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MATHEMATICAL MODELS OF THE IMPACT OF HOST AND ENVIRONMEN-
TAL RISK FACTORS ON THE INCIDENCE OF TUBERCULOSIS (TB) WITHIN
A NATIONAL COHORT.

Author: Aidan Hanway

Tuberculosis (TB) is an infectious disease that can prove fatal if untreated. Despite a re-

emergence of TB in Ireland, research has failed to provide insight to the causes of recent

increases. The study acquires national surveillance data and systematically identifies a

number of significant trends related to TB. From these findings, epidemiological models

are constructed and simulated and put through various scenarios. The primary aim of the

study is to develop, simulate, and forecast deterministic epidemic models for the spread of

TB with application to an Irish setting.

The study utilises anonymised cross-sectional surveillance data acquired from the Health

Protection Surveillance Centre (HPSC). Ethical approval was granted by the Adelaide and

Meath Hospital, and ethical approval recognised by Trinity College. Two SEIR (Suscep-

tible Exposed Infection Recovered) models consisting of systems of ordinary differential

equations (ODEs) were developed and simulated. Approximate Bayesian Computation

and Metropolis-Hastings inference algorithms were implemented to estimate the basic re-

productive number, R0, and other model parameters in preparation for simulation and

forecasting.

Statistically significant differences were calculated between native and foreign-born TB

notifications, which is in line with previously published literature. Significant seasonality

was discovered in Irish TB notifications, which has not been previously shown in pub-

lished research. Migrant and seasonal SEIR models were presented for analysis. The

models forecast a modest decline in notifications nationally up until 2023. Key parameters

were identified in each model to help strategies that involve population management. A

scenario analysis conducting numerical simulations calculated marginal increases in noti-

fications (from one to three cases annually) when a change in vaccination procedure from

universal vaccination to selective vaccination is considered. Numerical simulations of the

seasonal epidemic model suggest that it would be more cost effective to implement an in-

fection control strategy such as vaccination during the period from January to June, rather
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than all year round.

Further research is required to investigate the causes and effects of seasonality in TB no-

tifications and whether foreign-born and native-born populations interact with each other

in an Irish setting. The epidemiological parameters estimated in this thesis form a basis

for future surveillance and modelling to take place in Ireland and other settings. The top

contributing countries of the foreign-born population should be surveyed to ensure these

trends continue, as variance in notifications for this group is larger than that of the native-

born population. Further research is required to model vulnerable populations in Ireland

such as the homeless, refugee, and unemployed populations.
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w1 increased from 15% to 55% (a 40% increase) at T = 144, then over the

next ten years the total number of infectious would increase approximately

0.3% when compared to a model where w1 did not increase. . . . . . . . 212

7.7 The Seasonal Infectious Compartment Over Time With Various Interven-

tions Staged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.8 Percentage Reduction in Notifications (Between Constant Parameter Change

and Seasonal) for both Intervention Strategies and Varying Values of δ

(Delta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

xiii



7.9 Percentage Change in Sensitivity Values yΣI , yΣE , yS(144), and yR(144), Be-

tween the Varying Values of δ (Delta) . . . . . . . . . . . . . . . . . . . 221

8.1 Source: [1] Age Distribution Of Foreign and Native-Born TB Notifica-

tions From 1998 to 2005. . . . . . . . . . . . . . . . . . . . . . . . . . 226

8.2 Source: [87] Figure (Right): A Rise in US TB Notifications, 1985 through

1992. Table (Left): Demographics of Excess Cases. . . . . . . . . . . . . 227

8.3 Source: [93] Numerical Simulation Results of Model From Literature Re-

view. (§3.5.3) A Canadian Model with One-Way Interaction from Mi-

grants to Locals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.4 Source: [132] Autocorrelation of Monthly Notifications In New York . . 233

A.1 Monthly Notification Data With A Second, Fourth and Second on Fourth

Order Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

A.2 Boxplots Of Weekly Notifications Factored By Week Of Year . . . . . . . 271

xiv



List of Tables

3.1 Composition of Search Terms . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Included Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Variable descriptor for dataset subgroup: TB data . . . . . . . . . . . . . 60

4.2 Variable descriptor for dataset subgroup: Demographic data . . . . . . . . 61

4.3 Variable descriptor for dataset subgroup: Risk Factor data . . . . . . . . . 62

4.4 Notifications (Count, Percentage, Incidence) Categorized By Birthplace . 70

4.5 Statistics (Count, Percentage, Incidence) Categorized By Birthplace . . . 71

4.6 Death Due To TB Age Distribution . . . . . . . . . . . . . . . . . . . . . 76

4.7 Percentage of Cases With A Risk Factor . . . . . . . . . . . . . . . . . . 77

4.8 Table Highlighting Percentage Increase In Cases During A Seasonally

High Period For Each Demographic Variable . . . . . . . . . . . . . . . 83

4.9 Statistics Of N[C,t]− I[C,t], The Discrepancy For All Countries Over 2002

Through To 2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.10 Minimum And Maximum Incidence Rates For Each Country (N[C,t]) And

For The Individuals Born Of That Country Who Live In Ireland (I[C,t]). . . 89

4.11 A Comparison Of N[C,t] And I[C,t] When Countries Are Categorized By

Incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.12 Distribution Of Birthplace Factored By Race/Ethnicity . . . . . . . . . . 92

4.13 Table Detailing Demographic Differences In Notifications Between Foreign-

Born and Native-Born Groups . . . . . . . . . . . . . . . . . . . . . . . 93

xv



5.1 Annual Population, Birth, Migration, And Mortality Data for Ireland, 2002

through 2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Number of Deaths Attributed to TB, 2002 through 2013. . . . . . . . . . 107

5.3 Duration of Illness Statistics . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Annual Outbreak and Infection Type Data, 2004 through 2013 . . . . . . 109

5.5 Statistics for the Posterior Distributions of β0 and k0. . . . . . . . . . . . 118

5.6 Potential Scale Reduction Factors For Parameters β0 and k0. . . . . . . . 119

5.7 Uncertainty of R0 Given the Uncertainty of Parameters β0 and k0. . . . . 121

5.8 Statistics and Quantiles of Seasonal Model Residuals . . . . . . . . . . . 125

5.9 Annualized Seasonal Model Values Compared with Data. . . . . . . . . . 127

5.10 Annualized Seasonal Model Extrapolated 10 Years into the Future. The

Upper and Lower Credibility Intervals were Calculated given the Uncer-

tainty of the Transmission Parameters . . . . . . . . . . . . . . . . . . . 128

6.1 Count and Proportion of Individuals who had Yes/No Filled Out On Their

Notification Form When Assessed Whether They Had Died Due To TB. . 146

6.2 Statistics On Recovery Time For The Local And Migrant Populations . . 147

6.3 Descriptive Statistics On Transmission Parameter Distribution For the Metropolis-

Hasting Algorithm on the Model with No Interaction. . . . . . . . . . . . 155

6.4 Potential Scale Reduction Factors For Parameters β1, β2, k1, and k2. . . . 157

6.5 Statistics for the Posterior Distribution of Transmission Variables. . . . . 161

6.6 Potential Scale Reduction Factors For Parameters β1, β2, k1, k2, β ∗1 , and β ∗2 ..163

6.7 Transmission Parameter Estimates and Basic Reproductive Numbers for

the Non-Interactive Model . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.8 Uncertainty of R(0)L and R(0)M given the Uncertainty of the Transmission

Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.9 The Values of the Transmission Parameters, and Calculation of R0 for the

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.10 Percentiles of R0 given the Transmission Parameter Values . . . . . . . . 167

6.11 caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xvi



6.12 Non-Interactive Migrant Model Population Estimates With ABC Param-

eters. Note: Susceptible and Recovered Populations Are Year End Esti-

mates, Exposed and Infectious Populations are Year Total Estimates. . . . 175

6.13 Non-Interactive Migrant Model Population Estimates With Metropolis-

Hastings Parameters. Note: Susceptible and Recovered Populations Are

Year End Estimates, Exposed and Infectious Populations are Year Total

Estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.14 Migrant Interactive Model Population Estimates With ABC Parameters.

Note: Susceptible and Recovered Populations Are Year End Estimates,

Exposed and Infectious Populations are Year Total Estimates. . . . . . . . 177

6.15 Migrant Interactive Model Population Estimates With Metropolis-Hastings

Parameters. Note: Susceptible and Recovered Populations Are Year End

Estimates, Exposed and Infectious Populations are Year Total Estimates. . 178

7.1 Sensitivity Values for Seasonal Model . . . . . . . . . . . . . . . . . . . 184

7.2 Sensitivity Values for Migrant Models . . . . . . . . . . . . . . . . . . . 184

7.3 Parameter Distributions for Sensitivity Analysis of Seasonal Model . . . . 185

7.4 Various Correlation Results for each Parameter on the Model Output Val-

ues yΣI , yΣE , yR0 , yS(144),and yR(144). Significance codes: * p− value ≤
0.05, ** p− value≤ 0.01 , *** p− value≤ 0.001. . . . . . . . . . . . . 187

7.5 Parameter Distributions for Sensitivity Analysis of Migrant Model With-

out Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.6 Various Correlation Results for each Parameter on the Model Output Val-

ues yΣIM, yΣEM, yR0 , ySM(144),and yRM(144). Significance codes: * p−
value≤ 0.05, ** p− value≤ 0.01 , *** p− value≤ 0.001. . . . . . . . . 192

7.7 Various Correlation Results for each Parameter on the Model Output Val-

ues yΣIL, yΣEL, yR0 , ySL(144),and yRL(144). Significance codes: * p−value≤
0.05, ** p− value≤ 0.01 , *** p− value≤ 0.001. . . . . . . . . . . . . 194

7.8 Parameter Distributions for Sensitivity Analysis of Migrant Model With

Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

xvii



7.9 Various Correlation Results for each Parameter on the Model Output Val-

ues yΣIM, yΣEM, yR0 , yΣIL,and yΣEL. Significance codes: * p− value ≤
0.05, ** p− value≤ 0.01 , *** p− value≤ 0.001. . . . . . . . . . . . . 202

7.10 Various Correlation Results for each Parameter on the Model Output Val-

ues yΣIM, yΣEM, yR0 , yΣIL,and yΣEL. Significance codes: * p− value ≤
0.05, ** p− value≤ 0.01 , *** p− value≤ 0.001. . . . . . . . . . . . . 203

7.11 Various Correlation Results for each Parameter on the Model Output Val-

ues ySM(144), yRM(144), ySL(144), and yRL(144). Significance codes: * p−
value≤ 0.05, ** p− value≤ 0.01 , *** p− value≤ 0.001. . . . . . . . . 204

7.12 Various Correlation Results for each Parameter on the Model Output Val-

ues ySM(144), yRM(144), ySL(144), and yRL(144). Significance codes: * p−
value≤ 0.05, ** p− value≤ 0.01 , *** p− value≤ 0.001. . . . . . . . . 205

7.13 The Percentage Change for Varying Six Month Intervention Intervals on

the Sensitivity Value yΣI , when Compared to a Model without Intervention. 219

A.1 Notifications (Count, Percentage, Incidence) Categorized By Disease Type 249

A.2 Statistics(Count, Percentage, Incidence) Categorized By Disease Type . . 250

A.3 Notifications (Count, Percentage, Incidence) Categorized By Strain Type,

Statistics (Count, Percentage, Incidence) Categorized By Strain Type . . . 251

A.4 Notifications (Count, Percentage, Incidence) Categorized By Death, Statis-

tics (Count, Percentage, Incidence) Categorized By Death . . . . . . . . . 252

A.5 Notifications (Count, Percentage, Incidence) For The Variable Gender . . 253

A.6 Descriptive Statistics (Count, Percentage, Incidence) For The Variable

Gender Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

A.7 Notifications (Count, Percentage) Categorized By Age . . . . . . . . . . 255

A.8 Top: Notifications (Incidence) Categorized By Age. Bottom: Statistics Of

Count Data (N) For Age Categorized . . . . . . . . . . . . . . . . . . . . 256

A.9 Top: Statistics Of Percentage Data (%) Categorized By Age. Bottom:

Statistics Of Incidence Data (Incidence) Categorized By Age . . . . . . . 257

A.10 Notifications (Count, Percentage, Incidence) Categorized By Employment

Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

xviii



A.11 Descriptive Statistics (Count, Percentage, Incidence) For The Variable

Employment Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

A.12 Notifications (Count, Percentage, Incidence) Categorized By Current Living260

A.13 Statistics (Count, Percentage, Incidence) Categorized By Current Living . 261

A.14 Notifications (Count, Percentage, Incidence) For The Variable Race/Eth-

nicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

A.15 Statistics (Count, Percentage, Incidence) For The Variable Race/Ethnicity 263

A.16 Notifications (Count, Percentage, Incidence) And Statistics For The Vari-

able Refugee Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

A.17 Frequency Of Risk Factor Notifications (Count, Percentage) . . . . . . . 265

A.18 Statistics Of Risk Factor Notifications (Count, Percentage) . . . . . . . . 266

A.19 Descriptive Statistics Of Notifications For Each Month Of Year . . . . . . 267

A.20 Notifications (Count, Percentage, Incidence) Of Cases Categorized By

Quarter Of Year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

A.21 The three additive components of quarterly notifications obtained from a

robust STL decomposition with flexible trend and fixed seasonality. . . . 268

A.22 Monthly notification additive components obtained from a robust STL de-

composition with flexible trend and fixed seasonality. . . . . . . . . . . . 269

xix



Chapter 1

Thesis Introduction, Objectives, and
Outline

1.1 Introduction

Tuberculosis (TB) saw an increase in the count of notifications in Ireland in recent years

[1] which gave rise to this study. The purpose of this study is to understand the increase

in TB and to understand the disease itself through the use of epidemiological models and

national data. As there exists a vast number of epidemic models in the literature, this study

adopts a systematic and impartial approach to its derivation of a viable model. It achieves

this by utilisation of systematic methodologies used in it’s literature search and by way of

analysis of national data.

The study conducted an analysis using data acquired from the Health Protection Surveil-

lance Centre (HPSC), a sister organisation of the Health Service Executive (HSE) in Ire-

land. The details of acquirement are outlined in chapter 4 (§4). These data are used

throughout the thesis and were crucial in the establishment of a viable model. While an-

nual surveillance reports are generated by the HPSC [2], little work has been completed

evaluating TB over a prolonged time period which this study now attempts. The aims and

objectives of the study now follow along with a thesis outline, which describes the contents
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of each chapter briefly.

1.2 Aims and Objectives

1.2.1 Aim

To develop, simulate, analyse, and forecast one or more deterministic epidemic models for

the spread of tuberculosis and to apply these models within an Irish setting.

1.2.2 Objectives

The objectives of this study include:

• Describe and analyse existing cross-sectional TB data from a national data source.

• To review and refine one or more deterministic models of spread that accurately

describes underlying TB dynamics and incorporates attributes of the aforementioned

analysis.

• For each model derive R0, the basic reproductive number, for calculation and for

sensitivity analysis.

• Given data and statistical inference methods, estimate epidemiological parameters

and initial conditions for each model.

• For each model, simulate and extrapolate the underlying dynamics and numerically

calculate the basic reproductive number.

• Perform a sensitivity analysis on the parameters and provide a scenario analysis for

each model.

The following thesis outline describes the content each chapter.
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1.3 Thesis Outline

The first chapter (§1) gives an introduction, sets out the study aims and objectives, and

provides an outline of the thesis. In §2, the study reviews research related to TB. It gives

an historical context of the disease, highlighting its origin and the burden TB has had on

humanity throughout time. The symptomatology of TB is then described to lend insight

to the underlying disease dynamics and various disease management approaches are de-

scribed. Lastly, the epidemiology of TB is then summarized on a global, European, and

Irish scale.

In §3, the study reviews mathematical epidemiology. The underlying systematic pro-

cess of modelling is described and the history of mathematical epidemiology is detailed

mentioning various key discoveries as the section progresses. The chapter then describes

a specific modelling type, referred to as compartmental modelling, and simple models are

reviewed. Lastly, a systematic search strategy is implemented to seek out a viable model

for analysis and simulation. In §4 an exploratory analysis is conducted evaluating a na-

tional TB data set. Descriptive analysis is conducted on a number of variables and two key

characteristics are found from the data: seasonality in TB notifications and an increase in

foreign-born TB.

In §5, the first of two models is analysed and simulated. The model simulates TB for

the population as a whole and proposes that certain parameters have seasonal increases and

decreases. The model is then altered made to it and the parameters are estimated in order

to fit Irish data. Simulation and extrapolation is conducted along with the calculation of

the basic reproductive number for the model. In §6, the thesis considers a migrant model

that stratifies the population into local and migrant subgroups. Two models are consid-

ered in this chapter: one that assumes no interaction occurring between each sub-group,

and another that assumes an interaction is occurring. Similar to §5, analysis, simulation,

extrapolation, and calculation of the basic reproductive number is conducted. In §7 a sen-

sitivity and scenario analysis is performed. The sensitivity of each parameter for each

model is calculated with respect to various objective values. A scenario analysis is com-
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pleted for the local population in the migrant model established in §6 and an intervention

is staged and further analysis conducted on the seasonal TB model established in §5. The

thesis then discusses the results in §8. A comparison of results to findings in the literature

is offered and limitations of the modelling methods are discussed. The thesis concludes in

§9, highlighting key results and proposing further work to be conducted in the future.
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Chapter 2

Review of Tuberculosis

2.1 Introduction

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium Tuber-

culosis (M.Tuberculosis). The pathogen can occur in any organ of the body but primarily

affects the lung. The impact of TB has been profound and it is estimated that it has has

responsible for killing more people than any other pathogen [3]. Different names for the

disease throughout history include: phthisis, consumption, the grave yard cough, and the

white death. Humans have been exposed to the disease since ancient history.

This chapter provides background information with respect to this history. The chap-

ter details the symptoms and risk factors of the disease to and provides context on how

the disease spreads. Various TB management and prevention methods are discussed and,

lastly, the global, European, and Irish epidemiology of the disease are detailed.
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2.2 A Brief History Of Tuberculosis

2.2.1 Origin

Tuberculosis has infected humans since the expansion of human populations from Africa,

approximately 35,000 years ago. However, the bacterium is believed to have originated

over 150 million years ago and is, therefore, thought to be one of the longest living

pathogens known to mankind [4]. Its origins are not well defined in literature. A pro-

portion of literature states that it originated in the Neolithic period when man first began

living in close proximity to cattle [5], however this theory is under dispute as comparative

genome analysis has shown that it was unlikely that M. tuberculosis arose directly from

a bovine (cattle) strain [6]. A consensus has yet to be reached with regard to its origin.

Analysis based on the mutation rate of the bacteria indicates much of the diversity among

strains currently in circulation had origins between 250 and 1000 years ago [7].

2.2.2 Progression Throughout History

While relatively little is known about its prevalence before the 19th century, the number

of infections is thought to have peaked between the end of the 18th century and the end of

the 19th century. Figure 2.1 demonstrates the impact TB has had on humanity over time

relative to other diseases.
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Figure 2.1: A Comparison Of Worldwide Deaths Caused By Tuberculosis With Other

Infectious Diseases In The Past 200 Years. Source:[3]

TB was not identified as a unique disease until the 1820s. It was referred to as “tu-

berculosis” in 1839, by J. L. Schönlein [8]. M.Tuberculosis was later designated within

an appropriate class of bacteria in 1882 by Robert Kock. Kock published his findings on

tuberculosis, in which he reported the cause of the disease to be the slow-growing My-

cobacterium tuberculosis. He received the Nobel Prize in physiology and medicine in

1905 for his research [9]. Koch announced a discovery of an extract called glycerine as

a “remedy” for tuberculosis in 1890, calling it “tuberculin”. While it was not effective,

it was later successfully adapted as a screening test for the presence of pre-symptomatic

tuberculosis [10].

Albert Calmette and Camille Guérin achieved the first success in immunization against tu-
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berculosis in 1906, using a bovine-strain tuberculosis. It was called bacille Calmette–Guérin

(BCG). The BCG vaccine was first used on humans in 1921 in France [11], but received

widespread acceptance in the US, Great Britain, and Germany only after World War II

[12].

An effective treatment for TB was developed in the UK by John Crofton who in-

troduced Isoniazid, a newly discovered drug, as a treatment for patients. He was later

knighted for his discovery. At the time it was possible to achieve a 100% cure rate with

this treatment [13,14].

The new-found cure caused both the prevalence and incidence to decline globally.

Hopes of completely eliminating TB (cf. smallpox) from the population were dashed,

however, the disease began to infect individuals with AIDS for which treatment could not

be effectively administered. The global AIDS pandemic in the 1980’s combined with the

rise of drug-resistant strains caused a resurgence globally. Because of the emergence of

new strains, surgery has been re-introduced as an option within the generally accepted

standard of care in treating TB infections[15].

2.3 Symptoms and Risk Factors

While the human body can harbour the bacteria that cause TB, the immune system can

prevent the illness from developing. This is achieved by macrophages, a type of white

blood cell, which engulfs the bacteria and may destroy it. Doctors make a distinction

between various forms of TB, they are:

• Latent TB is defined as the condition whereby an individual may have the bacterium

present but is asymptomatic (displaying no symptoms). An individual has Latent TB

if either of the following scenarios occur:

1. The bacteria gets absorbed and destroyed by macrophages.

2. The bacteria get absorbed by macrophages, but are not destroyed.
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The above two scenarios are difficult to distinguish clinically. While latent TB is not

contagious, it can progress to active TB.

• Active TB is defined as the condition where the individual is displaying symptoms

and can spread the disease to others. It can occur in the first few weeks after infection

with the TB bacteria, or it may occur many years later.

If a tuberculosis infection does transition into an active case, it most commonly infects the

lungs (in about 90% of cases) [16]. The infection is said to be a Pulmonary Infection when

this occurs. Symptoms in this instance include: difficulty breathing, chest pain, coughing

(occasionally with blood), night sweats, fatigue, and weight loss. Figure 2.2 illustrates the

progression of TB inside the lungs.

Figure 2.2: Stages Of Mycobacterium Tuberculosis Progressing Throughout The Lungs

In 15–20% of active cases, the infection occurs outside the lungs [17]. It can spread

to almost any part of the human body including: other organs, bone, and the lymphatic
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system. When this occurs the infection is defined as an Extrapulmonary Infection. It is

possible for an individual to have both Extrapulmonary TB and Pulmonary TB simulta-

neously. Symptoms of Extrapulmonary TB depend on where the infection is occurring

within the body, however, some common symptoms include: symptoms of pulmonary TB,

blood in urine, headaches, back pain, and a sore throat.

Clinical presentations of Extrapulmonary TB include: Tuberculous meningitis, Skele-

tal TB, Gastrointestinal TB, and Genitourinary TB. Symptoms of each of these presenta-

tions follow:

• Tuberculous meningitis: Patients with tuberculous meningitis may present with a

headache that has been either intermittent or persistent for a duration greater than

2 weeks. Possible progression includes the individual transitioning into a to coma

over a period of days to weeks. Fever can be absent for this form of TB.

• Skeletal TB: This form of TB usually effects the spine, which is referred to as Pott

disease. Back pain or stiffness can follow with the possibility of paralysis occurring

in the lower-extremities (commonly only a single joint).

• Gastrointestinal TB: Occurs when any site along the gastrointestinal tract becomes

infected. Symptoms of gastrointestinal TB are referable to the infected site and in-

clude the following: Ulcers of the mouth/anus, difficulty swallowing, abdominal

pain, malabsorption (when infected in the small intestine), pain, diarrhoea, or hema-

tochezia (when infected in the colon).

• Genitourinary TB: Symptoms of genitourinary TB may include frequent urination,

flank pain, and dysuria. In males, genital TB may manifest as a painful scrotal

mass, prostatitis, orchitis, or epididymitis. In females, genital TB may mimic pelvic

inflammatory disease.

2.3.1 Risk Factors

The risk of developing tuberculosis is dependent on both the risk of being infected and the

risk of latent infection becoming an active disease. The former will depend on the inci-
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dence of tuberculosis in the community where the individual lives or works. The latter will

depend on many factors including the genetic make up and environment of the individual.

As infection can be contingent on the strength of the individual’s immune system, a

number of other diseases can increase risk factors. The most common risk factors include:

• HIV/AIDS: The largest risk factor for developing active TB is concurrent HIV in-

fection. The probability of latent TB progressing to active TB increases approxi-

mately one hundred-fold when the individual is HIV positive [18].

• Immunosuppressive Treatment: An individual being administered treatment that

affects the immune response will have an increased risk of infection. Patients ex-

posed to tuberculosis and being administered immunosuppressive treatment have

very specific requirements for preventive therapy. An individual undertaking im-

munosuppressive treatment has approximately 12 times the likelihood of acquiring

active-TB.

• Malnutrition: Studies have shown that malnutrition raises the risk of TB because

of an diminished immune response [19,20]. TB itself can lead to malnourishment

because of a loss of appetite and changes in the individuals metabolism [21].

• Young Age: Children are at higher risk of contracting both latent and active TB.

Studies have shown that 60–80% of children exposed to an infectious case became

infected [22]. The majority of the children less than two years of age get infected

from a household source. For children greater than two years of age, the majority of

them become infected from an external community source. Children with primary

infection before 2 years or after 10 years of age are at increased risk for disease

development [159]. The highest risk for TB-related mortality following primary

infection tends to occur during infancy. The risk declines to 1% for children aged

between 1 and 4 years. The risk then rises to more than 2% from 15 to 25 years of

age [156].
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• Diabetes: Diabetes has been shown to increase the risk of active TB disease de-

veloping. A systematic review conducting a meta-analysis of 13 studies found that

diabetes was associated with an increased risk of TB (RR = 3.11, 95% CI 2.27–4.26).

It is estimated that currently 70% of people with diabetes live in low- and middle-

income countries [24].

• Alcohol/Tobacco Smoke: A systematic review concluded that the risk of active

tuberculosis is higher (RR = 2.94, 95% CI = 1.89–4.59) among people who drink

more than 40 grams of alcohol each day [25]. Reasons for increased risk include

suppression of the immune system caused by the intake of alcohol. The association

between smoking and TB has been studied by Bates and colleagues who conducted

a systematic review [26]. Relative risk estimates ranged from 2.33 (95% CI, 1.97-

2.75) to 2.66 (95% CI, 2.15-3.28) among individuals who are tobacco users.

Environmental and demographical factors are also important aspects that contribute to

the progression of infection.

• Socio-economic Status: People with low socio-economic status are exposed to sev-

eral risk factors discussed above (including malnutrition, indoor air pollution, al-

cohol intake, etc.) which increases their risk for TB. People with a lower socio-

economic status have a higher likelihood of being exposed to crowded, less venti-

lated locations and often have limited access to healthcare facilities.

In the recent work of Ortblad and colleagues [160], it was shown for low to middle

income countries improved living conditions, health system access, and education

have a negative relationship with tuberculosis case notification rates. It was also

shown increased malnutrition, health expenditure, poverty, and inequality have a

significant positive relationship with tuberculosis case notification rates.

The STOP TB campaign [161], funded by the WHO state low income countries

accounted for 65% of TB cases and 71% of TB related deaths in 2002. Approxi-

mately 42% of the worlds population lives in these countries implying the burden
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of TB falls heavily on individuals living in poverty. As stated, low socio-economic

status individuals are exposed to TB risk factors. This relationship is apparently a

two way relationship. Poverty brings about TB notifications and TB itself produces

poverty. It is estimated to have economic cost of $12 billion from the incomes of the

worlds poorest communities annually.

• Birthplace: Studies conducted on high-income countries have shown the burden

of TB falls disproportionately more on foreign-born communities [27]. The study

reviews figures that show the proportion of individuals migrating with active TB is

relatively small, however, the proportion of individuals with a latent TB infection

can range from 5-72%. This in combination of the fact that reactivation occurs at

a higher rate than the host population [202], causes an inflated notification rate for

the foreign-born population relative to the native-born population. The increased

latent infection rate is due to a number of factors, however, the duration of time the

individual spends in their birth country and the TB burden within that country are

believed to be two primary factors [28, 29].

• Occupation: Healthcare workers are at increased risk of exposure to TB. A re-

view by Seidlerand and colleagues showed that, among healthcare workers in high-

income countries, the overall incidence of TB in the general population was less

than 10 per 100,000. Within native-born (individuals with birthplace of country they

currently reside) healthcare workers incidence was observed to be 25 per 100,000

individuals [30].

2.4 Tuberculosis Management

2.4.1 Treatment

The underlying treatment pathway can be seen in figure 2.3.
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Figure 2.3: Pathways to TB diagnosis and treatment, and barriers or entry points for inter-

ventions Source:[31].

An accurate diagnosis of TB can often be difficult, particularly diagnosing active TB

[32]. A diagnosis is often made when symptoms persist for more than two weeks. A

chest X-ray and sputum cultures are typically part of the evaluation process. With respect

to analysis of sputum cultures, treatment is often administered before a positive result is

observed. This is due to the slow growth rate of the culture [33].

For latent TB the Mantoux skin test is often administered to screen individuals with

TB risk factors. A standard dose of 5 tuberculin units is injected into the individual and the

results are measured two to three days after administration [34]. A diagnosis is given by

measuring the diameter of the hardened area in millimetres that appears (often appearing

as a rounded hard bubble on the skin)[35].

An individual’s risk factors determine the tolerable threshold for the diameter of the
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hardened area. If the individual is HIV-positive, has come into recent contact with an

infectious case, or has received immunosuppressive medication, a positive diagnosis is

given when the hardened area has a diameter greater than 5mm. If the individual has ar-

rived from a high-prevalence country, has a history of drug misuse, is a child, or works

within a healthcare setting, a diameter of 10mm or more constitutes a positive diagnosis.

Lastly, all remaining individuals with a diameter measurement of 15mm or more result in

a positive diagnosis.

2.4.2 Control, Prevention, and Efficiency

Control guidelines set out by the Centers for Disease Control and Prevention [162] suggest

a control program that incorporates the following: quick detection, airborne provisions,

and rapid treatment.

The guidelines go on to detail that the best method of implementing the aforementional

control mesures is by way of administrative (developing an infection-control plan, ef-

fective work practices, screening, etc.), enviornmental (exhaust ventilation, controlling

airflow), and respiratory-protection (implementing a respiratory-protection program, edu-

cation) methods.

With respect to population prevention and control, efforts primarily rely on vaccination

of infants and appropriate treatment of active cases [36]. The only available vaccine today,

which was discovered in 1921, is the bacilli Calmette-Guerin (BCG) vaccine. The majority

of vaccinations are administered immediately after birth [37]. Booster vaccinations are

be administered after birth in specific countries. The effectiveness of the BCG varies

depending on geography, and appears to decrease the closer the underlying population is

to the equator [38,39]. In a systematic review of randomized control trials, the vaccine was

shown to have a relative risk ratio of 0.31 for inidivuals living in locations greater than 40

degrees latitude. This relative risk translates to a 69% efficacy rate. The duration the BCG

offers protection is not clearly known. An absence of longitudinal data within studies

contributes to the uncertainty. A study by Abubakar and colleagues [41] conducting a
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systematic review concluded protection can last for over 10 years, however other studies

have shown the protection the BCG offers can last a life-time [42].

With respect to Irish vaccination strategy, the BCG vaccine is given to protect babies

against TB but can also be given to older children and adults who are considered to be

at risk of developing TB. The vaccine is not administered when: an allergic reaction to a

previous BCG vaccine has occurred, previous BCG vaccine has been administered, diag-

noses with TB previously, pregnancy, positive tuberculin test, family history of problems

with the immune system, HIV Positive individuals. Further information on Irish strategy

can be found on through the Irish National Immunisation Organisation [163]

2.4.3 Self-Management

Infected individuals are usually prescribed medications to reduce the risk of transmission

to others. Ensuring adherence to medication is important, as individuals who are not sub-

ject to direct monitoring may increase the risk of transmission and there is a high degree

of reliance on self management and administration when confinement is not possible. Ad-

ditional precautions taken include: confinement to home in order to reduce contact with

other individuals; improved ventilation - TB spreads within closed confined spaces and it

is recommended to have either a fan or open windows in the room in which the individual

spends most of their time; wearing a mask to cover the mouth as TB primarily transmits

through coughing. It is also recommended to safely contain or destroy the material used

to cover the mouth.

2.5 Epidemiology of TB

2.5.1 Global Epidemiology

Tuberculosis, has seen a decline in incidence, prevalance, and mortality over the last

decade. Despite declining rates, disease elimination is still not in sight. Figure 2.4 il-

lustrates global trends between 1990 and 2015 of active cases.
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Figure 2.4: Global Trends In Estimated TB Incidence, Prevalence, And Mortality Rates

1990-2015. Dashed Line Representing STOP TB Control Strategy Target For 2015

Source: [43]

In 2010, it was estimated one-third of the global population was infected with either

latent or active TB [44]. This amounts to approximately 2.3 billion individuals. The dis-

tribution of infections is not uniform and is heavily skewed towards developing countries.

About 80% of the population in many Asian and African countries test positive in tuber-

culin tests, while only 5-10% of developed nations, such as the United States, test positive

[45]. In 2014, there were approximately 1.5 million deaths attributed to TB [44]. India

and China accounted for approximately 41% of total global notifications. India had an

estimated 2.16 million new case notified during 2014 relative to a population of 1.29 bil-

lion, and China has the largest total count notifications with an estimated 12.7 million new

cases notified during 2014, relative to a population of 1.37 billion. The largest incidence

in a population was seen in South Africa, estimated at approximately 834 per 100,000 of

the population in 2014. Figure 2.5 shows a heat map of TB incidence globally for 2014.
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Figure 2.5: Estimated Distribution Of Global TB Incidence Rates 2014. Source: [43]

In the early 1990s, TB re-emerged in developed countries consciousness due to an in-

crease in the number of outbreaks and has since become a significant public health agenda

item. In 1993, concerned about the extent of the problem in most of the developing world,

the World Health Organisation (WHO) declared TB a global emergency [48,49].

