing association Rule 1 and Rule 2, the values

for context type's time and weather are compared (as these types exist in both rules) and the values

of the solutions in the two rules are compared. The context set (i.e., time and weather) is inferred

as relevant using relevance rule four (i.e., corresponding context and solution values in each rule are

not equal). The second comparison, comparing Rule 1 and Rule 3, found no corresponding context

types (i.e., day and time) to be relevant using relevance rule three. Similarly, when comparing Rule 2

and Rule 3, a context set consisting of the company context type is evaluated as being relevant using

relevance rule four. The number of times a context type is evaluated as being relevant and irrelevant

is also recorded and this knowledge is used in Utility Assignment (Section 3.2.7). In this example the

context set containing company and the context set containing both time and weather are considered

relevant once and considered irrelevant twice.

Figure 3.18: Information Selection Example

While some approaches support relevance by placing weights on information, Information Selection

is a boolean process. That is, a context set is either relevant or not relevant for the given problem.

The subsequent Utility Assignment technique is responsible for assigning weights to context that are
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inferred as relevant. Distinguishing between these two methods eliminates the need for applications

to evaluate appropriate information utility for the entire set of support context types. This design

is taken to ensure that complexities associated with determining the relative importance between

di�erent items will be reduced given that less items are to be considered.

Determining the set of relevant types for a particular user problem and context can also be used

to address the challenge of when to begin the recommendation process. While new user tasks will

require a new recommendation process to be started so also may changes to values of relevant context

types [65]. By identifying the set of relevant context, information selection serves as a technique for

identifying when a new recommendation process should begin (and consequently a new case should

be created and added to the user model). That is, the preferred action of a user is likely to change

when the value of a relevant context type changes. This facilitates applications to avoid starting the

recommendation process at the incorrect time, which can lead to inaccurate recommendations, be

intrusive to the user, and result in sub-optimal performance.

The decision to incorporate association determination within Information Selection was taken for

similar reasons as outlined for Implicit Preference Determination, namely the need for developers

to explicitly specify relationships between context and user choices and the set of relevant context

types that should be considered for di�erent recommendation problems is eliminated. The decision to

compare rules is taken to utilise knowledge discovered by the association determination process about

patterns in user behaviour. Storing sets of data types is supported to facilitate dependencies between

context, whereby certain context types are relevant depending on the type and value of other context.

Information Selection is designed to execute at run time so that information relevance can be tailored

to speci�c user problems and context. Information Selection rules are also designed to ensure that

relevance for di�erent types of problems and individual solution features can be determined. Also, as

associations used during Information Selection are generated from up-to-date user model information,

changes to how users decide which behaviour recommendation to select are likely to be captured.

3.2.7 Utility Assignment

Utility Assignment is the task of determining how relevant context types are relative to other types in

recommendation decisions. While Information Selection produces a boolean output where a particular

context type is either relevant or not relevant, Utility Assignment determines and assigns the appro-

priate weight to each relevant context type so that its relative importance re�ects the preferences of

a user for a given user problem and context. This process occurs after Information Selection so that

the number of context types to be evaluated is minimised.
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Current state of the art classi�es the process of determining appropriate weights for di�erent

information items into individual evaluation and subset evaluation [194]. The personalisation approach

in this thesis adopts an individual evaluation approach to assigning weights to context. Individual

evaluation, also known as feature weighting/ranking, assesses individual features (i.e., context types

in this thesis), and assigns weights according to their degrees of relevance. The main motivation

for adopting such an approach is its e�ciency with high-dimensional data, which is evident in a

context-aware environment where there are a large number of relationships between di�erent context

types and user behaviour. The main limitation with individual evaluation is its inability to remove

redundant context types. The design of Utility Assignment is taken to minimise this limitation by

using Information Selection, which provides functionality for removing redundant association rules

and reducing the number of context types to be evaluated. The alternative subset evaluation, in

contrast, generates feature subsets based on a search strategy such as forward or backward search.

Each candidate subset, along with associated weights, is evaluated by a certain evaluation measure

and compared with the previous best subset, which it replaces if better. This process is repeated until

a de�ned stop criterion is satis�ed. Its main advantage is that it takes into account the existence and

e�ect of redundant features, which is no longer necessary in this personalisation approach, as such

a task is performed at an earlier stage. The main limitation of subset evaluation for context-aware

applications is that it su�ers from problems associated with searching through feature subsets and

multidimensional data, and does not scale well to large sets of data [193]. Subset evaluation also fails

to consider variance in the relevance of features in the selected subset.

Figure 3.19: Utility Assignment Inputs and Outputs

Figure 3.19 illustrates the inputs and outputs of Utility Assignment. The association rules and

relevant context sets evaluated at Information Selection are required as input. A set of weighted

context sets for the current recommendation problem are then outputted. The larger the weight, the

more in�uence a context type has on the recommendation decision.

The appropriate weight to assign to relevant context sets is determined using di�erent properties of

association rules. In general, context in stronger, more accurate, and more consistent rules will be given

higher weights as they provide a more accurate indicator as to the preferred behaviour of users. This
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approach uses several measures of accuracy and consistency of association rules, which are combined to

compute the utility of each relevant context set for a given recommendation problem. These measures

are: consistency, precision and recall, and con�dence and support and lift. These measures are

selected as they represent the accuracy, consistency, and relevance of discovered association rules and

the information they contain. They also represent the set of quality measure that can be calculated

using the discovered rules. Measures of coverage and leverage related to association mining are

not considered due to their similarity with con�dence and support measures. A consistency value,

calculated as part of Information Selection, represents how the occurrence of certain context types

as indicators of past user actions. Precision and recall [168, 17] are two widely known and adopted

metrics for measuring the relevance of information, while con�dence and support values, as described

in Section 3.2.4.2, provide measures that indicate the accuracy, occurrence, and interestingness of

generated association rules. Lift is an additional metric at this stage, which measure the strength of a

given association. Lift is the ratio of con�dence to expected con�dence (shown in formula 3.6). It will

have a value of 1 if the antecedent and consequence parts of a rule are independent. The higher this

value, the more likely that the existence of antecedent and consequence together in a transaction is

not just a random occurrence, but because of some relationship between them. Therefore, lift provides

an important and relevant measure related to the preference of a user action in a particular context.

Lift (X ⇒ Y ) =
Confidence (X ⇒ Y )

Expected Confidence (X ⇒ Y )
(3.6)

where

Expected Confidence (X ⇒ Y ) =
number transaction containing Y

total number of transactions
(3.7)

The combination of these values (i.e., consistency, precision, recall, con�dence, support, and lift)

provide an indicator as to the overall quality of association rules, and as higher quality rules provide

a more accurate and relevant indicator as to the preferred behaviour of users, context types in these

rules will be given more weight. Figure 3.20 illustrates the sequence of functions of Utility Assignment.

Relevance knowledge inferred during the previous Information Selection stage is used to determine

the consistency of relevant context sets. During Information Selection, generated rules are compared

and relevance is determined based on matches (and mismatches) between context and solution types.

As part of this process, a count of the number of times a particular context set is evaluated as

being relevant and not relevant is also recorded. By subtracting the latter value from the former, a

consistency value for each context set is determined. This value represents how often or consistent a
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Figure 3.20: Utility Assignment

given set of context types results in an accurate behaviour recommendation. Context sets that are

more consistent, will therefore provide more accurate knowledge regarding preferred user actions, and

consequently will be weighted more highly than less consistent ones.

The second operation incorporates precision and recall measures into context utility. Precision and

recall are two common and widely used measures for evaluating the relevance of results in Information

Retrieval and statistical classi�cation [36]. Precision is a measure of the proportion of items retrieved

that are relevant, while recall is the proportion of available relevant items that have been retrieved.

These measures assume a ground truth notion of relevancy: every item is known to be either relevant or

non-relevant to a particular recommendation decision for a given user tasks and context. Precision and

recall provide useful measures of association rules as they highlight rules that contain a large number

of relevant decision making information. Rules with high precision and high recall are therefore more

likely to result in accurate recommendations and consequently context sets and the types they include

that are contained in these rules are weighted higher based on the knowledge that they are included

in rules that lead to accurate recommendations.

The same association rule set used during Information Selection is used during Utility Assignment

to determine precision and recall values for relevant context sets. Precision and recall are calculated

for each rule using the formulas 3.8 and 3.9 outlined. Figure 3.21 illustrates an example of how

precision and recall is calculated for each rule. Rule 1 contains two context types that are relevant as
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Figure 3.21: Determining Precision and Recall for Association Rules and Context Types

evaluated during Information Selection and therefore has a relevant items ∩ items retrieved value

of 2 (i.e., Rule 1 contains time and weather context types that are relevant types). As three relevant

types are retrieved (i.e., time, weather, and context), the relevant items value is 3. Therefore the

precision value for Rule 1 is 2/3 = 0.67 (rounded). The recall value for Rule 1 evaluates as being the

same as its precision value (i.e., 0.67) as the items retrieved value and the relevant items value is the

same (i.e., items retrieved is 3 as Rule 1 contains a total of three context types). Precision and recall

values for context types are then assigned these evaluated values. Each rule, and subsequently each

context type in a rule are selected in turn and the precision and recall values of the rule is assigned

to each context set in that rule. Re-using the example illustrated in Figure 3.21, each context set

evaluated as relevant in Information Selection will be assigned the precision and recall value of the

rule they are contained in. Consequently, in rule 1, relevant context type's time and weather will be

assigned a precision value of 0.66 and a same recall value.

Precision =
| relevant items ∩ items retrieved |

| relevant items |
(3.8)

Recall =
| relevant items ∩ items retrieved |

| items retrieved |
(3.9)

The next stage of Utility Assignment incorporates con�dence, support, and lift measures into context

utility. Similar to precision and recall, rules with high con�dence, high support, or high lift are more

accurate and recurring. Consequently, utility assignment will favour and assign more weight to context

contained in rules with higher con�dence and support as there are more likely to result in accurate

recommendations that match the user's preferences.

The technique for assigning con�dence, support, and lift values to relevant context sets is similar

to that for assigning precision and recall values. That is, the set of relevant context sets in each rule

85



Chapter 3. Design

are assigned a con�dence, support, and lift value of the rule they are contained in10. For example, as

illustrated in Figure 3.22, relevant context time and weather in Rule 1 will be assigned a con�dence

value of 0.8, a support value of 0.5, and a lift value of 0.6.

Figure 3.22: Determining Con�dence and Support for Context Types

Figure 3.23 summarises the procedure for assigning precision, recall, con�dence, support, and lift

values to relevant context sets - each rule in the rule set is selected in turn, the set of relevant context

types are selected and assigned a precision, recall, con�dence, support, and lift value corresponding

to the rule value, and the overall value is calculated by averaging the total value for the rule set.

Figure 3.23: Determining Precision, Recall, Con�dence, Support, and Lift

The set of indicators for association rule accuracy, consistency, and relevance (i.e., consistency,

10Con�dence, support, and lift values for association rules are calculated during the association discovery process
described in Section 3.2.4 using formulas 3.4, 3.5, and 3.6 respectively.
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precision, recall, con�dence, support, and lift) are subsequently combined to determine a utility value

to assign to each relevant context sets. The following algorithm is used to determine the appropriate

utility for a context set for a particular association rule:

utility (context set/rule) = consistency×(precision×recall)×(confidence×support× lift) (3.10)

The overall utility for a context set is:

utility (context set) =
n∑

n=1

utility / n (3.11)

where n is the number of association rules in the rule set that that context set is contained in. The

Utility Assignment algorithm is designed to combine accuracy, consistency, and relevance measures in a

manner such that more weight is assigned to context that are more likely to result to recommendations

that match the user's preferences.

Each of the metrics used in the utility algorithm measures a quality property (i.e., accuracy,

consistency, or relevance) of a particular context-action association rule as a proportion of all actions

taken by a user in the past. The values are combined into a single measure for each relevant context

set in the rule to represent how signi�cant a context set is as an indicator of the preferred actions of

a user in a particular context. As each measure represents an independent proportion of the overall

utility, values are combined to give an overall measure using the conditional probability ∩ (i.e., and)

property11.

In addition to the described utility assignment algorithm, Utility Assignment also looks to incor-

porate utility knowledge learnt and stored in past cases. At present, utility values associated with

corresponding context sets in user model cases of the same problem type are acquired and averaged.

These utility values are compared with the evaluated utility of relevant context sets for the current

problem. If the di�erence between these utility values is above a pre-de�ned threshold value, then

the inferred utility is adjusted to this threshold value to closer match the utility value of past user

problems of the same type. Future work will investigate techniques that make greater use of utility

values stored in the user model. In particular, a process for mining utility values associated with

di�erent context types and sets and incorporating knowledge inferred from this into the computation

of context utility is planned.

11i.e., P(A∩B) = P(A).P(B) [138].
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3.2.8 Recommendation Generation and Ranking

The �nal stage of the recommendation process is concerned with generating and ranking candidate

behaviours that best accommodate the preferences of the user and the context of the user problem.

Outputs from the previous implicit preference determination, information selection, and utility as-

signment stages are used as inputs to generate and rank the set of candidate behaviours (Figure

3.24).

Figure 3.24: Recommendation Generation and Ranking Inputs and Outputs

Figure 3.25 illustrates the process of generating and ranking candidate behaviour recommendations.

The �rst step determines the set of possible candidate behaviour from context-dependent preferences

discovered from Implicit Preference Determination.

The design supports any number of rules for solution or solution features to be ranked depending

on the requirements of the application (e.g., three rules, each containing competing recommendation

solutions will be ranked if an application is designed to present three possible recommendations to its

users). The con�guration of this value is described in Section 4.3.

As outlined in Section 3.2.1.1, two recommendations strategies are included in the personalisation

approach proposed in this thesis. As the original strategy does not include Information Selection

or Utility Assignment functionality, the ranking of candidate behaviours di�ers in each strategy. In

the original strategy, each context type is considered to be equally important. That is, all context

types are considered relevant and have the same utility value. In this strategy, candidate behaviours

are ranked according to their applicability and strength. Firstly, applicability considers how relevant a

given user preference rule is for the current context. Applicability is measured by counting the number

of context values in a preference rule that matches the context of the current problem. Therefore,

a rule that matches three context values is more applicable than a rule that matches two and the

behaviour association and the most applicable rule is recommended to the user. In addition, context

values in a rule that do not match the current context are considered to negatively impact on the

applicability of a rule. For example a rule containing three context types, two of which match the
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Figure 3.25: Recommendation Generation and Ranking

current context, is less applicable than a rule which contains two context types both of which match

the current context. Figure 3.26 provides an example of how rule applicability is measured. As rule

one matches two of the problem context values, but mismatches one, its applicability is 1. If rules

are evaluated to be equally applicable, the con�dence and support measures are used to further rank

rules, with those with higher con�dence and support values favoured. If rules are still equally matched

then the time stamp of the case from which the rule is inferred is used and rules associated with more

recent cases will be ordered higher. The view is that a rule is more likely to be accurate given it was

preferred by the user more recently.

Figure 3.26: Rule Applicability Example

The second (i.e., extended) recommendation strategy extends on this �rst strategy to support
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the variance of context relevance and utility and adapts their values according to the user problem

and context. The multi-attribute utility theory (MAUT) technique [183] is adopted to score candidate

behaviour choices using inferred knowledge about context relevance and utility. MAUT is the technique

currently used in Hermes to support multi-attribute decision making [65]. However, unlike the initial

design which requires explicit user input, the application of MAUT here is adapted so that users

are not required to explicitly specify relevant decision making dimensions and utility. Instead, this

information and its utility are dynamically determined at Information Selection and Utility Assignment

and used to rank candidate behaviour choices. Similar work has been conducted by Zhang and Pu

[198] and later by Reilly et al. [155] whereby weights associated with decision making dimensions or

attributes are dynamically updated. However, their approach relies on an interactive process between

the user and the application and does not dynamically modify the set of decision making dimensions

or attributes for di�erent problems or context.

Brie�y, MAUT is a utility theory decision making technique for evaluating candidate choices using

information about user interest in various dimensions of each candidate choice. It provides a technique

that enables the worth of a set of candidate choices to be evaluated using the values of properties

or dimensions associated with each choice. The set of relevant dimensions and weights can also be

dynamically adjusted for di�erent problems and context without the need to change the underlying

approach. With MAUT, the overall evaluation v(x) of a particular behaviour choice x is de�ned as

the weighted addition of its evaluation with respect to its relevant value dimensions. For example, a

restaurant can be evaluated on dimensions such as cuisine, cost, service, food quality and any other

environmental context values. The ranking technique for the personalisation approach proposed is

designed to rank candidate choices along context value dimensions, which supports the evaluation of

the preferred choice of a user in a given context. The choice evaluation is de�ned by the overall value

function taken from [183]:

v(x) =
n∑

i=1

wivi(x) (3.12)

where vi(x) is the evaluation of the choice on the i-th value dimension di, and wi is the weight

(or relative importance of a dimension) determining the in�uence of the i-th value dimension on the

overall utility value, n is the number of di�erent value dimensions and
∑n

i=1 wi = 1, meaning that the

sum of the weights for the di�erent value dimensions equals 1. As boolean matching is used as part

of this personalisation approach, the value of an dimensions is typically 1 or 0. However, variants of
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values are also possible when relevant context values contain more than one type. For example, if a

relevant context combination contained two types and a preference rule contained one of those values,

then an attribute value of 0.5 is assigned.

MAUT also supports the separation of each value dimension di into a set of attributes composing

the dimension. For example, the service dimension of restaurant can be calculated by considering

attributes such as waiting time, speed of waiting sta�, politeness of waiting sta�, and restaurant

atmosphere. The following formula is used to evaluate attributes of a dimension [183]:

vi(x) =
∑
a∈Ai

waivai(l(a)) (3.13)

where Ai is the set of all attributes relevant for di and vai(l(a)) is the evaluation of the actual level l(a)

of attribute a on di. wai is the weight determining the in�uence of the attribute a on value dimension

di (i.e., the relative importance of an attribute for a given dimension). As with evaluating dimensions,

the sum of the weights of attributes also sum to 1. This use of MAUT to evaluate attributes is not

necessary for ranking candidate choices as the design does not currently support the separation of

context types into individual attributes.

Figure 3.27 illustrates the algorithm designed for ranking candidate behaviour choices. The rele-

vant context sets and their utility as inferred from Information Selection and Utility Assignment are

acquired. The set of utility values are then normalised so their summed value equals 1 as required by

MAUT. Each preference rule is then evaluated in turn to determine the context sets they contain and

they are scored accordingly using the normalised weight values using a MAUT approach. This process

is repeated for the set of preference rules and when complete these rules are ranked in score order.

The recommendation represented by the highest ranked (or set of highest ranked) rules are presented

to the user. This algorithm provides a novel application of MAUT as the set of candidate choices to

be ranked, relevant decision making dimensions, and weight values associated with each dimensions

are dynamically determined.

Figure 3.28 illustrates an example of how candidate preference rules are ranked. Relevant context

sets - time and weather, and company - and their utility values are acquired. Preference rules are

subsequently evaluated and scored according to the relevant context sets they contain. Given that the

calculated normalised utility values for time and weather, and company are 0.66 and 0.34 respectively,

preference rules are scored accordingly. Rule 1 and Rule 2 both contain context sets that are applicable

(i.e., match the context of the current problem) and are scored accordingly. Note that if Rule 1 had
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Figure 3.27: Recommendation Ranking Algorithm

not contained either an applicable time or weather value, then the attribute value assigned would be

0.5 instead of 1 (as it matches half of the relevant context set). Rule 3 does not match any of the

problem context values and therefore has a default score of 0. The higher the score, the higher ranked

a recommendation.

Figure 3.28: Recommendation Ranking Example
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3.2.8.1 Learning from Implicit User Feedback

Learning from implicit user feedback was added as part of the extended recommendation strategy

(Section 3.2.1.1) to facilitate the personalisation approach to learn when incorrect recommendations

are made (i.e., when the user chooses a recommendation that is not the most highly ranked) and

therefore improve future recommendations. Learning is achieved by further adjusting the utility of

context types so that the recommendation selected by the user is ranked highest. It is important to

note that this form of application learning is only executed if the user does not select the behaviour

recommended by the application and learning is a retroactive process (often referred to as lazy methods

in machine learning [9, 58]). That is, the learning is too late to the applied to the current problem,

but is recorded with the aim of aiding in future recommendation decisions.

