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Abstract

In this thesis we propose new colour transfer and shape registration methods based

on the robust L2 distance. For colour transfer, we present an approach inspired by

techniques recently proposed in shape registration. We model the colour distribution of

a palette and target image using Gaussian Mixture Models and register them using the

L2 distance. We estimate a parametric transfer function φ which can be easily stored in

memory for later use and allows for the interpolation of several colour transfer functions

which can create interesting special effects. We also show that pixel correspondences

can be easily incorporated into our method to enhance the colour transfer result. We

show that our method compares well both qualitatively and quantitatively to other

colour transfer approaches and that our recolouring step is computationally the fastest.

We also propose a new shape registration technique which extends previous regis-

tration methods that model shapes as probability density functions and estimate the

registration parameters by minimising a divergence between them. Our proposed tech-

nique models the point positions and directional information of a shape, and we inves-

tigate mixture models with Dirac, Gaussian and von Mises-Fisher kernels. We validate

our framework experimentally on shapes differing by both a rotation and non-rigid

deformation and show that in general using both point and normal vector information

allows for better registration of shapes. Finally, we present a short exploration of the

results generated when two optimal transport techniques are applied to the 3D shape

registration problem.
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Chapter 1

Introduction

The widespread use of scene capturing devices such as cameras and 3D scanners has

generated many different forms of data for processing and analysis, such as images,

videos and point clouds. Computer vision techniques have been developed to process

and analyse this data in order to develop a better understanding of the scene being

captured. In order to combine several images or video frames for analysis, preprocessing

steps typically need to be carried out to make the data coherent. Two such steps include

colour transfer (or mapping) and shape registration, and in this thesis we will explore

both of these areas. In both colour transfer and shape registration, the success of

a technique can be assessed by how well it meets certain criteria, such as its speed,

robustness to noise, flexibility, consistency of results, amount of user input required

and the accuracy or quality of its performance. Methods which tick all of these boxes

are highly sought after and in this thesis we will investigate ways to improve these

aspects of current state of the art techniques.

1.1 Overview and motivation

1.1.1 Colour Transfer

When many images or videos are captured of a scene, several factors can cause the

colours of the same object to become inconsistent over several images. These factors

include different lighting conditions, different imaging devices or different device set-

tings. In many computer vision systems, such as image or video stitching systems
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Target Image Palette Image Result Image

Figure 1.1: Colour transfer techniques applied to images with similar content and pixel
correspondences (Row 1), and applied to images with different content(Row 2).

and 3D stereo systems, images are required to have consistent colours. In these cases,

colour transfer methods can be used to fix colour differences between images, as in

Figure 1.1.

Colour transfer techniques can also be used to transfer the colour feel of one image

to another when there is no shared content between the images, as in Figure 1.1. This

type of colour transfer is commonly used as a post processing step in image editing

or film production. These techniques can also take user input into account when

determining the colour mapping that should be applied, or use pixel correspondences

to enhance the colour transfer result.

While many colour mapping systems exist, they are typically inflexible and specified

for a single type of data, such as images with similar content, images with different

content, or video data. Few techniques can be applied successfully to all data types.

With the high demand for high quality HD images and video, a very large number of

pixels typically require processing and the speed of recolouring techniques has become

an important factor. Many colour transfer techniques also require the storage of large

look up tables which can be very memory consuming. Many methods also use discrete

approximations of colour distributions which can create blocky artifacts in the result
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(a) (b) (c)
Point Cloud Image Curve
Registration Registration Registration

Figure 1.2: Applications of shape registration. (a) Point cloud registration: the meshes
shown in gold and green (left) are registered so that they are aligned (right); (b) Image
registration: several images of the same scene are registered to create a larger picture
of the scene; (c) Curve registration: several curves representing the letters ‘fda’ have
been registered so that they overlap.

images or videos, and require a further smoothing step as a post process. In this thesis,

we try to combat some of these issues arising in the current state of the art techniques,

and propose a method which creates good colour transfer results with few artifacts,

is robust to pixel correspondence outliers, can be applied to images with both similar

and different content, and has a fast recolouring step.

1.1.2 Shape Registration

In many computer vision systems, shape registration is also an essential preprocessing

step which ensures that images or point clouds representing the same object are prop-

erly aligned. Image registration is important in many applications including stereo

vision, image panorama creation and in the analysis of medical images. 3D shape reg-

istration can be used to register 3D scans or point clouds which are captured using 3D

scanners such as the Kinect. This step is essential for techniques such as 3D surface

reconstruction, which typically register several scans of a scene and construct a surface

from the aligned point clouds. Some applications of shape registration are given in

Figure 1.2.

While point set representations of 2D or 3D shapes are easily generated from images

or scans, other information capturing the structure of the shape can be easily computed
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from images and point clouds but is typically not taken advantage of when registering

shapes. For example, image gradients and feature descriptors can be computed from

an image, while normal vectors and shape curvature can be computed from 3D point

clouds and meshes. While many shape registration techniques use only the point

cloud information, taking into account these additional features would create a more

comprehensive model of the shape and could prove more powerful for shape registration

than models taking into account only point cloud information. In this thesis, we

propose a shape registration technique based on the L2 distance, which not only takes

into account the point cloud information of 2D and 3D shapes, but also incorporates

normal vectors into the shape model. Our goal is to find a new registration technique

which improves on the registration accuracy of current state of the art techniques while

still remaining robust to outliers. We propose using the von Mises-Fisher distribution

to model the unit normal vectors and investigate mixture models using a combination

of Gaussian, Dirac and von Mises-Fisher kernels.

1.2 Summary of Contributions

The key contributions of this thesis are:

1. We propose a colour transfer method based on the L2 distance which minimises

the divergence between two probability density functions (PDFs) in order to

match the colour distribution of one image to another. Our framework uses

continuous PDFs to model colour distributions which eliminates artifacts that are

typically generated by other techniques that used discrete distribution estimation

methods such as histograms.

2. We propose a framework for colour transfer that can be applied to different

data types including images with no shared content, images with similar content,

and video data. While our algorithm can be successfully applied to target and

palette images which have no pixel correspondences, correspondences can also be

easily incorporated when they are available. We also propose to use a parametric

colour transformation which, once estimated, can be easily applied to several

video frames without creating any temporal artifacts.
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3. We explore the benefits of using a parametric transformation for recolouring and

show that it allows the recolouring step to be applied in parallel, ensuring that

the recolouring is fast. It also allows for the creation of interesting colouring

effects which can be created by interpolating or fading between more than one

colour transfer function. These interpolated colouring effects can also be easily

applied to video clips.

4. We propose a shape registration technique that takes into account both point

positions and directional information in the form of unit normal vectors when

modelling 2D and 3D shapes. We also propose using the von Mises-Fisher distri-

bution to model the normal vectors and show that the L2 distance between two

mixture models with von Mises-Fisher kernels has an explicit expression when

the dimension d = 3. We show that our proposed approach gives improved reg-

istration results in comparison to other shape registration techniques, especially

when the transformation being estimated includes a rotation.

5. We explore the application of two optimal transport techniques, previously pro-

posed for colour transfer, to the shape registration problem to see if they prove

to be advantageous in this area.

1.3 Thesis outline

The work carried out in this thesis is structured into six chapters. An overview of the

current state of the art in colour transfer and shape registration is presented in Chapter

2. In Chapter 3 we outline both colour data and shape data, and detail the different

representations that these data types can have. We also summarise several transfor-

mation functions that are typically used in colour transfer and shape registration.

Chapters 4 and 5 contain the main contributions of this thesis. In Chapter 4 we

propose a new colour transfer technique which is based on minimising the L2 distance

between two PDFs, modelled as Gaussian Mixture Models (GMMs). When choosing

our parametric colour transfer function φ, we investigate several different transforma-

tions including affine transformations, thin plate spline transformation and radial basis

functions. We explore both RGB and CIELab representations of the colour data and

investigate the use of the K-means and Mean Shift clustering algorithms for estimating
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the centres of the kernels in each GMM. We show that our technique can be enhanced

by pixel correspondences, can be easily applied to video data, and has a fast recolouring

step. We also present an extensive experimental section which presents both qualita-

tive and quantitative results showing that our method competes well with other state

of the art techniques.

In Chapter 5 we present our shape registration technique that proposes to model

both the point positions and directional information of 2D and 3D shapes. We present

four cost functions which model directional data using the von Mises-Fisher distribution

and minimise the L2 distance between two such PDFs. In the experimental section

we test how our proposed cost functions perform when registering 2D and 3D shapes

differing by a rotation or non-rigid deformation, and compare our method to other

state of the art techniques.

In Chapter 6 we present a short investigation into the application of optimal trans-

port methods to 3D shape registration to see if they provide any benefits to the area.

Again, we present some registration results on 3D shapes differing by both a rota-

tion and non-rigid deformation, and investigate the transformation φ estimated by this

technique.

Finally, Chapter 7 summarises the work carried out in this thesis and presents

possible future directions of investigation.

1.4 List of publications

Part of the work carried out in this thesis has been published in the following articles:

1. M.Grogan, J. Carvalhot and R. Dahyot, Recent techniques for (re)colouring, Irish

Machine Vision and Image Processing Conference (IMVIP), Galway, August 2016

[9].

2. M.Grogan and R. Dahyot, short paper, L2 Registration for Colour Transfer in

Videos, Conference on Visual Media Production (CVMP), London, November

2015 [10]. This work is summarised in Chapter 4.

3. M.Grogan, M. Prasad and R. Dahyot, L2 Registration for Colour Transfer, Eu-

ropean Signal Processing Conference (EUSIPCO), Nice France, September 2015
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[11]. This work is summarised in Chapter 4.

4. A. Bulbul, M. Grogan and R. Dahyot, 3D reconstruction of Reflective Spheri-

cal Surfaces from Multiple Images, Irish Machine Vision and Image Processing

Conference (IMVIP), Dublin, August 2015 [12].

5. M.Grogan and R. Dahyot, Mesh from Depth images using GR2T, Irish Machine

Vision and Image Processing Conference (IMVIP), Derry-Londonderry, Northern

Ireland, August 2014 [13].
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Chapter 2

Related Work

In this chapter we give an overview of shape registration and colour transfer, and their

applications in computer vision. One of the main contributions of this thesis is to

introduce a colour transfer technique which has been inspired by techniques previously

proposed in shape registration. Therefore, in this chapter we will first summarise

techniques in the field of registration (Section 2.1), and then present a brief review of

colour transfer (Section 2.2).

2.1 Registration

Registration is a fundamental task in computer vision and graphics, and serves as an

initial step in many applications including surface reconstruction, medical image anal-

ysis, and object recognition. These applications rely on tasks such as stereo matching,

shape matching and image retrieval, all of which can be accomplished using point set

registration [14, 15, 16]. The point representations used include feature points extracted

from images, points on a shape contour or vertices in a mesh [17].

The overall aim of registration is to find the best alignment between two or more

shapes, as in Figure 2.1. These shapes can represent the same object or different

objects with similar shape. In this section we will outline the registration problem

(Section 2.1.1) and registration algorithms that can be categorised as ICP-based algo-

rithms (Section 2.1.2), those that use local shape descriptors (Section 2.1.3), EM-like

algorithms (Section 2.1.4) and those that match probability density functions (Section
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Figure 2.1: Given two views of an object, the aim of registration is to find the trans-
formation that aligns the two views [1].

2.1.5). For an exhaustive review see [18, 1].

2.1.1 The registration problem

Suppose we are given two point sets X = {xi}n1
i=1 and Y = {yj}n2

j=1, where xi, yj ∈ Rd.

The registration problem involves determining the transformation φ : Rd 7→ Rd to be

applied to the model point set X, such that X and Y are aligned and the difference

between them is minimised. As there are an infinite number of solutions for φ, some

a priori knowledge about φ is assumed, for example, whether φ is a rigid or non-rigid

transformation. Often, a set of point correspondences {(xi, yi)}i=1,..n is used to improve

the estimation of φ, and indicates corresponding points in the point sets X and Y that

should be aligned after registration.

Estimating a rigid transformation is a challenging problem and has been widely

studied [19, 20, 21]. Some challenges which face this type of problem include analysing

data which is effected by noise, outliers, or self occlusion. Two data sets which have

a limited amount of overlap or have different data resolutions can also be difficult

to register [18]. As well as facing the above challenges, non-rigid registration must

also account for deformation. In many cases this deformation is unknown and can
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be hard to model. The solution space therefore has a higher dimensionality than

the rigid registration space, making the optimisation more complex [22]. In contrast

to rigid transformation estimation, which typically requires only a small number of

correspondences to be successful, non-rigid registration often requires a large set of

reliable correspondences for an accurate solution to be estimated [18].

2.1.2 Iterative Closest Point

One of the most popular methods for estimating φ when it is a rigid transformation is

the Iterative Closest Point algorithm (ICP). The ICP algorithm was first proposed by

Besl et al. [23] and Zhang et al. [24], and uses the nearest neighbour relationship to as-

sign point-to-point correspondences between the two datasets. These correspondences

are then used to estimate the transformation using least squares. This two step process

is iterated until some convergence criterion is reached. This method is simple and has

a low computational complexity, however it assumes that closest point pairs should

correspond, which may not be true if the point sets are not coarsely aligned. Without

a good initialisation, the ICP algorithm has a tendency to fall into local minima [25].

Improvements to all phases of the original ICP algorithm have since been proposed,

from the selection of point correspondences to the minimisation strategy [25, 21, 26,

27, 28]. To alleviate the local minima issue, Fitzgibbon et al. [21] proposed LM-ICP

which uses a smoother objective function, resulting in an enlarged basin of convergence.

Instead of minimising point to point distances, Chen et al. [29] minimize point to plane

distances. Yang et al. [28] propose to combine ICP with a branch-and-bound scheme

which efficiently searches the 3D motion space. They also derive novel upper and lower

bounds for the ICP error function and provide a globally optimal solution to the 3D

registration problem.

2.1.3 Local Shape Descriptors

When estimating non-rigid transformations, taking into account the neighbourhood

structure of the point sets has been proposed [30, 31, 32, 33]. Belongie et al. [30]

propose using the shape context descriptor when registering point sets, which helps

establish better point correspondences. Zheng et al. [34] introduce the concept of lo-

cal neighbourhood structure for the general point matching problem, which was later
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improved in [35]. Ma et al. [32] also propose a matching method which exploits local

structures and uses the shape context descriptor to establish rough point correspon-

dences before estimating the non-rigid transformation.

Yang et al. [33] propose to combine global and local structural differences in a global

and local mixture distance (GLMD) based method for non-rigid registration. Their

iterative two step process alternately estimates the correspondences and computes the

transformation. They define a distance which combines both global and local feature

differences and use it to estimate point correspondences. An annealing scheme is

implemented which ensures that the defined distance gradually changes from a local

distance to a global distance, allowing the initially estimated transformation to account

for any large deformation, with a more non-rigid transformation being estimated in the

final iterations.

2.1.4 EM-Like Algorithms

To overcome the limitations of ICP based algorithms, probabilistic methods have been

proposed [36, 22]. Instead of using one-to-one correspondences as in ICP based tech-

niques, Chui and Rangarajan [36] propose a one-to-many correspondence scheme, which

was later extended in [37]. Using soft assignment and deterministic annealling, they

alternately estimate the transformation and update the correspondences. They have

also shown that this alternate update scheme is equivalent to the Expectation Max-

imisation (EM) algorithm for GMMs [36]. The non-rigid transformation is modelled

using thin plate splines.

Several methods have also treated the registration problem as a maximum likeli-

hood problem [22, 38, 39, 40]. Myronenko et al. [22] present a similar method to that

proposed by Chui et al. [36]. They also consider the registration problem as a proba-

bility density estimation problem, letting one point set represent the GMM centroids

and the other the data points. They also incorporate a coherent motion constraint and

model the non-rigid transformation as a Gaussian radial basis function.

2.1.5 Matching Probability Density Functions

Other methods propose to model both datasets as probability density functions. The

transformation is then estimated by minimising the distance between these density
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functions. In [41], Jian and Vermuri showed that both ICP methods and EM-like

algorithms can also be interpreted as methods which minimise a divergence between

pdfs. Both the modelling of the density functions and the metric used can differ

among methods. Kernel density estimates (KDEs) are a non-parametric method used

to estimate a density function and are regularly used in density matching methods

[42, 41, 43].

Kernel Density Estimates

Given a dataset {xi}i=1,..,n ∈ Rd drawn from a distribution with an unknown density

p(x), the density p(x) can be estimated using a kernel density estimate as follows:

p̂(x) =
1

n

n∑
i=1

1

hd
K
(‖x− xi‖

h

)
(2.1)

Here K is a kernel function. Each kernel function is centred about a data point

xi and is controlled by the bandwidth h > 0. A kernel can be any function f which

satisfies the following conditions:

(a)

∫
f(x)dx = 1 (b)

∫
xf(x)dx = 0 (c)

∫
x2f(x)dx <∞ (2.2)

The Gaussian kernel is commonly used and is given by:

K
(‖x− xi‖

h

)
=

1

(2π)
d
2

exp
(−‖x− xi‖2

2h2

)
. (2.3)

A KDE with a Gaussian kernel is equivalent to a GMM with isotropic Gaussians centred

at each data point.

Choosing an appropriate value for h is an important task as it directly affects the

shape of the density estimate. Some examples of the impact of different values of h on

the density estimate can be seen in Figure 2.2. Several methods for estimating h have

been proposed and are based on minimising a similarity metric between the estimated

density p̂(x) and the true, but unknown density, p(x) [44, 45].
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(a) Gaussian kernel h = 1 Gaussian kernel h = 2.5

(a) Gaussian kernel h = 5 Gaussian kernel h = 10

Figure 2.2: This figure shows the effect that changing h has on the density estimated
using a kernel density estimate. In each figure, Gaussian kernels (red) with bandwidth
h are centred about each data point (green) to compute the density estimation (blue).
Figure sourced from [2].

Distance Metrics

Several distance measures have been proposed to compute the similarity between two

probability density functions f(x) and g(x) [41, 42, 46]. The Kullback-Leibler (KL)

divergence is given by [41]:

KL(g, f) =

∫
g(x) log

{
g(x)

f(x)

}
dx, (2.4)

and in [41], Jian and Vermuri observe that minimising an approximated KL divergence

[47] between two GMMs is equivalent to the ICP method. EM-like algorithms such as
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those proposed in [36, 22], which maximise the likelihood function, are also equivalent

to minimising the KL divergence between two probability distributions. In this case,

one pdf is modelled as a GMM while the other is a mixture of delta functions.

Another metric, known as the L2 distance, is given by [41]:

L2(g, f) = d1(g, f) =

∫
g2(x)dx− 2

∫
g(x)f(x)dx+

∫
f 2(x)dx. (2.5)

The L2 distance is the Euclidean distance between the density functions f and g

and can be conveniently rewritten as L2(g, f) = ‖g‖2−2〈g|f〉+‖f‖2. The term ‖f‖2 is

proportional to the quadratic Renyi entropy of f , while the scalar product term 〈g|f〉
is proportional to the Renyi cross entropy between g and f [48].

Both the L2 distance and the Kullback-Leibler divergence are part of a family of

divergences known as the power density divergence, more details of which can be found

in [41]. The advantage of computing the L2 distance over the KL divergence between

pdfs is that it can be computed explicitly with GMMs and it has also been shown

to be more robust to outliers [41, 49]. Jian and Vermuri [41] propose to register two

point sets by fitting a KDE with Gaussian kernels to each data set and minimising

the L2 distance between them. In [50], Arellano et al. extend this framework by

adding gradient direction information to the model and show that it gives improved

results for ellipse detection. They add an extra dimension to the KDE to capture the

direction of the normal vector at each point in the point set. However, their framework

proposes modelling the normal vectors using the Gaussian distribution, and while this

is suitable when the normal vectors are two dimensional, it is not suitable when using

normal vectors of higher dimensions.

When the pdf g is parametrised by a latent variable θ, the robust L2 distance can

be used to estimate θ as follows:

θ̂ = arg min
θ

{∫
g2(x|θ)dx− 2

∫
g(x|θ)f(x)dx

}
. (2.6)

Since the term
∫
f 2(x)dx is independent of θ it can be discarded from Equation 2.5.

When f is the empirical probability density function this estimator is known as the

L2E estimator [49], which has been previously proposed for shape registration by Ma

et al. [51]. Ma et al. also propose using point correspondences to improve robustness
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and reduce computational complexity.

When f and g are KDEs the kernel correlation KC can be computed as [42]:

KC(f, g) =
∑
xi∈f

∑
xj∈g

∫
K(x, xi)K(x, xj)dx. (2.7)

If K is chosen to be the Gaussian kernel, the kernel correlation between the GMMs

f and g is proportional to the term
∫
f(x)g(x)dx found in the L2 distance (Equation

2.5) and has been previously proposed for rigid registration by Tsin et al. [42]. When

estimating non-rigid transformations a normalisation term can be added to KC leading

to the similarity measure Cor:

Cor(f, g) =

∫
f(x)g(x)dx√∫

f(x)2dx
∫
g(x)2dx

, (2.8)

which is commonly considered as the correlation between f and g [41]. This also has a

closed form solution for GMMs and was used to register point sets differing by a rigid

transformation in [52]. The Cauchy-Schwarz divergence has a similar form and has

also been used for shape registration [53]. The Generalised Relaxed Radon Transform,

or GR2T [54], has also been proposed for robust inference and is related to the cross

correlation between two pdfs 〈g|f〉. It has been previously proposed for both shape

registration and surface reconstruction [55, 56].

2.2 Colour Transfer

Colour transfer, or colour mapping, is a set of techniques that aim to modify the colour

feel of a target image or video using an exemplar colour palette provided by another

image or video, as in Figure 2.3. This colour transformation involves estimating a

transfer function φ which, once estimated, is used to recolour a colour pixel value

x to φ(x). A range of applications in computer vision and graphics has motivated

research in this area including image stitching, greyscale image colourisation, and colour

correction in stereo images [57, 58, 59]. Color mapping techniques can be classified into

three categories: geometry based methods, statistical based methods, and user assisted

techniques, as in Figure 2.4. Within these groups the methods can be classified further
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Figure 2.3: Colour transfer methods change the colour feel of a target image or video
using a colour palette provided by an exemplar image or video.

based on the images they can be applied to, the colour space that they are performed

in, whether they are local or global methods, and the statistical properties that they

consider. In this section, we give an overview of the state of the art methods in each

area. A more detailed review can be found in [3].

2.2.1 Geometry based methods

In applications such as image stitching and stereo capture, the appearance of two images

taken of the same scene may differ due to differences in viewpoint, lighting conditions,

imaging devices and acquisition parameters. Colour transfer techniques are then used

to enhance the colour consistency between the two images. The transfer of colour from

one image to another can be facilitated by searching for correspondences between the

two images. This ensures that features which appear in both images have the same

colour. However, as many geometry based methods rely on colour correspondences

when computing the colour transformation, they cannot be easily extended to target

and palette images that have no pixel correspondences available.

Sparse Feature Correspondences

Feature detection methods such as SIFT [60] and SURF [61] have been used in many

colour transfer algorithms to find sparse feature correspondences between the target

and palette images [62, 63, 64]. Methods such as RANSAC [65] can also be applied to

effectively reject outliers from the correspondence set. Yamamoto et al. [62, 63] com-
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Figure 2.4: Colour transfer methods can be broadly classified as Geometry based meth-
ods, statistics based methods and user-guided approaches [3]. Geometry based methods
(left) use pixel correspondences in the target and palette images, such as those marked
in green (top left), to compute the colour transfer function. Statistical methods (mid-
dle) can be applied to images with different content and model the colour distribution
of the images using statistical properties. User guided methods (right) rely on user
input to recolour images. To recolour the grey scale image of the bird (top right) to
look like the ground truth image (top left), the user scribbles colours on the grey scale
image which are then used to determine the colours in the result image.

pute a set of spatial correspondences using SIFT, and then apply Gaussian convolution

kernels to the target and palette images to compute a set of corresponding colours. The

use of Gaussian kernels reduces noise and improves the robustness of the technique.

They use lookup tables to indicate corresponding colours and apply these to the target

image. A similar technique was implemented by Tehrani et al. [64] and both methods

are applied to each colour channel independently. Hwang et al. improve the robustness

of the correspondence step by calculating a probability value for each correspondence

pair [66]. These values are then used as a weight in the moving least squares step,

which computes a non-linear and non-parametric color mapping. The moving least

squares transformation is different for each pixel value in the target image and can

be very costly for large images. They therefore propose a parallel processing scheme

to increase computational efficiency. As the moving least squares transformation is

different for each pixel, it allows nearby pixels in the result image to be recoloured

differently and unwanted artifacts can appear as a result. This typically happens when
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incorrect correspondences are used, indicating that their algorithm is not robust when

a large number of pixel correspondences are incorrect.

