
Intuitive Transfer Function Editing Using Relative Visibility
Histograms

Shengzhou Luo
Graphics Vision and
Visualisation Group

(GV2)
Trinity College Dublin

Ireland
luos@tcd.ie

Subhrajyoti Maji
Graphics Vision and
Visualisation Group

(GV2)
Trinity College Dublin

Ireland
majis@tcd.ie

John Dingliana
Graphics Vision and
Visualisation Group

(GV2)
Trinity College Dublin

Ireland
John.Dingliana@tcd.ie

ABSTRACT
In this paper, we present an interactive approach for intuitively editing colors and opacity values in transfer func-
tions for volume visualization. We introduce the concept of a relative visibility histogram, which represents the
difference between the global visibility distribution across the full volume and the local visibility distribution
within a user-selected region in the viewport. From this measure, we can infer what subset of the 3D volume the
user intends to select when they click on a region in the 2D rendered image of the data set, and use this to modify
relevant parts of the transfer function. We use this selection mechanism for two alternative purposes. The first is
to allow output-driven editing of the transfer function, whereby a user can change the opacity values and colors
of features without directly having to manipulate the transfer function itself. The second is to extract visually
dominant features in any user-selected region of interest, so that the user may individually edit their appearance
and then merge these to create new transfer functions. Our approach is lightweight compared to similar techniques
and performs in real-time.

Keywords
Volume rendering, transfer function, visibility, visibility histograms

1 INTRODUCTION
A recurring challenge in volume visualization is defin-
ing effective transfer functions (TF), which assign color
and opacity (alpha value) to specific data ranges for vi-
sualization. Due to the non-linear relationship between
the transfer function and the resultant rendering, the
process of editing transfer functions is often counter-
intuitive, typically necessitating a trial-and-error pro-
cess. This may be addressed using an output sensitive
approach where the user can more directly control the
appearance of the visualization, without explicit knowl-
edge of the transfer function.

In this paper, we propose a technique which enables us
to infer a user’s intended changes to the visualization
when they click or select a region in the rendered image
of a 3D volume data set. 3D selection is a non-trivial
process in volume visualization due to the presence of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

many overlapped layers of transparent data. This is
achieved in our solution by weighting the data in the se-
lected region based on the proportion of materials vis-
ible to the user within that region. We introduce the
concept of a relative visibility histogram, derived from
the relationship between the global visibility and the lo-
cal visibility of data in the user-selected region. Based
on this weighting, the user can directly modify colors
and opacity values in the rendered image of the volume
data, in a manner analogous to painting a 3D scene. In
addition, we introduce an automated technique for cre-
ating transfer function components from relative visi-
bility histograms to represent features of interest in the
selected regions. This technique allows users to edit
transfer function on a feature level by manipulating
the colors and opacity values of the components and
merging them to create new transfer functions. Com-
pared to other similar techniques, our approach is rel-
atively lightweight, requiring only intermediate infor-
mation about the visibility of data samples. It is thus
simple to implement and performs in real-time.

2 RELATED WORK
Transfer function specification is an essential part of
the volume visualization pipeline. The specification is
often achieved by a trial-and-error process, which in-



volves a significant amount of tweaking of colors and
opacity values, and the resultant visualization largely
depends on how well the transfer function captures fea-
tures of interest [KKH02] [KWTM03].One of the chal-
lenges for such an approach is highlighted by Mindek
et al. [MMGB17] who argue that often small changes
in input parameters (i.e. the transfer function variables)
can lead to disproportionately large changes to the visu-
alization. While Mindek et al. propose a data-sensitive
solution that addresses this disproportionality, others
take the route of output-driven transfer function editing,
that is, manipulation of what is rendered, without the
user being explicitly exposed to the underlying changes
to the transfer function.

