
Doctoral Thesis

Goal-Driven Service Composition in

Mobile and Pervasive Computing

Author:

Nanxi Chen

Supervisor:

Prof. Siobhán Clarke

A thesis submitted in fulfilment of the requirements for

the degree of Doctor of Philosophy

in the

School of Computer Science & Statistics

Trinity College Dublin, The University of Dublin

October 2015

Declaration of Authorship

I declare that this thesis has not been submitted as an exercise for a degree at this or

any other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or

allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trin-

ity College Library conditions of use and acknowledgement.

Signed: Nanxi Chen

Date: October 2015

i

ii

Abstract

Pervasive computing environments enable access to diverse resources and services over

networked computing systems. Mobile systems have the potential to be very active

participants in such environments as resource providers, since they are in wide-spread

use, and can sense and exchange their operating environments’ context data. Service-

oriented computing has emerged as an important paradigm in pervasive computing,

because it packages heterogeneous resources as services that are discoverable, accessible,

and reusable. Services offered by potentially multiple devices can be composed to create

a new value-added service. Service provision through service composites is explored in

this thesis, particularly in pervasive environments where service providers are mobile

and communicate with each other in an ad hoc manner.

Mobile service providers are free to join and leave a system, making the availability

of the services they provide unpredictable. Service execution may fail because of a

previously available service provider’s absence at runtime. There is significant potential

for improving overall service quality in real-time services provisioning by re-composing

better services from the environment including those that may have appeared even

during service execution. Mobility also changes the network topology and the links

between services, which can lead to execution path loss, and in turn composition failures

at runtime. Thus, service composition requires a comprehensive and dynamic discovery

model to reason about an appropriate combination of services that match the given

functionality, as well as an efficient mechanism that adapts composite services to dynamic

environments.

Existing research on service-oriented computing has led to automatic planning, adaptive

composition and composition recovery to tackle dynamic environments, but requires

global service knowledge or a view of the real-time service links. Given mobile devices’

limited communication ranges, the network topology changes quickly when devices are

roaming, and keeping such system views up-to-date leads to additional communication,

maintenance overhead, and may delay the composition process.

This thesis presents a fully decentralized services composition model that supports flex-

ible service discovery and execution in mobile pervasive environments. The model is

goal-driven, focusing on time-efficient service provisioning to reduce the interference

iii

of topology changes. This goal-driven approach achieves flexible service discovery by

dynamically planning a service workflow, which supports not only sequential service

composites but also complex composites such as parallel or hybrid service flows. Service

links’ reliability and quality of service issues are considered when selecting services for

invocation, which reduces the possibility of execution failures and the effort required for

maintaining backup services for composition recovery. If necessary, failure recovery is

attempted by adaptable OR-split transitions in the service workflow.

The model has been evaluated using both simulation and a prototype case study. Evalu-

ation metrics include measurements of composition success rates under various mobility

models, and the composition model’s scalability and performance. Simulation results

illustrate both the strengths and the limitations of the proposed mechanism in dynamic

pervasive computing environments, under different network density and composite com-

plexity conditions. The prototype case study demonstrates this approach’s feasibility

on real mobile devices.

Acknowledgements

I would never have been able to finish this thesis without the guidance of my supervisor,

help from group members and friends, and support from my family.

First and foremost, I must thank my supervisor Prof. Siobhán Clarke, who brought

me the exquisite beauty of precision, and rigorous research. Thanks for her expertise,

continuous support, caring and enormous patience over the years.

Thanks to the adaptive systems team, Vivek, Nicolás, Eamonn, Saeed, Amit and Pawel

for being such a wonderful team, always being available for discussing a idea, and the

useful and insightful comments to improve this work.

Finally, special thanks to the financial support from SFI and Lero who offered me the

great opportunity to conduct research in the amazing country, Ireland, and also gave me

the chance to meet a number of researchers through the annual workshops and meetings.

Nanxi Chen

The University of Dublin, Trinity College

October 2015

iv

Publications Related to this Ph.D.

Nanxi Chen and Siobhán Clarke, A Dynamic Service Composition Model for Adap-

tive Systems in Mobile Computing Environments, IEEE International Conference on

Service-Oriented Computing - ICSOC, 93-107, 2014.

Nanxi Chen, Nicolás Cardozo and Siobhán Clarke, Goal-Driven Service Composition in

Mobile and Pervasive Computing, IEEE Transactions on Services Computing, Volume-

PP , Issue-99, February 2016

v

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iv

Publications Related to this Ph.D. v

Contents vi

List of Figures x

List of Tables xii

Abbreviations xiii

1 Introduction 1

1.1 Service-Oriented Computing . 1

1.2 Challenges . 2

1.3 Motivating Scenario: A Smart Public Space 5

1.4 Existing Solutions . 7

1.4.1 Composition Process Management 7

1.4.2 Fault Tolerance . 9

1.4.3 Research Gaps and Observations 10

1.4.4 Research Questions . 11

1.5 Thesis approach . 11

1.5.1 A Decentralised Goal-Driven Service Composition 13

1.6 Thesis Contribution . 14

1.7 Thesis Scope . 16

1.8 Thesis Structure . 17

2 State of the Art 19

2.1 Locating a Provider . 20

2.1.1 Reactive Discovery . 21

vi

Contents vii

2.1.2 Proactive Discovery . 22

2.1.3 Assessment . 24

2.2 Request Routing . 25

2.2.1 Controlled Flooding . 26

2.2.2 Directory-Based . 27

2.2.3 Overlay-Based . 28

2.2.4 Assessment . 30

2.3 Composition Planning . 31

2.3.1 Open Service Discovery . 31

2.3.2 Goal-Oriented . 33

2.3.3 Assessment . 34

2.4 Service Binding . 35

2.4.1 QoS-Based Selection . 35

2.4.2 Adaptable Binding . 36

2.4.3 On-Demand Binding . 37

2.4.4 Assessment . 38

2.5 Service Invocation . 38

2.5.1 Fragments Distribution . 39

2.5.2 Process Migration Approaches . 39

2.5.3 Assessment . 40

2.6 Fault Tolerance . 41

2.6.1 Preventive Adaptation . 41

2.6.2 Composition Recovery . 42

2.6.3 Assessment . 44

2.7 Summary . 44

3 Design 48

3.1 Design Objectives and Required Features 48

3.2 System Model . 50

3.3 GoCoMo Concept . 50

3.3.1 Service Searching . 51

3.3.2 Service Selection . 55

3.3.3 Service Execution . 56

3.4 Service Composition Model . 57

3.4.1 Service Model . 59

3.4.2 Dynamic Goal-Driven Composition Planning 60

3.4.2.1 Local Service Planning 64

3.4.2.2 Complex Service flows . 70

3.4.3 Heuristic Service Discovery . 71

3.4.4 Execution Fragments Selection and Invocation 74

3.4.4.1 Service Composite Selection and Invocation 76

3.4.4.2 Service Execution and Guidepost Adaptation 77

3.5 Quantitative Analysis on GoCoMo . 79

3.6 Design Summary . 81

4 Implementation 83

4.1 GoCoMo Architecture . 83

Contents viii

4.2 GoCoMo Client and Provider . 87

4.2.1 GoCoMo Client Engine . 87

4.2.2 GoCoMo Service Provider . 89

4.3 Routing Controller . 90

4.4 Guidepost Manager . 92

4.4.1 Adapting a Guidepost . 92

4.4.2 Guidepost Data in Service Execution 94

4.5 GoCoMo Message Helper . 94

4.6 GoCoMo Prototypes . 95

4.6.1 GoCoMo Prototype on Android . 95

4.6.2 GoCoMo Prototype on Ns-3 . 97

4.7 Implementation Summary . 98

5 Evaluation 100

5.1 Evaluation Methods and Criteria . 101

5.2 Prototype Case Study . 103

5.2.1 Case Study Configurations . 104

5.2.2 Samples and Results . 107

5.2.2.1 Composition Planning Case 107

5.2.2.2 Adaptation Case . 110

5.3 Simulation Studies . 112

5.3.1 Environment Configurations . 112

5.3.1.1 General Settings . 112

5.3.1.2 Evaluation Scenarios . 113

5.3.2 Baseline approach . 117

5.3.3 Simulation Results and Analysis 118

5.3.3.1 Flexibility of Service Planning 118

5.3.3.2 Adaptability of Composite Services 120

5.3.3.3 Impact of Heuristic Service Discovery 123

5.3.3.4 Planning Complex Service Flows 124

5.4 Evaluation Summary . 126

6 Discussion and Conclusion 128

6.1 Overview of Thesis Achievements . 128

6.2 Discussion . 131

6.2.1 Service Flows . 131

6.2.2 Privacy and Security . 132

6.2.3 Semantic Matchmaking . 132

6.2.4 High Composition Demand . 133

6.3 Future Work . 133

A Further Implementation Detail: Prototypes 135

A.1 GoCoMo App . 135

A.2 GoCoMo-ns3 . 137

B Evaluation Results’ Validity 139

Contents ix

B.1 Results’ Validity Using 2-Sample Z-test 139

B.1.1 CoopC and GoCoMo’s Service Discovery Delay 139

B.1.2 CoopC and GoCoMo’s Service Discovery Traffic 139

B.1.3 CoopC and GoCoMo’s Response Time 141

B.1.4 CoopC and GoCoMo’s Composition Traffic 142

C Glossary 144

Bibliography 146

List of Figures

1.1 Thesis challenges . 3

1.2 Motivating scenario . 5

1.3 A service composite . 6

2.1 Chapter overview . 20

2.2 Analysis on composition routing . 30

2.3 The state of the art summary . 46

3.1 Service composition for a sequential composite 52

3.2 GoCoMo Concepts . 57

3.3 General distributed backward-chaining . 58

3.4 Global service composition . 62

3.5 Dynamic composition overlay . 63

3.6 GoCoMo backward planning protocol . 63

3.7 Local service composition . 65

3.8 A composition example . 69

3.9 Composing a parallel service flow . 71

3.10 Example for DCON . 72

3.11 Heuristic service discovery . 74

3.12 GoCoMo execution path . 75

3.13 Execution guidepost life cycle . 75

3.14 Heuristic service discovery . 79

3.15 GoCoMo Kiviat diagram . 82

4.1 The GoCoMo middleware’s architecture 84

4.2 GoCoMo Client Engine implementation 87

4.3 Global Service Composition Process implementation 88

4.4 Local Service Composition implementation 91

4.5 Routing Controller implementation . 91

4.6 Guidepost Manager implementation . 93

4.7 Guidepost Manager sequence . 93

4.8 GoCoMo Messages implementation . 95

4.9 GoCoMo prototype on Android: GoCoMo App 96

4.10 GoCoMo Prototype on NS-3: GoCoMo-ns3 97

5.1 The testbed network . 104

5.2 Service scenarios for the case study . 105

5.3 GoCoMo’s failure rate and response time on static networks 108

5.4 GoCoMo’s performance on real devices . 110

x

List of Figures xi

5.5 GoCoMo’s failure rate and response time on dynamic networks 111

5.6 Planning failure rate in mobile networks 118

5.7 Discovery time in mobile networks . 119

5.8 Discovery traffic in mobile networks . 119

5.9 Execution failure rate in mobile networks 121

5.10 Response time in mobile networks . 121

5.11 Overall traffic in mobile networks . 122

5.12 Interference degrees affect failure rates . 123

5.13 Interference degrees affect the system traffic 124

5.14 Service flows used in the simulation . 125

5.15 Failure rate for the data transition request 125

A.1 GoCoMo App’s class diagram . 136

A.2 GoCoMo App: a device acts as a service provider 137

A.3 GoCoMo App: An example of a GoCoMo message 137

A.4 GoCoMo App: a device acts as a client . 138

A.5 GoCoMo App: client gets a composition result 138

A.6 GoCoMo-ns3’s class diagram . 138

List of Tables

2.1 Literature review for composition planning models. The highlighted columns
represent the required features regarding a model’s flexibility. 47

3.1 Composition model notations . 61

3.2 Quantitative analysis on GoCoMo’s theoretical performance and scalabil-
ity. (avg.=average) . 80

5.1 Devices used in case studies (M.M: Manufacturer and Model Number,
OS: Android OS version) . 104

5.2 Scenarios for the case study, (seq) = sequential service flow, (p) = parallel
service flow, P = probability of Wake state, D = duration of Wake/Sleep
state . 106

5.3 Service provider’s time consumption (ms) on each step in the GoCoMo
service composition process, the average number of sent messages and the
average size (byte) of them. 109

5.4 Simulation Configuration: General . 112

5.5 Scenarios for the simulation . 115

5.6 Comparison of the baseline CoopC with proposed GoCoMo 117

B.1 The difference between GoCoMo’s discovery time and CoopC’s discovery
time . 140

B.2 The difference between GoCoMo’s discovery traffic and CoopC’s discovery
traffic . 141

B.3 The difference between GoCoMo’s response time and CoopC’s response
time . 142

B.4 The difference between GoCoMo’s composition traffic and CoopC’s com-
position traffic . 143

xii

Abbreviations

AI Artificial Intelligence

CtrlLogic Control Logic helper

DCON Dynamic Composition Overlay Networks

DHT Distributed Hash Table

ExeGM Execution Guidepost Manager

GClientE GoCoMo Client Engine

GMsgHelper GoCoMo Message Helper

GoCoMo Goal-driven service Composition in Mobile

and pervasive computing

GProviderE GoCoMo Provider Engine

I/O Input and Output

MANET Mobile Ad hoc Network

P2P Peer to Peer

QoS Quality of Service

SOC Service-Oriented Computing

SON Semantic Overlay Networks

TTL Time-To-Live

xiii

Dedicated to my mother, Rui Chen

xiv

Chapter 1

Introduction

Pervasive computing environments enable access to diverse resources and information

over a networked computing system. Such a system includes traditional computers as

well as embedded devices, information appliances, and sensors [Brønsted et al., 2010,

Weiser, 1991]. During the last decade, breakthroughs in achieving faster and energy-

efficient wireless communication as well as smarter and thinner embedded devices have

accelerated human users’ shift away from traditional computers and towards mobile

and embedded devices for resource access and information sharing. Mobile devices

support a wide perspective on the environment with context-aware functionality, such as

multi-modal mobile-sensing and ambient proximity social sharing [Conti and Giordano,

2014], which raises the potential for mobile devices to be active participants in pervasive

computing environments as resource and context information providers. This potential

leads to increasing attention to mobility issues in pervasive computing research.

1.1 Service-Oriented Computing

Pervasive computing environments have evolved from closed (special purpose) and static

to open and dynamic (mobile) [Brønsted et al., 2010, Ibrahim and Mouel, 2009].

A mobile pervasive computing environment can include a large number of third-party

mobile entities (e.g., wearable technologies, smart phones, etc.). As modern wireless

communication technology facilitates wireless data exchange for mobile users, various

information captured by smart mobile devices like news, locations, air quality, reviews,

1

Chapter 1. Introduction 2

routes/directions, and even parking/loading data, can be shared through wireless net-

works [Khan et al., 2013, Lane et al., 2010, Perera et al., 2015]. Service-oriented comput-

ing (SOC) is at the forefront of enabling access to such shared information for pervasive

computing environments [Ibrahim and Mouel, 2009, Raychoudhury et al., 2013], packag-

ing heterogeneous resources as services that are discoverable, accessible, and reusable. It

also provides unifying interfaces for services to ease users’ access via communication net-

works. To address a particular user requirement, a combination of multiple services may

be required, and so a fully-functional service composition process will tackle complex

user requests with flexible composition of value-added services. Required functionalities

such as information query and concierge-like services can be complex and mutable, mak-

ing it difficult for a single mobile device to handle as it may have inadequate functionality

or computing resources. Open and dynamic pervasive computing environments should

compose functionalities from heterogeneous mobile devices that have the potential to

collaborate.

This thesis focuses on service provision through service composites, particularly in per-

vasive environments where service providers are mobile and communicate with each

other in an ad hoc manner. A pure ad hoc network is considered in this thesis, but the

process remains the same for all public environments where a central admission cannot

be assumed.

1.2 Challenges

Given the environment’s openness and dynamism, service composition processes face

significant challenges (as illustrated in Figure 1.1). The primary challenges are:

C.1 Inadequate conceptual composites

A conceptual composite is an abstract model that states a specific functionality as

a series of service requirements, each of which indicates that a concrete service will

be used. General service composition relies on previously generated conceptual

composites and assigns service providers at runtime to complete them. However,

in an open environment, services of interest are independently deployed and main-

tained by different mobile devices so that a conceptual composite for a particular

Chapter 1. Introduction 3

Figure 1.1: Composition-based service provisioning challenges in open and dynamic
pervasive computing environments

functionality is not always possible. Composition users may provide the concep-

tual composite as a part of the service request, but such a user-defined composites

is likely to be at variance with the operating environment as the environment is

dynamic. In addition, a composition user’s awareness on available services is lim-

ited by its communication range, so the composition user may have insufficient

knowledge about usable services and cannot produce a conceptual composite for

service composition. A predefined conceptual composite also removes the possibil-

ity of using services that may contribute to the user’s request, but are not outlined

in it.

C.2 Limited system knowledge

Service discovery searches for, and selects services that match the required func-

tionality. A service provision system may need to dynamically reason about a

functionality and find an appropriate combination of services that supports it

when an individual one is unavailable. Having a global system view of the com-

puting environment is beneficial for such a reasoning-based service discovery, since

a global service knowledge will facilitate reasoning processes and increase compo-

sition success. However, obtaining service knowledge from mobile devices leads

to traffic overhead because it relies on multi-hop wireless data transmission and

when mobile devices have a limited communication range, there are likely to be a

larger number of transmission hops. In addition, maintaining a global system view

Chapter 1. Introduction 4

can be expensive especially when the service and network topology are frequently

changing.

C.3 Unpredictable services availability

Service providers establish a wireless network in ad hoc ways [Brønsted et al.,

2010]. Any mobile service provider can offer and drop services, as well as join and

leave the network at arbitrary times during execution, making services’ availability

unpredictable at runtime. Service execution can fail due to a previously available

service’s absence. New service providers can enter the network and offer new

services, which brings significant potential for improving overall service quality by

re-composing better services from the environment including those that may have

appeared even during service execution.

C.4 Unreliable wireless communications

Mobile devices rely on wireless communication channels to exchange service in-

formation, bind services, and transfer data during service execution [Ibrahim and

Mouel, 2009, Mian et al., 2009]. Wireless communication is likely to be unreliable,

and the data packet transmission via the radio channel is sensitive to interference

and obstruction, with packet loss comes as a result [Fok et al., 2010]. Efficient in-

teractions between composite participants are required to reduce the dependency

on such a communication channel.

C.5 High level of dynamics in execution paths

Service execution requires communications through established wireless links be-

tween successive service providers. However, service providers’ mobility leads to

network topology changes, which alters such links. Changes to the links make any

cached execution path error-prone, which may further result in communication

failures and execution path loss during service execution. A composite service

must be adaptable to increase the chance that results can be delivered even when

a communication channel to a provider drops, or a cached execution fails. Recov-

ering the composition from a failed path in a time- and communication-efficient

way is also required to achieve a successful service composition.

Chapter 1. Introduction 5

Figure 1.2: Motivating scenario: a smart public space system. (A user issues a
complex service request to a shopping mall’s pervasive computing environment. Mobile
entities offer their hardware/software capabilities and local data as services.)

1.3 Motivating Scenario: A Smart Public Space

As a motivating scenario, Anne is in a shopping mall’s car park with her 1-year-old

son. She would like to order and collect a pack of nappies in a local store, and then go

to the nearest baby-changing facility in the mall. She needs a order confirmation for

order collection, as well as a step-free route to the store and from there to the baby-

changing facility, using her smart watch. The mall offers an official website and a mobile

application for information browsing. But Anne’s smart watch is incompatible with the

application and its screen is too small to display the graphic route properly.

There is a smart public space system (Figure 1.2) in the mall including various embedded

devices owned by customers, shop clerks, taxi drivers, or house keepers, etc. These

devices can package their capabilities, like GPS, navigation, translation, facility routing,

taxi booking or indoor map to be accessible via network connections. Anne’s smart watch

has been configured to incorporate surrounding communication networks to make use

of available resources. Thus, her smart watch may be able to directly get a composite

service (Figure 1.3) via an ad hoc network that forms from different devices in the

Chapter 1. Introduction 6

pervasive computing environment, such as a housekeeper’s phone, a nearby car’s satellite

navigator, a shop porter’s smart glasses, a personal shopper’s tablet, etc. The composite

service allows Anne to input only a product name and a quantity number, and returns

an order confirmation code to allow her to collect and pay for her order in-store. The

service also returns an audio route stream that compacts with her smart watch, guiding

her to the store and the baby-changing seat.

Figure 1.3: Anne’s service composite

This smart public space has the potential to help Anne avoid browsing the website,

increasing the likelihood of matching all her hardware and software capabilities to get

the routing result she needs. However, Anne’s requirements are complex and domain-

crossing such that an exactly defined service composition task may not be flexible enough

to facilitate successful matching between her requirements and the available services in

the environment. To enable service provisioning in such a smart public space, a sys-

tem should be capable of allowing (possibly third-party) service providers to join the

environment, discovering services based on the given requirements in a flexible way, pro-

ducing a service workflow for data transition, and invoking service instances for execu-

tion. Moreover, participant devices that host services are likely owned by heterogeneous

third-parties, such as pedestrians, taxi drivers or housekeepers, and these device owners’

activities are not under obligation to the system. The participant devices, therefore,

may leave the system or drop the service before execution. This thesis assumes that ser-

vices deployed on participant devices are stateless. For successful service provisioning,

the system should support timely service invocation, and be aware of and engage newly

Chapter 1. Introduction 7

entered devices that have the potential to offer the given functionality throughout the

service composition process. In short, the system should address the challenges listed in

the previous section.

1.4 Existing Solutions

Service composition’s success in open and dynamic environments is subject to failures

that can occur in any phase (Figure 1.1) of the composition process. Support for services

provision using composite services in such environments should include both composition

process management and failure recovery. Composition process management investigates

different ways to organize a composition process to increase composition success. Fault

tolerance explores methods to predict potential failures and adapt the composite service

for them, or to recover a service composition process from an emerged failure.

1.4.1 Composition Process Management

A service composition process is initiated by the service provision system when a compo-

sition request is issued. The process refers to the tasks of reasoning about a composition

plan, discovering available services that match the plan, binding the discovered services

and invoking service instances. Challenges when designing a service composition process

include the question of when and in what order these tasks are performed, which entity

in the network executes the tasks, where the service provision system retrieves necessary

knowledge to support such execution, and how these tasks are managed. The state of

the art for service composition in pervasive environments includes runtime composition

reasoning [Hibner and Zielinski, 2007], decentralized service composition [Al-Oqily and

Karmouch, 2011], dynamic service binding [Prinz et al., 2008, Wang et al., 2013], weaving

the service invocation procedure to the service discovery procedure [Groba and Clarke,

2014], etc., which cope with flexibility and context dynamism. Existing solutions adopt

or expand these techniques. The main techniques that addresses the challenges of the

target system (Section 1.2) are planning-based service composition and decentralized

composition management.

Planning-based service composition differs from traditional matching-based services com-

position approaches that rely on a given conceptual composite that is made up of a set

Chapter 1. Introduction 8

of ordered abstract services, and only finds service instances that exactly match the

abstract services. Planning-based service discovery is not restricted to exactly match-

ing a composition task, making it more flexible with the potential to a broader scope

of services than matching-based services composition. Planning-based service composi-

tion solutions extend conceptual composites or use AI planning algorithms to increase

flexibility. Conceptual composite extensions uses a one-to-more matchmaking scheme

for service composition, which means one abstract service may match a combination

of services [Al-Oqily and Karmouch, 2011, Kalasapur et al., 2007, Liu et al., 2015a,

Rodriguez-mier et al., 2012, Thomas et al., 2009]. However, this model still requires a

conceptual composite that is planned based on offline service information, which may

be out of date. On the other hand, AI planning algorithms are goal-oriented, automati-

cally creating abstract composites (composition tasks) during service discovery, selecting

services that matches each composition task, and finalising the composites by invoking

selected service instances at runtime. Some of them can support various service work-

flows other than sequential workflows but require planning infrastructures [Furno and

Zimeo, 2014, Gharzouli and Boufaida, 2011, Khakhkhar et al., 2012, Liu et al., 2015b,

Ukey et al., 2010] or a global knowledge base[Khakhkhar et al., 2012, Oh et al., 2008,

Ren et al., 2011, Ukey et al., 2010].

Decentralized composition management [Prinz et al., 2008, Schuler et al., 2004, Sen et al.,

2008] distributes a conceptual composite to different participants, each of which carries

out a part of the abstract services. In general, overall service invocation starts only after

every abstract service in the composite has been bound to a provider [Artail et al., 2008,

He et al., 2008]. This protects a composition from unnecessary invocation and execution

when some of the required providers are non-existent [Sen et al., 2008]. However, even

when each required provider has been located and bound, the composition can still fail

because of absent service providers at runtime. Minimizing the impact of service avail-

ability has been explored by employing on-demand service binding [Groba and Clarke,

2014]. On-demand service binding assigns a provider to an abstract service just before

it has to execute. Existing approaches have explored on-demand service binding in two

directions: one discovers a set of providers for every required service as allocation can-

didates and maintains these candidates until one of them is invoked for execution, and

the other discovers a provider at runtime and invoke its service immediately after the

provider is found. However, using allocation candidates [Prinz et al., 2008, Schuler et al.,

Chapter 1. Introduction 9

2004] requires additional monitoring effort to keep the list of candidates up to date, and

limits the chance of engaging better providers that may appear in the environment after

all the allocation candidates for a service are determined. On-demand service binding

[Groba and Clarke, 2014] can obtain real-time service provider information by runtime

service discovery. It reduces composition latency by coupling the composition process

with the invocation of services. However, the on-demand service binding approach relies

on exactly matching functionalities and predefined conceptual composites for service

discovery, which reduces flexibility. Moreover, it assumes broadcast-based service dis-

covery, and provides no means to prevent a service composition request flooding the

network. Furthermore, it migrates composition processes along the direction of data

flow, which may mean the system invokes a final provider a long distance from, or a bad

transmission channel to, the user. This increases the cost of routing the composition

result back to the user.

In summary, there is a lack of a service composition process to resolve clients’ diverse

composition requests, by using only participant providers’ local service information. Its

service discovery method should be infrastructure-free, aware of new service provider

that newly emerges, and can control discovery message flooding to reduce congestion in

the network.

1.4.2 Fault Tolerance

Research on fault tolerance in services composition focuses on failure prevention and

composition recovery. Failure prevention approaches tend to anticipate composition

failures and update the composite service, which requires continuous observation of

changes in the operating environment throughout the overall composition process and

the adaptation of the composite to observed changes [Prochart et al., 2007, Schuler et al.,

2004]. Observations on the operating environments are normally achieved by sending

probe messages to composition participants to assess the allocated services’ availability

and the validity of links between service providers [Prinz et al., 2008, Schuler et al., 2004].

As the operating environment is highly dynamic, an early failure prediction tends to be

inaccurate. Such a prediction is likely to lead to unnecessary adaptation. On the other

hand, a just-recently-detected impending failure leaves very limited time for a composite

service to update itself. Failure prevention may fail if a composite has not completed

Chapter 1. Introduction 10

when a failure occurs, and in turn cause composition disruption. Compositions can

be recovered by discovering service providers to replace failed ones [Gu and Nahrstedt,

2006, Prinz et al., 2008, Zhou et al., 2011] or by selecting a backup composite for re-

execution [Hibner and Zielinski, 2007, Jiang et al., 2007]. However, discovering new

service providers is inefficient and can delay the composition result. Keeping backup

composites avoids the runtime cost of communication for rediscovery, but it may cost

the system more effort to maintain these backups.

1.4.3 Research Gaps and Observations

Existing solutions for service composition in pervasive computing have explored compo-

sition process management and fault tolerance to address openness and dynamism. As

mentioned, composition process management solutions include efficient service discovery

[Kang et al., 2008, Pirrò et al., 2012], flexible planning [Al-Oqily and Karmouch, 2011,

Furno and Zimeo, 2014, Kalasapur et al., 2007, Rodriguez-mier et al., 2012], dynamic

binding [Groba and Clarke, 2011, 2012, 2014], decentralized composition management

[Furno and Zimeo, 2014, Groba and Clarke, 2014, Prinz et al., 2008, Sen et al., 2008].

Most planning-based service composition approaches rely on discovery infrastructures

and a-prior system knowledge [Al-Oqily and Karmouch, 2011, Kalasapur et al., 2007,

Rodriguez-mier et al., 2012]. Decentralized composition management solutions are re-

stricted to exact matching functionality or planning for a sequential service composite

[Furno and Zimeo, 2014, Groba and Clarke, 2014, Prinz et al., 2008]. Fault tolerance

either requires composition re-planning that is time-consuming [Vukovi and Robinson,

2007, Yu, 2009], or only replaces failed providers with backup ones without considering

the reliability of the new execution path [Gu and Nahrstedt, 2006, Hibner and Zielinski,

2007, Jiang et al., 2007, Prinz et al., 2008, Zhou et al., 2011].

Taking full advantage of the mobile and wireless technology advances and opportunities

in open, dynamic pervasive computing environments will therefore require the develop-

ment of new, more appropriate, service composition models that provide:

1) flexible decentralized composition of services on mobile devices. The target net-

work that is established by ad hoc connected mobile devices is infrastructure-less,

requiring that the process performs in a decentralized manner. Models are also

required to streamline to achieve efficient composition.

Chapter 1. Introduction 11

2) dynamic adaptation of the combination of services as appropriate to the service

providers’ and the environment’s changing situation. Where there are constraints

such as timeliness, differing data flows and combinations of services, will be ap-

propriate under different circumstances. Models are required to quantify services’

and their combinations’ characteristics (e.g., service availability, execution path

reliability) and to adapt as appropriate to environmental factors.

1.4.4 Research Questions

This thesis explores the question of how to enable service provisioning through composite

services in open and dynamic pervasive computing environments. This question can be

decomposed into:

RQ.1 how to discover service providers relying on limited system knowledge to trade off

successful service discovery with time and traffic cost?

RQ.2 how to plan a service composite that is sufficiently up-to-date and flexible to

support appropriate decomposition of a user requirement and to manage overall

quality of service of the service composition such that the executing system will

adapt appropriately to changing environmental factors?

RQ.3 what adaptation model will be required to re-compose service capabilities depend-

ing on not only individual service’s quality but also the composite service’s relia-

bility, and that will itself, behave in a timely and communication-efficient fashion?

1.5 Thesis approach

The effectiveness of service provisioning can be affected by the complexity of the com-

posite service, the length of service provider links, composition latency, composition

distribution, and the cost of failure prevention and recovery. Specifically, a list of objec-

tives is illustrated, based on investigations on the state of the art solutions.

O.1 A service execution path contains logically linked services. Such service providers

are connected in an ad hoc manner, depending on mediators to relay messages.

Chapter 1. Introduction 12

With more mediators for a logical service link, more message forwarding will be

required, and such a link may be error-prone because of unstable wireless channels.

Further, traditional distributed service composition requires four message trans-

mission: to route a composition request, to locate a service provider, to bind the

service provider, and to invoke its service instance. Frequent message transmis-

sion over unreliable links is at high risk of packet loss. This work aims to reduce

dependency on wireless transmission and the number of message routing hops.

O.2 Composition latency is also an important factor that affects the Quality of Service

(QoS) and the success of service provisioning [Groba and Clarke, 2011]. Service

providers are grouped to support a composite of their services. As the providers

may be mobile, the group may change over time with regard to the participants’

topology, and the longer each participant has to wait for execution the more de-

viations of the composite from the initial one are likely to occur. Such deviations

may imply longer service links or even service absences, which can delay messages

that pass through the service provider links, and so lower the composite service’s

quality, increasing the latency of the composition result [Friedman et al., 2007].

Even worse, the composite service may be invalid in terms of service availability,

or service link availability. This work’s goal is to design a service composition

model that always use current service information to support service selection,

and minimize standby duration for selected service providers.

O.3 Complex composite services are likely to have long service execution paths, or

complicated control logic, which may cause time-consuming execution. In addition,

given the fact that any participant has the opportunity to change their status (i.e.,

location, speed, and service availability) over time, a complex composite service is

likely to be under threat of failure caused by network status changes. This work

explores a service composition model that can appropriately decouple user requests

to satisfy required functionality with a simplest possible composition result.

O.4 Composition distribution refers to the question of where the service specification

is registered and who manages the composition process. Generally, the more cen-

tralized a service composition process is, the more communication overhead for its

maintenance in dynamic environments, and the less communication required for

service searching [Raychoudhury et al., 2013]. In a highly dynamic environment,

Chapter 1. Introduction 13

the benefit of efficient communication for service searching could be outweighed

by the maintenance cost. This work aims to self-organise the composition process

while leveraging an efficient search mechanism.

O.5 Fault tolerance handles faults that (possibly) emerge during service composition

by replacing (potential) failed service providers or a fragment of the service exe-

cution path which is invalid. Preventive failure recovery requires prediction about

potential failures, and continuous composition re-planning of the service execution

path. Reactive failure recovery does not include a process to monitor operating

environments. It adapts the composite service after a failure emerges, however,

has more recovery delay than preventive failure recovery. We adapt a service com-

posite to changing environments to prevent failures without affecting executed or

currently executing services. A lightweight mechanism is considered to recover a

service composite from failures.