Region-based Correspondences

Instead of using sparse feature matching, matching regions from both images has also

been proposed and can improve the robustness of the results. Wang et al. [67] segment

the images using Mean Shift and then carry out feature detection using an optical flow

based algorithm. Kagarlitsky et al. [68] use a colour consistency measure to decompose

the images into regions and implement histogram matching on the corresponding re-

gions. This quad-tree segmentation can create blocky artifacts which require additional

refinement.

Dense Feature Correspondences

In the case where the differences between the images are due to deformation or non-

rigid motion, dense correspondence based methods have been proposed. Chen et al.

propose to estimate the global disparity and use this to find the dense correspondences

[69]. Doutre et al. [70] use block-based methods to determine the disparity between

two views. They spatially average colours to extract colour correspondences and use a

linear color mapping model.

In [71], Hacohen et al. propose a technique to make photos in a collection more

consistent. They use an extension of the Generalised Patch Match algorithm [72]

to find dense correspondences in parts of the target and palette images. A global

parametric transfer curve for each colour channel can then be defined using these

correspondences. This transfer function ensures that colours in the target image, which

do not match any colour in the palette image, can still be transformed in a coherent

manner. This technique was extended in [73] to deal with a number of images by

imposing a graph structure on them. Again, parametric curves were used to apply the

colour transformation to the target image.

2.2.2 Statistical based methods

When the target and palette images have different content and direct correspondences

are not available, statistical based methods have been proposed to define a mapping
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between the images. These methods use statistical properties to describe the colour

distribution of both images and propose ways to reshape the colour distribution of the

target image so that it matches that of the palette image.

Registration of colour statistical moments

The pioneering work of Reinhard et al. [74] proposed to use a warping function φ with

parametric form [74]:

φ(x, θ = {G, o}) = G x+ o, (2.9)

with the vector o representing an offset and the 3× 3 diagonal matrix G representing

the gains for each colour channel. The estimation of the parameter θ is performed by

registering the probability density functions of the colours in the palette and target

images, denoted pp and pt respectively, represented as simple multivariate Gaussians

(pp ≡ N (x;µp,Σp) and pt ≡ N (x;µt,Σt)) with diagonal covariance matrices Σp and

Σt. Since Normal distributions are fully described by their first two statistical mo-

ments, means and covariance matrices, the optimal mapping φ is specified by the

solution θ̂ that maps the empirical estimates of (µt,Σt) computed using the pixels val-

ues {x(i)
t }i=1,··· ,nt in the target image, to the empirical estimates of (µp,Σp) computed

using the pixels values {x(i)
p }i=1,··· ,np in the palette image. This technique performs well

when the colour distribution of the target and palette images can be well described by

a single Gaussian, but performs poorly when the colour distribution are more complex.

Optimal transport

In the area of optimal transport, for random variables x ∼ pt(x) and y ∼ pp(y), the

objective is to find the optimal transport map φ(x) = y that satisfies

pp(x) = pt(φ(x))× |det∇φ(x)| (2.10)

and minimises the transportation cost [75, 76]∫
x

c(φ(x)− x)2 pp(x) dx. (2.11)
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where the cost function c meaasures the distance between x and φ(x). This framework

can be applied to the colour transfer problem by letting pt(x) and pp(x) represent the

colour distributions of the target and palette images respectively. Constraining the map

φ to minimise the transportation cost ensures that it has some geometric properties

that other mappings do not possess, and these prove advantageous when applied to

the colour transfer problem. Firstly, this constraint ensures that the minimum number

of colour changes are made when matching pt(x) to pp(x). It also ensures that φ(x)

has some monotonicity properties which preserve the relative position of colours in the

transformed target image. This means that areas of the target image that were bright

will remain bright after transformation, and those that were dark will remain dark [76].

Another advantage of using the optimal transport map φ is that no strong hypotheses

are made about the distributions (as opposed to the Gaussian assumption made by

Reinhard et al. [74] described in the previous section). Moreover no parametric form

is imposed on the map φ.

Finding a solution to equations 2.10 and 2.11 when x ∈ R and y ∈ R (e.g. grey

scale images) can be defined using the cumulative distribution of colours in the target

and palette images Pt and Pp:

φ(x) = P−1
t ◦ Pp(x), (2.12)

However, the problem becomes non trivial in multidimensional colour spaces.

Of particular interest is the pioneering work of Pitié et al. [7] who propose an

iterative algorithm that first projects the colour pixels {x(k)} onto a 1D Euclidean

space, estimates φ̂ using Equation 2.12 and then applies it to move all values {x(k)}
along the direction of the 1D space. This operation is repeated until convergence.

This method increases the graininess of the recoloured target picture, especially when

the colour dynamic of the two pictures is very different. A solution to this artifact is

proposed later by the authors [6] as a post processing step to ensure the gradient field

of the recolored target image is as close as possible to the original target image.

Bonneel et al. [77] recently proposed to use a similar strategy for colour transfer,

and their approach is a generalisation of the method proposed by Pitié et al. which uses

1D Wasserstein distances to compute the barycentre of a number of input measures. As

well as being used for colour transfer between target and palette images, their method
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can also be used to find the barycentre of three or more weighted image palettes.

Optimal transport is now a widely used framework for solving colour transfer as

it allows modelling more various, realistic and complex forms for the distributions pt

and pp than simple multivariate Gaussians and allows for a parameter free form of the

warping function φ to be estimated. Histograms are often employed to approximate

the colour distributions of images [78, 79, 80] and used in optimal transport methods

[81, 82, 80]. Similar to the original algorithm proposed by Pitié et al. [7], these

discrete methods have a tendency to introduce grainy artifacts in the gradient of the

result image. Pitié et al’s subsequent extension [6] proposed a post processing step to

correct this artifact and ensure the gradient field of the recoloured target image is as

close as possible to the original target image. Similarly, recent methods have proposed

adding a step to impose that the resulting spatial gradient of the recoloured image

remains similar to the target image [83, 79, 82]. Alternatively, other methods have

proposed to relax the constraint that enforces the distributions of the recolored target

image and palette image to match exactly [81, 80, 82]. Bonneel et al. [77] also propose

using a gradient smoothing technique to reduce any quantisation errors that appear

in their results [84]. Frigo et al. [85] propose to remove artifacts by first estimating

an optimal transport solution and using it to compute a smooth Thin Plate Spline

(TPS) transformation to ensure that a smooth parametric warping function is used for

recolouring allowing them to apply their method to video content easily.

Using Gaussian Mixture models

Jeong and Jaynes [86] use colour transfer techniques to harmonise the colour distribu-

tions of non overlapping images of the same object, for tracking purposes in a multiple

camera setting. The colour chrominance (2D) distribution is modelled using GMMs,

and the transfer function is parametric with an affine form and is estimated by min-

imising the Kullbach-Leibler divergence between Gaussian components, using a robust

procedure to tackle outlier pairs. Xiang et al. [87] model the colour distribution of the

target image using a Gaussian mixture that is estimated by an EM algorithm. Each

Gaussian component in the mixture defines a local region in the target image, and

each segmented local region is recoloured independently using multiple palette-source

images, which are also segmented into regions using GMMs fitted to their colour distri-
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butions. Reinhard’s [74] transfer technique is then used to perform the colour transfer,

by associating the best Gaussian component from the sources to the Gaussian tar-

get region. Segmentation using alternative approaches (i.e. Mean Shift [88], K-means

[89]) is also tested to define the Gaussian mixtures. This approach relies on homo-

geneous colour regions, each captured with one multivariate normal in the 3D colour

space. Localised colour transfer using Gaussian Mixture Models between overlapping

colour images have also been proposed for colour correction, motion deblurring, denois-

ing and gray scale coloring [90]. Using one to one correspondences between Gaussian

components capturing the colour content of the target and palette images (or their

regions) have also been proposed. Oliveira et al. [91] proposed finding the mapping

of 1-dimensional truncated GMM representations, computed for each colour channel

of the target and palette images. However, this method is only applicable when corre-

spondences between the target and palette image are available.

2.2.3 User-assisted Methods

In most user assisted methods, the challenge of finding colour correspondences is solved

by the user. For example, Oskam et al. [92] propose a method which allows the

user to select the colour correspondences manually. The colour mapping is modelled

using radial basis functions in the CIELab colour space. Only colours in flat areas are

processed while colours at corners or edges are ignored. This creates artifacts in the

colour mapping, especially in areas around edges.

Other user assisted methods are sketch based. In this case, the user draws sketches

in the image to be colourised, and from these the colours are transfered. Dalmau-Ceden

et al. [93] propose a sketch based system which uses a probabilistic segmentation to

divide the image into different regions to be coloured. The user sketches are used to

define class labels and each pixel is assigned a probability indicating its membership

to each of the classes. The image is then coloured using the class probabilities and

user sketch colours. Other methods include that of Lischinski et al. [94] who allow

users to manually select regions of an image for local tonal adjustment, and An et al.

[95] who propagate user tonal adjustment to nearby regions in the image with similar

appearance.
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2.3 Conclusion

In this chapter, we have given a review of recent techniques in shape registration and

colour transfer. In the remainder of this thesis, we propose to further investigate

some applications of the L2 distance metric. This metric has been shown to be robust

and can be used when explicit correspondences are unavailable. It also has a closed

form solution when computed between Gaussian Mixture Models, a family of density

functions that can be used to approximate any probability density function. Inspired

by the compelling results that have been achieved using the L2 distance in the area of

shape registration [41], we decided to investigate how this metric would perform when

applied to the colour transfer problem (Chapter 4). Many techniques in non-rigid

shape registration also use non-linear transformations such as radial basis functions

or thin plate splines. We felt that using these transformations would work well with

an L2 distance technique for colour transfer, and their smoothness constraints would

ensure that a good recolouring result was generated, and reduce the gradient artifacts

typically generated by other colour transfer techniques such as optimal transport.

We also found that many colour transfer techniques are either applied to images

with pixel correspondences, or those without pixel correspondences, and many tech-

niques cannot be applied to both image types. Having seen shape registration tech-

niques based on the L2 distance being applied to point clouds both with and without

point correspondences, we decided to investigate whether a colour transfer technique

based on the L2 distance could also be applied to images both with and without pixel

correspondences.

For shape registration, we wanted to investigate how normal vectors could be in-

corporated into the L2 distance framework to improve registration results. While a

technique that incorporates normal vectors into the L2 framework has been previously

proposed [50], the normal vectors were modelled using the Gaussian distribution. While

this modelling is sufficient in 2D, it is not suitable when modelling normal vectors in

higher dimensions. Having seen the von Mises-Fisher distribution effectively used to

model normal vectors in applications such as the clustering of directional data [8],

we decided to investigate whether adding an additional kernel to our KDE to model

normal vectors using the von Mises-Fisher distribution would give improved results

(Chapter 5).
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Finally, having investigated the application of the L2 distance metric to colour

transfer, we began to consider whether the optimal transport techniques proposed for

colour transfer would prove advantageous to the shape registration problem, and what

problems would arise by applying these techniques directly to shape data (Chapter 6).

In the next chapter we will give a brief outline of both colour data and shape data

and some of the representations that both data types can have, as well as giving a more

in depth outline of the transformation functions regularly used in shape registration

and colour transfer.
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Chapter 3

Transformation Functions and Data

In this chapter we give a more in depth outline of the different data types and trans-

formation functions that are regularly used in shape registration and colour transfer.

In Section 3.1 we give a brief outline of both colour data and shape data, and de-

tail the different representations that these data types can have. In Sections 3.2 and

3.3, a summary of several transformation functions is given, including rigid and affine

transformations, radial basis functions, moving least squares, and optimal transport.

3.1 Data

Data is a set of values which are collected and stored for further analysis or processing.

In this section we present the two main types of data that we will analyse in later

chapters, colour data and shape data.

3.1.1 Colour Data

As colours are captured by cameras, the most common representations of colour data

are images and video. As many applications in computer vision process images and

video, colour data is one of the most frequently used data types and is particularly

useful for object and face detection, classification, and tracking [96, 97, 98].

A colour is represented as a tuplet of values, typically made up of 3 scalars or colour

components. These components can describe aspects of the colour such as hue, bright-

ness and chrominance. These values determine where the colour lies within the colour
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Figure 3.1: The transformation of each colour in image (a) to RGB space in (b) and
CIELab space in (c).

space. A colour space defines a mapping between each triplet of colour components

and real world colours. Some common colour spaces include the RGB, CIELab, HSL

and YUV colour spaces. Here we will focus on the RGB and CIELab colour spaces, as

we will investigate how our proposed colour transfer technique performs in both colour

spaces in Chapter 4.

RGB (Red-Green-Blue)

An RGB colour space is an additive colour space, with each RGB colour c defined by

three values, its red, green, and blue component:

c = (R,G,B), (3.1)

typically defined with 0 ≤ R ≤ 255, 0 ≤ G ≤ 255 and 0 ≤ B ≤ 255. In Figure

3.1(b) we present the transformation of each colour in an image to the RGB colour

space. This colour model is commonly used to encode and store colour images and

video, and to represent the colour of pixels on most monitors and televisions. One of

the main drawbacks of using an RGB colour space is the high correlation between its

colour components. This is due to the fact that each colour component includes some

representation of the colour’s brightness. This can be seen in Figure 3.2. The linear

shadows appearing in the colour image can be seen in each colour channel. Another

problem is that two colours which are perceived to be quite similar can differ by a large
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(b) R (c) G (d) B

(e) L (f) a (g) b

(a)

Figure 3.2: Colour space transformations of coloured image in (a): (b - d) RGB colour
channels; (e - g) CIELab colour channels. Note that the L,a and b colour values have
been rescaled for visualisation. While the linear shadows can be seen in each colour
channel in the RGB space, these brightness changes can only be seen in the L channel
in CIELab space.

Euclidean distance within the RGB space [99, 100].

CIELab

The CIELab colour space, on the other hand, tries to accurately represent how humans

perceive differences in luminance and chrominance, which means that the Euclidean

distance between two colours in CIELab space is strongly correlated to their perceived

similarity. It is based on the CIE system, which bases colour specification on the human

visual system. A colour c in CIELab space is defined by three values:

c = (L, a, b), (3.2)

where L represents the luminance of the colour, and a and b represent its chrominance.

The value L is typically defined for 0 ≤ L ≤ 100, while the range of values for which

a and b are defined is dependent on the conversion used to compute the CIELab

coordinates. In Figure 3.1(c) we present the transformation of each colour in an image
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to the CIELab colour space.

The conversion from the RGB representation (R,G,B) to CIELab (L, a, b) represen-

tation is non-linear in nature. The first step involves applying a linear transformation

to the RGB coordinates [101]: X

Y

Z

 =
1

0.17697

 0.49 0.31 0.20

0.17697 0.81240 0.01063

0.00 0.01 0.99


 R

G

B

 . (3.3)

Then, choosing a reference white value as (Xn, Yn, Zn) = (0.9642, 1, 0.8249) and defin-

ing the function f(t) as:

f(t) =

t1/3 if t > δ3

t/(3δ2) + 2δ/3 otherwise
(3.4)

where δ = 6/29, we can compute (L, a, b) as follows [101]:

L = 166

[
f

(
Y

Yn

)]

a = 500

[
f

(
X

Xn

)
− f

(
Y

Yn

)]

b = 200

[
f

(
Y

Yn

)
− f

(
Z

Zn

)]
(3.5)

As the L colour channel represents the luminance in an image, while the a and b

colour channels represent the chrominance, in Figure 3.2 we can see that the linear

shadows in the colour image only appear in the luminance channel L and not in a or b.

3.1.2 Shape data

The shape of an object refers to its form, outline, external boundary, or external

surface. Common shapes include lines, curves, circles, ellipses, planes and cubes and

can be described mathematically using a parametric representation. The parametric

representation of a shape is a set of equations which define the coordinates of all points
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(a) Parametric Equation (b) Binary image (c) Point cloud

(a) Point Cloud (b) Polygonal mesh (c) Implicit surface

Figure 3.3: Several different shape representations for 2D and 3D shape data are shown.
(a) Parametric equation representing an ellipse; (b) Binary image of ellipse; (c) Point
cloud sampling the edge contour; (d) Point cloud representation of 3D shape; (e) Mesh
representation with vertices, edges and faces; (f) Implicit surface representation.

on the shape, and each representation depends on a set of parameters. For example,

a parametric representation of an ellipse in R2 is dependent on the parameter t and is

given by:

x(t) = a cos(t)

y(t) = b sin(t)
(3.6)

with t ∈ (0, 2π), a ∈ R and b ∈ R, as shown in Figure 3.3(a).

In computer vision, we observe shape using sensors such as cameras and depth

scanners, and capture discrete versions of shape such as images and point clouds. 2D

shapes can be captured by images and generally represent a 2-dimensional view of a

3-dimensional object in the real world. 3D shape data can be captured directly using

3D scanners or computed from several images. In order to analyse the shape data, a

suitable representation must be chosen, and shape descriptors can then be calculated

for further analysis in applications such as shape classification or comparison [102].
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Shape Representation

There are several different ways shapes can be represented once they have been cap-

tured. For 2D shapes, contour based techniques can be used to represent the shape

boundary. One method is to store the shape contour as a string of the form:

S = s1, s2, .., sn (3.7)

where si may correspond to an element of chain code, a spline or an arc [102]. The

contour could also be represented mathematically as a parametric curve, such as the

example given in Equation 3.6, or as a point cloud. A 2D point cloud corresponds to

a set of points, specified by a tuple (x, y), defined on an orthogonal coordinate system.

Unlike contour based techniques, region based methods take into account all pixels

within the shape, and include point clouds sampled from the entire shape, or binary

images [102]. Some examples can be seen in Figure 3.3.

Samples of 3D shape representations are polygonal meshes, parametrised surfaces

or patches of parametrised surfaces, implicit surfaces, NURB surfaces, voxel structures

or point clouds [103], as in Figure 3.3. The most common representation of a 3D shape

is the polygonal mesh. A mesh is a set of vertices, edges and faces and corresponds

to a structured representation of a point cloud and is frequently used to store objects

in computer graphics and computer games. Several mesh formats exist, including the

.ply, .obj, and .stl formats.

The .ply mesh format describes an object using vertices and faces. Each vertex is

described as an [x,y,z] tuple and each face is made up of n vertices. A face is defined

as n indices in the vertex list. The .ply format can also store characteristics such as

vertex colour, normal vectors, texture coordinates, transparency and vertex confidence.

It also allows users to define and store their own elements such as edges or ambient

colour. A .ply mesh can be stored in ASCII or binary format, with the binary version

being more compact in terms of storage and allows for rapid reading and writing to and

from memory. A sample .ply defining the shape of a cube in ASCII format is shown in

Figure 3.4.
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Figure 3.4: Sample .ply file for a 3D cube written in ASCII format [4].

Shape Descriptors

Shape descriptors are simplified representations of 2D or 3D shapes and include shape

features such as curvature, area and geometric ratios. They can be defined as either

local or global descriptors, depending on whether they are computed on the whole

shape region or just the shape boundary, and are often used to classify or compare

shapes [102]. The neighbourhood structure of a shape can be summarised by many

shape descriptors including shape context, which has been used to compute point

correspondences between shapes [30, 51]. The normal vectors of a 3D mesh have also

been shown to provide most of the shape and structural information of an object and

descriptors derived from them have been proposed for object detection and classification

in [104, 105].
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(a) Original (b) Rotation (c) Affine (d) TPS

Figure 3.5: Several transformations applied to the 2D star shape in (a), (b) a rotation
(c) an affine transformation including scaling and sheering and (d) a TPS transforma-
tion controlled by the 5 control points marked in green.

3.2 Transformation φ(x) with x ∈ Rd

A transformation defined for x ∈ Rd is a function φ which transforms the point x to

a new value y ∈ Rd, such that y = φ(x). The function φ can be defined as either

parametric or non-parametric. Parametric transformations can be defined using para-

metric equations while non-parametric transformations typically apply an independent

transformation to each point x. Functions of each type will be outlined in Sections

3.2.1 and 3.2.2.

3.2.1 Parametric Transformations

Parametric transformations φ(x, θ) are dependent on some parameter θ and include

rigid, affine and spline transformations such as radial basis functions or b-splines. Some

example parametric transformations applied to a 2D shape can be seen in Figure 3.5.

Rigid Transformations

A rigid transformation in Rd with φ(x, θ) = y preserves the distance between pairs

of points x, y ∈ Rd and includes rotations and translations. When d = 2, a rotation
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transformation can be expressed as φ(x, θ) = R(x) with:

R =

[
cos θ sin θ

− sin θ cos θ

]
(3.8)

controlled by the angle θ.

When d = 3, the rotation matrix R is controlled by the angles θ = (α, β, γ), with

each angle representing the degree of rotation about a given axis. These are known

as Euler angles, and there are several conventions which dictate which axis the angles

α, β and γ are associated with. One of the most common conventions lets α represent

the rotation about the x-axis, β the rotation about the y-axis and γ the rotation about

the z-axis. The rotation matrix R is then given by [106]:

R =

 cos β cos γ cos β sin γ − sin β

sinα sin β cos γ − cosα sin γ sinα sin β sin γ + cosα cos γ cos β sinα

cosα sin β cos γ + sinα sin γ cosα sin β sin γ − sinα cos γ cos β cosα

 .
(3.9)

Singularities arising from gimbal lock are found in various Euler angle representa-

tions. Gimbal lock occurs when the Euler angle β is at some critical value and the two

other Euler angles α and β become indistinguishable. For example, when β = π
2
, R in

Equation 3.9 becomes:

R =

 0 0 1

sin(α− γ) cos(α− γ) 0

cos(α− γ) − sin(α− γ) 0

 . (3.10)

Since row 1 and column 3 of R are invariant to changes in α and γ, R represents

a rotation of (α − γ) in a single direction, meaning our rotation has lost a degree of

freedom. For R given in Equation 3.9, singularities occur at β = π
2

+ nπ, for n ∈ Z.

A rotation transformation φ(x, θ) in Rd can also be written as a unit quaternion

q ∈ S3. Unit quaternions are a very popular representation as they lack any singularities

and are therefore easier to estimate when using iterative optimisation algorithms such

as gradient ascent. During optimisation the estimated quaternions can be renormalised

at every iteration or an added term such as cos(1−‖q‖)2 can be added to the objective

function to prevent large violations of the unit normal constraint.
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To convert the Euler angles θ = (α, β, γ) to their unit quaternion representation q

we use the following equation [106]:

q =


cos α

2
cos β

2
cos γ

2
+ sin α

2
sin β

2
sin γ

2

− cos α
2

sin β
2

sin γ
2

+ cos β
2

cos γ
2

sin α
2

cos α
2

cos γ
2

sin β
2

+ sin α
2

cos β
2

sin γ
2

cos α
2

cos β
2

sin γ
2
− sin α

2
cos γ

2
sin β

2

 . (3.11)

Using these equations for R, a rigid transformation in Rd, controlled by the param-

eter θ, can be written as

φ(x, θ) = Rx+ t (3.12)

where R is the rotation matrix, t is a d-dimensional translation vector and θ = (R, t).

Affine Transformations

An affine transformation in Rd preserves parallel lines and ratios of distances between

points lying on a line. It includes rotation, translation, dilation, shearing and reflection.

This type of transformation has the following form:

φ(x, θ) = Ax+ t, (3.13)

where A is a d× d affine matrix, t is a d-dimensional translation vector and θ = (A, t).

Radial Basis Functions

A Radial Basis Function (RBF) ψ : R+ → R is a real valued function which is radially

symmetric about some control point c ∈ Rd. In other words, it effects all points of the

same distance from c equally. For a point x ∈ Rd we compute ψ(r) as:

ψ(r) = ψ(‖x− c‖), (3.14)

with r = ‖x − c‖ and ‖ · ‖ denoting the Euclidean norm on Rd. The most commonly

used radial basis functions include the Gaussian, Multiquadric and Thin Plate Spline

(TPS) functions, all of which are summarised in Table 3.1. The parameter ε appears

in all equations but TPS, and is known as the shape parameter.
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RBF name RBF equation

TPS
ψ(r) = r2log(r) (2D)
ψ(r) = −(r) (3D)

Gaussian ψ(r) = e−(εr)2

Inverse Multiquadric ψ(r) = 1√
1+(εr)2

Inverse Quadric ψ(r) = 1
1+(εr)2

Multiquadric ψ(r) =
√

1 + (εr)2

Table 3.1: The equations for some commonly used radial basis functions.