Over the last twenty years global strategies for TB control have been recommended

in all countries. In May 2014, the World Health Assembly (WHA) approved a strategy

aimed at ending global TB epidemics by 2035. Milestones for 2025 include a 75% reduc-

tion in mortality (compared to 2015 rates), and a 50% reduction in incidence rates. The

end goal aims to reach a 95% reduction in mortality rates and a 90% reduction in incidence
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rates[50].

Due to the burden of TB affecting certain countries more than others, the WHO cat-

egorised 30 countries as high burden countries (HBCs). These countries account for ap-

proximately 85–89% of the global burden. The categorisation was made to provide a focus

and a galvanization for global action on TB.

2.5.2 European Epidemiology

The overall European TB case notifications reveal differences in the rates of TB between

countries in Western Europe and those in Eastern Europe [51]. Figures for 2004 show

the UK had notification rates less than 13 per 100,000 population. This is contrast with

Romania and the Russian Federation whose rates were greater than 100 per 100,000 for

their population. TB notifications in the countries of Central Europe fall somewhere in

between these two extremes and while many of these countries have falling rates of TB,

increases have occurred in countries such as Bulgaria and Herzegovina. TB notification

rates in the European Union have been declining at a mean annual rate of 4.4% since 2006.

In 2010, there were approximately 73,996 TB cases reported by the 27 EU Member States

and the three additional countries (Iceland, Liechtenstein and Norway) [52]. This resulted

in average notification rates below 100 per 100,000 population for all EU Member States

for the first time in 2010.

Several publications have highlighted the higher notification and incidence rates evi-

dent among certain high-risk groups for TB which is overrepresented in most big cities.

High risk groups include migrants from high-incidence countries, homeless people and

drug and alcohol users [53,95].

Additional Remark: A publication can be found in Appendix D. The study conducts

a cross-sectional analysis of nine European countries. The study examines the density of

each country’s HBC population and foreign-born incidence rates.
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2.5.3 Irish Epidemiology

While a more detailed study of Irish epidemiological data is present in §4, a brief outline

is given here. In 2015, Ireland experienced 318 TB notifications with a respective crude

incidence rate of 6.9 per 100,000 individuals, this is a considerable decline compared

to 1991 figures where notifications were 640 with an incidence of 18.2. The incidence

rate did not decline linearly between those time periods. Incidence rates saw a modest

increase from 2001 up until 2008. The cause of this increase has been detailed in literature

as predominantly being due a rise in foreign-born notifications [1]. The current BCG

vaccination strategy implemented within Ireland is one of universal vaccination from birth

with no booster administered. All individuals born within Ireland receive this vaccination.

Changes are currently being proposed to this policy and further discussion and analysis

is presented in §7. Further analysis and discussion is completed on Irish epidemiological

data within §4.

2.6 Conclusion

The chapter detailed the history of the origins, diagnosis, treatment, and epidemiology of

TB and corresponding healthcare research. It examined the symptoms and risk factors

currently associated with TB and looked at various methods used to manage and prevent

the disease. Lastly, the global, European, and Irish epidemiology were described to give

background for later chapters.

The following chapter will review the use of mathematical modelling within health-

care, and show how it has become an important tool within epidemiology. The application

of such models are also introduced with respect to TB.
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Chapter 3

Review of Epidemic Models

3.1 Introduction

Epidemiology is the study and analysis of the patterns, causes, and effects of health and

disease conditions in defined populations [54]. The mathematical modelling of different

diseases continues to be an area of active research. The aim of mathematical modelling

within epidemiology is to understand and, if possible, to control the spread of the disease.

To do this, epidemic modelling tries to relate disease dynamics at the population level to

basic properties of the host and pathogen populations and of the infection process. For any

given infectious disease, it’s increase or sustainment over time can either be classified as

epidemic, pandemic, or endemic.

Definition 3.1. An epidemic is an outbreak of an infectious disease affecting a dispropor-

tionately large number of individuals in a population, community, or region within a short

period of time. A disease is pandemic if the epidemic spreads to a large region (or world-

wide). An infectious disease is endemic when it is maintained in a population without the

need for external inputs.

This chapter demonstrates the applicability of modelling to healthcare, then goes on

to review the underlying process, methods, and gives an historical context to modelling.

The chapter then finishes by reviewing two epidemic TB models. A search strategy is
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implemented which is informed by an exploratory analysis which is detailed in chapter

(§4). The methods and results of that search are reviewed at the end of this chapter.

3.2 The Mathematical Modelling Process, Healthcare Ap-
plication, and Methods

3.2.1 The Modelling Process

Vynnycky and White [55] present a procedure illustrated in figure 3.1 that can be used to

develop a model for the spread of infectious diseases.

Figure 3.1: Schematic Diagram Of The Modelling Process. Source: Vynnycky and White

[55]

With respect to this study, both the identification of the problem and of the facts about

the infection were achieved through analysis of surveillance data. From the analysis a
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mathematical modelling approach was deemed appropriate. Two key attributes of an ap-

propriate mathematical model include:

• It should incorporates the main attributes of the phenomena it describes

• It is simple for the purpose of analysis and application.

An optimal model will find the correct balance of these two attributes. A model can

incorporate many attributes but end up becoming too complex to analyse in any meaningful

sense, and in contrast a model can be so simple that it does not actually represent the

underlying process.

3.2.2 Application Of Modelling Within Healthcare

Mathematical models can contribute significantly to the understanding of diseases. They

provide insights, improve intuitions, clarify assumptions for formal theory, allow for plan-

ning studies, estimating parameters, determining sensitivities, assessing conjectures, sim-

ulating simple and complex phenomena and providing future predictions, along with help-

ing identify priorities and focus efforts [155]. Aside from communicable diseases, it

should be noted that epidemiological modelling has been proven useful in modelling non-

communicable diseases. The work of Briggs et al. [164] details discrete and continuous

epidemic modelling as viable methodology in establishing economic evaluations of the

disease. The work of Box [165] should also be mentioned as it discusses the intrinsic link

between the more boarder concept of the scientific method and statistical modelling. His

work highlight the importance of statistical models within a scientific framework which,

in essence, is the basis from which this study is established.

Roberts and Heesterbeek [56] note that a model is a simplified representation of a complex

system, usually designed to focus in on a specific question. Modelling is important in a

range of areas such as:

• Preparing for an outbreak - modelling the impact of an epidemic.
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• Predicting healthcare needs in the future, such as the long term health service re-

source requirements.

• Depicting what could happen with important public health issues if no interventions

are undertaken.

• Understanding the impact of service redesign on different areas such as general prac-

tice waiting times, hospital bed occupancy.

• Estimating prevalence when detailed data are not available.

• Predicting demand on services from subgroups of the population, such as those at

risk of emergency admissions or re-admissions

Roberts and Heesterbeek [56] also note that the analysis of mathematical models can lead

to the discovery of concepts that play an important role epidemiology.

Some of the limitations noted include:

• The most complex models constructed are often still oversimplified.

• Our knowledge of key parameters in the underlying transmission process is often

poor

• Making practical predictions, in the long term, can be especially difficult.

Having outlined some of the benefits and limitations of modelling within healthcare

the following section details the mathematical modelling process.

3.2.3 Various Modelling Methods

While this study primarily focuses on deterministic modelling, some of the most widely

used modelling methods detailed in literature [58] are summarized in this section together

with their advantages and disadvantages. The models detailed below are given in order

to provide the reader understanding of mathematical modelling, and do not necassarily
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have application in healthcare but are well established in the sub-field of mathematical

modelling. The models below are not necessarily mutually exclusive of each other, a

modelling method can support another.

Empirical Modelling

An empirical model is one of the most elementary, but least insightful in an epidemiolog-

ical sense. It typically is formed by constructing a time dependent function (referred to as

a dynamic model), such as a polynomial or exponential function, with a set of unknown

parameters (often coefficients). The discrepancy between the function and data is then

minimized by altering the parameter set using data fitting techniques (such as maximum

likelihood).

Advantages: Easy implementation, interpretation relatively simple.

Disadvantages: The fitted models parameter estimates do not apply to data outside the

observable range. The interpretation of the parameter set has limited practical benefit.

Deterministic Modelling

This is the modelling method used in this study. Deterministic modelling can be defined

as a modelling approach that does not consider random variation. Within epidemiology,

when referring to deterministic modelling in recent times, it typically refers to a discrete

or continuous system of dynamic, non-linear equations that attempt to describe basic rela-

tionships between variables of a problem. Output is solely determined through constructed

relationships among states. A given set of initial conditions/parameters will always pro-

duce the same output.

Advantages: The model can be customised, offers reliable predictions on future states,

capable of offering “what if” analysis. The work of Barlett [166] discusses the usefulness

of the parameters of a deterministic model, as the parameters themselves can be interpreted

on their own and can provide insight to the disease, in addition being used for surveillance

purposes. Deterministic models often have a strong ability to predict disease dynamics as

they incorporate theoretical representations of the underlying process.

Disadvantages: Empirical processes are not always completely deterministic. Interpreta-
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tion or extraction of useful information from the system of equations can be analytically

difficult and for small population sizes the model does poorly.

Stochastic Modelling

Similar to the deterministic model in its ability to be customised, this model also consid-

ers random variation. Probability statements can be formed such as the probability of an

epidemic given a parameter set with predetermined distributions.

Advantages: Customisable, applicable to small populations, offers variation and proba-

bility statements.

Disadvantages: Typically not used for large populations as random variation is not as im-

portant in predicting future states, have the capability of becoming too complex to conduct

a qualitative analyse on and can become computationally expensive (i.e. time/computer

memory).

Simulation Modelling

Typically a model is constructed through a process of rules set between variables. It con-

siders random variation and can output statistically interpretable data. Such processes

include so called agent-based modelling system, detailed in the work of Silverman et

al.[167]. This is a simulation method within which a mathematical function is given

memory and autonomy and is defined as an agent. Multiple agents are then simulated

to represent the underlying process.

Advantages: Highly customisable, Easy to build, not subject to a large set of assumptions,

practical when easy to control models do not exist.

Disadvantages: Hard to identify an error within the model, does not guarantee an empir-

ically optimal fit.

Statistical Modelling

A model is usually specified by mathematical equations that relate one or more random

variables and possibly other non-random variables. A probability model consists of the
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triplet (Ω, F, P), where Ω is the sample space, F is a σ−algrbra of events, and P is a prob-

ability measure on F. A statistical model is a set S of probability models, this is, a set of

probability distributions on the sample space Ω. Statistical models are non-deterministic.

Advantages: Hypothesis tests can be calculated, statistical inference can be conducted,

Intervals can be calculated, descriptive analysis can be conducted.

Disadvantages: Can be difficult to extrapolate outside the observable range of data, hy-

pothesis testing and inference subject to Type 1 and Type 2 errors.

Above I have reviewed a number of commonly used mathematical models. In this study,

I have elected to proceed with a deterministic model because of their dynamic attributes,

ability to be customized, and due to the complex nature of the modelling that will take

place in §5 and §6. A simple empirical/statistical model is avoided in this instance as they

both lack the ability to provide insight to the disease and do not consider the underlying

disease dynamics. A stochastic model is avoided in this instance too as the nature of the TB

modelling process is expected to be complex. Interpretation of a complex stochastic model

may divert the studies ability to yield insights to healthcare stakeholders. In conjunction

with the above reasons, a deterministic model will be selected for it’s epidemiological in-

terpretablity and for it’s ability to consider underlying disease dynamics. The following

section I will review the historical progression of mathematical models throughout time.

3.3 The Historical Progression of Modelling Within Epi-
demiology

3.3.1 General Epidemiology Progression

Mathematical and statistical modelling have an extensive history within population biol-

ogy, dating as far back as the 17th century. John Graunt was one of the first demographers.

His book “Natural and Political Observations Made upon the Bills of Mortality”, first im-

plemented analysis of mortality data in 1662, consequentially leading to an endorsement

from the current king gaining him entry to the Royal Society [59]
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As noted by Bailey [60], progression of any form of observational modelling slowed dras-

tically after the work of Graunt, the next record of epidemic modelling was in the 18th

century. In 1766, the mathematician Daniel Bernoulli began examining immunity to the

smallpox disease. Trained as a physician, Bernoulli created a mathematical model to de-

fend the practice of inoculating against smallpox. He concluded that life expectancy would

increase from 26 years to 29 years should universal vaccination of the population occur.

Other notable work in the 19th century was the work of the epidemiologist Farr [61] in

1840. Farr is regarded as one of the founders of medical statistics. He implemented rel-

atively simply empirical models analysing demographic and mortality data. Some of his

notable work included his research on the cholera epidemic that occurred in London in

1849. Other work included detailing the impact occupation had on death rates.

Within the 20th century epidemiological research evolved rapidly; growing availability

of mortality statistics caused a growth in modelling, which concurrently grew with labo-

ratory experiments in microbiology. The work of Ross [62] on malaria considered a mass

action principle, a principle developed by Hamer in 1906 [63]. The principle states the

progression of an epidemic depends of the rate of contact between susceptible and infec-

tious individuals. Ross formulated a mathematical model for the dynamics of malaria that

included vital dynamics (population birth and death rates).

The work of Ross was soon followed by the work of Kermack and Mc Kendrick [64],

whose paper “A Contribution to the Mathematical Theory of Epidemics” was considered

one of most important pieces of work in epidemiology. The construction of an SIR model

(Susceptible, Infectious, Recovered) and the identification of a threshold within the under-

lying system of equations were the two pivotal contributions of the paper. The threshold

states the introduction of infectious cases into a community of susceptible individuals

would not result in an outbreak if the proportion of susceptible individuals was below a

certain threshold value. Up to this point in time the vast majority of models were deter-

ministic in nature, and a very large proportion were empirical. Mc Kendrick went on to

publish one of the first stochastic models within epidemiology [60]. The evolution of the

disease was modified to take into account the probabilistic aspect of the process.
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After the work of Kermack and McKendrick, there were many extensions of the mod-

els that had been constructed thus far. Bailey [60] describes many of the extensions that

had been made up to the time of its publication in 1957. Further updates during the next

twenty years include the work of Hethcote [65], where models were modified to include

temporary immunity, carriers, migration, and transmission by vectors. The work of Walt-

man [66] contributed further refinements to models such as inclusion of unique scenarios

of transmission and a two population threshold model. The second edition of Bailey’s

book was published in 1975. Some of the refinements within this edition were made to

give more realistic descriptions of micro-parasitic diseases by adding additional compart-

ments. One such refinement was the incorporation of an exposed (latent) period, a time

during which members of a population who have been infected but do not pass on the

infection to others. Another refinement to models considered temporary immunity against

reinfection or to the assumption of a sequence of removed stages which considered prob-

abilistic aspects of the disease process.

One other recent notable and seminal work is that of Anderson & Mays’ “Infectious

diseases of humans: dynamics and control” published in 1991 [67]. This book provides a

comprehensive starting point for modelling many communicable diseases such as malaria,

measles, river blindness, sleeping sickness, schistosomiasis, and AIDS.

One main focus of mathematical epidemiology recently has been on the understanding

and computation of the basic reproduction number. This value is typically denoted R0 and

sometimes referred to as the basic reproductive rate. The value can be interpreted as fol-

lows: if the basic reproduction number is less than one, the number of infectives will tend

to zero and an epidemic is not imminent; if the basic reproduction number exceeds one,

the infection will successfully spread and an outbreak is imminent within the population.

Generally, the larger the value of R0, the harder it is to control the epidemic. A formula for

R0 can be calculated from most epidemic models. This prediction value gives a criterion

for whether a disease outbreak will develop into an epidemic or die out. One of the first

appearances of this value came about through the work of Ross but had it’s first modern
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application within epidemiology through the work of Macdonald arising from his work on

malaria in 1952 [68].

With the refinement and growing complexity of models due to the addition of more pa-

rameters and compartments, the interpretation and calculation of the basic reproduction

number becomes more difficult. However, the basic reproductive number is undoubtedly

the most central idea in mathematical epidemiology and is included in the vast majority of

models today.

Although epidemic modelling has had a long and extensive history, moving forward

there appears to be multiple challenges requiring attention. A discussion of such chal-

lenges is discussed in the work of Roberts et al.[168 ], within which the current state

of modelling is detailed. Roberts and colleagues itemize the research required, which

includes our current ability to understand the endemic equilibrium, incorporating hetero-

geneity processes, and modelling other complex dynamics such as: super infections, spa-

tially explicit models, and non-communicable diseases.

3.3.2 Tuberculosis Modelling Progression

The first TB model constructed was the discrete recurrence equation developed in 1962 by

Waaler [69]. The population was divided into three compartments: Susceptible, Latent,

and Infectious. The inclusion of a latent class was necessary due to TB having a relatively

extended latent period [70]. After estimating parameters within the model for south In-

dia, Waaler predicted that the time trend of TB was unlikely to increase (it may decrease,

slowly). His model did not consider the mechanics of transmission. However, the param-

eters estimated from a specific area in India, provided a pivotal stepping stone for research

to be conducted on the estimation of parameters in developing nations.

Sven Brogger developed a model [71] that refined Waaler’s work. Brogger introduced

heterogeneity (age) and altered the method used for calculating infection rates. His aim

was to estimate the effects control strategies would have on infection rates. Using the
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work of Brogger and Waaler, Charles ReVelle constructed the first non-linear system of

ordinary differential equations directed at modelling tuberculosis [72 , 73]. In modelling

the infection rate, he did not follow the typical mass action law, analytically detailed in

the work of Kermack and McKendrick. It was ReVelle who first, in the context of TB

dynamics, rigorously explained why the infection rate depends linearly on the prevalence

using the probabilistic approach. ReVelle’s main objective seemed to be associated with

the evaluation and implementation of control polices and their cost, rather than establish-

ing the trend of the infection over time. He developed an optimisation model and used it

to select control strategies that could be carried out at a minimal cost.

The continuous decline of TB incidence in developed nations and the introduction of

effective antibiotics suggested that elimination of active TB in developed nations was pos-

sible. This view may have been the main reason why there was almost no theoretical work

on TB dynamics from the 1970s to the early 1990s. This has changed over the last decade

because of the re-emergence of TB (due to new outbreaks in the U.S.A., Ireland, and in

many developed nations).

Notable recent work on TB comes from Chavez and Song[74-76], both making im-

portant contributions to modelling. Such models were constructed to consider: a variable

latent period, a slow and fast progression to the infectious compartment, multiple strain

models, a model to include the possibility of reinfection once treated, household cluster-

ing models, age structured models, and more. The broad range of models provided in their

work are often accompanied with relative qualitative analysis and simulation.

3.4 A Review of Compartmental Models

A predominant method of modelling the spread of infections is to stratify the population

into compartments and define relationships between these compartments. The population

will transfer from one compartment to another at some predefined rate, the rates are usu-

ally defined as the parameters within the system. Once one is able to compartmentalise
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an infectious disease with a model, compartments can be extrapolated into future time

periods to obtain an estimate of the expected number of infections. Several “what if” sce-

narios, such as what impact a mass vaccination strategy will have on the total number of

infections over time can be conducted. The most common compartmental model analysed

and simulated is the SIR model. Further details of the model follow.

3.4.1 The SIR model

The SIR (Susceptible, Infectious, Recovered) model originally constructed by Kermack

and McKendrick [64], operates on the principle that individuals can be categorised into

one of three compartments: Susceptible to the infection, Infected and therefore infectious,

and Recovered and hence immune. The SIR model is fundamental to mathematical epi-

demiology. The model is represented in figure 3.2.

Figure 3.2: SIR compartment model

Some of the assumptions of the SIR model include:

1. The increase in the infective class is proportional to the total number of infectives

and susceptibles within the population, this presumption originated through the work

of Hethcote and colleagues [65]. The change is defined by the rate βSI
N .
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2. The removal rate of infectives to the recovered class is proportional to that number

of infectives and is defined by γI.

3. The incubation or latent period is short enough to be negligible, such that suscepti-

bles instantaneously become infectious.

4. The total population, denoted N, remains constant over time. Birth rates and death

rates are not considered.

5. Compartments are uniformly mixed; every individual has an equal probability of

coming into contact with one another. This is referred to as an assumption of homo-

geneity.

The model is given by the system of ordinary differential equations (ODEs):

dS
dt

=−βSI
N

(3.1)

dI
dt

=
βSI
N
− γI (3.2)

dR
dt

= γI, (3.3)

where the parameters β > 0 is the infection rate and γ > 0 the recovery rate. The constant

population size is a characteristic of the system since

dS
dt

+
dI
dt

+
dR
dt

= 0 =⇒ S(t)+ I(t)+R(t) =Constant = N (3.4)

As noted in Jones [77],the conditions for an epidemic occur when the number of infected

individuals increases, i.e. dI
dt > 0,

=⇒ βSI
N
− γI > 0

=⇒ βS
γN

> 1
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At the beginning of an epidemic it is stated S(0) = S0,

R0 =
βS0

γN
> 1

Making the assumption that the majority of the population is susceptible at the beginning

of an epidemic, S0 = N, the value R0 becomes β

γ
. A similar conclusion can be drawn for

when infections decrease (dI
dt < 0), hence due to R0 being a dimensionless quantity it can be

viewed as the threshold ratio of the system. This number represents the expected number

of secondary cases which one case would produce in a completely susceptible population.

Once this value is greater than one, the disease is expected to spread throughout the pop-

ulation. In this instance, it is dependent on the transmission rate of the infection (β ) and

the rate at which individuals recover (γ). With respect to the SIR model, and theoretical

deterministic models in general, the value can usually be constructed from the system of

equations presented and can be represented by the models parameters.

3.4.2 The SEIR model

In many infectious diseases there is an exposed period after the transmission of infection

from susceptibles to potentially infective members but before these potential infectives

develop symptoms and can transmit infection [78,79]. Moreover, many parasitic diseases,

such as mycobacterium tuberculosis, incubate inside a candidate for a period of time be-

fore they become infectious. Consequently, the development of SEIR models (Susceptible,

Exposed, Infectious, Recovered) came about to investigate the role of an incubation period

in disease transmission.

Within this model, it is assumed that a susceptible individual first goes through a latent

period (and is said to become exposed or in the compartment E) after transmission of the

infection. The individual stays in this compartment for a period of time before becoming

actively infectious or dying of natural causes.

A number of mathematical models have been developed in the literature to gain in-
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sights into the transmission dynamics of diseases with sub-population (compartments).

Some of the research done on SEIR models can be found for instance in Chavez [74,76,132];

Zhang [80]; Li [81]; Yi [82]; and Shu [83].

The basic model can be illustrated in figure 3.3.

Figure 3.3: SEIR compartment model

The model has a birthrate or recruitment rate π which enter into the susceptible class.

Each compartment has a death rate µ proportional to the number of individuals in each

compartment, the rate is presumed constant for each compartment in the above model (e.g.

if µ = 5%, this would imply 5% of the number of individuals within each compartment

would die). Some models consider an increased death rate for the infectious compartment

(µI in figure 3.3 would become µI +dI, where d represents the proportion of individuals

dying due the the infection). From the susceptible population a proportion of individuals

enter into the Exposed compartment at a rate βSI
N . Once exposed, the population enters

into the infectious compartment at a rate kE, and lastly from infectious the population

becomes recovered at a rate rI. The model is represented by the following system of
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differential equations

dS
dt

= π−βSI−µS, (3.5)

dE
dt

= βSI− (k+µ)E, (3.6)

dI
dt

= kE− (r+µ)I, (3.7)

dR
dt

= rI−µR, (3.8)

N(t) = S(t)+E(t)+ I(t)+R(t). (3.9)

The basic reproductive number of the above system being

R0 =
βπk

µ(k+µ)(r+µ)
.

In contrast to the SIR model the above model has different parameters, Hethcote [65]

argues that when the mean latent period 1
k → 0 (or k→ ∞), the SEIR model becomes an

SIR model with vital dynamics.

There exist clear similarities between the SIR and SEIR models. The SEIR model was

adapted from the SIR model. This is a testoment to the flexibility of epidemic modelling.

Various other SEIR models have been adapted and applied in other settings, the application

of one such model to the SARS epidemic [169] proved vital in surveilling the disease and

implementing a control strategy of isolating infectious individuals.

General Remarks On Compartmental Models

Some of the common attributes of compartmental models are listed below:

• Simulation of models is usually accomplished through numerical methods, as most

ODE systems constructed for modelling purposes do not tend to have an analytic so-

lution. In order to simulate these models numerical methods must be implemented.

• For numerical simulation, the fourth order Runge-Kutta method has been shown to

be effective for simulation purposes when compared to the analytic solution of the
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SIR model [84]. This numerical method has been selected for this study, however,

a range of methods could be considered [170 ]. These methods operate under an

iterative approach, namely an initial seed value is specified (Initial population con-

ditions in this case), and from this value the next value one time step away is then

calculated. From this value the next value one time step away is calculated, this

continues in a similar fashion. The Runge-Kutta Fourth Order method of simulating

ODE systems has been shown to have strong agreement with actual estimates, how-

ever, when applied to epidemic models with a smaller sample size, a larger error has

been observed. Since this study will not consider a small population, this numerical

method has been selected.

• A note to be made with varying models is that some models, when referring to a

compartment, will be referring to the proportion of individuals within them, rather

than the count. The underlying dynamics change by dividing terms within the model

by the total population, N. A model is referring to the proportions of a population

when the divisor N is not visible within the system. When the divisor N is visible it

implies each compartment is referring to the count of individuals within them

• Compartmental models typically have two or more sets of equilibrium points[86],

within which there is no change in the number of infectious individuals over time.

As such the number of infectious individuals remains constant. The first equilibrium

is often referred to as the disease free equilibrium; the number of infectives remains

zero over time. The remaining equilibrium are sometimes referred to as the endemic

equilibrium, which occur when the number of infectives remains at some constant

greater than zero over time. These equilibrium states can be calculated by equating

each of the equations within the system of ODEs to zero and then solving the re-

sulting system with respect to each of the compartments present within the model.

The equilibrium states are dependent on the parameters and initial conditions of the

model.
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The following section conducts a systematic search of the literature to obtain a viable

TB model.
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3.5 Systematic Literature Search

This section provides an additional review of research related to the mathematical mod-

elling of TB. This search was informed by the exploratory analysis conducted on the na-

tional dataset presented in §4. Seasonality and foreign-born TB were concluded as being

important factors contributing to national infection rates, hence a search strategy was im-

plemented to ensure a body of relevant literature was available to account for those factors.

With regard selecting these factors over others, seasonality was selected as it has not

received much research, particularly with respect to epidemiology and even more partic-

ularly in an Irish setting. The epidemiologists within the national body (the HSE) were

unaware of this factor in Irish incidence. This thesis will be the first to examine this in

an Irish setting. With regards selecting the foreign-born population, this has been cited in

literature as being the primary cause for the recent rise in notifications [1].While statis-

tical analysis has been conducted, no epidemiological modelling has taken place for this

population.

3.5.1 Systematic Search Methods

The search methods used to review the literature that will accompany seminal texts, grey

literature, and literature involving policy, are now described. The search methods consisted

of inclusion and exclusion criteria for selecting studies, the search strategies, and the re-

sults of automated searches. The online search strategy for the literature review identified

a large pool of potential records, and then obtained relevant records through the PRISMA

Flow diagram presented in figures 3.4 and 3.5. This strategy is an evidence-based search

strategy commonly used for systematic reviews and Meta analysis. It is widely used in

health related research [87] and consists of four main stages; identification, screening,

eligibility and inclusion. Automated searches were performed on six literature databases:

MathSciNet, Zentralblatt Math, Web of Science, World Scientific, Science Direct, and Em-

base. Each database was searched for articles published up to and including December,

2014.
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3.5.2 Study Selection

Two separate strings were constructed and used in each database. Each record’s title,

abstract, keyword phrases, and main body were searched. Search strings are search terms

combined with logical AND and OR statements. Search terms used in each search are

detailed in the table 3.1.

Denotation
Underlying

Measure
Search Terms

A Tuberculosis “Tuberculosis” OR “Tuberculoses” OR “TB”

B
Mathematical

Model

“Mathematical model” OR “Math model” OR “Math models” OR

“Math modelling” OR“Maths modelling” OR “Maths models” OR

“Maths model” OR “Mathematical models” OR “Mathematical modelling”

OR “Experimental Model” OR “Experimental Models” OR

“Experimental Modelling” OR “Compartmental model” OR

“Compartmental models” OR“Compartmental modelling” OR

“Epidemiological model” OR “Epidemiological models” OR

“Epidemiological modelling” OR “Epidemic model” OR

“Epidemic models” OR“Epidemic modelling” OR “Deterministic model”

OR “Deterministic models” OR “Deterministic modelling” OR

OR“Disease Dynamics” OR “Disease Dynamic”

C Foreign-Born
“Foreign Born” OR “Foreign Birth” OR “Foreign Birthplace” OR

“Not Native” OR “Non-native” OR “Overseas” OR “Immigrant” OR

“Immigration”

D Seasonality
“Seasonality” OR “Seasonally” OR “Seasonal” OR “Yearly Recurrence”

OR “Annual Recurrence” OR “Monthly Variation”

Table 3.1: Composition of Search Terms

Using the denoted values for the search terms, each of the terms were combined with

AND to form two search strings:
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Search String One: (A) AND (B) AND (C)

Search String Two: (A) AND (B) AND (D)

For the pool of records acquired, inclusion criteria and exclusion criteria were applied. If

the criteria were not met, this constituted a justification for exclusion.

The criteria comprised of the following for both searches:

• Analysis and/or simulation of an epidemiological mathematical model was con-

ducted.

• The compartments were capable of modelling tuberculosis.

• The model considers: susceptible, exposed/latent, infectious, and recovered/treat-

ed/immune compartments.

• The underlying model was dynamic, continuous, and deterministic.

• The model was not constructed to exclusively consider an unrepresentative subpop-

ulation.

• The underlying equations of the model were published

The criteria for the seasonal model included the following additional criteria point:

◦ The model considered seasonal fluctuation within the infectious compartment.

The criteria for the migration model included the following additional criteria point:

◦ The model was constructed with at least one compartment representing the foreign-

born population and one representing the native-born population.

The PRISMA flow diagrams can be seen in figures 3.4 and 3.5.
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Figure 3.4: PRISMA Flow Diagram: Search Findings For A Seasonal Tuberculosis Model.
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Figure 3.5: PRISMA Flow Diagram: Search Findings For A Tuberculosis Model Consid-

ering A Foreign-Born Population.
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3.5.3 Systematic Search Findings

One study was found at the end of the systematic search for a TB model that analysed and

simulated an SEIR model with a seasonal component, and two studies were considered at

the end of the systematic search for a model that considers a foreign-born population.

Additional Exclusion

An additional exclusion occurred in one of the texts considering a seasonal variation within

their model. Although passing all criteria set by this study, when analysis of the proposed

model within the text began, an error was identified. Further explanation is given below.

Jia Z. et al. 2011 - A mathematical model for evaluating tuberculosis screening strategies

[88]- After analysis of the system of differential equations, a fundamental problem was

found that appeared to pass the screening process of publishing. The system of equations

representing the dynamics for the migrant population were given to be

dSM

dt
= π−β1SMIM−β

′SMIL−µSM,

dEM

dt
= β1SMIM +β

′SMIL− (k1 +µ +β
′IM)EM,

dIM

dt
= k1EM− (r1 +µ +µIM)IM,

dRM

dt
= r1IM−µRM,

NM = SM +EM + IM +RM

However, when analysis of this system began, calculating

dNM

dt
= π−µN−µIM IM−β

′IMEM,

results in the excess term −β ′IMEM. To presume the change in the total migrant popula-

tion will decrease at the rate exposed transition to infectious is not practical. As such it is
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probable a +β ′IMEM term is missing within dIM
dt . The paper additionally has other minor

errors within it’s referencing, such as its incorrect reference to the basic reproductive num-

ber. As of April 2016, the author and publication have been notified, however due to the

apparent uncertainty surrounding the quality of the model and paper, this result has been

excluded.

Discussion of Resulting Texts

The remaining two studies are reported in table 3.2 below and further discussed.

Study Model Type Types Of Analyses
Population Of

Case Study

Liu et al. (2010) Seasonal Model
Analysis of stability and

equilibria, numerical simulation,

case study simulation.

China

Jia et al. (2008) Immigration Model
Analysis of stability and

equilibria, numerical simulation,

case study simulation.

Canada

Table 3.2: Included Studies

The two studies included in the literature review considered an SEIR model to mea-

sure the spread of TB. Both conducted a qualitative analysis on the system of ODEs, and

acquired their respective basic reproductive numbers. Both studies also apply their models

to population data and attempt to minimise residuals.

Liu et al. 2010 study

The study found by the systematic search with respect to seasonality was Liu and

colleagues [89]. The system proposed is an alteration of a system considering slow and
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fast progression rates constructed by Blower et al. and Ziv and colleagues [90-92] . The

system is illustrated in figure 3.6.

Figure 3.6: SEIR compartment model with seasonality

Slow progression is defined as entering into the exposed compartment before becoming

infectious, and fast progression defined as transitioning directly from susceptible to infec-

tious. The slow/fast progression rate is determined by proportional parameter 0 ≤ q ≤ 1.

The model considers seasonality through changing parameters: k - the reactivation rate,

and β - the transmission rate, from constants in the original models to periodic functions

of time.

The paper goes on to produce various qualitative analyses of the model and establishes

an R0. The functions β (t) and k(t) initially take on the assignment a0(1.1+ sin(π(t+1)
6 )),

and b0(1.1+ sin(π(t+1)
6 )), respectively for analysis, however they take a different assign-

ment later when applying the model to data.

