An Analysis of Glutathionylation in the Modulation of the Critical Innate Immune Regulators Mal and NEK7

Thesis submitted to the University of Dublin for the Degree of Doctor of Philosophy

By
Mark M. Hughes

School of Biochemistry and Immunology
Trinity College Dublin
Ireland
March 2018
Declaration

This thesis is submitted by the undersigned to the University of Dublin for the examination of Doctor of Philosophy. I declare that this thesis has not been submitted as an exercise for a degree at this or any other university and is entirely my own work with the exception of the following figures:

Figure 4.11
This work was performed by Dylan G. Ryan

Figure 5.8
This work was performed by Alexander Hooftman

Figure 5.15
This work was performed by Dr. Padmaja Tummala

I agree to deposit this thesis in the University’s open access institutional repository or allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement.

Mark M. Hughes
Acknowledgements

When I started in the lab four years ago, I thought I wouldn’t last longer than a week surrounded by such incredible people. I will never forget the beginning of my PhD under my assigned postdoc Becca, who probably thought I would light myself on fire if left unsupervised. I thought I’d play a joke on her, and after scraping cells off plates for an experiment, I added virkon bleach, again jokingly telling her I thought it would help lift the remaining cells off better. She didn’t speak to me for a couple of days after that.

Luke, you have been the most incredible supervisor to work for and learn from. I’ve always felt very proud to be a part of your lab, and I can’t thank you enough for seeing potential in me I didn’t realise I had. Every meeting I’ve ever had with you made me feel more confident and able to take on the world. I still remember our first meeting, with slight resentment, when you said, “Ah it’ll only be a couple of immunoprecipitations, don’t worry”. I think I’ve developed arthritis from this. I also hosted your 50th lab birthday party, so that’s serious brownie points.

There’s three particularly special lab members I would like to thank. To Anne, Eva and Kathy, I couldn’t have done this without you. The constant support, the willingness to answer, “just one small question” and the selflessness in being a supportive friend, I can’t put into words how much I appreciate and admire each of you.

To the extended lab family, past and present, Mustafa, Rebecca, Sarah J, Paulina, Mirjam, Sue, Moritz, Danny, Sinéad, Evanna, Raquel, Beth, Cait, Silvia, Sarah C, Dylan, Jamie, Niamh, Zbigniew, Richie, Stefano, Marah, Alex and Ciana. Thanks for all the laughs guys, the constant regimented tea breaks and more importantly, thanks for putting up with me. I genuinely think our nights out have damaged my liver.

To my best friends Jamie, Joy and Nicola. You guys have been such emotional supports that kept me going through my PhD. Funnily enough the support kept a few vineyards in business. I can’t thank you enough for the years of friendship, support and banter. Shantay you stay!

To my Mam and Dad, I can’t put into words the love I have for you both. Your incredible relationship and devotion for each other made me believe in love. You’ve kept my head above water more times than I can count, and I would never have reached where I am today without your support. I love you.
To my sisters, Rachael and Ciara, I’ve finally lived up to the ‘brainiac nerd’ title you placed on me over the years. I can’t thank you enough for your support over the past few years and letting me away with all the late birthday presents because I was “in the lab”.

To my grandmother Rita, it’s rare to find a woman with such charisma, effervescence for life and to have such a warm and supportive character. You’re an inspirational woman and I hope one day to be as courageous and fun as you are.

Finally, but not least, to the one man who has changed my life. To Cathal, I absolutely adore you. We met on the 3rd March 2015. I was exactly one year into the PhD and felt I didn’t have what it took to continue any longer. You made me realise I’m good enough. Then you made me realise I can achieve anything. My publications during my PhD are as much yours as they are mine. Who knew three years later I’d finally have written the damned thing you’re “sick to death of hearing about”. We’ve been on some fantastic journeys around the world together, and it’s only just the beginning. Thank you for everything, I love you.
I dedicate this thesis to my grandparents Matthew and Concepta,

who valued education above all else.
Table of Contents

Declaration .. 1
Acknowledgements ... 2
Abbreviations ... 14
Abstract ... 19

Chapter 1 .. 21

1. Introduction .. 22

1.1 The innate immune system ... 22
 1.1.1 General introduction .. 22
 1.1.2 Toll-like receptors .. 22
 1.1.3 TLR localisation and ligand recognition .. 23
 1.1.4 Toll-like receptor signalling ... 24
 1.1.4.1 MyD88 ... 26
 1.1.4.2 TRIF .. 26
 1.1.4.3 TRAM ... 26
 1.1.4.4 SARM ... 27
 1.1.4.5 BCAP ... 28
 1.1.5 Mal ... 28
 1.1.5.1 Mal structure ... 28
 1.1.5.2 Mal signalling ... 31
 1.1.5.3 Post-translational regulation of Mal ... 34

2.1 Redox biology .. 37

2.1.1 Irreversible redox post-translational modifications 37
 2.1.1.1 Oxidation and Sulphenylation .. 37
 2.1.2 Reversible redox post-translational modifications 38
 2.1.2.1 Sulphenylamide .. 38
 2.1.2.2 Sulphydration .. 38
 2.1.2.3 Nitrosylation ... 39
 2.1.3 Glutathionylation ... 39
 2.1.3.1 Glutathione synthesis ... 42

2.1.4 Enzymes involved in glutathionylation .. 44
 2.1.4.1 Glutaredoxin .. 44
 2.1.4.2 Thioredoxin ... 44

2.1.5 Glutathione transferases ... 46
 2.1.5.1 Glutathione transferase pi ... 46
2.1 Materials

2.1.1 Buffers ... 74
2.1.2 Cell culture media .. 74
2.1.3 Animals .. 74
2.1.4 Cell lines .. 75
2.1.5 TLR stimuli .. 75
2.1.6 Antibodies ... 75
2.1.7 General lab chemicals .. 75
2.1.8 Luciferase assay reagents ... 76
2.1.9 Plasmids ... 76
2.1.10 Site directed mutagenesis (SDM) 77
2.1.11 Seahorse reagents .. 77

2.2 Methods .. 78

2.2.1 Cell culture and cell line maintenance 78
2.2.2 Cell line cryopreservation 78
2.2.3 Generation of bone marrow-derived macrophages 78
2.2.4 Enzyme-linked immunosorbent assay (ELISA) 79

2.2.5 Plasmid DNA preparation .. 79

2.2.5.1 Plasmid transformation .. 79
2.2.5.2 Plasmid purification .. 79
2.2.6 Luciferase assay ... 79
2.2.7 Co-immunoprecipitation assay .. 80
2.2.8 Western blotting ... 81
 2.2.8.1 SDS lysis for total protein .. 81
 2.2.8.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 81
 2.2.8.3 Electrophoretic transfer of protein to membranes 82
 2.2.8.4 Membrane blocking, antibody probing and visualization 82
2.2.9 RNA analysis .. 82
 2.2.9.1 RNA extraction ... 82
 2.2.9.2 Reverse transcription polymerase chain reaction 83
 2.2.9.3 Real-time quantitative PCR .. 83
 2.2.10 Electroporation of Mal deficient iBMDMs 84
 2.2.11 Inflammasome assays .. 85
 2.2.12 FACS analysis of cellular reactive oxygen species 85
 2.2.13 Seahorse analysis of lactate production 86
 2.2.14 ASC Speck formation assay .. 86
 2.2.15 Endogenous knockdown of GSTO1-1 .. 87
 2.2.16 LPS Transfection and LDH assay ... 87
 2.2.17 In vivo sepsis model .. 87
 2.2.18 Mass Spectrometry of NEK7 .. 88
 2.2.19 Peritoneal exudate cell isolation and culture 88
 2.2.20 Statistical Analysis .. 89

Chapter 3 ... 90

Investigation into the role of glutathione as a post-translational modification in Mal 91

3.1 Introduction ... 91
 3.1.1 Identification of conserved cysteine amino acids in Mal 92
 3.1.2 Mal is endogenously glutathionylated and glutathionylation is increased in response to LPS treatment .. 92
 3.1.3 Mal Cysteine 91 is a glutathionylation target 95
 3.1.4 Histidine 92 promotes Mal glutathionylation 95
 3.1.5 C91A and H92P cannot drive NF-κB luciferase activation 98
 3.1.6 C91A and H92P are dominant negative mutants in TLR4 signalling 100
 3.1.7 C91A and H92P are dominant negative mutants in TLR2 signalling 102
 3.1.8 C91A and H92P cannot reconstitute TLR4 signalling in Mal-deficient iBMDMs. 104
 3.1.9 C91A cannot interact with MyD88 in a co-immunoprecipitation assay 106
 3.1.10 H92P cannot interact with MyD88 in a co-immunoprecipitation assay 106
 3.1.11 IRAK4 cannot induce degradation of C91A or H92P 109
3.1.12 IRAK4 cannot co-immunoprecipitate with C91A or H92P 111
3.1.13 Mal glutathionylation can be prevented using the antioxidant NAC 113

3.2 Discussion ... 115

3.3 Final conclusion .. 118

Chapter 4 ... 120

Characterisation of GSTO1-1 function in macrophages ... 121

4.1 Introduction .. 121
 4.1.1 GSTO1-1 does not limit TLR4 responses to LPS ... 123
 4.1.2 Effect of GSTO1-1 deficiency on TLR3 responses to Poly I:C 123
 4.1.3 Effect of GSTO1-1 deficiency on TLR1/2 responses to Pam3CSK4 123
 4.1.4 GSTO1-1 does not limit TLR 7/8 responses to R848 124
 4.1.5 GSTO1-1 does not limit TNFα receptor signalling .. 124
 4.1.6 GSTO1-1-deficient BMDMs produce more IL-10 130
 4.1.7 GSTO1-1-deficient BMDMs are not classically M1 or M2 polarised 130
 4.1.8 GSTO1-1-deficient BMDMs produce more ROS 133
 4.1.9 GSTO1-1-deficient BMDMs have increased HIF1α and IL-1β protein levels 133
 4.1.10 GSTO1-1-deficient BMDMs have increased IL-1β and HIF1α gene target expression 133

4.2. Inhibition of GSTO1-1 by C1-27 .. 139
 4.2.1 C1-27 does not limit TLR4 activation ... 139
 4.2.2 C1-27 increases HIF1α and pro-IL-1β Production 139
 4.2.3 C1-27 Promotes IL-1β and HIF1α-dependent gene transcription 139
 4.2.4 IL-10 production is impaired by C1-27 ... 139
 4.2.5 C1-27 decreases ROS production ... 140
 4.2.6 Endogenous knockdown of GSTO1-1 ablates IL-10 production 140

4.3 Discussion ... 147

4.4 Final Conclusion ... 152

Chapter 5 .. 154

GSTO1-1 is a novel component of the NLRP3 Inflammasome 155

5.1 Introduction .. 155
 5.1.1 The GSTO1-1 inhibitor C1-27 limits NLRP3 inflammasome activation 157
 5.1.2 C1-27 reduces the cell death associated with NLRP3 activation 157
 5.1.3 C1-27 has no effect on NLRC4 inflammasome activation 157
 5.1.4 C1-27 has no effect on AIM2 inflammasome activation 158
 5.1.5 C1-27 limits ASC oligomerisation .. 163
 5.1.6 Endogenous knockdown of GSTO1-1 boosts Pro-IL-1β at 24h LPS treatment 163

8
5.1.7 GSTO1-1 knockdown limits NLRP3 activation .. 163
5.1.8 Ethyl-ester glutathione (GSH-EE) reduces NLRP3 inflammasome activation 167
5.1.9 GSTO1-1 boosts Pro-IL-1β Processing in NLRP3 Inflammasome Reconstituted 293T Cells ... 167
5.1.10 GSTO1-1 interacts with ASC and NEK7 .. 167
5.1.11 NEK7 interacts with GSTO1-1 endogenously .. 168
5.1.12 NEK7 is a glutathionylated protein ... 168
5.1.13 Mass Spectrometry of NEK7 identifies Cysteine 79 and Cysteine 253 glutathionylation .. 168
5.1.14 Cysteine 253 in NEK7 is negatively regulated by glutathionylation 168
5.1.15 MCC950 does not limit the enzymatic activity of GSTO1-1 177
5.1.16 GSTO1-1 deficient peritoneal exudate cells have impaired NLRP3 inflammasome activation ... 177
5.1.17 GSTO1-1-deficient BMDMs have impaired NLRP3 inflammasome activation .. 177
5.1.18 GSTO1-1-deficient mice have impaired inflammatory responses in vivo 177
5.2 GSTO1-1 regulates LPS-induced Caspase-11 expression 183
5.2.1 GSTO1-1 regulates Interferon β (IFN-β)-induced Caspase-11 expression 183
5.2.2 GSTO1-1 knockdown by siRNA reduces Caspase-11 production 183
5.2.3 C1-27 blocks IL-1β release and limits Caspase-11 mediated pyroptosis 183
5.2.4 MCC950 does not limit Caspase-11 induction by LPS 184

5.3 Discussion ... 190

5.4 Final Conclusion ... 195

Chapter 6 .. 198

Final discussion and future perspectives ... 199

Chapter 7 .. 215

References ... 216

Chapter 8 .. 230

8.1 NEK7 Glutathionylated peptides identified by Mass Spectrometry 231
8.2 Conference Abstracts .. 232
8.3 Record of Publication .. 234
List of Figures

Figure 1.1 TLR pathway signalling schematic .. 25
Figure 1.2 Comparison of the TIR domains of Mal and MyD88 determined by X-ray crystallography ... 30
Figure 1.3 Promiscuity of TLR adaptor Mal .. 33
Figure 1.4 Post-translational regulation of Mal .. 36
Figure 1.5 Redox mechanisms controlling protein oxidation 41
Figure 1.6 GSH synthesis ... 43
Figure 1.7 Regulation of glutaredoxin and thioredoxin mechanisms 45
Figure 1.8 GSTO1-1 structure .. 48
Figure 1.9 GSTO1-1 Regulates Actin Rearrangement ... 51
Figure 1.10 GSH-dependent inhibition of Caspase-1 activity 53
Figure 1.11 A GSTO1-1 axis in macrophage signalling .. 57
Figure 1.12 The NLRC4, AIM2 and NLRP3 Inflammasomes 60
Figure 1.13 Dietary metabolites regulate NLRP3 activation via K+ efflux 63
Figure 1.14 Bile acids promote NLRP3 phosphorylation and degradation 65
Figure 1.15 Altered mitochondrial dynamics impact NLRP3 activation 71
Figure 3.1 Conservation of Mal cysteine amino acids ... 93
Figure 3.2 Endogenous Mal glutathionylation in LPS-activated macrophages 94
Figure 3.3 Mal C91A has impaired glutathionylation ... 96
Figure 3.4 Mal H92P has impaired glutathionylation ... 97
Figure 3.5 C91A and H92P cannot drive NF-κB activation and display decreased phosphorylation ... 99
Figure 3.6 C91A and H92P are dominant negative mutations for TLR4 signalling 101
Figure 3.7 C91A and H92P are dominant negative mutations for TLR2 signalling 103
Figure 3.8 C91A and H92P do not reconstitute the TLR4 signalling pathway 105
Figure 3.9 C91A does not immunoprecipitate with MyD88 107
Figure 3.10 H92P does not immunoprecipitate with MyD88 108
Figure 3.11 IRAK4 does not induce degradation of Mal C91A or H92P 110
Figure 3.12 IRAK4 does not immunoprecipitate with Mal C91A or H92P 112
Figure 3.13 Glutathionylation of Mal is prevented with N-acetylcysteine pre-treatment 114
Figure 3.14 Schematic summary of results from Chapter 3 119
Figure 4.1 GSTO1-1 deficiency does not inhibit TLR4 signalling 125
Figure 4.2 GSTO1-1 deficiency does not inhibit TLR3 signalling 126
Figure 4.3 GSTO1-1 deficiency does not inhibit TLR1/2 signalling 127
Figure 4.4 GSTO1-1 deficiency does not inhibit TLR7/8 signalling .. 128
Figure 4.5 GSTO1-1 deficiency does not inhibit TNFα signalling ... 129
Figure 4.6 ELISA and RNA profile of LPS-treated GSTO1-1-deficient BMDMs 131
Figure 4.7 GSTO1-1-deficient BMDMs have altered M1/M2 polarization 132
Figure 4.8 GSTO1-1-deficient BMDMs have increased ROS production 135
Figure 4.9 GSTO1-1-deficient BMDMs have increased HIF1α and IL-1β levels 136
Figure 4.10 GSTO1-1 deficiency Increases HIF1α target gene transcription 137
Figure 4.11 GSTO1-1-deficient BMDMs have an altered glycolytic rate 138
Figure 4.12 C1-27 does not limit TLR4 signalling upstream of NF-kB activation 141
Figure 4.13 Enzymatic inhibition of GSTO1-1 by the catalytic inhibitor C1-27 boosts HIF1α and pro-IL-1β .. 142
Figure 4.14 C1-27 Promotes IL-1β and HIF1α-dependent gene transcription 143
Figure 4.15 Enzymatic inhibition of GSTO1-1 by the catalytic inhibitor C1-27 attenuates IL-10 production in BMDMs .. 144
Figure 4.16 C1-27 decreases ROS production ... 145
Figure 4.17 siRNA knockdown of GSTO1-1 limits IL-10 production 146
Figure 4.18 Schematic summary of results from Chapter 4 ... 153
Figure 5.1 C1-27 limits ATP-mediated IL-1β processing ... 159
Figure 5.2 C1-27 limits Nigericin-mediated IL-1β processing .. 160
Figure 5.3 C1-27 does not limit Salmonella typhimurium-mediated IL-1β processing 161
Figure 5.4 C1-27 does not limit AIM2 inflammasome activation 162
Figure 5.5 C1-27 reduces ASC speck formation ... 164
Figure 5.6 Endogenous knockdown of GSTO1-1 does not affect NLRP3 expression 165
Figure 5.7 Endogenous knockdown of GSTO1-1 limits NLRP3 inflammasome activation 166
Figure 5.8 Exogenous ethyl-ester GSH attenuates NLRP3 inflammasome pro-IL-1β processing .. 170
Figure 5.9 GSTO1-1 boosts IL-1β processing in 293T Cells ... 171
Figure 5.10 GSTO1-1 interacts with ASC and NEK7 when overexpressed 172
Figure 5.11 NEK7 interacts with GSTO1-1 endogenously during an NLRP3 inflammasome assay .. 173
Figure 5.12 NEK7 is glutathionylated when overexpressed in 293T cells 174
Figure 5.13 Mass Spectrometry of NEK7 identifies Cysteine 79 and Cysteine 253 glutathionylation ... 175
Figure 5.14 C253A boosts IL-1β production in Inflammasome-reconstituted 293Ts . 176
Figure 5.15 MCC950 does not limit GSTO1-1 enzymatic activity
Figure 5.16 GSTO1-1-deficient PECs have impaired NLRP3 inflammasome activation
Figure 5.17 GSTO1-1-deficient BMDMs have impaired NLRP3 inflammasome activation
Figure 5.18 GSTO1-1-deficient mice have an impaired inflammatory response in vivo
Figure 5.19 GSTO1-1 is required for post-translational Caspase-11 induction by LPS
Figure 5.20 GSTO1-1 is required for post-translational Caspase-11 induction by IFNβ
Figure 5.21 GSTO1-1 knockdown by siRNA reduces Caspase-11 production
Figure 5.22 C1-27 limits Caspase-11-mediated IL-1β secretion and pyroptotic LDH release
Figure 5.23 MCC950 does not limit Pro-caspase-11 induction or limit Caspase-11-induced pyroptosis
Figure 5.24 Schematic summary of results from Chapter 5
Figure 6.1 Crystal structure of Mal TIR domain identifies C91 and C157 as redox targets
Figure 6.2 Comparison of the solution and crystal structures of MAL-TIR
Figure 6.3 Sequence alignment of TIR-containing adaptors with TcpB
Figure 6.4 An updated model of the regulators of Mal activation
Figure 6.5 The structures of C1-27 and MCC950
Figure 6.6 GSTO1-1 regulates canonical and non-canonical inflammasome activation
List of Tables

Table 2.1 Buffer Compositions...74
Table 2.2 2X Firefly assay mix composition..76
Table 2.3 Site Directed Mutagenesis primers for Mal mutant...............77
Table 2.4 Site Directed Mutagenesis primers for NEK7 mutants...........77
Table 2.5 Composition of acrylamide gels..81
Table 2.6 Reverse transcription polymerase chain reaction...............83
Table 2.7 SYBR primers..84
Table 2.8 SYBR Green qPCR reaction mix..84
Table 4.1 Variation between GSTO1-1-deficient mice, GSTO1-1 siRNA knockdown and C1-27 treated macrophages..............................151
Table 8.1 Mass Spectrometry of NEK7 identifies Cysteine 79 and Cysteine 253 glutathionylation..231
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB1</td>
<td>Aflatoxin B1</td>
</tr>
<tr>
<td>AIM2</td>
<td>Absent in Melanoma 2</td>
</tr>
<tr>
<td>ALR</td>
<td>AIM2-like receptor</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP-activated protein kinase</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium Persulfate</td>
</tr>
<tr>
<td>ASC</td>
<td>Apoptosis-associated speck-like protein containing a CARD</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BCAP</td>
<td>B cell adaptor protein</td>
</tr>
<tr>
<td>BCR</td>
<td>B cell receptor</td>
</tr>
<tr>
<td>BMDM</td>
<td>Bone marrow-derived macrophage</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>Btk</td>
<td>Bruton’s tyrosine kinase</td>
</tr>
<tr>
<td>CAPS</td>
<td>Cryopyrin-associated periodic syndrome</td>
</tr>
<tr>
<td>CARD</td>
<td>Caspase activation and recruitment domain</td>
</tr>
<tr>
<td>CD14</td>
<td>Cluster of differentiation 14</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CLR</td>
<td>C-type lectin receptor</td>
</tr>
<tr>
<td>CpG</td>
<td>Unmethylated 2’-deoxyribo(cytidine-phosphate-guanosine)</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element binding protein</td>
</tr>
<tr>
<td>CSE</td>
<td>Cystathionine γ-lyase</td>
</tr>
<tr>
<td>Ct</td>
<td>Cycle-threshold</td>
</tr>
<tr>
<td>DAMP</td>
<td>Damage associated molecular pattern</td>
</tr>
<tr>
<td>DCFDA</td>
<td>2',7'–dichlorofluorescin diacetate</td>
</tr>
<tr>
<td>DD</td>
<td>Death domain</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified eagle medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>DP</td>
<td>Dipeptidase</td>
</tr>
<tr>
<td>ds</td>
<td>Double stranded</td>
</tr>
<tr>
<td>DSS</td>
<td>Dextran sodium sulfate</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>ECAR</td>
<td>Extracellular acidification rate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EST</td>
<td>Expressed sequence tag</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GCL</td>
<td>Glutamate cysteine ligase</td>
</tr>
<tr>
<td>GGT</td>
<td>γ-glutamyltranspeptidase</td>
</tr>
<tr>
<td>Grx</td>
<td>Glutaredoxin</td>
</tr>
<tr>
<td>GSDMD</td>
<td>Gasdermin D</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GSH-EE</td>
<td>Ethyl-ester glutathione</td>
</tr>
<tr>
<td>GSNO</td>
<td>S-nitrosoglutathione</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione transferase</td>
</tr>
<tr>
<td>GSTO</td>
<td>Glutathione transferase omega</td>
</tr>
<tr>
<td>GSTP</td>
<td>Glutathione transferase pi</td>
</tr>
<tr>
<td>H2S</td>
<td>Hydrogen sulfide</td>
</tr>
<tr>
<td>HEK</td>
<td>Human embryonic kidney</td>
</tr>
<tr>
<td>HIN-200</td>
<td>Hematopoietic expression, IFN-inducible, nuclear localisation domain</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish-peroxidase</td>
</tr>
<tr>
<td>iBMDM</td>
<td>Immortalised bone marrow-derived macrophage</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IKK</td>
<td>IκB kinase IKK</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IL-1R</td>
<td>Interleukin-1 receptor</td>
</tr>
<tr>
<td>IL-1Ra</td>
<td>Interleukin-1 receptor antagonist</td>
</tr>
<tr>
<td>IL-1RAPL</td>
<td>IL-1 receptor accessory protein like-1</td>
</tr>
<tr>
<td>IP</td>
<td>Immunoprecipitation</td>
</tr>
<tr>
<td>IRAK</td>
<td>Interleukin-1 receptor-associated kinase</td>
</tr>
<tr>
<td>IRF</td>
<td>Interferon regulatory factor</td>
</tr>
<tr>
<td>IRF3</td>
<td>Interferon regulatory factor 3</td>
</tr>
<tr>
<td>ITAM</td>
<td>Immunoreceptor tyrosine-based activation motif</td>
</tr>
<tr>
<td>IκB</td>
<td>Inhibitor of NF-κB</td>
</tr>
<tr>
<td>JNK</td>
<td>Jun N-terminal kinase</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>KO</td>
<td>Knockout</td>
</tr>
<tr>
<td>LB</td>
<td>Lysogeny broth</td>
</tr>
<tr>
<td>LBP</td>
<td>LPS binding protein</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LRR</td>
<td>Leucine rich repeat</td>
</tr>
<tr>
<td>Mal</td>
<td>MyD88 adaptor-like</td>
</tr>
<tr>
<td>MALP2</td>
<td>Macrophage activating lipopeptide-2</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated protein kinase</td>
</tr>
<tr>
<td>MAPIT</td>
<td>Mammalian protein-protein interaction trap</td>
</tr>
<tr>
<td>MD2</td>
<td>Myeloid differentiation factor 2</td>
</tr>
<tr>
<td>MFI</td>
<td>Mean fluorescence intensity</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity of infection</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>MTC</td>
<td>HEK293-MD2-TLR4-CD14</td>
</tr>
<tr>
<td>MyD88</td>
<td>Myeloid differentiation factor 88</td>
</tr>
<tr>
<td>NACHT</td>
<td>Nucleotide binding and oligomerisation domain</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NAIP</td>
<td>NLR family apoptosis inhibitory protein</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor κB</td>
</tr>
<tr>
<td>NK</td>
<td>Natural killer cell</td>
</tr>
<tr>
<td>NLR</td>
<td>Nod-like receptor</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NOD</td>
<td>Nucleotide oligomerisation domain</td>
</tr>
<tr>
<td>NOX1</td>
<td>NAPDH oxidase 1</td>
</tr>
<tr>
<td>NP-40</td>
<td>Nonyl phenoxy polyethoxylate 40</td>
</tr>
<tr>
<td>OCR</td>
<td>Oxygen consumption rate</td>
</tr>
<tr>
<td>P2X7</td>
<td>Purinergic receptor P2X, ligand-gated ion channel 7</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>Pam3CSK4</td>
<td>Pam3Cys-Ser-(Lys)-4</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pattern associated molecular pattern</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
</tbody>
</table>
PCR Polymerase chain reaction
PIP2 Phosphatidylinositol 4,5-bisphosphate
PKC Protein kinase C
PMSF Phenylmethanesulfonyl fluoride
Poly (I:C) Polynosine-polycytidylic acid
Poly (dA:dT) Poly(deoxyadenylic-thymidylc) acid
PRR Pathogen recognition receptor
P/S Penicillin streptomycin
PS Phosphatidylserine
PTP1B Protein tyrosine phosphatase 1B
PVDF Polyvinylidene fluoride
PYD Pyrin domain
RA Rheumatoid arthritis
RLR RIG-I-like receptor
RNA Ribonucleic acid
RNS Reactive nitrogen species
ROS Reactive oxygen species
RT Room temperature
RT-PCR Reverse transcriptase polymerase chain reaction
RyR Ryanodine receptor
S-4NPG S-(4-Nitrophenacyl) glutathione
SARM Sterile alpha and HEAT-armadillo motif
SDS Sodium dodecyl sulfate
SFM Serum free medium
SNP Single nucleotide polymorphism
SOCS1 Suppressor of cytokine signalling 1
SOD1 Superoxide dismutase 1
ss Single stranded
TAG TRAM adaptor with GOLD domain
TBS Tris-buffered saline
TBST Tris buffered saline tween
TEMED Tetramethylethylenediamine
TIR Toll/Interleukin-1 receptor
TIRAP Toll-interleukin 1 receptor domain containing adaptor protein
TLR Toll-like receptor
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMED7</td>
<td>Transmembrane P24 Trafficking Protein 7</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TRAF</td>
<td>Tumour necrosis factor receptor-associated kinase</td>
</tr>
<tr>
<td>TRAM</td>
<td>Trif-related adaptor molecule</td>
</tr>
<tr>
<td>TRIF</td>
<td>TIR-domain-containing adaptor-inducing interferon-β</td>
</tr>
<tr>
<td>Trx</td>
<td>Thioredoxin</td>
</tr>
<tr>
<td>TXNIP</td>
<td>Thioredoxin interacting protein</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>WNV</td>
<td>West Nile virus</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
</tbody>
</table>
Abstract

Macrophages are critical innate immune cells that sense pathogen associated molecular patterns (PAMPs) and host-derived damage associated molecular patterns (DAMPs) through specialized Toll-like receptors (TLRs) to maintain homeostasis. TLR activation drives production of anti-microbial reactive oxygen species (ROS), which bombards invading microbes and must therefore be highly regulated. Overproduction of ROS causes oxidative imbalance, which can be sensed by redox sensitive protein machinery. The main sensor of oxidative insult is the thiol group on cysteine amino acids, which are amenable to redox-induced post-translational modification. Glutathione (GSH), the most abundant cellular antioxidant, regulates ROS levels and directly prevents oxidation of proteins by protecting redox sensitive thiol groups on cysteine amino acids. It is becoming more apparent that GSH not only contributes to cellular integrity, but rather alters protein function by reversibly modifying reactive cysteines.

In this project, I sought to explore the role of GSH in TLR signalling. I focused on the TLR signalling adaptor MyD88-adaptor-like (Mal). The crystal structure of Mal revealed two cysteines, C91 and C157, that crystallised bound to a dithiothreitol (DTT) molecule. The cytosol of the cell is a reducing environment, thereby making these two cysteine residues very interesting potential post-translationally modified targets. Site-directed mutagenesis of C91 and C157 to alanine (C91A, C157A), identified that C91, and not C157, in Mal requires glutathionylation to drive TLR signalling. C91A was unable to interact with MyD88 or IRAK4. C91A also displayed diminished phosphorylation, known to be important for Mal function. Furthermore, positively charged amino acids adjacent to cysteines promote deprotonation of cysteine thiol groups, rendering them more sensitive to glutathionylation. Preventing glutathionylation of C91 by mutation of the positively charged flanking amino acid histidine to proline (H92P) mimicked the effect of C91A. Both C91A Mal and H92P Mal acted as dominant negative inhibitors of TLR4 signalling and were unable to reconstitute TLR4 signalling in Mal-deficient macrophages. Finally, LPS transiently increased the glutathionylation of Mal.

Protein regulation by glutathionylation requires enzymes which can also deglutathionylate substrates as a regulatory mechanism. I also explored the redox enzyme Glutathione transferase omega 1 (GSTO1-1), which has deglutathionylating activity in TLR4 signalling. Using macrophages deficient in GSTO1-1, I identified novel roles for GSTO1-1 in the immunometabolic response to TLR4 activation. I demonstrate that GSTO1-1-deficient macrophages are highly glycolytic, and furthermore that GSTO1-1 deficiency drives
production of the pro-inflammatory cytokine interleukin-1β (IL-1β). Furthermore, using a novel covalent inhibitor of the active site of GSTO1-1 termed C1-27, I identify a role for GSTO1-1 in the regulation of pro-IL-1β processing by the NLRP3 inflammasome, acting via NEK7, and in the induction of Caspase-11, which mediates LPS lethality in vivo. I have found that the key NLRP3 regulator NEK7 is glutathionylated on cysteine 79 and cysteine 253 and provide evidence that GSTO1-1 is targeting NEK7 to promote NLRP3 activation. GSTO1-1 therefore also appears to play a role in NLRP3 inflammasome activation.

Overall, this study identifies an important positive role for Mal glutathionylation, a negative role for the deglutathionylating enzyme GSTO1-1 in TLR4 signalling and a regulatory role for GSTO1-1 during inflammasome activation and Caspase-11 induction, highlighting the importance of glutathionylation as a regulator of macrophage activation.
Chapter 1

Introduction
1. Introduction

1.1 The innate immune system

1.1.1 General introduction

The immune system protects against invading pathogens and self-harming malignant cells. It can be subdivided into two categories, the innate immune system and the adaptive immune system. The innate arm of the immune system is the first line of defence against invading pathogens and responds much more rapidly than the adaptive immune response. The innate immune arm uses a general scavenging approach to detect and clear invading pathogens to maintain homeostasis. Innate immune cells utilize an array of antimicrobial factors coupled with phagocytosis to clear infection. This process allows for antigen presentation of the invading pathogen to the adaptive arm of the immune system, leading to antigen-specific effectors and immune memory for rapid response to recurring infection.

In order to mount a response to invading pathogens, the innate immune system must recognise conserved motifs that are present in bacteria, fungi and viruses. These motifs can bind to specific innate immune receptors to drive inflammatory responses. A variety of different cells can express these pattern recognition receptors (PRRs), however they are most common in the professional innate immune phagocytes, monocytes and macrophages. PRRs can bind Pathogen Associated Molecular Patterns (PAMPs) present in the invading pathogen and similarly, endogenous Damage Associated Molecular Patterns (DAMPs) released from damaged or dying host cells. To date, many PRRs have been discovered and characterized in the plasma membrane, endosomal compartments and cytosol and include Toll-like Receptors (TLRs), NOD-like receptors (NLRs), C-type lectin receptors (CLRs), RIG-I-like receptors (RLRs) and AIM2-like receptors (ALRs)/PYHIN-containing proteins. Identification of many PAMP-specific receptors on innate immune cells has challenged the ‘non-specific’ conventional perception of the innate immune response, defining new roles for professional phagocytes in PAMP recognition.

1.1.2 Toll-like receptors

A redefining moment in the field of immunology was the discovery of TLRs. The pioneering work of Charles Janeway greatly contributed to the field of immunology, proposing the idea of PRRs in 1989 [1]. The works of Bruce Beutler and Jules Hoffman, along with Ralph Steinman who discovered the dendritic cell, lead to the discovery of TLRs. This discovery was recognised as one of the most significant findings in immunology in recent years and the Nobel Prize for Physiology or Medicine was awarded to all three in 2011 for their contribution to the field of
immunology [2]. In 1988, the gene encoding the Interleukin-1 receptor type 1 (IL1R1) was cloned. In 1991, the IL1R1 receptor was found to share domain homology with the *Drosophila melanogaster* protein Toll. This finding lead to the discovery by members of Hoffman’s lab in 1996 that fungal components can drive inflammatory responses through Toll via upregulation of the anti-fungal peptide Drosomysin. A breakthrough in the field was the discovery of the receptor for lipopolysaccharide (LPS), a PAMP present in gram-negative bacterial cell walls known for a long time to induce sepsis and inflammation, with little understanding into its signalling effects. In 1998, Beutler’s group cloned a gene termed ‘Lpsd’ [3]. Soon after, research from Danielle Malo’s group confirmed the findings that Lpsd was TLR4. The following year, Shizuo Akira and colleagues reported that TLR4-deficient mice could not respond to LPS [4], confirming TLR4 as the receptor for LPS. This pioneering research led to the discovery and characterization of TLRs in innate immune cells.

1.1.3 TLR localisation and ligand recognition

TLRs can be found at the plasma membrane and endosomal compartments to detect both PAMPs from pathogens and host-derived sterile DAMPs (Figure 1.1). Both plasma membrane and endosomal TLRs sense a variety of bacterial or viral species to drive an inflammatory response [5, 6]. There are currently 10 human TLRs (13 mouse TLRs) identified which fall into two categories. Cell surface TLRs (TLRs 1, 2, 4, 5, 6, and 11) and intracellular TLRs (TLRs 3, 7, 8 and 9). TLR4 is considered the prototypical TLR and requires accessory proteins to recognise LPS. LPS is a glycolipid that is solubilised by serum protein lipid binding protein (LBP) [7]. LPS-bound LBP will transfer LPS to the leukocyte membrane protein CD14 to enhance LPS sensing by TLR4 [8]. Further characterisation of TLR4 identified another accessory protein, MD-2, involved in LPS sensing [9]. MD-2 belongs to a family of lipid-binding proteins that folds into a β-cup structure, facilitating binding of hydrophobic moieties and interacts with TLR4 [10]. CD14-bound LPS drives TLR4/MD-2 mediated signal transduction. TLR4 has also been found to recognise the plant component taxol [11]. TLR2 can heterodimerize with TLR1 or TLR6 and can recognize triacylated lipopeptides and diacylated lipopeptides respectively from species such as *Mycoplasma* and *Escherichia Coli*. TLR2 can also recognize gram positive lipoproteins and fungal zymozan [12] and has been implicated in viral recognition in inflammatory monocytes [13]. TLR5 can recognize flagellin, a protein monomer utilized by bacteria from a variety of bacterial species, including *Salmonella typhimurium* and *Enterococcus* [14]. TLR11 is expressed by mice, as human TLR11 is a pseudogene which does not code for a functional protein and recognizes profilins from *Toxoplasma gondii* and uropathogenic *E. coli*. TLRs 3, 7, 8 and 9 are exclusively intracellular.
TLR3 recognizes double stranded RNA (dsRNA) from RNA viruses such as West Nile Virus (WNV). TLR7 and TLR8 recognize single stranded RNA (ssRNA) from viruses such as Human immunodeficiency virus (HIV) [15]. TLR9 recognizes DNA which contains unmethylated 2’-deoxyribo(cytidine-phosphate-guanosine) (CpG) motifs from bacteria and viruses and hemozoin, a by-product of malarial infection [16].

1.1.4 Toll-like receptor signalling

Extensive research into TLR structure and TLR signalling pathways has unravelled many complexities of innate immune cells within the past decade. TLRs contain an extracellular leucine-rich repeat domain involved in ligand recognition, forming an ‘m’ shape structure when dimerized, and an intracellular Toll/interleukin-1 receptor/resistance (TIR) domain, which elicits recruitment of specific adaptor proteins upon receptor ligand recognition and homodimerization (with exception of TLR2, which heterodimerizes with TLRs 1 or 6). There are currently six reported adaptor molecules recruited to the TIR/TIR interface of the dimerized receptors. These are Myeloid differentiation primary response 88 (MyD88), MyD88 adaptor-like (Mal; or TIRAP) [17], sterile-alpha and Armadillo motif containing protein (SARM) [18], TIR-domain-containing adaptor-inducing interferon-β (TRIF) [19], TRIF-related adaptor molecule (TRAM) [20] and B cell adaptor for PI3K (BCAP) [21]. These adaptor molecules signal via the MyD88-dependent or MyD88-independent signalling cascade.
Upon ligand binding, TLRs either homo/heterodimerise and recruit adaptors to their intracellular TIR domains. TLRs 2, 4 and 9 use Mal to recruit MyD88. Each TLR uses MyD88, with exception of TLR3, which recruits TRIF. MyD88 binding initiates assembly of the myddosome, activating TRAF6, leading to activation of TAK1 through ubiquitination, which activates the IKK complex, relieving inhibition of NF-κB subunits through IκBα degradation. TAK1 also drives MAPK signalling and CREB and AP-1 nuclear translocation. Endocytosed TLR4 drives IRF3 and delayed NF-κB activation through dimerization with TLR3, which is limited by SARM. TLRs 7, 8 and 9 drive myddosome assembly to drive anti-viral immunity.
1.1.4.1 MyD88
MyD88 is a canonical adaptor protein utilized by every TLR, with exception of TLR3. MyD88 was discovered in the early 1990’s as an accessory molecule that had roles in IL-1R1 signalling [22], and was soon thereafter linked to TLR signalling [23]. MyD88 contains an N-terminal death domain (DD) and a C-terminal TIR domain, which upon TLR receptor dimerization promotes myddosome formation via other DD containing proteins, notably IRAK2 and IRAK4 to allow for formation of an oligomeric signalling complex. MyD88 uses Mal for TLRs 2, 4 and 9, but acts alone in driving TLR5 and TLR7 signalling. MyD88 is highly regulated and has recently been reported to undergo K63-linked polyubiquitination. The deubiquitinase enzyme CYLD was found to negatively regulate MyD88 signalling by removing ubiquitin at lysine 231 in MyD88 [24]. Interestingly, MyD88 can become NEDDylated, a post-translational modification in which a ubiquitin-like NEDD8 protein is conjugated to MyD88, and importantly, NEDDylation of MyD88 antagonises its ubiquitination [25]. IL-1β stimulation promotes MyD88 ubiquitination, and downregulating NEDDylation by the deNEDDylase NEDP1. Furthermore, NEDD8 prevents MyD88 dimerization, inhibiting NF-κB signalling. MyD88 also acts independently of TLR signalling, with roles identified in IFNγ signalling [26], and neuronal mouse models of ischemia/reperfusion [27], highlighting the importance of this adaptor in NF-κB activation.

1.1.4.2 TRIF
Early studies into MyD88 signalling discovered a few anomalies. MyD88-deficient mice were found to still drive delayed LPS-induced NF-κB and MAPK pathways, resulting in activation of interferon regulatory factor 3 (IRF3) and subsequent interferon-inducible genes [28]. This finding indicated that a MyD88-independent pathway must occur that was LPS responsive. TLR3 is localised to endosomes to detect viral dsRNA, and activation leads to upregulation of IRF3, and to a lesser extent, NF-κB to induce IFNβ responses [29]. Early studies identified that TLR3 signalling did not utilize Mal or MyD88, rather another adaptor protein was discovered, termed TRIF. TRIF was found to interact with TLR3 directly through its C-terminal [30]. Under TLR3 activation, TRIF was also shown to mediate the TLR4-dependent but MyD88-independent signalling cascade to promote NF-κB and IFNβ induction [31].

1.1.4.3 TRAM
In addition to interacting with TLR3, TRIF can also directly interact with TRAM through homologous TIR domain interactions. During TLR4 MyD88-independent activation, TRAM is
directly recruited to TLR4 and then promotes TRIF interaction. This interaction is necessary for activation of IRF3 in the MyD88-independent pathway [32]. TLR4 in this context promotes ‘biased-signalling’ as monophosphoryl lipid A (MPLA), a low toxicity derivative of LPS, preferentially drives TRIF-mediated TLR4 activation [33]. Ligand specificity of TLR4 may thereby directly impact TRAM recruitment. TRAM localises with TLR4 at the plasma membrane and in the Golgi apparatus by myristoylation, as a TRAM variant (TRAM-G2A) with a mutated myristoylation site does not localise in the membrane and is found in the cytosol [34]. TRAM is negatively regulated by transmembrane emp24 domain-containing protein 7 (TMED7), as knockdown of TMED7 increases cytokine RANTES [35]. TMED7 was shown to promote TLR4 trafficking from the ER through the Golgi, forming a stable complex with the ectodomain of TLR4 [36]. Interestingly, TMED7 depletion reduced MyD88-dependent TLR4 activation, however MyD88-independent TLR4 signalling remained functional, indicating a negative role for TMED7 during MyD88-independent TLR4 activation. LPS stimulation co-localises TMED7 with TRAM at late endosomes, where it can inhibit TRAM through the negative regulatory splice variant of TRAM, tram adaptor with GOLD domain (TAG) [37]. TRAM is also phosphorylated by PKCε on serine 16, driving LPS-mediated TRAM activation [38]. TRAM and TRIF have also been recently shown to signal from TLR2. TRIF or TRAM deficient macrophages were found to have decreased production of the chemokine CCL5 upon TLR2 stimulation, and furthermore TRAM co-localised with TLR2 in early endosomes, proposing this signalling event can occur from an intracellular compartment [39].

1.1.4.4 SARM

SARM was initially described as a TLR adaptor protein, however in recent years, many TLR-independent roles of SARM have been described, mainly in neuronal tissues, as mouse SARM plays a role in neuronal morphology and axon degeneration [40], [41]. SARM was discovered to inhibit TRIF in myeloid cells [42], placing SARM on the MyD88-independent pathway. Further myeloid cell roles for SARM have been elucidated, with SARM being required for optimal TLR-induced production of the macrophage chemokine CCL5 [43]. Interestingly, SARM deficient mice are protected from a form of neuronal degeneration termed Wallerian degeneration, whereby axon injury in response to damage or disease promotes localised clearance of damaged axons [44]. Recently, dimerization of the SARM TIR domain has been found to promote NAD⁺ consumption, inducing neuronal degeneration [45]. This is the first non-scaffolding example of a TIR domain-containing adaptor protein. Further work is required to link TIR-dependent scaffolding roles of SARM to TLR signalling.
1.1.4.5 BCAP

BCAP is expressed in B cells, macrophages and Natural Killer (NK) cells and can negatively regulate inflammation via TLRs and NK cell receptors. BCAP was initially described as an adaptor protein, linking B cell receptor (BCR) signalling to PI3K-AKT pathway activation [46]. BCAP has been reported to contain a functional N-terminal TIR homology domain, connecting TLRs to PI3K activation. After B-cell activation, BCAP was found to be recruited to the BCR by Nck, a cytoskeleton regulatory protein. Nck bound to the BCR via the non-immunoreceptor tyrosine-based activation motif (ITAM) phosphorylated tyrosine residue at position 204. Ablation of Nck resulted in decreased B cell survival and antibody responses in vivo [47]. BCAP can also negatively regulate cytokine expression, and furthermore BCAP deficiency in vivo worsens dextran sodium sulphate (DSS)-induced colitis [48].

1.1.5 Mal

A major focus of this thesis is Mal, which was discovered independently in the early 2000’s by Horng et al. [49] and Fitzgerald et al. [17]. Mal is also known as TIR-domain containing TLR adaptor protein (TIRAP), however it shall be referred to as Mal in this text. Following its initial discovery, Mal was quickly identified as a bridging adaptor between TLR4 and MyD88 [50], [51]. Mal also bridges TLR2 to MyD88 and has been recently shown to signal from TLR7 and TLR9, revealing a broader role for Mal in TLR signalling [52] [53].

1.1.5.1 Mal structure

The crystal structure of the Mal-TIR domain was resolved in 2011 to 3.0 Å, highlighting differences between previously crystallised TIR-domains of MyD88 [54], IL-1 receptor accessory protein-like 1 (IL-1RAPL) [55], TLR1, TLR2 and TLR10 [56]. Mal-TIR does not contain the canonical BB loop found in each TIR domain, instead Mal contains an AB loop that is structurally distinct (Figure 1.2) [57]. The Mal-TIR domain was further resolved in 2012 by Lin et al. to 2.4 Å, confirming the extended AB loop and furthermore, the extending AB loop of a Mal homodimer binds both TIR domains of TLR4 and MyD88 simultaneously [58]. Further analysis into the structure of Mal by Bovjjin et al. identified the AB loop as the binding interface for TLR4 and MyD88 binding, using MAPPIT (mammalian protein-protein interaction trap), a mammalian yeast two hybrid method [59]. These studies have highlighted a crucial scaffolding role of Mal in bridging both TIR domains of TLR4 and MyD88 for signal transduction and furthermore the atypical AB loop as a critical interface for Mal activity. Recently, Mal has also been found to form filaments in vitro and furthermore, Mal filaments co-form with filaments
from the TIR domains of TLR4 and MyD88, identifying a highly conserved interaction complex [60].
Figure 1.2 Comparison of the TIR domains of Mal and MyD88 determined by X-ray crystallography

The TIR domain of Mal (A) contains an extended loop between the αA and βB region. In comparison, the TIR domain of MyD88 (B) contains a short canonical AB loop between αA and βB as seen in other TIR-containing adaptors. MyD88 also has a BB loop, which is seen in the X-ray crystallography structure. This image was modified from [58].
1.1.5.2 Mal signalling

Insight into the structure of Mal has elucidated the mechanism by which Mal can simultaneously bridge both TLR4 and MyD88. Mal however, has also recently been identified as an endosomal adaptor, associating with TLR9 by altering its lipid binding specificity [53]. Mal contains a phosphatidylinositol 4,5-bisphosphate (PIP2) binding domain, which upon TLR stimulation can associate with the cell membrane to promote TLR4 signalling. This anchoring effect spatially localises Mal with the TIR domains of TLR4. Mal can also interact with the PI3K class 1A p110δ isoform, which converts PIP2 to PIP3, thereby causing Mal to dissociate from the membrane [61]. To link Mal to TLR9 activation, Bonham et al. cleverly created Mal mutants with variable PI binding domains. Using this approach, they discovered the PI specificity required for Mal signalling from either TLR4 or TLR9. [53]. By replacing the endogenous lipid-binding domain of Mal with a pleckstrin homology domain specific to binding to PI(4,5)P2, they identified that Mal co-localised at the plasma membrane exclusively. Similarly, they also generated a PI(3)P-specific Mal which contains the localization domain of p40-phox, which binds exclusively to PI(3)P on endosomes [62] and SLP2a-Mal, which binds phosphatidylserine (PS). PS is generally found in both cell surface and endosomal membrane compartments and aids trafficking through endosomes [63]. PI(3)P-Mal and SLP2a-Mal were TLR9 responsive with CpG and bound exclusively to endosomes, however PI(4,5)P2-Mal signalled from TLR4 when stimulated with LPS and was exclusively plasma membrane bound. Complementing this finding, Zhao et al. linked the mechanism of Mal membrane dissociation to the PI binding domain (PBM). Phosphorylation of the PBM on Thr28 induced disorder in the helical region of Mal, distorting membrane interactions to limit TLR4 activation [64].

Interestingly, the requirement for Mal in TLR2 signalling remains questioned. Kenny et al. identified that Mal was not required for TLR2 signalling at high ligand concentrations, and furthermore inhibited TLR3 responses [65]. Using synthetic TLR2 agonists Pam3CSK4 (TLR1/2) and macrophage-activating lipopeptide-2 (Malp-2) (TLR2/6), Mal deficient cells had no impairment in signalling. Mal may however, be utilized by TLR2 at low ligand concentrations, as Kenny et al. showed TLR2 stimulation at low ligand concentrations drove the cytokine IL-6 and NF-κB induction in a Mal-dependent manner. This finding was validated by Cole et al. demonstrating Mal-independent TLR2 responses to Francisella tularensis through phagosomal retention [66]. TLR4-driven Mal can also interact with TRAF6 to activate cAMP response element binding protein (CREB) upon LPS stimulation, driving IL-10 production via signalling through Pellino3, p38, MAPK and MK2, independently of NF-κB [67].
A decoy peptide generated from helix D of the TLR2 TIR domain, termed 2R9, has also been found to have potent anti-inflammatory effects through negative targeting of Mal. 2R9 was found to specifically bind to Mal, limiting signalling from TLRs 2, 4, 7 and 9, firmly placing Mal on the TLR9 pathway [52].

TLR-independent roles for Mal have also been studied. Mal has recently been reported to interact with the IFNγ receptor and is required for IFNγ signalling. A well-characterized single nucleotide polymorphism (SNP) which converts serine at position 180 to leucine (S180L) in Mal has been found to promote susceptibility to bacterial infection and decreased cytokine production in response to TLR2 activation. The S180L variant was unable to interact with the IFNγ receptor [68]. Mal promiscuity is summarised in Figure 1.3.
Mal can signal from the IFNγ receptor to drive p38 activation, which can drive responses to *Mycobacterium tuberculosis* infection [53]. Mal is used by TLRs 2, 4 and has recently been shown to signal from TLR9. Mal signals from the cell membrane when bound to PI(4,5)P₂ phospholipid motifs. Mal can also signal from TLR9 when bound to endosomal-rich PI(3)P motifs to drive myddosome assembly for anti-viral responses.
1.1.5.3 Post-translational regulation of Mal

Post-translational modifications of Mal have been well-studied. Mal requires phosphorylation by Bruton’s tyrosine kinase (Btk) on tyrosine 86, 106 and 187 to elicit TLR2 and TLR4 downstream signalling [69]. Both IRAK1 and IRAK4 have been found to phosphorylate Mal on threonine 28, resulting in Mal polyubiquitination and proteasomal degradation [70]. Negative regulation of Mal also occurs by suppressor of cytokine signalling 1 (SOCS1), which mediates polyubiquitination of Mal [71]. Further, cytoplasmic linker protein 170 (CLIP170) has been recently identified as a novel Mal regulator. CLIP170 induces Mal polyubiquitination and subsequent degradation, limiting production of IL-6 and TNFα [72].

Caspase-1 is the executioner Caspase involved in processing of the pro-inflammatory cytokines pro-IL-1β and pro-IL-18 to mature cytokines to drive inflammation [73]. Caspase-1 has been reported to cleave Mal at position D198, resulting in release of a 4kDa fragment that may open a binding domain for MyD88 [74]. The requirement for Mal cleavage however, remains disputed. In 2010, Ulrichts et al. confirmed Mal and Caspase-1 interaction, however the cleavage event does not promote NF-κB signalling, rather inhibits Mal function [75]. Mal is thereby highly regulated to prevent aberrant TLR activation, possibly to dampen cytokine production (Figure 1.4).

Bacterial infection employs complex mechanisms to subvert host defences for colonization and dissemination. Targeting TLR components using protein mimics to the Mal TIR domain have been reported to promote Mal polyubiquitination [76] and degradation [77], promoting bacterial colonization [78]. Brucella has been shown to produce a protein mimic, TcpB, which binds to the TIR domain of Mal, resulting in Mal degradation, subverting TLR signalling. Mal is essential for bacterial clearance, as Mal-deficient mice have higher bacterial burden in the lung, and are unable to clear E. coli, Klebsiella pneumoniae and Bordetella pertussis infection [79], [80] resulting in bacterial dissemination to the spleen and premature mortality. Interestingly, Mal was not required for host defence in a model involving intraperitoneal infection with Salmonella typhimurium. However, Mal-deficient mice had an increased susceptibility to orally-given S. typhimurium [81]. Mal was shown to be required for intestinal barrier integrity, as Mal-deficient mice have increased mucosa blood permeability and altered expression of occludins and claudin-3. Mal can also interact with several protein kinase C (PKC) isoforms, and inhibition of PKC or Mal promoted bacterial invasion due to increased permeability. A global PKC inhibitor was also shown to increase susceptibility to orally given bacteria in mice.
Interestingly, a link between Mal deficiency and adaptive immune response compensation has been identified in a small family of seven individuals. This family presented with a missense mutation in Mal, limiting TLR2 and TLR4 responses, however only one family member presented with a high susceptibility to *Staphylococcus aureus* infection [82]. Israel et al. were able to restore IL-6 production from whole blood of the healthy Mal-deficient individuals using lipoteichoic acid (LTA), the staphylococcal TLR2 agonist. This finding suggested a plasma component could restore TLR2 signalling in response to *S. aureus* infection. The six-healthy patients were found to produce an anti-LTA antibody in their serum. Similar to the effects observed by Kenny et al. [83], TLR2 signalling was restored in the initial unhealthy Mal-deficient patient, using an anti-LTA antibody, allowing prolonged exposure of high ligand concentrations to circumvent the requirement for Mal in TLR2 signalling. Whilst the mechanism for why the individual with Mal deficiency who had chronic *S. aureus* infection remained unanswered, this finding highlights how the adaptive immune system can rescue Mal deficiency through production of sustained ligand concentrations to restore cytokine production, circumventing Mal deficiency. Mal is thereby highly regulated by many distinct pathways and can be subverted during infection.
Figure 1.4 Post-translational regulation of Mal

Mal contains an N-terminal PEST (proline, glutamate, serine threonine) motif, and N-terminal PIP$_2$ binding. Mal is negatively polyubiquitinated by SOCS1 on K15 and K16. IRAK1 and IRAK4 phosphorylate Mal on T28, promoting membrane dissociation and polyubiquitination. Bruton’s tyrosine kinase positively phosphorylates Mal on Y86, Y106 and Y187. Caspase-1 cleaves Mal on D198, producing a 4kDa fragment. Mal contains an atypical ‘AB’ loop motif and binds MyD88 and TLR4. TRAF6 also binds to Mal between position 188-193. This schematic is adapted from [84].
2.1 Redox biology

This project concerns the redox regulation of Mal during TLR4 signalling and I will now give an overview of how reactive oxygen species (ROS) impact on protein function, via modification of cysteines as well as the enzymes that control this process. The cytoplasm of an activated phagocytic cell is a dangerous place due to the accumulation of reactive molecules, such as ROS and reactive nitrogen species (RNS), which can perturb cytoplasmic oxidative balance and confer damaging post-translational modifications on cellular machinery [85]. ROS and RNS are physiologically relevant molecules, being produced as a by-product of cellular metabolism and from professional ROS generators, such as the NAPDH oxidases [86]. Due to the constant presence of these molecules intracellularly, they are continuously scavenged and eliminated by our antioxidant defence system. Oxidative stress occurs when the balance between generation and elimination of endogenous ROS is disturbed, thereby overwhelming our cellular antioxidant defence system, promoting oxidation of protein machinery, leading to cell dysregulation [87]. Thiol groups on cysteine amino acids are the most susceptible amino acids to oxidation and can be post-translationally modified by ROS [88]. Our cells therefore have many safeguards to prevent aberrant oxidation of cellular machinery. Constant monitoring of the redox environment involves glutathione and redox sensitive enzymes such as glutathione transferases (GSTs), superoxide dismutases, peroxidases and catalases [89].

2.1.1 Irreversible redox post-translational modifications

2.1.1.1 Oxidation and Sulfenylation

Due to the presence of a thiol group side chain, cysteine amino acids are the most susceptible to oxidative damage and can thereby act as intracellular ‘sensors’ to oxidative insults. The cysteine thiol has a net charge of $-\text{II}$, which is termed its oxidation state [90]. Thiol groups are influenced by the pKa of neighbouring amino acids and their own thiol group is usually in equilibrium with its own deprotonated thiolate form (Cys-S$^-$) [91]. Cysteines are also structurally important in proteins as they form disulphide bonds to maintain protein tertiary structure [92]. Due to the presence of a thiol group, cysteine is readily oxidized to cystine, a cysteine dimer. Excessive ROS can promote the formation of thiol intermediates on cysteine, termed sulfenic acid, sulfinic acid and sulfonic acid in proteins [93]. Over-oxidation of cysteine residues to sulfonic acid is irreversible and will promote proteasomal degradation. Glutathione can reverse the formation of sulfenic and sulfinic acid in conjunction with reductase (sulfenic) or sulfiredoxin (sulfinic) enzymes resulting in regeneration of native protein structure and generation of nontoxic intermediates as a by-product, such as H$_2$O. Sulfinic acids are initially formed on cysteine thiols due to direct interaction with predominantly hydrogen peroxide [94].
Not all thiols however, are susceptible to sulfenic acid formation, as this is dictated on the thiolate form of cysteine, which is more nucleophilic and thereby more susceptible to oxidation [91]. GSH is thereby a key player in maintaining cysteine redox homeostasis, preventing over-oxidation of protein thiols. A representation of redox modifications discussed below is shown in Figure 1.5.

2.1.2 Reversible redox post-translational modifications

2.1.2.1 Sulfenylamide

A less well known post-translational modification of cysteine thiols is sulfenylamidation, or the formation of a sulfenylamide intermediate. One of the best characterized examples of sulfenylamide formation is on Protein Tyrosine Phosphatase 1B (PTP1B), a cysteine-dependent highly redox sensitive enzyme that negatively regulates insulin signalling. PTP1B is directly inhibited by hydrogen peroxide, promoting insulin secretion [95], [96]. After sulfenic acid formation on PTP1B, the newly formed sulfenic acid was shown to further react with a neighbouring amide nitrogen, yielding a cyclic sulfenylamide. This formation is considered a ‘redox switch,’ as the newly formed sulfenylamide can be rapidly reversed back to the catalytically active thiol form of PTP1B via interaction with other biological thiols. Notably, this modification has been observed for other proteins, indicating that this process may occur in cells as a redox switch [97], [98].

2.1.2.2 Sulphhydration

Hydrogen sulphide (H$_2$S) is an organic molecule found in the body attributed as the most physiological vasorelaxant [99], [100]. Interestingly, mice deficient in the enzyme that produces H$_2$S, cystathionine γ-lyase (CSE), are hypertensive [101]. H$_2$S is reported to form a persulphide bond (R-SSH) on cysteines, and some proteins have been identified to be sulphhydrated, including GAPDH and actin [102]. Mice deficient in CSE have an imbalanced oxidative stress environment, due to reduction in the levels of cellular glutathione [103], and CSE is depleted in Huntington’s Disease tissues, suggesting CSE depletion as a pathological mechanism [104]. H$_2$S has also been reported to affect the DNA binding ability of NF-κB. Sulphhydration of cysteine 38 in the p65 subunit of NF-κB increased the anti-apoptotic activity of NF-κB in mice treated with TNFα, as TNF drives H$_2$S formation [105]. Interestingly, GAPDH sulphhydration was shown to play a role in the response of neurons to IL-1β treatment. IL-1β promotes neuronal damage and memory impairment, and H$_2$S was found to promote this effect. An increase in CSE-mediated H$_2$S production promoted GAPDH sulphhydration, causing
GAPDH to interact with an E3 ubiquitin ligase, Siah [106]. The GAPDH-Siah complex interacted with PSD95, a synaptic scaffolding protein, causing E3-linked polyubiquitination, resulting in PSD95 proteasomal degradation. The decrease in PSD95 in mice promoted IL-1β mediated neuronal damage.

2.1.2.3 Nitrosylation
Cysteine thiols are also susceptible to post-translational modification by RNS, modifying thiol groups to nitrosothiol (-SNO). Little is known about the mechanism by which RNS regulates proteins. RNS has been linked to regulation of ion channels, enzymatic modulation of kinases, oxidoreductases and phosphatases in inflammatory conditions [107], [108]. The removal of the nitrosylated group from thiols has been predominantly shown to be catalysed by the thioredoxin reductase system of enzymes. Interestingly, exogenous compounds, such as S-nitrosoglutathione (GSNO) can promote nitrosylation or glutathionylation of thiol groups. Many factors can influence the possibility of the thiol group being either nitrosylated or glutathionylated, including pKa differences and neighbouring amino acid charges [109]. The parameters which can promote thiol post-translational modifications will be discussed in detail later.

2.1.3 Glutathionylation
Glutathione (γ-L-glutamyl-L-cysteinyl-glycine; GSH) is the fundamental non-protein tripeptide redox agent that detoxifies ROS. Composed of the amino acids glutamate, cysteine and glycine, GSH is utilized within the cell to maintain redox homeostasis [110]. Overproduction of ROS can target the thiol group of cysteine amino acids on proteins. GSH can prevent oxidation of proteins via formation of mixed disulphides to redox-sensitive cysteine amino acids in proteins [111]. Cells contain a variety of redox enzymes, such as glutathione transferases and glutaredoxins, which utilize GSH to detoxify ROS and maintain protein integrity. GSH is predominantly found in the thiol-reduced form, reaching intracellular concentrations of up to 10mM [112], and the ratio of reduced GSH to oxidized GSH (termed GSSG) can be used as a measure of cellular oxidative imbalance [113]. GSH may however not be limited to antioxidant defence, with post-translational modifications placing GSH as both a positive and negative regulator of protein function. GSH is ubiquitously expressed in all cell types and tissues. Aside from cellular detoxification, GSH is also a source of readily accessible cysteine, a rate-limiting amino acid for many cellular processes, including synthesis of GSH itself. The amino acid cysteine is also crucial for maintaining protein tertiary structure via disulphide bond formation [114], [115] and depending on the environment it is in, is highly
redox sensitive. High levels of GSH may thereby have a dual role in acting as a cysteine storage pool for physiological use as well as oxidative defence.
Proteins containing solvent accessible thiols are susceptible to oxidative stress. Thiol groups can become sulfhydrated (H\textsubscript{2}S), nitrosylated (NO), or glutathionylated (SSG) in response to oxidative stress. Oxidation can also induce disulfide bond formation. Over-oxidation of proteins can lead to reversible forms of thiol oxidation states. Sulfenic and sulfinic acid formation can be reversed by redox enzymes including reductase and sulfiredoxins, respectively. Over-oxidation to sulfonic acid is irreversible and leads to proteasomal degradation.

Figure 1.5 Redox mechanisms controlling protein oxidation

Proteins containing solvent accessible thiols are susceptible to oxidative stress. Thiol groups can become sulfhydrated (H\textsubscript{2}S), nitrosylated (NO), or glutathionylated (SSG) in response to oxidative stress. Oxidation can also induce disulfide bond formation. Over-oxidation of proteins can lead to reversible forms of thiol oxidation states. Sulfenic and sulfinic acid formation can be reversed by redox enzymes including reductase and sulfiredoxins, respectively. Over-oxidation to sulfonic acid is irreversible and leads to proteasomal degradation.
2.1.3.1 Glutathione synthesis

GSH is synthesized in a two-step enzymatic process requiring ATP at each step to generate GSH from the amino acids glutamate, cysteine and glycine. The chemistry of GSH is interesting to note, as GSH is resistant to proteolytic cleavage due to the bond between glutamate and cysteine. Departing from the conventional α-carbonyl group bond between amino acids, glutamate and cysteine form a γ-carbonyl group bond. This minor bonding change prevents GSH degradation by conventional mechanisms. Surprisingly, only one enzyme can hydrolyse such a bond, called γ-glutamyltranspeptidase (GGT), which exists extracellularly and cleaves GSH into γ-glutamylamino acid and cysteinylglycine. Cysteinylglycine is further hydrolysed by dipeptidase (DP) into cysteine and glycine and can be imported back into the cytoplasm via amino acid transporters. Before GSH can be regenerated however, γ-glutamylamino acid must be converted to 5-oxoproline, a glutamate precursor. 5-oxoprolinase can subsequently convert 5-oxoproline to glutamate. The rate-limiting step in GSH synthesis occurs via the enzyme glutamate cysteine ligase (GCL), which reacts glutamate with cysteine to form γ-glutamylcysteine. Cysteine is the rate-limiting amino acid in this process and can prevent GSH synthesis if relative abundance is low. Lastly, GSH synthase catalyses the formation of GSH in the cytosol via bonding of γ-glutamylcysteine and glycine. Upon exposure to oxidative stressors such as superoxide or hydrogen peroxide, GSH scavenges ROS and forms GSSG, which can be recycled in the cytoplasm to reduced GSH by glutathione reductase (Figure 1.6).
Figure 1.6 GSH synthesis

GSH is exported from the cell to the extracellular environment via a glutathione transporter (1). Extracellular GSH is targeted by γ-glutamylpeptidase (GGT), transferring the γ-glutamyl component of GSH to an amino acid, forming γ-glutamylamino acid and cysteinylglycine (2). Cysteinylglycine is further cleaved by dipeptidase (DP) into the amino acids cysteine and glycine (3). Transport of the GSH breakdown products re-enters the cell via an amino acid transporter (4). Release of the amino acid component of γ-glutamylamino acid forms 5-oxoproline, which is further converted to glutamate in an ATP-dependent process (5). Newly formed glutamate and cysteine are ligated into γ-glutamylcysteine via glutamate cysteine ligase (GCL) in an ATP-dependent process (6). γ-glutamylcysteine and glycine are ligated via GSH synthase to reform GSH (7).
2.1.4 Enzymes involved in glutathionylation

2.1.4.1 Glutaredoxin

The glutaredoxins are a small family of enzymes consisting of one hundred amino acids involved in glutathione conjugation reactions. Considered to be a part of the thioredoxin family, which will be discussed later, due to the presence of a canonical thioredoxin fold domain, they contain structural elements unique to the glutaredoxins. Glutaredoxins can catalyse ‘monothiol’ or ‘dithiol’ reactions based on their active site motif ‘CXXS’ or ‘CXXC’, respectively [116]. Monothiol reactions are commonly used by glutaredoxins to deglutathionylate substrates. The N-terminal region of glutaredoxins containing the thiol group attacks the substrate in a nucleophilic attack, deglutathionylating the substrate of interest and results in the formation of glutaredoxin-GSH intermediate (Figure 1.7). Glutaredoxin differs from thioredoxins in that glutaredoxins can then be recycled non-enzymatically by one molecule of GSH to GSSG [117]. Dithiol reactions are not as efficient as monothiol reactions, due to the presence of a second cysteine active site residue, which can form a disulphide bond and decrease enzymatic efficiency of glutaredoxin [118].