Figure 3.29: Implicit User Feedback Learning Algorithm

Figure 3.29 illustrates the algorithm for learning from user feedback. The aim of the algorithm is to

adjust the weights of relevant context sets so that the behaviour selected by the user is ranked highest.

The preference rule representing the highest ranked behaviour recommendation that was presented

to the user (recommended rule) and the preference rule representing the behaviour selected by the
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user are retrieved (selected rule) are selected. The relevant context sets used for the recommendation

are also retrieved. Di�erences in the relevant context sets in each rule are identi�ed. If there is no

di�erence, no learning can be done as adjusting the weights of context sets contained in both rules

will have no e�ect. If di�erent context sets are identi�ed, then the utility of context sets contained in

the selected rule and not the recommended rule are iteratively incremented by a given value until the

selected rule is ranked higher than the recommended rule. If any other preference rules are ranked

higher than the selected rule as a result of incrementing context set utility, then this process is repeated

until the selected rule is ranked the highest or no more learning is possible. If no learning is required,

then the weights determined at Utility Assignment are stored in the weights section of a new user

model case. However, if learning was necessary, the set of adjusted weight values are persisted. This

knowledge is subsequently incorporated into inferred context utility in for future recommendations as

described in Section 3.2.7.

3.3 Chapter Summary

This chapter described the design of the personalisation approach proposed in this thesis. The ap-

proach is organised as a multi-stage recommendation process, which provides a set of techniques and

algorithms designed to support personalised recommendations in context-aware recommendations.

The chapter presented: the design methodology used for the development of this process; an overview

of the Hermes project, the umbrella project under which the personalisation approach proposed in

this thesis was developed; and a description of the multi-stage recommendation process including a

detailed description of the algorithms and techniques designed and used at each stage.

Design decisions during the development of the approach were made to ensure that the combi-

nation of techniques and algorithms address the requirements outlined in Section 1.2. Although no

single technique or algorithm at each stage fully addresses any single requirement, the combination

of all techniques and algorithms are designed to address the full set of requirements. Implicit Pref-

erence Determination is designed to provide techniques that support the automatic determination of

preferred user actions for a particular problem and context and to adapt preferences according to

di�erent context combinations. Similarly, Information Selection and Utility Assignment are designed

to facilitate the tailoring of context relevance and relative importance of environmental context for

di�erent user problems and context. The combination of these techniques and algorithms therefore

support applications in determining user preferences and adapting the relevance and utility of decision

making information for di�erent problems and context (R1). The user model structure was designed
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to store information about recommendation problems, context, and user choices. Such a design fa-

cilitates the identi�cation of patterns about the preferred action of users for di�erent problems as

well as information about the context in which these patterns apply. The decision to incorporate

association discovery was taken to facilitate the implicit discovery of relationships between context

and user choices, eliminating the need for relevant information relationships to be explicitly de�ned by

developers (R4). As association discovery is not a speci�c algorithm, relevant relationships between

multiple di�erent context types and user actions can be discovered, supporting applications to iden-

tify context-dependent preferences for di�erent combinations of context and di�erent user problems.

Also, the focus on data mining techniques on e�cient pattern discovery [131, 137] ensures that the

personalisation approach and its use of association discovery is scalable and can be applied identify

patterns in large sets of multi-dimensional data (R3). Techniques for �ltering user cases and gener-

ated context-action associations were integrated to ensure that the most relevant knowledge about

user preferences is discovered. The decision to execute association discovery at run time, when re-

quired, ensures that decision making information is inferred based on up-to-date user interaction and

context relationship information stored in a user model and is tailored for speci�c recommendation

problems. This coupled with the addition of new cases to the user model as the application is used and

the learning from implicit user feedback about recommendation selections facilitates applications to

accommodate changes in user preferences and new context relationships without the need for explicit

user input (R2 and R5).

The next chapter describes the implementation detail of the personalisation approach, including

the set of techniques and algorithms used at each stage of the multi-stage recommendation process,

described in this chapter.
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Implementation

The previous chapter described the design of a multi-stage personalisation approach and discussed

how its techniques and algorithms provide personalisation support to context-aware applications.

Speci�cally, the multi-stage recommendation process was described in detail along with a description

of how techniques and algorithms designed for each stage combine to address the requirements and

research question outlined in Section 1.2.

This chapter describes in detail the straightforward Java implementation of the techniques and

algorithms. The chapter begins with a high-level overview of the set of classes that compose the

personalisation approach. This is followed by a description of the relevant attributes, functions, be-

haviour, and interactions for each stage of the personalisation process - user modelling, associating

discovery, implicit preference determination, information selection, utility assignment, and recommen-

dation generation and ranking. The set of classes involved and the sequence of operations that are

executed at each stage are presented. Con�guration details and implementation code for signi�cant

operations are also illustrated and discussed.

4.1 Architecture Overview

The implementation of personalisation functionality described in this thesis is divided into several

high-level functional groups, each with a Manager class responsible for coordinating behaviour as-

sociated with speci�c personalisation functionality. These classes and their interactions provide the

structure and behaviour that support the various personalisation functions developed to address the

requirements outlined in Section 1.2.

This section describes the implementation of personalisation functionality for context-aware ap-
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plications at a high-level, outlining the core functional groups and their responsibilities. Figure 4.1

illustrates the architecture of the personalisation approach and the main groups of functionality at a

high-level. Personalisation provides the entry point for applications into personalisation function-

ality and acts as a mediator between di�erent personalisation functions designed for the multi-stage

recommendation process. At the same level as Personalisation is Context Management, which func-

tions as a coordinating interface that facilitates the request and acquisition of context information

from the Hermes application framework. Below this level is the set of functionality that represent the

techniques and algorithms designed for the speci�c personalisation functions that make up the person-

alisation approach described in this thesis. This level also includes the user model which stores the set

of past user actions. Updates to the user model are made through Personalisation on completion

of a recommendation problem, while other functions can access the user model to retrieve data used

in speci�c personalisation tasks. The lowest level contains the set of functionality responsible for the

execution and management of speci�c operations that are used by higher level groups. This consists

of functions related to association discovery, user model cases, and association rules.

Each core functional group contains a Manager class, which acts as a facade, mediates with other

Manager classes, and supports the exchange of information necessary for speci�c personalisation func-

tionality1 e.g., the MiningManager is responsible for data mining functionality including coordinating

classes that provide association discovery functionality. The set of Manager classes and their respon-

sibilities are:

� ContextManager - provides and coordinates operations associated with the management of con-

text information. This class, and the set of classes it coordinates, are implemented as part of the

Hermes application framework and provide other components and classes with access to current

and historical context information.

� PersonalisationManager - provides the entry point for personalisation functionality and also

coordinates operations between di�erent stages of the multi-stage recommendation process.

Speci�cally, this class mediates and coordinates interactions between other personalisation re-

lated Manager classes. It also interacts with the ContextManager to acquire environmental

context information and is responsible for communication with applications (e.g., providing rec-

ommendations to applications).

� UserModelManager - manages user model functionality such as operations for accessing and

updating the user model and persisting user model cases to disk.

1Each functional group also contains a Utility class responsible for the implementation of low level utility operations.
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Figure 4.1: High-level Architecture of Personalisation Functionality

� CaseManager - provides and coordinates operations associated with individual user model cases.

� MiningManager - coordinates all data mining operations such as the execution of association

discovery and the management of discovered association rules.

� RuleManager - provides and coordinates operations associated with individual association rules.

� PreferenceManager - provides and coordinates operations associated with Implicit Preference

Determination.

� RelevanceManager - provides and coordinates operations associated with Information Selection.

� UtilityManager - provides and coordinates operations associated with Utility Assignment.

� RankingManager - provides and coordinates operations associated with Recommendation Gen-

eration and Ranking.

Figure 4.2 illustrates the sequence of interactions at a high level that execute between the Manager

classes when generating and evaluating context-aware recommendations2. As illustrated in this �gure,

PersonalisationManager is responsible for mediating and coordinating personalisation related func-

tionality. Figure 4.3 illustrates this PersonalisationManager object. The multi-stage process begins

when PersonalisationManager receives either a recommendation request from the user via a concrete

instance of Application (e.g., restaurant recommender application) or a context event signalling the

need for a new recommendation. PersonalisationManager interacts with other Manager classes and

2As this �gure shows the sequence of operations at a high level, some classes have been omitted from the illustration.
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Figure 4.2: High-level Sequence of Operations
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executes the sequence of operations required for providing a personalised, context-aware recommen-

dation. Listing 4.1 illustrates a code excerpt from the startRecommendationProcess() method in

PersonalisationManager showing the set of operations that execute for the various stages of the

personalisation approach described in this thesis. The invocation of this method signals the start

of the recommendation evaluation process and includes the execution of functions for Implicit Pref-

erence Determination, Information Selection, Utility Assignment, and Recommendation Generation

and Ranking. Each function is implemented corresponding to the design described in the previous

chapter.

Listing 4.1: The startRecommendationProcess() method

1 // Imp l i c i t Pre ference Determination

2 LinkedLis t candidateRules = PreferenceManager . de te rminePre f e r ence s ( ) ;

3 // Informat ion S e l e c t i o n

4 LinkedLis t contextSe t s = RelevanceManager . determineRelevantContext ( ) ;

5 // U t i l i t y Assignment

6 LinkedLis t we ightedSets = Uti l i tyManager . d e t e rm ineUt i l i t y ( ) ;

7 // Recommendation Generation and Ranking

8 LinkedLis t rankedRecommendations = RankingManager . rankRecommendations (

candidateRules , we ightedSets ) ;

9

10 // pre sen t recommendations to user

Later sections of this chapter will expand on these operations including a description of the set of classes

and sequence of operations associated with each call. Speci�cally, the set of Manager classes, other

classes that are implemented, their interactions, and the implementation details of their operations

and algorithms are described.

4.2 Context Management and Hermes Integration

As described in the previous chapter, the Hermes framework encapsulates functionality for the acquisi-

tion of context information from sensors and the modelling of context in an internally understandable

representation. The personalisation approach described in this thesis acquires context information

from the Hermes Context Management layer via a ContextManager object. ContextManager coor-

dinates the transfer of context information, which is either pulled using explicit context request calls
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Figure 4.3: PersonalisationManager Class

or pushed by registering interest in certain context types and noti�ed by observers. ContextManager

also maintains a de�nition of the set of context types and their possible values that are supported

by the application. The process of how Hermes transparently acquires context from sensor devices of

behalf on applications and provides applications with access to acquired context information is brie�y

described here.

As outlined in Section 3.2, Hermes contains Service Discovery and Communication components

that provide applications with operations for discovering and communicating with both remote and

local devices to support the exchange of context information. Listing 4.2 shows an example of a

basic Hermes communications con�guration, which controls the service discovery and communication

components of the Hermes framework.

Listing 4.2: Hermes Basic Communications Con�guration

1 # COMMUNICATION CONFIGURATION PROPERTIES

2 hermes . comms . thread . incoming=2

3 hermes . comms . heartbeatt imeout=30000

4 hermes . comms . broadcast . port=446

5 hermes . comms . broadcast . t i c k =10000

6 hermes . comms . l i s t e n i n g . t imeout=10000

7 hermes . comms . l i s t e n i n g . t i c k =5000

8 hermes . comms . r e c e i v e . t imeout=5000
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9 hermes . comms . r e c e i v e . t i c k =5000

Communication with devices is supported by listening and exchanging information on a speci�ed

well known port. Context exchange with remote devices requires the broadcast and direct exchange

of a series of messages - containing information about device addresses, communication ports, and

context request and response information - before context is successfully transferred from a remote

source to the local device. A Connection between two devices is maintained until no messages are

exchanged between devices for a speci�ed period of time. An absence of information exchange means

that devices are no longer in communication range or communication is complete, and resources

used for communication can be reclaimed. Communication messages exchanged between devices are

represented in XML. Hermes supports a �rst-in �rst-out message-handling thread pool which enables

multiple messages to be processed at once.

The Hermes framework also needs to be informed of any local sources it should connect to. Listing

4.3 shows the addition of a location (GPS) source to the Hermes framework, which informs Hermes

about the context source, the type of context information it provides, and how to communicate with

it.

Listing 4.3: Adding a Local Context Source in Hermes

1 Ser i a lAddre s s s e r i a l P o r t = new Ser i a lAddre s s ( commPort , baudRath ) ;

2 // Class mode l l ing s enso r dev i c e

3 GPSReceiver gps = new GPSReceiver ( s e r i a l P o r t ) ;

4 // Get d e s c r i p t i o n o f type o f context provided by source

5 ContextSe rv i c eDesc r ip t i on [ ] sd = ( ContextSe rv i c eDesc r ip t i on ) gps .

g e tContex tSe rv i c eDesc r ip t i on s ( ) ;

6 // Discover the new l o c a l context source

7 Hermes . getCommunication . g e tSe rv i c eD i s cove ry ( ) . updateContextSourceList ( gps ,

sd ) ;

Once informed about context sources it should interact with, the Hermes framework can begin

to acquire context information from these sources. ContextManager informs Hermes of the context

information it is interested in using the Hermes.setInterestInContextTypes() command, which

takes three parameters - a reference to an object that is listening for events notifying it of a change

in a particular context value, the type of context to acquire, and the maximum frequency of context

change noti�cations. Acquired context information is managed at the Context Management layer of

102



Chapter 4. Implementation

Figure 4.4: Tuple Class

Hermes, which provides the set of functionality for maintaining an accurate model of environmental

context information. As described in the previous chapter, Hermes represents context as a hierarchi-

cal object-oriented (OO) model and raw context information received from the Collaboration layer as

XML information is parsed and transformed into objects, which are stored as part of the OO context

model. An object to XML mapping supports the transformation of XML message to objects and

from objects to XML. ContextManager provides the set of operations that enable Personalisation-

Manager to transparently acquire and receive up to date context information stored in the Hermes

Context Container model. Listing 4.4 illustrates an example of how context information is retrieved

from the Hermes framework. ContextManager gets a handle on the system service that supplies lo-

cation context. Location context information is acquired with the getLocation() method call. The

implementation of this service for supplying speci�c context types is in�uenced by The Open Handset

Alliance Android 1.0 application framework for mobile devices [51].

Listing 4.4: Retrieving Location Context from Hermes

1 // Ask Hermes f o r i t s l o c a t i o n manager s e r v i c e ( part o f the context model )

2 LocationManager locManager = ( LocationManager ) Hermes . getSystemServ ice (

Context .LOCATION) ;

3 // Get the cur rent l o c a t i o n

4 Locat ion l o c = nu l l ;

5 t ry {

6 l o c = locManager . getLocat ion ( ) ;

7 } catch ( Locat ionExcept ion l e ) {

Context information retrieved from Hermes is stored in tuple form using the Tuple object as

illustrated in Figure 4.4.
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4.3 Personalisation Con�guration

Various techniques and algorithms designed as part of the personalisation process may be con�gured

before execution. Listing 4.5 illustrates a sample personalisation con�guration �le. Con�guration

values for association determination (Lines 2-5), �ltering user model cases and association rules (Line

6-7) information selection (Line 8), utility assignment (Line 9), learning from implicit user feedback

(Line 10), and recommendation generation and ranking (Line 11) are speci�ed. The con�guration �le,

speci�ed using java.util.properties, allows static parameters to be persisted and loaded at run

time, enabling the behaviour of personalisation operations to be customised without requiring source

code modi�cation.

Listing 4.5: Personalisation Con�guration File

1 # PERSONALISATION CONFIGURATION PROPERTIES

2 a s s o c i a t i o n . rulesToGenerate=500

3 a s s o c i a t i o n . minSupport=1

4 a s s o c i a t i o n . con f idenceThresho ld=1

5 a s s o c i a t i o n . supportThreshold=1

6 f i l t e r i n g . caseContextMatches=1

7 f i l t e r i n g . ruleContextMatches=1

8 r e l evance . rulesToCompare=50

9 u t i l i t y . we ightDi f f e r enceThresho ld =0.8

10 l e a rn i ng . l ea rn ingRate =0.025

11 ranking . rulesToRecommend=3

The determination of values for association, �ltering, and relevance properties represents a trade

o� between generating too much information that makes the retrieval of relevant knowledge di�cult

and not discovering enough information meaning that relevant and useful information is missed. For

example, the association.rulesToGenerate property speci�es the number of rules that should be dis-

covered as part of Association Determination (Section 3.2.4). The discovery of a large number of rules

makes identifying those rules that are relevant di�cult. The computation time for processing data also

increases in relation to the number of rules to be discovered. In contrast, generating fewer rules will

decrease computation time but may mean that important associations between context and user ac-

tions are not discovered at all and therefore are not available for recommendation decisions. A similar

trade o� applies for the number of rules that are compared during Information Selection to determine

relevance (i.e., relevance.rulesToCompare property). The result of having too many comparisons is
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additional computation overhead and the generation of too many context sets, which makes identify-

ing the most accurate and relevant set of information di�cult. In contrast, having fewer comparisons

reduces computation e�ort but can result in relevant context being missed. A similar trade o� applies

to other properties related to association and �ltering. It is important to note that the design of the

personalisation approach to incorporate techniques for �ltering user model cases and discovered rules

is taken to ensure that a suitable number of relevant associations can be discovered, minimising the

loss of relevant decision making knowledge and increasing the ease of identifying relevant knowledge.

As knowledge about information used in the personalisation approach is based on information

about past user interactions, the decision to assign a particular value to a property is in�uenced by

the properties of user model data being searched. For example, a larger user model is likely to have

more associations between its data than one that contains less cases (provided user model cases are

not repeated). Larger user models will therefore require the generation of a larger number of rules in

order for the full set of possible associations between data to be discovered. Similarly, a user model is

likely to have more associations than a model that supports a lower number of data types (e.g., context

types). Therefore, a user model that supports a higher number of context types will require a higher

number of associations to be generated to facilitate the discovery of all relationships between di�erent

context and user actions. The personalisation approach proposed in this thesis is therefore designed to

support the con�guration of properties (without source code modi�cation) related to association and

relevance depending on the requirements and properties of data in di�erent applications and domains.

The utility of context inferred by Utility Assignment is designed so that it incorporates utility

knowledge from past user decisions stored in the user model (Section 3.2.7). The utility.weight-

Di�erenceThreshold speci�es the point at which the inferred utility value should be adjusted (i.e.,

utility is adjusted when its inferred value is abnormally di�erent from utilities used by the user in the

past). A high threshold value therefore means that utility values are only adjusted in instances where

inferred utilities are largely di�erent from historic values. The risk of specifying a high threshold value

is that inaccurate recommendations may result as utility values which should have been adjusted are

not. In contrast, a low threshold value will result in utility values being altered even when unnecessary.

The learning.learnRate property speci�es how much context utility values should be incremented

by when learning from implicit feedback in user selections (i.e., when an incorrect recommendation is

made). This property represents a learning rate value. Higher values lead to faster learning but the

accuracy of learning su�ers as utility values may be adjusted in excess of what is necessary.

Finally, the ranking.rulesToRecommend speci�es the number of candidate recommendations to be

presented to the user, and is speci�ed depending on the requirements of the application. For example
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some applications may present the user with three possible recommendations, while others may only

recommend one. This value therefore con�gures the execution of the approach to only rank a speci�ed

number of association rules to re�ect the number of candidate recommendations to be presented to

the user.

While the set of con�guration information is currently con�gured by developers or users, future

works will investigate techniques that will support the dynamic and autonomous adaptation of these

values so that they are customised to di�erent user problems, contexts, and preferences (Section 6.2.2).

4.4 User Modelling

The implementation of User Modelling provides the set of operations that manage (i.e., add, remove,

access, and persist) the user model and the cases it contains. Figure 4.5 illustrates the main set of

classes involved in User Modelling. UserModelManager contains the set of functionality for creating,

storing, and accessing cases from a persistent user model structure stored on disk. The user model

is persisted and accessed as a comma separated value (csv) �le using java.io. Listing 4.6 illustrates

a sample user model �le with the three sample cases introduced in Figure 3.14. Each case contains

values following the case structure described in Section 3.2.3.