The data fitting technique implemented was to initially fit the regression curve, denoted

freg(t), to the number of new infections over time. The number of new infectious is also
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represented within the compartmental model and takes the following expression:

fmod(t) = qβ (t)S(t)I(t)
N(t) + k(t)E(t). (3.10)

This can be seen as the rate at which the infectious compartment increases. The regression

model took the form:

freg(t) = c0 +
n

∑
j=1

(c j cos(L jt)+d j sin(L jt))+ ε(t). (3.11)

The assignment of L within the above trigonometric functions determines the period length

of freg(t), the study fixes L = 2π

12 for a period length of 12. The value n is taken to be 5 and

the parameters c0, ci and di are the coefficients being estimated for i = 1, ..,5.

How β (t) and k(t) where acquired was by way of “simulation and comparison”. It is

presumed the study equates fmod(t) and freg(t), then solves for β (t) and k(t). In doing so

both β (t) and k(t) are fixed into being functions with similar properties to freg(t), differ-

ing only by way of addition and multiplication of constants. As noted within the study the

selection of the parameters n and L within the regression determine both the period and

the domain of the transmission parameters within the model.

The author notes the model fits the data “quite well”, and upon visual inspection that

appears to be the case, however the study does not publish any error measurements, such

as a BIC or an AIC estimate for the regression model, freg(t). Cases appear to peak in late

spring/early summer which corresponds to this study’s findings.

Jia et al. 2008 study
The study by Jia and colleagues in 2008 [93] formulates a model in which the total popu-

lation is divided into two sub-populations: the immigrant population, and the local popu-

lation. The SEIR model proposed is divided into two SEIR models, one for the immigrant

population and one for the local population. A directional interaction occurs from the

immigrant infectious population to the local population. The study neglects to include a
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directional interaction from the local population to the immigrant population. Figure 3.7

constructed below illustrates interactions of the model.

Figure 3.7: SEIR compartment model with foreign-born sub-population partition

The study refers to the above as a “Basic Model”. The paper goes on to include an

“Extended Model” within which the recruitment parameter π is divided among the EM and

IM compartments. This is achieved by way of including additional proportional parame-

ters 0 ≤ v ≤ 1 and 0 ≤ w ≤ 1, with 0 ≤ v+w ≤ 1. The recruitment rate for SM becomes

π(1− v−w), and additional recruitment rates, vπ and wπ , assigned to EM and IM respec-

tively. The author notes that within the extended model, the disease cannot die out, and

will remain endemic in the population due to the migration parameters v > 0 and w > 0.
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As noted when simulation was carried out: “Good agreement was found between the model

and data when β ∗ was sufficiently small”. This correlates with an EU systematic review

by Sandgren and colleagues which reported that “TB in a foreign-born population does

not have a significant influence on TB in the native population in EU/EEA” [94] .

Further work and limitations of the model were reviewed in the discussion section and

include the model neglecting to consider a directional effect of the local infectious popu-

lation on the migrant population.

Discussion of Texts That Did Not Pass Systematic Review
There were twenty five texts that were given a full text evaluation, they will now be briefly

discussed.

Seasonal Models

• Bowen et al. [171] - Two TB models are established, one seasonal and one not.

The seasonal model was fit to incidence data from Cameroon. The model was based

on the model of Liu et al. [89], which is the selected model of this study. The

model differs from the original by way of introduction of a reactivation rate within

the recovered compartment. Individuals who have recovered will reactivate at some

specified rate. This slightly different model was deemed unfit for modelling as cer-

tain assumptions of the recovered population are made later on.

• Hu [172] - In this text Hu constructs a mathematical model for TB and conducts a

qualitative analysis calculating the basic reproductive number. The model considers

a “Loss Of Sight” compartment. This compartment represents the population who

were once infected and treated but dropped off surveillance. Due to the inclusion of

this compartment this text was excluded.

• Leung et al. [173] - In this text, Leung and colleagues complete a statistical analysis

of TB incidence. The study highlights the seasonality in Hong Kong TB incidence.

A general linear statistical model is considered in this text, hence, it was excluded.

• Parrinello et al. [174] - This analysis performs a comprehensive analysis, examin-
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ing the seasonal effects of TB incidence on multiple demographic. The results of

this text are discussed later, however, the text considers a statistic model and was

excluded.

• Rebelo et al. [157] - This text examines a very general seasonal epidemic model

(without necessarily have application to TB). Three seasonal models are then dis-

cussed, one of which is a TB model. The TB model discussed is the model selected

by this study (Liu et al. [89]).

• Soetens et al. [175] - In this text TB incidence between 1993 to 2014 is considered in

the Netherlands. This study performs a statistical analysis within which significant

seasonality was detected. Due to use of a statistical model, the text was excluded.

• Sun et al. [176] - A general seasonal model is considered in this text. The model

constructed has susceptible, exposed, and infectious compartments and lacks a re-

covered compartment. Various qualitative analyses are conducted on this model but

due to a lack of a recovered compartment it was excluded.

Migrant Models

• Bowong et al. [177] - Bowong and colleuges construct and analyse an SEI model

for TB (the SEIR model without a recovered compartment, and a cyclic relationship

between infectious and exposed compartments). This analysis did not consider a

migrant population and was exlcuded.

• Cohen et al. [178] - Significant demographic differences are detected between in-

dividuals of different nationalities with respect to TB incidece. The text does not

consider an epidemic model, but rather completes a statistical analysis.

• Colijn et al. [179] - This text reviews an array of models for TB, including age-

structure models and spatial temporal models. The text summarises each model and

discusses their strengths and weaknesses. A migrant TB model is not considered.

This text was excluded on these grounds.
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• Denholm et al. [180] - In this text, a mathematical model is constructed and sim-

ulated on Australian data. The model considers both immigrant and native popu-

lations. The model considered is a discrete stochastic model. The equations are

not outline in the text or supplemental material. Due to both these methodologies

(discrete, stochastic) the text was excluded.

• Guo et al. [181] - A continuous, deterministic TB model is constructed and analysed.

The model considers a migrant population entering into the system (the susceptible,

exposed, and infections compartments) at some specified rate. The model does not

consider a set of compartments that model migrant populations seperately and be-

cause of this it was excluded.

• Guo et al. [182] - A TB model considering immigration is constructed and analysed.

The model proposed considers early and late stage latent compartments. Migrants

are categorized into high-low risk groups and modelled. Due to not considering a

seperate compartment for migrants the model was exculded.

• Hill et al. [183] - Hill and colleagues consider an SEI model for TB. The model

considers a migrant population entering into the exposed and susceptible compart-

ments at some specified rate. The model does not consider seperate compartments

for migrant populations. Due to not considering this or a recovered compartment,

the text was excluded.

• Klotz et al. [184] - In this text an SELIR model is considered (Susceptible, Exposed,

Latent, Infectious, Recovered). The exposed compartment in this instance is the set

of individuals that have come into contact with a TB case and the latent population

is the set of individuals with latent TB. The model does not consider individuals

transitioning from latent to infectious. The migrant population enter into the sys-

tem (through the exposed and susceptible compartments) at a specified rate. The

model was excluded as it did not consider seperate compartments for the migrant

population.

• Li et al. [185] - In this text a basic susceptible and infectious compartmental model
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is considered. The model is a general one and does not have strict application to

TB, although the author mentions the possibility of modelling TB with it. A migrant

population is considered, however due to the simplicity of the model it was excluded.

• Ma et al. [186] - In this novel, the fundementals of epidemology are defined and

discussed. A vast series of models are also listed and discussed throughout the

course of the novel, including a model considering TB and the effects of migration.

This specific model is a discrete model, and was excluded for this reason.

• Okuonghae et al. [187] - Okuonghae and colleagues construct a TB model derived

from a standard SEIR model. The model divides the infectious compartment into

two compartments. One is a typical infecious compartment, the other is an infecious

compartment with individuals who are isolated from the population. The migrant

population enters into the susceptible and exposed and infectious compartments at

some specified rate. The model does not consider seperate compartments for migrant

populations and was excluded.

• Varughese et al. [188] - In this text, the migrantn population in Canada between 1986

and 2002 was stratified by three incidence groups, two age groups, and three groups

considering the time of arrival of the migrant individual. The model considered is a

deterministic mathematical model, however, due the the unconvential compartments

choosen the model was excluded.

• Wolleswinkel et al. [189] - Wolleswinkel and colleuges contruct an intricate model

for TB with application to The Netherlands. The model examines the population

entering through the treatment process and attempts the model the rate at which var-

ious treatments are successful. The model considers over 12 compartments. The

paper models various immigration scenarios and their effects on the model predic-

tions. Due to not directly considering migrant populations in the model this text was

excluded.

• Yang et al. [190] - In this text, two epidemic models are considered and analysed.

A basic SIR and SI (susceptible, infectious) models are considered. The models
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do not necassarily have application to TB and do not consider a recovered/treated

compartment. For this reason they were excluded.

• Zhou et al. [191] - A tuberculosis model is constructed to model the incidence of

TB on the migrant and native populations in Canada. The model considers seperate

compartments and is very similar to the one selected by this study [93]. However,

the model considers discrete time, and for this reason was excluded.

3.6 Conclusion

This chapter presented classical mathematical models and various modelling types, along

with a justification and review of certain models. The modelling process was introduced

and a historical review of epidemic modelling was conducted, the review of such material

providing context and foundation for further work to be carried out. A review of SIR and

SEIR compartmental models was conducted illustrating their respective flowcharts and

detailing the underlying basic reproductive number of the system of ODE’s.

The chapter went on to produce a systematic search of the literature. The objective of

the search was to acquire suitable models to analyse and simulate. The search was in-

formed by an exploratory data analysis detailed of which are set out in the following chap-

ter. After exclusion and inclusion criteria were applied, the resulting two models were

then presented and discussed. The model considering seasonality achieves seasonal varia-

tion in the system of equations by changing the transmission and reactivation parameters

from constants to periodic functions of time. The model stratifying the total population

into a native and foreign-born sub-population mathematically considers this by dividing

the underlying SEIR model into two groups, migrant and local. A one way interaction is

present in the model between the migrant infectious class and the entire population. The

parameter describing the interaction was discovered to be small. Models resulting from

the systematic search will be built upon in §5 and §6.
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Chapter 4

Exploratory Data Analysis

4.1 Introduction

This chapter presents the exploratory analysis of the study data as a preliminary step for

deterministically modelling tuberculosis incidence in Ireland. Epidemic models are, in

general, constructed from a realisation of random processes, hence it is necessary to es-

tablish the distributional properties of those processes in order to accurately model them.

This will ultimately help to make informed decisions concerning which features the mod-

els incorporate and to ultimately assist minimising the residuals between the model and

data.

In the following sections of this chapter an overview of the dataset is given, assessing

the type of variables within it as well as the completeness of those variables. A descriptive

analysis is then completed on variables individually and each variable is commented on. A

descriptive time series analysis is then conducted to investigate seasonality within notifi-

cations. Standard time series methods are introduced and implemented from which results

are derived. The chapter concludes with a descriptive multivariate analysis, and insights

from the data are translated into attributes of the underlying epidemic model.
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Study Area

Ireland is an island on the western fringe of Europe. It one of 28 countries in the European

Union. There is a strong and continuing migration from rural areas to towns and cities;

52% of the population now live in urban areas of 1,500 inhabitants or more. The influence

of Dublin (the capital of Ireland) and other cities and urban areas have a very clear impact

on the population throughout the country.

Ireland has a temperate maritime climate, ranging from 4 degrees Celsius to 7 degrees

Celsius in the coldest months during January to February and the warmest months in July

and August ranging from 14 degrees Celsius to 16 degrees Celsius.

Economically Ireland underwent a period of increased economic growth from the mid

1990’s to the mid 2000’s. This period is referred to as the “Celtic Tiger”. During this

period and up to 2006 the population increase by approximately 500,000 individuals, the

majority of which was made up by non-Irish citizens. This led, therefore, to a large in-

crease in the overall population. In 2008, Ireland went into economic recession resulting

in a net outward migration from 2007 until present (2015).

4.2 Methodology

4.2.1 Data Quality And Acquirement

All denominator data (data referring to population) were obtained from Irish national cen-

sus data [96]. The data obtained spanned five years. Intermediate years were calculated

by linear interpolation, which follows the World Health Organisations guidelines for esti-

mating denominator data [192]. This study ackowledges possible over or under reporting

effects on these data. When foreign-born populations are considered, these data are possi-

bly under recorded. The effects of under reporting on the foreign-born population will be

an inflated incidence rate of TB for the foreign-born population. This is due to the fact that

TB notification is system is mandatory (referred to as notifiable) in Ireland, meaning each
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case, once recognised in a public or private healthcare establishment, must be recorded.

There may exist foreign-born living in Ireland who have not been documented, and this

will deflate denominator data for this population.

A descriptive analysis is conducted on foreign-born TB incidence and comparisons

made between the incidence of TB in the foreign-born individuals birth country and the

incidence foreign-born from the same country living in Ireland exhibit. Incidence data for

each country listed was acquired from the World Health Organisation [193 ]. The WHO

recognise their database is updated regularly as countries notify WHO of corrections to

previously submitted data. These data were extracted on January 2016. The data quality

is subject to WHO data collection methods which further information can be found here

[194 ].

All Irish data pertaining to tuberculosis notifications along with related demographic

and risk factor data were obtained from the Health Protection Surveillance Centre (HPSC)[2].

The HPSC is an agency of the Health Service Executive (HSE) and is dedicated to the

surveillance of communicable diseases in Ireland. The HPSC is a national repository of

TB incidence data and does not directly collect data. Tuberculosis is a notifiable disease

within Ireland. All practitioners are required to compile information from hospital charts

and interviews through a national notification form (Appendix B). The TB notification

form is completed by public health doctors for each case of TB notified. These forms

summarise all available clinical, microbiological, histological and epidemiological data.

Forms were then collated in the regional departments of public health, where data were

entered onto the Computerised Infectious Disease Reporting (CIDR) system. Finalised

data (with outcome information) were extracted from CIDR for this study. Laboratories

report all positive specimens to the same system. As laboratory analysis takes time each

specimen gets linked to the relative identification number at a later date. The notification

form summarises all clinical, microbiological, historical, and epidemiological data. Fur-

ther information on HPSC data collection methods, TB screening methods, and various

HPSC definitions can be found on the HPSC website [147]. The quality of these data
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are subject to the healthcare practitioners filling out the surveillance form. This study ac-

knowledges that this is not a full-proof system and that, although notifiable under national

guidelines, there may exist a bias and missing values within these data. This study presents

the number of missing values and completeness of the data it received in §4.2.2.

Datasets were acquired from the HPSC on two occasions. The initial dataset was ob-

tained in January 2014 after ethical approval was granted by the research ethics committee

of the Adelaide and Meath Hospital. This is an ethical approval recognised by Trinity

College’s Faculty of Health Sciences Ethics Committee. This dataset contained national

notification, demographic, and risk factor data. Records within the dataset began on the

1st of January 2002 and continued until the 31st of December 2012. Figure 4.1 displays

the progression of events over time.
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Figure 4.1: Gantt Chart Displaying Progression Of Research Over Time

A descriptive analysis was conducted on these data and the results presented to HPSC

stakeholders in April 2014. After reviewing and discussing results, a memorandum of un-

derstanding was formed and signed between the research team and the HPSC (found in

Appendix C). The purpose of the memorandum was to outline the nature of the data being

made available to the research team and also to satisfy all parties involved that data protec-

tion legislation would not be breached. Once the memorandum was signed and all parties

were in agreement, the relevant authority within the HPSC then sanctioned access to more
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up-to-date data including national notification, risk factor, and demographic records col-

lected from the 1st of January 2002 to the 31st of December 2013. All subsequent analysis

was conducted using this, later, dataset and any time periods referred to reference this

period. Further annual national notification data, from 1991 to 2002 were also acquired

through the HPSC’s annual surveillance reports [97].

4.2.2 Data description

The dataset contained variables that were partitioned into three subgroups: TB data, demo-

graphic data, and risk factor data. The completeness of the data was subject to healthcare

practitioners completing the surveillance form correctly. The notification form has “Other”

and “Unknown” options for a proportion of the questions. For the following tables (4.1-

4.3) “Other” and “Unknown” are considered a valid response and do not contribute to the

incompleteness of the data. Completeness refers to the number of responses not left blank

or empty within the dataset. Data cleaning was not required for the majority of variables.

Tables 4.1 to 4.3 below detail the variables within each of the three subgroups. Comments

have been included for each table.
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TB Data
Completeness

Variables N (%) Type Comment
ID 5160 (100%) Integer Numeric identification
Year 5160 (100%) Integer Year of notification
Month 5160 (100%) Integer Month of notification
Date of Onset 3623 (70%) Date Estimated TB onset date
Date of Diagnosis 4748 (92%) Date Date of diagnosis
Date of Notification 5151 (100%) Date Date of Notification
Diagnosis Type 5155 (100%) Nominal Type of TB: Pulmonary,

Extrapulmonary, Both
MDR/XDR 34 (1%) Nominal Multiple drug resistant TB strain/

Extensively drug resistant TB strain
TB Cause of Death 3013 (58%) Boolean Was the TB a cause of death
Date of Death 267 (5%) Date Date of Death

Table 4.1: Variable descriptor for dataset subgroup: TB data
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Demographic Data
Completeness

Variables N (%) Type Comment
ID 5160 (100%) Integer Numeric identification

Year 5160 (100%) Integer Year of notification

Month 5160 (100%) Integer Month of notification

Sex 5160 (100%) Nominal Sex/Gender

Age 5152 (100%) Integer Age at time of notification

Employment Status 4685 (91%) Nominal Working status at time of notification

Current Living 4842 (94%) Nominal The type of structure the individual

lived at the time of notification

Birth Country 5150 (100%) Nominal Country of birth

Race/Ethnicity 5057 (98%) Nominal Ethnicity classified as a combination

of racial category and social background

Refugee 4938 (96%) Boolean Refugee Status

Year of Entry 492 (25%) Integer If foreign-born, what year did the

individual enter Ireland

Table 4.2: Variable descriptor for dataset subgroup: Demographic data

61



Risk Factor Data
Completeness

Variables N (%) Type Comment
ID 5160 (100%) Integer Numeric identification

Year 5160 (100%) Integer Year of notification

Month 5160 (100%) Integer Month of notification

Risk Factors 5059 (98%) Boolean Does the patient have one of the

following risk factors

High Endemicity 1885 (37%) Boolean Does the individual originate from a

Origin country of high endemicity

High Endemicity 552 (11%) Boolean Does the individual have usual

Residence residence in a country of high endemicity

Anti-TNF 458 (9%) Boolean Is the individual undergoing treatment

with tumor necrosis factor inhibitor

Contact 769 (15%) Boolean Was the individual in close contact

with an active TB case

Diabetes 498 (10%) Boolean Is the individual diagnosed with Diabetes

Immunosuppressive 656 (13%) Boolean Is the individual diagnosed with some

Illness form of Immunosuppressive illness

Immunosuppressive 505 (10%) Boolean Is the individual taking some form

Medicine of Immunosuppressive medication

Alcohol Misuse 860 (17%) Boolean Does the individual have a history

of alcohol misuse

Drug Misuse 507 (10%) Boolean Does the individual have a history

of drug misuse

Tabacco 27 (1%) Boolean Does the individual smoke tobacco

Other 350 (7%) Boolean Does the individual have an

unspecified risk factor

HIV Stautus 5001 (97%) Boolean Current HIV status

Table 4.3: Variable descriptor for dataset subgroup: Risk Factor data
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TB Data Comment: The validity of some of the variables of type DATE within TB

data are questionable. The possible orders of disease progression are either: Onset→ Di-

agnosis→ Notification→ Death, Onset→ Death→ Diagnosis→ Notification, or Onset

→ Diagnosis→ Death→ Notification. However a proportion of the notification and di-

agnosis dates pre-dates onset date, this implies onset of the disease occurred after a valid

diagnosis was given. Date of death also occasionally pre-dates onset dates, which cannot

be true. For this reason the data that had Onset date after Diagnosis, Onset date after No-

tification, and Onset date after Death, were labelled as invalid dates in the dataset.

Demographic Data Comment: No data cleaning was required for demographic data.

Risk Factor Data Comment: No data cleaning was required for risk factor data. Risk

factors were not mutually exclusive (e.g. an individual could have Other and Tobacco).

The variable “Year Of Entry” has been excluded from analysis as it contains null valued

entries 75% of the time.

A small set of new variables were derived from the initial set. These included: “Du-

ration Of Illess” which was created by subtracting the variable Date of Diagnosis from

the variable Date of Onset, “Substance Misuse” (Alcohol Misuse OR Drug Misuse), and

“High Endemicity Affiliation” (High Endemicity Origin OR High Endemicity Resident).

Risk factor groups such as: organ transplant patients, resident/workers of high-risk con-

gregate settings, mycobacteriology laboratory personnel, and other persons with clinical

conditions placing them at high risk were not recorded within the national dataset and,

hence, could not be examined.

Given the data had been cleaned and formatted, analysis then took place.

4.3 Descriptive Analysis

Modelling is typically time dependent, hence variables will be explored over time. The

main aim of this and subsequent sections, is to lend insight to the modelling process.
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The method of exploration was to examine the variables individually over time and then

based on findings explore certain variables further. The majority of data and descriptive

statistics can be found in Appendix A. Each variable is discussed on the merit of findings.

Annual incidence rates were calculated in subsequent sections. Incidence is defined as

the yearly count of reported cases/notifications per 100,000 resident population unless

specified elsewhere.

4.3.1 National Notification and Incidence Data

National annual incidence can seen in figure 4.2. As the dataset contained data from 2002

to 2013, this section also incorporates additional notification data before 2002. These data

were acquired from the HPSC’s epidemiological reports [97].

Figure 4.2: National incidence rates from 1991 to 2013

In 1991, the total number of reported cases was 640. In 2013, annual notifications had
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dropped to 381, which accounts for a 60% decline in notifications since 1991. From the

year 1991 to the year 2000 there was a decline of 27 cases on average, each year. Annual

notifications began levelling out thereafter and even increasing; from 2000 to 2009 un-

derlying cases increased on average nine per year. The increase in notifications thereafter

appeared to stop, from 2009 to 2013 a decline was seen again, decreasing 25 cases on

average, each year.

The WHO considers a country to have low incidence if the national annual incidence

rate is 10 per 100,000 or less [98]. Ireland entered into this category in 2009 and has

remained there for the last number of years.

4.3.2 TB, Demographical, And Risk Factor Data

For the following sections, unless specified, all incidence rates are per 100,000 of the

respective population. For figures 4.2, 4.5 and 4.6 a local loess regression (Local Polyno-

mial Regression) smoother [99] is applied to the data with a 95% confidence interval. The

smoother is added to visually aid identifying the underlying trend in the data.

Gender

The ratio of male-to-female cases remained relatively constant over time. The percentage

of notifications male ranged from 57.62% to 63.57% (Mean=61.12%, Std.Dev=1.81%)

from 2002 to 2013, with an annual average change of -0.02%. The discrepancy between

sexes has been noted in literature [100] as occurring in multiple other countries as possibly

being a discrepancy due to inherent biological mechanisms between genders. Appendix

table A.5/A.6 contains additional data and descriptives for gender.

Age

Figure 4.3 shows a density distribution of age in 2002 and 2013. The density goes from a

bimodal density in 2002 to a uni-modal density in 2013. Intermediate years gradually show

this transformation. The annual incidence rate of older populations has shown a decline
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over time. In 2002 incidence of individuals aged 85 or older was 21.58 per 100,000,

the population has seen an annual reduction in incidence of 1.38 units per year, in 2013

incidence was 6.44 per 100,000. A similar decline has been seen in ages over 60 years old.

Despite a decline in incidence, these populations have a relatively high average incidence

over the time period, ranging from 10.6 in the 60 to 64 year old population up to 21.14

within the population 85 or older. With regard children aged less than 15, a decline has

been seen in incidence. Average incidence ranges between 1.43 in the five to nine year

old population up to 3.09 in the less than five year old population. A notable incidence

rate was observed in the population aged less than five in the year 2007. Incidence peaked

at 9.02 increasing 125% from the previous year. The HPSC has attributed this peak to an

outbreak occurring in a large crèche of which 21 children and three adults were infected

[101].

Figure 4.3: Comparing Density Of Age, 2000 and 2013

Other than older populations, incidence is relatively high within the 20 to 40 year old

population, average incidence ranging between 12.1 per 100,000 individuals in the 20 to 24
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year old category to 16.82 per 100,000 in the 25 to 29 year old population. The age group

experiencing the largest increase in incidence is the population aged 20 to 24, followed

by the population aged between 50 to 55. Multivariate analysis later gives an explanation

of the change in the density of notifications. Appendix table A.7-A.9 contains data and

descriptive statistics of the variable age categorized in five year intervals.

Occupation

Employment status contained nine categories into which the population was categorized:

(1) Employed, (2) Unemployed, (3/4) Housewife/House-husband, (5) Retired, (6) Student,

(7) Other, (8) Child, (9) Unknown. The proportion of cases occurring in each category

was relatively consistent over time. The categories Unemployed and Unknown saw an

average annual increase of 0.7% and 0.4% respectively, while the categories Retired and

Employed saw the largest decrease, 0.5% and 0.4% respectively. Notable incidence rates

were observed within the unemployed population, averaging 26.81 each year, peaking in

2006 reaching 45.63 per 100,000 of the population. The standard deviation of incidence

for the Unemployed population is 14.24 over the time period. The high incidence rate

was seen prior to 2009 when the population was within the range of 182,141 to 283,907

individuals. The unemployed population grew substantially from 2009 onward reaching

a peak of 829,381 in 2011 due to the economic downturn. The incidence rate declined

with this growth occurring in the population. In 2013 incidence was 13.65. Appendix

table A.10/A.11 contains data and descriptives of the variable occupation and figure 4.4

illustrates the annual incidence rates between employed and unemployed individuals.
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Figure 4.4: Incidence Rates for the Employed and Unemployed Populations, 2000 through

to 2013

Current Living

The Current living variable had eight categories: (1) Home, (2) Hostel, (3) B&B/Hostel,

(4) Homeless, (5) Prison, (6) Institution, (7) Other, and (8) Unknown. The majority of

notifications occurred within the population living in a home. On average 85% of cases

were in this category, decreasing 0.01% annually. The prison population witnessed a peak

in notifications during 2011 with an incidence rate of 86.01 per 100,000 that year. The

HPSC have attributed this peak in notifications to an outbreak that occurred in 2011 [112].

A total of 12 individuals residing in a prison were infected that year. The proportion of

those cases attributed to the outbreak is unknown. Aside from 2011, the incidence for the

prison population has fluctuated between 0 and 34.54; underlying cases ranging between

0 and 3 each year. For the homeless population, denominator data was only available for

one year, 2011. The incidence for that year was 26.26 per 100,000. The underlying cases

within the population have seen notifications in the range of zero to seven cases a year.

Appendix A.12/A.13 table contains data and descriptives of the variable Current Living.

68



Birth Country

The values for the variable Birth Country were initially categorised as: (1) Ireland, (2)

Other; Other meaning a foreign birthplace, and (3) Unknown. Analysis for each specific

birth country can be found in §4.3.4, this section will simply examine native and foreign-

born cases. Figure 4.5 illustrates foreign and native-born cases over the time period, the

national notifications are included to give additional context.

Figure 4.5: Foreign and Native Born Cases, 1998 through to 2013

The data indicate that the burden of TB falls more heavily on the foreign-born popu-

lation. There were 271 notifications in 2002 attributed to the native-born population. This

figure decreased 32%, reaching 205 cases in 2013. There was a close to linear decrease

in native-born incidence over the time period (see figure 4.6). Underlying notifications on

average decreased 1.1% each year. For the foreign-born population, notifications have, on

average, increased 1.3% each year, with an average incidence rate of 26.27 per 100,000

and standard deviation of 4.62. Figure 4.6 and tables 4.4 and 4.5 detail the underlying

incidence and data over time, respectively.
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Birth-
Place
(N)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Ireland 271 299 297 296 293 283 264 270 246 214 196 205
Other 124 89 130 151 160 193 202 206 171 193 160 169
Unk. 15 18 6 1 10 5 1 3 3 6 3 7

Birth-
Place
(%)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Ireland 66.1% 73.6% 68.6% 66.1% 63.3% 58.8% 56.5% 56.4% 58.6% 51.8% 54.6% 53.8%
Other 30.2% 21.9% 30.0% 33.7% 34.6% 40.1% 43.3% 43.0% 40.7% 46.7% 44.6% 44.4%
Unk. 3.7% 4.4% 1.4% 0.2% 2.2% 1.0% 0.2% 0.6% 0.7% 1.5% 0.8% 1.8%

Birth-
Place
Incidence

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Ireland 7.68 8.47 8.35 8.21 8.07 7.51 6.88 7.02 6.43 5.60 5.19 5.47
Other 31.79 19.84 26.62 28.58 26.59 31.74 31.18 29.95 23.50 25.65 19.82 19.95

Table 4.4: Notifications (Count, Percentage, Incidence) Categorized By Birthplace
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Statistics
(N) Min Q1 Median Q3 Max Mean S.Dev

Mean
Change

Ireland 196 238 270.5 293.75 299 261.17 37.49 -6.00
Other 89 145.75 164.5 193 206 162.33 35.05 4.09
Unknown 1 3 5.5 7.75 18 6.50 5.37 -0.73

Statistics
(%) Min Q1 Median Q3 Max Mean S.Dev

Mean
Change

Ireland 51.8% 55.9% 58.7% 66.1% 73.6% 60.7% 6.8% -1.1%
Other 21.9% 32.8% 40.4% 43.5% 46.7% 37.8% 7.6% 1.3%
Unknown 0.2% 0.7% 1.2% 1.9% 4.4% 1.5% 1.3% -0.2%

Statistics
Incidence Min Q1 Median Q3 Max Mean S.Dev

Mean
Change

Ireland 5.19 6.22 7.27 8.10 8.47 7.07 1.17 -0.20
Other 19.82 22.61 26.60 30.26 31.79 26.27 4.62 -1.08

Table 4.5: Statistics (Count, Percentage, Incidence) Categorized By Birthplace
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The foreign-born population increased rapidly in Ireland during the review period. In

2002, the population made up approximately 9.96% of the total population; in 2013 it was

estimated to be approximately 18.44% of the total population.

Figure 4.6: National Foreign and Native Born Incidence, 1998 through to 2013

The broad and ambiguous definition of “foreign-born” has led to a relatively larger

variance in incidence rates for the population over time, the average standard deviation of

incidence rates being four times that of native-born. Section 4.3.4 gives a further exami-

nation of foreign-born cases within Ireland.

Race/Ethnicity

The Race/Ethnicity variable has seven categories: (1) White, (2) South Asian, (3) Black,

(4) Irish Traveller, (5) East/South East Asia, (6) Other, (7) Unknown. The proportion of

cases occurring in each category in 2002 were 71% White, 8% South Asian, 11.5% Black,

0.2% Irish Traveller, 1.7% East/South East Asian, 1% Other, and 6.6% Unknown. The

proportions in 2013 were 52% White, 12.6% Asian, 8.4% Black, 3.1% Irish Traveller,
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7.1% East/South East Asian, 0.3% Other, and 16.5% Unknown. Average Incidence per

100,000 of the population over time within each category was 6.98 for White, 98.05 for

Black, 116.2 for Asian (South Asian and East/South East Asian combined), 8.13 for Irish

Traveller, 16.14 for Other, and 39.68 for Unknown. The average annual change in inci-

dence over time was -0.30 for White, -11.46 for Black, -6.75 for Asian, +2.83 for Irish

Traveller, -0.48 for Other, and +4.91 for Unknown. A large burden of incidence consis-

tently occurs with Black and Asian populations. Underlying notifications have on average

changed each year -8.45 for White, +1.36 for South Asian, -1.36 for Black, +1 for Irish

Traveller, +1.82 for East/South East Asian, -0.27 for Other, and +3.27 for Unknown. Fur-

ther data and descriptive statistics can be found in Appendix table A.14/A.15.

Additional Remark: A publication conducting descriptive statistics on the Irish trav-

eller community can be found in Appendix E.

Refugee/Asylum Seeker

The variable Refugee/Asylum Seeker had responses (1) Yes, (2) No, and (3) an Unknown

category. The annual incidence in the refugee population was one of the largest within

the dataset, reaching a maximum of 855 per 100,000 refugees in 2002. However the inci-

dence rate declined almost linearly since then reaching 150 in 2013; on average declining

64.09 units each year. This is one of the largest reductions occurring for incidence rates in

the dataset. The underlying population was 5,380 individuals in 2002, climbing linearly

to reach 9,730 in 2008, then began declining reaching 6,001 in 2013. The birth country

composition of refugees has changed over time. In 2002, the global composition primar-

ily consisted of Afghani and African refugees [106], of which high incidence rates were

observed. More recently, in 2014/2015, the global refugee population comprised mostly

of Syrian refugees [107]. Syria is categorised as low to medium incidence experiencing

an incidence rate between 10-20 per 100,000 resident population annually. The change in

the composition of the global refugee population ultimately changes its underlying inci-

dence rate of TB . The cases occurring in Ireland range between nine and 46 annually, the
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minimum number of cases occurring in 2013. Further data and descriptive statistics can

be found in the Appendix table A.16.