In short, this thesis aims to select a set of services that support the required functionality

and to compose them in a decentralized manner, trading off flexibly time-efficient failure

recovery with cost. It explores decentralized service discovery based on AI-planning

to dynamically retrieve up-to-date service specification (Objective O.3 and O.4). As

later services are combined, there is less time for the service combination to change

(Objective O.2), and composite service construction is explored to act only when a

service is about to be invoked [Groba and Clarke, 2014]. This thesis focuses on the

runtime changes to a composite service, and explores enabling dynamic adaptation for

failure prevention without constantly monitoring the participants or composition re-

planning, by decoupling and re-organizing the composition planning process (Objective

O.1 and O.5). Execution path recovery is also investigated to recover a failed service

execution path, and recompose services with minimal re-execution effort (Objective O.5).

1.5.1 A Decentralised Goal-Driven Service Composition

A composition request is resolved using a novel decentralized goal-driven services com-

position model that decouples the request into a series of sub-goals and uses backward

resolution. By locating the final providers first and then the rest of providers, the model

considers the routing cost for the delivery of the final composition result when select-

ing execution paths. During the backward composition resolution process, a request

Chapter 1. Introduction 14

for sub-goals is issued by service providers, each of which solves at least one sub-goal.

This decentralized model means all the providers are responsible for the composition,

and admission control migrates from one provider to its subsequent providers, through

service invocation. A provider controls the composition by generating a sub-goal and

forwarding it across the network during the resolving process, selecting the remaining

execution path and invoking a subsequent service during the execution process.

Service binding is postponed and merged with the service invocation process, which

reduces interactions for the composition to make progress. Using backward planning and

forward binding/invocation, the model requires communication with a service provider

only twice: first to discover whether it is a potential service provider and second to

execute the composite service by performing service selection, resources locking, and

service instance invocation in one communication.

It is possible, if not probable, that a sub-goal could be satisfied by different combinations

of services, so a service composition model is likely to have alternative execution paths

for service invocation. In the backward composition resolving process, the reliability of

each fragment of a service execution path is estimated, and late service binding allows

a service composition system to select the most reliable execution path according to the

estimated reliability. If necessary, the composition process can go back to a previously

executed provider to invoke a new execution path and replace a failed one.

1.6 Thesis Contribution

This thesis proposes a novel Goal-driven service Composition model for Mobile and

pervasive computing environments, called GoCoMo. GoCoMo performs service discov-

ery, planning, binding, invocation and adaptation in a fully decentralized manner. The

model is goal-driven, and focuses on time-efficient service provisioning to reduce interfer-

ence from topology changes. GoCoMo achieves flexible service discovery by dynamically

backward planning a service workflow, which supports not only sequential service com-

posites but also complex composites such as parallel or hybrid service flows. The service

workflow is made up of a set of adaptable fragments, making it more malleable for use in

dynamic environments. Service execution paths’ reliability and quality of service issues

are considered when selecting services for invocation, which reduces the possibility of

Chapter 1. Introduction 15

execution failures and the effort required for maintaining backup services for compo-

sition recovery. If an execution failure emerges, composition recovery is attempted by

adaptable OR-split transitions in the service workflow.

This thesis describes an in-depth study into the area of service composition in dynamic

pervasive computing environments, and outlines the following extensions to existing

composition models as contributions to knowledge.

• Heuristic service discovery (RQ.1)

Current service discovery in dynamic ad hoc networks is achieved by n-hops1 flood-

ing, multicast routing based on directories, or selective routing based on overlay

networks [Mian et al., 2009, Raychoudhury et al., 2013]. Infrastructure-based

discovery (directories or overlays) is communication efficient at runtime, but in-

troduces maintenance cost. n-hops flooding is infrastructure-less, and existing

approaches concretely define n, which is inflexible. This thesis explores how to use

user-defined composition time constraints, local topology knowledge and back-

ward planning to trade off broadcast traffic overhead with service discovery scope

in service planning. The proposed heuristic service discovery prevents a request

flooding the network in two ways: 1) estimating routing reliability for a service

and stopping unreliable service routing, and 2) anticipating if a fragment of the

service path is reachable during execution according to the remaining path’s length

and the given time constraints, and dropping request forwarding for unreachable

fragments.

• Support for flexible decentralised composition planning (RQ.2)

Existing approaches towards distributed composition planning either handle only

sequential service flows for such a composite service, or employ AI planning al-

gorithms that support various service flows but require centralized planning in-

frastructures. GoCoMo automatically plans for potentially diverse service flows

including parallel and hybrid flows, and allows for dynamic selection among them.

This model engages providers that are likely to support a given functionality by

forming a parallel service flow as a composition candidate which increases compo-

sition flexibility, as illustrated in Chapter 2.

1The n is a predefined natural number limits the maximum number of routing hops.

Chapter 1. Introduction 16

• Selection of adaptable execution fragments (RQ.3)

Traditional service selection mechanisms that choose a full composite before ex-

ecution are inflexible as the composite cannot adapt to dynamic environments.

Selecting service providers during the service execution process has the potential

to adapt the composite service at runtime, but existing approaches select only

based on the QoS of each individual service. GoCoMo enables runtime execution

fragment selection that decomposes candidate service execution paths into a set

of execution fragments and weaves these fragments in a selection process. The

proposed selection is according to the path’s pre-estimated runtime reliability, and

the fragment can include candidate providers. The selected fragment is also adapt-

able as 1) when providers enter the system’s scope, they automatically merge with

the selected fragment to resolve user requirements, and 2) if candidate providers

included in the selected fragment are detected as unavailable, they are removed

from the fragment.

1.7 Thesis Scope

This work mainly considers service execution time and the length of the link as the

factors that influence path reliability. However, path reliability can also be affected by

other factors, for example, throughput [Rodriguez-mier et al., 2012], service reputation,

service reliability, execution price [Dai et al., 2015], energy, or bandwidth [Efstathiou

et al., 2014a]. Energy and bandwidth issues have been discussed as QoS attributes to

achieve QoS-based service composition in dynamic ad hoc networks [Efstathiou et al.,

2014a, Li et al., 2007, Park and Shin, 2006, Wu and Huang, 2015]. Further research

on modelling path reliability in the target environment with more QoS attributes will

be required to support more exhaustive reliability estimation, resulting in possibly less

composition disruption.

This work discovers services with a combination of multicast routing and constrained

flooding. It searches for services by semantic matching the composition goal provided by

a client to the input/output (I/O) parameters of a service, but no specific matchmaker

(e.g., iSeM, OWLS-SLRlite, COV4SWS, etc.) or Semantic Overlay Networks (SON) is

assumed in this work. The feasibility and performance of different semantic matchmakers

Chapter 1. Introduction 17

has been studied by Klusch [2012], and are outside the scope of this thesis. A SON may

introduce maintenance overhead to the system, however, semantic dependency overlays

[Chen and Clarke, 2014] have the potential to be used to support the discovery model

described in this thesis, and may achieve more efficient service discovery in a particular

scenario where dynamic semantic matchmaking is time intensive.

This thesis focuses on the application-level and addresses the combination of services

instead of devices. Service composition can combine services from different devices or

the same device. Existing research [Bianchini and Antonellis, 2008] distinguishes the link

that connects services in the same device and that connects services in different devices

as inter-peer links and intra-peer links, respectively. Inter-peer service connections and

the management of them has not been studied. Analysis of different inter-peer link

estimation and management mechanisms [Prinz et al., 2008] will be needed to improve

the flexibility of GoCoMo.

1.8 Thesis Structure

State of the art Chapter 2 reviews the state of the art and explores how it meets the

service composition challenges (Section 1.2) in open and dynamic pervasive computing

environments. It applies an assessment metric to review the feasibility of these solutions

and classifies them with regard to all the research questions and objectives (Section 1.5).

The chapter also assesses how pre-execution composition processes to reduce discovery

and planning failures are organised, and how the state of the art deals with message and

path loss during service execution.

Design Chapter 3 describes the design objectives and lays out the system model in

detail. In particular, it begins by describing the requirements that should be satisfied

and the trade-offs based on the analysis in Chapter 2. It then describes the GoCoMo

model as a proposed solution to the problem of service composition in open and dynamic

pervasive computing.

Implementation Chapter 4 describes the implementation of GoCoMo and introduces

a support middleware. It also presents two prototypes. An Android-based prototype

Chapter 1. Introduction 18

realizes GoCoMo as a middleware application. A C++ implementation integrates Go-

CoMo with the network simulator NS-3 for evaluation. It is realized as an extension

module on the NS-3 platform.

Evaluation Chapter 5 evaluates how GoCoMo fulfils the identified challenges and re-

search questions by comparing to baseline solutions from the state of the art. It begins

with the introduction of evaluation metrics for a measurement of GoCoMo and the

baseline approaches in the target environment. Evaluation metrics include measure-

ments of composition success rates under various mobility models, and the composition

model’s scalability and performance. This chapter continues by introducing a proto-

type case study that demonstrates GoCoMo’s feasibility on real mobile devices, and

an simulation-based experiment. Simulation results illustrate both the strengths and

the limitations of GoCoMo, under different network density and composite complexity

conditions.

Discussion Chapter 6 analysis this thesis’s achievements, summarises this work and

presents a list of interesting open issues that require further research.

Chapter 2

State of the Art

This chapter surveys current research that explores, to varying degrees, dynamic, mobile-

aware service composition. Existing surveys illustrate the maturity of service composi-

tion in pervasive computing environments [Ngan and Kanagasabai, 2012, Raychoudhury

et al., 2013], P2P networks [Meshkova et al., 2008, Rambold et al., 2009], and mobile

ad hoc networks [Cho and Lee, 2005, Christopher N. Ververidis and George C. Polyzos,

2008, Hosseini Seno et al., 2007, Mian et al., 2009]. This chapter extends current surveys

with an assessment on how the state of the art approaches achieve flexible service com-

position in an open and highly dynamic environment. It assesses the related projects in

the context of service composition process management and fault tolerance, in each of

which a subset of the challenges identified in Section 1.2 is addressed. The structure of

the investigation and assessment is presented in Figure 2.1. Firstly, this chapter explores

service discovery protocols and the questions of how provider information is discovered,

how a composition request is routed to the system, and how a flexible service compos-

ite is achieved. It then analyses service binding mechanisms with particular focus on

how and when providers are selected and lock their resources for a composition. Next,

it assesses how the service execution process is carried out by the systems. Finally, a

discussion on fault tolerance for service composition processes is presented.

19

Chapter 2. State of the Art 20

Figure 2.1: Structure of state of the art review

2.1 Locating a Provider

Service providers specify their local capabilities as services and make this service spec-

ification available to service provisioning systems. Service discovery in mobile ad hoc

networks includes active search and passive search [Mian et al., 2009]1. Reactive discov-

ery (a.k.a., passive search) means that a service provisioning system searches services

on an entity (or a set of entities) that previously receives providers’ announcement and

caches their service specifications, and proactive discovery (a.k.a., active search) model

directly enquires service providers for their service specification.

Specifically, reactive discovery requires service providers to register service specification

to the system by periodic service advertisement. Networked entities in the system cache

such advertisements and manage them in a particular structure for quick query. Decen-

tralised caches are attractive in pervasive computing environments, as they better suit

mobile environments compared to their centralised counterpart [Mokhtar et al., 2008,

Schuler et al., 2004, Zisman et al., 2013] that assumes the presence of a resource-rich,

stable repository to cache all the providers. Proactive discovery allows providers to re-

spond to a composition request by replying with their dynamic service specification to

the system.

This thesis considers the process for locating providers from two perspectives: how to

obtain dynamic service information for composition planning; and how to get current

1“Active search registers services in the local cache, and search takes place in all nodes by flooding the
search message. Passive search registers their services in all nodes, and search takes place in only the
local cache.” [Mian et al., 2009]

Chapter 2. State of the Art 21

service information in a timely manner when service re-composing is needed to recover

a composite service from failures (Challenge C.3, C.4).

2.1.1 Reactive Discovery

DSDM [Artail et al., 2008] is a distributed service discovery model for MANETs. In

DSDM, a set of devices are selected as service directories that store registered providers’

information, including provider addresses, the description of service capabilities, and

QoS values. Each directory keeps a copy of this information for every registered service

provider. As a consequence, any of the registered service providers’ information can

be directly fetched by a service requester from the nearest directory. However, such

duplicated directories makes the network’s maintenance cost exponentially increases

with a growth in the number and density of providers as all the directories have to be

refreshed, which results in limited scalability.

Hierarchical service composition [Kalasapur et al., 2007] classifies service providers into

four different levels according to their resources and computing capability. Co-located

service providers are managed as a hierarchical overlay network. Resource-abundant

providers are ranked as high-level and act as parent nodes in this hierarchical network.

Parent nodes maintain their offspring nodes’ I/O dependency as a graph, and each

of the offspring nodes has limited resource and keeps a subset of the graph. Parent

nodes have more system knowledge than their offspring. In this hierarchical model,

a system looks for services in the available graph subsets in the service requester’s

close vicinity, and traverses the overlay network upwards if the nearby graph subsets

have inadequate information to satisfy the service requirements. This model allows

networked service providers to maintain a part of the system knowledge depending on

their capability. Keeping system knowledge on each service provider up-to-date relies

on receiving heartbeat messages from neighbouring service providers to identify their

presence. However, updating this hierarchical overlay network may not only need to

just modify a local service dependency graph but also to upload the graph to parent

nodes, which increases network traffic.

Sadiq et al. [2014] facilitates service composition in MANETs with load-awareness and

mobile-awareness. In this model, service providers publish their services to networks

in their vicinity. Each participant service provider maintains a service I/O dependency

Chapter 2. State of the Art 22

graph that includes information about neighbouring services providers, the current load

of these providers and the temporal/physical distance between services. Based on the

dependency graph, services with the shortest temporal distance will get selected to

form a composite service. This model supports distributed global knowledge, by which

a service composition system uses multiple service I/O dependency graphs stored in

different service providers to resolve a composite request, but this has a propagation

delay that may outdate service information.

2.1.2 Proactive Discovery

Prinz et al. [2008] relies on potential service providers to respond to service requests

with their execution properties and to mark themselves as candidate providers. The

request source selects the best performing service provider as the primary provider,

and expects the other candidates to monitor the execution of the primary one. This

model has no need for service re-discovery to recompose services for failure recovery.

Once the primary provider fails, the second-best performing candidate will take on

the execution, and be monitored by the rest of the candidates. This solution uses a

Distributed Hash Table (DHT) to locate potential service providers, so it can prevent

expensive directory maintenance. In a DHT-based service discovery system, when a

service provider joins the system, it gets assigned a key (hashing value) that corresponds

to its service functionality. The system hashes the key and appoints a node in the

system as an index to cache the service provider’s information. Functionally equivalent

providers tend to be given the same hashing value, so their information is normally

stored in the same index node. However, this can make a DHT-based service discovery

system brittle in dynamic environments as the system will just lose the possibility of

providing a functionality when the corresponding index node departs.

Recent research explores extensions to DHT-based service discovery systems to retain

their lightweight approach to maintenance, while preventing functionality loss. Kang

et al. [2008] introduces an optimal search that integrates a vicinity service indexes over-

lay into a DHT overlay network. It is not only the index node but also its neighbouring

nodes that keep service provider information for a hash value. Pirrò et al. [2012] com-

bine DHTs with a semantic overlay network, which takes services that have semantically

Chapter 2. State of the Art 23

similar functionality to the requested one into consideration when searching for a ser-

vice provider. It compromises the problem of functionality loss by expanding service

discovery scope, but it comes at the cost of maintaining the semantic overlay network.

Chord4S [He et al., 2013] distributes the descriptions of functionally equivalent services

to varying directories to maintain continuously discoverable functionality in open P2P

networks.

P2P-SDSD [Bianchini and Antonellis, 2008, Bianchini et al., 2010] enables dynamic

service collaboration in P2P networks. It applies a probe-based service query, and a

service request is submitted to service providers through previously established semantic

links. Semantic links categorise service providers by connecting services that share

similar functionality, and get updated when a service provider joins/leaves the category

or enables/drops services. Service providers in this model cache the categories, based

on which a group of providers for a specific functionality can be quickly located.

SSON [Al-Oqily and Karmouch, 2011] composes networked entities in a decentralized

self-organizing manner and addresses seamless media delivery in pervasive environments.

SSON requires no previously established discovery infrastructure. However, service

providers are assumed to be aware of their geographic locations, and a service request

is forwarded to providers’ physical neighbours with a specific geographic angle2. In dy-

namic environments where devices’ geographic locations can change quickly, frequently

updating geographic location wastes local computation resources.

A cooperative discovery model [Furno and Zimeo, 2014] provides fully distributed sup-

port for unstructured P2P networks. With this model, a service provider receives a

composition request and updates it by removing the parts of functionality that can be

supported by the provider. Then, the service provider adds itself into a solution table,

and forwards it along with the updated request to other providers. This process con-

tinues until all the required functionality are cleared and a set of service providers are

recorded in the solution table. This model can be built over an existing overlay network

(e.g. semantic overlay network or DHT) to improve search efficiency. Furno and Zimeo

[2014] additionally proposes an overlay to further increase the search efficiency, which

will be discussed in Section 2.2.3.

2”...a geographic angle [0, 180] determines the search scope between the media client and the media
server”[Al-Oqily and Karmouch, 2011]

Chapter 2. State of the Art 24

Opportunistic service composition [Groba and Clarke, 2014], similar to SSON, assumes

no infrastructure for service discovery. This opportunistic composition model broad-

casts composition requests and locates a service provider on-demand. It introduces a

cross-layer service discovery that extends traditional broadcast protocols with one-hop

acknowledgement messaging. With this cross-layer service discovery model, a service

provider is aware of its neighbouring service topology. This topology information en-

ables multicast-based service binding and unbinding which reduces network traffic.

2.1.3 Assessment

In general, a service discovery system can optimize run-time service search by using the

previously cached service information (reactive discovery). This reduces communication

overhead and discovery delay delay when locating service providers, but the system has

to keep such service information up-to-date. Some approaches rely on service providers’

advertisements to update service information, and if such advertisements are sporadic,

the provider’s information may out of date, and if they are too frequent, the energy cost

of providers increases and in turn leads to a negative impact on providers’ availability.

Therefore, reactive service discovery is less efficient in terms of dynamic maintenance.

However, service advertisement facilitates service composition in dynamic environments.

A system may need to re-compose better services from the environment, including those

that may have appeared even during service execution, aiming to recover from composi-

tion failures or improve overall service quality in real-time services provisioning. Thus,

the system has to be context-aware. Service advertisement at runtime has the potential

to cut down monitoring effort for a composition handler when detecting new, emerged

services, and does not require to consider the maintenance problem.

Proactive service discovery gets the dynamic provider information directly from service

providers, but may lead to high latency searching. Although there are overlay net-

works to improve the search speed, high latency searching still exists, especially when

a composition requirement is complex. As service execution usually starts when every

requested services in a composition has bound to a provider, a delay when searching

for a service increases the potential that recently available providers may no longer be

available. A complex composition requirement implies more required services. If a dis-

covered provider has left the network before all the requested services are found, using

Chapter 2. State of the Art 25

this provider’s information to finish the remainder composition processes causes faults.

Opportunistic service composition [Groba and Clarke, 2014] assumes a sub-service in a

composite service can execute as long as its required data is provided regardless if all the

sub-services are bound to their providers. It uses a service provider once it is located,

which reduces the searching delay, but this approach is inflexible in other composition

aspects like service composite adaptation that will be discussed in the following sections.

2.2 Request Routing

The target environment for this thesis consists of mobile providers connected in an ad

hoc manner. Such an environment is multi-hop and infrastructure-less [Alomari and

Sumari, 2008, Kozat and Tassiulas, 2004, Su and Guo, 2008], and a composition request

needs to be routed to the networked entities that can resolve the request and handle

service composition. Existing solutions are classified as controlled flooding, directory-

based routing, and overlay-based routing.

Controlled flooding prevents broadcast-based requests flooding the network using im-

posed limitations, such as the maximum propagation limit for routing. Directory-based

routing manages service providers’ information in a set of directories. Depending on the

size of the network and the density of available services, a central directory or multi-

ple directories can be applied. This section discusses decentralized directories, and the

question of how a request is routed in a network of directories. A centralised direc-

tory [Zhu et al., 2003] has obvious limitations in wireless environments as the scale of

the network is restricted to the directory carrier devices’ wireless communication range.

Overlay-based routing allows service providers to link to each other through a particular

connection (e.g., semantic similarity, dependency, etc.) between them. Thereafter, a

service request can be transmitted via these links. This greatly reduces network traf-

fic compared to limited flooding. Some overlay-based routing approaches also employ

directories to increase search success or search efficiency. They are classified as hybrid

routing and discussed in Section 2.2.4. Request routing approaches are analysed with

regard to the question of how to find service providers in a timely fashion, and the cost

of the discovery process (Challenge C.2, C.5).

Chapter 2. State of the Art 26

2.2.1 Controlled Flooding

GSD [Chakraborty and Joshi, 2002, 2006] is a distributed service discovery model in per-

vasive computing environments. Service providers assign a service-group to each of the

services they provide, according to service functionality, using a domain-specific tree-like

ontology. They advertise their services and corresponding service-groups to their vicinity

networks. The service information is cached only by their direct neighbouring nodes, and

the service-groups are stored by all the nodes in the vicinity. Such cached service-groups

can promote service search, as a node can quickly know if the required functionality can

be supported by its local network according to the cached service-groups. If a service

request matches a cached service or a cached service-group, the request can be directly

routed to the service provider. If there is no matched service-group, the request gets

forwarded to the rest of the network. Moreover, to prevent a request flooding the net-

work, a hop-count parameter is used in service requests, which is initialised by a request

source and indicates the maximum number of request forwarding permitted. A web

service discovery model [del Val et al., 2014] for dynamic environments employs a Time

To Live (TTL) parameter to limit request flooding by messages’ transmission time. This

is more flexible than GSD, but it only considers the transmission cost for discovering a

single service.

Opportunistic service composition [Groba and Clarke, 2014], as mentioned in Section

2.1.2, is based on broadcast for service discovery, but it is not like GSD that uses ser-

vice advertisement to previously cache service information and build directory networks.

Instead, opportunistic composition employs acknowledge messages to collect local net-

work’s topology information while routing request messages. A composition requester

can know its communication routes to all the candidate service providers through re-

ceiving an acknowledge message from them. The composition requester uses the routes

information to release3 the candidate service providers that will not be executed. How-

ever, there is still a risk of flooding the network with request messages and additional

communication overhead is introduced by involving acknowledge messages.

3Opportunistic service composition requires service providers to lock their resources for a composition as
long as they have received the request of the composition and have committed themselves as candidate
providers.

Chapter 2. State of the Art 27

2.2.2 Directory-Based

Kozat and Tassiulas [2004] distribute a service directory, which achieves scalable, effi-

cient service discovery in MANETs. This work introduces a virtual backbone layer that

organizes service directories as a P2P overlay network and builds it above the general

service overlays. If a provider registers its service to the network, its registration mes-

sage will be forwarded to every directory in a virtual backbone layer. In other words,

a service specification is duplicated and cached by different directories. Given that

MANETs are dynamic, the service information kept in the virtual backbone layer must

be renewed when new providers are registered. The virtual backbone layer uses asyn-

chronous updating, which means directories in the layer are asynchronously renewed by

spreading registration messages. A service discovery process depending on such a virtual

backbone layer requires a service request to flood the backbone layer until a matching

service provider is found. Updating directories has to keep up with network changes.

However, if the network frequently changes, keeping the whole directory-based virtual

backbone up-to-date can be extremely expensive.

Likewise, Hexell [Tyan and Mahmoud, 2005] applies networked directories to maintain a

virtual backbone layer, but without requiring all the directories to keep a copy of any in-

dividual service specification. Hexell divides an environment into hexagon cells, the size

of which is determined by wireless devices’ communication ranges. The service provider

that is closest to the centre of a cell is selected as a directory. A selected directory

caches information about the service providers that are currently in its responsibility

cell. Similar to GSD [Chakraborty and Joshi, 2002, 2006], Hexell groups services using

a hierarchy ontology, and organizes services according their groups in a directory. A

directory updates and informs the rest of the directories about available groups in its

responsibility cell. As a result, a directory located in another cell knows what function-

ality can be extracted from service providers in each cell through the directory-based

virtual backbone layer, and can support global service query for service requesters in

its own responsibility cell. This group-based mechanism allows Hexell to update the

directory layer potentially less frequently than the network changes, because there is no

need for a directory to update the directory layer, if a new service is functionally similar

to a service that has already registered to the directory. Hexell’s hexagon cells also

Chapter 2. State of the Art 28

provide a service discovery system with a clear view of the communication distance be-

tween service providers through the number of cells a communication crossed, by which

a communication-efficient composite of services may be selected. However, a directory

node is mobile, and when it is roaming, it is likely to leave the centre of its responsibility

cell or even move to another cell. Hexell provides no clarification on how this will affect

the service discovery process and how to manage it.

VSD [Kim et al., 2006] encourages resource-rich devices to volunteer for directory duty.

Directories are isolated in VSD. They are known mutually only when they have co-

registered services. A link is built between directories when they know each other’s

presence, and service requests are forwarded to directories based on such links. VSD also

has the issue of directory loss due to mobility. Similar to VSD, Kalasapur et al. [2007]

considers resource-rich devices as directories. As described in Section 2.1.1, directories

are maintained in a hierarchical way, in which service discovery requests travel bottom-

up to find a service composite. However, resource-rich nodes are not always possible in

mobile environments, which makes VSD [Kim et al., 2006] and the hierarchical directory

solution Kalasapur et al. [2007] feasible only in some particular scenarios.

2.2.3 Overlay-Based

Using Distributed Hash Table (DHT)-based overlay networks (see Section 2.1.2) for

service discovery has been investigated in pervasive computing. In a DHT-based overlay

network, a hash value is calculated for the functionality requested. According to this

hash value, a destination to route the request is determined. The destination is a

node that previously cached information about the service providers that support the

requested functionality. The destination node receives the request and forwards it to

these service providers using multi-casting. However, as analysed in Section 2.1.2, DHT-

based overlay networks store information about functionally equivalent providers in the

same node, so functionality loss may occur if a directory departs or crashes. In addition,

even though DHT-based overlay networks prevent service requests flooding a service

providers’ network, it can end up with a long routing path, which in turn delays the

request to be routed to potential service providers. Kang et al. [2008] integrates service

caches to a DHT overlay network, which removes a part of a redundant request route on

Chapter 2. State of the Art 29

the physical network layer, and increases time-efficiency for DHT-based service discovery.

But this comes at a cost of maintaining service caches.

SON [Crespo and Garcia-Molina, 2005] has been proposed for content-based search

optimizing in P2P networks. The core notion of a SON is to bunch similar peers,

meaning query processes can discover bunches instead of individual peers for faster

locating. P2P-SDSD [Bianchini and Antonellis, 2008, Bianchini et al., 2010] introduces

inter-peer semantic links into SON, which supports fine-grained (i.e., not a composite)

functionality to be provided and more possible compositions of services. P2P-SDSD

supports two policies for request routing: minimal and exhaustive. With the minimal

policy, a service request is forwarded through semantic links in a SON until a matching

service provider is located for the request. The exhaustive policy is designed for finding

a service provider with the optimal non-functional features (e.g., reliability) among a

set of candidate providers. To achieve this, a system stops request routing only when

all the candidate providers are discovered. In short, the minimal policy is efficient, but

cannot find an optimal result, while the exhaustive policy may support the composition

of services with good QoS, but it needs to route a request to all the potential providers,

which is inefficient.

A cooperative discovery model [Furno and Zimeo, 2013, 2014] uses historical composition

processes to construct a tree-like overlay network to increase the efficiency of service dis-

covery. The overlay network is formulated by networked super-peers. For each historical

composition process, one super-peer is elected among the participant service providers to

cache these participants’ information and the composite service’s functionality. There-

after, this super-peer responds quickly to service requests with similar functionality to

the composite service it maintains. If a request can be solved by a number of different

super-peers, yet another super-peer is elected which maintains links to these ones. Thus,

a tree-like overlay network is built over time, with super-peers as branches. By referring

to super-peers, normal peers can locate provider compositions for their service requests

if these requests have been resolved (or at least partly resolved) in the network. Specif-

ically, a service discovery process will firstly examine super-peers and then probe the

normal service providers if the requested service cannot be fully found in the super-peers.

However, it assumes the network has super-peers that are capable of managing network

links. This assumption is not safe in dynamic environments, as super-peer-based groups

may fail if any relevant peer leaves the network, or is no longer able to fulfil its role

Chapter 2. State of the Art 30

because of reduced capacity. In addition, this work assumed offline planning, which

limits the capability of the planning solution to cope with dynamic adaptability, such

as dynamic re-planning.

2.2.4 Assessment

Figure 2.2: Analysis on composition request routing solutions: (a) distributed
directory-based routing, (b) hybrid routing, (c) static controlled routing, (d) overlay-
based routing.

Request routing solutions include (static) controlled flooding, distributed directories,

and overlays. Hybrid routing approaches that integrate service caches/directories into a

overlay network [Furno and Zimeo, 2014, Kang et al., 2008] are most efficient in terms

of network communications for service discovery. However, as shown in Figure 2.2(b),

existing hybrid routing solutions relying on service advertisement [Kang et al., 2008]

or the previous composition records [Furno and Zimeo, 2014] to maintain the discovery

infrastructure. The former requires frequent service announcement for mobile service

providers and overlay maintenance cost, and the later may lead a composition request

to an inaccurate destination. Directory-based solutions (Figure 2.2(a)) and overlay-

based solutions (Figure 2.2(d)) promote search efficient with short routing paths or less

network traffic, but they also introduce maintenance cost of their support infrastructures.

Optionally, the maintenance cost can be reduced by controlled flooding. Controlled

flooding-based routing (Figure 2.2(c)) is infrastructure-less, and so has the potential to

Chapter 2. State of the Art 31

support highly dynamic environments. However, existing approaches rely on static flood

controlling to route a request, which is inflexible and creates unnecessary communication.

There is a need for a more flexible, infrastructure-less, dynamic controlled request routing

to support service discovery in the target environment.

2.3 Composition Planning

Existing service composition techniques investigate dynamic composition planning mech-

anisms to reduce composition and execution failures while dealing with complex user

requirements. Examples of such investigations applied to pervasive computing include

open service discovery approaches, and goal-driven planning approaches, both of which

automatically discover a combination of multiple services to support a user goal or a

functionality when a single matched service is unavailable. They are different in specify-

ing composition plan. Composition plan can be specified by low-level requested service

description4, high-level requested service description5, and workflow-provided service

description6[Raychoudhury et al., 2013]. Open service discovery use workflow-provided

service description while the goal-driven planning relies on high-level requested service

description. They are flexible compared to those that rely on a predefined conceptual

composite to find services that can exactly match its service requirement (i.e., low-level

requested service description) [Raychoudhury et al., 2013]. This section discusses how

flexible these planning approaches are, and how to self-organize the planning process

(Challenge C.1, C.2).

2.3.1 Open Service Discovery

A graph-based service aggregation method [Zhenghui et al., 2009] targets flexible plan-

ning in pervasive computing environments by modelling services and their I/O parame-

ters in an aggregation graph based on parameter dependence in the services. Complex

user requirements in this method are resolved according to predefined conceptual com-

posites. The approach dynamically composes services to finalize an abstract service in a

4“... the requested service is specified as a workflow, given the set of atomic services to be com-
posed”[Raychoudhury et al., 2013]

5“... the requested service is specified as a goal to be achieved.”[Raychoudhury et al., 2013]
6“... it is assumed that service providers are able to specify workflows in which they can take
part.”[Raychoudhury et al., 2013]

Chapter 2. State of the Art 32

conceptual composite when no single service can support it independently. A composite

service is found if the aggregation graph contains a path to link the abstract service’s

output parameter to its input parameter. Similarly, a dependency graph [Rodriguez-

mier et al., 2012] was used for service aggregation, but its usage differs from that in

[Zhenghui et al., 2009] since it directly maintains service dependency relations rather

than their I/O parameters’ relations. An open workflow [Thomas et al., 2009] has been

proposed to support service composition in MANETs. It models workflows that already

exist in the environment as a supergraph, and discovers services through the data flow in

the supergraph. Liu et al. [2015a] proposed a parallel approach for service composition

in pervasive environments that relies on function graphs to model complex composition

requirements. This approach resolves a parallel function by simplifying its split-join

logic, breaking the parallel branches. Specifically, it decomposes the corresponding par-

allel function graph as a set of sub-functions that require sequential service flows, and

then searches for services to satisfy each sub-function. However, the above approaches

require central entities or clusters7 for the graph-based service directory, which implies

frequent network communications to maintain such a directory when the network topol-

ogy changes quickly. In addition, they require a pre-existing workflow to discover services

that support complex data flows, such as one with parallel logic. Such a workflow may

need to be generated offline by a domain expert or a composition planning engine, which

is inconvenient when a change is required at runtime.