For instance, Guo et al. [GMY11] proposed a sketch-
based approach that allows direct manipulation of trans-
fer functions by brushing strokes on top of volume
rendered images, which is similar to the operations in
painting applications for 2D images. Later, Guo and
Yuan [GY13] extended the sketch-based technique for
specifying local transfer functions for topology regions
using contour trees. Wu and Qu [WQ07] presented
an approach that allows users to select sample images
rendered using predefined transfer functions and gener-
ates new transfer functions by fusing multiple features
in distinct volume renderings. Bruckner and Gröller
[BG07] presented style transfer functions, which allow
the user to specify styles extracted from actual illustra-
tions in the transfer function. Ropinski et al. [RPSH08]
proposed a stroke-based approach for specifying trans-
fer functions by drawing strokes near silhouettes on
a monochromatic view of the volume and generating
transfer function components [CKLE98] that later can
be modified and combined to explore the volume.

Many of the aforementioned approaches require,
among other things, a model of what is visible to the
user from a particular view direction, in other words,
the visibility of features in volume data. The visibility
of a sample refers to the alpha contribution of a sample
to the final image, taking into account the degree to
which it is occluded by other samples. This can be
computed during ray-casting as the difference between
the accumulated alpha of a sample and the accumulated
alpha of the previous sample along a ray in the view
direction [Ems08]. Correa and Ma presented the
general notion of visibility histograms [CM11] which
represent the distribution of visibility over intensity
ranges in a volume rendering image. Wang et al.
[WZC+11] extended visibility histograms to feature
visibility histograms for measuring the influence of
features on the resultant volume rendered images.
Wiebel et al. [WVFH12] found that the user usually
perceives features at a screen position with the highest
visibility along a ray and exploited this information for
volume picking.

Figure 1: Sample operations using our technique. Top
row: a nucleon with a selected region and its TF. Bot-
tom left: Selected material colored in blue; Bottom
right: Opacity of selected material enhanced

0.2 0.4 0.6 0.8 1.0
Intensity

0.005

0.010

0.015

0.020

0.025

0.030

Visibility

(a)
0.2 0.4 0.6 0.8 1.0

Intensity

0.02

0.04

0.06

0.08

0.10

0.12

Visibility

(b)

0.2 0.4 0.6 0.8 1.0
Intensity

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Visibility

(c)

0.2 0.4 0.6 0.8 1.0
Intensity

-0.5

0.5

1.0

Visibility

(d)
Figure 2: (a) Global Visibility Histogram of data set
shown in Figure 1; (b) Local Visibility Histogram of
selected region; (c) Relative Visibility Histogram; (d)
Relative visibility histogram after smoothing

3 RELATIVE VISIBILITY HIS-
TOGRAMS

In this section, we define a novel concept called the Rel-
ative Visibility Histogram, which is used as a mecha-
nism for allowing users to select a subset of a 3D vol-
ume data set based on a selection in a 2D rendered view
of the data. This is a key component that facilitates
the two techniques, presented in subsequent sections,
for intuitively manipulating transfer functions in vol-
ume rendering.

A visibility histogram [CM11] represents the visibility
distribution of all voxels in the viewport when rendered
from a given view, in other words, how visible any
voxel is, given its opacity and the degree to which it is
occluded by other voxels in the view direction. We will
use the more specific term Global visibility histogram,
H, to describe such a distribution and Local visibility



histogram, HL, to describe the histogram representing
the local visibility distribution for the voxels that con-
tribute to a region of interest (ROI) in the rendered im-
age, e.g., for a rectangular ROI on screen, this would
be all the voxels that lie in the frustum extended by the
rectangle. Furthermore, we introduce the concept of a
Relative Visibility Histogram, derived from the former
which is defined as the difference between HL and H
divided by the maximum of the absolute value in the
difference, i.e.,

HR = Hr/max(abs(Hr))

where Hr = HL−H. The relative visibility histogram is
scaled to the range [−1,1] by dividing by the maximum
absolute value in the histogram.

The purpose of the relative visibility histogram is as
follows: firstly the local HL component captures the
dominant intensities in the ROI. Secondly, the subtrac-
tion and normalization against the global context cap-
ture a representation of which intensities are particu-
larly densely distributed within the ROI and not else-
where in the view. Essentially, we assume that when
a user selects any particular ROI to select a subset of
the volume, there is a strong likelihood that they will
choose an area that contains a high number of voxels of
the intensity ranges that they are interested in and that
stands out as clearly dominated by that intensity range
compared to the rest of the view.