Diagnosis Type

The variable Diagnosis Type or Disease Type had four categories: (1) Pulmonary, (2) Ex-

trapulmonary, (3) Pulmonary&Extrapulmonary, and (4) Unknown. In 2002, the proportion

of cases occurring in each category was as follows: 65.6% Pulmonary; 23.4% Extrapul-

monary; 9% Pulmonary&Extrapulmonary; and 2% Unknown. The proportions changed

slightly over the review period. In 2013 they were 59.8% Pulmonary, 33.6% Extrapul-

monary, 6% Pulmonary&Extrapulmonary, and 0% Unknown. Within Europe, the WHO

identified approximately 17% of all cases having Extrapulmonary TB in 2011. Ireland has

experienced an average of 29.2% over the time period of the study indicating a slightly

higher rate than other countries. Further data and descriptive statistics can be found in

the Appendix table A.1/A.2. Figure 4.7 illustrates the proportion of cases for each disease

type.
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Figure 4.7: Proportion of Notifications with each Diagnosis Type, 2000 through to 2013

MDR/XDR

The variable MDR/XDR refers to the multiple drug-resistant strain and extensively drug-

resistant strains of TB. The vast majority of cases in Ireland have been the standard drug

susceptible strain, averaging 99.4% of all cases over the review period. Being drug-

resistant, MDR and XDR TB strains are difficult to treat and although the number of cases

is small, examining occurrences is important. The number of MDR-TB cases peaked

in 2007, reaching seven cases. The next highest was in 2012 when there were five cases.

Other years saw a range between zero to four cases. There was one recorded case of XDR-

TB in Ireland that occurred in 2005. No deaths have been recorded due to MDR/XDR TB

over the time period. The average age of individuals with MDR-TB was 35.7. The age of

the individual with XDR TB was 26. With regards to employment, nine cases (27.27%)

were unemployed, six were students (18.18%), five were in employment (15.15%), four

were unknown (12.12%), and the remaining categories had three each; Other (9.1%), Re-

tired (9.1%), and Husband/Housewife (9.1%). Further data and descriptive statistics can
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be found in the Appendix table A.3.

Death Due To TB

The variable Death Due To TB had responses: (1) Yes, (2) No, and (3) Unknown. The

number of cases classified as Unknowns were consistently large each year creating a high

degree of uncertainty. To add to this uncertainty, a value of “Yes” was given only when

individuals died solely due to TB. Consequently, TB being a contributing factor towards

death was not sufficient to constitute a “Yes” response, TB needed to be the primary factor.

The true count of deaths where TB was a factor is unknown in Ireland. The number of

people dying from TB each year ranges between 0 and 11 individuals over the time period

of the study, this corresponds to a death rate between 0 and 2.5% for individuals with

TB. Table 4.6 shows the frequency of death with respect to age category, further data and

descriptive statistics can be found in the Appendix table A.4.

20 Or Less 20 to 30 30 to 40 40 to 50 50 to 60 60 to 70 70 to 80 80 to 90 Over 90
0 4 9 6 14 15 20 13 4

Table 4.6: Death Due To TB Age Distribution

The mean age of death from TB was 62.7 years (median 61 years, range 26-95 years).

The greatest number of deaths (n=20) occurred in the 70 to 80 age bracket.

Risk Factor

In order to asses if there was an association of TB with specific, known risks, patients were

asked if they had been exposed to a risk factor and then, if yes, what the type of risk factor

was. The risk factors available were: (1) Anti-TNF (Anti-tumor necrosis factor: a class

of drugs that increases susceptibility to TB), (2) Contact, (3) Diabetes, (4) High Endemic

Affiliation1(A combination of high endemicity residence and high endemicity origin), (5)

Immuno Suppresive Medication, (6) Immuno Suppresive Illness, (7) Other, (8) Substance

1Countries with annual TB notification rate greater than 40 cases per 100,000 population are considered
areas of high endemicity
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Misuse, (9) Tobacco, and (10) Unspecified Risk Factor. The risk factor with the greatest

increase in frequency over the time period was High Endemicity Affiliation, on average

increasing 1.6% annually. This was followed by individuals who came into contact with a

case. This category grew on average 0.5% annually. Of the notifications associated with

a risk factor, 49.1% had a High Endemicity Affiliation. The next largest frequency of risk

factor was Substance Misuse accounting for 15% of all risk factors. Table 4.7 details the

percentage of cases with a risk factor over time and figure 4.8 illustrates the frequency

and number of individuals with more than one risk factor. Further data and descriptive

statistics can be found in the Appendix table A.17/A.18. Table 4.7 and figure 4.8 detail

risk factor data over the review period.

Risk Factor (%) 2002 2003 2004 2005 2006 2007
Yes 49.5% 45.8% 49.0% 46.2% 52.9% 54.9%
No 29.0% 32.8% 29.3% 29.7% 26.1% 27.2%
Unknown 21.5% 21.4% 21.7% 24.1% 21.0% 17.9%
Risk Factor (%) 2008 2009 2010 2011 2012 2013
Yes 65.7% 62.8% 61.2% 71.7% 55.7% 52.8%
No 23.6% 23.8% 24.8% 15.3% 23.4% 19.9%
Unknown 10.7% 13.4% 14.0% 13.1% 20.9% 27.3%

Table 4.7: Percentage of Cases With A Risk Factor
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4.3.3 Time Series Analysis

Time series analysis comprises methods for analysing data dependent on time in order to

extract meaningful statistics from the data. Time series analysis was implemented to in-

vestigate seasonality within the TB data, as seasonality is an established attribute of some

infectious diseases [108].

Quarterly, monthly, and weekly notifications were evaluated using simple moving av-

erage plots and boxplots, along with using an autocorrelation plot [109] to investigate the

significance of the seasonality, should it exist. Appendix figure A.1 displays various mov-

ing averages being applied to monthly data.

Upon visual inspection of the run plot and moving averages (Appendix figure A.1) there

appears to be evidence to suggest a seasonal trend within the data. Following seasonal

detection methods [110] multiple box plots were used along with autocorrelation plots

generated to check for seasonality. In addition to figures 4.9 and 4.10, weekly boxplots

were also generated and can be seen in Appendix figure A.2.

Figure 4.9: Boxplot Of Notifications Factored By Quarter
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Figure 4.10: Boxplots Of Monthly Notifications Factored By Month Of Year

Autocorrelation, sometimes referred to as “lagged correlation”, is a mathematical rep-

resentation of the degree of similarity between a given time series and a lagged version

of itself over successive time intervals. A 95% confidence band was calculated using the

formula
Z1−α/2√

N
for a measure of standard error. This establishes whether the data contains

a significant dependency on past values (seasonality) or whether the data are a realisation

of a white noise process. The margin or error calculated for quarterly data was found to be

±0.28 and for monthly data the margin of error was ±0.16. Figures 4.10 and 4.11 show

the correlation of the series with itself, lagged by x time units.
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Figure 4.11: Autocorrelation Plot Of Quarterly Notifications with a 95% CI (±0.28)

.

Figure 4.12: Autocorrelation Plot Of Monthly Notifications with a 95% CI (±0.16)

.

Within the quarterly autocorrelation plot there was a significant trend calculated for

the fourth and eighth period, implying an annual seasonal cycle. Within the monthly auto-

correlation plot there was a significant trend for the 11th and 12th period, again implying
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an annual seasonal cycle. Furthermore, the monthly autocorrelation plot gives evidence to

suggest the data are sinusoidal, which suggests continuity of the data going from a high

seasonal period into a low seasonal period, and visa versa.

Further seasonal-trend decomposition for the time period can be found in the Appendix

tables A.21/A.22, the decomposition procedure used followed from a loess smoother [111].

Ranking months in order of average notification we have: April (Mean=43.17, Std.Dev=10.99),

June (Mean=41.92, Std.Dev=9.54), July (Mean=40.08, Std.Dev=8.59), March (Mean=37.08,

Std.Dev=6.23), May (Mean=36.17, Std.Dev=8.23), February (Mean=36.08, Std.Dev=8.46),

October (Mean=35.92, Std.Dev=4.10), August (Mean=34.83, Std.Dev=5.77), November

(Mean=32.25, Std.Dev=6.17), January (Mean=32.08, Std.Dev=5.37), December (Mean=30.42,

Std.Dev=7.17), and September (Mean=29.25, Std.Dev=5.75). Further descriptive statis-

tics along with the count and percentage of notifications factored by month and quarter

can be found in the Appendix table A.19/A.20. Due to a significant seasonality detected

within the data, multivariate analysis will be carried out to examine whether seasonality

affects the population uniformly.

Descriptive Multivariate Analysis On Seasonality

The most frequent six-month period for notifications typically run from February through

to July, and the least frequent from August to January. The top six months on average

had 20.4% more notifications than the lower six. This is potentially clinically relevant as

it can inform planning for control and treatment strategies in the future. Hospitals and

other clinical practices can now potentially predict when to maximise/minimise resources

available. By calculating the percentage increase in notifications for certain demographics

(e.g. do the unemployed experience this increase in notifications during seasonally high

periods?) we can compare the increase in the categories for each demographic variable to

the national increase to evaluate if there exists a significant difference. Table 4.8 shows

the increase for some of the demographical data.
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Variable Category

Percentage
Increase

In A High
Seasonal
Period

Total
Number
Of Cases

Chi Square
Between

Categories

Chi Square
Against National

Nationally 20.4% 5160
Male 18.94% 3148 0.073 (p-value=0.787)

Gender Female 23.10% 2004 0.358 (p-value=0.55) 0.174 (p-value=0.676)
Employed 21.73% 1643 0.036 (p-value=0.849)
Unemployed 16.63% 1003 0.212 (p-value=0.645)
Housewife/
Husband 20.69% 448 0 (p-value>1)

Retired 10.82% 799 1.188 (p-value =0.276)
Unknown 35.48% 511 NA
Student 16.74% 492 0.107 (p-value=0.744)

Employment Other 37.38% 254 1.28 (p-value=.865) NA
Home 20.41% 4395 0 (p-value>1)
Hostel -1.43% 139 1.359 (p-value=0.244)
B&B/Hotel 150.00% 21 2.382 (p-value=0.123)
Homeless -15.79% 35 1.115 (p-value=0.291)
Prison 300.00% 30 7.75 (p-value=0.005)*
Institution 45.24% 103 0.86 (p-value=0.354)
Other -3.70% 106 NA

Current Living Unknown 20.55% 322 13.55 (p-value=0.019)* NA
Ireland 21.07% 3126 0.015 (p-value=0.909)

Birth Country Foreign-Born 21.50% 1947 0.004 (p-value=0.987) 0.028 (p-value=0.868)
White 20.36% 3334 0 (p-value>1)
South Asian 25.38% 586 0.213 (p-value=0.645)
Black 16.54% 550 0.132 (p-value=0.716)
Unknown 11.25% 338 NA
East/South
East Asian 26.47% 231 0.131 (p-value=0.717)

Other 23.68% 85 NA
Race/Ethnicity Irish traveller 70.00% 27 1.246 (p-value=0.87) 0.753 (p-value=0.386)
Refugee Refugees 26.45% 351 0.194 (p-value=0.659)

Table 4.8: Table Highlighting Percentage Increase In Cases During A Seasonally High

Period For Each Demographic Variable
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A similar density of age is observed when comparing densities of high seasonal periods

to that of a low seasonal periods (Mean[High]= 42.14, Mean[Low]= 43.07,SD[High]= 20.55,

SD[Low]] = 20.52, Skewness[High] = 0.433, Skewness[Low] = 0.409). A two sample indepen-

dent mean t-test resulted in non-significant results when testing means between high and

low period (t-value=-1.618, p-value=0.106). With regards diagnosis type, Pulmonary and

Extrapulmonary TB saw a roughly similar increase in seasonally high periods, increasing

19.13% and 19.56% respectively. For Pulmonary & Extrapulmonary TB cases 172 were

recorded in a seasonally low period, and 234 were recorded in a seasonally high period,

accounting for a 36.05% increase. However, the difference between disease type groups

was non-significant when tested (χ2 = 1.59, p− value = 0.452). For date of death there

were 25 deaths recorded within a seasonally low period and 47 deaths recorded within a

seasonally high period, which accounts for a 61.1% increase in death during seasonally

high periods.

All demographic variables, excluding Current Living, did not show significant differ-

ences in the variable categories using a Chi-square test statistic. There was one category

within Current living; Prison, that displayed a significant difference in notifications when

compared to the national increase. The sample size for this population was 30. This in-

crease in cases was investigated and it was discovered an outbreak occurred in 2011 of

which 12 individuals were infected [112], which may have skewed the underlying results

of the test statistic. In conclusion, seasonality was found to be a significant factor within

the data. Following the multivariate analysis, there is a lack of significant differences be-

tween demographics used in the analysis. Consequently, the conclusion will be drawn that

seasonality affects the total population uniformly.

4.3.4 Foreign-Born Incidence

In this section further analysis is conducted on the variable Birth Country. Denominator

data was acquired for some populations living in Ireland, specifically the size of certain

foreign-born populations in Ireland. Table 4.10 in a later section lists these countries.

Calculation of incidence and descriptive multivariate analysis will now be presented.
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Foreign-Born Descriptive Statistics For Notifications and Incidence

With respect to average annual notifications, the top 10 contributing countries were: India

(25 cases annually), Pakistan (19 cases annually), Nigeria (12 annually), Philippines (11

annually), the UK (7 annually), Somalia (7 annually), Romania (6 annually), South Africa

(6 annually), Poland (5 annually), Congo (4 annually), and Zimbabwe (4 annually). Out

of the top 20 average annual contributors, 13 originate from a high burden country (HBC),

described in §2.5.1. On average, the top 10 foreign-born contributors account for 62%

of all foreign-born notifications, the top 5 on average contributors accounted for 45% of

all foreign-born notifications. Out of the top 10 contributors the average incidence per

100,000 within Ireland over the review period was 140.7 for India, 224.41 for Pakistan,

33.08 for Nigeria, 121.83 for the Philippines, 2.02 for the UK, 50.47 for Romania, 108.02

for South Africa, 6.6 for Poland, 167.48 for the Congo, and 33.18 for Zimbabwe. Popula-

tion data was unavailable for the Somalian population living in Ireland.

Distributional Properties Of Foreign-Born Incidence

Within a US study [113] it was found that persons who have migrated from areas of the

world with high TB rates exhibit notification rates that approach those of their regions

of origin for a number of years after arrival. This study now examines this claim with

respect to Irish data. Denote N[C,t] the national incidence rate of country C at time t, and

denote I[C,t] the incidence rate within Ireland for the population with birth country C at

time t (e.g. N[India,2002] denotes India’s TB incidence rate in 2002, and I[India,2002] denotes

the incidence rate of TB for the Indian population living within Ireland). The expression

N[C,t]− I[C,t] is the discrepancy between what Irish populations experience in incidence

and what the original birth country experiences in incidence. The underlying distribution

of N[C,t]− I[C,t] and the distributional statistics can be seen in figure 4.13 and 4.14 and

tables 4.9 and 4.10. The aim of the following analysis is to highlight the difference, if

any, between a foreign-born individuals birth country incidence and that of the individuals

coming from that country living in Ireland. The expression N[C,t]− I[C,t] will be close to

zero if there is little to no difference between the incidence of the birth country and that

of the individuals living in Ireland. This will therefore provide evidence of a possibile

85



relationship between the type of foreign-born populations living in Ireland and Ireland’s

overall national incidence.

For table 4.9, outliers were considered any data point that was more than 1.5 interquar-

tile ranges below the first quartile or above the third quartile.
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Figure 4.13: Histogram and Boxplot of N[C,t]− I[C,t], the discrepancy for all countries over

2002 through to 2013.

Statistics All Data Outliers Removed
Min -289.7 -114.8
Q1 6.1 6
Median 17.25 12
Q3 88.5 60.78
Max 964 207.6
Mean 73.39 35.19
Geometric Mean 29.26 24.97
S.Dev 166.8 55.44
Skewness 3.06 0.89
Kurtosis (Normal=2.96) 11.73 1.37

Table 4.9: Statistics Of N[C,t] − I[C,t], The Discrepancy For All Countries Over 2002

Through To 2013.
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Statistics

National
Minimum
Incidence
(min

t
(N[C,t]))

National
Maximum
Incidence
(max

t
(N[C,t]))

Ireland
Minimum
Incidence
(min

t
(I[C,t]))

Ireland
Maximum
Incidence
(max

t
(I[C,t]))

Mean
Yearly
Notifications

Australia 5.9 6.5 0 15.76 0.17
Belgium 9.1 13 0 71.99 0.17
Brazil 45 56 0 247.12 1.33
China 70 102 9.07 72.42 3.75
Congo 382 426 90.42 322.48 3.92
Denmark 6.7 9.8 0 136.05 0.08
Finland 5.8 9.5 0 112.49 0.17
France 8.9 12 0 25.32 0.50
Germany 5.8 10 0 18.53 0.50
Greece 5 7 0 296.74 0.25
Hong Kong 76 103 0 177.49 0.75
India 171 215 117.41 362.43 24.50
Italy 6.3 8.1 0 27.52 0.33
Latvia 50 104 0 44.56 1.92
Lithuania 65 97 0 21.34 3.67
Malaysia 75 97 0 116.67 1.08
Moldova 159 176 0 98.72 0.75
Netherlands 6 9.3 0 21.95 0.08
New Zealand 7.4 11 0 42.83 0.08
Nigeria 336 343 33.08 191.16 12.42
Pakistan 275 276 138.96 541.84 18.50
Philippines 292 355 14.98 169.80 11.00
Poland 21 30 0 46.79 4.58
Portugal 25 46 0 175.13 0.58
Romania 87 168 24.85 93.07 6.42
Russia 89 138 0 39.36 0.67
South Africa 746 977 13.01 141.17 5.92
Spain 13 21 0 29.30 0.67
Ukraine 96 127 0 68.26 0.50
UK 13 15 1.45 4.16 6.83
USA 3.4 6.1 0 9.53 0.75
Zimbabwe 304 617 0 703.73 3.83

Table 4.10: Minimum And Maximum Incidence Rates For Each Country (N[C,t]) And For

The Individuals Born Of That Country Who Live In Ireland (I[C,t]).
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With respect to table 4.9 and figure 4.13, the distributions are centered close to zero

(median incidence 17.25, or 12 with outliers removed) which indicates a possible rela-

tionship between variables N[C,t] and I[C,t]. The distribution has positive skewness which

indicates a large discrepency between individuals coming from high-incidence countries

and the incidence they experience in Ireland. A large standard deviation was calculated

(166.8 or 55.4 with outliers removed), which indicates that there is considerable variabil-

ity between birth country incidence and the incidence of individuals living in Ireland born

of that country. This demonstrates that, while the distribution is cenetered close to zero,

the incidence of an individuals birth country may not have a strong relationship with the

incidence those individuals observe in Ireland. Figure 4.14 indicates the distribution of

N[C,t]− I[C,t] does not change over time, however, a more formal methodology would need

to be carried out to support this claim (a linear regression, for instance).

To test the strength of the relationship between variables N[C,t] and I[C,t] a correlation coef-

ficient was calculated. A significant correlation was calculated between the N[C,t] and I[C,t]

[R2 = 0.224, Adjusted R2= 0.22, n = 167, p ≤ 0.001].

To help illustrate the relationship between N[C,t] and I[C,t] both variables had their coun-

tries placed in categories based on their latest data. The categorise follow: Very High if

N[C,2013] ≥ 100, High if 50 ≤ N[C,2013] ≤ 100, Medium if 10 ≤ N[C,2013] ≤ 50, and Low if

N[C,2013] ≤ 10. Table 4.11 displays the average incidence for each category.

Countries Categorised
By Incidence Rate

Very High Incidence
Countries (N=8)

High Incidence
Countries (N=7)

Medium Incidence
Countries (N=5)

Low Incidence
Countries (N=12)

Average Birth Country
Incidence

347.63 82.86 23.40 6.61

Average Incidence
Experienced in Ireland

151.03 30.84 20.10 11.79

Table 4.11: A Comparison Of N[C,t] And I[C,t] When Countries Are Categorized By Inci-

dence
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Table 4.11 suggest an increase in individuals originating for countries with large inci-

dence will increase the incidence of the foreign-born population. When observed directly,

the relationship is relatively weak. However, when ranges and categorizations are ob-

served, there appears to be a trend between both variables.

Descriptive Multivariate Analysis On Birthplace

With respect to age, a two sample independent means t-test resulted in a significant dif-

ference when testing means between foreign-born and native-born groups (t-value=29.09,

p− value ≤ 0.001). The mean age of native-born populations was 48.49 and of foreign-

born 32.59. The density of age for both populations for 2002 and 2013 can be seen in

figure 4.15. With respect to sex, employment status, disease type, current living, and

death, table 4.13 highlights the differences between native-born and foreign-born notifica-

tions. With regards Race/Ethnicity the proportion of native-born and foreign-born cases

occurring in each category can be seen in table 4.12. The very small percentages observed

for native-born Asian and Black populations, would suggest the high incidences observed

within these groups may be a factor of birthplace, rather than concluding differences in

biological mechanisms within the ethnic groups themselves. With regards to diagnosis

type, an increased rate of Extrapulmonary TB is seen within the foreign-born population;

native-born populations averaging 22.36% of cases Extrapulmonary, foreign-born averag-

ing 40.2%. A similar figure is observed within the UK which, in 2014, had over 70% of

notifications foreign-born and reported the proportion of cases with Extrapulmonary TB

as 47.9% of total notifications [103]
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Figure 4.15: Density Plot Of Age Factored By Birthplace For The Year 2002 And 2013

White
South Asian

descent
Black Irish traveller

East / South East
Asian descent

Other Unknown

Native-Born
(n=3078)

95.22% 0.16% 0.65% 0.78% 0.10% 0.13% 2.96%

Foreign-Born
(n=1908)

21.07% 30.40% 27.67% 0.16% 11.95% 4.25% 4.51%

Table 4.12: Distribution Of Birthplace Factored By Race/Ethnicity
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Variable Category
Irish-Born

Notifications
Foreign-Born
Notifications

Chi Square
Between
Groups

Total 3134 1948
Male 1966 (62.73%) 1130 (58.19%)

Gender Female 1168 (37.26%) 812 (41.81%) 10.41 (p-value = 0.001)
Employed 855 (28.56%) 784 (40.27%)
Unemployed 579 (19.34%) 424 (21.78%)
Housewife/
Husband

256 (8.55%) 193 (9.91%)

Retired 765 (25.55%) 29 (1.49%)
Unknown 159 (5.31%) 156 (8.01%)
Student 215 (7.18%) 273 (14.02%)

Employment Other 165 (5.51%) 88 (4.52%) 537.45 (p-value <0.001)
Home 2751 (90.82%) 1635 (8402%)
Hostel 38 (1.25%) 100 (5.14%)
B&B/Hotel 9 (0.3%) 10 (0.51%)
Homeless 24 (0.79%) 12 (0.62%)
Prison 12 (0.43%) 16 (0.82%)
Institution 88 (2.91%) 13 (0.67%)
Other 56 (1.85%) 50 (2.57%)

Current
Living

Unknown 50 (1.65%) 110 (5.65%) 104.09 (p-value<0.001)

Pulmonary 2220 (70.9%) 961 (49.33%)
Extrapulmonary 700 (22.36%) 783 (40.2%)
Pulmonary +
Extrapulmonary

203 (6.48%) 202 (10.37%)

Diagnosis
Type

Unknown 8 (0.26%) 2 (0.1%) 242.74 (p-value<0.001)

Death Due
To TB

Yes 70 15

Table 4.13: Table Detailing Demographic Differences In Notifications Between Foreign-

Born and Native-Born Groups
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The Chi-square tests in table 4.13 become a more significant result under the assump-

tion the underlying populations have similar proportions for each variable. Internation-

ally, various socio-economic differences have been noted in some foreign-born popula-

tions[114]. Hence the significance of results in table 4.12 may be due to the composition

of the underlying populations. An improved comparison would be to compare incidence,

rather than count data, however, population data was not available to establish incidence

rates. What can be concluded is that there is a difference in the underlying populations, or

there is a significant difference between birthplace for each of the variables.

With respect to the type of strain, foreign-born MDR-TB has accounted for 27 of the

33 cases (81.82%). There was only one XDR-TB case that occurred in 2005, the birth-

place of that individual was Lithuanian. The WHO have categorised Lithuania as a High

MDR TB burden country [115] reporting 310 (13.48% of total cases) MDR-TB cases in

2010. With respect to MDR-TB, Lithuanian born individuals accounted for 7 of the 33

cases (21.21%), Irish born cases accounted for 6 of the 33 (18.18%), and Indian born 3

of the 33 (9.09%). Mongolia, Zimbabwe, South Africa, Nigeria, and Latvia each sepa-

rately accounted for 2 of the 33 cases (6.06%), and Georgia, Azerbaijan, China, Romania,

Ukraine, Somalia, and Russia all separately accounted for 1 of the 33 cases (3.03%).

In conclusion very different demographics and disease types were observed within the

foreign-born population.

4.4 Conclusion

The exploratory analysis of the tuberculosis cases conducted in this chapter aimed at es-

timating the distributional properties of the incidence cases. This was completed to lend

insight of a suitable deterministic epidemiological model. First, the methodology was

presented including data acquisition methods from the HPSC. The completeness of that

data was also reviewed. The analysis began by observing variables individually over time

through tables, graphs, and descriptive statistics. The variables: Ethnic Group, Birthplace,

Employment status, and Refugee Status all appeared to contain categories within which
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notably large incidence rates were identified. This indicates a larger burden on the respec-

tive populations. The variables Ethnic Group and Refugee Status are intuitively dependent

on Birthplace; hence, further analysis on birthplace was carried out in §4.3.4.

A descriptive time series analysis was then carried out revealing a seasonal trend within

notifications, deemed to be statistically significant. The seasonality was observed to peak

within a six month time frame, and appeared to be consistent with a sinusoid model. For

the majority of cases, seasonality affected the categories within demographic variables

uniformly. The exception being individuals currently living within a prison. Due to the

small sample size of this population, it will be assumed that seasonality affects the national

population uniformly. Further analysis of foreign-born cases indicated a relationship be-

tween national incidence of birthplace and the incidence levels experienced in Ireland.

Significantly different demographic characteristics were also noted between native and

foreign-born populations.

With respect to epidemic modelling these results will be translated into the model. As

seasonality is being deemed to effect the population uniformly, a seasonal model will be

considered which models the population as a whole. In addition, due to the impact foreign-

born notifications are having a foreign-born/native-born model will be considered. As

significant differences were seen between native and foreign-born populations the model

will consider different parameter sets and compartments when modelling each population.

This ensures the population as a whole is modelled accurately.

The results of this chapter informed the literature review. Chapters 5 and 6 will now

model the population given these results.
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Chapter 5

A Mathematical Model For Seasonal TB

5.1 Introduction

This chapter aims to contribute to the on-going research into seasonality in tuberculosis

notifications by conducting a qualitative analysis and estimating the epidemiological pa-

rameters of a seasonal model for Irish data.

It has been established that the incidence of many respiratory infections shows seasonal

variation, and it is not as well documented for TB [116]. The exact mechanism underlying

the fluctuation of tuberculosis rates at any given time of the year is not clear. Researchers

have suggested the environmental and social factors such as temperature, humidity, sun-

light, as well as crowding and interpersonal contact are a source of TB seasonality, partic-

ularly in winter time [117].

The following sections present and refine the model acquired from the literature review

(§3.5). Once established, a qualitative analysis of the model is conducted followed by an

assessment on the model’s epidemiological parameters and initial conditions. Statistical

inference techniques that incorporate uncertainty are implemented to estimate a subsection

of the model parameters. Finally the model is simulated and extrapolated and the basic

reproductive number for Ireland is calculated.

96



5.2 A Seasonal TB Model

The model obtained from the literature review is represented by the ordinary differential

equation (ODE) system displayed below (equations 5.1-5.5). The underlying compart-

ments follow an SEIR model (Susceptible, Exposed/Latent, Infectious, and Recovered)

discussed in §3.4.2.

dS
dt

= Λ−β (t)SI
N −µS (5.1)

dE
dt

= (1−q)β (t)SI
N − (µ + k(t))E (5.2)

dI
dt

= qβ (t)SI
N + k(t)E− (µ +d + r)I (5.3)

dR
dt

= rI−µR (5.4)

N = S+E + I +R (5.5)

Where

• S(t) is the number of people in the population at time t susceptible to TB.

• E(t) is the number of people in the population at time t currently infected with the

latent form of TB.

• I(t) is the number of people in the population at time t actively infected and spread-

ing the disease within the population.

• R(t) is the number of people in the population at time t who have recovered, are

treated, or have immunity to TB.

• Λ is the recruitment rate (called a rate in literature, however is a number), the number

of individuals entering into the relative compartment at each time step.

• β (t) is the transmission rate, the rate at which susceptibles are initiated into either of

the infectious compartments. This is a time dependent variable meaning the trans-

mission rate will not be constant as time progresses.
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• µ is the rate of population change, the combined effect of births and deaths.

• q is the proportion of new infections that develop as a result of “fast” progression;

cases that proceed directly to the infectious compartment from the susceptible com-

partment.

• k(t) is the progression rate, the rate at which individuals go from being latent to

infectious. This is a time dependent variable meaning the progression rate will not

be constant as time progresses.

• d is the disease-induced death rate. The rate at which individuals die because of the

disease.

• r is the removal or recovery rate. The rate at which individuals are recovered or

treated for TB.

The model makes the following assumptions

• The entire population recruits new individuals at a rate Λ into the susceptible popu-

lation. Individuals entering into the population become susceptible automatically.

• The rate of infection of susceptibles into the infective or exposed compartment, β , is

proportional to the number of current infectives, hence the infection of susceptibles

is proportional to the number of individuals currently infected and the number of

individuals who are susceptible. This is referred to as the mass action principle

discussed in §3.

• After users recover, or have entered into the recovered compartment, they are no

longer susceptible to the disease.

• The system presumes fast and slow progression of TB. The initially exposed individ-

uals have a higher risk of developing active TB. With time passing, those individuals

still face the possibility of progressing to infectious TB, but the rate of progression

slows down. In other words, the likelihood of becoming an active infectious case

decreases with the age of the infection. A proportion qβSI
N gives rise to immediate
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active cases (fast progression), while the rest (1−q)βSI
N gives rise to latent-TB cases

with a low risk of progressing to active. TB (slow progression).

• The transmission rate, β (t), and progression rate, k(t), are both time dependent

functions. The rate at which individuals progress through compartments will change

depending on the month of year.

• N(t) = S(t)+E(t)+ I(t)+R(t) is the total population size at time t. The rate of

change can be expressed as dN
dt = Λ−µN(t)−dI(t).

The original model makes the assumption that recruitment occurs directly into the sus-

ceptible compartment. That is, all individuals born or who are immigrating to the country

will automatically be considered susceptible to TB. In Ireland, universal vaccination oc-

curs from birth [124]. To assume vaccinated individuals are susceptible is not a rational

assumption for the model. Hence an alternative model can be constructed with a change

in placement on the recruitment parameter. This will account of new individuals entering

the system who are also vaccinated. The alternative model follows:

dS
dt

= wΛ−β (t)SI
N −µS (5.6)

dE
dt

= (1−q)β (t)SI
N − (µ + k(t))E (5.7)

dI
dt

= qβ (t)SI
N + k(t)E− (µ +d + r)I (5.8)

dR
dt

= (1−w)Λ+ rI−µR (5.9)

N = S+E + I +R (5.10)

Where w is the proportion of births or immigrants that enter into the susceptible com-

partment immediately, and where (1−w) is the proportion of births or immigrants entering

into the recovered compartment immediately. This model can now consider a vaccinated

population. If individuals are vaccinated, a proportion of them will have immunity. They

can then immediately enter into the recovered compartment. A schematic can be seen in

figure 5.1.
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Figure 5.1: Schematic Of altered model

The following section conducts qualitative analysis on the altered model.

5.3 Qualitative Analysis

5.3.1 Equilibrium States

An equilibrium point is a constant solution to the ODE system. With respect to the math-

ematical modelling of epidemics there exist two main equilibrium points: the disease-free

equilibrium and the endemic equilibrium.

Definition 5.1. A disease-free equilibrium is defined as the point at which no disease is

present in the population (infectious or exposed) and the change in the number of infec-
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tions over time is zero. The endemic equilibrium is defined as the point which disease is

present in the population and the change in the number of infections is zero.

The equilibrium points of equations 5.6-5.9 are calculated through setting each equa-

tion to zero (no change in compartments), and solving the system of equations that result.

The disease-free equilibrium is obtained by calculating the above and setting I(t) = 0, and

E(t) = 0. Denote D0 = (SDF0 ,EDF0 , IDF0,RDF0) the solution to the disease-free equilibrium,

solving system 5.6-5.9 results in

D0 =
(

SDF0 =
wΛ

µ
,EDF0 = 0, IDF0 = 0,RDF0 =

(1−w)Λ
µ

)
.

This solution can usually be acquired analytically by hand. The endemic equilibrium is

the equilibrium for which the change in each compartment is zero, however, the number of

infectious/exposed is greater than zero. Depending on the system, the endemic equilibrium

point can be a very long algebraic expression with hundreds of terms and software can

often be required to calculate it. For equations 5.6-5.9 the equilibrium existed and was

calculated, however, was hundreds of terms in length. Due to it not having utility with

respect to this study, it will be omitted. The following section presents methods to calculate

the basic reproductive number.

5.3.2 Basic Reproductive Number

The basic reproductive number was previously introduced in §3. It is a defining value

of a deterministic model. If greater than one, the model will experience an epidemic. If

less than one, no epidemic will occur and the disease will die off. What follows is the

calculation of the basic reproductive number, R0, using the next generation method [133].

With respect to the disease free equilibrium, the equations 5.7 and 5.8 of the linearised

system become
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dE
dt

= (1−q)β (t)
wΛ

µ
I

N − (µ + k(t))E,

dI
dt

= qβ (t)
wΛ

µ
I

N + k(t)E− (µ +d + r)I.