2.1.4.2 Thioredoxin

Thioredoxins are a highly conserved class of small thermostable enzymes consisting of an active site ‘CXXC’ motif. Thioredoxins retain structural similarity to glutaredoxins, however their substrate specificity is highly variable [119]. Interestingly, thioredoxin has been reported to have anti-inflammatory properties owing to its role in detoxification, and a truncated version of thioredoxin, (Trx-80), has been reported to drive pro-inflammatory M1 macrophage polarization, enhancing atherosclerosis [120]. This class of enzymes shares up to 69% sequence similarity with E. coli thioredoxin [121], however each thioredoxin has been reported to differ in activity, owing to the variation in their ‘thioredoxin-fold’. Indeed, many enzymes have been reported to contain the thioredoxin-fold, including the Glutathione Transferases (GSTs).
Figure 1.7 Regulation of glutaredoxin and thioredoxin mechanisms

Oxidative stress on proteins promotes glutathionylation and disulfide bond formation. Glutaredoxins catalyse the removal of −SSG in a monothiol mechanism, which can be converted to GSSG. GSSG can be further converted back to two molecules of GSH by Glutathione reductase, utilizing NADPH produced from the Pentose Phosphate Pathway. Similarly, thioredoxins can revert oxidative stress on proteins using FADH₂ as a cofactor. Thioredoxin reductase also uses NAPDH generated from the Pentose Phosphate Pathway to regenerate FADH₂.
2.1.5 Glutathione transferases

Glutathione transferases (previously termed Glutathione-S-transferases) play a critical role in the regulation of cellular responses as phase II detoxification enzymes expressed in many organisms. Seven classes of GST have been identified, termed alpha (α), mu (µ), pi (π), sigma (σ), theta (θ), omega (ω) and zeta (ζ), each class containing up to several isoforms [122]. GSTs can be further categorised into three classes, cytosolic, mitochondrial and microsomal (termed MAPEGs). Each class of GST can form functional dimers, by either homo- or heterodimerising. Each GST contains a similar structure, with an N-terminal site that binds glutathione (G-site) and a hydrophobic C-terminal site (H-site) that binds hydrophobic substrate [123]. Two GST classes of enzymes have been studied extensively in cancer and inflammation, namely GST pi and GST omega.

2.1.5.1 Glutathione transferase pi

GSTP has been found to be overexpressed in many drug-resistant cancer cell lines, and is therefore an interesting target in chemotherapy treatment [124]. Indeed, GSTP1 has recently been identified as an inducer of triple-negative breast cancer by regulating glycolytic metabolism by interaction with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Pharmacological inhibition of GSTP in these cells impairs tumorigenesis, highlighting the importance of a glutathionylating enzyme in disease progression [125]. GSTP contains an active site tyrosine residue, which deprotonates GSH into the thiolate form, promoting interaction with an electrophilic substrate [126]. Interestingly, GSTP auto-glutathionylates itself on two cysteines, C47 and C101 [127], which influences the monomeric structure of GSTP, further altering the tertiary structure. This alteration may thereby promote protein interactions with GSTP, as GSTP has been shown to regulate JNK by associating with JNK in unstressed cells. It is conceivable that glutathione can limit this interaction, as Adler et al. identified that UV irradiation or H₂O₂ treatment dissociated GSTP from JNK, which may possibly recruit glutathione to GSTP, altering its tertiary structure by binding C47 and C101, releasing JNK [128]. GSTP has also been shown to play a role in macrophages. LPS treatment has been reported to upregulate GSTP in Raw267.4 cells, inhibiting MAPK, JNK and NF-κB signalling [129]. Further work is required to fully elucidate the role of GSTP in signalling.

2.1.5.2 Glutathione transferase omega

Board et al. originally discovered GSTO1-1 through the Expressed Sequence Tag (EST) database. GSTO1-1 is a particular focus of this study. GSTO1-1 was subsequently cloned and structurally resolved to 2Å [130]. This initial study identified that GSTO1-1 had key variances
from the other characterized GST classes. Most notable, was the effector functions of GSTO1-1 that include thiol transferase activity and dehydroascorbate reductase activity, both of which are characteristic of glutaredoxins. GSTO1-1 contains structural elements separate to the canonical GST fold (Figure 1.8). The active site cysteine residue C32 is found in the N-terminal extension in the α1 region, a placement that has been identified as a motif for glutaredoxins and thioredoxins. These different enzymatic activities make the GSTO class of GSTs interesting targets for enzymatic inhibition, as the GSTO class has been linked to pathogenesis of neurodegenerative disorders, including Alzheimer’s Disease [131].
Figure 1.8 GSTO1-1 structure
Structure of GSTO1-1 homodimer. N-terminal regions are highlighted in navy blue and C-terminal regions are highlighted in red. Helices are shown as cylindrical structures and β-strands are shown as curved arrows. Helices and β-strands are variable in colour for differentiation (A). A simplified diagram of GSTO1-1, highlighting the thioredoxin-like domain containing the PXXP motif and active site C32 residue, and the α-helical domain (B). The structure of GSTO1-1 was modified from [130]; PBD: 1EEM.
2.1.5.3 GSTO1-1 structure and function
There are three GSTO genes, GSTO1 and GSTO2 are expressed on chromosome 10, whereas the third gene on chromosome 3 is a pseudogene. GSTO1-1 denotes the functional homodimer and will be referred to as GSTO1-1 hereon. GSTO1-1 has two structural domains, a GSH-binding domain termed G site, which binds glutathione, and a substrate-binding domain, termed the H-site [130]. GSTO1-1 was also found to have an atypical opening, forming a V-shape that is more exposed than other GSTs. This opening is considered relatively large, which could potentially facilitate interacting proteins and allow for substrate specificity. GSTO1-1 does not reduce model substrates of other GST family members and therefore despite its name does not appear to have typical GST enzymatic activity. Experiments testing the activity of GSTO1-1 identified that, bar some relatively minor activity towards the substrate 1-chloro-2, 4-dinitrobenzene, GSTO1-1 had little affinity to process a wide range of characteristic GST substrates from the alpha, mu, pi and theta classes [130]. Due to the lack of compatibility of GSTO1-1 with known substrates of GSTs, in vitro analyses identified that GSTO1-1 catalyses the reduction of phenacyl glutathione to acetophenones, the first specific reaction linked to GSTO1-1 [132], and recognized 4-nitrophenacyl glutathione (S-4NPG) as a specific substrate, with no reactivity towards GSTO2-2 [133]. A proposed mechanism of GSTO1-1 catalysis would thereby involve a glutathionylated substrate binding to the H-site, exposing substrate-bound GSH to GSTO1-1, allowing formation of a mixed disulphide through transfer of substrate GSH to Cys32, which could then be recycled from GSTO1-1 to release reduced GSH and reform active GSTO1-1. GSTO1-1 would therefore appear to deglutathionylate substrates, acting as a glutaredoxin.

GSTO1-1 was shown to catalyse the deglutathionylation of thiol-containing peptide in vitro. A C32A mutant GSTO1-1 was inactive [134]. Further evidence for deglutathionylation activity of GSTO1-1 stemmed from the use of T47-D cells, which are naturally deficient in GSTO1-1. By plasmid-mediated overexpression of GSTO1-1 and catalytically inactive C32A GSTO1-1, they identified a significant reduction in levels of total glutathionylation, measured as nanomoles of GSH/mg of protein, by GSTO1-1 and not C32A GSTO1-1. In the same study, due to the large difference in glutathionylation status of the cell, mass spectrometry was then employed to identify specific proteins that undergo deglutathionylation in the presence of GSTO1-1. Of which, β-actin was one of the highest hits for deglutathionylation. The glutathionylation status of β-actin affects its physiological activity [134]. Deglutathionylation of β-actin was shown to affect the globular to filamentous (G/F) ratio of β-actin, with GSTO1-1 presence resulting in decreased levels of G-actin, linking GSTO1-1 to cytoskeletal...
rearrangement. The removal of GSH from proteins thereby highlights a dynamic role of GSH in cellular function (Figure 1.9). The high levels of GSH within the cytosol may keep β-actin basally glutathionylated as G-actin, and upon stimulation with agents such as LPS, macrophages might remodel G-actin into F-actin through the activity of GSTO1-1 deglutathionylation.
Figure 1.9 GSTO1-1 Regulates Actin Rearrangement
Globular actin (G-actin) is glutathionylated basally. Upon stimulation or oxidative stress, GSTO1-1 catalyses the removal of GSH from G-actin, promoting oligomerisation of G-actin to filamentous actin (F-actin).
Caspase-1 is another possible substrate for GSTO1-1 due to glutathionylation being known to inhibit its activity [135]. GSTO1-1 might remove the GSH to activate Caspase-1, leading to processing of pro-IL-1β, pro-IL-18 and pyroptosis via inflamasomes (Figure 1.10).
Figure 1.10 GSH-dependent inhibition of Caspase-1 activity

(Left) Production of ROS from mitochondria drives NLRP3 inflammasome activation, producing mature IL-1β and IL-18 via Caspase-1 activity. (Right) Over time, ROS accumulation leads to GSH binding to Cys362 and Cys397 on Caspase-1, inhibiting Caspase-1 catalytic activity. Oxidizing agents, such as superoxide and hydrogen peroxide, can induce glutathionylation of Caspase-1, preventing cleavage of pro-IL-1β and pro-IL-18.
2.1.5.4 GSTO1-1 and NF-κB translocation

NF-κB, one of the most widely characterized transcription factors that up-regulates a plethora of inflammatory genes, has been shown to require GSTO1-1 for nuclear translocation in macrophages. NF-κB has previously been reported as a redox sensitive protein. Oxidation of cys38 in the p-65 subunit of NF-κB and cys62 in the p-50 subunit will prevent DNA binding [136]. Menon et al. examining the effect of GSTO1-1 deficiency via knockdown approaches in macrophages discovered that the absence of GSTO1-1 prevented nuclear translocation of NF-κB upon LPS stimulation [137]. This indicates that NF-κB may require GSTO1-1 for dissociation from IκBα, possibly by deglutathionylation. This would place GSTO1-1 as a potential downstream effector of TLR4 signalling. However, components of the TLR4 signalling pathway are possibly deglutathionylated by GSTO1-1 allowing them to become active, which would promote NF-κB activation.

2.1.5.5 GSTO1-1 as an autophagy gatekeeper

GSTO1-1 has been recently reported to play a key role in cell survival following Aflatoxin B1 (AFB1) treatment of macrophages, a mycotoxin considered to be the most potent carcinogen found in contaminated food, with powerful immunosuppressive effects [138]. GSTO1-1 has previously been linked to apoptosis regulation, preventing apoptosis via the activity of JNK1 [139]. Interestingly, Paul et al. have identified a cytoprotective role for GSTO1-1 in AFB1-treated macrophages. A 6hr treatment of AFB1 was reported to induce an elevation in ROS levels from mitochondria, resulting in loss of mitochondrial membrane potential and subsequent JNK mediated Caspase-dependent cell death [140]. GSTO1-1 was identified as the causative link between autophagy and apoptosis, as siRNA mediated knockdown of GSTO1-1 mimicked 6hr AFB1 treatment results, promoting apoptosis. This suggests inhibiting GSTO1-1 increases ROS production, which may lead to cytotoxic effects. These data indicate that GSTO1-1 plays a role in cell survival via autophagy induction by agents such as AFB1, however the exact mechanism by which GSTO1-1 exerts cytoprotective effects remains unclear. Increased ROS and NF-κB activity was found to promote mitochondrial fission in hepatocellular carcinoma, enhancing autophagy and preventing apoptosis [141]. GSTO1-1 activity in response to xenobiotics may therefore result in GSTO1-1 mediated NF-κB translocation and may thereby promote autophagy. Further studies will be required to verify the role of GSTO1-1 in autophagy induction and if other xenobiotics could induce similar autophagy-related cell responses.
2.1.5.6 GSTO1-1 and metabolic reprogramming in macrophages

The knockdown of GSTO1-1 in J774.1A cells decreased expression of NADPH oxidase 1 (NOX1) after LPS stimulation. NOX1 is one of the main producers of ROS along with mitochondria, and similar results were obtained utilizing the GSTO1-1 inhibitor ML175. The authors suggested that GSTO1-1 acts upstream of NOX1 on the TLR4 pathway [137], and further studies published by the same authors identified a critical role for GSTO1-1 in the modulation of macrophage metabolism via LPS. Indeed, LPS activation will skew the phenotype of macrophages towards a pro-glycolytic state [142], however this switch is significantly attenuated in GSTO1-1 deficient cells. In addition to the effect on NOX1, GSTO1-1 deficient cells did not increase mitochondrial ROS generation with LPS treatment compared to a significant ROS enhancement in control cells, implicating GSTO1-1 in mitochondrial ROS production [143]. Assessing the oxidative tone of stressed cells can give insight into the effect of ROS by measuring the flux between reduced and oxidized glutathione (GSH/GSSG) [144]. Control cells had a significant drop in GSH:GSSG ratio compared to GSTO1-1 deficient cells, which is suggestive of a lack of oxidative stress in the GSTO1-1 deficient cells. Furthermore, The JC-1 ratio, a measurement of mitochondrial membrane potential, remained unchanged in GSTO1-1-deficient cells compared to control cells which exhibited decreased mitochondrial membrane potential with LPS treatment. The alteration in mitochondrial membrane potential has an associated relationship with the imbalance of the AMP:ATP ratio, a major readout of intracellular energy status, which is controlled by AMP-activated protein kinase (AMPK) [145]. AMPK phosphorylation is indicative of an activation signal, and LPS treatment of non-silencing controls diminished p-AMPK in comparison to GSTO1-1 deficient cells. This indication of altered energy metabolism could have a direct impact on the glycolytic phenotype of GSTO1-1 deficient cells. Indeed, the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of LPS-treated GSTO1-1 deficient cells and control cells were examined as markers for altered glycolysis or oxidative phosphorylation respectively. Interestingly, GSTO1-1 deficient cells did not observe the steady increase in ECAR, which is representative of increased glycolysis. Contrastingly, the reported decrease of OCR observed in LPS-treated macrophages was abrogated in GSTO1-1 deficient cells, implying that these cells do not respond to LPS treatment. Succinate accumulates in LPS-treated macrophages, which stabilizes HIF1α to promote IL-1β levels [146]. The build-up of succinate and citrate was abolished in GSTO1-1 deficient cells, concomitant with decreased HIF1α production. These data clearly place GSTO1-1 as a key modulator of LPS-responsiveness within macrophages. GSTO1-1 was also found to be essential for macrophage phagocytosis, with GSTO1-1 deficient cells having lower efficacy in ingestion of fluorescently labelled pathogenic
particles. The many defects in GSTO1-1 deficient macrophages suggest that it is targeting an early or global event in TLR4 signalling, since it affects all TLR4 responses, be they NF-κB activation, induction of NOX1, or metabolic programming impairment in the absence of GSTO1-1. The varied roles of GSTO1-1 are summarised in Figure 1.11.
Figure 1.11 A GSTO1-1 axis in macrophage signalling

GSTO1-1 protects macrophages from Aflatoxin B1-induced apoptosis. GSTO1-1 is also essential for LPS action in macrophages, including translocation of NF-κB to the nucleus, increased glycolysis, elevated TCA cycle intermediate succinate levels, NOX-1 activation, and subsequent ROS induction. GSTO1-1 is therefore likely to regulate components in the TLR4 signalling pathway.
2.1.6 Cytokine release inhibitory drugs target GSTO1-1

In 2003, Laliberte et al. identified sulfonurea containing compounds called cytokine release inhibitory drugs (CRIDs) as potential inhibitors of the omega class GSTs. Initially, CRIDs were found to limit processing of IL-1β in human monocytes and interestingly, mice given oral CRID had attenuated production of IL-1β in response to LPS and ATP, with no effect on IL-6 or TNFα [147]. Further studies identified GSTO1-1 as a potential CRID target by affinity labelling of radioactive CRID1 and CRID2. Recombinant GSTO1-1 had incorporated radiolabelled CRID2 and mutagenesis of the active site cysteine 32 in GSTO1-1 abolished CRID2 interaction. GSTO1-1 was therefore considered a potential target for the class of CRID compounds. A definitive role for GSTO1-1 in the processing of IL-1β still remains unexplored. GSTO1-1-deficient mice were recently shown to have reduced serum IL-1β production in response to LPS challenge in vivo, possibly indicating a role for GSTO1-1 in IL-1β activation and secretion [148]. Recently, a derivative of CRIDs, termed MCC950, has been found to potently block the activation of the oligomeric IL-1β processing complex, termed the inflammasome [149]. Since this discovery, many stressors and DAMPs have been linked to activation of the inflammasome. The inflammasome and its regulation by redox mechanisms will now be discussed.

2.1.6.1 The Inflammasome

Activation of macrophage TLRs drives assembly of signalling competent platforms termed inflammasomes, which all share core proteins to drive processing of IL-1β and IL-18. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome is a multi-component assembly of adaptor and effector proteins highly expressed in myeloid cells, consisting of NLRP3, adaptor protein apoptosis-related speck-like protein (ASC), NIMA related kinase 7 (NEK7) and Caspase-1 [150] [151, 152].

The discovery of the NLRP3 inflammasome in 2002 by Jürg Tschopp identified the mechanism of IL-1β and IL-18 cleavage [153]. In this seminal study, they identified the components of the inflammasome in a cell free system and further linked NLRP3 to the autoimmune disease Muckle-Wells syndrome [154]. The NLRP3 inflammasome is the best characterised inflammasome and has also been linked to metabolic disorders, as NLRP3-deficient mice are hypersensitive to insulin when given a high-fat diet [155], and furthermore insulin sensitivity is increased in obese type 2 diabetic patients who undergo calorie restriction and exercise due to decreased levels of NLRP3 [156].
NLRP3 senses an array of DAMPs including ATP, the pore forming ionophore Nigericin and crystalline substances. Activation of the NLRP3 inflammasome will drive pro-IL-1β and pro-IL-18 processing to further drive inflammation and promote a form of cell death termed pyroptosis. NLRP3 assembly primes Caspase-1 auto-catalytic activation. Further, Caspase-1 activation has been linked to activation of the recently described ‘non-canonical inflammasome’, which will be discussed.

Owing to the complexity of inflammasome sensing and regulation, NLRP3 can be considered an intracellular safeguard to sense and limit altered metabolite production. The range of activators of NLRP3 appears broad, however distinct inflammasomes have since been discovered to respond to other cellular insults. The absent in melanoma (AIM2) inflammasome senses intracellular bacterial and viral DNA [157]. The NLRC4 inflammasome senses intracellular flagellin and the type III secretion system (T3SS) [158], a needle complex 60-80nm in length from gram-negative bacterial species via NLR family apoptosis inhibitory proteins (NAIPs) [159] to trigger IL-1β production. NAIP1 recognises the T3SS needle protein [160], NAIP2 recognises the T3SS inner rod protein, and NAIP5 and NAIP6 recognise flagellin to drive NLRC4 activation [161]. A graphical representation of the best characterised inflammasomes is shown in Figure 1.12.
Figure 1.12 The NLRC4, AIM2 and NLRP3 Inflammasomes

Activation of TLR or TNF receptor signalling or ‘Signal 1’ drives translocation of NF-κB to the nucleus to transcribe inflammasome components and inflammatory cytokines pro-IL-1β and pro-IL-18. Direct sensing of flagellated bacteria, dsDNA or DAMPs drive activation of the NLRC4, AIM2 and NLRP3 inflammasomes, respectively, driving Caspase-1 activation.
2.1.6.2 The Non-Canonical Inflammasome

Whilst the canonical inflammasomes have been extensively characterised, a recent discovery has indicated a non-canonical inflammasome exists to directly sense LPS from gram-negative bacteria. LPS is well-characterised to induce septic shock in vivo via Caspase-1-dependent IL-1β secretion. Recently however, Caspase-11 was identified as the key executioner Caspase in LPS-induced septic shock models in vivo, as a mouse strain 129S6, which harbours a polymorphism in the Caspase-11 gene locus, is much more resistant to LPS-induced septic shock [162]. Broz et al. generated Caspase-1- and Caspase-11-deficient mice and identified that Caspase-1 deficiency renders mice more susceptible to S. typhimurium infection, indicating that Caspase-11 activation drives the inflammatory phenotype associated with infection in vivo [163].

Further studies have confirmed a role for Caspase-11 during endotoxin shock and found that the Caspase-11 CARD domain binds to the lipid A moiety of LPS to trigger non-canonical inflammasome activation [164]. Caspase-11 activation ultimately results in cleavage of the pore forming protein Gasdermin D (GSDMD), inducing pyroptosis. Further, Caspase-11 has been reported to act upstream of NLRP3 activation during intracellular LPS sensing, promoting Caspase-11-dependent NLRP3 activation and IL-1β secretion [165].

Caspase-11 can be induced by both TLR4 and Interferon signalling [166]. Two recent studies have identified a TLR4-independent but Caspase-11-dependent role during septic shock. Both studies concluded that TLR4 is utilised to induce Caspase-11 gene expression, as Caspase-11-deficient mice were resistant to LPS-induced septic shock when primed with TLR3 agonist Poly I:C and further treated with excessive LPS. TLR4-deficient mice primed with Poly I:C however, were highly susceptible to LPS challenge, resulting in mortality. These findings importantly place Caspase-11 as an executioner of septic shock, independent of TLR4 activation [167, 168]. The NLRP3 inflammasome is a particular focus of this thesis and the crosstalk between NLRP3 and Caspase-11 will be explored.

2.1.6.3 Endogenous regulators of NLRP3

As mentioned above, NLRP3 senses an array of DAMPs to trigger Caspase-1 activation and IL-1β processing. Due to the ability of NLRP3 to drive systemic inflammation, NLRP3 must be highly regulated. Fatty acids such as palmitate have been shown to activate NLRP3 [169]. This may be one reason why obesity drives inflammation. More recently, the ketone body β-hydroxybutyrate (BHB) has been shown to suppress the activation of the NLRP3
inflammasome when stimulated with urate crystals, lipotoxic lipids and ATP in macrophages. Ketone bodies are made from free fatty acids during starvation. BHB was shown to specifically target the NLRP3 inflammasome. BHB had no impact on canonical Caspase-1 activation from AIM2 and NLRC4 inflammasomes, nor the non-canonical Caspase-11 inflammasome [170]. BHB targeted potassium (K⁺) efflux, resulting in reduced ASC oligomerisation and reduced NLRP3 inflammasome stability. A ketogenic diet, which would increase BHB levels endogenously, also attenuated NLRP3-mediated Caspase-1 activation and pro-IL-1β processing in in vivo mouse models of Muckle-Wells syndrome, urate crystal-induced peritonitis and familial cold auto-inflammatory syndrome [170]. A ketone diet was also shown to upregulate antioxidant pathways and limit ROS generation thereby limiting NLRP3-mediated inflammation [171] (Figure 1.13).

Interestingly, a ketogenic diet has been reported to alleviate gout-induced inflammation, (which is driven by uric acid, a product of purine metabolism), without impacting on bacterial clearance during infection. BHB blocked both mouse and human gout in neutrophils and macrophages. BHB plays a dual role by limiting the priming and assembly of NLRP3 in neutrophils, as BHB decreased phosphorylation of NF-κB, decreasing inflammasome assembly components [172]. Overall, there may be a balance between fatty acids as activators and ketone bodies as inhibitors of NLRP3, with obesity promoting and starvation limiting inflammation via its effects on NLRP3.
Figure 1.13 Dietary metabolites regulate NLRP3 activation via K+ efflux

TLRs drive the transcription of NLRP3 inflammasome components via NF-κB nuclear translocation and promotes NLRP3 inflammasome assembly. Extracellular ATP, sensed by the P2X7 receptor, and MSU crystals trigger NLRP3 inflammasome activation. The ketone body β-hydroxybutyrate produced during starvation periods limits NLRP3 inflammasome activation, blocking ATP and MSU-mediated pro-IL-1β and pro-IL-18 processing. β-hydroxybutyrate targeted K+ efflux, decreasing ASC oligomerisation with NLRP3.
Recent data have further emphasised the link between NLRP3 and obesity. NLRP3-deficient mice are resistant to diet-induced metabolic syndrome symptoms and nephropathy, further highlighting a connection between inflammasome activation and lipid metabolism [173]. Cholesterol catabolism results in the production of amphipathic bile acids, which function as detergents to promote intestinal nutrient absorption and homeostasis [174]. A new role for bile acids in the regulation of the NLRP3 inflammasome has been described. Bile acids specifically target NLRP3 and inhibit inflammasome activation through a TGR5-cAMP-PKA axis [175]. TGR5 activation by bile acids triggered NLRP3 ubiquitination via PKA-mediated phosphorylation of Ser291 on NLRP3. Bile acids also suppressed LPS-induced septic shock \textit{in vivo}. In tandem with other studies targeting NLRP3 in type 2 diabetes, a high fat diet model which induces NLRP3-dependent insulin resistance and type 2 diabetes was abolished with bile acid treatment (Figure 1.14).

Prostaglandin E\textsubscript{2} (PGE\textsubscript{2}) is a widely characterised bioactive lipid derived from arachidonic acid with potent pro-inflammatory effects [176-178]. PGE\textsubscript{2} has been identified to regulate NLRP3-mediated IL-1\beta maturation endogenously. In human macrophages, PGE\textsubscript{2} inhibits NLRP3 activation through the EP4 receptor, increasing intracellular cAMP levels [179]. In a more recent study in murine macrophages, PGE\textsubscript{2} has been identified to promote pro-IL-1\beta processing. PGE\textsubscript{2} can signal through the EP2 receptor, and ablation of the EP2 receptor decreases IL-1\beta maturation in an NLRP3-dependent manner [180]. Furthermore, in primary human monocytes, PGE\textsubscript{2} was shown to boost processing of pro-IL-1\beta by NLRP3. The role of PGE\textsubscript{2}-mediated PKA activation on NLRP3 activity however, is not fully elucidated. It would be interesting to examine the effects of PGE\textsubscript{2}-mediated PKA activation on potential phosphorylation of NLRP3 as seen with bile acids. Overall, the evidence suggests that PGE\textsubscript{2} will limit NLRP3 and this may be part of its anti-inflammatory tissue protective effects.
Bile acids produced from cholesterol catabolism are sensed by the TGR5 receptor, increasing intracellular cAMP levels, mediating PKA activation. PKA phosphorylates NLRP3 in the NACHT domain on Ser291. Phosphorylation of NLRP3 on Ser291 promotes K48 and K63-linked polyubiquitination and NLRP3 degradation, limiting NLRP3 inflammasome activation.

Figure 1.14 Bile acids promote NLRP3 phosphorylation and degradation

Bile acids produced from cholesterol catabolism are sensed by the TGR5 receptor, increasing intracellular cAMP levels, mediating PKA activation. PKA phosphorylates NLRP3 in the NACHT domain on Ser291. Phosphorylation of NLRP3 on Ser291 promotes K48 and K63-linked polyubiquitination and NLRP3 degradation, limiting NLRP3 inflammasome activation.
2.1.6.4 Redox regulation of the NLRP3 inflammasome

As stated above, glutathionylation has been linked to negative regulation of Caspases. Both Caspase-1 and Caspase-3 are negatively regulated by GSH, limiting their proteolytic capabilities [181, 182]. Glutathionylation of NLRP3 has recently been identified in macrophages co-treated with LPS and curcumin, an anti-inflammatory compound [183]. Interestingly, the deglutathionylation of NLRP3 was associated with increased interaction of glutathionylated Caspase-1, suggesting the NLRP3 inflammasome assembles in tandem with enzymatically inhibited caspase-1, possibly to prevent activation of the NLRP3 inflammasome. This finding warrants further research, as GSH may itself limit inflammasome activation. Oxidative stress could thereby induce NLRP3 activation, triggering deglutathionylation of Caspase-1 to promote IL-1β processing.

Recent evidence has identified a new component of the inflammasome, NEK7, a serine-threonine kinase previously associated with mitosis [152]. Mice deficient in NEK7 could not form competent NLRP3 inflammasomes in vivo. NEK7 bound to the LRR of NLRP3, dependent on generation of mitochondrial ROS. This finding presents NEK7 as a potential ROS-sensing inflammasome stimulus, which may detect increasing ROS levels to trigger inflammasome assembly. It would be interesting to elucidate if ROS generated from mitochondrial-independent sources could also act as a NEK7 trigger, or if NEK7 is exclusively sensing mitochondrial ROS. Concurrently, NEK7 was also identified by He et al. to drive NLRP3 activation, and further attributed NEK7 activation to K⁺ efflux, suggesting NEK7 acts as both an ion and ROS sensor [151].

The efflux of cytosolic K⁺ is a known trigger for NLRP3 inflammasome activation [184], and furthermore the chloride intracellular channel (CLIC) proteins CLIC1 and CLIC4 have been shown to impact on Il1β transcription and NLRP3 inflammasome activation [185]. CLICs have been shown to be activated downstream of K⁺ efflux and ROS. Mitochondrial ROS has been shown to drive translocation of CLICs to the plasma membrane where they cause chloride efflux. The chloride efflux was then shown to drive NEK7-NLRP3 activation [186]. This study therefore provides a new insight into ROS as a driver of NLRP3. Interestingly, a known activating NLRP3 variant in cryopyrin-associated periodic syndrome (CAPS)-associated macrophages, R258W, also required NEK7 for chronic activation, independent of K⁺ efflux [151].
Mechanisms to regulate NLRP3 post-transcriptionally have also been described. Tristetraprolin (TTP), an RNA-binding protein, binds to the 3'-untranslated region (UTR) of NLRP3 in human macrophages, repressing NLRP3 expression. Knockdown of TTP increased NLRP3 activation, but not AIM2 or NLRC4 activation, and subsequently increased Caspase-1 activation and IL-1β cleavage [187]. Regulation of NLRP3 by TTP may also be impacted by levels of ROS produced by the metabolic shift in macrophages upon PAMP recognition. TTP contains redox-reactive cysteines which, when oxidised, result in inhibition of TTP RNA-binding capacity [188]. Thus, TTP oxidation may act as a feedback mechanism, linking increased ROS levels produced during metabolic reprogramming to rapid NLRP3 transcription.

Ugonin U, a natural flavonoid derived from Helminthostachys zeylanica has been shown to drive superoxide generation via the activity of Phospholipase C (PLC) [189]. In human monocytes, Ugonin U stimulated NLRP3 activation by triggering mitochondrial ROS generation. Ugonin U-mediated activation of PLC was found to trigger release of intracellular calcium (Ca²⁺), and negative targeting of Ca²⁺ release inhibited the inflammatory effects of Ugonin U [190]. Furthermore, scavenging of mitochondrial ROS by the tool compound MitoTEMPO limited the effects of Ugonin U, firmly placing mitochondrial ROS as a determinant in NLRP3 inflammasome activation.

Lipid metabolism has also been linked to NLRP3. Moon et al. identified a role for the uncoupling protein-2 (UCP2) in NLRP3 activation. UCP2-deficient mice were found to have overall improved survival in sepsis models, concomitant with impaired fatty acid synthesis, and decreased IL-1β and IL-18 levels. UCP2 was identified as a driver of fatty acid synthase (FASN), a key enzyme involved in fatty acid synthesis. UCP2-deficient mice had reduced lipid synthesis, concomitant with decreased NLRP3-mediated Caspase-1 activation. Inhibition of FASN by chemical inhibitors also suppressed NLRP3 activation and NLRP3 and IL1β transcription, linking fatty acid synthesis as a key driver of both inflammatory gene transcription and NLRP3 activation [191]. In a separate and somewhat contradicting study, Moon et al. also identified the ROS producer NADPH Oxidase 4 (NOX4), an enzyme involved in superoxide anion formation, as an NLRP3 activator through fatty acid oxidation. NOX4-deficient mice had reduced levels of the mitochondrial fatty acid oxidation enzyme carnitine palmitoyltransferase 1A (CPT1A), resulting in decreased NLRP3 inflammasome activation, with no effect on NLRC4 or AIM2 inflammasomes. Inhibition of fatty acid oxidation by the drug etoxomir also limited NLRP3 activation, identifying another prominent role of an altered oxidative environment inducing NLRP3 activation [192]. Production of ROS is crucial as a
microbicidal mechanism, however the consequences of producing an oxidative environment lies firmly on antioxidant capacity, the lack of which can damage cell machinery, driving inflammation through mechanisms which can activate the NLRP3 inflammasome.

2.1.6.5 Glycolysis and NLRP3 activation

Activation of TLRs will alter metabolism in macrophages causing a shift to aerobic glycolysis. Inhibition of glycolysis by a glucose analogue, 2-deoxyglucose, was shown to suppress LPS-induced IL-1β mRNA production in macrophages, with a strong increase in the Krebs cycle intermediate succinate [146]. Limiting glucose uptake can trigger glycolytic stress, decreasing the amount of reducing equivalents required for homeostasis. Interestingly, a compound termed GB111-NH₂, induces NLRP3 inflammasome formation by inhibiting glycolytic enzymes GAPDH and α-enolase, impairing NADH production and driving mitochondrial ROS production [193]. This provides a curious contradiction. Inhibition of glycolysis with 2-deoxyglucose appears to block induction of IL-1β mRNA, whereas targeting of GAPDH and α-enolase increases NLRP3 activation and IL-1β secretion. The biological significance of this is not clear but warrants further investigation.

Energy metabolism is under constant surveillance by redox/nutrient sensor mammalian target of rapamycin complex I (mTORC1) to regulate protein synthesis. However, unlike the study with GB111-NH₂, mTORC1-mediated glycolysis was shown to drive NLRP3 inflammasome activation. Inhibiting mTORC1 by torin1, a selective mTOR inhibitor, suppressed NLRP3 activation both in vitro and in vivo [194]. Furthermore, deficiency of Raptor, an mTORC1 binding partner, suppressed Caspase-1 activation and glycolysis during NLRP3 inflammasome activation, with mTORC2 deficiency having no effect observed on NLRP3 activation. Hexokinase-1, the first enzyme in glycolysis which converts glucose to glucose-6-phosphate, provided a mechanistic link between mTORC1 and NLRP3 activation, as depletion of glucose in the media of respiring macrophages blocked Caspase-1 activation during NLRP3 inflammasome activation. Interestingly, Hexokinase-1 knockdown also suppressed NLRP3 activation by extracellular ATP, linking energy sensing and active glycolysis as pre-requisites for NLRP3 inflammasome activation [194]. Inhibition of glycolysis by 2-deoxyglucose however, also triggers a decrease in intracellular ATP levels, which is sensed by NLRP3, and drives inflammasome activation. 2-deoxyglucose dose-dependently decreased intracellular ATP, with a concomitant increase in IL-1β secretion [195]. One possible explanation to this ATP and 2-deoxyglucose paradox may be due to imbalanced energy sensing as a trigger for inflammasome activation. Under resting conditions, hexokinase is tethered to the mitochondria
via Akt activity [196]. Hexokinase may also play a role in ATP depletion-mediated NLRP3 activation, as Akt activity decreases during ATP starvation [197], which may promote untethering of hexokinase from the mitochondria, without need for signal 2 to drive NLRP3 activation.

A more recent study has identified hexokinase as an intracellular PRR for N-acetylglucosamine, a glucose-derivative peptidoglycan utilised by gram positive bacterial cell walls. Hexokinase binding to N-acetylglucosamine was sufficient to induce dissociation of hexokinase from mitochondria, promoting NLRP3 inflammasome activation [198] (Figure 1.15).

2.1.6.6 Redox regulation of NLRP3 via mitochondrial reprogramming

The Krebs cycle has garnered much excitement in the field of immunology in recent years as Krebs cycle intermediates directly impact on cytokine production, including the production of pro-IL-1β through succinate accumulation [146], targeting of complex I of the mitochondrial electron transport chain to boost IL-10 [199], and targeting complex II to prevent succinate oxidation, limiting ROS-induced pro-IL-1β [200]. (Figure 1.15). Oxidised mitochondrial DNA itself acts as a second signal to drive NLRP3 inflammasome activation [201]. Succinate has been a focus, being shown to stabilise HIF1α to promote NLRP3 activation. Such activation of NLRP3 exacerbated tissue damage and promoted inflammation, indicating a possible prominent role of NLRP3 hyper-activation specifically in the context of joint inflammation in rheumatoid arthritis (RA) [202]. Under normoxic conditions Succinate dehydrogenase (SDH) converts succinate to fumarate, another Krebs cycle intermediate. A role for fumarate in NLRP3 regulation has also been described. Dimethyl fumarate (DMF) limits NLRP3 activation in a model of Dextran sulfate sodium (DSS) colitis. Administration of DMF prevented intestinal shortening, promoting weight gain comparable to control levels. Furthermore, DMF reduced both production and activation of NLRP3 [203]. Further work is required to examine the role of fumarate in inflammatory signalling. It is intriguing that succinate and fumarate can have profound inflammatory and anti-inflammatory activities, respectively.

S. typhimurium infection is sensed by the NLRC4 inflammasome through recognition of flagellin [204], triggering inflammasome activation via phosphorylation of NLRC4 [205], with delayed activation of NLRP3 [206], suggesting a mechanism of NLRP3 evasion. Indeed, upon infection *S. typhimurium* downregulates flagellin expression to avoid NLRC4 entirely. During infection with *S. typhimurium*, the bacteria’s own Krebs cycle enzymes aconitase, isocitrate lyase and isocitrate dehydrogenase have been shown to inhibit NLRP3 activation. *S.
typhimurium deficient in these enzymes induced NLRP3 activation rapidly in macrophages [207]. Aconitase-deficient S. typhimurium were unable to drive acute systemic virulence and failed to persist in chronic infection. Each mutant was identified to require a ROS signal to drive NLRP3 activation, as mice overexpressing a mitochondrial-located human catalase, which degrades mitochondrial H2O2 thereby limiting ROS, failed to induce NLRP3 activation upon S. typhimurium infection. However, mitochondrial ROS is not the only inducible source of ROS. Macrophages infected with the protozoan parasite Leishmania amazonensis also trigger NLRP3 inflammasome activation via ROS induced by the professional ROS generator NADPH oxidase [208], as NADPH oxidase inhibition prolonged L. amazonensis infection, adding further complexity into the source of ROS and disease outcomes.

Conflicting evidence arises when mitochondrial ROS is considered an NLRP3 inflammasome stimulus. Some researchers identify ROS as a regulatory signal [209, 210], whereas others indicate ROS itself as a weak signal to drive inflammasome activation and instead stems from mitochondrial dysfunction, triggering cardiolipin interaction with NLRP3 due to translocation from the inner to outer mitochondrial membrane, independent of ROS (Figure 1.15) [211]. Proximity of NLRP3 to mitochondria is also considered a determinant in inflammasome activation. The mitochondrial antiviral signalling protein MAVS has been shown to directly interact with NLRP3 and promote its oligomerisation, which may facilitate ROS activation by mitochondrial localisation [212]. Activation of Caspase-1 by both NLRP3 and AIM2 inflammasomes has been identified to promote mitochondrial damage and limit mitophagy through cleavage of Parkin, increasing the levels of intracellular ROS, which may in turn act as a positive feedback mechanism to promote inflammasome activation and pyroptosis [213].
Figure 1.15 Altered mitochondrial dynamics impact NLRP3 activation

Under resting conditions (Left), macrophages utilize glucose via glycolysis to produce pyruvate in the cytosol. Pyruvate undergoes a series of decarboxylation reactions to form Acetyl CoA, which is used as fuel to drive the Krebs cycle and ATP production. Hexokinase remains tethered to the mitochondrial membrane and cardiolipin is retained in the inner mitochondrial membrane. LPS activated macrophages (Right), undergo metabolic reprogramming, promoting succinate oxidation by succinate dehydrogenase, generating ROS which promotes HIF1α stability and transcription of IL-1β mRNA. Damaged mitochondria also transport cardiolipin to the outer mitochondrial membrane, which promoting NLRP3 inflammasome activation. N-acetylglucosamine sensing promotes Hexokinase untethering and drives NLRP3 activation. Increased levels of mitochondrial ROS (mROS) also drives recruitment of NEK7 to activate the NLRP3 inflammasome.
2.2 Aims

The overall aim of this project is to explore the role of glutathionylation in the regulation of the critical TLR adaptor Mal, and via studies on GSTO1-1, the key inflammasome components NLRP3 and Caspase-11.

The specific aims are as follows:

- Test if the adaptor protein Mal is a glutathionylated protein.
- To determine if glutathionylation of Mal promotes or inhibits TLR4 signalling.
- To examine whether antioxidant imbalance promotes Mal post-translational modification.
- To test whether GSTO1-1 plays a role upstream of NF-κB signalling in macrophages.
- To establish if GSTO1-1 affects macrophage cytokine production.
- To investigate whether GSTO1-1 can affect Caspase-11 and NEK7 activation.

I have found that glutathionylation of Mal on C91 is required for Mal to interact with MyD88 and IRAK4 and generate a signal. I have also found that GSTO1-1 inhibits metabolic reprogramming in LPS-treated macrophages and regulates NLRP3 inflammasome activation via NEK7 deglutathionylation and Caspase-11 induction.

The characterisation of GSH as a novel regulator of TLR signalling via effects on Mal, and the mechanisms by which the enzyme GSTO1-1 might impact on TLR4 signalling and NLRP3 inflammasome activation could provide new therapeutic targets for the treatment of inflammatory conditions which involve TLRs and the NLRP3 inflammasome.
Chapter 2

Materials and Methods
2 Materials and Methods

2.1 Materials

2.1.1 Buffers

Table 2.1 Buffer compositions

<table>
<thead>
<tr>
<th>Buffer Name</th>
<th>Buffer Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS (10X)</td>
<td>1.45 M NaCl, 39 mM NaH$_2$PO$_4$, 22.7 mM Na$_2$HPO$_4$</td>
</tr>
<tr>
<td>Sample Lysis Buffer (5X)</td>
<td>10% (w/v) glycerol, 2% (w/v) sodium dodecyl sulphate (SDS), 215 mM Tris pH 6.8, 200 µg/mL bromophenol blue. 50 µL of 1 M dithiothreitol (DTT) is added to 950 µL 5X sample buffer immediately before use.</td>
</tr>
<tr>
<td>SDS-PAGE Running Buffer (10X)</td>
<td>144 g 192 mM glycine, 30.3 g 25 mM Tris, 10 g 0.1% SDS. Diluted to 1 L with dH$_2$O.</td>
</tr>
<tr>
<td>SDS-PAGE Transfer Buffer</td>
<td>1.9 M glycine, 35 mM SDS, 0.25 M Trizma base</td>
</tr>
<tr>
<td>Tris-buffered saline (TBS) Tween (TBST) 10X</td>
<td>87.6 g NaCl, 10 mL Tween-20, 12.11 g Tris. Diluted to 1 L with dH$_2$O.</td>
</tr>
<tr>
<td>Low Stringency Lysis Buffer (500mL)</td>
<td>50mM HEPES, 100mM NaCl, 1 mM EDTA, 10% glycerol, 1% NP-40. pH to 7.5.</td>
</tr>
<tr>
<td>ELISA Wash Buffer</td>
<td>0.05% Tween in PBS, pH 7.2-7.4</td>
</tr>
</tbody>
</table>

2.1.2 Cell culture media

DMEM (Dulbecco’s Modified Eagle Medium) was obtained from Gibco Biosciences. Fetal calf serum (FCS) was obtained from Biosera. Penicillin/Streptomycin and Trypsin-EDTA were sourced from Sigma Aldrich. Blasticidin, Normocin and Hygrogold were from Invivogen.

2.1.3 Animals

C57/Bl6 mice obtained from Harlan UK were maintained under pathogen-free conditions in line with Irish and European Union regulations. Use of animals received ethical approval by the universities’ ethics committees in accordance with the personal licence approved by the
HPRA. GSTO1-1 deficient mice were generated by Taconic and hind legs were generously donated by Professor Philip Board (Australian National University, Canberra, Australia).

2.1.4 Cell lines
HEK293T, 293-TLR4/MD2/CD14 (MTC), 293T-TLR2 cell lines were from Invivogen. Murine bone marrow-derived macrophages (BMDMs) were differentiated from bone marrow. L929 cells were obtained from Sigma. Control and Mal-deficient immortalized BMDMs (iBMDMs) were a kind gift from Professor Doug Golenbock (UMass Medical School, Massachusetts).

2.1.5 TLR stimuli
Ultrapure rough LPS for in vitro experiments (from E. Coli, serotype EH100) was purchased from Alexis. Pam3CSK4, Poly (I:C) and R848 were purchased from Invitrogen. S. typhimurium UK-1 strain was obtained from Dr. Sinéad Corr (TCD).

2.1.6 Antibodies
Anti-IkBα, p-ERK1/2, p-P65, p-JNK, p-P38 and Mal antibodies were purchased from Cell Signalling. Anti-β-actin, FLAG-tag, Caspase-11 and Myc-tag were purchased from Sigma Aldrich. Anti-Caspase-1 p20 and NLRP3 were purchased from Adipogen International. Anti-ASC and IRAK4 were purchased from Santa Cruz. Anti-HIF1α and GAPDH were purchased from Novus Biologicals. Anti-GSTO1 was purchased from Genetex. Anti-IL-1β was purchased from Biolegen. Anti-NEK7 was purchased from Abcam. Anti-HA tag was purchased from Cambridge Biosciences. Anti-GSH was purchased from Virogen. Anti-mouse, rabbit, rat and goat IgG were purchased from Jackson ImmunoResearch.

2.1.7 General lab chemicals
Standard suppliers Sigma Aldrich or Fisher Scientific were used to obtain all general laboratory chemicals unless otherwise stated. Genejuice was purchased from Novagen. Plasmid purification maxiprep kits were purchased from Qiagen. TNFα, IL-1β, IL-6 and IL-10 ELISA Duoset kits were purchased from R&D Systems. CytoTox96 non-radioactive cytotoxicity assay and FuGene transfection reagent were purchased from Promega. StrataClean Resin was purchased from Agilent Technologies. CellROX was purchased from Molecular Probes. DCFDA was purchased from Abcam. ATP, Nigericin and Poly (dA:dT) were purchased from Invitrogen. Spectra multicolour broad range protein ladder, RNAiMAX Lipofectamine reagent, scramble and GSTO1-1 siRNA were purchased from Thermo Fisher Scientific.
2.1.8 Luciferase assay reagents

5X Passive Lysis buffer was obtained from Promega. Coelenterazine, the Renilla luciferase substrate, was purchased from Biotium (1mg/mL in 100% EtOH) and stored at -20°C. 2X Firefly luciferase assay mix was generated (Table 2.2) and diluted to 1X with deionized water before use.

Table 2.2 2X Firefly assay mix composition

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>24mL of 10mM</td>
<td>530μM</td>
</tr>
<tr>
<td>DTT</td>
<td>2.34g</td>
<td>33.3mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>91.2μL from 0.5M pH8</td>
<td>0.1mM</td>
</tr>
<tr>
<td>Tricine</td>
<td>1.634g</td>
<td>20mM</td>
</tr>
<tr>
<td>D-Luciferin</td>
<td>60mg</td>
<td>470μM</td>
</tr>
<tr>
<td>MgSO₄•7H₂O</td>
<td>2.42mL from 500mM</td>
<td>2.67mM</td>
</tr>
<tr>
<td>Acetyl Coenzyme A</td>
<td>3.79mL from 25mg/mL</td>
<td>270μM</td>
</tr>
</tbody>
</table>

2.1.9 Plasmids

The following plasmids were generated in the Luke O’Neill lab: HA-Empty Vector (pcDNA3.1) and HA-Mal (pcDNA3.1). FLAG-IRAK4 (pcDNA3.4) and FLAG-IRAK4 KD (pcDNA3.4) were from Amgen. Myc-MyD88 (pcDNA3.1) was a gift from Marta Muzio (Mario Negri Institute, Milan, Italy). TK-Renilla (pGL4) and NF-κB luciferase (pGL4) were purchased from Promega. GSTO1-1 was purchased from Origene (pCMV6; MC208607). The following plasmids were purchased from Addgene: FLAG-NLRP3 (pcDNA3; 75127), FLAG-Pro-caspase-1 (pcDNA3; 75128), HA-ASC (pCI; 41553), FLAG-pro-IL-1β (pCMV; 75131) and HA-NEK7 (pcDNA3; 75142).
2.1.10 Site directed mutagenesis (SDM)

Generating primers using QuikChange Primer Design Tool was performed (Table 2.3 and 2.4) and site directed mutagenesis of Mal and NEK7 plasmids was undertaken using the QuikChange II Lightning kit (Agilent Technologies). Primers were ordered from Eurofins MWG Operon. The following Mal mutants were created from site directed mutagenesis (Table 2.3). The following NEK7 mutants were created from site directed mutagenesis (Table 2.4).

Table 2.3 Site Directed Mutagenesis primers for Mal mutants

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sense</th>
<th>Antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>C89A</td>
<td>5’ ctcaccttgccacacggecgagcgtcacatgtttgc 3’</td>
<td>5’ gcaagtatatgaacagtgcgtgctgtgcaacatgaggg 3’</td>
</tr>
<tr>
<td>C91A</td>
<td>5’ ctcaccttgccacacggecgagcgtcacatgtttgc 3’</td>
<td>5’ gcaagtatatgaacagtgcgtgctgtgcaacatgaggg 3’</td>
</tr>
<tr>
<td>C116A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ cgccagctgtgacatgtgacagcgcag 3’</td>
</tr>
<tr>
<td>C134A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ cgccagctgtgacatgtgacagcgcag 3’</td>
</tr>
<tr>
<td>C142A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ cgccagctgtgacatgtgacagcgcag 3’</td>
</tr>
<tr>
<td>C157A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ cgccagctgtgacatgtgacagcgcag 3’</td>
</tr>
<tr>
<td>C174A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ cgccagctgtgacatgtgacagcgcag 3’</td>
</tr>
</tbody>
</table>

Table 2.4 Site Directed Mutagenesis primers for NEK7 mutants

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sense</th>
<th>Antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>C53A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
</tr>
<tr>
<td>C79A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
</tr>
<tr>
<td>C146A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
</tr>
<tr>
<td>C224A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
</tr>
<tr>
<td>C247A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
</tr>
<tr>
<td>C253A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
</tr>
<tr>
<td>C274A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
</tr>
<tr>
<td>C298A</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
<td>5’ ggaacctgtggagcgtgcacagcgcag 3’</td>
</tr>
</tbody>
</table>

2.1.11 Seahorse reagents

XF assay buffer, Seahorse cell culture plates, utility plates and calibrant solution were obtained from Agilent Technologies. Glucose and oligomycin were purchased from Sigma.
2.2 Methods

2.2.1 Cell culture and cell line maintenance
HEK293T, MTC, HEK293-TLR2, iBMDM and L929 cells were cultured in DMEM medium containing 10% FCS (v/v) and 1% penicillin/streptomycin (P/S) (v/v). Cells were cultured at 37°C in 5% CO₂ to maintain optimum growth conditions. iBMDMs and L929 cells were removed from flasks by a cell scraper in 10mL PBS. HEK293Ts, MTCs and HEK293-TLR2s were removed from the flask by incubation with 5mL trypsin-ethylenediaminetetraacetic acid (EDTA). 5mL complete medium was added to dilute trypsin-EDTA to prevent further catalysis. Cells were centrifuged at 300 x g for 5min before resuspending the pellet in fresh media. Cell viability was assessed by Trypan Blue dye, which can only permeate non-viable cells. Cells were counted using a haemocytometer and a bright light microscope before being plated for experiments.

2.2.2 Cell line cryopreservation
To maintain stocks of cell lines, cells were grown to ~60% confluency and were harvested as previously described. Cells were centrifuged at 300 x g for 5min and resuspended in 90% FCS and 10% DMSO before being placed into 1.5mL cryovials. Each cryovial was placed into a cryo-freezing container containing isopropanol at -80°C overnight before being transferred to liquid nitrogen for long-time storage.

2.2.3 Generation of bone marrow-derived macrophages
Healthy C57/Bl6 mice were euthanized in a CO₂ chamber. A laminar flow hood and all utensils were sterilized with ethanol before use. The mice were sprayed with 70% ethanol before dissection. An incision was made in the centre of the abdomen and the skin was pulled backward over the hind legs. The femur was cut just below the hip joint to remove the leg. Muscle was removed from the femur and tibia. The knee joint was repeatedly extended to break it carefully, to avoid exposing the bone marrow. The foot was then removed from the tibia above the ankle joint, and both femur and tibia were placed into ice-cold DMEM containing 1% P/S. The bones were then flushed through the bone cavity with pre-warmed DMEM using a 25G needle and 10mL syringe. The bone marrow was collected in a 50mL tube and centrifuged at 300 x g for 5min. Cells were resuspended in 3mL red blood cell lysis buffer for 5min, before adding 7mL DMEM and centrifuged as described previously. Cells were resuspended in 30mL DMEM containing 20% M-CSF containing L929 media, 10% FCS and 1% P/S. 10mL of suspended cells were plated in three non-cell culture coated 10cm dishes.
Cells were incubated in standard cell culture conditions for 6 days, with cells receiving 1mL M-CSF-containing L929 media on day 3. After 6 days, cells were scraped in ice-cold PBS, resuspended and counted as described previously. Cells were then plated for experiments in DMEM containing 10% M-CSF-containing L929 media, 10% FCS and 1% P/S.

2.2.4 Enzyme-linked immunosorbent assay (ELISA)
Supernatants from treated cells were removed and cytokine levels present were colourimetrically measured using Duoset ELISA kits according to manufacturer’s instructions for the cytokines TNFα, IL-1β, IL-6 and IL-10. The optical density values were measured using a 96-well plate reader set to 450nm and concentrations of cytokines were determined using a standard curve.

2.2.5 Plasmid DNA preparation
2.2.5.1 Plasmid transformation
Plasmid DNA was transformed into competent *E. coli* DH5α strain. 50ng of DNA was transformed into 20µL DH5α in a micro-centrifuge tube and incubated on ice for 30min. Cells were then placed in an incubator at 42°C for 45 seconds before immediately placing back on ice for 2min to allow for DH5α recovery. Cells were resuspended in 200µL S.O.C medium and plated on ampicillin agar plates. Agar plates were incubated at 37°C overnight.

2.2.5.2 Plasmid purification
After transformation on agar plates, a single colony was selected using a sterile micropipette tip and added to 5mL lysogeny broth (LB) medium without antibiotics for 4-6h at 37°C and 250rpm shaking. 100µL of this starter culture was transferred into 100mL of pre-warmed LB broth containing ampicillin and left shaking at 250rpm overnight at 37°C. The bacterial cell culture was harvested the next day by centrifugation at 4000rpm for 30min at 4°C. LB broth was removed and cell pellets were used to extract plasmid DNA using a maxiprep kit according to the manufacturer’s instructions, or frozen for future extraction. Mal cysteine to alanine mutants were assessed for correct folding by collaborators. All Mal mutants, except C157A, fold correctly [214]. NEK7 cysteine to alanine mutants were not assessed for correct folding.

2.2.6 Luciferase assay
HEK293T, MTC and HEK293-TLR2 cells were seeded at 2x10^5 cells/mL in 96-well plates 24h prior to transfection. Cells were transfected with 20-100ng of plasmids depending on plasmid
expression efficiency. 60ng NF-κB luciferase plasmid and 20ng TK Renilla plasmid was used to control for cell death and cell transfection efficiency. Plasmid levels were kept constant using a relevant empty vector control to a total of 200ng. For transfection, 9.2µL Serum free media (SFM) was vortexed with the 0.8µL of the transfection reagent Genejuice and incubated for 5min. Plasmid DNA was then added to the SFM/Genejuice mix and incubated for 15min at room temperature. This mixture was then added dropwise to the cells and left for 24h. For the luciferase assay, cells were either untreated, or treated for 6h with 100ng/mL LPS for MTC or 100ng/mL Pam3CSK4 for HEK293-TLR2 responses. Supernatant was gently removed and cells were lysed with 60µL 5X passive lysis buffer diluted to 1X in water for 15min gently rocking. 20µL of cell lysate was added to two white 96-well plates. 2X firefly assay mix was diluted in PBS to 1X. The remaining 20µL from the cell lysate was pooled from triplicate samples and transferred to a new eppendorf. 10µL of 5X sample loading buffer with DTT was added to examine protein levels of each plasmid. 40µL of 1X firefly assay mix was added to one white 96-well plate, and 40µL of a 1:500 dilution of coelenterazine in PBS was added to the second white 96-well plate. Both plates were examined for luminescence using a plate reader. NF-κB readings were normalized to TK Renilla internal control.

2.2.7 Co-immunoprecipitation assay
HEK293Ts and MTCs were seeded at 2.5x10^5 cells/mL in 10cm dishes for 24h prior to transfection. BMDMs were seeded at 1x10^6 cells/mL in 10cm dishes for 24h prior to stimulation. Cells were transfected as described previously with varying concentrations of 2-5µg of plasmid. In all cases, the amount of plasmid DNA was kept constant in each transfection by using the appropriate amount of empty vector control. 24h post transfection supernatant was removed and cells were washed with 5mL ice-cold PBS before being transferred directly to ice. Cells were harvested by lysis in 700µL of low stringency lysis buffer (50mM HEPES pH 7.5, 100mM NaCl, 1mM EDTA, 10% glycerol, 0.5% Nonident P40 (NP-40), 1mM phenylmethylsulphonyl fluoride (PMSF), 11.5µg/mL aprotinin, 1µg/mL leupeptin and 1mM sodium orthovanadate) for 15min on ice. For non-reducing immunoprecipitations, 50mM N-ethylmaleimide was added. Plates were scraped with a cell scraper and lysate transferred into microcentrifuge tubes. Tubes were centrifuged at 20,000 x g for 10min at 4°C. Microcentrifuge tubes were prepared with 30µL A/G bead slurry with 1µg of the relevant antibody or IgG control. 650µL of lysate was then incubated with antibody coated A/G beads for 2h rotating at 4°C. The remaining 50µL of lysate was boiled with 10µL 5X sample loading buffer with DTT. For non-reducing immunoprecipitations, DTT was omitted from sample loading buffer. After
2h the cell lysate/bead microcentrifuge tubes were centrifuged at 300 x g for 2min at 4°C, supernatant removed and beads washed three times with 1mL low stringency lysis buffer. The immune complexes were eluted by addition of 50µL 5X sample loading buffer, boiled for 5min and analysed by SDS-PAGE and western blotting.

2.2.8 Western blotting
2.2.8.1 SDS lysis for total protein
Prior to lysis, media was removed from cells. Cells were lysed directly using 50µL 5X sample loading buffer containing DTT (50µL was added to 950µL sample loading buffer before use). The lysates were transferred to microcentrifuge tubes and boiled for 5min. Protein samples were frozen at -20°C.

2.2.8.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE)
Protein samples were resolved using a BioRad apparatus. An 8% or 10% acrylamide resolving gel was poured first. After polymerization, a 5% stacking gel was poured on top of the resolving gel and lanes were formed using a BioRad comb. The polymerized gel plate was placed in a BioRad tank filled with 1X SDS-running buffer. The protein samples and a protein standard of known molecular weights were loaded onto the gel to allow determination of the sizes of proteins from protein lysates. Gels were electrophoresed at 25mA per gel, until the dye front from the sample loading buffer ran to the end of the gel. Gel compositions are summarized in Table 2.5.

Table 2.5 Composition of acrylamide gels

<table>
<thead>
<tr>
<th>Components for 2 Gels</th>
<th>8% Resolving Gel</th>
<th>10% Resolving Gel</th>
<th>15% Resolving Gel</th>
<th>5% Stacking Gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>7 mL</td>
<td>5.9 mL</td>
<td>3.4 mL</td>
<td>4.1 mL</td>
</tr>
<tr>
<td>30%</td>
<td>4 mL</td>
<td>5 mL</td>
<td>7.5 mL</td>
<td>1 mL</td>
</tr>
<tr>
<td>Protogel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tris pH 8.8</td>
<td>3.8 mL</td>
<td>3.8 mL</td>
<td>3.8 mL</td>
<td>-</td>
</tr>
<tr>
<td>Tris pH 6.8</td>
<td>-</td>
<td>-</td>
<td></td>
<td>750 µL</td>
</tr>
<tr>
<td>10% SDS</td>
<td>150 µL</td>
<td>150 µL</td>
<td>150 µL</td>
<td>60 µL</td>
</tr>
<tr>
<td>10% APS</td>
<td>150 µL</td>
<td>150 µL</td>
<td>150 µL</td>
<td>60 µL</td>
</tr>
<tr>
<td>TEMED</td>
<td>6 µL</td>
<td>6 µL</td>
<td>6 µL</td>
<td>6 µL</td>
</tr>
</tbody>
</table>
2.2.8.3 Electrophoretic transfer of protein to membranes

Once proteins were resolved, proteins were transferred to polyvinylidene fluoride (PVDF) membranes using a wet transfer apparatus. A piece of PVDF was initially soaked in 100% methanol to activate the membrane. All other components of the wet transfer were soaked in 1X transfer buffer before use. The transfer apparatus was assembled as follows, from cathode to anode: sponge, two layers of filter paper, PVDF activated with methanol, gel, two layers of filter paper and sponge. This assembly was sealed in a plastic cassette and placed in a transfer cassette within a transfer tank containing 1X transfer buffer and a cooling pack. A constant current of 200mA was used for transfer of 2 gels for 2h, or 30mA for overnight transfer.

2.2.8.4 Membrane blocking, antibody probing and visualization

Once transferred, PVDF membrane was blocked for non-specific antibody binding using 5% (w/v) non-fat milk powder (Marvel) reconstituted in 1X TBST for 1h at room temperature. The membrane was incubated with 1:1000 dilution of primary antibody and left to incubate for 2h at room temperature or overnight at 4°C. After incubation, the membrane was washed four times with 1X TBST for 40min on a roller, replacing TBST after every 10min. The membrane was then incubated with a species-specific secondary IgG antibody (anti-goat, anti-rabbit, anti-mouse) conjugated to a horseradish peroxidase (HRP) at 1:2000 for 1h room temperature or overnight at 4°C. The membrane was washed four times with 1X TBST every 5min, changing the TBST between each wash. For protein visualization, a chemiluminescent substrate was prepared according to the manufacturer’s instructions (Thermo Scientific). The membranes were incubated in chemiluminescent substrate for 1min and visualized using a BioRad GelDoc.

2.2.9 RNA analysis

2.2.9.1 RNA extraction

Cell supernatant was removed and cells were lysed in 350µL lysis buffer (Ambion). The cell lysates were immediately frozen at -80°C and thawed gently prior to RNA extraction. Upon thawing, 350µL of 70% EtOH was added to the cell lysate for 2min to allow for RNA precipitation before transferring to Ambion RNA spin columns. The purification was followed as per manufacturer’s instructions. The eluted RNA was quantified using a Nanodrop 2000 micro-volume UV-vis spectrophotometer and each RNA sample was diluted to the lowest yield.
2.2.9.2 Reverse transcription polymerase chain reaction

After RNA extraction and quantification, reverse transcription polymerase chain reaction (RT-PCR) was used to convert RNA to complementary DNA (cDNA) using a high capacity cDNA reverse transcription kit. 10µL of RNA was added to 10µL of reaction mix as described in Table 2.6. 20µL RNA/RT-PCR mix was transferred to 200µL micro tubes and placed in a thermal cycler programmed to: 10min 25°C, 120min 37°C, 15min 85°C and final holding stage of 4°C. Samples were diluted to 80µL in dH2O and stored at -20°C.