Finite linear combinations of RBFs are frequently used and take the form:

φ(x, θ) =
N∑
i=1

wi ψ(‖x− ci‖) (3.15)

with x ∈ Rd, weights wi ∈ Rn, and control points ci ∈ Rd. For a given set of control

points, the parameter θ = W = (w1, w2, · · · , wN)T determines the transformation φ.

This form of transformation is known as a pure radial sum. The drawback of using

pure radial sums is that this type of transformation has little effect on points x which

are far away from the control points ci. It is also impossible to generate an affine

transformation with this type of function. For this reason an affine transformation is

typically added to φ as follows:

φ(x, θ) = A x+ t+
m∑
i=1

wi ψ(‖x− ci‖) (3.16)

where A is an affine transformation matrix, t is a translation vector and θ = (A, t,W ).

Radial basis functions are often used for function approximation or data interpo-

lation. In these cases, the parameter θ is estimated by fitting a linear combination of

RBFs, as in Equations 3.15 or 3.16, to scattered data. For example, given the scattered

data

(xi, fi)i=1,..N , xi ∈ Rd, fi ∈ R, (3.17)
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the pure radial sum approximation φ(x, θ), with control points ci = xi, is given by:

φ(x, θ) =
N∑
i=1

wi ψ(‖x− xi‖), x ∈ Rd, wi ∈ R, (3.18)

can be estimated by minimising the cost function [107]

C(θ) =
N∑
i=1

(φ(xi, θ)− fi)2 (3.19)

Data interpolation is possible when ΨW = F has a unique solution, where

Ψ = {ψij} = ψ(‖xi − cj‖), W = (w1, w2, · · · , wN)T , F = (f1, f2, · · · , fN)T . (3.20)

In this case the weights W are typically estimated by solving ΨW = F using linear

least squares.

The Thin Plate Spline basis function is unique in that when used to compute the

transformation φ, it minimises the bending energy∫
Rd

‖D2φ(x, θ)‖2dx. (3.21)

Therefore, similar to the rigidity found in a thin metal sheet, the transformation φ

consisting of TPS basis functions resists bending [108]. In this case φ typically contains

an affine part, as described in Equation 3.16, and additional constraints are added to

the estimated weights wi as follows:

N∑
i=1

wi = 0 and

N∑
i=1

wixi1 =
N∑
i=1

wixi2 = · · ·
N∑
i=1

wixid = 0

These constraints ensure that the matrix Ψ is not singular and that a solution for θ

can be estimated [108, 109].

The bending energy proposed in Equation 3.21 can be computed for any RBF

transformation φ to determine how much bending is applied, and is proportional to
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W TΨW [41]. This term is often added as a regularisation term to the cost function

C(θ) as follows:

C(θ) =
N∑
i=1

(φ(xi)− fi)2 + λW TΨW, (3.22)

and controls the non-rigidity of the estimated transformation controlled by θ. Here the

parameter λ ≥ 0 controls the strength of the regularisation. Setting λ = 0 reduces the

transformation to exact interpolation.

B-Splines

A B-spline, or basis spline, Pk(x) of order k, is defined as a linear combination of n+ 1

control points ci, and B-spline basis functions Ni,k(x) as follows:

Pk(x) =
n∑
i=0

ciNi,k(x), x ∈ [tk, tn+2], (3.23)

with 2 ≤ k ≤ (n + 1), and x = t1, ...tn+1+k the n + k + 1 knots associated with

this curve. At the knots the basis functions are Ck−2 continuous. B-splines can be

thought of as a local transformation as they are non-zero on a finite number of adjacent

intervals. They have been proposed for both non-rigid image registration [110, 111]

and 3D shape registration [112] as they are smooth, have compact support and the

locally supported basis functions are computationally efficient [110, 113]. Measures are

sometimes required however to ensure that folding of the deformation field is avoided

[114, 115, 110].

Neural Networks

Artificial Neural Networks (ANN) are inspired by the neural networks in the brain

and consist of layers of processing units which work together to solve problems. Each

processing unit outputs a non-linear transformation of its input data and as a result, an

ANN can give rise to very powerful non-linear transformations. Deep Neural Networks

(DNN) consist of ANNs with multiple layers of processing units and can model complex

non-linear relationships. They have the ability to derive meaning from complex data

and have been shown to be very successful in the areas of object and face recognition,

performing at near human accuracy [116, 117]. DNNs are trained for specific tasks
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and in order to generate state of the art results they typically estimate hundreds of

parameters. They also require large data sets for training and can take a long time to

train. In image processing the most powerful class of Deep Neural Network are called

Convolution Neural Networks (CNNs). In CNNs each processing unit can be thought

of as an image filter which extracts a particular feature from the input image. CNNs

have been proposed for painting style transfer, image colourisation, image recognition

and video classification [118, 119, 120, 121, 122].

3.2.2 Non-parametric Transformations

Non-parametric transformations φ(x) cannot be expressed as a parametric equation,

with the transformation typically depending on x ∈ Rd, the point being transformed.

Non-parametric transformations include piece-wise linear transformations, moving least

squares, and optimal transport maps.

Piecewise Linear

A piecewise linear transformation is composed of several rigid transformations defined

over a number of intervals. They are used frequently in image registration, whereby the

target image is divided into subimages or blocks which are individually registered to the

target image [123, 124]. However, the transformation is not necessarily continuous and

many approaches implement a regularisation step to solve this problem, for example

using low pass filtering. Issues also arise when the size of the subimages or blocks

are too small and the information available in each block is insufficient to drive the

registration [113, 125].

Moving Least Squares

Another non-parametric transformation method is Moving Least Squares (MLS). Given

two set of points {xi} and {yi} where each xi and yi are corresponding pairs, MLS is

used to estimate the transformation that maps {xi} to {yi}. Given a point x ∈ Rd, we

solve for the optimal transformation φ(x) that minimises:

∑
i

wi(x)‖φ(xi)− yi‖2 (3.24)
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where φ(x) is either an affine or rigid transformation of the form φ(x) = Ax+ t, and

wi(x) = ‖xi − x‖2α. (3.25)

The weights in this least squares problems are dependent on the evaluation point x,

and therefore so too is the transformation φ(x). This is where the name Moving Least

Squares comes from. In Equation 3.25, α is a fall-off parameter which controls the

amount of influence far away points have on the deformation. Therefore MLS is a

local deformation method, meaning only the points which are close to x are taken into

account.

In computer graphics, MLS has been used to improve the quality of noisy point sets

by replacing them with a smoother interpolated version [126, 127]. An MLS formulation

has also been used to derive implicit surface functions from polygon data [128]. MLS is

frequently used in 2D image registration [129], and a probabilistic version of the MLS

technique has been recently proposed for registering the colour distributions of images

which have many correspondences [5].

Optimal Transport

Optimal transport methods estimate the optimal transport map φ which transforms a

point x to a point y with minimal transportation cost, as described in Section 2.2.2.

There is no explicit parametric expression for φ, instead a set of correspondences

(x, φ(x)) are estimated. In colour transfer applications optimal transport maps are

used to recolour a colour pixel value x to φ(x) [6, 77]. The constraint on φ to min-

imise the transportation cost ensures that the minimal amount of colour changes are

introduced when matching the target to the palette image. The map φ also has some

nice monotonicity proporties that ensure that areas that were bright in the target im-

age remain bright after transformation, and areas that were dark remain dark [76].

Typically the colour distribution of the target and palette images are estimated using

histograms and the optimal transport map can be computed as the inverse cumulative

distribution of the palette image [81, 82, 80]. Optimal transport methods have also

been used for non-rigid registration of 2D and 3D images. In this case the transport

map typically takes the form of a deformation vector field [130, 131, 132].
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3.3 Transformation φ(u) with u ∈ Sd

The hypersphere Sd of radius r, and embedded in Euclidean space of dimension (d +

1), is defined as

Sd = {x ∈ Rd+1 ; ‖x‖ = r}. (3.26)

A transformation φ which is defined on the non-Euclidean space Sd maps a point u ∈ Sd

to a new value v ∈ Sd, such that v = φ(u). The transformations outlined in Section

3.2 are defined in Euclidean space and when applied to points u ∈ Sd, often generate

points φ(u) such that φ(u) 6∈ Sd. One transformation which is defined for both u ∈ Sd

and x ∈ Rd, where d ∈ {1, 2}, is the rotation transformation described in Section 3.2.1.

In Chapter 5 we will apply this transformation to the normal vectors of both 2D and

3D shapes, which are defined on S1 and S2 respectively.

3.4 Conclusion

In this chapter we summarised both colour data and shape data, and outlined some of

the most common representations for each data type. We also detailed some transfor-

mations defined for points x ∈ Rd and u ∈ Sd. In the remainder of this thesis we will

model both shape data and colour data using mixture models and propose methods

to estimate a transformation between two probability density functions. In the next

chapter we will investigate how this method can be used to solve the colour transfer

problem.
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Chapter 4

L2 Registration for Colour Transfer

Colour transfer refers to a set of techniques that aim to modify the colour feel of a

target image or video using an exemplar colour palette provided by another image or

video. Most techniques are based on the idea of warping some colour statistics from the

target image colour distribution to the palette image colour distribution. The transfer

(or warping) function φ, once estimated, is then used to recolour a colour pixel value x

to φ(x). In this chapter we present a colour transfer technique (Section 4.1) which can

be applied to both images of similar and different content, can be enhanced by pixel

correspondences, and provides a computationally efficient and convenient recolouring

tool for users. An exhaustive set of experiments has been carried out to assess per-

formance against leading techniques in the field (Section 4.2) including computational

time needed for recolouring. We also show the usability of our approach for creating

visual effects (Section 4.3) and conclude (Section 4.4). The work presented in this

chapter has been published in [11, 10] and is currently under submission in [9].

4.1 Robust Colour Transfer

As described in Section 2.2.2, Pitié et al. [7] propose an optimal transport method

for colour transfer, which estimates a colour transfer function φ by estimating sev-

eral 1-dimensional optimal transport mapping. They have shown that their algorithm

iteratively decreases the Kullbach Leibler divergence between the probability density

functions pt and pp [6], proving that their estimated transfer function φ brings the
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colour distribution of the target image close to the colour distribution of the palette

image. However, no parametric formulation of the solution φ̂ is available (instead, for

each pixel x
(k)
t a corresponding value φ̂(x

(k)
t ) is calculated), limiting the possibility of

applying this transformation to a previously unseen value x, and also limiting direct

manipulation of the estimated warping function φ̂. As an improvement, Frigo et al.

[85] propose to fit a smooth Thin Plate Spline (TPS) transformation to the optimal

transport solution for colour transfer.

As an alternative to the optimal transport framework, we propose to formulate

the colour transfer problem as a shape registration one, whereby a parametric warping

function is directly estimated by minimising the L2 distance between two GMMs which

capture the colour content of the palette and target images. We also take advantage of

correspondences that can be defined between pixels in the target image to be recoloured,

and the pixels in the palette image, which is used as an exemplar. When considering

target and palette images of the same scene, correspondences can easily be computed

using registration techniques, potentially creating some outlier pairs, and our technique

is shown to be robust to these occurrences. We explore several clustering techniques

for defining the GMMs for palette and target images before registration. Affine and

radial basis functions are also tested for modelling the warping function φ (Section

4.1.5). Finally recolouring using the estimated warping function φ is implemented

using parallel programming and we show that our approach is currently the fastest for

recolouring (Section 4.1.7 ).

4.1.1 GMM representation of colour content

We define two Gaussian mixture models pt(x) and pp(x) which capture the colour

content of the target and palette images respectively, with pp(x) defined as:

pp(x) =

Kp∑
k=1

N (x;µ(k)
p ,Σ(k)

p ) π(k)
p (4.1)

and pt(x) defined as:

pt(x) =
Kt∑
k=1

N (x;µ
(k)
t ,Σ

(k)
t ) π

(k)
t (4.2)
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HereKp andKt represent the number of Gaussians in the respective mixtures, {µ(k)
p }k=1,..Kp

and {µ(k)
t }k=1,..Kt the Gaussian means, and {Σ(k)

p }k=1,..Kp and {Σ(k)
t }k=1,..Kt the covari-

ance matrices. The coefficients {π(k)
p }k=1,..Kp and {π(k)

t }k=1,..Kt are positive weights,

with each set summing to one and capturing the relative importance of each Gaussian

component in the two mixtures.

In order to transform the target distribution pt(x) to match the palette distribution

pp(x), pt(x) is changed to a parametric family of distributions pt(x|θ), with θ the

parameter controlling the transformation φ which maps pt(x|θ) to pp(x). One method

of defining pt(x|θ) involves applying the transformation φ to the variable x, as in [76],

and defining a Gaussian mixture model of the form:

pt(φ(x, θ)|θ) =
Kt∑
k=1

N (φ(x, θ);µ
(k)
φ ,Σ

(k)
φ ) π

(k)
t (4.3)

Here {µ(k)
φ } and {Σ(k)

φ } represent the means and covariance matrices of the Gaussian

components, and have been computed by transforming {µ(k)
t } and {Σ(k)

t } by some

transformation which depends on φ. When φ is an affine transformation, φ(x, θ) can

be modelled as a Gaussian distribution with {µ(k)
φ = φ(µ

(k)
t )} and {Σ(k)

φ = φΣ
(k)
t φT}.

However, when φ is a non-linear transformation, φ(x, θ) may not follow a Gaussian

distribution, and although techniques have been proposed to approximate suitable

values for {µ(k)
φ } and {Σ(k)

φ } [133], there is no guarantee that N (φ(x, θ);µ
(k)
φ ,Σ

(k)
φ ) will

integrate to 1 and thus may not represent a true distribution. Then, when computing

the L2 distance between pt(x|θ) and pp(x), the cross product term 〈pt(x|θ)|pp(x)〉,
which can be written explicitly as:

〈pt(x|θ)|pp(x)〉 =
Kt∑
k=1

Kp∑
l=1

∫
N (φ(x, θ);µ

(k)
φ ,Σ

(k)
φ ) N (x;µ(l)

p ,Σ
(l)
p ) π

(k)
t π(l)

p dx (4.4)

may not be easily computed.

As an alternative to transforming the variable x, we instead propose to transform
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only the means of the Gaussians {µ(k)
t }. The distribution pt(x|θ) is then given by:

pt(x|θ) =
Kt∑
k=1

N (x;φ(µ
(k)
t , θ),Σ

(k)
t ) π

(k)
t . (4.5)

In this case pt(x|θ) is guaranteed to be a distribution for all transformations φ and the

computation of 〈pt(x|θ)|pp(x)〉 is straight forward.

We also choose isotropic identical covariance matrices for both the target and palette

GMMs, controlled by a bandwidth h:

Σt = Σp = h2I (4.6)

with I the identity matrix. By using the modelling proposed in Equation 4.5 as opposed

to that proposed in Equation 4.3, we ensure that the covariance matrix associated with

each Gaussian component remains spherical after transformation. Therefore, rather

than capturing the true distribution of the transformed target image, we instead ap-

proximate it, giving less emphasise to the spread of the colours associated with each

Gaussian component, and modelling only how the transformation effects the colours

captured by the Gaussian means. As target and palette images do not have the same

visual content in general, other colour transfer methods have also proposed approx-

imating the true colour distribution of the images and have shown improved results

using this approach [85].

Computing L2

As described in Section 2.1.5, the L2 distance between pt(x|θ) and pp(x), denoted pt

and pp for brevity, can be written as

L2(pt, pp) = ‖pt‖2 − 2〈 pt |pp 〉+ ‖pp‖2 (4.7)

We propose to minimise L2(pt, pp) in order to estimate θ. Since the term ‖pp‖2 is

independent of θ, it can be removed from our cost function and θ can be estimated by

minimising

‖pt‖2 − 2〈 pt |pp 〉. (4.8)
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The scalar product term between pt and pp in the L2 distance equation is given by:

〈pt|pp〉 =
Kt∑
k=1

Kp∑
l=1

N (0;φ(µ
(k)
t , θ)− µ(l)

p ,Σ
(k)
t + Σ(l)

p ) π
(k)
t π(l)

p (4.9)

while that between pt and pt is given by:

‖pt‖2 =
Kt∑
k=1

Kt∑
l=1

N (0;φ(µ
(k)
t , θ)− φ(µ

(l)
t , θ),Σ

(k)
t + Σ

(l)
t ) π

(k)
t π

(l)
t (4.10)

Jian et al. use the L2 distance to register shapes encoded as Gaussian Kernel Density

Estimates [41]. Using this idea for our colour transfer application would mean that the

number K of Gaussians in the mixtures (Eq. 4.1 and 4.5) is the number of pixels in

the image (target or palette), and the cluster centres µ(k) = x(k) are the colour pixels

x(k) in the image. In this case K is extremely large and our cost function becomes

too computationally intensive to be practical. As an alternative, two algorithms for

clustering, K-means and Mean Shift, are proposed to compute the means (Sections 4.1.2

and 4.1.3). When correspondences are available between palette and target images, a

third method for setting the means is proposed in Section 4.1.4.

Weights

The natural choice for setting the weights π(k) is to choose the proportion of pixels

in the image associated with the cluster k. However, since target and palette images

do not have exactly the same visual content in general, similar to Frigo et al. [85],

we found that matching the colour content of the images was preferable to matching

the true colour distribution of the images. Therefore we choose equal weights for each

cluster and set π(k) = 1
K

.

4.1.2 K-means Algorithm

The K-means clustering algorithm can be used to define {µ(k)} for both target and

palette images [11, 10]. The computational complexity of the algorithm is then con-

trolled by K, the number of K-means clusters found in the pixel value sets {x(i)
t }i=1,··· ,nt

and {x(i)
p }i=1,··· ,np . The K-means algorithm is equivalent to using an EM algorithm
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which enforces identical isotropic covariance matrices [134].

When choosing K we took a variety of images with different colour distributions

and applied the K-means algorithm to them, choosing values of K from 5 to 80. For

each value K we computed the sum of squared distances between each pixel in the

image and its assigned cluster centre. We then plotted the value K versus the sum

of squared distances value, as in Figure 4.1. We found that although some images

could be well described by a low value of K (such as the image in Column 1 of Figure

4.1), images with a wide range of colours seemed to be well described by K = 50

clusters, with the sum of squared distances value tapering off around K = 50. In order

to ensure that our framework worked when images had a large variety of colours we

choose to set Kt = Kp = 50 in our experiments. This value could be decreased by the

user depending on the colour distribution of the images being processed, which would

decrease the computational complexity of the algorithm.

4.1.3 Mean Shift Algorithm

A possible alternative to K-means would be to estimate the cluster centres {µ(k)} using

the Mean Shift algorithm instead [88]1. The Mean Shift algorithm clusters the pixel

data based on both their colour and position values and can also be thought of as an

EM algorithm [135]. The number of clusters generated is automatically determined

by the Mean Shift algorithm. Figure 4.2 illustrates the selection of means using both

K-means and Mean Shift algorithms in the RGB colour space. Note how K-means

propose a more evenly spread out set of means.

4.1.4 Correspondences

Pixel pairs between target and palette images, denoted {(x(k)
t , x

(k)
p )}k=1,··· ,n, can be com-

puted when considering target and palette images capturing the same scene. Colour

transfer techniques are indeed often used in this context to harmonise colours across

a video sequence and/or across multiple view images such as in image stitching. In this

case, the means of the Gaussian mixtures are set such that {(µ(k)
t , µ

(k)
p ) = (x

(k)
t , x

(k)
p )}k=1,··· ,n

imposing Kt = Kp = n when defining the distributions pt and pp. Moreover, the scalar

1Code for [88] at http://coewww.rutgers.edu/riul/research/code.html
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Figure 4.1: This figure shows the effect of choosing different values of K, the number
of clusters chosen by the K-means algorithm. Rows 1: Original images; Rows 2-4:
Clustered image with K = 10, 30 and 50; Row 5: The plots showing K versus the total
squared distance between each point in the image and its assigned cluster centre. For
images with a varied colour distribution this seems to taper off around K = 50 (red
line). 47



Original Image
K-Means Mean Shift

Figure 4.2: This figure compares the colours sampled using the K-Mean (K= 50) and
Mean Shift (K= 147) algorithms. When using K-means the value for K is set by the
user, while the Mean Shift algorithm determines the value of K automatically. Column
1: Original image; Column 2: K-Mean results; Column 3: Mean Shift results. The
top row of column 2 and 3 shows the original image recoloured using only the colours
selected using each clustering technique. Row 2 shows the distribution of these sampled
colours in RGB space.

product 〈pt|pp〉 in our cost function is then simplified as follows:

〈pt|pp〉 =
n∑
k=1

N (0;φ(µ
(k)
t , θ)− µ(k)

p ,Σ
(k)
t + Σ(k)

p ) π
(k)
t π(k)

p (4.11)

The computational complexity of this term is then n = Kt = Kp when using n corre-

spondences, and Kt×Kp without correspondences. Performance of our approach with

correspondences is assessed in Section 4.2 using palette and target images with simi-

lar content. Pixel correspondences are not used when considering palette and target

images with different content but K-means or Mean Shift clustering are used instead.
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4.1.5 Warping function φ

RBF name RBF equation
TPS ψ(r) = −(r)

Gaussian ψ(r) = e−(εr)2

Inverse Multiquadric ψ(r) = 1√
1+(εr)2

Inverse Quadric ψ(r) = 1
1+(εr)2

Table 4.1: The equations for the different radial basis functions ψ tested in this chapter.

In this chapter, several transformation functions φ are tested including an affine

transformation, as defined in Equation 3.13, and radial basis functions, as defined in

Equation 3.16. When using RBFs, various basis functions ψ are used when defining the

transformation φ, including TPS, Gaussian, Inverse Multiquadric and Inverse Quadric,

and are listed in Table 4.1. The colour spaces considered for testing our framework

are the RGB and CIELab spaces. In both cases, when using an RBF transformation,

the N control points {cj}j=1,··· ,N are chosen on a regular grid spanning the 3D colour

space such that the 3D grid has N = 5×5×5 = 125 control points in the colour space.

As a consequence the dimension of the latent space that needs to be explored when

estimating θ in this case is:

dim(θ) = 125× 3 + 9 + 3 = 387

with dim(cj) = 3 ∀j, dim(A) = 3× 3 = 9 and dim(o) = 3 (cf. Equation 3.16). On the

other hand, when estimating an affine transformation, the latent space has dimension

9 (cf. Equation 3.13).

4.1.6 Estimation of θ

To enforce that a smooth solution φ is estimated when using a radial basis function

transformation, the Euclidean L2 distance is minimised with a roughness penalty on

the transfer function φ [48] and the estimation is performed by minimising:

θ̂ = arg min
θ

{
C(θ) = ‖pt‖2 − 2〈pt|pp〉+ λ

∫
‖D2φ(x, θ)‖2dx

}
(4.12)
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with ‖D2φ(x, θ)‖2 =
∑

i,j∈{1,··· ,d}

(
∂2φ

∂xi∂xj

)2

and d = 3.

4.1.7 Algorithm

Our strategies to estimate θ are summarised in Algorithm 1.

Algorithm 1 Our strategies for estimating the parameter θ for the warping function

φ(x, θ).

Require: θ̂ initialised so that φ(x, θ̂) = x (identity function)

Require: hmin, hmax, λ and choose ψ (with ε)

Require: Initialisation of {µ(i)
t }, {µ

(i)
p } or {(µ(i)

t , µ
(i)
p )} (correspondences)

if Using K-means (no correspondences) then

choose Kt and Kp

Cost function C(θ) (Eq. 4.12) defined with term 〈pt|pp〉 (Eq. 4.9)

else if Using Meanshift (no correspondences) then

Kt and Kp are estimated by Meanshift

Cost function C(θ) (Eq. 4.12) defined with term 〈pt|pp〉 (Eq. 4.9)

else if Using n correspondences then

Kt = Kp = n

Cost function C(θ) (Eq. 4.12) defined with term 〈pt|pp〉 (Eq. 4.11)

end if

Start h = hmax (controls covariance matrix Eq. 4.6)

repeat

θ̂ ← arg minθ C(θ)
h← .5× h (annealing)

until Convergence h < hmin return θ̂

In order to avoid local minima, we implement a simulated annealing strategy which

is controlled by the bandwidth h. We begin our optimisation with a large value of h and

slowly decrease it to ensure the algorithm does not get caught in local solutions. When

estimating a radial basis function φ, two values, λ and ε (in the case of the Gaussian

(G), Inverse Quadric (InQ) and Inverse Multiquadric (InMQ) basis functions, as defined

in Tab. 4.1) need to be chosen in our framework. Table 4.2 gives the values that were
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RBF ψ and colour space Correspondences No Correspondences
λ ε λ ε

TPSrgb 3e−3 7 3e−6 7

TPSlab 3e−3 7 3e−4 7

Grgb 3e−5 6e−3 3e−8 6e−3

Glab 6e−3 3 3e−4 3
InMQrgb 3e−5 6e−3 3e−8 6e−3

InMQlab 6e−3 10 3e−4 3
InQrgb 3e−6 6e−3 3e−8 6e−3

InQlab 6e−3 30 3e−4 3

Table 4.2: The values for λ and ε used for each of our proposed techniques when
generating the results in Section 4.2. The values for λ and ε differ depending on
whether correspondences are used or not. If correspondences are not available, the
K-means or Mean Shift algorithms are used to compute the Gaussian centres.

used in our experiments and found to give the best results overall. For clarity, we

extend the notation in Table 4.2 so that TPSKMrgb indicates that the basis function ψ is

TPS, the colour space is RGB, and the clustering techniques for finding the means of

the GMMs is K-means (similarly, we denote TPSMS
rgb for meanshift and TPSCorrrgb when

using Correspondences). The subscript lab is used to notate methods tested in CIELab

colour space.