At the disease-free equilibrium the population size, N, is the sum of the disease-free equa-

tion for each compartment. Hence we can replace N = wΛ

µ
+ (1−w)Λ

µ
= Λ

µ
into the above

system to get

dE
dt

= (1−q)β (t)wI− (µ + k(t))E, (5.11)

dI
dt

= qβ (t)wI + k(t)E− (µ +d + r)I. (5.12)

The next generation method obtains R0 through calculating ρ(FV−1), where ρ is the

spectral radius of the matrix FV−1, defined as the eigenvalue of the matrix with largest

magnitude. The above equations (5.11 and 5.12) are used to construct the matrices F and

V. The entries of F and V are determined by the effect of an infection event. If an infection

event causes a gain to the compartment its derivative makes up F. If an infection event

causes a loss to a compartment its derivative makes up V. The matrices F and V follow for

system of equations 5.6 - 5.9.

F(t) =

(
0 (1−q)β (t)w
0 qβ (t)w

)
,

V (t) =

(
µ + k(t) 0
−k(t) µ +d + r

)
.

It is not theoretically possible to compute the basic reproductive number when there are

periodic functions of time as parameters [89], hence to calculate R0 the assumption will be

made that the parameters are constant. In the case of β (t) = β and k(t) = k, the matrices
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F(t) and V (t) become F and V , respectively. The matrix FV−1 was calculated to be

FV−1 =

(
0 (1−q)βw
0 qβw

)(
µ + k 0
−k µ +d + r

)−1

=

(
0 (1−q)βw
0 qβw

)(
1

µ+k 0
k

(µ+d+r)(k+µ)
1

µ+d+r

)

=

(
βkw(1−q)

(k+µ)(d+r+µ)
βw(1−q)
d+r+µ

βkqw
(k+µ)(d+r+u)

βqw
d+r+µ

)
.

The above matrix has eigenvalues

λ1 =
βw(k+qµ)

(µ +d + r)(µ + k)
,λ2 = 0

Due to the spectral radius, or largest eigenvalue, of FV−1 being defined as R0 through

the next generation method and due to all parameters being positive constants, we define

R0 = λ1 or

R0 =
βw(k+qµ)

(µ +d + r)(µ + k)
. (5.13)

To overcome the omission of accepting constants for parameters β (t) and k(t) an average

will be taken of both functions, and the average values will help acquire an estimate of R0.

The elements of the matrix V−1 have epidemiological interpretations in themselves.

In, for example, Diekmann el al.[195] it is shown that the element V−1
i, j is the expected

time that an individual who is presently within state j will spend in state i. For the above

V−1 was calculated as (
1

µ+k 0
k

(µ+d+r)(k+µ)
1

µ+d+r

)
Individuals who are exposed will spend on average 1

µ+k units of time being exposed. The

same individuals will spend on average k
(µ+d+r)(k+µ) units of time being infected. The
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individuals who are infected will stay infected for 1
µ+d+r units of time.

5.4 Parameter Estimation

A total of eight parameters needed to be estimated in the model, along with the total pop-

ulation size and the relative proportions each compartment takes initially. The parameters

Λ and µ , the recruitment rate and death rate, respectively, and the population size N were

calculated from national surveillance data published by the World Bank [196]. The pa-

rameters d; the death rate due to TB, and r; the recovery or removal rate were calculated

using the dataset acquired and used in §3. The parameters β (t); the transmission rate,

and k(t); the progression rate, were estimated using statistical inference methods. The

model’s initial conditions were estimated using a combination of data and assumptions.

The total population and initial infected population were estimated using World Bank data

and the national TB dataset, respectively. Estimates of the initially exposed and recovered

populations were guided by the literature by method of assumption.

5.4.1 Recruitment And Death Rate Parameters

The recruitment rate parameter is dependent on both births and net migration. Hence the

recruitment rate will be defined as the average monthly birth rate plus the average monthly

net migration rate. The vital statistics are displayed in the table 5.1.
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Year Population Births Migration
Monthly Migration

+Births
(Recruitment Rate)

Deaths
Monthly Death

Rate

2002 3900000 60800 32100 7742 28900 0.00062
2003 3964000 62000 31600 7800 28600 0.00060
2004 4029000 61400 49500 9242 27900 0.00058
2005 4112000 61200 61800 10250 27000 0.00055
2006 4208000 65400 94600 13333 28000 0.00055
2007 4340000 71300 74700 12167 28000 0.00054
2008 4458000 75100 15900 7583 28000 0.00052
2009 4521000 75600 -19600 4667 28000 0.00052
2010 4549000 75100 -25100 4167 28000 0.00051
2011 4571000 74700 -33700 3417 29000 0.00053
2012 4583000 72200 -35200 3083 29000 0.00053
2013 4591000 68900 -23900 3750 30000 0.00054

Average 4318833 68642 18558 7267 28367 0.00055

Table 5.1: Annual Population, Birth, Migration, And Mortality Data for Ireland, 2002

through 2013.

Using the above data, the initial population size will be N(0) = 3,900,000. The re-

cruitment rate will be the average monthly recruitment rate, Λ = 7,267, and the death rate

will be the the average monthly death rate, µ = 0.00055.

5.4.2 The Proportion Of Current/New Individuals With Immunity

The BCG vaccine has shown to have 69% effectiveness against TB infection [40 ]. As

exact proportions are not known, this study makes the assumption for modelling purposes

that 69% of individuals who have been vaccinated will have immunity. Due to the un-

certainty surrounding this parameter it will be given further evaluation in §7, where a

sensitivity analysis is conducted and a scenario analysis that evaluates a range of values.

The coverage of the BCG vaccine in Ireland is approximately 94% [124]. Hence, for
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modelling purposes, the assumption is made that the proportion of the population that

can be considered immune is 69%× 94% = 65%. The model will assume 65% of the

population will be immune or recovered, hence the initial recovered population will be

R(0) = 0.65×N(0) = 2,535,000. The model also makes the assumption that the recruit-

ment rate parameter, Λ, can be divided in this way. As it is assumed that 65% of the

current population will be immune, it will also be assumed that 65% of recruited individu-

als entering into the population (birth plus migration) will have immunity and 35% of the

population will not, hence w = 0.35. The effects on the model when this rate is altered

will be examined in §7.

5.4.3 Death and Recovery Rate

The death rate due to TB, and the recovery rate were calculated using the national TB

dataset. The annual count of deaths due to TB can be seen in table 5.2. Death due to TB

was defined as individuals who died while infected with TB, and whose death could not be

attributed to any other factors other than TB. This excludes all individuals who died with

HIV and TB, or any other illness and TB.

106



TB Cause of Death Unknown Yes No Total Yes Proportion
2002 409 0 1 410 0.00000
2003 378 6 22 406 0.01478
2004 413 5 15 433 0.01155
2005 414 11 23 448 0.02455
2006 431 10 22 463 0.02160
2007 444 7 30 481 0.01455
2008 434 9 24 467 0.01927
2009 447 10 22 479 0.02088
2010 398 8 14 420 0.01905
2011 391 10 12 413 0.02421
2012 350 3 6 359 0.00836
2013 370 7 4 381 0.01837

Average 407 7 16 430 0.01643

Table 5.2: Number of Deaths Attributed to TB, 2002 through 2013.

The average annual death rate will be the death rate of the model, d = 0.01643. The

recovery rate can be defined as the inverse of the average duration of time the population

is ill [126]. The true duration of illness is unknown. The dataset contains the following

variables: date of onset, and date of diagnosis. The date of onset is an estimate that

doctors make based on an consultation with the patient. Table 5.3 below shows descriptive

statistics on the dataset for the duration of illness.

Duration Of
Illness (Days)

Mean 107
Median 62.5
Mode 31
Min 1
Max 2793
Skewness 7.13

Table 5.3: Duration of Illness Statistics
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Due to the skewness of the data, the median will be used to estimate the expected

duration of illness. Hence r = 1
62.5 = 0.016.

5.4.4 Fast Progression, Initial Infected/Exposed/Susceptible Popula-
tion

Approximately 5% of individuals will become actively infectious in the months directly

after coming into contact with another infectious case [92]. This study assumes the same

proportion for Ireland, hence the fast progression rate will take the value q = 0.05.

The initial infected population was calculated from the dataset and will be the number

of notified cases for the month of January 2002, as this is the beginning of the study. The

initial value I(0) = 34 will be used.

The number of initial exposed or latent individuals is assumed to be proportional to the

number of initially infected individuals. The WHO [104] cite that one in ten individuals

with latent TB will progress to be an active case. There is an absence of literature on latent

TB prevalence and incidence in Ireland and for most countries. Due to the latent phase

being asymptomatic, estimating prevalence can be a problem. The only Irish data avail-

able is outbreak data published by the HPSC [127] From 2004 to 2013 the total number

of outbreak cases that led to either an infectious case or a latent TB case are shown in the

table 5.4 below.
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Year Active TB Latent TB Ratio
2004 3 0 0.00
2005 8 0 0.00
2006 20 54 2.70
2007 73 160 2.19
2008 45 20 0.44
2009 28 53 1.89
2010 41 60 1.46
2011 42 15 0.36
2012 24 4 0.17
2013 42 174 4.14

Table 5.4: Annual Outbreak and Infection Type Data, 2004 through 2013

The above data is for outbreaks only. In reality the number of latent cases will likely

have a much larger ratio. The annual risk of infection identified by Yeh and colleagues

[128] was 0.4%. From the proportion of individuals who are not immune (1-0.846) we

can assume 0.4% of that population is latent, or 0.004×0.154 = 0.0000616 which results

in an estimated exposed population of 0.0000616×3,900,000 = 240. Hence E(0) = 240.

This results in an initial ratio of latent to active cases of 7.07.

We have established the initial conditions of four of the five required subgroups for the

system (equations 5.6-5.10) populations. By direct computation we can compute S(0) by

using the formula N(0) = S(0)+E(0)+ I(0)+R(0). This results in S(0) = 584,726.

5.5 Statistical Inference for Transmission Parameters

The transmission parameters, β (t) and k(t), are assumed to be periodic functions of time.

Within the exploratory data analysis chapter, the seasonality in TB data appeared to be

sinusoidal. Hence the transmission parameters will take the form

β (t) = β0(1+ sin(
2πt
12

)), (5.14)
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and

k(t) = k0(1+ sin(
2πt
12

)). (5.15)

To estimate parameters β0 and k0, two statistical inference methods will be implemented:

an approximate Bayesian computation and the Metropolis-Hasting algorithm. The method-

ology of each approach is detailed followed by application. Both methods are established

within epidemiological inference methods [129,130 ]. The approximately Bayesian Com-

putation does not assume a likelihood function, whereas the Metropolis-Hastings algo-

rithm does.

Approximate Bayesian Computation (ABC Method)

The ABC method was implemented to acquire suitable parameter estimates for β0 and k0.

The algorithm follows:

Denote infectious notification data D and modelled data M dependent on parameter

set θ ∈ RN .

1. Generate a parameter set θ from prior probability distributions p1(.), p2(.), ..., pN(.).

i.e. generate a sample for each parameter from some specified distribution.

2. Calculate M given parameter set θ . i.e. Simulate the model with the generated

parameter set.

3. Calculate discrepancy ρ(M,D).

This is repeated numerous times. The algorithm relies on a suitable function of ρ . The

function used for this study is the sum of squares difference

ρ(M,D) =
T

∑
i=0

(M(i)−D(i))2. (5.16)
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This algorithm is sometimes referred to as a Monte-Carlo parameter sweep. The param-

eter set resulting in the smallest value of ρ will be the selected parameter set to simulate

Irish TB. Given the criteria ascribed, this method can also be referred as the ordinary least

squares method of parameter estimation.

The work of Chavez and colleagues [75] highlights the equations of a slow and fast pro-

gression TB model. When discussion of the parameter k (k being a constant in the original

model) is brought up, Chavez states an acceptable assignment lies within the range 0.00256

to 0.00527. Using this information as an approximation, the probability distribution for k0

will take the form U(0.002,0.006). The probability distribution for β0 will take the form

U(0,1). The above algorithm was run 10,000 times. The resulting distribution can be seen

in the figures 5.2 and 5.3.

Figure 5.2: Log Transform Of The Sums of Squares Estimator For β0 (Beta0)
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Figure 5.3: Log Transform of The Sums of Squares Estimator for k0 (K0)

The values for β0 and k0 yielding the minimum sum of squares estimator were β0 =

0.0682, and k0 = 0.0055. Hence, by the ABC method, the rate at which infectious transmit

the disease to the susceptible is 6.82% and the progression rate of exposed to infectious is

0.55%.

5.5.1 Metropolis-Hasting Algorithm with Sample Based Error Vari-
ance

The Metropolis-Hastings algorithm is a Bayesian technique that implements a Monte-

Carlo Markov Chain (MCMC) method. The parameters in this case are considered to

be random variables, with associated densities that incorporate known information. An

MCMC process is a one that satisfies the property that random variable Xt depends only

on Xt−1 or P(Xt+1 = y|Xt = xt , ...,X0 = x0) = P(Xt+1 = y|Xt = xt). The goal of an MCMC

112



process is to draw samples from a probability distribution, without being able to calculate

its exact density. In this instance samples will be drawn for the parameters β0 and k0. The

implemented algorithm follows the work of Smith [131].

General Algorithm Outline and Intuition

Given parameter set θ ∈ RN , the Metropolis-Hastings algorithm takes current parameter

set, θ k−1, and proposes a new set1 θ ∗ = θ k−1 +U(.). The algorithm then takes

θ
k =

θ ∗ with probability α(θ ∗|θ k−1)

θ k−1 with probability (1−α(θ ∗|θ k−1)).

A note to be made is that α(θ ∗|θ k−1) is not a conditional probability, but the probability

of accepting θ ∗ given that it has been generated from the value θ k−1.

The calculation of α(θ ∗|θ k−1) is established, in part, by calculating the ratio of the

posterior distribution evaluated at θ ∗ with the posterior distribution evaluated at θ k−1, or

through calculating

r(θ ∗|θ k−1) =
π(θ ∗|D)

π(θ k−1|D)
,

where D denotes the observed data. The calculation of a posterior distribution, π(θ |D),

relies on establishing a likelihood function. To achieve this, the assumption is made that

the error measurements between the model and data are independent and identically dis-

tributed, and take value εi ∼ N(0,σ2). From this, a likelihood function is calculated.

Denote SSθ = ∑
n
i=1(Mi(θ)−Di)

2, where Mi and Di represent the model and data at time

i, respectively. The likelihood of the model takes the form

π(D|θ) = L(θ ,σ |D) =
1

(2πσ2)n/2 e−SSθ/2σ2

1The proposed new value does not have to take the exact form of θ ∗ as this study takes, the formal
assignment is θ ∗ ∼ J(θ ∗|θ k−1). An alternative assignment could possibly be θ ∗ ∼ N(θ k−1,V ).
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The ratio r(θ ∗|θ k−1) is calculated using bayes rule,

π(θ ∗|D)

π(θ k−1|D)
=

π(D|θ ∗)π0(θ
∗)

π(D|θ k−1)π0(θ k−1)
.

Where π0(θ) is the prior probability of θ . Assuming a uniform prior, π0(θ) becomes a

constant function. Hence, π0(θ
∗)

π0(θ k−1)
= 1, and the ratio simply reduces to being the ratio of

the likelihood distributions. From this we have

r(θ ∗|θ k−1) =
π(D|θ ∗)

π(D|θ k−1)
=

e−SSθ∗/2σ2

e−SS
θk−1/2σ2 = e−

(SS
θ∗−SS

θk−1 )

2σ2

The acceptance probability α(θ ∗|θ k−1) is defined as min(1,r).

The underlying intuition is that the likelihood function will be maximised when the sum

of squares estimator is minimised. If the proposed parameter set θ ∗ simulates a “better”

model than that of θ k−1, then the ratio π(D|θ∗)
π(D|θ k−1)

will be large (as the likelihood π(D|θ ∗)
is greater than π(D|θ k−1)) and the algorithm will have a high probability of accepting

θ ∗ for it’s next iteration. Similarly, if θ ∗ simulates a “worse” model then there is a low

probability of it being accepted by the algorithm.

Pseudo-Code for Algorithm

The algorithm is as follows

1. Set the number of algorithm iterations M and initialise parameters ns and σ2
s , and

the model parameter set θ 0.

2. Set SSθ 0 = ∑
n
i=1(Mi(θ

0)−Di)
2.

3. Compute initial variance estimate (Chi-square estimate): s2
0 =

SS
θ0

n−N , where N is the

number of parameters.

4. For j = 1, ...,M do

(a) Construct 1×N vector u where uw ∼U(.), for w = 1,2, ..,N.
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(b) Construct candidate parameter set θ ∗ = θ j−1 +u.

(c) Compute SSθ∗ = ∑
n
i=1(Mi(θ

∗)−Di)
2.

(d) Compute α(θ ∗|θ j−1) = min(1,e

SS
θ∗−SS

θ j−1
2s2

k−1 ).

(e) If U(0,1)< α

Set θ j = θ ∗, SSθ j = SSθ∗ .

else

Set θ j = θ j−1, SSθ j = SSθ j−1 .

(f) Update sk ∼ Inv-gamma(aval,bval), where

aval = 0.5(ns +n),bval = 0.5(nsσ
2
s +SSθ j).

The above algorithm considers σ2 as a random parameter by calculating and updating sk.

The likelihood function is given by

π(D,θ |σ2) =
1

(2πσ2)n/2 e
−SSθ

2σ2

With prior

π0(σ
2) ∝ (σ2)−(c+1)e−(d/σ2)

Which results in the posterior density

σ
2|(D,θ)∼ Inv−gamma

(ns +n
2

,
nsσ

2
s +SSθ

2

)
Where ns = 2c and σ2

s = c
d . The value ns typically takes values less than one and can be

interpreted as the number of observations that provided information encoded in the prior.

As this method is an MCMC process, post-hoc diagnostics will be carried out in order

to test convergence of the underlying process. The methodology used will follow that

constructed by Gelman and Rubin [197]. This methodology implements m> 1 chains, and
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convergence is diagnosed when sufficient burn-in time has elapsed and the output from all

chains is indistinguishable. The underlying theory bases itself in the assumption that if

two chains have converged, the mean of the variances of the individual chain should be

indistinguishable from the global variance; that is, the variance of the all chains combined.

The convergence diagnostic itself is given by the follow:

R =

√√√√√ ( 2V̂ 2

Var(V̂ )
+3)V̂

( 2V̂ 2

Var(V̂ )
+1)W

,

where V̂ = σ̂2 + B
mn , σ̂2 = (n−1)W

n + B
n , and W is the mean of the variance within each

chain, n is the number of iterations, and B
n is the between-chain variance.

While no strict criteria are given for R, the study states if the upper limit of the 95th

confidence interval on this estimate differs substantially from one, this indicates a lack of

convergence.

Results

The Metropolis-Hastings algorithm was run M = 10,000 times to calculate β0 and k0 with

initial parameter values β0 = 0.5 and k0 = 0.005. The parameters were set to these rela-

tively arbitrary values in this instance to illustrate the algorithm, however, the ABC method

is used in §6 to establish initial parameter values. The jump distribution for each param-

eter, denoted u j in the above algorithm, was presumed to be U(−0.05,0.05) for β0 and

U(−0.001,0.001) for k0. Smith notes, the values of ns and σs are subjectively specified.

The assumption of ns = 0.01 and σs = 0.01 was made.

Each iteration of the algorithm can be seen in figures 5.4 and 5.5, allowing a burn-in

time of 4,000 iterations we can see the posterior distribution of both parameters.
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Figure 5.4: Metropolis Hastings Algorithm and Posterior Distribution for β0 (B0) Given

10,000 Iterations and a Burn-in Time of 4,000 Iterations.
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Figure 5.5: Metropolis Hastings Algorithm and Posterior Distribution for k0 (K0) Given

10,000 Iterations and a Burn-in Time of 4,000 Iterations.

The statistics for each parameter are contained in table 5.5. The quantiles can be

viewed as credible intervals for the parameters.

Statistic β0 k0

Mean 0.06595569 0.005569941
Median 0.06552259 0.00557109
Standard Deviation 0.01130416 0.0003185046
Range 0.0829363 0.002421147
Skewness 0.3775253 -0.05297866
2.5% Quantile 0.04483685 0.004934423
97.5% Quantile 0.09067681 0.006204156

Table 5.5: Statistics for the Posterior Distributions of β0 and k0.

Post-Hoc Diagnostics
The Gelman and Rubin’s convergence diagnostic was calculated for m = 3 chains. The

results for the three chains are displayed in figure 5.6 and table 5.6
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Figure 5.6: Convergence Of Three Chains For β0 and k0.

Parameter Point Estimate Upper 95% CI
β0 1.01 1.01
k0 1.00 1.01

Table 5.6: Potential Scale Reduction Factors For Parameters β0 and k0.

The upper confidence interval for both estimates are close to one, indicating conver-

gence.

Both the ABC method and the Metropolis Hastings method gave output with very

similar parameter estimates. The percentage difference between estimates for β0 is ap-

proximately 3.3% and the percentage difference for k0 is approximately -1.1%. Looking

at both methods it appears that, given the range imposed on the parameters, there appears

to be only one set of values for the parameters β0 and k0 within which the model can sim-

ulate the data. The mean of the posterior distributions will be used to calculate the basic
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reproductive number and to simulate the model.

5.6 Calculation Of the Basic Reproductive Number and
Simulation

5.6.1 The Basic Reproductive Number

An average of the seasonal parameters was taken to calculate the basic reproductive num-

ber. The season parameters are β (t) = β0(1+ sin(2πt
12 )) and k(t) = k0(1+ sin(2πt

12 )). Each

of the functions have period 12 (due to §4 establishing seasonality of notifications as an

annual seasonality), and will have one local maximum and one local minimum for each

period. The selection of such functions is deliberate to match the sinusoidal data observed

in §4.3.3. For β (t), the functions has average value

β̄ =
1
T

∫ T

0
β0(1+ sin(

2πt
12

))

=
1
T

β0(πT −6cos(πT
6 )+6)

π

Since β (t) is periodic, evaluating the integral over one period (T = 12) will obtain the

average value.

β̄ =
1

12
β0(π12−6cos(π12

6 )+6)
π

(5.17)

=β0 (5.18)

Similarly denote k̄ the average value of k(t), it too will have average value k0 as it takes a

similar function to β (t).
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This implies the estimate for the basic reproductive number takes the form

R0 =
β̄w(k̄+qµ)

(µ +d + r)(µ + k̄)
=

β0w(k0 +qµ)

(µ +d + r)(µ + k0)
(5.19)

With all parameters estimated, the basic reproductive number can be calculated.

R0 =
(0.065955)(0.35)(0.0055699+(0.05)(0.00055))
(0.00055+0.01667+0.016)(0.00055+0.005542)

= 0.6385 (5.20)

Given the uncertainty on the transmission parameters generated from the Metropolis-

Hastings algorithm, the percentiles of R0 are given in table 5.7 below.

Percentile 0% 2.5% 5% 10% 90% 95% 97.5% 100%
R0 Value 0.29 0.436 0.469 0.505 0.768 0.819 0.863 0.96

Table 5.7: Uncertainty of R0 Given the Uncertainty of Parameters β0 and k0.

Due to the basic reproductive number value being less than one, it can be implied that

for the seasonal model an epidemic has not occurred over the time period. In addition,

due to the uncertainty surrounding the transmission parameters, the distribution of R0 for

the samples generated has maximum value 0.96. This implies with a degree of certainty,

for the entire population, the disease cannot sustain itself and will die off given the current

rates established.

Using the elements of the matrix (V−1) used to calculate R0, the calculation was made

using the Metropolis-Hastings parameters that individuals who are exposed will spend on

average 1
0.00055+0.00557 = 163 months being exposed. The same individuals will spend on

average 0.00556
(0.00055+0.01667+0.016)(0.00556+0.00055) = 27 months being infected. The individuals

who are infected tend to stay infected for approximately 1
0.00055+0.01667+0.016 = 30 months.
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5.6.2 Simulation

A simulation of the model with the given parameter set can be seen in figures 5.7 and 5.9,

and the residual distribution and statistics can be seen in figure 5.8 and table 5.8. Simula-

tion is conducted using the R package ”deSolve” [198 ]. This package was specified to use

a fourth order Runge-Kutta method [199] to simulate the underlying ODE system. Given

the uncertainty in the transmission parameters, and given the distribution generated for

each parameter using the Metropolis-Hastings algorithm, an upper and lower credibility

interval was established on the point estimate for infections. This was achieved through

simulating the set of generated parameters (after burn-in) and then extracting the 2.5th and

97.5th percentile of the resulting modelled infectious.

The resulting data from figures 5.7 and 5.9 indicate a downward trend in infectious and

exposed individuals, and an upward trend in susceptible and recovered individuals.
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Figure 5.7: Notification Data and the Seasonal Model Simulation. The Shaded Interval is

a 95% Credibility Region Given the Uncertainty of the Transmission Parameters.
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Figure 5.8: Histogram of Seasonal Model Residuals
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Statistic Mean
Standard

Dev.
0%

Quantile
25%

Quantile
50%

Quantile
75%

Quantile
100%

Quantile
Skew-
ness

Kurt-
osis

Seasonal
Model
Residuals

-0.5215 7.61 -15.05 -5.63 -1 3.57 31.35 0.855 1.619

Table 5.8: Statistics and Quantiles of Seasonal Model Residuals
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5.6.3 Model Extrapolation

To extrapolate the seasonal model is to presume no external factors or interventions will

occur within the population. Figure 5.10 illustrates an extrapolation of the model 10 years

into the future. The same methodology applies here as in the previous simulation section.

Figure 5.10: Annualized Seasonal Model Extrapolation 10 Years into the Future. The

Shaded Interval is a 95% Credibility Region Given the Uncertainty of the Transmission

Parameters.

Table 5.9 displays a comparison of annualized model values and data and table 5.10

displays the annualized extrapolated data along with uncertainty intervals.

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Model 441 452 455 454 450 444 437 429 421 413 405 397
Data 410 406 431 448 461 476 467 479 420 413 359 381
Error 7.6% 11.2% 5.5% 1.3% -2.5% -6.8% -6.5% -10.4% 0.3% 0.0% 12.7% 4.1%

Table 5.9: Annualized Seasonal Model Values Compared with Data.
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Year 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Extrapolated Model 389 381 373 365 358 350 343 336 329 322
Lower 95% CI 345 331 319 307 295 283 271 260 249 239
Upper 95% CI 413 407 402 396 391 386 380 375 370 366

Table 5.10: Annualized Seasonal Model Extrapolated 10 Years into the Future. The Upper

and Lower Credibility Intervals were Calculated given the Uncertainty of the Transmission

Parameters

Given a seasonal model, a decline is forecast to occur in the number of infections

over time. Notifications are expected to decline approximately 8 (95% CI -11 to -4) cases

annually for the next 10 years, accounting for an approximate -2.3% (95% CI -3.48% to

-0.97%) change annually.

5.7 Conclusion

This chapter examined and simulated a homogeneous seasonal tuberculosis ODE model.

The model was adapted to simulate Irish data, which was achieved by dividing the recruit-

ment parameter between the susceptible and recovered compartments. The limitations and

assumptions of the model were detailed, including the assumption of slow and fast pro-

gression to the infectious compartment. A theoretical qualitative analysis was conducted

on the model detailing the disease-free and endemic equilibrium states. The basic repro-

ductive number was calculated. Since it is not theoretically possible to calculate the basic

reproductive number with periodic parameters being used in the model, an average was

calculated of the periodic functions and that value was used to estimate the basic repro-

ductive number.

Parameters were estimated using a combination of assumptions, literature, data, and statis-

tical inference methods. A total of eight parameter estimates were required and the study

systematically proposed rational estimates. The recruitment rate, death rate, disease in-

duced death rate, and recovery rate were calculated using national vital statistics and the

national TB data set. The progression rate, the fast progression parameter were acquired
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from literature. The proportion of the recruitment rate entering into the susceptible com-

partment was assumed to be in line with national vaccination data. The remaining trans-

mission parameters were estimated using both an Approximate Bayesian Computation

method and the Metropolis Hastings algorithm. Both methods estimated similar parame-

ter values indicating one viable parameter set. The Recovered and Exposed compartments

had initial conditions that were derived under the assumption of national vaccination cov-

erage. The initially infected compartment was acquire from the national data set, and by

deduction, the Susceptible population was calculated.

The basic reproductive number was calculated using an averaging method and it was found

to be less than one for the given parameter set, implying an epidemic is not a current

threat. Simulation of the model was then carried out to observe the underlying dynamics

over time, and the model was extrapolated 10 years into the future and ultimately a 2.3%

annual decline was seen in notifications.

Strengths of this chapter include the construction of a viable epidemic model for Irish

data that considers seasonal variation. The advanced inference methods used gave con-

verged estimates on the transmission parameters. All parameters calculated set a bade for

future modelling within Ireland or countries with similar attributes. the weaknesses of this

chapter include the inability to theoretically derive an exact R0, although an approximate

value was obtained. The parameters estimated are done so with the best information pos-

sible, however, they are susceptible to error. This could potentially yield in inaccurate

model. The fitted values are also subject to the possible bias of the underlying data they

are fit.

The following chapter examines and simulates a model that divides the population into

two groups: the local and migrant population. Alterations will be made to the model and

a qualitative analysis conducted along with simulation.
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Chapter 6

A TB Model Considering Migration

6.1 Introduction

In this chapter an epidemiological model considering migrant and local populations is pre-

sented. Increases in foreign-born TB have been seen in multiple other European countries

(Appendix D) and deterministic models have previously been constructed, analysed, and

applied to such locations as Quebec [148], Nigeria [149], and Canada [150,151] to con-

sider the impact that an external population has on infection rates.

The migrant model discussed in §3 was found using a systematic search strategy in-

formed by an exploratory analysis conducted in §4. The model identified from the lit-

erature review will now be refined to accommodate an Irish population accurately. Two

separate models are derived: a model considering no interaction between the migrant and

local populations, and a model considering an interaction. Once both models are estab-

lished, a qualitative analysis is conducted. The basic reproductive number could not be

calculated due to the non-existence of a disease-free equilibrium. However, it is shown

that, given a minor alteration to each model, a basic reproductive number does exists.

The model parameters were estimated using data, literature, and assumptions. The trans-

mission parameters of each model are estimated using Approximate Bayesian Compu-
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tation and Metropolis-Hastings methods. These methods were developed in §5.5. Once

parameter sets are estimated for each model, a simulation was carried out and the residuals

between the model and data examined. Finally, the models were extrapolated 10 years into

the future and the resulting data from the forecasts detailed.

6.2 Model Formulation

The migrant model obtained from the literature review (§3.5.3) will now be refined. The

underlying dynamics follow SEIR compartments (Susceptible, Exposed/Latent, Infec-

tious, and Recovered). The extended version of the model is presented within which

recruitment (or immigration) for the migrant population does not just occur within the

susceptible compartment, but also the exposed and infectious compartments. The system

is represented by equations 6.1-6.10.

dSM

dt
=(1− v−w)π− β1SMIM

NN
−µSM (6.1)

dEM

dt
=vπ +

β1SMIM

NM
− (k1 +µ)EM (6.2)

dIM

dt
=wπ + k1EM− (r1 +µ +µIM)IM (6.3)

dRM

dt
=r1IM−µRM (6.4)

NM =SM +EM + IM +RM (6.5)
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and

dSL

dt
=Λ− β2SLIL

NL
− β ∗SLIM

NL
−µSL (6.6)

dEL

dt
=

β2SLIL

NL
+

β ∗SLIM

NL
− p

β ∗IMEL

NL
+q

β ∗IMRL

NL
− (k2 +µ)EL (6.7)

dIL

dt
=p

β ∗IMEL

NL
+ k2EL− (r2 +µ +µIL)IL (6.8)

dRL

dt
=r2IL−q

β ∗IMRL

NL
−µRL (6.9)

NL =SL +EL + IL +RL (6.10)

Where the compartment subscripts M and L denote the migrant and local population,

respectively, and where:

• SM(t) and SL(t) are the number of people at time t in the migrant and local popula-

tion susceptible to Tuberculosis, respectively.

• EM(t) and EL(t) are the number of people at time t in the migrant and local popula-

tion currently infected with latent Tuberculosis.

• IM(t) and IL(t) are the number of people at time t in the migrant and local population

actively infected and spreading the disease within the population

• RM(t) and RL(t) are the number of people at time t in the migrant and local popula-

tion who have recovered, are treated, or have immunity to the disease.

• π is the recruitment rate within the migrant population.

• v and w are the proportions of the recruitment rate being partitioned between the

exposed and infectious compartments, respectively.

• β1 and β2 are the transmission rates, the rate at which the susceptible population

transition into the the latent compartment, of the migrant and local populations

within their own respective compartments.
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• µ is the universal death rate

• µIM and µIL are the death rates due to infection of the migrant and local population,

respectively.

• k1 and k2 are the progression rates, the rate at which individuals progress from latent

to active TB, for the migrant and local populations within their respective systems.

• r1 and r2 are the recovery rates, the rate at which individuals recover or are treated

for tuberculosis, for the migrant and local population within their respective com-

partments.

• β ∗ is the transmission rate of the migrant population to the local population

• q is the dampening factor on the transmission rate affecting the local recovered pop-

ulation that becomes reinfected with latent tuberculosis due to the transmission from

the migrant infectious compartment.

• p is the dampening factor on the transmission rate effecting the local exposed pop-

ulation that transition to active tuberculosis due to the transmission of the migrant

population.

The model makes the following assumptions

• The recruitment of new individuals into the population occurs in the susceptible,

exposed, and infectious compartments for migrant populations. For the local popu-

lation all individuals get recruited into the susceptible compartment.

• The death rate is constant and independent of each compartment. The assumption is

made that the death rates between the local and migrant populations are equal.

• When the transmission of the disease occurs, it is proportional to the number of

infective individuals of the respective compartment. This is referred to as the mass

action principle [63].
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• There exists an interaction between the migrant infectious compartment and the sus-

ceptible, exposed, and recovered compartments of the local population. There is a

reactivation rate of the local recovered population due to the infectious migrant com-

partment and there is an additional progression term from exposed to infectious due

to the infectious migrant population.