Listing 4.6: A sample User Model csv �le

1 re s taurant , a f ternoon , weekday , ra in , alone , i t a l i a n , cheap , two , three ,Roma

, 0 , 0 . 5 4 , 0 . 4 6 , 0

2 route , night , weekend , sun , alone , sho r t e s t , walk , f a l s e , gra f ton−westmoreland−o '

conne l l−parne l l , 0 . 4 , 0 . 2 , 0 . 4 , 0

3 re s taurant , evening , weekend , ra in , f r i e nd s , i r i s h , expens ive , two , three , Gal laghers

, 0 , 0 . 5 4 , 0 . 4 6 , 0

UserModelCase objects represent user model cases in application code (Figure 4.5). Subclass

instances of UserModelCase (e.g., RestaurantCase and TravelCase) are implemented for di�erent

problem types. The problem type and solution items contained in a user model case are stored

as attributes in the UserModelCase object. The set of environmental context items in a case, which

represents the set of context supported by the application, are also stored in UserModelCase. Solution

feature items, which are associated with speci�c problem types, are stored in subclass instances of

UserModelCase. Weights that represent the utility of context in recommendation decisions are stored

as part of each context items Tuple object.
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Figure 4.5: User Modelling Classes

Figure 4.6 illustrates the sequence of operations executed for persisting a user model case to mem-

ory. The operation is initiated when a user selects a given recommendation. The problem type,

solution, and solution features associated with the selected recommendation are acquired along with

the environmental context and context utilities of the problem. If necessary (i.e., if the user selects a

recommendation that is not ranked highest) learning from relevance feedback is also executed. Val-

ues for the set of items stored in a user model case (i.e., problem type, solution id, environmental

context values, and context weights) are transferred to UserModelManager as part of the store-

Case() command. A new case is created (createCase()) and persisted to the user model csv �le

(persistCase()). Listing 4.7 shows the set of operations executed for the persistCase() method.

The convertCasesToCsv() command converts the values of case attributes into the comma separated

value representation of the user model �le.

Listing 4.7: Persisting User Model Cases to Memory

1 t ry {

2 Buf feredWriter out = new Buf feredWriter (new Fi l eWr i t e r ( f i leName ,

t rue ) ) ;

3 f o r ( i n t i = 0 ; i < ca s e s . s i z e ( ) ; i++) {
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4 UserModelCase aCase = (UserModelCase ) ca s e s . get ( i ) ;

5 St r ing caseInCsv = convertStr ingListToCsv ( aCase . getValues ( ) )

;

6 out . wr i t e ("\n") ;

7 out . wr i t e ( caseInCsv ) ;

8 }

9 }

User model cases are retrieved from persistent memory using one of three methods in UserMod-

elManager: getAllCases() returns all user model cases, getCasesOfType() returns cases with a

speci�c problem type, and getCasesWithContextOfType() returns cases containing a particular con-

text type. When retrieving user model cases from persistent memory, each case is individually read

from memory using a CSVReader object and readNext() command. getAllCases() returns the en-

tire set of user model cases, while getCasesOfType() and getCasesWithContextOfType() �lter cases

according to problem type. Listing 4.8 illustrates the �ltering of cases by problem type by comparing

the problem type of each case with the type requested by the application. Filtering cases by context

is performed in a similar manner by comparing the context types stored in each case with what is

required.

Listing 4.8: Filtering User Model Cases

1 St r ing problemTypeWanted = " t r a v e l " ;

2 whi le ( ( nextLine = csvReader . readNext ( ) ) != nu l l ) {

3 St r ing problemType = nextLine [ 0 ] ;

4 i f ( problemTypeWanted . equa l s ( problemType )

5 // r e t a i n case

6 }

7 }

4.4.1 Extensibility

The personalisation approach can be extended to support new types of context and new types of

recommendation problems by extending the UserModelCase object and implementing new subclasses.

Speci�cally, new types of context can be supported by adding new attributes, representing new context

types, to UserModelCase. New types of recommendation problems and their associated features can
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Figure 4.6: Storing a New User Model Case - Sequence of Operations

be supported by creating new subclass instances of UserModelCase.

4.5 Association Determination

Association Determination (Section 3.2.4) discovers associations between context types and solutions/

solution features that exist in user model cases. Figure 4.7 illustrates the set of classes involved with

association determination. MiningManager is responsible for coordinating data mining behaviour

and initiates association discovery. Miner provides the functionality for discovering association rules

using Apriori and discovered rules are maintained by the application as a collection of Rule objects.

The Rule object is designed to represent discovered associations between context and user actions.

Rule contains attributes for premises, consequences and various metrics for evaluating the quality of

the rule. Rule premise are designed to stored the set of context type-value tuples contained in the

rule (e.g., time=afternoon), while consequence store tuples for user actions (e.g., solution=Roma).

RuleManager provides functionality for managing Rule objects including operations for creating new

rules and removing uninteresting and redundant rules.

Figure 4.8 illustrates the sequence of operations executed for Association Determination. The pro-

cess begins when the startAssociationDiscovery()method is invoked on MiningManager, which re-

ceives a set of user model cases as input. When Miner is invoked, various properties of association dis-
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Figure 4.7: Association Determination Classes

Figure 4.8: Association Determination - Sequence of Operations
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covery such as number of rules to discover and minimum support of rules are read from the personalisa-

tion con�guration �le. Association rules are then discovered using the Apriori.buildAssociations()

method taken from the Weka3 open source implementation of the Apriori algorithm [188]. The in-

stances parameter represents the set of user model cases to be mined. For each discovered rule a new

Rule object is created and the set of discovered rules are maintained in and accessed from Mining-

Manager. Listing 4.9 summarises the set of operations invoked for discovering association rules and

creating Rule objects.

Listing 4.9: Discovering and Creating Association Rules

1 Apr io r i a p r i o r i = new Apr io r i ( ) ;

2 a p r i o r i . setNumRules ( numberOfRules ) ;

3 a p r i o r i . bu i l dAs s o c i a t i on s ( i n s t an c e s ) ;

4 ap r i o r iRu l e s = ap r i o r i . getAl lTheRules ( ) ;

5 // f o r each ru le , e x t r a c t premise , consequence , conf idence , support , l i f t

6 // e . g . , FastVector premises = apr i o r iRu l e s [ 0 ] ;

7 r u l e = new Rule ( premise , consequence , con f idence , support , l i f t ) ;

8 r u l e s . add ( ru l e ) ;

The removeIrrelevantRules() command shown in Figure 4.8 consists of three operations de-

signed to remove uninteresting and redundant rules as described in Section 3.2.4.2. Firstly, removeUn-

interestingRules() removes rules by evaluating each rule's con�dence and support measures. Only

rules that have a con�dence and support value higher than a speci�ed threshold are kept. Threshold

values are de�ned in the personalisation con�guration properties �le. Secondly, the removeNonCon-

formingRules() command removes rules that do not conform to the context ⇒ solution/solution

features form. Finally, the removeRedundantRules() method iterates the remaining rule set to re-

move rules that are redundant using the algorithm described in Section 3.2.4.2. Firstly, redundant

rules with multiple antecedents are removed. From the remaining rule set, redundant rules with mul-

tiple consequences are removed. Listing 4.10 shows the implementation of the algorithm for removing

redundant rules with multiple consequences. The algorithm begins by �nding a rule in the rule set

with multiple consequences (i.e., consequence rule). n is the number of consequences contained in the

consequence rule (Line 1). For all other rules in the rule set, it is determined: if that rule has the

same antecedent or premise (Line 4-7); if that rule has a n-1 consequence length (Line 9); and if that

rule has a consequence that is a subset of the consequence rule's consequence (Line 11). If n number

3http://www.cs.waikato.ac.nz/ml/weka/
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of rules that satisfy these conditions are found (i.e., the set of sub-consequence rules) (Line 18), then

the consequence rule or the set of sub consequence rules (whichever has a lower strength measure) is

deleted from the rule set (Line 20).

Listing 4.10: Removing Redundant Rules

1 // f i nd ru l e wi th mu l t i p l e consequences ( i . e . , consequenceRule )

2 consequenceLength = consequenceRule . consequenceRule . getConsequences ( ) . s i z e ( )

;

3 // loop through o ther r u l e s in the ru l e s e t

4 for ( int i = 0 ; i < r u l e s . s i z e ( ) ; i++) {

5 r u l e = (Rule ) r u l e s . get ( i ) ;

6 // i f r u l e s have the same premise

7 i f ( hasSamePremise ( consequenceRule , r u l e ) ) {

8 // i f so see i f i t have consequence o f n−1

9 i f ( r u l e . getConsequences ( ) . s i z e ( ) == ( consequenceLength − 1)

) {

10 // i f so see i f i t s consequence i s conta ined in

consequence ru l e

11 i f ( consequenceRuleConsequences . c on ta i n sA l l ( r u l e .

getConsequences ( ) ) ) {

12 subconsequenceNumber++;

13 subConsequenceRules . add ( ru l e ) ;

14 }

15 }

16 }

17 }

18 i f ( subconsequenceNumber == consequenceLength ) {

19 // remove redundant r u l e ( s ) wi th lower con f idence / suppor t from ru l e

s e t

20 RuleManager . removeSubset ( consequenceRule , subConsequenceRules ) ;

21 }
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Figure 4.9: Implicit Preference Determination Classes

4.6 Implicit Preference Determination

Implicit Preference Determination (Section 3.2.5) is designed to determine the preferred actions for

users for a given problem and context without the need for explicit input about context and prefer-

ence relationships. Figure 4.9 illustrates the main set of classes involved in Implicit Preference Deter-

mination. PreferenceManager is the main class responsible for Implicit Preference Determination

behaviour. When determining preferences for the current problem and context, PreferenceManager

interacts with CaseManager to retrieve a �ltered set of cases from the user model, and with Mining-

Manager to discover associations from these cases. It also collaborates with RuleManager to �lter

user model cases and discovered association rules.

Implicit Preference Determination begins when determinePreferences() in PreferenceManager

is invoked. The recommendation problem type, and the set of solution features to be recommended

are its input parameters. Listing 4.11 illustrates the determinePreferences() method.

Listing 4.11: Implicit Preference Determination Operations

1 // ge t f i l t e r e d user model cases

2 LinkedLis t userModelCases = CaseManager . getSemanticCases ( problemType ) ;

3 // d i s co v e r a s s o c i a t i on r u l e s from f i l t e r e d cases
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Figure 4.10: Implicit Preference Determination - Sequence of Operations

4 LinkedLis t a s s o c i a t i onRu l e s = Persona l i sat ionManager . d i s c ov e rAs s o c i a t i o n s (

userModelCases ) ;

5 // f i l t e r d i s cove r ed r u l e s by con t ex t

6 LinkedLis t f i l t e r e dRu l e s = RuleManager . f i l t e rByPremiseType ( a s s o c i a t i onRu l e s

, context )

7 // f i l t e r r u l e s by number to be presen ted as s p e c i f i e d in con f i g f i l e

8 LinkedLis t p r e f e r e n c e s = getPreferencesToRank ( f i l t e r e dRu l e s ) ;

9 return p r e f e r e n e s ;

PreferenceManager collaborates with CaseManager to acquire a �ltered set of user model cases

from UserModelManager. The decision to access user model cases using CaseManager ensures that all

functionality related to �ltering and manipulating user model cases is encapsulated at a single point.

Several methods are provided by CaseManager to retrieve �ltered user model cases (Figure 4.9). For

example, the getSemanticCases() method enables the retrieval of cases from the user model that

are of a particular problem type (Line 2). This method invokes the getCasesOfType() method in

UserModelManager described in Section 4.4 and Listing 4.8. Filtering cases by context is performed

in a similar manner. Filtered cases are passed to MiningManager via the PersonalisationManager

and mining is executed to determine association rules using the set of �ltered cases (Line 4). Rules

114



Chapter 4. Implementation

that are returned are further �ltered to ensure that the most relevant rules for the problem and

context are identi�ed. RuleManager provides the functionality for �ltering rules (Figure 4.7). For

example, filterByPremiseType() �lters a set of rules so that only rules that contain a speci�ed

context type are retained (Line 6). Listing 4.12 illustrates the �ltering of association rules using the

hasPremiseOfType() command in the Rule object. Remaining rules represent the preferred actions

of a user for the given user problem and context and are returned to PersonalisationManager.

These rules, are further �ltered so that only a certain N number of rules for each solution or solution

feature are retained and later ranked (Line 8 of Listing 4.11). The N value is speci�ed as part of the

personalisation con�guration �le (Section 4.3).

Listing 4.12: Filtering Association Rule by Context

1 for ( int i = 0 ; i < r u l e s . s i z e ( ) ; i++) {

2 Rule ru l e = (Rule ) r u l e s . get ( i ) ;

3 i f ( r u l e . hasPremiseOfType ( contextType ) ) {

4 // r e t a i n ru l e

5 }

6 }

4.7 Information Selection

Information Selection (Section 3.2.6) determines the set of context types that are relevant for a given

recommendation problem. Figure 4.11 illustrates the classes involved in Information Selection. Rele-

vanceManager provides and coordinates Information Selection functionality, which begins in a similar

set of processes as executed for Implicit Preference Determination. RelevanceManager interacts with

CaseManager to retrieve and �lter user model cases for the current recommendation problem. Retained

cases are subsequently passed to and mined by MiningManager, which returns a set of discovered as-

sociation rules. Rules are �ltered by RuleManager and returned rules are iteratively compared in

RelevanceManager to determine the set of context types that are relevant for the current recommen-

dation problem using the algorithm described in Section 3.2.6. The number of rules to be compared

is speci�ed as part of the personalisation con�guration �le (Section 4.3).

Figure 4.12 illustrates the sequence of operations and associated classes that are executed during

Information Selection4. Information selection is triggered following the execution of Implicit Preference

4For clarity, the Association Determination operation provided by MiningManager is omitted.
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Figure 4.11: Information Selection Classes
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Figure 4.12: Information Selection - Sequence of Operations
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Determination in the startRecommendationProcess() method by invoking determineRelevance()

in RelevanceManager. Information Selection begins like Implicit Preference Determination with Rel-

evanceManager collaborating with CaseManager to acquire a set of �ltered user model cases from

UserModelManager. Speci�cally, cases are �ltered semantically by problem type using the getSe-

manticCases() method, rejecting those cases that do not match the current problem type. Cases

at this stage are not �ltered by context as the aim is to determine the set of context types that in

general are important for a given type of recommendation problem. Retained cases are subsequently

mined by MiningManager (as described in Section 4.5), and a set of discovered association rules are

returned. Rules are �ltered by RuleManager so that rules of the form context ⇒ solution are retained.

Rules of this form facilitate the determination of context relevance as described in the design of In-

formation Selection (Section 3.2.6). Remaining rules are prioritised by strength and the N strongest

(i.e., most accurate) rules, as speci�ed as part of personalisation con�guration, are compared. The

determineRelevantContext() command iteratively selects pairs of rules and invokes the compare-

RulesForRelevance(). compareRulesForRelevance() provides the set of operations that compares

each pair of rules to determine the set of context types that are relevant for the current recommen-

dation problem using the four relevance rules outlined in Section 3.2.6. Listing 4.13 illustrates the

compareRulesForRelevance() method. The set of operations compare the solution and the set of

context types and values in each rule and determines if the context is relevant. The four relevance

rules outlined in Section 3.2.6 are implemented as conditionals in Lines 5, 9, 13 and 17.

Listing 4.13: Determining Relevant and Irrelevant Context

1 // f o r each con t ex t type in the ru le , compare con t ex t and s o l u t i o n va l u e s :

2 // check to determine t ha t the two r u l e s have con t ex t type t ha t can be

compared

3 i f ( comparisonRule . hasPremiseOfType ( baseType ) ) {

4 // same contex t , same ac t i on

5 i f ( basePremise . equa l s ( comparisonPremise ) && baseOutput . equa l s (

comparisonOuput ) )

6 // mark as r e l e v an t

7

8 // same contex t , d i f f e r e n t ac t i on

9 i f ( basePremise . equa l s ( comparisonPremise ) && ! baseOutput . equa l s (

comparisonOuput ) )

10 // mark as i r r e l e v a n t
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11

12 // d i f f e r e n t contex t , same ac t i on

13 i f ( ! basePremise . equa l s ( comparisonPremise ) && baseOutput . equa l s (

comparisonOuput ) )

14 // mark as i r r e l e v a n t

15

16 // d i f f e r e n t contex t , d i f f e r e n t ac t i on

17 i f ( ! basePremise . equa l s ( comparisonPremise ) && ! baseOutput . equa l s (

comparisonOuput ) )

18 // mark as r e l e v an t

19 [ . . . ]

20 // s e t o f con t ex t t ype s r e l e v an t are s t o r ed as a r e l e v an t con t ex t s e t

21 r e l evantContextSet s . add ( r e l e van tSe t ) ;

22 i r r e l e van tCont ex tSe t s . add ( i r r e l e v a n t S e t ) ;

This iterative process continues until all rules have been compared. Relevant context types or

sets of types are stored as ContextSet objects (Figure 4.11). This object is designed to facilitate

the storage of multiple relevant data types and the utility of this data in recommendation decisions.

As described in Section 3.2.6, the storage of multiple types together supports dependencies between

context, whereby certain context types are relevant depending on the type and value of other context.

Note that the number of times a context set was determined relevant or not relevant is also stored as

timesRelevant or timesNotRelevant attributes in ContextSet - a value that is used later as part of

Utility Assignment. When all rules have been compared, the set of inferred relevant context and non

relevant context sets can be accessed from the RelevanceManager via PersonalisationManager.

4.8 Utility Assignment

Utility Assignment, which determines the appropriate utility to assign to relevant context sets in a

recommendation decision, begins when Information Selection returns to PersonalisationManager.

Figure 4.13 illustrates UtilityManager class. Cases and rules used at the Information Selection stage

along with the relevant context sets and their associated consistency values (determined by Information

Selection) are retrieved from RelevanceManager. A utility value for each relevant context set is then

evaluated using consistency, precision, recall, con�dence, support, and lift metrics as described in

Section 3.2.7.

Figure 4.14 illustrates the sequence of operations that are executed during Utility Assignment,
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Figure 4.13: Utility Assignment Classes

which begin when PersonalisationManager invokes UtilityManager.determineUtility(). Con-

text sets evaluated as relevant as well as user model cases and rules used during Information Selection

are acquired and passed as input to the UtilityManager with this invocation. PersonalisationMan-

ager uses the getContextSets(), getComparisonCases() and getComparisonRules() operations

in RelevanceManager to retrieve this information. The determineUtility() method call provides

the operations to determine the utility of relevant context. Three methods are executed for each rule as

part of this operation and their outputs are iteratively combined to determine the appropriate weight

to assign to each relevant context set - calculateConsistency(), calculatePrecisionRecall(),

and calculateConfidenceSupportLift(). Listing 4.14 illustrates the calculateTypeUtility()

method. The updateUtility() command (Line 11) maintains the utility of each context set as rules

are evaluated. The updateUtility() command as shown in Listing 4.15, illustrates how the utility

of a context set is computed.

Listing 4.14: Calculating Context Utility

1 // f o r a l l r u l e s and f o r a l l c on t e x t s e t s :

2 // i f r u l e con ta ins con t ex t s e t in i t s premise

3 i f ( r u l e . conta insContextSetProport ion ( s e t ) != 0) {

4 // r e t r i e v e va l u e s f o r r u l e cons i s t ency , conf idence , support ,

p rec i s i on , and r e c a l l

5 con s i s t en cy = ru l e . ge tCons i s tency ( ) ;

6 con f id ence = ru l e . getConf idence ( ) ;

7 l i f t = ru l e . g e t L i f t ( ) ;

8 support = ru l e . getSupport ( ) ;

9 p r e c i s i o n = ru l e . g e tP r e c i s i o n ( ) ;

10 r e c a l l = ru l e . g e tReca l l ( ) ;
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Figure 4.14: Utility Assignment - Sequence of Operations

11 s e t . upda t eUt i l i t y ( cons i s t ency , con f idence , support , l i f t , p r e c i s i on ,

r e c a l l ) ;

12 }

Listing 4.15: The updateUtility() method in ContextSet

1 public void updat eUt i l i t y (double cons i tency , double conf idence , double

support , double l i f t , double p r e c i s i on , double r e c a l l ) {

2 u t i l i t y += cons i s t en cy * ( con f id ence * support * l i f t ) * ( p r e c i s i o n *

r e c a l l ) ;

3 }

calculateConsistency()determines the consistency value of each context set by subtracting its

timesNotRelevant attribute value from its timesRelevant value and normalising this value to the

range of 1. calculatePrecisionRecall() determines the precision and recall values for each rule and
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assigns the corresponding value to each context set contained in that rule. Section 3.2.7 outlined the

formulas for calculating precision and recall. The relevant items retrieved value (used in the formulas

for precision and recall) is calculated by iterating through rules and counting the number of relevant

context types contained in the rule using the hasPremiseOfType() command. Listing 4.16 illustrates

the implementation of the precision and recall formulas. calculateConfidenceSupportLift() also

iterates over the set of rules and relevant context contained in the rule are assigned a con�dence,

support, and lift value corresponding to the value of that rule.