A decentralized reasoning system [Al-Oqily and Karmouch, 2011], which does not need

a pre-existing workflow, composes services using a distributed overlay network built over

P2P networks and enables self-organizing service composition through management of

the network. However, this approach, as discussed in Section 2.1.2, assumes that all

the participants know their geographic locations, and the service request is sent to the

participants’ physical neighbours. In mobile environments where devices’ geographic lo-

cations can change quickly, frequently updating geographic locations wastes computation

resources.

7A cluster collects service information locally.

Chapter 2. State of the Art 33

2.3.2 Goal-Oriented

Dynamic composition planning resolves user requirements and generates service flows

during service composition. Classic AI-planning algorithms, such as forward-chaining

and backward-chaining, have been applied for dynamic composition planning. WSPR

[Oh et al., 2008] proposes a novel AI planning-based algorithm for large-scale Web ser-

vices. This work is based on an analysis of complex networks. The EQSQL-based

planning algorithm [Ren et al., 2011] applied rank-based models to promote service com-

position efficiency. Ukey et al. [2010] modeled a Web service as a conversion from an

input state to an output state and maintained published services as a dependency graph.

They employed a bi-direction planning algorithm that combines a forward-chaining ap-

proach and a backward-chaining approach to find a path with the smallest cost from the

dependency graph. Liu et al. [2015b] also proposed a bidirectional planning algorithm.

It introduced tag-based semantics to specify composition goals, addressing effective ser-

vice query. Khakhkhar et al. [2012] improved bidirectional planning and allows systems

to plan a composite service from the input data and the goal output at the same time.

A planning solution emerges when the searches from the two directions meet at some

point in the solution’s service flow. However, these approaches require central service

repositories to maintain service overlays, and they have no support for dynamic compo-

sition replanning for composition failures. WSMO [Hibner and Zielinski, 2007] describes

single-direction planning models, which forward or backward chain service providers for

user tasks. WSMO reasons over service execution plans and adapt composite services

on the fly, addressing flexible service composition, but still requiring central controllers

to schedule services.

PM4SWS [Gharzouli and Boufaida, 2011] is a distributed framework to discover and

compose web services. However, this service exploration process simply floods the net-

work with query messages for service discovery, which is not suitable for pervasive en-

vironments, especially where there are large numbers of services to be considered [Jun

et al., 2010] [Dai and Wu, 2004]. Geyik et al. [2013] propose a distributed implementation

for their composition planning model. This approach uses a backward search scheme in

a wireless sensor network to generate a service dependency graph that includes all the

possible service paths from the services that can directly provide the requested output

to every sensor node that does not require any input data. Each service provider in

Chapter 2. State of the Art 34

the graph only maintains links to its neighbouring services. After that, an composition

graph can be generated by forwarding messages through the dependency links in the net-

work. Although this approach supports distributed planning, it does not state that how

a data parallel task is resolved, and it invokes services only after all the potential service

providers are discovered, which can delay the composition process and cause communi-

cation overhead. Similarly, a cooperative discovery model [Furno and Zimeo, 2013, 2014]

provides fully distributed support for unstructured P2P networks. This work also in-

cluded a bi-direction search model that allows a data-driven (finding services that match

the query’s input parameters) service query and a goal-driven service query which start

concurrently to increase discovery efficiency. However, this bi-direction search scheme

requires an initiator node to aggregate service information, which implies resource-rich

devices.

2.3.3 Assessment

Composition planning uses service availability information to reason about an executable

service workflow. Table 2.1 discusses service composition solutions that use open service

discovery or goal-oriented service discovery, and illustrates how these solutions meet the

flexibility criteria. Generally, open and dynamic environments increases the possibility

of diverse service flows being built for a single composition request. Goal-driven service

planning is more flexible as it composes whatever usable services in the environment

instead of using a pre-defined abstract composite to find only matched services. How-

ever most goal-driven solutions still require a centralized planning engine and a service

repository to support complex service workflows, which may plans faster, but any service

information change during service execution is likely to make the primary planning result

unreliable. Updating the service repository when changes occur may be a solution, but

in a highly dynamic scenario, frequent updates on the service repository are expensive.

Decentralized solutions tackle these problems by partitioning the planning process to

allow local service providers or a set of brokers to collaboratively solve a composition

goal. Unfortunately existing decentralized goal-driven service composition approaches

are not flexible enough to support parallel service flows.

Chapter 2. State of the Art 35

2.4 Service Binding

A service composition model selects a group of services and binds their resources for invo-

cation. To tackle dynamic environments, such a service selection could benefit from pre-

dictions for services’ availability or service execution paths’ strength (reliability). It also

worth considering services’ Quality of Service (QoS) attributes of services. On-demand

binding mechanisms are investigated here to address dynamism in another aspect, that

is, to keep service selection flexible until a service has to be selected for immediate use.

The analysis in this section includes consideration of how to select service providers and

when to lock these service providers’ resources to maximize the possibility of successful

service invocation, while not impacting the possibility for, candidate providers to be

selected by other compositions (Challenge C.3, C.5). Note that approaches that assume

random selection at an early stage of composition [Bianchini and Antonellis, 2008, Bian-

chini et al., 2010, Ridhawi and Karmouch, 2015], and those assume providers follow a

schedule to act [Sen et al., 2008] are not considered in this assessment.

2.4.1 QoS-Based Selection

Mokhtar and Liu [2005] take non-functional properties of services into consideration

when selecting service providers in pervasive computing environments. In this work,

service providers predict their own QoS before service execution, and enclose this QoS

information into their service advertisement messages. The approach uses a set of QoS

metrics to quantify QoS information, which includes a probability value for service avail-

ability and a value that indicates execution latency. This work uses probability values to

define service availability, which only caters for when a service is withdrawn by providers,

and not when the provider moves out of range. de Medeiros et al. [2015] predict the

quality of entire service composition instead of individual service provider. They model

service compositions’ cost and reliability, defining 6 cost behaviours and 4 workflow re-

duction models for different service flows. However, they do not consider the reliability

and the cost of communication among successive services.

HOSSON [Li et al., 2007] maintains a user perspective service overlay network (PSON)

Chapter 2. State of the Art 36

for all the candidate service providers. The PSON is graph-based, and performs ser-

vice selection using multiple criteria decision making to find the optimal service execu-

tion path with minimal service execution cost and good reputation8. Zhenghui et al.

[2009] also considers the quality of overall service execution paths when selecting ser-

vice providers. They adopt path measurement including reliability, execution latency

and network conditions. However, the above approaches assume the QoS information

is predefined by service providers, and as network conditions are likely to change, this

assumption is not safe in a dynamic environment.

Zhou et al. [2011] select services at an early stage in a service discovery process, depend-

ing on the strength of service links. During service advertisement, if a service provider

announces its service specification, a neighbouring node caches the service specifica-

tion and also maintains information relating to the strength of the path to the service

provider. When a node receives a service request, assuming information about multiple

functionally equivalent service providers that match the request is cached, the node se-

lects the with the strongest path to itself. When a selected destination is unreachable,

a backtracking mechanism can be performed to recover service binding. Though path

strengths are involved in binding decision making, and a binding recovery mechanism

is proposed for failed routing, this approach is still unsafe as beforehand cached path

strength information may be out of date, and the backtracking based recovery is expen-

sive itself. Surrogate Models are used to facilitate service composition in mobile ad hoc

networks [Efstathiou et al., 2014b].

2.4.2 Adaptable Binding

ProAdapt [Aschoff and Zisman, 2011] monitors operating environments and adapts ser-

vice composites to a list of context changes, including response time changes, availabil-

ity of services and availability of service providers. FTSSF [Silas et al., 2012] applies a

monitoring and fault handling process for service provisioning in pervasive computing.

Monitoring is concurrent with a service delivery process, allowing for service re-selection

if the execution crashes. [Prinz et al., 2008] allocate a service provider to the best per-

forming candidate in terms of the QoS while keeping a group of backup providers. A

backup provider can replace a previously bound provider if its execution fails. This

8Reputation is a ranking value that is given by previous service users to represent a service’s depend-
ability. [Li et al., 2007]

Chapter 2. State of the Art 37

model is more efficient than ProAdapt and FTSSF, as it monitors the service composite

only when it is executing, which means there is no need for a service composition system

to continuously monitor the operating system throughout the composition process.

Wang et al. [2013] models service composition as a problem of finding a service provider

for each abstract service in a predefined conceptual composite. Service binding adap-

tation in this approach is based on automatic QoS prediction. Specifically, a service

composition system firstly allocates a set of services to form an execution path, the

QoS of which conforms to the QoS constraints that are defined in the composition re-

quest. The system then predicts the failure probability of the path, and finally finalizes

the service composite according to the prediction result. If necessary, re-selection for

providers can be performed. This solution regards the service execution path’s reliability

as an important criterion for service selection and allocation instead of considering each

of the service providers independently. However, the approach relies on a centralized

composition handler to perform its prediction.

2.4.3 On-Demand Binding

OSIRIS [Schuler et al., 2004] selects service providers on demand at execution time. This

selection of service providers depends on run-time device load and dynamic invocation

cost. Service discovery is performed offline to find candidate service providers, but

repeated to detect new service providers. However, the approach depends on a central

repository to store service specifications, which is limited in dynamic systems.

Opportunistic service composition [Groba and Clarke, 2011, 2012, 2014] also proposes

an on-demand service binding mechanism. Unlike OSIRIS, opportunistic service compo-

sition does not use central repositories to keep service specification. Instead, it discovers

service providers on-the-fly relying on request flooding. After service providers are lo-

cated, the approach asks for permissions to lock service providers resources, and then

invokes the service. This model ensures an available service provider will be invoked for

execution, but refinements are required to further consider result routing when bind-

ing a service provider, at the same time reducing the cost of its flooding-based service

discovery and increasing the flexibility of composition planning.

Chapter 2. State of the Art 38

2.4.4 Assessment

QoS-based service binding addresses dynamic environments by self-describing services’

runtime properties (e.g., availability, reliability, response time, etc.). Existing approaches

Li et al. [2007], Mokhtar and Liu [2005], Zhenghui et al. [2009], Zhou et al. [2011] de-

pend on QoS descriptions provided by service providers that predict their own service

performance. Although this mechanism is lightweight for a service composition system

as no monitoring effort is required, such QoS descriptions are likely to be inaccurate.

Moreover, mobile service providers may have to frequently update their QoS description.

Adaptable binding detects changes on operating environments and adapts a service com-

posite accordingly. Detecting changes or failures requires different levels of monitoring.

Execution time monitoring is the most efficient, but failures can only be detected after

they occur. Recovering a composition from emerged failures can introduce additional

time and communication cost. On-demand binding selects service providers using up-to-

date service information, requiring no extra environment monitoring or infrastructure

maintaining efforts. It would be interesting to improve the existing on-demand ser-

vice binding mechanisms to support reliable service composition, and at the same time,

allowing the bound service smoothly and seamlessly adapt to context changes.

2.5 Service Invocation

This section analyses how service execution processes manage mutable environments.

Centralized service invocation has been studied in many solutions [Miraoui et al., 2011,

Mokhtar and Liu, 2005, Sousa et al., 2006, Vukovi and Robinson, 2007], however, su-

pervising service providers’ execution with a central entity limits mobile-awareness, and

consequently is less flexible. Research on distributed service execution includes the fol-

lowing solutions: Fragments distribution approaches partition a service composite and

distribute each of the abstract services in the composite as a task to selected service

providers. Service composition is managed in a decentralized way by these selected en-

tities. Process migration approaches only partition the service execution process, and

issue a full composite to the first provider (or a primal networked broker). The com-

posite is partially resolved by the first provider and the rest of the composite is handed

over to the subsequent providers (or backup networked brokers). This analysis of service

Chapter 2. State of the Art 39

invocation focuses the question of how a service composition model self-organizes the

composition process (Challenge C.4).

2.5.1 Fragments Distribution

As described in Section 2.1.2, Prinz et al. [2008] distributes the execution process to a set

of selected service providers, and maintains references to the other candidate providers

as backups. The execution of selected providers is monitored by backup providers. Once

a selected provider fails, one of the backup provider takes over the execution process.

This approach achieves flexible decentralized service execution, but its service discovery

and selection process still require a central composition engine.

Fdhila et al. [2009] target service compositions that contain complex control logic, which

is decomposed using a dependency table. In particular, the composition model slices

a conceptual service composite into a set of sub-processes, each of which is realized

by only one service instance. These sub-processes are allocated to associated service

providers, and executed independently. However, this model assumes a global knowledge

of available service providers, which is difficult in a dynamic environment. OSIRIS

[Schuler et al., 2004] decomposes a central conceptual composite description into a set

of execution fragments, and distributes these fragments to different service providers.

It also supports complex control logic, but assumes a continuously available node to

manage a parallel service execution.

2.5.2 Process Migration Approaches

Chakraborty et al. [2005] propose distributed broker-based model for service composition

in MANETs. The approach dynamically selects a group of networked entities in a

MANET, which relay a composition process from one to another. A requester initially

assigns a composition task to one broker. This broker performs service composition

until, potentially, a failure occurs. If the composition stops at this broker because of a

failure, its current state and any intermediate execution results are frozen and handed

over to another broker that executes the remaining process. The new broker’s address is

sent to the requester. Selecting brokers and creating a network with the selected brokers

are key to this approach. Anything like brokers’ mobility or reliability can affect the

Chapter 2. State of the Art 40

service invocation process. However, it is difficult to create a good broker network in

the target environment where a global view or a central controller is impossible.

WFMS [Atluri et al., 2007] is a decentralized workflow management model that self-

describes a workflow and relays the workflow from one service provider to its subse-

quent service providers, resolving the workflow partially on each participating provider.

Similarly, continuation-passing messaging [Yu, 2009] is a decentralized execution model

that passes a service execution process from the primal service provider to the rest of

providers. This model selects a node in the network to handle execution faults, named

the scope manager. When a service provider detects a failure, it sends the failure in-

formation to the scope manager. The scope manager receives the failure information

and re-executes services. Service execution in this model is fully decentralized, however,

the failure recovery is limited by the resource and communication range of the scope

manager.

A process instance migration approach [Zaplata and Hamann, 2010] allocates the full

control logic of a conceptual composite to every participating service provider. It allows

participants to keep composition information so that each participant can select a gran-

ularity of fragmentation at runtime. The approach is required to be further improved

to support a decentralized composition adaptation model.

2.5.3 Assessment

Process migration allows service providers to know a part of a request, and gives them

the chance to alter the part of the process they know by using their knowledge about the

local networks. Fragments distribution decouples an execution process into execution

fragments and allocates them to corresponding service providers. Fragments distribu-

tion minimizes process duplication, but requires a central entity to be responsible for

service discovery and allocation. Both of the methods resolve service invocation in a

decentralized manor, which is suitable for ad hoc networks. To achieve success execu-

tion and protect run-time data flow, decentralized service invocation needs to efficiently

adapt to environment changes, and prevent the composition process from exposing the

full data flow. In terms of dynamic adaptation, process migration is more flexible than

the fragments distribution approaches when supporting functional service replacement.

This means when a functionality is no longer required before its matched services get

Chapter 2. State of the Art 41

invoked, a process migration manager will have the potential to remove the functionality

from the composition before it hands over the process to the subsequent manager, while

a service provider in a fragment distribution approach can only replace a failed service

by another that supports the same functionality. On the other hand, migrating a compo-

sition process from one service provider to another may reveal the composition’s control

logic and data flow to those providers. Generally, process migration is more flexible to

realise dynamic adaptation, and fragments distribution can protect the overall dataflow

from being observed by a single third-party.

2.6 Fault Tolerance

This thesis classifies fault tolerance mechanisms in terms of how to deal with the poten-

tial failure and actual failure throughout the composition process. Preventive adaptation

focuses on anticipating potential failures and taking actions to prevent them. Compo-

sition recovery should have a fast, communication-efficient model to recover a faulty

composition, without disruption. This section discusses how to detect and handle fail-

ures in a timely fashion, and if the additional cost for fault tolerance is affordable for

mobile and pervasive environments (Challenge C.3, C.4, C.5).

2.6.1 Preventive Adaptation

The OSIRIS approach [Schuler et al., 2004] decomposes a central service flow description

into a set of execution units that can be deployed on service providers in a P2P network.

These service providers are found during service discovery. The service execution pro-

cess migrates from one service provider to another. Each time such a migration occurs,

the client node can select anther node that is available. It defines special observer nodes

to monitor the nodes that may cause failure. If a failed node is detected, the execution

instance can be migrated to another available node. However, it starts execution after

service discovery is finished, and it requires that a part of the execution unit is deployed

to all the providers. The approach provides no means to allow a potentially new provider

that may appear in the network to participate in the composition. MAIS [Ardagna and

Pernici, 2007] is an adaptive service composition model for web services. It reduces

service invocation failures by negotiating QoS in advance of composition selection and

Chapter 2. State of the Art 42

execution. Although MAIS provides strategies to decrease negotiation overhead at run-

time, its negotiation uses previously cached information about services and QoS which

is likely to be changed in a dynamic environment.

A fuzzy-based service composition approach [Prochart et al., 2007] has been intro-

duced for MANETs, which considers resource-constrained devices and error-prone wire-

less communication channels. Each node maintains its neighbours’ service information

and gets real-time QoS information during service discovery. A fuzzy TOPSIS method

[Cheng et al., 2011], unlike Prochart et al. [2007]’s approach that has no support for

adapting composite services at runtime, adapts service bindings according to real-time

user preferences. TOPSIS can prevent unnecessary adaptation through fuzzy analysis,

but it has no support for adaptation triggered by operating environment changes. A

distributed dynamic composition model [Geyik et al., 2013] allows a service provider

participating in the composition graph to notify its successive services’ providers when

it changes its own service information, and raises the potential of adapting a service

composite before an invocation failure occurs. This model states a way to find an al-

ternative service from a distributed service dependency graph. However, it is not clear

that how this can be achieved during the service composite’s execution.

2.6.2 Composition Recovery

Yu [2009] uses acknowledge messages to monitor service execution. They also allow a

service execution process to retry a service invocation after it fails. Although this policy

targets unreliable wireless channels, giving a service provider a second chance to offer its

services, it has limited and inflexible support for composition recovery. Prinz et al. [2008]

provide a recovery policy which is more flexible than the one proposed by Yu [2009].

Instead of retrying failed invocations, Prinz et al. [2008] keep candidate service providers

during a service execution, allowing them to monitor the primary service provider’s

execution. When the primary one fails, one of the candidate service providers takes over

the service provisioning process. However, this policy requires primary service providers

to push heartbeat messages to backup providers to indicate its execution status. If a

service’s execution has high latency, pushing heartbeat messages can quickly exhaust its

providers’ battery, and in turn reduce the availability of the service.

Chapter 2. State of the Art 43

TLPlan [Vukovi and Robinson, 2007] allows a system to plan an abstract solution from

a pre-existing abstract service repository, and then to discover and bind services for

execution. In each step of the service composition, TLPlan provides on-the-fly rollback

mechanisms to deal with potential faults like composition failures, service discovery

failures, or service execution failures. TLPlan, however, plans for a composition offline,

relies on central composition engines that have not yet been applied on mobile devices,

and re-generates a new plan when a composition recovery is required, which is time-

consuming and not suitable for dynamic environments.

A minimum disruption service composition model [Jiang et al., 2009] investigates the

types of composition failures in MANETs, and provides network-level and service-level

adaptation, as well as recovery mechanisms. During service execution, the approach

quantitatively estimates the one-hop forward service execution path’s lifetime according

to the distance to the next service provider, and composes a new service path if the next

service provider is missing.

A cache-based service execution and recovery model Zhou et al. [2011] for MANETs

caches backup services. The approach adopts a notion of a magnetic field to underpin

an adaptation policy for cached service information in the vicinity. A service provider

initializes a magnetic strength value that determines the border of the vicinity, which

indicates the maximum transmission hops for its advertisement, and counts down by

one for each message relay hop. A service provider periodically advertises its services,

and its physical neighbours cache the provider’s functionality and a magnetic strength

value. The closest neighbour will rank this service provider the highest. During service

discovery, if a service request reaches one of its neighbours, the neighbour can route the

request to the service provider, and if there are multiple service providers cached by

the neighbour, according to their magnetic strength values, the service provider with

the minimal transmission hops is selected for request routing. A backtrack strategy is

applied when a selected service provider has moved away before the request has routed

to it. A fail message is routed backward via the routing mediators towards the request

source. If one of the routing mediators has cached another service provider that supports

the same functionality as the missing one, the new service provider is selected and the

request is re-routed from this routing mediator. This backtracking method allows for a

short recovery path and less communication overhead, but it requires frequent updates

Chapter 2. State of the Art 44

to the cached service provider information if the network topology changes quickly, and

it is unclear how the backtracking works if a routing mediator leaves the network.

2.6.3 Assessment

Preventive adaptation is timely as a service execution will not be interrupted by failures

and recovering processes. However, existing solutions rely on monitoring infrastructures

or central decision-makers to determine adaptation actions, which is infeasible in our

target environment. Composition recovery aims to explore efficient model to recover a

faulted composition. Current solution includes keeping backup service providers [Prinz

et al., 2008, Zhou et al., 2011] for quick replacement, dynamic path re-generation [Jiang

et al., 2009], and rollback composition [Vukovi and Robinson, 2007]. Using backup

service providers is efficient but inflexible because the backup service providers are pre-

viously found and may become unavailable at runtime. Rollback composition re-plans

for composition, which is flexible. However, re-planning on the fly is likely to be time-

consuming and delays the composition result. A new fault tolerance model is needed

to dynamically re-planning for (a part of) execution path, without affecting currently

executing services.

2.7 Summary

This chapter reviewed the state of the art of composition process management and

fault tolerance from the perspective of openness and dynamism. The most related

solutions include efficient service discovery [Kang et al., 2008, Pirrò et al., 2012], flexible

planning [Al-Oqily and Karmouch, 2011, Furno and Zimeo, 2014, Kalasapur et al., 2007,

Rodriguez-mier et al., 2012], dynamic binding [Groba and Clarke, 2011, 2012, 2014],

decentralized composition management [Furno and Zimeo, 2014, Groba and Clarke, 2014,

Prinz et al., 2008, Sen et al., 2008] and dynamic fault tolerance [Gu and Nahrstedt, 2006,

Hibner and Zielinski, 2007, Jiang et al., 2007, Prinz et al., 2008, Zhou et al., 2011].

Figure 2.3 illustrates the extent to which these approaches satisfy the set of criteria

listed to the right of the Figure. The criteria are defined from the requirements (Section

1.5) outlined for service provision in pervasive computing environments. As illustrated

in Figure 2.3, most planning-based service composition approaches rely on discovery

Chapter 2. State of the Art 45

infrastructures and a-prior system knowledge [Al-Oqily and Karmouch, 2011, Kalasapur

et al., 2007, Rodriguez-mier et al., 2012]. Real time information about services should

be used for composition planning. Decentralized composition management solutions are

restricted to exact matching functionality or planning for a sequential service composite

[Furno and Zimeo, 2014, Groba and Clarke, 2014, Prinz et al., 2008]. There is a lack

of a more flexible decentralized planning model that can cope with data-parallel tasks.

Fault tolerance either requires composition re-planning that is time-consuming [Vukovi

and Robinson, 2007], or only replaces failed providers with backup ones without con-

sidering the reliability of the new execution path [Gu and Nahrstedt, 2006, Hibner and

Zielinski, 2007, Jiang et al., 2007, Prinz et al., 2008, Zhou et al., 2011]. A dynamic com-

posite service adaptation model is required, which should be aware of dynamic context

changes, and depends on the end-to-end QoS to select backup paths during adaptation.

In summary, open gaps with the current service composition solutions are:

1) They are neither flexible nor lightweight enough to compose services in dynamic

pervasive environments. Mobile service providers need to self-organise a service

composition process which can flexibly use local service knowledge to plan for

a global composition result. The process of composing relevant services is itself

likely to be time-consuming, and so models are required to streamline or otherwise

ensure that the service composition can be done within time constraints.

2) They support limited adaptation for service composites. An appropriate granular-

ity of adaptation model is essential for a service provision model to quickly adapt

a service composite while without introducing heavyweight adaptation model.

Chapter 2. State of the Art 46

Figure 2.3: The state of the art review shows how most related solutions address five
reference criteria.

Chapter 2. State of the Art 47

Table 2.1: Literature review for composition planning models. The highlighted
columns represent the required features regarding a model’s flexibility.

C
ri

te
ri

a
sp

e
c
ifi

c
a
ti

o
n

se
rv

ic
e

fl
o
w

m
a
n

a
g
e
m

e
n
t

A
p

p
ro

a
ch

op
en

d
is

co
ve

ry
go

al
-d

ri
ve

n
se

q
u

en
ti

al
p

ar
al

le
l

ce
n
tr

al
is

ed
d

ec
en

tr
al

is
ed

Z
h

en
gh

u
i

et
a
l.

,
2
00

9
?

?
R

o
d

ri
gu

ez
m

ie
re

t
al

.,
2
0
12

?
?

T
h

o
m

as
et

al
.,

2
0
09

?
?

?
L

iu
et

al
.,

2
0
15

a
?

A
l-

O
q
il

y
a
n

d
K

a
rm

o
u

ch
,

2
01

1
?

?
?

O
h

et
al

.,
20

0
8

?
?

?
R

en
et

al
.,

20
1
1

?
?

?
U

ke
y

et
a
l.

,
2
01

0
?

?
?

L
iu

et
al

.,
2
0
15

b
?

?
?

K
h

a
k
h

k
h

ar
et

a
l.

,2
0
1
2

?
?

?
H

ib
n

er
an

d
Z

ie
li
n

sk
i,

20
0
7

?
?

?
G

h
ar

zo
u

li
a
n

d
B

ou
fa

id
a,

20
1
1

?
?

?
G

re
y
ik

et
a
l.

,2
0
1
3

?
?

?
?

F
u

rn
o

a
n

d
Z

im
eo

,2
0
1
3,

2
01

4
?

?
?

R
e
q
u

ir
e
d

?
?

?
?

Chapter 3

Design

The review of the state of the art, presented in the previous chapter, has defined a

number of limitations in current service composition approaches in the domain of open,

dynamic pervasive computing environments. Open issues with current research on ser-

vice composition are that i) existing service composition models are not sufficiently flex-

ible to cope with mobile service providers; and ii) the composition models have limited

support for handling composite service adaptation. This chapter introduces a service

composition solution named Goal-driven service Composition in Mobile and pervasive

environments, GoCoMo for short. It begins by discussing the design objectives of Go-

CoMo, from which a list of requirements is presented. This chapter then presents the

design of GoCoMo, and shows how the design addresses the requirements. It continues

with a description of the system model and GoCoMo composition algorithms. Finally,

it describes an in-depth discussion of the solution and the contribution.

3.1 Design Objectives and Required Features

As described in Chapter 1, the requirement of this thesis is two fold: to design and build a

flexible decentralized service composition model that is time-efficient and infrastructure-

less, and to design and build a service composite adaptation model which adapts the

combination of services as appropriate to the service provider’s and the environment’s

changing situation and timeliness constraints.

48

Chapter 3. Design 49

To meet these requirements and the thesis challenge, this work aims to build a ser-

vice composition model that supports the following required features, mapped to the

challenges outlined in Chapter 1.

Feature 1: Dynamic composition planning

In a dynamic environment with no conceptual composite (Challenge C.1), a service

composition model must appropriately decouple user requests to satisfy required

functionality with the simplest possible composition result.

Feature 2: Self-organizing

Networked entities are likely to have only limited system knowledge (Challenge

C.2), and so service providers must use local knowledge to self-organize a compo-

sition planning and execution process.

Feature 3: Minimal failure recovery delay

Composition latency is an important factor that affects the success of service pro-

visioning (Challenge C.3), and can be affected by dynamic nature of the service

provider network, which could lead to provider failures. Fault tolerance is required

for dynamic environments, which handles faults that (possibly) emerge during ser-

vice composition by replacing (potential) failed service providers or a fragment

of the service execution path which is invalid. A lightweight and time-efficient

mechanism is required to recover a service composite from failures.

Feature 4: Locality-driven selection

Service providers are connected in an ad hoc manner, depending on mediators

to relay messages. With more mediators for a logical service link, more message

forwarding will be required, and such a link may be error-prone because of unstable

wireless channels (Challenge C.4). A service composition model should reduce

dependency on wireless transmission and the number of message routing hops.

Feature 5: Short standby time

Wireless links are dynamic, which may affect an established service composite

(Challenge C.5). In particular, the longer a bound service provider has to wait for

execution, a disruption to the link to invoke the service provider is more likely to

occur. This work’s goal is to design a service composition model that always uses

Chapter 3. Design 50

current service information to support service selection, and minimizes standby

duration for selected service providers.

3.2 System Model

This thesis focuses on service composition that is supported by mobile devices in per-

vasive environments. This work assumes open and dynamic networks, where mobile

devices offer services that can be composed to create value-added functionality. Mobile

devices are independent, and owned by heterogeneous third-parties. In other words,

they do not follow any authority in the environment requiring them to schedule services

for service requesters. In addition, mobile devices do not give prior notice of their move-

ment or service availability to any entities in the environment. They will be cooperative

and prepared to process composite requests and organize service composition as well as

execution processes.

Mobile devices of interest use wireless communication channels to exchange information,

and communicate with each other in ad-hoc mode. This work regards mobile ad hoc

networks (MANETs) as the target network for the mobile devices, and discusses service

provision in MANETs with high dynamism, where the network topology is likely to

change faster than it takes to entirely complete service composition or execution.

This work assumes that composition clients have limited resource and communication

range, which are insufficient to aggregate enough service providers for a service compo-

sition task, and manage the execution of a service composite. The solution proposed in

this thesis addresses mobility by providing a fully decentralized self-organizing/adapting

composition model.

3.3 GoCoMo Concept

GoCoMo targets the required features by a series of design concepts that address the

problems of search failures, small discovery scope, provider loss, message loss, and path

disruption (Figure 1.1) throughout a service composition process. This section describes

these concepts from the perspectives of service searching, service selection, and service

execution.

Chapter 3. Design 51

3.3.1 Service Searching

Service discovery approaches that rely on proactive search, as discussed in Section 2.1,

are efficient at obtaining current service provider information. The approaches usually

require service providers to announce the services they offer. Proactive service discovery

distinguishes two methods in terms of how they distribute composition request issuers:

semi-decentralized discovery employs a group of composition brokers who issue requests

and accumulate information about service providers that have the potential to support

a composition process; fully-decentralized discovery considers each service provider as a

request issuer that discovers providers for its subsequent services.

Figure 3.1 (a) and (b) illustrate the composition processes of semi-centralised service dis-

covery [Prinz et al., 2008, Sen et al., 2008] and decentralized interleaved service composi-

tion [Groba and Clarke, 2014] for a sequential composite, respectively. Note that Figure

3.1 depicts the interactions only to discover and invoke the primary service providers,

and those to find other candidate service providers and to bind service providers are

omitted for simplification.

GoCoMo shortens the routes in a service execution path and reduces the communi-

cation by minimizing the geographic distance in one-hop routing and the number of

hops in multi-hop transmissions, proposing a mechanism named decentralized backward

planning-based announcement (Figure 3.1 (c)). The mechanism introduces the concept:

Concept 1: Planning-based composition announcement

The proposed protocol removes the announcement for each individual service, and

uses a dynamic composition planning process during service discovery to allow a

composition initiator to directly gain information about service composites from

service providers. If a service provider receives a composition request and discovers

that it partially fits the request’s requirement, instead of announcing its own service

to the requester, it forwards the parts of request that cannot be satisfied by its

local knowledge to other service providers. Service providers do not contact to

the requester, unless they can completely solve their received composition request.

The composition initiator is only informed of completed service composites from

service providers, and selects the most reliable (short routes and small execution

time) service composite for execution.

Chapter 3. Design 52

Figure 3.1: Service composition for a sequential composite S1 → S2 → S3. Scale
marks on the vertical lines show the number of interactions for service discovery and
execution (Communication- the fewer, the better). The dash half-braces show the
distance between successive service providers (Locality- the shorter, the better).

Chapter 3. Design 53

As illustrated in Figure 3.1 (c), the proposed protocol has less interaction between

primary service providers, and finds the shortest execution path. This protocol is based

on a dynamic composition planning algorithm to resolve composition requests.

Dynamic composition planning has been discussed in Chapter 2.3, and there are vari-

ous different planning mechanisms, such as graph-based planning [Rodriguez-mier et al.,

2012, Ukey et al., 2010, Zhenghui et al., 2009], decentralized composition planning [Al-

Oqily and Karmouch, 2011, Furno and Zimeo, 2014, Gharzouli and Boufaida, 2011], etc.

Given the infrastructure-less nature of the target network, decentralized composition

planning has the potential to support the planning-based composition announcement.

Decentralized composition planning includes forwarding planning [Al-Oqily and Kar-

mouch, 2011, Gharzouli and Boufaida, 2011], backward planning [Gharzouli and Bo-

ufaida, 2011], and bi-direction planning [Furno and Zimeo, 2014]. However, existing

approaches search for services depending on pre-established semantic service overlay

networks [Furno and Zimeo, 2014], assuming service providers have local geographic

information [Al-Oqily and Karmouch, 2011], or simply flood a request to the network

[Gharzouli and Boufaida, 2011]. These methods are expansive in MANETs. In addition,

they only reason about sequential service flows. GoCoMo’s service discovery model uses

controlled flooding and backward planning, and extends them to reduce network traffic

and to support complex compositions, for instance a service composite including parallel

or hybrid service flows.