• N(t)=N(t)+NM(t)= SL+EL+IL+RL+SM+EM+IM+RM is the total population

at time t. Its change can be expressed as dN
dt = π +Λ−µN(t)−µIM IM−µILIL.

6.2.1 Alternative Model Construction

In this section, two alternative models will be constructed. Similar to the previous model,

recruitment rate parameters will be altered. In the original model, recruitment (birth/mi-

gration) occurs in the susceptible compartment for the local population. This will be al-

tered to allow recruitment to occur within the recovered compartment. Within the foreign-

born or migrant population, it will be assumed recruitment can occur in either the suscepti-

ble, exposed, or recovered compartments (i.e. a foreign-born individual can migrate being

susceptible, exposed, or recovered). It will not be assumed a foreign-born individual who

is diagnosed with active TB can immigrant into the population.

No Interaction Between Local And Migrant Populations

A model will be considered in which there is no interaction between local and migrant

infectious compartments. This is achieved by setting β ∗ = 0 in equations 6.6 to 6.9. Due

to no interaction occurring, this essentially reduces systems 6.1-6.4 and 6.6-6.9 into two

independent SEIR models with both simulating for the local and migrant populations in-

dividually. The system for the migrant population can be seen in equations 6.11-6.15 and
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the for local population equations 6.16-6.20.

dSM

dt
=(1− v1− v2)π−

β1SMIM

NN
−µSM (6.11)

dEM

dt
=v1π +

β1SMIM

NM
− (k1 +µ)EM (6.12)

dIM

dt
=k1EM− (r1 +µ +µIM)IM (6.13)

dRM

dt
=v2π + r1IM−µRM (6.14)

NM =SM +EM + IM +RM (6.15)

where v1, and v2 represent the partitioning variables of the recruitment rate parameter

(replacing parameters v and w in equations 6.1-6.3), subject to v1 + v2 ≤ 1 and v1 ≥ 0,

v2 ≥ 0. The change in the local population takes the form

dSL

dt
=w1Λ− β2SLIL

NL
−µSL (6.16)

dEL

dt
=

β2SLIL

NL
− (k2 +µ)EL (6.17)

dIL

dt
=k2EL− (r2 +µ +µIL)IL (6.18)

dRL

dt
=(1−w1)Λ+ r2IL−µRL (6.19)

NL =SL +EL + IL +RL (6.20)

The system of equations 6.11-6.20 will be referred to as the “migrant model with no inter-

action”. The reason for excluding interaction arises from a systematic review by Sandgren

and colleagues which concluded “TB in a foreign-born population does not have a signif-

icant influence on TB in the native population in EU/EEA” [94]

Interaction Between Local And Migrant Populations

The original model (equations 6.1-6.10) only investigates a one-way interaction between

the migrant infectious compartment and the local susceptible, exposed, and recovered
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compartments. The authors of the original model go on to discuss the possibility of a two-

way interaction model. As such, a model to examine a two-way interaction between the

migrant and local populations was developed. The original model was refined to consider

this. In the refined model, interaction is assumed to occur between the local infectious

compartment and the migrant susceptible and exposed compartments and an interaction

is also assumed to occur between the migrant infectious compartment and local suscepti-

ble and exposed compartments. The interaction between infectious and recovered will be

omitted, as when estimating the model parameters, the assumption is made that recovered

individuals have achieved immunity and thus cannot be affected by infectious individuals.

The refined system can be seen in equations 6.21 - 6.30.

dSM

dt
=(1− v1− v2)π−

β1SMIM

NN
−

β ∗2 SMIL

NM
−µSM (6.21)

dEM

dt
=v1π +

β1SMIM

NM
+

β ∗2 SMIL

NM
− p2

β ∗2 ILEM

NM
− (k1 +µ)EM (6.22)

dIM

dt
=p2

β ∗2 ILEM

NM
+ k1EM− (r1 +µ +µIM)IM (6.23)

dRM

dt
=v2π + r1IM−µRM (6.24)

NM =SM +EM + IM +RM (6.25)

and

dSL

dt
=w1Λ− β2SLIL

NL
−

β ∗1 SLIM

NL
−µSL (6.26)

dEL

dt
=

β2SLIL

NL
+

β ∗1 SLIM

NL
− p1

β ∗1 IMEL

NL
+−(k2 +µ)EL (6.27)

dIL

dt
=p1

β ∗1 IMEL

NL
+ k2EL− (r2 +µ +µIL)IL (6.28)

dRL

dt
=(1−w1)Λ+ r2IL−µRL (6.29)

NL =SL +EL + IL +RL (6.30)
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Where the subscripts M and L denote the migrant and local populations, respectively. A

schematic of the new system can be visualised in figure 6.1 below.

Figure 6.1: A Schematic of the Migrant Model With Interaction Occurring Between both

Migrant and Local Populations

The above model (equations 6.21-6.30) will henceforth be referred to as the “migrant

model with interaction”. For both models (migrant models with and without interaction),

the definition of the migrant population is as follows: the top 20 foreign-born populations

that contributed to TB in Ireland from 2002 to 2013. These countries will be referred to

as the migrant population henceforth. The top 20 countries account for approximately

80.3% of all foreign-born notifications and have accounted for 32.3% of national notifica-

tions. The local population for both models is defined as the complement of the migrant

population.
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6.3 Qualitative Analysis

For both models (equations 6.11-6.20, 6.21-6.30) a disease-free equilibrium cannot be cal-

culated. A corollary of this is that the basic reproductive number also cannot be calculated

as it is dependent on a disease-free equilibrium [77]. The disease-free equilibrium cannot

be calculated in either system because of the recruitment parameter within the exposed

compartment for the migrant population is present in both models. For the model with no

interaction, equation 6.12 has a positive recruitment rate v1π . Similarly, within the migrant

model with interaction equation 6.22 has an identical positive recruitment rate parameter.

This is an example of when an attempt to make a model empirically accurate contributes

to the complexity of analysing the model.

A disease-free equilibrium does not exist because if the number of exposed and infectious

individuals is set to zero, equations 6.12 and 6.22 reduce to

dEM

dt
= v1π

As parameters v1 > 0 and π > 0, the above equation implies the change in the exposed

compartment is always positive, and hence, can never transition into disease-free state.

One of two assumptions must be made to calculate the disease-free equilibrium in both

models: either v1 = 0 in equations 6.12 and 6.22, or π = 0 for both systems. In an at-

tempt at calculating a reproductive number for the systems, the study will assume v1 = 0

as this essentially assumes a model with no recruitment of exposed individuals into the

migrant population. Assuming π = 0 results in no migration occurring within the migrant

population which is a more empirically inaccurate assumption.
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6.3.1 Basic Reproductive Number For Migrant Model With No In-
teraction.

With the assumption of v1 = 0, the disease-free equilibrium can be acquired by setting

EM(t) = 0, EL(t) = 0, IM(t) = 0, and IL(t) = 0. Denote

D0 = (SMDF0,EMDF0, IMDF0,RMDF0,SLDF0,ELDF0, ILDF0 ,RLDF0)

the solution set to the disease-free equilibrium, solving system 6.11-6.15 in the above

manner results in

D0 = (
(1− v2)π

µ
,0,0,

v2π

µ
,
w1Λ

µ
,0,0,

Λ(1−w1)

µ
).

Given the disease-free equilibrium, the basic reproductive number can now be calcu-

lated through the next generation method [133], as described in §5.3.2.

The matrices F and V are calculated to be:

F =


0 β1(1− v2) 0 0
0 0 0 0
0 0 0 β2w1

0 0 0 0

 ,

and

V =


k1 +µ 0 0 0
−k1 r1 +µ +µIM 0 0

0 0 k2 +µ 0
0 0 −k2 r2 +µ +µIL

 .

The basic reproductive number is achieved through the calculation ρ(FV−1), where the

function ρ is the spectral radius (largest eigenvalue) of the matrix. Letting λi be the roots

of the characteristic equation, the eigenvalues of FV−1 for the migrant model without

139



interaction follow.

λ1 = 0,λ2 = 0,λ3 =
β2k2w1

(k2 +µ)(r2 +µ +µIL)
,λ4 =

β1k1(1− v2)

(k1 +µ)(r1 +µ +µIM)
. (6.31)

As the model does not have any interaction, λ3 can be seen as the basic reproductive num-

ber for the local population as it is independent of parameters used to model the migrant

population. Hence denote R(0)L = λ3. Similarly λ4 can be seen as the basic reproductive

number for the migrant population. Hence denote R(0)M = λ4. The basic reproductive

number for the model as a whole is

R0 = max(R(0)M,R(0)L). (6.32)

This is the largest eigenvalue of the entire model. Similar to §5, the matrix V−1 has it’s

own interpretation, the elements being the expected time an individual spends in each state.

The matrix V−1 is given as:

V−1 =


1

k1+µ
0 0 0

k1
(k1+µ)(r1+µ+µIM )

1
r1+µ+µIM

0 0

0 0 1
k2+µ

0
0 0 k2

(k2+µ)(r2+µ+µIL)
1

r2+µ+µIL

 .

Hence, the the migrant population are expected to remain exposed and infectious for
1

k1+µ
and 1

r1+µ+µIM
units off time. Individuals who are exposed are expected to be infec-

tious for k1
(k1+µ)(r1+µ+µIM ) units of time. The same applies to the local population, they are

expected to remain exposed and infectious for 1
k2+µ

and 1
r2+µ+µIL

units off time. Individ-

uals who are exposed are expected to be infectious for k2
(k2+µ)(r2+µ+µIL)

units of time.

The basic reproductive number for the model with interaction will now be calculated.
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6.3.2 Basic Reproductive Number For Migrant Model With Interac-
tion.

The disease-free equilibrium for the model with interaction was calculated to be the same

as the model without interaction.

D0 = (
(1− v2)π

µ
,0,0,

v2π

µ
,
w1Λ

µ
,0,0,

Λ(1−w1)

µ
).

The underlying calculation of R0 differs as the calculation of matrix F changes slightly

due to the inclusion of the interaction variables within the model. The matrices F and V

were calculated to be

F =


0 β1(1− v2) 0 β ∗2 (1− v2)

0 0 0 0
0 β ∗1 w1 0 β2w1

0 0 0 0

 ,

and

V =


k1 +µ 0 0 0
−k1 r1 +µ +µIM 0 0

0 0 k2 +µ 0
0 0 −k2 r2 +µ +µIL

 .

The calculation of the basic reproductive number results in a long algebraic expression

in this instance. In order to overcome this, denotations will be made. Keeping similar

notation for the model without interaction (equations 6.31) let λ3 =
β2k2w1

(k2+µ)(r2+µ+µIL)
(pre-

viously considered the basic reproductive number for the local population in the model

without interaction) and let λ4 =
β1k1(1−v2)

(k1+µ)(r1+µ+µIM ) (previously considered the basic repro-

ductive number for the migrant population in the model without interaction). In addition,

denote λ ′3 =
β ∗2 k2(1−v2)

(k2+µ)(r2+µ+µIL)
and λ ′4 =

β ∗1 k1w1
(k1+µ)(r1+µ+µIM ) . Letting λ̂i be the roots of the

characteristic equation, the eigenvalues of FV−1 for the migrant model with interaction

follow.
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λ̂1 =0,

λ̂2 =0,

λ̂3 =
λ3 +λ4 +

√
(λ3−λ4)2 +4λ ′3λ ′4

2
,

λ̂4 =
λ3 +λ4−

√
(λ3−λ4)2 +4λ ′3λ ′4

2
.

Hence the basic reproductive number of the system is given by

R0 = max(λ̂3, λ̂4)

As the matrix V is identical to the model with no interaction, the matrix V−1 will have

same elements and, hence, can be interpreted the same.

Remark

For the above eigenvalues (λ̂3, λ̂4), if it is assumed that there was no interaction between

local and migrant populations, in the model this would translate to β ∗2 = β ∗1 = 0 within the

equations 6.21-6.30. This results in both λ ′3 = 0, and λ ′4 = 0. In this case,

λ̂3 =
λ3 +λ4 +

√
(λ3−λ4)2

2
λ̂3 = λ3

Likewise,

λ̂4 =
λ3 +λ4−

√
(λ3−λ4)2

2
λ̂4 = λ4.
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Hence, when the interaction terms are set to zero, the systems basic reproductive number

reduces to the basic reproductive number of the model when no interaction is considered.

In addition, if similar rates are observed between the migrant and local populations, namely

if β1 = β ∗1 and β2 = β ∗2 holds for the transmission rates and similar recruitment rates are

observed w1 = 1− v2, then this results in λ3 = λ ′3 and λ4 = λ ′4. Which brings about

λ̂3 =
λ3 +λ4 +

√
(λ3−λ4)2 +4λ3λ4

2

=
λ3 +λ4 +

√
(λ3 +λ4)2

2

=
λ3 +λ4 +(λ3 +λ4)

2
=λ3 +λ4,

and by a similar calculation, λ̂4 = 0. The sum of the basic reproductive number for each

sub-population can be interpreted as the basic reproductive for the entire population. This

result is dependent on (i) the assignments of the parameter and (ii) an interaction is occur-

ring between the two sub-populations.

6.4 Parameter Estimation

A total of 14 parameters required estimation for the model without interaction, and a

total of 18 parameters required estimation for the model with interaction. Both mod-

els will share common parameter estimates. The parameter estimates that vary between

each model are β1,β2,β
∗
1 ,β

∗
2 ,k1,k2; these parameters will be referred to as the trans-

mission parameters. The remaining parameters: v1,v2,π,Λ,w1,µ,µIM , µIL ,r1,r2, p1, p2

will remain constant regardless of the type of migrant model. Similarly the initial con-

ditions: SM(0),EM(0), IM(0) ,RM(0),SL(0),EL(0), IL(0), and RL(0), shall not change be-

tween models.
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The following parameters were calculated from data acquired from the Central Statis-

tics Office [96]: π , the recruitment rate for the migrant population; Λ, the recruitment

rate for the local population; and µ , the population death rate. The parameters: µIM ; the

death rate due to TB of the migrant population, µIL ; the death rate due to TB of the local

population, r1; the recovery or removal rate for the migrant population, r2; the recovery

or removal rate for the local population, were calculated using the dataset acquired and

used in §3. The model’s initial conditions were estimated using the initial conditions es-

tablished in §5.4.4 along with additional assumptions. The proportional parameters: v1,

v2, w1, p1 and p2 were estimated using a combination of literature and assumptions. The

remaining transmission parameters : β1,β2,β
∗
1 ,β

∗
2 ,k1, and k2, shall be estimated by way

of statistical inference.

6.4.1 Recruitment, Death, and Recovery Rate Parameters

Recruitment Rates

The recruitment rate for the migrant population will be the net migration rate for the

foreign-born population. The recruitment rate for the local population will be the recruit-

ment rate established in §5 minus the recruitment rate for the migrant population. Census

data for the stock total of the migrant population are illustrated in figure 6.2.
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Figure 6.2: Total Migrant (Top 20 Contributors to TB) Population in Ireland.

Data available for 2002, 2006, and 2011 with a linear regression fit for 2002

to 2013.

As Ireland does not record census data annually, interpolation and extrapolation of the

population data was done using a linear trend. Data were only available for the years

2002, 2006, and 2011, all other years from 2002 to 2013 have been calculated with the

linear trend. Within the resulting regression, the average annual change in migrants was

29,966 individuals per year. This converts to an average monthly change of π = 29,966
12 =

2,497 individuals. By deduction the recruitment rate parameter for the local population is

Λ = 7,267−2,497 = 4,770.
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Death Rate Parameter

The universal death rate will be the death rate established in §5, µ = 0.00055. The

death rates caused through TB are calculated from table 6.1 constructed using the national

dataset.

TB Cause Of Death
Migrant (M)
Local (L)

Yes
(M)

Total
(M)

Yes
Proportion

(M)

Yes
(L)

Total
(L)

Yes
Proportion

(L)
2002 0 99 0.0000 0 271 0.0000
2003 0 57 0.0000 5 299 0.0167
2004 0 90 0.0000 5 297 0.0168
2005 0 105 0.0000 10 296 0.0338
2006 4 117 0.0342 6 293 0.0205
2007 0 142 0.0000 7 283 0.0247
2008 2 164 0.0122 7 264 0.0265
2009 1 157 0.0064 9 270 0.0333
2010 0 138 0.0000 8 246 0.0325
2011 0 162 0.0000 10 214 0.0467
2012 2 124 0.0161 1 196 0.0051
2013 5 140 0.0357 2 205 0.0098
Average 1 125 0.0087 6 261 0.0222

Table 6.1: Count and Proportion of Individuals who had Yes/No Filled Out On Their

Notification Form When Assessed Whether They Had Died Due To TB.

The death rate parameter for the migrant and local population will be the average rate

from 2002 to 2013, hence uIM = 0.00872 and uIL = 0.02221.

Recovery-Rate Parameters

The recovery-rate parameters were calculated from table 6.2 constructed from the national

dataset. The recovery rate can be estimated as the inverse of the average recovery time.
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Statistic Local Migrant
Mean 114 102
Median 66 59
Mode 31 31
Main 1 1
Max 2650 2422
Skewness 18.63 6.76

Table 6.2: Statistics On Recovery Time For The Local And Migrant Populations

Due to the large skewness in these data, the median will be used as an estimate for

recovery time. Hence, r1 =
1

59 = 0.01695 and r2 =
1

66 = 0.01515.

6.4.2 Initial Conditions

Migrant Population

The initial conditions established in the previous chapter were as follows

S(0) = 1,382,374,E(0) = 240, I(0) = 34,R(0) = 2,535,000

The proportion of the total population made up by the migrant population was approxi-

mately 7.4% in 2002. A naive initial assumption is to assume the 7.4% distributes uni-

formly among the above compartments. This results in the following initial conditions

SM(0) = 102,296,EM(0) = 18, IM(0) = 3,RM(0) = 187,590

Given this calculation, the condition SM(0)+EM(0)+IM(0)+RM(0)=NM(0) is held. The

initial infected population was acquired from the dataset and calculated to be IM(0) = 7.

For the year 2002, active TB cases within the total population were 3.14 times that of

the migrant population. Using this multiple as an estimate for the exposed compartment

we have 18× 3.14 = 57. To support this estimate, the actual number of infectives in the

year 2002 was 99 for the migrant population. The ratio of infectives to exposed found in

chapter 5 was found to be 7.07. Applying that ratio to the number of infective migrants
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results in an annual total exposed population of 7.07∗99 = 700, converting this value into

a monthly value results in 700/12 = 58. Because of these two estimates being very similar

the initial Exposed will be E(0) = 58.

Very little data are available of the vaccination rate on foreign-born individuals. In an

American study conducted in 2003 [152] approximately 25% of foreign-born individuals

reported having received the BCG vaccination. Within the previous chapter the BCG

vaccine was stated as being approximately 69% effective against TB. Hence the study

assumes 0.25×0.69 = 0.173 or 17.3% of foreign-born are immune to TB. This proportion

will be used to calculate the initial population estimate RM(0) and as a result SM(0). Out

of the foreign-born population it will be assumed 25% are vaccinated, which will result in

RM(0)= 0.173×NM(0)= 50,136. Using the condition SM(0)+EM(0)+IM(0)+RM(0)=

NM(0), the initial susceptible population was calculated to be SM(0) = 239,603.

Local Population

The local-population made up approximately 92.6% of the total population in 2002. Using

the initial conditions from §5.4.4, it would appear reasonable to assume the proportion of

individuals within each compartment for the seasonal model would be relatively represen-

tative for the proportion of individuals in each compartment for the local population. The

proportion of individuals in each compartment within the seasonal model are given below.

S(0) = 35.286%,E(0) = 0.0061%, I(0) = 0.0009%,R(0) = 64.707%

Given the local population was NL(0) = 92.6%×3,917,648= 3,627,742, multiplying the

proportions by the initial total local population will result in an estimate for each compart-

ment.

SL(0) = 1,280,078,EL(0) = 222, IL(0) = 27,RL(0) = 2,347,409
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6.4.3 The Proportion Parameters

The proportional parameters are parameters that divide other parameters into proportions.

Within the model the proportional parameters are: v1; the proportion of migrant indi-

viduals entering into the exposed compartment, v2; the proportion of migrant individuals

entering into the recovered compartment, w1; the proportion of local individuals entering

into the susceptible compartment, p1; the dampening factor on the transmission rate af-

fecting the local population infected by the migrant population, and p2; the dampening

factor on the transmission rate affecting the migrant population who were infected by the

local population.

Data examining the proportions v1 and v2 within the literature could not be found.

The proportion of individuals entering into the exposed compartment will be derived from

the initial condition proportions. The study assumes approximately 0.002% of the mi-

grant population are exposed initially and it will be assumed this rate can be applied to

the incoming migrant population. Hence, v1 = 0.00002. Likewise, the study assumes

approximately 17.3% of the migrant population are recovered initially, and will assume

this rate can be applied to the incoming migrant population. Hence, v2 = 0.173. For the

proportion of local individuals entering into the susceptible compartment, as the local pop-

ulation made up a 92.7% of the total population in 2002, it will be assumed the proportion

established in chapter 4 will act as a reliable estimate for the local population. The rate

established in chapter 4 was w1 = 0.35. For the dampening factors, the rates used for

numerical simulation in the original model [93] will be used, p1 = 0.80 and p2 = 0.80.

6.4.4 Transmission Parameters

As mentioned, the transmission parameters will vary between the two models being con-

sidered. Hence, two sets of estimations must be made. Statistical inference will be used to

estimate these parameters. The methods used will be the methods implemented in Chapter

5: The Approximate Bayesian Computation (ABC) method and the Metropolis-Hasting

algorithm.
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Model With No Interaction Considered

The parameters requiring estimation for this model are the transmission rates: β1,β2,k1,k2.

The ABC method will be implemented along with the metropolis-hasting algorithm.

ABC Method

The following assumptions will be made for the probability distribution of β1 and β2,

the transmission rate parameters from susceptible to exposed.

β1 ∼U(0,1),β2 ∼U(0,1)

In addition, following the work of Chavez and colleagues [75] the recommended assign-

ment of the progression transmission rates, k1 and k2, will lay within the range 0.00256

to 0.00527. Using this information as an approximation the probability distribution for k1

and k2 will take the form

k1 ∼U(0.002,0.006),k2 ∼U(0.002,0.006)

Samples using the above distributions were generated 10,000 times and the parameter set

that minimised the least squares estimator was selected as the parameter set for simulation.

The distribution of the transmission parameters with the least squares estimate can be seen

in figure 6.3.
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Figure 6.3: Leasts Squares Estimator for the Transmission Parameters of the Migrant Model

without Interaction.

The parameter estimates that minimised the least squares estimate were β1 = 0.0514155,β2 =

0.030651,k1 = 0.0048265, and k2 = 0.005630. These results show a rough agreement

occurring between the transmission parameters, although the transmission values for the
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local population appear to be slightly larger than the migrant population. This could pos-

sibly be due to the number of susceptible within each population. A sensitivity analysis

is completed on these parameters in §7. The Metropolis-Hastings algorithm will now be

implemented on the same transmission parameters.

The Metropolis-Hastings Algorithm

As the number of dimensions increases within the parameter set, the error (least squares

estimator) becomes increasingly sensitive to changes in the parameter set. As such, as all

parameters are changing at once within the Metropolis-Hastings algorithm, in order for the

model to accept new parameter values one must decrease the standard deviation or range

of the jump distributions. This result in smaller changes being made to the parameter set

at each iteration. Due to smaller changes being made, more iterations of the algorithm

may be required in order for the parameters to converge. The initial parameter estimate is

also important as the less the parameters have to “travel” to find convergence the quicker

convergence will occur. Because of this, the estimates acquired from the ABC method in

§6.4.4 will be used as initial estimates.

The Metropolis-Hastings algorithm was run with M = 10,000 iterations to calculate

the posterior distributions of β1,β2,k1, and k2. The algorithm used initial parameter values

β1 = 0.0514155,β2 = 0.030651,k1 = 0.0048265, and k2 = 0.005630. The distribution of

the jump that each parameter experienced came from a uniform distribution. The range

of each jump distribution varied from parameter to parameter. Each range was selected

based on whether or not the proposed parameter set was being accepted an adequate num-

ber of times, having a large range for any given parameters jump distribution results in

very few proposed parameters being accepted by the algorithm. The jump distribution

was set as a U(−0.05,0.05) for β1, U(−0.005,0.005) for k2, U(−0.01,0.01) for β2, and

U(−0.001,0.001) for k2. Figures 6.4 and 6.5 illustrate each iteration of the algorithm and

the posterior distribution of the parameters after a burn-in of 2,500 iterations. Descriptive

statistics are given for the posterior distributions in table 6.3.
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Figure 6.4: Metropolis-Hastings Algorithm Applied to the Transmission Parameters of the Migrant

Population. Left: Each Iteration of the Algorithm, Right: The Posterior Distribution after 2,500

Iterations
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Figure 6.5: Metropolis-Hastings Algorithm Applied to the Transmission Parameters of the Local

Population. Left: Each Iteration of the Algorithm, Right: The Posterior Distribution after 2,500

Iterations
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Statistic β1 β2 k1 k2

Mean 0.04913334 0.02644336 0.004893855 0.005715805
Median 0.04813421 0.02578991 0.004894933 0.005718408
Standard Deviation 0.01146589 0.01094568 0.0004969504 0.0002737901
Range 0.07536945 0.06562568 0.003166518 0.001931821
Skewness 0.4068527 0.2615066 0.2540014 0.04646015
2.5% Quantile 0.02802169 0.006613588 0.003970225 0.005203268
97.5% Quantile 0.07579892 0.04939109 0.005903113 0.006263031

Table 6.3: Descriptive Statistics On Transmission Parameter Distribution For the

Metropolis-Hasting Algorithm on the Model with No Interaction.

The results of the Metropolis-Hastings methods are approximately the same as the

ABC method, this is due to the choice of initial parameter values set for the algorithm.

The transmission parameters within the migrant population have a similar posterior mean

to that of the local population. The standard deviation and range of the transmission param-

eters for the migrant population were smaller than that of the local population, indicating

a greater uncertainty for the transmission parameters on the local population than that of

the migrant population.

Post-Hoc Diagnostics
The Gelman and Rubin’s convergence diagnostic was calculated for m = 3 chains. The

results for the three chains are displayed in figure 6.6 and table 6.4.
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Figure 6.6: Convergence Of Three Chains For β1, β2, k1, and k2.
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Parameter Point Estimate Upper 95% CI
β1 1.02 1.02
k1 1.01 1.02
β2 1.01 1.03
k2 1.01 1.02

Table 6.4: Potential Scale Reduction Factors For Parameters β1, β2, k1, and k2.

The upper confidence interval for the four parameter estimates are close to one, indi-

cating convergence.

What follows is the approximation of the parameters for the model considering inter-

action between the migrant and local populations.

Model With Interaction Considered

The model with interaction has additional transmission parameters β ∗1 (the effect of the

migrant infectious on the local susceptible and exposed) and β ∗2 (the effect of the local

infectious on the migrant susceptible and exposed). These additional transmission rates

are expected to influence the estimation of the other transmission parameters.

What follows is the estimation of these parameters using the ABC method and Metropolis-

Hastings Algorithm. Figure 6.7 illustrates the least squares estimator for varying transmis-

sion parameter values.
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Figure 6.7: ABC Implemented on the Transmission Parameters for a Model with Interac-

tion

The values that minimised the least square estimators were β1 = 0.02814503, β2 = 0.02520684,

k1 = 0.004931357 k2 = 0.005589813, β ∗1 = 0.006560251, and β ∗2 = 0.009016213. An agreement was

seen between the transmission parameter values for each population. However, a difference could

be seen between interaction parameters. The effects of the migrant infectious compartment on the

local compartments appeared to be greater than the local infectious on the migrant compartments.

The Metropolis-Hastings algorithm will now be implemented to find the posterior distribution of the

parameters. Figures 6.8 and 6.9 illustrate each iteration of the algorithm and the posterior distribution

of the parameters after a burn-in of 5,000 iterations. Descriptive statistics are given for the posterior

distributions in table 6.5.

158



Figure 6.8: Metropolis-Hastings Algorithm and Posterior Distribution for β1 (B1), k1 (k1),

and β ∗2 (Beta star2) given 10,000 Iterations and a Burn-in Time of 5,000 Iterations.
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Figure 6.9: Metropolis-Hastings Algorithm and Posterior Distribution for β2 (B2), k2 (k2),

and β ∗1 (Beta star1) given 10,000 Iterations and a Burn-in Time of 5,000 Iterations.
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Statistic β1 β2 k1 k2 β ∗2 β ∗1
Mean 0.0224 0.00464 0.02554 0.00559 0.00657 0.01279
Median 0.02248 0.00465 0.02565 0.00558 0.00658 0.01285
Standard Deviation 0.01356 0.00044 0.00278 0.00029 0.00029 0.0017
Range 0.06636 0.00259 0.00999 0.001 0.001 0.00814
Skewness 0.309 -0.18684 -0.11493 0.00704 -0.02297 -0.18363
2.5% Quantile 0 0.00368 0.02058 0.00512 0.00609 0.00963
97.5% Quantile 0.05027 0.00549 0.02998 0.00606 0.00704 0.01563

Table 6.5: Statistics for the Posterior Distribution of Transmission Variables.

The results in table 6.5 show contrasting dynamics occurring between the local and

migrant population when compared to that of the parameters generated from the ABC

method. The transmission rate for the migrant population is approximately the transmis-

sion rate β ∗2 . This implies the local infectious compartment roughly contributes to infec-

tions within the migrant population the same as the migrant infectious class does. If the

same was true for the local population, this would possibly indicate a homogeneity be-

tween the infectious compartments. However, the local population had a transmission rate

approximately 10 times that of β ∗1 . This is a contrasting result, suggesting the migrant

infectious compartment contributes little, if at all, to local infections. This result also con-

flicts with the results of the ABC parameters, as little contribution was seen from the local

infectious to the migrant population.

Relative to the mean, the standard deviation statistic (coefficient of variation) was largest

within the transmission parameters for the local population. This indicates a larger uncer-

tainty of the transmission parameter values within the local population.

Post-Hoc Diagnostics
The Gelman and Rubin’s convergence diagnostic was calculated for m = 3 chains. The

results for the three chains are displayed in figure 6.10 and table 6.6.
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Figure 6.10: Convergence Of Three Chains For β1, β2, k1, k2, β ∗1 , and β ∗2 .
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Parameter Point Estimate Upper 95% CI
β1 1.03 1.08
k1 1.04 1.13
β2 1 1
k2 1 1
β ∗1 1 1
β ∗2 1.01 1.02

Table 6.6: Potential Scale Reduction Factors For Parameters β1, β2, k1, k2, β ∗1 , and β ∗2 ..

The upper confidence interval for the four parameter estimates are close to one, indi-

cating convergence.

The following section simulates the models and calculate the basic reproductive num-

ber for each model, along with calculating residual statistics for each model.

6.5 Simulation And Calculation Of The Basic Reproduc-
tive Numbers

As two distinct parameter sets were generated for the models with and without interaction,

the basic reproductive number and simulations will differ depending on what parameter

set is used. Both parameter sets will be used which will result in two basic reproductive

numbers and two simulations being calculated for both models.

6.5.1 Basic Reproductive Number

The condition for which the basic reproductive numbers were calculated for the migrant

model with and without interaction such that the migrant population did not recruit indi-

viduals into the exposed class. This assumption translates to v1 = 0 within both models.
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As it was calculated that v1 = 0.00002, this can be seen as a value quite close to zero. It

was also calculated π = 2,497, as v1×π = 0.05 it appears that the recruitment rate as a

whole within the exposed compartment is small for each time step the system is iterated.

As such the basic reproductive number calculated in section 6.3 should serve as reasonable

estimates for the system.

The basic reproductive numbers derived in section 6.3.1 follow

Model With No Interaction

The basic reproductive number for the entire system and for the local and migrant popula-

tions is given below

R0 = max(R(0)M,R(0)L),

where

R(0)L =
β2k2w1

(k2 +µ)(r2 +µ +µIL)
, R(0)M =

β1k1(1− v1)

(k1 +µ)(r1 +µ +µIM)
.

The calculation of R0, R(0)L, and R(0)M for both parameter estimation methods are in table

6.7.

Estimate ABC
Metropolis-Hastings
(Distribution Mean)

Estimate ABC
Metropolis-Hastings
(Distribution Mean)

β1 0.05141 0.04913 R0 1.7636 1.6877
β2 0.03065 0.0264 R(0)L 0.2578 0.2227
k1 0.00482 0.0049 R(0)M 1.7636 1.6877
k2 0.00563 0.00571

Table 6.7: Transmission Parameter Estimates and Basic Reproductive Numbers for the

Non-Interactive Model

For the model without interaction R0 was estimated to be greater than one for both

parameter estimation methods. It was observed R(0)L < 1 implying if there is no inter-
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action between migrant and local populations, then the local population is not at risk of

an outbreak. It was also observed R(0)M > 1, which implies an outbreak within the mi-

grant population. The R0 for population as a whole (migrant and local populations) was

calculated as being the maximum between the basic reproductive number for the local

population and the basic reproductive number for the migrant population. As the basic re-

productive number was greater than one for the migrant population, the entire population

has R0 > 1. Due to the uncertainty of the transmission parameters, the percentiles of R(0)L

and R(0)M follow in table 6.8.

Percentile 0% 2.5% 5% 10% 90% 95% 97.5% 100%
R(0)L Value 0.0000 0.035302 0.0566 0.0880 0.318 0.3534 0.391 0.521
R(0)M Value 0.704 1.0396 1.0707 1.1358 2.1697 2.477 2.652 3.274

Table 6.8: Uncertainty of R(0)L and R(0)M given the Uncertainty of the Transmission Pa-

rameters.