Table 2.6 RT-PCR of RNA to cDNA

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X RT Buffer</td>
<td>2</td>
</tr>
<tr>
<td>10X Random Primers</td>
<td>2</td>
</tr>
<tr>
<td>100mM deoxyribonucleotide triphosphates (dNTPs)</td>
<td>1</td>
</tr>
<tr>
<td>Multiscribe Reverse Transcriptase</td>
<td>1</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>3.5</td>
</tr>
<tr>
<td>RNA (50-100ng/µL)</td>
<td>10</td>
</tr>
</tbody>
</table>

2.2.9.3 Real-time quantitative PCR

Real-time quantitative PCR (qPCR) was performed on cDNA generated from RT-PCR. qPCR was used to examine the expression levels of mouse IL-6, TNFα, IL-1β, IL-10, iNOS, Arginase-1, Mrcl, IL-12p40, PHD3, GLUT1, LDHa, IL1-RA, GSTO1-1, NLRP3, Caspase-11 and RPS18 (Table 2.7). qPCR was performed using SYBR Green reagents using the following reaction mix listed in Table 2.8. Relative fold values were calculated using the cycle-threshold (Ct) method and normalized to RPS18 housekeeping gene.
Table 2.7 SYBR Primers

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sense</th>
<th>Antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td>5’ GGAAGCAGCCCTTCATCTTT</td>
<td>3’ 5’ TGGCAACTGTTCTCCTGAACCTC</td>
</tr>
<tr>
<td>IL-6</td>
<td>5’ ACGATGATGCACTTGCAG</td>
<td>3’ 5’ ACTCCAGAAGACCCAGAGGA</td>
</tr>
<tr>
<td>IL-10</td>
<td>5’ AGGCCGCTGTCATGCATT</td>
<td>3’ 5’ CACCTTGGCTTGGAGCTATT</td>
</tr>
<tr>
<td>TNFα</td>
<td>5’ GCCCTCTTCATCTCCTCGTT</td>
<td>3’ 5’ TGGGAACCTTCTCATCCCTTTG</td>
</tr>
<tr>
<td>IL-12p40</td>
<td>5’ GTCTTCGAAAGCTACACTCTC</td>
<td>3’ 5’ AGTCCAGTCCACTCTACAA</td>
</tr>
<tr>
<td>iNOS</td>
<td>5’ GGGGCTCCTACTGACACCT</td>
<td>3’ 5’ GGTGCGGACATCTTTGACT</td>
</tr>
<tr>
<td>ARG1</td>
<td>5’ GCCAGAGTTCCAGAAGATG</td>
<td>3’ 5’ TCCACCCAAATGACACATAGG</td>
</tr>
<tr>
<td>MRC1</td>
<td>5’ CTGGCGAGCAGATCCAGAAG</td>
<td>3’ 5’ CATAGGTCAGTCCCAACCAA</td>
</tr>
<tr>
<td>PHD3</td>
<td>5’ TGCTGAAGAAAGGGCGAGGAAG</td>
<td>3’ 5’ GCACACCAGTCCAGTCTTTTA</td>
</tr>
<tr>
<td>GLUT1</td>
<td>5’ CATCAGTCGATTTGGCTATAA</td>
<td>3’ 5’ GTAGCGGAGGTCTTGTTGTT</td>
</tr>
<tr>
<td>LDHa</td>
<td>5’ ATCTTCAAGCTTGTTGCTTAGGA</td>
<td>3’ 5’ CCATACAGGCACCTGGAAACTCTC</td>
</tr>
<tr>
<td>IL-1RA</td>
<td>5’ TTGTGGAAGATCTGGAGA</td>
<td>3’ 5’ TTCAGAGCCGAGTAAGGTAAG</td>
</tr>
<tr>
<td>GSTO1</td>
<td>5’ CAAGAGCCGCTAGCAAGGAAGA</td>
<td>3’ 5’ TTCCCTAGGGTTGCGAGAGT</td>
</tr>
<tr>
<td>Caspase 11</td>
<td>5’ CTGCAAGAGTTCACAAGGCTT</td>
<td>3’ 5’ CTTTCGTGTACGGCCATTG</td>
</tr>
<tr>
<td>NLRP3</td>
<td>5’ CTGCCGCTATCTCCATTGTTG</td>
<td>3’ 5’ GCATTCTGGTCTCTGAGATAGAG</td>
</tr>
<tr>
<td>RPS18</td>
<td>5’ GGATGTAAGAGGAGGGAATT</td>
<td>3’ 5’ CCCTCTATGGGCTCAGATT</td>
</tr>
</tbody>
</table>

Table 2.8 SYBR Green qPCR Reaction Mix

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapa SYBR mix</td>
<td>5µL</td>
</tr>
<tr>
<td>Primer Pair mixed (10µM final)</td>
<td>0.3µL</td>
</tr>
<tr>
<td>Nuclease-free H₂O</td>
<td>0.7µL</td>
</tr>
<tr>
<td>cDNA</td>
<td>4µL</td>
</tr>
</tbody>
</table>

2.2.10 Electroporation of Mal deficient iBMDMs

Mal deficient iBMDMs were harvested and counted as described previously. 1x10⁶ cells/mL were used for each reconstitution with 5µg of plasmid electroporated per sample. Cells were reconstituted using the NEON electroporation system. Briefly, cells were centrifuged and resuspended in 100µL buffer R. 5µg of plasmid was immediately added to the resuspended cells and placed in a 100µL NEON tip. The NEON tip was gently placed into the NEON electroporation machine in 3mL buffer E. A current was briefly applied to the tip consisting of 1680V, 1 pulse for 20ms. Electroporated cells were immediately transferred to 900µL antibiotic free DMEM media and incubated overnight at 37°C in 5% CO₂ incubator. Cells were treated with 100ng/mL LPS for the times indicated and then harvested as previously described.
2.2.11 Inflammasome assays

BMDMs were harvested and counted as previously described. 5x10^5 cells/mL were seeded on 12-well plates and left overnight at 37°C in 5% CO₂ incubator. Cells were treated with 100ng/mL LPS for 3h. After 3h, media was removed and replaced with serum free DMEM. The GSTO1-1 inhibitor C1-27 was added for 45 min. Cells were treated with 5mM ATP or 10µM Nigericin for 45min for the NLRP3 inflammasome. 1µg Poly (dA:dT) was transfected for 2h using Lipofectamine 2000 for activation of the AIM2 inflammasome. To assess NLRC4 inflammasome activation, *Salmonella typhimurium* UK1 was grown in LB broth at 37°C shaking overnight, and subsequently sub-cultured until OD1. Bacterial innocula were prepared by centrifugation and washed with PBS, followed by reconstitution in DMEM to M.O.I. 20 for an infection assay. On the day of the assay, BMDMs were treated with 100ng/mL LPS for 3h. Medium was removed and replaced with serum free DMEM containing 5µM C1-27 for 45min followed by infection with *S. typhimurium* at M.O.I 20 for 15min. After 15 min, gentamicin (50 µg/mL; Sigma) was added to kill extracellular bacteria for a further 105min. Supernatants were collected for ELISA analysis, monolayers were washed with PBS and cells lysed with 5X sample loading buffer prior to western blotting. The remaining supernatant was incubated with 5µL of StrataClean Resin beads, briefly vortexed for 1 min and centrifuged at 300 x g for 2min at 4°C. The supernatant was removed, and beads were resuspended in 30µL 5X sample loading buffer. Cells were lysed in 50µL 5X sample loading buffer and analysed by SDS-PAGE.

2.2.12 FACS analysis of cellular reactive oxygen species

BMDMs were seeded at 5x10^5 cells/mL on 12-well plates and left overnight at 37°C in 5% CO₂ incubator. Cells were treated as normal. Staining commenced 1h prior to completion of cell stimulations. CellROX or DCFDA stain was prepared by thawing on ice. CellROX or DCFDA was added directly into cell culture plates (2µL/mL) and incubated at 37°C covered with tinfoil for 30 min. After 40min incubation, the supernatant was removed and was replaced with 1mL PBS. Cells were detached using a cell scraper and transferred into polypropylene FACS tubes. Cells were pelleted by centrifugation at 650 x g for 3 min at room temperature. Cell pellets were washed 3 times with PBS (1mL) and resuspended in 500µL PBS and vortexed. Cells were then analysed using a Dako CyAn flow cytometer, and data was analysed using FlowJo software.
2.2.13 Seahorse analysis of lactate production

Cells were plated at 2x10^5 cells/well (250µL) of a Seahorse plate in DMEM containing 10% FCS and 1% P/S. One well per row of the culture plate contained only supplemented media without cells. This controlled for background measurements. Cells were treated and stimulated as normal. The day prior to stimulations, the Seahorse XF24 analyser was turned on to warm up. A utility plate containing calibrant solution (1mL/well) together with the plates containing the injector ports and probes was placed in a CO₂-free incubator at 37°C overnight. The day of the experiment Seahorse medium supplemented with 25mM glucose was prepared in XF assay buffer. This involved preparing a 1M glucose solution by addition of 1.8g glucose to 10mL XF assay buffer, which was diluted 1:40 to obtain 25mM final concentration. This medium was adjusted to pH 7.4 and filter-sterilized. The supernatant from cell culture plates was removed and replaced with 500µL XF media containing glucose and the cell culture plate was placed in a CO₂-free incubator for at least 30min.

During this time, the inhibitor oligomycin was prepared in glucose-supplemented medium (16µL in 1984µL media) and 70µL of this solution was added to the respective injector plate port. Similarly, 100ng LPS was prepared in glucose-supplemented medium and 70µL of this solution was added to the respective injector plate port. This plate, together with the utility plate was run on the Seahorse for calibration. Once complete, the utility plate was replaced with the cell culture plate and run on the Seahorse.

2.2.14 ASC Speck formation assay

To analyse ASC speck formation by crosslinking, disuccinimidyl suberate (DSS) was used. BMDMs were seeded at 1.5x10^6 cell/mL in 6-well plates in technical duplicate and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with 100ng/mL LPS for 3h. After 3h of LPS stimulation, media was removed and replaced with 1mL DMEM containing 5µM C1-27 for 45 min. After 45 min, cells were treated with 5mM ATP for 45 min. Supernatant was removed and cells were washed twice with 200µL ice cold 50mM HEPES. Cells were lysed on ice for 15min in 200µL lysis solution (0.5% Triton X-100, 50mM HEPES, protease and phosphatase inhibitors). Duplicate samples were pooled and centrifuged at 6000 x g for 15 min at 4°C. The Triton X-100 soluble fraction (supernatant) was removed and stored at -20°C. The Triton X-100 insoluble fraction (pellet) was washed twice with 50mM HEPES and centrifuged at 6000 x g for 15 min at 4°C. During the washing step, DSS-crosslinking buffer was made (50mM HEPES, 150mM NaCl pH 8). DSS was allowed to reach RT prior to resuspension in anhydrous
DMSO (54.3\(\mu\)L DMSO to 2mg DSS for 100mM stock). The Triton X-100 insoluble pellet was resuspended in 490\(\mu\)L DSS-crosslinking buffer and incubated with 10\(\mu\)L rehydrated DSS (2mM final concentration), mixed immediately and incubated for 45min at 37\(^\circ\)C. After 45min, samples were centrifuged at 6000 x g for 15 min at 4\(^\circ\)C. The supernatant was removed gently, and the remaining DSS-crosslinked pellet was resuspended in 50\(\mu\)L sample loading buffer containing DTT. Samples were analysed by SDS-PAGE.

2.2.15 Endogenous knockdown of GSTO1-1

BMDMs were seeded at 5x10^5 cells/mL on 12-well plates and left overnight at 37\(^\circ\)C in 5% CO\(_2\) incubator. Cell medium was removed and cells were washed briefly with PBS. 500\(\mu\)L Opti-MEM reduced serum medium was added to cells. 10nmol scramble or GSTO1-1 siRNA (Ambion) was incubated with 5\(\mu\)L RNAiMAX Lipofectamine reagent in 500\(\mu\)L Opti-MEM for 10min. After incubation, 500\(\mu\)L siRNA-lipofectamine mix was added to cells to yield 1mL of Opti-MEM medium containing 5nmol siRNA final concentration. Cells were left for 36-48h before treatment.

2.2.16 LPS Transfection and LDH assay

BMDMs were seeded at 5x10^5 cells/mL on 12-well plates and left overnight at 37\(^\circ\)C in 5% CO\(_2\) incubator. Cells were treated with 100ng/mL LPS for 4h to induce Caspase-11 expression. After 4h, medium was removed and cells were washed with PBS. 1mL of complete medium was added to cells. 2\(\mu\)L of 1mg/mL LPS was added to 45.5\(\mu\)L Opti-MEM medium and vortexed immediately. 2.5\(\mu\)L RT FuGene transfection reagent was added to the LPS/Opti-MEM, mixed gently and left for 10min RT. 50\(\mu\)L was added per well and left for 16h before harvesting supernatant for ELISA and LDH assays. LDH assay was performed as per manufacturer’s instructions. Briefly, 50\(\mu\)L of cell supernatant was added to a 96-well plate with 50\(\mu\)L of LDH assay buffer and left for 30min in the dark. 50\(\mu\)L stop solution (CH\(_3\)COOH) was added to the plate and absorbance measured at 490nm.

2.2.17 In vivo sepsis model

Seven-week-old C57BL/6 control and C57BL/6 GSTO1-1-deficient mice were injected with 100\(\mu\)L 10mg/kg LPS or 100\(\mu\)L PBS for 90min. Mice were sacrificed, whole blood was harvested and left to coagulate for 30 min at RT. Serum was removed and analysed for cytokines by Quantikine ELISA.
2.2.18 Mass Spectrometry of NEK7

HEK293T cells were reverse transfected with HA-tagged NEK7. HEK293T cells were seeded at 7.5x10^5 cells/mL in 10mL in 10cm dishes. During the plating, 10µg NEK7 was transiently transfected into the HEK293T cells using GeneJuice and left overnight at 37°C in 5% CO₂ incubator. Cell medium was removed, cells were washed gently with PBS and cells were immediately lysed in low stringency lysis buffer containing protease and phosphatase inhibitors. An immunoprecipitation was performed as section 2.2.7 using an anti-HA antibody conjugated to A/G beads. After 2h rotating at 4°C, A/G beads were washed three times with low stringency lysis buffer. After the third wash, the A/G beads were dried and incubated with 250µL of 200µg HA peptide (I2149) for 30min at 37°C at 300rpm. Beads were agitated every 5min to prevent sedimentation of A/G beads. A/G beads were centrifuged at 300 x g for 2min. Supernatant was removed and stored on ice. A/G beads were subsequently incubated with a further 250µL of 200µg HA peptide for 30min at 37°C at 300rpm and centrifuged at 300 x g for 2min. Both 250µL supernatants were combined and concentrated using an Amicon Ultra 10K concentrating column. The concentrated eluate was incubated with 5mM GSSG pH 8 for 1h at RT prior to loading on an 8% acrylamide gel. The 8% gel was fixed in coomassie blue fixing solution (50% MeOH, 10% HoAC, 40% ultrapure H₂O) in a clear container for 30min on an orbital shaker at RT. Fixing solution was removed and replaced with Coomassie Blue R-250 for 1h at RT with gentle agitation. The gel was washed overnight at 4°C with de-staining solution (5% MeOH, 7.5% HoAC and 87.5% ultrapure H₂O). The gel bands were excised in a laminar flow hood and placed in sterile eppendorfs. 500µL band wash solution was added (50% MeOH, 5% HoAC and 45% ultrapure H₂O) to eppendorfs and mixed at 1300rpm at RT for 2h, with wash solution changed every 30min to remove Coomassie stain. Gel bands were stored in 500µL band wash solution on dry ice. Gel fragments were digested using Trypsin and analysed by 1D nLC-MS/MS by a 4000QTRAP mass spectrometer. The resulting data was processed using the Mascot search engine.

2.2.19 Peritoneal exudate cell isolation and culture

Peritoneal exudate cells (PECs) were isolated from mice by sterile PBS gavage of the peritoneal cavity post-sacrifice. Injected mice were gently agitated for 1min and PBS syringed from the left flank was placed in a sterile falcon tube placed on ice. Cells were centrifuged at 300 x g for 5min and resuspended in RPMI medium containing 10% FCS and 1% P/S. Cells were plated on 12-well plates at 5x10^5 cells/mL. After 3h, medium was removed and replaced with complete RPMI. Cells were stimulated for 3h with LPS, medium removed and stimulated with 10µM
Nigericin for 1h. Supernatant was removed for ELISA and samples were lysed in 5X sample loading buffer for western blot analysis.

2.2.20 Statistical Analysis
P-values were calculated by two-tailed unpaired Students t-test or one-way ANOVA in GraphPad Prism version 5.0. * signifies a P-value of ≤0.05, ** signifies a P-value of ≤0.01 and *** signifies a P-value of ≤0.001.
Chapter 3

Glutathionylation of Mal on Cysteine 91 regulates TLR4 activation
Investigation into the role of glutathione as a post-translational modification in Mal

3.1 Introduction

Macrophages respond to bacterial or viral infection by triggering a complex inflammatory cascade, potentiating cytokine release and inflammation for effective host responses for pathogen clearance. In order for macrophages to effectively propagate such signals, they utilize highly specialized transmembrane receptors termed TLRs. Each TLR has an affinity for certain PAMPs, resulting in activation of signalling cascades via activation and recruitment of adaptor proteins intracellularly. Mal is one such adaptor protein shared by TLRs 2, 4 and 9. Mal also has a TLR-independent role as an adaptor for the IFN-γ receptor. Mal must therefore be regulated post-translationally to prevent aberrant cytokine production and inflammation.

Studies have identified a critical role for Mal in response to *Staphylococcal* infections. In families harbouring a missense mutation, Mal deficiency renders such individuals highly susceptible to chronic infection. Polymorphisms of Mal also exist within human populations. One such polymorphism, S180L, is unusual in that it can confer susceptibility if homozygous to bacterial infection, including *M. tuberculosis* infection, or resistance if heterozygous. Indeed, S180L appears to be a Goldilocks’ variant, which is present in 26.9% of a UK cohort [215].

Post-translational modifications of the TLR adaptor Mal have been studied extensively prior to this project, however researchers failed to consider the redox environment as a potential regulator of Mal activation. This study examined the regulation of TLR adaptor Mal by GSH, and whether glutathionylation of Mal could have a positive or negative effect on the regulation of TLR responses. We have discovered that Mal is a glutathionylated protein, and furthermore that glutathionylation of Mal on cysteine 91 is crucial for TLR responses. We have found functional importance for Mal glutathionylation, as a Mal mutant (C91A), which fails to bind GSH, acts as a dominant negative mutation and is unable to interact with downstream partners MyD88 or IRAK4. Interestingly, supplementation of cells with the antioxidant N-acetylcysteine limited LPS-induced Mal glutathionylation, indicating a potential early ROS signal in activation of TLR signalling.
3.1.1 Identification of conserved cysteine amino acids in Mal

The first aim of this project was to identify which cysteines in Mal were conserved across species. Using the bioinformatics software Uniprot, I aligned FASTA sequences from human, mouse, rat, chicken, panther, bovine, pig, guinea pig, cat, orangutan and canine Mal (Fig 3.1). Cysteines 89, 91, 116, 134, 142 and 157 were highly conserved across all species. Cysteine 174 was less conserved but was conserved in human and mouse Mal. Crystallization of Mal by Valkov et al. [43] identified that cysteines 91 and 157 cannot form a disulphide bond, due to being 5Å apart. We next sought to assess if cysteines were potential glutathionylation targets.

3.1.2 Mal is endogenously glutathionylated and glutathionylation is increased in response to LPS treatment

I next examined if Mal was glutathionylated endogenously and used an immunoprecipitation approach, isolating Mal from murine BMDMs. Using a highly specific antibody that recognises –SSG modified proteins, Mal was found to be endogenously glutathionylated basally without stimulation, and with 1h LPS treatment the glutathionylation status of Mal was decreased (Figure 3.2A). Mal appeared to immunoprecipitate as a dimer, with a clear band observed at 50kDa. A non-specific band is observable at 260kDa, which may potentially be due to the non-reducing properties of the gel.

I next performed a time course with LPS. LPS treatment increased Mal glutathionylation at 5 and 15 min relative to unstimulated Mal with a decrease occurring at 60 min LPS treatment (Figure 3.2 B Lane 4). The decrease in Mal glutathionylation with LPS treatment in Figure 3.2 A is more pronounced than in Figure 3.2 B lane 4.
Figure 3.1 Conservation of Mal cysteine amino acids

Conservation of Mal cysteines was assessed using bioinformatics software Uniprot. FASTA sequences were aligned and examined conservation against human, mouse, rat, chicken, panther, bovine, pig, guinea pig, cat, orangutan and canine Mal. Cysteines 89, 91, 116, 134, 142 and 157 were highly conserved. Cysteine 174 was conserved between human, mouse, rat, panther, guinea pig and orangutan Mal. The flanking amino acid to Cysteine 91, Histidine 92, was conserved across all species.
Figure 3.2 Endogenous Mal glutathionylation in LPS-activated macrophages

(A) Murine bone marrow derived macrophages (BMDMs) were seeded at 1x10^6 cells/mL in 10cm dishes and left at 37°C 5% CO2 overnight. Cells were treated with 100ng/mL LPS for 60min and lysed using low stringency lysis buffer supplemented with protease inhibitors and 50mM N-ethylmaleimide. The lysate was immunoprecipitated on A/G beads and subjected to non-reducing SDS-PAGE. Samples were blotted for anti-SSG, anti-Mal or anti-GAPDH. (B) BMDMs treated as above were treated with 100ng/mL LPS for the times indicated and subjected to immunoprecipitation and non-reducing SDS-PAGE as above. Each blot is representative of three independent experiments. Samples were blotted for anti-SSG, anti-Mal or anti-GAPDH.
3.1.3 Mal Cysteine 91 is a glutathionylation target

I next examined the cysteine residues that might be potential glutathionylation targets. As stated above, the structure of Mal identified C91 and C157 as two cysteines which could not form a disulphide bond. Previous work from collaborators had found that C157 mutation to Alanine disrupted Mal structure (B. Kobe, personal communication), therefore we decided to examine the effect of cysteine to alanine mutation of C91. As shown in the upper panel, overexpressed WT Mal was basally glutathionylated (Figure 3.3 Top panel Lane 2) and LPS treatment caused an increase in glutathionylation (Lane 4) The C91A form of Mal displayed reduced glutathionylation (Lane 3) and LPS addition had no effect on C91A glutathionylation (Lane 5). These results indicate that C91 can undergo glutathionylation.

3.1.4 Histidine 92 promotes Mal glutathionylation

Glutathionylation of cysteine amino acids has been reported to be influenced by positively charged neighbouring amino acids. The neighbouring amino acid to C91 is a histidine residue, H92. Having previously detected decreased glutathionylation of C91A, we mutagenized Histidine 92 to examine its potential effect on C91 glutathionylation. H92 was substituted with a proline amino acid, which is structurally similar to histidine (H92P). As shown in Figure 3.4 Top panel, overexpressed WT Mal was basally glutathionylated (Lane 2) and, in contrast to Figure 3.3, LPS treatment caused a decrease in glutathionylation (Lane 4), possibly due to overexpression of Mal. The H92P form of Mal was not glutathionylated (Lane 3) and LPS addition had no effect on H92P glutathionylation (Lane 5). Overexpressed WT Mal also displays a prominent doublet band (Lane 2), which is noticeably absent in H92P Mal (Lane 3) These results suggest that mutating Histidine 92 to Proline prevents glutathionylation of C91, most likely due to the lack of positive charge.
Glutathionylation of Mal on Cysteine 91 regulates TLR4 activation

Figure 3.3 Mal C91A has impaired glutathionylation
HEK293-MD2-TLR4-CD14 cells were seeded at 2x10^5 cells/mL in 10cm dishes and incubated at 37°C 5% CO2 overnight. The following day cells were transfected with 5µg empty vector (EV), 2µg WT HA-Mal plasmid with 3µg HA-EV or 3µg C91A HA-Mal plasmid and 2µg HA-EV. 24h post transfection, cells were treated with 100ng/mL LPS for 60min and lysed using low stringency lysis buffer supplemented with protease inhibitors and 50mM N-ethylmaleimide. Mal was immunoprecipitated on A/G beads coated with 1µg HA-tag antibody for 2h at 4°C. Beads were washed three times and boiled in 5X sample loading buffer and subjected to non-reducing SDS PAGE. Samples were blotted for –SSG (upper panel) or the HA-tag (bottom panel for immunoprecipitated Mal). Each blot is representative of three independent experiments.
Figure 3.4 Mal H92P has impaired glutathionylation

HEK293-MD2-TLR4-CD14 cells were seeded at 2x10^5 cells/mL in 10cm dishes and incubated at 37°C 5% CO2 overnight. The following day cells were transfected with 5µg EV, 2µg WT HA-Mal plasmid with 3µg HA-EV or 3µg C91A HA-Mal plasmid and 2µg HA-EV. 24h post transfection, cells were treated with 100ng/mL LPS for 60min and lysed using low stringency lysis buffer supplemented with protease inhibitors and 50mM N-ethylmaleimide. Mal was immunoprecipitated on A/G beads coated with 1µg HA-tag antibody for 2h at 4°C. Beads were washed three times and boiled in 5X sample loading buffer and subjected to non-reducing SDS PAGE. Samples were blotted for –SSG (upper panel) or the HA-tag (bottom panel for immunoprecipitated Mal). Each blot is representative of three independent experiments.
3.1.5 C91A and H92P cannot drive NF-κB luciferase activation

After determining that Mal C91 could be glutathionylated, I next tested whether Mal C91A was functionally impaired using activation of NF-κB luciferase as an assay. As shown in Figure 3.5 A, C91A Mal was unable to drive NF-κB activity. The P125H mutant was inactive as expected (this mutant is a dominant negative form of Mal). Overexpression of C157A and a double C91A/C157A mutant yielded similar results. C91A and C91A/C157A had attenuated NF-κB activity in this luciferase assay, however C157A was still able to generate a signal, although attenuated. I attributed the inability of C91A/C157A to drive NF-κB activation to C91A as C157A was still able to drive NF-κB activation.

I next tested the H92P mutant of Mal. As shown in Figure 3.5 B, similar to C91A, H92P was unable to drive NF-κB activity in a luciferase assay compared to WT Mal. Western blots confirmed expression of each form of Mal (bottom panel).
Figure 3.5 C91A and H92P cannot drive NF-κB activation and display decreased phosphorylation

(A) HEK293T cells were seeded at 2x10^5 cells/mL in a 96-well plate and incubated at 37°C 5% CO2 overnight. Cells were transfected with WT HA-Mal, C91A HA-Mal, C157A HA-Mal, C91A/C157A HA-Mal, P125H HA-Mal or HA-EV for 24h. Luciferase activity was determined and control Renilla reading normalized to Firefly luciferase activity to control for transfection efficiency. Mal protein level was assessed by western blot. (B) HEK293T cells were treated as above and transfected with WT HA-Mal, H92P HA-Mal, P125H HA-Mal and HA-EV. Luciferase activity was determined and Renilla reading normalized to Firefly luciferase activity. Mean expression ± S.E.M of three independent experiments carried out in triplicate is shown. *** P ≤ 0.001
3.1.6 C91A and H92P are dominant negative mutants in TLR4 signalling

I next sought to examine if the overexpressed plasmids could have an impact on TLR4 signalling. MTC cell lines are readily transfectable and stably express TLR4 and the accessory components MD2 and CD14. In Figure 3.6 A, I overexpressed WT Mal or each cysteine to alanine Mal mutant and then treated the transfected cells with LPS. The C91A Mal mutant displayed a dominant negative effect on TLR4 signalling, with impaired NF-κB activation compared to WT Mal. Mal P125H completely abrogated TLR4 responses as expected. As shown in Figure 3.6 B, H92P Mal had a dominant negative impact on TLR4 signalling, with decreased NF-κB activity after LPS treatment. Western blots of the protein lysate were assessed for equal protein expression (lower panels).
Figure 3.6 C91A and H92P are dominant negative mutations for TLR4 signalling

(A) 293T-MD2-TLR4-CD14 cells were seeded at 2x10^5 cells/mL in a 96-well plate and incubated at 37°C 5% CO2 overnight. Cells were transfected with WT HA-Mal, cysteine to alanine HA-Mal mutants, P125H HA-Mal or HA-EV for 24h. 100ng/mL LPS was added to the cells 6h prior to luciferase assay. Luciferase activity was determined and Renilla reading normalized to Firefly luciferase activity. Mal protein level was assessed by western blot. (B) 293T-MD2-TLR4-CD14 cells were treated as above and transfected with Mal WT, H92P, P125H and EV. Luciferase activity was determined and Renilla reading normalized to Firefly luciferase activity. Mean expression ± S.E.M of three independent experiments carried out in triplicate is shown. ** P ≤ 0.01, *** P ≤ 0.001
3.1.7 C91A and H92P are dominant negative mutants in TLR2 signalling

I next sought to examine if the overexpressed plasmids could have an impact on TLR2 signalling. HEK293-TLR2 express TLR2, which can be stimulated with the TLR2 agonist Pam3CSK4. As shown in Figure 3.7 A, comparable to LPS treatments, C91A Mal displayed a dominant negative effect on TLR2 signalling, with impaired NF-κB activation compared to WT Mal. The dominant negative effect was less pronounced than the TLR4 response. Mal P125H completely abrogated TLR2 responses. Similarly, in Figure 3.8 B, H92P Mal had a dominant negative impact on TLR2 signalling, with decreased NF-κB activity. This observed dominant negative effect was stronger compared to C91A Mal. Western blots of the protein lysate were assessed for equal protein expression (lower panel).
Figure 3.7 C91A and H92P are dominant negative mutations for TLR2 signalling

(A) HEK293-TLR2 cells were seeded at 2x10^5 cells/mL in a 96-well plate and incubated at 37°C 5% CO2 overnight. Cells were transfected with WT HA-Mal, HA-C91A Mal, HA-P125H Mal or HA-EV for 24h. 100ng/mL Pam3CSK4 was used to stimulate cells for 6h prior to luciferase assay. Luciferase activity was determined and *Renilla* reading normalized to Firefly luciferase activity. Mal protein level was assessed by western blot. (B) HEK293-TLR2 cells were treated as above and transfected with Mal WT, H92P, P125H and EV. Luciferase activity was determined and *Renilla* reading normalized to Firefly luciferase activity. Mean expression ± S.E.M of three independent experiments carried out in triplicate is shown. * P ≤ 0.05, *** P ≤ 0.001
3.1.8 C91A and H92P cannot reconstitute TLR4 signalling in Mal-deficient iBMDMs

I next examined whether Mal C91A or H92P could reconstitute LPS signalling in Mal-deficient immortalised bone marrow-derived macrophage (iBMDM) cells. IκBα degradation was used as a signal for NF-κB activation. As shown in Figure 3.8 A, WT Mal transfection rendered iBMDMs sensitive to LPS, with IκBα degradation being evident at 60 and 90 minutes treatment. The level of degradation reached 56% when normalized to control β-actin levels by densitometry. Transfection of cells with plasmids encoding C91A Mal (Figure 3.8 B) or H92P Mal (Figure 3.8 C) did not reconstitute the response to LPS, confirming their lack of activity.
Glutathionylation of Mal on Cysteine 91 regulates TLR4 activation

Figure 3.8 C91A and H92P do not reconstitute the TLR4 signalling pathway

(A) Mal-deficient iBMDMs were reconstituted with 5µg of WT HA-Mal plasmid, (B) 5µg C91A HA-Mal or (C) 5µg H92P HA-Mal using the NEON electroporation system. 1x10⁶ cells/mL were resuspended in 100µL buffer R and incubated briefly with 5µg of Mal plasmids. iBMDMs were immediately loaded to a 100µL NEON tip and electroporated at 1680V for 20ms and 1 pulse. Electroporated cells were placed in 900µL pre-warmed antibiotic free media and incubated at 37°C 5% CO2 overnight. Immediately the next morning cells were treated with LPS for the times indicated, lysed and subjected to SDS-PAGE. IκBα, HA-tag and β-actin were assessed by western blot. Blots are representative of three independent experiments each.
3.1.9 C91A cannot interact with MyD88 in a co-immunoprecipitation assay

I next examined whether C91A Mal might be impaired in its ability to interact with MyD88. As shown in Figure 3.9 there is an interaction between WT Mal and Myc-MyD88 (Upper panel Lane 5). This interaction is absent with C91A Mal (Lane 6). The pulldown of both WT Mal and C91A Mal was equal for the immunoprecipitation bait (second uppermost panel compare Lanes 5 and 6). Mal C91A expressed poorly when transfected alone compared to WT Mal (second uppermost panel compare Lanes 2 and 3). C91A Mal expressed better when co-transfected with Myc-MyD88. Input blots of Mal and Myc-MyD88 (lower panels) indicate Mal and MyD88 were sufficiently overexpressed before immunoprecipitation. Lane 1 appeared to contain a smeared band, possibly due to the development of the blot.

3.1.10 H92P cannot interact with MyD88 in a co-immunoprecipitation assay

I next tested whether the H92P form of Mal might be similarly impaired in its ability to interact with MyD88. As shown in Figure 3.10, there is an interaction between WT Mal and Myc-MyD88 (Upper panel Lane 5). This interaction is reduced with H92P Mal (Lane 6). The pulldown of both WT Mal and H92P Mal was equal for the immunoprecipitation bait (second uppermost panel compare Lanes 5 and 6). Similar to C91A, Mal H92P expressed poorly when transfected alone compared to WT Mal (second uppermost panel compare Lanes 2 and 3). H92P Mal expressed better when co-transfected with Myc-MyD88. Input blots of Mal and Myc-MyD88 (lower panels) indicate Mal and MyD88 were sufficiently overexpressed before immunoprecipitation.
Glutathionylation of Mal on Cysteine 91 regulates TLR4 activation

Figure 3.9 C91A does not immunoprecipitate with MyD88

HEK293T cells were seeded at 2.5x10^5 cells/mL in 10cm dishes and incubated at 37°C 5% CO₂ overnight. Cells were transfected with WT HA-Mal, C91A HA-Mal, Myc-MyD88 or HA-EV. In each transfection, the total concentration of plasmid DNA was kept constant by addition of relevant EV control. 48h post transfection cells were lysed in low stringency lysis buffer. 50 µL of lysate was kept for analysis while the remaining lysate was added to protein A/G beads coated with 1µg of anti-HA antibody or 1µg mouse-IgG control antibody for 2h rotating at 4°C. Samples were washed three times in 1mL low stringency lysis buffer and resuspended in 50µL sample loading buffer. Whole cell lysates and immunoprecipitated samples were analysed by western blotting using anti-Myc and anti-HA antibodies. The results shown are representative of four independent experiments.
Figure 3.10 H92P does not immunoprecipitate with MyD88

HEK293T cells were seeded at 2.5x10^5 cells/mL in 10cm dishes and incubated at 37°C 5% CO₂ overnight. Cells were transfected with WT HA-Mal, HA-H92P Mal, Myc-MyD88 or HA-EV. In each transfection, the total concentration of plasmid DNA was kept constant by addition of relevant EV control. 48h post transfection cells were lysed in low stringency lysis buffer. 50µL of lysate was kept for analysis while the remaining lysate was added to protein A/G beads coated with 1µg of anti-HA antibody or 1µg mouse-IgG control antibody for 2h rotating at 4°C. Samples were washed three times in 1mL low stringency lysis buffer and resuspended in 50µL sample loading buffer. Whole cell lysates and immunoprecipitated samples were analysed by western blotting using anti-Myc and anti-HA antibodies. The results shown are representative of three independent experiments.
3.1.11 IRAK4 cannot induce degradation of C91A or H92P

Previous literature has identified that IRAK4 can phosphorylate Mal, resulting in polyubiquitination and degradation by the proteasome [216]. I next tested whether Mal C91A and H92P might be resistant to IRAK4-mediated degradation. As shown in Figure 3.11 A, transfection of HEK293T cells with increasing concentrations of a plasmid encoding IRAK4 induced degradation of Mal, as determined by densitometry, with Mal levels reducing to 28% with the highest protein concentration of IRAK4. As shown in Figure 3.11 B, overexpression of IRAK4 did not induce degradation of C91A. Densitometry confirms no degradation of C91A relative to loading control. Similarly, in Figure 3.11 C, overexpression of IRAK4 did not induce H92P degradation. Overall, these results suggest that IRAK4 cannot phosphorylate and promote degradation of C91A or H92P Mal.
Figure 3.11 IRAK4 does not induce degradation of Mal C91A or H92P

HEK293T cells were seeded at 2x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were transfected with WT HA-Mal, C91A HA-Mal, H92P HA-Mal, FLAG-IRAK4 or mock transfected. In each transfection, the total concentration of plasmid DNA was kept constant by addition of relevant EV control. 24hr post transfection cells were lysed in 50μL sample loading buffer. Cell lysates were analysed by western blotting using anti-HA, anti-FLAG and anti-β-actin antibodies. Densitometry was performed using ImageLab5 software using β-actin as a loading control. The results shown are representative of three independent experiments.
3.1.12 IRAK4 cannot co-immunoprecipitate with C91A or H92P

I next sought to examine if IRAK4 would co-immunoprecipitate with WT Mal, C91A Mal or H92P Mal since as stated above, IRAK4 activation will lead to Mal degradation [216]. We used an IRAK4 kinase dead (IRAK4-KD) version whereby the ATP binding site is mutagenized to prevent kinase activity of IRAK4 and WT IRAK4 as a control. IRAK4-KD interacts with Mal. As shown in Figure 3.12, IRAK4 did not interact with WT Mal (Top panel Lane 2), as previously reported [216]. Similarly, C91A and H92P could not interact with IRAK4 (Top panel Lane 3 and 4 respectively). IRAK4-KD interacted with WT Mal (Top panel Lane 5). However, IRAK4-KD displayed reduced interaction with C91A or H92P (Top panel Lanes 6 and 7 respectively). To test for Mal expression, we immunoblotted for HA-tag from the lysate collected before co-immunoprecipitation. In the third panel WT Mal, C91A and H92P are expressed, with decreased expression of Mal in lane 2 due to IRAK4 kinase activity promoting degradation of Mal. C91A Mal (Third panel Lane 3) or H92P Mal (Third panel Lane 4) did not undergo degradation in response to IRAK4. The pulldown of IRAK4 and IRAK4-KD was relatively even (Second Panel Lanes 2-7). Overall, these results suggest that IRAK4 cannot interact with Mal when the glutathionylation site of Mal is mutagenized, as C91A and H92P could not interact with either IRAK4 or the kinase dead version. Mal glutathionylation may therefore be required for interaction with IRAK4.
Glutathionylation of Mal on Cysteine 91 regulates TLR4 activation

Figure 3.12 IRAK4 does not immunoprecipitate with Mal C91A or H92P

MTCs were seeded at 2.5x10⁵ cells/mL in 10cm dishes and incubated at 37°C 5% CO₂ overnight. Cells were transfected with WT HA-Mal, HA-C91A Mal, HA-H92P Mal, FLAG-IRAK4 or FLAG-IRAK4 KD or mock transfected. In each transfection, the total concentration of plasmid DNA was kept constant by addition of relevant EV control. 48h post transfection cells were lysed in low stringency lysis buffer. 50µL of lysate was kept for analysis while the remaining lysate was added to protein A/G beads coated with 1µg of anti-FLAG antibody or 1µg mouse-IgG control antibody for 2hr rotating at 4°C. Samples were washed three times in 1mL low stringency lysis buffer and resuspended in 50µL sample loading buffer. Whole cell lysates and immunoprecipitated samples were analysed by western blotting using anti-HA and anti-FLAG antibodies. The results shown are representative of three independent experiments.
3.1.13 Mal glutathionylation can be prevented using the antioxidant NAC

We next sought to identify if the glutathionylation of Mal was dependent on ROS production in response to LPS stimulation. Pre-treatment of iBMDMs with N-acetylcysteine (NAC), a ROS scavenger, prevented Mal glutathionylation in response to LPS (Top panel compare Lane 8 to 3). The pulldown of Mal was relatively even (Middle panel lanes 1-4, 6-9). GAPDH served as a loading control (Bottom panel). This suggests that ROS may mediate the glutathionylation of Mal. The band for GSH in lane 3 is very strong compared to Fig 3.2 and may be due to differences between primary cell and immortalised cell line immunoprecipitation.
Figure 3.13 Glutathionylation of Mal is prevented with N-acetylcysteine pre-treatment

iBMDMs were seeded at 2.5x10^5 cells/mL in 10cm dishes and incubated at 37°C 5% CO_2 overnight. Once cells reached 80% confluency, cells were pre-treated with 1mM NAC for 60min. Cells were then treated with 100ng/mL LPS for the times indicated. Cells were lysed in low stringency lysis buffer with 50mM N-ethylmaleimide. 50µL of lysate was kept for analysis while the remaining lysate was added to protein A/G beads coated with 1µg of anti-Mal antibody or 1µg mouse-IgG control antibody for 2h rotating at 4°C. Samples were washed three times in 1mL low stringency lysis buffer and resuspended in 50µL sample loading buffer without DTT added. Whole cell lysates and immunoprecipitated samples were analysed by western blotting using anti-Mal, anti-GSH and anti-GAPDH antibodies. The results shown are representative of three independent experiments.
3.2 Discussion
The first line of investigation into this project employed bioinformatics to assess whether Mal contained cysteines that could potentially be targeted as a site for post-translational modification. As stated previously, Mal has been shown to be regulated by several modifications. Glutathionylation of redox-sensitive cysteines has been shown to regulate many enzymes, including inhibition of Caspase-1 [181], succinyl-coA transferase and ATP synthase (F1 complex, α-subunit) [217], and also promotes stability of HIF1α [218]. We hypothesised that Mal may be regulated by glutathione, possibly through direct binding to a cysteine that is solvent accessible.

I first examined C91 and C157 as they were reported to be more than 5Å apart and could therefore not form a structural disulphide bond [57]. To examine the potential for Mal to be glutathionylated, I first performed an endogenous immunoprecipitation under non-reducing conditions to prevent disruption of the potential glutathionylation site using BMDMs as my primary cell of interest. We hypothesized that if glutathionylation of Mal was essential for function, then addition of LPS may affect Mal glutathionylation. Mal was basally glutathionylated, and addition of LPS for 1h promoted deglutathionylation of Mal. This result implied that Mal glutathionylation was transient and could possibly be induced by LPS. I then sought to further elucidate if an LPS time-course could affect Mal glutathionylation. Addition of LPS at 5min and 15min increased Mal glutathionylation, and this increased glutathionylation was reduced to comparable levels of basal glutathionylation at 60min LPS treatment. Once TLR4 is activated, a multimeric assembly composed of MyD88, IRAK4, IRAK2 and IRAK1, termed the myddosome, promotes IkBα degradation. TLR4 activation has been shown to be a transient process, with degradation of the NF-κB inhibitory protein IkBα occurring rapidly with LPS treatment [219]. Our initial findings indicated that Mal glutathionylation may promote TLR4 activation, possibly through myddosome assembly to allow for MyD88 recruitment. Our finding that Mal glutathionylation was reduced at 60min LPS treatment led us to hypothesize that the deglutathionylation of Mal may act as an inhibitory feedback mechanism to limit TLR4 activation. We therefore sought to expand upon our findings by limiting Mal glutathionylation.

I next examined which cysteines in Mal are required for GSH binding. Using site directed mutagenesis, I designed primers which would introduce a mutation into wild-type Mal. I primarily generated three cysteine to alanine mutants, C91A and C157A and a double C91A/C157A mutant. Initial overexpression studies identified that C157A frequently resulted in incorrectly folded protein and did not express relative to C91A. For this reason, I used C91A...
for our initial experiments. Mal C91A was not glutathionylated when overexpressed and immunoprecipitated compared to wild-type Mal. Pre-treatment of LPS did not induce C91A glutathionylation. The glutathionylation of wild-type Mal was increased however with LPS. Previous reports suggested that neighbouring amino acids which have a positive charge, such as lysine, histidine and arginine, can directly impact on the ability for cysteine thiol groups to become more prone to glutathionylation [220]. Bioinformatic alignment of the amino acid sequence of Mal indicated that a conserved histidine, H92, neighboured C91. I next mutagenized H92 to a structurally similar amino acid, proline, which does not have a positive charge. Like C91A, H92P was not glutathionylated when overexpressed and immunoprecipitated. LPS pre-treatment did not induce glutathionylation of H92P. Immunoprecipitation, followed by blotting of C91A and H92P also indicated the absence of an upper band on Mal, which is interpreted as the phosphorylation band.

I next examined if C91 was the main functional glutathionylation target, as Mal contains 7 cysteines, C89, C91, C116, C134, C142, C157 and C174. I examined if each mutant could successfully drive NF-κB activation via luciferase assay as a functional readout, as each cysteine except C91 and C157 have been reported to be in disulphide bond formation and would be occluded from GSH in tertiary structure [57]. C91A and C157A were unable to drive NF-κB activation as anticipated. I decided to use a higher plasmid concentration of C157A and used an NF-κB luciferase assay as a readout to assess if C157A was structurally unstable at lower concentrations. C157A could drive NF-κB activation, albeit at an attenuated level and appeared to have the upper phosphorylation band seen in wild-type Mal. C91A however could not drive NF-κB activation. The double mutant C91A/C157A had attenuated NF-κB reporter activity, and this was attributed to C91A, as C157A could drive NF-κB. Similarly, H92P could not drive NF-κB activation compared to wild-type Mal. Overexpression of plasmids in HEK293T cells however relies on the expression of the plasmid to drive NF-κB activation and does not require a stimulus. I overexpressed each cysteine mutant in MTCs, which are LPS responsive and used an NF-κB luciferase assay to assess TLR4 activation. Notably, only C91A had a dominant negative effect, with significantly attenuated NF-κB activation. Likewise, H92P attenuated NF-κB activation with LPS treatment. Mal is also utilized by TLR2 as an adaptor protein. I next assessed if TLR2 would be impaired similar to TLR4 with C91A and H92P. Both mutants attenuated NF-κB activation in HEK293-TLR2 cells treated with Pam3CSK4, however C91A did not have as significant an impact as a dominant negative mutant towards TLR2 activation. Kenny et al. reported that Mal is not required by TLR2 to signal using high
Glutathionylation of Mal on Cysteine 91 regulates TLR4 activation

Having gathered data on numerous NF-κB luciferase assays, I decided to examine if C91A and H92P could reconstitute iBMDMs deficient in Mal. Wild-type Mal successfully reconstituted TLR4 signalling, with degradation of IκBα used as the readout for TLR4 activation. Both C91A and H92P mutants failed to reconstitute TLR4 signalling, with protein expression comparable to wild-type Mal. Glutathionylation of Mal on C91 must therefore be required for TLR4 activation to drive assembly of the myddosome to activate NF-κB.

TLR4 activation is initiated by Mal dimerization to allow for myddosome assembly [221]. Mal dimerization promotes MyD88 recruitment, through interaction via homologous TIR domains. It has been well established that Mal can interact with MyD88 and IRAK4, two components of the myddosome. The results I obtained indicated that both C91A and H92P function as dominant negative mutations, preventing activation of NF-κB. The binding of GSH may therefore promote Mal interaction with TLR components. To assess this, I performed co-immunoprecipitations of C91A with MyD88. The results of the co-immunoprecipitation experiments indicated that C91A and MyD88 did not interact. Similarly, co-immunoprecipitation of H92P with MyD88 failed to interact. This experiment suggests that glutathionylation of C91 is critical for interaction with MyD88. Preventing glutathionylation by mutating the positively charged H92 abrogated Mal-MyD88 interaction, which compliments the previously described immunoprecipitations indicating H92P negatively affects C91 glutathionylation.

Due to the lack of interaction with MyD88, I hypothesized that the dominant negative effects of C91A and H92P may limit myddosome assembly. IRAK4 has been previously reported to induce phosphorylation of Mal on threonine 28, inducing polyubiquitination and subsequent proteasomal degradation of Mal [70]. IRAK4 is also a component of the myddosome [222]. IRAK4-induced degradation of WT Mal may therefore be limited when Mal is unable to become glutathionylated. IRAK4 induced Mal degradation, however both C91A and H92P Mal failed to degrade with increasing concentrations of IRAK4. This data suggests that Mal glutathionylation can promote IRAK4-mediated phosphorylation and Mal degradation as the mutants are unaffected by IRAK4. The kinase dead version of IRAK4 immunoprecipitated with wild-type Mal, however this interaction was attenuated by both C91A and H92P. This data contrasts previous reports of GSH limiting phosphorylation, as GSH has been shown to

Glutathionylation of Mal on Cysteine 91 regulates TLR4 activation 117
negatively regulate the phosphorylation of STAT3 [223]. This data suggests that GSH binding to Mal may promote a conformational change to allow for interaction with MyD88. It may also open threonine 28 to allow for phosphorylation of Mal by IRAK4. Both Mal mutants cannot be glutathionylated, and may thereby occlude threonine 28 from IRAK4, preventing the interaction with IRAK4.

Having established that Mal is glutathionylated, I considered how LPS can induce glutathionylation, as GSH can be compartmentalized to varying concentrations [112], that may not respond rapidly to TLR4 activation. There is an abundant literature that LPS drives ROS [199], [200], so I decided to examine if an antioxidant pre-treatment would prevent Mal glutathionylation in response to LPS. Using N-acetylcysteine, Mal glutathionylation was prevented, pointing to a mechanism whereby LPS binding to TLR4 can conceivably initiate a rapid localized ROS microenvironment, promoting Mal glutathionylation for myddosome assembly. Previous evidence using L929 cells treated with the anticancer agent curcumin has demonstrated a rapid induction of ROS detectable from 5min, coupled with a decrease in total free-GSH pools. The decrease in total GSH was linked to induction of Caspase-3-independent apoptosis and cytochrome c release from the mitochondria. Interestingly pre-treatment with GSH prevented curcumin-induced cell death [224]. This finding may point to a mechanism whereby GSH is rapidly sequestered by redox-sensitive cysteines upon TLR activation, reducing the overall GSH pool transiently to promote signalling. Further work is required to confirm the impact of antioxidants on Mal glutathionylation.

3.3 Final conclusion
Overall, I have characterised a novel post-translational modification in the TLR signalling adaptor Mal. Mal is the first reported adaptor protein to undergo glutathionylation and therefore glutathionylation of other adaptor proteins warrants investigation. Mal C91 is the main glutathionylated cysteine, and alteration of C91 limits Mal activation. I have further characterized the functional relevance of Mal glutathionylation, as Mal C91A cannot interact with MyD88 or IRAK4, limiting the capacity for TLR activation. As glutathionylation is a redox sensitive event, the mechanisms driving Mal glutathionylation warrant further investigation. The main findings from this chapter are summarised in Figure 3.14.
Glutathionylation of Mal on Cysteine 91 regulates TLR4 activation

Figure 3.14 Schematic summary of results from Chapter 3

LPS-binding to TLR4 induces an intracellular conformation change to allow for TIR domain interactions and subsequent recruitment of TIR domain-containing adaptors Mal and MyD88. Glutathionylation of Mal (left) promotes Mal-MyD88 interaction to drive assembly of the myddosome containing IRAKs 1, 2 and 4 and TRAF6, ultimately leading to activation and translocation of NF-κB to the nucleus to upregulate inflammatory gene transcription. Deglutathionylation of Mal (right), results in Mal inactivation and failure to interact with MyD88, limiting activation of NF-κB.
Chapter 4

GSTO1-1 acts as an anti-inflammatory enzyme in macrophages
Characterisation of GSTO1-1 function in macrophages

4.1 Introduction

Macrophages responding to PAMPs require a system to effectively and efficiently remove insults, the most robust of which is generation of ROS to clear pathogens. ROS generation can be a relatively slow process, due to molecular remodelling of macrophages to a pro-oxidant environment. Such remodelling is known to affect mitochondrial dynamics, resulting in induction of pro-inflammatory factors including the transcription factor HIF1α and the cytokine pro-IL-1β [146, 225]. Utilization of ROS is however, a tipping point scenario, whereby under-production can reduce efficacy of pathogen clearance, or over-production, which can result in indiscriminate protein oxidation and degradation. Macrophages thereby rely on the tripeptide GSH as a fail-safe mechanism to prevent unwanted damage to proteins during infection.

Glutathionylation or deglutathionylation of proteins can have profound effects on their signalling capacity, as evidenced by the effects of glutathionylation of Mal discussed in Chapter 3. Professional redox enzymes, such as the glutaredoxins, have been known for many years to catalyse such reactions however the specificity of glutathionylation reactions in macrophages remains poorly defined. Research by Menon et al. identified a glutathione transferase, GSTO1-1, as a potential deglutathionylating enzyme involved in innate immune signalling [137, 226]. Owing to its structural similarity to glutaredoxins, and an atypical active site cysteine residue, GSTO1-1 can function in the glutathionylation cycle. Structural studies of GSTO1-1 identified a large V-shaped cleft, potentially allowing docking of proteins to promote glutathionylation reactions. Furthermore, GSTO1-1-deficient J774A.1 macrophages have impaired responses to LPS, placing GSTO1-1 as a regulatory enzyme upstream of NF-κB in TLR4 signalling.

Cell lines are known to have altered metabolic requirements, and as such, we decided to examine the role of GSTO1-1 in primary murine macrophages. In contrast to previously published reports, we find GSTO1-1 deficiency does not impair TLR activation, thereby eliminating GSTO1-1 as the regulator of Mal glutathionylation. Furthermore, we identify GSTO1-1 as a regulator of HIF1α and pro-IL-1β production, with ROS production significantly greater in GSTO1-1-deficient BMDMs. Interestingly these findings implicate GSTO1-1 as an endogenous anti-inflammatory enzyme and warrant further examination.
To further understand the importance of the catalytic activity of GSTO1-1, a small molecule inhibitor of GSTO1-1, termed C1-27, was utilized. Importantly, we find that C1-27 can also increase HIF1α and pro-IL-1β production, placing the enzymatic function of GSTO1-1 as a critical determinant of its anti-inflammatory responses.
4.1.1 GSTO1-1 does not limit TLR4 responses to LPS

Previous investigations into the role of the deglutathionylating enzyme GSTO1-1 in macrophages have identified that GSTO1-1 is required for TLR4 signalling, as GSTO1-1-deficient J774.1A macrophages have decreased LPS responses [118]. Using GSTO1-1-deficient BMDMs, I therefore next examined the potential broad effect of GSTO1-1 deficiency on general TLR responses, to confirm whether GSTO1-1 deficiency might limit TLR signalling. If a role for GSTO1-1 could be found, I then planned to test glutathionylated Mal as a substrate for GSTO1-1. GSTO1-1-deficient BMDMs used in this chapter were obtained from Prof. Philip Board from the University of Canberra and required 48h shipment. I first compared WT BMDMs with GSTO1-1-deficient BMDMs for TLR4 responses using an IκBα degradation time-course as a readout. As shown in Figure 4.1 top panel, LPS induced degradation of IκBα from 15min, with IκBα beginning to return to basal levels at 60min LPS treatment (Top panel left-hand side). GSTO1-1 deficiency had no effect on IκBα degradation (Top panel right-hand side), with similar effects compared to WT BMDMs. In the second panel, phosphorylation of p38 is also similar between WT and GSTO1-1-deficient BMDMs, with phosphorylation increased from 5min LPS treatment. In the third panel, phosphorylation of JNK is also evident, similar between WT and GSTO1-1-deficient cells, however the signal was weaker. In the lowest panel, β-actin served as a loading control. GSTO1-1 deficiency was confirmed by qPCR as depicted in the histogram.

4.1.2 Effect of GSTO1-1 deficiency on TLR3 responses to Poly I:C

I next examined if GSTO1-1 deficiency could affect TLR3 signalling. As shown in Figure 4.2, GSTO1-1-deficient BMDMs may have delayed IκBα degradation compared to WT BMDMs (Top panel left-hand side vs right-hand side). Phosphorylation of p38 (Second panel left-hand side vs right-hand side), or JNK (Third panel) was similar in both WT and GSTO1-1-deficient BMDMs. Detection of phospho-JNK was very weak again. β-actin was used as a loading control (Lowest panel).

4.1.3 Effect of GSTO1-1 deficiency on TLR1/2 responses to Pam3CSK4

I next examined if GSTO1-1 deficiency could affect TLR2 signalling. As shown in Figure 4.3 top panel, GSTO1-1-deficient BMDMs appeared to have differences in IκBα degradation when treated with Pam3CSK4 (Top panel left-hand side vs right-hand side), however this difference was attributed to uneven loading of protein sample, as the loading control GAPDH protein bands are much weaker in the GSTO1-1-deficient cells (Lower panel left-hand side vs right-
hand side). The β-actin loading control used at the time of sample processing was unreliable and I had to use GAPDH for optimal detection purposes. Similarly, at 30min and 45min Pam3CSK4 treatment, phosphorylation of p38 is similar in both WT and GSTO1-1-deficient BMDMs (Second panel left-hand side vs right-hand side). In the third panel, phosphorylation of JNK also appeared to have negligible differences between WT and GSTO1-1-deficient BMDMs. This experiment would need to be re-examined with GSTO1-1-deficient BMDMs to account for error in sample loading.

4.1.4 GSTO1-1 does not limit TLR 7/8 responses to R848
I also examined if GSTO1-1 deficiency affected TLR7/8 responses. As shown in Figure 4.4, GSTO1-1-deficient BMDMs had no observable differences in IκBα degradation compared to WT BMDMs (Top panel left-hand side vs right-hand side). Phosphorylation of p38 (Second panel) or JNK (Third panel) was comparable between WT and GSTO1-1-deficient BMDMs. GAPDH served as a loading control (Lowest panel). There appears to be less GAPDH detected in WT BMDMs compared to GSTO1-1-deficient BMDMs, due to inaccurate loading.

4.1.5 GSTO1-1 does not limit TNFα receptor signalling
GSTO1-1 appeared to have no role in early TLR signalling. I therefore decided to examine TNFα signalling. As shown in Figure 4.5 top panel, GSTO1-1 deficiency had no comparable difference in IκBα degradation to WT BMDMs (Upper panel). Phosphorylation of p38 (Second panel) was comparable between WT and GSTO1-1-deficient BMDMs. GAPDH served as a loading control (Lowest panel). JNK phosphorylation was not detectable in response to TNFα treatment, as the signal was too weak. Overall, canonical TLR and TNFα receptor activation appears to be independent of GSTO1-1 activity, as there are no discernible differences in IκBα degradation and p38 phosphorylation.
Figure 4.1 GSTO1-1 deficiency does not inhibit TLR4 signalling

Wild-type and GSTO1-1-deficient BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were treated with 100ng/mL LPS for the times indicated and lysed in 50µL sample loading buffer. Samples were analysed by western blotting using anti-IκBα, anti-pP38, anti-pJNK and anti-β-actin antibodies. GSTO1-1 deficiency was confirmed by qPCR. The results shown are representative of three independent experiments.
Figure 4.2 Effect of GSTO1-1 deficiency during TLR3 signalling

Wild-type and GSTO1-1-deficient BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were treated with 10μg/mL Poly I:C for the times indicated and lysed in 50μL sample loading buffer. Samples were analysed by western blotting using anti-IκBα, anti-pP38, anti-pJNK and anti-β-actin antibodies. GSTO1-1 deficiency was confirmed by qPCR in Figure 4.1. The results shown are representative of three independent experiments.
Figure 4.3 Effect of GSTO1-1 deficiency during TLR1/2 signalling

Wild-type and GSTO1-1-deficient BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were treated with 100ng/mL Pam3CSK4 for the times indicated and lysed in 50µL sample loading buffer. Samples were analysed by western blotting using anti-IκBα, anti-pP38, anti-pJNK and anti-GAPDH antibodies. GSTO1-1 deficiency was confirmed by qPCR in Figure 4.1. The results shown are representative of three independent experiments.
Figure 4.4 GSTO1-1 deficiency does not inhibit TLR7/8 signalling

Wild-type and GSTO1-1-deficient BMDMs were seeded at 5x10^4 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were treated with 10µg/mL R848 for the times indicated and lysed in 50µL sample loading buffer. Samples were analysed by western blotting using anti-IκBα, anti-pP38, anti-pJNK and anti-GAPDH antibodies. GSTO1-1 deficiency was confirmed by qPCR in Figure 4.1. The results shown are representative of three independent experiments.
Figure 4.5 GSTO1-1 deficiency does not inhibit TNFα signalling

Wild-type and GSTO1-1-deficient BMDMs were seeded at 5×10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were treated with 20ng/mL recombinant TNFα for the times indicated and lysed in 50μL sample loading buffer. Samples were analysed by western blotting using anti-IκBα, anti-pP38, anti-pJNK and anti-GAPDH antibodies. GSTO1-1 deficiency was confirmed by qPCR in Figure 4.1. The results shown are representative of three independent experiments.
4.1.6 GSTO1-1-deficient BMDMs produce more IL-10

I next assessed whether GSTO1-1 deficiency would impact on cytokine production in response to LPS treatment. As shown in Figure 4.6 A, LPS-treated GSTO1-1-deficient BMDMs had no significant difference in IL-6 protein production, however the RNA level appeared to be significantly decreased (Figure 4.6 B). GSTO1-1-deficient BMDMs produced significantly more IL-10 in response to LPS, both in terms of protein (Figure 4.6 C) and mRNA (Figure 4.6 D). GSTO1-1 deficiency had no effect on TNFα protein (Figure 4.6 E) and mRNA (Figure 4.6 F). GSTO1-1 deficiency was confirmed by qPCR (Figure 4.6 G).

4.1.7 GSTO1-1-deficient BMDMs are not classically M1 or M2 polarised

As shown in Figure 4.7, GSTO1-1-deficient macrophages also had an altered polarisation compared to WT BMDMs, as the expression of a common M2 macrophage marker Arginase-1 was attenuated in IL-4 treated GSTO1-1-deficient BMDMs (Figure 4.7 A). GSTO1-1-deficient BMDMs also expressed less iNOS when treated with LPS (Figure 4.7 B). Another common M2 macrophage marker, Mrc1, had no observable differences between WT and GSTO1-1-deficient BMDMs (Figure 4.7 C). Again, in this experiment GSTO1-1-deficient BMDMs expressed higher levels of IL-10 transcript compared to WT BMDMs (Figure 4.7 D). IL-12p40, another M1 marker, was attenuated compared to WT BMDMs with LPS treatment (Figure 4.7 E). GSTO1-1 deficiency was confirmed by qPCR (Figure 4.7 F).
Wild-type and GSTO1-1-deficient BMDMs were seeded at 5×10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO$_2$ overnight. Cells were treated with 100ng/mL LPS for 4h, 6h and 24h. Supernatant was harvested for ELISA for IL-6 (A), IL-10 (C) and TNFα (E). Cells were lysed in 350µL RNA lysis buffer and RNA isolated using Ambion RNA extraction kit. RNA was reverse transcribed and cDNA was used for qPCR with SYBR Green components. cDNA was analysed using the cycle-threshold (Ct) value normalized to RPS18 control gene for IL-6 (B), IL-10 (D), TNFα (F) and GSTO1 (G). Mean ± S.E.M of three independent experiments each carried out in triplicate is shown. * $P \leq 0.05$, ** $P \leq 0.005$.

Figure 4.6 ELISA and RNA profile of LPS-treated GSTO1-1-deficient BMDMs
Figure 4.7 GSTO1-1-deficient BMDMs have altered M1/M2 polarization

Wild-type and GSTO1-1-deficient BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were treated with 100ng/mL LPS or 20ng/mL IL-4 for 24h. Cells were lysed in 350μL RNA lysis buffer and RNA isolated using Ambion RNA extraction kit. RNA was reverse transcribed and cDNA was used for qPCR with SYBR Green components. cDNA was analyzed using the cycle-threshold (Ct) value normalized to RPS18 control gene for Arginase (A), iNOS (B), Mrc1 (C), IL-10 (D), IL-12p40 (E) and GSTO1 (F). Mean ± S.E.M of three independent experiments each carried out in triplicate is shown. * P ≤ 0.05, ** P ≤ 0.005
4.1.8 GSTO1-1-deficient BMDMs produce more ROS
I next measured ROS levels in GSTO1-1-deficient BMDMs. As shown in Figure 4.8 GSTO1-1-deficient cells have basally higher ROS levels compared to WT BMDMs. LPS addition increased ROS levels in WT BMDMs however this increase was much higher in the GSTO1-1-deficient cells. ROS levels may have been variable due to shipment of legs.

4.1.9 GSTO1-1-deficient BMDMs have increased HIF1α and IL-1β protein levels
Because of the increase in ROS evident in the GSTO1-1-deficient BMDMs, I next measured HIF1α and pro-IL-1β production, which are driven by ROS in LPS-treated macrophages [146, 227]. In Figure 4.9 GSTO1-1-deficient BMDMs produced higher levels of HIF1α protein compared to WT BMDMs in response to LPS treatment (Figure 4.9 Top panel left-hand side vs right-hand side). Similarly, GSTO1-1-deficient BMDMs produced higher levels of pro-IL-1β (Figure 4.9 Middle panel left-hand side vs right-hand side). β-actin served as a loading control (Figure 4.9 Lowest panel).

4.1.10 GSTO1-1-deficient BMDMs have increased IL-1β and HIF1α gene target expression
Due to the observed increase in HIF1α protein, I next examined whether the expression of HIF1α target genes would be increased. In Figure 4.10 A, GSTO1-1-deficient BMDMs had a significantly higher expression level of prolyl hydroxylase domain-containing protein 3 (PHD3) at 24h LPS treatment compared to WT BMDMs. The expression of lactate dehydrogenase a (LDHa) was also significantly increased at 24h LPS treatment compared to WT BMDMs (Figure 4.10 B). The expression of glucose transporter type 1 (GLUT1) was also increased at 24h LPS compared to WT BMDMs (Figure 4.10 C). Again, compared to WT BMDMs, the induction of IL-1β was significantly increased with 24h LPS treatment (Figure 4.10 D), correlating with the western blot in Figure 4.9, potentially due to increased HIF1α production. GSTO1-1 deficiency was confirmed by qPCR (Figure 4.10 E).