4.1.8 Optimisation Details

When minimising the cost function C(θ) to estimate the transformation φ we used the

Matlab function fminunc, which minimises unconstrained multivariate functions. The

minimisation algorithm used by fminunc is the Quasi-Newton method [136], which is a

gradient ascent algorithm. We computed the analytical derivative of the cost function

C(θ) and passed it to the gradient ascent algorithm to speed up the optimisation [41].

4.1.9 Parallel Recolouring step

One of the main advantages of this method is the fact that our transformation is

controlled by a parameter θ and any pixel x can be recoloured by computing the new

colour value φ(x, θ). This computation can be done in parallel by distributing the
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pixels to be recoloured to the multiple processors that are available. Moreover, with

one target image and N palette images of choice, the transformations {φ1, · · · , φN}
controlled by the parameters {θ̂1, · · · , θ̂N} can also be estimated in parallel. A new

value θnew could also be computed via interpolation and used for recolouring:

θnew =
N∑
j=1

γj θ̂j, with
N∑
j=1

γj = 1, and γj ≥ 0 ∀j (4.13)

Interpolating in the θ space to create a new warping function is made easy thanks

to the fact that we chose control points on a regular grid (cf. Section 4.1.5) and not

as sub samples of pixel values from the palette images. Of particular interest are the

creation of smooth temporal transitions between the identity warping function and a

colouring warping function for instance. In Section 4.3.1 we give more details on how

to create visual effects using interpolation masks. A fast recolouring step is essential

for giving the user instant feedback about the new effects being applied to the image

or video. Our transformation φ can be applied to each pixel independently and it is

therefore highly parallelisable. A parallel implementation on the CPU or GPU would

ensure that the target image is recoloured almost instantly. For our implementation,

we parallelised the recolouring step on the CPU using OpenMP, and the performance

of our algorithm is assessed in Section 4.2.4.

4.2 Experimental results

In this section we assess how our proposed colour transfer techniques perform in com-

parison to other state of the art methods. To quantitatively assess recolouring results

two metrics, peak signal to noise ratio (PSNR) and structural similarity index (SSIM),

are often used when considering palette and target images of the same content for

which correspondences are easily available [57, 91, 5]. The PSNR metric is used to

compute the colour similarity between the palette image P and colour transfer result

image R, while SSIM is used to measure the structural similarity between the target

image T and result image R. Alternatively, user studies have also been used to assess

the perceptual visual quality of the recolouring [137].

We evaluate our proposed algorithms and show that they are comparable to current
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state of the art colour transfer algorithms in terms of the perceptual quality of the

results (Section 4.2.1, 4.2.2 and 4.2.3), and superior in terms of computational speed

(Section 4.2.4). Moreover our parametric colour transfer formulation provides artists

with an easy and flexible way to create new visual effects (Section 4.3.1).

Table 4.3 summarises the methods (including ours) used for comparison in this

chapter. We chose to compare against a number of recent optimal transport based

methods whose code was made available online by the authors [6, 82, 77], as well as

a recent colour transfer technique which takes into account pixel correspondences and

has recently been shown to provide better results than other leading correspondence

based methods [5].

Method
Name

Ref. Corr. No
Corr.

Code availability for testing ImageVideo Test
P ' T
(Sec.
4.2.1)

Test
P 6= T
(Sec.
4.2.2)

Ours yes yes https://www.scss.tcd.ie/~mgrogan/

colourtransfer.html. Partial code, needs
updating.

yes yes yes yes

Bonneel [77] no yes https://github.com/gpeyre/

2014-JMIV-SlicedTransport

yes no yes yes

PMLS [5] yes no Results for this method in this chapter have
been processed by the authors of [5]

yes yes yes no

Ferradans [82] no yes https://github.com/gpeyre/

2013-SIIMS-regularized-ot

yes no no yes

Pitié [6] no yes https://github.com/frcs/colour-transfer yes no yes yes

Table 4.3: Road-map for experiments. Our framework is able to take advantage of
correspondences (Corr) between Target (T) and Palette (P) images when available,
and also works without correspondences (No Corr). While correspondences are easily
available when palette and target images capture the same visual content (P ' T ),
they are not available when using images of different content (P 6= T ).

4.2.1 Images with similar content P ' T

One important application of colour transfer is in harmonising the colour palette of

several images or videos capturing the same scene. To evaluate our algorithm when

applied to images with similar content, we use the 15 images in the dataset provided

by Hwang et al. [5]2 which includes images with many different types of colour changes

2https://sites.google.com/site/unimono/pmls
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including different illuminations, different camera settings and different colour touch

up styles. This dataset provides palette images which have been aligned to match the

target image (c.f. Figure 4.4). To define correspondences, pixels at the same location

in the target and aligned palette images are randomly selected together to form a pair

[5]. For our proposed techniques, the number of corresponding pixel pairs chosen is

n = 50000.

Choice of transformation φ

Table 4.4 provides quantitative results comparing colour transfer results when φ is an

affine transformation (Aff) or one of the tested radial basis functions. In this case our

algorithms use correspondences and the quantitative results are computed using the

PSNR and SSIM metrics. We provide image results in Appendix A. In general the

PSNR SSIM
µ SE µ SE

AffCorrrgb 24.97 0.8 0.914 0.02

AffCorrlab 25.35 0.8 0.903 0.02
TPSCorrrgb 30.30 1.5 0.944 0.02

TPSCorrlab 30.56 1.4 0.942 0.02
GCorr
rgb 30.03 1.5 0.944 0.02

GCorr
lab 30.56 1.4 0.942 0.02

InMQCorr
rgb 30.37 1.5 0.944 0.02

InMQCorr
lab 30.49 1.4 0.942 0.02

InQCorr
rgb 30.37 1.5 0.944 0.02

InQCorr
lab 30.22 1.4 0.940 0.02

Table 4.4: Assessment of our algorithms using correspondences with several basis func-
tions ψ in two colour spaces. The mean PSNR and SSIM values µ for each method are
computed on the 15 images in the dataset. Highest PSNR and SSIM values indicate
the best results (best in red, second best in green, third best in blue). The standard
error SE for each method is also given.

methods applied in the CIELab colour space provide slightly better results in terms of

PSNR, and slightly lower results in terms of SSIM. While the affine transformation gives

significantly lower results in terms of PSNR and SSIM in both RGB and CIELab colour

space, a t-test comparing the mean values of each radial basis function method confirms
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that the difference between them is statistically insignificant (with 99% confidence).

Visually, we found that the results created with an affine transformation were the least

successful, while the results from the radial basis functions matched the palette image

well and were all very similar (See Appendix A). TPS has the advantage of being faster

to compute (Section 4.2.4) and since it achieves perceptually similar performance to

other basis functions, it is mainly used for comparison in the rest of this chapter.

With or without correspondences

Table 4.5 compares TPSKMrgb and TPSMS
rgb , computed without correspondences, to TPSCorrrgb ,

computed with correspondences, when they are applied to images with the same con-

tent. The results stress that using correspondences allows TPSCorrrgb to outperform

TPSKMrgb and TPSMS
rgb . Note however, that in terms of SSIM and PSNR, there is no

statistical difference between the results of TPSKMrgb using K-means and TPSMS
rgb using

Mean Shift when the palette and target images capture the same scene. Section 4.2.2

will show that TPSKMrgb gives more perceptually pleasing results than TPSMS
rgb for images

of different content.

TPSCorrrgb TPSKMrgb TPSMS
rgb

PSNR 30.30 (1.5) 24.20 (0.8) 24.47 (0.8)
SSIM 0.944 (0.02) 0.908 (0.02) 0.896 (0.02)

Table 4.5: The mean PSNR and SSIM values for the set of images with similar content,
with the standard error shown in brackets. Using correspondences leads to better
results.

Robustness of L2 to outlier correspondences

To evaluate the robustness of the L2 metric, we applied TPSCorrrgb to images that had

many false correspondences. Taking the registered palette and target images, we ap-

plied a horizontal shift of s pixels to the target image. Then taking pixels at the same

location in the palette and new target image as correspondences, we computed the

colour transfer result. Figure 4.3 shows that even when a large number of false cor-

respondences are present, the colours in the result image are very similar to those in

the palette image. Areas which have changed colour are long thin structures which no

longer have many correct colour correspondences (the blue bars on the tower become
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Target T (T − P )2 (T − P )5 (T − P )8 (T − P )10 (T − P )15

Palette P SSIM = 0.918 SSIM= .875 SSIM = 0.834 SSIM= 0.821 SSIM= 0.820

PSNR = 26.22 PSNR = 24.71 PSNR= 22.91 PSNR = 22.51 PSNR = 21.96

Figure 4.3: Robustness of L2 with outlier correspondences. The first column gives
the target (top) and palette image (bottom). The remaining columns show the colour
transfer results of TPSCorrrgb when the target image is shifted horizontally by s pixels,
creating incorrect colour correspondences. The top row shows the shifted target super-
imposed on the palette image ((T −P )s) and the bottom row shows our colour transfer
result with corresponding SSIM and PSNR results.

green in Figure 4.3). The structure of the target image has also been well maintained

overall.

Comparison to current leading techniques

Table 4.6 provides a quantitative evaluation of our proposed method (TPS in RGB

and CIELab spaces) in comparison to leading state of the art colour transfer methods

[77, 6, 5]3, with the notations used explained in Table 4.3. In terms of both PSNR and

SSIM, PMLS performs slightly better in most cases, closely followed by our TPSCorrrgb

and TPSCorrlab methods, but t-tests confirm that there is no significant quantitative

difference between PMLS and each of our proposed techniques TPSCorrrgb and TPSCorrlab

(with a 99% confidence level).

PMLS however, introduces some visual artifacts when the content in the target and

palette images is not registered exactly. These artifacts can be seen around the car in

Row 3, Column 5 of Figure 4.4. PMLS is not robust to registration errors, while our

algorithm is, thanks to the robust L2 distance. Our approach allows us to maintain

the structure of the original image and to create a smooth colour transfer result (cf.

3Results using PMLS were provided by the authors of [5].
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PSNR SSIM
Pitié Bonneel PMLS TPSCorrrgb TPSCorrlab Pitié Bonneel PMLS TPSCorrrgb TPSCorrlab

building 20.50 12.32 22.63 20.50 22.51 0.807 0.675 0.865 0.862 0.864
flower1 24.02 18.42 26.98 26.86 26.85 0.908 0.822 0.967 0.966 0.961
flower2 25.32 21.26 25.76 25.77 25.92 0.900 0.836 0.928 0.927 0.924
gangnam1 24.61 23.86 35.74 35.37 35.70 0.899 0.908 0.992 0.990 0.985
gangnam2 26.59 26.82 36.58 35.55 35.51 0.918 0.928 0.993 0.986 0.984
gangnam3 22.23 19.69 35.02 33.29 33.10 0.877 0.816 0.991 0.980 0.971
illum 19.89 14.34 20.17 19.08 19.84 0.632 0.527 0.649 0.648 0.650
mart 22.71 22.15 24.74 24.45 24.92 0.906 0.901 0.957 0.956 0.955
playground 27.38 25.96 27.84 27.65 27.91 0.916 0.900 0.940 0.939 0.938
sculpture 29.85 22.57 32.06 32.07 32.10 0.942 0.873 0.971 0.972 0.971
tonal1 28.55 17.87 37.22 37.33 37.19 0.940 0.852 0.988 0.987 0.987
tonal2 27.88 23.00 31.51 31.36 31.33 0.968 0.948 0.987 0.986 0.985
tonal3 29.37 16.90 36.25 36.65 36.23 0.961 0.865 0.992 0.992 0.991
tonal4 28.57 14.80 34.52 34.34 34.44 0.943 0.812 0.983 0.983 0.983
tonal5 30.20 21.08 35.26 34.30 34.96 0.965 0.911 0.986 0.985 0.984
µ 25.85 20.07 30.82 30.30 30.56 0.899 0.838 0.946 0.944 0.942
SE 0.9 1.1 1.5 1.5 1.4 0.02 0.03 0.02 0.02 0.02

Table 4.6: Comparison of our algorithms TPSCorrrgb and TPSCorrlab against state of the
art techniques. SSIM and PSNR results for colour transfer techniques on images with
similar content: highest values (in red) for best performance, in green second best
performance and in blue third best performance. The overall mean score µ and its
standard error SE for each method are also given.

Row 3, Column 6 in Fig 4.4). So while PMLS and our algorithms provide equivalent

quantitative performances as measured by PSNR and SSIM, our techniques in fact

provide better qualitative visual results.

4.2.2 Images with different content P 6= T

First we compare two methods for estimating the Gaussian means {µ(k)} - K-means and

Mean Shift. In Figure 4.6 we present the target and palette images recoloured using

the K cluster centres computed using these techniques. The cluster centres generated

using K-means are evenly spaced throughout the colour distribution of the images and

the recoloured images look very similar to the original target and palette. On the

other hand, the Mean Shift algorithm takes pixel colour and position into account and

the cluster centres therefore depend on the structure of the image. Visually, we found

that setting the Gaussian mixture means to be the K-means cluster centres gave better

results than the Mean Shift clusters, as seen in Figure 4.6. Therefore, we present results
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Target image Palette image Pitié Bonneel PMLS TPSCorrrgb

Figure 4.4: Results on images with similar content on the ‘playground’, ‘mart’, ‘illum’,
‘tonal4’ and ‘gangnam2’ images. On close inspection grainy artifacts can be seen
appearing in some PMLS results. For example, around the car in Row 3 Column 5 or
in the top right corner of Row 2 Column 5. In comparison, the results generated by
TPSCorrrgb remain smooth (Column 6). For zoom see Fig. 4.5.

obtained using the K-means clustering technique in the rest of this section.

We compare our algorithm with other colour transfer techniques [77, 82, 6] applied

to images of different content and without correspondences. In the case of Ferradans

et al’s results, all images were generated using the parameters λX = λY = 10−3 and

κ = (0.1, 1, 0.1, 1) [82]. Figure 4.7 shows that the Bonneel and Ferradans methods

create blocky artifacts in the result image gradient in some cases (Row 2, 6, 8). On the

other hand, the added constraint in the Pitié algorithm, which enforces a smooth image

gradient, ensures that these errors do not appear in their results, creating images that

are more visually pleasing. Similarly, the results of our algorithm produce results that

match the colours in the palette image well, while still maintaining a smooth image

gradient.
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Target image PMLS TPSCorrrgb

Figure 4.5: A close up look at some of the errors generated using the PMLS [5] algo-
rithm in comparison to our smooth result with TPSCorrrgb .

In our framework, we found that although an affine transformation can give good

results in some cases, in others it does not perform as well as the RBF functions (see

Appendix A). The non-linear nature of the RBF functions allows them to achieve

more complex colour transfer results, while the affine transformation is limited in the

complexity of colour transfer results it can achieve. We found that TPS is the most

consistent RBF function in terms of quality of results and the parameters selected for

TPS, given in Table 4.2, generate good results overall. However, when more non-linear

basis functions ψ are used to estimate θ, they have a tendency to fall into local minima

when no correspondences are available. Therefore choosing the best parameters, as in
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K-means Mean Shift K-means Mean Shift K-means Mean Shift

Target Clusters Target Clusters Palette clusters Palette Clusters Result TPSKM
rgb Result TPSMS

rgb

Figure 4.6: Comparison between K-means clustering and Mean Shift clustering when
setting the Gaussian centres {µ(t)} of pt and pp. Columns 1 to 4 show the target and
palette images recoloured with the K cluster centres found using either K-means or
Mean Shift. Columns 5 and 6 shows the results obtained by TPSrgb using the clusters
determined by each algorithm.

Table 4.2, that create good results for every image is quite difficult. However, when the

estimate θ̂ found is the global minimum, the results are very similar to TPS for both

the CIELab and RGB colour spaces. Image results comparing the affine transformation

and alternate basis functions ψ can be seen in Appendix A.

4.2.3 Qualitative assessment

User Study Methodology

Colour transfer methods have also been evaluated using a subjective user study with 20

participants evaluating 53 sets of images. They were asked to choose the colour transfer

result that they thought was the most successful. Out of these 53 sets of images, 38

of them had a palette and target image with different content (no correspondences

available), and 15 of them contained a palette and target image with the same content

(correspondences available and used). These 15 images were taken from the dataset

provided by Hwang et al. as detailed in Section 4.2.1.

Each participant was presented with six images at a time - a target image, a palette
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Target Palette Bonneel Ferradans Pitié TPSKMrgb

Figure 4.7: Some results on images with different content which were presented to
participants in the user study.

image, and four result images generated using different colour transfer techniques. They

then had 20 seconds to view the images (presented simultaneously side by side) and

decide which result image was the best. Each user evaluated the results individually.

The display properties and indoor conditions were kept constant for every user. The

order in which the image sets appeared was randomised for each user and a short trial

run took place before the evaluation to ensure the users adapted to the task at hand.
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Data analysis

The four methods compared for target and palette images with similar content were

TPSrgb, PMLS, Pitié and Bonneel. The total number of times each method was chosen

can be seen in Table 4.7. We used a z-test to determine whether there was a significant

difference between these proportions. We found that TPSrgb performs better than

both Pitié and Bonneel. However, the results indicating TPSrgb performed better than

PMLS is not statistically significant. Hence these two methods, PMLS and ours, can

be thought of as performing equally well and both being superior to Pitié and Bonneel

methods.

Similarly, for images with different content we compared TPSrgb, Ferradans, Pitié

and Bonneel. The total number of times each method was chosen can be seen in

Table 4.7. Again using a z-test we determined that TPSrgb performs better than both

Ferradans and Bonneel, while there is no statistically significant difference between

TPSrgb and Pitié.

Similar Content P ' T
Bonneel Pitié PMLS TPSCorrrgb Total

38 63 98 101 300
Different Content P 6= T

Bonneel Pitié Ferradans TPSKMrgb Total

163 211 152 234 760

Table 4.7: Number of votes given to each method by participants in our perceptual
study. This indicates how many times each method was chosen as the best method
(best in red, second best in green, third best in blue).

4.2.4 Computation Time

It is important to provide timely feedback for artists and amateurs alike when recolour-

ing image and video materials. The recolouring step is highly parallelisable, allowing

the recolouring of video content at a high speed. In terms of computation, our algo-

rithm is split into three parts: the clustering step, the estimation step of θ and the

recolouring step x → φ(x, θ). As K-means can be quite a time consuming clustering

technique, we investigated some fast quantisation methods, including those provided
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by Matlab and the GNU Image Manipulation Program (GIMP). We found that using

Matlab’s minimum variance quantisation method (MVQ) provided almost identical

results to K-means as well as being much faster and could be used as an alternative

to K-means to speed up the clustering step (Table 4.8). A comparison between these

techniques and K-means can be seen in Figure 4.8.

The estimation step takes approximately 6 seconds using non optimised code. Once

θ is estimated however, it can then be used to recolour an image of any size, or be

applied to recolour a video clip. It can also be stored for later use to create interesting

effects such as those described in Sections 4.3.1 and 4.3.2 .

The recolouring step on the other hand is highly parallelisable and can be applied

independently to each pixel. The time taken to recolour a HD image (1080 × 1920)

for each type of radial basis function is given in Table 4.8. In our implementation we

used OpenMP within a Matlab mex file to parallelise this step on 8 CPU threads. All

times are computed on a 2.93GHz Intel CPU with 3GB of RAM with 4 cores and 8

logical processors. In comparison, the GPU implementation of PMLS takes 4.5 seconds

to recolour a 1 million pixel image using an nVIDIA Quadro 4000 as reported in [5],

which is 9 times slower than our implementation with TPS. Similarly, Bonneel et al.

report a time of approximately 3 minutes to recolour 108 frames of a HD segmented

video on an 8 core machine with their algorithm [138]. In comparison, our algorithm

would take less than 2 minutes using TPS in the same situation.

It can also be applied to each pixel in parallel and a GPU implementation would

allow videos to be recoloured extremely quickly.

4.3 Usability for recolouring

The estimated parametric transfer function computed by our algorithm can be stored

and combined easily with other transfer functions computed using various colour palettes

for the creation of visual effects in images (Section 4.3.1) and video (Section 4.3.2).

Existing postprocessing can also be used to further improve the quality of the results

(Section 4.3.3).
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Target Palette TPSKMrgb TPSGIMP
rgb TPSMVQ

rgb

Figure 4.8: Comparison between the results obtained using the K-means clustering
technique and two faster quantisation techniques. TPSGIMP

rgb are the results obtained
when the target and palette images have been clustered using GIMPs quantisation
method (the median cut algorithm). TPSMVQ

rgb are the results obtained when Matlab’s

minimum variance quantisation algorithm is used to cluster the images. TPSMVQ
rgb gives

results that are very similar to TPSKMrgb .

4.3.1 Mixing colour palettes

For images, as described in Section 4.1.9, a new transformation φ(x, θnew) can be gen-

erated by interpolating between N estimated parameters {θ̂1, θ̂2, ..θ̂N} as in Equation

4.13. A simpler interpolation between the identity transformation θ(Id) and an esti-

mated transformation θ̂ with a selected colour palette can also be created:

x→ φ
(
x, γ θ̂(Id) + (1− γ) θ̂

)
(4.14)

Some sample results generated by interpolating between colour palettes can be seen in

Figure 4.9. This type of recolouring gives the user the flexibility to transition smoothly

from one colour mood to another.

While the same transformation can be applied to all pixels in an image, the trans-

formation can also vary depending on the spatial location p = (p1, p2) of the colour
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Clustering
Method Time
K-means 10.4s
Mean Shift 3.2s
MVQ 0.005s

Estimating θ̂
K Time
K = 50 6s

Recolouring
RBF name Time
TPS 1.04s
Gaussian 3.31s
Inverse Multiquadric 3.16s
Inverse Quadric 2.74s

Table 4.8: Computation times in seconds for each step of our algorithm for a HD (1080
× 1920) image with over 2 million pixels. (For the clustering step, the images were
first downsampled to 300× 350 pixels to reduce computation time).

pixel x as follows:

x(p)→ φ
(
x, γ(p) θ̂(1) + (1− γ(p)) θ̂(2)

)
(4.15)

where γ(p) is a greyscale mask with values between 0 and 1. Figure 4.10 presents some

sample effects created using this type of interpolation. In this figure, pixels in the target

image whose corresponding pixel in the grey scale mask is white have been recoloured

using palette 1, and those whose corresponding pixel is black have been recoloured using

palette 2. The remaining pixels have been recoloured using an interpolation between

the two transformations. For each pixel this interpolation is determined by the value

of its corresponding pixel in the grey scale mask. These effects can be extended to

mixing more than 2 transformations (or palettes).