The percentile values given in table 6.8 suggest that if no interaction is occurring be-

tween migrant and local populations, the local populations is almost surely not at risk of an

outbreak. By comparison the migrant population is likely undergoing an epidemic, since

98.38% of all parameter sets generated resulted in the basic reproductive number being

greater than one.

Using the elements of the matrix (V−1) used to calculate R0, the calculation was made

using the Metropolis-Hastings parameters that the migrant population are expected to re-

main exposed and infectious for 183 and 38 months, respectfully. Individuals who are

exposed are expected to be infectious for 34 months.

The same applies to the local population, they are expected to remain exposed and in-

fectious for 161 and 26 months, respectfully. Individuals who are exposed are expected to

be infectious for 24 months.

The following section calculates the basic reproductive number for the model that con-

siders an interaction.
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Model With Interaction

The basic reproductive number for the system as a whole follows along with its various

components.

R0 = max(λ̂3, λ̂4),

where

λ̂3 =
λ3 +λ4 +

√
(λ3−λ4)2 +4λ ′3λ ′4

2
, λ̂4 =

λ3 +λ4−
√

(λ3−λ4)2 +4λ ′3λ ′4

2
.

λ3 =
β2k2w1

(k2 +µ)(r2 +µ +µIL)
λ4 =

β1k1(1− v1)

(k1 +µ)(r1 +µ +µIM)

λ
′
3 =

β ∗2 k2(1− v2)

(k2 +µ)(r2 +µ +µIL)
λ
′
4 =

β ∗1 k1w1

(k1 +µ)(r1 +µ +µIM)

The estimates for R0, λ̂3, λ̂4,λ3,λ4,λ
′
3, and λ ′4 follow in table 6.9 for both parameter esti-

mation methods.

Estimate
ABC
Method

Metropolis-Hastings
(Distribution Mean)

Estimate
ABC
Method

Metropolis-Hastings
(Distribution Mean)

β1 0.02814 0.01886 R0 0.697 0.5132
β2 0.0252 0.02548 λ̂3 0.697 0.5132
k1 0.00493 0.00447 λ̂4 0.1827 0.14411
k2 0.0055 0.0056 λ3 0.2118 0.2142
β ∗1 0.00656 0.0065532 λ4 0.6679 0.4431
β ∗2 0.00901 0.01354 λ ′3 0.179068 0.26895

λ ′4 0.07878 0.07791

Table 6.9: The Values of the Transmission Parameters, and Calculation of R0 for the Sys-

tem

The basic reproductive number was calculate to be less than one for both parameter

estimation methods, implying no epidemic will occur within the population. Due to the
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uncertainty of the transmission parameters, the percentiles of R0 are given in table 6.10.

Percentile 0% 2.5% 5% 10% 90% 95% 97.5% 100%
R0 Value 0.2406 0.280 0.2951 0.315 0.955 1.096 1.2496 1.5448

Table 6.10: Percentiles of R0 given the Transmission Parameter Values

Table 6.8 calculates R0 given the posterior distribution of the transmission parameters

obtained from the Metropolis-Hastings algorithm. For approximately 8.81% of transmis-

sion parameter sets generated after burn-in time, the basic reproductive number was greater

than one. This implies if the model with interaction is a feasible model, and the param-

eter sets and initial conditions are also feasible, then there exists a possibility there is an

outbreak occurring within the population as a whole.

Using the elements of the matrix (V−1) used to calculate R0, the calculation was made

using the Metropolis-Hastings parameters that the migrant population are expected to re-

main exposed and infectious for 198 and 38 months, respectfully. Individuals who are

exposed are expected to be infectious for 33 months.

The same applies to the local population, they are expected to remain exposed and in-

fectious for 162 and 26 months, respectfully. Individuals who are exposed are expected to

be infectious for 9 months.

6.5.2 Simulation

Simulation will now be carried on both models considering and not considering an inter-

action. The different transmission parameter sets are also simulated. Figure 6.11 simulates

each transmission parameter set for the model without interaction, and Figure 6.12 simu-

lates each transmission parameter set for the model with interaction.
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Figure 6.11: The Non-Interactive Migrant Model Simulation with the ABC Method Pa-

rameters and Metropolis-Hastings Parameters
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Figure 6.12: The Interactive Migrant Model Simulation with the ABC Method Parameters

and Metropolis-Hastings Parameters
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6.5.3 Various Model Residuals

Figure 6.13 and Table 6.11 display information on the residuals of both migrant models

for the ABC and Metropolis-Hastings methods.

Figure 6.13: Distribution Of Residuals For Each Model. Model Type Abbreviations:

ABC=Approximate Bayesian Computation, MH = Metropolis-Hastings, NO = No Inter-

action, INT = Interaction, MIG = Migrant, LOC = Local, TOT = Total Population
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Model Type
(Abreviated)

Mean
Stand.
Dev.

0%
Quantile

25%
Quantile

50%
Quantile

75%
Quantile

100%
Quantile

Skew. Kurt.

ABC NO MIG -0.173 3.689 -8.731 -2.881 -0.623 2.342 10.083 0.454 0.100
ABC NO LOC -0.120 5.916 -11.864 -4.173 -0.588 3.630 27.871 0.962 2.728
ABC NO TOT -0.293 7.997 -14.895 -6.263 -0.545 4.541 32.330 0.939 1.689
MH NO MIG -0.209 3.688 -8.805 -2.910 -0.646 2.277 10.062 0.447 0.110
MH NO LOC -0.175 5.915 -11.906 -4.320 -0.642 3.508 27.767 0.962 2.711
MH NO TOT -0.384 7.997 -14.977 -6.371 -0.626 4.429 32.223 0.940 1.688
ABC INT MIG -0.635 3.650 -9.382 -3.447 -0.954 1.861 9.489 0.441 0.107
ABC INT LOC -0.082 5.926 -11.975 -4.472 -0.772 3.573 27.783 0.963 2.669
ABC INT TOT -0.716 7.981 -14.994 -6.693 -1.002 3.912 31.710 0.942 1.675
MH INT MIG -0.453 3.651 -9.376 -3.140 -0.745 1.832 9.740 0.408 0.140
MH INT LOC -3.342 5.906 -14.716 -7.485 -4.369 0.373 23.715 0.876 2.303
MH INT TOT -3.795 7.923 -18.275 -9.796 -4.442 0.471 27.993 0.896 1.577

Table 6.11: Residual Statistics Of Each Model Fit. Model Type Abbreviations: ABC = Ap-

proximate Bayesian Computation, MH = Metropolis-Hastings, NO = No Interaction, INT =

Interaction, MIG = Migrant, LOC = Local, TOT = Total Population

Although the model residuals were roughly centred around zero (evident from the

mean and median values in table 6.11), each simulation appeared to slightly over estimate

notifications. This is evident by the consistent negative mean (and median) calculated for

the residuals. The worst performing simulation was the Metropolis-Hastings simulation

for the local population on the model considering an interaction (mean residual of -3.24).

For this simulation the value of β ∗1 = 0.0051, the interaction of the migrant population on

the local population, was approximately one fifth of the value estimated through the ABC

method. The value of β2 = 0.06, the transmission rate for the local population, was ap-

proximately double the value estimated through the ABC method. Due to the small size of

β ∗1 this is equivalent to considering no effect occurring between the migrant infectious on

the local population. However, there was a greater contribution of the local infectious pop-

ulation to the migrant population, which is a claim yet to be supported by literature. This

result taking with the inferior residual statistic leads to the conclusion that the Metropolis-

Hastings algorithm did not perform as well as the ABC method for the model considering
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an interaction.

The standard deviation of the residuals for the local population appeared to be consis-

tently larger than the migrant residuals. This indicates the data was more volatile relative

to the model for the local infectious than that of the migrant infectious. This may be re-

lated to the results of chapter 4 section 4.3, within which the average number of monthly

notifications were shown to significantly positively correlate to the standard deviation of

cases (e.g. if the last 10 years, the month April had a large average notifications, then

April would also likely be a month of large fluctuations in notifications). As the local

population has a larger count of infections, this may result in a large standard deviation

of notifications, and hence this would contribute to the standard deviation of the residual

statistic.

The models are now extrapolated forward, figures and data tables will present the

extrapolations.

6.5.4 Model Extrapolation

To extrapolate the migrant model is to presume no external factors or interventions will

occur within the population. The following (figures 6.14-6.15, tables 6.12-6.15) are annual

data extrapolated forward 10 years using both parameter sets generated.
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Figure 6.14: Migrant Model Extrapolation Not Considering Interaction for the ABC and

Metropolis-Hastings Parameters
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Figure 6.15: Migrant Model Extrapolation Considering Interaction for the ABC and

Metropolis-Hastings Parameters
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The extrapolated data for each compartment from the models follow in tables 6.12-

6.15.

No Interaction Migrant Model Population Estimates: ABC Parameters

Time
Susceptible

Migrant
Exposed
Migrant

Infectious
Migrant

Recovered
Migrant

Susceptible
Local

Exposed
Local

Infectious
Local

Recovered
Local

2002 244400 697 90 70976 548978 2590 337 3108944
2003 265933 703 101 77230 553922 2438 352 3136992
2004 287324 712 110 83444 558832 2297 353 3164855
2005 308575 725 117 89616 563711 2167 347 3192535
2006 329685 739 123 95749 568557 2045 336 3220032
2007 350657 755 127 101841 573372 1930 323 3247349
2008 371490 772 132 107893 578155 1822 308 3274485
2009 392186 790 136 113905 582907 1721 293 3301443
2010 412746 809 140 119878 587628 1626 278 3328223
2011 433170 828 144 125811 592318 1535 263 3354827
2012 453460 847 148 131706 596977 1450 249 3381256
2013 473616 867 151 137562 601605 1370 236 3407510
2014 493640 888 155 143379 606204 1294 223 3433592
2015 513531 909 159 149158 610772 1223 211 3459502
2016 533292 930 163 154899 615310 1155 199 3485241
2017 552922 951 167 160603 619818 1091 188 3510811
2018 572424 973 171 166269 624297 1031 178 3536212
2019 591796 996 175 171898 628747 974 168 3561447
2020 611042 1019 179 177490 633167 920 159 3586515
2021 630160 1042 183 183045 637558 869 150 3611418
2022 649153 1065 187 188564 641921 821 142 3636157
2023 668020 1089 191 194046 646254 775 134 3660733

Table 6.12: Non-Interactive Migrant Model Population Estimates With ABC Parameters. Note:
Susceptible and Recovered Populations Are Year End Estimates, Exposed and Infectious Popu-

lations are Year Total Estimates.
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No Interaction Migrant Model Population Estimates: Metropolis-Hastings Parameters

Time
Suscept.
Migrant

Exposed
Migrant

Infectious
Migrant

Recov.
Migrant

Suscept.
Local

Exposed
Local

Infectious
Local

Recov.
Local

2002 244399 698 90 (88,93) 70976 548978 2589 337 (333,342) 3108944
2003 265933 705 101 (97,108) 77230 553922 2433 353 (343,365) 3136992
2004 287324 717 110 (104,119) 83444 558833 2290 355 (343,369) 3164855
2005 308574 731 117 (109,126) 89616 563711 2156 349 (336,363) 3192535
2006 329685 747 122 (115,132) 95749 568558 2032 338 (325,350) 3220032
2007 350656 765 128 (120,136) 101841 573373 1915 324 (313,334) 3247349
2008 371489 784 132 (124,140) 107893 578156 1806 309 (298,318) 3274485
2009 392185 804 137 (128,144) 113905 582908 1703 293 (282,302) 3301443
2010 412744 824 141 (131,148) 119878 587629 1606 278 (265,287) 3328223
2011 433168 845 145 (133,153) 125811 592319 1515 263 (248,274) 3354827
2012 453458 867 149 (134,158) 131706 596978 1429 249 (231,261) 3381256
2013 473614 890 153 (135,164) 137562 601607 1348 235 (215,249) 3407510
2014 493637 912 157 (136,170) 143379 606205 1272 222 (200,238) 3433592
2015 513529 936 161 (137,177) 149158 610774 1200 209 (186,227) 3459502
2016 533289 959 166 (137,184) 154900 615312 1132 197 (173,217) 3485241
2017 552919 984 170 (138,191) 160603 619820 1067 186 (161,207) 3510811
2018 572420 1008 174 (139,199) 166269 624299 1007 176 (150,197) 3536212
2019 591792 1034 179 (139,206) 171898 628749 950 166 (140,188) 3561447
2020 611037 1059 183 (139,214) 177490 633169 896 156 (130,180) 3586515
2021 630155 1086 188 (140,222) 183046 637560 845 148 (120,172) 3611418
2022 649147 1112 193 (140,231) 188564 641923 797 139 (112,164) 3636157
2023 668014 1140 198 (141,240) 194047 646257 752 131 (104,157) 3660733

Table 6.13: Non-Interactive Migrant Model Population Estimates With Metropolis-Hastings Pa-

rameters. Note: Susceptible and Recovered Populations Are Year End Estimates, Exposed and

Infectious Populations are Year Total Estimates.
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Migrant Interactive Model Population Estimates: ABC Parameters

Time
Susceptible

Migrant
Exposed
Migrant

Infectious
Migrant

Recovered
Migrant

Susceptible
Local

Exposed
Local

Infectious
Local

Recovered
Local

2002 244399 701 91 70976 548979 2583 338 3108944
2003 265932 713 103 77230 553923 2417 355 3136992
2004 287322 729 113 83444 558835 2264 357 3164855
2005 308572 746 121 89616 563714 2122 350 3192535
2006 329682 763 128 95749 568561 1991 338 3220033
2007 350654 780 134 101841 573377 1869 323 3247349
2008 371487 796 139 107893 578161 1755 307 3274486
2009 392183 811 144 113905 582913 1649 291 3301443
2010 412743 825 148 119878 587634 1550 275 3328223
2011 433168 838 151 125812 592325 1458 259 3354827
2012 453458 850 155 131707 596984 1371 244 3381256
2013 473615 861 158 137563 601613 1291 230 3407510
2014 493639 871 161 143380 606211 1215 216 3433592
2015 513532 880 163 149159 610779 1145 204 3459502
2016 533294 888 165 154901 615318 1079 192 3485241
2017 552926 896 167 160604 619826 1018 181 3510810
2018 572428 902 169 166270 624305 960 171 3536212
2019 591803 909 171 171899 628754 906 161 3561446
2020 611050 914 173 177491 633175 856 152 3586514
2021 630170 919 174 183046 637566 809 143 3611417
2022 649165 923 175 188564 641928 765 135 3636156
2023 668035 927 176 194047 646262 724 128 3660732

Table 6.14: Migrant Interactive Model Population Estimates With ABC Parameters. Note: Sus-

ceptible and Recovered Populations Are Year End Estimates, Exposed and Infectious Popula-

tions are Year Total Estimates.
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Migrant Interactive Model Population Estimates: Metropolis-Hastings Parameters

Time
Suscept.
Migrant

Exposed
Migrant

Infectious
Migrant

Recov.
Migrant

Suscept.
Local

Exposed
Local

Infectious
Local

Recov.
Local

2002 244398 709 89 (87,93) 70975 548978 2574 352 (298,450) 3108944
2003 265929 740 99 (93,109) 77230 553921 2391 389 (253,618) 3136993
2004 287319 774 108 (99,120) 83443 558831 2227 402 (223,678) 3164857
2005 308567 809 116 (106,128) 89616 563709 2077 399 (202,675) 3192537
2006 329676 841 123 (112,134) 95748 568555 1940 388 (187,641) 3220035
2007 350646 871 130 (118,138) 101840 573369 1813 372 (176,600) 3247353
2008 371479 898 136 (124,142) 107893 578152 1695 353 (166,555) 3274490
2009 392174 922 142 (128, 146) 113905 582903 1585 334 (159,508) 3301448
2010 412734 942 147 (131,150) 119878 587623 1484 315 (153,470) 3328229
2011 433158 960 152 (133,155) 125811 592313 1388 296 (147,436) 3354833
2012 453448 974 156 (134,160) 131706 596971 1300 278 (142,403) 3381262
2013 473605 986 160 (135,166) 137562 601600 1217 261 (137,374) 3407517
2014 493629 996 163 (135,172) 143380 606198 1139 244 (133,348) 3433599
2015 513522 1003 166 (134,178) 149159 610765 1067 229 (128,323) 3459509
2016 533284 1009 168 (133,185) 154900 615303 999 214 (124,300) 3485249
2017 552916 1012 170 (132,192) 160604 619811 936 201 (120,278) 3510819
2018 572420 1014 172 (130,199) 166270 624290 877 188 (116,259) 3536220
2019 591795 1014 173 (129,206) 171899 628739 822 176 (109,240) 3561454
2020 611042 1013 174 (127,214) 177491 633159 770 165 (100,224) 3586522
2021 630163 1010 175 (125,221) 183046 637551 722 155 (91,208) 3611425
2022 649159 1007 176 (123,228) 188564 641913 677 145 (81,194) 3636165
2023 668029 1002 177 (121,235) 194047 646246 635 136 (72,181) 3660741

Table 6.15: Migrant Interactive Model Population Estimates With Metropolis-Hastings Param-

eters. Note: Susceptible and Recovered Populations Are Year End Estimates, Exposed and

Infectious Populations are Year Total Estimates.

For the model not considering an interaction (table 6.14, 6.15), the resulting data indi-

cates an annual increase in the infectious migrant population, on average increasing four

cases per year after 2013. The local population is estimated to decline on average 10

cases per year after 2013. The number of exposed are expected to increase approximately
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22 cases a year after the year 2013 for the migrant population and decrease 58 per year

for the local population. These averages do not differ for the ABC parameter set and

Metropolis-Hasting parameter set. These data are consistent with the basic reproductive

numbers calculated for the model without interaction.

For the model considering an interaction, the ABC parameters resulted in data indicate

an increase of two cases per year within the migrant population after the year 2013, and

decrease of 11 cases per year for the local population. The number of exposed is expected

to increase seven per year for the migrant population and decrease 58 cases per year for

the local population. The Metropolis-Hasting parameters resulted in similar data to the

ABC parameter data, after 2013 the migrant infectious population is expected to increase

2 per year, while the local infectious are expected to decrease 13 per year. The migrant

exposed population are expect to increase two per year and the local exposed are expected

to decrease 60 per year. As mentioned in section 6.5.3, the Metropolis-Hasting parameters

for the model without interaction are suspected to be empirically inaccurate, so the later

projections may possibly be inaccurate.

6.6 Conclusion

This chapter examined and simulated two homogeneous migrant tuberculosis ODE mod-

els. The models ware adapted to simulate Irish data. This was achieved by dividing the

recruitment parameter between the susceptible and recovered compartments. The limita-

tions and assumptions of the model were detailed, including the assumption of slow and

fast progression to the infectious compartment. A theoretical qualitative analysis was con-

ducted on the model detailing the disease-free and endemic equilibrium states. The basic

reproductive number was calculated. Due to it not being theoretically possible to calculate

the basic reproductive number without the model harbouring a disease-free equilibrium,

assumptions were made to allow for the equilibrium to exist. The basic reproductive num-

ber of each model was then derived. Parameters were estimated using a combination of

assumptions, literature, data, and statistical inference methods. A total of 16 parameters
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required estimating and the study systematically proposed rational estimates. The recruit-

ment rate, death rate, disease induced death rate, and recovery rate were calculated using

national vital statistics and the national TB data set. The progression rate, the fast pro-

gression parameter were acquired from literature. The proportion of the recruitment rate

entering into the susceptible compartment was assumed to be in line with national vaccina-

tion. The remaining transmission parameters were estimated using both an Approximate

Bayesian Computation method and the Metropolis-Hastings algorithm, both methods es-

timated similar parameter values indicating one viable parameter set. The Recovered and

Exposed compartments had initial conditions that were derived under the assumption of

national vaccination coverage. The initially infected compartment was acquire from the

national data set, and by deduction, the Susceptible population calculated. The basic re-

productive numbers calculated were found to be less than one for the model considering

an interaction between migrant and local populations. For the model not considering an

interaction, the basic reproductive number was found to be less than one for the local pop-

ulation and greater than one for the migrant population. Simulation of the model was then

carried out to observe the underlying dynamics over time, and the model was extrapolated

10 years into the future. Given the extrapolation, the number of infectious is expected to

decline nationally each year. The decline in cases was seen in both models.

The following chapter conducts a sensitivity and scenario analysis of the models pre-

sented thus far.
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Chapter 7

Sensitivity And Scenario Analysis

7.1 Introduction

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical

model can be apportioned to different sources of uncertainty in its inputs. The simulta-

neous estimation of several parameters raises questions of parameter identifiability [134],

even if the model being fitted is simple. Often times, parameter estimates are correlated:

the values of two or more parameters cannot be estimated independently. In this chapter

the study aims to implement a sensitivity analysis to quantify the uncertainties associated

with parameter estimates.

The models and parameter sets that have been developed in §5 and §6 will be exam-

ined. A specific methodology is carried out on the parameters and various correlation

statistics calculated. The chapter then goes on to conduct two scenario analyses. Addi-

tional analysis is conducted and the basic reproductive numbers are updated to accommo-

date the scenarios. Recommendations are given and results of the scenarios discussed.
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7.2 Sensitivity Analysis

The methodology used to conduct the sensitivity analysis will be the methods described in

the work of Marino and colleagues [135]. The methodology follows the following steps.

1. Construct mathematical model Mt(θ) dependent on parameter set θ ∈ RN .

2. Specify a probability distribution for each parameter then generate M Latin Hyper-

cube samples for each of them. This results in an M×N matrix of parameters which

we will denote X . Each row of X is a viable parameter set that can be used within

the model, and each of the columns are the samples generated for each parameter.

3. For each of the M parameter sets generated, simulate the model Mt(Xi), for i =

1, ..,M.

4. Using the M models generated calculate some single dimensioned output vector y.

The definition of yi for i = 1,2, ...,M is usually something that is of importance

within the model, however must be a single value for each i (e.g. yi= number of

infectious within the population at t = 100, or yi = the sum of all exposed individuals

over the time period of the study).

5. Result 1: Calculate Pearson’s correlation coefficient (CCP) for each of the columns

of X and y.

6. Numerically rank the columns of X and denote the new matrix XR and also numeri-

cally rank y and denote this new vector yR.

7. Result 2: Calculate Spearman’s correlation coefficient (CCS) and the partial rank

correlation coefficient (PRCC) between each of the columns of XR and yR.

The reasoning behind this methodology is the following: Latin hypercubes are sampled

from as they ensure stratified sampling, which ensures a representative sample is taken

from each distribution. Other methodology could be used here, such as generating sam-

ples from low discrepancy sequences (e.g. The Sobol sequence [153]). Various correlation
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coefficients are calculated as they measure different relationships between the variables,

for each correlation (Pearson’s correlation, ranked correlation, partial rank correlation),

the linear relationship between parameter and output variations can become more or less

apparent and the various correlations highlight this. Pearson’s correlation coefficient is cal-

culated as it works well for measuring linear relationship measures between two variables.

It is, however, not robust to outliers, and this is a recognised limitation of this calcula-

tion. For non-linear relationships but monotonic ranked transforms work well, such as

Spearmans’s correlation coefficient and the Partial ranked correlation coefficient. The Par-

tial ranked correlation coefficient differs from Spearman’s coefficient as the partial ranked

correlation considers the relationship between two variables, an input and an output, after

discounting or controlling for remaining variables. For example, in this instance the par-

tial ranked correlation measures the monotonic relationship between say, the transmission

rate and the total number of infectious, it considers this relationship after the relationship

between all other parameters effecting the total number of infectious have been controlled

for. The reason for calculating all three correlation coefficients is due to the fact that the

underlying relationships between the outcome variable and the parameters is unknown. It

may be linear, it may not. The calculation of all three is done to provide insight, however

the partial rank correlation coefficient will undoubtedly be the most reliable as it’s control-

ling for multiple effects.

The above procedure will be run with varying definitions of the vector y. The seasonal

model will have the procedure run four times, and run eight times for both the migrant

model without interaction and with interaction. The definitions of various y’s follow with

under-scripts to help distinguish them. As the model has been simulated for 12 years (144

months) in previous chapters, the model will continue to be simulated for this duration

within this chapter and the initial conditions previously established for both the seasonal

and migrant models will also be used.

Sensitivity values for the seasonal model established in §5 can be seen in table 7.1, and for

the migrant model established in §6 can be seen in table 7.2.
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Sensitivity
Value

Formula Interpretation

yS(144) S(144) Number of Susceptible individuals after 144 months.
yΣI ∑

144
j=0 I( j) The total sum of monthly infectious individuals.

yΣE ∑
144
j=0 E( j) The total sum of monthly exposed individuals.

yR(144) R(144) Number of Recovered individuals after 144 months.
yR0 R0 The basic reproductive number.

Table 7.1: Sensitivity Values for Seasonal Model

Sensitivity
Value

Formula Interpretation

ySM(144) SM(144) Number of Susceptible Migrant individuals after 144 months.
ySL(144) SL(144) Number of Susceptible Local individuals after 144 months.
yΣEM ∑

144
j=0 EM( j) The sum of monthly migrant exposed individuals.

yΣEL ∑
144
j=0 EL( j) The sum of monthly local exposed individuals.

yΣIM ∑
144
j=0 IM( j) The sum of monthly migrant infectious individuals.

yΣIL ∑
144
j=0 IL( j) The sum of monthly local infectious individuals.

yRM(144) RM(144) Number of Recovered Migrant individuals after 144 months.
yRL(144) RL(144) Number of Recovered Local individuals after 144 months.
yR(0)M R(0)M The basic reproductive number for the migrant population.
yR(0)L R(0)L The basic reproductive number for the local population.
yR0 R0 The basic reproductive number for the entire population.

Table 7.2: Sensitivity Values for Migrant Models

The probability distributions assigned to each parameter will be detailed at the begin-

ning of each section followed by the correlation results and discussion. If a variable has

its values sampled from the normal distribution with mean µ̂ , and variance σ̂2, then it

will be denoted N(µ̂, σ̂2). If a variable is generated from a continuous uniform distribu-

tion with minimum â and maximum b̂, it will be denoted U(min = â,max = b̂). A broad

range of probability distributions could be used however this study will primarily draw

from the normal distribution. The mean of each distribution for each parameter will the

values estimated in §5 and §6. The standard deviations assigned to each distribution will
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be based on data when possible, however when data are not available the standard devi-

ations are assumed. The transmission parameters will have standard deviations of those

calculated from the posterior distributions established in §5 and §6. The number of latin

hypercube samples generated for each parameter is M = 10,000 for all models. For sec-

tions §7.2.1-7.2.2 When discussion is taking place about correlation, the study is referring

to the partial ranked correlation coefficient (PRCC). In addition to this categorise of corre-

lation are established following the categorise established in literature [136]. A very strong

correlation is that with an r-square magnitude of 0.90 or greater, a strong correlation is that

of magnitude between 0.70 and 0.90, a moderate correlation is that of magnitude between

0.50 and 0.70, a weak correlation has magnitude between 0.30 and 0.50, and a very weak

correlation has magnitude less than 0.30. The results of the sensitivity analysis follow.

7.2.1 Seasonal Model Parameter Sensitivity Analysis

The standard deviations of w and q were assumed, all remaining parameter standard devi-

ations were calculated from data. The distributions each parameter was generated follow

in table 7.3.

Parameter Distribution Parameter Distribution
Λ N(7267,33582) µ N(0.00055,0.00003252)

w N(0.15,0.052) d N(0.01643,0.00682)

r N(0.016,0.0003582) q N(0.05,0.012)

β0 N(0.0659,0.01132) k0 N(0.00556,0.0003182)

Table 7.3: Parameter Distributions for Sensitivity Analysis of Seasonal Model

Where Λ is the recruitment rate into the population, µ is the population death rate, w

is the proportion of new recruits entering into the susceptible compartment, d is the death

rate due to the disease, r is the recovery rate, q is the proportion of cases that go directly

to infectious, β0 is the transmission parameter, and k0 is the progression rate from exposed

to infectious.

The results of the varying correlations can be visualized in table 7.4 and figures 7.1 and

detail the correlation results between the parameters and the total number of infections.
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Figure 7.1: Parameter Values Compared with the Total Sum of Infectious, Control-

ling for the Effects of all Remaining Parameters
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Parameter
Correlation
Type

yΣI yΣE yR0 yS(144) yR(144)

CCP 0.147*** 0.713*** 0.357*** -0.015 -0.009
β0 CCS 0.145*** 0.715*** 0.354*** -0.02* -0.012

PRCC 0.711*** 0.943*** 0.808*** -0.008 -0.004
CCP 0.168*** -0.175*** 0.01 0.007 0.013

k0 CCS 0.172*** -0.183*** 0.003 0.008 0.011
PRCC 0.757*** -0.567*** 0.024* -0.006 0.021*
CCP -0.001 -0.015 -0.004 0.779*** 0.989***

Λ CCS -0.005 -0.021* -0.007 0.777*** 0.99***
PRCC 0.015 -0.015 -0.002 0.939*** 0.998***
CCP -0.02* -0.05*** -0.024* -0.034*** -0.039***

µ CCS -0.031** -0.055*** -0.033** -0.04*** -0.04***
PRCC -0.051*** -0.112*** -0.042*** -0.117*** -0.505***
CCP 0.234*** -0.226*** 0.018 0.013 0.005

q CCS 0.225*** -0.228*** 0.02* 0.008 0.005
PRCC 0.83*** -0.649*** 0.076*** -0.007 -0.003
CCP -0.054*** -0.035*** -0.012 0.022* 0.008

r CCS -0.056*** -0.034*** -0.013 0.022* 0.008
PRCC -0.275*** -0.108*** -0.082*** 0.009 -0.013
CCP -0.9*** -0.595*** -0.502*** -0.005 0.005

d CCS -0.929*** -0.572*** -0.464*** -0.003 0.01
PRCC -0.986*** -0.914*** -0.862*** -0.004 0.015
CCP 0.037*** 0.112*** 0.72*** 0.571*** -0.123***

w1 CCS 0.034*** 0.1*** 0.764*** 0.563*** -0.116***
PRCC 0.143*** 0.384*** 0.943*** 0.891*** -0.871***

Table 7.4: Various Correlation Results for each Parameter on the Model Output

Values yΣI , yΣE , yR0 , yS(144),and yR(144). Significance codes: * p− value≤ 0.05, **

p− value≤ 0.01 , *** p− value≤ 0.001.

The sensitivity analysis results show that all parameters, excluding Λ the recruitment

rate, significantly effect the total number of infectious and total number of exposed for the

model over a 12 year period. Each parameter will now be discussed
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• β0: The transmission rate - The parameter was found to significantly positively cor-

relate with the total number of infectious, exposed, and the basic reproductive num-

ber. The parameter showed a very strong relationship between the total number of

exposed after discounting the effects of other parameters. Control measures for the

transmission rate include a combination of isolating infectious and the self manage-

ment methods discussed in §2.4.3.

• k0: The progression rate - This rate was found to significantly positively correlate

with the total number of infectious and exposed. Although a significant correlation

was found for the basic reproductive number, it was calculated to be a very weak

positive relationship. Control measures for this parameter involve detecting latent

individuals. The Tuberculin skin test discussed in §2.4.1 is capable of detecting la-

tent infectious and as such, reduction of the progression rate can be achieved through

early detection before individuals begin experiencing symptoms.

• Λ: The recruitment rate - This parameter significantly contributed to the ending

number of Susceptible and Recovered population in the model. Given the low no-

tification rate relative to the recruitment of new individuals and given design of the

model this is to be expected.

• µ: The population death rate - The population death rate significantly contributed to

the decline in all compartments. An increase in the death rate parameter ultimately

showed a decline in the total population, which is to be expect from the model

construction. A note to be made is an increase in the death rate happened to decrease

the basic reproductive number, however, although highly significant, the correlation

measured a very weak relationship.

• q: The quick progression parameter. An increase in the number of individuals going

from susceptible to infectious and missing the latent period resulted in an increase

in the number of infectious, which given the design of the model is to be expected.

A very weak positive correlation was calculated for the basic reproductive number

• r: The recovery rate. An increased recovery rate decreased the total number of
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infectious and exposed over the period of the model, although the correlation was

very weak. There were also significant very weak effects on the basic reproductive

number.

• d - Death rate of infectious - This parameter was calculated have a strong relation-

ship for the the basic reproductive number and to have a very strong relationship for

both the total number of exposed and total number of infectious. An increased death

rate implies less infectious which implies lower transmission of the disease. While

this parameter cannot be intervened in, one cannot force the death rate to increase,

it is telling about the underlying disease dynamics. Dying is equivalent to the re-

moval of individuals, which can be equivalent to isolating individuals. This relates

the the significance of the recovery rate as a large recovery rate implies a quick re-

covery which impies less time spent being infectious. Hence, the model suggests

whether or not infectious are isolated effectively plays a crucial role to the number

of infectious.

• w1 : The proportion of individuals entering into the susceptible class. This parame-

ter significantly impacted all compartments and the basic reproductive number. An

increase in this parameter (or a decrease in the number of recruited immune individ-

uals) showed a very weak positive correctional with the total number of infectious

and a weak correlation for the total number of exposed. An increase also resulted in

an increase in the ending number of susceptible and a decrease in the ending number

of recovereds, which was result by design of the model.

In conclusion the parameters β0, k0 q, and d showed strong correlation with the total

number of infectious while the parameters µ , r, and w1 were calculated as having weak

effects on the total number of infectious.
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7.2.2 Migrant Model Parameter Sensitivity Analysis

Migrant Model Without Interaction

The parameter standard deviations of parameters v1, v2, π , w1 and Λ were assumed, all

remaining parameter standard deviations were calculated from data. The distribution each

parameter was generated from the follow in table 7.5.