An example is illustrated in Figure 1 and 2. Figure 1
shows a nucleon data set, its associated transfer func-
tion and sample modifications using our technique. The
global visibility histogram is shown in Figure 2(a) and
the local visibility histogram for the region of inter-
est (the rectangle in inverted color) is shown in Fig-
ure 2(b). The relative visibility histogram is shown in
Figure 2(c).

In order to smooth the histogram, we apply a Gaussian
kernel to Hr and then scale it to the range [−1,1]. So
the smoothed relative visibility histogram is

HG = Hg/max(abs(Hg))

where Hg = Gaussian(Hr,n,σ), n is the size and σ is
the standard deviation of the Gaussian kernel (see Fig-
ure 2(d)).

Henceforth, this smoothed histogram HG will be re-
ferred to as the relative visibility histogram, and HG(i),
which is the value of the relative visibility histogram HG
at intensity i, will be referred to as the relative visibility
of intensity i.

4 OUTPUT-DRIVEN COLOR AND AL-
PHA EDITING

The first application of the relative-visibility histogram
is in allowing users to manipulate the visualization with

no explicit knowledge of the transfer function. In this
use-case, the user simply needs to select regions of in-
terest on the rendered image that they wish to empha-
size or color. Then, a single pass of volume ray casting
is done to calculate the global visibility histogram for
the whole volume and the local visibility histogram for
the selected region in the viewport. From this we calcu-
late the relative visibility histogram, which provides a
measure of visible materials within the selected region.
This is used to infer features that the user intends to
edit in the visualization. More precisely, HG is used as
a weighting function to blend the colors or opacity val-
ues in the original transfer function with a user-selected
target color or alpha value.

The user-selected target color is blended with the origi-
nal transfer function for intensity ranges that have posi-
tive values in the relative visibility histogram as below:

Ci =

{
Ci +HG(i)(Cs−Ci) if HG(i)> 0
Ci otherwise

where HG(i) denotes the relative visibility at intensity
i in HG, Cs is the user-selected target color and Ci the
color of intensity i in the original transfer function.

Similarly, the alpha (Ai) of the transfer function is in-
creased in intensity ranges that have positive relative
visibility values, and decreased for ranges with nega-
tive relative visibility values, as follows:

Ai =

{
Ai +HG(i)(1−Ai) if HG(i)> 0
Ai−HG(i)(0−Ai) otherwise

Note that the color blending and alpha blending opera-
tions can be applied separately. Figure 1(c) displays the
result of only applying the color blending to the vol-
ume rendering of the nucleon data set in Figure 1(a),
and Figure 1(d) displays the result of only applying the
alpha blending to the original.

Furthermore, as the blending process is fast, any
changes can be applied by the user iteratively, anal-
ogous to a paintbrush-like tool for a large number
successive of operations.

5 TRANSFER FUNCTION COMPO-
NENTS

In addition to low-level output-driven editing of the
transfer function, the relative visibility histogram al-
lows us to support editing the transfer function at a fea-
ture level, which is a desirable use case in many vol-
ume visualization applications. For instance, Ropinski
et al. [RPSH08] reported that physicians had high-level
requests such as emphasizing, adding or removing spe-
cific features in collaboratively adapting visualizations.

As previously discussed, relative visibility histograms
reveal what intensity ranges are concentrated in the



view frustum behind a selected 2D viewport region.
The visually dominant features in the selected region
can be represented by transfer function components
proportional to the positive parts of relative visibility
histograms.

A discrete set of such component transfer functions can
be composed into a new transfer function for the full
data set, and then the colors and opacity values of indi-
vidual components can be separately modified.

5.1 Feature Specification Using Transfer
Function Components

In this approach, features are automatically generated
as transfer function components based on the relative
visibility histograms created from user-selected re-
gions. Let F(i) denote a transfer function component
derived from the relative visibility histogram HG.