4.1.11 GSTO1-1-deficient BMDMs have a higher rate of glycolysis
Macrophages treated with LPS skew their phenotype towards a pro-glycolytic environment, with increased levels of HIF1α [121]. As HIF1α levels were higher in the GSTO1-1-deficient BMDMs, I measured the initial glycolytic flux caused by LPS. As shown in Figure 4.11, GSTO1-1-deficient BMDMs have a higher rate of basal glycolysis compared to WT BMDMs, as measured by the extracellular acidification rate (ECAR). Addition of LPS greatly enhanced
GSTO1-1-deficient BMDM glycolytic flux, however the LPS-treated WT BMDMs did not respond to LPS. This data requires further investigation, however the basal ECAR suggests that GSTO1-1-deficient BMDMs are more glycolytic.
Figure 4.8 GSTO1-1-deficient BMDMs have increased ROS production

Wild-type and GSTO1-1-deficient BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO_2 overnight. Cells were treated with 100ng/mL LPS for 24hr prior to treatment with cellular ROS stain MitoROS dye for 1hr with minimal light. Live cells were analysed by Flow cytometry for ROS production, and mean fluorescence intensity (MFI) was quantified. Data shown is representative of three pooled WT and GSTO1-1-deficient BMDMs.
GSTO1 acts as an anti-inflammatory enzyme in macrophages

Figure 4.9 GSTO1-1-deficient BMDMs have increased HIF1α and IL-1β levels

Wild-type and GSTO1-1-deficient BMDMs were seeded at 5×10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were treated with 100ng/mL LPS for the times indicated and lysed in 50μL sample loading buffer. Samples were analysed by western blotting using anti-HIF1α, anti-IL-1β and anti-β-actin antibodies. GSTO1-1 deficiency was confirmed by qPCR in Figure 4.10. The results shown are representative of three independent experiments.
Figure 4.10 GSTO1-1 deficiency Increases HIF1α target gene transcription

Wild-type and GSTO1-1-deficient BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were treated with 100ng/mL LPS for 12hr and 24hr. Cells were lysed in 350μL RNA lysis buffer and RNA isolated using Ambion RNA extraction kit. RNA was reverse transcribed and cDNA was used for qPCR with SYBR Green components. cDNA was analysed using the cycle-threshold (Ct) value normalized to RPS18 control gene. Mean ± S.E.M of three independent experiments each carried out in triplicate is shown. * P ≤ 0.05, ** P ≤ 0.005, *** P ≤ 0.001

GSTO1-1 acts as an anti-inflammatory enzyme in macrophages
Figure 4.11 GSTO1-1-deficient BMDMs have an altered basal glycolytic rate

Wild-type and GSTO1-1-deficient BMDMs were seeded at 2x10^5 cells/mL in a Seahorse cell culture plate incubated at 37°C 5% CO_2 overnight. A calibration plate was also prepared containing calibrant solution (1mL/well). The following day Seahorse medium supplemented with 25mM glucose was prepared and adjusted to pH7.4. Media was removed from cells and replaced with 500µL glucose-supplemented Seahorse medium. The cell culture plate was placed in a CO_2-free incubator for at least 30min. LPS (100ng/mL) and Oligomycin was added to respective ports on the injector plate and placed on the cell culture plate and analysed by the Seahorse Analyser. Data shown is representative of three pooled WT and GSTO1-1-deficient BMDMs.
4.2. Inhibition of GSTO1-1 by C1-27

4.2.1 C1-27 does not limit TLR4 activation
To assess the relevance of the catalytic activity of GSTO1-1, I used a recently described small molecule inhibitor of GSTO1-1, termed C1-27, which binds to the active site C32 to limit GSTO1-1 catalytic activity [228]. I first examined the potential cytotoxic effects of C1-27. Pre-treatment with C1-27 prior to 24h LPS stimulation had no discernible effects on LDH release, and the highest dose tested, 5µM was used unless otherwise stated (Figure 4.12 A). As shown in Figure 4.15 B, pre-treatment of BMDMs with C1-27 had no effect on TLR4 signalling. In the upper panel the degradation of IκBα was unaffected compared to LPS treatment, nor was there any discernible difference between phosphorylation of P38 or P65 (second and third panel). C1-27 pre-treatment appeared to increase phosphorylation of pERK1/2 (fourth panel), however this effect was only observed once. In the lowest panel, β-actin served as loading control.

4.2.2 C1-27 increases HIF1α and pro-IL-1β Production
I next examined if C1-27 could mimic the pro-inflammatory effects of GSTO1-1 deficiency by examining the production of HIF1α and pro-IL-1β production. Similar to Figure 4.9, enzymatic inhibition of GSTO1-1 markedly increases HIF1α production (Figure 4.13 top panel) and boosts pro-IL-1β production at three doses compared to LPS control. β-actin served as a loading control.

4.2.3 C1-27 Promotes IL-1β and HIF1α-dependent gene transcription
GSTO1-1-deficient BMDMs displayed an increased glycolytic phenotype in response to LPS treatment, with a significant increase in HIF1α production. As shown in Figure 4.14, C1-27 pre-treatment somewhat increased HIF1α transcription factor activity, as a trend towards increased pro-IL-1β transcription was observed (Figure 4.14 A), with no effect on TNFα mRNA levels (Figure 4.14 B). The IL1-receptor antagonist (IL1-RA) was also examined. C1-27 treatment significantly decreased the transcript of IL1-RA (Figure 4.14 C) and dose-dependently increased transcription of HIF1α-dependent PHD3 (Figure 4.14 D).

4.2.4 IL-10 production is impaired by C1-27
I next examined the effect of C1-27 on cytokine production from TLR4 activation. In comparison to the observed boost in IL-10 production from GSTO1-1-deficient BMDMs, C1-
27 dose-dependently decreased IL-10 production from BMDMs stimulated with LPS (Figure 4.15 A). C1-27 had no effect on IL-6 (Figure 4.15 B) or TNFα production (Figure 4.15 C).

4.2.5 C1-27 decreases ROS production
I next measured ROS production in C1-27-treated BMDMs. In comparison to Figure 4.8, pretreatment with C1-27 dose-dependently decreased the production of ROS as measured by 2',7'–dichlorofluorescin diacetate (DCFDA) staining after 24h LPS treatment (Figure 4.16).

4.2.6 Endogenous knockdown of GSTO1-1 ablates IL-10 production
In order to separate the observed differences in cytokine production between the GSTO1-1-deficient BMDMs and C1-27 treated cells, I employed the use of siRNA to endogenously knockdown GSTO1-1 from BMDMs. In response to LPS treatment, IL-10 production was ablated in GSTO1-1 knockdown BMDMs compared to scramble siRNA control (Figure 4.17 B), with no significant differences between IL-6 (Figure 4.17 A) and TNFα production (Figure 4.17 C). GSTO1-1 knockdown was confirmed by western blot (Figure 4.17 D).
Figure 4.12 C1-27 does not limit TLR4 signalling upstream of NF-κB activation

Wild-type BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. (A) Cells were pre-treated with indicated doses of C1-27 2h prior to 24h LPS treatment. 10X lysis solution was added to an untreated well for total cell lysis control. Supernatants were removed and 50µL was added to 50µL Promega Cytotox-96 substrate buffer for 30min at RT. 25µL stop solution was added and absorbance was measured at 492nm. (B) Cells were pre-treated with 5µM C1-27 for 2h and then stimulated with 100ng/mL LPS for the times indicated and lysed in 50µL sample loading buffer. Samples were analysed by western blotting using anti-IκBα, anti-pP38, anti-pP65, anti-pERK1/2 and anti-β-actin antibodies. The results shown are representative of three independent experiments.
Figure 4.13 Effect of C1-27 on HIF1α and pro-IL-1β protein levels
BMDMs were seeded at 5×10⁵ cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with a dose range of 5 μM C1-27 for 2h and treated with 100ng/mL LPS for 24h. Cells were lysed in sample loading buffer and analysed by western blotting using anti-IL-1β, anti-HIF1α and anti-β-actin antibodies. Data shown is representative of three independent experiments.
GSTO1-1 acts as an anti-inflammatory enzyme in macrophages

Figure 4.14 C1-27 Promotes IL-1β and HIF1α-dependent gene transcription

BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with a dose range of 1-10 µM C1-27 for 2h, prior to treatment with 100ng/mL LPS for 24h. Cells were lysed in 350µL RNA lysis buffer and RNA isolated using Ambion RNA extraction kit. RNA was reverse transcribed and cDNA was used for qPCR with SYBR Green components. cDNA was analysed using the cycle-threshold (Ct) value normalized to RPS18 control gene for IL-1β (A), TNFα (B), IL1-RA (C) and PHD3 (D). Mean ± S.E.M of three independent experiments each carried out in triplicate is shown. * P ≤ 0.05, ** P ≤ 0.005.
Figure 4.15 Enzymatic inhibition of GSTO1-1 by the catalytic inhibitor C1-27 attenuates IL-10 production in BMDMs

BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with a dose range of 1-10μM C1-27 for 2h and treated with 100ng/mL LPS for 24h. Supernatant was harvested for ELISA for IL-10 (A), IL-6 (B) and TNFα (C). Mean ±S.E.M of three independent experiments each carried out in triplicate is shown. ** P ≤0.005, *** P ≤0.001
Figure 4.16 C1-27 decreases ROS production

BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with indicated doses of C1-27 2h prior to treatment with 100ng/mL LPS for 24h. The cellular ROS stain DCFDA was added to each well for 45min with minimal light. Live cells were analysed by Flow cytometry for ROS production, and mean fluorescence intensity (MFI) was quantified. Mean ± S.E.M of three independent experiments is shown. * P ≤ 0.05
GSTO1-1 acts as an anti-inflammatory enzyme in macrophages

Figure 4.17 siRNA knockdown of GSTO1-1 limits IL-10 production

BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were transfected with 5nmol scramble siRNA (Ambion) or GSTO1 siRNA in OptiMEM media for 36h using RNAiMAX lipofectamine. Cells were treated with 100ng/mL LPS for times indicated. Supernatant was harvested for ELISA for IL-6 (A), IL-10 (B) and TNFα (C). Cells were lysed in sample loading buffer and analysed by western blotting using anti-GSTO1 and anti-β-actin antibodies (D). Representative of three independent western blot experiments is shown.
4.3 Discussion

The role of the glutathionylation system in regulation of human health is poorly characterized. The levels of GSH alter drastically as we age, and such decreases are correlated to increased susceptibility to neurodegenerative diseases including Parkinson’s Disease [229] and Alzheimer’s Disease [230]. Furthermore, altered redox metabolism is directly linked to effective pathogen clearance and cancer progression [231]. The glutathione transferase class of enzymes are able to interact with a wide variety of substrates, and catalyse reactions from deglutathionylation to prostaglandin synthesis [122]. Whilst all glutathione transferases contain canonical features, such as the GST fold and an active site serine or tyrosine residue, only one GST termed GSTO1-1 contains an active site cysteine residue, increasing the capacity for GSTO1-1 to regulate redox signalling.

My interest in GSTO1-1 came from reports placing GSTO1-1 as a potential regulatory enzyme upstream of NF-κB, however the precise target was unknown. J774.A1 cells deficient in GSTO1-1 were shown to block translocation of NF-κB to the nucleus, potentially identifying an enzyme proximally located at the beginning of TLR4 activation [137]. I hypothesised that GSTO1-1 may act as a regulatory switch for Mal activation, as Mal glutathionylation is critical for TLR4 activation, seen in Chapter 3. Whilst predominantly reported as a deglutathionylating enzyme, GSTO1-1 has also been reported to glutathionylate residues in vitro with weaker affinity [232]. The enzymatic activity of GSTO1-1 towards Mal could result in two potential consequences. GSTO1-1 may act to glutathionylate Mal to drive TLR4 activation, or GSTO1-1 could potentially deglutathionylate Mal as an ‘off-switch’ to limit excessive TLR signalling. If deficiency in GSTO1-1 results in TLR4 inhibition, I would hypothesise that GSTO1-1 serves to glutathionylate Mal to promote NF-κB nuclear translocation.

My studies began using GSTO1-1-deficient mice generously donated by Prof. Philip Board to examine if TLR activation was impaired. Previous reports have identified that components of TLR signalling, such as MyD88, TRAF6 and NF-κB, are affected by the redox environment, which impacts their signalling capacity [233], [234], [235]. We hypothesised that GSTO1-1 must regulate either Mal or a component of the myddosome to limit NF-κB activation.

I began by examining activation of TLRs 1/2, 3, 4, 7/8 and the TNFα receptor in order to identify a possible role for GSTO1-1 in IκBα degradation as a readout of NF-κB activation. When tested, GSTO1-1-deficient BMDMs did not have impaired responses to TLR ligands or TNFα stimulation, with degradation of IκBα present in response to each ligand examined.
Although the characterisation of GSTO1-1 is not exhaustive upstream of NF-κB due to limitations in the availability of GSTO1-1-deficient mice, the data does suggest that GSTO1-1 is not limiting the phosphorylation of TLR components that lead to NF-κB activation or transcription of NF-κB-dependent genes. This finding contrasts previous reports that GSTO1-1 is required for translocation of NF-κB to the nucleus [137].

I next decided to examine if cytokine production was impaired in GSTO1-1-deficient BMDMs. Interestingly, GSTO1-1-deficient BMDMs produced higher levels of the anti-inflammatory cytokine IL-10 in response to LPS, with no significant differences in protein level of cytokines IL-6 and TNFα, measured by ELISA. Whilst the RNA levels of IL-6 were significantly reduced, no statistical differences were observed between production of IL-6 measured by ELISA in control and GSTO1-1-deficient BMDMs. Due to the higher level of IL-10, we speculated if the absence of GSTO1-1 would further promote an M2, or pro-resolution, macrophage. In order to assess this, LPS or IL-4 was used to polarise the macrophages into classically activated ‘M1’ or alternatively activated ‘M2’ macrophages, respectively and looked at expression of specific subsets of either M1 or M2 genes. GSTO1-1-deficient BMDMs had reduced expression of iNOS, an M1 marker, however they also had significantly decreased expression of Arginase, an M2 marker in response to IL4. Another commonly used M2 marker, Mrc1, had no significant differences between wild-type and GSTO1-1-deficient BMDMs. This finding indicated that GSTO1-1-deficient BMDMs are not classically M1 or M2 polarized. Interestingly LPS-induced IL-12p40 production was significantly reduced in GSTO1-1-deficient BMDMs. IL-12p40 functions as a regulator of the adaptive immune system, specifically driving T-helper 1 (Th1) activation [236, 237]. It would be interesting to examine the deficiency of GSTO1-1 on the pathogenicity of the mouse model of experimental autoimmune encephalomyelitis (EAE), as Th1 activation by IL-12p40 is known to be pathogenic in EAE [238].

The second major aim of this chapter was to assess if GSTO1-1 deficiency had an impact on the energetic demands of the cell, as redox signalling is closely linked to glycolysis and oxidative phosphorylation in macrophages, with recent discoveries identifying a critical role for the TCA cycle intermediate succinate in inflammation. Glycolysis has come to the forefront in recent years as a key metabolic reprogramming event in macrophage biology, as macrophages shift from oxidative phosphorylation to a glycolytic phenotype upon LPS treatment. Metabolic reprogramming of macrophages promotes microbial clearance, due to

GSTO1-1 acts as an anti-inflammatory enzyme in macrophages
higher ROS production and accumulation of TCA cycle intermediate succinate [146], which can stabilize HIF1α to further promote IL-1β transcription.

GSTO1-1 functions predominantly as a degrutathionylating enzyme, removing GSH from mixed disulphides to protect against oxidative damage. In order to assess if metabolic reprogramming was occurring in GSTO1-1-deficient cells, I firstly examined ROS production in response to LPS treatment in GSTO1-1 deficient BMDMs. Interestingly, GSTO1-1-deficient BMDMs produced higher levels of ROS basally, and considerably higher ROS production with LPS compared to WT cells. This finding poses a paradox, as increased IL-10 has been reported to limit ROS production in a model of DSS-induced colitis [239]. The observed differences in ROS production lead us to hypothesise that GSTO1-1 must play an anti-inflammatory role in macrophages. In a tumour micro-environment, cells have been shown to switch from oxidative-phosphorylation to glycolysis to promote rapid energy production. This ‘metabolic switch’, also known as the Warburg effect, is exploited by tumour cells and occurs in macrophages [142]. Interestingly, GSTO1-1-deficient BMDMs also have a high level of basal glycolysis compared to wild-type control BMDMs, generating ROS as a by-product of metabolic reprogramming. Increased ROS production leads to HIF1α stabilisation through degradation of the PHDs, leading to HIF1α activation and metabolic switching towards sustained glycolysis as seen in the GSTO1-1-deficient BMDMs. HIF1α stabilisation subsequently promotes transcription of genes containing hypoxia response elements (HREs). The IL-1β promoter contains a HRE, and GSTO1-1-deficient BMDMs also produce higher levels of pro-IL-1β when treated with LPS. Furthermore, HIF1α target genes are also increased in GSTO1-1-deficient BMDMs, including GLUT1, which transports glucose into the cell [240], further fuelling glycolytic demand.

I have shown that GSTO1-1-deficient macrophages are highly glycolytic and produce increased pro-inflammatory mediators in response to LPS treatment. Interestingly, Gsto1 has recently been reported to be a HIF1α-dependent gene, and ablation of GSTO1-1 or inhibition of HIF1α is linked to overall reduction in metastasis and cancer progression [241]. From my data, GSTO1-1 may serve to negatively regulate HIF1α under basal conditions. Further work is required to confirm a role for GSTO1-1 in HIF1α signalling.

GSTO1-1-deficient mice were a limiting factor in these experiments, and I utilized a recently described covalent GSTO1-1 inhibitor, termed C1-27, to further place GSTO1-1 as a regulator of HIF1α and pro-IL-1β. C1-27-mediated GSTO1-1 inhibition mimicked most of the results obtained from GSTO1-1-deficient BMDMs. C1-27 dose-dependently increased pro-IL-1β and
HIF1α levels and increased PHD3 expression, whilst having no effect on degradation of IκBα or phosphorylation of P38. Interestingly, C1-27 decreased the production of the IL-1 receptor antagonist (IL1-RA), highlighting the potential anti-inflammatory effects of GSTO1-1. In contrast to the GSTO1-1-deficient BMDMs, C1-27 dose-dependently decreased IL-10 production. Furthermore, use of C1-27 dose-dependently decreased the production of ROS in contrast to GSTO1-1-deficient BMDMs. Due to the differences observed between the inhibitor-treated and GSTO1-1-deficient BMDMs I tested endogenous knockdown of GSTO1-1 using siRNA in BMDMs. Similar to C1-27, endogenous knockdown of GSTO1-1 attenuated IL-10 production. I have yet to test siRNA-mediated knockdown of GSTO1-1 and ROS production. These differences observed in IL-10 production require further investigation, as a link between GSTO1-1-mediated de glutathionylation and the production of IL-10 is unexplored. Perhaps GSTO1-1 may play a role in de glutathionylating the transcription factor CREB, which is known to drive IL-10 production [242], as my data suggests inhibition or removal of GSTO1-1 does not affect NF-κB activation, another known IL-10 producer. There are significant differences observed between the GSTO1-1-deficient mice, C1-27 treated BMDMs and siRNA-mediated GSTO1-1 knockdown BMDMs, however this may be potentially due to compensation by other GST family members. Menon et al. reported other GST class family members had increased expression in the GSTO1-1-deficient mice [148], which could impact the interpretation of the inhibitor-treated and siRNA-knockdown cells. The main differences between the GSTO1-1-deficient mice, GSTO1-1 siRNA mediated knockdown and C1-27 treated macrophages are summarised in Table 4.1.
Table 4.1 Variation between GSTO1-1-deficient mice, GSTO1-1 siRNA knockdown and C1-27 treated macrophages

<table>
<thead>
<tr>
<th></th>
<th>GSTO1-1-deficient mice</th>
<th>GSTO1-1 siRNA</th>
<th>C1-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>IL-10</td>
<td></td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>TNFα</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>IL-1β</td>
<td>↑</td>
<td>?</td>
<td>↑</td>
</tr>
<tr>
<td>HIF1α</td>
<td>↑</td>
<td>?</td>
<td>↑</td>
</tr>
<tr>
<td>ROS</td>
<td>↑</td>
<td>?</td>
<td>↓</td>
</tr>
<tr>
<td>IL-1RA</td>
<td>?</td>
<td>?</td>
<td>↓</td>
</tr>
<tr>
<td>PHD3</td>
<td>↑</td>
<td>?</td>
<td>↑</td>
</tr>
<tr>
<td>LDHa</td>
<td>↑</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>GLUT1</td>
<td>↑</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Arginase</td>
<td>↓</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>iNOS</td>
<td>↓</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>IL-12p40</td>
<td>↓</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

N.D = No difference

? = Not tested
Although the physiological role of GSTO1-1 is poorly understood, Menon et al. has identified that GSTO1-1-deficient mice are resistant to LPS-induced lethality in vivo [148], suggesting that GSTO1-1 may also regulate Caspase-1 or Caspase-11 activation. In addition, GSTO1-1 has been previously shown to interact with the inflammasome adaptor protein ASC. I therefore decided to next characterise a potential role for GSTO1-1 in the processing of pro-IL-1β due to the potential scope of GSTO1-1 substrate range and the availability of C1-27 as a tool to probe inflammasome activation. Recently IL-1β has been identified as a glutathionylated cytokine, which directly impacts on its pro-inflammatory activity [243] and GSTO1-1 could thereby play a role in IL-1β processing.

4.4 Final Conclusion

Overall, I have identified a potential regulatory role of GSTO1-1 in the production of HIF1α and IL-1β. HIF1α has been reported to undergo glutathionylation, stabilising HIF1α protein in response to ischemia reperfusion (IR) injury, promoting its angiogenic functions [218]. GSTO1-1 may serve to negatively regulate HIF1α via deglutathionylation to potentially promote its hydroxylation by the PHDs and subsequent degradation. Whether GSTO1-1-deficient mice would be protected from IR remains to be examined but warrants investigation. It would be interesting to examine if other redox enzymes, such as the glutaredoxins, phenocopy the observed differences in GSTO1-1-deficient mice. I have also identified GSTO1-1 as a potential novel regulator of IL-10. Examination of IL-10 production in GSTO1-1-deficient BMDMs requires further experiments to confirm the paradoxical increase in IL-10 production compared to C1-27 and siRNA-mediated IL-10 ablation. Nevertheless, the potential role of GSTO1-1 regulating HIF1α and IL-10 is intriguing. The main findings of this chapter have been graphically summarised in Figure 4.18.
Figure 4.18 Schematic summary of results from Chapter 4

GSTO1-1 does not act upstream of NF-κB activation in murine BMDMs. GSTO1-1-deficiency results in increased levels of ROS, HIF1α, pro-IL-1β and glycolytic flux, suggesting a potential negative regulation of inflammation by GSTO1-1. Enzymatic inhibition of GSTO1-1 or endogenous knockdown ablates IL-10 production, possibly through a NF-κB independent mechanism.

GSTO1-1 acts as an anti-inflammatory enzyme in macrophages 153
Chapter 5

GSTO1-1 regulates the NLRP3 Inflammasome
GSTO1-1 is a novel component of the NLRP3 Inflammasome

5.1 Introduction

Inflammation has long been identified as the driving factor of many chronic inflammatory conditions and autoimmunity, including atherosclerosis [244], type 2 diabetes [245], ageing [246], obesity [247] and rheumatoid arthritis [248]. Macrophages of the innate immune system have been extensively examined in inflammatory phenotypes to elucidate the molecular mechanism of chronic low-grade inflammation. Once activated, TLRs drive assembly of inflammasomes, multimeric molecular signalling platforms. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome is a multi-component assembly of adaptor and effector proteins highly expressed in myeloid cells, consisting of NLRP3, ASC, NEK7 and Caspase-1.

The discovery of the NLRP3 inflammasome in 2002 identified the mechanism of IL-1β and IL-18 cleavage[153], and further identified the components of the inflammasome in a cell free system, linking NLRP3 to the autoimmune disease Muckle-Wells syndrome [154]. Further inflammasomes have since been identified and characterised, including the NACHT, LRR and PYD domains-containing protein 1 (NLRP1), NLR family CARD domain-containing protein 4 (NLRC4) and the AIM2 inflammasome.

Murine inflammasomes require a two-step activation, requiring a ‘priming’ signal via NF-κB activation to generate inflammasome components, including pro-IL-1β and pro-IL-18, via TLRs. The second driving signal in NLRP3 inflammasome activation is sensing of DAMPs, such as extracellular ATP, the pore-forming ionophore Nigericin, and crystalline substances. In contrast, human monocytes circumvent the requirement for DAMP recognition, and drive NLRP3 inflammasome activation through an alternate TLR4-dependent mechanism [249].

NLRP3 can mediate pyroptotic cell death by priming Caspase-1 auto-catalytic activation, driving non-canonical inflammasome cleavage of the pore-forming protein GSDMD [162, 250]. Owing to the complexity of inflammasome sensing and regulation, NLRP3 can be considered an intracellular safeguard to sense and limit infection.

I became interested in NLRP3 due to previous reports of a potential role for GSTO1-1 in the regulation of inflammasome activation. GSTO1-1 was previously shown to interact with the adaptor protein ASC [251], however the enzymatic function of GSTO1-1 on inflammasome
activation remained unexplored. GSTO1-1-deficient mice have impaired IL-1β secretion in response to LPS treatment in vivo, which may also be Caspase-11 dependent [148]. The NLRP3 inflammasome is potently inhibited by a recently described small molecule inhibitor termed MCC950. MCC950 was synthesised from a parent compound termed CRID2 [147], which was found to bind to GSTO1-1 by affinity labelling and could implicate GSTO1-1 as the target for MCC950. There are many potential substrates for GSTO1-1 in inflammasome activation. Caspase-1 glutathionylation on cysteine 362 and cysteine 397 is inhibitory towards pro-IL-1β processing [181]. NLRP3 has also been identified as a glutathionylated protein by immunoprecipitation [183], which may be potentially regulated by GSTO1-1.

Here, using a small molecule inhibitor, endogenous knockdown approaches and GSTO1-1-deficient mice, we identify that GSTO1-1 regulates the NLRP3 inflammasome and Caspase-11-mediated NLRP3 inflammasome activation. Targeting of GSTO1-1 during NLRC4 or AIM2 inflammasome activation has no effect on pro-IL-1β processing. We identify that GSTO1-1 interacts with the novel inflammasome component NEK7. Using mass spectrometry and site directed mutagenesis, we confirm that NEK7 is glutathionylated on Cysteine 253 and furthermore, glutathionylation of Cysteine 253 negatively regulates NLRP3 inflammasome activation. GSTO1-1-deficient mice also have impaired inflammatory responses in vivo. Overall, we have characterised a novel NLRP3 inflammasome component, which may act as the ROS sensor for NLRP3 inflammasome activation.
5.1.1 The GSTO1-1 inhibitor C1-27 limits NLRP3 inflammasome activation

I began by testing activation of the NLRP3 inflammasome using LPS for 3h as a priming signal for inflammasome assembly in BMDMs, changing the cell medium to SFM medium and then treated BMDMs with C1-27 for 45min. I then added ‘signal 2’ using ATP for 45min to drive NLRP3 activation. As shown in Figure 5.1 A, enzymatic inhibition of GSTO1-1 inhibited the secretion of processed IL-1β into the supernatant compared to controls, with no effect on TNFα secretion identifying specificity in IL-1β processing (Figure 5.1 B). I also examined the levels of Pro-IL-1β and Pro-caspase-1 from the lysate of treated BMDMs. As shown in Figure 5.1 C, processing of pro-IL-1β is reduced in C1-27-treated BMDMs compared to controls (lysate blot middle panel, compare lanes 4 and 7). The supernatants were also concentrated using StrataClean Resin to examine secretion of processed Caspase-1 p20 subunit and the IL-1β p17 subunit (supernatant blot Figure 5.1 C, compare lanes 4 and 7) and C1-27 reduced the processing of both subunits.

5.1.2 C1-27 reduces the cell death associated with NLRP3 activation

The NLRP3 inflammasome senses a variety of stimuli, however the pore forming ionophore Nigericin is especially potent at inducing NLRP3-mediated pyroptosis [252]. I next decided to examine if the level of death associated with NLRP3 activation would be reduced by C1-27 treatment. In Figure 5.2 A, C1-27 significantly reduced the levels of cell death associated with NLRP3 activation, as measured by LDH release into the supernatant. C1-27 also reduced pro-IL-1β processing (Figure 5.2 B), had no effect on TNFα release (Figure 5.2 C) and also blocked release of Caspase-1 p20 subunit and IL-1β p17 subunit into the supernatant similar to ATP stimulation (Figure 5.2 D, compare lanes 4 and 7).

5.1.3 C1-27 has no effect on NLRC4 inflammasome activation

In order to confer specificity to C1-27, I next decided to examine the NLRC4 inflammasome, with senses intracellular flagellin to drive NLRC4 inflammasome activation [204]. NLRC4 activation is similar to NLRP3, and both complexes use Caspase-1 and ASC. BMDMs treated with LPS and C1-27 as described were infected with a MOI 20 of S. typhimurium UK-1 for 15min and treated with 50µg/mL gentamicin to kill remaining bacteria for 105min before analysis. As shown in Figure 5.3 A, C1-27 pre-treatment prior to infection had no effect on IL-1β processing, and also had no effect on TNFα secretion (Figure 5.3 B). It is unusual that TNFα secretion was reduced in response to LPS and S. typhimurium infection compared to LPS control. Pro-IL-1β was cleaved similar to controls (Lysate blot Figure 5.3 C middle panel,
compare lanes 4 and 7), with no differences observed between processing of Caspase-1 p20 subunit or IL-1β p17 subunit (Supernatant blot Figure 5.3 C, compare lanes 4 and 7).

5.1.4 C1-27 has no effect on AIM2 inflammasome activation

The NLRC4 inflammasome can be activated independent of the adaptor protein ASC, which is shared with NLRP3 and AIM2. I next decided to test C1-27 in AIM2 inflammasome activation using a synthetic double stranded DNA (dsDNA) termed Poly (dA:dT). As shown in Figure 5.4 A, C1-27 pre-treatment had no effect on IL-1β secretion into the supernatant, with no effect on TNFα production (Figure 5.4 B). Similar to the NLRC4 inflammasome, C1-27 was unable to block cleavage of Pro-IL-1β (Lysate blot Figure 5.4 C, middle panel, compare lanes 4 and 7), and had no effect on secretion of Caspase-1 p20 subunit or IL-1β p17 subunit (Supernatant blot Figure 5.4 C, compare lanes 4 and 7).
GSTO1-1 regulates the NLRP3 Inflammasome

Figure 5.1 C1-27 limits ATP-mediated IL-1β processing

BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO_2 overnight. Cells were pre-treated with 100ng/mL LPS for 3h. After 3h of LPS stimulation, media was removed and replaced with 1mL complete DMEM containing 5μM C1-27 for 45min. After 45min, cells were treated with 5mM ATP for 45min. Supernatant was harvested for ELISA and supernatant blots. Cells were lysed in sample loading buffer and analysed by western blotting using anti-IL-1β, anti-Caspase 1 p20 and anti-β-actin antibodies. Mean ± S.E.M of three independent experiments is shown.
Figure 5.2 C1-27 limits Nigericin-mediated IL-1β processing

BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with 100ng/mL LPS for 3h. After 3h of LPS stimulation, media was removed and replaced with 1mL complete DMEM containing 5μM C1-27 for 45min. After 45min, cells were treated with 10μM Nigericin for 1h. Supernatant was harvested for LDH cytotoxicity assay, ELISA and supernatant blots. Cells were lysed in sample loading buffer and analysed by western blotting using anti-IL-1β, anti-Caspase 1p20 and anti-β-actin antibodies. Mean ± S.E.M of three independent experiments is shown.
Figure 5.3 C1-27 does not limit *Salmonella typhimurium*-mediated IL-1β processing

BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with 100ng/mL LPS for 3h. After 3h of LPS stimulation, media was removed and replaced with 1mL complete DMEM containing 5µM C1-27 for 45min. After 45min, cells were infected with MOI 20 *S. typhimurium*. After 15min, gentamycin was added to the supernatant and left for 2h. Supernatant was harvested for ELISA and supernatant blots. Cells were lysed in sample loading buffer and analysed by western blotting using anti-IL-1β, anti-Caspase 1 p20 and anti-β-actin antibodies. Mean ± S.E.M of three independent experiments is shown.
Figure 5.4 C1-27 does not limit AIM2 inflammasome activation

BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with 100ng/mL LPS for 3h. After 3h of LPS stimulation, media was removed and replaced with 1mL DMEM containing 5µM C1-27 for 45min. After 45min, cells were transfected with 1µg Poly (dA:dT) using Lipofectamine 2000 as the transfection reagent for 2h. Supernatant was harvested for ELISA and supernatant blots. Cells were lysed in sample loading buffer and analysed by western blotting using anti-IL-1β, anti-Caspase 1 p20 and anti-β-actin antibodies. Mean ± S.E.M of three independent experiments is shown.
5.1.5 C1-27 limits ASC oligomerisation
Activation of the NLRP3 inflammasome results in assembly of an oligomeric complex composed of Caspase-1, NLRP3 and the adaptor protein ASC. ASC is a ubiquitously expressed protein, however ASC forms multimers upon inflammasome activation which can be detected by chemical crosslinking [253]. As shown in Figure 5.5, C1-27 pre-treatment reduced the levels of ASC multimers. C1-27 reduced DSS-crosslinked ASC speck formation in the Triton X-100 insoluble fraction (Figure 5.5 Top panel). ASC was depleted in the LPS and ATP Triton X-100 soluble fraction, however ASC was increased in the C1-27 pre-treatment before ATP addition (Figure 5.5 Middle panel), indicating C1-27 limits assembly of the NLRP3 inflammasome, upstream of Caspase-1 activation.

5.1.6 Endogenous knockdown of GSTO1-1 boosts Pro-IL-1β at 24h LPS treatment
I next decided to endogenously knockdown GSTO1-1 from LPS-stimulated BMDMs to assess the relevance of GSTO1-1 on NLRP3 components, independent of a small molecule inhibitor. As shown in Figure 5.6 A, siRNA specific to GSTO1-1 efficiently reduced the levels of GSTO1-1 (Second panel). I examined ASC expression in response to GSTO1-1 knockdown and found no difference in ASC levels between control and GSTO1-1 siRNA knockdown (Top panel). Pro-IL-1β production was increased at 24h in GSTO1-1 siRNA treatments compared to control siRNA (Third panel), in agreement with the GSTO1-1-deficient mice and C1-27 treated BMDMs. GSTO1-1 knockdown had no effect on transcription of NLRP3 (Figure 5.6 B) however, a trend of increased IL-1β mRNA was observed at 24h compared to control (Figure 5.6 C). No effect on TNFα transcription was observed (Figure 5.6 D). GSTO1-1 was also efficiently knocked down at the mRNA level (Figure 5.6 E).

5.1.7 GSTO1-1 knockdown limits NLRP3 activation
Due to the observed effects of C1-27, I decided to endogenously knockdown GSTO1-1 to assess if GSTO1-1 affected NLRP3 activation. GSTO1-1 knockdown resulted in a modest decrease in IL-1β secretion (Figure 5.7 A), with no effect on TNFα (Figure 5.7 B). GSTO1-1 was efficiently knocked down by siRNA compared to control siRNA (Figure 5.7 C, third panel). GSTO1-1 knockdown resulted in a decrease in pro-IL-1β processing, similar to C1-27 pre-treatment (Figure 5.7 C, second panel, compare lanes 4 and 8). GSTO1-1 knockdown decreased cleavage of the Caspase-1 p20 subunit and IL-1β p17 subunit into the supernatant similar to ATP stimulation (Figure 5.7 C lowest panels, compare lanes 4 and 8).
Figure 5.5 C1-27 reduces ASC speck formation

BMDMs were seeded at 3x10⁶ cells/mL in 6-well plates 37°C 5% CO₂ overnight. Cells were treated as described in (A). Cells were washed in 200µL 50mM HEPES and lysed in lysis buffer (0.5% Triton X-100, 50mM HEPES). Samples were centrifuged at 6000 x g for 15min at 4°C. Supernatant (lysate) was stored in -20°C. The pellet was crosslinked in crosslinking buffer (50mM HEPES, 150mM NaCl pH 8) and 2mM DSS. Samples were incubated at 37°C for 45min and centrifuged at 6000 x g for 15min at 4°C. Supernatant was discarded and pellet was resuspended in sample loading buffer and analysed by SDS-PAGE using anti-ASC and anti-β-actin antibodies. The results shown are representative of three independent experiments.
Figure 5.6 Endogenous knockdown of GSTO1-1 does not affect NLRP3 expression

BMDMs were seeded at 5x10⁵ cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were transfected with 20nmol scramble siRNA (Ambion) or GSTO1 siRNA in OptiMEM media for 36h using RNAiMAX lipofectamine. Cells were treated with 100ng/mL LPS for times indicated. Cells were lysed in sample loading buffer and analysed by western blotting using anti-NLRP3, anti-ASC, anti-GSTO1, anti-IL-1β and anti-β-actin antibodies. Representative of three independent western blot experiments is shown. Identical treatment was performed for RNA samples before harvesting. Cells were lysed in 350µL RNA lysis buffer and RNA isolated using Ambion RNA extraction kit. RNA was reverse transcribed and cDNA was used for qPCR with SYBR Green components. cDNA was analysed using the cycle-threshold (Ct) value normalized to RPS18 control gene. Mean ± S.E.M of three independent experiments each carried out in triplicate is shown.
Figure 5.7 Endogenous knockdown of GSTO1-1 limits NLRP3 inflammasome activation

BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were transfected with 20nmol scramble siRNA (Ambion) or GSTO1 siRNA in OptiMEM media for 36h. Cells were pre-treated with 100ng/mL LPS for 3h. After 3h, the medium was removed and replaced with serum free DMEM. Cells were treated with 5mM ATP for 45min. Supernatant was harvested for ELISA and supernatant blots. Cells were lysed in sample loading buffer and analysed by western blotting using anti-Caspase 1, anti-GSTO1, anti-IL-1β, and anti-β-actin antibodies. Mean ± S.E.M of ELISA data is shown. Representative of three independent western blot experiments is shown.
5.1.8 Ethyl-ester glutathione (GSH-EE) reduces NLRP3 inflammasome activation
I hypothesised that glutathionylation of the inflammasome would limit NLRP3 activation, as GSTO1-1 functions as a deglutathionylating enzyme. I therefore assessed if a cell permeable version of glutathione (GSH-EE) would efficiently reduce inflammasome activation. As shown in Figure 5.8 A, GSH-EE dose dependently decreased IL-1β cleavage as measured by ELISA. Further, GSH-EE dose dependently increased the levels of Pro-caspase-1 and Pro-IL-1β (Figure 5.8 B, First and second panel, compare lanes 3 and 6). Increasing doses of GSH-EE also limited secretion of mature IL-1β into the supernatant (Figure 5.8 B, bottom panel, compare lanes 3 and 6).

5.1.9 GSTO1-1 boosts Pro-IL-1β Processing in NLRP3 Inflammasome Reconstituted 293T Cells
Murine inflammasomes can be reconstituted in 293T cells to assess cleavage of Pro-IL-1β into the supernatant [254]. 293T cells were reconstituted with ASC, NLRP3, Pro-caspase-1, NEK7 and Pro-IL-1β and treated with Nigericin to induce IL-1β cleavage. In Figure 5.9 A, reconstitution of the NLRP3 inflammasome induced IL-1β secretion into the supernatant, as measured by ELISA. Addition of GSTO1-1 further promoted IL-1β secretion into the supernatant. Pro-caspase-1 was omitted as a negative control. The levels of GSTO1-1 and Pro-caspase-1 are confirmed by western blot (Figure 5.9 B). β-actin served as a loading control.

5.1.10 GSTO1-1 interacts with ASC and NEK7
GSTO1-1 has previously been reported to interact with the adaptor protein ASC. Furthermore, a recently described inflammasome component, NEK7, has been reported to act as the intracellular ROS sensor for NLRP3 activation [151, 152]. I hypothesised that the ROS sensing capacity of NEK7 may be mistaken with the activity of GSTO1-1 and decided to both confirm the ASC interaction with GSTO1-1 and further assess if GSTO1-1 could interact with NEK7. As shown in Figure 5.9, overexpression of untagged GSTO1-1, HA-tagged ASC and HA-tagged NEK7 in HEK293T cells resulted in an interaction between all three components. The interaction between GSTO1-1 and ASC is very evident (Figure 5.10, Top panel Lane 2), and a weaker interaction is observed for NEK7 (Figure 5.10, Top panel Lane 3). GSTO1-1 may be interacting with ASC indirectly through proximity with NEK7, as C1-27 has no effect on the AIM2 inflammasome (Figure 5.4). I used an anti-HA antibody to pulldown ASC and NEK7 (Second panel) as bait for GSTO1-1.
5.1.11 NEK7 interacts with GSTO1-1 endogenously
To confirm a role for GSTO1-1 in NEK7 glutathionylation, I next assessed if NEK7 could interact with GSTO1-1 endogenously. As shown in Figure 5.11, NEK7 was successfully pulled down in primary macrophages stimulated with LPS or LPS and ATP treatment (Figure 5.11 Second panel). GSTO1-1 interacts with NEK7 in response to LPS treatment and interaction is enhanced in response to LPS and ATP treatment (Compare Figure 5.11 Top panel Lanes 1 and 2). Addition of C1-27 prior to ATP stimulation reduced GSTO1-1 interaction with NEK7 (Figure 5.11 Top panel Lane 3). No band was observed in the IgG control (Figure 5.11 Second panel Lane 4). GSTO1-1 and NEK7 expression was detected in whole cell lysates (Figure 5.11 Third and Fourth panel). β-actin served as loading control (Figure 5.11 Bottom panel).

5.1.12 NEK7 is a glutathionylated protein
In order to assess potential targets for GSTO1-1, I assessed whether NEK7 could be glutathionylated. As shown in Figure 5.11, overexpression of NEK7 in 293T cells resulted in glutathionylation of NEK7 (Figure 5.12 Top panel, middle lane). A non-specific band is observable in the EV control lane, however the band intensity is weak compared to NEK7. A small shift of 5kDa was observed for the glutathionylated band. NEK7 was successfully immunoprecipitated (Figure 5.12 Middle panel, middle lane). No bands were detectable in the IgG control (Figure 5.12 Top panel, third lane), indicating specificity of the glutathionylation.

5.1.13 Mass Spectrometry of NEK7 identifies Cysteine 79 and Cysteine 253 glutathionylation
To verify the glutathionylation status of NEK7, mass spectrometry was performed to characterise which cysteines potentially undergo glutathionylation. NEK7 was immunoprecipitated and incubated with GSSG to induce glutathionylation of solvent accessible cysteines. Figure 5.13 shows a summary diagram of the observed modifications detected on NEK7 by mass spectrometry (See appendix for full list of modified peptides). Glutathionylation of NEK7 was detected on cysteines 79 and 253 when incubated with 5mM GSSG prior to trypsin digest.

5.1.14 Cysteine 253 in NEK7 is negatively regulated by glutathionylation
In order to elucidate the functional consequences of glutathionylation in NEK7, I mutagenized each cysteine in NEK7 to alanine and reconstituted the inflammasome in HEK293T cells with WT NEK7 or NEK7 mutants. As shown in Figure 5.14, the inflammasome was successfully reconstituted, and IL-1β production was boosted in the presence of GSTO1-1 transfection.
There was no significant difference in inflammasome activation by the NEK7 mutants with exception of C253A, which boosted IL-1β production relative to the WT condition co-transfected with GSTO1-1, indicating that C253 may be the target site for GSTO1-1 deglutathionylation.
Figure 5.8 Exogenous ethyl-ester GSH attenuates NLRP3 inflammasome pro-IL-1β processing

BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with 100ng/mL LPS for 3h. After 3h, cells were treated with a dose range of GSH-EE for 45min. After 45min cells were treated with 5mM ATP for 45min. Supernatant was harvested for ELISA. Cells were lysed in sample loading buffer and analysed by western blotting using anti-Caspase 1, anti-IL-1β, and anti-β-actin antibodies. Mean ± S.E.M of three independent experiments is shown.
GSTO1-1 regulates the NLRP3 Inflammasome

Figure 5.9 GSTO1-1 boosts IL-1β processing in 293T Cells

HEK293T cells were seeded at 2x10^5 cells/mL and incubated at 37°C 5% CO₂ overnight. Cells were transfected with EV, HA-ASC, HA-NEK7, FLAG-Pro-caspase-1, Pro-IL-1β, FLAG-NLRP3 or GSTO1-1. In each transfection, the total concentration of plasmid DNA was kept constant by addition of relevant EV control. 24h post transfection, the cell medium was kept constant by addition of relevant EV control. 24h post transfection, the cell medium was removed and replaced with complete DMEM medium. Cells were left for 6h, with 10μM Nigericin added 1h prior to harvesting. Supernatant was harvested for ELISA. Cells were lysed in sample loading buffer and analysed by western blotting using anti-Caspase 1, anti-GSTO1, and anti-β-actin antibodies. Mean ± S.E.M of three independent experiments is shown.
Figure 5.10 GSTO1-1 interacts with ASC and NEK7 when overexpressed

HEK293T cells were seeded at 2.5x10^5 cells/mL in 10cm dishes and incubated at 37°C 5% CO₂ overnight. Cells were transfected with EV, GSTO1-1, HA-ASC or HA-NEK7. In each transfection, the total concentration of plasmid DNA was kept constant by addition of relevant EV control. 48h post transfection cells were lysed in low stringency lysis buffer. 50µL of lysate was kept for analysis while the remaining lysate was added to protein A/G beads coated with 1µg of anti-HA antibody or 1µg mouse-IgG control antibody for 2h rotating at 4°C. Samples were washed three times in 1mL low stringency lysis buffer and resuspended in 50µL sample loading buffer. Whole cell lysates and immunoprecipitated samples were analysed by western blotting using anti-HA and anti-GSTO1-1 antibodies. The results shown are representative of three independent experiments.
Figure 5.11 NEK7 interacts with GSTO1-1 endogenously during an NLRP3 inflammasome assay

BMDMs were seeded at 1x10^6 cells/mL in 10cm dishes and left at 37°C 5% CO2 overnight. Cells were treated with 100ng/mL LPS for 3h, media removed and replaced with serum free medium. 5μM C1-27 was added for 45min to indicated samples and then treated with 5mM ATP for 30min. Samples were lysed using low stringency lysis buffer supplemented with protease inhibitors. The lysate was immunoprecipitated on A/G beads and subjected to SDS-PAGE. Samples were blotted for anti-NEK7, anti-GSTO1-1 or anti-β-actin. Each blot is representative of two independent experiments.
Figure 5.12 NEK7 is glutathionylated when overexpressed in 293T cells

HEK293Ts were seeded at 2.5x10^5 cells/mL in 10cm dishes and incubated at 37°C 5% CO₂ overnight. Cells were transfected with 5µg HA-EV or 5µg HA-NEK7. 24h post transfection cells were lysed in low stringency lysis buffer with 50mM N-ethylmaleimide. 50µL of lysate was kept for analysis while the remaining lysate was added to protein A/G beads coated with 1µg of anti-HA antibody or 1µg mouse-IgG control antibody for 2h rotating at 4°C. Samples were washed three times in 1mL low stringency lysis buffer and resuspended in 50µL sample loading buffer without DTT added. Whole cell lysates and immunoprecipitated samples were analysed by western blotting using anti-HA, anti-GSH and anti-β-actin antibodies. The results shown are representative of three independent experiments.
Figure 5.13 Mass Spectrometry of NEK7 identifies Cysteine 79 and Cysteine 253 glutathionylation

HEK293Ts were seeded at 7.5x10^5 cells/mL in 10cm dishes and reverse transfected with 10µg HA-NEK7 and incubated at 37°C 5% CO₂ overnight. Cells were lysed in low stringency lysis buffer. 30µL of lysate was kept for analysis while the remaining lysate was added to protein A/G beads coated with 2µg of anti-HA antibody or 2µg mouse-IgG control antibody for 2h rotating at 4°C. Samples were washed three times in 1mL low stringency lysis buffer and dried A/G beads were incubated with 200µg HA peptide to elute bound NEK7. The eluate was concentrated using Amicon Ultra 10K columns. NEK7 was incubated with 5mM GSSG (pH 8) or H₂O if untreated for 1h at RT. Samples were ran on a non-reducing SDS-PAGE gel, fixed with fixing solution for 30min RT, stained with Coomassie R-250 for 1h RT and washed with detain solution overnight at 4°C. Bands were excised for 1D nLC-MS/MS (4000 QTRAP) mass spectrometry analysis using trypsin digest and analysed using Mascot software. (A) Schematic diagram of detected modifications on NEK7. (B) Mass spectrum of Cysteine 253 with GSH adducts detected.

GSTO1-1 regulates the NLRP3 Inflammasome 175
Figure 5.14 C253A boosts IL-1β production in Inflammasome-reconstituted 293Ts

HEK293T cells were seeded at 2x10^5 cells/mL and incubated at 37°C 5% CO₂ overnight. Cells were transfected with EV, HA-ASC, HA-NEK7 or HA-NEK7 mutants, FLAG-Pro-caspase-1, Pro-IL-1β, FLAG-NLRP3 or GSTO1-1 (WT + GSTO1-1). In each transfection, the total concentration of plasmid DNA was kept constant by addition of relevant EV control. 24h post transfection, the cell medium was removed and replaced with complete DMEM medium. Cells were left for 6h, with 10µM Nigericin added 1h prior to harvesting. Supernatant was harvested for ELISA. Mean ± S.E.M of three independent experiments is shown.
5.1.15 MCC950 does not limit the enzymatic activity of GSTO1-1

Due to the similarities in IL-1β inhibition by MCC950 and C1-27, we next assessed if MCC950 could limit the enzymatic activity of GSTO1-1. The enzymatic activity of GSTO1-1 in the presence of MCC950 or C1-27 was measured by Dr. Padmaja Tummala (John Curtin School of Medical Research, Australia). GSTO1-1 specifically catalyses the reduction of S-(4-nitrophenacyl)glutathione (4NPG) and the enzymatic rate can be measured spectrophotometrically [133]. C1-27 potently inhibited GSTO1-1, with an IC₅₀ of 44nM (Figure 5.15). MCC950 was unable to effectively inhibit GSTO1-1, with an IC₅₀ of 124.8µM (Figure 5.15).

5.1.16 GSTO1-1 deficient peritoneal exudate cells have impaired NLRP3 inflammasome activation

A GSTO1-1-deficient mouse colony was successfully bred at the end of this project for experimental use. To confirm a role for GSTO1-1 in the NLRP3 inflammasome, peritoneal exudate cells (PECs) from WT and GSTO1-1-deficient mice were tested for NLRP3 inflammasome activation. As shown in Figure 5.16 A, GSTO1-1-deficient PECs primed with LPS and stimulated with Nigericin have impaired mature IL-1β secretion in the supernatant compared to WT PECs (Second lysate panel, compare lanes 3 and 6). Mature IL-1β p17 and Caspase-1-p20 cleavage are also decreased in the supernatant of GSTO1-1-deficient mice (Figure 5.16 B, Lower panels, compare lanes 3 and 6).

5.1.17 GSTO1-1-deficient BMDMs have impaired NLRP3 inflammasome activation

In order to compare the effects of C1-27 on the NLRP3 inflammasome, BMDMs from GSTO1-1-deficient mice were tested for NLRP3 inflammasome activation. GSTO1-1-deficiency was confirmed by western blot (Figure 5.17 A). In Figure 5.17 B, GSTO1-1-deficient mice have impaired pro-IL-1β processing in response to LPS and Nigericin, with no significant differences observed in TNFα secretion (Figure 5.17 C). Similarly, both mature IL-1β p17 and mature Caspase-1 p20 were decreased in the supernatants of GSTO1-1-deficient mice (Figure 5.17 D, Lower panels, compare lanes 4 and 8).

5.1.18 GSTO1-1-deficient mice have impaired inflammatory responses in vivo

To further implicate a role for GSTO1-1 during the inflammatory response, seven-week-old C57BL/6 control and C57BL/6 GSTO1-1-deficient mice were injected with 10mg/kg LPS or PBS for 90min to assess serum cytokine production. As shown in Figure 5.18 A, GSTO1-1-
deficient mice produce less secreted IL-1β into the blood compared to controls. GSTO1-1-deficient mice had significantly increased IL-10 production in response to LPS treatment (Figure 5.18 B). No differences were observed in TNFα production between control and GSTO1-1-deficient mice (Figure 5.18 C).
GSTO1-1 enzymatic activity was measured by measuring the reduction of 4-NPG to 4-nitroacetophenone. 5 μg ml⁻¹ recombinant GSTO1-1 in reaction buffer (100 mM Tris (pH 8.0), 1.5 mM EDTA and 1 mM DTT) was incubated with DMSO or different concentrations of inhibitors for 30 min at 37 °C. A dose range of C1-27 or MCC950 was added to the reaction and decrease in absorbance at 305 nm was recorded.

Figure 5.15 MCC950 does not limit GSTO1-1 enzymatic activity
Figure 5.16 GSTO1-1-deficient PECs have impaired NLRP3 inflammasome activation

Peritoneal cells were obtained from WT and GSTO1-1-deficient mice. 5mL of sterile PBS was injected into the peritoneum and agitated briefly before draining. Peritoneal cells were centrifuged at 1500rpm for 5min and diluted to 5x10⁵ cells/mL in complete RPMI. Cells were left to adhere to 24-well tissue culture plates for 2h at 37°C 5% CO₂. Cells were stimulated with 100ng/mL LPS for 3h. After 3h medium was removed and replaced with SFM RPMI. 10µM Nigericin was added for 45min. Supernatant was harvested for ELISA and western blot. Cells were lysed in sample loading buffer and analysed by western blotting using anti-Caspase 1, anti-IL-1β, and anti-β-actin antibodies. Mean ± S.E.M of three independent experiments is shown.
Figure 5.17 GSTO1-1-deficient BMDMs have impaired NLRP3 inflammasome activation

WT and GSTO1-1-deficient BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with 100ng/mL LPS for 3h. After 3h of LPS stimulation, media was removed and replaced with 1mL complete DMEM containing 10μM Nigericin for 1h. Supernatant was harvested for ELISA and supernatant blots. Cells were lysed in sample loading buffer and analysed by western blotting using anti-IL-1β, anti-Caspase 1 p20 and anti-β-actin antibodies. Mean ± S.E.M of three independent experiments is shown.
Figure 5.18 GSTO1-1-deficient mice have an impaired inflammatory response in vivo

Seven-week-old C57BL/6 control and C57BL/6 GSTO1-1-deficient mice were injected with 100μL 10mg/kg LPS or 100μL PBS for 90min. Mice were sacrificed, whole blood was harvested and left to coagulate for 30 min at RT. Serum was removed and analysed for cytokines by Quantikine ELISA. Mean ± S.E.M is shown (WT and GSTO1-1-deficient PBS n=3 per group; WT and GSTO1-1-deficient LPS n=8 per group).
5.2 GSTO1-1 regulates LPS-induced Caspase-11 expression

Due to the observed protection C1-27 conferred against pyroptotic cell death in Figure 5.2, and the recently described role for GSTO1-1 in LPS-mediated endotoxemia [148], I decided to examine if GSTO1-1 played a role in regulation of Caspase-11. As shown in Figure 5.19 A, pre-treatment with C1-27 blocked the production of Caspase-11 in BMDMs. C1-27 dose dependently decreased Caspase-11 production (Figure 5.19 B) and had no effect on the induction of Caspase-11 mRNA (Figure 5.19 C).

5.2.1 GSTO1-1 regulates Interferon β (IFN-β)-induced Caspase-11 expression

Caspase-11 has been shown to be an interferon-inducible gene [255]. I decided to test an LPS-independent system to examine the effects of C1-27 on Caspase-11 production. Similar to Figure 5.19, C1-27 pre-treatment blocked the production of IFNβ-mediated Caspase-11 at both 4h and 6h treatment (Figure 5.20 A). C1-27 had no effect on induction of Caspase-11 mRNA by IFN-β treatment (Figure 5.20 B).

5.2.2 GSTO1-1 knockdown by siRNA reduces Caspase-11 production

Due to the strong effect of inhibition of GSTO1-1 on Caspase-11 induction, an inhibitor-independent siRNA knockdown of GSTO1-1 was performed to rule out any off-target effects of C1-27. As shown in Figure 5.21, siRNA-mediated knockdown of GSTO1-1 ablated Caspase-11 production (Figure 5.21 Top panel), similar to C1-27, indicating the enzymatic activity of GSTO1-1 is required for Caspase-11 production. GSTO1-1 knockdown was confirmed by western blot (Figure 5.21 Middle panel).

5.2.3 C1-27 blocks IL-1β release and limits Caspase-11 mediated pyroptosis

Caspase-11 activation via direct binding of intracellular LPS results in induction of pyroptosis, inducing cleavage of the pore-forming protein GSDMD, and further can activate the inflammasome via Caspase-1 cleavage to promote IL-1β secretion [256, 257]. The activation of Caspase-11 was therefore examined using C1-27. As shown in Figure 5.22 A, IL-1β production was assessed by ELISA to confirm activation of pyroptosis by intracellular LPS transfection (Tf). LPS priming to induce Caspase-11, followed by LPS transfection resulted in IL-1β secretion. Pre-treatment with C1-27 prior to LPS priming, or C1-27 treatment after LPS priming reduced IL-1β secretion. LPS-primed and LPS-transfected cells had significant levels of cell death, however pre-treatment with C1-27 significantly reduced cell death (Figure 5.22.
B). C1-27 treatment after LPS priming could not reduce cell death associated with Caspase-11 activation (Figure 5.22 B), however IL-1β release in this condition was also blocked.

5.2.4 MCC950 does not limit Caspase-11 induction by LPS
Due to the observed similarities between MCC950 and C1-27, I decided to examine if MCC950 could limit pyroptotic cell death similar to C1-27. As shown in Figure 5.15, MCC950 did not effectively inhibit GSTO1-1 enzymatic activity. To confirm this effect functionally, BMDMs were pre-treated with a dose range of C1-27 and MCC950 prior to LPS treatment. C1-27 was able to reduce Caspase-11 expression at the highest dose tested, whereas MCC950 had no effect on Caspase-11 expression (Figure 5.23 A, Top panel). C1-27 or MCC950 pre-treatment prior to LPS stimulation limited IL-1β production in response to LPS transfection (Figure 5.23 B). C1-27 pre-treatment was also able to reduce pyroptosis associated with LPS transfection (Figure 5.23 C) however, MCC950 pre- or post-LPS treatment was unable to limit pyroptosis associated with LPS transfection.
Figure 5.19 GSTO1-1 is required for post-translational Caspase-11 induction by LPS

BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with C1-27 before treatment with 100ng/mL LPS for times indicated. Cells were lysed in sample loading buffer and analysed by western blotting using anti-Caspase-11 and anti-β-actin antibodies. Representative of three independent western blot experiments is shown (A and B). RNA was extracted from C1-27 pre-treated LPS-stimulated BMDMs for times indicated (C). Cells were lysed in 350μL RNA lysis buffer and RNA isolated using Ambion RNA extraction kit. RNA was reverse transcribed, and cDNA was used for qPCR with SYBR Green components. cDNA was analysed using the cycle-threshold (Ct) value normalized to RPS18 control gene. Mean ± S.E.M of three independent experiments each carried out in triplicate is shown.
Figure 5.20 GSTO1-1 is required for post-translational Caspase-11 induction by IFNβ

BMDMs were seeded at 5×10⁵ cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with C1-27 before treatment with 100ng/mL IFN-β for times indicated. Cells were lysed in sample loading buffer and analysed by western blotting using anti-Caspase-11 and anti-β-actin antibodies. Representative of three independent western blot experiments is shown (A). RNA was extracted from C1-27 pre-treated LPS-stimulated BMDMs for times indicated (B). Cells were lysed in 350μL RNA lysis buffer and RNA isolated using Ambion RNA extraction kit. RNA was reverse transcribed, and cDNA was used for qPCR with SYBR Green components. cDNA was analysed using the cycle-threshold (Ct) value normalized to RPS18 control gene. Mean ± S.E.M of three independent experiments each carried out in triplicate is shown.
Figure 5.21 GSTO1-1 knockdown by siRNA reduces Caspase-11 production

BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were transfected with 5nmol scramble siRNA (Ambion) or GSTO1 siRNA in OptiMEM media for 36h. Cells were treated with 100ng/mL LPS for times indicated. Cells were lysed in sample loading buffer and analysed by western blotting using anti-Caspase-11, anti-GSTO1 and anti-β-actin antibodies. Representative of three independent western blot experiments is shown.
Figure 5.22 C1-27 limits Caspase-11-mediated IL-1β secretion and pyroptotic LDH release

BMDMs were seeded at 5x10^5 cell/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with C1-27 for 2h before treatment with 100 ng/mL LPS for 4h. C1-27* indicates C1-27 treatment post-LPS stimulation. 1 μg/mL LPS was transfected using FuGene transfection reagent (labelled Tf) for 16h. The next day the supernatant was removed, IL-1β release was examined by ELISA (A) and LDH release was quantified using Promega Cytotox 96 assay (B).
GSTO1-1 regulates the NLRP3 Inflammasome

Figure 5.23 MCC950 does not limit Pro-caspase-11 induction or limit Caspase-11-induced pyroptosis

BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight. Cells were pre-treated with C1-27 or MCC950 for 2h before treatment with 100ng/mL LPS for 4h. Cells were lysed in sample loading buffer and analysed by western blotting using anti-Caspase-11 and anti-β-actin antibodies. Representative of three independent western blot experiments is shown (A). BMDMs were seeded at 5x10^5 cells/mL in 12-well plates and incubated at 37°C 5% CO₂ overnight (B, C). Cells were pre-treated with C1-27 or MCC950 for 2h before treatment with 100ng/mL LPS for 4h. C1-27* and MCC950* indicates C1-27 and MCC950 treatment post-LPS stimulation, respectively. 1µg/mL LPS was transfected using FuGene transfection reagent (labelled Tf) for 16h. The next day the supernatant was removed, IL-1β release was examined by ELISA (B) and LDH release was quantified using Promega Cytotox 96 assay (C).
5.3 Discussion

In this chapter I have investigated the effect of GSTO1-1 during inflammasome activation and pyroptosis. I originally hypothesised that GSTO1-1 may regulate Mal activation, however as seen in Chapter 4, GSTO1-1-deficient mice displayed no overall phenotypic variance in TLR activation. The levels of Pro-IL-1β however, were consistently higher in GSTO1-1-deficient BMDMs. Further, GSTO1-1 has previously been shown to interact with the inflammasome adaptor protein ASC by overexpression [251], potentially placing GSTO1-1 as an inflammasome component. I hypothesised that the enzymatic activity of GSTO1-1 would be required to regulate inflammasome activation, with potential substrates including Caspase-1 and NLRP3. Caspase-1 glutathionylation limits Pro-IL-1β cleavage, via glutathionylation of cysteines 362 and 397 [181]. NLRP3 has also been identified as a glutathionylated protein by immunoprecipitation [183], however western blotting for post-translational modifications can give false-positive results and mass spectrometry would be required to confirm this effect. A previous study identified that C1-27 can limit IL-1β secretion by the NLRP3 inflammasome in THP-1 cells [228], however the role of GSTO1-1 in primary macrophage inflammasome activation remained unexplored. From this evidence, I therefore began by assessing the role of GSTO1-1 in inflammasome activation using C1-27 as a tool compound.

I began by assessing how C1-27 affected the activation of the NLRP3 inflammasome. In response to LPS and ATP, C1-27 was able to potently block the processing of Pro-IL-1β into mature IL-1β. The observed inhibition by C1-27 was specific, as TNFα remained unaffected. Western blotting of the cell lysates and supernatants confirmed that C1-27 potently blocked processing of Pro-IL-1β and Pro-caspase-1. Having observed similar effects to Ramkumar et al., I decided to examine the effect of Nigericin, the pore forming ionophore, on NLRP3 activation. Nigericin drives NLRP3 activation and induces pyroptosis very potently. C1-27 was also able to significantly reduce IL-1β cleavage and cell death, similar to the effects of ATP.

The observation that C1-27 limited NLRP3 inflammasome activation indicated that GSTO1-1 does exert a role in inflammasome activation. The NLRP3 inflammasome however, shares Caspase-1 with the NLRC4 and AIM2 inflammasomes. Further, the NLRP3 inflammasome also shares ASC with the NLRC4 and AIM2 inflammasomes. I therefore decided to narrow down potential substrates for GSTO1-1 by assessing C1-27 in both the NLRC4 and AIM2 inflammasomes. I first assessed the activation of the NLRC4 inflammasome.
Intracellular flagellin drives a robust activation of the NLRC4 inflammasome. NLRC4 activation is critical in regulating *S. typhimurium* infection, and *S. typhimurium* has developed strategies to evade host machinery by downregulating flagellin expression to avoid inflammasome activation [207]. Using *S. typhimurium*, we found that C1-27 was unable to block activation of the NLRC4 inflammasome, with IL-1β secretion comparable to control cells. TNFα secretion was comparable between treatments however *S. typhimurium* infection did not robustly drive TNFα secretion and should be re-examined. Processing of Pro-caspase-1 and Pro-IL-1β was unaffected by C1-27. Whilst this evaluation is not exhaustive, it does indicate that GSTO1-1 does not regulate the activation of Caspase-1. It would be important to test a dose range of C1-27 to fully assess the effects of GSTO1-1 on NLRC4 activation.

In order to further limit the observed effects of C1-27, the AIM2 inflammasome was assessed. AIM2 senses intracellular dsDNA, and I used the synthetic dsDNA Poly (dA:dT) to trigger AIM2 activation by transfection. If an effect on AIM2 activation was observed, GSTO1-1 could potentially be regulating ASC. Similar to the NLRC4 inflammasome, treatment with C1-27 prior to Poly (dA:dT) transfection had no observed effect on pro-IL-1β processing and Caspase-1 activation. Western blotting also confirmed cleavage of Caspase-1 and IL-1β was unaffected by C1-27.

Having assessed the function of C1-27 during NLRP3, NLRC4 and AIM2 inflammasome activation, I concluded that GSTO1-1 was exerting its enzymatic function on NLRP3 or NEK7. C1-27 could therefore be a potential novel drug candidate for inflammasome regulation. Previous reports have identified potent inflammasome inhibitors, MCC950 [149] and CY-09 [258], however neither compounds are generated on an α-chloroacetamide backbone like C1-27, which could potentially allow for generation of a new class of GSTO1-1 inhibitors that regulate the NLRP3 inflammasome. A current limitation in this study is the effect of C1-27 *in vivo*. NLRP3 mutations are well characterised to induce a family of diseases termed cryopyrin-associated periodic syndrome (CAPS), including Muckle-Wells syndrome. Individuals suffering from Muckle-Wells syndrome suffer episodic IL-1β-mediated inflammation, commonly affecting the skin and joints [154]. It would therefore be crucial to examine the effects of C1-27 *in vivo* in a mouse model of CAPS.

Inflammasome activation results in recruitment of adaptor proteins which oligomerize to form a competent signalling platform. During NLRP3 inflammasome activation, the prion-like protein ASC oligmerizes into a punctate speck, termed the ASC speck, which can be easily

GSTO1-1 regulates the NLRP3 Inflammasome
quantified by flow cytometry, or via western blotting by crosslinking. I therefore examined if C1-27 could impact the assembly of the NLRP3 inflammasome. C1-27 treatment reduced both the percentage of ASC speck positive cells by flow cytometry and crosslinked ASC by western blotting, indicating that GSTO1-1 is critical for NLRP3 inflammasome assembly. This places GSTO1-1 upstream of Caspase-1 activation. Perhaps the glutathionylation status of inflammasome components regulates correct assembly and stoichiometry for aggregation into the inflammasome.

I next decided to assess if endogenous knockdown of GSTO1-1 in primary BMDMs could affect NLRP3 inflammasome components. No effect was observed on the protein levels of the adaptor ASC. As a control, I also confirmed that GSTO1-1 knockdown increased pro-IL-1β production as previously seen in the GSTO1-1-deficient mice at 24h LPS treatment. No effect was observed on NLRP3 transcriptionally, and I also observed a trend towards increased IL-1β transcription at 24h LPS. There is a disparity between GSTO1-1 acting as a negative regulator of Pro-IL-1β induction, whilst also required for Pro-IL-1β processing during NLRP3 inflammasome activation. GSTO1-1-deficient cells and C1-27 treated BMDMs have increased levels of HIF1α and may thereby explain the observed boost in IL-1β production.