Listing 4.16: Calculating Precision and Recall

1 double p r e c i s i o n = re l evant I t emsRet r i eved / re levantContextTypes . s i z e ( ) ;

2 double r e c a l l = re l evant I t emsRet r i eved / ru l e . getPremises ( ) . s i z e ( ) ;

The maintainThreshold() call extracts the weights of context sets from past relevant user model

cases with the aim of using knowledge about past recommendation decisions. Weights stored in past

cases, which are retrieved by invoking RelevanceManager.getComparisonCases() are combined,

averaged, and compared to the utility of context sets evaluated as part of the current execution

of Utility Assignment. Utility values for matching context sets are compared to determine if they

exceed a weight threshold value as speci�ed in the personalisation con�guration �le. If the threshold

is exceeded for any context set, then its utility value is incremented or decremented so that the

di�erence no longer exceeds this threshold value. The �nal utility value for each context set, which

represents its utility for the current recommendation problem and context, is evaluated, stored, and

returned to the PersonalisationManager and used to rank candidate recommendation choices.

4.9 Recommendation Generation and Ranking

Recommendation Generation and Ranking is the �nal stage of the multi-stage recommendation pro-

cess. Figure 4.15 illustrates the classes involved at this stage. The problem type, context, implicitly

determined user preferences, and the utility of relevant context types are passed to RankingManager,

which is responsible for determining the set of candidate behaviour recommendations and ranking

them in order according to inferred user preferences.

Figure 4.16 illustrates the sequence of operations that occur during recommendation generation

and ranking. The process is initiated by invoking the startGenerationAndRanking() method in

RankingManager. Inputs necessary for recommendation generation and ranking are passed in as
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Figure 4.15: Recommendation Generation and Ranking Classes

Figure 4.16: Recommendation Generation and Ranking - Sequence of Operations
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parameters with this call. Two distinct operations are executed as part of this method - gener-

ateRecommendations() and rankRecommendations(). generateRecommendations() evaluates the

set of user preferences (inferred by Implicit Preference Determination) and determines the set of

candidate choices. That is, N number of rules for each solution or solution feature are selected to

be ranked. The value for N is the number of recommendations to be presented to the user and

is speci�ed as part of the personalisation con�guration �le. The determinePossibleRecommenda-

tions() command provides operations that ensures each candidate choice is actually possible (e.g.,

determining if a candidate restaurant choice is available). For each possible choice, a Recommen-

dation object is constructed (Figure 4.15). rankRecommendations() scores each Recommendation

instance. Listing 4.17 shows the implementation of the rankRecommendations() method, illustrat-

ing how the set of candidate choices are scored according to the utility of relevant context sets us-

ing the MAUT approach as described in Section 3.2.8. Utilities are �rst normalised around 1 as

required by a MAUT approach. A score for each candidate recommendation is computed by de-

termining the proportion of applicable context sets it contains (i.e., context values that match the

context of the current problem) and multiplying this value by the context set's normalised util-

ity value to compute a score. The implementation of the java.lang.Comparable interface and

the compareTo() method enables di�erent recommendations to be ranked according to their score.

Listing 4.17: Ranking Candidate Recommendations with rankRecommendations()

1 n o rma l i s eU t i l i t i e s ( s e t s ) ;

2 // f o r a l l recommendations

3 for ( int a = 0 ; a < recommendations . s i z e ( ) ; a++) {

4 s c o r e = 0 ;

5 Recommendation rec = (Recommendation ) recommendations . get ( a ) ;

6 // f o r a l l c on t e x t s e t s

7 for ( int j = 0 ; j < s e t s . s i z e ( ) ; j++) {

8 ContextSet s e t = ( ContextSet ) s e t s . get ( j ) ;

9 proport ion = rec . conta insContextSetProport ion ( s e t ) ;

10 i f ( proport ion != 0) {

11 s c o r e = proport ion * s e t . g e tNorma l i s edUt i l i t y ( ) ;

12 r e c . updateScore ( s co r e ) ;

13 }

14 }

15 }
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Figure 4.17: Learning from Implicit User Feedback - Sequence of Operations

When a set of recommendations is presented to the user, the application waits for a user selection

so that this recommendation problem can be added as a new case to the user model. When a user

selection arrives, the application �rst determines if any learning is required before adding the case

to the user model. This ensures that the correct context utility is stored in the case, providing

accurate knowledge that aids future recommendation decisions. Figure 4.17 illustrates the sequence

of operations that execute when a user selects their preferred recommendation behaviour.

Listing 4.18: Learning from Implicit User Feedback

1 // r e t r i e v e s e l e c t e d ru l e and recommended ru l e

2 // f o r a l l c on t e x t s e t s :

3 // l e a rn ing p o s s i b l e i f c on t e x t s e t in one ru l e but not the o ther

4 i f ( s e l e c t edRu l e . hasPremiseSet ( s e t ) && ! recommendedRule . hasPremiseSet ( s e t )

5 | | ! s e l e c t edRu l e . hasPremiseSet . hasPremiseSet ( s e t ) && recommendedRule

. hasPremiseSet ( s e t ) ) {

6 s e t . upda t eUt i l i t y (INCREMENT_VALUE) ;

7 rankRecommendations ( ) ;

8 }

PersonalisationManager processes the selected recommendation to determine if learning is re-
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quired. As described in Section 3.2.8 learning is only necessary if the user selects a recommendation

that is not the highest ranked. If learning is necessary, the set of preferences rules are retrieved from

RankingManager and the UtilityManager.learnFeedback() command is invoked to adjust context

utilities. Listing 4.18 shows the implementation of the learning algorithm as implemented in the

learnFeedback() method. The conditional statement (Line 4) determines that learning is possible

(i.e., rules have di�erent context sets) and the updateUtility() command increases utility values of

context set's by a pre-speci�ed increment value and rules are re-ranked. This process is repeated until

the recommendation selected by the user is ranked highest or no more learning is possible.

4.10 Chapter Summary

This chapter has described the implementation details of the personalisation approach proposed in

this thesis. Speci�cally, the chapter describes how the techniques and algorithms designed for di�erent

stages of the multi-stage process are implemented. The implementations of techniques and algorithms

are described in detail along with the illustration of relevant classes, sequences diagrams, con�gura-

tion data, and source code excerpts. Each stage of the personalisation process and its operations are

designed and implemented in such a way as to minimise the need for user input regarding preference

details and expert knowledge and input regarding relationships between di�erent context types, pref-

erences, and recommendation behaviour. The approach supports the evaluation of recommendations

of di�erent problem and context types, which is easily extended by de�ning or extending UserModel-

Case with new types and values. Behaviour at di�erent stages of the process can also be customised

external to source code through the use of a personalisation con�guration �le.

The following chapter evaluates the personalisation approach through the development of two

user case study applications, designed to assess the accuracy of recommendations against actual user

choices. The accuracy of Information Selection and Utility Assignment techniques are also evaluated

against actual user choices. In addition, a set of simulated experiments are conducted to evaluate the

e�ect of di�erent user model sizes and di�erent numbers of supported context types on recommenda-

tion accuracy.
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Evaluation

" the ability of a recommendation system to identify user interests correctly and make proper

recommendations is critical to the success of the system� [114]

The evaluation process described in this chapter is focused on measuring the accuracy of rec-

ommendation decisions. As outlined in the research question investigated in this thesis, the main

objective of developed personalisation techniques and algorithms is to support context-aware applica-

tions in making accurate personalised recommendations to users (i.e., a recommendation that matches

the preferred choice of a user). The previous chapters have described the design and implementation

of a multi-stage recommendation process that includes techniques and algorithms for supporting ap-

plications in providing personalised recommendations to application users in di�erent context. The

accuracy of recommendation decisions is predicated on the personalisation approach e�ectively ad-

dressing the requirements outlined in Section 1.2. Other measures associated with recommendation

decisions such as trust (i.e., whether users perceive recommendations made by the application to be

reliable), transparency (i.e., whether users adequately understand the reasons for application recom-

mendations), ability of users to modify recommendations, and response time at which recommenda-

tions are returned are also important [131, 177, 169, 65], but as the personalisation approach has not

been designed to facilitate these measures, they are not the focus of this evaluation. Future studies

could extend the evaluation to assess the personalisation approach under these measures.

This chapter discusses the evaluation of the personalisation approach described in this thesis and

assesses the ability of its algorithms and techniques to support applications in providing accurate

personalised recommendations to users. The chapter begins with a description of the evaluation set-

up including the set of user-studies and simulated experiments that were conducted, the approaches
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taken to measure accuracy, and the set of statistics used for analysing results. The remainder of the

chapter describes the set of evaluation tests completed for testing recommendation accuracy. The

two recommendation strategies designed as part of the personalisation approach (described in Section

3.2.1.1) are evaluated against each other and against several of the most relevant recommendation

approaches used in state of the art personalised systems (random recommendations, rule-bases, neural

networks, user preference models, and case-based reasoning). The accuracy of Information Selection

and Utility Assignment algorithms is also analysed. In addition, the results of tests conducted to

evaluate how the personalisation approach performs for di�erent user model sizes and for di�erent

number of supported context types are presented. Each section describes the strategy or algorithm

being tested, the set of test data that is used, and the accuracy results for that strategy or algorithm

when compared against user selections.

5.1 Set-up

The main aim of the evaluation is to assess the accuracy of our personalisation approach in making

recommendations that match the preferred choice of users. Accuracy is measured by comparing

recommendations made by the application under di�erent context with actual user choices. The

overall accuracy of a recommendation approach for a user is calculated by counting the number of

times the approach provides recommendations that match that of the user for a set of recommendation

problems. The motivation for comparing recommendations with actual user choices is to determine if

the application is able to make decisions in di�erent context settings that re�ect those a user would

make given the same set of surrounding context information. The aim is to facilitate applications

to aid users with recommendation problems, in situations where the user is not fully aware of their

surrounding environmental context, by recommending actions that best re�ect the ones they would

choose if they were better aware of their context.

As part of this evaluation two case studies involving real users and a set of simulated experiments

have been conducted. User studies, for two di�erent application scenarios, queried users for their

preferred behaviour for a set of recommendation problems. Each problem consists of a di�erent set

of context types and values, therefore enabling information about the preferred behaviour of users

for di�erent combinations of context values to be gathered. In the second case study, users were also

asked about the set of context types they considered relevant and the relative importance of each

type when deciding on their preferred outcome. Evaluation tests compare recommendations, relevant

context, and context utility generated by the personalisation approach with actual user responses to
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determine an accuracy value. Comparisons between application recommendations and user choices

are conducted o�ine after all case study data is collected. Section 5.1.2 discusses the reasons for not

evaluating the approach with a live deployment.

The set of simulated experiments that were designed to assess how the personalisation approach

performs when making recommendations with di�erent values for user model size and number of

context types considered in recommendation decisions. User choices are generated in these simulations

using arti�cial preference models designed to represent user preferences under di�erent context.

The accuracy of each recommendation strategy or algorithm is shown as a series of graphs. Graphs

illustrate the accuracy for each user and an overall average accuracy for the set of users for a given

strategy or algorithm. The di�erent recommendation strategies and state of the art recommendation

approaches in each application scenario are evaluated using the same data. It is therefore fair to

compare the results of their evaluation directly. Each user is referred to by a numeric identi�er, which

is consistent within each application scenario, enabling the recommendation accuracies of each user

to be compared directly.

5.1.1 Personalisation Con�guration

Listing 5.1 illustrates the personalisation con�guration �le, which shows how the personalisation ap-

proach described in this thesis was con�gured when gathering the evaluation results described in this

chapter. The same con�guration data is used to facilitate the fair comparison of accuracy results

gathered for the personalisation approach across the set of evaluation tests.

Listing 5.1: Personalisation Con�guration File

1 # PERSONALISATION CONFIGURATION PROPERTIES

2 a s s o c i a t i o n . rulesToGenerate=2000

3 a s s o c i a t i o n . minSupport=1

4 a s s o c i a t i o n . con f idenceThresho ld=1

5 a s s o c i a t i o n . supportThreshold=1

6 f i l t e r i n g . caseContextMatches=1

7 f i l t e r i n g . ruleContextMatches=1

8 r e l evance . rulesToCompare=100

9 u t i l i t y . we ightDi f f e r enceThresho ld =0.8

10 l e a rn i ng . l ea rn ingRate =0.025

11 ranking . rulesToRecommend=3
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It was discussed in Section 4.3 that values for properties in the personalisation con�guration �le

are determined according to the requirements of the application and the characteristics of user model

data (e.g., user model size, number of information types in user model cases). Given that the set

of available user model cases in the user study evaluations is relatively small (i.e., 15 cases for the

�rst study and 40 cases for the second), the values are set in order to minimise the loss of relevant

decision making knowledge that is discovered. For example, threshold values for �ltering user cases

and association rules for Implicit Preference Determination and Information Selection are set to their

minimum possible values. Other values are set based on several test executions of the personalisation

approach on a user model that was randomly selected from the gathered user responses. These values

were found to provide accurate result while minimising the amount of processing required (e.g., the

generation of 3000 association rules on the same user model data did not provide more accurate

recommendations)1. The �nal property, representing the number of recommendations to be presented

to the user, is set according to the requirements of an application or preferences of the user. A value

greater than one is selected in this case so that learning from incorrect recommendation decisions is

facilitated (as described in Section 3.2.8.1).

The values for con�guration properties are also selected as to ensure recommendations are evalu-

ated and presented to users within an acceptable time frame. An acceptable threshold on execution

time is de�ned according to a user's tolerance for delay in an application [140] and applications that

return results outside this threshold risks frustrating the user [162]. Application response times vary-

ing from two seconds [130] to ten seconds [142] have been proposed as acceptable. As a guideline, this

thesis adopts a response time bound of 0-12 seconds, which is determined from analysis of respon-

siveness requirements de�ned for application services of the Hermes application framework [64] (i.e.,

con�guration properties have been selected to ensure personalised recommendations are presented to

users within 12 seconds of their recommendation request). Note that although a threshold value of 12

seconds is selected, improvements can be made to the recommendation process to improve its response

time (e.g., selecting an association discovery algorithm that is more e�cient than Apriori). A more

in depth analysis of the computational e�ciency/overhead of the recommendation process, including

possible algorithm improvements and detailed evaluation, is future work (Section 6.2.1).

As mentioned previously (Section 4.3), future work will also investigate the dynamic and implicit

adaptation of these values to di�erent user problems and context (Section 6.2.2).

1Note that these tests provided an indicator as to suitable con�guration values and were not statistically evaluated.
Further tests would be necessary to statistically validate whether a given set of con�guration values performs better
than another di�erent set.
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5.1.2 Issues with Live Deployment

The decision to not evaluate the personalisation approach by deploying it on mobile devices and giving

it to users to use over time was taken to ensure the validity and fair comparison of acquired results.

There are a number of factors associated with deploying to real users that may a�ect the validity and

fair comparison of results.

Deploying to mobile devices relies on connected sensor devices to acquire the set of context data

that facilitates the personalisation approach to make recommendation decisions. However, sensor

data is inherently uncertain [128, 56, 166, 152] and the approach is not currently designed to support

uncertainty associated with acquired context (though this is planned for future work - Section 6.2.4).

The di�culty with e�ectively measuring uncertainty associated with context and the e�ect of this

uncertainty on recommendation decisions means that the accuracy of the personalisation approach

cannot be measured fairly. For a fair evaluation to be made in the presence of uncertain data, this

uncertain data and the e�ect of uncertainty on recommendation decisions would have to be accurately

quanti�ed.

Current sensor devices are also limited to providing context of certain types (e.g., location, time).

Many other context types that may in�uence a user's behaviour decision (e.g., weather, who they

are with) cannot be easily or implicitly acquired. However, the personalisation approach has been

designed to ensure that relationships between multiple di�erent context types are supported. The

lack of sensors available to provide applications with context of di�erent types limits the number of

types an application supports and consequently limits the evaluation of the personalisation approach

to a limited number of context types and relationships. A related issue is that users may make

recommendations based on context information not supported by the application. A fair comparison

between application decisions and user decisions therefore cannot be made as the context information

available to each is not equivalent.

In addition, giving devices to users does not facilitate the acquisition of data about the relevance

and utility of di�erent context types that are considered by users in recommendation decisions. The

form factor of mobile devices makes inserting information about recommendation decisions (i.e., rele-

vance and utility) di�cult and often intrusive to users.

A �non-live� (or o�ine) evaluation minimises these problems and is designed to ensure that eval-

uation data is gathered in a controlled manner so that user selections and outputs generated by the

personalisation approach can be compared fairly. Explicitly querying users about their preferred ac-

tions in di�erent context, where users are explicitly informed about the context types and values that

can be considered, is taken to ensure that the e�ect of data uncertainty and other information that
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may in�uence or bias a user's decision is minimised. Informing users about the context types that can

be considered in recommendations also facilitates the evaluation of multiple di�erent context types

and values.

The non-live evaluation is also designed so that the evaluation can focus directly on acquiring

those user responses that are required for comparing user selections with outputs generated by the

personalisation approach (i.e., recommendation selections, relevant context types, and context utility).

A non-live evaluation also avoids delays related to hardware failure and failures related to recording

all necessary context and user decision making data during application execution - deployment issues

that are not related to the development and evaluation of the personalisation approach. Issues related

to the cost and availability of resources and devices required for deploying context-aware applications

in real world environments would also have restricted the number of user evaluations possible.

5.1.3 Measuring Accuracy

Two di�erent o�ine approaches were adopted for assessing the accuracy of the personalisation ap-

proach proposed in this thesis: separate test cases (also referred to as a holdout approach [103]) and

leave one out test cases [103, 59].

A separate test cases approach was used to assess recommendation accuracy in our �rst user study

evaluation. With this approach responses from users about recommendation problems are divided

in two subsets - those that are stored in the user model and those that are not. This facilitates the

evaluation of the personalisation approach along two separate dimensions. That is, the approach is

tested on problems that are stored in the user model and on problems that are not. This facilitates

the evaluation to assess the accuracy of the recommendation approach for recommendation problems

that were posed in the past and also its accuracy when generalising user model knowledge to new

(previously unencountered) problems. This evaluation approach is executed as follows: each case

(both those in the user model and those that are omitted) is evaluated in turn with the context values

stored in the case representing the inputs to the recommendation problem (i.e., what is the user's

preferred behaviour in this context). Recommendations are generated using user model data and

the accuracy of recommendations is calculated by comparing the recommended outputs with user's

selection stored in the test cases. The overall accuracy of a recommendation approach for a given user

is the average of the test case results.

On analysis of the results of the �rst study, the main issue with a separate test cases approach

is that because the approach is tested with problems that are already contained in the user model

and therefore has knowledge about, results may be unfairly biased. This is further discussed in our
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analysis of results gathered using a separate test case approach. Consequently, subsequent evaluations

followed a leave one out process. In contrast to a separate test case approach, leave one out does not

purposely include test cases in the user model. Instead, a user model is generated with all cases that

have been gathered except for the one being tested. That is, a test case is removed from the overall set

of cases and the remaining cases make up the user model. This user model is then used to determine

a recommendation for the test case problem that was removed. Therefore, each case is tested as if

all other cases preceded it. As before (with a separate test case approach) an accuracy measure is

calculated by comparing the applications recommendation with the user's selection stored in each test

case and the overall accuracy for a given user is the average of the set of test case results.