F(i) =

{
HG(i) if HG(i)> 0
0 otherwise

where HG(i) is the value of the relative visibility his-
togram HG at intensity i.

Figure 3 displays two examples of the transfer function
components created by a rectangular selection within
the rendered volume image respectively. Figure 3 (a)
and (b) show the two selected regions in the volume
rendering. Figure 3 (c) and (d) show the two transfer
function components which represent the relative visi-
bility distributions of features in the two user-selected
regions respectively. The regions are rectangles cen-
tered around a single point in 2D screen space, and
the region sizes can be modified according to the user’s
need.

5.2 Image-Space Clustering for region of
interest selection

Heretofore, we have assumed a rectangular region of
interest centered on a point such as the location of the
mouse cursor when a user clicks on the screen. While
this is a reasonable representation of the user’s interest
for the purposes of low-level iterative editing proposed
in the previous sections, a more robust representation
of the user’s intended selection may be obtained by a
more generalized representation of this region. We pro-
pose that one alternative of the region of interest can be
obtained by segmenting the rendered image into con-
tiguous visual objects in 2D (we avoid using the term
“feature” here to avoid confusion with the transfer func-
tion features discussed previously).

In order to achieve visual object selection, image seg-
mentation is performed on volume rendered images and
the resultant segments are stored as individual masks

(a) (b)

(c) (d)

(e) (f)
Figure 3: Examples of rectangular region selections.
Left: A TF component (c) created from a green rect-
angular region (a) (highlighted in inverted colors) and
its relative visibility histogram (e); Right: A TF com-
ponent (d) created from a red region (b) and its relative
visibility histogram (f).

for object selection. More specifically, a GPU acceler-
ated k-means clustering implementation is used to ac-
complish interactive segmentation of volume rendered
images. The distance metric used for the segmentation
is the Euclidean distance in the RGB color space.
Now, when the user clicks on a position of the volume
rendered image, a selected region is formed by all pix-
els that belong to the same segment as the pixel at the
mouse position. Figure 4 displays the regions selected
by clicking on the same screen positions as in Figure 3.
Compared to the rectangular regions in Figure 3 (a) and
(b), the selected regions in Figure 4 (a) and (b) are
heterogeneously-shaped segments with colors similar
to the pixels at the respective mouse positions. These
screen regions are larger in size, resulting in larger view
frustums with more voxels being selected, and the col-
ors across the selection tends to be more homogeneous
due to the clustering. As a result of this, we note that
the resultant transfer function components in Figure 4
(c) and (d) are more continuous compared to those in
Figure 3 (c) and (d) for the rectangular selections. The
relative visibility histograms in Figure 4 (e) and (f) are
also smoother than those in Figure 3 (e) and (f). To dis-
ambiguate the two select techniques, we refer to them
henceforth as rectangular selection and generalized se-
lection.

5.3 Merging Transfer Function Compo-
nents

A new transfer function can be created by merging sev-
eral transfer function components.



(a) (b)

(c) (d)

(e) (f)
Figure 4: Examples of generalized segment selections.
Left: A TF component (c) created from a green gen-
eralized selection segment (a) (highlighted in inverted
colors) and its relative visibility histogram (e); Right:
A TF component (d) created from a red segment (b)
and its relative visibility histogram (f).

(a) (b)

(c) (d)
Figure 5: (a) and (c): Volume rendering and its TF ob-
tained from merging the TF components in Figure 3 us-
ing rectangular selection; (b) and (d): Volume render-
ing and TF based on generalized selection in Figure 4

The opacity function Ai is defined by a weighted sum of
transfer function components clipped to the range [0,1].

Ai =


a(i) if a(i) ∈ [0,1]
0 if a(i)< 0
1 if a(i)> 1

where a(i) is the weighted sum of transfer function
components, i.e.

a(i) =
n

∑
j=1

w jFj(i)

where w j (w j ≥ 0) is the weight of transfer function
component Fj, Fj(i) is the value of Fj at intensity i, and
n is the number of transfer function components.