4.3.2 Application to Video Content

We can also easily extend our colour transfer method to videos [10, 85]. Taking a frame

from both the target and palette video clips, we can apply the proposed colour transfer

technique to estimate a smooth mapping function φ that can then be easily applied
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𝜃𝐼𝑑

𝜃1

𝜃𝐼𝑑

𝜃2

𝜃1 𝜃2

Figure 4.9: Grading effects achievable by recolouring the target image at the top of
the table by the transformation φ(x, θ), where θ is an interpolation of three parameters
θId, θ1 and θ2: θId - the identity; θ1 - the parameters estimated when transforming
the target to the first palette image (bottom left); θ2 - the parameters estimated when
transforming the target to the second palette image (bottom right).

to all frames in the target video clip. As the same transformation is applied to each

frame, no temporal smoothing is required and no temporal artifacts are introduced

by our method. Figure 4.11 shows the temporal differences ∆(t) between consecutive

frames I(t) and I(t+ 1) in the original and transformed video clip:

∆(t) =
∑
p

|I(p)(t+ 1)− I(p)(t)| (4.16)
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Target & Mask Palettes 1 & 2 Results TPSKMrgb

Figure 4.10: Results images generated using the target and mask (column 1) and two
palette images (column 2). Pixels in the target image with a corresponding white pixel
in the grey scale mask are recoloured using palette 1 (top), those that are black are
recoloured using palette 2(bottom), and the rest are recoloured using an interpolation
between the two transformations. 67



with I(p)(t) the pixel value at pixel location p of the frame I(t). The strong correlation

between the curves indicates that the difference between frames is very similar for both

video clips. We computed an average correlation of 0.99476 between curves computed

for a series of corresponding video clips. Temporal artifacts and discontinuities would

cause these curves to differ a lot and these results indicate that our method produces

a temporally smooth transformed video.
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Figure 4.11: Temporal differences ∆(t) over time. Red: transformed; Blue: original.

Similar interpolation effects as those applied to images can also be applied to video

clips, with the interpolation weight γ(t) ∈ [0; 1] varying over time. To create dissolve

effects between colour palettes in videos, a colour pixel x in the sequence at time t can

be recoloured as follows [10]:

x(t)→ φ
(
x, γ(t) θ̂(1) + (1− γ(t)) θ̂(2)

)
(4.17)

As in images, we can extend this idea further by using interpolation weights that

vary spatially as well as in the temporal domain, with a colour pixel x at pixel spatial

location p = (p1, p2) recoloured as follows:

x(p, t)→ φ
(
x, γ(p, t) θ̂(1) + (1− γ(p, t)) θ̂(2)

)
(4.18)

where γ(p, t) is a dynamic greyscale mask with values between 0 and 1.
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Target & Palette Pitié et al.[7, 6] TPSKMrgb

Figure 4.12: Example of quantisation errors enhanced by our transfer method (e.g.
in the sky) as the gradient becomes stretched to match the colours in the palette
image (row 1, col 3). The gradient smoothing step proposed by Pitié et al. [6] as an
improvement from their ealier method without post processing [7] could be used in our
pipeline to remove artifacts although in general this can reduce the sharpness of the
image which is undesirable. Column 2: Pitié et al. [7] (before smoothing) and [6] (after
smoothing); Column 3: TPSKMrgb (before smoothing) and TPSKMrgb (after smoothing).

4.3.3 Post-processing

While our approach produces excellent results in general, rare saturation artifacts can

occur when many colours in the palette image lie close to the boundary of the colour

space. As we do not constrain the transformed colours to lie within a specific range,

some colours can potentially get transformed outside of the colour space. We currently

clamp the colour values so that they are within the desired range. Recently, Oliveira et

al. [91] proposed using truncated Gaussians which could be implemented in future to

overcome this problem. Additionally, a post-processing step similar to that proposed by

Pitié et al.[6] could be added to our pipeline when needed, to constrain the smoothness

of the gradient field of the recoloured image so that it remains similar to the gradient

field of the target image, as shown in Figure 4.12.
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4.3.4 User Interaction

Our approach can also be easily enhanced to allow user interaction when recolouring

images and videos. As an alternative to using registration techniques to find pixel cor-

respondences between images, users could manually choose corresponding pixels from

the target and palette images. While these pixel correspondences alone could be used

to compute the transformation φ, there may not be enough to create a good recolour-

ing result. Therefore, these pixel correspondences could be used in addition to cluster

centres computed using a clustering technique such as K-means, so that the transfor-

mation φ is computed using a combination of colours that have no correspondences

(K-means clusters) and those that do (user defined correspondences).

Other frameworks have also proposed allowing the user to choose their own colour

palette, rather than relying on a palette image, as it may not necessarily provide the

user with their desired colours [139]. In this case, rather than fitting a GMM to a

select number of colours in the palette image, the GMM would be fitted to each of the

colours in the user defined palette. This kind of interaction would give the user the

ability to individually select the colours that they would like to see in the result image.

4.4 Conclusion

In this chapter we have presented a new framework for colour transfer which regis-

ters two GMMs capturing the colour of the target and palette images using the L2

distance. We have shown that our method can be applied to images with both sim-

ilar and different content, and can be enhanced by correspondences when they are

available. Our algorithms compete very well with current state of the art approaches

since no statistical differences can be measured using metrics such as PSNR and SSIM,

and visual inspection of our results shows that our algorithms are more immune to

occasional artifacts created in the gradient field of the recoloured image. Our para-

metric formulation of the transfer function allows for fast recolouring of images and

videos. The transfer functions can also be stored and easily combined and interpolated

for creating visual effects. Future work could investigate techniques to capture users’

preferences by learning from exemplar transfer functions [140]. In the next chapter

we will apply a similar registration technique to the shape registration problem, and
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investigate whether adding directional information to the shape model can improve the

registration results.
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Chapter 5

L2 Registration with Directional

Data

In this chapter we further extend the registration ideas presented in Chapter 4 and

apply them to the shape registration problem. The proposed method is based on the

idea of minimising the distances between two distributions which capture the direc-

tional data of the shapes being registered. We present two directional distributions -

the von Mises-Fisher distribution and the Watson distribution. We propose four new

cost functions which model the directional data using a von Mises-Fisher kernel, two

of which combine both the positional and directional information of a shape to en-

hance the registration. To validate the proposed techniques we use them to register

shapes differing by both a rigid and non-rigid transformation and compare them to

other state the of the art registration techniques. The results obtained confirm that

using the combination of a point’s position and unit normal vector in a cost function

can enhance the registration results.

5.1 Introduction

Directions, axes or rotations are described as unit vectors in Rd and are known collec-

tively as directional data. In computer vision this type of data is processed regularly

and includes surface normals and tangent vectors, orientations of image gradients, the

direction of sound sources and GPS coordinate information [141, 142, 143]. Directional
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data can be viewed as points on the surface of a hypersphere Sd, with angular directions

observed in the real world frequently visualised on the circle or sphere.

A lot of research has been concerned with successfully modelling and analysing this

type of data, with distributions proposed by von Mises, Fisher and Watson [144] used

in a range of applications including data clustering, segmentation and texture mapping

[8]. For shape registration, as previously discussed in Chapter 2, Arellano et al. propose

to extend the registration technique proposed by Jian et al. [41] by augmenting their

GMM modelling framework with an extra dimension capturing angles of the normals

of the shapes [50]. Their resulting algorithm maps GMMs p1(x, ψ), generated with the

shape {(x(i)
1 , ψ

(i)
1 )}, and p2(x, ψ) modelled from {(x(j)

2 , ψ
(j)
2 )} where the angle ψ(i) is the

normal direction associated with location x(i) [50].

In this section we propose to use von Mises-Fisher kernels to model the normal vec-

tors of the shape, adding them as an extra dimension to the KDE previously proposed

by Jian et al. [41]. The L2 distance is then shown to have an explicit expression and

our proposed cost function is shown in some cases to give improved results to other

state of the art techniques. The remainder of this chapter is structured as follows: Sec-

tion 5.2.1 details some important directional distributions and their scalar products,

Section 5.3 proposes four new cost functions for registration using normal information,

Section 5.4 outlines some of the implementation details of our method and Section 5.5

presents the experimental results.

5.2 L2 with Directional Data

We consider the d-dimensional unit random vector u such that ‖u‖ = 1 (u ∈ Sd−1

with Sd−1 the hypersphere in Rd ). Having a set of observations {u(i)}i=1,··· ,n, a kernel

density estimate can be used as an approximation of the probability density function

of u:

p(u) =
n∑
i=1

πi K
(
u;u(i), κ

)
(5.1)

provided that K is a suitable kernel for random unit vector u. The parameter κ is the

scale parameter associated with the kernel K and the weights πi are chosen such that∑n
i=1 πi = 1 and πi ≥ 0, ∀i.
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Figure 5.1: Vectors u ∈ S2 sampled from the von Mises-Fisher (top row) and Watson
distributions (bottom row) for different values of the concentration parameter κ. Image
sourced from [8].

5.2.1 Kernels for directional data

von Mises-Fisher kernel

The von Mises-Fisher probability density function for a random unit vector u ∈ Sd−1

is defined as:

vMF (u;µ, κ) = Cd(κ) exp
(
κ µTu

)
(5.2)

with scalar parameter κ ≥ 0, ‖µ‖ = 1, and the normalising constant Cd defined as:

Cd(κ) =
1∫

Sd−1 exp (κ µTu) du
=

κ
d
2
−1

(2π)
d
2 I d

2
−1(κ)

(5.3)

with I d
2
−1 the modified Bessel function of order d

2
−1. The von Mises-Fisher distribution

with parameters κ and µ is noted vMF (µ, κ) for simplification. For dimension d = 3,

u is a unit vector in R3 and belongs to the sphere S2 (as defined in Equation 3.26), and

the normalising constant in the von Mises-Fisher distribution is [8]:

C3(κ) =
κ

4π sinh(κ)
(5.4)
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For d 6= 3, the value Cd(κ) is not directly available but can be computed using

numerical integration.

The value of the parameter κ determines the shape of the distribution, with high

values of κ creating a distribution highly concentrated about the mean direction µ, and

low values of κ creating an almost uniform distribution on Sd−1. Figure 5.1 displays

different von Mises-Fisher distributions simulated by varying the parameter κ.

Bimodal extension of von Mises-Fisher distribution

When modelling variables which are axially symmetric, in other words random vectors

u which have the same distribution as their opposite −u, a bimodal extension of the

von Mises-Fisher distribution could be used, defined as follows:

bvMF (u;µ, κ) = Cd(κ)
(
α exp

(
κ µTu

)
+ (1− α) exp

(
κ (−µ)Tu

))
(5.5)

with α ∈ [0, 1] determining the strength of the modes at µ and −µ. The line along

u = −µ and u = µ is known as the axis direction.

Watson distribution

The Watson distribution is also used to model axially symmetric directional data and

is defined as follows:

Wd(u;µ, κ) = Md(κ) exp
(
κ (µTu)2

)
(5.6)

with the normalising constant:

Md(κ) =
1∫

Sd−1 exp (κ (µTu)2) du
(5.7)

This can be computed as Md(κ) = M(1
2
, d

2
, κ), the confluent hyper-geometric func-

tion also known as the Kummer function, which is not directly available but can be

approximated. Like the von Mises-Fisher distribution, the value of κ determines the

shape of the distribution, however in the case of the Watson distribution κ can take

both positive and negative values. Figure 5.1 displays different Watson distributions

simulated by varying the parameter κ.
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5.2.2 Scalar product of vMF kernels

The product of two von Mises-Fisher distributions, vMF1 = Vd(u;µ1, κ1) and vMF2 =

Vd(u;µ2, κ2) can be written:

vMF1 × vMF2 = Cd(κ1) Cd(κ2)× exp

(
‖κ1µ1 + κ2µ2‖

uT (κ1µ1 + κ2µ2)

‖κ1µ1 + κ2µ2‖

)
(5.8)

In other words, the product vMF1 × vMF2 is proportional to vMF = Vd(u;µ, κ) such

that:

vMF1 × vMF2 =
Cd(κ1) Cd(κ2)

Cd(κ)
vMF (5.9)

with κ = ‖κ1µ1 + κ2µ2‖ and µ = κ1µ1+κ2µ2
‖κ1µ1+κ2µ2‖ . Since vMF integrates to 1, the scalar

product between vMF1 and vMF2 can be defined as:

〈vMF1|vMF2〉 =

∫
u∈Sd−1

vMF1 × vMF2 du =
Cd(κ1) Cd(κ2)

Cd(κ)
(5.10)

The scalar product between two von Mises-Fisher distributions can therefore be easily

computed when an explicit expression for the function Cd(κ) is available (e.g. equation

(5.4) for d = 3). Alternatively numerical integration can be used as an approximation

to equation (5.3) for any value d > 1.

When modelling axial symmetric data the bimodal form of the von Mises-Fisher

distribution could be used. The scalar product of two such distributions follows from

equation 5.10.

5.2.3 Mixtures of von Mises-Fisher and Dirac Kernels

Consider two KDEs, denoted p1 and p2 (cf. Eq. 5.1) computed with datasets {u(i)
1 }i=1,··· ,n1

and {u(j)
2 }j=1,··· ,n2 , and kernels Ku1 and Ku2 respectively. Their scalar product is then:

〈p1|p2〉 =

n1∑
i=1

n2∑
j=1

π
(i)
1 π

(j)
2

∫
u

Ku1(u;u
(i)
1 ) Ku2(u;u

(j)
2 )du (5.11)

Consider on the other hand the case where p1 is computed using two types of kernels
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Ku1 and Kx1 fitted to the points {u(i)
1 }i=1,··· ,n1 and {x(i)

1 }i=1,··· ,n1 as follows:

p1(x, u) =

n1∑
i=1

π
(i)
1 Ku1(u;u

(i)
1 ) Kx1(x;x

(i)
1 ) (5.12)

If p2 is computed similarly with kernels Ku2 and Kx2 , and data {u(j)
2 }j=1,··· ,n2 and

{x(j)
2 }j=1,··· ,n2 , then the cross product between p1 and p2 can be written as:

〈p1|p2〉 =

n1∑
i=1

n2∑
j=1

π
(i)
1 π

(j)
2

∫
u

Ku1(u;u
(i)
1 ) Ku2(u;u

(j)
2 ) du

∫
x

Kx1(x;x
(i)
1 ) Kx2(x;x

(j)
2 ) dx

(5.13)

In the next section we propose modelling shape observations and their normals

using a combination of Dirac, von Mises-Fisher and Normal kernels. Computing the

L2 distance between the proposed KDEs relies on the scalar products between their

associated kernels. All of these scalar products are summarised in Table 5.1.

x ∈ Rd u ∈ Sd−1

δ(x− µ1) N (x;µ1, h
2
1) δ(u− µ1) vMF (u;µ1, κ1)

δ(x− µ2) 7 N (µ1;µ2, h
2
1),

[49]
7 7

N (x;µ2, h
2
2) N (µ1;µ2, h

2
2),

[49]
N (µ1;µ2, h

2
1 +

h2
2) [41]

7 7

δ(u− µ2) 7 7 7 Cd(κ1) exp(κ1 µ
T
1 µ2)

vMF (u;µ2, κ2) 7 7 Cd(κ2) exp(κ2 µ
T
2 µ1)

Cd(κ1) Cd(κ2)
Cd(‖κ1µ1+κ2µ2‖)

Table 5.1: Scalar products for Gaussian (N ), von Mises-Fisher (vMF ) and Dirac (δ)
kernels.

5.3 Cost functions for Registration

Given two sets of observations S1 = {(x(i)
1 , u

(i)
1 )}i=1,··· ,n1 and S2 = {(x(j)

2 , u
(j)
2 )}j=1,··· ,n2 ,

we encode the model and target shapes using KDEs and register them by minimising the

L2 distance between them. Here we assume that the shapes differ by some transforma-

tion φ, controlled by the parameter θ, which registers S1 to S2 and creates a new shape
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with observations S̃1 = {(x̃(i)
1 , ũ

(i)
1 )}i=1,··· ,n1 . Probability density functions are modelled

using sets S̃1 and S2 providing two possible distributions denoted p1 and p2 for the

random vector x ∈ Rd, u ∈ Sd−1, and (x, u) ∈ Rd × Sd−1. The L2 distance between p1

and p2 can then be computed as L2(p1, p2) = ‖p1 − p2‖2 = ‖p1‖2 + ‖p2‖2 − 2〈p1|p2〉.
Minimising L2(p1, p2) to estimate the transformation φ is equivalent to minimising

‖p1‖2− 2〈p1|p2〉 since the distribution p2 is independent of φ. When φ is a rigid trans-

formation (ie. a transformation which preserves distances between points, such as a

rotation or translation), the term ‖p1‖2 can also be discarded as the L2 norm of a pdf

is invariant under rigid transformation. Therefore, minimising the L2 distance between

p1 and p2 is equivalent to minimising −〈p1|p2〉, or maximising 〈p1|p2〉, when φ is a rigid

transformation.

5.3.1 Registration using u ∈ Sd−1

To model the first set of normals {u(i)
1 } we propose a KDE p1 with a von Mises-Fisher

kernel vMF (u; ũ
(i)
1 , κ) fitted to each normal ũ

(i)
1 in S̃1:

p1(u) =
1

n1

n1∑
i=1

vMF (u; ũ
(i)
1 , κ1) (5.14)

For the second set of normal vectors {u(j)
2 } we propose using either the Dirac or von

Mises-Fisher distributions.

Dirac distribution

Using the empirical distribution we propose the model:

p2(u) =
1

n2

n2∑
j=1

δ(u− u(j)
2 ). (5.15)
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Using the definitions for 〈p1|p2〉 as given in Table 5.1, the cost function used to estimate

θ by minimising ‖p1‖2 − 2〈p1|p2〉 can then be defined as follows:

θ̂ = arg min
θ

{
Cuδ =

Cd(κ1)Cd(κ1)

n1n1

n1∑
i=1

n1∑
j=1

1

Cd

(
‖κ1ũ

(i)
1 + κ1ũ

(j)
1 ‖
)

− 2
Cd(κ1)

n1n2

n1∑
i=1

n2∑
j=1

exp(κ1ũ
(i)T
1 u

(j)
2 )

}
, (5.16)

When φ is a rigid transformation, maximising the scalar product 〈p1|p2〉 can be

used to estimate θ since ‖p1‖2 is invariant to changes in θ, and Cuδ can be redefined as

θ̂ = arg max
θ

{
Cuδ =

n1∑
i=1

n2∑
j=1

exp(κ1ũ
(i)T
1 u

(j)
2 )

}
. (5.17)

and can be easily computed for all values of d. This is one of the main advantages of

using the Dirac distribution to model one set of normal vectors.

Von Mises-Fisher distribution

Using the von Mises-Fisher distribution we propose the model:

p2(u) =
1

n2

n2∑
j=1

vMF (u;u
(j)
2 , κ2). (5.18)

Using the definitions for 〈p1|p2〉 as given in Table 5.1, the cost function used to estimate

θ by minimising ‖p1‖2 − 2〈p1|p2〉 can then be defined as follows:

θ̂ = arg min
θ

{
Cu =

Cd(κ1)Cd(κ1)

n1n1

n1∑
i=1

n1∑
j=1

1

Cd

(
‖κ1ũ

(i)
1 + κ1ũ

(j)
1 ‖
)

− 2
Cd(κ1)Cd(κ2)

n1n2

n1∑
i=1

n2∑
j=1

1

Cd

(
‖κ1ũ

(i)
1 + κ2u

(j)
2 ‖
)}. (5.19)

Unlike Cuδ , both terms in Cu depend on the normalising constant Cd(κ), and the com-

putation of Cu requires numerical integration when d 6= 3.

79



5.3.2 Registration using x ∈ Rd

Next we propose to model a KDE with a Gaussian kernel N (x; x̃
(i)
1 , h) fitted to each

normal x̃
(i)
1 in S̃1:

p1(x) =
1

n1

n1∑
i=1

N (x; x̃
(i)
1 , h1) (5.20)

We also propose to model the second set of points {x(j)
2 } using the Gaussian distribu-

tion:

p2(x) =
1

n2

n2∑
j=1

N (x;x
(i)
2 , h2) (5.21)

Using the definition for the scalar product between two Gaussian kernels (cf. Table

5.1), the following cost function is proposed to estimate θ:

θ̂ = arg min
θ

{
Cx =

1

n1n1

n1∑
j=1

n1∑
i=1

1√
4h2

1π
exp

(
−‖x̃(j)

1 − x̃
(i)
1 ‖2

4h2
1

)

− 2

n1n2

n2∑
j=1

n1∑
i=1

1√
2(h2

1 + h2
2)π

exp

(
−‖x(j)

2 − x̃
(i)
1 ‖2

2(h2
1 + h2

2)

)}
. (5.22)

This cost function is equivalent to that proposed for shape registration by Jian et al.

[41] and as it takes the form of a summation of Gaussians, fast approximation schemes

such as the fast Gauss Transform can be used to speed up its computation [145]. Note

that if we had instead fitted a Dirac kernel to each of the points in {x(j)
2 } we would

have obtained the following cost function:

θ̂ = arg min
θ

{
Cxδ =

1

n1n1

n1∑
j=1

n1∑
i=1

1√
4h2

1π
exp

(
−‖x̃(j)

1 − x̃
(i)
1 ‖2

4h2
1

)

− 2

n1n2

n2∑
j=1

n1∑
i=1

1√
2h2

1π
exp

(
−‖x(j)

2 − x̃
(i)
1 ‖2

2h2
1

)}
, (5.23)

which is equivalent to Cx when h2 = 0.
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5.3.3 Entangled Registration using x ∈ Rd and u ∈ Sd−1

Next we investigate a cost function which accounts for both the normal vectors and

point positions of the shapes in the modelling. For the transformed observations we

create a KDE with Gaussian kernels fitted to each point x̃
(i)
1 and a vMF kernel fitted

to each normal vector ũ
(i)
1 as follows:

p1(x, u) =
1

n1

n1∑
i=1

vMF (u; ũ
(i)
1 , κ1)N (x; x̃

(i)
1 , h1) (5.24)

For the second set of observation we again propose two methods for modelling the

point and normal vectors.

Dirac distribution

First, we propose to fit a dirac Delta kernel to each normal vector u
(j)
2 and a Gaussian

kernel to each point x
(j)
2 to create a KDE of the form:

p2(x, u) =
1

n2

n2∑
j=1

δ(u− u(j)
2 )N (x;x

(j)
2 , h2). (5.25)

Then in order to optimise for the parameter θ we minimise the following:

θ̂ = arg min
θ

{
Cx,uδ =

1

n1n1

n1∑
j=1

n1∑
i=1

〈vMF (u; ũ
(i)
1 , κ1)N (x; x̃

(i)
1 , h1)|vMF (u; ũ

(j)
1 , κ1)N (x; x̃

(j)
1 , h1)〉

− 2

n1n2

n2∑
j=1

n1∑
i=1

〈vMF (u; ũ
(i)
1 , κ1)N (x; x̃

(i)
1 , h1)|δ(u− u(j)

2 )N (x;x
(j)
2 , h2)〉

}
(5.26)

Using the appropriate scalar product definitions given in Table 5.1, the proposed cost

function can be written explicitly as:

θ̂ = arg min
θ

{
Cx,uδ =

Cd(κ1)Cd(κ1)

n1n1

√
4h2

1π

n1∑
i=1

n1∑
j=1

1

Cd

(
‖κ1ũ

(i)
1 + κ1ũ

(j)
1 ‖
) exp

(
−‖x̃(j)

1 − x̃
(i)
1 ‖2

4h2
1

)

− 2Cd(κ1)

n1n2

√
2(h2

1 + h2
2)π

n1∑
i=1

n2∑
j=1

exp(κ1 u
(j)
2

T
ũ

(i)
1 ) exp

(
−‖x(j)

2 − x̃
(i)
1 ‖2

2(h2
1 + h2

2)

)}
(5.27)
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In Cx,uδ , the term 〈p1|p2〉 is independent of the normalising constant Cd(κ) and can be

computed for any dimension d. Therefore, when φ is a rigid transformation, θ can be

estimated for any dimension d by maximising the scalar product 〈p1|p2〉 as follows:

θ̂ = arg max
θ

{
Cx,uδ =

n1∑
i=1

n2∑
j=1

exp(κ1 u
(j)
2

T
ũ

(i)
1 ) exp

(
−‖x(j)

2 − x̃
(i)
1 ‖2

2(h2
1 + h2

2)

)}
. (5.28)

Von Mises-Fisher

We also propose an alternate KDE with vMF kernels fitted to the normal vectors {u(j)
2 }

as in Equation 5.24:

p2(x, u) =
1

n2

n2∑
j=1

vMF (u;u
(j)
2 , κ2)N (x;x

(j)
2 , h2). (5.29)

Then in order to optimise for the parameter θ we minimise the following:

θ̂ = arg min
θ

{
Cx,u =

1

n1n1

n1∑
j=1

n1∑
i=1

〈vMF (u; ũ
(i)
1 , κ1)N (x; x̃

(i)
1 , h1)|vMF (u; ũ

(j)
1 , κ1)N (x; x̃

(j)
1 , h1)〉

− 2

n1n2

n2∑
j=1

n1∑
i=1

〈vMF (u; ũ
(i)
1 , κ1)N (x; x̃

(i)
1 , h1)|vMF (u;u

(j)
2 , κ2)N (x;x

(j)
2 , h2)〉

}
(5.30)

Using the appropriate scalar product definitions given in Table 5.1, the proposed cost

function can be written explicitly as:

θ̂ = arg min
θ

{
Cx,u =

Cd(κ1)Cd(κ1)

n1n1

√
4h2

1π

n1∑
i=1

n1∑
j=1

1

Cd

(
‖κ1ũ

(i)
1 + κ1ũ

(j)
1 ‖
) exp

(
−‖x̃(j)

1 − x̃
(i)
1 ‖2

2h2
1

)

− 2
Cd(κ1)Cd(κ2)

n1n2

√
2(h2

1 + h2
2)π

n1∑
i=1

n2∑
j=1

1

Cd

(
‖κ1ũ

(i)
1 + κ2u

(j)
2 ‖
) exp

(
−‖x(j)

2 − x̃
(i)
1 ‖2

2(h2
1 + h2

2)

)}
(5.31)

Unlike Cx,uδ , both terms in Cu depend on the normalising constant Cd(κ), and the

computation of Cx,u requires numerical integration when d 6= 3.
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5.4 Implementation Details

In this section we outline some of the implementation details of our algorithm when it

was applied to registering two shapes S1 and S2 with point sets {x(i)
1 } and {x(j)

2 } and

unit normal vectors {u(i)
1 } and {u(j)

2 } respectively.