Controlled flooding, as discussed in Section 2.2.4, is infrastructure-less, but current

approaches either use static control mechanisms or require service providers to have a-

priori topology knowledge about their local networks. GoCoMo explores a novel dynamic

controlled flooding:

Concept 2: Dynamic controlled flooding

Dynamic controlled flooding allows different nodes in the network to independently

decide how to route a composition request depending on a combined context, in-

cluding their current local network properties, the cost that has been paid by other

nodes for routing this request and the discovered service providers’ properties. A

request routing process can flexibly stop, if a service provider is considered to be

unreachable in a service execution process. Unreachable services are those that

Chapter 3. Design 54

will introduce a high cost for routing execution results (i.e., more routing hops),

which is in conflict with global execution time-constraints

A composition request reflects user requirements which may include data-parallel tasks,

such as multi-source data aggregation. GoCoMo needs to model user requirements in

a flexible way to cope with various, diverse service networks. Generally, one way to

enable service composition for such data-parallel tasks is to specify the tasks as abstract

parallel workflows [Thomas et al., 2009] [Groba and Clarke, 2014]. An abstract parallel

workflow includes control logic and ordered sub-tasks. Each of the sub-tasks can match

with either one basic service, or trigger a process to generate a composite service when

there is no service that suffices independently. This way, as analysed in Section 2.3, is

inflexible at resolving data-parallel tasks. On the other hand, a composition process,

in some cases, should be able to add new requirements into the original composition to

satisfy data dependencies. Consider a navigation task as an example. The navigation

has a service query including two requirements: a GetLocation service and, a Navigator

service that needs the results of a GetLocation service as input. In service composition,

if a system can only find a Navigator service that uses both location data and map data

as inputs, the system should be able to adapt the original service query list, by adding

a requirement for getting map data. Under this kind of circumstance, a composition

request is likely to be resolved by a parallel or hybrid service flow.

Assuming that no single node can maintain full knowledge of the network for execution

planning, GoCoMo resolves a data-parallel task through interactions between service

providers, without a-priori knowledge of the task’s inner data transaction or the global

knowledge of available services. Moreover, this work adapts composition requirements,

depending on available services to flexibly reason about a composition result that may

be sequential, parallel or hybrid.

Concept 3: Decentralized flexible backward planning

Decentralized flexible backward planning relies on service providers receiving a

composition request, and generating the potential fragments of the global execution

plan. A composition request can be gradually solved through backward planning

processes on each participating service provider, and a service provider can adjust

a composition request when new data is required. This mechanism reasons about,

Chapter 3. Design 55

if necessary, sequential, parallel, or hybrid service flows, using control logic, locally

generating execution branches and managing the service execution process.

3.3.2 Service Selection

To reduce execution latency, a composition process selects service providers that can

form the shortest service flow. Moreover, the execution time of each service should be

considered as a factor of execution latency. Routes between successive service providers

are also required to be short, which reduces the possibility of failures when invoking

service providers or routing intermediate execution results.

Concept 4: Path reliability-driven selection

GoCoMo selects services based on the path’s robustness (reliability) . A path’s

robustness value is calculated using multiple criteria including the execution time

of each individual service, the length of service flows, and the routing hops during

service discovery, which indicates whether a remaining execution path is likely to

be reliable in a period of time.

On-demand service binding is flexible, reducing standby time for service providers (Sec-

tion 2.4.4). Current on-demand binding approaches [Groba and Clarke, 2014] bind

multiple functionally equal service providers to one composition process during service

discovery, and send a token message to release them after a service provider is selected

for invocation. Although the duration between binding and releasing may be small,

many of the service providers that support the required functionality may become un-

available for other composition processes in the network during the time of standby. On

the other hand, releasing service providers introduces traffic overheads.

Concept 5: On-demand binding

GoCoMo proposes a dynamic composition overlay that organizes service providers

that are currently participating in composition processes. The dynamic composi-

tion overlay is temporary and only exists when a composition process is performing

in the environment. Using this overlay network, a service provider is bound only

when it has to be invoked.

Chapter 3. Design 56

3.3.3 Service Execution

Most service composition approaches that assume periodic service announcement are

expansive because of frequent service matchmaking and multi-hop broadcasting. Nor-

mally, service announcements are used to collect information about locally available

services and create a directory or overlay structure to maintain such information for

service discovery. If a new service provider joins a network by announcing its services,

all the neighbouring nodes of the service provider have to analyse the announced service

specification (service matchmaking). Service announcement usually relies on multi-hop

broadcasting messages that contain service specification, but multi-hop broadcasting is

expensive itself [Karaoglu and Heinzelman, 2010, Lipman et al., 2009].

Concept 6: Runtime service announcement

GoCoMo distinguishes service providers, allowing the service provider that is cur-

rently participating in a composition process to analyse a new service and decide

whether to invite its provider to join the composition. The service providers that

are not engaging in any composition process (idle providers) use announcement

messages only to obtain a sense of local network properties, such as service den-

sity, to get prepared for future compositions. GoCoMo allows service providers

to announce their services to the network, using one-hop broadcast. The idle

providers receive service announcement messages, instead of calling a matchmaker

to launch an expansive semantic service matching process1, they compute only

network properties.

An execution path for a composition may need to be adapted to the environment. A

global knowledge of available services is infeasible in GoCoMo’s target environment, and

so a composition adaptation process should be performed locally, without affecting the

global QoS of the composition.

Concept 7: Local execution path maintenance

GoCoMo creates a fragment of an execution path on each individual service provider.

Path fragments are maintained locally by merging new service providers or remov-

ing the parts of a path fragment that become invalid.

Chapter 3. Design 57

Figure 3.2: GoCoMo design concepts address design objectives and requirements

Figure 3.2 illustrates how the above GoCoMo concepts map to the required features.

In particular, this thesis encapsulates these concepts and present the contributions: a

flexible goal-driven service planning approach that applies Concept 1 and 3, a heuristic

service discovery approach that uses Concept 2, and a service execution path selection

and adaptation model that applies Concept 4, 5, 6 and 7. The rest of this chapter

introduces the detail of GoCoMo model and the design of the GoCoMo contributions.

3.4 Service Composition Model

GoCoMo models a service composition process as AI backward-chaining. Classic AI

backward-chaining processes [Hibner and Zielinski, 2007], also known as goal-driven

reasoning [Furno and Zimeo, 2014], have been explored to ease the resolution process in

the domain of service composition. A general goal-driven reasoning process for service

composition is shown in Figure 3.3. The process starts by searching for the knowledge

1Semantic matchmaking takes 0.08-10.66(s) to return a result depending on matchmakers [Klusch, 2012].

Chapter 3. Design 58

that can infer a request’s goals (consequences), and then the request is resolved backward

from the goal to the request’s antecedents, by converting the goal into subgoals, resolving

back through these subgoals (e.g., Goal a → c). The process finds a solution when all

the antecedents are reached. Specifically, an initiator issues a service request a → d to

start a goal-driven reasoning process, which relies on distributed knowledge bases stored

in local service hosts (planners). In each step of the service discovery, a part of the

request’s goal can be solved (e.g., Goal : a → d can be partially solved on Service 1

that provides data transition of c → d), and the remaining request (Goal : a → c) is

forwarded to the next hop service providers (i.e., Service 2). In such a process, it is the

request’s goal that determines which services will be selected and used.

Figure 3.3: General distributed backward-chaining model for service composition

A goal-driven reasoning process produces more flexible planning results than that of

workflow-driven approaches, as it considers service discovery as an open-ended problem

and dynamically generates composite services according to run-time service availability.

For example, in Anne’s scenario (See Figure 1.2), she can specify her requirements as a

goal: an audio step-free route to a store and then to a baby-changing facility which will

be resolved hop-by-hop and eventually supported by a composite service. The planning

resolves first to AudioNavigator, back to RampAccessChecker, then to StoreRouter as

well as FacilityRouter, to StoreLocator, and finally to StoreQuery. A composition result

is shown in Figure 1.2 (c)

Modelling service composition as such a process has been investigated in infrastructure-

rich networks where composition planning is based on infrastructures like repositories

[Zou et al., 2014] or pre-existing overlay networks [Kalasapur et al., 2007]. However,

Chapter 3. Design 59

this kind of infrastructure, as mentioned in Section 2.3, is not suitable for our target

environment, and neither are the existing goal-driven reasoning processes.

To allow mobile pervasive computing environments to benefit from the flexibility that

such a goal-driven service composition brings, as mentioned at the begining of this

section, GoCoMo extends general goal-driven reasoning model, and handles the following

issues:

• Dynamic goal-driven composition planning- is handled via a composite par-

ticipant cooperation mechanism to coordinate distributed knowledge bases and

independent planners to support the generation and the maintenance of various

service flows. (Section 3.4.2)

• Heuristic service discovery - is handled via a distributed heuristic discovery

mechanism based on QoS attributes to increase the likelihood of time-efficient

services being selected during execution and prevent composite requests flooding

the network. (Section 3.4.3)

• On-demand execution fragment selection- is handled via online adaptable

reasoning to create awareness of and compose potentially better services that may

appear during service execution. (Section 3.4.4)

3.4.1 Service Model

This thesis assumes services’ functions and I/O parameters are semantically annotated

using globally understood semantics and languages and able to match a service request

with semantic matchmakers [Chen and Clarke, 2014]. Such semantic service annotations

are assumed to be kept in local service providers (mobile devices) and can be advertised

using probe messages. A service’s invocation must be based on all the specified input

data, and local devices can form an ad hoc network, cooperating with each other to

resolve a user task. Service specification is defined as follows:

Definition 1. A service is described as S = 〈Sf , IN,OUT,QoStime〉, where Sf rep-

resents the semantic description of service S’s functionality. IN = {〈INS , IND〉} and

OUT = {〈OUTS , OUTD〉} describe the service’s input and output parameters as well as

their data types, respectively. For this work, execution time QoStime is the most impor-

tant QoS criterion as delay in composition and execution can cause failures [Groba and

Chapter 3. Design 60

Clarke, 2014]. A service composition model should select services with short execution

time to reduce delay in execution.

A service composite for user tasks can be modelled as a restrictive data transition in

which the system data change from initial data (i.e., a user’s input parameters) to goal

data (the requested output data), while satisfying all the requested functionalities or

constraints. A participating service for the composite, packaging its resources (e.g., data,

functionality), can support all or a part of (based on its resource provision’s granularity)

the data transition. User tasks can be modelled as a composition request:

Definition 2. A composition request is represented by R = 〈Rid, I,O,F , C〉, where

Rid is a unique id for a request. The set F represents all the functional requirements,

which consists of a set of essential while unordered functions. The composition con-

straints set C are execution time constraints. A composition process fails if C expires

and the client receives no result during service execution. A service composite request

also includes a set of initial parameters (input) I = {〈IS , ID〉} and a set of goal param-

eters (output) O = {〈OS ,OD〉}.

For service providers that participate in a backward composition process, each compo-

sition request can be resolved partially (or completely), and the remaining discovery

request is forwarded to their neighbouring nodes to continue the discovering process. In

this composition protocol, any remaining request is enclosed in a discovery message that

is forwarded between composite participants.

Definition 3. A service provider in this thesis is a service deployment device that has a

wrapped functionality exposed through a service interface and could therefore be used

remotely as a service.

Definition 4. A discovery message including a request’s remaining part R′, is repre-

sented as DscvMsg = 〈R′, cache, h〉, where cache stores the progress of resolving split-

join controls for parallel service flows (see Definition 6 on page 69), and h is a criterion

value for request forwarding and service allocation (see Section 3.4.4 and 3.4.3).

3.4.2 Dynamic Goal-Driven Composition Planning

GoCoMo includes a goal-driven reasoning algorithm to support a fully decentralized ser-

vice composition process, which is modelled as a state-transition diagram in Figure 3.4

Chapter 3. Design 61

Table 3.1: Composition model notations

and Figure 3.7. A transition between these illustrated states is triggered by message com-

munication events (e.g., msgIn, msgOut) or local conditions (e.g., participate, usable).

Table 3.1 clarifies the notations in these figures that represent message communication

events and local conditions.

Figure 3.4 illustrates a composition process from a client’s perspective. In particular, the

global service discovery (listening− a state) starts when a client sends out a composite

request to look for composite participants. Composite participants in this model are

candidate service providers who are capable of reacting to and reasoning about a com-

posite request. They are also responsible for invoking their subsequent services during

Chapter 3. Design 62

Figure 3.4: Protocol for global service composition. (Composition initiator’s view)

execution. A client initialises a Time-To-Live (TTL) value Tdiscovery to manage a global

service discover process, when it issues a composition request. If the Tdiscovery for a com-

position request reaches zero, the client selects, if it is possible, a completed composite

to execute. The client then waits for execution results. Global service discovery fails

if no completed composite has been received by the client when the service discovery

process expires. If no execution result has been returned to the client after a previously

defined QoStime for the execution process expires, the global service execution fails.

The global service discovery process establishes a temporary overlay network called dy-

namic composition overlay (Figure 3.5), which contains all the reached usable composite

participants. Such a network only lasts for the duration of a composition. In the net-

work, a set of execution guideposts (See Definition 5) manages composite participants

and controls the discovered service flow. As shown in Figure 3.5, each guidepost is

maintained by a composite participant, linking the corresponding service to who sent

the discovery message.

Definition 5. An execution guidepost G = 〈Rid,D〉 maintained by composite partici-

pant P includes a set of execution directions D and the id of its corresponding composite

request. For each execution direction dj ∈ D, dj is defined as 〈didj ,Spost, ω,Q〉, where

didj is a unique id for dj , and the set Spost stores P ’s post-condition services that can be

chosen for next-hop execution. The set ω represents possible waypoints on the direction

to indicate execution branches’ join-nodes when the participant is engaged in parallel

data flows. The set Q reflects the execution path’s robustness of this direction, e.g., the

estimated execution path strength and the execution time (Section 3.4.4).

A brief example for GoCoMo’s basic composition protocol is shown in Figure 3.6. In a

network consisting of one initiator and three service providers, the initiator’s composition

goal can be resolved by the service providers in a decentralized way. The initiator send

Chapter 3. Design 63

Figure 3.5: Dynamic composition overlay

Figure 3.6: GoCoMo’s basic backward planning protocol

Chapter 3. Design 64

a request (req) including the composition goal to its neighbours. The service providers

resolve the goal backward by decomposing it into a list of sub-goals and matching services

with the sub-goals. During this process, every candidate service provider creates an

execution direction and stores it in its own guidepost (G). In each candidate service

provider, such a process of resolving a sub-goal and generating an execution direction is

called local discovering. After a composition goal is completely resolved, the initiator is

acknowledged by the first service provider in a candidate execution path. The initiator

generates an execution direction (→ Provider1) to keep the information about the

candidate execution path (i.e., the first service provider’s address, the path’s robustness

property, etc.). When the initiator’s discovery time expires, the initiator uses such

information to decide which candidate execution path will be selected for execution,

and an input data will be sent to the first service provider. As shown in Figure 3.6 the

initiator selects Provider1. Provider1 gets invoked and then Provider2 and Provider3.

In each selected service provider, such a process of invoking and selecting a subsequent

service provider is called local composing. The following sections will introduce the two

local processes (local discovering and composing) in detail. GoCoMo named the local

behaviour in service providers to react a discovery message or a request and generate

the direction as local discovering, and the process on service provider that invoke and

execute a service instance and use directions to handover execution, as local composing.

3.4.2.1 Local Service Planning

From a composite participant’s perspective, a (local) GoCoMo composition process in-

cludes a loop for service discovery to find and link all the reachable and usable services,

and to generate/ adapt an execution guidepost. It also includes a flow for service com-

posing process, based on the discovery result, to select, compose and execute services

hop-by-hop on demand. In particular, as can be seen in Figure 3.7, the local discovering

loop starts in the listening state and ends when the composite participant is invoked

(the invoking state), while a local composing flow, starts in the invoking state and ends

in a composition-handover state.

Algorithm 1 (Planning state) and Algorithm 2 (Discovery-handover state) describes a

local discovering loop for composite participants. Note that the state transiting con-

ditions like ¬end, cost and usable are not shown in these algorithms since they have

Chapter 3. Design 65

Figure 3.7: Protocol for local service composition. Service providers start and end in
the listening state.

been illustrated in Figure 3.7. This process reacts when a composite request or a discov-

ery message is received, and generates an execution guidepost as well as new discovery

messages that enclose the part of the composite request which cannot be solved on this

composite participant.

In the configuring state, a composite participant checks the goal matching level for a

composite request (Line 2 in Algorithm 1). As the ultimate goal of a composite request

is to produce the final, required output, if a service produces output that matches

the one the composite request, the service is usable for this composite. A service S =

〈Sf , IN,OUT,QoStime〉 matching a composite request R’s goals (R = 〈Rid, I,O,F , C〉)2

2Find the definitions of the parameters on page 59.

Chapter 3. Design 66

is ranked from different matching levels:

GoalMatch(S,R) =
usable if OUT ⊇ O

usable+ if OUT (O, OUT 6= ∅

unusable otherwise

(3.1)

where usable represents that S supports all the goal of R; usable+ means that S supports

only a part of the goal; and unusable represents that S mismatches R. To prevent

repeatedly checking for the same composite request, composite participants maintain a

log for composite requests (Line 4 and 6 in Algorithm 1).

Chapter 3. Design 67

Data : Receive message DscvMsg from Y . Receiver X hosts
S = 〈Sf , IN,OUT,QoStime〉.

Result: an execution guidepost

1 /* Configuring */;
2 GoalMatch(S, R);
3 /* Planning (when usable)*/;

4 if @DscvMsglog then
5 New D;

6 DscvMsglog ← DscvMsg;
7 if usable+ then
8 Event← addJoin
9 else

10 Event← add
11 end

12 else
13 if DscvMsglog and DscvMsg have matched or partially matched cache

value then
14 Event← addSplit ;
15 if matched then Remove matched cache;
16 if partially matched then Update cache

17 end

18 if Progress(DscvMsglog) < Progress(DscvMsg) then
19 Event← adapt ;
20 end

21 if Progress(DscvMsglog) == Progress(DscvMsg) then
22 Event← add ;
23 end

24 end
25 switch Event do
26 case addSplit:
27 foreach di ∈ D do Spost ← Spost + Y
28 endsw
29 case adapt:
30 Clean D; dy ← 〈Rid, Y 〉;
31 endsw
32 case add||addJoin: dy ← 〈Rid, Y 〉;
33 endsw
34 //When a branch’s resolving is finished
35 Initiate cpltMsg′ = 〈R′, cache, h〉;
36 Send cpltcvMsg′;

Algorithm 1: Local planning algorithm

During service planning, a matched participant create a guidepost for the composition

if there is no one, and then a direction to link to the request sender (Line 5 and 32

in Algorithm 1) into the guidepost. Or, based on different goal-matching results, a

Chapter 3. Design 68

planning process generates corresponding events to adjust the directions maintained in

an execution guidepost (Line 4-24 in Algorithm 1).

For example, when a composite participant a receives a discovery message for a com-

position R for the first time, if a’s service is usable to the composition, a will generate

a execution guidepost G, model its link to the sender b of the discovery message as a

direction 〈R, b〉, and add the direction into the G. If another discovery message for R

is received by a from the sender c afterwards, and a’s service is usable as well, a new

direction 〈R, c〉 will be added to G.

Data : Receiver X hosts S = 〈Sf , IN,OUT,QoStime〉.
Result: A DscvMsg containing the remaining request R’

1 /* Handover */;
2 if (Event!=add)&&(RemainReq) then
3 Initiate DscvMsg′ = 〈R′, cache′, h′〉, R′ = 〈I ′,O′,F ′, C′〉;
4 O′ ← IN ;

5 F ′ ← F − Sfmatched;
6 C′ ← C −QoStime;
7 Calculate h;
8 if GoalMatch(S,R) = usable+ then
9 Initiate cachei = 〈Sid,m, c〉;

10 Sid ← P rec, m← OUT ∩ O;
11 c← 〈 num(m)/ num(O)〉;
12 cache′ ← cache+ cachei;

13 end
14 Send DscvMsg′;

15 end

Algorithm 2: Local service discovering algorithm (handover)

In the discovery handover state (Algorithm 2), a new discovery message can be created

that depends on its matching level for the in progress composite request. A composite

participant updates the composition request, by removing the goal, adding its required

input parameters as a new goal, removing the matched function and changing the execu-

tion time (QoStime) requirement in the request. Then, the updated request is enclosed

in the discovery message.

In the case of requiring other service providers to work together with S to support the

goal, discovery messages keeps a cache. The cache stores information about a node

Y which sends a request R to the composite participant S, in which the goal is only

partially matched (Line 8 in Algorithm 2), i.e., when GoalMatch(S,R) = usable+.

Chapter 3. Design 69

Figure 3.8: A backward planning example.

In other words, a composite participant caches a request sender when the participant

meets only a part of the request’s goal. The cache enables composition planing based

on fine-grained goals for a composition request, allowing GoCoMo to flexibly use service

providers to a composition that cannot satisfy the goal independently. This increases

the scope of service discovery.

Definition 6. In a cache, a cached request sender is represented as a Ci ∈ cache (Ci =

〈Sid, Gmatched, ρ〉), where Sid is the unique id of the requester node (e.g., the node Y),

and the set Gmatched stores matched outputs. The parameter ρ (ρ ∈ (0, 1)) captures the

progress of addressing the partially matched goal (e.g., how many goals of the request

can be satisfied).

As shown in Figure 3.8, taking a compromise goal from Anne’s scenario (See Figure 1.2

and 1.3) as an example, Anne requires a route to the nearest store that sells nappies and

from where to a babychanging seat. During the process, an IndoorMap provider receives

a discovery message from a StoreRouter, which includes a subgoal for Anne to ask for

two input parameters: local map and store address. As the IndoorMap service can only

provide the local map, the StoreRouter ’s goal is half matched, so the IndoorMap caches

the request sender by adding C = 〈StoreRouter, localmap, 0.5〉 into the cache set.

C will be forwarded, along with the discovery message, to the composite participant’s

neighbours until the required service that supports store address is found.

Chapter 3. Design 70

3.4.2.2 Complex Service flows

GoCoMo resolves a data-parallel task by allowing a composite participant to recog-

nize and generate parallel execution branches. In particular, a composite participant

recognizes AND-split-join control logic for a data-parallel task, and then generates a

corresponding direction for it in the planning state.

AND-split-join control logic in a composition is detected using GoalMatch function (For-

mula 3.1 on page 66) and the analysis on received cache. The cache set in a discovery

message also gets updated according to how the set matches the one in an old discovery

message (Line 15-16 in Algorithm 1). A matched cache value is defined for two caches

C1 = 〈S1, G1, ρ1〉 and C2 = 〈S2, G2, ρ2〉:

C1 and C2 are
matched if (G1 ∩G2 = ∅) ∧ (ρ1 + ρ2 = 1)

partially matched if (G1 ∩G2 = ∅) ∧ (ρ1 + ρ2 < 1)

mismatched otherwise

(3.2)

As mentioned (Line 7-22 in Algorithm 1), in the planning state a composition participant

produces a event which triggers modification on execution directions. Composition par-

ticipants generate event addsplit, if a new received DscvMsg contains a cache matching

or partially matching the existing one (matched or partially matched using Formula

3.2). Composition participants create event addjoin, if it is usable+ to a new received

DscvMsg (Formula 3.1). Event addsplit and addjoin triggers the creation of two types

of directions for execution guideposts:

Definition 7. An AND-splitting direction directly links to multiple services, which

requires the composite participant to simultaneously invoke these services for execution.

An AND-joining direction links to a waypoint-service (join-node) that collects data

from the composite participant and other services on different branches.

Figure 3.9 illustrates how a data-parallel task is generated. In a network consisting of

one initiator and three service providers, one of the service provider (Provider3) de-

pends on Provider1’s and Provider2’s output data for execution. During Provider1’s

and Provider2’s local discovering process, the sub-goal generated by Provider3 can-

not be independently satisfied by neither Provider1 nor Provider2. So Provider1 and

Chapter 3. Design 71

Figure 3.9: GoCoMo’s backward planning protocol for composing a parallel service
flow

Provider2 cache their remaining sub-goals and forward it. They also create an AND-

joining direction that links to Provider3. The initiator receives the remaining sub-goals

and finds them mergeable. Then an AND-splitting direction is created on the initiator.

During service execution, the execution path is splitted into two branches at beginning,

and then the branches are merged on Provider3 by synchronizing the input data that

comes from Provider1 and Provider2 . Figure 3.10 illustrates an example in Anne’s sce-

nario for a dynamic composition overlay which contains AND-splitting directions and

AND-joining directions. An AND-splitting direction on the service StoreLocator links

to the FacilityRouter as well as the StoreRouter, while a AND-joining direction to this

service indicates that a data syncing process will be needed on its subsequent execution.

3.4.3 Heuristic Service Discovery

The service discovery model finds services hop-by-hop based on service data dependency.

During service discovery, service providers relay a passed-in composite request when

they cannot match it. Given the large number of possible data dependency relations

and possible relay nodes in a network, a discovery mechanism is required. This is to find

Chapter 3. Design 72

Figure 3.10: An example for dynamic composition overlay networks (DCONs). Sid

represents an unique id for services. Spost indicates the next service

enough usable services in a reasonable period of time3 by employing a practical number

of composite participants.

GoCoMo uses a function r(n) to calculate the relaying cost (relaying hops) from the

last composite participant to current composite participant Sn (i.e., the nth composite

participant to resolve the composition) or a relay node Ri (for r(i)) (i.e., the ith node to

forward the composition request). These calculations are based on the heuristic value h

in a discovery message.

hn =
∑

r(n) + n (3.3)

The discovery cost is defined as

d(n) = µ(hn−1 + r(i)) (3.4)

where µ is a local communication channel parameter that is defined by local composite

participants and relay nodes, which indicates the one-hop transmission delay. When a

client issues a composite request, it sets up a time Tdiscovery for global service discovery.

When the estimated remaining discovery time T ′discovery is smaller than a threshold τ :

T ′discovery = Tdiscovery − d(n) < τ , the node/ participant will stop relaying/processing

3A tolerable waiting time for a simple information query is about 2 second [Nah, 2004]. For operating
tasks, the waiting time should be within 15 seconds [Miller, 1968].

Chapter 3. Design 73

the composition request. The threshold is determined by the remaining time constraint

value on participant Sn, represented by

τ =
Cn
d

(3.5)

where d is a weight value that determines the degree of interference in service discovery,

and Cn is the execution time constraint on Sn.

The interference degree d is defined according to current service density. For example,

in a network that has limited available services for a composition, the composition

model sets up a low interference degree (large threshold) to enlarge the scope of service

discovery, finding more service providers for the composition. In a service-abundant

network, a high interference degree (small threshold) is preferred to reduce system traffic

for service discovery. The selection policy for setting up the interference degree and the

threshold value will be discussed in Chapter 5, based on network simulation results from

scenarios with different networks and service configurations. This heuristic discovery

check trades off the service discovery scope with the service user’s QoS requirements (in

particular, response time). It prevents the system from over-expanding the discovery

scope and unnecessary communications, but supports discovering sufficient composition

results to support the user requirement.

Consider a brief example of heuristic service discovery (Figure 3.11). In a network

including one initiator and ten service providers, the initiator wants to resolve a compo-

sition goal that has the potential to be satisfied by a composite service X. The initial

service discovery time Tdiscovery and the execution constraint C are 1s. This example

assumes that the time spent on one-hop-messaging is = 0.1s, and the relaying time

on each participating node in a multi-hop messaging is omitted for simplicity. It also

assumes that a candidate service provider needs t = 0.01 − 0.05s to resolve a goal and

QoStime = 0.01−0.1s to execute a service. As GoCoMo relies on backward planning, to

discover X, Provider0 needs to find Service2 that has been deployed on Provider3. Ac-

cording to the network graph, possible routes are: Provider0 → Provider1 → Provider2

and Provider0 → Provider1 → Provider3 → Provider4 → Provider5 → Provider2.

During service discovery, every relay node checks the remaining discovery time before

forwarding a discovery message, and the interference degree of the check is 1.5. As shown

in Figure (d), on Provider4 Tdiscovery‘ equals to 1 − 0.1 ∗ (1 + 3) = 0.6 and is smaller

Chapter 3. Design 74

Figure 3.11: GoCoMo’s heuristic service discovery protocol

than τ . Provider4 stops relaying the message. This example shows how heuristic service

discovery prevents a discovery message flooding the network.

3.4.4 Execution Fragments Selection and Invocation

In a global view, as shown in Figure 3.12, the general goal-driven approach (a) returns a

set of independent service composites for selection, and GoCoMo (b) uses a control ele-

ment to generate a flexible service composite that includes run-time selectable execution

paths.

Control elements are enabled and managed locally by execution guideposts. Each exe-

cution guidepost that maintains possibly multiple directions acts as a OR-split4 control

4An OR-split (split-choice) control element can have more than one outbound paths, and only one of
them is selected for invocation [Liu and Kumar, 2005].

Chapter 3. Design 75

Figure 3.12: An example of GoCoMo’s execution path, in contrast to the one in a
general decentralized service composition model

element. This OR-split logic equipped execution guidepost allows composition partici-

pants to select the best path according to the current system context, like node availabil-

ity or the robustness of the remaining path. It also allows a service provider to handle a

path failure by recomposing execution path from the nearest execution guidepost other

than the initiator.

A re-selection mechanism is also proposed to recover the system from path failures.

Such a solution is partially found beforehand (in the global discovery stage), and can be

expanded during service execution if newly matched services join the network.

Figure 3.13: An execution guidepost’s life cycle

Chapter 3. Design 76

Operations on path creation and selection are managed in an execution guidepost’s life

cycle. Execution guideposts have a life cycle with four phases: preparing, verifying,

directing and waiting. Figure 3.13 shows the life cycle, and how it spans the duration

of a participant’s local discovering and local composing processes.

A composite participant Sn assigns a lifetime Tn for an execution guidepost when estab-

lishing it. The Tn is determined according to the remaining time constraints (Cn) and

a heuristic value (Section 3.4.3). Once an execution guidepost is initialized, it starts to

prepare for composition by collecting directions and maintaining them. As mentioned in

Algorithm 1 (Line 25-30 on page 67), the guidepost updates and verifies the maintained

directions, in responding to an event. In an local composing process, an execution guide-

post fetches the address of the first service provider in a primary direction. After that

the first service provider gets invoked. The execution guidepost transits to a waiting

state. Subsequently, if its lifetime Tn is still not expired, the guidepost will live for a

while in case the remaining execution needs a rollback for failure recovery (see Section

3.4.4.2). If Tn has expired, the participant drops the guidepost for the composition re-

quest, removing itself from consideration in the composition. The overall composition

process continuous to work with the dynamic composition overlay (see Figure 3.7 (a)).

3.4.4.1 Service Composite Selection and Invocation

The GoCoMo service composition process binds services on demand and releases them

after execution. This means a composite participant’s computing resources is locked

only for the duration of its local composing process. This may reduce the time a com-

posite participant is occupied, which in turn increases its overall service availability.

As mentioned, a client selects a service composite for invocation after its global service

discovery process times out. Note that the actual information about the full composite

is not sent to the client. Instead, the client receives the information about each service

composite’s reliability value and the first service provider’s address. Based on the re-

liability values, the most reliable composite can be selected for invocation. The client

sends a message to the first service provider to starts a global service execution process.

The message contains an invocation token to bind service providers and the input data

for the composition. Service providers receive the message and trigger their own local

service composing process, as shown in Figure 3.7 (c).

Chapter 3. Design 77

A local service composition process is a transition from the invoking state to the compo-

sition handover state (Figure 3.7). Directions with the best quality value Q (Definition

3) will be chosen for the next-hop invocation. The Q (Q > 0) on participant n is cal-

culated based on service execution time
∑
QoStimen on each service and the remaining

execution path’s robustness.

Q = α ∗
∑

QoStimen + βhn (3.6)

where α is a weight value determined by the local network’s dynamism, and hn is a

heuristic value that reflects the remaining path’s length. The β derives from a path

duration estimation scheme [Sadagopan and Bai, 2003] to estimate an execution path’s

robustness in mobile ad hoc networks.

β = λ0v/R (3.7)

where λ0 is a proportion constant defined by network factors like node density, v is the

nodes’ average speed, and R represents the transmission range [Sadagopan and Bai,

2003]. GoCoMo service providers do not have a global view, and so such parameters

are calculated using the properties of a service provider’s local network (a.k.a., vicinity).

Specifically, v and R are based on a service provider’s own features, and λ0 is determined

by the number of received service announcement messages (see Section 3.4.4.2) in a

particular period. A direction that can route to a reliable execution path with a quick

execution time can have a low Q value. As a direction for services executed in parallel

may have waypoints, to synchronize a parallel service flow, the join-node will be selected

when a parallel flow starts to execute.