Further, if GSTO1-1 was required for NLRP3 inflammasome activation, knockdown of GSTO1-1 should attenuate pro-IL-1β cleavage. I assessed NLRP3 inflammasome activation in GSTO1-1 siRNA-knockdown primary BMDMs. GSTO1-1 knockdown attenuated mature IL-1β and Caspase-1 secretion into the supernatant, further indicating that GSTO1-1 regulates NLRP3 inflammasome activation.

Having observed a strong reduction in IL-1β processing by targeting GSTO1-1, I decided to test if exogenous GSH could mimic inhibition of GSTO1-1. GSH was previously reported to have no effect on NLRP3 inflammasome activation [181], however the addition of cell-permeable GSH-EE was prior to LPS stimulation, and is therefore not specific to inflammasome activation. I hypothesised that GSTO1-1 would serve to deglutathionylate an NLRP3 inflammasome component, driving inflammasome activation. Therefore, an exogenous increase in cell-permeable GSH-EE would potentially negate NLRP3 inflammasome activation similar to C1-27. Interestingly, GSH-EE added after LPS stimulation dose dependently decreased processing of pro-IL-1β and limited mature IL-1β secretion into the supernatant at the highest dose tested. Whilst addition of GSH-EE is in no way specific to regulating the NLRP3 inflammasome, as GSH-EE could simply be limiting the ROS component reported for GSTO1-1 regulates the NLRP3 Inflammasome
inflammasome activation, it certainly does indicate that glutathionylation limits activation. It would be interesting to assess if GSH-EE limited ASC speck formation.

The NLRP3 inflammasome can be reconstituted in HEK293T cells using plasmids encoding NLRP3 inflammasome components [254]. Due to the negative regulation of IL-1β processing by C1-27, I examined if overexpression of GSTO1-1 would boost IL-1β processing. Interestingly, IL-1β processing, in the presence of GSTO1-1, was enhanced compared to control, placing GSTO1-1 as a key regulator of IL-1β processing in the NLRP3 inflammasome.

I next decided to examine the potential interaction of GSTO1-1 with inflammasome components to narrow down GSTO1-1 substrates. As mentioned previously, GSTO1-1 has been shown to interact with ASC [251]. A new ROS-sensing component of the inflammasome, NEK7, has also been reported [152]. I sought to determine if I could confirm the GSTO1-1-ASC interaction, and furthermore, if GSTO1-1 could interact with NEK7. I hypothesised that GSTO1-1 should interact with NEK7 and could potentially indicate that GSTO1-1 is the ROS sensor regulating inflammasome activation. I was able to co-immunoprecipitate GSTO1-1 with both ASC and NEK7. I was unable to detect an interaction of GSTO1-1 with NLRP3, suggesting GSTO1-1 may directly regulate NEK7. I was able to co-immunoprecipitate NEK7 with GSTO1-1 endogenously in response to both LPS and LPS and ATP stimulation. Interestingly, C1-27 treatment prior to ATP stimulation reduced the interaction between GSTO1-1 and NEK7, however this finding requires further replicates to confirm the interaction.

Due to the interaction observed between GSTO1-1 and NEK7, I assessed if NEK7 is a glutathionylated protein. Overexpression of NEK7 identified glutathionylation by western blot. To confirm this finding, I generated samples to detect GSH adducts on NEK7 by mass spectrometry in response to GSSG pre-treatment. NEK7 contains 8 cysteines and interestingly, two cysteines, cysteine 79 and cysteine 253, were identified as glutathionylated by mass spectrometry. I tested the functional relevance of glutathionylation on NEK7 by performing site directed mutagenesis to generate cysteine to alanine mutants, which were then transfected into a reconstituted NLRP3 inflammasome to assess IL-1β production. Glutathionylation of cysteine 79 had no functional effect on NEK7, however C253A significantly boosted IL-1β production similar to the overexpression of GSTO1-1 in the WT reconstituted inflammasome. This finding indicates that GSTO1-1 may deglutathionylate NEK7 on cysteine 253 to facilitate NLRP3 inflammasome activation and IL-1β processing.
GSTO1-1 was originally identified as a target for CRID inhibitors, which limit IL-1β production [147]. I therefore decided to assess if MCC950, a CRID2 derivative, was exerting its inhibitory effects on IL-1β processing through binding to GSTO1-1. Dr. Padmaja Tummala from Prof. Philip Boards laboratory performed an enzyme assay using a specific GSTO1-1 substrate, 4NPG [133], to assess if MCC950 inhibited GSTO1-1-mediated reduction of 4NPG. MCC950 was a poor inhibitor of GSTO1-1, with an IC₅₀ of 124.8µM, compared to C1-27 with an IC₅₀ of 44nM. This finding highlights that MCC950 does not affect GSTO1-1 and furthermore, C1-27 is a potent and specific GSTO1-1 inhibitor.

At the end of this project, a GSTO1-1-deficient mouse colony was successfully re-derived and bred for use in Trinity College Dublin. I first assessed if GSTO1-1 deficiency would mimic C1-27 and GSTO1-1 knockdown. PECs from GSTO1-1-deficient mice had impaired IL-1β production in response to LPS and Nigericin. GSTO1-1-deficient BMDMs also displayed impaired NLRP3 inflammasome activation, confirming the findings of C1-27. Interestingly, GSTO1-1-deficient mice had decreased serum IL-1β production in response to LPS treatment in vivo. In contrast to Menon et al., TNFα production in response to LPS was unaffected in the GSTO1-1-deficient mice, with TNFα production comparable to control mice. It is important to note that the TNFα measurement reported by Menon et al. was at 30min LPS treatment, which may be too early to detect TNFα in the serum. Further, IL-10 production was significantly increased in the GSTO1-1-deficient mice in contrast to C1-27, indicating that GSTO1-1-deficiency limits inflammatory responses in vivo.

Activation of the NLRP3 inflammasome is closely linked to induction of pyroptosis. In recent years, Caspase-11 has been shown to be the intracellular receptor for LPS, and furthermore drives cleavage of the pore-forming protein GSDMD via ‘non-canonical’ signalling. Recently GSDMD activation has been identified as the main channel for secretion of processed IL-1β [259]. Due to the close link between inflammasome activation and pyroptosis, and the resistance of GSTO1-1-deficient mice to LPS-induced lethality, I decided to examine the role of GSTO1-1 during activation of Caspase-11.

I employed the use of C1-27 to assess if the enzymatic activity of GSTO1-1 regulated Caspase-11. C1-27 treatment ablated expression of Caspase-11 when assessed by western blot. Due to the strong ablation of Caspase-11, I tested a dose range of C1-27 in BMDMs and Caspase-11 was dose-dependently decreased in response to increasing concentrations of C1-27. My results
compliment the finding that GSTO1-1-deficient mice are resistant to LPS-induced lethality [148], as Caspase-1 is no longer considered the main effector in LPS-induced lethality, rather Caspase-11 activity is the main effector [257]. Interestingly, C1-27 had no effect on Caspase-11 mRNA induction, indicating GSTO1-1 regulates Caspase-11 post-transcriptionally.

Due to the strong effect of C1-27 on Caspase-11 expression I decided to test an LPS-independent system. Type I interferon signalling requires activation of the Interferon α/β receptor (IFNAR) receptor by interferons IFN-α and IFN-β [260]. IFN-β has been shown to strongly induce expression of Caspase-11. C1-27 pre-treatment prior to IFN-β stimulation also ablated Caspase-11 expression, with no effect on Caspase-11 mRNA induction. The use of small molecule inhibitors can however lead to off-target effects and I decided to examine endogenous knockdown of GSTO1-1 to confirm if Caspase-11 expression was affected. Similar to C1-27, endogenous knockdown of GSTO1-1 limited expression of Caspase-11.

My results suggested that GSTO1-1 is a critical regulator of Caspase-11 activation. However, to confirm the functional effects of C1-27, I examined the induction of pyroptosis through transfection of LPS into LPS-primed BMDMs. Interestingly, C1-27 treatment prior to or post-LPS priming limited processing of IL-1β, identifying the importance for GSTO1-1 during inflammasome activation. C1-27 treatment prior to LPS priming resulted in a significant decrease in overall cell death, however C1-27 treatment post LPS priming could not rescue the associated death. Interestingly, MCC950 was unable to block the death associated with LPS transfection in this assay, indicating GSTO1-1 functions independently of MCC950 inhibition. This finding confirms a role for GSTO1-1 in both inflammasome and Caspase-11 regulation. It is unusual that C1-27 pre-treatment limits Caspase-11 expression, with no effect on mRNA induction, however C1-27 treatment post LPS priming has no effect. If GSTO1-1 served to glutathionylate/deglutathionylate Caspase-11, enzymatic inhibition pre- or post-LPS priming should affect Caspase-11 activity. The enzymatic function of GSTO1-1 may serve to destabilise Caspase-11 post-transcriptionally. This finding is difficult to interpret however, it does suggest a potential translational regulation of Caspase-11 by GSTO1-1 and warrants further investigation.

5.4 Final Conclusion

In summary, I have identified that C1-27 potently limits activation of the NLRP3 inflammasome. C1-27 was unable to limit activation of the AIM2 or NLRC4 inflammasomes, indicating specificity in GSTO1-1 regulating NLRP3 inflammasome activation. C1-27 further
limits inflammasome activation at the level of ASC speck formation. NEK7 is glutathionylated on cysteines 79 and 253, and mutagenesis of C253A boosts IL-1β production, indicating negative regulation of C253 by glutathionylation. GSTO1-1 may serve to de-glutathionylate NEK7 to potentially promote interaction with Caspase-1 or ASC. GSTO1-1 may also serve to act as the intracellular ROS sensor for inflammasome activation, driving NEK7 activation. Further, GSTO1-1-deficient mice have decreased NLRP3 inflammasome activation. I have also identified GSTO1-1 as a potential novel regulator of Caspase-11. GSTO1-1 may serve to positively regulate Caspase-11 function, however this finding warrants further investigation. The main findings of this chapter have been graphically summarised in Figure 5.24.
GSTO1-1 regulates the NLRP3 Inflammasome

Figure 5.24 Schematic summary of results from Chapter 5

Activation of TLR or TNF receptor signalling or ‘Signal 1’ drives translocation of NF-κB to the nucleus to transcribe inflammasome components and inflammatory cytokines pro-IL-1β and pro-IL-18. Caspase-11 is also transcribed by TLR or IFNAR activation. Direct sensing of flagellated bacteria, dsDNA or DAMPs drive activation of the NLRC4, AIM2 and NLRP3 inflammasomes, respectively, driving Caspase-1 activation. LPS bound to intracellular bacteria can be directly sensed by Caspase-11, triggering cleavage of Gasdermin D and pyroptosis. Enzymatic inhibition of GSTO1-1 on Cys32 by C1-27 ablates NLRP3 inflammasome activation and pyroptotic cell death mediated by Caspase-11.
Chapter 6

Final discussion and future perspectives
Final discussion and future perspectives

Macrophage activation in response to bacterial and viral infection is known to drive metabolic reprogramming, generating ROS to limit pathogenicity and protect the host. Many diseases have identified a dysregulated redox component influencing pathogenesis, including Alzheimer’s disease, Parkinson’s Disease and Cancer [229-231, 261]. Further, fibrosing of tissues, which is mediated by macrophage-produced transforming growth factor-β (TGF-β), is a redox dependent mechanism driving increased levels of H₂O₂ and NO, promoting fibrotic tissue deposition [262]. Post-translational modifications have long been considered important regulatory mechanisms to activate or limit pathway activation, such as phosphorylation, ubiquitination and acetylation. Cysteine amino acids are amenable to oxidation and as such, act as receptors for altered oxidation imbalance. Oxidation of cysteines alters function and can promote redox-dependent post-translational modification, however the impact of redox signalling on immune pathway activation is only recently garnering significant attention. Redox regulatory mechanisms governing macrophage activation during TLR engagement with adaptor proteins has however, remained unexplored. The first chapter of this thesis examined the potential effect of redox signalling on the function of the TLR adaptor Mal.

In my studies, I identified that the TLR adaptor protein Mal is a glutathionylated protein. Mal contains seven cysteine residues which could be potentially glutathionylated. The structure of Mal was identified in 2011 by Valkov et al., and during the crystallisation process they identified two cysteines, C91 and C157 not in disulphide bond formation, making these two cysteines attractive post-translational targets. Valkov et al. identified that Mal contained a structural motif uncommon with other canonical TIR domain-containing adaptor proteins. Canonical TIR domains contain a BB loop, however Mal instead contained a structurally unique long AB loop, providing the first example of heterogeneity in TIR domain adaptors (Figure 6.1). Using site directed mutagenesis, I was able to identify C91 as the functionally relevant glutathionylation target and furthermore, mutagenesis of C91 to alanine abrogated Mal function, limiting assembly of the oligomeric adaptor assembly termed the myddosome, and acted as a dominant negative mutation, preventing TLR4 activation in Mal C91A-reconstituted Mal-deficient iBMDMs. Further, Mal C91A was unable to interact with downstream effector IRAK4 or the kinase-dead version, indicating that glutathionylation of C91 promotes structural reassembly of Mal to allow for IRAK4-mediated phosphorylation.
Figure 6.1 Crystal structure of Mal TIR domain identifies C91 and C157 as redox targets

The crystal structure of the human Mal-TIR domain taken from [57] identified a structural rearrangement termed the AB-loop (A). This structural cartoon representation highlights secondary elements in the Mal-TIR. The α-helices are shaded in cerulean, the β-helices are shaded in canary and the cysteine amino acids are highlighted in ball-and-stick representation. Cysteine 91 and 157 are proximally located 5Å apart and crystallised bound to a DTT molecule (B).
Positively charged amino acids, such as lysine, arginine and histidine, have been reported in the literature to aid deprotonation of cysteines, rendering the amino acid more susceptible to oxidation-induced stress. Using bioinformatics, I identified that C91 was flanked by the positively charged amino acid Histidine 92. Using mutagenesis of H92 to proline, I was able to recapitulate the effects of C91A, experimentally providing one of the first examples of positively charged amino acids promoting glutathionylation in macrophage TLR signalling.

During the course of this project, in collaboration with Prof. Bostjan Kobe from the University of Queensland, we identified that the previous crystal structure of Mal was incorrect [214]. Mal was incorrectly identified as an AB loop-containing adaptor, but instead harbours the canonical BB-loop motif seen in TIR domains [214] (Figure 6.2). These findings question the validity of previous studies using the crystal structures of Mal for computational interaction studies. Complementary to my experiments, Mal was also shown to be glutathionylated by MS and that glutathionylation of C91 induced a large redox shift in Mal structure measured by solution structure NMR. This structure therefore confirmed my finding of glutathionylation of Mal on C91. The redox shift may explain why IRAK4 had reduced interaction with the mutant versions of Mal. Mal glutathionylation is likely to be a positive regulatory event, inducing TLR activation. TLRs however, require a mechanism to limit aberrant activation, and IRAK4-mediated phosphorylation of Mal promotes membrane dissociation and polyubiquitination [70]. In future work, it would be important to assess if the membrane-binding capacity of Mal was affected by deglutathionylation. Mal appears to be inherently flexible and glutathionylation could promote a structural rearrangement that allows IRAK4 to phosphorylate threonine 28. This finding is exciting, as bacteria such as *Brucella spp.* subvert host immune responses by secreting TcpB, a Mal TIR mimetic, competing with Mal-TLR4 in interactions to limit TLR activation entirely [76, 77, 263]. I have confirmed that Mal glutathionylation promotes TLR activation, and alignment of Mal with TcpB identified a serine instead of a cysteine at position C91 in TcpB, which may explain its ability to subvert host inflammation by acting as a competitive dominant negative inhibitor of TLR activation (Figure 6.3).

Specific targeting of Mal C91 holds promise therapeutically. I identified that pre-treatment with the oxidant scavenger N-acetylcysteine limited Mal glutathionylation. N-acetylcysteine has also been reported to limit cytokine production in macrophages [264], and indicates that tailored redox targeting of C91 could reduce over-activation of TLR signalling. Mal is also utilised by the IFNγ receptor [68], and glutathionylation status of Mal could also dictate IFNγ signalling. As mentioned previously, Mal SNPs are present in the population, with S180L being the best
characterised. Whether glutathionylation of Mal is altered in S180L Mal remains to be explored but could identify a further important role for C91 in Mal activation.

Future experiments will continue to elucidate the relevance of Mal glutathionylation in inflammation. An observation was the absence of an upper band in Mal C91A compared to Mal WT, which is indicative of phosphorylation. I would further characterise whether Mal glutathionylation is a critical mediator of Mal activity, or whether glutathionylation is simply a precursor signal for phosphorylation. It would be very interesting to delineate the requirement of either post-translational modification or whether these events are independent. Finally, I would confirm if glutathionylation of Mal affects membrane binding or TLR4 interaction.

Overall, I have therefore attributed another regulator of Mal activation, via glutathionylation of C91 to drive TLR activation (Figure 6.4).
Figure 6.2 Comparison of the solution and crystal structures of MAL-TIR

(A) Solution structure of MAL-TIR-C116A, shown in cartoon representation. (B) Crystal structure of MALTIR [57]. Regions in the crystal structure comprising residues 112–123 (AB loop) and 168–171 do not have interpretable electron density and are not included in the crystal structure model; they are shown here for illustration purposes by dotted lines. (C) Structure-based sequence alignment, showing the elements of secondary structure. (α) α-helix, (→) β-strand, (***) loop.
Figure 6.3 Sequence alignment of TIR-containing adaptors with TcpB

Sequence alignment of TcpB with the homolog TcpC, and TIR-domains from TLR2, TLR4, MyD88, Mal, SARM, TRIF and TRAM. Homologous regions are highlighted by boxes. Mal contains a cysteine at position 91, which is replaced by a serine in TcpB. This image is adapted from [77].
Figure 6.4 An updated model of the regulators of Mal activation

Mal contains an N-terminal PEST (proline, glutamate, serine threonine) motif, and N-terminal PIP2 binding region. Mal is negatively polyubiquitinated by SOCS1 on K15 and K16. IRAK1 and IRAK4 phosphorylate Mal on T28, promoting membrane dissociation and polyubiquitination. Bruton’s tyrosine kinase positively phosphorylates Mal on Y86, Y106 and Y187. Caspase-1 cleaves Mal on D198, producing a 4kDa fragment. Mal contains a typical BB loop motif and binds MyD88 and TLR4. TRAF6 also binds to Mal between position 188-193. Glutathionylation of Mal on C91 positively regulates Mal activation. This schematic is adapted from [84].
The second major focus of this thesis was to characterize the role of the de glutathionylating enzyme GSTO1-1 during TLR activation in macrophages. Previous reports placed GSTO1-1 upstream of NF-κB activation during TLR4 activation [226, 265], potentially indicating that GSTO1-1 may be the redox regulatory switch that controls Mal glutathionylation. Unpublished work from our lab also indicated that shRNA-mediated knockdown of GSTO1-1 in J774A.1 cells blocked TLR4 activation. It is important to note that the J774A.1 cells used by Menon et al. were generated in the Prof. Luke O’Neill lab, and their metabolic energy demands and redox environment may vary compared to primary cells. In collaboration with Prof. Philip Board from the University of Canberra, GSTO1-1-deficient mice were generated. I obtained legs from the GSTO1-1-deficient mice to assess the role of GSTO1-1 during Mal activation.

The initial experiments I performed indicated that GSTO1-1 did not function upstream of NF-κB activation, although this characterisation was not exhaustive, due to limitation in the availability of GSTO1-1-deficient mice, it did indicate that the main phenotype observed in the J774A.1 cells was incorrect. Although GSTO1-1 was proposed to be the Mal regulatory enzyme, we decided to further examine the role of GSTO1-1 in a broad context of TLR signalling. My most robust finding was that GSTO1-1 deficiency affected the production of pro-IL-1β and HIF1α. Both IL-1β and HIF1α are glutathionylated proteins [218, 243], and GSTO1-1 may serve to negatively regulate them. Whether glutathionylation of proteins affects stability however, remains uncharacterised. HIF1α stability is promoted by glutathionylation, so it would be important to co-immunoprecipitate HIF1α and GSTO1-1. This finding also places GSTO1-1 into the expanding field of immunometabolism, as GSTO1-1-deficient mice also displayed increased baseline glycolysis compared to controls, which was probably due to enhanced HIF1α activation.

An inhibitor of GSTO1-1 was recently published, termed C1-27 [228]. Due to the limitation in GSTO1-1-deficient mice, and the variability between the J774A.1 cell line, I decided to characterise the effect of GSTO1-1 inhibition. Interestingly, C1-27 increased Pro-IL-1β and HIF1α production, similar to that seen in the GSTO1-1-deficient mice. Production of ROS however, was decreased in contrast to the GSTO1-1-deficient cells, which could possibly be due to off-target effects of C1-27. Similarly, I found increased production of IL-10 in GSTO1-1-deficient mice, however IL-10 production was abrogated using C1-27. In order to delineate this disparity, I also endogenously knocked down GSTO1-1 in BMDMs to confirm the role of GSTO1-1 during IL-10 production. Similar to C1-27, GSTO1-1 knockdown ablated IL-10 production. This finding warrants further investigation, and IL-10 production should be re-
examined in the GSTO1-1-deficient mice. Although differences still remain when comparing knockdown versus inhibitor-treated cells, the most robust finding is an altered immunometabolic profile in the inhibitor-treated and GSTO1-1-deficient mice. The GSTO1-1-deficient mice also displayed altered M1/M2 polarisation, indicating the cells are not classically polarised. An unbiased non-reducing proteomic screen would be useful to help identify possible substrates for GSTO1-1 in response to LPS and IL-4 treatment. McGarry et al., using this approach, quantified GSTP-mediated glutathionylation in mouse liver by comparing GSTP-deficient mice to controls [266]. A HIF1α-GSTO1-1 axis has been recently described in breast cancer stem cells [241]. In particular, Lu et al. identified an enrichment of breast cancer stem cells in response to chemotherapeutic agents by triggering HIF1α-dependent Gsto1 transcription. Inhibiting HIF1α in this context limited enrichment, proposing a HIF1α-dependent GSTO1-1-mediated resistance to chemotherapy. It would be interesting to quantify the metabolic profile of GSTO1-1-deficient mice to identify if metabolites such as succinate, which drives HIF1α, are also altered, however this is beyond the scope of this project.

During the course of this project, personal correspondence with Prof. Philip Board indicated that GSTO1-1-deficient mice were resistant to LPS-induced lethality. I therefore decided to examine GSTO1-1 in the context of inflammasome activation. GSTO1-1 does interact with the inflammasome adaptor protein ASC and furthermore, GSTO1-1 shares structural homology with the CLICs, which are characterised as family members in the extended GST superfamily [267]. CLIC1 and CLIC4 have been found to regulate inflammasome activation both transcriptionally and during inflammasome activation [185, 186]. Furthermore, Caspase-1, the effector Caspase during inflammasome activation that drives pro-IL-1β and pro-IL-18 processing, is also negatively redox regulated by glutathionylation [181]. NLRP3 is also redox regulated and has been reported to drive inflammasome activation in response to H2O2 [268].

Using C1-27, I found a specific role for GSTO1-1 during NLRP3 inflammasome activation. C1-27 was able to potently block NLRP3, but not NLRC4 or AIM2 inflammasomes, indicating GSTO1-1 functions to regulate either NLRP3 or NEK7, and not Caspase-1, ASC, NLRC4 or AIM2. NLRP3 has been shown to be glutathionylated by immunoprecipitation, and the deglutathionylation of NLRP3 enhances interaction with Caspase-1 [183], however this finding requires further validation, as I was unable to detect glutathionylation of NLRP3 by overexpression. Interestingly, exogenous GSH-EE addition also limited NLRP3 inflammasome activation, indicating that glutathionylation of an NLRP3 inflammasome component may limit IL-1β processing. Furthermore, reconstitution of the NLRP3 inflammasome in HEK293T cells
with GSTO1-1 boosted IL-1β secretion, firmly placing GSTO1-1 as an NLRP3 inflammasome regulator during inflammasome activation.

A recent NLRP3 inflammasome interactor was also described, NEK7 [151, 152]. NEK7 is proposed to sense redox stress to trigger the inflammasome. By co-immunoprecipitation I identified that GSTO1-1 does interact with NEK7. I was able to detect glutathionylation of NEK7 by overexpression. This finding was validated by MS, with GSH adducts detected on cysteines 79 and 253. Through site directed mutagenesis, I identified that NEK7 C253A boosted IL-1β secretion comparable to the observed boost by GSTO1-1 during NLRP3 inflammasome reconstitution in HEK293Ts, indicating that GSTO1-1 may de-glutathionylate C253 to drive inflammasome activation.

A screen for IL-1β limiting inhibitors identified the sulfonurea-containing CRIDs in the early 2000’s. Affinity labelling identified CRID2 bound to GSTO1-1 [147]. Derivatives of CRID2 were produced and one compound, termed MCC950, was found to limit NLRP3 inflammasome activation with nanomolar potency. MCC950 also reduced chronic activation of NLRP3 in CAPS-patients and is currently being tested in clinical trials. The target for MCC950 however, remains elusive. Compared to Coll et al., C1-27 appears to phenocopy the effects of MCC950. C1-27 also contains a sulfonurea group, similar to MCC950 (Figure 6.5). MCC950 was unable to effectively limit GSTO1-1 enzymatic activity in vitro compared to C1-27, indicating MCC950 inhibits the NLRP3 inflammasome independent of GSTO1-1. In future studies, it would also be important to assess the efficacy of C1-27 in vivo in animal models of NLRP3-mediated inflammation. GSTO1-1-deficient mice became available in Trinity College Dublin at the end of this project, and serum cytokine analysis from LPS-treated WT and GSTO1-1-deficient mice indicated that GSTO1-1-deficient mice had impaired inflammatory responses in vivo. Interestingly, IL-10 production was significantly increased in the GSTO1-1-deficient mice and warrants further investigation. Further, PECs and BMDMs from GSTO1-1-deficient mice had impaired NLRP3 inflammasome activation. It is unusual that GSTO1-1 can serve to positively regulate NLRP3 inflammasome activation, but also negatively regulate Pro-IL-1β production at 24h, however this could be explained by the increased production of HIF1α, which drives IL-1β production [146].

Further work is required to elucidate the precise function of GSTO1-1 in TLR4 signalling. During the course of this project I had limited availability of GSTO1-1-deficient BMDMs, and C1-27 was only recently available to further probe the function of GSTO1-1. We have
generated GSTO1-1-deficient mice and will be able to study the metabolic reprogramming that occurs in GSTO1-1-deficient cells via Seahorse metabolic flux analysis. Due to the increase in ROS production, it would be interesting to examine the oxygen consumption rate (OCAR) and mitochondrial integrity of these cells. I would also like to examine if a hypoxic environment would limit the enzymatic function of GSTO1-1, due to the potential negative regulation of HIF1α by GSTO1-1. The role of GSTO1-1 in the production of IL-10 should also be explored. The potential broad substrate specificity of GSTO1-1 poses a challenge in terms of conferring specificity, and I would therefore aim to quantify the differences in protein glutathionylation in GSTO1-1-deficient BMDMs compared to control by mass spectrometry, potentially highlighting the components in various pathways that GSTO1-1 may deglutathionylate.
Figure 6.5 The structures of C1-27 and MCC950

Chemical structural representation of C1-27 (A) and MCC950 (B). C1-27 and MCC950 share the sulfonurea function group. C1-27 covalently binds GSTO1-1 on C32, inhibiting enzymatic function. CRID2, the initial compound MCC950 is based on, also bound to GSTO1-1.
Activation of the NLRP3 inflammasome induces pyroptotic cell death [269]. Recently, the ‘non-canonical’ inflammasome has been identified. During infection, LPS present on intracellular bacteria can be directly sensed by Caspase-11, triggering Caspase-11-mediated cleavage of GSDMD. The N-terminal of GSDMD oligomerises to form a pore, promoting pyroptosis. The GSDMD pore is also the main secretory mechanism for bioactive IL-1β [259]. Due to the strong effect of GSTO1-1 inhibition on NLRP3 inflammasome activation and the resistance to LPS-induced lethality reported in the GSTO1-1-deficient mice, I decided to assess whether Caspase-11 is differentially activated by GSTO1-1.

Using C1-27, I identified that GSTO1-1 is critical for the production of Caspase-11 protein, however no effect was observed on the transcription of Caspase-11 mRNA. C1-27 also blocked Caspase-11-mediated IL-1β processing and limited pyroptotic cell death in response to LPS transfection. Similar effects were observed with IFN-β treatment. Interestingly, MCC950 could not limit pyroptosis associated with Caspase-11 activation, further emphasising GSTO1-1 is not the target for MCC950. Importantly, siRNA-mediated knockdown of GSTO1-1 in primary BMDMs also confirmed a decrease in Caspase-11 protein in response to LPS stimulation. Further work is required to confirm the role of GSTO1-1 during Caspase-11 activation, however it is apparent that GSTO1-1 appears to have a critical role during Caspase-11 signalling. Caspase-11 activation in response to intracellular LPS also triggers Caspase-1 activation [165], and may explain why IL-1β processing is blocked by C1-27 treatment during Caspase-11 activation (Figure 6.6). The lack of effect on Caspase-11 transcription indicates that GSTO1-1 is exerting its function post-transcriptionally. The 3’-untranslated region (3’UTR) contains AU-rich elements which are known target sites to regulate mRNA stability [270]. GAPDH has been shown to bind AU-rich elements of endothelin-1, resulting in mRNA destabilisation. Interestingly, glutathionylation of GAPDH on C152 prevented endothelin-1 mRNA destabilisation [271]. An RNA immunoprecipitation of GSTO1-1 with Caspase-11 mRNA would informatively indicate a role for GSTO1-1 post-transcriptionally in Caspase-11 regulation.

The identification of GSTO1-1 as a novel NLRP3 inflammasome regulator is an exciting concept and warrants further investigation. My evidence suggests GSTO1-1 specifically regulates NEK7 deglutathionylation during NLPR3 inflammasome activation. NEK7 was originally discovered by similarity to a fungal mitosis regulator, termed NIMA [272], and has since been well-characterised as a centrosome regulating protein, aiding mitotic spindle formation and subsequent microtubule instability, driving cell division [273-276]. NEK7 is a
kinase and has been shown to respond to oxidative insults during telomere replication by phosphorylating TRF1, a telomere maintenance enzyme to protect telomere integrity [277]. NEK7 has been shown to either function as a mitotic component or an NLRP3 inflammasome interactor, but not concurrently [152]. It would be interesting to assess if NEK7 glutathionylation promotes mitosis, as deglutathionylation of C253 enhances NLRP3 inflammasome activation. The ablation of Caspase-11 by enzymatic inhibition or knockdown of GSTO1-1 also warrants further investigation, however the precise role of GSTO1-1 in Caspase-11 regulation is elusive. Researchers are now able to quantify the ‘translatome’ [278], and it would be interesting to examine if GSTO1-1 regulated Caspase-11 post-transcriptionally or Caspase-11 mRNA stability. Additionally, the cleavage and regulation of GSDMD should also be examined.
LPS drives the stabilisation of HIF1α and activation of NF-κB, which promotes transcription of IL-1β. GSTO1-1 serves to negatively regulate HIF1α, as GSTO1-1 deficiency results in increased HIF1α production. Pro-IL-1β is processed by the NLRP3 inflammasome, and GSTO1-1 increases Pro-IL-1β cleavage, possibly through NEK7 de-glutathionylation of cysteine 253. LPS also drives transcription of Pro-caspase-11 through an IFN-β-dependent manner. GSTO1-1 inhibition or deficiency limits Pro-caspase-11 production and pyroptosis.
My thesis has examined a broad range of pathways; however, a common theme emerges surrounding redox regulation. Although it is convenient to think that ROS acts as a bactericidal mechanism, ROS generation can affect multiple pathways concurrently, dependent on the solvent accessibility of cysteines present in proteins which may become perturbed, and the physiological quantity of ROS produced. Glutathionylation of proteins is known to affect function, however it is only recently that technological advancements can quantify glutathionylation of proteins by MS [279, 280]. I have characterised a novel redox regulatory mechanism during TLR4 activation. Mal glutathionylation is critical for TLR4-mediated responses. I have also examined the function of GSTO1-1 during macrophage activation, identifying roles for GSTO1-1 in immunometabolism and NLRP3 inflammasome activation. IL-1 therapeutics also hold promise clinically, with recent findings by Ridker et al. reporting specific IL-1β targeting with Canakinumab, a monoclonal anti-IL-1β antibody, reduced cardiovascular events in a cohort of over 10,000 patients over 48 months, placing NLRP3 regulation as a critical mediator of inflammation [281]. My thesis suggests GSTO1-1 targeting during inflammasome activation may be beneficial for the development of anti-inflammatory therapies. Generation of C1-27 derivatives with nanomolar potency could prove useful in the treatment of inflammatory diseases. This work provides new insights into the complexities surrounding the redox regulation of innate immune signalling pathways.
Chapter 7

References
References

References 221

References 222

<table>
<thead>
<tr>
<th>Description</th>
<th>Score</th>
<th>Coverage</th>
<th># Protein(s)</th>
<th># Unique Peptides</th>
<th># Peptides</th>
<th># PSImass</th>
<th># MS/MS</th>
<th>M+ (Da)</th>
<th>M+ (ppm)</th>
<th>RT (min)</th>
<th># Missed Cysteines</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEK7 Glutathionylated peptides identified by Mass Spectrometry</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.1
Title: Glutathionylation of Mal is critical for LPS-induced TLR4 Signalling

Poster presentation
Glutathione, the most abundant cellular antioxidant, which binds to cysteine residues on proteins, has been recently linked as an inhibitory post-translational modification of caspase-1 and STAT3 function. MyD88 adapter-like (Mal) is the first protein to interact with Toll-like receptor (TLR) 2/4 to drive inflammatory cytokines within macrophages. We have identified that glutathionylation of cysteine 91 (C91) in Mal promotes Mal-MyD88 interaction, driving LPS-induced NFκB activation. Mutating C91 to alanine (C91A) inhibits Mal glutathionylation and acts as a dominant negative mutation, with compromised ability to interact with MyD88. The C91A mutation also displays diminished phosphorylation, known to be important for Mal function. Furthermore, positively charged amino acids adjacent to cysteines have been linked to increased glutathionylation. Preventing glutathionylation of C91 by mutation of the positively charged flanking amino acid histidine to proline (H92P) mimics the effects of C91A. Glutathione is thereby a novel positive regulator of Mal activity and shows the importance of this post-translational modification on TLR signalling.
Irish Society for Immunology, Dublin, Ireland 2017

Title: Glutathione Transferase Omega-1 is involved in LPS-induced Lethality: Evidence for a Role in Caspase-11 Regulation

Poster presentation
Recent evidence identified Caspase-11 as the key Caspase involved in sepsis. Macrophages require extreme precision when controlling their responses to extracellular ligands, such as microbial pattern associated molecular patterns (PAMPs), to prevent aberrant tissue damage and a hyper-inflammatory response. Toll-like receptors (TLRs) on macrophages recognize PAMPs and drive inflammation using reactive oxygen species (ROS) as a bactericidal mechanism. Glutathione (GSH) is the most abundant antioxidant in cells that supplies reducing equivalents to neutralize ROS. Without GSH, toxic levels of ROS can accumulate in tissues and blood, potentially amplifying tissue damage. Continued exposure can result in septic shock.

GSH conjugation to cysteine amino acids (termed glutathionylation) has been found to profoundly affect protein function. Caspase-1, which processes the major pro-inflammatory cytokine pro-IL-1β, has been found to be inhibited by glutathionylation. Glutathione transferase omega 1 (GSTO1-1), a deglutathionylating enzyme, has previously been implicated upstream of NF-κB on the TLR4 signalling pathway and is known for its role in poor cancer prognosis.

We have found that GSTO1-1 deficient mice are resistant to LPS lethality in vivo. An analysis of possible targets for GSTO1-1 revealed that GSTO1-1 is required for induction of caspase-11 and pyroptosis. We find that Caspase-11 is a glutathionylated enzyme. A novel enzymatic inhibitor of GSTO1-1 limited intracellular LPS-mediated pyroptosis. These findings extend our understanding of GSH as a regulatory modification in macrophage function and highlight GSTO1-1 as a novel regulator of cell death, making GSTO1-1 a promising therapeutic target.
8.3 Record of Publication

First author publications

Review publications

Other publications

Solution structure of the TLR adaptor MAL/TIRAP reveals an intact BB loop and supports MAL Cys91 glutathionylation for signaling

Mark M. Hughes,a,1 Peter Lavrencic,b,c,d,1 Rebecca C. Colli,b,c, Thomas Ve,b,c,r, Dylan G. Ryan,a Niamh C. Williams,a Deepthi Menona,f, Ashley Manselli,f, Philip G. Boarid, Mehdi Mobli,d,2 Bostjan Kobeb,c,2 and Luke A. J. O’Neill,a,b

aSchool of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; bSchool of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia; cInstitute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia; dCentre for Advanced Imaging, The University of Queensland, Brisbane QLD 4072, Australia; eInstitute for Glycomics, Griffith University, Southport, QLD 4222, Australia; fJohn Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; and gCentre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Melbourne, VIC, 3168, Australia

Edited by Jonathan C. Kagan, Children’s Hospital Boston, Boston, MA, and accepted by Editorial Board Member Ruslan Medzhitov June 28, 2017 (received for review February 2, 2017)

MyD88 adaptor-like (MAL) is a critical protein in innate immunity, involved in signaling by several Toll-like receptors (TLRs), key pattern recognition receptors (PRRs). Crystal structures of MAL revealed a nontypical Toll/interleukin-1 receptor (TIR)-domain fold stabilized by two disulfide bridges. We therefore undertook a structural and functional analysis of the role of reactive cysteine residues in the protein. Under reducing conditions, the cysteines do not form disulfides, but under oxidizing conditions they are highly amenable to modification. The solution structure of the reduced form of the MAL TIR domain, determined by NMR spectroscopy, reveals a remarkable structural rearrangement compared with the disulfide-bonded structure, which includes the relocation of a β-strand and repositioning of the functionally important “BB-loop” region to a location more typical for TIR domains. Redox measurements by NMR further reveal that C91 has the highest redox potential of all cysteines in MAL. Indeed, mass spectrometry revealed that C91 undergoes glutathionylation in macrophages activated with the TLR4 ligand lipopolysaccharide (LPS). The C91A mutation limits MAL glutathionylation and acts as a dominant negative, blocking the interaction of MAL with its downstream target MyD88. The H92P mutation mimics the dominant-negative effects of the C91A mutation, presumably by preventing C91 glutathionylation. The MAL C91A and H92P mutants also display diminished degradation and interaction with interleukin-1 receptor-associated kinase 4 (IRAK4). We conclude that in the cell, MAL is not disulfide-bonded and requires glutathionylation of C91 for signaling.

MAL/TIRAP | glutathione | Toll-like receptor | NMR spectrometry | inflammation

Toll-like receptors (TLRs) are an important class of pattern recognition receptors. Upon recognition of pattern-associated molecular patterns, TLRs undergo dimerization. The consequent dimerization of the cytoplasmic Toll/interleukin-1 receptor (IL-1R)/resistance protein (TIR) domains leads to the recruitment of TIR domain-containing adaptor proteins, such as MyD88 and MyD88 adaptor-like (MAL; or TIRAP). MyD88 is required to recruit MyD88 to multiple TLRs, including TLR2 (1, 2), TLR3 (3), and TLR9 (4). The assembly culminates in an oligomeric assembly of kinases, including IRAK2 and IRAK4 (5, 6), termed the Myddosome, leading to NF-κB activation and inflammatory gene expression.

The crystal structures of the TIR domain of MAL (7–10) showed significant differences from the structures of other TIR domains, including MyD88 (11), IL-1 receptor accessory protein-like 1 (IL-1RAPL) (12), TLR1, TLR2 (13), and TLR10 (14). In particular, the MAL TIR-domain structures lack helix αB and feature a long AB loop situated between helix αA and β-strand βB, which includes the conserved and functionally important BB-loop proline-containing motif (15–17). Furthermore, these crystal structures contain two disulfide bonds involving residues C89–C134 and C142–C174, respectively. The presence of disulfides is unusual for a cystodic protein and poses an intriguing possibility of redox control of MAL-mediated signaling.

Posttranslational modifications of MAL have been studied extensively (18–22); however, redox mechanisms affecting MAL have not been characterized. Glutathione (γ-L-glutamyl-L-cysteinyl-glycine; GSH), a tripeptide composed of the amino acids glutamic acid, cysteine, and glycine, is the most abundant nonprotein tripeptide and is used by the cell to maintain redox homeostasis and prevent overoxidation of cytoplasmic components (23). The cysteine thiol group (–SH) forms a mixed disulfide with GSH, which can be spontaneously or enzymatically catalyzed. GSH, however, does not act solely as an antioxidant. Recent evidence has identified that GSH can act as both a positive and negative regulator of proteins, regulating STAT3 phosphorylation (24).

Significance

Toll-like receptor (TLR) signaling pathways are targeted to limit inflammation in immune cells. TLRs use adaptor proteins to drive inflammatory signaling platforms for effective microbial clearance. Here we show that MyD88 adaptor-like (MAL), an adaptor protein in TLR signaling, undergoes glutathionylation in response to LPS, driving macrophage responses to proinflammatory stimuli. We also determined the solution structure of MAL in the reduced form without disulfides, revealing a typical BB loop observed in adaptor proteins, in contrast to previously reported crystal structures. This alternate solution structure reveals the inherent flexibility of MAL, supporting the hypothesis that glutathionylation may reposition the MAL BB loop for MyD88 interaction to drive inflammation. This discovery could lead to novel approaches to target MAL glutathionylation in dysregulated TLR signaling, limiting inflammation.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. J.K.C. is a guest editor invited by the Editorial Board.

Data deposition: The sequences reported in this paper have been deposited in the Protein Data Bank [PDB ID code 2Y92 (MAL crystal structure) and PDB ID code 2NDH (MAL solution NMR structure)].

1M.M.H. and P.L. contributed equally to this work.

2To whom correspondence may be addressed. Email: m.mobli@uq.edu.au, or laoneill@tcd.ie.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701868114/-/DCSupplemental.

PNAS Early Edition | 1 of 10
caspase-1 activity (25), and the anion carrier proteins mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) (26). GSH has also been linked to stabilization of hypoxia-inducible factor 1-α (HIF1α) under ischemic conditions (27).

Here, we present the structural and functional characterization of the role of reactive cysteine residues in MAL. We determined the solution structure of the C116A mutant of TIR domain of MAL, observing remarkable structural differences compared with the disulfide-bonded structure, including the relocation of a β-strand and repositioning of the BB-loop region to a location more typical for TIR domains. C91 is found to be the most reactive cysteine in the protein, and indeed is shown to undergo glutathionylation in macrophages. This glutathionylation is required for the interaction of MAL with MyD88 and subsequent phosphorylation and degradation by IRAK4. Jointly, our data show that the disulfide-bonded form of MAL is unlikely to be the signaling-competent form in the cell, but that modification of reactive cysteines is functionally important, in particular glutathionylation of C91 during signaling.

Results

Redox States of Cysteines in Escherichia-coli-Expressed MAL TIR. The crystal structures of the TIR domain of MAL (7–10) revealed two disulfide bonds involving residues C89–C134 and C142–C174, respectively. To analyze the redox states of cysteine residues under different redox conditions, we expressed the protein corresponding to its TIR domain (residues 79–221; MAL TIR) in E. coli (Escherichia coli (E. coli) cell types (BL-21, SHuffle, and Origami). BL-21 cells contain a reducing cytosolic environment, similar to eukaryotic cells. On the other hand, SHuffle and Origami are strains that have been engineered so that cytoplasmic reductive pathways are impaired, resulting in an oxidative cytosolic environment that promotes the formation of cytoplasmic disulfide bonds (28). MAL TIR produced in all three bacterial strains yielded a similar elution profile by size-exclusion chromatography (SI Appendix, Fig. S1). Ellman’s reagent was used to estimate the average percentage of reduced cysteine residues in MAL TIR (SI Appendix, Table S1). These results indicate that the cysteine residues in MAL TIR are in the reduced form under reducing conditions, but are sensitive to redox modifications. The intact mass of MAL TIR-expressed E. coli BL-21 cells was further analyzed using mass spectrometry, revealing the possible presence of one disulfide bond. To analyze the role of individual cysteine residues in MAL TIR, single-cysteine mutants were produced in both BL-21 and SHuffle cells (SI Appendix, Fig. S1). The results show that some cysteine residues are more prone to oxidation than others (SI Appendix, Table S2). Exposure of MAL TIR to 5 mM oxidized glutathione (GSSG) resulted in a number of modifications including S-glutathionylation, dioxidation and dehydroalanine formation (SI Appendix, Table S3 and Fig. S2). Taken together, our results show that the cysteine residues of MAL are susceptible to modifications in solution.

NMR Solution Structure of MAL TIR C116A Reveals Remarkable Structural Differences from the Crystal Structures. We used NMR spectroscopy to characterize MAL TIR structurally. To identify the best experimental conditions for such studies, the effects of temperature and protein concentration on the stability of MAL TIR and its single-cysteine mutants were examined. The protein was less prone to precipitation at lower temperatures and lower concentrations. Remarkably, precipitated protein could be resolubilized by incubation on ice. The cysteine mutations had varying effects on the MAL TIR structure, with several mutants including C91A showing very few differences and the C157A mutant showing the highest differences from the wild-type protein (SI Appendix, Tables S4 and S5 and Fig. S3). The C116A mutant protein (designated here as MAL TIR C116A) was chosen for further structural studies due to high protein expression levels and as it remained monomeric for ∼12 h in solution at high concentrations. The NMR data were acquired as multiple parts that were coassembled for processing [details reported elsewhere (29)]. For the MAL TIR C116A protein, 72% of all atoms could be assigned; the unassigned 28% were mostly in the disordered regions of the proteins. The calculations yielded an ensemble of 20 structures with a heavy-atom amide-backbone (NH, Cα, C′) rmsd of 1.28 Å (SI Appendix, Table S6 and Fig. S4).

Typical TIR-domain structures feature a central five-stranded parallel β-sheet (strands βα–βε) surrounded by five α-helices (αα–αε) on both sides of the sheet (30). By contrast, the crystal structures of MAL TIR (7–10) revealed an absence of helix αβ; the sequence corresponding to strand βα in typical TIR domain structures is instead located in the long and flexible AB loop. The solution structure of the reduced form of MAL TIR C116A reveals that the secondary-structure arrangement is more consistent with a typical TIR-domain fold than with the crystal structures of MAL TIR (Fig. 1, SI Appendix, Figs. S4 and S5, and Movie S1). The AB loop connecting αα and βα is short, comprising only 7 residues (109–115). This loop is followed by the strand βα (residues 116–119), as supported by a large number of short- to medium-range interresidue NOEs (SI Appendix, Fig. S6). Because resonance assignments of the backbone residues of wild-type MAL TIR could be made in this region, we were able to confirm that the secondary structures of these residues (116–119) in both the MAL TIR C116A and the wild-type MAL TIR protein were consistent with the formation of a β-strand. This arrangement allows for the formation of a long flexible BB loop between the strand βα and the helix αβ; the loop corresponds to residues 120–134. This loop contains many unassigned atoms, and those assigned show few long-range NOEs, suggesting inherent flexibility. The helix αβ is short (comprising 5 residues), similar to MyD88 TIR; for comparison, it comprises 11 residues in TLR1 TIR and 9 residues in TepB TIR, a bacterial MAL mimic which disrupts TLR signaling.

The chemical shifts of the Cα atoms of the six cysteine residues in MAL TIR C116A range from 25.8 to 31.4 ppm, which indicates they are all reduced. The solution structure contains one pair of cysteine residues (C142 and C174) in close-enough proximity (5.4 Å) for possible disulfide-bond formation; however, chemical shifts of cysteine C91 atoms indicate that they are both reduced. The comparison of NMR spectra of MAL TIR C116A at pH values 7.5, 8.0, or 8.6 (SI Appendix, Table S7 and Fig. S7) suggests that the structure remains unchanged over the tested pH conditions.

MAL TIR Is Sensitive to Redox Change. Exposure of the wild-type MAL TIR to redox conditions that ranged from “fully reducing” (GSH only) to “fully oxidizing” (GSSG only) and included three physiological conditions (31) of −225 mV, −199 mV, and +190 mV, indicated that cysteines varied in reactivity. Major changes in chemical shifts were observed for the fully oxidizing condition containing only GSSG, especially for cysteine residues 89, 91, and 157 (SI Appendix, Fig. S8). Cysteine residue 91 was the most reactive, with 45% signal loss at −190 mV, compared with −225 mV, indicating that this residue had undergone oxidation to a large extent. The data suggest that the redox potential of C91 is close to −190 mV, whereas cysteines C89, 134, 142, and 172 have a redox potential <−190 mV and that C116 and C157 have redox potentials <<−190 mV. Cysteines are prone to modifications in an oxidative environment induced by inflammatory stimuli and the modifications have been shown to act as signals, for example in peroxiredoxin secretion from exosomes (32).

MAL Is Glutathionylated Endogenously. Bioinformatic analyses of MAL identified conservation of cysteine residues across most species, including human, mouse, and rabbit, except for C174, which is variable in these species (Fig. 24). Given the reactive cysteines in MAL, we wished to test if it was glutathionylated endogenously. MAL was indeed glutathionylated basally and glutathionylation increased after 5 and 15 min of LPS treatment, and
reverted to basal levels after 60 min of LPS treatment (Fig. 2B). To assess the glutathionylation site of MAL, we used cysteine-to-alanine mutants of MAL. Based on the evidence that cysteine 91 is the most reactive thiol, we chose the C91A mutant for initial functional studies. Overexpression of wild-type MAL and its C91A mutant (MALΔC91A) in HEK293 TLR4-MD2-CD14 cells (MTCs), followed by immunoprecipitation of MAL under non-reducing conditions, was performed to examine glutathionylation as a potential modification. To prevent deglutathionylation, we used the alkylating compound N-ethylmaleimide to modify free sulfhydryl groups. We also sought to identify if induction of TLR4 signaling by LPS would affect the potential glutathionylation status of MAL. Overexpressed wild-type MAL was found to be variably glutathionylated and underwent increased glutathionylation in response to LPS (Fig. 2C; compare lane 2 to lane 4), whereas MALΔC91A displayed decreased glutathionylation (Fig. 2C; compare lane 3 to lane 2), identifying that C91 is the main glutathione target in MAL.

Fig. 1. Comparison of the solution and crystal structures of MALΔTR. (A) Overlay of 1H-15N-HSQC spectra from MALΔTRC116A (blue) and wild-type MALΔTR (cyan). Most chemical shifts of 1H and 15N are conserved between the spectra, with large shifts detected only for the mutated C116 residue, the neighboring residue R115, and additionally, residue D87. (B) Solution structure of MALΔTRC116A, shown in cartoon representation. (C) Crystal structure of MALΔTR (7) (PDB ID Code 2Y92) shown as in B. Regions in the crystal structure comprising residues 112–123 (AB loop) and 168–171 do not have interpretable electron density and are not included in the crystal structure model; they are shown here for illustration purposes by dotted lines. (D) Structure-based sequence alignment, showing the elements of secondary structure. The solution secondary structure is based on the CYANA calculations (60). (α) α-helix, (β) β-strand, (***) loop.
MAL is glutathionylated on cysteine 91. (A) Sequence alignment highlighting MAL cysteine conservation across species. (B) BMDMs were treated with LPS (100 ng/mL) for 5, 15, or 60 min. Cells were lysed in low-stringency lysis buffer containing 50 mM N-ethylmaleimide. MAL was immunoprecipitated from lysate on A/G beads coated with MAL antibody and subjected to nonreducing SDS/PAGE. The blots in Fig. 2B were representative of three independent experiments.

MAL Mutations Limit TLR2 and TLR4 Signaling. TLR pathway activation can be measured using overexpressed MAL and an NF-κB luciferase reporter construct. We initially examined the effect of each cysteine mutant on LPS-treated MTC cells. NF-κB activation was not affected in cells transfected with most cysteine-to-alanine mutants, the notable exception being MALC91A, the overexpression of which had a dominant-negative effect (Fig. 3A). MALC91A could drive NF-κB activation similar to wild-type MAL, supporting the suggestion that this mutation had no significant effect on MAL structure and function, consistent with the NMR data. To confirm the dominant-negative effect of the C91A mutation, we overexpressed MALC91A in HEK293T cells. MALC91A overexpression could not drive NF-κB activation in HEK293T cells (Fig. 3B). Transfection of MALC91A into HEK293-TLR2 cells treated with TLR2 agonist Pam3CSK4 yielded similar results to TLR4-driven NF-κB activation; however, the dominant-negative effects of MALC91A were less pronounced (Fig. 3C). Transfection with MALH92P was also unable to drive NF-κB (Fig. 3D), and acted as a dominant-negative mutant against LPS (Fig. 3E) and Pam3CSK4 (Fig. 3F). MAL P125H, which is known to act as a dominant-negative mutant, served as a control, inhibiting NF-κB activation.
C91A and H92P MAL Mutants Cannot Reconstitute TLR4-Mediated IkBα Degradation. To further confirm impaired signaling by both MAL C91A and MAL H92P, we reconstituted MAL-deficient immortalized bone-marrow-derived macrophages (iBMDMs) and examined the degradation of the NF-κB inhibitory protein IkBα as a readout for NF-κB activation by TLR4 stimulation with LPS. The reconstitution of wild-type MAL yielded degradation of IkBα, with degradation reaching 50% at 90 min (Fig. 4A). Reconstitution of MAL-deficient iBMDMs with MAL C91A failed to reconstitute TLR4 signaling, with no degradation of IkBα detected (Fig. 4B). Similarly, MAL H92P did not reconstitute TLR4 signaling, with minimal degradation of IkBα (Fig. 4C).

C91A and H92P MAL Mutants Cannot Interact with MyD88. TLR stimulation induces MAL recruitment and interaction with MyD88 to drive formation of the Myddosome (4). We therefore sought to examine if MAL C91A and MAL H92P would be impaired in their ability to interact with MyD88. Wild-type MAL, when overexpressed, interacted with overexpressed MyD88 (Fig. 5A, lane 5, Top). MAL C91A, however, did not interact with MyD88 (Fig. 5A, lane 6; compare with lane 5, Top). Lysates were examined to confirm the expression of each protein before immunoprecipitation (Fig. 5A, third and fourth panels). MAL C91A appeared to express poorly when transfected (Fig. 5A, lane 3, fourth panel); however, cotransfection of MyD88 appeared to drive MAL C91A expression to equal levels as wild-type MAL (Fig. 5A, lanes 5 and 6; compare with lane 2, Bottom). Similarly, when MAL H92P was overexpressed, it failed to interact with MyD88, whereas wild-type MAL interacted with MyD88 (Fig. 5B, lane 6; compare with lane 5, Top). As above, lysates were examined for expression of plasmids before immunoprecipitation (Fig. 5B, third and fourth panels). These findings indicate that the C91A and H92P mutations prevent the interaction of MAL with MyD88, explaining the dominant-negative effect of these mutants.

IRAK4 Cannot Degrade or Interact with C91A and H92P MAL Mutants. It has been shown previously that IRAK1 and IRAK4 phosphorylate MAL on threonine 28, promoting MAL degradation (18, 22). We therefore sought to examine if the dominant-negative effects of MAL C91A and MAL H92P would affect IRAK1/4-mediated degradation of MAL. Overexpression of wild-type MAL with increasing concentrations of a plasmid encoding IRAK4 decreased MAL protein expression dose-dependently (Fig. 6A, Top). Overexpression of IRAK4 was unable to cause the degradation of MAL C91A (Fig. 6B, Top). Correspondingly, overexpression of IRAK4 failed to induce degradation of MAL H92P with increasing IRAK4 concentrations (Fig. 6C, Top).

As shown previously, the kinase-dead form (KD), but not kinase-active form of IRAK4, interacts with MAL (18). We therefore examined whether IRAK4-KD could interact with MAL mutants. As shown in Fig. 6D, wild-type MAL did not interact with IRAK4 when overexpressed (Top, lane 2), as expected, nor did the MAL C91A or MAL H92P mutants (Top, lanes 3 and 4, respectively). Wild-type MAL interacted strongly with IRAK4-KD (Top, lane 5); however, this interaction was attenuated with MAL C91A and MAL H92P (Top, lanes 6 and 7). Wild-type MAL was considerably depleted in lysates by IRAK4-transfected cells as opposed to cells transfected with IRAK4-KD (compare lane 2 to lane 5, third panel). However, the level of expression of the MAL C91A and MAL H92P mutants was similar between IRAK4 and IRAK4-KD (third panel; compare lanes 3 and 4 to lanes 6 and 7). Comparable levels of IRAK4 and IRAK4-KD were present before immunoprecipitation (Bottom).

Discussion

The crystal structures of the TIR domain of MAL (7–10) all show unusual features compared with other TIR-domain structures, in particular the presence of two disulfide bridges and the presence of a long flexible AB loop. We therefore aimed to characterize the TIR domain of MAL and its cysteine mutants in solution. Based

Fig. 4. C91A and H92P MAL mutants fail to reconstitute TLR4 signaling in MAL-deficient iBMDMs. (A) MAL-deficient iBMDMs were reconstituted with 5 μg of MAL wild-type plasmid, (B) 5 μg MAL C91A, or (C) 5 μg MAL H92P using the Neon electroporation system. MAL-deficient iBMDMs (1 x 10^6 cells/mL) were resuspended in 110 μL buffer R and 5 μg of wild-type MAL, MAL C91A, or MAL H92P. iBMDMs were immediately loaded to a 100 μL Neon tip and electroporated at 1,680 V for 20 ms and one pulse. Electroporated cells (100 μL) were placed directly into 900 μL prewarmed antibiotic-free media and incubated at 37 °C and 5% CO2 overnight. Immediately the next morning, the cells were washed with PBS, media replaced with fresh DMEM containing 10% FCS, and treated with LPS for the times indicated. Cells were lysed in 5x sample-loading buffer and subjected to SDS/PAGE. IκBα, HA-tag, and β-actin were assessed by Western blot. The blots in A–C are representative of three independent experiments. Densitometry was performed using ImageLab 5.0 using β-actin as a loading control.
on the available MAL crystal structures, the construct comprising residues 79–221 (designated here as MAL\(^{\text{TIR}}\)) was selected for structural studies by solution NMR spectroscopy. The C116A mutant (MAL\(^{\text{TIR}C116A}\)) was found to have superior stability and behaved as a stable monomer, compared with the wild-type protein and other cysteine-to-alanine mutants. The MAL\(^{\text{TIR}C116A}\) structure was found to be representative of the wild-type MAL\(^{\text{TIR}}\) protein, based on the comparison of chemical shifts and secondary structure analysis. The structure was solved at a pH of 8.6 in a high ionic strength of 200 mM sodium chloride. However, the comparison of spectra of \(^{15}\text{N}\)-labeled MAL\(^{\text{TIR}}\) in the pH range of 8.6–7.5 shows that the structure is representative of a more physiological pH (SI Appendix, Fig. S6). The extreme conditions of high salt and pH yielded suitable sample concentrations for NMR analysis. These conditions, however, result in a loss of signals at rapidly exchanging backbone amide NHs and poor signal-to-noise ratio of the NMR resonances. To overcome these difficulties, an unconventional data acquisition strategy and advanced processing methods at ultrahigh fields had to be used to produce a medium- to low-resolution solution structure of MAL\(^{\text{TIR}}\) (29).

The solution structure shows a structural rearrangement in the protein compared with the crystal structures (Fig. 1, SI Appendix, Fig. S5, and Movie S1). Consistent with other “typical” TIR-domain structures, the solution structure contains a long BB loop (residues 120–134) situated between strand \(\beta\)B and helix \(\alpha\)B. The BB loop is a conserved feature among TIR domains and a number of studies have identified it to be important for mediating homotypic TIR-domain interactions (15–17, 34, 35). The striking structural differences are the result of the secondary structure arrangement between residues 111 and 139 (Fig. 1, SI Appendix, Fig. S5, and Movie S1). The crystal structures contain a flexible AB loop corresponding to residues 111–124, linking helix \(\alpha\)B and strand \(\beta\)B. This rearrangement is caused by cysteine residues 89 and 134 forming a disulfide bond and shifting the location of strand \(\beta\)B. In the solution structure, the \(\text{C}_\alpha\) atoms of these two cysteine residues are 11 Å apart, making disulfide-bond formation unlikely (36). The second disulfide bond found in the crystal structures involves the pair C142 and C174. In the solution structure, these residues remain in close proximity (∼6 Å); however, the chemical shifts of the \(\text{C}_\beta\) atoms from these residues suggest that the cysteine side chains are in a reduced state. In addition, these two cysteine residues are not conserved and are not likely required for the folding of the protein (7). The crystal structure of MAL\(^{\text{TIR}}\) has been used in a number of attempts to model the interactions involving this adaptor during signaling (7, 37–41); our work suggests that this structure may not be the signaling-competent form and questions the validity of the findings of these modeling studies. Our work now provides a more appropriate template structure for modeling approaches and interaction studies.

Our data point to C91 as being the most reactive cysteine in MAL and available for posttranslational modification. Indeed, we identified that MAL can be glutathionylated on this residue. MAL was heavily glutathionylated in murine BMDMs, and LPS stimulation resulted in increased MAL glutathionylation, and the glutathionylation returned to basal levels after 60 min. Mutagenesis of C91 to alanine confirms this residue as the site of glutathionylation. Mutagenesis of the neighboring amino acid H92 also abrogated glutathionylation. MAL\(^{\text{C91A}}\) or MAL\(^{\text{H92P}}\) were unable to signal to NF-\(\kappa\)B when overexpressed and acted as dominant-negative mutants of TLR4 signaling and could not reconstitute MAL-deficient cells. Interestingly, MAL\(^{\text{C91A}}\) showed only minor dominant-negative effects against TLR2. Previous reports suggest MAL is not required for TLR2 (42), which may explain the failure of MAL\(^{\text{C91A}}\) to exert a strong dominant-negative effect on TLR2. Finally, immunoprecipitation showed that the interaction with MyD88 of MAL\(^{\text{C91A}}\) or MAL\(^{\text{H92P}}\) was reduced, and both mutants failed to undergo degradation in response to IRAK4 overexpression. In the cell, glutathionylation of MAL on C91 might therefore be critical for MAL to signal via the Myddosome and IRAK4. As the modified residue is close to the BB loop, the modification could influence the conformation of this functionally important flexible loop.

Redox regulation of proteins is a rapidly evolving field. Increasing evidence suggests that during TLR-mediated immune activation, the cytosolic environment becomes more oxidizing. This can lead to the modification of cysteine residues on cytosolic proteins, most commonly to their oxidation by hydrogen peroxide (\(\text{H}_2\text{O}_2\)) species produced by NADPH (43), or by glutathionylation (44). Glutathionylation is emerging as an important posttranslational modification in a number of proteins including NF-\(\kappa\)B (45). The
glutathione transferase GSTO1-1 has been associated with the glutathionylation of cysteines in proteins in the TLR4 pathway, resulting in an on/off switch (46, 47). The precise target of GSTO1-1 in TLR4 signaling is unclear; however, the available evidence suggests that it regulates proteins early in the TLR4 signaling cascade, which could involve the cytosolic TIR domain of TLR4, MAL, or MyD88 (48). MyD88 has also been shown to be redox-regulated, with H2O2 treatment resulting in modification of MyD88 thiols (49). Glutathionylation of the redox enzyme glutathione transferase pi (GSTP) on cysteines 47 and 101 has been previously reported to alter its monomeric structure (50). Monomeric GSTP can associate with Jun N-terminal kinase (JNK) in resting cells, and dissociates from JNK under oxidative stress conditions, including H2O2 treatment, possibly by glutathionylation (51). We now contribute an example of glutathionylation of C91 in MAL, which appears to promote MyD88 and IRAK4 interaction. We identified glutathionylation of MAL as a positive regulatory mechanism in TLR4 activation, promoting Myddosome assembly for NF-κB activation.

Experimental Procedures

Biological Reagents, Mice, and Cell Culture. HEK293T cells were obtained from the Centre for Applied Microbiology and Research, Wiltshire, UK. MTCs and HEK293-TLR2 cells were purchased from Invivogen. All experiments were performed under the guidelines established by the UK Government (license PPL 70/7899) and were approved by the local institutional ethics committee.

Fig. 6. IRAK4 cannot degrade or interact with C91A and H92P MAL mutants. HEK293T cells were transfected with FLAG-IRAK4, (A) wild-type MAL, (B) MALC91A, (C) MALH92P, or mock-transfected. In each transfection, the total concentration of plasmid DNA was kept constant by addition of relevant EV control. Posttransfection (24 h), the cells were lysed in 50 μL 5× sample-loading buffer. Cell lysates were analyzed by SDS/PAGE. Proteins were detected by immunoblot using anti-HA, anti-FLAG, and anti-β-actin antibodies. Densitometry was performed using ImageLab 5.0 software using β-actin as a loading control. (D) MTC cells were transfected with wild-type MAL, MALC91A, MALH92P, FLAG-IRAK4, kinase-dead FLAG-IRAK4 (IRAK4-KD), or EV. In each transfection, the total concentration of plasmid DNA was kept constant by addition of relevant EV control. Posttransfection (24 h), the cells were lysed in low-stringency lysis buffer. Fifty μL of lysate was kept for analysis, while the remaining lysate was added to protein A/G beads coated with 1 μg of anti-FLAG antibody or 1 μg mouse-IgG control antibody for 2 h rotating at 4 °C. Samples were washed three times in 1 mL low-stringency lysis buffer and dried A/G beads were resuspended in 50 μL sample-loading buffer. Whole-cell lysates and immunoprecipitated samples were analyzed by SDS/PAGE. Proteins were detected by immunoblot using anti-HA and anti-FLAG antibodies. The results shown are representative of three independent experiments.
carried out with prior ethical approval from the Trinity College Dublin Animal Research Ethics Committee (HPRA licence AE19136). C57BL/6 mice were killed by cervical dislocation and blood was then collected by cardiac puncture, L929 media for 6 d into primary macrophages. All cell lines and primary cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FCS, 1% penicillin/streptomycin, and maintained at 37 °C in a humidified atmosphere of 5% CO₂.