Figure 5 shows the results of merging the transfer func-
tion components in Figure 3 and Figure 4 respectively.

Note that there are “wood grain” artifacts in the volume
rendered image in Figure 5 (a), especially in the red
feature. The artifacts are due to the gaps in the transfer
function components, as shown in Figure 5 (c). In con-
trast, the volume rendered image in Figure 5 (b) does
not have noticeable artifacts, because the transfer func-
tion components in Figure 5 (d) are smoother.

There may be overlaps between transfer function com-
ponents. Two methods for deciding the color of the
overlaps in the merged transfer functions are described
below.

5.3.1 Blending colors of transfer function com-
ponents

The first method is blending the colors of the transfer
function components based on the weights and the val-
ues of the transfer function components.

In order to keep the blended colors in a valid range,
the weights for blending the colors of transfer function
components are normalized using weighted averages of
the weights and the values of the transfer function com-
ponents. The normalized weight of transfer function
component Fj is defined by

Wj =
w jFj(i)

∑
n
k=1 wkFk(i)

where w j (w j ≥ 0) is the weight of transfer function
component Fj, Fk(i) is the value of the transfer func-
tion component Fk at intensity i, and n is the number of
transfer function components.

Hence, the color function Ci is defined by

Ci =
n

∑
j=1

Wjc j

where Wj is the normalized weight of transfer function
component Fj and c j is the color of Fj, and n is the
number of transfer function components.

Using this method, new colors that do not exist in the
settings of transfer function components may be in-
troduced due to the blending of colors of overlapping
transfer function components. Moreover, a feature, rep-
resented by a transfer function component, may have
various colors in the final volume rendering.

5.3.2 Using colors of the dominant components
In some cases, using a single color per feature is prefer-
able for better distinction of features in the volume ren-
dering.



Figure 6: Combining operations. Left: Blue applied to
selected region of TF in Figure 1 and opacity enhanced;
Right: Yellow applied and opacity enhanced. The mod-
ified TF is shown for each case below the rendering

Thus an alternative to blending colors is to use the color
of the visually dominant transfer function component as
the merged color.

The color function Ci is defined by

Ci = c j, j = argmax
k∈{1,...,n}

wkFk(i)

where c j is the color and w j (w j ≥ 0) is the weight of
transfer function component Fj with w jFj(i) at inten-
sity i that is maximum among the n transfer function
components.

With this method, different features would have distinct
colors, so that they are distinguishable by colors in the
volume rendering.

6 RESULTS
Our solution comprises a ray-cast volume renderer and
a visibility computation module, both implemented
on the GPU using CUDA. The implementation is
lightweight and achieves real-time performance at
30 to 40 frames per second on a computer equipped
with an Intel Xeon E3-1246 v3 CPU and an NVIDIA
Quadro K4200 graphics card.

We present some results to demonstrate the effective-
ness of our approach on the nucleon (voxel dimensions:
41× 41× 41), CT-knee (379 × 229 × 305) data sets,
one time-step of a simulated turbulent vortex flow (128
× 128 × 128) and one time-step of a simulated super-
nova (432× 432× 432). Our implementation was able
to handle all the data sets at interactive rates.

6.1 Output-driven Transfer Function
Editing

Figure 6(left) displays the result of both applying color
blue and adjusting alpha of the TF in Figure 1. Note that

(a) (c)

(b) (d)
Figure 7: Left: CT-knee data set and basic TF; Right:
Volume rendering and TF after blue applied and opacity
enhanced for the selected region

the intensity ranges with initial red color in the middle
of the transfer function have been blended with blue and
have become purple. Similarly, Figure 6(right) shows
the result of applying yellow and adjusting alpha. Here,
the intensity ranges in the middle have become orange
after blending with yellow. In both cases, the alpha of
the relevant parts of the transfer function is increased
and the alpha of the less relevant parts is decreased in
order to emphasize the materials of interest.