3.4.4.2 Service Execution and Guidepost Adaptation

To make use of run-time proactive service announcement, GoCoMo allows composition

participants to receive service announcement messages and invite new emerged service

providers to participate in a composition.

Definition 8. A service announcement message is described as SA = 〈Paddress, OUTp〉,

where Paddress represents the unique address of the service provider, and the OUTp is

the output data can be provided by the service provider.

Chapter 3. Design 78

To reduce communication overhead and the time spent on dynamic service matchmaking,

the service announcement message uses only the output data instead of the entire service

specification defined in Section 3.4.1(Definition 1 on page 59).

When a composition participant receives a service announcement message from a new

service provider, it uses the GoalMatch function (Formula 3.1) to compute if the service

provider is usable to the composition. The composition participant invites usable service

providers to join in the composition process by sending a previously logged discovery

message. The new service provider receives the discovery message and decides whether

or not to participate in the composition according to its local resources and service

availability. If the new service provider decides to engage in the composition, it performs

the local service discovery process (see Figure 3.7), adding the inviter (the composition

participant who invites the new service provider) as a direction in its own maintained

execution guidepost. Inviting and composing a new service can occur at any stage of a

composition process as long as the inviter has not yet been executed.

During service execution, the availability of the first service on a direction is known

by a composition participant through a invocation token. When a service is found

to be unavailable, the composition model applies a backjumping mechanism to pre-

vent failures. During composition, a composite participant will get the id of the clos-

est service that has multiple available directions from a service allocation token (see

data D in Figure 3.7 and Table 3.1.). If a composite participant cannot find a ser-

vice available for composition handover, the composition will back-jump to the one

that has multiple available directions, as long as it still locks resources for the compo-

sition (i.e., its guidepost is in the waiting phase), so that another potential remaining

execution path can be picked out for execution. This process is illustrated in Figure

3.14. If the link between Provider2 and Provider3 gets lost when executing the pri-

mary composition service Provider1 → Provider2 → Provider3, Provider2 detects

such link loss and allows the service execution process to back-jump to Provider1 who

has a backup direction → Provider4 that is able to invoke another execution path

Provider4 → Provider5 → Provider3. An execution can ultimately fail if no execution

path is available.

Chapter 3. Design 79

Figure 3.14: GoCoMo’s heuristic service discovery protocol

3.5 Quantitative Analysis on GoCoMo

A quantitative analysis on GoCoMo are conducted, and the result is presented in Table

3.2. A set of parameters reflect the topics of GoCoMo’s theoretical performance and

scalability, including the resource consumption on each participant, the complexity of

composition results, how service density affects a service composition process, and how

many consumers or composition requests can be supported by the service composition

system in a period (Workload). Generally, GoCoMo’s message size and the number of

the messages are affected by the length of the composed service flow. A long service

flow can make messages larger and requires more messages to coordinate participant

service providers. The composed service flow’s logic and participants’ mobility also have

an influence on them. The more branches a service flow has, the bigger a discovery

message are, and the faster the context changes, the more messages are needed to adapt

the composition from any potential composition failure.

Composition delay represents the time spent on executing a composite service. It de-

pends on each service’s execution time, the time spent on one-hop transmission, and

the length of a service composite’s execution path including the number of transmission

hops between successive services and the number of hops to route the execution result

Chapter 3. Design 80

Table 3.2: Quantitative analysis on GoCoMo’s theoretical performance and scalabil-
ity. (avg.=average)

Best case Worst case Avg. Case

Avg. discovery message size S SL N/A

Message/participants 2 1 + 2N N/A

Overall messages 2L (1 + 2N)L N/A

Composition delay MLT
∑L

i=1 ti 2MNLT
∑L

i=1 ti N/A

Participant providers L NL NLe−αD

Workload BN N N/A

N/A = Not applicable

Average size of a subgoal request = S

Average candidate service providers per subgoal = N

Average composition length (No. of subgoals) = L

Service distance (No. of communication hops between two neighbouring

services providers)= M

Heuristic interference degree= D

Buffer size of provider (the amount of composition information a service

provider can maintain synchronously)= B

Time spent on one-hop transmission= T

Service i’s execution time= ti

back to the composition requester. It also relates to mobility issues, and back-jumping a

composition process to recover failures caused by a missing service provider increases the

composition delay. In the best case, GoCoMo can invoke a service composite in which

any service provider is in its successive services’ vicinity. Note that, in a real world

scenario, package loss during message transmission may increase failures and delay a

composition process. Package loss rate is usually hard to be accurately and precisely

predicted, and is affected by signal strength, network congestion, the receiver’s message

buffer size, etc.

The participating providers indicates the DCON’s size, which means how many service

providers join in the DCON to create a guidepost using their local resources for a service

composition process. Less participant providers for one composition can expand glob-

ally available resources for the other compositions. However, if more service providers

participate a composition, this composition has more backup execution paths when the

primary one fails. The number of participant service provider is determined by heuristic

service discovery’s interference degree and package loss rate. Given the use of execu-

tion guideposts and on-demand service binding, GoCoMo allows resource-rich service

Chapter 3. Design 81

providers to support multiple composition requests synchronously, by maintaining a set

of guideposts. The maximum workload depends on service providers’ local resources

(e.g., the buffer size).

3.6 Design Summary

This chapter introduces GoCoMo, and how GoCoMo tackles open issues as service pro-

visioning failures and composition overhead. GoCoMo is a decentralised model designed

for service composition in mobile and pervasive environments.

GoCoMo includes a flexible composition discovery model that supports planning-based

service announcement and decentralized backward service discovery. Service providers

cooperate to backward resolve a composition request from the goal to its initial state.

The proposed composition discovery model generates a set of execution guideposts to

enable decentralised service invocation and composite adaptation. This model also sup-

ports complex compositions. In other words, a service composite can include parallel

service flows, when it is necessary .

In addition, GoCoMo introduces a heuristic service discovery model to achieve dynam-

ically controlled request flooding. GoCoMo uses an infrastructure-less design for the

heuristic service discovery model, and controls request floods by a threshold. Particu-

larly, when the cost on a request routing process has exceeded the threshold, the process

is stopped by service providers. Instead of assigning one uniform threshold to the global

network, GoCoMo allows each individual service provider (router) to dynamically select

a threshold, according to its own network property.

Moreover, GoCoMo provides adaptation and selection on fragments of execution paths

(execution fragment). An execution fragment is maintained by a service provider, which

includes information about the service provider’s next participant provider, some im-

portant waypoints (i.e., execution branches’ join node, see Definition 7 on page 70) on

this path to the finial service provider, and a value to indicate the reliability of ser-

vice providers on this path as well as the connection between them. Such an execution

fragment is adaptable when the service provider detects a new execution path that has

the potential to support the composition goal. Since execution fragments use Or-split

logic to include different execution paths, when the primary path in a fragment fails,

Chapter 3. Design 82

an alternative can be rapidly re-composed for execution. GoCoMo performs execution

path selection dynamically on service providers. A service provider finishes its own ser-

vice execution, and then selects and invokes an execution fragment for the subsequent

execution.

Figure 3.15: Kiviat diagram: GoCoMo’s features comparing to 3 closest approaches

In summary, service composition can apply the GoCoMo process to dynamically plan

for service composites, to self-organise a composition process, to reduce failure recovery

delay, and minimise standby time for service providers, as illustrated in Figure 3.15.

The remaining of this thesis describes how to implement GoCoMo model, evaluates how

GoCoMo satisfies the design requirements outlined in this chapter, and discusses the

limitation of GoCoMo.

Chapter 4

Implementation

The previous chapter describes the design of GoCoMo, and illustrates how it addresses

the challenges of service provision in pervasive computing environments. The GoCoMo

composition process is supported by a middleware, named GoCoMo middleware. The

GoCoMo middleware contains the generic implementations of GoCoMo’s algorithms and

processes. This chapter describes in detail how to realise the GoCoMo middleware, and

presents two prototypes, one for Android-based devices and the other for NS-3 platforms.

An overview of the GoCoMo middleware’s architecture is presented in Section 4.1, which

includes a description of the modules that comprise it, and an explanation of each mod-

ule’s responsibility in the GoCoMo service composition process. Section 4.2, 4.3, 4.4

and 4.5 describe the inner module implementation details and how the GoCoMo com-

position behaviours are realised by these modules. Section 4.6 introduces the GoCoMo

middleware’s prototypes.

4.1 GoCoMo Architecture

The GoCoMo service composition process executes in the context of the GoCoMo mid-

dleware. Figure 4.1 illustrates a high-level structure of the GoCoMo middleware, consists

of 10 modules, including 6 major modules, 3 utility modules and 1 GUI module. Any

participant in the GoCoMo environment will install all the middleware modules. The

major modules’ responsibilities are listed as follows:

83

Chapter 4. Implementation 84

Figure 4.1: The GoCoMo middleware’s architecture includes six major modules: one
UI module and three utility modules. Arrow lines represent interactions between these
modules.

GoCoMo Client Engine (GClientE) is responsible for managing global com-

position processes for service clients. Its operation includes issuing composition

requests, managing the discovered service composites and selecting one of them

for invocation.

GoCoMo Provider Engine (GProviderE) is responsible for managing local

service composition processes for service providers, through interacting with other

modules to manipulate such a service composition process’s state transition.

Execution Guidepost Manager (ExeGM) underpins GProviderE by manag-

ing the information about the discovered service providers and service composites.

It is responsible for overseeing the local execution guideposts’ life-cycles and work-

ing out the best execution path for service invocation.

Control Logic Helper (CtrlLogic) is responsible for deciding if a composi-

tion request matches a local service and how the local service can engage in the

composition. CtrlLogic, if necessary, also reasons about control logic in a service

execution path, such as AND-split-join. In other words, it permits ExeGM to

include parallel service flows to an execution path.

Chapter 4. Implementation 85

Routing Helper assists GProviderE to determine whether to continue a request

routing operation, which implements the heuristics service discovery model intro-

duced in GoCoMo.

GoCoMo Message Helper (GMsgHelper) is responsible for parsing or gener-

ating messages for information exchange between composition participants. Such

messages include composition requests, DscvMsg (discovery messages), complete

tokens, invocation tokens, recovery token, and service announcement messages.

A set of utility modules and a GUI module in the GoCoMo middleware collaborate with

the major modules, facilitating composition processes and user interaction.

GoCoMo UI is a user interface that obtains user requirements from human users

for GClientE to issue a composition request, and receives service registration in-

formation from service providers.

Service Manager provides an interface for service-related operations. Specifi-

cally, it allows services to be registered with the GoCoMo middleware on its own

device, to enable service provisioning. It also invokes local services for execution

at runtime, and fetches execution outcomes from the invoked service instance.

Data Manager is responsible for caching/fetching support data for a composition

process, such as historical discovery messages and network property data.

Matchmaker is responsible for matching two entities and returning the match-

making result to CtrlLogic. Matchmaking method can be syntactic or semantic

depending on the domain of the operating environment.

These GoCoMo middleware modules collaborate with each other to 1) search for service

composites on behalf of composition clients and 2) let mobile devices participate in a

composition process as a service provider.

From a composition client’s perspective (i.e., composition requester), the GoCoMo mid-

dleware receives a composition requirement from GoCoMo UI and formats the require-

ment as a service composition request, using GMsgHelper. The request is then sent

to the local network to initialise a global service discovery process. Before the service

discovery process finishes, any discovered service composite pushed to the client will be

Chapter 4. Implementation 86

verified by GClientE. GClientE keeps only the valid ones. After the discovery process,

GClientE selects a service composite from those stored previously, and invokes it by

sending the required input data to the first service provider in the composite, and then

waits until an execution result arrives.

The GoCoMo middleware shares a provider’s services in two ways: planning and ad-

vertising. In a planning process (see Section 3.4.2), a composition request, parsed by

GMsgHelper, is firstly checked by CtrlLogic to find out whether a provider’s local service

satisfies the composition request. In particular, CtrlLogic uses Matchmaker to match

the composition request’s goal to the local service’s output, and returns matchmaking

outcomes to CtrlLogic. If the outcomes show that the service is ”usable”, CtrlLogic gen-

erates an event that suggests how the provider can engage the composition. GProviderE

gets the event from CtrlLogic and asks ExeGM to initialize or update an execution guide-

post, depending on the event.

A provider device advertises a service using Service Manager. If a service provider

that engages a composition process as a participant, receives a service advertisement

message, the participant’s GMsgHelper draws service information from the message.

Then, GProviderE fetches a locally cached passed-out discovery message from Data

Manager, and calls CtrlLogic, examining if the service matches the composition’s goal.

As mentioned in Section 3.4, the matched services’ provider gets invited to join in the

composition by the participant.

During service execution (see Section 3.4.4), Service Manager invokes a local service, and

passes the input data to GProviderE. After the local services are executed, a direction

that indicates the subsequent execution path is selected by ExeGM, and GProviderE

sends the execution result to the next service provider in the execution path. The service

execution process will be continuously performed by the subsequent service providers.

More details about the interaction between these GoCoMo middleware modules and the

inner module implementations will be presented in the rest of this chapter.

Chapter 4. Implementation 87

4.2 GoCoMo Client and Provider

GoCoMo App, as mentioned, has GClientE and GProviderE that realise the management

of global service composition and local service composition, respectively. This section

describes the inner implementation of these two modules, and their interactions with

other GoCoMo middleware modules.

4.2.1 GoCoMo Client Engine

GClientE is a group of classes that enable GoCoMo’s global service discovery and ex-

ecution for composition clients (requesters). A global service discovery and execution

process (see Figure 3.4 on page 62) includes the behaviours of issuing composition re-

quests, receiving composition results, selecting a service composite from the results, and

invoking the selected composite for execution. GClientE deals with all aspects of the

client behaviors in a GoCoMo composition process.

Figure 4.2: GoCoMo Client Engine Implementation: class diagram of GoCoMo Client
Engine and its relations to other GoCoMo modules

Chapter 4. Implementation 88

Figure 4.2 illustrates the class diagram of GClientE. GClientE implements two classes

GoCoMoClient and CompositePool. A GoCoMoClient object receives a GoCoMo mes-

sage and conducts overall global composition management. It includes an active()

method to atomically execute service searching or service composite updating. Com-

positePool extends the Guidepost class to get access to and maintain the composite

data. That data is expressed as a Direction object, the implementation of which will be

detailed in Section 4.4.

Figure 4.3: Global Service Composition Process Implementation: high-level sequence
of global service discovery (a) and invocation (b)

Figure 4.3 illustrates the major interactions between GoCoMoClient, CompositePool,

and the classes involved in (a) a global service discovery and (b) an execution process.

When the GoCoMo middleware receives a GoCoMo composition request, a GoCoMo-

Client object is created, and at the same time a TTL value (see Section 3.4.2) is assigned

Chapter 4. Implementation 89

to the object that represents the object’s lifetime. GoCoMoClient initialises a Compos-

itePool instance, and calls a send() method in SendService class to pass the request to

other peers in the network.

GoCoMoClient receives cpltMsg from a service provider that contains information about

a discovered service composite, if the request is resolved by the service provider. GoCo-

MoClient retrieves a composite data, and calls a verifyResult() method in CompositePool

to check the validity of the composite (i.e., whether or not this composite satisfies all

the functional and non-functional requirements in a GoCoMo request). CompositePool

keeps valid composites by modelling them as Direction data and storing this data in a

key-value pair directionMap.

After the global discovery process times out, GoCoMoClient invokes the getComposite()

method in CompositePool to obtain the address of the first service provider in the best

candidate service composite. It then fetches extra information about the composite,

for example a waypoint service provider in the execution, using the getComposition-

Info() method. GoCoMoClient calls the getInvocationMsg() in GoCoMoMessage class

to obtain a invokeMsg, getting ready for the composite’s execution.

4.2.2 GoCoMo Service Provider

The GoCoMo Provider Engine (GProviderE) is implemented as a GoCoMoProvider

class. Instances of GoCoMoProvider locally control all the request resolving and service

routing behaviours. The GoCoMo middleware invokes a GoCoMoProvider instance to

handle a composition request, and launch a local service composition process. Figure

4.4 shows how a GoCoMoProvider object interacts with other GoCoMo classes to enable

local service composition processes.

In local service discovery, a composition discovery message (dscvMsg) received by the

GoCoMo middleware is first managed by a GoCoMoMessage object that analyses the

type of, and retrieves the content of this message. The processed message is then passed

to GoCoMoProvider (Figure 4.4 (a)). GoCoMoProvider first calls genLogic() in Log-

icController class that returns an event data to trigger the locally cached execution

guidepost’s adaptation. As mentioned in Section 3.4.2 (page 60), GoCoMo defines four

events, each of which triggers an adaptation behaviour defined in GuidepostManager.

Chapter 4. Implementation 90

Adaptation behaviours include add, addJoin, addSplit and adapt. The event data is

sent to an instance of GuidepostManager to generate/update an execution path. Go-

CoMoProvider afterwards chooses to keep forwarding the remaining request or send a

discovered composite to the client, depending on whether or not the passed-in request

has been completely resolved.

Service advertisement messages are also handled in local service discovery processes. As

shown in Figure 4.4 (b), GoCoMoProvider receives a service advertisement from other

devices, asks LogicController to measure if the service’s output meets the composition’s

goal, and then invites the provider of the service that satisfies the composition’s goal to

engage in the composition by sending out a dscvMsg.

When a global service execution process reaches a local service, this service’s execution

is invoked by an exeMsg data. As introduced in Section 3.4.4, the exeMsg data includes

the input data of the local service and the address of the last guidepost that maintains

multiple directions for this composition. Besides, if such a service is in a parallel ex-

ecution flow, its join node(waypoint)’s address is also included. Figure 4.4 (c) shows

how GoCoMoProvider invokes a local service and how the subsequent service composite

is selected. Similar to GoCoMoClient ’s behaviour shown in Figure 4.3 (c), GoCoMo-

Provider obtain the next service provider’s information and receives an exeMsg in the

getExeMsg() callback. The exeMsg is then sent out to invoke the next service provider.

4.3 Routing Controller

In a local service discovery process (Figure 4.4(a)), GoCoMoProvider uses a RoutingCon-

troller.verify() method to get permission to continue the local service discovery process.

The RoutingController class, as shown in Figure 4.5, has methods to compute discov-

ery cost and generate new heuristic values. The verify() method in RoutingController

returns a boolean value, and a ”true” value represents that the discovery cost is still af-

fordable and the local service discovery may continue. Heuristic values were introduced

in Section 3.4.3. See Formula 3.3 (page 72) for more details.

Chapter 4. Implementation 91

Figure 4.4: Local Service Composition Implementation: (a) high-level sequence of
local service discovery, (b) inviting new service providers, and (c) invocation.

Figure 4.5: Class diagram of RoutingController.

Chapter 4. Implementation 92

4.4 Guidepost Manager

A guidepost is a networked element in a dynamic composition overlay network (see

Section 3.4.2, Definition 5). A guidepost is associated with one GoCoMo composition

process, caching information about candidate service composites. Such candidate service

composites’ information are modeled as directions. Each direction has an unique id, and

contains a list of service providers that would require input data from the guidepost’s

host device for service execution, a list of way-point nodes, and a value that indicates

the reliability of its corresponding service composite (see Section 3.4.2, Definition 5 and

7 on page 70 for more details).

The GoCoMo middleware uses Guidepost Manager to oversee a guidepost’s life-cycle.

Guidepost Manager is a group of classes supporting a series of behaviors including

creating execution guideposts, verifying a guidepost, updating directions, etc.

Figure 4.6 depicts Guidepost Manager’s class diagram, which contains classes Guidepost,

Direction and GuidepostManager. Direction is a complex type containing id, postCon-

ditionNode, qos, etc. Direction objects for the same composition are maintained in a

List, distinguished by their id attributes, and mapped to one Guidepost object. In other

words, Guidepost objects and Direction objects are saved as paired key-value sets. Once

a Guidepost object is destroyed, all the Direction objects maintained in the Guidepost

will be dropped. GuidepostManager consists of methods that get data from or update

a Guidepost object.

4.4.1 Adapting a Guidepost

A key point for GoCoMo is that a guidepost can be dynamically adapted, which allows

a participant to 1) cache newly available service providers for a composition, 2) locally

merge multiple execution branches to form a parallel service composite, and 3) replace

service providers by one that provides better QoS. As mentioned in Section 4.2.2, Go-

CoMoProvider passes an event (add, addJoin, addSplit or adapt) to GuidepostManager

to trigger adaptation on an execution guidepost (see update(event,dscvMsg) in Figure

4.4(a)). Figure 4.7 outlines diverse events and their accordant adaptation behaviours.

Chapter 4. Implementation 93

Figure 4.6: Guidepost Manager Implementation: a class diagram of Guidepost Man-
ager.

Figure 4.7: Guidepost Manager Sequence: high-level sequence of Guidepost adaptation
behaviours. Interactions related to the HashMap object are not illustrated.

Chapter 4. Implementation 94

GuidepostManager receives this event, a composition process id and the adaptation data,

and then fetches the corresponding Guidepost using the composition process id. The

Guidepost gets activated, and updates the direction it maintains based on the event.

For event add and addjoin, Guidepost obtains the postCondition, the waypoint list, and

the qos from the adaptation data, and uses them to create a new Direction object and

a key-value pair to store the object. Note that Guidepost inserts the post condition

node into the waypoint before generating direction (see Definition 7 on page 70, AND-

joining direction) for an addjoin event. For event addsplit, Guidepost updates currently

stored directions by add a new node into their postNode list. For event adapt, Guidepost

calls the cleanDirection() to remove the stored Direction data, and then creates a new

Direction mapping to the composition’s Guidepost.

4.4.2 Guidepost Data in Service Execution

A Guidepost object is used in a service execution process to provide composite informa-

tion for GoCoMoProvider. The main operations to get composition information from

GuidepostManager has been introduced in Section 4.2.2, and depicted in Figure 4.4 (b).

In the GuidepostManager class, the getFirstProvider() method is called to return an

address data of the first service provider in the best execution path.

4.5 GoCoMo Message Helper

GoCoMo Message Helper (GMsgHelper) is a group of classes that define different Go-

CoMo messages data and support message generating and parsing. As depicted in Figure

4.8, this thesis uses the builder pattern to realize GMsgHelper. A GoCoMo message con-

sists of header data, content data and extra data. The header data includes information

about the message type, request id, the sender’s address and the receiver’s address. The

content data, depending on the message type, can include a composition request or ser-

vice information. The extra data provides additional content data, like the address of

the nearest service provider that hosts a Or-split guidepost. An example of GoCoMo

messages is presented in Figure A.3 on page 137 in Appendix A.1.

Chapter 4. Implementation 95

Figure 4.8: GoCoMo Messages Implementation: class diagram of GoCoMo Message
Helper

4.6 GoCoMo Prototypes

Two GoCoMo prototypes were implemented to support a proof of concept. One is a

middleware application on Android platforms and the other is an extension module on

the NS-3 platform. Both of the prototypes realise GoCoMo composition processes, and

are designed for the purpose of evaluating GoCoMo’s feasibility and performance.

4.6.1 GoCoMo Prototype on Android

As one of the most popular mobile OS, Android has been installed in millions of mobile

devices [Burnette, 2009, Butler, 2011, Gronli et al., 2014, Okediran, 2014, Pandey and

Nakra, 2014]. More than 1.5 million applications are available in the Android application

market (Google Play) by August 2015 [AppBrain, 2015], covering various categories like

education, entertainment, business, health, travel& local, etc. This suggests considerable

potential for widespread availability of services in pervasive environments. Research on

Android-based services in pervasive computing environments has led to investigations

on cooperating multiple Android mobile devices to support a composed functionality,

Chapter 4. Implementation 96

such as using smart phones and smart bracelets to enable mobile sensing for a health-

care environments [Pigadas et al., 2011, Postolache et al., 2011]. The Android OS and

Android applications require an effective tool to ease cooperation between devices and

services.

Figure 4.9: GoCoMo prototype on Android: GoCoMo App

The GoCoMo middleware prototype implemented for Android-based devices, GoCoMo

App for simplicity, contains all the major modules introduced above, and supports Go-

CoMo composition processes. As for the utility modules in the GoCoMo middleware,

GoCoMo App relies on syntactic matchmaking for Matchmaker, and realises the Data

Manager and Service Manager. Implementing semantic matchmaking is out of this

thesis’s scope, and will be discussed in the future work chapter. Figure 4.9 briefly il-

lustrates how GoCoMo App implements the GoCoMo middleware to slot its modules

in the Android application framework. As GoCoMo App was designed for the purpose

of evaluating GoCoMo in real world, in addition to the GoCoMo middleware, GoCoMo

App realized a visualization module that renders GoCoMo App’s real-time information

that indicates how a GoCoMo composition process is performed at runtime. To enable a

service provisioning network, GoCoMo App employed and implemented BlueHoc [Hino-

jos et al., 2014], a bluetooth-based ad hoc network for Android distributed computing.

Execution guideposts generated during a GoCoMo composition process are serialised to

JSON data and saved using the SharedPerference APIs provided in Android.

Chapter 4. Implementation 97

More details about GoCoMo App are in Appendix A.1. Note that GoCoMo App per-

forms the GoCoMo composition process on composition clients’ and service providers’

devices with an Activity1 running to display such a process’s run-time information. This

is of use when evaluating GoCoMo since it allows device owners to monitor their own

GoCoMo App’s performance. In real world scenarios, keeping a screen active is battery-

consuming, which may reduce a device’s availability, and so GoCoMo App should be

extended to run in the background to reduce energy cost. In addition, GoCoMo App

used a bluetooth ad hoc network. Bluetooth-based networks have very limited commu-

nication ranges, making them a less-competitive technique for wireless communication.

A WiFi-based network is preferred because of its large communication range, but en-

abling WiFi ad hoc requires re-configurations on Android devices, for example, rooting a

device or installing a third-party application. GoCoMo App does not go into the above

issues as they are out of this thesis’s scope, but these issues should be considered when

deploying GoCoMo App for real world use.

4.6.2 GoCoMo Prototype on Ns-3

Figure 4.10: GoCoMo Prototype on NS-3: GoCoMo-ns3

1An Activity provides a screen with which users can get information or interact in order to modify the
local service information or input a composition requirement.

Chapter 4. Implementation 98

Ns-3 is an open-source network simulator based on C++, providing an open, extensible

network simulation platform [Ns-3, 2015]. A ns-3 extension model is a group of classes

providing a specific sets of functionalities, which includes related classes, examples, as

well as tests, and can be used with existing ns-3 modules/models [Ns-3, 2015]. This thesis

describes a ns-3 extension model, named GoCoMo-ns3, build on top of NS-3 platforms,

which realizes most of the GoCoMo middleware modules. In particular, GoCoMo-ns3

includes all the major modules of the GoCoMo middleware, and a part of the utility

modules. The GoCoMo UI module and the Service Manager module are excluded,

because the prototype is designed for evaluating GoCoMo’s performance and feasibility

in a service network, and does not involve actual services’ execution and user interactions.

Figure 4.10 illustrates how the GoCoMo middleware is added to the ns-3 platform as an

extension model and how other ns-3 modules/models work with GoCoMo-ns3 to support

a simulation of the GoCoMo composition process. Further details in GoCoMo-ns3 are

presented in Appendix A2, and the experiment configuration will be introduced in the

next chapter.

4.7 Implementation Summary

This chapter introduces the GoCoMo middleware and two prototype implementations

on the Android platform and the ns-3 platform. The GoCoMo middleware lies between

local services and the network on each composition participant.

The GoCoMo composition is mainly realized by a number of major modules, which

include GClienE and GProviderE to coordinate actions across the global composition

process and the local composition process, respectively. ExeGM and CtrlLogic are used

to generate a service execution workflow, which may include complex control logic if nec-

essary. In addition, GMsgHelper manages all the messages that are used in interactions

between composition participants to exchange information. RoutingHelper controls such

messages’ transmission in a network. Utility modules and UI modules underpin GoCoMo

composition processes by assisting the major modules to operate matchmaking or obtain

context data. Their implementation may differ in varying platforms.

This chapter also describes two prototype implementations for the GoCoMo middle-

ware that are designed for evaluation. The next chapter, based on these prototypes,

Chapter 4. Implementation 99

describes the evaluation of GoCoMo through NS-3-based simulation and a case study in

an Android device network, and presents the evaluation results.

Chapter 5

Evaluation

The previous chapter introduced the GoCoMo middleware and the details of its imple-

mentation, which underpins the GoCoMo composition process proposed in Chapter 3.

This chapter evaluates how well the GoCoMo approach addresses the target environment

by satisfying the required features specified in Section 3.1. Three evaluation objectives

are realised in this chapter:

1 to determine whether the GoCoMo middleware can flexibly reason about a service

composite at runtime, in a decentralised manner, and self-organizes the composite’s

execution and adaptation.

2 to quantify the success of GoCoMo’s service planning, heuristic request routing

and composition adaptation model, in terms of planning and execution failure

probability.

3 to evaluate the performance of GoCoMo, determining its feasibility in a range of

mobile and pervasive networks/scenarios.

This chapter first outlines the evaluation method and a list of evaluation criteria, and

then introduces a case study that achieved evaluation objective-1. After that, a simula-

tion is used to address evaluation objective-2 and -3. The GoCoMo composition process

is examined under different scenarios in mobile and pervasive environments. The validity

of the evaluation results is discussed in B.

100

Chapter 5. Evaluation 101

5.1 Evaluation Methods and Criteria

Given the challenges outlined in this thesis (see Section 1.1), a usable service composition

model for pervasive computing should be able to tackle infrastructure-less networks,

providing a dynamic, decentralized service composition process. The service composition

process itself should be sufficiently time-efficient and adaptable to reduce composition

failures caused by changes to the network and the service topology. This thesis used a

simulation study and a prototype case study to evaluate GoCoMo.

A case study is an observation-based method that investigates a single entity’s activity

within a specific time space [Flyvbjerg, 2006, Wohlin et al., 2003a,b], and can be used

to evaluate the benefits of methods and tools [Kitchenham et al., 1995]. Prototype

case studies relying on real-world pilot implementations can reflect the behaviour of a

model in the real world scenario [Kiess and Mauve, 2007], based on which, the model’s

feasibility, reliability or flexibility can be investigated [Wohlin et al., 2003a]. Many

service composition models and composite adaptation strategies proposed to support

service provision have adopted prototype case studies [Bucchiarone et al., 2010, Mateescu

et al., 2008, Mostarda et al., 2010, Newman and Kotonya, 2012, Poizat and Yan, 2010].

This thesis built a testbed that relies on Android platforms, and deployed a pilot im-

plementation of GoCoMo on the testbed to conduct a prototype case study. Testbeds,

sometimes called experimentation networks, are in-lab networks established and used by

researchers [Hogie et al., 2006]. In general, testbeds have limited scalability in terms of

network size because of the cost of hardware and the monitoring/deployment difficulties,

but capture more aspects that influence the performance of algorithms and protocols

comparing to software-based simulators [Kiess and Mauve, 2007]. The prototype case

study focuses on the following evaluation metrics:

1. Support for pervasive environments where previously cached conceptual compos-

ites are impossible (Challenge 1).

2. Support for infrastructure-less networks and fully decentralized service discovery

and execution (Challenge 2)

3. Support for service composite adaptation when the operating environment is dy-

namic and open (Challenge 3, 4 and 5).

Chapter 5. Evaluation 102

In the domain of decentralized service composition that assumes multiple composition

planners, the network will include a number of real devices that have enough resources

to perform a local planning process. Using a number of real devices is always impractical

in laboratory-scale evaluation studies, making it difficult to demonstrate a model’s per-

formance in a scalable network (i.e., where the number of nodes is equal to or above 20).

Many researchers in the pervasive computing domain, especially those have the particu-

lar focus on mobile ad hoc networks, consider simulation studies as a helpful evaluation

method. The majority of them used only simulations, and several others combined a

small scale (using 5-25 nodes) prototype case study and a simulation study to evaluate

their approach [Liu et al., 2015c].

Simulation studies that take a network simulation as a controlled experiment have been

widely used in service-oriented computing research [Efstathiou et al., 2014a, Kim et al.,

2006]. A simulation-based experiment models an algorithm with a high degree of ab-

straction and performs it in an artificial software environment, which makes the exper-

iment effective, repeatable, controllable, and scalable [Breslau et al., 2000, Kiess and

Mauve, 2007]. Such an experiment relies on the simplification of real-world scenarios,

manipulating a series of environmental or systemic variables to get an algorithm’s per-

formance values in diverse scenarios or under different system configurations. [Wohlin

et al., 2003a,b].

This thesis quantified GoCoMo’s composition failures and performance, to demonstrate

GoCoMo’s advantages in a set of scenarios through a simulation-based experiment. This

experiment used the following evaluation criteria:

4. Planning failure rate: GoCoMo’s success at finding sequential solutions to a goal

request. The service composition/planning failure rate is calculated as the ratio

(∈ [0, 1]) of the number of failed planning processes to the number of all the issued

requests during the simulation cycles. The duration for a client to receive the first

pre-execution plan and the sent messages (system traffic) during this process were

also measured for performance analysis.

5. Execution failure rate: GoCoMo’s success at handling potential failures that may

appear during service execution. In this experiment, the execution failure rate is

computed as the ratio (∈ [0, 1]) of the number of failed executions to the number

Chapter 5. Evaluation 103

of all the successful planning processes, considering different system configurations

(i.e., mobility, and network size). This experiment also included measurements for

execution performance, such as response time for a client to receive the execution

result and the system traffic during this process.