The HA-tagged MAL plasmid has been described previously (15), and site-directed mutagenesis of this plasmid was performed to obtain HA-tagged MAL mutants using QuikChange II Mutagenesis Kit (Agilent Technologies). These plasmids were used for mammalian cell transfections. Anti-TIRAP (D6M92), Anti-Id-IR (44D4), and Anti-Myc (22765) antibodies were purchased from Cell Signaling Technology. Anti-HA.11 antibody was purchased from Biolegend (MMS-101R). Anti-κB antibody was purchased from Cell Signaling Technology.

The OD was reached at 20 °C for overnight protein expression. The cells were then lysed by sonication, and the protein was purified using nickel-affinity chromatography. Tobacco etch virus proteinase was added to the protein for an overnight incubation at 4 °C to cleave the 6-histidine tag from the protein. The protein was further purified by reeling over the nickel-affinity column, followed by size-exclusion chromatography with a Superdex 75 gel-filtration column (GE Healthcare 26/600 75/75) into a buffer consisting of 20 mM Tris-HCl (pH 8.6) with 200 mM NaCl.

Expression and Purification of 1H and 13C-Labeled MAL

The plasmid coding for the C116A mutant of MALTR (MALTRC116A), was transformed into E. coli BL-21 cells by heat-shock, and grown overnight in a starter culture of LB in the presence of 100 μg/mL ampicillin while shaking at 37 °C. The protein was then expressed in the same media while shaking at 37 °C until the cells reached an OD of 0.7 at the wavelength of 600 nm. The sample was centrifuged at 800 × g, washed in M9 salts, and resuspended in minimal M9 media containing 13C glucose and 15N ammonium chloride until the cell density reached an OD of 0.8 at the wavelength of 600 nm. The temperature was then reduced to 20 °C and the cells were induced with 1 mM isopropyl-1-thiogalactopyranoside for overnight expression. The protein was purified as described above.

Structural Analysis by NMR. Double- and triple-resonance NMR experiments, including 2D 1H-15N heteronuclear single quantum correlation (HSQC), 3D 1H/15N/13C HMBC, and 4D 1H-15N-13C HSQC-NOESY (mixing time of 90 ms for all NOESY spectra), were conducted using solutions containing 300 μM protein concentration, and 5-mm Shigemi tubes at 291 K on a 900-MHz Bruker Avance-III spectrometer equipped with a double-bore cryoprobe. All 3D experiments, excluding the NOESY spectra, were acquired using nonuniform sampling and processed using maxium entropy reconstruction as previously described (29, 56, 57). The 1H, 13N, and 13C atom frequencies were assigned to the protein using the CCPNMR software (58), followed by backbone torsion-angle prediction calculations based on chemical shifts using TALOS+ (59) and NOE calculations using CYANA 3.0 (60). The structure has been deposited in the Protein Data Bank (PDB ID code 5QYX).

The 1H and 13N chemical shifts of purified 15N-labeled MALTR cysteine mutants were measured by 1H-15N HSQC using a 900-MHz NMR spectrometer and analyzed with the CCPNMR software (58). The chemical shifts of each mutant were compared with the wild-type protein.

To compare the effect of pH on the structure, the 15N-labeled MALTRC116A was divided and buffer-exchanged into three buffers, each made of 10 mM Hepes and 50 mM salt, at pH 7.5, 8.0, and 8.6. The chemical shifts of 1H and 13N were measured at each pH value and analyzed using the CCPNMR software (58).

NMR datasets were compared against each other using the Euclidean method for distance measurements, following the frequency assignment of 1H and 15N atoms in each 1H-13N HSQC experiment using the CCPNMR software (58). Individual residues were compared by d², where d²(ρ₁, ρ₂) = (H₁ – H₂)² + (N₁ – N₂)². Overall comparison between datasets was calculated using rmsd, where ρ = (1/NS) ΣN(ρ₁ - ρ₂)².

Determination of Redox Shifts of Cysteines in Wild-Type MALTR. Stock solutions of GSH and GSSG were made in 10 mM Hepes buffer and adjusted to pH 7.5. Nitrogen was bubbled through both solutions to remove oxygen. A 1H spectrum of each stock was measured using a 900-MHz magnet and analyzed with the TopSpin 3.2 (Bruker) software to confirm whether the stock-solution redox species were indeed reduced or oxidized. Purified 13C- and 15N-labeled wild-type MALTR in 10 mM Hepes (pH 7.5) buffer was added to five different buffers containing varying ratios of GSH-GSSG that equate to specific electrochemical potentials (GSH only, −225 mV, −198.67 mV, −189.77 mV, and GSSG only). Electrochemical potential was calculated using the Nernst equation E = E°GSH-GSSG − R(T/lnKeq, where E°GSH-GSSG is the standard potential of glutathione at pH 7.5 (−240 mV) (61). It is the universal gas constant (B.314 K J K⁻¹ m⁻¹), T is the absolute temperature, n is the number of electrons transferred, F is the Faraday constant (9.648 × 10⁴ C mol⁻¹), and Keq is the equilibrium constant (GSH²⁻/GSSG). A 1H-13N HSQC experiment was completed for each of the redox conditions at 298 K, using a 900-MHz NMR spectrometer, to determine the chemical shifts and intensity of the resonances from each residue. To correct for non-redox-related contributions to intensity changes (e.g., salt concentrations, etc.), the intensities were normalized to the average of a set of signals (15 peaks) from residues that were distal to any cysteine residues and neither overlapped with other peaks nor were strongly perturbed by the titration.

Expression in E. coli and Purification of MALTR and Its Cysteine Mutants. BL-21, Shuffie (New England Biolabs) or Origami (Merck Millipore) E. coli cells were transformed by heat-shock with the pMCSG7 vector (53) encoding wild-type MALTR (residues 79–221) or its mutants C89A, C91A, C116A, C134A, C142A, C157A, and C174A. The cells were then grown in 50-mL starter cultures of Luria’s broth (LB) with 100 μg/mL ampicillin overnight at 37 °C. Cells were centrifuged at 800 × g and washed in M9 salts. One mL of starter culture was added to each flask containing 500 mL autocluded media (54), with 15N-labeled ammonium chloride added for the expression of 15N-labeled protein (55), and grown while shaking at 37 °C until the optical density (OD) of each flask reached an absorbance of 0.8 at the wavelength of 600 nm. Once the OD was reached, the temperature was reduced to 20 °C for overnight protein expression. The cells were then lysed by sonication, and the protein was purified using nickel-affinity chromatography. Tobacco etch virus proteinase was added to the protein for an overnight incubation at 4 °C to cleave the 6-histidine tag from the protein. The protein was further purified by reeling over the nickel-affinity column, followed by size-exclusion chromatography with a Superdex 75 gel-filtration column (GE Healthcare 26/600 75/75) into a buffer consisting of 20 mM Tris-HCl (pH 8.6) with 200 mM NaCl.
Ellman’s Assay. Wild-type MAL²⁷ was purified from three types of E. coli cells (BL-21, Shuffie, and Origami), each with different cysteic redox environments. The protein sample from BL-21 expression was split into three conditions: with the addition of 10 mM reducing agent 1,4-DTT, with the addition of 0.03 mM hydrogen peroxide, and with no addition. Ellman’s reagent (dithiobisnitrobenzoic acid) was added to each of the five conditions before measuring the optical density at 412 nm using a spectrophotometer [NanoDrop, Thermo Scientific]. Calculations were performed based on the proportion of oxidized thiols, which correlated with the color intensity of the solution. The percent of reduced thiols in solution was used to calculate to the nearest number of reduced cysteine residues on MAL²⁷.

Mass Spectrometric Analysis of MAL Oxidized Using Glutathionylation. Purified wild-type MAL²⁷ from E. coli BL-21 cells was buffer-exchanged into either 10 mM Hepes (pH 7.5) or 20 mM Tris (pH 8.6). Five mM GSSG was then added to each solution, while keeping another without glutathione for control. These samples were incubated at room temperature for 1 h before subjecting each to a tryptic digest. Samples were separated using reversed-phase chromatography on a Shimadzu Prominance nanoLC system. Using a flow rate of 30 μl/min, samples were desalted on an Agilent C18 trap (0.3 × 5 mm, 5 μm) for 3 min, followed by separation on a Vydac Eclipse C18 (300 A, 5 μm, 150 mm × 150 mm) column at a flow rate of 1 ml/min. A gradient of 10–60% buffer B over 45 min was used, with buffer A (50 mM ACNO) and buffer B (80% ACNO). 1% FA was used to separate peptides. Eluted peptides were directly analyzed on a TripleToF 5600 instrument (ABSciex) using a Nanospray III interface. Gas and voltage settings were adjusted as required.

Movie S1. Morphing movie illustrating the transition between the crystal structure of MAL$^{\text{TIR}}$ and the solution structure of MAL$^{\text{TIR/C116A}}$. The structures are shown in cartoon representation, with the side chains of C89, C134, and P125 highlighted in stick representation. The movie was generated using UCSF Chimera (1).

Other Supporting Information Files

SI Appendix (PDF)
SI Appendix, Fig. S1. Size-exclusion chromatography of MALTIR and its cysteine mutants in different \textit{E. coli} strains. (A) Size-exclusion chromatography of MALTIR produced in three different \textit{E. coli} cell types. (B) Size-exclusion chromatography of MALTIR and single-cysteine mutants produced in BL21 \textit{E. coli} cells. (C) Size-exclusion chromatography of MALTIR and single-cysteine mutants produced in SHuffle \textit{E. coli} cells. Each protein was eluted from a Superdex 75 26/600 (A, B) or Superdex 75 10/300 (C) (GE Healthcare) columns in a buffer consisting of 20 mM Tris (pH 8.6) with 200 mM NaCl.
SI Appendix, Fig. S2. Structure of the amino-acid L-cysteine (A), and its modifications S-glutathionylation (B), dioxidation (C) and dehydroalanine (D).
SI Appendix, Fig. S3. Comparison of chemical shifts between the (A) C91A, (B) C116A and (C) C157A mutants and the wild-type MALTIR protein. The following residues were not assigned in at least one of the spectra and were therefore excluded from the analysis: 94, 110-112, 119, 125-128, 131-136, 128,139, 149, 155, 169-170, 177, 181, 183-185, 188-189, 192-198, 201-203, 207.
SI Appendix, Fig. S4. (A) NMR solution structure of human MALTIRC116A. The views are related by a rotation of 90° around the y-axis. (B) Top-twenty lowest-energy models, showing the inherent flexibility of the BB-loop in green. The views are related by a rotation of 90° around the y-axis.
SI Appendix, Fig. S5. (A) NMR solution structure of human MALTIRC116A (in ribbon representation, colored continuously from N [blue] to C-terminus [red]), highlighting the side-chains of the cysteine residues (in stick representation, with sulfurs in yellow and carbons in magenta). (B) Crystal structure of human MALTIR, shown as in A.
SI Appendix, Fig. S6. 15N-NOESY strips from MAL$^{\text{TIRC116A}}$ exhibiting short to medium-ranged NOE cross-peaks between residues situated in the βA strand (V88, C89, V90) and the βB strand (A116, F117, L118). The large number of atoms detected between the residues indicates that these residues are in close proximity to one another.
SI Appendix, Fig. S7. Overlay of 1H-15N-HSQC spectra of MAL$_{116}^{TIRC_{116}}$ at pH 7.5 (green), 8.0 (blue) and 8.6 (red).
SI Appendix, Fig. S8. Cysteine residues C89 (A), C91 (B) and C157 (C) show ^1H and ^{15}N shifts following exposure to increasingly oxidising conditions.
Movie Still S1. Still image from Movie S1 illustrating the transition between the crystal structure of MAL^TIR and the solution structure of $\text{MAL}^{\text{TIRC116A}}$ (left to right). The structures are shown in cartoon representation, with the side-chains of C89, C134 and P125 highlighted in stick representation. The movie was generated using UCSF Chimera [1].
Table S1. Redox state of cysteine residues in MALTIR produced in different cell types or exposed to redox reagents, as determined by the Ellman's assay.

<table>
<thead>
<tr>
<th>Wild-type MALTIR growth condition</th>
<th>Reduced</th>
<th>Oxidized</th>
<th>% Reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL-21 purified with 10 mM DTT</td>
<td>7</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>BL-21</td>
<td>6</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>SHuffle</td>
<td>4</td>
<td>3</td>
<td>57</td>
</tr>
<tr>
<td>Origami</td>
<td>4</td>
<td>3</td>
<td>53</td>
</tr>
<tr>
<td>H\textsubscript{2}O\textsubscript{2} (0.03 mM)</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Table S2. Number of reduced and oxidised cysteine residues in MALTIR and its mutants produced in SHuffle \textit{E. coli} cells.

<table>
<thead>
<tr>
<th>MAL mutant</th>
<th>Oxidised cysteines</th>
<th>Reduced cysteines</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>C89A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C91A</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>C116A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C134A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C142A</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>C157A</td>
<td>3-4</td>
<td>2-3</td>
</tr>
<tr>
<td>C174A</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Table S3. Modifications detected using mass spectrometry, following the addition of oxidized glutathione.

<table>
<thead>
<tr>
<th>Cysteine residue</th>
<th>Tris pH 8.6</th>
<th>Hepes pH 7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>Dehydroalanine</td>
<td>Dioxidation</td>
</tr>
<tr>
<td>91</td>
<td>Glutathionylation, dioxidation</td>
<td>Glutathionylation, dehydroalanine</td>
</tr>
<tr>
<td>116</td>
<td>Glutathionylation</td>
<td>Glutathionylation</td>
</tr>
<tr>
<td>134</td>
<td>Dehydroalanine</td>
<td>Glutathionylation, dehydroalanine</td>
</tr>
<tr>
<td>142</td>
<td>Glutathionylation, dioxidation</td>
<td>Glutathionylation, dioxidation</td>
</tr>
<tr>
<td>157</td>
<td>Glutathionylation</td>
<td>Glutathionylation</td>
</tr>
<tr>
<td>174</td>
<td>Glutathionylation</td>
<td>Glutathionylation</td>
</tr>
</tbody>
</table>

Table S4. RMSD values of 1H and 15N chemical shifts for cysteine-to-alanine mutants of MALTIR compared to the wild-type protein.

<table>
<thead>
<tr>
<th>Cysteine mutant</th>
<th>RMSD (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C89A</td>
<td>0.036</td>
</tr>
<tr>
<td>C91A</td>
<td>0.054</td>
</tr>
<tr>
<td>C116A</td>
<td>0.075</td>
</tr>
<tr>
<td>C134A</td>
<td>0.028</td>
</tr>
<tr>
<td>C142A</td>
<td>0.047</td>
</tr>
<tr>
<td>C157A</td>
<td>0.120</td>
</tr>
<tr>
<td>C174A</td>
<td>0.062</td>
</tr>
</tbody>
</table>
Table S5. Pairwise changes of 1H and 15N chemical shifts between wild-type MALTIR and the cysteine-to-alanine mutants.
<table>
<thead>
<tr>
<th>Residue number</th>
<th>C89A/WT</th>
<th>C91A/WT</th>
<th>C116A/WT</th>
<th>C134A/WT</th>
<th>C142A/WT</th>
<th>C157A/WT</th>
<th>C174A/WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>0.00624</td>
<td>0.01300</td>
<td>0.01400</td>
<td>0.01200</td>
<td>0.01300</td>
<td>0.00956</td>
<td>0.02200</td>
</tr>
<tr>
<td>84</td>
<td>0.02100</td>
<td>0.00840</td>
<td>0.00536</td>
<td>0.00901</td>
<td>0.00273</td>
<td>0.00833</td>
<td>0.04900</td>
</tr>
<tr>
<td>85</td>
<td>0.15200</td>
<td>0.01700</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.06800</td>
<td>0.12700</td>
<td>0.23600</td>
</tr>
<tr>
<td>86</td>
<td>0.08100</td>
<td>0.03900</td>
<td>0.07400</td>
<td>0.09200</td>
<td>0.10600</td>
<td>0.10100</td>
<td>0.02600</td>
</tr>
<tr>
<td>87</td>
<td>0.06600</td>
<td>0.02300</td>
<td>0.27400</td>
<td>0.00930</td>
<td>0.01500</td>
<td>0.05600</td>
<td>0.02100</td>
</tr>
<tr>
<td>88</td>
<td>0.01200</td>
<td>0.02100</td>
<td>0.05000</td>
<td>0.01700</td>
<td>0.15000</td>
<td>0.19000</td>
<td>0.04200</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>0.05000</td>
<td>0.09700</td>
<td>0.03400</td>
<td>0.01100</td>
<td>0.20400</td>
<td>0.14100</td>
</tr>
<tr>
<td>90</td>
<td>0.17900</td>
<td>0.23000</td>
<td>0.10200</td>
<td>0.08500</td>
<td>0.02300</td>
<td>0.05100</td>
<td>0.03400</td>
</tr>
<tr>
<td>91</td>
<td>0.03700</td>
<td>0.27200</td>
<td>0.10600</td>
<td>0.01100</td>
<td>0.01900</td>
<td>0.11400</td>
<td>0.01200</td>
</tr>
<tr>
<td>92</td>
<td>0.07100</td>
<td>0.10800</td>
<td>0.03600</td>
<td>0.00362</td>
<td>0.04500</td>
<td>0.33600</td>
<td>0.04700</td>
</tr>
<tr>
<td>93</td>
<td>0.02900</td>
<td>0.19500</td>
<td>0.24000</td>
<td>0.00665</td>
<td>0.01000</td>
<td>0.25800</td>
<td>0.04700</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.00424</td>
<td>0.04700</td>
<td>0.02300</td>
<td>0.01300</td>
<td>0.01400</td>
<td>0.10600</td>
<td>0.00961</td>
</tr>
<tr>
<td>96</td>
<td>0.03100</td>
<td>0.04800</td>
<td>0.01100</td>
<td>0.02700</td>
<td>0.01800</td>
<td>0.12700</td>
<td>0.01500</td>
</tr>
<tr>
<td>97</td>
<td>0.01100</td>
<td>0.01300</td>
<td>0.03500</td>
<td>0.00840</td>
<td>0.01800</td>
<td>0.06800</td>
<td>0.01700</td>
</tr>
<tr>
<td>98</td>
<td>0.01600</td>
<td>0.00324</td>
<td>0.02600</td>
<td>0.01200</td>
<td>0.01400</td>
<td>0.02300</td>
<td>0.01400</td>
</tr>
<tr>
<td>99</td>
<td>0.02500</td>
<td>0.01400</td>
<td>0.09300</td>
<td>0.02100</td>
<td>0.01700</td>
<td>0.07700</td>
<td>0.01100</td>
</tr>
<tr>
<td>100</td>
<td>0.01900</td>
<td>0.07000</td>
<td>0.12700</td>
<td>0.03100</td>
<td>0.01200</td>
<td>0.03000</td>
<td>0.00883</td>
</tr>
<tr>
<td>101</td>
<td>0.02200</td>
<td>0.01500</td>
<td>0.14700</td>
<td>0.00730</td>
<td>0.03600</td>
<td>0.06300</td>
<td>0.01900</td>
</tr>
<tr>
<td>102</td>
<td>0.01300</td>
<td>0.00713</td>
<td>0.08900</td>
<td>0.00956</td>
<td>0.09100</td>
<td>0.06200</td>
<td>0.01400</td>
</tr>
<tr>
<td>103</td>
<td>0.00765</td>
<td>0.04100</td>
<td>0.05000</td>
<td>0.01400</td>
<td>0.03000</td>
<td>0.08500</td>
<td>0.01800</td>
</tr>
<tr>
<td>104</td>
<td>0.03800</td>
<td>0.02500</td>
<td>0.08300</td>
<td>0.08400</td>
<td>0.11400</td>
<td>0.02200</td>
<td>0.03000</td>
</tr>
<tr>
<td>105</td>
<td>0.01100</td>
<td>0.03900</td>
<td>0.12400</td>
<td>0.01300</td>
<td>0.01600</td>
<td>0.02300</td>
<td>0.01700</td>
</tr>
<tr>
<td>106</td>
<td>0.00306</td>
<td>0.05300</td>
<td>0.27900</td>
<td>0.08100</td>
<td>0.00435</td>
<td>0.16100</td>
<td>0.01600</td>
</tr>
<tr>
<td>107</td>
<td>0.03800</td>
<td>0.01600</td>
<td>0.04900</td>
<td>0.01900</td>
<td>0.03700</td>
<td>0.07500</td>
<td>0.03700</td>
</tr>
<tr>
<td>108</td>
<td>0.01400</td>
<td>0.02100</td>
<td>0.01800</td>
<td>0.02200</td>
<td>0.02000</td>
<td>0.11700</td>
<td>0.00932</td>
</tr>
<tr>
<td>109</td>
<td>0.01600</td>
<td>0.02100</td>
<td>0.14400</td>
<td>0.02200</td>
<td>0.02500</td>
<td>0.04800</td>
<td>0.00857</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>112</td>
<td>0.02000</td>
<td>0.02000</td>
<td>0.08700</td>
<td>0.01800</td>
<td>0.00966</td>
<td>0.03600</td>
<td>0.02500</td>
</tr>
<tr>
<td>113</td>
<td>0.05100</td>
<td>0.05700</td>
<td>0.13600</td>
<td>0.02800</td>
<td>0.09400</td>
<td>0.19900</td>
<td>0.13400</td>
</tr>
<tr>
<td>114</td>
<td>0.01200</td>
<td>0.02100</td>
<td>0.65400</td>
<td>0.01300</td>
<td>0.03300</td>
<td>0.10400</td>
<td>0.04700</td>
</tr>
<tr>
<td>115</td>
<td>0.11000</td>
<td>0.10000</td>
<td>0.11300</td>
<td>0.01700</td>
<td>0.01700</td>
<td>0.02800</td>
<td>0.27000</td>
</tr>
<tr>
<td>116</td>
<td>0.08200</td>
<td>0.11100</td>
<td>0.08200</td>
<td>0.00947</td>
<td>0.12900</td>
<td>0.03900</td>
<td>0.11300</td>
</tr>
<tr>
<td>117</td>
<td>0.01200</td>
<td>0.02100</td>
<td>0.65400</td>
<td>0.01300</td>
<td>0.03300</td>
<td>0.10400</td>
<td>0.04700</td>
</tr>
<tr>
<td>118</td>
<td>0.05100</td>
<td>0.05700</td>
<td>0.13600</td>
<td>0.02800</td>
<td>0.09400</td>
<td>0.19900</td>
<td>0.13400</td>
</tr>
<tr>
<td>119</td>
<td>0.08200</td>
<td>0.11100</td>
<td>0.08200</td>
<td>0.00947</td>
<td>0.12900</td>
<td>0.03900</td>
<td>0.11300</td>
</tr>
<tr>
<td>120</td>
<td>0.16400</td>
<td>0.22400</td>
<td>0.09100</td>
<td>0.12300</td>
<td>0.15700</td>
<td>0.04700</td>
<td>0.04600</td>
</tr>
<tr>
<td>121</td>
<td>0.01200</td>
<td>0.02100</td>
<td>0.65400</td>
<td>0.01300</td>
<td>0.03300</td>
<td>0.10400</td>
<td>0.04700</td>
</tr>
<tr>
<td>122</td>
<td>0.05600</td>
<td>0.04400</td>
<td>0.09600</td>
<td>0.07200</td>
<td>0.14000</td>
<td>0.25200</td>
<td>0.05800</td>
</tr>
<tr>
<td>123</td>
<td>0.02000</td>
<td>0.02700</td>
<td>0.14600</td>
<td>0.01700</td>
<td>0.01100</td>
<td>0.08400</td>
<td>0.07000</td>
</tr>
<tr>
<td>124</td>
<td>0.01000</td>
<td>0.00126</td>
<td>0.01600</td>
<td>0.00870</td>
<td>0.05500</td>
<td>0.01700</td>
<td>0.00500</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>0.01800</td>
<td>0.01900</td>
<td>0.11000</td>
<td>0.03300</td>
<td>0.05500</td>
<td>0.14400</td>
<td>0.02100</td>
</tr>
<tr>
<td>130</td>
<td>0.03800</td>
<td>0.01700</td>
<td>0.01100</td>
<td>0.05400</td>
<td>0.01400</td>
<td>0.08900</td>
<td>0.06800</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>0.00984</td>
<td>0.00781</td>
<td>0.14200</td>
<td>0.01100</td>
<td>0.03600</td>
<td>0.02200</td>
<td>0.02800</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>0.03600</td>
<td>0.03700</td>
<td>0.02700</td>
<td>0.03600</td>
<td>0.03200</td>
<td>0.02700</td>
<td>0.03500</td>
</tr>
<tr>
<td>141</td>
<td>0.10900</td>
<td>0.02100</td>
<td>0.12300</td>
<td>0.06800</td>
<td>0.21100</td>
<td>0.08200</td>
<td>0.00650</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>142</td>
<td>0.05100</td>
<td>0.02300</td>
<td>0.02000</td>
<td>0.05000</td>
<td>0.31000</td>
<td>0.03000</td>
<td>0.12200</td>
</tr>
<tr>
<td>143</td>
<td>0.09600</td>
<td>0.05600</td>
<td>0.06300</td>
<td>0.06000</td>
<td>0.18400</td>
<td>0.07300</td>
<td>0.13300</td>
</tr>
<tr>
<td>144</td>
<td>0.07700</td>
<td>0.33900</td>
<td>0.11400</td>
<td>0.08600</td>
<td>0.04000</td>
<td>0.43300</td>
<td>0.19200</td>
</tr>
<tr>
<td>145</td>
<td>0.03300</td>
<td>0.11200</td>
<td>0.04700</td>
<td>0.02600</td>
<td>0.11100</td>
<td>0.18400</td>
<td>0.09300</td>
</tr>
<tr>
<td>146</td>
<td>0.02400</td>
<td>0.16100</td>
<td>0.05400</td>
<td>0.01100</td>
<td>0.01400</td>
<td>0.15000</td>
<td>0.01500</td>
</tr>
<tr>
<td>147</td>
<td>0.00172</td>
<td>0.06900</td>
<td>0.01600</td>
<td>0.01500</td>
<td>0.02300</td>
<td>0.17700</td>
<td>0.00284</td>
</tr>
<tr>
<td>148</td>
<td>0.01800</td>
<td>0.02500</td>
<td>0.00238</td>
<td>0.00982</td>
<td>0.02200</td>
<td>0.16100</td>
<td>0.00000</td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>0.02400</td>
<td>0.02500</td>
<td>0.00860</td>
<td>0.02000</td>
<td>0.02200</td>
<td>0.07400</td>
<td>0.01000</td>
</tr>
<tr>
<td>151</td>
<td>0.01300</td>
<td>0.03000</td>
<td>0.01600</td>
<td>0.01200</td>
<td>0.02600</td>
<td>0.12300</td>
<td>0.00000</td>
</tr>
<tr>
<td>152</td>
<td>0.01600</td>
<td>0.01600</td>
<td>0.02000</td>
<td>0.00872</td>
<td>0.01900</td>
<td>0.09300</td>
<td>0.00196</td>
</tr>
<tr>
<td>153</td>
<td>0.00875</td>
<td>0.06500</td>
<td>0.01500</td>
<td>0.02200</td>
<td>0.01400</td>
<td>0.41600</td>
<td>0.00747</td>
</tr>
<tr>
<td>154</td>
<td>0.02600</td>
<td>0.01400</td>
<td>0.01300</td>
<td>0.00311</td>
<td>0.01600</td>
<td>0.36200</td>
<td>0.00115</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>0.01400</td>
<td>0.23000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.01900</td>
<td>0.02100</td>
<td>0.01400</td>
</tr>
<tr>
<td>157</td>
<td>0.02500</td>
<td>0.08900</td>
<td>0.02500</td>
<td>0.00980</td>
<td>0.01400</td>
<td></td>
<td>0.01200</td>
</tr>
<tr>
<td>158</td>
<td>0.02500</td>
<td>0.08300</td>
<td>0.01100</td>
<td>0.02400</td>
<td>0.04600</td>
<td>0.06500</td>
<td>0.01400</td>
</tr>
<tr>
<td>159</td>
<td>0.09300</td>
<td>0.07100</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.13200</td>
<td>0.08300</td>
<td>0.13800</td>
</tr>
<tr>
<td>160</td>
<td>0.03200</td>
<td>0.11300</td>
<td>0.00000</td>
<td>0.00717</td>
<td>0.01500</td>
<td>0.06900</td>
<td>0.04900</td>
</tr>
<tr>
<td>161</td>
<td>0.02000</td>
<td>0.06500</td>
<td>0.01700</td>
<td>0.03700</td>
<td>0.02800</td>
<td>0.08000</td>
<td>0.00307</td>
</tr>
<tr>
<td>162</td>
<td>0.00931</td>
<td>0.07400</td>
<td>0.00587</td>
<td>0.02200</td>
<td>0.03100</td>
<td>0.08200</td>
<td>0.04400</td>
</tr>
<tr>
<td>163</td>
<td>0.01000</td>
<td>0.00930</td>
<td>0.00000</td>
<td>0.02400</td>
<td>0.01000</td>
<td>0.03200</td>
<td>0.06500</td>
</tr>
<tr>
<td>164</td>
<td>0.02000</td>
<td>0.04500</td>
<td>0.03000</td>
<td>0.04000</td>
<td>0.03500</td>
<td>0.11100</td>
<td>0.11800</td>
</tr>
<tr>
<td>165</td>
<td>0.02400</td>
<td>0.09600</td>
<td>0.04400</td>
<td>0.02100</td>
<td>0.03000</td>
<td>0.10900</td>
<td>0.13700</td>
</tr>
<tr>
<td>166</td>
<td>0.02900</td>
<td>0.11000</td>
<td>0.00972</td>
<td>0.03300</td>
<td>0.00992</td>
<td>0.26100</td>
<td>0.07500</td>
</tr>
<tr>
<td>167</td>
<td>0.03400</td>
<td>0.01800</td>
<td>0.01400</td>
<td>0.05100</td>
<td>0.04100</td>
<td>0.02800</td>
<td>0.05100</td>
</tr>
<tr>
<td>168</td>
<td>0.02300</td>
<td>0.00222</td>
<td>0.04100</td>
<td>0.04400</td>
<td>0.07500</td>
<td>0.21200</td>
<td>0.09000</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>0.02900</td>
<td>0.03300</td>
<td>0.04000</td>
<td>0.05300</td>
<td>0.03300</td>
<td>0.04100</td>
<td>0.08900</td>
</tr>
<tr>
<td></td>
<td>172</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td>176</td>
<td>177</td>
<td>178</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>0.01100</td>
<td>0.02400</td>
<td>0.03500</td>
<td>0.05400</td>
<td>0.04900</td>
<td>0.01700</td>
<td>0.01700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>0.00972</td>
<td>0.00824</td>
<td>0.02300</td>
<td>0.01300</td>
<td>0.01500</td>
<td>0.01000</td>
<td>0.00807</td>
</tr>
<tr>
<td>205</td>
<td>0.01300</td>
<td>0.02700</td>
<td>0.03000</td>
<td>0.01100</td>
<td>0.02200</td>
<td>0.08000</td>
<td>0.02000</td>
</tr>
<tr>
<td>206</td>
<td>0.00000</td>
<td>0.02000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00779</td>
<td>0.05500</td>
<td>0.01400</td>
</tr>
<tr>
<td>207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>0.05100</td>
<td>0.04700</td>
<td>0.01000</td>
<td>0.05000</td>
<td>0.00821</td>
<td>0.07500</td>
<td>0.03400</td>
</tr>
<tr>
<td>209</td>
<td>0.01100</td>
<td>0.01600</td>
<td>0.00689</td>
<td>0.01200</td>
<td>0.05500</td>
<td>0.11500</td>
<td>0.08400</td>
</tr>
<tr>
<td>210</td>
<td>0.01600</td>
<td>0.04600</td>
<td>0.01900</td>
<td>0.01900</td>
<td>0.04700</td>
<td>0.03500</td>
<td>0.02400</td>
</tr>
<tr>
<td>211</td>
<td>0.02100</td>
<td>0.01700</td>
<td>0.03000</td>
<td>0.01500</td>
<td>0.02200</td>
<td>0.04200</td>
<td>0.00775</td>
</tr>
<tr>
<td>212</td>
<td>0.00677</td>
<td>0.00652</td>
<td>0.02200</td>
<td>0.01100</td>
<td>0.05000</td>
<td>0.03100</td>
<td>0.05500</td>
</tr>
<tr>
<td>213</td>
<td>0.03000</td>
<td>0.01300</td>
<td>0.05200</td>
<td>0.01100</td>
<td>0.01200</td>
<td>0.03300</td>
<td>0.12300</td>
</tr>
<tr>
<td>214</td>
<td>0.04900</td>
<td>0.01700</td>
<td>0.11600</td>
<td>0.04100</td>
<td>0.03600</td>
<td>0.01800</td>
<td>0.00652</td>
</tr>
<tr>
<td>215</td>
<td>0.01300</td>
<td>0.01600</td>
<td>0.09700</td>
<td>0.01300</td>
<td>0.02100</td>
<td>0.05100</td>
<td>0.01800</td>
</tr>
<tr>
<td>216</td>
<td>0.00443</td>
<td>0.02000</td>
<td>0.05000</td>
<td>0.01400</td>
<td>0.03300</td>
<td>0.06400</td>
<td>0.05500</td>
</tr>
<tr>
<td>217</td>
<td>0.01500</td>
<td>0.01900</td>
<td>0.02900</td>
<td>0.01000</td>
<td>0.03000</td>
<td>0.01500</td>
<td>0.02500</td>
</tr>
<tr>
<td>218</td>
<td>0.03800</td>
<td>0.00506</td>
<td>0.06500</td>
<td>0.00923</td>
<td>0.06500</td>
<td>0.04300</td>
<td>0.02800</td>
</tr>
<tr>
<td>219</td>
<td>0.00783</td>
<td>0.01600</td>
<td>0.02100</td>
<td>0.01300</td>
<td>0.02300</td>
<td>0.00563</td>
<td>0.00707</td>
</tr>
<tr>
<td>220</td>
<td>0.01300</td>
<td>0.01700</td>
<td>0.00323</td>
<td>0.02000</td>
<td>0.01500</td>
<td>0.02200</td>
<td>0.01000</td>
</tr>
<tr>
<td>221</td>
<td>0.01300</td>
<td>0.01400</td>
<td>0.00776</td>
<td>0.00930</td>
<td>0.02100</td>
<td>0.04800</td>
<td>0.01600</td>
</tr>
</tbody>
</table>
Table S6. NMR structure statisticsa for MALTIRC116A

<table>
<thead>
<tr>
<th>Experimental restraintsb</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-proton distance restraints</td>
<td></td>
</tr>
<tr>
<td>\textit{Intra-residue}</td>
<td>362</td>
</tr>
<tr>
<td>\textit{Sequential}</td>
<td>422</td>
</tr>
<tr>
<td>\textit{Medium-range (i–j < 5)}</td>
<td>317</td>
</tr>
<tr>
<td>\textit{Long-range (i–j > 5)}</td>
<td>262</td>
</tr>
<tr>
<td>Dihedral-angle restraints</td>
<td>216</td>
</tr>
<tr>
<td>Total number of restraints per residue</td>
<td>11.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean RMSD of the 20-structure ensemble (Å)c</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone atoms (residues 85–120, 134–179 & 204–220)</td>
<td>0.94 ± 0.17</td>
</tr>
<tr>
<td>All heavy atoms (residues 85–120, 134–179 & 204–220)</td>
<td>1.28 ± 0.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stereochemical qualityd</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residues in most favoured Ramachandran region (%)</td>
<td>78.0</td>
</tr>
<tr>
<td>Ramachandran outliers (%)</td>
<td>0 ± 0</td>
</tr>
</tbody>
</table>

aAll statistics are given as mean ± SD.
bOnly structurally relevant restraints, as defined by CYANA, are included.
cMean RMSD calculated over the entire ensemble of 20 structures.
dAs reported by CYANA [2].

Table S7. RMSD (ppm) comparison between the 1H and 15N chemical shifts of MALTIR nuclei at pH 8.0 and 8.6 compared to 7.5.

<table>
<thead>
<tr>
<th>pH</th>
<th>7.5</th>
<th>8.0</th>
<th>8.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SI Appendix References:

Metabolic regulation of NLRP3

School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland

Correspondence
Mark M. Hughes, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Email: mhughes4@tcd.ie

Funding information
Science Foundation Ireland

Summary
A shift in our understanding of macrophage biology has come about as a result of recent discoveries in the area of metabolic reprogramming of macrophages. The NLRP3 inflammasome drives the activation of caspase-1, leading to the production of IL-1β, IL-18, and a type of cell death termed pyroptosis. The NLRP3 inflammasome has been shown to sense metabolites such as palmitate, uric acid, and cholesterol crystals and is inhibited by ketone bodies produced during metabolic flux. The NLRP3 inflammasome has also been shown to be regulated by mitochondrial reactive oxygen species and components of glycolysis, such as Hexokinase. Here, we review these findings and discuss their importance for inflammation and furthermore discuss potential therapeutic benefits of targeting NLRP3.

KEYWORDS
glycolysis, inflammasome, inflammation, Krebs cycle, metabolism, NLRP3

INTRODUCTION

Inflammation has long been identified as the driving factor of many chronic inflammatory conditions and autoimmunity, including atherosclerosis, type 2 diabetes, ageing, obesity, and rheumatoid arthritis (RA). Macrophages of the innate immune system have been extensively examined in inflammatory phenotypes to elucidate the molecular mechanism of chronic low-grade inflammation. In recent years, metabolism has come to the forefront in macrophage biology, underpinning key inflammatory processes required for pathogen clearance. Macrophages sense and respond to foreign milieu in the extracellular environment through pattern recognition receptors (PRRs), such as the Toll-like receptor (TLR) superfamily. Once activated, TLRs drive assembly of inflammasomes, multimeric molecular signaling platforms. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome is a multi-component assembly of adapter and effector proteins highly expressed in myeloid cells, consisting of NLRP3, adapter protein apoptosis-related speck-like protein (ASC), and caspase-1β (Figure 1).

The discovery of the NLRP3 inflammasome in 2002 by Jürg Tschopp identified the mechanism of IL-1β and IL-18 cleavage. In this seminal study, they identified the components of the inflammasome in a cell free system and further linked NLRP3 to the autoimmune disease Muckle-Wells syndrome. NLRP3 has been known to exert a role in metabolism, as NLRP3-deficient mice are hypersensitive to insulin when given a high-fat diet, and furthermore insulin sensitivity is increased in obese type 2 diabetic patients who undergo calorie restriction and exercise due to decreased levels of NLRP3.

Of importance, a disparity exists between murine and human inflammasome activation. Murine inflammasomes require a 2-step activation, requiring a “priming” signal via NF-κB activation to generate caspase-1, pro-IL-1β, and pro-IL-18 via TLRs. The second driving signal in NLRP3 inflammasome activation is sensing of damage-associated molecular patterns (DAMPs), such as extracellular ATP, the pore-forming ionophore nigericin, and crystalline substances. In contrast, human monocytes circumvent the requirement for DAMP recognition, and drive NLRP3 inflammasome activation through an alternate TLR4-dependant mechanism.

NLRP3 can also promote a form of cell death termed pyroptosis. NLRP3 assembly primes caspase-1 auto-catalytic activation, driving the recently described “non-canonical inflammasome” cleavage of the pore-forming Gasdermin D protein, driving pyroptosis. Owing to the complexity of inflammasome sensing and regulation, NLRP3 can be considered an intracellular safeguard to...
sense and limit altered metabolite production. How NLRP3 regulates homeostasis in healthy individuals however, remains to be fully elucidated.

Recent studies have now identified a role for metabolites in the regulation and activation of the NLRP3 inflammasome. In this review, we will summarize recent findings that identify new components and regulators of the NLRP3 inflammasome. We will highlight the dynamic interface between NLRP3 and immunometabolism, how these novel NLRP3 regulators impact on the cytokine IL-1β, and furthermore how specific targeting of NLRP3 during metabolic reprogramming and chronic inflammatory conditions could provide therapeutic benefits.

2 | REDOX SENSING IN NLRP3 ACTIVATION

The energy demands of our cells are in constant flux, depending on molecular oxygen to supply the Krebs cycle for generation of ATP to maintain homeostasis under normoxic conditions. Macrophage activation rewires the metabolic demands of macrophages, generating reactive oxygen species (ROS) as a microbicidal mechanism to remove invading pathogens. The most abundant ROS producers are the complexes of the electron transport chain, or via the NADPH oxidase enzymes. Utilization of ROS however, does have setbacks. Cysteine residues are highly prone to oxidation and as such, must be regulated to prevent proteasomal degradation during metabolic reprogramming. Indeed, glutathione (GSH) protects the cell from overproduction of ROS and has been attributed to regulate various macrophage functions. In addition to acting as an antioxidant, GSH can post-translationally modify proteins, and we have recently identified a positive role for glutathionylation in TLR signaling adapter MyD88-adapter-like (MAL) activation. Here, we will discuss novel regulators of NLRP3 (Table 1) and potential mechanisms of NLRP3 regulation.

Glutathionylation has been linked to negative regulation of caspases. Both caspase-1 and caspase-3 are negatively regulated by GSH, limiting their proteolytic capabilities. Glutathionylation of NLRP3 has recently been identified in macrophages co-treated with LPS and curcumin, an anti-inflammatory compound. Interestingly, the deglutathionylation of NLRP3 was associated with increased interaction of glutathionylated caspase-1, suggesting the NLRP3 inflammasome assembles in tandem with enzymatically inhibited caspase-1, possibly to prevent activation of the NLRP3 inflammasome. This finding warrants further research, as GSH may itself limit inflammasome activation. Oxidative stress could thereby induce NLRP3 activation, deglutathionylation of caspase-1 to promote IL-1β processing.

Recent evidence has identified a new component of the inflammasome, NEK7, a serine-threonine kinase previously associated with mitosis. Mice deficient in NEK7 could not form competent NLRP3 inflammasomes in vivo. NEK7 bound to the LRR of NLRP3, dependent on generation of mitochondrial ROS. This finding presents NEK7 as a potential ROS-sensing inflammasome stimulus, which may detect increasing ROS levels to trigger inflammasome assembly. It would be interesting to elucidate if ROS generated from mitochondrial-independent sources could also act as a NEK7 trigger, or if NEK7 is exclusively sensing mitochondrial ROS. Concurrently, NEK7 was also identified by He et al. to drive NLRP3 activation, and further attributed NEK7 activation to potassium (K+) efflux, suggesting NEK7 acts as both an ion and ROS sensor. The efflux of cytosolic K+ is a known trigger for NLRP3 inflammasome activation, and furthermore the chloride intracellular channel (CLIC) proteins CLIC1 and CLIC4 have been shown to be activated downstream of K+ efflux and ROS. Mitochondrial ROS has been shown to drive translocation of CLICs to the plasma membrane where they cause chloride efflux. The chloride efflux was then shown to drive NEK7-NLRP3 activation. This study therefore provides a new insight into ROS as a driver of NLRP3. Interestingly, a known activating NLRP3 variant in cryopyrin-associated periodic syndrome (CAPS)-associated macrophages, R258W, also required NEK7 for chronic activation, independent of K+ efflux.
Recently, a new non-canonical activator of NLRP3 has been described, the AIM2 inflammasome itself. Using the intracellular pathogen *Legionella pneumophilia*, Cunha et al.\(^{26}\) identified the AIM2 inflammasome triggered caspase-1 and caspase-11-mediated pore formation, promoting K\(^+\) efflux to trigger NLRP3 activation, adding further complexity to NLRP3 regulation.

Mechanisms to regulate NLRP3 post-transcriptionally have also been described. Tristetraprolin (TTP), an RNA-binding protein, binds to the 3′-untranslated region (UTR) of NLRP3 in human macrophages, repressing NLRP3 expression. Knockdown of TTP increased NLRP3 activation, but not AIM2 or NLR4 activation, and subsequently increased caspase-1 activation and IL-1β cleavage.\(^{27}\) Regulation of NLRP3 by TTP may also be impacted by levels of ROS produced by the metabolic shift in macrophages upon PAMP recognition. TTP contains redox-reactive cysteines which, when oxidized, result in inhibition of TTP RNA-binding capacity.\(^{28}\) Thus, TTP oxidation may act as a feedback mechanism, linking increased ROS levels produced during metabolic reprogramming to rapid NLRP3 transcription.

Ugonin U, a natural flavonoid derived from *Helminthostachys zeylanica* has been shown to drive superoxide generation via the activity of phospholipase C (PLC).\(^{29}\) In human monocytes, Ugonin U stimulated NLRP3 activation by triggering mitochondrial ROS generation. Ugonin U-mediated activation of PLC was found to trigger release of intracellular calcium (Ca\(^{2+}\)), and negative targeting of Ca\(^{2+}\) release inhibited the inflammatory effects of Ugonin U.\(^{30}\) Furthermore, scavenging of mitochondrial ROS by the tool compound MitoTEMPO limited the effects of Ugonin U, firmly placing mitochondrial ROS as a determinant in NLRP3 inflammasome activation.

Lipid metabolism has also been linked to NLRP3. Moon et al. identified a role for the uncoupling protein-2 (UCP2) in NLRP3 activation. UCP2-deficient mice were found to have overall improved survival in sepsis models, concomitant with impaired fatty acid synthesis, and decreased IL-1β and IL-18 levels. UCP2 was identified as a driver of fatty acid synthase (FASN), a key enzyme involved in fatty acid synthesis. UCP2-deficient mice had reduced lipid synthesis, concomitant with decreased NLRP3-mediated caspase-1 activation. Inhibition of FASN by chemical inhibitors also suppressed NLRP3 activation and NLRP3 and IL1β transcription, linking fatty acid synthesis as a key driver of both inflammatory gene transcription and NLRP3 activation.\(^{31}\) In a separate and somewhat contradicting study, Moon et al. also identified the ROS producer NADPH Oxidase 4 (NOX4), an enzyme involved in superoxide anion formation, as an NLRP3 activator through fatty acid oxidation. NOX4-deficient mice had reduced levels of the mitochondrial fatty acid oxidation enzyme carnitine palmityltransferase 1A (CPT1A), resulting in decreased NLRP3 inflammasome activation, with no effect on NLRC4 or AIM2 inflammasomes. Inhibition of fatty acid oxidation by the drug etomoxir also limited NLRP3 activation, identifying another prominent role of an altered oxidative environment.

Table 1: Novel regulators of NLRP3 activation

<table>
<thead>
<tr>
<th>Component</th>
<th>Function in cell</th>
<th>Effect on NLRP3</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutathione</td>
<td>Regulates oxidative stress and post-translational modifications</td>
<td>De glutathionylation of NLRP3 promotes interaction with Caspase-1</td>
<td>20</td>
</tr>
<tr>
<td>NEK7</td>
<td>Serine/threonine kinase involved in mitosis</td>
<td>Binds LRR of NLRP3 dependent on K(^+) efflux and mitochondrial ROS</td>
<td>21, 22</td>
</tr>
<tr>
<td>CLIC1/4</td>
<td>Drive Cl(^-) efflux and maintains intracellular pH</td>
<td>Mitochondrial ROS promotes CLIC translocation, driving Cl(^+) efflux for NEK7-NLRP3 activation</td>
<td>24, 25</td>
</tr>
<tr>
<td>AIM2 inflammasome</td>
<td>Senses bacterial and viral dsDNA</td>
<td>Triggers K(^+) efflux for NLRP3 activation</td>
<td>26</td>
</tr>
<tr>
<td>Tristetraprolin</td>
<td>Binds to AU-rich elements in 3′-UTRs</td>
<td>Represses human NLRP3 translation via binding to the 3′-UTR</td>
<td>27</td>
</tr>
<tr>
<td>Ugonin U</td>
<td>A natural flavonoid from Helminthostachys zeylanica</td>
<td>Drives mitochondrial ROS generation and Ca(^{2+}) release via PLC, activating NLRP3</td>
<td>30</td>
</tr>
<tr>
<td>UCP2</td>
<td>A mitochondrial uncoupler protein promoting mitochondrial proton leak</td>
<td>UCP2 deficiency limits fatty acid synthesis, decreasing NLRP3 transcription and activation</td>
<td>31</td>
</tr>
<tr>
<td>NOX4</td>
<td>Oxygen sensing and superoxide anion generation</td>
<td>NOX4 deficiency reduces CPT1A levels, limiting NLRP3 activation</td>
<td>32</td>
</tr>
<tr>
<td>GB111-NH(_2)</td>
<td>Small molecule agonist of NLRP3</td>
<td>Drives mitochondrial ROS through inhibition of GAPDH and α-enolase triggering NLRP3 activation</td>
<td>34</td>
</tr>
<tr>
<td>mTORC1</td>
<td>Regulates redox sensing and protein synthesis</td>
<td>Inhibition of mTORC1 suppresses NLRP3 activation</td>
<td>35</td>
</tr>
<tr>
<td>N-acetylglucosamine</td>
<td>Glucose-derived peptidoglycan in Gram-positive bacterial cell walls</td>
<td>Promotes hexokinase dissociation from mitochondria-activating NLRP3</td>
<td>39</td>
</tr>
<tr>
<td>β-hydroxybutyrate</td>
<td>Ketone body produced during starvation</td>
<td>Inhibits NLRP3 inflammasome activation via targeting K(^+) efflux</td>
<td>52</td>
</tr>
<tr>
<td>Bile acids</td>
<td>Amphipathic detergents which promote nutrient absorption</td>
<td>Bind the TGR5 receptor, activating PKA via cAMP, promoting NLRP3 phosphorylation and ubiquitination</td>
<td>58</td>
</tr>
<tr>
<td>IL-10</td>
<td>Anti-inflammatory cytokine</td>
<td>IL-10 deficiency promotes NLRP3 activation due to accumulation of damaged mitochondria</td>
<td>78</td>
</tr>
</tbody>
</table>
inducing NLRP3 activation.32 Production of ROS is crucial as a microbicidal mechanism, however the consequences of producing an oxidative environment lie firmly on antioxidant capacity, the lack of which can damage cell machinery, driving inflammation through mechanisms which can activate the NLRP3 inflammasome.

3 | GLYCOLYSIS AND NLRP3

As mentioned above, activation of TLRs will alter metabolism in macrophages causing a shift to aerobic glycolysis. Inhibition of glycolysis by a glucose analog, 2-deoxyglucose, was shown to suppress LPS-induced IL-1\(\beta\) mRNA production in macrophages, with a strong increase in the Krebs cycle intermediate succinate.33 Enzymes involved in metabolism and metabolic intermediates have since been identified to have an impact on NLRP3 activation and ROS production (Table 2). Limiting glucose uptake can trigger glycolytic stress, decreasing the amount of reducing equivalents required for homeostasis. Indeed, a compound termed GB111-NH\(_2\), induces NLRP3 inflammasome formation by inhibiting glycolytic enzymes GAPDH and \(\alpha\)-enolase, impairing NADH production and driving mitochondrial ROS production.34 This provides a curious contradiction. Inhibition of glycolysis with 2-deoxyglucose appears to block induction of IL-1\(\beta\) mRNA, whereas targeting of GAPDH and \(\alpha\)-enolase increases NLRP3 activation and IL-1\(\beta\) secretion. The biological significance of this is not clear but warrants further investigation (Figure 2).

3.1 | mTORC1 and hexokinase

Energy metabolism is under constant surveillance by redox/nutrient sensor mammalian target of rapamycin complex I (mTORC1) to regulate protein synthesis. However, unlike the study with GB111-NH\(_2\), mTORC1-mediated glycolysis was shown to drive NLRP3 inflammasome activation. Inhibiting mTORC1 by torin1, a selective mTOR inhibitor, suppressed NLRP3 activation both in vitro and in vivo.35 Furthermore, deficiency of Raptor, an mTORC1-binding partner, suppressed caspase-1 activation and glycolysis during NLRP3 inflammasome activation, with mTORC2 deficiency having no effect observed on NLRP3 activation. Hexokinase-1, the first enzyme in glycolysis which converts glucose to glucose-6-phosphate, provided a mechanistic link between mTORC1 and NLRP3 activation, as depletion of glucose in the media of respiring macrophages blocked caspase-1 activation during NLRP3 inflammasome activation. Interestingly, Hexokinase-1 knockdown also suppressed NLRP3 activation by extracellular ATP, linking energy sensing and active glycolysis as prerequisites for NLRP3 inflammasome activation.35

TABLE 2	Metabolic components regulate NLRP3		
Metabolic component	**Function in cell**	**Role of NLRP3**	**References**
Glucose	Drives glycolysis	High glucose; NLRP3 transcription; TXNIP-mediated NLRP3 activation via TRPM2-p47 phox interaction	82,83
Hexokinase	Converts glucose to G6P	Acts as PRR for N-acetylglucosamine; NLRP3 activation	39
Aldolase	Converts F1,6-BP to G3P	NLRP3-activated caspase-1 cleavage of aldolase	50
GAPDH	Converts G3P to 1,3BPG	NLRP3-activated caspase-1 cleavage of GAPDH; Cleavage results in sarcopenia	49
PGK1	Converts 1,3BPG to 3PG	Higher levels of PGK1 in NLRP3 conditionally active myeloid cells	84
Enolase	Converts 2-PG to PEP	Inhibited by GB111-NH\(_2\); Impairs NADH production; Drives inflammasome formation	34
Pyruvate kinase	Converts PEP to pyruvate	Modulates EIF2AK2 phosphorylation; EIF2AK2 binds to NLRP3; PKM2 inhibition blocks NLRP3 activity	42
Citrate synthase	Adds acetyl CoA to oxaloacetate	Bacterial citrate synthase drives NLRP3 activation; Excess citrate drives NLRP3 activation	69
Aconitase	Converts citrate to isocitrate	S. typhimurium-depleted aconitase induces NLRP3 activation	69
Isocitrate dehydrogenase	Converts isocitrate to \(\alpha\)-ketoglutarate	S. typhimurium-depleted isocitrate dehydrogenase induces NLRP3 activation	69
Succinate	Converted to fumarate in Krebs cycle	Hypoxia-induced succinate accumulation activates NLRP3 in rheumatoid arthritis	64
Itaconate	SDH inhibition	Dimethyl itaconate blocks NLRP3 inflammasome activation	85
Fumarate	Converted to malate in Krebs cycle	Dimethyl fumarate inhibits NLRP3 activation in colitis	65
NAPDH	Product of pentose phosphate pathway	Reduced expression of NLRP3, ASC, caspase-1, and IL-1\(\beta\)	86
glycolysis by 2-deoxyglucose however, also triggers a decrease in intracellular ATP levels, which is sensed by NLRP3 and triggers inflammasome activation. 2-deoxyglucose dose-dependently decreased intracellular ATP, with concomitant increase in IL-1β secretion. One possible explanation to this ATP and 2-deoxyglucose paradox may be due to imbalanced energy sensing as a trigger for inflammasome activation. Under resting conditions, hexokinase is tethered to the mitochondria via Akt activity. Hexokinase may also play a role in ATP depletion-mediated NLRP3 activation, as Akt activity decreases during ATP starvation, which may promote untethering of hexokinase from the mitochondria, without need for signal 2 to drive NLRP3 activation.

A more recent study has identified hexokinase as an intracellular PRR for N-acetylglucosamine, a glucose-derivative peptido-glycan utilized by Gram-positive bacterial cell walls. Sensing of N-acetylglucosamine by hexokinase was sufficient to induce dissociation of hexokinase from mitochondria, promoting NLRP3 inflammasome activation. 2-deoxyglucose may therefore indirectly promote hexokinase mitochondrial dissociation to drive NLRP3 activation in the absence of intracellular ATP. In contrast to classical NLRP3 activators such as ATP, N-acetylglucosamine was not found to trigger pyroptosis, emphasizing a physiological role for NLRP3 to mount an effective host defense mechanism.

3.2 PKM2

Pyruvate kinase M2 (PKM2), the last enzyme in glycolysis which converts phosphoenolpyruvate to pyruvate, induces Warburg metabolism through binding to the hypoxia-inducible factor 1α (HIF1α) in LPS-treated macrophages, translocating to the nucleus and binding to the IL-1β promoter, driving inflammation. PKM2 can be pharmacologically induced into a tetrameric form, which limits Warburg metabolism and promotes OXPHOS.

A role for PKM2 in NLRP3 activation in macrophages has been described. Knockdown of PKM2 or enzymatic inhibition by shikonin limits IL-1β cleavage in both NLRP3 and AIM2 inflammasomes. Conditional knockout of PKM2 in myeloid cells also blocks NLRP3 activation in vivo. Interestingly, lactate promotes phosphorylation of the transcription factor EIF2AK2, in a PKM2-dependent manner, driving IL-1β maturation possibly through phosphorylated EIF2AK2 interacting with NLRP3 inflammasome.

3.3 NLRP3, impaired glucose tolerance and aging

NLRP3 deficiency in mice was found to limit age-associated inflammation. Chronic caspase-1 activation is also associated with aging in neurodegenerative conditions. Recent evidence has identified NLRP3 as a regulator of age-related neurodegeneration, concomitant with errors in metabolism. NLRP3-deficient mice present with decreased age-associated caspase-1 activation. Impaired glucose tolerance is also linked to errors in metabolism. Aged control mice were found to have impaired glucose tolerance, whereas NLRP3-deficient mice were more glucose tolerant, providing further evidence that NLRP3 activity impacts on metabolic processes. IL-1β is known to orchestrate impaired glucose tolerance in an NLRP3-dependent manner, however IL-1 receptor (IL-1R) deficiency did not increase glucose tolerance, indicating an NLRP3-caspase-1 axis independent of IL-1β activity in impaired glucose tolerance.

A novel small molecule inhibitor of NLRP3, termed MCC950, which displays high potency toward NLRP3 inhibition and can reverse the inflammatory phenotypes associated with Muckle-Wells syndrome and a mouse model of CAPS. MCC950 contains an active sulfonyleurea group which is proposed to inhibit NLRP3. Sulfonyleureas are also used clinically to promote insulin secretion in patients with type 2 diabetes to reverse impaired glucose tolerance, however these treatments are
eventually futile due to progressive death of \(\beta \)-cells in the pancreas from IL-1\(\beta\).\(^4\) Recently, a secretagogue with dual insulin secretory and NLRP3 inhibitory properties has been reported. With similar efficacy to MCC950, 6 sulfonyleurea secretagogues exhibited nanomolar potency in NLRP3 inhibition while also effectively stimulating insulin secretion from a murine pancreatic cell line,\(^4\) holding promise as a therapeutic treatment for diabetic symptoms.

Recent evidence supports NLRP3 activity as detrimental mediator of sarcopenia. While no evidence was found for NLRP3 activity in an inflammatory setting, NLRP3-mediated caspase-1 activation promotes Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) proteolysis, resulting in decreased glycolytic potential as a mechanism of decreased skeletal muscle in aging.\(^4\) Further limiting glucose metabolism in the aging process. Caspase-1 activation has also been linked to cleavage of other glycolytic enzymes in muscle tissue.\(^5\) Targeting age-associated NLRP3 activity may therefore hold therapeutic benefit to limit over-activation of NLRP3 during aging and the alterations in glucose metabolism that occur with aging.

4 | LIPID METABOLISM AND NLRP3 FUNCTION

Fatty acids such as palmitate have been shown to activate NLRP3.\(^5\) This may be one reason why obesity drives inflammation. More recently, the ketone body \(\beta \)-hydroxybutyrate (BHB) has been shown to suppress the activation of the NLRP3 inflammasome when stimulated with urate crystals, lipotoxic lipids, and ATP in macrophages (Figure 3). Ketone bodies are made from free fatty acids during starvation. BHB was shown to specifically target the NLRP3 inflammasome. BHB had no impact on canonical caspase-1 activation from AIM2 and NLRC4 inflammasomes, nor the non-canonical caspase-11 inflammasome.\(^5\) BHB targeted \(K^+ \) efflux, resulting in reduced ASC oligomerization and reduced NLRP3 inflammasome stability. BHB or a ketogenic diet, which would drive BHB levels endogenously, also attenuated NLRP3-mediated caspase-1 activation and pro-IL-1\(\beta\) processing in vivo in mouse models of Muckle-Wells syndrome, urate crystal-induced peritonitis, and familial cold auto-inflammatory syndrome.\(^5\) A ketone diet was also shown to upregulate antioxidant pathways and limit ROS generation thereby limiting NLRP3-mediated inflammation.\(^5\) A potential role for BHB as an anti-depressant in neuronal inflammation has also been recently identified. In rat models of stress-induced neuronal inflammation, BHB attenuated hippocampal IL-1\(\beta\) production and reduced anxiety- and depression-related phenotypes.\(^5\) BHB acting as an anti-inflammatory with causal anti-depressant effects further emphasizes a therapeutic role for potential BHB therapies. Interestingly, a ketogenic diet has been reported to alleviate gout-induced inflammation, (which is driven by uric acid, a product of purine metabolism), without impacting on bacterial clearance during infection. BHB blocked both mouse and human gout in neutrophils and macrophages. BHB plays a dual role by limiting the priming and assembly of NLRP3 in neutrophils, as BHB decreased phosphorylation of NF-\(\kappa\)B, decreasing inflammasome assembly components.\(^5\) Overall, there may be a balance between fatty acids as activators and ketone bodies as inhibitors of NLRP3, with obesity promoting and starvation limiting inflammation via its effects on NLRP3.

Recent data have further emphasized the link between NLRP3 and obesity. NLRP3-deficient mice are resistant to diet-induced metabolic syndrome symptoms and nephropathy, further highlighting a connection between inflammasome activation and lipid metabolism.\(^5\) Cholesterol catabolism results in the production of amphipathic bile acids, which function as detergents to promote intestinal nutrient absorption and homeostasis.\(^5\) A new role for bile acids in the regulation of the NLRP3 inflammasome has been described. Bile acids specifically target NLRP3 and inhibit inflammasome activation through a TGR5-cAMP-PKA axis.\(^5\) TGR5 activation by bile acids triggered NLRP3 ubiquitination via PKA-mediated phosphorylation of Ser291 on NLRP3 (Figure 4). Bile acids also suppressed LPS-induced septic shock in vivo. In tandem with other studies targeting NLRP3 in type
2 diabetes, a high-fat diet model which induces NLRP3-dependent insulin resistance and type 2 diabetes was abolished with bile acid treatment.

Finally, another fatty acid-derived lipid, prostaglandin E\textsubscript{2} (PGE\textsubscript{2}), has been identified to regulate NLRP3-mediated IL-1\beta maturation endogenously. In human macrophages, PGE\textsubscript{2} inhibits NLRP3 activation through the EP4 receptor, increasing intracellular cAMP levels.59 In a more recent study in murine macrophages, PGE\textsubscript{2} has been identified to promote pro-IL-1\beta processing. PGE\textsubscript{2} can signal through the EP2 receptor, and ablation of the EP2 receptor decreases IL-1\beta maturation in an NLRP3-dependent manner.60 Furthermore, in primary human monocytes, PGE\textsubscript{2} was shown to boost processing of pro-IL-1\beta by NLRP3. The role of PGE\textsubscript{2}-mediated PKA activation on NLRP3 activity however, is not fully elucidated. It would be interesting to examine the effects of PGE\textsubscript{2}-mediated PKA activation on potential phosphorylation of NLRP3 as seen with bile acids. Overall, the evidence suggests that PGE\textsubscript{2} will limit NLRP3 and this may be part of its anti-inflammatory tissue protective effects.

5 | MITOCOHTRIAL REPROGRAMMING AND NLRP3

The Krebs cycle has garnered much excitement in the field of immunology in recent years as Krebs cycle intermediates directly impact cytokine production, including the production of pro-IL-1\beta through succinate accumulation,33 targeting of complex I of the mitochondrial electron transport chain to boost IL-10,61 and targeting complex II to prevent succinate oxidation, limiting ROS-induced pro-IL-1\beta.62 (Figure 5). Oxidized mitochondrial DNA itself acts as a second signal to drive NLRP3 inflammasome activation.63 Succinate has been a focus, being shown to stabilize HIF1\alpha to promote NLRP3 activation.64 Such activation of NLRP3 exacerbated tissue damage and promoted inflammation, indicating a possible prominent role of NLRP3 hyper-activation specifically in the context of joint inflammation in RA. Under normoxic conditions, succinate dehydrogenase converts succinate to fumarate, another Krebs cycle intermediate. A role for fumarate in NLRP3 regulation has also been described. Dimethyl fumarate (DMF) limits NLRP3 activation in a model of Dextran sulfate sodium (DSS) colitis. Administration of DMF prevented intestinal shortening, promoting weight gain comparable to control levels. Furthermore, DMF reduced both production and activation of NLRP3.65 Further work is required to examine the role of fumarate in inflammatory signaling. It is intriguing that succinate and fumarate can have profound inflammatory and anti-inflammatory activities, respectively.

Salmonella typhimurium infection is sensed by the NLRC4 inflammasome through recognition of flagellin,66 triggering inflammasome activation via phosphorylation of NLRC4,67 with delayed activation of NLRP3,68 suggesting a mechanism of NLRP3 evasion. Indeed, upon infection S. typhimurium downregulates flagellin expression to avoid NLRC4 entirely. During infection with S. typhimurium, the bacteria’s own Krebs cycle enzymes aconitase, isocitrate lyase, and isocitrate dehydrogenase have been shown to inhibit NLRP3 activation. S. typhimurium deficient in these enzymes induced NLRP3 activation rapidly in macrophages.69 Aconitase-deficient S. typhimurium were unable to drive acute systemic virulence and failed to persist in chronic infection. Each mutant was identified to require a ROS signal to drive NLRP3 activation, as mice overexpressing a mitochondrial-located human catalase, which degrades mitochondrial hydrogen peroxide thereby limiting ROS, failed to induce NLRP3 activation upon S. typhimurium infection. However, mitochondrial ROS is not the only inducible source of ROS. Macrophages infected with the protozoan parasite Leishmania amazonensis also trigger NLRP3 inflammasome activation via ROS induced by the professional ROS generator NADPH oxidase,70 as NADPH oxidase inhibition prolonged L. amazonensis infection, adding further complexity into the source of ROS and disease outcomes.
Conflicting evidence arises when mitochondrial ROS is considered an NLRP3 inflammasome stimulus. Some researchers identify ROS as a regulatory signal, whereas others indicate ROS itself as a weak signal to drive inflammasome activation and instead stems from mitochondrial dysfunction, triggering cardiolipin interaction with NLRP3 due to translocation from the inner to outer mitochondrial membrane, independent of ROS (Figure 5). Proximity of NLRP3 to mitochondria is also considered a determinant in inflammasome activation. The mitochondrial antiviral signaling protein MAVS has been shown to directly interact with NLRP3 and promote its oligomerization, which may facilitate ROS activation by mitochondrial localization. Activation of caspase-1 by both NLRP3 and AIM2 inflammasomes has been identified to promote mitochondrial damage and limit mitophagy through cleavage of Parkin, increasing the levels of intracellular ROS, which may in turn act as a positive feedback mechanism to promote inflammasome activation and pyroptosis.