5.1.4 Evaluation Statistics

An important feature of real data is that it exhibits a certain degree of variation [135]. Statistical

tests are therefore important as they aid in distinguishing between chance variation and systematic

e�ects [135]. To evaluate the e�ectiveness of the personalisation approach described in this thesis, we

compare the accuracy of its recommendation strategies and algorithms (in making recommendations

that match a user's preferred choice) against a baseline accuracy and against the accuracy of other

recommendation approaches. The results are statistically analysed to determine if di�erences in

accuracy are statistically signi�cant (i.e. the di�erence is systematic and is unlikely to have occurred

by chance). Two sets of tests were used for this evaluation: Student's t-tests and the F-test [135, 138].

Student's t-distribution [75] provides the �rst set of statistics used for assessing recommendation

accuracy in this thesis. This distribution is e�ective in estimating the mean of normally distributed

data when the sample size is small2. Students t-test, a statistical signi�cance test based on Student's

t-distribution, is used to assess the accuracy of various recommendation strategies and algorithms

and to test for statistical signi�cant di�erences between them. t-tests require specifying a null and

alternative hypothesis. A t-value calculated from a test statistic and a number of degrees of freedom

determine if the null hypothesis is accepted or rejected [138]. The thesis uses two types of Student's

t-tests for evaluation: one sample t-test and paired t-test. The one sample t-test is used to compare

the accuracy of recommendation algorithms against a baseline accuracy value while the paired t-test

compares the accuracy of algorithms against each other.

The one-sample t-test is used to compare a sample mean to a speci�c value. The hypotheses of a

one sample t-test are speci�ed as:

2Appendix A.2 presents the normal plots of the data presented in this chapter.
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H0 : µ = specified value

H1 : µ 6= specified value

where H0 is the null hypothesis (i.e., the average accuracy of a recommendation approach equals

50%), H1 is the alternative hypothesis (i.e., the average accuracy of a recommendation approach does

not equal 50%), and µ is the sample mean (i.e., the average accuracy of a recommendation approach,

e.g., 50%). The null hypothesis represents the view that, in the long-run, the average accuracy of the

recommendation algorithm is equal to the speci�ed baseline accuracy value. The test statistic for a one

sample test, which measures departure from the null hypothesis µ = µ0 where µ0 = specified value

is:

t =
(x̄− µ0)

s/
√

n

x̄ is the mean (or average) accuracy of a recommendation algorithm, µ0 is the baseline value we

compare recommendation accuracy to, s is the standard deviation of the recommendation accuracy

values, and n is the number of users. The value of t relative to critical values, de�ned by a signi�cance

level and number of degrees of freedom, determines whether the null hypothesis is accepted or rejected

with a certain con�dence level. A con�dence level of 99% (i.e. a signi�cance level α = 0.01) is chosen.

If the null hypothesis is accepted then it is concluded, with 99% con�dence, that there is no statistical

evidence to support the view that the accuracy of the recommendation algorithm is better than the

speci�ed baseline accuracy value. In contrast, if the null hypothesis is rejected, there is 99% con�dence

that the accuracy of the recommendation algorithm is better than the speci�ed baseline accuracy

value. In this evaluation, the speci�ed value is set to 50, which is a widely adopted comparison value

in statistical analysis [138, 135] and represents the accuracy of a random recommendation. Therefore

the one sample t-test determines if the recommendation accuracy of the personalisation approach is,

in the long run, better than a random recommendation and not simply due to chance variation.

In contrast to the one sample t-test, the paired t-test is used to compare accuracy of recommenda-

tion algorithms against each other. The paired test di�ers from a one-sample test as it examines the

di�erences between the results of two algorithms. The hypotheses of a paired t-test are speci�ed as:

H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 6= 0

where H0 is the null hypothesis (i.e., the di�erence between the average accuracy of recommendation
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approach A and the average accuracy of a recommendation approach B is equal to 0), H1 is the

alternative hypothesis (i.e., the di�erence between the average accuracies of two recommendation

approaches does not equal to 0) , and µ1 is the mean (or average) accuracy of one recommendation

algorithm and µ2 is the mean (or average) accuracy of a second recommendation algorithm. The

null hypothesis represents the view that if the di�erence in accuracy between two recommendation

algorithms is not statistically signi�cant, then the di�erence between their long-run means is zero.

The test statistic for a paired t-test is:

t =
d̄

s/
√

n

d̄ is the mean, s is the standard deviation of the di�erences between the accuracy results of the two

algorithms for each user, and n is the number of users. Similar to a one sample t-test, the value of t

relative to critical values, de�ned by a signi�cance level and number of degrees of freedom, determines

whether the null hypothesis is true with a certain con�dence level. A signi�cance level α = 0.01

is chosen, meaning that it can be determined, with 99% con�dence, whether one recommendation

algorithm is more accurate than another.

In addition to the Students t-test, the F-ratio statistic test based on the F-distribution is used

to compare accuracy of multiple data sets together. Fisher's Least Signi�cant Di�erence (LSD)

[138] facilitates the comparison of multiple data sets at once to determine if they are statistically

signi�cantly di�erent. This supports the analysis of results related to determining how the accuracy

of the personalisation approach is a�ected given a set of multiple di�erent test constraints. Speci�cally,

the F-ratio test is used to compare accuracy of recommendations for a set of di�erent user model sizes

and di�erent number of supported context types described later in Section 5.4 and Section 5.5. The

null hypothesis tests that there is no di�erence in the long run mean accuracy for a set of samples.

The hypotheses for this test is:

H0 : µ1 − µ2 − µ3 − ...µn = 0
H1 : µ1 − µ2 − µ3 − ...µn 6= 0

The LSD value is calculated using:

LSD = t

√
2MSE

J

t is the test statistic for a given signi�cant level (α = 0.01 in this thesis), MSE is the mean square
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Context Types Meal (3), Day (2), Company (2), Transport (2),
Occasion (2), Time Constraint (2)

Restaurant Properties Cuisine, Cost, Food Quality,
Service/Atmosphere, Distance

Table 5.1: Restaurant Recommender Context and Solution Features

error, which is the average of the variances in the sample mean, and J is the number of users. If

the value of two sample means di�ers more than this LSD value, then it is 99% certain that they are

statistically signi�cantly di�erent.

5.2 Context-aware Restaurant Recommender System

The �rst evaluation test that was performed was the evaluation of the original recommendation strat-

egy. As discussed in Section 3.2.1.1, this original strategy generates recommendations using the

techniques for Implicit Preferences Determination and Recommendation Generation and Ranking.

That is, user model cases are �ltered, useful associations between context and user choices are iden-

ti�ed, these association rules are �ltered, and recommendations represented in these rules are ranked

based on their applicability and strength. Information Selection and Utility Assignment techniques

are not supported as part of this strategy and consequently information relevance and utility is not

dynamically adjusted for di�erent recommendation problems or context. Instead, all context types

are considered to be relevant and of equal utility.

5.2.1 Application Scenario and Set-up

To assess the accuracy of the original recommendation strategy, a personalised context-aware restau-

rant recommender system introduced in Section 3.1.2 was developed. This application was developed

to provide restaurant recommendations to users taking into account their current context. A user

study was developed to gather user model and test case data from real users. As part of the study,

10 participants were questioned on 15 di�erent recommendation problems. Each problem queried the

user for their preferred choice regarding a set of restaurant properties for a given context3. Table 5.1

summarises the set of context types and restaurant properties supported by the application. Values in

brackets indicate the number of possible values for each information item. 96 possible distinct context

relationships are possible given the set of context types and number of possible values (i.e., 3 × 2× 2

× 2 × 2 × 2 = 96).

3An example recommendation problem is shown in Appendix B.1.
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5.2.2 Analysis

As previously outlined, a separate test cases evaluation (Section 5.1.3) was used to assess the accuracy

of recommendations for restaurant properties as compared with actual user choices. Responses for

10 of the 15 cases gathered from the user were included in a user model while the 5 remaining cases

acted as new cases and were omitted from the model. This proportion was determined given the

lack of data available and the need to provide the user model with a su�cient number of cases that

represent a set of di�erent user preferences. On analysis of user responses, it was evident that the

preferred behaviour of users changed depending on context, highlighting the presence of a dependency

relationship between context and user preferences.

The evaluation of recommendation accuracy proceeded as follows: the problem type and context

features of a user model case is read in by the application. This set of information provides the appli-

cation with a description of the current problem and context. A recommendation is then generated

by the application using user model cases including the case being tested. The accuracy of the recom-

mendation is determined by counting the number of recommended restaurant properties that match

those selected by the user. Each user model case is tested in the same way. The evaluation process

continues by testing new cases (i.e., cases that are not already contained in the user model). The

process proceeded in a similar manner to testing user model cases with one exception - the new case

being tested is not included in the user model. That is, the application is generating recommendations

for a set of context values that have not been previously considered. The accuracy, like previously,

is determined by counting the number of recommended restaurant properties that match actual user

choices. The results for both user model test cases and new cases are collated and averaged to give an

overall recommendation accuracy for the strategy. Figure 5.1 illustrates the recommendation accuracy

for each user using the original recommendation strategy. The average recommendation accuracy of

all users is also shown in the right-most column (64.9%).

To assess the usefulness of this recommendation strategy, these results are compared with a random

recommendation (as described in Section 5.1.4). Table 5.2 shows the statistics used to compare

this strategy with a random recommendation. The calculated t-value of 7.01 is greater than the 99

percentile Students t distribution (t.99) for 9 degrees of freedom (3.25). In addition, the hypothesised

mean accuracy value of 50 does not fall within the 99% con�dence interval values. Therefore, the null

hypothesis is rejected and it can be stated that this recommendation strategy outperforms a random

recommendation with 99% con�dence.

As recommendations are generated from knowledge about user recommendation decisions, the re-

sults, as expected, indicate that the approach is more accurate than a random recommendation. This
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Figure 5.1: Original Strategy Accuracy

Statistic Value
Null hypothesis x̄ = 50

Number of Samples (n) 10
Degrees of Freedom (d) 9

Sample Mean (x̄) 64.9%
Standard Deviation (s) 6.7%
Students t-value (t) 7.01
Critical Value (t.99) 3.25

99% Con�dence Intervals 57.9%, 71.8%
Table 5.2: Summary Statistics for Original Strategy Accuracy

di�erence is likely (with 99% con�dence) to be between approximately 8% and 29%. The con�dence

intervals indicate (with 99% con�dence) that the approach is most likely to make recommendations

that match a users preferred action for di�erent context 58% to 71% of the time. The standard

deviation of 6.7% shows the recommendation accuracy on average varies around the mean by approx-

imately 10%. Given the small sample size, this standard deviation is seen as low and indicates that

the recommendation approach provides a relatively consistent level of accuracy for the set of users

that were tested.

As stated in Section 5.1.3, closer analysis of results indicate that the separate test case approach

may have unfairly biased results. Figure 5.2 illustrates the results separated for user model cases and

new cases and Table 5.6 summarises the test statistics. The results show that the personalisation ap-

proach on average provides more accurate results when tested with user model cases (by approximately

16%), increasing the overall value of accuracy of the approach. Greater recommendation accuracy was
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Figure 5.2: User Model Cases versus New Cases

Accuracy Average Standard Deviation
User Model Cases 73.0% 6.4%

New Cases 56.8% 8.4%
Table 5.3: User Model Cases versus New Cases Summary Statistics

also achieved for all users. This result is not surprising as knowledge about behaviour that matches

that of a user is already stored in the user model and indicates that the personalisation approach is

more accurate for recommendation problems that have been previously solved. The results also show

that the accuracy of the approach varies by a lower amount (approximately 2%) when evaluated for

problems already stored in the user model. This indicates that the personalisation approach is more

consistent at providing recommendations that match those preferred by the user for problems that

have been previously solved. A possible cause of this bias is that user model cases and new cases

were not evenly divided (i.e., 10 user model cases versus 5 new cases). This separation proportion was

decided given the small number of gathered cases available and the need to provide the user model

with an adequate number of cases about di�erent user preferences. Further studies are required to

determine if more evenly distributed cases or increases in user model size would a�ect the accuracy

of results in each category.

5.2.3 Comparisons

As part of this �rst evaluation study, the accuracy of the original recommendation strategy was also

compared against accuracy values for rule based and neural network recommendation approaches. A

rules-based approach was selected for comparison due to its popularity and support in many existing

context-aware applications and frameworks. Neural networks were also chosen as they represent a
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Figure 5.3: Rules and Neural Network Accuracy

history-based alternative to making recommendations by learning from past user behaviour [163, 98].

To construct a rule-based version of the restaurant recommender application, the 10 study par-

ticipants also acted as developers. All developers were of M.Sc., Ph.D., or postdoctoral level in

computer/engineering related disciplines. Each developer was given the set of context and restau-

rant properties supported by the application as well as user model cases, which provided knowledge

about the preferences of a user. The aim for developers was to construct a set of rules that generate

recommendations that match the preferred choice of a user. Rules were implemented in Java using

conditional statements. The EasyNN-plus tool4 was used to generate neural networks. A di�erent

network was generated for each user using user model cases as training data.

The accuracy of both the rule-based and the neural network approach is determined in the same

manner as used for the original recommendation strategy. The context of each test case (user model

and new cases) provide the input into both the rule base and neural network systems, and values

for restaurant properties that are outputted are compared with actual user selections. The accuracy

results for each user for the 15 test cases are averaged to give an accuracy value for each user, and these

values are subsequently averaged to give an overall accuracy for both rule-based and neural network

approaches. Figure 5.3 illustrates the recommendation accuracy for each user using rule-based and

neural network approaches. For comparison, the accuracy of the original strategy is also illustrated.

The average recommendation accuracy of all users for each approach is shown in the right-most column

in each graph.

A paired t-test was used to compare the original strategy with rule-based and neural network

4http://www.easynn.com/
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Statistic Value
Rules Neural Network

Null Hypothesis x̄-ȳ = 0 x̄-ȳ = 0
Number of Samples (n) 10 10
Degrees of Freedom (d) 9 9

Original Strategy Sample Mean (x̄) 64.9% 64.9%
Rule/Neural Network Sample Mean (ȳ) 47.0% 45.0%

Sample Mean Di�erence 17.9% 19.9%
Standard Deviation of Di�erence (s) 12.4% 8.0%

Paired Students t-value (t) 4.54 7.82
Critical Value (t.99) 3.25 3.25

99% Con�dence Intervals 5.0%, 30.71% 11.6%, 28.17%
Table 5.4: Summary Statistics for Rule-based and Neural Network Comparison

approaches. Table 5.4 summarises the statistics used for this test. The calculated t-values (4.54 and

7.82) are greater than the 99 percentile Students t distribution (t.99) for 9 degrees of freedom (3.25).

In addition, the hypothesised accuracy di�erence of 0 between the approaches does not fall within

the 99% con�dence intervals. Therefore, the null hypothesis is rejected and we can say with 99%

con�dence that the original strategy outperforms both a rule-based and neural network approach for

providing accurate personalised recommendations in di�erent context.

As shown by these tests, the personalisation approach provides more accurate recommendations

than both rule-based and neural network approaches (with 99% con�dence). When compared with a

rule-based approach, the original strategy is shown to provide recommendations that on average are

approximately 18% more accurate. For the set of users that were evaluated, the average di�erence

between accuracies ranged from 5% to 30.71%, which indicates that the original strategy is signi�cantly

more accurate than developed rules in some instances but this di�erence is signi�cantly less in other

instances. For example, the personalisation approach was signi�cantly more accurate than rules for

User 3. The only instance where a rules-based approach outperformed the original strategy was for

User 6. This was found to be the case because the original strategy is shown to have performed

poorly (i.e., accuracy of 48%) for new cases for this user, therefore bringing down the overall average

accuracy. This indicates the information stored in the user model of this user was not representative

of the preferences of the user for new problems. The variance in di�erence between the accuracy of the

original strategy and developed rules is also partly attributed to the ability of developers to e�ectively

implement a set of recommendation rules that captured the preferences of users in di�erent context. To

further determine the reasoning for the poor performance of a rule-based approach developers were

questioned post implementation5. Questions consisted of a set of statements regarding rule-based

5illustrated in Appendix B.3.
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Statements Likert Scale
It proved di�cult to identify the permutations of rules required 4
The system was overall di�cult to design and implement 3.7
The system will cater for new cases 1.5
The system captures the requirements of the user 3.4
The system will produce accurate outputs 2.8

Table 5.5: Rule-based Implementation Opinions

implementation using the Likert (�ve) scale system, where 1 corresponds to Strongly Disagree and 5

to Strongly Agree. Table 5.5 summarises developer responses. The most relevant �ndings indicate that

developers found it di�cult to identify and generalise rules to the context of di�erent recommendation

problems and to implement rules that will cater for new problems.

The evaluation results have also shown that the original strategy of the personalisation approach

outperformed a neural network approach for all users. On average neural networks were outperformed

by between 11% and 28%, and on average by almost 20%. The poorer performance of neural networks

is attributed to the problem of over �tting due to the small number of cases available to train each

neural network [163]. The problem of over-�tting is reduced by the design of the personalisation

approach described in this thesis as cases are �ltered by context (as described in Section 3.2.5) to ensure

that knowledge discovered during association mining is tailored for the context of the recommendation

problem.

Figure 5.4 and Table 5.6 expand on the evaluation results with an illustration of how rules and

neural networks performed for user model cases and new cases for each user (following the separate

test case evaluation approach). The similar average accuracy of rules for user model and new cases

supports the �nding that developers aimed to, but found it di�cult to, generalise knowledge about

user preferences so that they could be applied to the set of di�erent recommendation problems.

This �nding is also supported by similar standard deviations, which show that the accuracy of rules

approach vary by similar amounts when testing the two sets of problems. The problem of bias as a

result of having information about user selections does not apply for rules as developers attempted

to generalise solutions as opposed to only focusing on user model problems. As neural networks were

trained with user model data, it is not surprising that tests with user model cases are more accurate

than those of new cases, and therefore increasing the overall average of accuracy values. As shown

in Figure 5.3, the biggest di�erence in accuracy between the original strategy and neural networks

is with User 4. This is attributed to the poor performance of neural networks in new cases for this

user. Returning to Figure 5.4, neural networks provided the same accuracy values for user model

and new problems for User 5. The original strategy also scored highly for User 5 indicating that
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Figure 5.4: Rules and Neural Networks: User Model Cases versus New Cases

Accuracy Average Standard Deviation
Rules Neural Networks Rules Neural Networks

User Model Cases 48.0% 54.0% 10.9% 6.3%
New Cases 46.0% 36.0% 9.2% 9.7%
Table 5.6: User Model Cases versus New Cases Summary Statistics

the preferences for User 5 are relatively consistent for di�erent recommendation problems. The large

di�erence between user model and new problems for User 1 is unclear given such a di�erence was

not exhibited for both the original strategy and for rules. The black box nature of a neural network

approach also makes it di�cult to analyse. Further tests for User 1, with increased user model data,

would be required to determine the reason for this outcome.

5.3 Context-aware Travel Recommender System

It was described in the Section 3.2.1.1 that the original strategy omits Information Selection and Utility

Assignment when evaluating recommendations. Its limitation therefore, is its assumption that users

use the same set of context types and place the same relative importance to di�erent context types

when making behaviour decisions. The extended recommendation strategy is designed to address

this limitation by including Information and Utility Assignment, which provide the functionality

that dynamically adjusts the relevance and utility of information to re�ect the preferences of the

user for di�erent recommendation problems. It is hypothesised that by performing these operations,

recommendation accuracy will increase.

This section describes the evaluation of the extended recommendation strategy, which consists of
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a number of tests designed to assess the accuracy of its generated outputs. Speci�cally, the accuracy

results of the extended strategy are compared with the original strategy, enabling the e�ectiveness of

Information Selection and Utility Assignment techniques and algorithms to be measured. This �before

and after� process is commonly used to determine if newly developed algorithms are actually e�ective

in improving recommendation accuracy [118]. The algorithms for Information Selection and Utility

Assignment are also individually evaluated by comparing their outputs with user responses.