5.4.1 Transformation function φ

To test the proposed cost functions, we considered shapes differing by both a rigid and

non-rigid transformation φ. As a translation only affects the observations {x(i)} and

not the normal vectors {u(i)}, the cost functions Cu and Cuδ are invariant to transla-

tion. Therefore, when estimating a rigid transformation, to ensure all cost functions

are evaluated equally, we omit a translational transformation and only consider data

differing by a rotation. When estimating the 3D rotation transformation we use the

quaternion representation φ(x, θ) = (q1, q2, q3, q4) as described in Section 3.2.1.

For shapes differing by a non-rigid deformation, we estimate a Thin Plate Spline

transformation to register the shapes, as defined in Equation 3.16. In this case, we do

not include any regularisation terms when estimating the TPS transformation, although

a term such as that given in Equation 3.22 can be added by the user if necessary. The N

control points cj used to control the TPS transformations in our non-rigid experiments

are chosen uniformly on a grid spanning the bounding box of the model shape.

5.4.2 Algorithm

Given two point sets {x(i)
1 }i=1,..n1 and {x(j)

2 }j=1,..n2 representing the model and tar-

get shapes, our strategy for estimating the transformation φ(x, θ) is summarised in

Algorithm 2.
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Algorithm 2 Our strategy for estimating the transformation φ(x, θ).

Require: θ̂ initialised so that φ(x, θ̂) = x (identity function)

Require: κinit, κfinal and hinit, hfinal for Cx,u.
Require: hstep, κstep

Require: Computation of unit normal vectors {u(i)
1 }i=1,..n1 and {u(j)

2 }j=1,..n2 from

{x(i)
1 }i=1,..n1 and {x(j)

2 }j=1,..n2 .

Choose m points {x(i)
1 }i=1,..m and {x(j)

2 }j=1,..m and their associated unit normal vec-

tors {u(i)
1 }i=1,..m and {u(j)

2 }j=1,..m for processing.

Start h = hinit and κ = κinit

repeat

θ̂ ← arg minθ C(θ)
h← hstep × h
κ← κstep × κ

until Convergence h < hfinal and κ > κfinal return θ̂

In all of our experiments we let h1 = h2 = h and κ1 = κ2 = κ. In order to avoid

local minima, we implement a simulated annealing strategy which involves gradually

decreasing the value of h from hinit to hfinal by multiplying by hstep, and similarly

increasing the value of κ from κinit to κfinal by multiplying by κstep. Starting the

optimisation at several initial guesses can also help avoid local minima, however in all

of the results presented we use only the identity transformation as the initial guess.

The values chosen for each of these parameters can be found in Appendix B. As the

computation time of our proposed algorithms are dependent on the number of points

in S1 and S2, we reduce the number of points processed by choosing a random sample

of m points and their associated unit normal vectors from both S1 and S2.

5.4.3 Normal Vector Computation

We use several methods to compute the normal vectors {u(i)} at the points {x(i)}.
When testing our cost functions on 2D data, we use parametric curves and compute

the normal vectors analytically at each sampled point by calculating the first derivative

of the curve. For 3D shapes in the form of meshes, with edge and vertex information

available, we compute the normal vectors at a given vertex x(i) as the average of the
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normal vectors of each face connected to x(i). We can also compute the normal vectors

without exploiting the connectivity of a vertex. This method involves using the nearest

neighbourhood structure of the vertex instead, and can also be used to compute the

normal vector of a point when no edge or face information is available. This method fits

a plane to the Nk nearest neighbours about the point x(i) and the vector perpendicular

to this plane is set as the normal vector of x(i) [146, 147].

5.4.4 Optimisation details

When estimating a rotation we use the Matlab optimisation function fmincon to min-

imise the cost functions. This optimisation function minimises constrained, non-linear

multivariate functions and allows us to impose constraints on the estimated parameter

θ̂. For 3D rotations, upper and lower bounds are added to ensure that each value qi

in the estimated quaternion (q1, q2, q3, q4) lies in the range [−1, 1]. The minimization

algorithm used is the interior point algorithm [148, 149] which is a gradient ascent

technique.

When estimating a TPS transformation we used the Matlab function fminunc,

which minimises unconstrained multivariate functions. In this case the minimisation

algorithm used is the Quasi-Newton method [136], which is also a gradient ascent

algorithm. In the case of the cost functions Cx, Cu, Cuδ , Cx,u and Cx,uδ , no analytical

gradients are computed. Instead, numerical methods are used by fmincon and fminunc

to estimate the gradient of the cost functions.

5.4.5 Correspondences

In some cases, when estimating a non-rigid transformation, correspondences are used

to reduce computational complexity and improve the registration result. When n

correspondences are chosen, rather than computing the double sum
∑n1

i

∑n2

j over

all point pairs, this summation reduces to
∑n

i for all cost functions. To compute

correspondences we used the method proposed by Yang et al.[33]. Their correspondence

estimation method uses a combination of both global and local distance features. First,

a global distance between the model and target point sets {x(i)
1 } and {x(i)

2 } is computed,

which is based on the squared Euclidean distance between each pair of points in the

point sets. They then estimate the local distance which measures the difference in
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neighbourhood structure between each pair of points in the point sets. They combine

both the local and global distance into a cost matrix, and use this to estimate a set of

point correspondences.

They also implement an annealing scheme which is designed to slowly change the

cost minimisation from local to global. This ensures that in the first annealing steps

the correspondences estimated are based mostly on the local distance and in the final

annealing steps more emphasis is given to the global distance. When implementing this

correspondence estimation method in our algorithm, we also implemented this tran-

sition from global to local distance minimisation, incorporating it into our simulated

annealing strategy.

5.4.6 Comparisons

To evaluate our algorithm we compared our results to several state of the art registra-

tion techniques [41, 150, 151, 33]. The parameters chosen for each of these techniques

is given in Appendix B. To ensure that a fair comparison between Jian’s cost function

Cx and our proposed cost functions was presented, we altered some of the optimisation

steps in the code provided by Jian et al.1 so that they coincided with those imple-

mented with our proposed cost functions. For example, we implemented the same

simulated annealing framework for Cx as for Cu, Cuδ , Cx,uδ and Cx,u. The optimisation

changes made enhanced the results achievable by Cx by allowing the function to avoid

local minima and converge to a good solution.

5.4.7 Evaluation

In all of our experiments we chose the model and target point sets {x(i)
1 }i=1,..n1 and

{x(j)
2 }j=1,..n2 to be of equal size with n1 = n2 = n. The ground truth point correspon-

dences between the model and target shapes {x(i)
1 , x

(i)
2 }i=1,..n are also known in all cases.

Therefore when evaluating the results of all algorithms tested, we computed the mean

square error (MSE) between corresponding points in the transformed model ({x̃(i)
1 })

1https://github.com/bing-jian/gmmreg
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and target point sets as follows:

1

n

n∑
i=1

‖x̃(i)
1 − x

(i)
2 ‖ (5.32)

Note that all n points in the target shape and transformed model are used to

compute the MSE, not just the subsample of size m used to compute φ(x, θ̂).

5.5 Experimental Results

In this section we evaluate our proposed cost functions and show how they compare

to other state of the art registration techniques. In Sections 5.5.1 and 5.5.2 we apply

the cost functions to the problem of registering both 2D data and 3D data differing

by a rotation transformation. In this case we maximise the scalar product 〈p1|p2〉. In

Section 5.5.3 and 5.5.4 we also evaluate the cost functions on 2D and 3D data differing

by a non-rigid transformation and minimise ‖p1‖2 − 2〈p1|p2〉 to estimate θ. In Section

5.5.5 we give details about the computational cost of our algorithm and in Section 5.5.6

we give a short summary of the findings in this section.

For our 2D experiments we chose to register point clouds consisting of points sam-

pled from parametric curves. The normal vectors at each point can then be computed

analytically as the first derivative of the parametric curve at the given point. For 3D

data, we chose to register point clouds consisting of the vertices of 3D meshes. In this

case, the edge and face information of the mesh can be used to compute the normal

vectors of each vertex. Using data sets with ground truth normal vectors ensures that

we can assess how the proposed cost functions perform when there is no noise or error

associated with either the points or their normal vectors. We also added noise and

removed points from the point clouds in order to simulate the errors and occlusions

which are typically associated with real world data sets.

5.5.1 2D Rotation Registration

In this section we consider two curves S1 = {(x(i)
1 , u

(i)
1 )}i=1,..n and S2 = {(x(j)

2 , u
(j)
2 )}j=1,..n,

which are represented by their point locations {x(i)} ∈ R2 and normal vectors {u(i)} ∈
S, as in Figure 5.2. Curves S1 and S2 differ by a rotation φ which is defined as
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Figure 5.2: Three different 2D parametric curves used in our experiments, sampled at
50 locations, along with their normal vectors.

φ(x, θ) = Rx, where R is a 2D rotation matrix controlled by the angle θ, as in Equa-

tion 3.8. We assess the estimation of the rotation angle θ using the cost functions

Cx [41], Cu, Cuδ , Cx,u and Cx,uδ . When using Cx,u and Cu, which depend on the von

Mises-Fisher normalising constant Cd(κ), we artificially define u on S2 instead of S by

adding a third dimensional coordinate to the normal vector which is set to zero. The

normalising constant C3(κ) can be computed analytically. The point locations {x(i)}
remain unchanged. When testing our results we found that Cu and Cuδ as well as Cx,u

and Cx,uδ perform similarly, so for ease of comparison we only present results for Cu and

Cx,u in the following section. The similarity in results is due to the fact that fitting a

dirac kernel to each normal vector associated with a given shape, as proposed by the

cost functions Cx,uδ and Cuδ , creates a similar model to that generated by fitting a von

Mises-Fisher kernel to each normal vector, when the sample of normal vectors used

is large and randomly selected, as is the case in our proposed experiment. Further

comparisons with Cuδ and Cx,uδ can be found in Appendix C.

Experimental Design

1. Rotation: To create the shapes for our first experiment, we sampled a parametric

curve at 50 locations {x(i)
1 }i=1,..50 and computed their corresponding normal vectors

{u(i)
1 }i=1,..50 to create S1 = {(x(i)

1 , u
(i)
1 )}i=1,··· ,50, as in Figure 5.2. We rotated the points

and normal vectors of S1 by θ degrees, creating a second curve S2. Examples of the

curves S1 and S2 can be seen in Figure 5.5. Using the curve S1 as the model, we
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estimate θ by registering it to S2. Several values of θ were tested, and for each value

we created and registered 10 pairs of curves S1 and S2.

2. Rotation with missing data: In our second experiment we sampled a parametric

curve at 150 locations {x(i)
1 }i=1,..150 and computed their corresponding normal vectors

{u(i)
1 }i=1,..150 to create S1 = {(x(i)

1 , u
(i)
1 )}i=1,..150. We then rotated S1 by θ = 60 degrees

to create the curve S2. Then we removed a percentage of points, in order, from the

end of the curve S2. Some examples of the curves S1 and S2 can be seen in Figure 5.6.

Again we estimate θ by registering S1 to S2. For each percentage of points removed

(7%, 20%, 33%, 47%, 60%) we generating 10 pairs of curves S1 and S2 on which we

tested the estimation of θ.

3. Rotation with added noise: In our third experiment we sampled a parametric

curve at 150 locations and computed the corresponding normal vectors analytically

using the parametric equation of the curve, creating the shape S1 = {(x(i)
1 , u

(i)
1 )}i=1,..150.

To create the shape S2, we first rotated S1 by θ degrees. We then added Gaussian

noise with mean 0 and standard deviation σ to each of the points, creating the point

set {x(j)
2 }j=1,..150. To compute the corresponding normal vectors {u(i)

2 }i=1,..150, we fit a

spline to the noisy data points, using a smoothing parameter with the fitting algorithm

to ensure that the spline does not interpolate the noisy data exactly, but instead

approximates it. We use the Matlab function ‘csaps ’ to fit the spline, and set the

smoothing parameter to 0.999. We used the derivative of this spline to estimate the

normal vectors of the noisy points. Using a spline approximation, as opposed to a

spline interpolation, to compute the normal vectors ensures that the normal vectors

still contain some useful information and are not too noisy. Some examples of the

curves S1 and S2 can be seen in Figure 5.7. Again we estimate θ by registering S1 to

S2. For each level of noise tested (σ = 0.005, 0.01, 0.015, 0.02, 0.025, 0.03) we generating

150 pairs of curves S1 and S2 on which we tested the estimation of θ. We also tested

several values of θ to see how the registration results differ as the rotation increases.

Results

In Figure 5.3 we present the average MSE errors computed for Cx, Cu and Cx,u in all

three experiments. The results of our first experiment can be seen in Figure 5.3(a). In
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Figure 5.3: MSE results for each of our experiments on 2D data differing by a rotation.
In (a) the MSE value given at each rotation is the average over 10 curve registration
results, as is the MSE value given at each percentage of removed points in (b). The
graphs in (c), (d) and (e) represent the results on noisy data when θ = 30◦, 60◦ and
90◦ respectively. The MSE value given at each noise level is the average over 150 curve
registration results.

this case we can see that Cx,u performs the best, followed by Cu and then Cx. As some

of the shapes tested are symmetric, the cost functions can fall into, or out of, local

minima depending on the shape tested, which is why Cx,u seems to perform better at

180◦ than 150◦. Figure 5.5 gives a sample of some of the registration results as well

as a graph of the corresponding cost functions. From these results we can see that in

the cases where only one of Cu and Cx performs well, Cx,u still gives a good result as it

combines the information from both cost functions.

The results of our second experiment can be seen in Figure 5.3(b). Again we found

that Cx,u performs the best, followed by Cu and then Cx. We also found that as the
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(a) (b) (c)

h = 44hfinal h = 42hfinal h = hfinal

κ = 1
24κfinal κ = 1

22κfinal κ = κfinal

Figure 5.4: The effect that our simulated annealing strategy has on the cost functions
as θ ranges from 1◦ to 360◦. To avoid local minima, h is gradually decreased and κ is
gradually increased until h = hfinal and κ = κfinal. Here the curve shown in Figure
5.2(a) is S1, and was rotated by an angle of θGT = 90◦ to generate S2. Green: Cx; Red:
Cu; Blue: Cx,u; Pink: θGT .

number of removed points increases to 60% or more, Cx,u had a higher tendency to

fall into local minima and the error increases as a result. The rise in error associated

with Cx as θ approaches 20%, and the fall in error afterwards as the number of points

removed increases further, is again due to the symmetry of the shapes tested. Similar

results were found for other values of θ tested.

The results of our third experiment can be seen in Figure 5.3(c),(d) and (e) when

estimating θ = 30◦, θ = 60◦, and θ = 90◦ respectively. In this case we found that when

θ is relatively small, around 30◦, Cx,u and Cx perform similarly and slightly outperform

Cu. However, as θ increases to 60◦ and 90◦, the performance of Cx gets worse and both

Cu and Cx,u outperform it, with Cx,u performing the best in both cases, for all levels of

noise added to the data.

As explained in Section 5.4.2, we use a simulated annealing strategy to avoid local

minima when registering the shapes S1 and S2. The effect of this strategy on the cost

functions can be seen in Figure 5.4.
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Figure 5.5: Sample registration results for rotation estimation with 2D data. Row 1:
Model Curve (blue) and Target Curve (red). Row 2 - 4: Registration result using Cx,
Cu and Cx,u respectively. Row 5 shows the value of each of the cost functions when θ
ranges from 1◦to 360◦. In these graphs red represents Cu, green represents Cx and blue
represents Cx,u. The pink line indicates the value of θGT .
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Figure 5.6: Sample registration results for rotation estimation with missing data. Row
1: Model Curve (blue) and Target Curve (red). Row 2 - 4: Registration result using
Cx, Cu and Cx,u respectively. Row 5 shows the value of each of the cost functions when
θ ranges from 1◦to 360◦. In these graphs red represents Cu, green represents Cx and
blue represents Cx,u. The pink line indicates the value of θGT .
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Figure 5.7: Sample registration results for rotation estimation with added noise. Row
1: Model Curve (blue) and Target Curve (red). The target curve is computed by fitting
a spline to the noisy data. The red curve does not pass through the noise data points
exactly, as it is not an interpolation of the data, but an approximation. Row 2 - 4:
Registration result using Cx, Cu and Cx,u respectively. Row 5 shows the value of each
of the cost functions when θ ranges from 1◦to 360◦. In these graphs red represents Cu,
green represents Cx and blue represents Cx,u. The pink line indicates the value of θGT .
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5.5.2 3D Rotation Registration

Next we consider two 3D shapes S1 = {(x(i)
1 , u

(i)
1 )}i=1,··· ,n and S2 = {(x(j)

2 , u
(j)
2 )}j=1,··· ,n

which are represented by their point locations {x(i)} ∈ R3 and normal vectors {u(i)} ∈
S2. Shapes S1 and S2 differ by a rotation φ which is defined as φ(x, θ) = Rx. Rather

than estimating the rotation matrix R, which has 9 unknowns, we estimate its quater-

nion representation q ∈ S3, as detailed in Section 5.4.4. In this case our latent space is

of dimension 4. We compared our results to those obtained using Jian et al’s method

Cx [41], CPD [150] and Go-ICP [151]. The shapes used in this experiment were the

Stanford Bunny, Dragon and Buddha meshes provided by the Stanford University

Computer Graphics Laboratory 2, and the Horse mesh provided by Sumner et al.[152].

Each of these shapes is stored in .ply format with both vertex and edge information

available, from which normal vectors are easily calculated, as described in Section 5.4.3.

The point clouds of each mesh used, along with the distribution of their normal vectors,

can be seen in Figure 5.8. These meshes have between 5000 and 40000 vertices each,

and a subsample of vertices and their corresponding normal vectors are used in all of

our experiments.

When testing our results we found that Cu and Cuδ as well as Cx,u and Cx,uδ are

practically equivalent, so for ease of comparison we only present results for Cuδ and

Cx,uδ in the following section. Further comparisons with Cu and Cx,u can be found in

Appendix B.

Experimental Design

1. Rotation with same sampling for S1 and S2: First, taking the vertices {x(i)
1 }

from a given mesh we computed their corresponding normal vectors {u(i)
1 } using the

edge information provided in the .ply, creating the shape S1. We then transformed

the points in S1, as well as their corresponding normal vectors, by some rotation R to

create S2. Corresponding samples of 1000 points and normal vectors were then drawn

from S1 and S2 so that point to point correspondences exist between the subsampled

target and model shapes. The rotation R was then estimated by registering the sub

sampled shape S1 to the sub sampled shape S2. Note that the correspondences are

not used to enhance the registration process in this case. We tested this registration

2http://graphics.stanford.edu/data/3Dscanrep/
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Figure 5.8: Column (a) shows the Bunny, Dragon, Buddha and Horse meshes. Column
(b) shows the distribution of normal vectors for each mesh in 2D. The normals can
be parametrised as u(ψ1, ψ2) = (cos(ψ1) cos(ψ2), sin(ψ1) cos(ψ2), sin(ψ2)). Column (c)
shows the distribution of normal vectors u(i) on the sphere.
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process for different levels of rotation magnitude ‖Rθ‖, defined as:

‖R‖ = ‖(α, β, γ)‖. (5.33)

where (α, β, γ) is the Euler angle representation of the rotation R, as described in Sec-

tion 3.2.1. At each level of rotation magnitude, 15 different pairs of shapes S1 and S2

were registered.

2. Rotation with different sampling of S1 and S2: Our next experiment followed

a similar procedure, however in this case different samples of 1000 points were chosen

from S1 and S2, along with their corresponding normal vectors, so that no one to one

correspondence exist between the subsampled target and model shapes. Again, at each

level of rotation magnitude, 15 different pairs of shapes S1 and S2 were registered.

3. Rotation with added Noise: To assess how our proposed cost functions perform

when noise is present in the data, we added three levels of Gaussian noise to each of

the points {x(i)
2 } in the shape S2, which differs from S1 by a rotation of magnitude 30◦.

The positions {x(i)
1 } in S1 remain noise free. The noise on S2 is defined with mean zero

and standard deviation varying from 0.001 to 0.003 and Figure 5.9 shows the noisy

point positions for the Bunny, Dragon and Buddha shapes at all 3 levels of noise.

When computing the normal vectors of the noisy shape S2 we used the nearest

neighbours approach implemented by Meshlab, as described in Section 5.4.3. We found

that when noise is present in the point positions, this gives a better estimate of the

normal vector than using the vertex connectivity. As the noise on the points {x(i)
2 }

increases we also increase the number of nearest neighbours (Nk) used to compute the

normal vectors, for example we set Nk = 40, 60 and 120 for noise levels 0.001, 0.002 and

0.003 respectively when registering two Bunny shapes. The normal vectors associated

with the noise free shape S1 were computed using the vertex and edge information

provided in the .ply.

Different samples of 1000 points, along with their associated normal vectors, were

then chosen from S1 and the noisy S2, so that no one to one point correspondences exist

between the target and model point clouds. The registration process was repeated 15

times for each noise level and the results can be seen in Figure 5.10.
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σ = .001 σ = .002 σ = .003

Figure 5.9: Here we show the noisy points {x(i)
2 } when S2 corresponds to the Bunny,

Dragon and Buddha shapes. Gaussian noise of mean 0 and standard deviation σ is
added to each point x(i). Column 1: σ = 0.001, Column 2: σ = 0.002, Column 3:
σ = 0.003.

Results

The MSE errors for each experiment are presented in Figure 5.10. The results of the

first experiment can be seen in column 1 and show that overall CPD performs best,

followed by Go-ICP and Cuδ , while Cx,uδ and Jian et al’s method Cx seem to generate

similar results. Since there is a one to one correspondence between the samples from

each shape, all methods perform very well with an average MSE of around 10−34 for

CPD and 10−12 in all other cases. Both CPD and Go-ICP have a tendency to fall into

local minima as the rotation increases while Cuδ , Cxδ and Cx,uδ continue to estimate good

solutions.

Column 2 of Figure 5.10 presents the results when different sampling of the target

and model shape is used. We can see that Cx,uδ performed the best in this case, followed
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by Jian et al’s method Cx. Here Cuδ performed the worst as unlike vertices, normal

vectors represent the first derivative of the surface and are more sensitive to noise,

thus varying more when they are not sampled at exactly the same locations on S1 and

S2. Again both CPD and Go-ICP fall into local solutions as the rotation magnitude

increases.

For our final experiment with added noise, the results in column 3 of Figure 5.10

show that in all cases, Cx,uδ performs the best, followed by Cx, CPD and Go-ICP. The

additional smoothed normal vector information used by Cx,uδ allows it to converge to a

more accurate solution, even when a large degree of noise is added to the points in the

shape S1. Again Cuδ does not perform as well as the other approaches.

5.5.3 2D Non-rigid Registration

In this section we again consider two 2D shapes S1 = {(x(i)
1 , u

(i)
1 )}i=1,..n and S2 =

{(x(j)
2 , u

(j)
2 )}j=1,..n, which are represented by their point locations {x(i)} ∈ R2 and nor-

mal vectors {u(i)} ∈ S. In this case S1 and S2 differ by a non-rigid deformation which

we estimate using the transformation φ, defined as a TPS transformation as given in

Equation 3.16. This transformation is controlled by N = 12 control points and our

latent space is of dimension (12× 2) + 6 = 30.