Figure 7(left) shows a rendered image of a CT-knee data
set with a selected region over the bone and the ini-
tial transfer function. Figure 7(right) shows the image
and the transfer function after applying a blue color and
alpha adjustment. The bone material becomes mostly
blue and is emphasized due to increased opacity, while
the materials around the bone with lower relative inten-
sity ranges are de-emphasized.

Figure 8 shows results of enhancing one time-step of
a turbulent vortex data set. Figure 8(a) shows the ren-
dered image and original transfer function. Figure 8(b)
shows a clear visualization, and respective TF, of the
materials of interest blended with blue and emphasized
with higher alpha. Similarly, Figure 8(c) shows the ma-
terials of interest blended with yellow and emphasized
with higher alpha.

The examples show that the technique can be applied
effectively to a range of different data sets and transfer
functions. Although we only show single step examples
due to space constraints, it should be noted that changes
can be applied by the user iteratively, analogous to a
paintbrush-like tool for a large number successive of
operations.



(a) (b) (c)
Figure 8: (a)Turbulent vortex data set and initial TF;
(b)Blue applied to selected material and opacity en-
hanced; (c) Yellow applied and opacity enhanced.

6.2 TF-components editing
Figure 9, Figure 10 and Figure 11 show results of cre-
ating and merging transfer function components on the
time-step of the turbulent vortex data set.

Figure 9 displays three transfer function components
created from a green region, a red region and a pur-
ple region, which are rectangular regions highlighted in
inverted colors, in the volume rendering respectively.
In contrast, Figure 10 displays three transfer function
components created from three generalized segments
based on image segmentation results. The three seg-
ments are visual objects with similar colors and are se-
lected by clicking on the same positions as in the rect-
angular regions in Figure 9.

Figure 11 (a) and (d) show the volume rendered im-
age and the transfer function created from merging the
three transfer function components in Figure 9. The
user interface for editing and merging transfer func-
tion components is displayed in Figure 11 (d), which
shows the individual transfer function components with
their weights and colors on the left, and the resultant
transfer function at the bottom. Similarly, Figure 11
(b) and (e) display the volume rendered image and the
transfer function created from merging the three trans-
fer function components in Figure 10 with color blend-
ing, and Figure 11 (c) and (f) display the results of
merging the three transfer function components in Fig-
ure 10 using colors of the dominant components. In
Figure 11, the three transfer function components are
merged with weights {2,1,0.2}, so that the purple fea-
ture is de-emphasized, the green feature is emphasized,
and the red feature remains the same level of opacity.

Figure 13 displays the results of merging two transfer
function components, i.e. the red feature and the green
feature, with weights {1, 1}. The transfer function com-
ponents are created from the user-selected rectangular
regions in Figure 12 (a) and (b), and the user-selected
generalized segments in Figure 12 (c) and (d) respec-
tively. Figure 12 (e) shows the initial transfer function
used for volume rendering.

(a) (b) (c)
Figure 9: User-selected regions highlighted in inverted
colors. (a): a rectangular region in the green material;
(b): a rectangular region in the red material; (c): a rect-
angular region in the purple material

(a) (b) (c)
Figure 10: Generalized segments selected at the same
positions as in Figure 9, highlighted in inverted colors.
(a): a segment in the green material; (b): a segment in
the red material; (c): a segment in the purple material

From Figure 11 and Figure 13, we observe that the
transfer function components created from segments
are smoother and have wider intensity ranges than those
created from rectangular regions.

7 CONCLUSION
In this paper, we introduce relative visibility histograms
for inferring user intentions and present interactive
techniques for editing colors and opacity values
in transfer functions for volume visualization. We
describe an output-driven color and alpha editing tech-
nique as well as a higher level technique that involves
creating and merging transfer function components
which represent features in the volume rendering.

Our color and alpha editing approach described in sec-
tion 4 has a similar interaction paradigm to that pro-
posed by Guo et al. [GMY11] in terms of emphasiz-
ing features and applying colors to features. However,
the feature definition in Guo et al.’s approach relies on
clustering of four attributes, i.e. depth, visibility, alpha
and intensity. The clustering of attributes of voxels may
be computationally heavy particularly for large volume
data sets. In contrast, our approach identifies relevant
intensity ranges of the transfer function based purely
on visibility information, thus requiring a much more
lightweight approach.