5.3.1 Application Scenario and Set-up

To assess the accuracy of the extended recommendation strategy, a di�erent, extended user study was

conducted, which unlike the previous study, also queried users about information relevance and utility.

The personalised context-aware travel recommender system introduced in Section 3.1.2 was developed

as the application for this study. This application was developed to make personalised travel (i.e.,

route and transport) recommendations for users in di�erent context. The implementation of this

application also highlights the ability of the personalisation approach to make recommendations for

di�erent types of problems using the same process.

As part of the study, 20 participants6 were asked about 20 di�erent travel problems. Users were

queried about the type of route and transport they would take between two locations for a given

context7. For each problem, users were also queried for the context types they considered relevant

and each type's relative importance in their decision. Locations and available routes were selected

using an area of Dublin city as shown in Figure 5.5. Four di�erent travel routes (based on time,

distance, number of turns, and number of junctions) and three di�erent modes of transport (walking,

via bus, via car) were available to users for each case. For each problem, users were also asked if they

would change the type of route and transport they had selected if the value of a context type or set

of types changed. This provided a total number of 40 cases for each user. Six independent context

types are supported, each type had �ve possible values, equating to 56 (i.e., 15625) possible context

combinations.

5.3.2 Analysis of Original Recommendation Strategy

The �rst evaluation performed for this study assessed the accuracy of the original recommendation

strategy for the set of travel recommendation problems. This is conducted to provide a baseline

accuracy from which the results of the extended strategy can be compared. Unlike the previous study, a

6A sample size of 20 was determined using the results of initial users as shown in Appendix A.1.
7A example recommendation problem is shown in Appendix B.4.
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Figure 5.5: Dublin City Coverage

leave one out approach (Section 5.1.3) is adopted here to evaluate recommendation accuracy. Accuracy

measures for both route and transport recommendations are acquired and analysed. The evaluation

proceeded as follows: the case being tested is removed from the user model and a recommendation

is generated by the application using all other cases. Recommendation accuracy is determined by

comparing recommended actions with actual user selections stored in the user model. Each case is

tested in the same way and accuracies are averaged to determine an overall user accuracy. Figure

5.6 illustrates the accuracy for each user for route and transport recommendations using the original

strategy. The average recommendation accuracy of all users for each problem type is also shown in

the right-most column.

To assess the usefulness of the strategy, the results are compared against a random recommendation

as performed in the previous study (Section 5.2). Table 5.7 shows the statistics used to compare this

strategy with a random recommendation. The calculated t-value of 6.25 for route recommendations

and 4.09 for transport recommendations is greater than the 99 percentile Students t distribution (t.99)

for 19 degrees of freedom (2.86). In addition, the hypothesised mean accuracy value of 50 does not

fall within the 99% con�dence interval values. Therefore, the null hypothesis is rejected and it can be

stated that this original recommendation strategy outperforms a random recommendation for both

personalised route and transport recommendations with more than 99% con�dence.

These results show that the original strategy provides similar levels of accuracy using a leave one

out approach as with a separate test case approach in the �rst user study (i.e., 64.9% previously versus
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Figure 5.6: Accuracy of Original Strategy for Route and Transport Recommendations

65.6% and 59.8%). However, the results of this study are clearly more accurate than those provided

by the original strategy in the �rst for new cases (i.e., those not stored in the user model), which was

56.8%. On analysis of individual user results, it was determined that several high value outliers have

very high levels of accuracy which increase the overall average accuracy (i.e., Users 2, User 8, and

User 9 for route and User 6 for transport). When these values are removed an average accuracies of

52.8% (for route) and 55.3% (for transport) are calculated, which are more in line with the accuracy

for the original strategy for new cases in the �rst user study and with what was expected. This is

because this study considers a larger number of context relationships than the �rst study (i.e., 15625

versus 96) and as a result there are a larger number of combination of factors that are likely to a�ect

the preferred choice of the user to di�erent degrees. Capturing this knowledge in the user model with

a limited number of cases is di�cult and limits the application to generalise user model knowledge to

the larger number of context combinations that are possible.

The standard deviation is larger than expected at 17% (for route) and 19% (for transport) of the

mean value. This result is attributed to the variances that exist relating to the consistency of user

decisions. That is, some users (e.g., User 9 for routes and User 6 for transport) are largely consistent

with the decisions they make and are likely to choose the same actions for similar problems. This

enables the personalisation approach to e�ectively learn about their behaviour patterns. However,

other users (e.g., User 11 for routes and User 17 for transport) are largely inconsistent about their

preferred actions, therefore making inferences about their preferred behaviour more di�cult. The

di�erences in accuracy values for these types of users are seen to cause the relatively large standard

deviation that is exhibited.
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Statistic Value
Route Transport

Null hypothesis x̄ = 50 x̄ = 50
Number of Samples (n) 20 20
Degrees of Freedom (d) 19 19

Sample Mean (x̄) 65.6% 59.8%
Standard Deviation (s) 11.1% 10.8%
Students t-value (t) 6.25 4.09
Critical Value (t.99) 2.86 2.86

99% Con�dence Intervals 58.4%, 72.7% 52.9%, 66.7%
Table 5.7: Summary Statistics for Original Strategy Accuracy

5.3.3 Analysis of Extended Recommendation Strategy

After establishing a baseline accuracy value represented by the results of the original strategy, evalua-

tion was performed to assess the accuracy of the extended recommendation strategy. As described in

Section 3.2.1.1, the extended strategy aims to improve on the original strategy by including Informa-

tion Selection and Utility Assignment techniques and algorithms. The aim is to improve the accuracy

of recommendations by providing functionality that adapts the set of relevant context and its utility

according to the user problem and context.

The evaluation of the extended recommendation strategy proceeded using the same leave one out

process as used for evaluating the original strategy. The one main di�erence is that recommendations

are made with Information Selection and Utility Assignment included in the recommendation process.

Figure 5.7 illustrates the accuracy for each user for route and transport recommendations using the

extended strategy. The results acquired previously for the original strategy are also included in the

illustration. The average recommendation accuracy of all users is also shown in the right-most column.

It is shown that for all users, the extended strategy either matches or outperforms the original strategy.

The overall average of the di�erence is 7.7% for route and 4.5% for transport, shown in the right-most

column in each graph.

The results of the original and extended strategies are directly compared to statistically assess the

e�ectiveness of the extended strategy. Table 5.8 illustrates the statistics used for the paired t-test.

The calculated t-values (5.7 and 3.85) for route and transport recommendations are both greater

than the 99 percentile Students t distribution (t.99) for 19 degrees of freedom (2.86). In addition,

the hypothesised accuracy di�erence of 0 between the two approaches does not fall within the 99%

con�dence intervals. Therefore, the null hypothesis is rejected and it can be concluded with 99%

con�dence that the extended recommendation strategy outperforms the original strategy in providing

personalised recommendations to users in di�erent context. This indicates that there is a statistically
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Figure 5.7: Extended Strategy vs Original Strategy Accuracy

signi�cant bene�t to using Information Selection and Utility Assignment when making personalised

recommendations to context-aware application users.

The results show that the extended strategy outperforms the original strategy by 7.6% for route

and by 4.5% for transport recommendations. The standard deviation of the extended strategy is also

slightly less for both problem types than the original strategy indicating that the approach is overall

slightly more consistent (approximately 1%) at tailoring recommendation decisions to user preferences.

The reduced standard deviation and the increase in accuracy (in the majority of users) is attributed

to the techniques and algorithms added to the extended approach that facilitate the identi�cation of

context relevance and utility that are important in user decisions in contrast to considering the entire

set of information with equal utility. This enables recommendations to be made using information that

is speci�cally tailored to the user problem and context, and therefore improves accuracy. These results

also further support the �nding that users do vary the relevance and utility they attribute to di�erent

context types in decisions, and that by facilitating these di�erences, more accurate recommendations

result. For some users (e.g., User 8 and User 9 for route, and User 5 and User 6 for transport), the

accuracy for the two strategies is equal. This occurs when users do not attribute di�erent relevance

or utility to decisions, and therefore techniques that facilitate the adjustment of relevance and utility

have no e�ect. Consequently, the results indicate that extended approach is more e�ective for some

users than it is for others. Further studies would be required to assess the properties associated

with the decision making behaviour of individual users to determine if including functionality for

Information Selection and Utility Assignment is bene�cial. An investigation of the trade o� between

the accuracy provided by including these functions and the extra processing resources required for

executing these functions would also provide an insight into deciding when Information Selection and

148



Chapter 5. Evaluation

Statistic Value
Route Transport

Null Hypothesis x̄-ȳ = 0 x̄-ȳ = 0
Number of Samples (n) 20 20
Degrees of Freedom (d) 19 19

Extended Strategy Sample Mean (x̄) 73.2% 64.3%
Extended Strategy Standard Deviation 8.9% 10.1%
Original Strategy Sample Mean (ȳ) 65.6% 59.8%

Sample Mean Di�erence 7.6% 4.5%
Standard Deviation of Di�erence (s) 5.9% 5.2%

Paired Students t-value (t) 5.7 3.85
Critical Value (t.99) 2.86 2.86

99% Con�dence Intervals 3.8%, 11.45% 1.1%, 7.8%
Table 5.8: Summary Statistics for Comparing Extended and Original Strategy Accuracy

Utility Assignment is appropriate. The following two sections (Section 5.3.4 and Section 5.3.5) are

designed to further analyse the e�ect of adjusting information relevance and utility on the accuracy

of recommendation decisions.

5.3.4 Analysis of Information Selection

This section describes the evaluation of the Information Selection technique developed as part of the

recommendation process proposed in this thesis. As described in Section 3.2.6, this technique is de-

signed to determine the set of context types that should be considered for a given recommendation

problem and context. Like other tests, the accuracy of Information Selection is assessed by com-

paring context types evaluated as relevant by Information Selection with those types users explicitly

speci�ed as being relevant for each recommendation problem. User responses to travel recommenda-

tion problems highlight that for di�erent context, users consider di�erent context types when making

decisions.

The evaluation of Information Selection proceeded as follows: the case being tested is removed

from the user model and a recommendation is generated by the application using all other cases.

Accuracy is determined by comparing the set of context types in the recommended rule that are

evaluated as relevant with those types explicitly speci�ed as relevant by the user. Note that context

types not speci�ed as relevant by the user but evaluated as relevant by the application are classed

as being incorrect. Each case is tested in the same way and accuracies are averaged to determine an

overall user accuracy. Figure 5.8 illustrates the accuracy of Information Selection for each user for

both route and transport recommendations. The average recommendation accuracy of all users is also

shown in the right-most column.
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Figure 5.8: Information Selection Accuracy

Statistic Value
Route Transport

Null Hypothesis x̄-ȳ = 0 x̄-ȳ = 0
Number of Samples (n) 20 20
Degrees of Freedom (d) 19 19

Information Selection Sample Mean (x̄) 68.9% 63.9%
All Context Relevant Sample Mean (ȳ) 26.0% 24.0%

Sample Mean Di�erence 42.8% 39.9%
Standard Deviation of Di�erence (s) 14.8% 15.0%

Paired Students t-value (t) 12.91 11.85
Critical Value (t.99) 2.86 2.86

99% Con�dence Intervals 33.3%, 52.3% 30.2%, 49.5%
Table 5.9: Summary Statistics for Comparing the Accuracy of Information Selection with All Context
Types Relevant

To assess the usefulness of the strategy, the results are compared against an approach which

considers all supported context types as relevant. Figure 5.8 illustrates the accuracy values if all

supported context types were considered relevant. A paired t-test was used to compare the accuracy

of Information Selection with the accuracy if all context types were considered relevant. Table 5.9

illustrates the statistics used for this test. The calculated t-values (12.91 and 11.85) for route and

transport recommendations are both greater than the 99 percentile Students t distribution (t.99) for

19 degrees of freedom (2.86). In addition, the hypothesised accuracy di�erence of 0 between the

two approaches does not fall within the 99% con�dence intervals. Therefore, the null hypothesis is

rejected and we can say with 99% con�dence that the Information Selection techniques and algorithms

proposed in this thesis are more accurate in determining relevant context information than when all

supported context types are considered relevant.
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The low accuracy results related to an approach that considers all context types as being relevant

further illustrates that users do not consider all possible context types when making decisions. The

mean value for this approach for the evaluated users, suggests that these users use only about 25% of

the context types presented to them when making decisions. This �nding applies to all users as shown

by the low results associated with this approach. The Information Selection technique developed as

part of the personalisation approach is shown to be signi�cantly more accurate at determining context

relevance. Speci�cally, the average improvement of accuracy as a result of adjusting context relevance

is around 40%. The relatively large standard deviation of the di�erence shows that there is signi�cantly

large variance in the di�erence in accuracy of the two approaches indicating that Information Selection

was signi�cantly better for some users (e.g., User 8 in route), but the di�erence is less signi�cant for

others (e.g., User 5 in transport). This suggests that some users were consistent in the information

they deemed relevant for similar recommendation problems, while others users were less so when

making the inference of information relevance more di�cult, and therefore less accurate. One issue

that warrants further investigation is that for some users, the correlation between the accuracy results

of information selection and the accuracy of the extended strategy is unclear. Most obviously is User

6 in transport where the recommendation accuracy is over 90% but the accuracy for Information

Selection is about 60%. A possible reason for this that should be investigated is the reliability of

responses of certain users. That is, some users may not have based their recommendation choices on

the context information they stated. This is consistent with several previous studies [25, 141, 116, 159]

as discussed in Chapter 1 (Section 1.2) - that users can be inaccurate and unreliable when explicitly

providing information about their preferences. An extension to this evaluation could investigate

approaches for accurately determining the context information users considered relevant in decisions

without the need for their explicit input before evaluation comparisons with Information Selection are

made.

5.3.5 Analysis of Utility Assignment

This section describes the evaluation of the Utility Assignment technique developed as part of the

recommendation process proposed in this thesis. As described in Section 3.2.7, this technique is

designed to determine the relative importance of context types in recommendation decisions. Accuracy

is again measured by comparing utility values inferred by the personalisation approach with utility

values gathered from user responses for the set of recommendation problems. In a similar way to

Information Selection, user responses showed that users consider di�erent context types with varying

levels of importance for di�erent recommendation problems and context.
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Figure 5.9: Utility Assignment Accuracy

The evaluation of Utility Assignment proceeded in a similar manner to the evaluation of Infor-

mation Selection: the case being tested is removed from the user model and a recommendation is

generated by the application using all other cases. The utility of relevant context types speci�ed by

the user are compared with the utility of corresponding context as evaluated by Utility Assignment

to determine a Utility Assignment accuracy. Each case is tested in the same way and accuracies are

averaged to determine a user accuracy. Figure 5.9 illustrates the accuracy of Utility Assignment for

each user for route and transport recommendations. The average recommendation accuracy of all

users is also shown in the right-most column.

As users assigned di�erent values of utility for relevant context types in each problem, comparison

with an approach that considered all context types to have equal utility does not provide any mean-

ingful results (as the accuracy of an approach with equal utility, which does to capture the di�erences

in the relative importance of di�erent context types, would equate to 0). Therefore, to assess the

usefulness of Utility Assignment, the results are compared against a random assignment of utility.

Table 5.10 shows the statistics used to compare Utility Assignment with a random recommendation.

The calculated t-value of 12.53 and 12.35 for route and transport recommendations is greater than

t.99 (2.86) and the hypothesised mean accuracy value of 50 does not fall within the 99% con�dence

interval values. Therefore, the null hypothesis is rejected and it we conclude that it is 99% certain that

Utility Assignment provided by the personalisation approach described in this thesis is more accurate

in determining the relative importance of context types than an approach that assigns random utility

to context types.

The results show that the Utility Assigned technique developed for the personalisation approach

described in this thesis is e�ective in determining the utility (i.e., around 79%). As indicated by
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Statistic Value
Route Transport

Null hypothesis x̄ = 50 x̄ = 50
Number of Samples (n) 20 20
Degrees of Freedom (d) 19 19

Sample Mean (x̄) 79.0% 78.0%
Standard Deviation (s) 10.3% 10.1%
Students t-value (t) 12.53 12.35
Critical Value (t.99) 2.86 2.86

99% Con�dence Intervals 72.4%, 85.6% 71.5%, 84.5%
Table 5.10: Summary Statistics for Utility Assignment Accuracy

con�dence intervals, accuracy as high as 85% is also possible. The standard deviation of around

10% is expected given the standard deviation of previous results. Most users provide a similar level of

Utility Assignment accuracy but two users seem to break this trend (User 17 for transport and User 19

for route). As before with Information Selection, this low accuracy is likely to be a result of either high

variance associated with user responses about utility or the unreliability of user responses. The low

accuracy of User 17 for transport recommendations explains the low accuracy of the extended strategy

for that user, despite User 17 having a high accuracy for relevance. This either indicates that decisions

about relevance and utility both have to be su�ciently accurate in order for accurate recommendations

to be made or that the user was unreliable with their responses about information relevance. The low

accuracy of User 19 for route is also interesting because the low utility accuracy coupled with the low

relevance accuracy of this user has not signi�cantly a�ected the accuracy of recommendations made

with the extended strategy. Further studies are therefore required to investigate the reliability of user

responses about relevance and utility information for this user.

5.3.6 Comparisons

To further assess the e�ectiveness of the extended recommendation strategy, the evaluation also com-

pares its accuracy against the accuracy of similar alternative recommendation approaches that are

currently adopted in the state of the art. The �rst evaluation compared the original strategy with ap-

proaches supported in context-aware applications. The comparison here in contrast, selects two widely

used approaches in state of the art recommendation systems for comparison: preference models and

case-based reasoning (CBR). These two approaches are analogous to the vector space and history

based models used to represent user preferences discussed in Chapter 2. As the user model developed

as part of the personalisation approach described in this thesis borrows properties from both vector

space and history based models (Section 3.2.3), a comparison with a preference model and a CBR ap-
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proach was deemed relevant. Given the design of the personalisation approach to include techniques

and algorithms dynamically adapt user preferences, information relevance, and information utility

to di�erent user problems and context, it is assumed that this approach will provide more accurate

results than a preference model and a CBR approach.

A preference model based on the shortest distance was generated for each user for route recom-

mendations, which is the commonly adopted policy for existing route recommendation applications

(e.g., Satellite/GPS navigation devices). The preferred transport mode speci�ed by each user at the

start of the study represented the preferred mode of transport for each user. For CBR, a similarity

function was de�ned, consisting of all context types supported by the application, with each type

assigned equal utility. A learning step that �lters or prioritises decision making information is not

supported by this CBR implementation. To generate recommendations, each case in the user model,

not including the test case, is assessed to determine the case most similar to the current problem using

an exact match comparison. The action associated with the most similar case is recommended. If

CBR retrieves more than one case with competing candidate choices, then a random selection is taken

from those retrieved cases.

The accuracy of both the user's preference model and CBR is determined in a similar manner as

other tests. The context of each test case is read and represents the context of the current recom-

mendation problem. Recommendations made using each approach is then compared with actual user

selections and a recommendation accuracy for each user and overall average is calculated. Figure 5.10

and Figure 5.11 illustrate the accuracy for each user for route and transport recommendations using

the preference model and the CBR approach respectively. The accuracy of the extended recommen-

dation strategy is also shown in each.

The results of the preference model and the CBR approach are directly compared with the extended

strategy to statistically determine, using the paired t-test, if there is any di�erence in their e�ectiveness

for providing accurate personalised recommendations. Table 5.11 illustrates the statistics used for

comparing the preference model approach with the extended recommendation strategy proposed in

this thesis. The calculated t-values (6.38 and 4.22) for route and transport recommendations are

both greater than the 99 percentile Students t distribution (t.99) for 19 degrees of freedom (2.86). In

addition, the hypothesised accuracy di�erence of 0 between the two approaches does not fall within the

99% con�dence intervals. Therefore, the null hypothesis is rejected and it can be concluded with 99%

con�dence that the extended recommendation strategy outperforms the preference model approach

for providing personalised recommendations to users in di�erent context.