Mitochondrial-derived ROS can also drive NLRP3-mediated lysosome damage through permeabilization, as NLRP3-deficient mice retain lysosomal integrity. This mechanism is also attributed to the effects of adding exogenous K+ and scavenging of mitochondrial-derived ROS, limiting NLRP3 activation.

Imiquimod, a TLR7 agonist, and a structurally related compound termed CL097 drive K+-independent NLRP3 activation by targeting ROS produced by the quinone oxidoreductase NQO2 and complex I of the electron transport chain. Inhibition of both components triggers ROS and cysteine oxidation. Interestingly, addition of exogenous cell-permeable antioxidants, such as glutathione ethyl ester, blocked imiquimod and CL097-mediated NLRP3 activation. This evidence provides another strong link between mitochondrial ROS and NLRP3 activation. NLRP3 itself however was not suggested to act as the sensor of such ROS. Instead, as mentioned above, NEK7 was proposed to sense ROS, as NEK7-deficient dendritic cells failed to drive IL-1β processing in response to imiquimod or CL097 in an NLRP3-dependent manner.

In parallel to the role of mTORC1 in NLRP3 activation discussed earlier, the anti-inflammatory cytokine IL-10 has been shown to resist metabolic reprogramming of macrophages, specifically limiting glucose uptake by glucose receptor GLUT1 and glycolytic flux to sustain OXPHOS, through induction of an mTOR inhibitor, DDIT4. IL-10 limited the aberrant effects of damaged mitochondria in NLRP3 signaling by promoting mitophagy, as IL-10-deficient mice accumulate damaged mitochondria, driving NLRP3 activation and pro-IL-1β processing. Overall, there is clearly a damaging association between...
NLRP3 chronic activation and mitochondrial dysregulation. Loss of anti-inflammatory signaling further promotes such dysregulation, and may underlie many pathological associations linked with chronic NLRP3 activation.

6 | CONCLUSIONS AND FUTURE PERSPECTIVES

In this review, we have presented recent evidence to support a role for metabolic reprogramming in NLRP3 activation and dysregulation. The discovery of an altered metabolism in activated macrophages and associated metabolic components which can drive inflammation hold much promise in unraveling a bioenergetics-independent role of metabolism in host survival. It is important to consider metabolic rewiring as an evolutionarily advantageous mechanism to provide rapid ATP production and cytokine production to limit pathogenicity, however it is this innate ability to reprogram macrophages that also leads to chronic inflammation. Metabolic syndromes, such as obesity, and chronic low-grade inflammatory stimuli promote aberrant NLRP3 activation and lead to pathologies. Age-associated inflammation may also alter NLRP3 activation, predisposing NLRP3 to endogenous metabolites and nutrients which trigger IL-1β cleavage.

Metabolic regulators, such as β-hydroxybutyrate, act as endogenous regulators of general inflammation. Ketone bodies as a fuel source to limit inflammation have promising therapeutic benefits, however we must consider the risk of ketoacidosis, which can result in long-term damage to organs. Oral ketone esters have successfully increased BHB levels in humans, and could therefore be an effective route to alleviate inflammation in chronic inflammatory conditions such as gout and obesity, where NLRP3 dysregulation triggers chronic inflammation. It will be interesting to see the development of potential new ketone body derivatives which may dampen inflammation without driving ketoacidosis.

Mitochondrial dynamics are essential for regulating many processes aside from ATP production, including apoptosis and nutrient sensing. Mitochondrial dynamics are now attributed to inflammatory disorders coupled to decreased Krebs cycle activity in activated macrophages. Krebs cycle metabolites acting as DAMPs for NLRP3 activation is an exciting prospect as a novel regulator of mitochondrial dysregulation, however such findings require further elucidation as this could also pose unwanted inflammation if dysregulated. We must however bear in mind that NLRP3 can be activated by metabolism-independent mechanisms.

Further unraveling the role of glycolysis, OXPHOS, mitochondrial dynamics and lipid metabolism on inflammasome activation has the potential to lead to novel therapeutics to limit inflammation-related pathologies.

ACKNOWLEDGEMENTS

This work was funded by Science Foundation Ireland (12/IA/1531). The authors declare no financial or commercial conflict of interest.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Mark M. Hughes http://orcid.org/0000-0003-0851-9563
Luke A.J. O'Neill http://orcid.org/0000-0002-4333-2748

REFERENCES

61. Kelly B, Tannahill GM, Murphy MP, et al. Metformin inhibits the
54. Yamanashi T, Iwata M, Kamiya N, et al. Beta- hydroxybutyrate, an en-
57. Chiang JY. Regulation of bile acid synthesis: pathways, nuclear re-
55. Goldberg EL, Asher JL, Molony RD, et al. beta- Hydroxybutyrate de-
62. Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase sup-
67. Matusiak M, Van Opdenbosch N, Vande Walle L, et al. Flagellin-
519x275]. 2013;191:4358-4366. https:/ /doi.org/10.4049/
jimmunol.1301170.
to Caspase-1-dependent mitochondrial damage and block of mito-
or/10.1073/pnas.1414859111.
species induces NLRC3-dependent lysosomal damage and inflam-
or/10.4049/jimmunol.1301490.
RC3 inflammasome activation through EP4 receptor and intracellular cy-
https:/ /doi.org/10.4049/jimmunol.1401343.
of Pro-IL-1beta by lipopolysaccharide requires endogenous prosta-
or/10.4049/jimmunol.1602072.
61. Kelly B, Tannahill GM, Murphy MP, et al. Metformin inhibits the
production of reactive oxygen species from NADH: ubiquinone ox-
idoreductase to limit induction of interleukin-1beta (IL-1beta) and
macrophages.
62. Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase sup-
ports metabolic repurposing of mitochondria to drive inflammatory
cell.2016.08.064.
activates the NLRC3 inflammasome during apoptosis. Immunity,
dynoal fibroblast activation: therapeutical effects of clematich-
or/10.3389/fimmu.2016.00532.
sulfate sodium-induced murine experimental colitis by activating Nrf2
and suppressing NLRC3 inflammasome activation. Biochem Pharmacol.
2016;112:37-49. https:/ /doi.org/10.1016/j.bcp.2016.05.002.
for bacterial flagellin and type III secretion apparatus. Nature,
2011;477:596-600. https:/ /doi.org/10.1038/nature10510.
67. Matusiak M, Van Opdenbosch N, Vande Walle L, et al. Flagellin-
induced NLRC4 phosphorylation primes the inflammasome for ac-
https:/ /doi.org/10.1073/pnas.1417945112.
68. Broz P, Newton K, Lamkanfi M, et al. Redundant roles for in-
or/10.1084/jem.20100257.
69. Wynosky-Dolfi MA, Snyder AG, Philip NH, et al. Oxidative metabo-
70. Lima-Junior DS, Mineo TWP, Calich VLG, et al. Detcin-1 activa-
tion during Leishmania amazonensis phagocytosis prompts Syk-dependent reactive oxygen species production to trigger inflam-
2017;199:2055-2068. https:/ /doi.org/10.4049/jimmunol.1700258.
Glutathione and Glutathione Transferase Omega 1 as Key Posttranslational Regulators in Macrophages

MARK M. HUGHES,1 ANNE F. MCGETTRICK,1 and LUKE A. J. O’NEILL1

1School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland

ABSTRACT
Macrophage activation during phagocytosis or by pattern recognition receptors, such as Toll-like receptor 4, leads to the accumulation of reactive oxygen species (ROS). ROS act as a microbicidal defense mechanism, promoting clearance of infection, allowing for resolution of inflammation. Overproduction of ROS, however, overwhelms our cellular antioxidant defense system, promoting oxidation of protein machinery, leading to macrophage dysregulation and pathophysiology of chronic inflammatory conditions, such as atherosclerosis. Here we will describe the role of the antioxidant tripeptide glutathione (GSH). Until recently, the binding of GSH, termed glutathionylation, was only considered to maintain the integrity of cellular components, limiting the damaging effects of an aberrant oxidative environment. GSH can, however, have positive and negative regulatory effects on protein function in macrophages. GSH regulates protein secretion, driving tumor necrosis factor α release, hypoxia-inducible factor-1α stability, STAT3 phosphorylation, and caspase-1 activation in macrophages. GSH also plays a role in host defense against Listeria monocytogenes, modifying the key virulence protein PrfA in infected macrophages. We will also discuss glutathione transferase omega 1, a deglutathionylating enzyme recently shown to play a role in many aspects of macrophage activity, including metabolism, NF-κB activation, and cell survival pathways. Glutathionylation is emerging as a key regulatory event in macrophage biology that might be susceptible to therapeutic targeting.

INTRODUCTION
The cytoplasm of an activated macrophage is a dangerous place due to the accumulation of reactive oxygen species (ROS), which can perturb cytoplasmic oxidative balance. Macrophage activation through monocyte recruitment in tissues occurs in a highly regulated manner upon detection of microbial pathogen-associated molecular patterns (PAMPs), such as the Gram-negative bacterial cell wall component lipopolysaccharide (LPS), stimulating ROS production. ROS can be generated from many cellular processes, either directly or as a result of incomplete reduction of free radicals (1). One of the main sources of ROS is the NADPH oxidase (NOX), a specialized transmembrane protein complex that generates superoxide (O2•−), which has been implicated in several inflammatory diseases (2). The generation of ROS can also stem from the mitochondrial electron transport chain, due to insufficient reduction of superoxide anions. Another source is the inducible form of nitric oxide synthase 2 (iNOS). iNOS produces nitric oxide from l-arginine and is known to play key roles in macrophage function (3, 4).

While ROS have benefits, acting as endogenous signaling molecules (3), activated macrophages produce high levels of ROS, which can go unregulated under
inflammatory conditions, indiscriminately targeting redox-sensitive protein machinery. Glutathione (γ-glutamyl-l-cysteinyl-glycine; GSH) is the fundamental nonprotein tripeptide redox agent that detoxifies ROS. Composed of the amino acids glutamate, cysteine, and glycine, GSH is utilized within the cell to maintain redox homeostasis (6). Overproduction of ROS can target the thiol group (-SH) of cysteine amino acids on proteins. GSH can prevent oxidation of proteins via formation of mixed disulphides (-SSG) to redox-sensitive cysteine amino acids in proteins (7). Cells contain a variety of redox enzymes, such as glutathione transferases and glutaredoxins, which utilize GSH to detoxify ROS and maintain protein integrity. GSH is predominantly found in the thiol-reduced form, reaching intracellular concentrations of up to 10 mM (8), and the ratio of reduced GSH to oxidized GSH (termed GSSG) can be used as a measure of cellular oxidative imbalance (9). GSH may, however, not be limited to antioxidant defense, with posttranslational modifications placing GSH as both a positive and negative regulator of protein function. Here we will discuss emerging themes in the field of GSH biology, notably the enzymatic addition or removal of GSH to proteins, which modifies their function. Glutathionylation is emerging as a key process in macrophage activation, targeting proteins such as caspase-1, hypoxia-inducible factor-1α (HIF1α), and STAT3. Here we will discuss this process and its regulation during macrophage activation.

GSH AS AN ANTIOXIDANT

GSH is ubiquitously expressed in all cell types and tissues. Aside from cellular detoxification, GSH is also a source of readily accessible cysteine, a rate-limiting amino acid for many cellular processes, including GSH synthesis. The amino acid cysteine is also crucial for maintaining protein tertiary structure via disulfide bond formation (10, 11) and is highly redox sensitive. Due to the presence of a thiol group, cysteine is readily oxidized to cystine, a cysteine dimer, and can subsequently generate ROS. Excessive ROS can promote the formation of thiol intermediates on cysteines, termed sulfenic acid, sulfenic acid, and sulfonic acid in proteins (12). Overoxidation of cysteine residues to sulfonic acid is irreversible and promotes proteasomal degradation. GSH can reverse the formation of sulfenic and sulfonic acid in conjunction with reductase (sulfenic) or sulfiredoxin (sulfenic) enzymes, resulting in regeneration of native protein structure and generation of non-toxic intermediates as a by-product, such as H2O. High levels of GSH may thereby have a dual role in acting as a cysteine storage pool for physiological use as well as oxidative defense.

GSH is synthesized in a two-step enzymatic process requiring ATP investment at each step to generate GSH from the amino acids glutamate, cysteine, and glycine (Fig. 1). Upon exposure to oxidative stress inducers such as O2– or hydrogen peroxide (H2O2), GSH scavenges ROS and forms GSSG, which can be recycled in the cytoplasm back to reduced GSH by glutathione reductase (13). One of the main sources of endogenous ROS is mitochondria. Although the sizes of mitochondria are modest (ranging from 0.5 to 3 μm), they contain a concentrated level of GSH, comprising roughly 10 to 15% of cellular GSH (14), that can buffer ROS production. Mitochondria are metabolic powerhouses that not only promote ATP production through oxidative phosphorylation (OXPHOS), but also have been recently reported to regulate the proinflammatory status of macrophages when challenged with Toll-like receptor (TLR) agonists, such as LPS, via the tricarboxylic acid cycle component succinate (15, 16). Due to the critical nature of OXPHOS, the pathway is tightly regulated, and GSH has been shown to play a role in OXPHOS regulation. Complex V, otherwise known as ATP synthase, and succinyl-coenzyme A transferase are both negatively regulated by glutathionylation (17). The main purpose of OXPHOS is to produce ATP via cofactors such as NADH, which donate their energy-rich electrons into the complex assembly chain. This process, however, is not perfect, with some electrons donated directly to O2, resulting in superoxide anion generation that can lead to pathophysiological conditions if unregulated (18). GSH conjugates to these superoxide anions to help protect mitochondrial integrity. It is likely that GSH controls ROS generated by succinate, which drives ROS production by complex I in LPS-activated macrophages (16). Utilization of molecular oxygen to generate ATP can also produce free radicals, leading to lipid peroxidation and generation of a harmful by-product, 4-hydroxynonenal (4-HNE) (19). GSH can therefore prevent formation 4-HNE by preventing ROS accumulation (Fig. 2). While lipid peroxidation is not uncommon, GSH in this context is crucial for redox homeostasis, as high levels of 4-HNE (up to 20 μM) have been shown to inhibit NF-κB signaling (20) and promote caspase-3 activation via Akt inhibition to promote apoptosis (21). Damaged mitochondria are known to undergo autophagy (22), or deliberate breakdown of cellular components and organelles to generate basic components for new synthesis pathway intermediates.
Recent evidence has identified that the immunosuppressive mycotoxin patulin induces depletion of GSH, inhibiting TLRs in macrophages and enhancing mitophagy in a p62-dependent manner (23), further emphasizing the critical role of GSH in maintaining mitochondrial integrity.

GSH REGULATES PROTEIN ACTIVITY IN MACROPHAGES

Within the past decade, studies have revealed a role for GSH in posttranslational modification of proteins. This reversible modification regulates some of the best-characterized enzymes and pathways. The ability of GSH to bind to a cysteine residue can be influenced by the neighboring amino acids (24). Positively charged amino acids, such as histidine, lysine, and arginine, can directly influence the probability of GSH binding. Cysteines are more susceptible to oxidation by ROS due to positively charged amino acids lowering their thiol pKa, which deprotonates cysteines, promoting glutathionylation (25). A recent study has used a Web-based software program called GSHSite to rank potentially glutathionylated proteins in mouse macrophages based on conserved cysteine amino acids, positively charged flanking amino acids, and the ability of GSH to access cysteines in folded proteins (26). Using this approach, two known glutathionylated proteins, thioredoxin (TRX) and protein tyrosine phosphatase 1b, were correctly identified as glutathionylated proteins. Proteomic approaches to quantify cellular glutathionylation can also be employed using mass spectrometry.
(MS) (27). Su et al. were able to quantify 690 mouse macrophage proteins that were susceptible to glutathionylation when Raw 264.7 cells were pretreated with the oxidant diamide, and 290 proteins that were glutathionylated in response to hydrogen peroxide treatment. Similarly, Ullevig et al. identified >130 glutathionylated proteins in THP-1 monocytic cells treated with hydrogen peroxide to induce metabolic stress (28). While MS can identify glutathionylated proteins, methodologies differ in sample preparation, which may account for the differences in reported glutathionylation targets. As a result, glutathionylation can also be confirmed by Western blotting conditions, using nonreducing SDS-PAGE and an anti-GSH antibody. These studies have highlighted a number of proteins in macrophages as potential GSH targets, which may alter their function; however, GSH concentration can also impact macrophage function.

Research by Yang et al. has discovered that GSH regulates CD36 activity (29). CD36 is critical for oxidized low-density lipoprotein (oxLDL) clearance, a process that can go awry in atherosclerosis and promote foam cell generation. Macrophages treated with buthionine sulfoximine (BSO), a compound that inhibits GSH synthesis, resulting in decreased intracellular GSH levels, had increased ROS production and CD36 levels. This increased oxLDL uptake, driving foam cell generation. Importantly, the addition of antioxidants such as N-acetylcysteine and antioxidant enzymes catalase or superoxide dismutase 1 (SOD1) to peritoneal macrophages inhibited the effects of BSO on CD36 protein levels, preventing oxLDL uptake. GSH therefore displays antiatherogenic properties and regulates the levels of CD36 within macrophages to limit oxLDL uptake.

In related research, Vasamsetti et al. found that monocyte-to-macrophage differentiation in atherosclerotic plaque formation was dependent on GSH levels (30). Treatment of monocytes with the antioxidant resveratrol dose-dependently inhibited phorbol myristate acetate (PMA)-induced monocyte-to-macrophage differentiation. BSO-mediated GSH depletion was found to induce monocyte differentiation and promote inflammation, while resveratrol and BSO cotreatment prevented monocyte-to-macrophage transition, restoring GSH levels. Maintaining high GSH levels within monocytes is therefore protective in preventing monocyte differentiation in atherosclerotic plaques and maintaining

![Cellular roles of GSH. Oxidative stress can be induced by many exogenous factors, including LPS, or endogenously by the mitochondrial electron transport chain. ROS can build up within the cell, in the form of O$_2^-$ and H$_2$O$_2$, which damages organelles and results in 4-HNE production. 4-HNE can promote lipid peroxidation and caspase-3 activation. The redox enzyme GSTA4-4 can target 4-HNE, utilizing GSH to prevent lipid peroxidation and maintain homeostasis. O$_2^-$ and H$_2$O$_2$ can be reduced via redox enzymes SOD1 and glutathione peroxidase 4 (GPx4), respectively. Both enzymes utilize GSH to remove ROS, forming glutathione disulfide (GSSG). GSSG can then be reduced to GSH by glutathione reductase (GR).](image-url)
lower CD36 levels, thereby preventing foam cell generation. Examination of the redox status of the cell has yielded a number of proteins in macrophages that are regulated by glutathionylation, which will now be discussed.

GLUTATHIONYLATED PRDX2 IS SECRETED FROM MACROPHAGES AND DRIVES TNF-α RELEASE

Using a redox proteomics MS approach, LPS-treated macrophages were found to secrete glutathionylated proteins from the cytoplasm. LPS treatment promoted oxidation of proteins due to increased ROS production, which were subsequently glutathionylated (31). Of particular note, the enzyme peroxiredoxin-2 (PRDX2), involved in hydrogen peroxide regulation, was secreted in the glutathionylated form and was identified to act as an inflammatory mediator, promoting tumor necrosis factor α (TNF-α) release. LPS did not induce PRDX2 expression; rather, it promoted oxidation of PRDX2 from the mainly reduced cytosolic form, promoting glutathionylation of PRDX2, which could drive TNF-α. Similarly, recombinant PRDX2 was found to drive TNF-α production. The identification of a redox enzyme with cytokine-like properties has resulted in the coining of the term “redoxkine.” Furthermore, the redox enzyme TRX1, a substrate for PRDX2, was also found to be glutathionylated and secreted. PRDX2 uses reduced TRX1 as an electron donor for hydrogen peroxide reduction. TRX1 is an oxidoreductase enzyme and can target proteins due to its thiol-disulfide exchange properties and has been found to have immunomodulatory effects. Indeed, TRX1 has been shown to regulate lymphocyte response to HIV-1 entry into lymphocytes by controlling CD4 membrane localization (32). Many cytokine receptors can be activated by disulfide bond-mediated dimerization, including the interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor receptors (33). The enzymatic activity of both PRDX2 and TRX1 could therefore initiate the dimerization of cytokine receptors and promote inflammation. The glutathionylation and secretion of PRDX2 and TRX1 by activated macrophages thereby identifies a new danger signal whereby redoxkines could alter extracellular receptor complexes, further driving inflammatory responses.

GSH NEGATIVELY REGULATES CASPASE-1 ACTIVATION

The cytokine IL-1β is a central proinflammatory cytokine (34), whose overproduction can give rise to a range of diseases, including autoinflammatory diseases such as Muckle-Wells syndrome, as well as common diseases such as gout. Upon exposure to PAMPs, such as LPS, IL-1β transcription is induced by the transcription factor NF-κB to produce pro-IL-1β, also known as “signal 1.” Pro-IL-1β must be cleaved to elicit an inflammatory phenotype. PAMP or danger-associated molecular pattern recognition stimulates the formation of a multicomponent complex termed the “inflammasome,” which processes pro-IL-1β and pro-IL-18 into bioactive IL-1β and IL-18 via proteolytic cleavage by caspase-1, termed “signal 2” (35, 36). Several inflammasomes have been identified. Nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs) are critical components. A feature common to NLRs is a central nucleotide-binding (NACHT) domain and C-terminal leucine-rich repeat (LRR) domain. The NLRs can further contain an N-terminal pyrin domain (PYD) and a caspase recruitment domain (CARD). NLR family members, such as NLRP3, form inflammasomes with apoptosis-associated speck-like protein containing a CARD (ASC) and procaspase-1 (37). The NLRP3 inflammasome is the most-studied inflammasome and has been shown to be activated by mitochondrial ROS (38, 39). GSH has been shown to play a regulatory role in this process. Upstream of caspase-1, GSH has been found to limit inflammasome activation. In a model of dextran sulfate sodium-induced murine colitis, which mimics inflammatory bowel disease, pretreatment of mice with dimethyl fumarate (DMF) dose-dependently reduced inflammatory bowel disease progression and weight loss. The mechanism of DMF protection was attributed to increased GSH levels and activity of the antioxidant enzyme NRF2, which transcribes a host of antioxidant genes, subsequently dampening mitochondrial ROS levels. NRF2 has also been shown to up-regulate GCLc, the catalytic subunit of the rate-limiting enzyme in GSH synthesis, further driving GSH levels (40). DMF was found to decrease activation of the NLRP3 inflammasome, subsequently limiting caspase-1 activity (41). Aside from ROS disruption, research by Meissner et al. has reported that glutathionylation of caspase-1 on cysteine 362 and 397 directly inhibits its activity (Fig. 3). They have shown that SOD1, an enzyme that converts O$_2^-$ into O$_2$ and H$_2$O$_2$, regulates the activity of caspase-1 and subsequent endotoxic shock response, with no effect on mitogen-activated protein kinase or NF-κB signaling (42). SOD1-deficient macrophages had higher levels of O$_2^-$, affecting the cellular redox environment, causing oxidation and glutathionylation of caspase-1 on Cys362 and Cys397. Overexpres-
sion of caspase-1-containing cysteine-to-serine mutants (C362S, C397S) yielded a higher production of IL-1β compared to wild-type caspase-1, due to GSH being unable to glutathionylate and inhibit caspase-1. When caspase-1-containing C362S or C397S was transfected into caspase-1-deficient macrophages, both mutants were overactive under normoxic or oxygen-rich conditions promoting IL-1β production. Conversely, when subjected to hypoxia, neither mutant of caspase-1 could increase IL-1β processing, indicating that Cys362 and Cys397 are redox sensitive and potential glutathionylation targets when oxidized to limit caspase-1 activation. Finally, SOD1-deficient mice were shown to be more resistant to LPS-induced sepsis when compared to both caspase-1-deficient and wild-type mice. Serum cytokine analyses identified that SOD1-deficient mice had decreased IL-1β and IL-18 compared to wild-type mice. The ratio of GSH/GSSG is commonly used as a measure of oxidative imbalance (43). SOD1-deficient mice challenged with 3-h *Escherichia coli* infection and 30-min ATP, which drives inflammasome activation, were found to have >10-fold-higher GSSG levels compared to wild-type mice. SOD1-deficient mice, therefore, have a higher oxidative burden, which would result in oxidation and glutathionylation of caspase-1. GSH is therefore a negative regulator of caspase-1 activity both in vitro and in vivo. This presents something of a paradox. ROS are a positive signal for NLRP3 and yet inhibit caspase-1 by glutathionylation. It is possible that this is a matter of timing, whereby ROS will initially activate NLRP3 but then later limit caspase-1 by glutathionylation. This implicates GSH in the regulation of inflammation by ROS.

GSH STABILIZES HIF1α PROTEIN

Watanabe et al. have found that the transcription factor HIF1α is redox regulated by GSH in a mouse model of ischemia (44). GSH was shown to promote stability of HIF1α protein. Furthermore, the cell-permeable oxidizing agent oxidized GSH (GSSG-ethyl ester) was shown to increase HIF1α levels. Deletion of the glutathionylating enzyme glutaredoxin-1 (Glrx) improved ischemic revascularization. *In vivo* analyses of Glrx deletion discovered that blood flow recovery after ischemic hind limb revascularization was significantly improved, concomitant with increased levels of vascular endothelial growth factor A (VEGF-A) and HIF1α. The deletion of Glrx is thereby highly advantageous during ischemic tissue recovery, as its absence will promote GSH binding, subsequently stabilizing HIF1α and thereby increasing angiogenesis and revascularization. To further implicate GSH as a modulator of HIF1α, MS identified that cysteine 520 (or cysteine 533 in mice) was bound to a GSH adduct on HIF1α. Functional mutation of cysteine 520 to serine (C520S) yielded decreased HIF1α

![Figure 3](image-url)
stability (Fig. 4). These data clearly identify GSH as a positive regulator of HIF1α activity that may play a vital role in angiogenesis in response to ischemic tissue damage. Since HIF1α is also required for a number of macrophage responses (45, 46), GSH may positively regulate the expression of these genes via stabilization of HIF1α.

GSH IMPAIRS STAT3 PHOSPHORYLATION

Since its discovery as a potential oncogene, STAT3 has been the subject of intense research. STAT3 is activated by multiple macrophage-activating cytokines, including IL-6. Glutathionylation was shown to negatively regulate STAT3. Initial studies by Xie et al. identified that STAT3 could be glutathionylated when treated with diamide, which induces oxidative stress (47). Such treatment was found to decrease IL-6-dependent STAT3 signaling, along with decreased tyrosine phosphorylation and nuclear accumulation (Fig. 5). Further research by Butturini et al. identified the redox-sensitive cysteine residues in STAT3, cysteines 328 and 542, which directly impair phosphorylation when glutathionylated (48). Cotreatment with diamide and reduced GSH was found to induce glutathionylation of STAT3. Furthermore, STAT3 phosphorylation by JAK2 was abrogated with diamide and GSH treatment, indicating that GSH inhibits phosphorylation of STAT3. Functional mutagenesis of the key cysteine amino acids to serine (C328S, C542S) prevented STAT3 from being glutathionylated when pretreated with diamide. Further work is required to verify the downstream consequences of this negative regulatory event on STAT3, considering it plays a vital role in many essential pathways, from autophagy to oncogenesis.

GSH PROMOTES VIRULENCE GENE EXPRESSION DURING MACROPHAGE INFECTION WITH **LISTERIA MONOCYTOGENES**

GSH has been found to aid the activation of the master transcription factor of *Listeria monocytogenes*, PrfA, via allosteric regulation. *L. monocytogenes* is a Gram-positive intracellular pathogen that infects macrophages, and the success of its survival is entirely dependent on PrfA activation, as PrfA-deficient strains are avirulent (49). *L. monocytogenes* is one of the few Gram-positive strains of bacteria to produce GSH, as most other strains utilize other low-molecular-weight thiols, such as bacillithiol and mycothiol (50, 51). Reniere et al. have shown that the bifunctional *L. monocytogenes* glutathione synthase (gshF), a multidomain protein capable of synthesizing GSH without GCL, is critical for the survival of *L. monocytogenes* in macrophages (52). GSH was shown to react with PrfA. Mutation of key cysteines in PrfA (C38A, C144A, C205A, and C229A) decreased its ability to induce ActA, which is responsible for actin-based motility, limiting pathogenicity. GSH allosterically regulates PrfA, acting as a cofactor, as gshF-deficient strains are avirulent. In this instance, GSH acts as a cofactor to upregulate virulence genes in *L. monocytogenes* during macrophage infection (Fig. 6).

CONTROLLING GLUTATHIONYLATION IN MACROPHAGES: GSTO1-1

Our understanding of how glutathionylation is controlled in macrophages has also improved recently. A particular focus has been the enzyme glutathione
Glutathione transferase omega 1 (GSTO1-1). Glutathione transferases (previously termed glutathione S-transferases; GSTs) have come to the forefront in recent years as phase II detoxification enzymes that play a critical role in the regulation of cellular responses. Seven classes of GSTs have been identified, each class containing up to several isoforms that are involved in GSH conjugation reactions (53). As a broad family of GSH-conjugating enzymes, GST diversity can be viewed as evolutionarily advantageous. GSTO1-1 stands out from this family due to an atypical cysteine amino acid active site, which allows GSTO1-1 to carry out different enzymatic reactions, including thioltransferase activity. GSTO1-1 appears to play a part in multiple processes in macrophages, including antioxidant defense, enhanced glycolysis, xenobiotic detoxification, ROS production, and GSH cycling and cell survival crosstalk, which will be discussed later. Staining for GSTO1-1 by immunohistochemistry has revealed that the expression of GSTO1-1 is widespread in different tissues, but notably in macrophages (54). GSTO1-1 was detected in macrophages in the skin and lung but not in endothelial cells, lymphocytes, or smooth muscle cells in these tissues.

In response to LPS and interferon gamma (IFN-γ), macrophages can differentiate into a proinflammatory, M1 or M(LPS IFN-γ) macrophage, or alternatively they can be activated by the cytokine IL-4 into a resolving anti-inflammatory macrophage, termed M2 or M(IL-4) (55). The need to clarify specific subsets of genes upregulated by these stimuli can thereby aid as potential biomarkers for macrophage populations in disease states. A recent screen comparing undifferentiated human and mouse macrophages with IL-4-differentiated macrophages both ex vivo and in vitro revealed novel IL-4-controlled gene subsets. The authors identified transglutaminase 2 as a novel M2 marker that is consistently induced in both human and mouse macrophages with IL-4 treatment (56). Interestingly, the authors found that GSTO1-1 was also consistently detected within their analyses as a signature gene in both human and mouse IL-4-treated macrophages. GSTO1-1 could therefore become a potential biomarker for M2 macrophage populations. This represents somewhat of a paradox, as GSTO1-1 has been found to play roles in response to proinflammatory stimuli. GSTO1-1 has, however, been reported to play a role in the glutathionylation cycle (57), and endogenous IL-4 has been shown to drive GSH synthesis in a mouse model of liver injury through glutamate cysteine ligase enzymatic activity (58). In this manner, IL-4 signaling may increase

![Diagram of Glutathionylation of STAT3](image)
GSTO1-1 levels; however, further examination into the role of GSTO1-1 in IL-4 signaling is required.

GSTO1-1 AND NF-κB TRANSLOCATION

NF-κB, one of the most widely characterized transcription factors that upregulates a plethora of inflammatory genes, has been shown to require GSTO1-1 for nuclear translocation in macrophages. NF-κB has previously been reported as a redox-sensitive protein. Oxidation of Cys38 in the p65 subunit of NF-κB and Cys62 in the p50 subunit will prevent DNA binding (59). Menon et al., examining the effect of GSTO1-1 deficiency via knockdown approaches in macrophages, discovered that the absence of GSTO1-1 prevented nuclear translocation of NF-κB upon LPS stimulation (60). This indicates that NF-κB may require GSTO1-1 for dissociation from IkBα, possibly by deglutathionylation. This would place GSTO1-1 as a potential downstream effector of TLR4 signaling. Components of the TLR4 signaling pathway are possibly deglutathionylated by GSTO1-1, allowing them to become active, which would promote NF-κB activation.

GSTO1-1 AS AN AUTOPHAGY GATEKEEPER

GSTO1-1 has recently been reported to play a key role in cell survival following treatment of macrophages with aflatoxin B1 (AFB1), a mycotoxin considered to be the most potent carcinogen found in contaminated food, with powerful immunosuppressive effects (61). GSTO1-1 has previously been linked to apoptosis regulation, preventing apoptosis via the activity of Jun N-terminal protein kinase 1 (JNK1) (62). Interestingly, Paul et al. have identified a cytoprotective role for GSTO1-1 in AFB1-treated macrophages. A 6-h treatment of AFB1 was reported to induce an elevation in ROS levels from mitochondria, resulting in loss of mitochondrial membrane potential and subsequent JNK-mediated caspase-dependent cell death (63). GSTO1-1 was identified as the causative link between autophagy and apoptosis, as small interfering RNA-mediated knockdown of...
GSTO1-1 mimicked 6-h AFB1 treatment results, promoting apoptosis. Taken together, these data indicate that GSTO1-1 plays a role in cell survival via autophagy induction by agents such as AFB1. Increased ROS and NF-κB activity was found to promote mitochondrial fission in hepatocellular carcinoma, enhancing autophagy and preventing apoptosis (64). GSTO1-1-mediated NF-κB translocation may thereby promote autophagy and could therefore be exploited by cancer cells. Further studies will be required to verify the role of GSTO1-1 in autophagy induction and if other xenobiotics could induce similar autophagy-related cell responses.

GSTO1-1 AND METABOLIC REPROGRAMMING IN MACROPHAGES

GSTO1-1 has been implicated in multiple responses induced by LPS in macrophages, notably induction of the ROS generator NOX1, enhanced mitochondrial ROS production by succinate, and enhanced glycolysis. The knockdown of GSTO1-1 in macrophages decreased expression of NOX1 after LPS stimulation. NOX1 is one of the main producers of ROS, along with mitochondria, and similar results were obtained utilizing the GSTO1-1 inhibitor ML175. The authors suggested that GSTO1-1 acts upstream of NOX1 on the TLR4 pathway (65), and further studies published by the same authors identified a critical role for GSTO1-1 in the modulation of macrophage metabolism via LPS. Indeed, LPS activation will skew the phenotype of macrophages toward a proglycolytic environment (66); however, this switch is significantly attenuated in GSTO1-1-deficient cells. In addition to the effect on NOX1, GSTO1-1-deficient cells did not increase mitochondrial ROS generation with LPS treatment, compared to a significant ROS enhancement in control cells, implicating GSTO1-1 in mitochondrial ROS production. Succinate accumulates in LPS-treated macrophages, which stabilizes HIF1α to promote IL-1β levels (15). The buildup of succinate and citrate was abolished in GSTO1-1-deficient cells, concomitant with decreased HIF1α production (67). These data clearly place GSTO1-1 as a key modulator of LPS responsiveness within macrophages. It is possible that GSTO1-1 regulates a key component of TLR4 signaling, which might impact de glutathionylation of adaptor proteins. This identifies GSTO1-1 as a key regulator of LPS responsiveness in macrophage activation (Fig. 7).

CONCLUDING REMARKS

Glutathionylation of proteins is emerging as a key posttranslational regulator in macrophages, with target proteins including HIF1α, STAT3, and caspase-1. A unifying aspect here is ROS, which promote glutathionylation, with HIF1α being stabilized and STAT3 and caspase-1 being inhibited. Additional proteins are likely to be identified in the so-called glutathionylome, with further complexities being revealed as to how ROS affect macrophage function. The GSH flux has also been found to affect monocyte-to-macrophage differentiation.
tion, being detrimental in atherosclerosis. GSTO1-1 has emerged as a potential regulator of these events, being highly expressed in macrophages and acting on LPS signaling. Several studies have linked GSTO1-1 to neurological disorders such as Alzheimer’s disease and Parkinson’s disease (68, 69). Further work on glutathionylation and GSTO1-1 in macrophages may lead to a greater understanding of these and possibly other inflammatory diseases.

ACKNOWLEDGMENTS
This work was funded by Science Foundation Ireland. The authors declare no financial or commercial conflict of interest.

REFERENCES

Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood1–3. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Iaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.

Macrophages have a key role in innate immunity. They respond rapidly to pathogens and subsequently promote an anti-inflammatory phenotype to limit damage and promote tissue repair. The factors driving these changes are incompletely understood. Iaconate, a metabolite synthesized by the enzyme encoded by Irg14, is increased in lipopolysaccharide (LPS)-activated macrophages and has been suggested to limit inflammation by inhibiting succinate dehydrogenase (SDH), a crucial pro-inflammatory regulator; however, the details remain unclear.

Iaconate was the most abundant metabolite in LPS-treated human macrophages (Fig. 1a) and reached 5 mM in mouse bone marrow-derived macrophages (BMDMs) after LPS stimulation (Fig. 1b, c). Iaconate can disrupt SDH activity, but is less potent than the classic SDH inhibitor malonate (Extended Data Fig. 1), suggesting that it may exert its anti-inflammatory effects via additional mechanisms.

Iaconate contains an electrophilic α,β-unsaturated carboxylic acid that could potentially alkylate protein cysteine residues by a Michael addition to form a 2,3-dicarboxypropyl adduct. An attractive candidate that could potentially alkylate protein cysteine residues by a Michael addition to form a 2,3-dicarboxypropyl adduct is dimethylfumarate (DMF), which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We therefore examined KEAP1 and Nrf2 as targets of itaconate.

The cell-permeable itaconate derivative dimethyl itaconate (DMI)3 boosted levels of Nrf2 protein, expression of downstream target genes, including Hmox1, and glutathione (GSH) (Extended Data Fig. 2a–d). However, the lack of a negative charge on the conjugated ester group in DMI increases its reactivity towards Michael addition, making it a far superior Nrf2 activator than itaconate akin to the potent Nrf2 activator dimethylfumarate (DMF)4. DMI is rapidly degraded within cells without releasing itaconate, hence is unlikely to mimic endogenous itaconate. Even so, these data indicate that Nrf2 activation is anti-inflammatory4 (Extended Data Fig. 2e, f).

To overcome the limitations of DMI, we synthesized 4-octyl itaconate (OI), a cell-permeable itaconate derivative (Extended Data Fig. 3a). Iaconate and OI had similar thiol reactivity that was far lower than that of DMI (Extended Data Fig. 3b, c, f), making it a suitable cell-permeable itaconate surrogate. Furthermore, OI was hydrolysed to itaconate by esterases in mouse myoblast C2C12 cells (Extended Data Fig. 3d) and LPS-activated mouse macrophages (Extended Data Fig. 3e). OI boosted Nrf2 levels (Fig. 1e, compare lane 5 to lane 1) and enhanced LPS-induced Nrf2 stabilization (Fig. 1e, compare lane 6 to lane 2), and increased the expression of downstream target genes8, including the anti-inflammatory protein HMOX110 (Fig. 1f, g). We used a quantitative NAD(P)H:quinone oxidoreductase-1 (NQO1) inducer bioassay11,12, to assess the potency of Nrf2 activation by the CD value (concentration required to double the specific enzyme activity) for NQO1, the prototypical Nrf2 target gene. OI (CD value of 2 μM), was more potent than the clinically used Nrf2 activator DMF (CD value of 6.5 μM) (Fig. 1h, Extended Data Fig. 3f). OI stimulated synthesis of the key anti-oxidant GSH (Extended Data Fig. 3g–i). OI also boosted canonical activation of Nrf2 by the pro-oxidant hydrogen peroxide (H2O2) (Extended Data Fig. 3j, k). Importantly, the related octyl esters 4-octyl 2-methylsuccinate and octyl succinate, which are not Michael acceptors, had no effect on Nrf2 activity, confirming the requirement for a negative charge on the conjugated ester group to mimic the endogenous itaconate.

*These authors contributed equally to this work.
§These authors jointly supervised this work.
for the itaconate moiety (Extended Data Fig. 3l). Dimethyl malonate, a potent SDH inhibitor, did not activate Nrf2 (Extended Data Fig. 3m), confirming that Nrf2 activation by OI is independent of SDH inhibition.

Itaconate is generated by IRG1 in the mitochondrial matrix and must cross the mitochondrial inner membrane to act on Nrf2 in the cytosol. Itaconate is structurally similar to malate, which is transported across the mitochondrial inner membrane by the dicarboxylate carrier. All three carriers transported itaconate, whereas other tested carriers could not (Fig. 2a and Extended Data Fig. 4), suggesting that LPS-induced itaconate is generated in the mitochondrial matrix and is then exported to the cytosol to activate Nrf2.

Figure 1 | Itaconate activates Nrf2.
a–c, Metabolite levels and itaconate abundance in control (ctrl) versus LPS-induced (a, n = 12, 4 h; b, n = 5, 24 h) human (a) and mouse (b, c) macrophages. Red and blue dots represent metabolites significantly up- and downregulated by LPS, respectively. FDR, false discovery rate.
d, Reactivity of itaconate with KEAP1 thiol group. e, g, LPS-induced Nrf2 (e, 24 h and HMOX1 (g, 6 h) after treatment with OI as indicated. f, Nrf2 target gene expression in mouse macrophages with or without LPS (6 h) and OI (Nqo1, Gclm, Hmox1, n = 12; Gsr, Pgd, Taldo1, n = 6). h, NQO1 activity in mouse Hepa1 c1c7 cells treated as indicated (48 h, n = 8). Data are mean ± s.e.m. P values calculated using one-way or two-way analysis of variance (ANOVA) for multiple comparisons or two-tailed Student’s t-test for paired comparisons. Blots are representative of three independent experiments. In the box plots, line shows mean. For gel source data, see Supplementary Fig. 1.

Figure 2 | Itaconate alkylates cysteines.
a, Itaconate transport by the indicated carriers (n = 4). HsAAAC1, Homo sapiens ADP/ATP carrier; HsCTP, H. sapiens citrate carrier; HsODC, H. sapiens oxocarboxylate carrier; HsOGC, H. sapiens 2-oxoglutarate carrier; ScAAAC2, Saccharomyces cerevisiae ADP/ATP carrier; ScDIC, S. cerevisiae dicarboxylate carrier. b, Nrf2 and KEAP1 protein after co-transfection with Nrf2–V5, and the wild-type (WT) or Cys151Ser mutant KEAP1. c, Tandem mass spectrometry spectrum of Cys151-containing KEAP1 peptide after OI treatment. d, Metabolite (\(^{13}C_6\)-glucose (left), \(^{13}C_7\)-glutamine (right)) tracing to itaconate–cysteine adduct with or without LPS (24 h, n = 5). AU, arbitrary units. e, LDHA Cys84 alkylation plus LPS (24 h) or OI (250 \(\mu\)M, 4 h) (n = 4). Data are mean ± s.e.m. (in d, e) or s.d. (in a). P values calculated using one-way ANOVA for multiple comparisons or two-tailed Student’s t-test for paired comparisons. Blots are representative of three independent experiments. For gel source data, see Supplementary Fig. 1.
Our hypothesis is that itaconate activates Nrf2 by alkylation of KEAP1 cysteine residue(s), similar to the modification of cysteines by fumarate (Extended Data Fig. 5a). Cysteine 151 (Cys151) is a principal sensor on KEAP1 for sulforaphane and DMI. It stabilized V5-tagged Nrf2 (Nrf2–V5) in COS1 cells co-expressing wild-type KEAP1 but not a Cys151Ser mutant, similarly to sulforaphane (Fig. 2b, compare lanes 16 and 17 to lanes 18 and 19). To analyse KEAP1 alkylation directly, we overexpressed Myc-DDK-tagged KEAP1 in human HEK293T cells and treated the cells with OI. Tandem mass spectrometry of immunoprecipitated KEAP1 revealed that for the KEAP1 peptide (144–152), which contains Cys151, OI treatment increased its mass by 242.15 Da, consistent with alkylation by OI (Fig. 2c). OI also modified other known KEAP1 regulatory cysteine residues (Cys257, Cys288 and Cys273) (Extended Data Fig. 5b–d, Extended Data Table 1a). Furthermore, itaconate–cysteine adducts, derived in part from glucose and glutamine (Fig. 2d and Extended Data Fig. 6), were detected in LPS-treated macrophages. These data suggest that itaconate activates Nrf2 by alkylating KEAP1 cysteine residues. We further explored cysteine alkylation induced by itaconate using an untargeted mass spectrometry approach in macrophages treated with OI, or with LPS, which increases itaconate levels. We identified several proteins that contain alkylated cysteine residues (Extended Data Table 1b, c). Notably LDHA, which has a crucial role in the regulation of glycolysis, was alkylated in OI- and LPS-treated macrophages (Fig. 2e and Extended Data Fig. 5e, f). This modification, here defined as 2,3-dicarboxypropylation, generates a stable thioether. As there are no known pathways for the removal of such post-translational modifications, modified proteins are probably degraded, suggesting that this modification will have profound effects on macrophase function.

We next assessed whether itaconate activation of Nrf2 could be anti-inflammatory. OI, used at concentrations that did not affect cellular viability, decreased LPS-induced Il1β mRNA, pro-IL-1β, HIF-1α and IL-10 protein levels, and decreased the extracellular acidification rate, yet had no effect on NF-κB activity or TNF (also known as TNFα) levels (Fig. 3a, b and Extended Data Fig. 7a–f). OI also decreased Il1b mRNA in BMDMs treated with the TLR2 and TLR3 ligands, Pam3CSK4 and polyinosinic:polycytidylic acid (poly(I:C)), respectively (Extended Data Fig. 7g). Levels of LPS-induced reactive oxygen species (ROS), nitrite and inducible nitric oxide synthase (iNOS) were limited by OI (Fig. 3c, d and Extended Data Fig. 7h, i). These effects are likely to be a consequence of ROS detoxification after Nrf2 induction by OI. IL-1β and TNF were decreased by OI in human peripheral blood mononuclear cell (PBMCs) (Fig. 3e, Extended Data Fig. 7j). OI also counteracted the pro-inflammatory response to LPS in vivo. OI, which activated Nrf2 (Extended Data Fig. 7k), prolonged survival, decreased clinical score and improved body temperature regulation, and decreased IL-1β and TNF levels but not IL-10 in an LPS model of sepsis (Fig. 3f, g and Extended Data Fig. 7l).

OI induction of HMOX1 was blocked in Nrf2-deficient macrophages (Fig. 3h (compare lanes 2 and 3 to lanes 8 and 9) and Extended Data Fig. 8a, d) or when Nrf2 was silenced (Extended Data Fig. 8a, d (compare lanes 7 and 8 to lanes 11 and 12)). Without Nrf2, the decrease in LPS-induced IL-1β with OI was significantly impaired (Fig. 3h (compare lane 6 to lane 12), Extended Data Fig. 8b–f (compare lanes 6 and 8 to 10 and 12 in c, d)). Furthermore, two Nrf2 activators, diethyl maleate and 15-deoxy-Δ12,14-prostaglandin J2 decreased LPS-induced IL-1β, IL-10, nitric oxide synthase (NOS2) and nitrite (Extended Data Fig. 8g–k). Thus, itaconate activates an anti-inflammatory program through Nrf2.

We next investigated how switching from a pro- to an anti-inflammatory state might affect itaconate production from aconitate by IRG1.
nate is generated in response to LPS, in part through type I IFNs, IRF3-regulated genes in LPS-treated Nrf2-deficient mice. This agrees with increased expression of 15-deoxy-

By modelling gene networks that control Irg1 expression, the IFN response factor IRF1 was identified as a regulator. We show here that itaconate levels are increased after IFN-β treatment (Fig. 4a), in agreement with others. Levels of citrate and aconitate, the substrate for Irg1, were reduced by IFN-β in mouse macrophages. Irg1 expression in PBMCs treated with poly(I:C) (20 μg ml$^{-1}$; 24 h; and OI (50 mg kg$^{-1}$, OI) LPS, OI and LPS). The anti-inflammatory role of itaconate. Data are mean ± s.e.m. Calculated using one-way ANOVA. Blots are representative of three independent experiments. Data in f are representative from one of two human donors. For gel source data, see Supplementary Fig. 1.

Figure 4 | Feedback loop exists between itaconate and IFN-β.

Table 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Description</th>
</tr>
</thead>
</table>

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank M. McMahon and J. D. Hayes for plasmids, and Cancer Research UK (C20953/A18644) and the BBSRC (BB/L01923X/1) for financial support for ATDK. This work was supported by a Wellcome Trust Investigator award to R.C.H. (110158/Z/15/Z), a grant to M.P.M. from the Medical Research Council UK (MC_U105663142), a Wellcome Trust Investigator award to MPM (110159/Z/15/Z), and a grant to E.R.S.K. and M.S.K. from the Medical Research Council UK (MC_U105663139). B.M.K. and R.F. are supported by the Kennedy Trust Fund. We acknowledge Metabolon for their assistance with the metabolic work and analysis. The O'Neill laboratory acknowledges the following grant support: European Research Council (ERC-FP7-MICROINNATE), Science Foundation Ireland Investigator Award (SFI 12/IA/1531), GlaxoSmithKline Visiting Scientist Programme and The Wellcome Trust (oneill-wellcometrust-metabolic, grant number 205455). E.T.C. is supported by the Claudia Adams Barr Program.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing interests. Readers are welcome to comment on the online version of the paper. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Correspondence and requests for materials should be addressed to L.A.O’N. (laoneill@tcd.ie).

Reviewer Information Nature thanks N. S. Chandel, R. Rossignol, S. Werner and the other anonymous reviewer(s) for their contribution to the peer review of this work.
METHODS

Isolation of human PBMCs. Human PBMCs were isolated from human blood using Lymphoprep (Axis-Shield). Whole blood (30 ml) was layered on 20 ml lymphoprep and spun for 20 min at 2,000 r.p.m. with no brake on. The PBMCs were isolated from the middle layer. PBMCs were maintained in RPMI supplemented with 10% (v/v) FCS, 2 mM l-glutamine, and 1% penicillin/streptomycin solution.

Generation of human macrophages. Blood was layered on Histopaque and centrifuged at 800g for 20 min, acceleration 9, and deceleration at 4. The PBMC layer was isolated and the macrophages were sorted using magnetic-activated cell sorting (MACS) CD14 beads. Cells were pelleted at 0.5 × 10^6 cells ml^-1 in media containing M-CSF (100 ng ml^-1) and maintained at 37 °C, 5% CO₂ for 5 days, to allow differentiation into macrophages. For further details, see Supplementary Methods.

Generation and treatment of BMDMs. Mice were euthanized in a CO₂ chamber and death was confirmed by cervical dislocation. Bone marrow cells were extracted from the leg bones and differentiated in DMEM (containing 10% fetal calf serum, 1% penicillin/streptomycin and 20% 1,929 supernatant) for 6 days, at which time they were counted and replated for experiments. Unless stated, 5 × 10^6 BMDMs per millilitre were used in *in vitro* experiments. Unless stated, the LPS concentration used was 100 ng ml^-1*, the DMI and OI concentration was 125μM, and in experiments where pre-treatments occurred before LPS stimulation this was for 3h.

Synthesis of itaconate compounds. For details on synthesis and characterization of chemical compounds, see Supplementary Methods.

Metabolomic analysis with Metabolon. Macrophages were plated at 2 × 10^6 per well in 6-well plates and treated as required. BMDMs n = 5, human macrophages n = 12. Analysis was performed by Metabolon. For further details, see Supplementary Methods.

Metabolite measurements for absolute succinate and itaconate quantification and metabolite tracing. Cells were treated as desired. For tracing studies, immediately before LPS stimulation, the media was removed and replaced with DMEM media (1 ml) containing U-13C-glucose (4.5 g l^-1) or U-13C-glutamine (584 mg ml^-1) deplete of 13C-glucose or 13C-glutamine. Samples were extracted in methanol/acetonitrile/water, 50:30:20 (v/v/v), 1 ml per 1 × 10^6 cells and agitated for 15 min at 4 °C in a Thermomixer and then incubated at −20 °C for 1h. Samples were centrifuged at maximum speed for 10 min at 4 °C. The supernatant was transferred into a new tube and centrifuged again at maximum speed for 10 min at 4 °C. The supernatant was transferred autoassembler vials. Liquid chromatograph–mass spectrometry (LC–MS) analysis was performed using a Q Exactive mass spectrometer coupled to a Dionex U3000 UHPLC system (Thermo). For further details, see Supplementary Methods.

Western blotting. Protein samples from cultured cells were prepared by direct lysis of cells in 5 × Laemml sample buffer, followed by heating at 95 °C for 5 min. For spleen samples, 30 mg of spleen was homogenized in RIPA buffer using the Qiagen TissueLyserII system. The resulting homogenate was centrifuged at 14,000 r.p.m. for 10 min at 4 °C, and supernatants were used for SDS–PAGE. Protein samples were resolved on 8% or 12% SDS–PAGE gels and were then transferred onto polyvinylidene difluoride (PVDF) membrane using either a wet or semi-dry transfer system. Membranes were blocked in 5% (w/v) dried milk in TBS-Tween (TBST) for at least 1 h at room temperature. Membranes were incubated with primary antibody, followed by the appropriate horseradish peroxidase-conjugated secondary antibody. They were developed using Lumiglo enhanced chemiluminescent reagent. Bands were visualized using the GelDoc system (Biorad).

Quantitative PCR. Total RNA was isolated using the RNeasy Plus Mini kit (Qiagen) and quantified using a Nanodrop 2000 UV-visible spectrophotometer. cDNA was prepared using 20–100 ng^-1 total RNA by a reverse transcription PCR (RT–PCR) using a high capacity cDNA reverse transcription kit (Applied Biosystems), according to the manufacturer’s instructions. Quantitative PCR (qPCR) was performed on cDNA using SYBR Green probes. qPCR was performed on a 7900 HT Fast Real-Time PCR System (Applied Biosystems) using Kapa fast master mix high ROX (Kapa Biosystems, for SYBR probes) or 2 × PCR fast master mix (Applied Biosystems, for Taqman probes). For SYBR primer pair sequences, see Supplementary Methods. Fold changes in expression were calculated by the ΔΔCt method using mouse Rps18 as an endogenous control for mRNA expression. All fold changes are expressed normalized to the untreated control.

NQO1 bioassay. Inducer potency was quantified by use of the NQO1 bioassay in Hepa1c1c7 mouse hepatoma cells11,12. Cells (10^5 per well of a 96-well plate) were grown for 24 h and exposed (n = 8) to serial dilutions of compounds for 48h before lysis. NQO1 enzyme activity was quantified in cell lysates using menadione as a substrate. Protein concentrations were determined in aliquots from the same cell lysates by the bicinchoninic acid (BCA) assay (Thermo Scientific). The CD value was used as a measure of inducer potency. For assays examining the effect of GSH on inducer potency, 50 μM of each compound was incubated with 1 mM GSH in the cell culture medium at 37 °C for 30 min before treatment.

Preparation of rat liver mitochondria. Bovine heart mitochondria were isolated by differential centrifugation in 250 mM sucrose, 10 mM Tris-Cl, 0.2 mM EDTA (pH 7.4 at 4 °C). To prepare membranes, bovine heart mitochondria were blended with MilliQ water at 4 °C before adding KCl to a final concentration of 150 mM and blending until homogenous. The suspension was centrifuged (13,500g, 40 min, 4 °C) and the pellet was resuspended in re-suspension buffer (20 mM Tris-Cl, 1 mM EDTA, 10% glycerol, pH 7.5 at 4 °C) before homogenization and assaying for protein by BCA assay (Thermo Scientific)27.

Measuring complex II and III activity. Bovine heart mitochondrial membranes (80 μg protein per ml) were incubated in 50 mM potassium phosphate buffer containing 5 mM potassium phosphate, 1 mM EDTA, pH 7.4, 4 °C supplemented with 3 mM KCN, 4 μM rotenone and succinate. In a 96-well microplate, inhibitor or vehicle control and membrane incubation were plated and incubated for 10 min at 30 °C. Alternatively, where indicated, itaconate was incubated with membranes and removed by twice centrifuging membranes and resuspending in non-itaconate containing buffer, before plating with 1 μM succinate. Oxidized cytochrome-c was added before measuring the respiratory chain activity by assessing the reduction of cytochrome-c spectrophotometrically at 550 nm at 20 s intervals for 5 min at 30 °C. Final concentrations were 10 μg protein per well bovine heart membranes and 30 μM ferricytochrome c.

Measuring rat liver mitochondrial respiration. Respiration of rat liver mitochondria was assessed with an Oxigraph-2K (OROBOROS instruments high resolution respirometry). Rat liver mitochondria (0.5 mg mitochondrial protein per ml) were added to KC1 buffer (pH 7.2, 37 °C) and respiration assessed in the presence of 4 μg ml^-1 rotenone, 1 μM succinate, 1 μM FCCP and inhibitors or buffer control. Assessing itaconate ester reactivity with glutathione. GSH (1 or 5 mM) and 5 mM itaconate esters or vehicle control were incubated in KC1 buffer (pH 7.2 or 8) at 37 °C for 2h, where indicated, 10 μg recombinant GST was added to the incubation. The reaction was stopped by acidification with 5% sulfosalicylic acid before assessing glutathione content by the GSH recycling assay as described previously28.

Itaconate transport assays. Itaconate transport by mitochondrial carriers was assessed as described previously29. For further details see Supplementary Methods.

Generation and treatment of BMDMs. BMDMs were isolated from the middle layer. PBMCs were maintained in RPMI supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin and 20% L929 supernatant) for 6 days, at which time they were counted and replated for experiments. Unless stated, 5 × 10^6 BMDMs per well in a 6-well plate in complete growth medium and adhered overnight in a humidified 5% CO₂, 37 °C incubator. The following day, media was replaced with serum-free DMEM containing itaconate esters and cells were treated for 30 min at 37 °C. Cells were extracted as described above (method for succinate quantification), with MS internal standard (100 pmol) added and stored at −80 °C before LC–MS/MS analysis. For further details, see Supplementary Methods.

LC–MS/MS analysis was performed using an LCMS-8060 mass spectrometer (Shimadzu) with a Nexera X2 UHPLC system (Shimadzu). For further details, see Supplementary Methods.

System target validation. COS1 cells (2.5 × 10^5 per well) in 6-well plates were co-transfected (Lipofectamine 2000) with 0.8 μg of Nrf2-V5 and 1.6 μg of wild-type or Cys151S mutant KEAP114, or 1.6 μg of pcDNA. Cells were grown for 21 h then treated with 20 or 100 μM OL, 5 μM sulfonate or 0.1% acetónitrile (vehicle) for 3h. Cells were washed in PBS and lysed in 200 μl of SDS–lysis buffer (50 mM Tris–HCl, pH 6.8, 2% (v/v) sodium dodecyl sulfate (SDS) and 10% (v/v) glycerol). Lysates were sonicated (20 at 30% amplitude using Vibra-Cell ultrasonic processor, Sonic) and boiled (3 min), and dithiothreitol (DTT) and Bromophenol blue were added up to 0.1 M and 0.02% (w/v) final concentrations, respectively. Proteins (10 μg) were resolved on a gradient (4–12%) NuPAGE SDS gel, transferred to polyvinylidene difluoride membranes, and immunoblotted with anti-KEAP1 (rat monoclonal, Merk Millipore, clone 144), anti-Nrf2 (rabbit monoclonal, CST), and anti-β-actin (mouse monoclonal, Sigma) antibodies. Horseradish peroxidase (HRP)– or IRDye-labelled secondary antibodies were used interchangeably, followed by either ECL detection or scanning using Odyssey imager (Li-COR).
ELISA. Cytokine concentrations in cell supernatants were measured using ELISA Dualset kits for mouse IL-10 and TNF and human IFN-β and IL-1β, according to the manufacturer's instructions. Cytokine concentrations in serum samples isolated from whole blood were measured using Quantikine ELISA kits for mouse or human IL-1β, IFN-β, IL-10 and TNF. Duoset and Quantikine kits were from R&D Systems. Optical density values were measured at a wavelength of 450 nm, using a FLUostar Optima plate reader (BMG Labtech). Concentrations were calculated using a four-parameter fit curve.

FACS analysis of ROS. BMDMs were seeded at 0.5 × 10^6 cells per ml and treated as normal. Then 2 h before staining, 100% ethanol was added to the dead cell control well. Thirty minutes before the end of the stimulation, CellROX (5 μM) was added directly into the cell culture medium. Supernatants of cells that were to be stained with Aqua Live/Dead were removed, and an Aqua Live/Dead dilution (1 ml; 1:1,000 in PBS) was added to each well. Cells were incubated in tinfoil at 37°C for 30 min. Cells were washed with PBS, scraped in PBS (0.5 ml), and transferred to polypropylene FACS tubes. Samples were analysed using a DAKO CyAn flow cytometer, and data was analysed using FlowJo software. MFI was quantified as a measure of cellular ROS production.

Nitric oxide assay. Nitric oxide concentrations in cell supernatants were measured using Griess reagent assay kit from Thermo Fischer Scientific according to the manufacturer's instructions. Optical density values were measured at a wavelength of 548 nm, using a SoftMax Pro plate reader. Concentrations were calculated using a linear standard curve.

GSH/GSSG measurements. BMDMs were plated at 0.1 × 10^6 cells per ml in opaque 96-well plates. Cells were pre-treated with OI (125 μM) for 2 h and then stimulated with hydrogen peroxide (100 μM) for 24 h. After 24 h, cell media was removed and the reduced glutathione to oxidized glutathione (GSH/GSSG) ratio was quantified using MyBio GSH/GSSG Glo Assay (V6611) as per manufacturer's instructions. Luminescence was quantified using a FLUostar Optima plate reader.

LDH assay. Cells were plated at 0.5 × 10^6 cells per ml in white 24-well plates (500 μl per well) and treated as required. Cytotoxicity, as determined by LDH release, was assayed using CytoTox96 Non-radioactive Cytotoxicity Assay kit (Promega) according to the manufacturer's instructions.

Seahorse analysis of lactate production. Cells were plated at 0.2 × 10^6 cells per well of a 24-well Seahorse plate. Cells were treated and stimulated as normal. A utility plate containing calibrant solution (1 ml perwell) was placed in a CO2-free incubator at 37°C overnight. The next day, media was removed from cells and replaced with glucose-supplemented XF assay buffer (500 μl per well) which was placed in a CO2-free incubator for at least 0.5 h. Compounds (glucose, oligomycin and 2-deoxy-D-glucose (2DG); 70 μM) were added to the appropriate port of the injector plate. This plate together with the utility plate was run on the Seahorse for calibration. Once complete, the utility plate was replaced with the cell culture plate and run on the Seahorse XF-24.

Endotoxin-induced model of sepsis. For cytokine measurements, mice were treated intraperitoneally with OI (50 mg kg⁻¹) in 40% cyclodextrin in PBS or vehicle control for 2 h before stimulation with LPS (Sigma; 2.5 mg kg⁻¹) intraperitoneally for 2 h. Mice were euthanized in a CO2 chamber, blood samples were collected and serum was isolated. Cytokines were measured using R&D ELISA kits according to manufacturer's protocol. For temperature recording, mice (n = 10 per group) were treated intraperitoneally with OI (50 mg kg⁻¹) in 40% cyclodextrin in PBS or vehicle control for 2 h before stimulation with LPS (5 mg kg⁻¹) and monitored for temperature at 1, 2, 3, 4, 6, 12, 18 and 24 h after LPS treatment. Temperature was monitored using subcutaneously implanted temperature transponder chips (Bio Medic Data Systems; IPTT 300) which were injected between the shoulder blades 48 h before experiment. At defined times, body temperature was measured by scanning the transponder with a corresponding BMDS Smart Probe. Animals were additionally monitored for clinical signs of endotoxic shock, baseline core temperature change, body condition, physical condition and unprovoked behaviour, with a combined score of 9 indicating the humane end point for the experiment.

siRNA transfection of BMDMs. Cells were plated at 1 × 10^6 cells per ml in 12-well plates overnight. On the day of transfection, the media was replaced with 500 μl DMEM without penicillin/streptomycin or PBS. For each target gene, two Eppendorfs were prepared. OptiMEM (250 μl per well) was added to each tube. RNAiMax (add 5 μl per well) was added to one set of tubes and short interfering siRNA (siRNA; 50 nM per well) was added to the second set of tubes. The tube containing the siRNA was added to the tube with RNAiMax, mixed well by pipetting and incubated for 15 min. The mix (500 μl) was added to each well. Twenty-four hours after transfection, cells were treated as required.

Analysis of KEAP1 modification by OI. Human embryonic kidney cells (HEK293T cells) were transfected with a pCMV6-KEAP1 vector (Myc/DDK-tagged mouse KEAP1) (OriGene). C2C12, Hepa1c1c7 cells and COS1 cells were from American Type Culture Collection (ATCC). The L929 cells are from Sigma (85011425). HEK293T cells were obtained from the Centre for Applied Microbiology and Research. Cell lines have not been tested for mycoplasma contamination. Twenty-four hours after transfection, cells were treated with OI (500 μM) or vehicle control (PBS) for 4 h. Tagged KEAP1 was immunoprecipitated using an anti-Flag antibody (Sigma) and protein A/G beads (Santa Cruz). After immunoprecipitation, bound KEAP1 was eluted off the beads using Flag peptide (500 μl; 200 μg ml⁻¹) (Sigma) diluted in 1× TBS pH 7.4. The samples were then centrifuged and the supernatant was removed using vacuum centrifugation filter columns (Merck). The concentrated samples were then divided in half for downstream processing. One-half of each sample was diluted 1:2 with 5× SDS sample buffer and separated using SDS–PAGE (Bio-Rad). Overexpressed KEAP1 was detected using Coomassie blue staining and the corresponding bands were excised from the gel and subjected to in-gel digest as described. In brief, the gel slices were cut into smaller pieces (1–2 mm³) before reduction with DTT and alkylated with iodoacetamide, before precipitation of the protein via the methanol–chloroform extraction method. The protein pellet was re-suspended in urea (6 M), which was then diluted to <1 M urea with ultrapure H2O. The samples were then digested with trypsin (2 μg) overnight at 37°C. Digested protein samples were analysed in an Orbitrap Fusion Lumos coupled to a UPLC ultimate 3000 RSLCnano System (both Thermo Fisher). For further details, see Supplementary Methods.