Our transfer function components approach discussed
in section 5 is similar to the work by Ropinski et al.
[RPSH08] in how the transfer function components are
modified and merged to create new transfer functions.
However, the two approaches differ in how features are



(a) (b) (c)

(d) (e) (f)
Figure 11: Merging 3 features with weights {2, 1, 0.2} and colors from peaks of TF components; (a) and (d):
Volume rendering and TF from merging the TF components in Figure 9; (b) and (e): Volume rendering and TF
from merging the TF components in Figure 10 with color blending; (c) and (f): Volume rendering and TF from
merging the TF components in Figure 10 using colors of the dominant components

identified and transfer function components are gener-
ated. The approach by Ropinski et al. generates two
further strokes which are both parallel to the user-drawn
stroke along the silhouette and positioned in the same
distance on its opposite sides. They hypothesize that
the inner stroke covers the feature of interest in image
space while the outer stroke does not cover it. In some
cases, such as a complex flow visualization, it may be
difficult to draw a stroke along the silhouette and deter-
mine a distance so that the two further generated strokes
would be one inside the feature of interest and the other
outside of it.

In our transfer function components approach, only a
region inside the feature of interest is needed for creat-
ing a transfer function component to represent the fea-
ture. Moreover, apart from selecting a rectangular re-
gion around the mouse position, the user can also select
segments generated from k-means clustering in image

space. The segments often cover more pixels and thus
lead to smoother transfer function components.
Both the visibility-driven transfer functions by Correa
and Ma [CM11] and the feature visibility technique by
Wang et al. [WZC+11] utilize iterative optimizations to
refine the transfer functions. Correa and Ma derived the
target visibility distribution from the user-defined trans-
fer function, while Wang et al. allow the user to specify
the target feature visibility. The transfer functions are
then refined by minimizing the difference between the
visibility distribution of the current volume rendering
and the target visibility distribution. In contrast, our ap-
proaches do not involve an iterative optimization pro-
cess. The relative visibility histogram is only computed
once in both of the uses cases we presented.
However, the proposed techniques are subject to the
limitations of 1D transfer functions, e.g. it is not possi-
ble to separate features of interest that overlap in the 1D
transfer function domain. Both the color and alpha edit-



(a) (b)

(c) (d)

(e)
Figure 12: User selections on the rendering of a su-
pernova data set; (a) & (b): User-selected rectangular
regions highlighted in inverted colors; (c) & (d): User-
selected generalized segments highlighted in inverted
colors; (e): The initial transfer function

ing and transfer function components techniques are
based on relative visibility histograms, which indicate
the difference between the global visibility distribution
across the volume and the local visibility distribution
within the user-selected region. Therefore, only materi-
als that are visible in the initial transfer function can be
captured and edited by the proposed techniques.

In future, we would like to conduct user studies to eval-
uate the effectiveness of the proposed techniques, in
particular with expert users in specific domains that
use volume data. We believe our approach is partic-
ularly suited for tasks where there is no clear a priori
search target, which might be the case in many com-
plex fluid visualizations. We used some standard ap-
proaches to some component mechanisms of our solu-
tion and further study may be warranted to determine
if the use of alternative segmentation techniques or a
perceptually-based color space such CIE-LAB may im-
prove the quality of the overall solution.

8 ACKNOWLEDGEMENTS
The Supernova data set is made available by Dr. John
Blondin at the North Carolina State University through
US Department of Energy’s SciDAC Institute for Ul-
trascale Visualization. Other data sets were obtained

from the Volume Library courtesy of Stefan Roettger,
the Stanford Volume Data archive and the Time-varying
data repository at UCDavis. The nucleon data set was
obtained from the free distribution of the Voreen en-
gine. We would like to thank the respective owners for
making these data sets available.

This research has been conducted with the financial
support of Science Foundation Ireland (SFI) under
Grant Number 13/IA/1895.