We assess the estimation of φ using the cost functions Cx [41] and Cx,u but omit

Cu and Cuδ as we found that normal information alone is not sufficient when estimating

a non-rigid transformation. We also omit Cx,uδ as it generates similar results to Cx,u.
Again, when using Cx,u, which depends on the von Mises-Fisher normalising constant

Cd(κ), we artificially define u on S2 instead of S by adding a third dimensional coor-

dinate to the normal vector which is set to zero. This ensures that the normalising

constant C3(κ) is easy to compute.

As in Section 5.5.1 we register parametric curves sampled at several locations, from

which the normal vectors {u(i)} can be computed. As well as comparing Cx [41] and

Cx,u, we also compare to other state of the art non-rigid registration techniques: CPD

[150] and GLMD [33]. For comparison we implement a similar experimental framework

as that presented by Yang et al.[33] and for this reason we also normalise all curves so

that they lie within [0, 1]× [0, 1].
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Figure 5.10: Error results obtained when registering shapes S1 and S2 with the same
sampling (column 1), different sampling (column 2) and added noise (column 3), for
the Bunny (row 1), Dragon (row 2), Buddha (row 3) and Horse (row 4) meshes.
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Figure 5.11: Mean Square Error results for non-rigid registration with 2D data. (a)
Deformation estimation results with degree of deformation varying from 1 to 8; (b)
Deformation and rotation estimation, with degree of deformation 4 and rotation varying
from 15◦ to 75◦; (c) Deformation estimation with missing data

Experimental Design

1. Deformation: Taking a parametric curve, we sampled it at 50 locations {x(i)
2 }

and computed the corresponding normal vectors {u(i)
2 }, creating the shape S2. Then,

using the same technique proposed by Yang et al.[33] in their experimental section, we

deformed S2 using a non-rigid transformation to create the shape S1. To deform S2

we took 8 control points on the boundary of the curve, as in Figure 5.12, and moved a

number of them in a particular direction by a displacement of 0.2. Each control point

is allowed to move in one of four directions and the direction is randomly determined.

The number of control points that are displaced determines the degree of deformation

and can vary from 1 to 8. The TPS transformation which maps the original control

points to their new displaced locations is computed and applied to the points {x(i)
2 } to

create {x(i)
1 }. The normals vectors {u(i)

2 } are then computed, creating the shape S2.

For each level of deformation we register 120 pairs of shapes S1 and S2 and present the

average MSE results in Figure 5.11(a).

2. Deformation and Rotation: For our second experiment we used the method

described in the previous section to deform S2, creating the shape S1. In this case we

also rotated S1 so that S1 and S2 differ by both a non-rigid deformation and a rotation.
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Setting the degree of deformation to 4 in all cases, we tested all methods for rotations

of ±15◦,±30◦,±45◦,±60◦ and ±75◦. At each rotation value we registered 240 pairs of

deformed curves for each method and the mean square errors computed can be seen in

Figure 5.11 (b).

3. Deformation with missing data: In our third experiment we sampled a para-

metric curve at 150 locations to create S2, and deformed it by a deformation of degree

4 to create S1. There was no rotation added in this case. Instead we removed a per-

centage of points in order from the end of the deformed curve S1 so that it is missing

data.

For this experiment correspondences were estimated using Yang et al’s technique,

as described in Section 5.4.5, and were used when optimising both Cx,u and Cx. We

use Cx,ucorr and Cxcorr to denote the use of correspondences with these cost functions. We

tested all methods with several levels of missing data (7%, 20%, 33%, 47%, 60%). At

each level we registered 120 pairs of curves and the average MSE results computed can

be seen in Figure 5.11 (c).

Figure 5.12: On the left we show the 8 control points chosen on the boundary of the
shape S2 which can move in any four directions (shown in green). The deformed control
points are used to estimate a transformation which deforms S2, creating S1 (right).
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Figure 5.13: Sample registration results for deformation estimation. Row 1: Model
Curve (blue) and Target Curve (red). Row 2 - 5: Registration result using CPD,
GLMD, Cx and Cx,u respectively. Column 1: Deformation degree = 5; Column 2:
Deformation degree = 6; Column 3: Deformation degree = 8;
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Figure 5.14: Sample registration results for rotation and deformation estimation. Row
1: Model Curve (blue) and Target Curve (red). Row 2 - 5: Registration result us-
ing CPD, GLMD, Cx and Cx,u respectively. Column 1: Rotation = 30 ◦; Column 2:
Rotation = 45 ◦; Column 3: Rotation = 60 ◦.
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Figure 5.15: Sample registration results for deformation estimation with missing data.
Row 1: Model Curve (blue) and Target Curve (red). Row 2 - 5: Registration result
using CPD, GLMD, Cx and Cx,u respectively. Column 1: Missing pts = 30; Column
2:Missing pts = 50; Column 3:Missing pts = 70.
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Results

For our first experiment the MSE results for each cost function can be seen in Figure

5.11 (a), and Figure 5.13 gives a sample of some of the registration results. We found

that in general Cx,u performs well, however at times it fails to estimate a good result,

creating spikes in the average MSE at deformations of degree 5 and 7. Similar spikes

appear in the results for Cx. Both CPD and GLMD seem to generate consistent results

over all deformations.

For our second experiment the MSE results can be seen in Figure 5.11 (b) and some

sample registration results can also be seen in Figure 5.14. These results show that Cx,u

performed best, followed by Cx, GLMD and CPD. The addition of the normal informa-

tion in the cost function ensured that in general Cx,u estimated the correct rotation and

deformation, while in the case of the other cost functions, the non-rigid deformation

parameters were often used to attempt to account for the rotation difference.

The results of our third experiment can be seen in Figure 5.11(c) and 5.15. In

this case we found that Cx,ucorr performed as well as GLMD, followed by Cxcorr and CPD.

Without correspondences we found that both Cx,u and Cx tried to maximise the amount

of overlap between the curves and rarely estimated the correct parameters.

5.5.4 3D Non-rigid Registration

Finally we consider two 3D shapes S1 = {(x(i)
1 , u

(i)
1 )}i=1,··· ,n and S2 = {(x(j)

2 , u
(j)
2 )}j=1,··· ,n

which are represented by their point locations {x(i)} ∈ R3 and normal vectors {u(i)} ∈
S2 and differ by a non-rigid deformation. We register these shapes by estimating a

non-rigid TPS transformation, as defined in Equation 3.16. We choose the number of

control points as N = 125 so our latent space has (125× 3) + 12 = 387 dimensions. In

this section we will incorporate point correspondences into the cost functions Cx and

Cx,u, notating them as Cxcorr and Cx,ucorr. Again we omit Cu and Cuδ as we found that they

did not perform well when estimating a non-rigid transformation. We also omit Cx,uδ
as it has previously been shown to perform similarly to Cx,u.

We present two sets of experiments in this section. In the first set we compare how

Cxcorr and Cx,ucorr perform when registering shapes with known correspondences and in

the second we compare Cxcorr, Cx,ucorr, CPD [150] and GLMD [33] when registering shapes

with unknown correspondences that must be estimated.
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(a) Cat (b) Lion (c) Horse

Figure 5.16: The meshes used to generate the shapes S1 and S2 in our non-rigid
registration experiment on 3D data. Meshes representing the same animal (eg. cat,
lion, horse) have the same number of vertices and exact vertex correpondences. The
cat, lion and horse meshes have 7202, 5000 and 8431 vertices respectively.

Experimental Design

1. Deformation with ground truth correspondences: In this experiment we use

the dataset of shapes provided by Sumner et al. [152] which contains meshes of several

different types of animal in different poses, including a cat, lion and horse. Each mesh

of the same animal has an equal number of vertices and exact point correspondences.

Some examples of these meshes can be seen in Figure 5.16. We use the ground truth

point correspondences when computing Cxcorr and Cx,ucorr to reduce computational com-

plexity. Choosing two meshes of the same type of animal, we let the vertices of each

mesh be the points {x(i)
1 } and {x(i)

2 } and compute the corresponding normal vectors

{u(i)
1 } and {u(i)

2 } using the edge information provided in the mesh. We then apply a

rotation to S1 so that the shapes differ by both a rotation and non-rigid deformation.

For each level of rotation tested we register 10 pairs of shapes S1 and S2.

2. Deformation with estimated correspondences: In this experiment we use

a scan taken of the Stanford Bunny with 1000 points, shown in Figure 5.19, to generate

S1 and S2. Taking the points of the scan to be {x(i)
2 }, we computed the normals vectors

{u(i)
2 } using the nearest neighbour approach discussed in Section 5.4.3. Then using the

same deformation technique proposed by Yang et al.[33] and implemented in Section

5.4.3, we used 9 control points on the boundary of the points {x(i)
2 } to deform them,
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Figure 5.17: Mean Square Error results for non-rigid registration with 3D data. (a)
Comparison between Cxcorr and Cx,ucorr when registering meshes with exact correspon-
dences. The meshes differ by a deformation and rotation varying from 0◦ to 60◦. The
standard error bars are included and emphasise the similarity between the cost func-
tions; (b) Non-rigid transformation estimation between bunny shapes differing by a
deformation varying from degree 1 to 4; (c) Non-rigid transformation estimation when
two bunny shapes differ by a deformation of degree 3 and rotation varying from 15◦ to
75◦.

generating the points {x(i)
1 }. Again the normal vectors {u(i)

1 } were computed using the

nearest neighbour approach.

For cost functions Cxcorr and Cx,ucorr, we estimate the point correspondences using the

method proposed by Yang et al.[33] and detailed in Section 5.4.5. We test 4 levels

of deformation and register 15 pairs of shapes at each level. We also test the case in

which S1 and S2 differ by a rotation and non-rigid deformation by applying a rotation

to the shape S1. We set the level of deformation to 3 and test 5 levels of rotation

(15◦, 30◦, 45◦, 60◦, 75◦), with 15 pairs of shapes registered for each rotation.

Results

The results of our first experiment, comparing Cxcorr and Cx,ucorr when exact point corre-

spondences are known, can be seen in Figure 5.17(a) and Figure 5.18. In this experi-

ment we found that due to the large dimension of the latent space (387 dimensions), the

gradient ascent technique required a large number of iterations to register the shape S1

to S2. For each cost function, to reduce computation time we set a limit of 50,000 on
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the number of function evaluations computed during optimisation (at each simulated

annealing step). In Figure 5.17(a), the MSE results show that there is very little dif-

ference between the cost functions and in Figure 5.18 we can see that even with 50,000

functions evaluations, both Cxcorr and Cx,ucorr failed to converge to a good solution and do

not match the model shape S1 to the target shape S2 exactly.

The MSE results from our second set of experiments, which registered two Bunny

shapes, can be seen in Figures 5.17(b), 5.17(c) and 5.19. From Figure 5.17(b) we can

see that for all degrees of deformation applied to the model shape S1, GLMD performs

the best. Again we can see that Cxcorr and Cx,ucorr perform similarly. Although we found

that the correspondences estimated by Yang et al’s technique and used by Cxcorr and

Cx,ucorr were accurate, using only 125 control points for the estimated TPS transformation

limited the accuracy of both Cxcorr and Cx,ucorr in comparison to GLMD, which uses all

1000 points in S1 as control points. However, increasing the number of control points

used by Cxcorr and Cx,ucorr also increases the dimension of the latent space, requiring a

larger number of iterations to converge to a good solution.

The results of registering Bunny shapes differed by both a non rigid deformation

and rotation can be seen in Figure 5.17(c) and row 3 of 5.19. In this case we found that

the correspondences estimated by Yang et al’s technique had some errors due to the

rotation difference between the shapes. This decreased the accuracy of both GLMD and

the cost functions Cxcorr and Cx,ucorr, although GLMD still performed the best. Although

Cx,ucorr typically performs well when the shapes differ by a rotation, when the wrong

point correspondences are used the accuracy of Cx,ucorr is reduced. Again we found that

using only 125 control points also reduced the accuracy achievable by Cxcorr and Cx,ucorr.

5.5.5 Computation Complexity

Due to the double sum in all of the cost functions, the computational complexity of

Cx, Cu, Cuδ , Cx,u and Cx,uδ depends on the number of points n1 and n2 in the shapes S1

and S2. When no point correspondences are chosen the computational complexity is

of order O(n1 × n2). Choosing to use n point correspondences instead reduces this to

O(n). The computation time needed by the gradient ascent technique to converge to

a good solution also depends on the dimension of the latent space. The latent space

dimension is determined by the transformation being estimated and the dimension d
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(a)Rotation 0◦ (b)Rotation 20◦ (c) Rotation 40◦

Figure 5.18: Some of the registration results for CxCorr and Cx,uCorr for shapes with exact
point correspondences. Row 1: The model shape S1 (blue) and target shape S2 (red);
Row 2: Target shape (red) and CxCorr registration results (blue); Row 3: Target shape
(red) and Cx,uCorr registration results (blue).

of the space Rd in which the shapes are defined.

We have not provided analytical gradients to the gradient ascent algorithm for any

of the cost functions Cx, Cu, Cuδ , Cx,u and Cx,uδ . Instead, the gradient ascent algorithm

uses numerical methods at each iteration to approximate the gradient. This adds an

additional cost to the cost functions, requiring a larger number of function evaluations

at each iteration. An analytical gradient could be computed in the case of Cx to speed

up computation time, as was the case in the code provided by Jian et al. For the
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Rotation = 0◦ Rotation = 0◦ Rotation = 45◦

Deformation Degree = 2 Deformation Degree = 4 Deformation Degree = 3

Figure 5.19: The results of several registration methods applied to two 3D shapes
differing by a non-rigid deformation and a rotation. Row 1 shows the model shape
S1 (blue) and target shape S2 (red). Rows (2 - 5) show the transformed model after
registration (blue) computed using CPD (Row 2), GLMD (Row 3), Cxcorr (Row 4) and
Cx,ucorr (Row 5).
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ctrl pts dim n1 n2 Cx Cu Cuδ Cx,u Cx,uδ
2D Rotation 7 1 100 100 0.20s 0.20s 0.16s 0.21s 0.20s
3D Rotation 7 9 100 100 0.22s 0.27s 0.29s 0.30s .4695

2D TPS 12 30 100 100 2.2s 7 7 2.9s 7

3D TPS 125 387 100 100 16s 7 7 30s 7

Table 5.2: The time taken by each of the cost functions to compute 100 iterations of
the gradient ascent algorithm. In each case the shapes S1 and S2 have 100 points each.
The number of control points used by the TPS functions is shown in column 2 and
column 3 gives the dimension of the latent space in each case.

cost functions Cu, Cuδ , Cx,u and Cx,uδ , the analytical derivative could be supplied when

estimating a rotation transformation. However, when estimating a TPS transformation

using either Cx,u or Cx,uδ , a simple analytical derivative of the cost functions is not

available. Although the normal vectors of a shape change when a TPS transformation is

applied to it, the computation of the normal vectors cannot be computed directly using

only the TPS transformation. Instead, the normal vectors of the transformed shape

need to be recomputed using either the neighbourhood structure of the points {x(i)}
or the vertex and edge information, if available. Therefore computing the analytical

derivative of the cost functions with respect to the TPS transformation can be very

complex, and using a numerical approximation to the gradient is preferable.

In Table 5.2 we present the computation times needed by the proposed cost func-

tions to carry out 10 iterations of the gradient ascent algorithm used to register two

shapes S1 = {(x(i)
1 , u

(i)
1 )}i=1,··· ,100 and S2 = {(x(j)

2 , u
(j)
2 )}j=1,··· ,100, each with 100 points

and unit normal vectors. In Table 5.3 we give the average number of iterations needed

by each cost function to converge to the correct solution. These figures were computed

when using our full annealing strategy, with the number of annealing steps used given

in column 5 of Table 5.3. In Table 5.4 we also present the computation times needed

by the CPD, Go ICP and GLMD algorithms to register shapes S1 and S2.

5.5.6 Summary

In this section we have presented several experiments exploring the performance of

each of the proposed cost functions when registering 2D and 3D shapes differing by a

rotation or non-rigid transformation. We found that in the case of 2D and 3D rotation
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dim n1 n2 Ann Steps Cx Cu Cuδ Cx,u Cx,uδ
2D Rotation 1 100 100 6 50 43 50 40 48
3D Rotation 9 100 100 8 220 275 240 390 400

2D TPS 30 100 100 5 1370 7 7 1500 7

3D TPS 387 100 100 8 880* 7 7 880* 7

Table 5.3: The number of iterations typically taken by each algorithm to register two
point clouds with 100 points each. These figures are computed using our full simulated
annealing strategy, with the number of simulated annealing steps used given in column
5. *Note that due to the high dimension of the latent space, we limited the number
of function evaluations in this case, thus limiting the number of iterations allowed.
Although a good solution was reached after this many iterations, the cost functions
still had not fully converged.

n1 n2 Go ICP CPD GLMD
3D Rotation 100 100 0.78s 32s 7

2D TPS 100 100 7 0.09s 0.13s
3D TPS 100 100 7 0.05s 0.12s

Table 5.4: The time taken, on average, by the Go ICP, CPD and GLMD methods to
converge to the correct solution. For CPD, the MSE tolerance chosen for 3D rotation,
2D TPS and 3D TPD registration was the same as that used in the demo code provided
by authors. It was set to e−8 for 3D rotation, e−8 for 2D TPS and e−3 for 3D TPS,
hence the difference in computation times.

estimation, the cost function Cx,u, which takes into account both point positions and

directional information, performs best overall in terms of accuracy, outperforming Jian

et al’s cost function Cx as well as the CPD and Go ICP methods. For 2D shapes

differing by a non-rigid transformation we found that while all techniques perform

similarly when two shapes differ by only a non-rigid deformation, when they differ by

a rotation and non-rigid deformation, Cx,u outperforms Cx as well as CPD and GLMD.

When partial curves are registered and correspondences are used, Cx,ucorr also outperforms

CPD and Cxcorr, giving similar results to GLMD.

However, in the case of 3D shapes differing by a non-rigid deformation we found that

the high dimensional latent space and the small number of control points used reduced

the accuracy of Cx,ucorr and Cxcorr. As correspondences were incorporated into both cost

functions to reduce computational cost, the accuracy of the results also depended on
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the quality of the correspondences estimated. The need to compute derivatives and

normals vectors at each iteration when using Cx,ucorr also increased the computational

cost of the algorithm.

5.6 Conclusion

In this chapter we have proposed to include both positional and directional informa-

tion when modelling shapes for shape registration. We used the von Mises-Fisher

distribution to model the unit normal vectors of a shape and propose KDEs using a

combination of Dirac, Gaussian and von Mises-Fisher kernels. We show that comput-

ing the L2 distance between two KDEs with von Mises-Fisher kernels has an explicit

expression when d = 3, while using Dirac kernels ensures that the L2 distance has an

explicit expression when estimating a rotation for any dimension d.

We also present experimental results which validate that using both point positions

and directional information can enhance the accuracy of the registration results, es-

pecially when the shapes differ by a rotation transformation. However, the gradient

ascent technique used to optimise the cost functions is very time consuming when the

latent space that needs to be explored has a high dimension. Implementing a new op-

timisation technique which is less time consuming and could explore the latent space

quickly would ensure that this type of cost functions could be used when the dimension

of the space is high. Optimising a combination of these cost functions could also prove

beneficial for robust registration, such as removing the rotational difference between

shapes using normal information before estimating the non-rigid transformation. In

the next chapter we will explore the application of optimal transport techniques to the

shape registration problem to see if these methods prove advantageous in this area.

114



Chapter 6

Optimal Transport for Shape

Registration

In Chapter 4 we proposed a colour transfer technique which was based on minimising a

divergence between PDFs, a strategy often used in shape registration. In this chapter

we explore the application of optimal transport, a popular approach in colour transfer,

to 3D shape registration. We present a brief exploration of how two optimal transport

based colour transfer techniques perform when applied directly to shape data. The

objective of this chapter is to draw attention to some of the initial problems that arise

when taking this approach, and highlight that some additional constraints need to be

introduced to make such an approach successful for shape registration.

6.1 Introduction

We will investigate the application of two optimal transport methods - the Iterative

Distribution Transfer (IDT) and Sliced Wasserstein Distance (SWD) methods [6, 77] -

to 3D shape registration. While complex in higher dimensional spaces, optimal trans-

portation is straightforward in one dimensional space. Both the IDT and SWD ap-

proaches take advantage of this and estimate a non-parametric transformation φ̂ by

reducing the problem to several 1-dimensional optimal transportation problems. In the

previous chapter we found that the optimisation of the L2 distance was quite computa-

tionally expensive when a non-rigid deformation was estimated in 3-dimensional space.
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In this chapter we investigate whether projecting the 3D shape registration problem

to lower dimensions could reduce optimisation cost while still allowing an appropriate

transformation φ̂ to be estimated. In the next section we will present results illustrating

the application of the IDT and SWD methods to 3D shape registration.

6.2 Illustrations

To test both approaches we have taken the implementations provided by Pitié et al.1

and Bonneel et al.2 for colour transfer and applied them directly to 3D shape data. We

apply both techniques to shapes differing by a rigid rotation and non-rigid deformation

(Section 6.2.1) and investigate the transformation φ̂ that is estimated (Sections 6.2.2

and 6.2.3).

6.2.1 Registration

First we apply both methods to the problem of registering 3D shapes differing by a

rotation and present the results in Figure 6.2. In this case we found that the IDT

method transformed the model to the target point clouds almost exactly, while the

results generated by the SWD method contained some errors. Next we used both

methods to register point clouds differing by a non-rigid deformation and present the

results in Figure 6.3. In all cases the number of points in the model and target point

clouds is the same. Again, we found that the IDT method transformed the model to the

target point clouds almost exactly while the SWD results contained some errors. The

parameters used for both algorithms to generate these results are presented in Table

6.1. In Figure 6.1 we present several steps in the estimation of the transformation φ̂

using the IDT algorithm, and show how the algorithm converges to the registration

solution. We can see that although the model point set matches the target point set

well after many iterations, in the early stages of the registration process the structure

of the model cat shape is lost.

1https://github.com/frcs/colour-transfer
2https://github.com/gpeyre/2014-JMIV-SlicedTransport
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Model point set Target point set

(a) (b) (c) (d)

Figure 6.1: The transformation φ̂ that is estimated by the IDT algorithm when
registering the model point set (blue) to the target point set (red). Here we show the
estimated transformation φ̂ at different stages of convergence: after (a) 10, (b) 100, (c)
1000 and (d) 5000 iterations. We can see that at the early stages of registration, the
structure of the cat shape is lost.

Iterations Projections per iteration

IDT 1000 6

SWD 500 1000

Table 6.1: The parameters used for the IDT and SWD methods when generating the
results presented in this chapter.

6.2.2 Correspondences created by φ̂

In this section we investigate the correspondences (x, φ̂(x)) between the model and

target point sets that were created by the IDT and SWD methods when the transfor-

mation φ̂ is estimated. Here the point x lies in the model point set and the point φ̂(x)

lies in the transformed model point set, which is equivalent to the target point set.
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Figure 6.2: Registration results for point clouds differing by a rotation. Row 1: Model
point clouds; Row 2: Target point clouds; Row 3: Results of IDT algorithm; Row 4:
Results of SWD algorithm.
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Figure 6.3: Registration results for point clouds differing by a non-rigid deformation.
Row 1: Model point clouds; Row 2: Target point clouds; Row 3: Results of IDT
algorithm; Row 4: Results of SWD algorithm.
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Figure 6.4: The correspondences (x, φ̂(x)) created by the transformation φ̂ using the
IDT algorithm. Row 1: Two subsets of correspondences estimated between the model
(green) and target (purple) bunny point clouds differing by a rotation; Row 2: Two
subsets of correspondences estimated between the model and target horse point clouds
differing by a non rigid deformation. The same pair of horse shapes are shown on both
the right and left sides, but from different viewpoints for better illustration of the point
correspondences.

In Figure 6.4 we present a sample of point correspondences estimated using the IDT

algorithm, although we found similar results when we applied the SWD method. In

these figures we plot the model and target shapes as meshes rather than point clouds

for clarity. Note that the optimal transport framework is not able to maintain useful

information regarding the edges in the meshes, therefore the connectivity shown in

Figure 6.4 corresponds to the original edges of the target mesh.

In the first row of Figure 6.4 we present the correspondences estimated when the

model bunny (green) is registered to the target bunny (purple), which differs from the

model by a 3D rotation. Here we can see that the correspondences estimated by the
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transformation φ̂ do not match similar parts of the bunny point sets. Points on the ear

of the model bunny have been mapped to points on the back of the target bunny (in the

left image), and points around the back of the model bunny have been mapped to points

along the bottom of the target bunny (in the right image). These correspondences have

been estimated as the points lie close together in some 1D projection space in which φ̂

was estimated.