Similarly, Table 5.12 illustrates the statistics used for comparing CBR with the extended recom-
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Figure 5.10: Extended Strategy vs Preference Model Accuracy

Figure 5.11: Extended Strategy vs CBR Accuracy

mendation strategy. Again, the calculated t-values (4.88 and 3.46) for route and transport recommen-

dations are both greater than t.99 (2.86) and the hypothesised accuracy di�erence of 0 between the

two approaches also does not fall within the 99% con�dence intervals. We can therefore conclude with

99% con�dence that the extended strategy also outperforms a CBR approach for making personalised

recommendations to users in di�erent context. As discussed in the analysis of the extended recom-

mendation strategy, recommendation accuracy was signi�cantly improved by adjusting the relevant

and utility of context types in recommendation decisions. It is therefore reasoned that CBR did not

perform as well as the extended recommendation strategy as it considered all context types with equal

utility.

As shown by these tests, the accuracy provided by the extended strategy outperformed that of

both preference models and CBR. When compared with preference models, the extended strategy
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Statistic Value
Route Transport

Null Hypothesis x̄-ȳ = 0 x̄-ȳ = 0
Number of Samples (n) 20 20
Degrees of Freedom (d) 19 19

Extended Strategy Sample Mean (x̄) 73.2% 64.3%
Preference Model Sample Mean (ȳ) 64.2% 56.8%

Sample Mean Di�erence 9.0% 7.5%
Standard Deviation of Di�erence (s) 6.3% 7.9%

Paired Students t-value (t) 6.38 4.22
Critical Value (t.99) 2.86 2.86

99% Con�dence Intervals 4.9%, 13.0% 2.4%, 12.5%
Table 5.11: Summary Statistics for Comparing the Accuracy of Preference Models with the Extended
Strategy

Statistic Value
Route Transport

Null Hypothesis x̄-ȳ = 0 x̄-ȳ = 0
Number of Samples (n) 20 20
Degrees of Freedom (d) 19 19

Extended Strategy Sample Mean (x̄) 73.2% 64.3%
CBR Sample Mean (ȳ) 66.5% 59.5%
Sample Mean Di�erence 6.7% 4.8%

Standard Deviation of Di�erence (s) 6.1% 6.3%
Paired Students t-value (t) 4.88 3.46

Critical Value (t.99) 2.86 2.86
99% Con�dence Intervals 2.7%, 10.7% 0.8%, 8.9%

Table 5.12: Summary Statistics for Comparing the Accuracy of CBR with the Extended Strategy
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Figure 5.12: Original Strategy vs Preference Model Accuracy

Figure 5.13: Original Strategy vs CBR Accuracy

improves recommendations on average by 9% for routes and 7.5% for transport. The improvement

over CBR is slightly less at 6.7% and 4.8% respectively. The standard deviation of the di�erences in

both comparisons are as expected and are in line with previous results, and attributed to the variance

in the user responses about information relevance and utility.

The set of accuracy values for preference models and CBR are similar to those provided by the

original strategy (Figure 5.12 and Figure 5.13). In particular, the results of CBR are very similar to

those for the original strategy, and both these two approaches provided slightly more accurate results

than preference models (approximately 3% more accurate). When statistically analysed the accuracy

of the original strategy versus both preference models and CBR are not statistically signi�cantly di�er-

ent. When comparing the original strategy with preference models, paired t-values of 1.04 (for route)

and 1.85 (for transport) were computed. Similarly, when comparing the original strategy with CBR,
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paired t-values of -0.67 (for route) and 0.33 (for transport) were calculated. All paired t-values are

less that critical value of 2.86 indicating with 99% con�dence that there is no statistically signi�cant

di�erence in accuracy between the original strategy and preference models and between the original

strategy and CBR. This �nding is not surprising as the original strategy and CBR are both based

on user model cases and both do not adapt information relevance and utility when making recom-

mendations. They also both perform slightly better than preference models as preferences models, as

well as not adapting relevance and utility, also do not adapt recommendations to di�erent context.

As a result, the di�erence in accuracy between the extended strategy when compared with preference

models and CBR are as expected. The reasons for the di�erence are similar to those described when

comparing the extended strategy with the original strategy (Section 5.3.3) - the extended strategy

facilitates the adjustment of relevance and utility for di�erent recommendation problems. In addition,

the results show that the extended strategy provides more accurate recommendations for some users

than it does for others. This, as previously described, is a consequence of how di�erent users make

decisions. Speci�cally, users who vary the relevance and utility of information in decisions are more

likely to bene�t in contrast to users who consider the same set of information with the same utility

for di�erent problems. Further studies are required to e�ectively assess the decision making patterns

of individual users to determine when Information Selection and Utility Assignment would be bene�-

cial and the trade o� between any improved accuracy provided versus the extra processing resources

required.

5.4 Analysis of Di�erent User Model Sizes

A well-known problem associated with history based models is the lack of user model data, which

limits the ability of applications to generalise to new recommendation problems [118, 103, 10]. The

lack of data also means that algorithms for Information Selection and Utility Assignment may tend

to over-�t the data [118]. Although over-�tting is unavoidable due to the lack of data, our previous

evaluation results indicate that dynamically determining information relevance and utility using these

two techniques can improve the accuracy of recommendations. A set of experiments are conducted to

test if recommendation accuracy can be improved by increasing user model size, which would reduce

the e�ects of the lack of data in user models (i.e., problems with generalisation and over-�tting) on

recommendation accuracy.

To generate user models of di�erent sizes, cases are simulated for a set of users by de�ning arti�cial

preference models that represent their preferences. A separate preference model is created for each
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unique context combination, simulating a users preference for that context. The context aware travel

recommender system for making route recommendations was reused for this evaluation. The section of

Dublin city, as shown in Figure 5.5 was implemented as a state space model where each state represents

a main road junction and links between states represent route segments (i.e., roads) between junctions.

Links also contain information about traversal time and distance. A users preference model for each

context is then de�ned by assigning random weights to route segments. The cost of the route segment

is computed by the following cost function:

Cost(segment) = length(segment) ∗ weight(segment)

The cost indicates the inverse desirability of a particular route segment for a particular user (i.e., the

higher the cost of a route segment, the less desirable it is to a user). Consequently, route segments

with high weighting will result in a higher cost and therefore a lower desirability as compared to route

segments with a low weight. The overall desirability of a route is made up of the cost of each individual

route segment included in that route. Using this approach, user models, for each individual user, can

be generated using a speci�c cost function generated for that user along with the A* algorithm. A

user model is generated using the A* algorithm and cost function, ensuring that generated routes will

minimise the user's cost function, and therefore represent the preferred routes of that user. Routes

are mapped to a particular type (i.e., time, distance, number of turns, and number of junctions) using

information about alternative routes, traversal time, and route distances stored in the domain model.

A similar approach to arti�cially generating dummy user preference models is adopted by Smyth and

McGinty [170] and by Rogers and Langley [159] amongst others. The approach described here is

distinguished from those previous as a separate preference model is generated for each user for each

unique combination of context values.

Using this user preference model, a set of travel route recommendation problems can be generated.

This process proceeded as follows: A random set of values is generated for the set of supported context

types (as outlined in Section 5.3.1). If no preference model currently exist for that combination of

context values, then a new preference model is generated by randomly assigning values to each route

segment in the domain model. A random start and end location is then generated, and the preferred

user route is evaluated using the generated preference model and A* algorithm. The combination of

context values as represented by the preference model and the route type evaluated for each start and

end location are stored as a case in the user model. This process is repeated depending on the number

of cases to include in the user model.
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As part of this evaluation, the accuracy of the extended recommendation strategy for user model

sizes of 50, 100, 200, 500 and 1000 cases were assessed. For each user model size category, a user model

for 20 di�erent users was generated. The recommendation accuracy for each user and their user model

was measured in the same manner as previous leave one out evaluations. That is, for each user the case

being tested is removed from the user model and a recommendation is generated by the application

using all other cases. Recommendation accuracy is determined by comparing recommended actions

with generated user selections stored in each user model case. Each case is tested in the same way

and accuracies are averaged to determine a user accuracy.

Figure 5.14 and Table 5.13 illustrates the summarised accuracy values and statistics for each user

model size category8. The results shown suggest that recommendation accuracy increases as user

model size increases. The variability in accuracy is also reduced with increases in user model size.

To statistically assess the e�ect of user model size on accuracy, the LSD value based on the F-

distribution as described in Section 5.1.4 is used. Using the formula described in Section 5.1.4, an

LSD value of 9.6 was calculated on the accuracy results. The LSD value shows with 99% certainty

that a user model size of 50 is statistically less accurate than other user model sizes (as their di�erence

is greater than the LSD value of 9.6). However, despite the increases in accuracy for other user model

sizes, these increases are concluded as being not statistically signi�cant.

The initial, statistically signi�cant, increase in accuracy when user model size increased from 50 to

100 indicates that user model size does a�ect recommendation accuracy. The results also indicate that

there is a steady increase in accuracy as user model size increases, and that the variability in accuracy

is reduced with each increase. These results support our initial theory that increasing user model size

provides applications with more knowledge so that they can generalise to new problems and reduce the

problem of over �tting. However, statistically signi�cant di�erences in accuracy with other user model

size increases were expected. The steady increase in accuracy as user model size increases does suggest

that at some point the di�erence will become statistically signi�cant, although the improvements in

accuracy are not as signi�cant as expected. A possible reason for this relates to the personalisation

con�guration settings described in Section 4.3 and 5.1.1. As previously discussed, these values are

con�gured depending on the properties of user model data. Less than expected improvements could

be a result of ine�ectively setting these values. Speci�cally, the current con�guration settings may

not facilitate the discovery of relevant knowledge in larger user model sizes. For example, the gen-

eration of more associations rules and more restricted �ltering settings may be required to ensure

that more knowledge is generated and more e�ectively identi�ed for each recommendation problem.

8Appendix A.3 illustrates the accuracy values of individual users in each category.
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Figure 5.14: User Model Sizes Accuracy

User Model Size 50 100 200 500 1000
Mean (x̄) 64.2% 73.4% 74.8% 76.5% 77.6%

Standard Deviation (s) 15.7% 15.3% 9.7% 8.8% 5.3%
Sample Size 20 20 20 20 20

Table 5.13: Summary Statistics for the Accuracy of Di�erent User Model Sizes

Investigations into the adjustment of these values and their e�ect on di�erent user model sizes would

provide relevant knowledge as to the appropriate con�guration settings for di�erent user model sizes.

An approach to dynamically adjusting these values depending on the context and preferences of users

could also be investigated (and planned for future work - Section 6.2.2). These investigations would

focus on determining whether more accurately tailored settings would be more e�ective in facilitating

the discovery and identi�cation of relevant user preference and decision making behaviour stored in

larger user models.

5.5 Analysis of a Di�erent Number of Supported Context Re-

lationships

A number of simulated experiments were also conducted to assess the accuracy of the extended

recommendation strategy for di�erent numbers of supported context relationships. The accuracy

of the recommendation strategy for 10, 15, 20, 25, and 30 independent types, each with 5 possible

values is evaluated. Table 5.14 illustrates the number of distinct context relationships possible for the
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# Context Types Possible Context Combinations
10 510

15 515

20 520

25 525

30 530

Table 5.14: Context Types and Number of Possible Combinations

di�erent values of context types supported. A user model containing 100 test cases are generated for

each user in each category using the same process (using generated user preference models as described

for analysing di�erent user model sizes- Section 5.4) to ensure that results can be compared fairly.

The main di�erence here is that the user model size remains the same, with the number of context

types included in user model cases changing.

Figure 5.15 illustrates the summarised accuracy values for each user model size category9. The

box plot diagram illustrated in Figure 5.15 shows that recommendation accuracy decreases as the

number of context types and context relationships supported increases. To statistically assess the

e�ect of the number of supported context types on accuracy, an LSD value of 6.72 was calculated on

the accuracy results. Table 5.15 summarises the statistics for the accuracy for the di�erent number

of context types supported. The mean values for each category illustrated in Table 5.15 suggests that

recommendation accuracy decreases as the number of context types increases. However, when assessed

using the calculated LSD value, it can be stated with 99% con�dence that the di�erence in accuracy

for the di�erent number of context types supported are not statistically signi�cantly di�erent. That

is, the current data suggests that the personalisation approach described in this thesis is as accurate

for making recommendations with 10 context types, each with 5 possible values, as it is for making

recommendations with 30 di�erent context types.

Although di�erences in accuracy are not analysed as being statistically signi�cant, the steady

decrease in accuracy as the number of context types increases indicates that further increases to

the number of context types supported will have a statistically signi�cant e�ect on recommendation

accuracy. Given that the user model size remains constant for each category for this set of tests, these

results were expected. As the user model size remains constant, the personalisation approach is unable

to capture knowledge about the increasing number of context types that may a�ect recommendation

decisions. Consequently, the e�ectiveness of generalising to accommodate problems with large numbers

of possible context combinations diminishes, resulting in reduced accuracy. There are two possible

solutions worthy of further investigation that may facilitate the recommendation approach to maintain

9Appendix A.4 illustrates the accuracy values of individual users in each category.
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Figure 5.15: Context Types Supported Accuracy

# Context Types Supported 10 15 20 25 30
Mean (x̄) 73.3% 73.0% 70.7% 70.3% 67.1%

Standard Deviation (s) 7.4% 7.3% 8.6% 7.7% 9.1%
User Model Size 100 100 100 100 100
Sample Size 20 20 20 20 20

Table 5.15: Summary Statistics for the Accuracy of Di�erent Numbers of Supported Context Types

recommendation accuracy as the number of context types supported increases. One possible solution

is to increase user model size as the number of context types increases. It is reasoned from the results

in Section 5.4 that increases in user model size can lead to improved accuracy as larger user models

are more likely to contain more knowledge about the di�erent possible context combinations and

corresponding user preference. A second possible solution is to alter the con�guration values outlined

in Section 5.1.1. Speci�cally, stricter settings for �ltering user model cases and association rules so

that only those cases or rules that match a larger number of context values, are retained (the current

�ltering con�guration value is 1, which informs applications to retain any cases and rules that match

one of the values of the current context). Given the larger number of possible context combinations as

the number of context types supported increases, stricter �ltering settings would facilitate applications

to be more focused on those context types that are relevant.
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5.6 Evaluation Summary

This chapter has described the evaluation of various aspects of the personalisation approach described

in this thesis. Two case studies, consisting of real users and di�erent problem domains, and a set of

simulated experiments were conducted to assess the accuracy of techniques and algorithms developed

in this thesis for making personalised recommendations in di�erent context. Student t-tests and the

F-ratio test were used to statistically analyse results.

The evaluation of the original recommendation strategy illustrates that its accuracy ranges from

59%-66% for the set of recommendation problems tested. When statistically compared against ran-

dom, rule-based, and neural network approaches, the original strategy is statistically more accurate

in providing personalised recommendations to users in a context-aware domain. Issues regarding the

separate test case evaluation, that may have biased results, were highlighted and reasons for the poorer

performance of rules and neural networks were discussed. Results for the original strategy in the sec-

ond user study using a leave one out approach was shown to have similar results as recommendations

made on new cases in the �rst study. When compared with the extended recommendation strategy, the

extended strategy was shown to provide more accurate recommendations averaging 73.2% (for routes)

and 64.3% (for transport) for the collection of evaluated users. This shows that overall, techniques for

Information Selection and Utility assignment that adapt the relevance and utility of information for

di�erent problems can lead to more accurate results. Analysis showed that the extended strategy was

more bene�cial for some users and had no a�ect on the accuracy of others indicating that users vary

in the degree in which they attribute di�erent relevance or utility to decisions. Further investigations

are necessary to analyse individual user behaviour patterns to determine when the dynamic adjust-

ment of relevance and utility is bene�cial. Speci�c tests focused on Information Selection and Utility

Assignment showed that Information Selection is statistically signi�cantly better than considering all

context types in recommendation decisions with an average accuracy di�erence of 39% (for routes)

and 43% (for transport) and that Utility Assignment is statistically more accurate than randomly

assigning utility values to context types. The results of these tests for some users were di�cult to

reason about due to their inconsistency in relation to the recommendation accuracy values gathered

for those users and further investigation is required to quantify the accuracy and reliability of explicit

user responses about relevance and utility. Evaluation of preference models and CBR show that they

are also less accurate than the extended strategy for the majority of users. The results for these two

approaches were not statistically di�erent for those acquired for the original strategy, indicating that

the extended strategy is overall more accurate as it dynamically adjusts context relevance and utility.

Finally, simulated experiments showed that recommendation accuracy increases as user model sizes
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increase and decreases as the number of context types supported increases. These results are as ex-

pected and various approaches to further improve recommendation accuracy for these two evaluation

categories are suggested for future investigation (such as the adjustment of con�guration settings).

The following chapter concludes with a summary of the most signi�cant contributions to the state

of the art of this thesis and discusses research issues that remain open for future work.
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Conclusions and Future Work

This thesis describes the design and implementation of a novel approach to supporting accurate

personalised recommendations in context-aware applications. The approach is developed as a multi-

stage recommendation process, which consists of techniques and algorithms that are designed to

minimise the need for developers and users to explicitly de�ne and maintain recommendation decision

making information. Speci�cally, the approach supports the dynamic and implicit identi�cation of

relevant relationships between context and user preferences, which provides the knowledge from which

user preferences, relevant information, information utility, and the ranking of candidate choices for

di�erent problems and context is determined. This chapter summarises the achievements of the work

and its contributions to the state of the art, and concludes with a discussion of the potential areas for

future work.

6.1 Achievements

An analysis of the state of the art personalisation techniques in context-aware applications and frame-

works highlighted two main limitations that motivated the work presented in this thesis. Firstly,

these techniques rely on human input and knowledge to identify, relate, and prioritise relationships

between di�erent context and user preferences to ensure correct personalised behaviour - a task which

is time-consuming, complex, and error-prone particularly when large numbers of possible relationships

exist between data. Secondly, existing techniques rely on the de�nition of algorithms that are inher-

ently static, and therefore rely on explicit updates to ensure that the accuracy of recommendations

is maintained despite the presence of new or changing information relationships, relevance, or utility.

While existing personalisation techniques discussed in Chapter 2 can be used to develop personalised
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systems in di�erent domains, these limitations restrict applications in e�ectively making personalised

recommendations to users in a context-aware environment, where the user's surrounding information,

on which their preferred behaviour is dependant on, is constantly changing. To take advantage of

the opportunities presented by the emergence of more sophisticated sensor devices and the greater

availability of context data, a new personalisation approach that can dynamically identify and evolve

relevant relationships between context and user preferences, while minimising the reliance on human

expertise and input is necessary.

This thesis presented a personalisation approach designed to address the issues with state of the

art personalisation techniques discussed in Chapter 2. A primary challenge of this work is to provide

techniques and algorithms that support applications in dynamically and implicitly discovering rele-

vant relationships between context and user preferences. The ability to accurately identify relevant

relationships facilitates applications with making accurate personalised recommendations to users for

di�erent recommendation problems and context without the need for explicit human input. Chapter

3 described how this approach was designed using the Three Examples design methodology. The

incorporation of the approach with the Hermes application framework supports the acquisition of

up-to-date context and user interaction data, which are used to maintain a model of the user's envi-

ronment and their preferences. Using this acquired data, user preferences can be implicitly inferred at

run-time for di�erent problems and context using a form of association mining that both discovers re-

lationships between context and user actions and �lters these relationships to determine those that are

most relevant and accurate for the current problem. This approach also facilitates the implementation

of applications that support a large number of context and the identi�cation of changing relationships

that may occur over time. The approach also consisted of techniques designed to dynamically adapt

information relevance and information utility, which facilitates applications to automatically tailor

relevant decision making information depending on the problem and context of the user. Techniques

and algorithms designed for these two functions use relevant relationships between context and user

actions as input and are easily adaptable to identify relevant information for di�erent types of rec-

ommendation problems. Candidate recommendations generated from inferred user preferences are

ranked based on knowledge about information relevance and utility. The ranking technique that has

been adopted facilitates candidate choices to be ranked along multiple dimensions that have varying

levels of relative importance. The combination of techniques and algorithms developed as part of

the personalisation approach proposed in this thesis has provided greater support for personalisation

in context-aware applications. Speci�cally, the reliance on explicit human knowledge and input is

minimised, facilitating the development of personalised context-aware applications that can consider
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large number of relationships between context and user preferences and can automatically adapt to

identify new and changing relationships that exist between this data.