9 REFERENCES
[BG07] S. Bruckner and M. E. Gröller. Style

transfer functions for illustrative volume
rendering. Computer Graphics Forum,
26(3):715–724, 2007.

[CKLE98] Silvia Castro, Andreas König, Helwig
Löffelmann, and Eduard Gröller. Transfer
Function Specification for the Visualiza-
tion of Medical Data. Technical Report,
Universität Wien, 1998.

[CM11] Carlos D. Correa and Kwan-Liu Ma. Vis-
ibility histograms and visibility-driven
transfer functions. IEEE Transactions
on Visualization and Computer Graphics,
17(2):192–204, 2011.

[Ems08] Gerlinde Emsenhuber. Visibility His-
tograms in Direct Volume Rendering.
Master’s Thesis, Institute of Computer
Graphics and Algorithms, Vienna Univer-
sity of Technology, November 2008.

[GMY11] Hanqi Guo, Ningyu Mao, and Xiaoru
Yuan. WYSIWYG (What You See is
What You Get) Volume Visualization.
IEEE Transactions on Visualization and
Computer Graphics, 17(12):2106–2114,
2011.

[GY13] Hanqi Guo and Xiaoru Yuan. Local
WYSIWYG volume visualization. In Vi-
sualization Symposium (PacificVis), 2013
IEEE Pacific, pages 65–72, February
2013.

[KKH02] Joe Kniss, Gordon Kindlmann, and
Charles Hansen. Multidimensional trans-
fer functions for interactive volume ren-
dering. IEEE Transactions on Visualiza-
tion and Computer Graphics, 8(3):270–
285, July 2002.

[KWTM03] Gordon Kindlmann, Ross Whitaker, Tolga
Tasdizen, and Torsten Möller. Curvature-
based transfer functions for direct volume
rendering: Methods and applications. In
Proceedings of the 14th IEEE Visualiza-
tion 2003 (VIS’03), VIS ’03, pages 513–



(a) (b)

(c) (d)
Figure 13: Merging 2 features with weights {1, 1} and colors from peaks of TF components; (a) & (c): Volume
rendering and TF from merging the TF components in Figure 12 (a) and (b); (b) & (d): Volume rendering and TF
from merging the TF components in Figure 12 (c) and (d)

520, Washington, DC, USA, 2003. IEEE
Computer Society.

[MMGB17] Peter Mindek, Gabriel Mistelbauer, Ed-
uard Gröller, and Stefan Bruckner. Data-
sensitive visual navigation. Computers &
Graphics, 67:77–85, October 2017.

[RPSH08] Timo Ropinski, Jörg-Stefan Praßni, Frank
Steinicke, and Klaus H. Hinrichs. Stroke-
Based Transfer Function Design. In
IEEE/EG International Symposium on
Volume and Point-Based Graphics, pages
41–48. IEEE, 2008.

[WQ07] Yingcai Wu and Huamin Qu. Interactive
transfer function design based on edit-
ing direct volume rendered images. IEEE

Transactions on Visualization and Com-
puter Graphics, 13(5):1027–1040, 2007.

[WVFH12] A. Wiebel, F.M. Vos, D. Foerster, and
H.-C. Hege. WYSIWYP: What You See
Is What You Pick. IEEE Transactions
on Visualization and Computer Graphics,
18(12):2236–2244, 2012.

[WZC+11] Yunhai Wang, Jian Zhang, Wei Chen,
Huai Zhang, and Xuebin Chi. Efficient
opacity specification based on feature vis-
ibilities in direct volume rendering. Com-
puter Graphics Forum, 30(7):2117–2126,
2011.


	Introduction
	Related Work
	Relative Visibility Histograms
	Output-driven Color and Alpha Editing
	Transfer Function Components
	Feature Specification Using Transfer Function Components
	Image-Space Clustering for region of interest selection
	Merging Transfer Function Components
	Blending colors of transfer function components
	Using colors of the dominant components


	Results
	Output-driven Transfer Function Editing
	TF-components editing

	Conclusion
	Acknowledgements
	REFERENCES