In the second row of Figure 6.4 we show the correspondences created by the IDT

algorithm when the model horse (green) is transformed to the target horse (purple),

which differs from the model by a non-rigid deformation. Here we can see that points

on the front left leg of the model horse have been mapped to points on the front right

leg of the target horse. Similarly, points around the mouth of the model horse have

been mapped to points on the body of the target horse. Again, these points have

become correspondences as they lie close together in some 1-dimensional space used to

estimate φ̂.

6.2.3 Effect of Axis Sequence

The transformation function φ̂ estimated by both the IDT and SWD methods is also

dependent on the sequence and order of projection axes used when computing the 1D

optimal transport functions [153, 77]. This means that if the estimation is repeated

using a different sequence of 1D projection axes, the correspondences (x, φ̂(x)) will

be different. This can be seen in Figure 6.5. Here we show three subsets of point

correspondences for each pair of shapes, estimated by the IDT algorithm using the

same parameters given in Table 6.1, but changing the sequence of projection axes used

to compute φ̂. We can see that in each case, a different set of correspondences are

estimated. Similar results were generated using the SWD algorithm.

6.3 Conclusion

In this chapter we provided a short investigation into the application of optimal trans-

port methods to 3D shape registration to see if they provide any benefits to this area.

We investigated the optimal transport techniques proposed by Pitié et al.[6] and Bon-

neel et al. [77] which are based on estimating the optimal transportation in several 1D
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: For both the horse shapes and bunny shapes we present three sets of
correspondences (x, φ̂1(x)), (x, φ̂2(x)) and (x, φ̂3(x)) created by three different trans-
formations φ̂1, φ̂2 and φ̂3. Each transformation is estimated using a different sequence
of projection axes on which the 1D optimal transport functions are computed. We
can see that in each case the same points in the model shapes are mapped to different
points in the target shapes.

subspaces rather than in the higher dimensional space. We have found that both tech-

niques can successfully transform one shape into another, with Pitié et al’s technique

providing very accurate results with little error. However, in order to estimate the

transformation, the neighbourhood structure of the model point set is lost. When the

shapes are similar or represent the same object, the point correspondences estimated

often do not match corresponding areas, which can be undesirable. We also note that

estimating the transformation φ̂ using two different sequences of projection axes can

result in two different transformations being estimated, which can be undesirable in

some applications.

In many 3D shape registration applications a smooth transformation is desired,

which estimates the correct correspondences between model and target point sets of

the same object. Using optimal transport techniques such as that proposed by Pitié

et al. and Bonneel et al. would therefore not be suitable in this case. However, if

the point clouds correspond to different objects and the correspondences estimated are

122



unimportant, these methods should be considered.

In order to reduce the computational cost of our optimisation algorithm, a similar

method of dimension reduction could be implemented. Instead of minimising the L2

distance between two point sets in 3D, the point sets could be projected into several

1-dimensional subspaces in which the L2 distance could be minimised. However, unless

additional constraints were added to the estimated transformation φ̂, the same issues

arising in the IDT and SWD methods may occur. Investigating possible constraints

that would allow estimation of a more suitable transformation φ̂ could be explored in

future.
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Chapter 7

Conclusions

The L2 distance is a robust metric which has been previously proposed for the regis-

tration of point sets. In this thesis, we explored the application of the L2 distance to

the colour transfer problem and investigated the advantages that this framework can

bring to the area. For shape registration, we also explored how directional data can

enhance registration results when estimating a rotation or non-rigid deformation. In

this chapter, we give an overview of the work presented in this thesis and the contri-

butions achieved. We also summarise potential avenues of future work that could be

explored.

7.1 Summary

In this thesis, we have proposed a method for colour transfer which modifies the colour

feel of a target image or video using a colour palette provided by another image or

video. The main contributions of this method are reviewed here:

1. Application of the L2 distance to the colour transfer problem: We pre-

sented a method which minimises a divergence between PDFs to register the

colour distribution of images. Similar techniques have been previously proposed

in the field of shape registration and we investigated how this type of technique

performed when applied to the colour transfer problem. Using a similar method

to that proposed by Jian et al. [41] we model the colour distribution of two im-

ages using GMMs and minimise their L2 distance to match their colour palettes.
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Our formulation uses continuous PDFs as opposed to discrete histograms and

has been shown to reduce the artifacts typically created by the discrete nature

of other colour transfer methods, such as optimal transport.

2. Framework which can be enhanced by correspondences: Colour transfer

techniques applied to images with similar content typically rely on feature cor-

respondences, and many cannot be applied to images of different content where

no corresponding feature points are available [71, 66, 91]. On the other hand,

methods which do not take into account feature correspondences when they are

available often cannot produce results comparable to those that do. The colour

transfer method proposed in this thesis can be applied both to images with sim-

ilar and different content. It can be easily enhanced by correspondences when

they are available and we have shown that the results generated are compara-

ble to other state of the art methods, with the robust nature of the L2 distance

ensuring that outlier correspondences do not effect the results.

3. Exploration of parametric transformations: We have proposed using a

parametric TPS transformation to register the colour distribution of two im-

ages and show that it creates smooth colour transfer results. The parametric

framework also allows the recolouring step to be parallelised, since the estimated

transformation can be applied to each pixel independently, and we present re-

sults on the speed achievable when this parallelisation is implemented. We have

also shown that the parametric transformation allows for the recolouring of video

sequences and the generation of interesting special effects in both image and

video.

In Chapter 5, we also proposed a new method to tackle the shape registration

problem. The main contributions that we have made to this field include:

1. Adding directional data to the shape model for shape registration:

We have proposed a method for shape registration which explicitly models both

the point positions and normal vector information of a shape, and show that in

many cases our framework gives improved accuracy over other state of the art

techniques. We also proposed modelling the directional data using the von Mises-
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Fisher distribution, a framework which was previously proposed for clustering

directional data but has not been applied to the shape registration problem.

2. Using the L2 distance with the non-Euclidean von Mises-Fisher distri-

bution: We have shown that the scalar product between two von Mises-Fisher

kernels has an explicit expression when d = 3, allowing us to explicitly compute

the L2 distance between two KDEs with von Mises-Fisher kernels when our nor-

mal vectors are 3-dimensional. We have also shown that using Dirac kernels for

one of the mixture models, and von Mises-Fisher kernels for the other, ensures

that an explicit expression exists for the cross product between the two mixtures

for any dimension d.

3. Exploring the application of optimal transport to shape registration:

We have also investigated the application of two optimal transport techniques,

which have been previously proposed for colour transfer, to the shape registra-

tion problem. We have shown that these techniques can successfully transform

one point cloud to another. However, the correspondences estimated between

shapes of the same object are incorrect, which can be disadvantageous in some

applications.

7.2 Future Work

Learning user preferences for colour transfer: One of the advantages of our

proposed colour transfer technique is the parametric transformation that we estimate

which, once computed, can be easily stored and reused. This type of transformation

could also be used to create an interface which allows the user to generate several colour

transfer results, and interpolate between them until their preference is found, giving the

user more control over the final result. As a good colour transfer result is very objective,

learning techniques could also be applied to discover the type of colour transformation

each user prefers. This information could then be used to tailor the colour transfer

results to the user’s own preference. Dimension reduction techniques such as PCA

could also be applied to reduce the space needed to store the transformations.

Modelling colours in cylindrical colour space using von Mises-Fisher: In

Chapter 4, we tested our colour transfer technique on colours represented in the RGB
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and CIELab colour spaces. We modelled their colour distributions as GMMs in 3-

dimensional space and registered them using the L2 distance. Other colour spaces

such as HSL and HSV are cylindrical in nature, and the hue colour component can

be represented as a unit vector in S. In this case, the von Mises-Fisher distribution

could be used to model the hue component, while Gaussian kernels could be used to

model the remaining colour components. Modelling the colour distribution of images

in these colour spaces, and the effect this has on our colour transfer technique, could

be investigated, with the von Mises-Fisher distribution ensuring that the hue colour

component is appropriately modelled.

Exploring new optimisation techniques: In terms of computational cost, we

found that computing the L2 distance between GMMs with many mixtures when no

correspondences are available can be computationally expensive, as can searching a

high dimensional latent space using a gradient ascent technique. In order to reduce the

number of mixtures in the GMM, a smaller number of Gaussians with differing weights

and non-isotropic covariances could instead be used to model the shape. A faster

optimisation algorithm could also be explored to further reduce the computational

cost. A technique which performs the optimisation in lower dimensional spaces could

be implemented, as discussed in Chapter 6, with added constraints to ensure that the

estimated transformation computes correct correspondences when similar objects are

registered.

Including more information in the density function: We have shown that

adding normal vector information to the shape model can improve the accuracy of

the shape registration result. Depending on the problem being solved and the data

available, other shape information could also be added, including colour information,

shape descriptors, or point confidence. This additional information would create a

more detailed density, that could prove be more powerful in other applications than

one containing only point information.
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Appendix A

Additional Colour Transfer Results

In this Appendix we provide additional results generated using our proposed colour

transfer approach, described in Chapter 4.

A.1 Images with similar content P ' T

Here we present some additional results similar to those presented in Figure 4.4 for

the affine transformation, TPS transformation and the Gaussian, Inverse Multiquadric

and Inverse Quadric RBF transformations. In all cases we present results for both the

RGB and CIELab colour spaces. For notation details see Section 4.1.7.

In Figures A.1 and A.3 we compare results generated using the TPS and affine

transformations and can see that in general a TPS transformation performs better

than an affine one. When considering the results of AffCorrrgb and AffCorrlab in Figure A.1,

we can see that in Column 1, the yellow slide has not been recoloured correctly, in

Column 3 the shadows in the trees do not appear dark enough, and in Column 4 the

light on the ceiling is not as bright as that in the palette image. Both TPSCorrrgb and

TPSCorrlab create better results in these cases. Again in Figure A.3, when considering

the results of AffCorrrgb and AffCorrlab we can see that in Column 3, the green appearing in

the girl’s dress does not match the palette image, and in Column 4 many of the colours

appearing in the clothes do not match those in the palette. Again both TPSCorrrgb and

TPSCorrlab create better results in these cases.

In Figures A.2 and A.4 we compare results generated using the Gaussian, Mul-
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tiquadric and Inverse Quadric RBFs. From these results we can see that all RBFs

(including TPS) perform similarly, with very little perceivable difference between the

results.

When comparing results generated in RGB and CIELab colour space we found that

in general the results were very similar, although in some cases computing the colour

transfer function in CIELab space generated better results (the blue roof in Column 1

of Figures A.3 and A.4). As the RBF functions are smooth transformations, in certain

cases they may not be able to transfer some colours from the palette to the target

image due to the smoothness constraint. Changing the colour space, however, may

allow these colours to be mapped more successfully.

A.2 Images with different content P 6= T

We also present additional results similar to those presented in Figure 4.7 for the

affine transformation, TPS transformation and the Gaussian, Inverse Multiquadric and

Inverse Quadric RBF transformations. In Figures A.5 and A.7 we compare the results

generated using the TPS and affine transformations. While some results generated

by these methods are quite similar, using a TPS transformation outperforms an affine

transformation in others (Fig.A.5 Column 3). In Figures A.6 and A.8 we compare the

results generated using the RBF transformation functions. We found that in some

cases using the RGB colour space created better results than those generated using the

CIELab colour space ( Fig.A.6 Columns 1,2 and 4). The visual difference between the

different RBF functions (including TPS) on the other hand is quite small. However,

in some cases the Gaussian, Inverse Multiquadric and Inverse Quadric RBF functions

can get caught in local minima when estimating θ (Fig. A.6 Column 3, row 3,5,7). In

this case changing the colour space may improve the colour transfer result.

A.3 TPS versus Affine

In Figure A.9 we present some results comparing AffKMrgb and TPSKMrgb . We can see that

the TPS transformation creates good colour transfer results while the affine transfor-

mation can fail to transfer the variety of colours from the palette to the target (the
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yellow and deep blues of the palette image in Column 2 appear more in the TPS result

(row 4) than the affine result(row 3)). An affine transformation is also more likely to

transform colours in the target to values outside of the RGB cube, creating blocky

artifacts and gradient artifacts (area of sunlight in row 3, column 3).
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Target

Palette

AffCorr
rgb

AffCorr
lab

TPSCorr
rgb

TPSCorr
lab

Figure A.1: Additional results on images with similar content. Row 1: Target images;
Row 2: Palette images; Rows 3-4: Affine transformation results using correspondences
in RGB and CIELab spaces; Rows 5-6: TPS transformation results using correspon-
dences in RGB and CIELab spaces.
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Palette

GCorr
rgb

GCorr
lab

InMQCorr
rgb

InMQCorr
lab

InQCorr
rgb

InQCorr
lab

Figure A.2: Row 1: Palette images (Target images can be seen in Row 1 of Figure A.1; Row (2-7)
Results in RGB and CIELab spaces for the Gaussian RBF (Rows 2-3), Inverse Multiquadric RBF
(Rows 4-5) and Inverse Quadric RBF(Row 6-7).132



Target

Palette

AffCorr
rgb

AffCorr
lab

TPSCorr
rgb

TPSCorr
lab

Figure A.3: Additional results on images with similar content. Row 1: Target images;
Row 2: Palette images; Rows 3-4: Affine transformation results using correspondences
in RGB and CIELab spaces; Rows 5-6: TPS transformation results using correspon-
dences in RGB and CIELab spaces.
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rgb

GCorr
lab

InMQCorr
rgb
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InQCorr
rgb

InQCorr
lab

Figure A.4: Row 1: Palette images (Target images can be seen in Row 1 of Figure A.3; Row (2-7)
Results in RGB and CIELab spaces for the Gaussian RBF (Rows 2-3), Inverse Multiquadric RBF
(Rows 4-5) and Inverse Quadric RBF(Row 6-7).134



Target

Palette

AffKM
rgb

AffKM
lab

TPSKM
rgb

TPSKM
lab

Figure A.5: Results when using an affine and TPS transformation function in RGB
and CIELab colour space. In columns 1,2 and 4 the affine and TPS methods perform
similarly, while in column 3 TPS outperforms the affine transformation.

135



Target

Palette

GKM
rgb

GKM
lab

InMQKM
rgb

InMQKM
lab

InQKM
rgb

InQKM
lab

Figure A.6: Results when using different RBF functions in RGB and CIELab colour
space. 136



Target
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TPSKM
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Figure A.7: Results when using an affine and TPS transformation function in RGB and CIELab
colour space.
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Figure A.8: Results when using different RBF functions in RGB and CIELab colour
space. 138



Target

Palette

AffKMrgb

TPSKMrgb

Figure A.9: Affine versus TPS colour transfer results. Row 1: Target images; Row 2:
Palette images; Row 3: Affine results; Row 4: TPS results. We can see that the TPS
transformation creates good colour transfer results while the affine transformation can
fail to transfer the variety of colours from the palette to the target (the yellow and
deep blues of the palette image in Column 2 appear more in the TPS result (row 4)
than the affine result(row 3)). An affine transformation is also more likely to transform
colours in the target to values outside of the RGB cube, creating blocky artifacts and
gradient artifacts (area of sunlight in row 3, column 3).
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Appendix B

Parameters

In this appendix we provide the parameters used for all methods tested in Section 5.5.

When comparing with state of the art registration methods (Go ICP [151], CPD [150]

and GLMD[33]) we use the parameters provided in the code supplied by the authors.

B.1 2D Rotation Registration

For 2D rigid registration presented in Section 5.5.1 we compared Cx, Cuδ , Cu, Cx,uδ , and

Cx,u. Table B.1 details the parameters used in each case.

Cx Cuδ Cu Cx,uδ Cx,u

κinit 7 5
25

20
25

5
25

20
25

κstep 7 2 2 2 2

κfinal 7 5 20 5 20

hinit 45 × 0.007× c 7 7 45 × 0.007× c 45 × 0.007× c
hstep

1
4 7 7 1

4
1
4

hfinal 0.007× c 7 7 0.007× c 0.007× c

Table B.1: Parameters used for Cu, Cuδ , Cx, Cx,u and Cx,uδ in our 2D rigid registration

experiments. Here c = det(X
TX
n1

)
1

2d , where X is the n1 × d matrix of vertices in the
model shape S1.
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Cx Cuδ Cu Cx,uδ Cx,u

κinit 7 50
214

25
214

50
27

25
27

κstep 7 2 2 2 2

κfinal 7 50 25 50 25

hinit 27 × 0.01× c 7 7 27 × 0.01× c 27 × 0.01× c

hstep
1
2 7 7 1

2
1
2

hfinal 0.01× c 7 7 0.01× c 0.01× c

Table B.2: Parameters used for Cu, Cuδ Cx, Cx,u and Cx,uδ in our 3D rigid registration

experiments when the same sampling of S1 and S2 is used. Here c = det(X
TX
n1

)
1

2d ,
where X is the n1 × d matrix of vertices in the model shape S1.

B.2 3D Rotation Registration

In Section 5.5.2, when testing several registration techniques on 3D data differing by

a rigid transformation, we first explored the case in which the points sampled from S1

and S2 had exact correspondence pairs. The parameters used by our proposed cost

functions can be seen in Table B.2.

Next we registered shapes S1 and S2 that had no exact point correspondences. The

parameters used in this case can be found in Table B.3. When registering shapes S1

and S2 when noise is added to S2, we use the same parameters.

In Section 5.5.2 we compared our results to the Go ICP and CPD methods. In both

cases, the code and parameters provided by the authors was used and can be found in

Table B.4.

B.3 2D Non-Rigid Registraton

In Section 5.5.3 we registered 2D shapes differing by a non-rigid deformation and

rotation and the parameters used for Cx, Cx,u, Cxcorr and Cx,ucorr can be seen in Table B.5.

In this section we also compared our results to the CPD and GLMD algorithms. The

parameters used for the CPD method were the ones used by the authors in the code

provided and can be seen in Table B.6. There were no parameters to set in the GLMD
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Cx Cuδ Cu Cx,uδ Cx,u

κinit 7 10
27

25
27

10
27

25
27

κstep 7 2 2 2 2

κfinal 7 10 25 10 25

hinit 27 × 0.06× c 7 7 27 × 0.06× c 27 × 0.06× c

hstep
1
2 7 7 1

2
1
2

hfinal 0.06× c 7 7 0.06× c 0.06× c

Table B.3: Parameters used for Cu, Cuδ , Cx, Cx,u and Cx,uδ in our 3D rigid registration
experiments with different sampling of S1 and S2, and with added noise to the points

S2. Here c = det(X
TX
n1

)
1

2d , where X is the n1 × d matrix of vertices in the shape S1.

CPD

Outliers (ω) 0.5
Max Iter 100
Tolerance 1e−8

Go ICP

MSE Threshold 0.0001
Trim Fraction 0
Nodes per dim 300

Table B.4: The CPD and Go ICP parameters used when registering 3D shapes differing
by a rigid rotation, as given in the code provided by the authors.

algorithm.

Cx Cx,u Cxcorr Cx,ucorr
κinit 7 15

24
7 10

1.54

κstep 7 2 7 1.5

κfinal 7 15 7 10

hinit 44 × 0.007× 44 × 0.007× 24 × 0.007× c 24 × 0.007× c

hstep
1
4

1
4

1
2

1
2

hinit 0.007× c 0.007× c 0.007× c 0.007× c

Table B.5: Parameters used for Cx, Cx,u Cxcorr and Cx,ucorr in our experiments. Here

c = det(X
TX
n1

)
1

2d , where X is the n1 × d matrix of vertices in the shape S1.
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CPD

Outliers (ω) 0
λ 2
β 2

Max Iter 100
Tolerance e−10

Table B.6: The CPD parameters used when registering 2D shapes differing by a non-
rigid deformation, as given in the code provided by the authors.

B.4 3D Non-Rigid Registraton

In Section 5.5.4 we tested Cx,ucorr, Cxcorr, CPD and GLMD when registering 3D shapes

that differed by a non-rigid deformation. In our first experiment we used shapes that

had exact point correspondences, and the parameters used for Cx,ucorr and Cxcorr are given

in Table B.7. We also tested these cost functions on 3D shapes with unknown cor-

respondences that had to be estimated and the parameters used in this case can be

seen in Table B.8. For both experiments, the CPD parameters used are those given

in Table B.9. Again, the GLMD setup used was that provided by the authors and no

parameters needed to be set.

Cxcorr Cx,ucorr
κinit 7 15

25

κstep 7 2

κfinal 7 15

hinit 45× 0.0005× c 45× 0.0005× c

hstep
1
4

1
4

hinit 0.0005× c 0.0005× c

Table B.7: Parameters used for Cxcorr and Cx,ucorr in our experiments with 3D shapes dif-

fering by a non-rigid deformation with known correspondences. Here c = det(X
TX
n1

)
1

2d ,
where X is the n1 × d matrix of vertices in the shape S1.
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Cxcorr Cx,ucorr
κinit 7 15

25

κstep 7 2

κfinal 7 15

hinit 25 × 0.001× c 25 × 0.001× c

hstep
1
2

1
2

hinit 0.001× c 0.001× c

Table B.8: Parameters used for Cxcorr and Cx,ucorr in our experiments with 3D shapes
differing by a non-rigid deformation with unknown correspondences that needed to be

estimated. Here c = det(X
TX
n1

)
1

2d , where X is the n1×d matrix of vertices in the shape
S1.

CPD

Outliers (ω) 0.1
λ 3
β 2

Max Iter 100
Tolerance e−3

Table B.9: The CPD parameters used when registering 3D shapes differing by a non-
rigid deformation, as given in the code provided by the authors.
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Appendix C

Additional Shape Registration

Results

In Chapter 5 we propose cost functions Cu, Cuδ , Cx,u and Cx,uδ and when presenting

the experimental results for rigid registration in Sections 5.5.1 and 5.5.2 we omit the

results of some of these cost functions for clarity as we found that both Cuδ and Cu

performed similarly, as did Cx,uδ and Cx,u. In this appendix we provide similar results

to those presented for rigid shape registration in Sections 5.5.1 and 5.5.2 for all four

cost functions Cu, Cuδ , Cx,u and Cx,uδ .

C.1 2D Rotation Registration

In Figure C.1 we present results similar to those in Figure 5.3 for all cost functions Cu,
Cuδ , Cx,u and Cx,uδ . In Figure C.1(a) we present the results when a rotation is estimated

using the full curves, and we can see that Cu and Cuδ perform similarly, as do Cx,u and

Cx,uδ . In Figure C.1(b) we present the results when a rotation is estimated using partial

curves, with a percentage of points removed from the curve S1. Again we can see that

Cx,u and Cx,uδ perform similarly. While Cuδ seems to perform better than Cu in this case,

both still perform better than Cx and worse than Cx,u and Cx,uδ . In Figure C.1(c), (d)

and (e) we present the registration results obtained when noise is added to the data.

Again we can see that in general, Cx,uδ and Cx,u perform similarly, as do Cuδ and Cu.
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Figure C.1: MSE results for each of our experiments on 2D data differing by a rotation.
In (a) the MSE value given at each rotation is the average over 10 curve registration
results, as is the MSE value given at each percentage of removed points in (b). In (c),
(d) and (e) the MSE result is the average over 150 curve registration results for each
level of noise.

C.2 3D Rotation Registration

In Figure C.2 we present results similar to those in Figure 5.10 for all cost functions Cu,
Cuδ , Cx,u and Cx,uδ . From row 1 of Figure C.2 we can see that CPD performs best when

estimating a rotation when there are exact point correspondences between S1 and S2.

Again both Cx,u and Cx,uδ perform similarly, as do Cu and Cuδ , although Cu appears to

get caught in alternate solutions at times, creating spikes in the average MSE results

(Fig C.2, row 1 and 2). When different samples are chosen from S1 and S2 (Fig C.2,

row 3) both Cx,u and Cx,uδ perform similarly, and both outperform Cx. Both Cu and

Cuδ also give similar results, performing the worst. The same results were found when

registering shapes with added noise (Fig C.2, row 4).
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Figure C.2: Error results obtained when registering shapes S1 and S2 with the same sampling (row
1), omitting CPD for clarity (row 2), registering shapes with different sampling (row 3) and with
added noise (row 4). Columns 1-3 give the error results for the Bunny, Dragon and Buddha meshes
respectively.
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[152] R. W. Sumner and J. Popović, “Deformation transfer for triangle meshes,” ACM

Trans. Graph., vol. 23, pp. 399–405, Aug. 2004.

[153] N. Bonnotte, Unidimensional and Evolution Methods for Optimal Transportation.
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