6. The failure rate for composing parallel service flows: GoCoMo’s success at finding

and invoking parallel solutions. Composition failure rates were calculated under

different service availability configurations.

5.2 Prototype Case Study

The prototype case study deployed the GoCoMo middleware in a real world pervasive

network, and discovered the feasibility of GoCoMo’s decentralised backward planning

algorithm and adaptation mechanism. The Android-based prototype implementation is

named GoCoMo App and was introduced in Section 4.6.1 and Appendix A.1.

Testbeds have been used in the MANET domain, and usually realize a network con-

taining less than 50 nodes [Hogie et al., 2006]. With the increasing number of advanced

but expensive mobile devices to be used to support pervasive environments, many re-

searchers have built testbeds on a network involving only a small number (< 10) of such

devices [Hiyama et al., 2012, Kumar and Sam, 2015] to evaluate algorithms or protocols

in MANETs.

This thesis developed a testbed with 8 mobile Android devices marked as Device 0 to

7. Table 5.1 presents the basic information about the devices and their configurations.

The GoCoMo App was deployed on the Android OS with API level from 19 to 22,

running across a range of mobile devices. The devices have diverse computing power

ranging from a CPU speed of 2 GHz and 1GB RAM to a Quad-core 2.5GHz CPU

and 3GB RAM, which covered most mainstream manufacturer brands and best-selling

Android devices. The GoCoMo App was developed to visualise the GoCoMo composition

process at runtime, and the dynamic system performance on each participated device

was monitored by a Android Device Monitor1 embedded in Android Studio IDE. Figure

5.1 illustrates all the devices used in the study and the testbed system in operation.

1http://developer.android.com/tools/help/monitor.html

Chapter 5. Evaluation 104

Table 5.1: Devices used in case studies (M.M: Manufacturer and Model Number, OS:
Android OS version)

Device OS API M.M CPU RAM
0 5.1.1 22 Nexus 7 (2013) Quad-core 1.5 GHz 2 GB
1 5.1.1 22 Nexus 7 (2013) Quad-core 1.5 GHz 2 GB
2 4.4.2 19 SM-N9006 (Galaxy Note 3) Quad-core 2.3 GHz 3 GB
3 5.0.2 21 Motorola G-2 Quad-core 1.2 GHz 1 GB
4 4.4.2 19 SM-N9005 (Galaxy Note3) Quad-core 2.3 GHz 3 GB
5 5.1.1 22 OnePlus One Quad-core 2.5 GHz 3 GB
6 4.1.2 16 Motorola RAZR i 2 GHz 1 GB
7 5.1.1 22 SM-G920F (Galaxy S6) Quad-core 2.1GHz 3 GB

Figure 5.1: All the devices used in the study, and the testbed system in running

5.2.1 Case Study Configurations

This case study adopted 8 devices, 7 of them (device 1-7 in Table 5.1) were service

providers and one (device 0 in Table 5.1) was the composition client. They all installed

the same version of the GoCoMo App. These devices were connected to a desktop that

ran the Android Device Monitor. To demonstrate the feasibility of GoCoMo, a set of

scenarios were used, varying in composition complexity and service availability. The

scenarios used in the study are described in Table 5.2.

The composition complexity was determined by services available in a network. Similar

to those used in [Chen and Clarke, 2014, Kalasapur et al., 2007], the thesis adopted

services that convert alphabets. More specifically, a service sA→B can produce an output

Chapter 5. Evaluation 105

Figure 5.2: Service scenarios used in the case study

of type B if it receives an input of type A [Kalasapur et al., 2007], and is named linear-

service. A service sDF→Z can produce an output of type Z if it receives two inputs of

type D and F [Chen and Clarke, 2014], and is named join-service. The thesis used 8

unique linear-services and 1 join-service in 8 different scenarios (see Table 5.2) in each of

which a subset of these services were deployed on the 7 service providers. Every service

subset supports a particular service flow to transfer data A to Z. The service flows for

the 8 scenarios are shown in Figure 5.2. An individual service provider hosts only one

service, and a copy of a service can be deployed on one or more providers. The case study

achieved diverse composition complexities through different service flows for the same

composition goal, which was for services that can support alphabet transformations from

A to Z. This case study used 4 service flows varying in composition length (the number

of service instances per request).

Service providers’ mobility is one of the most important factor that causes changes

in service availability. However, mobility models are difficult to apply in a real world

implementation. The case study used a Wake/Sleep pattern for service providers to

Chapter 5. Evaluation 106

Table 5.2: Scenarios for the case study, (seq) = sequential service flow, (p) = parallel
service flow, P = probability of Wake state, D = duration of Wake/Sleep state

Scenario
Parameter Configuration 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Services sA→B ? ? ? ? ? ? ? ?
sB→C ? ? ? ? ? ? ? ?
sC→D ? ? ? ? ? ?
sD→E ? ?
sC→Z ? ?
sD→Z ? ?
sE→Z ? ?
sB→F ? ?
sDF→Z ? ?

Service flows 3/A→ Z (seq) ? ?
(service instances 4/A→ Z (seq) ? ?
per request 5/A→ Z (seq) ? ?
/composition goal) 5/A→ Z (p) ? ?

Service availability P=1 (static) ? ? ? ?
P=0.8, D=1s ? ? ? ?

manage their availability. Every service provider has two states: Wake and Sleep, and

the default state is Wake. During the Wake state, the service provider can process

GoCoMo messages and service requests. When the Sleep state gets activated, the service

provider freezes any composition process it participates in, and stops its communication

with any other entities in the network. In other words, during the Sleep state, the service

provider is inaccessible, but still keeps the cached data of composition processes. Each

state’s activation and duration are determined only by the local device, according to a

predefined probability and random variables. As presented in Table 5.2, this study used

static a network that keeps all service provider wake and a dynamic network that allows

service providers to periodically (period(D)=1s) “flip a coin” to decide if they remain

to their current state or activate the other state. The possibility for a ”Wake state” is

0.8 (P=0.8).

In the above scenarios, no centralized knowledge base or central composition controller

was used. In particular, when a GoCoMo system gets initialsed, each service provider

only has information about its own service, which is the only knowledge that can be

used at the start of a local service composition process. Such knowledge is expanded

through interactions with other participants during composition processes. For example,

by joining a testbed network a participant can obtain a list of addresses of its direct

Chapter 5. Evaluation 107

neighbours, and by receiving a GoCoMo discovery message, a participant can get the

path length of discovered composites.

5.2.2 Samples and Results

The case study evaluation measured observed the performance of GoCoMo from each

individual mobile device’s point of view. These measurements contain observations of

two service composition cases. The composition planning case adopted Scenario 1.1-

1.4, using evaluation metric 1 and 2 to assess whether the proposed backward planning

algorithm can support complex composition planning in infrastructure-less networks.

The number of failed planning-based discoveries out of 50 composition attempts were

counted in each experiment. The adaptation case applied evaluation metric 3 in Scenario

1.5-1.8, comparing against a service composition model with no adaptation support, to

assess whether the proposed adaptation mechanism can reduce execution failure in a

dynamic environment. The case study also assessed GoCoMo’s maximal CPU usage

and memory usage on different mobile devices.

5.2.2.1 Composition Planning Case

GoCoMo’s feasibility in a network that is infrastructure-less and requires flexible com-

position planning were demonstrated from the perspectives of both composition clients

and service providers. A composition client measured the overall discovery and execu-

tion failures as well as their response time, and the service providers that participated

in a composition process measured the time spent on local composition planning and

execution.

The composition client initialised a time Tdiscovery for the composition discovery process

after a composition request was sent, and the client detected and recorded a discovery

failure if no composition complete token has been received when Tdiscovery expired (see

Section 3.4.2 on page 60). Execution failures were measured in a similar way and used

an execution time Texe. The response time for service discovery was the duration from

the time a client issues a composition request to the first discovery result being returned

to the client, and the response time for service execution was the duration from the time

a composition invocation token is sent to receiving a composition result.

Chapter 5. Evaluation 108

Figure 5.3: GoCoMo’s feasibility on static networks: (a) discovery and execution
failures out of 50 attempts on a static network, (b) response time for the composition
discovery process and the service execution process

Figure 5.3(a) illustrates the number of GoCoMo’s discovery and execution failures out

of 50 attempts on a static network, and (b) shows the response time. The results show

that GoCoMo was able to compose and execute different service flows depending on

existing services using the same composition goal. It was difficult to avoid failures given

the use of unreliable bluetooth-based communication channels and the limited number

of service providers. The response time was decoupled, and represented by the discovery

time (the green parts in Figure 5.3(b)) and the execution time (the grey parts). The

discovery time was in range of 9.241-12.248 seconds. It was much beyond the tolerable

value for a simple information query of 2 seconds 2. However, this range is around

the upper limit of mobile users’ acceptable waiting time for applications, approximately

7 − 12 seconds [Niida et al., 2010]. Similarly, the length of execution was in range of

7.142-11.992 seconds, and did not exceed the tolerable value for a task operation, 15

seconds 3.

Table 5.3 illustrates the performance of GoCoMo on each individual service provider.

The build time was the time spent on initialising the GoCoMo App, which varis de-

pending on the deployment device’s computation power. The planning time was the

duration of a local composition planning process starting from receiving a composition

request and ending when a fragment of an execution path (a direction in the guidepost,

2A tolerable waiting time for a simple information query is about 2 seconds [Nah, 2004].
3For operating tasks, the waiting time should be within 15 seconds [Miller, 1968].

Chapter 5. Evaluation 109

Table 5.3: Service provider’s time consumption (ms) on each step in the GoCoMo
service composition process, the average number of sent messages and the average size
(byte) of them.

Scenario Device Build Planning Execution Msg Msg size

1.1 2 124 42 34 2 227
3 63 40 31 2 227
4 130 51 39 2 227

1.2 2 118 45 34 2 227
3 58 43 36 2 227
4 136 52 41 2 227
5 80 50 29 2 227

1.3 2 121 41 30 2 227
3 48 42 39 2 227
4 131 47 36 2 227
5 42 70 45 2 227
6 130 40 72 2 227

1.4 1 52 24 47 2 264
2 128 45 29 2 227
3 46 55 32 2 227
4 125 40 23 2 264
5 45 38 49 2 227

see Section 4.4.1 on page 92) is generated. A device started timing the execution pro-

cess right after receiving a service invocation message, and stopped before sending out

a message to invoke the next service. Msg represents the number of messages generated

and transmitted from the device during composition, and Msg size represents the aver-

age size of these messages. The results show that the local composition process itself

is efficient as the average performance time (time spent on planning and execution) for

every device is small (< 200ms). As the evaluation network was established in ad hoc

mode, establishing message transmission channel was slow, which causes the high global

response time (Figure 5.3(b)). Service providers only sent 2 messages, and the messages’

size were 227 (byte), on average. In scenario 1.4, device 1 and 4 generated bigger mes-

sages, 264 (byte) on average. They hosted service sC→D and sB→F , respectively, and

received discovery messages from the device who provided join-service sDF→Z . None of

them can satisfy the goal of data D and F independently, and so device 1 and 4 cached

information about the unfinished goal in their sending-out discovery messages. As a

result, they sent bigger messages.

Figure 5.4 illustrates the overall performance of GoCoMo in different scenarios, where (a)

Max. CPU usage represents the GoCoMo App’s maximal CPU usage in composition

processes, and (b) Max. memory usage represents the maximal memory usage. The

Chapter 5. Evaluation 110

Figure 5.4: GoCoMo’s maximal CPU usage and maximal allocated memory on dif-
ferent devices

results show that GoCoMo’s CPU usage was below 16.04%, and was even smaller on

devices that had more computing resources. The most RAM-costly process occurred

on device 6 (Motorola RAZR i) and 7 (SM-G920F (Galaxy S6)). This is because that

Motorola RAZR i has limited resources comparing to the rest of devices, and SM-

G920F’s processor (Galaxy S6) trades off CPU usage to RAM usage. Although they

were less efficient, their memory usage were only very small portion of the total, 1.1%.

On the other hand, the GoCoMo App implemented GoCoMo’s service provider and

client modules in a integrated architecture. They have the potential to be implemented

as adjustable modules, by which a pure service provider does not have to load the

modules that support a composition client’s behaviour to reduces resource consumption

on resource-constrained devices.

5.2.2.2 Adaptation Case

The adaptation case compared GoCoMo’s adaptable composite against a service com-

position model using static composites, and measured composition response time and

failure numbers. The results are shown in Figure 5.5. Overall, the failure rate for the

two approaches increased with longer composites and more complex control logic. In

addition, comparing to the results illustrated in Figure 5.3(a), GoCoMo produced more

failures in scenarios (1.5-1.8) with dynamic service availability, but GoCoMo had less

Chapter 5. Evaluation 111

Figure 5.5: GoCoMo’s feasibility on on dynamic networks: (a) discovery and execu-
tion failures out of 50 attempts on a static network, (b) response time for the composi-
tion discovery process and the service execution process

failures than the static composite approach. The static composite approach’s response

time in scenario 1.5-1.8 was similar to that of GoCoMo in scenario 1.1-1.4 (Figure 5.3(b)).

However, GoCoMo, in scenario 1.5-1.8, took longer to return a composition result than

the static composite approach. This is because GoCoMo adapts the execution path

when a selected one becomes unavailable, which requires re-invoking services, taking

extra time.

This case study has demonstrated how GoCoMo addresses this thesis’s challenges by

supporting dynamic planning and self-organised service composition. The composition

planning case showed that GoCoMo can reason about different service flows according

to services available in the network, and the composition response time was acceptable.

Given a slow messaging channel was used in this case, the response time has the potential

to be further reduced by employing an advanced wireless protocol with fast transmission

like WiFi or UWB4.

As the case study adopted a small scale scenario, and a short distance transmission

technology, this study did not include an analysis on GoCoMo’s scalability or an investi-

gation into GoCoMo’s heuristic service discovery model. Moreover, the ad hoc network

used in this study is static, so only unanticipated service availability was modelled, leav-

ing the issue of dynamic network/service topology to be explored [Chen and Clarke,

2014]. The global composition performance of GoCoMo in environments with dynamic

4A transmission on WiFi channel and on UWB channel can be about 75 times an 154 times faster than
that on a Bluetooth channel, accordingly [Lee et al., 2007].

Chapter 5. Evaluation 112

Table 5.4: Simulation Configuration: General

General

Simulator NS-3
Clients 1
Communication range 250 (m)
Field 1000*1000 (m2)
Service deployment 1 service per node
Semantic matchmaking delay 0.2 (s) [Klusch, 2012]
Composition discovery 1-hop broadcast
Service routing dynamic AODV 10-hops
Sample 300 runs

Random

Node placement Random
Service execution time 0.01-0.1 (s)
Node movement random walk mobility model

network/service topology and the large scale scenarios are analysed using a simulation

study, and presented in the next section.

5.3 Simulation Studies

Software-based simulations have been widely accepted in MANET research as an eval-

uation method [Hogie et al., 2006]. Such simulations are low-cost, scalable and capable

of modelling devices’ different mobility behaviours.

5.3.1 Environment Configurations

This thesis used ns-3 platform for its simulation, and deployed GoCoMo-ns3 (see Section

4.6.2 and Appendix A.2) in a system with Intel Core i7-2600, CPU 3.4GHz, 8G RAM,

running the Ubuntu 12.04.5 Desktop(32-bit).

5.3.1.1 General Settings

The experiment setting for this simulation were chosen according to recommendations

[Kotz et al., 2004] for MANETs. Specifically, the simulation used AODV5 for service

routing and, for simplicity, considered only 2-dimensional 1000*1000 (m2) terrain. The

other settings like the number of nodes and communication distance refer to state of the

5See Ad-hoc on-demand distance vector routing in [Perkins and Belding-Royer, 1999]

Chapter 5. Evaluation 113

art research for MANETs [Groba and Clarke, 2014, Li et al., 2015], as shown in Table

5.4.

Mobility Model and Node Topology. In the simulation, a random position is

assigned to each node when an experiment gets initialised. The movement of a node

during the experiment is controlled by a 2D random walk mobility model. In this

mobility model, a node’s movement is determined by a previously assigned speed as

well as a constant time interval or a constant travel distance. At the end of the time

or the distance, the network simulator calculates a new direction and speed for the

node. All the nodes created in the simulation communicate using WiFi 802.11b in ad

hoc mode. The communication range(distance) used in the simulation refers to outdoor

WiFi communication distance, up to 250(m).

Services. The simulation creates a number of nodes during initialisation. One of

them is a service client, and the rest are service providers. The simulation assumed a

network with a low composition demand (one composition request each run), since the

current version of GoCoMo does not provide a mechanism that addresses invocation

failures caused by multiple composition processes competing for one service provider.

Each service provider hosts one service, which is assigned a random execution time

ranging from 0.01(s) to 0.1 (s). The number of and the type of services are scenario-

specific. Every individual evaluation scenario contains a number of different services

and their duplicates, one per service provider (node). The simulation used alphabet

transformation services that are similar to that were used in the case study introduced

in Section 5.2.1. The simulation adopted a fixed semantic matchmaking delay [Klusch,

2012] to minimise the variance performance of the GoCoMo composition process caused

by different delays, easing the measurement of response time.

5.3.1.2 Evaluation Scenarios

GoCoMo was simulated with configurations that differ in their service density, node

mobility and the complexity of service composition. These configurations included a

set of controlled variables that define 4 different scenarios. Table 5.5 illustrates these

scenarios marked from 2.1 to 2.4. The two columns on the left represent configuration

parameters and their values.

Chapter 5. Evaluation 114

Environmental configuration. The simulation defined service density ranging from 20 to

50 nodes and mobility including speed intervals 0-2 (human walking), 2-8 (slow vehicles)

and 8-13 (motor vehicles) m/s for random value taking. The type of service flows are the

potential order and structure of discovered services that may be formed by a composition

planning model according to these services’ I/O dependency. Sequential service flows

are the basic structure of a service composite, and contains only linear-services. Parallel

and hybrid service flows include join-services, and are complex because of their control

logic, but need to be flexible in some cases like when aggregation of data from different

sources is needed. The simulation used different sets of services. For example, consider

a scenario consisting of 5 different services, where a copy of each service can be deployed

on one or more nodes in the network. In such a system, service composition could entail

anything from 2-5 services involving multiple alternatives for each service.

The number of service instances per request refers to the complexity of a requested

service composite, defined in composition requests. This simulation measured 5-service-

instance composites and 10-service-instance composites in a scenario consisting of 10

different services. It also measured 5-service-instance composites in parallel execution

flows in scenarios consisting of 5-15 different services. GoCoMo defines a composition

request using input data and goals rather than conceptual composites (see Definition 2 on

page 60) and assumes a client has no knowledge about the service availability in its local

environment. So generally, a client cannot foresee the final composed service composite’s

complexity at the beginning (i.e, when issuing the request). The simulation controlled

such complexity by initialising a service network containing a particular set of services,

and measured network traffic and response time when resolving service composition in

different complexities.

System configuration. To enable separate measurements on the performance of Go-

CoMo’s composition planning model, execution model, and heuristic discovery model,

the simulation also included configurations on GoCoMo itself. GoCoMo’s heuristic dis-

covery model (see Section 3.4.3) uses a value to represent the model’s interference degree

(see d in Equation 3.5 on page 73), which indicates the model’s influence on request

flooding, and is determined by local network properties (e.g., the number of direct

neighbours). In general, all the service providers (nodes) cannot have the same local

network properties, e.g., equal in the number of neighbours, since the nodes are owned

Chapter 5. Evaluation 115

Table 5.5: Scenarios for the simulation

Scenario
Parameter Configuration 2.1 2.2 2.3 2.4

Environmental configuration

Service density 20 (sparse) ? ? ? ?
30 (medium-dense) ? ? ? ?
40 (dense) ? ? ? ?
50 (extra-dense) ? ? ?

Mobility (m/s) 0-2 (slow) ? ? ?
2-8 (medium-fast) ? ? ? ?
8-13 (fast) ? ? ?

Type of service flows sequential ? ? ? ?
parallel ?
hybrid ?

Type of services 5 ?
10 ? ? ?
15 ?

Service instance per request 5 (simple request) ? ? ?
10 (complex request) ? ? ?

System configuration

Service composition composition planning ? ? ? ?
execution ? ? ?

Heuristic level 5 (strong interference) ?
(interference degree) 4 ?

3 ?
2 ?
1 (weak interference) ?
0 (no interference) ? ? ? ?

by third-parties, not distributed evenly, and dynamically change their positions. Ser-

vice providers in the same network are likely to have different interference degrees, and

the interference degree for each service provider changes over time. This simulation

simplified this, and made all the service providers share the same interference degree

to evaluate how varying interference degrees affect the GoCoMo composition model in

different environments. This study used 6 degrees of interference signed from 0 to 5, and

degree 0 means that GoCoMo has no interference on flooding, which means the request

flooding is uncontrolled. Degree 5 represents the highest interference degree.

Scenario 2.1 Composition length, mobility and network density’s influence

on the flexibility of service planning

This scenario investigates how the composition length, mobility and network density

impact the flexibility of service planning. This scenario used 10 different services, two

Chapter 5. Evaluation 116

levels of request complexity: 5-service and 10-service composite, and sequential service

flows. GoCoMo is configured to support composition planning and using uncontrolled

request flooding. In this scenario, planning failure rate, the number of sending messages

and response time were measured.

Scenario 2.2 Composition length, mobility and network density’s influence

on the flexibility of service execution

This scenario explores how the composition length, mobility and network density impact

the flexibility of service execution. This scenario has the same environmental configura-

tion as Scenario 2.1, and configures GoCoMo to support a full functionality of service

composition including composition planning and execution. Similar to Scenario 2.1, its

request flooding is uncontrolled.

Scenario 2.3 Impact of heuristic service discovery

This scenario investigates how GoCoMo’s different interference degrees affect the flexi-

bility of the composition discovery process. This scenario used complex requests since

complex requests lead to more service providers participating in the request resolving

and in turn are likely to generate more discovery messages. Controlled flooding is de-

signed to reduce message transmission, which in turn reduces message loss caused by

packet collision6. This scenario employed all 6 interference degrees to demonstrate how

the heuristic service discovery affects the failure rate and the system traffic in a set of

environments.

Scenario 2.4 Impact of environment including complex service flows

Composites containing different service flows may increase the chance of more service

providers being used to solve a request. It may also improve the quality of the final

result were used. This scenario explores the impact of environments including complex

service flows.

6See Section 5.3.3.2 for packet collision

Chapter 5. Evaluation 117

Table 5.6: Comparison of the baseline CoopC with proposed GoCoMo

CoopC GoCoMo

Composition planning Traditional backward Backward supports parallel
Service invocation Decentralised Decentralised
Request routing Broadcast flood Heuristic broadcast
Dynamic binding QoS-driven On demand
Fault tolerance N/A Dynamic recovery

5.3.2 Baseline approach

For the proposes of establishing a good baseline against which to compare GoCoMo,

this study has combined state-of-the-art functionality. In particular, a decentralised co-

operative discovery model [Furno and Zimeo, 2013] combined with a continuing message

passing model [Yu, 2009] that enables decentralized service invocation. This baseline

approach is referred to as CoopC in the following sections. Note that there are service

composition approaches [Groba and Clarke, 2014, Kang et al., 2008, Pirrò et al., 2012,

Prinz et al., 2008] related to this research, but the simulation did not consider them as

baseline approaches because their composition discovery processes are workflow-driven,

which is inflexible (see Section 2.3.3 on page 34).

CoopC’s cooperative discovery employs a traditional backward goal-driven service query

and forward service construction mechanism. It generates a sequential service flow as

the discovery result. However, CoopC’s offline approach to service planning means

that it does not support run-time service composite adaptation. Unlike the cooperative

discovery model used as an input to CoopC [Furno and Zimeo, 2013, 2014], this study has

implemented CoopC to start service execution when the first pre-execution plan is found.

The plan is passed through the service execution path to indicate which service will be

invoked for subsequent execution. This makes CoopC and GoCoMo more comparable

when measuring response time. In addition, the latest version of CoopC assumes that

a semantic service overlay network is previously cached to facilitate service discovery

[Furno and Zimeo, 2014]. Given the infrastructure-less nature of our target network,

this study went for an early version of CoopC [Furno and Zimeo, 2013] that uses request

flooding for service discovery instead of the overlay infrastructure. CoopC’s service

execution was based on a decentralised message-passing model [Yu, 2009] that passes

an invocation message from one service to its successive service. Yu [2009] recovers a

failed execution process by giving the failed service a second attempt, which is controlled

Chapter 5. Evaluation 118

Figure 5.6: Planning failure rate in mobile networks: (a) 5 service instance per
request, (b) 10 service instance per request, and (c) the failure rate deviation between
(a) and (b)

by a scope manager that maintains run-time status information about the services in

its responsibility scope. CoopC implemented this execution model [Yu, 2009] in an

infrastructure-less network, so such a scope manager and the retry-based failure recovery

was not adopted. Table 5.6 illustrates the difference and similarity between CoopC and

GoCoMo.

5.3.3 Simulation Results and Analysis

5.3.3.1 Flexibility of Service Planning

This study applied scenario 2.1, and measured planning failure rate in the simulated

target environment, to quantify the flexibility of service planning. The failure rate and

the GoCoMo composition planning model’s performance are illustrated in Figure 5.6,

Figure 5.7 and Figure 5.8. On finding pre-execution plans, GoCoMo shows a higher

Chapter 5. Evaluation 119

Figure 5.7: The mean and standard deviations for the discovery time in mobile
networks: (a) 5 service instance per request, (b) 10 service instance per request

Figure 5.8: The mean and standard deviations for the discovery traffic in mobile
networks: (a) 5 service instance per request, (b) 10 service instance per request

Chapter 5. Evaluation 120

possibility of returning a pre-execution plan than CoopC (Figure 5.6(a) and (b)). In

particular, with the increasing complexity of service composition (Figure 5.6(c)), Go-

CoMo raised about 0 − 6% failures while CoopC raised approximately 0 − 8% failures

in most of the scenarios. The results also show that GoCoMo discovery spent less time

than CoopC to return the first pre-execution plan (Figure 5.7), but it sent slightly more

messages than CoopC’s discovery model (Figure 5.8(b)) to resolve a simple request in

the sparse scenario (20 nodes) and the medium-dense scenario (30 nodes).

GoCoMo discovers more quickly, since it is not like its counterpart that requires one

more step to finish the service discovery process, which constructs a pre-execution com-

posite by forwarding a construction message to all the participant service providers after

the backward service query. GoCoMo allows the fragments of execution plans to be se-

lected and cooperate at execution time. GoCoMo produces slightly more traffic in some

scenarios as it discovers more service links to find various possible execution paths for a

single pre-execution plan.

5.3.3.2 Adaptability of Composite Services

A composite solution is adaptable if the system is able to compose solutions and complete

service execution even in a mobile environment. The execution failure rate was calculated

to show such adaptability for GoCoMo and CoopC. In this simulation, scenario 2.2 was

used, and both of the approaches are implemented such that service execution starts

immediately when the first pre-execution plan is returned to the client.

For execution failure rate (Figure 5.9) GoCoMo is more successful compared to CoopC

in sparse networks for most scenarios (20 nodes) and also in dense networks (30-50

nodes). CoopC produced heavy system traffic during service execution (see Figure 5.11)

when service density increases. This is because when the first returned plan is applied

for execution, CoopC may still have participants that are performing service discovery

(mainly in the forwarding process for service construction). Such system traffic occurs

at anytime less than t, for t ∈ [0.55, 5.3]s, which indicates a frequent interaction between

composition participants7. Frequent interactions in a network increases the possibility

of high packet collision failures Lipman et al. [2009] Jun et al. [2010]. Therefore, CoopC

7Service execution time interval [0.55, 5.3]s is calculated by removing the time spent on discovery (in
Figure 5.7) from the response time (in Figure 5.10).

Chapter 5. Evaluation 121

Figure 5.9: Execution failure rate in mobile networks: (a) 5 service instance per
request, (b) 10 service instance per request

Figure 5.10: The mean and standard deviations for the response time in mobile
networks: (a) 5 service instance per request, (b) 10 service instance per request

Chapter 5. Evaluation 122

Figure 5.11: The mean and standard deviations for the overall traffic in mobile
networks: (a) 5 service instance per request, (b) 10 service instance per request.

had more failures even though service density is increased. Although GoCoMo had

the same tendency when service density increases from 40 to 50, in general, GoCoMo

produced less failures than CoopC in dense networks. Starting service execution after

the service discovery process leads to all participants reducing some interactions in the

service execution process, which may prevent such frequent interactions, but it delays

the service composition process, which may cause even more fails because of service path

loss in a mobile environment Groba and Clarke [2014] Groba and Clarke [2011]. With a

high service density (e.g., above 40 services), GoCoMo in a fast mobility network returns

about 0− 17.33% more fails than in a medium-fast mobility network or a slow mobility

network. In a low service density network (e.g., a network with 20 services), the failures

increase to 4.67 − 25.33%. This is because low service density networks only have a

limited number of services in a node’s communication range, which makes it hard for

GoCoMo to find alternative service execution paths to replace failed paths.

For service execution performance, the response time was measured and the system

Chapter 5. Evaluation 123

Figure 5.12: Interference degrees affect failure rates

traffic for a composition process was counted. The results (Figure 5.10 and Figure 5.11)

show that GoCoMo processes service composition more quickly than CoopC approach

in high density scenarios and is less affected by service density. In highly dynamic

(fast) networks, the time spent on service composition for GoCoMo increases slightly

faster than that in slow networks. This is because execution failure recovery requires

jumping back to an executed node. Figure 5.11 shows that GoCoMo generates less

traffic compared to CoopC, because CoopC merges all the partial plans during service

discovery, which increases interactions among participants.

5.3.3.3 Impact of Heuristic Service Discovery

GoCoMo applied a heuristic service discovery mechanism. The selection of the interfer-

ence degree may affect the results for returning a composition solution. Because a low

interference degree can lead to more discovery messages that may increase the possibil-

ity of packet collisions and packet loss [Lipman et al., 2009], and in turn composition

failures, while a high interference degree in some cases may result in a limited discovery

scope, and are likely to increase discovery failures. A test used scenario 2.3 was run

to measure this influence, which assumed all the nodes in the network use the same

interference degree for simplicity. The test applied 6 levels of heuristic discovery from

0 to 5. Level 0 means there is no interference, and the level 5 process used the highest

interference degree. Figure 5.12 shows that, in a medium-dense network (30 services)

with medium-fast mobility, a high discovery interference (i.e., 5) will reduce composition

failures. This is because, in such a dense network, even a small search scope can support

Chapter 5. Evaluation 124

Figure 5.13: Interference degrees affect the system traffic

enough backup execution paths for failure recovery, while it sends less query messages

than its high level counterparts, which reduces the potential for packet collision failures.

Figure 5.13 illustrates the system traffic in a medium-fast network with different inter-

ference degrees and service density. As shown in Figure 5.8 and 5.11, service providers’

mobility has very limited impact on GoCoMo’s system traffic, and so this simulation

only presents GoCoMo’s system traffic in a medium-fast network as a representative case.

The result shows that a high discovery interference can reduce system traffic, especially

in a dense service network. However, in a sparse service network, a high interference

degree can increases composition failures (Figure 5.12), as it may imply a comparatively

small search scope.

5.3.3.4 Planning Complex Service Flows

The evaluation scenario (scenario 2.4) for assessing the support for complex service flows

contains one client node and 5-15 different atomic services and their duplicates, one per

service provider. These atomic services vary in the type and the number of their input

and output parameters. This reflects that when service instances engage in a workflow,

each may have multiple, differing in-degrees and out-degrees8. The potential service flows

constructed by these atomic services for a composite service is illustrated in Figure 5.14.

These service flows connect participating services relying on their data dependency,

which include sequential workflow models (model a), parallel workflow models (model

8In-degree and out-degree indicate the number of connections entering and leaving a workflow node,
respectively [Kiepuszewski et al., 2000].

Chapter 5. Evaluation 125

Figure 5.14: Potential service flow for a composite service that supports data transi-
tion: X →Y

Figure 5.15: Failure rate for the data transition (X →Y) request

c and d), and hybrid workflows (model b) [Kiepuszewski et al., 2000] [Liu and Kumar,

2005]. Each of them includes 5 service instances. All the service flows start and end with

the client node that issues a service query, looking for a service composite that converts

data X to Y . GoCoMo’s failure rate on scenarios that contain the different kinds of flows

are shown in Figure 5.15. It was simulated under medium-fast networks. On returning

Chapter 5. Evaluation 126

solutions (Figure 5.14), GoCoMo supports scenario c the best, and has more failures

in the scenario with type-d services. CoopC supports only type-a (sequential) services,

and so only GoCoMo results are illustrated.

5.4 Evaluation Summary

This chapter outlined GoCoMo’s evaluation, including a prototype case study and a

simulation-based experiment. The evaluation used a set of criteria driven by this thesis’s

challenges. In the prototype case study, GoCoMo’s feasibility in dynamic environments

that have no conceptual composite or composition infrastructure was demonstrated.

The simulation demonstrated GoCoMo’s success in the target environment, indicated

by planning and execution failure rate, response time and system traffic.