Assessment of cysteine alkylation by iodoacetate using iodo-TMT. After treatment, cells were lysed in HEPEs pH 7.5, EDTA, glycerol and NP40. 2 mM TCEP and 50 mM NEM were added in a buffer containing 50 mM HEPEs, 2% SDS, 125 mM NaCl, pH 7.2, and samples were incubated for 60 min at 37°C in the dark to reduce and alkylate all unmodified protein cysteine residues. 20% (v/v) TCA was added to stabilize thiols and incubated overnight at 4°C and then pelleted for 10 min at 4,000 g at 4°C. The pellet was washed three times with cold methanol (2 ml) and then resuspended in 2 ml 8 M urea containing 50 mM HEPEs, pH 8.5. Protein concentrations were measured by BCA assay (Thermo Scientific) before protease digestion. Protein lysates were diluted to 4 M urea and digested with LysC (Wako) in a 1:100 enzyme:protein ratio and trypsin (Promega) at a final 1:200 enzyme:protein ratio for 4 h at 37°C. Protein extracts were diluted further to a 2.0 M urea and LysC (Wako) at 1:100 enzyme:protein ratio and trypsin (Promega) at a final 1:200 enzyme:protein ratio were added again and incubated overnight at 37°C. Protein extracts were diluted further to a 1.0 M urea concentration, and trypsin (Promega) was added to a final 1:200 enzyme:protein ratio for 6 h at 37°C. Digests were acidified with 250 μl of 25% acetic acid to a pH value of ~2.0, and subjected to C18 solid-phase extraction (50 mg Sep-Pak, Waters). Excess TMT label (6–7 M) was added to each digest for 30 min at room temperature (repeated twice). The reaction was quenched using 4 μl 5% hydroxyamine. Samples were subjected to an additional C18 solid-phase extraction (50 mg Sep-Pak), for LC–MS/MS parameters, data processing and MS2 spectra assignment, TMT reporter ion intensities were measured using MaxQuant, see Supplementary Methods.

Reagents. For a complete list of reagents, see Supplementary Methods.

Mouse strains. Wild-type C57BL/6 mice were from Harlan UK and Harlan Netherlands. Animals were maintained under specific pathogen-free conditions in line with Irish and European Union regulations. Experiments were approved by local ethical review and were carried out under the authority of Ireland’s project license. All animal studies performed in GSK were ethically reviewed and carried out in accordance with Animals (Scientific Procedures) Act 1986 and the GSK Policy on the Care, Welfare and Treatment of Animals. Nrf2-deficient mice and their wild-type counterparts, both on the C57BL/6 genetic background (used for isolation of BMDM cells), were bred and maintained in the Medical School Resource Unit of the University of Dundee.

Statistical analysis. Data were expressed as mean ± s.e.m. and P values were calculated using two-tailed Student’s t-test for pairwise comparison of variables, one-way ANOVA for multiple comparison of variables, and two-way ANOVA involving two independent variables. A Sidak’s multiple comparisons test was used. A confidence interval of 95% was used for all statistical tests. Sample sizes were determined on the basis of previous experiments using similar methodologies. For all experiments, all stated replicates are biological replicates. For in vivo studies, mice were randomly assigned to treatment groups. For mass spectrometry analysis, samples were processed in random order and experimenters were blinded to experimental conditions.

Data availability. Full scans for all western blots are provided in Supplementary Fig 1. Source Data for all mouse experiments have been provided. All other data are available from the corresponding author on reasonable request.

Extended Data Figure 1 | The effect of itaconate on complex II activity. a, Complex II and III activity in bovine heart mitochondrial membranes incubated with succinate plus malonate or itaconate (n = 3 independent experiments). b, Effect of malonate or itaconate on the oxygen consumption rate (OCR) of rat liver mitochondria in the presence of succinate (1 mM) and FCCP (1 μM; n = 3 independent experiments). c, d, Complex II and III activity in bovine heart mitochondrial membranes incubated with itaconate (IA; 1 mM unless indicated), with subsequent removal and addition of succinate (1 mM; n = 3 independent experiments) (see Methods for further details). Data are mean ± s.e.m. P values calculated using one or two-way ANOVA.
Extended Data Figure 2 | DMI activates Nrf2 and limits cytokine production. a, c, LPS (100 ng ml⁻¹)-induced Nrf2 (a, 24 h) and HMOX1 (c, 6 h) protein expression with or without the itaconate derivative DMI. b, Nrf2-dependent mRNA expression after treatment with LPS (6 h) and DMI where indicated (n = 3). d, Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels after treatment with LPS and DMI (n = 5). e, f, LPS (24 h)-induced IL1b mRNA (e), IL-1β and HIF-1α protein (f) expression in mouse macrophages with or without DMI (n = 3). Data are mean ± s.e.m. P values calculated using one-way ANOVA. Blots are representative of three independent experiments. For gel source data, see Supplementary Fig. 1.
Extended Data Figure 3 | OI is the best tool to assess itaconate-dependent Nrf2 activity. a, Reactivity of DMI, itaconate and OI with thiols. b, c, Itaconate ester reactivity with GSH and glutathione-S-transferase (GST) as detailed in the Methods (n = 3). d, Itaconate levels in mouse C2C12 cells plus itaconate esters (n = 3). ML, 4-methyl itaconate. e, i, Itaconate (e) or GSH (i) levels plus LPS (6 h) and OI as indicated (n = 5). f, NQO1 activity in mouse Hepa1c1c7 cells treated with DMI or OI (48 h) and GSH (n = 8). g, h, Metabolic intermediates in GSH synthesis (h, average of five biological replicates). i, GSH levels after treatment with LPS (6 h) and/or OI (n = 5). j, GSH/GSSG ratio after treatment with OI (2 h) and H2O2 (100µM, 24 h; n = 3) as indicated. k, HMOX1 protein levels after treatment with OI and/or H2O2 (24 h). l, Nrf2, HMOX1 and IL-1β protein levels in BMDMs pre-treated with OI, 4-octyl 2-methylsuccinate (OMS) or octyl succinate (OS), all 125µM for 3 h with or without LPS (6 h). m, LPS-induced Nrf2 (24 h) and HMOX1 (6 h) protein expression with or without dimethyl malonate (DMM). Data are mean ± s.e.m. P values calculated using one- or two-way ANOVA. Blots are representative of three independent experiments. For gel source data, see Supplementary Fig. 1.
Extended Data Figure 4 | Itaconate is transported by the mitochondrial oxoglutarate, dicarboxylate and citrate carriers. a, Itaconate uptake into vesicles of Lactococcus lactis membranes expressing the indicated carriers loaded with itaconate (1 mM), and transport initiated by the addition of [3H]itaconate (1 μM). b, Initial transport rates of each carrier with either canonical substrate (homo-exchange) or canonical substrate/itaconate (hetero-exchange). n = 4 independent experiments; data are mean ± s.d. P values calculated using two-tailed Student’s t-test.
Extended Data Figure 5 | KEAP1 is alkylated by OI on major redox sensing cysteine residues.

a, Modification of cysteine by fumarate or itaconate. Tandem mass spectrometry spectrum of KEAP1 Cys257 (b), Cys257 (c) and Cys288 (d) peptides, indicating alkylation of these sites after OI treatment (left) but not in the corresponding carbamidomethylated (CAM) peptides (right).

e, f, LDHA Cys84 alkylation after treatment with LPS (e, 24 h) or OI (f, 250 μM, 4 h) (n = 4). Detected N- and C-terminal fragment ions of both peptides are assigned in the spectrum and depicted as follows: b: N-terminal fragment ion; y: C-terminal fragment ion; asterisk: fragment ion minus NH3; 0 or asterisk: fragment ion minus H2O; and 2+: doubly charged fragment ion. Representative of one independent experiment.
Extended Data Figure 6 | Identification of an itaconate-cysteine adduct.

a–e, 13C6-glucose (a–c) or 13C5-glutamine (d, e) labelling experiment tracking itaconate-cysteine adduct formation in BMDMs treated with LPS (n = 5; 24 h). Data in b and e are expressed as the percentage isotopologue of the total pool. Data in c and f represent changes in the total pool after LPS treatment. Data are mean ± s.e.m., for five replicates. P values calculated using two-way ANOVA.
Extended Data Figure 7 | OI decreases LPS-induced cytokine production, extracellular acidification rate, ROS and nitric oxide.

a, Percentage cytotoxicity (LDH release) in BMDMs after treatment with LPS and OI as indicated (n = 3). b, LPS-induced extracellular acidification rate (ECAR) after treatment with OI and/or LPS as indicated, analysed on the Seahorse XF-24 in BMDMs (trace representative of three independent experiments). c, d, LPS-induced Il10 mRNA (c, 4 h) and protein (d, 24 h) and TNF protein (f, n = 7) after OI treatment as indicated (n = 3). e, Phosphorylated p65 (pp65) protein levels (a measure of NF-κB activity) after treatment with LPS and OI as indicated. h, Representative gating strategy for FACS analysis of ROS production in cells as treated in d (image representative of three independent experiments). i, LPS-induced NOS2 expression (n = 6), with or without OI treatment. j, LPS-induced TNF (n = 4) and IL-1β (n = 3) protein levels after OI treatment in PBMCs. k, Nrf2 and HMOX1 protein levels or Nrf2-dependent gene expression (n = 5) in peritoneal macrophages from mice (m) injected intraperitoneally with OI (50 mg kg−1, 6 h) or vehicle control. l, Serum IL-10 from mice injected intraperitoneally with vehicle control or OI (50 mg kg−1, 2 h) and LPS (2.5 mg kg−1, 2 h, n = 3 vehicle, OI, n = 15 LPS, OI plus LPS). Data are mean ± s.e.m. P values calculated using one-way ANOVA. Blots are representative of three independent experiments. For gel source data, see Supplementary Fig. 1.
Extended Data Figure 8 | The effects of OI on cytokine production are Nrf2-dependent. a–e, Nrf2, HMOX1 and IL-1β protein levels (a, c, d) and Il1b mRNA expression (b, e) in mouse BMDMs transfected with two different Nrf2 siRNAs (50 nM) compared with a non-silencing scrambled control siRNA plus LPS (6 h; a–c, e; 24 h; d) and/or OI (n = 6). NT, non-transfected. f, Il1b mRNA expression in wild-type and Nrf2-knockout BMDMs treated with LPS (24 h; WT n = 2, Nrf2 KO n = 4) and/or OI.

j–k, Il1b (g) and Nos2 (j) mRNA, and IL-1β (h), IL-10 (i), TNF and nitrite (k) production with or without LPS (24 h), diethyl maleate (DEM; 100 μM) or 15-deoxy-Δ12,14-prostaglandin J2 (J2; 5 μM) pre-treatment for 3 h (n = 3). Data are mean ± s.e.m. P values calculated using one-way ANOVA. Blots are representative of three independent experiments. For gel source data, see Supplementary Fig. 1.
Extended Data Figure 9 | An Nrf2-dependent feedback loop exists between itaconate and IFN-β. a, Metabolite levels after treatment with IFN-β (1,000 U ml⁻¹; 27 h; n = 5). b, c, Isg20 and Irf5 mRNA expression in BMDMs treated with LPS (b) or poly(I:C) (c; 40 μg ml⁻¹; 24 h) and/or OI (n = 6). d, Il10 mRNA (n = 3) and IL-10 protein (n = 5) expression after treatment with LPS for 4 h (left) or 24 h (right) and/or IFN-β treatment (1,000 U ml⁻¹) for 3 h. e, Isg20 expression in BMDMs transfected with two different Nrf2 siRNAs (50 nM) compared with non-silencing control plus LPS (6 h) and/or OI (n = 6). f, Isg20 mRNA expression in wild-type (n = 2) and Nrf2-knockout (n = 4) BMDMs plus LPS (6 h) and/or OI. g, Isg20 mRNA expression after pre-treatment with LPS (24 h) and/or diethyl maleate (100 μM) or 15-deoxy-Δ12,14-prostaglandin J2 (5 μM) for 3 h (n = 3). Data are mean ± s.e.m. P values calculated using one-way ANOVA.
Extended Data Table 1 | Mass spectrometry analysis of itaconate-induced cysteine alkylation

a

<table>
<thead>
<tr>
<th>4-OI Residue</th>
<th>Peptide Amino Acid Position</th>
<th>Peptide Sequence</th>
<th>-10logP</th>
<th>Enzyme</th>
<th>Digest Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cys23</td>
<td>22-31</td>
<td>S.KC(+242.15)PEGAGDA/M</td>
<td>31.47</td>
<td>Elastase</td>
<td>In Gel</td>
</tr>
<tr>
<td>Cys151</td>
<td>144-152</td>
<td>A.SISVGKEK(+242.15)VL</td>
<td>44.11</td>
<td>Elastase</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>146-152</td>
<td>I.SISVGKEK(+242.15)VL</td>
<td>30.95</td>
<td>Elastase</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>144-153</td>
<td>A.SISVGKEK(+242.15)VL.H</td>
<td>30.25</td>
<td>Elastase</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>145-152</td>
<td>S.ISISVGKEK(+242.15)VL</td>
<td>29.32</td>
<td>Elastase</td>
<td>In Gel</td>
</tr>
<tr>
<td>Cys257</td>
<td>254-260</td>
<td>VKYDC(+242.15)PQR.R</td>
<td>35.44</td>
<td>Elastase</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>255-260</td>
<td>K.YDC(+242.15)PQR.R</td>
<td>40.13</td>
<td>Trypsin</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>255-260</td>
<td>K.YDC(+242.15)PQR.R</td>
<td>41.08</td>
<td>Trypsin</td>
<td>In Solution</td>
</tr>
<tr>
<td>Cys273</td>
<td>273-279</td>
<td>R.C(+242.15)HALTPR.F</td>
<td>35.93</td>
<td>Trypsin</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>273-279</td>
<td>R.C(+242.15)HALTPR.F</td>
<td>38.65</td>
<td>Trypsin</td>
<td>In Solution</td>
</tr>
<tr>
<td>Cys288</td>
<td>282-293</td>
<td>L.QTQLQKC(+242.15)EILO.D</td>
<td>41.70</td>
<td>Elastase</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>282-290</td>
<td>L.QTQLQKC(+242.15)EI.L</td>
<td>36.70</td>
<td>Trypsin</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>284-293</td>
<td>TQLQKC(+242.15)EILO.D</td>
<td>33.47</td>
<td>Trypsin</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>280-296</td>
<td>R.FLQTQLQKC(+242.15)EILOQADAR.C</td>
<td>55.81</td>
<td>Trypsin</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>288-296</td>
<td>K.C(+242.15)EILOQADAR.C</td>
<td>50.84</td>
<td>Trypsin</td>
<td>In Gel</td>
</tr>
<tr>
<td>Cys297</td>
<td>294-304</td>
<td>A.DARC(+242.15)KDYLVQI.F</td>
<td>37.15</td>
<td>Elastase</td>
<td>In Gel</td>
</tr>
<tr>
<td>K515</td>
<td>602-615</td>
<td>R.SGVGVW/TMEPCRK(+242.15).Q</td>
<td>37.59</td>
<td>Trypsin</td>
<td>In Gel</td>
</tr>
<tr>
<td></td>
<td>602-615</td>
<td>R.SGVGVW/TM(+15.99)EPCRK(+242.15).Q</td>
<td>36.40</td>
<td>Trypsin</td>
<td>In Gel</td>
</tr>
</tbody>
</table>

b

<table>
<thead>
<tr>
<th>Protein</th>
<th>Alkylated residue</th>
<th>Peptide amino acid position</th>
<th>Peptide sequence</th>
<th>X score</th>
<th>Ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pls1</td>
<td>Cys111</td>
<td>97-123</td>
<td>KEGIC(+4.98)AIGGTSEQSSVTQHSEEEK</td>
<td>5.998</td>
<td>-2.22</td>
</tr>
<tr>
<td>Acon</td>
<td>Cys385</td>
<td>378-395</td>
<td>VGLIGSC(+4.98)TNSSYEDMGR</td>
<td>4.212</td>
<td>4.17</td>
</tr>
<tr>
<td>Ldha</td>
<td>Cys84</td>
<td>82-90</td>
<td>DYC(4.98)VTANSK</td>
<td>3.474</td>
<td>-2.91</td>
</tr>
<tr>
<td>Anxa1</td>
<td>Cys189</td>
<td>186-204</td>
<td>GDRC(4.98)QDSLQVNLADTDAR</td>
<td>3.514</td>
<td>-0.48</td>
</tr>
<tr>
<td>If5b</td>
<td>Cys317</td>
<td>310-320</td>
<td>GMIEVPNC(+4.98)ITR</td>
<td>2.412</td>
<td>-4.16</td>
</tr>
<tr>
<td>Ipyr2</td>
<td>Cys156, 157</td>
<td>153-171</td>
<td>STDC(4.98)C(+4.98)GDNDPIDCEIJSK</td>
<td>4.664</td>
<td>22.60</td>
</tr>
<tr>
<td>Ef2</td>
<td>Cys41</td>
<td>33-42</td>
<td>STLTDSLVC(+4.98)K</td>
<td>3.677</td>
<td>-1.41</td>
</tr>
<tr>
<td>Thio</td>
<td>Cys73</td>
<td>73-81</td>
<td>C(+4.98)MPTEQFYK</td>
<td>2.422</td>
<td>-2.22</td>
</tr>
</tbody>
</table>

c

<table>
<thead>
<tr>
<th>Protein</th>
<th>Alkylated residue</th>
<th>Peptide amino acid position</th>
<th>Peptide sequence</th>
<th>X score</th>
<th>Ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilt</td>
<td>Cys69</td>
<td>61-73</td>
<td>VSLYYESLC(+4.98)GACR</td>
<td>4.677</td>
<td>3.40</td>
</tr>
<tr>
<td>Fgd6</td>
<td>Cys1004</td>
<td>9996-1005</td>
<td>NVALLDEQ(+4.98)K</td>
<td>3.759</td>
<td>-7.98</td>
</tr>
<tr>
<td>Olfr644</td>
<td>Cys306</td>
<td>305-313</td>
<td>FC(+4.98)KILLGNK</td>
<td>3.155</td>
<td>-2.10</td>
</tr>
<tr>
<td>Ldha</td>
<td>Cys84</td>
<td>82-90</td>
<td>DYC(+4.98)VTANSK</td>
<td>2.832</td>
<td>3.88</td>
</tr>
<tr>
<td>Pad6</td>
<td>Cys553</td>
<td>553-558</td>
<td>C(+4.98)ISLNRC</td>
<td>2.446</td>
<td>-18.58</td>
</tr>
<tr>
<td>Ubr4</td>
<td>Cys4241</td>
<td>4237-4244</td>
<td>LIASC(+4.98)HWK</td>
<td>2.421</td>
<td>-7.45</td>
</tr>
<tr>
<td>Hmox2</td>
<td>Cys314</td>
<td>314-323</td>
<td>C(+4.98)PFYAAQPDK</td>
<td>2.279</td>
<td>2.69</td>
</tr>
<tr>
<td>Lhpp</td>
<td>Cys113</td>
<td>112-118</td>
<td>FC(+4.98)TNE3SQK</td>
<td>2.169</td>
<td>-11.64</td>
</tr>
</tbody>
</table>

a. Cysteine/lysine residue(s) in KEAP1 modified by OI as determined by tandem mass spectrometry. b. Cysteine residues modified by itaconate in BMDMs treated with LPS identified using tandem mass spectrometry. c. Cysteine residues modified by itaconate in BMDMs treated with OI identified using tandem mass spectrometry.
Life Sciences Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list items might not apply to an individual manuscript, but all fields must be completed for clarity.

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

- Experimental design

1. Sample size
 Describe how sample size was determined. We have used at least 3 biological replicates for each experiment. This is designed to account for biological variability taking into account that the majority of experiments were performed in murine macrophages from inbred mice. See statistical analyses section of methods for full details.

2. Data exclusions
 Describe any data exclusions. Any exclusions from in vitro data were deemed outliers in GraphPad Prism. From the LPS in vivo cytokine data one LPS-treated sample has been removed as it appears that I did stimulate in response to LPS, most like an injection error.

3. Replication
 Describe whether the experimental findings were reliably reproduced. The in vivo trial required some optimization with various doses of compound as this was the first time it had been used in vivo. In vitro experiments were highly reproducible. All experimental findings were reproduced as biological replicates at the value stated in figure legends, unless otherwise indicated.

4. Randomization
 Describe how samples/organisms/participants were allocated into experimental groups. See statistical analyses section of methods. For in vivo studies, mice were randomly assigned to treatment groups. For MS analyses, samples were processed in random order and experimenters were blinded to experimental conditions.

5. Blinding
 Describe whether the investigators were blinded to group allocation during data collection and/or analysis. The in vivo trials were blinded. For MS analyses, samples were processed in random order and experimenters were blinded to experimental conditions.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
6. Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the Methods section if additional space is needed).

- The exact sample size \(n \) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.).
- A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample was measured repeatedly.
- A statement indicating how many times each experiment was replicated.
- The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more complex techniques should be described in the Methods section).
- A description of any assumptions or corrections, such as an adjustment for multiple comparisons.
- The test results (e.g. \(P \) values) given as exact values whenever possible and with confidence intervals noted.
- A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range).
- Clearly defined error bars.

See the web collection on statistics for biologists for further resources and guidance.

7. Software

Describe the software used to analyze the data in this study.

Flowjo was used to flow cytometry analysis. Metabolite spectra were analysed using XCalibur Qual Browser and XCalibur Quan Browser software (Thermo Scientific). Labsolutions software (Shimadzu) was used to assess itaconate uptake. SoftMax Pro software was used for ELISAs. MS data was analysed with PEAKS Studio 8 (Bioinformatics Solutions). GraphPad Prism was used for all graphing and statistical tests.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for providing algorithms and software for publication provides further information on this topic.

8. Materials and reagents

Indicate whether there are restrictions on availability of unique materials or if these materials are only available for distribution by a for-profit company.

4-octyl itaconate is available from the authors.

Antibodies used were goat anti-mouse IL-1\(\beta \) (R&D Systems, AF401-NA), mouse anti-\(\beta \)-actin (Sigma-Aldrich, AC-74), rabbit anti-HIF-1\(\alpha \) (Novus, NB100-449), rabbit anti-phospho-pIRF3 (Cell Signalling Technology, 4947) rabbit anti-total IRF3 (Cell Signalling Technology, 4302), rabbit anti-phospho-pTBK1 (Cell Signalling Technology, 5483) rabbit anti-total TBK1 (Cell Signalling Technology, 3013), rabbit anti-IKK\(\varepsilon \) (Cell Signalling Technology, 3416), Nrf2 (Cell Signalling Technology, 12721), Hmox1 (Enzo Life Sciences, ADI-SPA-896-D), Ass1 (Abcam, SAB5300141). Secondary horseradish peroxidase-conjugated anti-mouse IgG, anti-rabbit IgG and anti-goat IgG were from Jackson ImmunoResearch Inc.
10. Eukaryotic cell lines
 a. State the source of each eukaryotic cell line used.
 C2C12, Hepa1c1c7 cells and COS1 cells were from American Type Culture Collection (ATCC). The L929 cells are from Sigma, cat no is 85011425. HEK293T cells were obtained from the Centre for Applied Microbiology and Research, Wiltshire, UK.

 b. Describe the method of cell line authentication used.
 No authentication was used

 c. Report whether the cell lines were tested for mycoplasma contamination.
 They were not tested.

 d. If any of the cell lines used are listed in the database of commonly misidentified cell lines maintained by ICLAC, provide a scientific rationale for their use.
 No commonly misidentified cell lines were used

 Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
 Provide details on animals and/or animal-derived materials used in the study.
 8 week old, C57BL/6JOLA-Hsd female mice were purchased from Envigo UK. The rats were 10-12 week old female Wistar Rats from Charles River Laboratories, Strain Code:003. Nrf2-deficient mice and their wild type counterparts, both on the C57Bl/6 genetic background (used for isolation of BMDM cells) were bred and maintained in the Medical School Resource Unit of the University of Dundee.

Policy information about studies involving human research participants

12. Description of human research participants
 Describe the covariate-relevant population characteristics of the human research participants.
 The blood was from anonymous donors so I do not have this information.
Flow Cytometry Reporting Summary

Form fields will expand as needed. Please do not leave fields blank.

 dévelopment

1. The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
2. The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
3. All plots are contour plots with outliers or pseudocolor plots.
4. A numerical value for number of cells or percentage (with statistics) is provided.

Methodological details

5. Describe the sample preparation. Murine bone marrow derived macrophages
6. Identify the instrument used for data collection. Dako CyAn flow cytometer
7. Describe the software used to collect and analyze the flow cytometry data. FlowJo
8. Describe the abundance of the relevant cell populations within post-sort fractions. This was pure in vitro prepared bone marrow derived macrophages
9. Describe the gating strategy used. Cells were gated first on side-scatter (area) versus forward scatter (area) (Population; P1; to determine the macrophage population) Then on forward-scatter (height) versus forward scatter (area) (P2; to eliminate doublets) Then on side-scatter (area) versus pacific blue (to eliminate dead cells) Finally on counts versus APC (as a measure of CellROX staining).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information. ☑
A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling

Highlights

- Mal has a TLR-independent role in IFNGR signaling
- IFNGR signaling via Mal leads to p38 phosphorylation, autophagy, and killing of TB
- The S180L mutation attenuates responses to IFN-γ stimulation
- S180L mutations impair in vitro and in vivo responses to TB

Authors

Correspondence

nicheacm@tcd.ie (C.N.C.), lavellee@tcd.ie (E.C.L.)

In Brief

Mal (encoded by TIRAP) is a signaling adaptor in the TLR pathway. Ní Cheallaigh and colleagues demonstrate an additional role for Mal in IFN-γ signaling and find that it is required to kill intracellular *M. tuberculosis*. The common human Mal S180L polymorphism attenuates IFN-γ signaling and impairs responses to tuberculosis infection.

Ní Cheallaigh et al., 2016, Immunity 44, 368–379

February 16, 2016 ©2016 The Authors

http://dx.doi.org/10.1016/j.immuni.2016.01.019
A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling

Cliona Ni Cheallaigh,1,2,* Frederick J. Sheedy,3 James Harris,3 Natalia Muñoz-Wolf,2 Jinhee Lee,4 Kim West,4 Eva Palsson McDermott,6 Alicia Smyth,6 Laura E. Gleeson,1 Michelle Coleman,1 Nuria Martinez,4 Claire H.A. Heamden,6 Graham A. Tynan,2 Elizabeth C. Carroll,2 Sarah A. Jones,3 Sinéad C. Corr,3 Nicholas J. Bernard,3 Mark M. Hughes,5 Sarah E. Corcoran,5 Mary O’Sullivan,1 Ciara M. Fallon,1 Hardy Kornfeld,4 Douglas Golenbock,4 Stephen V. Gordon,6 Luke A.J. O’Neill,5 Ed C. Lavelle,2,7,8,* and Joseph Keane1,8

1Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James’s Hospital, D08 W9RT, Dublin, Ireland
2Adjuvant Research Group, School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40, Dublin, Ireland
3Centre for Inflammatory Diseases, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Clayton, Victoria 3168, Australia
4Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
5Inflammation Research Group, School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40, Dublin, Ireland
6UCD Schools of Veterinary Medicine, Medicine and Medical Science, and Biomolecular and Biomedical Science, and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
7Advanced Materials and BioEngineering Research (AMBER), Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College, D02 PN40, Dublin, Ireland
8Co-senior author
*Correspondence: nicheacm@tcd.ie (C.N.C.), lavellee@tcd.ie (E.C.L.)

http://dx.doi.org/10.1016/j.immuni.2016.01.019
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

SUMMARY

Humans that are heterozygous for the common S180L polymorphism in the Toll-like receptor (TLR) adaptor Mal (encoded by TIRAP) are protected from a number of infectious diseases, including tuberculosis (TB), whereas those homozygous for the allele are at increased risk. The reason for this difference in susceptibility is not clear. We report that Mal has a TLR-independent role in interferon-gamma (IFN-γ) receptor signaling. Mal-dependent IFN-γ receptor (IFNGR) signaling led to mitogen-activated protein kinase (MAPK) p38 phosphorylation and autophagy. IFN-γ signaling via Mal was required for phagosome maturation and killing of intracellular Mycobacterium tuberculosis (Mtb). The S180L polymorphism, and its murine equivalent S200L, reduced the affinity of Mal for the IFNGR, thereby compromising IFNGR signaling in macrophages and impairing responses to TB. Our findings highlight a role for Mal outside the TLR system and imply that genetic variation in TIRAP may be linked to other IFN-γ-related diseases including autoimmunity and cancer.

INTRODUCTION

Genetic variation in proteins involved in innate immunity, particularly Toll-like receptors (TLRs) and their signaling adaptor proteins, has been proposed to account for variation in susceptibility to infectious pathogens. MyD88 adaptor-like (Mal), encoded by the gene Toll-interleukin 1 receptor (TIR) domain-containing adaptor protein (TIRAP), was initially described as a signaling adaptor protein leading to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation downstream of TLR4 (Fitzgerald et al., 2001; Horng et al., 2001) and TLR2 (Horng et al., 2002; Yamamoto et al., 2002). A role for Mal as a “bridging adaptor” has since been established with Mal recruited to the plasma membrane, where it facilitates myeloid differentiation primary response gene 88 (MyD88) delivery to activated TLRs to initiate signal transduction in a structure called the Myddosome (Bonham et al., 2014; Kagan and Medzhitov, 2006). Mal has also been reported to function as a signaling adaptor for endosomal TLR signaling (Bonham et al., 2014). Two non- synonymous single nucleotide polymorphisms (SNPs) in TIRAP with functional consequences have been identified, D96N and S180L. The S180L SNP is common in Indian and European (approximately 15%–20% carrying the L allele and 2%–3% being homozygous for the L allele) populations (Ferwerda et al., 2009) and results in alteration of a potential binding site near D96, leading to steric occlusion (Valkov et al., 2011). S180L has been associated with altered susceptibility to a number of infectious diseases including severe sepsis, severe pneumococcal disease, Haemophilus influenzae, and malaria (Ferwerda et al., 2009; Khor et al., 2007; Ladhani et al., 2010). An association has been reported between the S180L TIRAP polymorphism and TB susceptibility with heterozygotes for the mutation showing protection from disease and homozygotes showing increased susceptibility (Capparelli et al., 2013; Castiblanco et al., 2008; Khor et al., 2007; Selvaraj et al., 2010), although other studies have failed to replicate these findings (Dissanayake et al., 2009; Nejentsev et al., 2009). A recent meta-analysis of the data confirms the association (Liu et al., 2014). The mechanism underlying the effect of the S180L SNP has not yet been elucidated.
Macrophages are key phagocytic cells that can eliminate or harbor intracellular bacteria, such as \(\text{Mtb} \) and also play a key role in secreting cytokines, which polarize subsequent adaptive immunity to a beneficial T helper 1 (Th1) or deleterious Th2 type response. Macrophages carry out a number of key antimicrobial functions including autophagy and phagosomal maturation, which if successful can kill intracellular mycobacteria (Deretic et al., 2006; Harris et al., 2009). IFN-\(\gamma \) plays a critical role in promoting antimicrobial functions. It activates macrophages, leading to production of nitric oxide (NO) and reactive oxygen species (ROS), phagosomal maturation, autophagy, and bactericidal activity (Gutierrez et al., 2004; MacMicking, 2012; Matsuzawa et al., 2014). Individuals with partial or complete defects in the IFN-\(\gamma \) signaling pathway have increased susceptibility to \(\text{Mtb} \), as well as to other mycobacterial species (Bogunovic et al., 2012; Filipe-Santos et al., 2006).

In this study, we report that the murine equivalent of S180L, S200L, replicated human findings with homozygotes displaying increased severity of tuberculous disease. In vitro, the S200L mutation resulted in impaired phagosome maturation and killing of \(\text{Mtb} \). We demonstrate that, unlike S180L, S200L did not affect TLR signaling. The impaired TB immunity seen with S200L was due to its effect on a Mal-dependent, TLR-independent, IFNGR signaling pathway. Mal-dependent responses to IFN-\(\gamma \) included p38 MAPK phosphorylation, autophagy, and phagosomal maturation, but not the canonical signal transducer and activator of transcription-1 (STAT-1) phosphorylation pathway. The S180L polymorphism reduced the affinity of Mal for the IFNGR, thereby compromising human macrophage responses to IFN-\(\gamma \). This Mal-dependent IFNGR signaling pathway, modulated by the S180L mutation, might affect susceptibility to infectious diseases, inflammatory diseases, and cancer.

RESULTS

The S200L Mutation Is Associated with Increased Severity of TB Disease in Vivo

Mice with the equivalent of the human S180L mutation in \(\text{Tirap} \) (200L) were generated to provide an in vivo model of \(\text{Mtb} \) infection (Figure S1). Wild-type (SS), heterozygote (SL), and homozygote (LL) mice were infected with \(500 \text{ cfu} \) of \(\text{Mycobacterium tuberculosis} \) (\(\text{Mtb} \) H37Rv) by aerosol. (A) Weights of eight mice in each group were measured weekly. (B) Mice were sacrificed at 8 weeks post-infection, and lung homogenates from five or six mice per group were plated for measurement of bacterial burden. (C) TNF-\(\alpha \) in lung homogenates from five or six mice per group was measured by ELISA. (D) Lungs from three to four mice per group were fixed in formalin, stained with haematoxylin and eosin, and area of inflammation assessed by microscopy with representative images and quantifications are shown. All data are means ± SD. A two-way ANOVA was used to analyze data in (A). A one-way ANOVA (non-parametric, Kruskal-Wallis) was used to analyze data in (B)–(D). *\(p < 0.05 \), ***\(p < 0.001 \) for all experiments.

Figure 1. Mice Homozygous for Mal S200L, the Equivalent of Mal S180L, Develop More Severe Lung Inflammation in Response to In Vivo Infection with Mycobacterium tuberculosis

Age- and sex-matched WT (Mal\(^{200S/S}\)), heterozygote (Mal\(^{200S/L}\)), and homozygote (Mal\(^{200L/L}\)) mice were infected with 500 cfu of \(\text{Mycobacterium tuberculosis} \) (\(\text{Mtb} \) H37Rv) by aerosol.
for the mutation in human studies. The phenotype of TB infection seen with the S200L mutation in mice replicated the human phenotype with S180L.

S200L Affects Macrophage Function Independently of Cytokine Production

Mycobacterial survival in macrophages is an in vitro read-out of macrophage function (Watson et al., 2012). Macrophages from mice with the S200L mutation displayed a defect in killing of intracellular mycobacteria (Figure 2A). Macrophages from mice with the S200L mutation displayed a defect in phagosome maturation, corresponding with the defect seen in bactericidal activity (Figures 2B and 2C). Unlike *Tirap*^{−/−} macrophages described later, the S200L macrophages displayed no impairment in production of these cytokines (Figures 2D and 2A), indicating that the defect seen in mycobactericidal activity was not due to an impairment of cytokine production. In addition, S200L homozygote macrophages, unlike *Tirap*^{−/−} macrophages, did not exhibit attenuated cytokine responses to TLR2 and TLR4 ligands (Figures S2B and S2C), indicating that S200L did not affect TLR2 or TLR4 signaling.

Mal and MyD88, but Not TLRs 2 and 4, Are Required for Macrophage Killing of Virulent Mtb

We proceeded to assess whether Mal-deficient macrophages showed a similar in vitro phenotype to S200L macrophages in response to *Mtb* infection. Immortalized and primary murine bone marrow macrophages were used, as well as *TIRAP*-silenced THP-1 cells. In contrast to our observations in S200L macrophages (Figure 2D), we observed that production of the key anti-mycobacterial cytokine TNF-α in response to *Mtb* was greatly reduced in Mal-deficient cells (Figures 3A–3C). Production of IL-1α, IL-1β, IL-6, and IL-12p40, but not IL-27, was also impaired in the absence of Mal (Figures S3A and S3B, with confirmation of *TIRAP silencing* in Figure S3C). Mal-deficient macrophages (Figures 3D and 3E and S3D) showed a marked inability to kill intracellular *Mtb*, similar to that seen in the S200L macrophages. We also assessed the role of TLRs 2 and 4 in our model. *Tlr2*^{−/−}, *Tlr2/4* double knockout (dko) and *Myd88*^{−/−} macrophages replicated the defect in pro-inflammatory cytokine production seen in Mal deficient cells. *Tlr4*^{−/−} macrophages showed a smaller, but still significant, impairment in cytokine responses (Figures 3F and 3G and S3E and S3F). Notably, whereas *Myd88*^{−/−} macrophages replicated the defect in bactericidal activity seen in *Tirap*^{−/−} cells, *Tlr2*^{−/−}, *Tlr4*^{−/−}, and *Tlr2/4* dko murine macrophages and THP-1 macrophages treated with an anti-TLR2 antibody did not show a similar defect despite impairments in cytokine induction (Figures 3H and 3I and S3G). Consistent with our findings is a previous report of unimpaired bactericidal activity of *Tlr2/4/9* triple knockout macrophages and impaired restriction of *Mtb* growth by *Myd88*^{−/−} macrophages (Hölscher et al., 2008). These data indicated that Mal and MyD88 had a function in killing of *Mtb*, and that this was distinct from the known role of Mal downstream of TLRs 2 and 4. This defect in mycobactericidal activity seen in the absence of Mal, but not in the absence of TLRs 2 and 4, was not due to defects in cytokine production.

Mal Is Required for Autophagy and IFN-γ Induced Phagosome Maturation

We sought to identify Mal-dependent but TLR-independent macrophage effector mechanisms. Autophagy provides a mechanism of killing and removing intracellular pathogens and contributes to a number of critical host immune responses to *Mtb* (Ni Cheallaigh et al., 2011). To determine whether *Mtb*-induced autophagic flux was impaired in the absence of Mal, we infected primary macrophages with *Mtb* in the presence or absence of bafilomycin, which blocks autophagosome fusion with lysosomes and thereby completion of autophagy and breakdown.
of autophagosomes (Yamamoto et al., 1998). Mtb-induced autophagic flux was reduced in the absence of Mal (Figure 4A-B). When autophagy was impaired in macrophages using knockdown of the key effector proteins ATG7 or BECLIN-1 by siRNA, a similar defect in bactericidal activity and phagosomal maturation to that seen in Mal-deficient cells was observed (Figures S4A–S4C).

We assessed whether Mal was required for phagosomal maturation by pretreating macrophages with IFN-γ or RPMI control and infecting the macrophages with FITC-labeled live Mtb. We identified phagolysosomes using anti-CD63 antibody or LysoTracker Red and assessed co-localization of bacteria and phagolysosomes. IFN-γ pre-treatment increased co-localization of bacteria and phagolysosomes in WT, but not in Tirap−/− macrophages (Figures 4C and 4D [LysoTracker] and Figures 4E and 4F [CD63]) a trend which persisted up to 24 hr post IFN-γ treatment (Figure 4D). Similar results were obtained in differentiated THP-1 cells treated with siRNA against Mal and stained with LysoTracker or the mature endolysosomal marker LAMP-1 (Figures 4G and S4E). Notably, IFN-γ did increase phagosomal maturation in Tlr2/4 dko, but not Myd88−/− macrophages (Figure 4H). Thus, Mal and MyD88, but not TLRs 2 and 4, were required for IFN-γ-induced phagosome maturation.
Mal and MyD88, but Not TLRs 2 and 4, Are Required for Interferon-Inducible Protein 10 Production, p38 Phosphorylation, and Autophagy in Response to IFN-γ

Given our findings of impaired IFN-γ-induced phagosomal maturation in the absence of Mal and MyD88 but not TLRs 2 and 4, we hypothesized that the Mal-dependent but TLR-independent pathway required for killing of intracellular Mtb might be explained by Mal participating in MyD88-dependent IFNGR signaling. Previously, normal STAT-1 phosphorylation but impaired IFN-inducible protein 10 (IP-10) secretion was reported in MyD88-deficient macrophages (Sun and Ding, 2006). We identified a profound defect in IFN-γ-induced IP-10 secretion in Tirap−/− and Myd88−/− macrophages, but not in Tlr2/4 dko macrophages (Figure S5A and S5A). IP-10 secretion was also reduced in TIRAP-silenced THP-1 cells (Figure S5B). IFN-γ-induced STAT-1 phosphorylation remained intact in Mal-deficient cells (Figure S5C). We observed a reduction in Cxcl10/Ip10 mRNA and Tnfa mRNA in Tirap−/− macrophages after IFN-γ treatment—a trend not observed for the STAT-1 target gene, Nos2, or for Arg1 mRNA (Figure S5D).

P3 mitogen-activated protein kinases (MAPK) are a class of MAPK that respond to stress stimuli including cytokines and are involved in apoptosis and autophagy. An IFN-γ-induced p38 MAPK signaling pathway, which culminates in autophagy and killing of intracellular bacteria, was recently reported (Matsu-zawa et al., 2014). We hypothesized that Mal might be required for this pathway. P38 MAPK was phosphorylated in response to IFN-γ, peaking at 4 hr post-treatment (Figures 5B, top panel), and this was impaired in Tirap−/− macrophages (Figure 5B, bottom panel and S5E). IFN-γ-induced autophagy, but not starvation-induced autophagy, was reduced in Tirap−/− macrophages, (Figures 5C and S5A and S5B). These data demonstrate that Mal was required for IFN-γ-induced P38 MAPK phosphorylation, autophagy and IP-10 secretion.

Figure 4. Mal Regulates IFN-γ Induced Maturation of Mtb Containing Phagosomes Independently of TLR2 and TLR4

(A and B) Primary WT and Tirap−/− bone-marrow-derived macrophages (BMM) were stimulated for 16 hr with Mtb in the presence or absence of bafilomycin. Cells were stained with anti-LC3 antibody (Invitrogen L10352) (representative images in (A) and LC3+ puncta per cell quantified by confocal microscopy (B).

(C–F) WT and Tirap−/− iBMM were stimulated overnight with rmIFN-γ (20 ng/ml) prior to infection with FITC-labeled Mtb H37Rv. Cells were stained with Lysotracker (LT) (C and D) and co-localization of Mtb with LT+ phagolysosomes was assessed by confocal microscopy, (representative images in C, quantified in D). Alternatively, cells were stained with anti-CD63 antibody (Santa Cruz, H-193) (E and F) and co-localization of Mtb with CD63-positive phagolysosomes was assessed by confocal microscopy, (representative images in E, quantified in F).

(G) THP-1 cells were transfected with siRNA against TIRAP or scrambled control prior to differentiation with PMA. Cells were stimulated overnight with recombinant human (rh)IFN-γ (20 ng/ml) prior to infection with FITC-labeled Mtb H37Rv and stained with LT. Co-localization of Mtb with LT+ phagolysosomes was quantified by confocal microscopy.

(H) iBMM were infected with FITC-labeled Mtb H37Rv and stained with LT. Co-localization of Mtb with LT+ phagolysosomes was quantified by confocal microscopy. Data shown are mean ± SD from a single experiment representative of three separate experiments are shown for (B) and mean ± SD of data pooled from three separate experiments for all other experiments (D, F–H). *p < 0.05 (Mann-Whitney) for all experiments.
Mal Interacts Directly with the IFNGR

We hypothesized that Mal might act as a bridging adaptor for MyD88 and the IFNGR. Immunoprecipitation of endogenous IFNGR resulted in co-immunoprecipitation of overexpressed Mal (Figure 5D, left panel). This interaction required full-length Mal, as a mutant construct consisting solely of the TIR domain did not immunoprecipitate with the IFNGR (Figure S7A). Immunoprecipitation of full-length overexpressed HA-Mal resulted in co-immunoprecipitation of IFNGR, confirming that Mal can bind IFNGR directly (Figure 5D, right panel). Mal did not precipitate with other proteins including Beclin-1 and BCL-2 (Figure S7B).

We then hypothesized that if Mal functions as a bridging adaptor between MyD88 and the IFNGR, then the previously immunoprecipitated Mal would be depleted from the IFNGR complex when treated with siRNA targeting MyD88. To test this hypothesis, we transfected RAW264.7 cells with siRNA targeting MyD88 or a control siRNA and then treated the cells with IFN-γ. Immunoprecipitation of IFN-γ R1 with antibodies to IFN-γ R1 or an IgG control on cell lysates as indicated. IP-samples were then analyzed for MyD88 expression by immunoblotting with anti-MyD88 (Millipore, 16527) (top panel) alongside IFN-γ R1 expression (bottom panels). Data shown are representative of three independent experiments.

(A) iBMM were treated with rmIFN-γ for 20 hr and secretion of IP-10 was measured by ELISA. Data are means ± SD from a single experiment representative of three separate experiments *p < 0.05, (Mann-Whitney).

(B) Primary BMM were treated for the indicated times (0–6 hr) at 20 ng/mL (top panel) and for 4 hr with rmIFN-γ at the indicated concentrations (0–100 ng/mL, bottom panel) alongside LPS or R848 (10 min). Lysates were prepared and analyzed for phosphorylation of p38 MAP-kinase by immunoblotting with anti-p-p38 antibody (Cell Signaling, 9211). Blots were stripped and re-probed for total p38 (bottom panels). Data shown are representative of three separate experiments.

(C) Primary BMM were stimulated for 16 hr with rmIFN-γ (20 ng/mL) and bafilomycin (100nM) or for 2 hr with starvation medium. Cells were stained with anti-LC3 antibody and LC3 puncta per cell were quantified with confocal microscopy. Data are means ± SD from a single experiment representative of three separate experiments, *p < 0.05, (Mann-Whitney).

(D) HEK293 cells were transfected with HA-tagged Mal and immunoprecipitation was performed with antibodies to HA (Sigma, H6908) and interferon gamma receptor (Santa Cruz, sc-700), along with a control non-specific rabbit IgG, on cell lysates as indicated. Lysates were then blotted with anti-HA antibody. Data shown are representative of three independent experiments.

(E) RAW264.7 cells were transfected with the indicated siRNAs (50 nM) for 72 hr prior to treatment with IFN-γ (100 ng/ml, 10 min) and immunoprecipitation was performed with antibodies to IFN-γ R1 or an IgG control on cell lysates as indicated. IP-samples were then analyzed for MyD88 expression by immunoblotting with anti-MyD88 (Millipore, 16527) (top panel) alongside IFN-γ R1 expression (bottom panels). Data shown are representative of three independent experiments.

(F) iBMM were treated with IFN-γ (10 ng/ml) for 0–24 hr. Cells were fixed and stained with antibodies against MyD88 and IFNGR2 followed by fluorescent secondary antibodies (Alexa Fluor 568 and Alexa Fluor 488). Changes in the amplitude weighted average lifetime (Amp) of the donor (A488) due to proximity with the acceptor (A568) were measured. A decrease in A Av Amp indicates interaction between the molecules and is quantified on right. *p < 0.05, **p < 0.01, ***p < 0.005; one-way ANOVA.
reported interaction between MyD88 and the IFNGR (Sun and Ding, 2006) would be reduced in the absence of Mal. We observed increased recruitment of MyD88 to IFNGR in IFN-γ-treated control cells (Figure 5E, lanes 5/6); however, in TIRAP-silenced or Mal-deficient cells (knockdown shown in Figure S7C) this interaction was reduced to background levels (Figure 5E, lanes 7/8 and Figure S7D).

We then confirmed this finding using fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM FRET) technology. FRET occurred between IFNGR and MyD88, indicating that they are interacting basally and for up to 0.5 hr post IFN-γ treatment (Figure 5F) in WT cells. This steady-state interaction between MyD88 and IFNGR was disrupted after initial signal transduction. In $\text{Tirap}^{-/-}$ cells, there was no evidence of such a basal interaction, a pattern not altered by subsequent IFN-γ treatment. These data demonstrated that Mal bound to IFNGR and was required for the interaction between MyD88 and IFNGR.

Interferon Gamma Is Required for Autophagy and Phagosome Maturation in Response to Mtb

Our data had established that Mal is required for an IFN-γ signaling pathway, culminating in p38 MAPK phosphorylation and autophagy. We hypothesized that the observed defect in autophagy and killing of intracellular Mtb was due to the defect in the IFN-γ-induced p38 MAPK phosphorylation pathway. However, we observed the deficits in autophagy and killing in a monoculture of macrophages in the absence of exogenous IFN-γ. We therefore hypothesized that macrophages secrete small quantities of IFN-γ that are functionally relevant in our model. Immortalized and primary macrophages and differentiated THP-1 cells produced small but detectable amounts of IFN-γ when infected with Mtb (Figures S8A–S8C). IFN-γ production was reduced in $\text{Tirap}^{-/-}$ immortalized bone-marrow-derived macrophages (iBMM) (Figure S8A)—this may be due to impaired TLR2 and/or TLR4 signaling or impaired IFN-γ signaling, because IFN-γ can upregulate its own production in a positive feedback loop. We also observed IFN-γ production by immortalized and primary macrophages using intracellular staining and flow cytometry (Figures S8D–S8F). Macrophages produced a considerable amount of IFN-γ if allowed to recover from LPS tolerance and restimulated for 4 hr (Figures S8E–S8G). Although our data show that Mtb can induce IFN-γ production by macrophages, the levels produced are extremely low compared to those produced by T cells or NK cells. We therefore sought to assess whether the low levels of IFN-γ present in our macrophage cultures were functionally significant for our key endpoints. Macrophages treated with a blocking antibody against IFN-γ (Figures S9A and S9B) and $\text{Ifng}^{-/-}$ macrophages (Figures S9C and S9D) showed reduced maturation of Mtb containing phagosomes. In the case of $\text{Ifng}^{-/-}$ macrophages, maturation was restored by adding exogenous IFN-γ (Figure S9D). $\text{Ifng}^{-/-}$ macrophages also showed reduced autophagy in response to Mtb (Figures S9E and S9F). Finally, $\text{Ifng}^{-/-}$ macrophages showed a defect in bactericidal activity as assessed by intracellular bacterial burden at 72 hr, similar to that seen in $\text{Tirap}^{-/-}$ macrophages (Figure S9G). These data demonstrated that macrophages secrete small but functionally relevant amounts of IFN-γ.

The S200L/S180L Mal Mutation Reduces IFN-γ Signaling

Given the new role identified for Mal in IFN-γ signaling, we then proceeded to look at the effect of the S200L polymorphism on TLR2, TLR4, and IFN-γ signaling in macrophages. As noted above, the S200L mutation did not affect secretion of the pro-inflammatory cytokine TNF-α in response to the TLR2 ligands Malp-2 and Pam3CysK4 or the TLR4 ligand LPS (Figures S2A–S2C) or Tnfα mRNA levels in response to TLR2 and TLR4 ligands (Figure 6B). However, macrophages from LL mice and, to a lesser extent, SL mice, showed a decreased IP-10 response to IFN-γ stimulation (Figures 6A and 6C), indicating that carriage of the 200L allele in mice, impairs IFN-γ, but not TLR, responses.

We then sought to determine the effect of the S180L mutation in human macrophages. We derived macrophages from peripheral blood monocytes (MDMs) from donors genotyped using allelic discrimination. MDMs were stimulated with TLR ligands and TNF-α secretion was measured by ELISA. We observed decreased responses to TLR2 and TLR4 ligands in human MDMs (Figure 6E). We observed a decrease in IFN-γ-driven IP-10 secretion in MDMs from individuals who were homozygous for the S180L mutation (Figure 6D). We proceeded to assess whether the S180L mutation altered the affinity of Mal for the IFNGR. Using site-directed mutagenesis, we synthesized HA-tagged human Mal with the S180L mutation (180L). S180L variant human Mal shows decreased affinity for the IFNGR relative to HA-tagged wild-type Mal (Figure 6F). The S180L mutation reduces the affinity of Mal for the IFNGR and reduces IP-10 secretion in response to IFN-γ stimulation.

DISCUSSION

Here we show that the murine equivalent of the S180L mutation in Mal, Mal S200L, replicated the phenotype previously reported from humans with the S180L polymorphism: it conferred protection from tuberculous disease on heterozygotes for the mutation and increased susceptibility on homozygotes. In vitro, Mal S200L impaired phagosome maturation and killing of intracellular mycobacteria. However, unlike S180L, S200L did not affect TLR signaling. We demonstrated a mechanism for these observations: the S200L polymorphism affected a TLR-independent, Mal-dependent, IFNGR signaling pathway. Mal-dependent IFNGR signaling was required for p38 phosphorylation, autophagy, phagosome maturation, and killing of intracellular mycobacteria. This IFNGR signaling pathway was attenuated by the human mutation S180L. This offers an explanation for how the common S180L mutation affects host innate immune responses to Mtb. The fact that this common polymorphism attenuates IFNGR signaling might have relevance for host susceptibility to a number of IFN-γ-related conditions including autoimmunity and cancers.

A number of publications regarding the effect of the S180L SNP on infectious disease susceptibility in humans have reported a heterozygote advantage with increased susceptibility seen in homozygotes (Capparelli et al., 2013; Castiblanco et al., 2008; Khor et al., 2007; Selvaraj et al., 2010). A murine model using the equivalent of the S180L mutation, S200L,
replicated these findings, with heterozygotes protected from weight loss (a cardinal clinical feature of human tuberculosis) and homozygotes displaying increased bacterial burden and lung inflammation.

In vitro, macrophages from mice carrying the L allele displayed impaired phagosome maturation and killing of Mtb but did not show evidence of impaired cytokine production. In contrast, macrophages from TLR-deficient mice displayed impaired cytokine production but preserved phagosome maturation and killing of Mtb. Mal-deficient macrophages displayed impairment of cytokine production in addition to the phenotype seen in the S180L macrophages of impaired phagosome maturation and killing.

These findings led us to search for a TLR-independent function for Mal. We show here a TLR2- and TLR4-independent role for Mal in the IFNGR signaling pathway. Mal bound to the IFNGR and MyD88, but not TLRs 2 and 4, are required for macrophage killing of Mtb.

IFN-γ is a canonical macrophage activator and is known to play a critical role in immune responses to Mtb (Bogunovic et al., 2012; Cooper et al., 1993; Filipe-Santos et al., 2006; Flesch and Kaufmann, 1991; Flynn et al., 1993). IFN-γ is secreted in large quantities by activated Th1 cells (Mosmann and Coffman, 1989), activated CD8+ cytotoxic cells (Sad et al., 1995), and NK cells (Perussia, 1991). However, our model for bactericidal activity and autophagy consisted of a monoculture of macrophages. There are numerous reports of macrophages secreting IFN-γ (Darwich et al., 2009; Di Marzio et al., 1994; Fenton et al., 1997; Fultz et al., 1993), albeit in limited quantities, although some authors have highlighted the possible effect of contaminating cells in producing IFN-γ (Schleicher et al., 2005). The increased proportion of IFN-γ producing cells in macrophages pre-stimulated with LPS and then “recovered” (O’Carroll et al., 2014) provides compelling evidence that macrophages can produce IFN-γ given appropriate stimuli.

We show here that the murine immortalized and primary macrophages used in our Mtb infection model secreted small but functionally decisive quantities of IFN-γ in response to infection with Mtb and that Mal played a critical role in macrophage responses to Mtb, which are IFN-γ dependent.

Given our identification of a role for Mal in IFNGR signaling and its established role in TLR2 and TLR4 signaling, we examined the effect of the S180L polymorphism and the murine equivalent of the S180L polymorphism, S200L, on these pathways. We show that responses to IFN-γ are reduced in human cells with the 180L variant. Human 180L variant Mal showed a reduced affinity for the IFNGR. Cells from mice with the equivalent mutation also showed impairment in IFNGR signaling.
Human S180L reduced responses to TLR2 and TLR4 ligands, consistent with the known role of Mal as a signaling adaptor protein downstream of TLRs 2 and 4, and with published data on the role of TLR2 as a pattern-recognition receptor involved in pro-inflammatory cytokine production by Mtb-infected macrophages. Previously published data have shown that Mal is not required for responses to high doses of TLR2 ligands (Kenny et al., 2009); however, we hypothesize that the doses of Mtb used in this study correspond to the lower doses of TLR2 ligands for which Mal is required. Our findings that S180L reduced responses to TLR 2 and 4 ligands are consistent with a previous report using L-variant Mal transfected into murine MEFs (Khor et al., 2007) and with a recent study where PBMCs from individuals with the Mal S180L allele were stimulated with heat-killed Mtb and with a recent study where PBMCs from individuals with the L-variant Mal transfected into murine MEFs (Khor et al., 2007) correspond to the lower doses of TLR2 ligands for which Mal is required. Our findings that S180L reduced responses to TLR 2 and 4 ligands are consistent with a previous report using L-variant Mal transfected into murine MEFs (Khor et al., 2007) and with a recent study where PBMCs from individuals with the Mal S180L allele were stimulated with heat-killed Mtb (Capparelli et al., 2013). In contrast, another publication reported no difference between TLR2 and TLR4 signaling in vitro in PBMCs from individuals with the SS and SL genotypes but did show an increase in response to low doses of TLR2 ligand in PBMCs from a single individual with the LL genotype (Ferwerda et al., 2009). This finding might have been caused by the presence of polymorphisms in MyD88 which interact with the Mal SNP (Capparelli et al., 2013).

Macrophages from mice homozygous for the S200L mutation, the murine equivalent of S180L, did not show an impairment in TLR signaling but did show an impairment in IFN-γ signaling. Murine Mal differs from human Mal in that it has 20 more amino acids at the N terminus. Mutations in Mal might selectively impair certain signaling pathways only, as demonstrated by a recent report on a form of Mal with an altered lipid binding domain, which selectively impaired responses to the TLR9 ligand CpG but not the TLR4 ligand LPS (Sonham et al., 2014).

Importantly, the selective impairment of IFN-γ but not TLR signaling in S200L macrophages meant that the reduced phagosomal maturation and bacterial killing in macrophages with the L allele and the increased bacterial burden and increased inflammatory response seen in homozygote S200L mice could be the result of aberrant IFN-γ signaling associated with the S180L SNP rather than the result of impairment in TLR signaling. The increased inflammation seen in the homozygote mutant mice might reflect the increase in bacterial burden in the homozygote mice or might reflect a loss of IFN-γ-mediated regulation of neutrophil recruitment and inflammation (Mishra et al., 2013; Nandi and Behar, 2011). The increase in bacterial burden and inflammation is not as marked as the defect seen in mice entirely deficient in IFN-γ (Cooper et al., 1993; Flynn et al., 1993), but could be consistent with a partial defect in IFN-γ signaling.

Macrophage in vitro assays and assessment of bacterial burden and inflammation following infection demonstrated a disadvantage for homozygote mutants, whereas serial weights demonstrated increased severity of disease in both WT and mutant homozygote individuals. A number of publications on the S180L SNP and TB susceptibility in humans have reported a heterozygote advantage and/or increased susceptibility in mutant homozygotes. A heterozygote advantage in vivo has also been reported for a SNP in leukotriene A4 hydrolase (LTA4), with impaired in vitro responses seen in homozygotes for the mutation. This effect has been attributed to the effect of the SNP on mitochondrial reactive oxygen species production and cell necrosis (Roca and Ramakrishnan, 2013). As we face an era of drug-resistant tuberculosis, improved understanding of common mutations, which affect inflammatory responses to pathogens such as Mal S180L, might guide us to improved use of immunomodulatory treatment. Tobin and colleagues have highlighted the potential of using LTA4H host genotypes to guide choice of treatment for tuberculosis: individuals with tuberculous meningitis with a LTA4 genotype associated with an excessive inflammatory response benefited from adjunctive immunomodulatory steroid treatment, whereas this was harmful in those with a LTA4 genotype associated with an inadequate inflammatory response (Tobin et al., 2012). It is tempting to speculate that the Mal S180L genotype could be used to inform treatment decisions in a similar manner.

The S180L SNP in Mal has been reported to be associated with altered susceptibility to not only mycobacterial disease, but also to other infectious diseases including pneumococcal disease, malaria, and Chaga’s disease. IFN-γ signaling also plays an important role in immune responses to these pathogens. Hitherto, the association of systemic lupus erythematosus (SLE) with S180L has been unexplained. TLR2 and TLR4 are not thought to play an important role in SLE (Kim et al., 2009), although TLR 9 has been implicated (Yang et al., 2012). Our data suggest that the increased susceptibility to SLE associated with S180L might be due to defects in the Mal-dependent IFN-γ signaling pathway rather than alterations in TLR2 and 4 signaling (Pollard et al., 2013).

Indeed, IFN-γ has a critical role in immunity, including promoting differentiation of macrophages to a classically activated phenotype (Martinez and Gordon, 2014). IFN-γ plays a role across a spectrum of non-infectious diseases including atherogenesis, autoimmune diseases such as chronic atopic dermatitis, and cancer (Feingold, 2014; Ikeda et al., 2002; Schroecksnadel et al., 2006). Given the frequency of the Mal S180L SNP, it might be fruitful to assess whether the Mal-dependent IFN-γ signaling pathway plays a role in these diseases.

EXPERIMENTAL PROCEDURES

Cell Lines and Culture

Primary bone-marrow-derived macrophages were derived from the femurs of Tirap+/−, Tirp−/−, and WT mice and differentiated for 7 days with medium containing M-CSF. THP-1 cells (ATCC) were transfected with siRNA against Mal (Dharmacon) and scrambled control prior to being differentiated into macrophage-like cells with phorbol myristate acetate (100 nmol/L).

Assessment of Bacterial Growth

Macrophages were grown at 1 × 10^5 cells/ml in 12-well plates in antibiotic-free RPMI supplemented with 10% fetal calf serum. A suspension of Mtb H37Rv was prepared as described in Supplemental Experimental Procedures, and macrophages were infected with Mtb at a MOI of 10 bacteria/macrophage. Extracellular bacteria were washed off at 3 hr post-infection. Cells were lysed at the indicated time points and bacteria were harvested and colonies were counted approximately 21 days later.

Phagosome Maturation Assays

Mtb H37Rv was labeled with FITC (1 mg/ml, Sigma). Bacteria were incubated with cells for 1 hr prior to the addition of LysoTracker Red DND-99 (Invitrogen) (100 nmol/L) for 1 hr prior to fixation. Alternatively, cells were fixed, permeabilized, and with anti-CD63/LAMP-3 (Santa Cruz Biotechnology) (1 μg/ml) followed by secondary antibody. Images were recorded on an Olympus FluoView 1000 and a Zeiss LSM 510 laser scanning confocal microscope.
Autophagy Analysis
Autophagosome formation was measured by LC3 punctate staining using LC3 antibody (Invitrogen). Autophagic flux was inhibited using either bafilomycin (100nM) or a combination of E64d and pepstatin.

Cytokine Measurements
Cytokine measurements were performed in supernatants using commercial ELISA kits.

Co-Immunoprecipitation
HEK293 cells were incubated for 24 hr with DNA encoding various proteins in the presence of Genejuice. Immunoprecipitation was initiated by incubation of lysates for 2 hr with protein A/G sepharose beads (Amersham) plus control antibodies. Precleared lysates were then incubated at 4°C for at least 2 hr with various antibodies and protein G beads (Amersham) prior to separation by SDS-PAGE and visualization with an enhanced chemiluminescence system (Li-Cor).

Plasmids
HA-Mal has been previously described (Valkov et al., 2011). Site-directed mutagenesis was carried out to generate HA-tagged S180L variant Mal which was amplified using Miniprep (Qiagen). The sequences of both HA-Mal and HA-S180L Mal were confirmed by sequencing (Eurofins).

Fluorescence Lifetime Imaging Microscopy-Fluorescence Resonance Energy Transfer
Macrophages were stained with primary antibodies against IFNGR2 (MyBioSource) and MyD88 (Abcam) and secondary antibodies Alexa Fluor 488 (donor) and A568 (acceptor) antibodies. An Olympus FV1000 microscope equipped with a PicoHarp300 FLIM extension and a 485 nm pulsed laser diode from PicoQuant was used to record FLIM data.

Genotyping
Mal genotype was determined on DNA extracted from buccal swabs (Isolohexil, Cell Product). Genotyping of the Mal S180L and polymorphism was performed using the TaqMan Allelic Discrimination System (PE Biosystems).

FACS Analysis
Immortalized macrophages were stimulated, fixed, and stained with anti-pSTAT1 (Y701) antibody conjugated to AlexaFluor 488 before analysis on a BD FACS Canto II analyzer. For analysis of intracellular IFN-γ production, macrophages were infected with Mtb H37Rv and then incubated with Brefeldin A. Cells were permeabilized and stained with an anti-mouse IFN-γ antibody (BD) or isotype control.

Mice
Mal S200L heterozygote and homozygote mice (C57BL/6 background) were generated as described in Figure S1. S200L mice were generated with C57BL/6 embryonic stem cells and C57BL/6 blastocysts. Mice were age and sex matched. Mice were infected with Mtb via aerosol (Martens et al., 2012) at approximately 8 weeks of age.

Bacterial Load
At 8 weeks, mice were sacrificed. Lung homogenates from six mice were plated to measure bacterial burden.

Lung Histology
Lungs were inflated, fixed, and stained (H&E). Lung surface area of inflammation was measured with a Nikon Eclipse E400. Percent total lung area involved with inflammation was calculated by dividing the cumulative area of inflammation by the total lung surface area examined for each lung studied.

Lung Cytokine Expression
Lung lysates were assayed for TNF-α by ELISA (R&D Systems).

Statistical Analysis
A one-way ANOVA was performed to assess for statistically significant differences of the means between groups. Chi-square analysis was used to assess statistically significant proportions of co-localization between groups. p values < 0.05 were considered significant. Error bars represent SD of the mean.

SUPPLEMENTAL INFORMATION
Supplemental Information includes six figures and Supplemental Experimental Procedures and can be found with this article online at http://dx.doi.org/10.1016/j.immuni.2016.01.019.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS
Supported in part by Health Research Board Ireland by grant NSAFP 2009/2 (C.N.C.). CSA/2004/7 and CSA/2012/16 (J.K.), The Royal City of Dublin Hospital Trust (J.K.), NIH grant HL081149 (H.K.), Wellcome Trust PhD award 102395/Z/13/Z (A.S.), Science Foundation Ireland Investigator Awards 08/IN.1/B2038 (S.G.) and 12/IA/1421 (E.C.L.), and the Science Foundation Ireland Strategic Research Cluster 07/SRC/B1144 (E.C.L.).

Received: August 26, 2014
Revised: April 20, 2015
Accepted: November 6, 2015
Published: February 16, 2016

REFERENCES

IL-12/IL-18-stimulated mouse macrophage populations. Blood 105, 1319–1328.