The implementation of this personalisation approach was described in Chapter 4. The set of

techniques and algorithms of the approach were implemented in a manner that facilitates both ex-

tensibility, to support new types of recommendation problems and context, and customisability to

tailor the run-time execution of the approach for di�erent applications. This facilitates the approach

to be re-used and con�gured for di�erent recommendation problems and di�erent sets of context data

depending on the requirements of the application and domain.

The evaluation of the personalisation approach was described in Chapter 5. Two user case studies

were conducted and the proposed approach was compared with actual user responses for di�erent types

of recommendation problems. Two evaluation strategies were assessed. The original strategy accuracy

provided an average accuracy ranging from 59% - 66% (for di�erent recommendation problems) and

was shown to outperform rule-based and neural network approaches by between 8% - 12%. A post-

implementation study showed that improved accuracy over a rule-based approach was due to the

di�culty developers experienced when attempting to e�ectively implement a set of recommendation

rules that captured the preferences of users in di�erent context. The poorer performance of neural

networks was due to the small number of cases available to train each neural network. The extended

strategy overall outperformed this original strategy by an average of between 4% - 7% and provided

a mean accuracy value ranging from 64% to 73%. Preference model and CBR approaches provided

accuracy values that were not statistically di�erent to those for the original strategy, and both provided

less accurate results than the extended strategy. The overall higher accuracy of the extended strategy

for making personalised recommendations shows the advantage of supporting techniques that adapt

relevant information and information utility for di�erent user problems and context. However, the

results did show that the extended strategy provided more accurate recommendations for some users

than it did for others. This shows that some users vary the relevance and utility of context information

they use when making decisions more than other users and further investigation is required to analyse

the decision making behaviour of individual users to determine exactly when adjusting relevance

and utility will lead to improved recommendation accuracy. Speci�c tests focused on Information

Selection and Utility Assignment showed that Information Selection is statistically more accurate

than considering all context types in recommendation decisions with an average accuracy di�erence

of 39% (for routes) and 43% (for transport) and that Utility Assignment is statistically more accurate

than randomly assigning utility values to context types. These results also highlighted that users do

not consider all context information provided to them when making decisions nor do they attribute
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equal relative importance to each. The evaluation also investigated the e�ect of di�erent user models

sizes and di�erent number of context types supported by an application on recommendation accuracy,

which showed that recommendation accuracy increases as user model sizes increase, but decreases as

the number of supported context types increases. Several possible approaches aimed at maintaining

or improving the accuracy of recommendations when the number of supported context types increase

were suggested.

In summary, the research presented in this thesis has focused on investigating the provision of

techniques and algorithms that support context-aware applications in making accurate personalised

recommendations to users while minimising the need to explicitly pre-de�ne information about: rela-

tionships between context, user preferences, and behaviour; relevant decision making information for

di�erent problems and context; and the utility of relevant information.

The main contributions of this thesis are summarised as:

� An overview of context-aware personalised applications with respect to the techniques they use

to evaluate candidate recommendation choices. Systems are evaluated with particular focus

on their provisions for determining the e�ect of di�erent values of context on user preferences,

adjusting the relevance and utility of information for di�erent recommendation problems, ranking

candidate choices using multiple decision making features, and supporting large numbers of

context relationships.

� A customisable multi-stage recommendation approach that provides a set of techniques and algo-

rithms, which eliminates the dependency on developers to explicitly specify relevant relationships

between context and user preferences. Two developed recommendation strategies, which di�er in

the set of techniques and algorithms they include, show that this approach provides personalised

recommendations for di�erent user problems and context with an average accuracy of between

59% - 66% for the original strategy and 64% to 73% for the extended strategy.

� A set of techniques and algorithms to support applications with speci�c personalisation func-

tions. Speci�c techniques and algorithms for adjusting information relevance and utility to

speci�c problems and context were shown to be statistically signi�cantly better at determining

relevant information (by an average of between 39-43%) when compared against an approach

that considers all context types as relevant and also statistically signi�cantly better at deter-

mining the utility of context than randomly assigning utility values to di�erent context.

� Two case studies involving real users showed that adjusting the relevance and utility of informa-

tion provided more accurate recommendations for some users than it did for others, highlighting
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that di�erent users vary in the relevance and relative importance they attribute to di�erent con-

text to di�erent degrees. This also shows that techniques and algorithms for adjusting relevance

and utility are bene�cial for some users but are less so or of no bene�t for others.

� A comparison of the personalisation proposed in this thesis with several of the most relevant

recommendation approaches (random, rules, preference models, case-based reasoning, and neural

networks) showed the comparative performance of each when providing recommendations that

match the preferred choice of users for di�erent context. Di�culties associated with identifying

and generalising context relationships caused the poorer performance of rule-bases, while the

lack of training data a�ected the accuracy of neural networks. Preference models and CBR has

similar levels of accuracy as the original strategy and provided less accurate results than the

extended strategy for the majority of users as they do not support the adjustment of context

relevance and utility for di�erent recommendation problems.

6.2 Future Work

Throughout the development of the personalisation approach described in this thesis, a number of

issues worthy of further investigation were identi�ed. This section outlines the key areas identi�ed

for future work. This work relates to: extending the evaluation, dynamic adaptation of con�guration

data; utility, temporal, and sequential data; context uncertainty; and user-application scrutiny.

6.2.1 Evaluation Extensions

The evaluation described in the previous chapter highlighted several �ndings that are worthy of further

investigation. Firstly, it was shown that the extended strategy of the personalisation approach, which

adapts information relevance and utility, provides more accurate results for some users than it did

for others. An extension of the evaluation would investigate the cause of this, such as an in-depth

analysis of the decision making behaviour of individual users to determine when the extended strategy

of the personalisation approach is bene�cial. Secondly, the results of several users across the set of

tests did not directly correlate and further tests to assess the accuracy and reliability of the responses

from these users about relevance and utility is planned. Other possible evaluation extensions could

assess the performance of the personalisation approach for other quality measures as outlined in the

previous chapter such as trust, transparency, and e�ciency/latency of decision making.
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6.2.2 Dynamic Adaptation of Con�guration Data

The personalisation approach described in this thesis enables developers to explicitly con�gure the

execution of its techniques according to the requirements of the application and the user (Section

4.3). However, these properties are currently required to be statically de�ned and therefore do not

adapt to di�erent user problems or context. An interesting direction for future work would be to

investigate a means that dynamically adapts this con�guration information in order to optimise the

e�ectiveness of the personalisation approach for di�erent situations and further minimise the need for

explicit human input. As an example, the number of rules generated as part of Implicit Preference

Determination could be automatically adjusted depending on the state of the user's device. Also for

di�erent types of problems, the application may automatically learn an optimal number of rules to

compare in order to accurately determine relevant context or automatically customise the number

of recommendations presented to the user depending on their context. Further research is necessary

to determine if dynamic adaptation of personalisation con�guration data would lead to improved

recommendation decisions.

6.2.3 Utility, Temporal, and Sequential Data

The personalisation approach described in this thesis, utilises relationships between context and user

choices, discovered from past user interactions, to make behaviour recommendations tailored to the

user's current problem and context. As discussed in Section 3.2.7, the approach is designed to adjust

the utility value inferred for di�erent sets of context using information about utility values in past

user decisions stored as weights in the user model. However, the current design only the adjustment of

utilities based on a pre-de�ned threshold value (i.e., if the di�erence between the inferred utility and

utility stored in past cases is greater than this threshold value, then the inferred value is modi�ed so

that the di�erence no longer exceeds this threshold). An interesting direction for future work would

be to investigate techniques that make greater use of utility values stored in the user model with the

aim of improving the accuracy of generated recommendations. Speci�cally, a process for mining utility

values associated with di�erent context types or context sets could be developed using the existing

association discovery technique to determine if useful context utility knowledge, that would improve

the accuracy of recommendation decisions, can be inferred.

The design of the personalisation approach also does not currently support the identi�cation of

temporal or sequential information associated with past user interactions. Temporal and sequential

data are seen as useful as they not only capture what action a user takes, but also when those actions

are taken and in what order [153, 57, 133]. Therefore, an interesting extension to the personalisation
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approach would be to incorporate techniques that support temporal and sequential data, which will

facilitate applications to proactively make recommendations (using temporal knowledge about what

the users is likely to request next), and improve the accuracy of recommendations that occur in

sequence (using sequential data about the order in which users perform tasks). An investigation into

suitable techniques for storing and analysing sequential and temporal data (such as sequential data

mining [3]) is future work.

6.2.4 Context Uncertainty

The personalisation approach presented in this thesis has been shown to provide accurate personalisa-

tion recommendations to users by providing techniques and algorithms that identify a user's preferred

behaviour depending on their surrounding environmental context. Context data acquired from the

Hermes framework, which are used in the various personalisation techniques and algorithms in the

approach, are assumed to be accurate. As a result of this assumption, uncertainties that may exist

in acquired context information are not considered as part of the recommendation process. Further

research is required to accurately determine the e�ect of context uncertainty on user preferences and

to investigate how the personalisation approach can be extended to mitigate the e�ect of context

uncertainty on recommendation decisions. A number of possible extensions are seen as worthy of

future investigation. Firstly, uncertainty associated with context could be incorporated with the de-

veloped Information Selection technique so that only information above a speci�ed level of certainty

is retained. Secondly, information about uncertainty (e.g., con�dence values) could be integrated

with Utility Assignment so that less certain information is given less weight when ranking candidate

choices. A third approach could be to discover patterns between di�erent types of context using a

similar association determination process as described in Section 3.2.4 to determine those types and

values that are likely or unlikely to occur together, with context readings that do not conform to dis-

covered patterns considered as unreliable. An investigation into the e�ectiveness of these approaches

may lead to knowledge that would maintain or improve the accuracy of a recommendation in the

presence of uncertain data.

6.2.5 User-Application Scrutiny

This thesis provided an approach that supports applications in generating, evaluating, and presenting

personalised recommendations to users for di�erent problems and context. As part of the current

design, user-device interaction is restricted to users making recommendation requests and selecting

their preferred choice from a recommended set. However, research has shown that an important
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element of user-based applications is the need for users to be able to query or scrutinise the decision

making process [27, 180, 16, 34], which facilitates trust and acceptance of recommended behaviour.

The extension of the personalisation approach to include techniques that support users to query

applications about their decision making behaviour is therefore desirable.

The personalisation approach was designed using techniques that generate and evaluate user pref-

erence knowledge in a rules format with the intention that knowledge in rule form would facilitate

the integration of developed personalisation techniques and algorithms with new techniques that sup-

port user-application scrutiny. Future investigations could focus on possible solutions that analyse

and aggregate inferred association rules with the aim of providing an extension to the current design

that enables users to query applications for decision making knowledge such as information relevance,

utility, and ranking of behaviours.

6.3 Chapter Summary

This chapter summarised the motivation for the research work and the most signi�cant achievements of

the work presented in this thesis. In particular, it outlined how this work contributed to the state of the

art in personalised, context-aware computing by providing a personalisation approach that supports

the dynamic and implicit determination of user preference, relevant information, information utility,

and ranking of candidate behaviour recommendations using information about past context and user

interactions. The provisions of techniques and algorithms that minimises the need for explicit user and

developer knowledge and input about user preferences eases the deployment of personalised context-

aware applications and supports applications with utilising the growing availability of information

in context-aware environments. User studies and computer simulations conducted during evaluation

showed that the techniques and algorithms developed for this approach are e�ective in making accurate

personalised recommendation to users for di�erent problems and context. The chapter concluded with

suggestions for future work arising from the research undertaken in relation to this thesis.
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Additional Evaluation Results

A.1 Sample Size

We calculate the appropriate sample size using results data gathered from initial users of the context-

aware travel recommender system. Using the sample size table [138], the appropriate sample size for

our user study evaluation was computed. A combined standard deviation estimate is caculated by

averaging the variances in accuracy of two sample responses (1.85 and 2.81). These variances are

pooled:

S2 =
S2

1 + S2
2

2

giving a pooled value of 2.38. We increase the standard deviation to 4 to give a more conservative

estimate of what our sample size should be. A D value to be read from the sample size table is

computed using:

D =
δ

σ

Using a 5% δvalue representing the yied shift we want to detect, th D value is calculated to be 1.2.

Reference to the sample size table with this value and 0.05 values for αand β (represnting the risk of

type one and type two errors), a sample size of 20 was calculated.

A.2 Normal Plots for Evaluation Results
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Figure A.1: Restaurant Recommender Original Strategy Accuracy

Figure A.2: Travel Recommender Original Strategy Accuracy

Figure A.3: Extended Strategy Accuracy
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Figure A.4: Information Selection Accuracy

Figure A.5: Utility Assignment Accuracy
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A.3 User Model Size Analysis Results

Figure A.6: Accuracy for Each User in Each User Model Size Category

A.4 Number of Supported Context Relationships Analysis Re-

sults

Figure A.7: Accuracy for Each User in Each Supported Context Number Category

177



Appendix B

Additional User Case Study Data

B.1 Restaurant Recommender Example User Problem
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B.2 Rules-based System Outline Implementation

Listing B.1: Context-aware Restaurant Recommender Java Class

1 import java . u t i l . Vector ;

2

3 /**

4 * Restaurant Recommender app l i c a t i o n . The app l i c a t i o n w i l l recommend

5 * r e s t au ran t s to a user based on t h e i r p r e f e r e n c e s and cur rent s i t u a t i o n (

context )

6 *

7 * @author <i n s e r t name>

8 *

9 */

10 pub l i c c l a s s RestaurantRecommender {

11 /* Outputs */

12 // r e s tau rant p r op e r t i e s

13 St r ing c u i s i n e ;

14 St r ing co s t ;

15 St r ing foodQual i ty ;

16 St r ing serviceAndAtmosphere ;

17 St r ing d i s t ance ;

18 /* Inputs */

19 // user context

20 St r ing company ;

21 St r ing t ranspor t ;

22 // other context

23 St r ing meal ;

24 St r ing day ;

25 St r ing occa s i on ;

26 St r ing t imeConstra int ;

27

28 /**

29 * Constructor . Set s the cur rent context ( update to s e t context to

the one

30 * you are t e s t i n g f o r ) .
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31 * Recommends an appropr ia t e type o f r e s t au rant to the user based on

t h e i r p r e f e r e n c e s

32 * and on t h e i r s i t u a t i o n .

33 *

34 */

35 pub l i c RestaurantRecommender ( ) {

36 /** context s e t to d e f au l t . Change when t e s t i n g d i f f e r e n t

ca s e s **/

37 setContext ( Constant .FRIENDS, Constant .ON_FOOT, Constant .EMPTY

, Constant .EMPTY, Constant .EMPTY, Constant .EMPTY) ;

38 recommendRestaurantExample ( ) ;

39 recommendRestaurant ( ) ;

40 }

41

42 /**

43 * Example recommendRestaurant method

44 */

45 pr i va t e void recommendRestaurantExample ( ) {

46 Vector r e s t au r an tP rope r t i e s = new Vector ( ) ;

47 /** Example ru l e **/

48 i f ( company . equa l s ( Constant .FRIENDS) && transpor t . equa l s (

Constant .ON_FOOT) ) {

49 c u i s i n e = Constant .CHINESE;

50 co s t = Constant .CHEAP;

51 foodQual i ty = Constant .GOOD;

52 serviceAndAtmosphere = Constant .TWO_STAR;

53 d i s t ance = Constant .CLOSE;

54 r e s t au r an tP rope r t i e s . add ( c u i s i n e ) ;

55 r e s t au r an tP rope r t i e s . add ( co s t ) ;

56 r e s t au r an tP rope r t i e s . add ( foodQual i ty ) ;

57 r e s t au r an tP rope r t i e s . add ( serviceAndAtmosphere ) ;

58 r e s t au r an tP rope r t i e s . add ( d i s t ance ) ;

59 }

60 System . out . p r i n t l n ("Example − Restaurant type to recommend :

" + r e s t au r an tPrope r t i e s . t oS t r i ng ( ) ) ;

61 }
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62

63 /**

64 * Recommends a type o f r e s t au rant to the user based on t h e i r

p r e f e r e n c e s and cur rent s i t u a t i o n

65 */

66 pr i va t e void recommendRestaurant ( ) {

67 Vector r e s t au r an tP rope r t i e s = new Vector ( ) ;

68 /** INSERT BEHAVIOUR RULES HERE **/

69 /***************************/

70

71

72 /***************************/

73 System . out . p r i n t l n (" Restaurant type to recommend : " +

r e s t au r an tP rope r t i e s . t oS t r i ng ( ) ) ;

74 }

75

76 /**

77 * Appl i ca t ion s t a r t

78 *

79 * @param args

80 */

81 pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {

82 new RestaurantRecommender ( ) ;

83 }

84

85 /**

86 * Sets the cur rent context o f the user .

87 * @param company

88 * @param transpor t

89 * @param meal

90 * @param day

91 * @param occas i on

92 * @param timeConstra int

93 */

94 pub l i c void setContext ( S t r ing company , S t r ing transport , S t r ing meal

, S t r ing day , S t r ing occas ion , S t r ing t imeConstra int ) {
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95 t h i s . company = company ;

96 t h i s . t r anspor t = t ranspor t ;

97 t h i s . meal = meal ;

98 t h i s . day = day ;

99 t h i s . o c ca s i on = occas i on ;

100 t h i s . t imeConstra int = t imeConstra int ;

101 }

102 }
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B.3 Developer Post-Implementation Questionnaire

Please give your opinion to the following set of Strongly Dis- 50/50 Agree Strongly
statements: Disagree agree Agree

I found it di�cult to identify the information
required for the application.

1 2 3 4 5

I found it di�cult to categorise the information
required for the application.

1 2 3 4 5

I found it di�cult to identify relationships
(associations/dependencies) between information.

1 2 3 4 5

I found it di�cult to identify the di�erent user
situations.

1 2 3 4 5

I found it di�cult to relate information to user
situations.

1 2 3 4 5

I found it di�cult to represent all possible user
situations.

1 2 3 4 5

I found that in di�erent situations, users want
di�erent recommendations.

1 2 3 4 5

I found that in di�erent user situations di�erent
information is used for recommendation decisions.

1 2 3 4 5

I found that in di�erent user situations di�erent
information associations/dependencies exist.

1 2 3 4 5

I found it di�cult to identify to include in
recommendation decisions.

1 2 3 4 5

I found that relationships between information
have an a�ect in recommendation decisions.

1 2 3 4 5

I found that relationships between information
changed depending on the user situation.

1 2 3 4 5

I found it di�cult to identify the information
relationships that a�ect recommendation decisions.

1 2 3 4 5

I found it di�cult to represent all possible
associations/dependencies between information.

1 2 3 4 5

Overall I thought the application was di�cult to
design and develop.

1 2 3 4 5

B.4 Travel Recommender Example User Problem

Please examine the map showing part of Dublin city and the description of the current situation and

answer the subsequent questions that follow.
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You are travelling from A: Ranelagh to B: Pearse Street. It is a weekday, the time is 9.00am, it is

sunny, you are alone, and you are in a hurry.

1. Please indicate the route you would mostly likely choose to take given the current situation.

� Red � Blue � Green � Orange

2. Please check the appropriate box(es) to indicate the information you considered

when making this route decision.

� Day � Time � Weather � Distance � Company � Time Available

3. Please rank the information you considered for this route decision (i.e. the

checked boxes in Q2.) starting at 1 for the most important.

Day © Time © Weather © Distance © Company © Time Available ©

4. Given that the transport options of walking, taking the bus, or driving are

available, please indicate your preferred choice for the above problem.

� Walk � Bus � Car

5. Please check the appropriate box(es) to indicate the information you considered

when making this transport decision.

� Day � Time � Weather � Distance � Company � Time Available

6. Please rank the information you considered for this transport decision (i.e. the

checked boxes in Q5.) starting at 1 for the most important.
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Day © Time © Weather © Distance © Company© Time Available ©

7. Given that the weather changed from sunny to raining, would you change the

route you would choose to take? If yes, please specify.

� Yes � No

� Red � Blue � Green � Orange

8. Similarly, given that the weather changed from sunny to raining, would you

change the transport option you chose? If yes, please specify.

� Yes � No

� Walk � Bus � Car

Any other comments?
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