The case study in this chapter measured CPU consumption and memory usage, and took

them as the main factors that affect a model’s feasibility on mobile devices. It would

also be interesting to measure service providers’ energy consumption as the battery

is a constrained resource to mobile devices. However, the case study used a Android

Device Monitor running on a desktop, which requires a device to be plugged into the

desktop’s USB port. This means all the devices were charged during the experiment,

and so battery consumption was not measured. On the other hand, the major energy

consumer is wireless communications and screen. The GoCoMo App used in the case

study keeps the screen active to display run-time information for evaluation, but it can be

implemented as a background task. The power consumed when sending a message over

a Bluetooth channel is about 0.145J/Kb [Lee et al., 2007]. The case study results have

shown that the required message communication is 2 messages ∗ 227(byte) on average,

and so the GoCoMo composition process only requires a very small battery power.

In the simulation result, GoCoMo shows a reduction in communication over a selected

related approach, and with an average 2 messages for each participant using controlled

request flooding. In the worst case (i.e., uncontrolled request flooding in Figure 5.13),

there are an average 10 messages per node in a sparse network, 20 messages in a medium

dense network, and 32 messages in a dense network sent during a service composition

process. The power consumed when sending a message over a WiFi network channel is

Chapter 5. Evaluation 127

about 0.012J/Kb [Lee et al., 2007]. This thesis concludes that reasonably small battery

power is required for the GoCoMo composition process.

Scenarios with a high service composition demand were not investigated. Such scenarios

indicate multiple clients. GoCoMo uses on-demand binding and does not check a ser-

vice’s availability immediately before invoking the service. Service invocation is likely to

fail when the required service is currently occupied by another composition process. As

a service composition process locks a service provider’s resource only when it is execut-

ing the required service, the length of a service’s unavailability depends on the duration

of the service’s execution, which is normally predictable. Depending on a prediction of

unavailable time, queuing up invocation messages when the time is short or otherwise

re-selecting a service provider may solve the service invocation failure led by occupied

service providers.

Chapter 6

Discussion and Conclusion

The research presented in this thesis has investigated a novel model for software service

provision in mobile and pervasive computing environments. In particular, the research

has focused on providing solutions to the challenges of composing services from multiple

mobile devices, which behave in a decentralized fashion and adapt to network changes.

A novel service composition model named GoCoMo that targets several service provision

issues occurring in open and dynamic pervasive environments was proposed.

This chapter summaries the achievements of the research and its contributions to knowl-

edge, discusses GoCoMo’s trade-offs, and highlights potential areas for future work.

6.1 Overview of Thesis Achievements

Introduction Chapter 1 described the motivation of the thesis that arose from new

challenges of service composition in mobile and pervasive computing environments. This

thesis was especially concerned with the openness and dynamism features of the en-

vironments. The chapter argued that requests for complex functionality in a smart

public space can be supported by the composition of services from a number of mobile

devices located in the vicinity of the requester. However, such a dynamic, open com-

puting environment can negatively impact the service composition process. Challenges

include inadequate conceptual composites, limited system knowledge, unpredictable ser-

vices availability, unreliable wireless communications, and dynamic composition links,

128

Chapter 6. Discussion and Conclusion 129

making the discovery scope limited or service execution unstable, and therefore, compo-

sition failures can occur. The chapter analyzed the most related solutions and claimed

that the existing service composition model are not flexible enough to fully address

these challenges. Based on the analysis on the state of the art solutions, a hypothesis

was proposed, which assumed that a novel service composition model could reduce the

composition failure probability, by dynamic composition planning that engages a big

scope of potential service providers, through heuristic services discovery that reduces

unnecessary system traffic, and using adaptable workflow-based composites that enable

flexible execution and fast but low cost failure recovery.

State of the art Chapter 2 reviewed the state of art research in depth, and used a tax-

onomy that covered the most related aspects of a service composition process, containing

when and how to locate a provider, what routes a request to a destined service provider

or a composition manager, how to resolve a composition request, when a service will

be bound for execution, how to execute services in decentralized ways, and when and

how a failure can be recovered. As a result, the chapter claimed that the combination

of dynamically controlled request flooding, goal-oriented planning, on-demand service

binding, self-organized composition and dynamic failure recovery can provide a promis-

ing solution to the research presented in the thesis. However, existing approaches fail

to bridge the gap between the solution and the target environment, as they are either

inflexible about service discovery and planning or have limited adaptability.

Design Chapter 3 presented GoCoMo. To address the above issues, the thesis outlined

a number of design requirements that GoCoMo must fulfill, and designed GoCoMo

using a set of design concepts that entirely satisfy the requirements. More specifically,

first, GoCoMo designed a planning-based composition announcement that allows service

providers to update and pass a composition request to discover a service composite hop

by hop, and only announces the finished composite to the requester. Second, GoCoMo

dynamically controls request flooding according to the density of each service provider’s

neighbour services and the global service discovery and execution’s time constraints,

which trades off discovery scope with system traffic. Third, a flexible backward planning

was designed to enable parallel and hybrid service flows when they are necessary. Fourth,

GoCoMo selects service providers based on the estimated path reliability. Such path

reliability values are calculated during service discovery and differ in every participant.

Fifth, GoCoMo used dynamic service binding and only locks a service provider’s resource

Chapter 6. Discussion and Conclusion 130

during the service’s execution. Sixth, to adapt a composed service and engage the newly

emerged service provider, GoCoMo allows service providers to proactively announce their

available services. Composition participants receive such announcements and invite

appropriate service providers to participate in a composition process. Last, service

providers in GoCoMo only maintain execution paths linking to their subsequent services.

The admission of service execution control is passed from one service provider to another.

Implementation The implementation of GoCoMo was presented in Chapter 4. Go-

CoMo was realised as an application layer middleware that connects services that are

deployed in different devices by composing them according to their I/O dependency.

The middleware’s modules and the inner-module implementation were specified in the

chapter. The chapter also included two prototypes of GoCoMo, GoCoMo App and

GoCoMo-ns3, that implemented the modules in the GoCoMo middleware, and were

used for evaluation.

Evaluation The evaluation of GoCoMo was described in Chapter 5, which showed Go-

CoMo’s suitability and limitations in dynamic pervasive computing environments, and

included two detailed evaluations, a prototype case study and a simulation. The proto-

type case study deployed GoCoMo App in a testbed composed by a set of real mobile

devices, measured its performance on each individual devices, and demonstrated that

GoCoMo can flexibly compose a number of diverse functionalities (services) deployed

in diverse Android-based mobile devices to support a user’s request. The simulation

adopted 4 different scenarios and ran GoCoMo-ns3 in these scenarios. Results illus-

trated that GoCoMo is more flexible in terms of composition discovery/planning, and

service execution, comparing to a service composition approach that also supports com-

position planning (baseline). In addition, GoCoMo produced less system traffic and

spent less time on the service composition process. However, GoCoMo, similar to the

baseline approach, does not solve the invocation collision problem that may occur when

the demand for composition is high.

In summary, the thesis has presented a novel service composition model that does not

rely on a conceptual composite, uses only local service knowledge, has low composition

failure probabilities, and produces acceptable system traffic in environments where ser-

vice providers are mobile, and service availability are unpredictable. The thesis’s main

contribution can be concluded as:

Chapter 6. Discussion and Conclusion 131

• A heuristic service discovery model that uses a composition’s time-constraints de-

fined by the composition requester and network properties, like node density, to

prevent composition request flooding an infrastructure-less service provisioning

network, while discovering sufficient potential service providers for the composi-

tion.

• A decentralized composition planning model for service composition that relies on

an extension of goal-driven planning, supporting sequential, parallel and hybrid

service flows.

• A composite adaptation and execution mechanism that is based on a novel notion

for decentralized service execution: execution guideposts and directions, which

offers more flexibility for composition participants when selecting a service provider

to execution at runtime.

6.2 Discussion

GoCoMo generally reduces the failure rate of service composition in dynamic, open

pervasive computing environments. Specifically, flexible compositions of services are

possible by using the proposed goal-driven composition planning model, and the impact

of changes in the operating environments can be reduced by GoCoMo’s adaptation and

execution mechanism with a reasonable cost. This section discusses open issues that

have not been targeted in the previous chapters but are essential in some cases.

6.2.1 Service Flows

GoCoMo is designed for mobile and pervasive computing applications that require mul-

tiple participants, and run in dynamic ad hoc environments. GoCoMo allows the generic

processes of smart public spaces for pervasive computing, like multiple-source informa-

tion querying, mobile-sensing, data aggregation, and in-network data processing to be

planned and executed in a decentralized manner. It also raises the potential for more

complex functionalities like the messaging-based concierge service [Shaffer and Keav-

eney, 2012] [Breau et al., 2013] to be applied in pervasive computing environments.

Chapter 6. Discussion and Conclusion 132

However, when executing a parallel service flow, GoCoMo selects a join-node before the

parallel service flow gets invoked. This makes it costly to recover a parallel service flow

comprising long branches when the selected join-node is missing, as re-selecting a join-

node has to go back to the beginning of the branch (see results in Section 5.3.3.4). In

addition, as service flows that include iterative logic have not been addressed, GoCoMo

does not suit applications that imply iterative transactions, such as e-commerce and

intelligent control.

6.2.2 Privacy and Security

The work in this thesis relies on services that are likely to be offered by third-party

providers to resolve users’ request and process their data. With regard to privacy and

security concerns, a trustworthy service provider network is assumed in this research,

or service selection should be based on services’ trustworthiness levels, represented by

data from off-device authorities like reputation ratings [Mallayya et al., 2015] or reviews.

GoCoMo does go some way towards privacy and security issues because of its backward

planning model. In general, hop-by-hop processing may expose the overall control and

dataflow to assigned providers. GoCoMo’s backward composition model partitions the

dataflow and the composition requester’s goal. In particular, a service provider cannot

see the whole data flow and the requester’s data is not visible to the full service-flow’s

provider (i.e., the ending services’ provider). In a network where individual service

providers do not share any data except for those that are essential to finishing a com-

position process, the backward composition model can prevent an entire dataflow or

service flow being exposed to any service provider.

6.2.3 Semantic Matchmaking

GoCoMo discovers services with a combination of multicast routing and constrained

flooding. Semantic matchmaking is assumed for service matching, though no semantic

matchmaking infrastructure is required for service discovery, e.g., pre-established seman-

tic overlay [Pirrò et al., 2012]. This implies that dynamic matchmaking is used, which

matches local services to a received composition request at runtime. GoCoMo searches

for services by dynamically matching the composition goal provided by a client to the

input/output (I/O) parameters of a service, but no specific matchmaker (e.g., iSeM,

Chapter 6. Discussion and Conclusion 133

OWLS-SLRlite, COV4SWS, etc.) or Semantic Overlay Networks (SON) is assumed

in this work. The feasibility and performance of different semantic matchmakers has

been studied by Klusch [2012], and are outside the scope of this thesis. A SON may

introduce maintenance overhead to the system, however, semantic dependency overlays

[Chen and Clarke, 2014] have the potential to be used to support the discovery model

described in this thesis, and may achieve more efficient service discovery in a partic-

ular scenario where dynamic semantic matchmaking is time intensive. However, for

resource-constrained devices, the cost of maintaining a semantic overlay network, may

make participation in such an open, sharing model infeasible. A mechanism that can

cope with fast and lightweight semantic matchmaking is still required.

6.2.4 High Composition Demand

GoCoMo uses planning-based composition announcements, which means service providers

decide whether or not to participate in a composition process to reason about a com-

posite and provide services. GoCoMo’s service selection is based on execution path’s

reliability. A popular service provider is likely to be subscribed frequently, and so may

have to maintain many execution guideposts for different compositions at the same time,

such a service has, as a result, a high probability of being unavailable. If it is possible,

such kinds of services should be avoided as a primary service at service binding and

invocation.

On the other hand, in a network with a high composition demand, selecting a popular

service for execution is probable, as a lot of service providers may be over-subscribed.

It is worth exploring how to optimise the schedule of service invocation requests for

different composition processes, to minimise the length of a service’s unavailability.

6.3 Future Work

The current version of GoCoMo suggests using existing semantic matchmaking mod-

els, but GoCoMo’s prototypes only implemented a syntactic matchmaker. Current se-

mantic matchmakers that have been employed by service composition approaches are

generally based on centralized ontology bases [Hibner and Zielinski, 2007, Oh et al.,

2008, Ren et al., 2011, Rodriguez-mier et al., 2012], rely on infrastructures which are

Chapter 6. Discussion and Conclusion 134

insufficiently flexible [Davidyuk and Georgantas, 2011, Fujii and Suda, 2005, Mokhtar

et al., 2008, Pirrò et al., 2012] or allow for dynamic infrastructure-less matchmaking but

resource-consuming [Klusch, 2012]. Further work can be done on supporting semantic

matchmaking that are lightweight and flexible.

GoCoMo mainly considers service execution time as the QoS attribute and the length

of the link as the factor that influences path reliability. More attributes like service

reputation and bandwidth can be added to the context. Further research on modelling

path reliability in the target environment with more QoS attributes will be required

to support more exhaustive reliability estimation, resulting in possibly less composition

disruption.

This thesis focuses on the application-level and addresses the combination of services

instead of devices. Service composition can combine services from different devices or

the same device. Existing research [Bianchini and Antonellis, 2008] distinguishes the link

that connects services in the same device and that connects services in different devices

as inter-peer links and intra-peer links, respectively. Inter-peer service connections and

the management of them has not been studied in the thesis. Analysis of different inter-

peer link estimation and management mechanisms [Prinz et al., 2008] will be needed to

improve the flexibility of GoCoMo.

Appendix A

Further Implementation Detail:

Prototypes

A.1 GoCoMo App

GoCoMo App is an Android application that supports service provision in bluetooth-

based ad hoc networks. It includes a prototype implementation of the GoCoMo middle-

ware and a visualization module, making service provisioning lightweight and flexible.

GoCoMo App supports two groups of users: composition clients and service providers.

The main features of GoCoMo App are illustrated below:

• Supports most of GoCoMo’s functionalities and behaviours, including composition

request generation and issue for composition clients, local composition planning,

decentralised composition execution and adaptation, and service advertising/invit-

ing.

• Compatible with Android devices with API level 16 and above.

• Visualises message transmission and the local composition process.

Figure A.1 illustrates the class diagram of GoCoMo App. The message builders were

presented in Figure 4.8 on page 95 in Chapter 4. The orange line wraps the group of

classes introduced in the GoCoMo middleware, and the rest of the classes and packages

supports functions like wireless communication and process visualization.

135

Appendix A. Further Implementation Detail: Prototypes 136

Figure A.1: GoCoMo App’s class diagram

GoCoMo App did not implement GoCoMo’s heuristic discovery model because BlueHoc,

the ad hoc network used in GoCoMo App, does not support multi-hop transmission or

dynamic routing. GoCoMo App can be extended to support the heuristic discovery

model in Android 5.0 Lollipop (API 21) and above versions as these Android versions

allow applications to directly control Bluetooth for broadcasting. GoCoMo App used

JSON data to store the Guidepost object, and XML-based descriptions to specify Go-

CoMo messages. Figure A.2 and A.3 illustrate an example of a running service provider

and a running composition client.

Appendix A. Further Implementation Detail: Prototypes 137

Figure A.2: GoCoMo
App: an running device
that acts as a service
provider

Figure A.3: GoCoMo
App: An example of a
GoCoMo message

A.2 GoCoMo-ns3

GoCoMo-ns3 works with ns-3 system modules, simulating the GoCoMo composition

process in a WiFi ad hoc network. As illustrated in A.6, GoCoMo-ns3 is used by the

Experiment class which initialises a number of wireless devices, configurates their mobil-

ity models, and establishes an ad hoc networks that controls message interaction between

them. GoCoMo-ns3 implemented the DataReader class to load a global service topol-

ogy, since the ns-3 platform does not manage each individual node’s service information

independently.

Appendix A. Further Implementation Detail: Prototypes 138

Figure A.4: GoCoMo App: an
running device that acts as a com-
position client

Figure A.5: GoCoMo App: a
composition client gets composition
result

Figure A.6: GoCoMo-ns3’s class diagram

Appendix B

Evaluation Results’ Validity

B.1 Results’ Validity Using 2-Sample Z-test

B.1.1 CoopC and GoCoMo’s Service Discovery Delay

This section a. As 300 (> 30) samples were used for the simulation, this thesis uses

2-sample z-test. The testable statistical hypothesis for the simulation result are listed

below: The null hypothesis (H0): There is no difference between the population means

of GoCoMo’s discovery time and CoopC’s discovery time on the test of discovery delay

in a service composition process, that is H0 : µ1 − µ2 = 0.

The alternative hypotheses (H1 and H2): There is a difference between the population

means of GoCoMo’s discovery time and CoopC’s discovery time on the test of discovery

delay in a service composition process, that is H1 : µ1 − µ2 < 0 and H2 : µ1 − µ2 > 0.

The results of the simulation found z values under the null hypothesis and the alternative

hypothesis shows in Table B.1.

B.1.2 CoopC and GoCoMo’s Service Discovery Traffic

The testable statistical hypothesis for the simulation result are listed below: The null

hypothesis (H0): There is no difference between the population means of GoCoMo’s

discovery traffic and CoopC’s discovery traffic on the test of discovery traffic in a service

composition process, that is H0 : µ1 − µ2 = 0.

139

Appendix B. Evaluation Results’ Validity 140

Table B.1: The difference between GoCoMo’s discovery time and CoopC’s discovery
time

slow, 5 services 20 30 40 50

z value -12.56106113 -16.79026592 -18.02333183 -10.69922846
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

mid-fast, 5 services 20 30 40 50

z value -19.04224056 -14.76793744 -19.41144055 -12.27153227
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

fast, 5 services 20 30 40 50

z value -11.54649281 -14.73933101 -17.47812923 -17.79875104
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

slow, 10 services 20 30 40 50

z value -32.29453272 -37.9788997 -26.56567767 -24.23023048
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

mid-fast, 10 services 20 30 40 50

z value -19.30967952 -41.52542078 -31.77308579 -25.29579807

H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

fast, 10 services 20 30 40 50

z value -19.64695977 -28.91184312 -33.77897592 -24.06613906
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

The alternative hypotheses (H1 and H2): There is a difference between the population

means of GoCoMo’s discovery traffic and CoopC’s discovery traffic on the test of discov-

ery traffic in a service composition process, that is H1 : µ1−µ2 < 0 and H2 : µ1−µ2 > 0.

The results of the simulation found z values under the null hypothesis and the alternative

hypothesis shows in Table B.2.

Appendix B. Evaluation Results’ Validity 141

Table B.2: The difference between GoCoMo’s discovery traffic and CoopC’s discovery
traffic

slow, 5 services 20 30 40 50

z value -6.56873 8.410306 -9.09909 -2.9423
H0 reject reject reject reject
H1 accept reject accept accept
H2 reject accept reject reject

mid-fast, 5 services 20 30 40 50

z value -6.76328 11.75466 -8.38718 -10.0033
H0 reject reject reject reject
H1 accept reject accept accept
H2 reject accept reject reject

fast, 5 services 20 30 40 50

z value -5.6026 11.03799 -7.44844 -10.00331775

H0 reject reject reject reject
H1 accept reject accept accept
H2 reject accept reject reject

slow, 10 services 20 30 40 50

z value -15.4047 -52.666 -53.7117 -39.9217
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

mid-fast, 10 services 20 30 40 50

z value -13.5711 -59.179 -45.8739 -46.6946

H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

fast, 10 services 20 30 40 50

z value -11.2968 -42.1154 -46.6897 -35.1998
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

B.1.3 CoopC and GoCoMo’s Response Time

The testable statistical hypothesis for the simulation result are listed below: The null

hypothesis (H0): There is no difference between the population means of GoCoMo’s

response time and CoopC’s response time on the test of response delay in a service

composition process, that is H0 : µ1 − µ2 = 0.

The alternative hypotheses (H1 and H2): There is a difference between the population

means of GoCoMo’s response time and CoopC’s response time on the test of response

delay in a service composition process, that is H1 : µ1 − µ2 < 0 and H2 : µ1 − µ2 > 0.

Appendix B. Evaluation Results’ Validity 142

Table B.3: The difference between GoCoMo’s response time and CoopC’s response
time

slow, 5 services 20 30 40 50

z value -9.992451711 -8.489276933 -8.994816681 -6.704062264
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

mid-fast, 5 services 20 30 40 50

z value -9.467088577 -8.814763295 -9.297349149 -6.695604027
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

fast, 5 services 20 30 40 50

z value -7.663452997 -8.307561975 -7.978716457 -5.495297028
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

slow, 10 services 20 30 40 50

z value -22.97000542 -17.12140163 -9.065221592 -3.549828118
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

mid-fast, 10 services 20 30 40 50

z value -15.65747282 -16.64296405 -8.09600387 -3.557499945

H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

fast, 10 services 20 30 40 50

z value -13.60161003 -13.03524901 -9.110352989 -3.6688557
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

The results of the simulation found z values under the null hypothesis and the alternative

hypothesis shows in Table B.3.

B.1.4 CoopC and GoCoMo’s Composition Traffic

The testable statistical hypothesis for the simulation result are listed below: The null

hypothesis (H0): There is no difference between the population means of GoCoMo’s

composition traffic and CoopC’s composition traffic on the test of composition traffic in

a service composition process, that is H0 : µ1 − µ2 = 0.

Appendix B. Evaluation Results’ Validity 143

Table B.4: The difference between GoCoMo’s composition traffic and CoopC’s com-
position traffic

slow, 5 services 20 30 40 50

z value -1.633975083 -0.379535408 -17.01789151 -6.446042073
H0 accept accept reject reject
H1 reject reject accept accept
H2 reject reject reject reject

mid-fast, 5 services 20 30 40 50

z value -16.25638314 1.10071635 -8.67860778 -25.19971832
H0 reject accept reject reject
H1 accept reject accept accept
H2 reject reject reject reject

fast, 5 services 20 30 40 50

z value -12.76707972 -0.500782492 -7.814265259 -20.12883122
H0 reject accept reject reject
H1 accept reject accept accept
H2 reject reject reject reject

slow, 10 services 20 30 40 50

z value -22.75254441 -88.24796791 -56.87641912 -59.74280959
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

mid-fast, 10 services 20 30 40 50

z value -10.41214504 -81.90194881 -34.45794557 -55.12380986

H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

fast, 10 services 20 30 40 50

z value -4.51012531 -64.84092515 -70.28014077 -21.9503516
H0 reject reject reject reject
H1 accept accept accept accept
H2 reject reject reject reject

The alternative hypotheses (H1 and H2): There is a difference between the population

means of GoCoMo’s composition traffic and CoopC’s composition traffic on the test

of composition traffic in a service composition process, that is H1 : µ1 − µ2 < 0 and

H2 : µ1 − µ2 > 0.

The results of the simulation found z values under the null hypothesis and the alternative

hypothesis shows in Table B.4.

Appendix C

Glossary

• cache

A cached request sender is represented as a Ci ∈ cache (Ci = 〈Sid, Gmatched, ρ〉),

where Sid is the unique id of the requester node (e.g., the node Y), and the

set Gmatched stores matched outputs. The parameter ρ (ρ ∈ (0, 1)) captures the

progress of addressing the partially matched goal.

• composition request

A composition request is represented by R = 〈Rid, I,O,F , C〉, where Rid is a

unique id for a request. The set F represents all the functional requirements,

which consists of a set of essential while unordered functions. The composition

constraints set C are execution time constraints. A composition process fails if

C expires and the client receives no result during service execution. A service

composite request also includes a set of initial parameters (input) I = {〈IS , ID〉}

and a set of goal parameters (output) O = {〈OS ,OD〉}.

• discovery message

A discovery message including a request’s remaining part R′, is represented as

DscvMsg = 〈R′, cache, h〉, where cache stores the progress of resolving split-join

controls for parallel service flows (see Definition 6 on page 69), and h is a criterion

value for request forwarding and service allocation (see Section 3.4.4 and 3.4.3).

• directions

An AND-splitting direction directly links to multiple services, which requires the

composite participant to simultaneously invoke these services for execution. An

144

Appendix C. glossary 145

AND-joining direction links to a waypoint-service (join-node) that collects data

from the composite participant and other services on different branches.

• execution guidepost

An execution guidepost G = 〈Rid,D〉 maintained by composite participant P

includes a set of execution directions D and the id of its corresponding composite

request. For each execution direction dj ∈ D, dj is defined as 〈didj ,Spost, ω,Q〉,

where didj is a unique id for dj , and the set Spost stores P ’s post-condition services

that can be chosen for next-hop execution. The set ω represents possible waypoints

on the direction to indicate execution branches’ join-nodes when the participant is

engaged in parallel data flows. The set Q reflects the execution path’s robustness

of this direction, e.g., the estimated execution path strength and the execution

time (Section 3.4.4).

• service

A service is described as S = 〈Sf , IN,OUT,QoStime〉, where Sf represents the

semantic description of service S’s functionality. IN = {〈INS , IND〉} and OUT =

{〈OUTS , OUTD〉} describe the service’s input and output parameters as well as

their data types, respectively. For this work, execution time QoStime is the most

important QoS criterion as delay in composition and execution can cause failures

[Groba and Clarke, 2014]. A service composition model should select services with

short execution time to reduce delay in execution.

• service announcement message

A service announcement message is described as SA = 〈Paddress, OUTp〉, where

Paddress represents the unique address of the service provider, and the OUTp is the

output data can be provided by the service provider.

• service provider

A service provider is a service deployment device that has a wrapped functionality

exposed through a service interface and could therefore be used remotely as a

service.

Bibliography

[Al-Oqily and Karmouch(2011)] Ibrahim Al-Oqily and Ahmed Karmouch. A Decentral-

ized Self-Organizing Service Composition for Autonomic Entities. ACM Transactions

on Autonomous and Adaptive Systems, 6(1):1–18, February 2011.

[Alomari and Sumari(2008)]Saleh Ali Alomari and Putra Sumari. Multimedia Applica-

tions for MANETs over Homogeneous and Heterogeneous Mobile Devices. In Wireless

Communications and Networks - Recent Advances. 2008.

[AppBrain(2015)] AppBrain. Number of Android applications, 2015. URL http://www.

appbrain.com/stats/number-of-android-apps.

[Ardagna and Pernici(2007)] D. Ardagna and B. Pernici. Adaptive service composition in

flexible processes. IEEE Transactions on Software Engineering, 33(6):369–384, June

2007. ISSN 0098-5589. doi: 10.1109/TSE.2007.1011.

[Artail et al.(2008)] Hassan Artail, Khaleel Wafiq Mershad, and Hicham Hamze. DSDM:

A distributed service discovery model for manets. IEEE Transactions on Parallel and

Distributed Systems, 19(9):1224–1236, 2008.

[Aschoff and Zisman(2011)] Rafael R. Aschoff and Andrea Zisman. QoS-Driven proactive

adaptation of service composition. 2012 7th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 421–435, June

2011. doi: 10.1109/SEAMS.2012.6224385.

[Atluri et al.(2007)] Vijayalakshmi Atluri, Soon Ae Chun, Ravi Mukkamala, and Pietro

Mazzoleni. A decentralized execution model for inter-organizational workflows. Dis-

tributed and Parallel Databases, 22(1):55–83, May 2007. ISSN 0926-8782. doi:

10.1007/s10619-007-7012-1.

146

http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps

Bibliography 147

[Bianchini and Antonellis(2008)] Devis Bianchini and Valeria De Antonellis. On-the-fly

collaboration in distributed systems through service semantic overlay. Proceedings of

the 10th International Conference on Information Integration and Web-based Appli-

cations & Services, pages 0–3, 2008.

[Bianchini et al.(2010)] Devis Bianchini, Valeria De Antonellis, and Melchiori Michele.

P2P-SDSD: on-the-fly service- based collaboration in distributed systems. IJMSO 5

(3), pages 0–3, 2010.

[Breau et al.(2013)] Jeremy R. Breau, Eric E. Miller, Se Y. Ng, and Carl J. Persson.

Concierge for portable electronic device. US Patent 8,489,080, 1(12), 2013.

[Breslau et al.(2000)] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Hei-

demann, Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu,

and Haobo Yu. Advances in network simulation. Computer, 33(5):59–67, May 2000.

ISSN 0018-9162. doi: 10.1109/2.841785.

[Brønsted et al.(2010)] Jeppe Brønsted, Klaus Marius Hansen, and Mads Ingstrup. Ser-

vice composition issues in pervasive computing. IEEE Pervasive Computing, 9(1):

62–70, January 2010. ISSN 1536-1268. doi: 10.1109/MPRV.2010.11.

[Bucchiarone et al.(2010)] Antonio Bucchiarone, Raman Kazhamiakin, Cinzia Cappiello,

Elisabetta di Nitto, and Valentina Mazza. A context-driven adaptation process for

service-based applications. In Proceedings of the 2Nd International Workshop on

Principles of Engineering Service-Oriented Systems, PESOS ’10, pages 50–56, New

York, NY, USA, 2010. ACM. ISBN 978-1-60558-963-3. doi: 10.1145/1808885.1808896.

[Burnette(2009)] Ed Burnette. Hello, Android: Introducing Google’s Mobile Devel-

opment Platform. Pragmatic Bookshelf, 2nd edition, 2009. ISBN 1934356492,

9781934356494.

[Butler(2011)] Margaret Butler. Android: Changing the mobile landscape. IEEE Per-

vasive Computing, 10(1):4–7, 2011. ISSN 15361268. doi: 10.1109/MPRV.2011.1.

[Chakraborty and Joshi(2002)] Dipanjan Chakraborty and Anupam Joshi. GSD: A novel

group-based service discovery protocol for MANETS. Mobile and Wireless Commu-

nications Network, International Workshop on, pages 140–144, 2002.

Bibliography 148

[Chakraborty and Joshi(2006)] Dipanjan Chakraborty and Anupam Joshi. Toward dis-

tributed service discovery in pervasive computing environments. Mobile Computing,

IEEE Transaction on, 5(2):97–112, 2006.

[Chakraborty et al.(2005)]Dipanjan Chakraborty, Anupam Joshi, Tim Finin, and Yelena

Yesha. Service composition for mobile environments. Mob. Netw. Appl., 10(4):435–

451, August 2005. ISSN 1383-469X.

[Chen and Clarke(2014)] Nanxi Chen and Siobhán Clarke. A Dynamic Service Com-

position Model for Adaptive Systems in Mobile Computing Environments. IEEE

International Conference on Service-Oriented Computing -ICSOC, 2014.

[Cheng et al.(2011)] Ding-Yuan Cheng, Kuo-Ming Chao, Chi-Chun Lo, and Chen-Fang

Tsai. A user centric service-oriented modeling approach. World Wide Web, 14(4):

431–459, May 2011.

[Cho and Lee(2005)] Chunglae Cho and Duckki Lee. Survey of service discovery archi-

tectures for mobile ad hoc networks. term paper, Mobile Computing, CEN, 2005.

[Christopher N. Ververidis and George C. Polyzos(2008)] Christopher N. Ververidis and

George C. Polyzos. Service Discovery for Mobile Ad hoc Networks: A Survey of Issues

and Techniques. IEEE Communications Surveys Tutorials, 10(3):30–45, 2008. doi:

10.1109/COMST.2008.4625803.

[Conti and Giordano(2014)] Marco Conti and Silvia Giordano. Mobile ad hoc networking:

Milestones, challenges, and new research directions. IEEE Communications Magazine,

52(1):85–96, 2014. ISSN 01636804. doi: 10.1109/MCOM.2014.6710069.

[Crespo and Garcia-Molina(2005)] Arturo Crespo and H Garcia-Molina. Semantic over-

lay networks for p2p systems. Agents and Peer-to-Peer Computing, 2005.

[Dai and Wu(2004)] Fei Dai and Jie Wu. Performance analysis of broadcast protocols

in ad hoc networks based on self-pruning. Parallel and Distributed Systems, IEEE

Transactions on, 15(11):1–13, 2004.

[Dai et al.(2015)] Huijun Dai, Hua Qu, and Jihong Zhao. A Knowledge-Based Service

Composition Algorithm with Better QoS in Semantic Overlay. Mathematical Problems

in Engineering, 2015.

Bibliography 149

[Davidyuk and Georgantas(2011)] Oleg Davidyuk and Nikolaos Georgantas. MEDUSA:

Middleware for end-user composition of ubiquitous applications. Handbook of Research

on Ambient Intelligence and Smart Environments Trends and Perspectives IGI Global

(Ed.) (2011) 197-219, (2011):1–22, 2011.

[de Medeiros et al.(2015)] Robson W. A. de Medeiros, Nelson S. Rosa, and Lúıs Fer-

reira Pires. Predicting service composition costs with complex cost behavior. In

Services Computing (SCC), 2015 IEEE International Conference on, pages 419–426,

June 2015. doi: 10.1109/SCC.2015.64.

[del Val et al.(2014)] E. del Val, M. Rebollo, and V. Botti. Combination of self-

organization mechanisms to enhance service discovery in open systems. Informa-

tion Sciences, 279:138 – 162, 2014. ISSN 0020-0255. doi: http://dx.doi.org/10.

1016/j.ins.2014.03.109. URL http://www.sciencedirect.com/science/article/

pii/S002002551400406X.

[Efstathiou et al.(2014a)] Dionysios Efstathiou, P McBurney, Steffen Zschaler, and Jo-

hann Bourcier. Efficiently Approximating the QoS of Composite Services in Mobile

Ad-Hoc Networks. Technical Report, 2014a.

[Efstathiou et al.(2014b)] Dionysios Efstathiou, Peter McBurney, Steffen Zschaler, and

Johann Bourcier. Efficient Multi-Objective Optimisation of Service Compositions in

Mobile Ad hoc Networks Using Lightweight Surrogate Models. Journal of Universal

Computer Science, 2014b.

[Fdhila et al.(2009)] Walid Fdhila, Ustun Yildiz, Claude Godart, Loria Inria, and Nancy

Grand. A flexible approach for automatic process decentralization using dependency

tables University of California. In IEEE 7th International Conference on Web Services,

volume 2009, 2009.

[Flyvbjerg(2006)] Bent Flyvbjerg. Five misunderstandings about case-study research.

Qualitative inquiry, pages 219–245, 2006.

[Fok et al.(2010)] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Servilla:

A flexible service provisioning middleware for heterogeneous sensor networks. Science

of Computer Programming, 77(6):663–684, June 2010. ISSN 01676423. doi: 10.1016/

j.scico.2010.11.006.

http://www.sciencedirect.com/science/article/pii/S002002551400406X
http://www.sciencedirect.com/science/article/pii/S002002551400406X

Bibliography 150

[Friedman et al.(2007)] Roy Friedman, Daniela Gavidia, Luis Rodrigues, Aline Carneiro

Viana, and Spyros Voulgaris. Gossiping on manets: The beauty and the beast.

SIGOPS Oper. Syst. Rev., 41(5):67–74, October 2007. ISSN 0163-5980. doi:

10.1145/1317379.1317390.

[Fujii and Suda(2005)] Keita Fujii and Tatsuya Suda. Semantics-based dynamic service

composition. IEEE Journal on Selected Areas in Communications, (December):2361–

2372, 2005.

[Furno and Zimeo(2013)] Angelo Furno and Eugenio Zimeo. Efficient Cooperative Dis-

covery of Service Compositions in Unstructured P2P Networks. 2013 21st Euromi-

cro International Conference on Parallel, Distributed, and Network-Based Processing,

pages 58–67, February 2013. doi: 10.1109/PDP.2013.10.

[Furno and Zimeo(2014)] Angelo Furno and Eugenio Zimeo. Self-scaling cooperative

discovery of service compositions in unstructured P2P networks. Journal of Parallel

and Distributed Computing, 74(10):2994–3025, October 2014.

[Geyik et al.(2013)] Sahin Cem Geyik, Boleslaw K. Szymanski, and Petros Zerfos. Ro-

bust dynamic service composition in sensor networks. IEEE Transactions on Services

Computing, 6(4):560–572, October 2013. doi: 10.1017/CBO9781107415324.004.

[Gharzouli and Boufaida(2011)] Mohamed Gharzouli and Mahmoud Boufaida.

PM4SWS: A P2P Model for Semantic Web Services Discovery and Composition. Jour-

nal of Advances in Information Technology, 2(1):15–26, February 2011.

[Groba and Clarke(2011)] Christin Groba and Siobhán Clarke. Opportunistic com-

position of sequentially-connected services in mobile computing environments. Web

Services (ICWS), 2011 IEEE, 2011.

[Groba and Clarke(2012)] Christin Groba and Siobhán Clarke. Synchronising Service

Compositions in Dynamic Ad Hoc Environments. 2012 IEEE First International

Conference on Mobile Services, pages 56–63, June 2012.

[Groba and Clarke(2014)] Christin Groba and Siobhán Clarke. Opportunistic service

composition in dynamic ad hoc environments. IEEE Transactions on Services Com-

puting, X(c):1–1, 2014.

Bibliography 151

[Gronli et al.(2014)] Tor-Morten Gronli, Jarle Hansen, Gheorghita Ghinea, and Muham-

mad Younas. Mobile Application Platform Heterogeneity: Android vs Windows Phone

vs iOS vs Firefox OS. 2014 IEEE 28th International Conference on Advanced Infor-

mation Networking and Applications, pages 635–641, 2014. ISSN 1550-445X. doi:

10.1109/AINA.2014.78.

[Gu and Nahrstedt(2006)] Xiaohui Gu and Klara Nahrstedt. Distributed multimedia

service composition with statistical QoS assurances. Multimedia, IEEE Transactions

on, 8(1):141–151, 2006.

[He et al.(2008)] Qiang He, Jun Yan, Hai Jin, and Yun Yang. Adaptation of web service

composition based on workflow patterns. Service-Oriented Computing–ICSOC 2008,

pages 22–37, 2008.

[He et al.(2013)] Qiang He, Jun Yan, Yun Yang, R. Kowalczyk, and Hai Jin. A decentral-

ized service discovery approach on peer-to-peer networks. Services Computing, IEEE

Transactions on, 6(1):64–75, First 2013. ISSN 1939-1374. doi: 10.1109/TSC.2011.31.

[Hibner and Zielinski(2007)] Artur Hibner and Krzysztof Zielinski. Semantic-based Dy-

namic Service Composition and Adaptation. In Services, 2007 IEEE Congress on,

pages 213–220, 2007.

[Hinojos et al.(2014)] G Hinojos, C Tade, S Park, D Shires, and D Bruno. BlueHoc

: Bluetooth Ad-Hoc Network Android Distributed Computing. In Proceedings of

The International Conference on Parallel and Distributed Processing Techniques and

Applications, pages 1–6, 2014.

[Hiyama et al.(2012)] Masahiro Hiyama, Elis Kulla, Makoto Ikeda, Leonard Barolli,

and Muhammad Younas. A Comparative Study of a MANET Testbed Performance

in Indoor and Outdoor Stairs Environment. 2012 15th International Conference on

Network-Based Information Systems, pages 134–140, 2012. doi: 10.1109/NBiS.2012.

32.

[Hogie et al.(2006)] Luc Hogie, Pascal Bouvry, and Frédéric Guinand. An Overview

of MANETs Simulation. Electronic Notes in Theoretical Computer Science, 150(1):

81–101, 2006. ISSN 1571-0661. doi: 10.1016/j.entcs.2005.12.025.

[Hosseini Seno et al.(2007)] Seyed Amin Hosseini Seno, Rahmat Budiarto, and Tat-Chee

Wan. Survey and new Approach in Service Discovery and Advertisement for Mobile

Bibliography 152

Ad hoc Networks. International Journal of Computer Science and Network Security,

7(2):275–284, 2007.

[Ibrahim and Mouel(2009)] Noha Ibrahim and FL Mouel. A survey on service com-

position middleware in pervasive environments. International Journal of Computer

Science Issues, 1:1–12, 2009.

[Jiang et al.(2007)] Shanshan Jiang, Yuan Xue, and D.C. Schmidt. Minimum disruption

service composition and recovery over mobile ad hoc networks. pages 1–8, Aug 2007.

doi: 10.1109/MOBIQ.2007.4451003.

[Jiang et al.(2009)] Shanshan Jiang, Yuan Xue, and Douglas C. Schmidt. Minimum

disruption service composition and recovery in mobile ad hoc networks. Computer

Networks, 53(10):1649–1665, July 2009.

[Jun et al.(2010)] Taesoo Jun, N Roy, and C Julien. Modeling delivery delay for flooding

in mobile ad hoc networks. Communications (ICC), 2010 IEEE, 2010.

[Kalasapur et al.(2007)] S Kalasapur, M Kumar, and B A Shirazi. Dynamic Service

Composition in Pervasive Computing. Parallel and Distributed Systems, IEEE Trans-

actions on, 18(7):907–918, 2007.

[Kang et al.(2008)] Eunyoung Kang, M Kim, Eunju Lee, and Ungmo Kim. DHT-based

mobile service discovery protocol for mobile ad hoc networks. Advanced Intelligent

Computing Theories and Applications. With Aspects of Theoretical and Methodological

Issues Lecture Notes in Computer Science, 5226:610–619, 2008.

[Karaoglu and Heinzelman(2010)] Bora Karaoglu and Wendi Heinzelman. Multicasting

vs. broadcasting: What are the trade-offs? Proceedings of the Global Communications

Conference-GLOBECOM, 2010.

[Khakhkhar et al.(2012)] Sandip Khakhkhar, Vikas Kumar, and Sanjay Chaudhary. Dy-

namic Service Composition. International Journal of Computer Science and Artificial

Intelligence, 2:32–42, September 2012.

[Khan et al.(2013)] Wazir Zada Khan, Yang Xiang, Mohammed Y Aalsalem, and Qurat-

ulain Arshad. Mobile Phone Sensing Systems: A Survey. IEEE Communications

Surveys & Tutorials, 15:402–427, 2013. ISSN 1553-877X. doi: 10.1109/SURV.2012.

031412.00077.

Bibliography 153

[Kiepuszewski et al.(2000)] Bartek Kiepuszewski, Arthur Harry, and Christoph J Bussler.

On Structured Workflow Modelling Structured Workflows. Advanced Information

Systems Engineering Lecture Notes in Computer Science, 1789, 2000:431–445, 2000.

[Kiess and Mauve(2007)] Wolfgang Kiess and Martin Mauve. A survey on real-world

implementations of mobile ad-hoc networks. Ad Hoc Networks, 5(3):324–339, 2007.

ISSN 15708705. doi: 10.1016/j.adhoc.2005.12.003.

[Kim et al.(2006)] M.J. Kim, M. Kumar, and B.a. Shirazi. Service discovery using

volunteer nodes in heterogeneous pervasive computing environments. Pervasive and

Mobile Computing, 2(3):313–343, September 2006. ISSN 15741192. doi: 10.1016/j.

pmcj.2006.04.002.

[Kitchenham et al.(1995)] Barbara Kitchenham, Lesley Pickard, and Shari Lawrence

Pfleeger. Case studies for method and tool evaluation. IEEE Softw., 12(4):52–62,

July 1995. ISSN 0740-7459. doi: 10.1109/52.391832.

[Klusch(2012)] Matthias Klusch. Overview of the S3 contest Performance evaluation of

semantic service matchmakers. Semantic Web Services, pages 1–18, 2012.

[Kotz et al.(2004)] David Kotz, Calvin Newport, Robert S. Gray, Jason Liu, Yougu

Yuan, and Chip Elliott. Experimental evaluation of wireless simulation assumptions.

In Proceedings of the 7th ACM International Symposium on Modeling, Analysis and

Simulation of Wireless and Mobile Systems, MSWiM ’04, pages 78–82, New York,

NY, USA, 2004. ACM. ISBN 1-58113-953-5. doi: 10.1145/1023663.1023679.

[Kozat and Tassiulas(2004)] Ulaş C. Kozat and Leandros Tassiulas. Service discovery in

mobile ad hoc networks: an overall perspective on architectural choices and network

layer support issues. Ad Hoc Networks, 2(1):23–44, January 2004. ISSN 15708705.

doi: 10.1016/S1570-8705(03)00044-1.

[Kumar and Sam(2015)] C Niranjan Kumar and R Praveen Sam. MANET Test Bed

for Rescue Operations in Disaster Management. International Journal of Computer

Science and Mobile Computing(IJCSMC), (7):432–437, 2015.

[Lane et al.(2010) Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles,

Tanzeem Choudhury, Andrew T. Campbell, and CollegeDartmouth. Adhoc And Sen-

sor Networks: A Survey of Mobile Phone Sensing, 2010.

Bibliography 154

[Lee et al.(2007)] Jin-Shyan Lee, Yu-Wei Su, and Chung-Chou Shen. A Comparative

Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In IEEE Conf.

Industrial Electronics Society, 2007.

[Li et al.(2015)] Bo Li, Yijian Pei, Hao Wu, and Bin Shen. Heuristics to allo-

cate high-performance cloudlets for computation offloading in mobile ad hoc clouds.

The Journal of Supercomputing, 71(8):3009–3036, 2015. ISSN 0920-8542. doi:

10.1007/s11227-015-1425-9.

[Li et al.(2007)] Yang Li, JinPeng Huai, Ting Deng, HaiLong Sun, HuiPeng Guo, and

Zongxia Du. QoS-aware Service Composition in Service Overlay Networks. IEEE

International Conference on Web Services (ICWS 2007), (Icws):703–710, July 2007.

doi: 10.1109/ICWS.2007.148.

[Lipman et al.(2009)] Justin Lipman, Hai Liu, and Ivan Stojmenovic. Broadcast in Ad

Hoc Networks. In Sudip Misra, Isaac Woungang, and Subhas Chandra Misra, editors,

Guide to Wireless Ad Hoc Networks, Computer Communications and Networks, pages

121–150. Springer London, London, 2009.

[Liu et al.(2015a)] Chenyang Liu, Jian Cao, and Jie Wang. A parallel approach for service

composition with complex structures in pervasive environments. In Web Services

(ICWS), 2015 IEEE International Conference on, pages 551–558, June 2015a. doi:

10.1109/ICWS.2015.79.

[Liu and Kumar(2005)] Rong Liu and Akhil Kumar. An analysis and taxonomy of

unstructured workflows. Business Process Management, pages 268–284, 2005.

[Liu et al.(2015b)] Xuanzhe Liu, Yun Ma, Gang Huang, Junfeng Zhao, Hong Mei, and

Yunxin Liu. Data-driven composition for service-oriented situational web applications.

Services Computing, IEEE Transactions on, 8(1):2–16, Jan 2015b. ISSN 1939-1374.

doi: 10.1109/TSC.2014.2304729.

[Liu et al.(2015c)] Yang Liu, Yanyan Han, Zhipeng Yang, and Hongyi Wu. Efficient Data

Query in Intermittently-Connected Mobile Ad Hoc Social Networks. IEEE Transac-

tions on Parallel and Distributed Systems, 9219(APRIL):1–1, 2015c. ISSN 1045-9219.

doi: 10.1109/TPDS.2014.2320922.

Bibliography 155

[Mallayya et al.(2015)] Deivamani Mallayya, Baskaran Ramachandran, and Suganya

Viswanathan. An Automatic Web Service Composition Framework Using QoS-Based

Web Service Ranking Algorithm. The Scientific World Journal, 2015.

[Mateescu et al.(2008)] Radu Mateescu, Pascal Poizat, and G Salaün. Adaptation of

service protocols using process algebra and on-the-fly reduction techniques. Service-

Oriented Computing–ICSOC, pages 84–99, 2008.

[Meshkova et al.(2008)] Elena Meshkova, Janne Riihijärvi, Marina Petrova, and Petri

Mähönen. A survey on resource discovery mechanisms, peer-to-peer and service dis-

covery frameworks. Computer Networks, 52(11):2097–2128, 2008. ISSN 13891286.

doi: 10.1016/j.comnet.2008.03.006.

[Mian et al.(2009)] Adnan Noor Mian, Roberto Baldoni, and Roberto Beraldi. A survey

of service discovery protocols in multihop mobile Ad Hoc networks. IEEE Pervasive

Computing, 8(1):66–74, 2009. ISSN 15361268.

[Miller(1968)] RB Miller. Response time in man-computer conversational transactions.

Proceedings of the December 9-11, 1968, AFIPS Fall Joint Computer Conference, 33:

267–277, 1968.

[Miraoui et al.(2011)] Moeiz Miraoui, Chakib Tadj, Jaouhar Fattahi, and Chokri Ben

Amar. Dynamic Context-Aware and Limited Resources-Aware Service Adaptation

for Pervasive Computing. Advances in Software Engineering, 2011:1–11, 2011. ISSN

1687-8655. doi: 10.1155/2011/649563.

[Mokhtar and Liu(2005)] SB Mokhtar and Jinshan Liu. QoS-aware dynamic service

composition in ambient intelligence environments. Proceedings of the 20th IEEE/ACM

International Conference on Automated Software Engineering, 2005(2005):317–320,

2005.

[Mokhtar et al.(2008)] Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas,

Valérie Issarny, and Yolande Berbers. EASY: Efficient semAntic Service discoverY in

pervasive computing environments with QoS and context support. Journal of Systems

and Software, 81(5):785–808, May 2008. ISSN 01641212. doi: 10.1016/j.jss.2007.07.

030.

[Mostarda et al.(2010)] Leonardo Mostarda, Srdjan Marinovic, and Naranker Dulay.

Distributed Orchestration of Pervasive Services. 24th IEEE International Conference

Bibliography 156

on Advanced Information Networking and Applications, pages 166–173, 2010. doi:

10.1109/AINA.2010.100.

[Nah(2004)] FFH Nah. A study on tolerable waiting time how long are Web users willing

to wait? Behaviour & Information Technology, pages 1–37, 2004.

[Newman and Kotonya(2012)] Peter Newman and Gerald Kotonya. A Runtime

Resource-aware Architecture for Service-oriented Embedded Systems. 2012 Joint

Working IEEE/IFIP Conference on Software Architecture and European Conference

on Software Architecture, pages 61–70, August 2012. doi: 10.1109/WICSA-ECSA.

212.14.

[Ngan and Kanagasabai(2012)] Le Duy Ngan and Rajaraman Kanagasabai. Seman-

tic Web service discovery: state-of-the-art and research challenges. Personal and

Ubiquitous Computing, 17(8):1741–1752, September 2012. ISSN 1617-4909. doi:

10.1007/s00779-012-0609-z.

[Niida et al.(2010)] Sumaru Niida, Satoshi Uemura, and Hajime Nakamura. User Toler-

ance for Waiting Time. Vehicular technology magazine, (September):61–67, 2010.

[Ns-3(2015)] Ns-3. ns-3 Tutorial: A Discrete-Event Network Simulator, 2015. URL

https://www.nsnam.org/docs/release/3.23/tutorial/html/introduction.

html#about-ns3.

[Oh et al.(2008)] Seog-Chan Oh, D. Lee, and S.R.T. Kumara. Effective web service

composition in diverse and large-scale service networks. Services Computing, IEEE

Transactions on, 1(1):15–32, Jan 2008. ISSN 1939-1374. doi: 10.1109/TSC.2008.1.

[Okediran(2014)] O. O Okediran, O. T Arulogun , and R. A Ganiyu. Mobile Operat-

ing Systems and Application Development Platforms : A Survey. Int. J. Advanced

Networking and Applications, 2201(2014):2195–2201, 2014.

[Pandey and Nakra(2014)] Mithilesh Pandey and Neelam Nakra. Consumer Preference

Towards Smartphone Brands , with Special Reference to Android Operating System.

IUP Journal of Marketing Management, 2014.

[Park and Shin(2006)] Eunjeong Park and Heonshik Shin. Multimedia service composi-

tion for context-aware mobile computing. Advances in Multimedia Modeling, 2006.

https://www.nsnam.org/docs/release/3.23/tutorial/html/introduction.html#about-ns3
https://www.nsnam.org/docs/release/3.23/tutorial/html/introduction.html#about-ns3

Bibliography 157

[Perera et al.(2015)] Charith Perera, Chi Harold Liu Member, Srimal Jayawardena, and

Min Chen. Context-aware Computing in the Internet of Things: A Survey on Internet

of Things From Industrial Market Perspective. pages 1–19, 2015. ISSN 2169-3536.

doi: 10.1109/ACCESS.2015.2389854.

[Perkins and Belding-Royer(1999)] C. E. Perkins and E. M. Belding-Royer. Ad-hoc on-

demand distance vector routing. Proc. 2nd IEEE Workshop Mobile Comput. Syst.

Appl., pp. 90-100, 1999

[Pigadas et al.(2011)] Vassilis Pigadas, Charalampos Doukas, Vassilis P. Plagianakos,

and Ilias Maglogiannis. Enabling constant monitoring of chronic patient using An-

droid smart phones. Proceedings of the 4th International Conference on PErvasive

Technologies Related to Assistive Environments - PETRA ’11, page 1, 2011. doi:

10.1145/2141622.2141697.

[Pirrò et al.(2012)] Giuseppe Pirrò, Domenico Talia, and Paolo Trunfio. A DHT-based

semantic overlay network for service discovery. Future Generation Computer Systems,

28(4):689–707, April 2012. ISSN 0167739X. doi: 10.1016/j.future.2011.11.007.

[Poizat and Yan(2010)] Pascal Poizat and Yuhong Yan. Adaptive composition of

conversational services through graph planning encoding. 6416:35–50, 2010. doi:

10.1007/978-3-642-16561-0 11.

[Postolache et al.(2011)] Octavian Postolache, Pedro S. Girao, Mario Ribeiro, Marco

Guerra, Joao Pincho, Fernando Santiago, and Antonio Pena. Enabling telecare as-

sessment with pervasive sensing and Android OS smartphone. MeMeA 2011 - 2011

IEEE International Symposium on Medical Measurements and Applications, Proceed-

ings, 2011. doi: 10.1109/MeMeA.2011.5966761.

[Prinz et al.(2008)] Vivian Prinz, Florian Fuchs, Peter Ruppel, Christoph Gerdes, and

Alan Southall. Adaptive and fault-tolerant service composition in peer-to-peer sys-

tems. 5053:30–43, 2008. doi: 10.1007/978-3-540-68642-2 3.

[Prochart et al.(2007)] Guenter Prochart, Reinhold Weiss, Reiner Schmid, and Gerald

Kaefer. Fuzzy-based support for service composition in mobile ad hoc networks. pages

379–384, July 2007. doi: 10.1109/PERSER.2007.4283943.

[Rambold et al.(2009)] Michael Rambold, Holger Kasinger, Florian Lautenbacher, and

Bernhard Bauer. Towards autonomic service discovery - A survey and comparison.

Bibliography 158

SCC 2009 - 2009 IEEE International Conference on Services Computing, (Section II):

192–201, 2009. doi: 10.1109/SCC.2009.59.

[Raychoudhury et al.(2013)] Vaskar Raychoudhury, Jiannong Cao, Mohan Kumar, and

Daqiang Zhang. Middleware for pervasive computing: A survey. Pervasive and Mobile

Computing, 9(2):177–200, April 2013.

[Ren et al.(2011)] Kaijun Ren, Nong Xiao, and Jinjun Chen. Building quick service

query list using wordnet and multiple heterogeneous ontologies toward more realistic

service composition. Services Computing, IEEE Transactions on, 4(3):216–229, July

2011. ISSN 1939-1374. doi: 10.1109/TSC.2010.24.

[Ridhawi and Karmouch(2015)] Yousif Al Ridhawi and Ahmed Karmouch. Decentralized

plan-free semantic-based service composition in mobile networks. Services Computing,

IEEE Transactions on, 8(1):17–31, Jan 2015. ISSN 1939-1374. doi: 10.1109/TSC.

2013.2297114.

[Rodriguez-mier et al.(2012)] Pablo Rodriguez-mier, Manuel Mucientes, and Manuel

Lama. A Dynamic QoS-Aware Semantic Web Service Composition Algorithm.

Service-Oriented Computing Lecture Notes in Computer Science, 7636:623–630, 2012.

[Sadagopan and Bai(2003)] Narayanan Sadagopan and Fan Bai. PATHS: analysis of

PATH duration statistics and their impact on reactive MANET routing protocols.

Proceedings of the 4th MobiHoc, pages 245–256, 2003.

[Sadiq et al.(2014)] Umair Sadiq, Mohan Kumar, Andrea Passarella, and Marco Conti.

Service Composition in Opportunistic Networks: A Load and Mobility Aware Solu-

tion. IEEE Transactions on Computers, 9340(SEPTEMBER 2014):1–1, 2014. ISSN

0018-9340. doi: 10.1109/TC.2014.2360544.

[Schuler et al.(2004)] Christoph Schuler, Roger Weber, Heiko Schuldt, and Hans-J. Schek.

Scalable peer-to-peer process management-the OSIRIS approach. Web Service, 2004.

[Sen et al.(2008)] Rohan Sen, GC Roman, and Christopher Gill. Cian: A workflow

engine for manets. Coordination Models and Languages, pages 280–295, 2008.

[Shaffer and Keaveney(2012)] JD Shaffer and JF Keaveney. Automated concierge system

and method. US Patent 8,160,614, 2(12), 2012.

Bibliography 159

[Silas et al.(2012)] Salaja Silas, Kirubakaran Ezra, and Elijah Blessing Rajsingh. A

novel fault tolerant service selection framework for pervasive computing. Human-

centric Computing and Information Sciences, 2(1):5, 2012. ISSN 2192-1962. doi:

10.1186/2192-1962-2-5.

[Sousa et al.(2006)] João Pedro Sousa, Vahe Poladian, David Garlan, Bradley Schmerl,

and Mary Shaw. Task-based adaptation for ubiquitous computing. Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 36(3):

328–340, May 2006. ISSN 1094-6977. doi: 10.1109/TSMCC.2006.871588.

[Su and Guo(2008)] Jian Su and Wei Guo. A survey of service discovery protocols for

mobile ad hoc networks. 2008 International Conference on Communications, Circuits

and Systems, pages 398–404, 2008. doi: 10.1109/ICCCAS.2008.4657801.

[Thomas et al.(2009)] Louis Thomas, Justin Wilson, Gruia-Catalin Roman, and Christo-

pher Gill. Achieving coordination through dynamic construction of open workflows.

pages 14:1–14:20, 2009.

[Tyan and Mahmoud(2005)] Jerry Tyan and QH Mahmoud. A comprehensive service

discovery solution for mobile ad hoc networks. Mobile Networks and Applications,

pages 423–434, 2005.

[Ukey et al.(2010)] Nilesh Ukey, Rajdeep Niyogi, Alfredo Milani, and Kuldip Singh. A

bidirectional heuristic search technique for web service composition. pages 309–320,

2010. doi: 10.1007/978-3-642-12189-0 27.

[Vukovi and Robinson(2007)] Maja Vukovi and Peter Robinson. Application develop-

ment powered by rapid , on-demand service composition. 2007.

[Wang et al.(2013)] Hongbing Wang, Haixia Sun, and Qi Yu. Reliable Service Composi-

tion via Automatic QoS Prediction. 2013 IEEE International Conference on Services

Computing, pages 200–207, June 2013. doi: 10.1109/SCC.2013.45.

[Weiser(1991)] M Weiser. The computer for the 21st century. Scientific american, 3(3),

1991.

[Wohlin et al.(2003a)] Claes Wohlin, Martin Höst, and Kennet Henningsson. Empirical

research methods in software engineering. Empirical Methods and Studies in Software

Engineering, 2765:7–23, 2003a.

Bibliography 160

[Wohlin et al.(2003b)] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohls-

son, Björn Regnell, and Anders Wesslén. Experimentation in Software Engineering.

Springer Science and Business Media, pages 7–23, 2003b.

[Wu and Huang(2015)] Huijun Wu and Dijiang Huang. Mosec: Mobile-cloud service

composition. In Mobile Cloud Computing, Services, and Engineering (MobileCloud),

2015 3rd IEEE International Conference on, pages 177–182, March 2015. doi: 10.

1109/MobileCloud.2015.29.

[Yu(2009)] Weihai Yu. Scalable Services Orchestration with Continuation-Passing Mes-

saging. 2009 First International Conference on Intensive Applications and Services,

pages 59–64, April 2009.

[Zaplata and Hamann(2010)] Sonja Zaplata and Kristof Hamann. Flexible execution

of distributed business processes based on process instance migration. Journal of

Systems Integration, Vol 1, No 3, pages 3–16, 2010.

[Zhenghui et al.(2009)] Wang Zhenghui, Xu Tianyin, Qian Zhuzhong, Lu Sanglu,

Zhenghui Wang, Tianyin Xu, Zhuzhong Qian, and Sanglu Lu. A Parameter-Based

Scheme for Service Composition in Pervasive Computing Environment. In Complex,

Intelligent and Software Intensive Systems, 2009. CISIS ’09. International Conference

on, number 3, pages 543–548. Ieee, March 2009.

[Zhou et al.(2011)] Xi Zhou, Yifan Ge, Xuxu Chen, Yinan Jing, and Weiwei Sun. A Dis-

tributed Cache Based Reliable Service Execution and Recovery Approach in MANETs.

2011 IEEE Asia-Pacific Services Computing Conference, pages 298–305, December

2011.

[Zhu et al.(2003)] Feng Zhu, Matt Mutka, and Lionel Ni. Splendor: A secure, private,

and location-aware service discovery protocol supporting mobile services. PerCom-

Proceedings of the IEEE International Conference on Pervasive Computing, 2003.

[Zisman et al.(2013)] A. Zisman, G. Spanoudakis, J. Dooley, and I. Siveroni. Proactive

and reactive runtime service discovery: A framework and its evaluation. IEEE Trans-

actions on Software Engineering, 39(7):954–974, July 2013. ISSN 0098-5589. doi:

10.1109/TSE.2012.84.

[Zou et al.(2014)] Guobing Zou, Yanglan Gan, Yixin Chen, Bofeng Zhang, Ruoyun

Huang, You Xu, and Yang Xiang. Towards automated choreography of Web services

Bibliography 161

using planning in large scale service repositories. Applied Intelligence, 41(2):383–404,

March 2014.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Publications Related to this Ph.D.
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Service-Oriented Computing
	1.2 Challenges
	1.3 Motivating Scenario: A Smart Public Space
	1.4 Existing Solutions
	1.4.1 Composition Process Management
	1.4.2 Fault Tolerance
	1.4.3 Research Gaps and Observations
	1.4.4 Research Questions

	1.5 Thesis approach
	1.5.1 A Decentralised Goal-Driven Service Composition

	1.6 Thesis Contribution
	1.7 Thesis Scope
	1.8 Thesis Structure

	2 State of the Art
	2.1 Locating a Provider
	2.1.1 Reactive Discovery
	2.1.2 Proactive Discovery
	2.1.3 Assessment

	2.2 Request Routing
	2.2.1 Controlled Flooding
	2.2.2 Directory-Based
	2.2.3 Overlay-Based
	2.2.4 Assessment

	2.3 Composition Planning
	2.3.1 Open Service Discovery
	2.3.2 Goal-Oriented
	2.3.3 Assessment

	2.4 Service Binding
	2.4.1 QoS-Based Selection
	2.4.2 Adaptable Binding
	2.4.3 On-Demand Binding
	2.4.4 Assessment

	2.5 Service Invocation
	2.5.1 Fragments Distribution
	2.5.2 Process Migration Approaches
	2.5.3 Assessment

	2.6 Fault Tolerance
	2.6.1 Preventive Adaptation
	2.6.2 Composition Recovery
	2.6.3 Assessment

	2.7 Summary

	3 Design
	3.1 Design Objectives and Required Features
	3.2 System Model
	3.3 GoCoMo Concept
	3.3.1 Service Searching
	3.3.2 Service Selection
	3.3.3 Service Execution

	3.4 Service Composition Model
	3.4.1 Service Model
	3.4.2 Dynamic Goal-Driven Composition Planning
	3.4.2.1 Local Service Planning
	3.4.2.2 Complex Service flows

	3.4.3 Heuristic Service Discovery
	3.4.4 Execution Fragments Selection and Invocation
	3.4.4.1 Service Composite Selection and Invocation
	3.4.4.2 Service Execution and Guidepost Adaptation

	3.5 Quantitative Analysis on GoCoMo
	3.6 Design Summary

	4 Implementation
	4.1 GoCoMo Architecture
	4.2 GoCoMo Client and Provider
	4.2.1 GoCoMo Client Engine
	4.2.2 GoCoMo Service Provider

	4.3 Routing Controller
	4.4 Guidepost Manager
	4.4.1 Adapting a Guidepost
	4.4.2 Guidepost Data in Service Execution

	4.5 GoCoMo Message Helper
	4.6 GoCoMo Prototypes
	4.6.1 GoCoMo Prototype on Android
	4.6.2 GoCoMo Prototype on Ns-3

	4.7 Implementation Summary

	5 Evaluation
	5.1 Evaluation Methods and Criteria
	5.2 Prototype Case Study
	5.2.1 Case Study Configurations
	5.2.2 Samples and Results
	5.2.2.1 Composition Planning Case
	5.2.2.2 Adaptation Case

	5.3 Simulation Studies
	5.3.1 Environment Configurations
	5.3.1.1 General Settings
	5.3.1.2 Evaluation Scenarios

	5.3.2 Baseline approach
	5.3.3 Simulation Results and Analysis
	5.3.3.1 Flexibility of Service Planning
	5.3.3.2 Adaptability of Composite Services
	5.3.3.3 Impact of Heuristic Service Discovery
	5.3.3.4 Planning Complex Service Flows

	5.4 Evaluation Summary

	6 Discussion and Conclusion
	6.1 Overview of Thesis Achievements
	6.2 Discussion
	6.2.1 Service Flows
	6.2.2 Privacy and Security
	6.2.3 Semantic Matchmaking
	6.2.4 High Composition Demand

	6.3 Future Work

	A Further Implementation Detail: Prototypes
	A.1 GoCoMo App
	A.2 GoCoMo-ns3

	B Evaluation Results' Validity
	B.1 Results' Validity Using 2-Sample Z-test
	B.1.1 CoopC and GoCoMo's Service Discovery Delay
	B.1.2 CoopC and GoCoMo's Service Discovery Traffic
	B.1.3 CoopC and GoCoMo's Response Time
	B.1.4 CoopC and GoCoMo's Composition Traffic

	C Glossary
	Bibliography