Parameter Distribution Parameter Distribution
β1 N(0.0491,0.011462) β2 N(0.02644,0.01092)

k1 N(0.00489,0.00052) k2 N(0.005715,0.000272)

v1 N(0.00002,0.000012) w1 N(0.15,0.052)

r1 N(0.0169,0.005162) r2 N(0.01515,0.001482)

π N(2497,10002) Λ N(4,770,15002)

µIM U(min = 0,max = 0.0357)1 µIL N(0.0222,0.012)

v2 N(0.225,0.12) µ N(0.00055,0.01272)

Table 7.5: Parameter Distributions for Sensitivity Analysis of Migrant Model Without

Interaction

Where β1 and β2 are the transmission rates for the migrant and local populations,

respectively, k1 and k2 are the progression rates from exposed to infectious, respectively, π

and Λ are the recruitment rates within the migrant and local populations, respectively, v1

and v2 are the proportions of the recruitment rate being partitioned between the exposed

and infectious migrant compartments, respectively, µ is the universal death rate, µIM and

µIL are the death rates due to infection of the migrant and local population, respectively,

r1 and r2 are the rates at which individuals recover or are treated for tuberculosis for

the migrant and local populations, respectively, and w1 is the proportion of local recruits

entering into the susceptible compartment.

The results of the varying correlation statistics can be seen in table 7.6 and 7.7. Figures

7.2 and 7.3 visualise the correlation results between the parameters and the total number

of infections over the review period.

1The standard deviation of annual death rate variable was calculated to be large. This caused a nor-
mally distributed variable to take negative values which cannot be modelled. Hence, a uniformly distributed
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Figure 7.2: Parameter Values Compared with the Total Sum of Infectious, Control-

ling for the Effects of all Remaining Parameters

variable was simulated with minimum and maximum values of the data.
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Parameter
Correlation

Type
yΣIM yΣEM yR0 ySM(144) yRM(144)

CCP 0.167*** 0.657*** 0.456*** -0.001 0.01
β1 CCS 0.157*** 0.672*** 0.561*** -0.007 0.01

PRCC 0.697*** 0.93*** 0.917*** 0.006 -0.002
CCP 0.221*** -0.03** 0.02* -0.006 -0.018

k1 CCS 0.231*** -0.051*** 0.031** -0.006 -0.017
PRCC 0.8*** -0.219*** 0.103*** -0.001 0
CCP 0.044*** 0.175*** 0.001 0.945*** 0.633***

π CCS 0.052*** 0.179*** 0.006 0.945*** 0.629***
PRCC 0.25*** 0.538*** -0.003 0.988*** 0.9***
CCP 0.035*** 0.184*** -0.024** 0.01 0.003

v1 CCS 0.045*** 0.203*** -0.0101 0.007 -0.005
PRCC 0.299*** 0.625*** 0.005 0.006 -0.022*
CCP -0.021* -0.09*** -0.228*** -0.32*** 0.709***

v2 CCS -0.018 -0.077*** -0.262*** -0.303*** 0.706***
PRCC -0.123*** -0.318*** -0.721*** -0.892*** 0.918***
CCP -0.009 -0.016 -0.011 -0.017 -0.014

µ CCS -0.007 -0.016 -0.012 -0.013 -0.016
PRCC -0.037*** -0.076*** -0.071*** -0.078*** -0.033**
CCP -0.417*** -0.28*** -0.364*** -0.011 -0.006

r1 CCS -0.384*** -0.253*** -0.321*** -0.013 -0.008
PRCC -0.918*** -0.708*** -0.805*** 0.008 -0.002
CCP -0.793*** -0.559*** -0.633*** -0.004 -0.004

µIM CCS -0.856*** -0.56*** -0.713*** -0.002 -0.005
PRCC -0.981*** -0.904*** -0.946*** 0.005 0.006

Table 7.6: Various Correlation Results for each Parameter on the Model Output Values

yΣIM, yΣEM, yR0 , ySM(144),and yRM(144). Significance codes: * p− value ≤ 0.05, ** p−
value≤ 0.01 , *** p− value≤ 0.001.
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Figure 7.3: The Impact of Model Parameters on the Total Number of Local Infec-

tious, Controlling the Effects of all Other Parameters.
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Parameter
Correlation

Type
yΣIL yΣEL yR0 ySL(144) yRL(144)

CCP 0.09*** 0.81*** 0.154*** -0.012 -0.013
β2 CCS 0.091*** 0.821*** 0.662*** -0.015 -0.017

PRCC 0.709*** 0.96*** 0.896*** 0.005 -0.005
CCP 0.094*** -0.313*** -0.001 0.005 0.005

k2 CCS 0.094*** -0.325*** 0.009 0.008 0.006
PRCC 0.77*** -0.804*** 0.044*** 0.009 -0.007
CCP -0.019 -0.011 0.112*** -0.025* -0.026**

w1 CCS -0.016 -0.004 0.524*** -0.023* -0.025*
PRCC 0.008 0.007 0.851*** 0.007 -0.001
CCP -0.141*** -0.057*** -0.029** -0.001 0.002

r2 CCS -0.141*** -0.048*** -0.052*** -0.003 -0.002
PRCC -0.839*** -0.231*** -0.191*** -0.002 0.007
CCP 0.005 -0.01 0.003 0.946*** 0.995***

Λ CCS 0.008 -0.008 -0.017 0.974*** 0.996***
PRCC -0.006 0.016 0.011 0.977*** 0.999***
CCP -0.03** -0.06*** -0.019 -0.082*** -0.084***

µ CCS -0.024* -0.056*** -0.012 -0.082*** -0.081***
PRCC -0.108*** -0.207*** -0.035*** -0.325*** -0.831***
CCP -0.917*** -0.426*** -0.151*** -0.012 -0.009

µIL CCS -0.976*** -0.393*** -0.408*** -0.012 -0.01
PRCC -0.996*** -0.848*** -0.784*** -0.01 0.01

Table 7.7: Various Correlation Results for each Parameter on the Model Output Values

yΣIL, yΣEL, yR0 , ySL(144),and yRL(144). Significance codes: * p− value ≤ 0.05, ** p−
value≤ 0.01 , *** p− value≤ 0.001.

The sensitivity analysis concluded, after controlling for the effects of other parameters,

all parameters modelling the migrant population were highly significant in effecting the

total number of infectious an the total number of exposed over a 12 year period. Each

parameter will now be discussed

• β1, β2: The transmission rate among the migrant and local population, respectively
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- Both parameters showed strongly positive correlation with each populations basic

reproductive number and the total number of exposed. Each parameter was cal-

culated to have approximately the same impact on the total number of infectious

after controlling for other parameter effects (β1−PRCC = 0.7, β2−PRCC = 0.71).

Control strategies for the transmission rate include a reduction in contact with sus-

ceptible individuals and self management.

• k1, k2: The progression rate to infectious among the migrant and local populations,

respectively - Both rates significantly impacted infectious and exposed totals along

with having very weak positive correlations with the basic reproductive number.

Both rates showed a negative correlation with the number of exposed after the effects

of other parameters were considered, however the correlation was much stronger

among the local population when compared to that of the migrant population. This

may relate to the initial conditions assigned to the local population; the initial ex-

posed population within the local population being almost four times that of the

migrant, which would imply greater sensitivity to the progression rate parameter.

• r1, r2: The recovery rate among the migrant and local populations, respectively -

The recovery rates for both populations were calculated as having highly significant

negative correlations with the total number of infectious and exposed, and the basic

reproductive number. A stronger to very strong negative correlation was seen for

both parameters on the total number of infectious, however differences were seen

in the effects on the total exposed population and the basic reproductive number.

Strong negative correlations were seen between the recovery rate with the total ex-

posed and the basic reproductive number for the migrant population, but very weak

negative correlations were calculated between the recovery rate with the total ex-

posed and the basic reproductive number for the local population. This difference

could ne due to the count of infectious individuals being different for each popula-

tion.

• µIM , µIL : The infectious death rate among the migrant and local populations, respec-

tively - Both rates were calculated as having highly significant strong to very strong
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negative correlations with the total infectious, total exposed, and basic reproductive

numbers after the effects of other parameters were considered. Both parameters had

the largest correlations for the total infectious and total exposed when compared

with all other parameters. This result was seen in the sensitivity analysis in §7.2.1

for the seasonal model.

• µ: The population death rate - The population death rate significantly contributed

to the decline in all compartments for both models. An increase in the death rate

parameter ultimately showed a decline in both migrant and local populations. An

increase in the death rate happened to decrease the basic reproductive number for

both models. A remark to be made is there was a strong negative correlation seen be-

tween the death rate and the number of recovered individuals towards the end of the

model, after the effects of all other parameters were considered. A possible cause of

the strong correlation could have to do with the large initially recovered population,

changes to a rate applied to this population could result in drastic changes to the

population itself.

• π , Λ: The recruitment rates for the migrant and local populations, respectively. Both

were calculated as having highly significant strong positive correlations with the

susceptible and recovered compartments for each model. After the effects of other

parameters were considered a close to perfect correlation (0.999) was observed be-

tween Λ and the ending number of local recovered individuals. For π a very weak

positive correlation was observed for the total number of infectious, and a moderate

positive correlation was observed for the for the total number of exposed. This result

may be due to the design of the model, incorporating proportional parameters v1 and

v2 on the migrant recruitment rate.

• v1, v2: The proportion of new recruits within the migrant population entering into the

exposed and recovered compartments, respectively. Discounting the effects of other

parameters, an increase in the proportion of individuals entering into the exposed

class correlated positively with the total number of infectious (very weak positive

correlation) and exposed (moderate positive correlation).The parameter v1 was also
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showed a very weak negative correlation with the ending number of recovereds of

the model. The proportion of individuals entering into the recovered class signifi-

cantly correlated with all compartments and the basic reproductive number. Nega-

tive correlations were observed between v2 and the total number of infectious (very

weak correlation), total number of exposed (weak correlation), the basic reproduc-

tive number (strong correlation) and the ending number of susceptible individuals

(strong correlation). A very strong positive correlation was seen between v2 and

the ending number of recovered individuals, which due to model design is to be

expected.

• w1: The proportion of individuals entering into the susceptible class in the local pop-

ulation. This variable was strongly positively correlated with the basic reproductive

number. No other significant correlations were observed.

The results suggest the parameters: β1, k1, r1 and µIM , showed moderate to very strong

correlation with the total number of infectious migrants, while the parameters π , v1, v2,

and µ showed very weak correlation with the total number of infectious. The parameters

showing strong to very strong correlation with the basic reproductive number include β1,

v2, r1, and µIM , were as the parameter k1 showed very weak correlation with the basic re-

productive number. The parameter β1 can be reduced by way of supporting strategies that

isolate infectious individuals, k1 can be reduced through a reduction of exposed individ-

uals within the population which can be done through first expanding detection methods,

then treating the exposed individuals. The recovery rate, r1, can be influenced by way of

ensuring infectious complete treatment and to reduce individuals lost to follow up. The

number of individuals entering into the recovered migrant class, v2, can be increased by

way of pre-screening migrant individuals, specifically high-risk migrant individuals and

ensure vaccination has occurred. Such strategies have been cost effectively implemented

in countries such as Australia, Austria, Canada, France, Israel, New Zealand, and USA

[137].

For the local population the parameters: β2, k2, r2 and µIL showed a strong to very strong

correlation with the total number of infectious locals, while the parameter µ showed a very

weak correlation with the total number of infectious. The parameters strongly correlating
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with the basic reproductive number for the local population were β2, w1, and µIL . The

sensitivity analysis for the migrant model with interaction follows.

Migrant Model With Interaction

The parameter standard deviations of parameters v1, v2, π , w1, and Λ were assumed. The

transmission parameter (β1,k1,β2,k2,β
∗
1 ,β

∗
2 ) standard deviations were obtained from pos-

terior distributions acquired from the Metropolis-Hastings algorithm in §6.4.4. All remain-

ing parameter standard deviations were calculated from TB and Census data used within

§4. The distribution each parameter was generated from follow in table 6.8. The results of

the varying correlations for both local and migrant populations can be visualized in figures

7.4 and 7.5 and tables 7.9 - 7.12 detail the various correlation results.

Parameter Distribution Parameter Distribution
β1 N(0.0224,0.01352) β2 N(0.00464,0.000442)

k1 N(0.02554,0.002782) k2 N(0.00559,0.000292)

v1 N(0.00002,0.000012) w1 N(0.15,0.052)

r1 N(0.0169,0.005162) r2 N(0.01515,0.001482)

π N(2497,10002) Λ N(4770,15002)

µIM U(min = 0,max = 0.0357)2 µIL N(0.0222,0.012)

v2 N(0.225,0.12) µ N(0.00055,0.01272)

β ∗2 N(0.00657,0.000292) β ∗1 N(0.01279,0.00172)

Table 7.8: Parameter Distributions for Sensitivity Analysis of Migrant Model With Inter-

action

Where, β1 and β2 are the transmission rates for the migrant and local populations, re-

spectively, k1 and k2 are the progression rates from exposed to infectious, respectively, π

and Λ are the recruitment rates within the migrant and local populations, respectively, v1

and v2 are the proportions of the recruitment rate being partitioned between the exposed

and infectious migrant compartments, respectively, µ is the universal death rate, µIM and

µIL are the death rates due to infection of the migrant and local population, respectively, r1

and r2 are the rates at which individuals recover or are treated for tuberculosis for the mi-

grant and local populations, respectively, w1 is the proportion of local recruits entering into
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the susceptible compartment, and where β ∗1 and β ∗2 are the cross-population transmission

rates for the migrant and local populations, respectively.

2The standard deviation of annual death rate variable was calculated to be large. This caused a normally
distributed variable to take negative values which cannot be modeled. Hence, a uniformly distributed variable
was simulated with minimum and maximum values of the data.
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Figure 7.4: The Impact of Model Parameters on the Total Number of Migrant Infectious, Con-
trolling the Effects of all Other Parameters.
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Figure 7.5: The Impact of Model Parameters on the Total Number of Local Infectious, Controlling
the Effects of all Other Parameters.
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Parameter
Correlation

Type
yΣIM yΣEM yR0 yΣIL yΣEL

CCP 0.141*** 0.385*** 0.143*** 0.022* -0.023*
β1 CCS 0.132*** 0.39*** 0.783*** 0.017 -0.02

PRCC 0.544*** 0.754*** 0.895*** 0.012 -0.012
CCP 0.19*** -0.084*** 0.003 0.008 0.004

k1 CCS 0.185*** -0.093*** 0.005 0.008 -0.003
PRCC 0.64*** -0.246*** 0.032** 0.001 -0.009
CCP -0.401*** -0.066*** -0.043*** -0.012 0.007

r1 CCS -0.375*** -0.069*** -0.185*** -0.005 -0.005
PRCC -0.852*** -0.172*** -0.437*** -0.008 -0.001
CCP 0.207*** 0.495*** -0.009 0.002 0.007

β ∗2 CCS 0.209*** 0.491*** 0.024* 0.001 0.013
PRCC 0.648*** 0.809*** 0.048*** 0.014 0.008
CCP 0 0.001 0 -0.009 0.006

p2 CCS -0.007 0 -0.001 -0.013 0.007
PRCC -0.008 0.002 0.008 0.006 0.002
CCP -0.753*** -0.115*** -0.101*** -0.021* 0.01

µIM CCS -0.798*** -0.113*** -0.374*** -0.02* 0.008
PRCC -0.962*** -0.316*** -0.701*** -0.02* 0.002
CCP 0.044*** 0.098*** 0 0.02* -0.004

π CCS 0.043*** 0.101*** 0.015 0.024* -0.001
PRCC 0.166*** 0.258*** -0.009 -0.002 0.013
CCP 0.047*** 0.102*** -0.001 0.016 0

v1 CCS 0.051*** 0.104*** -0.008 0.014 -0.001
PRCC 0.21*** 0.309*** 0.003 0.011 -0.005
CCP -0.04*** -0.09*** -0.002 0.019 -0.003

v2 CCS -0.04*** -0.088*** -0.014 0.024* -0.004
PRCC -0.098*** -0.193*** 0.009 0.005 0.007

Table 7.9: Various Correlation Results for each Parameter on the Model Output Values

yΣIM, yΣEM, yR0 , yΣIL,and yΣEL. Significance codes: * p− value ≤ 0.05, ** p− value ≤
0.01 , *** p− value≤ 0.001.
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Parameter
Correlation

Type
yΣIM yΣEM yR0 yΣIL yΣEL

CCP -0.004 0.011 0.012 -0.019 0.013
µ CCS 0.001 0.012 -0.006 -0.018 0.016

PRCC -0.009 -0.027** -0.007 -0.064*** -0.012
CCP 0.009 0.034*** 0.032** 0.227*** 0.062***

β2 CCS 0.005 0.03** 0.13*** 0.248*** 0.054***
PRCC 0.042*** 0.097*** 0.303*** 0.831*** 0.238***
CCP 0.204*** 0.562*** -0.036*** -0.95*** 0.748***

k2 CCS 0.208*** 0.561*** -0.014 -0.957*** 0.779***
PRCC 0.703*** 0.85*** 0.019 -0.988*** 0.937***
CCP -0.034*** -0.024* 0.019 0.009 -0.017

w1 CCS -0.033** -0.017 0.115*** 0.001 -0.015
PRCC 0.005 -0.004 0.315*** 0.002 -0.006
CCP -0.035*** -0.056*** -0.001 -0.013 -0.085***

r2 CCS -0.033*** -0.048*** -0.022* -0.021* -0.073***
PRCC -0.098*** -0.144*** -0.051*** -0.12*** -0.263***
CCP 0.012 0.004 -0.007 -0.016 0.016

Λ CCS 0.005 0.001 -0.015 -0.017 0.015
PRCC -0.011 -0.006 0.001 0.003 0.001
CCP -0.141*** -0.362*** -0.028** -0.092*** -0.548***

µIL CCS -0.145*** -0.331*** -0.131*** -0.104*** -0.548***
PRCC -0.489*** -0.679*** -0.323*** -0.577*** -0.883***
CCP 0.006 -0.008 0.006 0.024* -0.011

β ∗1 CCS 0.006 -0.005 0.019 0.026** -0.009
PRCC 0.003 0.002 0.014 0.019 0.006
CCP -0.011 0.01 0.017 -0.002 -0.003

p1 CCS -0.006 0.006 0.003 -0.002 -0.003
PRCC -0.007 -0.009 0.002 -0.008 -0.013

Table 7.10: Various Correlation Results for each Parameter on the Model Output Values

yΣIM, yΣEM, yR0 , yΣIL,and yΣEL. Significance codes: * p− value ≤ 0.05, ** p− value ≤
0.01 , *** p− value≤ 0.001.
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Parameter
Correlation

Type
ySM(144) yRM(144) ySL(144) yRL(144)

CCP 0.01 0.001 -0.06*** -0.064***
µ CCS 0.007 0.005 -0.067*** -0.066***

PRCC -0.079*** -0.039*** -0.322*** -0.829***
CCP 0.02* 0.023* -0.023* -0.021*

β2 CCS 0.019 0.022* -0.016 -0.018
PRCC 0.009 0.006 0.009 0.001
CCP -0.008 -0.025* 0.014 0.012

k2 CCS -0.01 -0.024* 0.015 0.015
PRCC 0.014 0.009 0.005 0.002
CCP 0.005 0 0.002 -0.009

w1 CCS 0.007 0.001 -0.001 -0.008
PRCC -0.002 -0.002 0.025* -0.019
CCP 0.02 -0.008 0.002 0.001

r2 CCS 0.017 -0.006 0.009 0.005
PRCC 0.016 0 0.014 -0.007
CCP -0.014 -0.002 0.948*** 0.995***

Λ CCS -0.017 -0.001 0.974*** 0.996***
PRCC 0.003 0.022* 0.977*** 0.999***
CCP -0.008 -0.026** -0.012 -0.011

µIL CCS -0.011 -0.027** -0.008 -0.006
PRCC 0.009 -0.018 -0.009 0.005
CCP -0.014 0.006 0.01 0.01

β ∗1 CCS -0.012 0.007 0.018 0.015
PRCC -0.018 0.007 0.016 0.003
CCP 0 -0.006 0.007 0.001

p1 CCS -0.006 -0.006 0.005 0.004
PRCC -0.007 0.017 0.005 -0.006

Table 7.11: Various Correlation Results for each Parameter on the Model Output Values

ySM(144), yRM(144), ySL(144), and yRL(144). Significance codes: * p− value ≤ 0.05, ** p−
value≤ 0.01 , *** p− value≤ 0.001.
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Parameter
Correlation

Type
ySM(144) yRM(144) ySL(144) yRL(144)

CCP 0.019 -0.007 -0.014 -0.02
β1 CCS 0.023* -0.004 -0.019 -0.02*

PRCC 0.012 -0.003 0 -0.005
CCP 0.006 0.011 0.007 0.009

k1 CCS 0.008 0.007 0.008 0.008
PRCC 0.009 0.005 0.003 0.012
CCP -0.007 -0.017 -0.002 -0.002

r1 CCS -0.003 -0.012 -0.002 -0.002
PRCC 0.011 -0.004 -0.001 0.001
CCP 0.009 0.013 0.003 0.003

β ∗2 CCS 0.01 0.006 0.005 0.004
PRCC -0.002 0.005 0.006 0.012
CCP -0.01 0.002 0.003 0.005

p2 CCS -0.012 0.006 0.008 0.01
PRCC -0.018 0.016 -0.005 0.001
CCP -0.004 0.019 -0.001 -0.009

µIM CCS -0.004 0.016 -0.004 -0.007
PRCC -0.011 0.005 0.007 -0.017
CCP 0.945*** 0.643*** -0.016 -0.013

π CCS 0.945*** 0.634*** -0.019 -0.018
PRCC 0.987*** 0.9*** -0.002 0.01
CCP 0.008 -0.003 0.006 0.004

v1 CCS 0.005 0 0.002 0.002
PRCC 0.002 0.018 0.002 -0.008
CCP -0.313*** 0.701*** 0.005 0.003

v2 CCS -0.304*** 0.697*** 0.005 0.005
PRCC -0.888*** 0.914*** 0 -0.001

Table 7.12: Various Correlation Results for each Parameter on the Model Output Values

ySM(144), yRM(144), ySL(144), and yRL(144). Significance codes: * p− value ≤ 0.05, ** p−
value≤ 0.01 , *** p− value≤ 0.001.
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The sensitivity analysis concluded, after controlling for the effects of other parameters,

all parameters used for the migrant population did not significantly effect the total count of

local infectious or exposed individuals. No significant effect was observed for the ending

number of susceptible or recovered individuals either. Out of the parameters used to model

the local population, four had significant effect on the the migrant population - β2, w1, r2,

µIL . This infers that given the parameter set calculated, a one way interaction is occurring,

the local population effecting the migrant population but not the other way around. Each

parameter will now be discussed

• β1, β ∗2 : The transmission rate for the migrant population, and the transmission rate

of the local population onto the migrant population, respectively - Both parameters

showed moderate positive correlation with the total number of migrant infectious,

and showed strong positive correlation with the total number of exposed. The trans-

mission among the migrant population showed strong positive correlation with the

overall model’s basic reproductive number, and the transmission of local onto the

migrant population showed a very weak positive correlation with the basic reproduc-

tive number. This indicates transmission from the local population onto the migrant

population plays a very small role with regards the basic reproductive number being

greater than one. No significant interaction was seen between these parameters and

the infectious/exposed local compartments.

• β2, β ∗1 : The transmission rate for the local population, and the transmission rate of

the migrant population onto the local population, respectively - The local transmis-

sion rate significantly correlated with the infectious and exposed local compartments

and the migrant infectious and exposed compartments. In addition the parameter

was calculated as having weak positive correlation with the overall models basic

reproductive number. The correlation of this parameter on the migrant population

were classes as very weak, albeit significant. The transmission from the migrant

population onto the local showed no significance with regards any compartments or

the models basic reproductive number. This indicates the impact this parameter has

on the model is not very significant.
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• k1, k2: The progression rate from exposed to infectious among the migrant and lo-

cal populations, respectively - A strong positive correlation was seen from the local

progression rate onto the migrant infectious and exposed compartments, this corre-

lation was larger than the impact the progression rate within the migrant population

had, showing a moderate to weak correlation on the number of infectious/exposed.

This indicates, given a significant interaction occurring from local to migrant com-

partments, the parameters estimates of the local population will effect the migrant

population and not just the parameters designed specifically to interact (β ∗1 and β ∗2 ).

Hence, if this model is to be accepted, control and prevention measures applied to

the local population (e.g. slowing progression rate from latent to active) will , as a

corollary, impact the migrant population.

• r1, r2: The recovery rates among the migrant and local populations, respectively -

Similar effects were observed for the recovery rates as for the progression rates. A

strong to weak correlation was calculated between the migrant recovery rate and the

migrant total infectious and exposed. A weak significant negatove correlation was

seen with the overall model’s basic productive number. The recovery rate for the

local population significantly affected all infectious and exposed compartments and

the model’s basic reproductive number, although all correlations could be classed as

very weak. This again suggests, if this interaction is accepted, interventions on the

local population may impact the migrant population.

• π , Λ, v1, v2, w1: The recruitment rates for the migrant and local population, the

proportion recruited migrants exposed, and the proportions of recruited migrants

and locals recovered, respectively. The recruitment rate among the migrant popula-

tion showed a very weak significant correlation with the number of infectious and

exposed for the migrant population, the recruitment rate did not correlate with the

local population in anyway. This can more than likely be attributed to the propor-

tional parameters associates with this recruitment rate. A change in the proportional

parameters showed very weak correlation with the total number of exposed and

infectious. For the local population no significant correlations were calculated be-

tween the recruitment rate and the total number of infectious/exposed. A change in
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the proportional parameter associated with this recruitment rate also did not signifi-

cantly correlate with the total number of infectious/exposed.

• µIM , µIL : The infectious death rate among the migrant and local populations, re-

spectively - The death rate for the migrant infectious population showed very strong

negative correlation with the total number of infectious. A weak correlation was cal-

culated for the effects on the total number of exposed migrants. A strong correlation

was seen impacting the basic reproductive number overall, and a very weak correla-

tion was found significant on this death rate and the total number infectious within

the local population. The death rate of the local infectious significantly negatively

correlation with all infectious and exposed compartments, and negatively correlated

with the model’s basic reproductive number. In addition to the progression and re-

covery rate, this suggests an increased death rate of the local population impacts the

migrant population. This can be adapted as a control strategy, suggesting isolation of

local infectious population impacts the migrant infectious and exposed populations.

• µ: The population death rate - The population death rate did significantly negatively

correlated with the total number of migrant exposed and the total number of local

exposed individuals. However, both correlations were classed as very weak.

• p1, p2: the dampening factor on the transmission rate effecting the local popula-

tion from the migrant population, and the dampening factor on the transmission rate

effecting the migrant population from the local population, respectively. Neither

parameter significantly correlated with any exposed or latent compartments, or the

basic reproductive number. Given the standard deviations of each distribution, this

suggests the dampening of the interactions is not important for intervention pur-

poses.

The results suggest the parameters: β1, k1, r1, β ∗2 and µIM , showed moderate to very strong

correlation with the total number of infectious migrants, while the parameters π , v1, and

v2, and µ showed very weak correlation with the total number of migrant infectious. Ex-

cluding the migrant death rare, there was no significant interaction between the remaining

migrant parameters and the local infectious. The parameters β2, k2, and µIL were observed
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as having a moderate to very strong relationship with the local infectious. Interaction be-

tween these parameters and the migrant infectious proved to be significant, however, a

weak to very weak correlation was observed. The parameters showing a moderate to very

strong correlation with the basic reproductive number include β1 and µIM , were as the

parameter k1, r1, β ∗2 , β2, w1, r2, and µIL showed weak to very weak correlation with the

basic reproductive number. The model suggests, given this interaction occurring within

the population, that staging an intervention on parameters used to model the local popula-

tion, namely β2, k2, r2, and µIL , may have an impact on the migrant infectious population.

The following section is a scenario analysis on two of the models constructed.

7.3 Scenario Analysis

A scenario analysis is a process used to examine possible events that can take place in

the future. Two scenarios will be investigated in this section to evaluate the effects on the

model. The scenarios being considered are: a change in the vaccination rate for the local

population, and a change in parameters at various times of the year given the seasonal

dynamics of the disease. Both §7.3.1 and §7.3.2 evaluate these scenarios.

7.3.1 Universal Vaccination Outcome

A recent report produced by the HIQA [146] recommended a change to vaccination pro-

cedures from the one based on universal vaccination to selective vaccination of vulnerable

populations. Other countries, such as Sweden [156], made a similar transition in 1975

and have continued to have one of the lowest incidences of TB in the world. This section

will now attempt to simulate the migrant model considering similar relevant vaccination

scenarios. the analysis is aimed at modelling a similar scenario.
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Methods

This scenario will be simulated within the migrant model with no interaction occurring be-

tween the local and migrant populations. This model was presented in §6.2.1 and now be

used to simulate changes within the local population in order to evaluate the sensitivity of

the basic reproductive number to a changing vaccination strategy. When a simulation took

place for this model in §6.5.2, it was assumed 65% of individuals recruited into the local

population were immune, and the remaining 35% were susceptible to TB. As the model

assumed homogeneous mixing (any given individual is equally likely to be infected), the

implications on the proportion of individuals entering into the susceptible class is unknown

when selective vaccination is implemented. This is because selective vaccination targets

the high-risk groups identified by the HIQA report and the model does not consider these

high-risk groups. This is a recognised limitation of the model simulating this scenario, and

because of this no clinical conclusions will be made for this analysis.

An additional limitation to drawing clinical conclusions is that the local population is

considered to be individuals not born to the top 20 countries contributing to TB notifica-

tions in Ireland. The local population is considered to comprise a mixture of “low con-

tributing” foreign-born and native-born individuals. Although the local population dom-

inantly contains native-born individuals, it does not completely represent the native-born

population. Given these limitations, the model will be assessed for varying increases in

the proportion entering into the susceptible compartment (w1) after the year 2013. Varying

increases will be assessed, as the impact on model parameters that selective vaccination

will have is unknown. The parameter set used to simulate this scenario will be parameters

resulting from ABC parameter estimation method calculated in §6.4. The ABC algorithm

parameters were selected as the mean of the residuals were marginally better than that of

the residuals for the Metropolis-Hastings algorithm.

With respect to the model, to simulate a change in vaccination the proportion of newly

recruited individuals entering into the susceptible class, w1, will increase to ẅ1 = w1 +∆

at time point t = T . The parameter set and initial conditions being used will be the ones
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already established for the migrant model in §6, and are as follows:

θ = (∆,w1 = 0.35,Λ = 4770,β2 = 0.0264,k2 = 0.0057,

r2 = 0.01515,µIL = 0.0222,µ = 0.00055),

and initial conditions:

SL(0) = 1,280,078,EL(0) = 222, IL(0) = 27,RL(0) = 2,347,409.

The value T = 144 was used, indicating a change in the model from w1 to ẅ1 at a

time point towards the end of 2013. The model was extrapolated forward 10 years and the

sensitivity values yΣI and yΣE were measured. The results were compared to a model for

which no increase in the number of susceptibles took place.

Results

Marginal effects were observed on the sensitivity values yΣI and yΣE for increasing val-

ues of ∆. A one percentage unit increased in ∆ resulted in the total number of infectives

being 0.003922% larger than that of a model were no increase in susceptibles took place.

Similarly, a unit increase in ∆ resulted in the total number of exposed seeing a 0.007113%

increase when compared to a model where no increase in susceptible recruiting occurred.

As ∆ increased, a relatively large increase was seen in the number of susceptibles in the

population at the end of the model. A one percentage unit increase in ∆ resulted in a

0.8502% increase in the number of susceptibles after 10 years compared to a model with

no increase occurring, whereas the number of recovered individuals after 10 years de-

creased approximately -0.1501% for every percentage unit increase in ∆. The effects on

the sensitivity values can be seen in figure 7.6.
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Figure 7.6: The Difference Between The Sensitivity Values For A Model Using w1 Con-

tinuously And A Model The Suddenly Uses ẅ1 At T = 144. e.g. If w1 increased from

15% to 55% (a 40% increase) at T = 144, then over the next ten years the total number of

infectious would increase approximately 0.3% when compared to a model where w1 did

not increase.
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For varying values of ∆, the model estimates that the number of additional cases per

year would approximately be between 1 and 3 cases for the local population.

Additional Analysis on The Basic Reproductive Number

The basic reproductive number previously established for the local population within the

model with no interaction is given below.

R(0)L =
β2k2w1

(k2 +µ)(r2 +µ +µIL)

This is dependent on w1. Within this scenario w1 has been replaced with the original

w1 from t = 1, ...,T and replaced with ẅ1 = w1+∆ from time T onward. This is a function

of time and can be represented as the following function

ŵ1(t) = ∆H(t−T )+w1

Where H(x) is the Heaviside step function[138], and take value one when x > 0 and

value zero when x < 0. Hence when t−T > 0 or t > T the variable ∆H(t−T ) = ∆, simi-

larly when t−T < 0 or t < T the variable ∆H(t−T ) = 0.

The model has transitioned from constant parameters to having one parameter a function

of time. Within the §5, for the seasonal model, the transmission parameters were functions

of time. The basic reproductive number was derived using averages of parameters. This

method can be implemented now to achieve an estimate for the basic reproductive number
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within this scenario. Assuming the model is run until t = Tend > T , the average of ŵ1(t) is

1
Tend

∫ Tend

0
(∆H(t−T )+w1)dt

=
∆

Tend

∫ Tend

0
H(t−T )dt +

1
Tend

∫ Tend

0
w1dt

=
∆

Tend

∫ T

0
0dt +

∆

Tend

∫ Tend

T
1dt +

1
Tend

∫ Tend

0
w1dt

=
∆

Tend

∫ Tend

T
1dt +

1
Tend

∫ Tend

0
w1dt

=
∆

Tend
(Tend−T )+

1
Tend

(w1Tend)

=∆− ∆T
Tend

+w1

Hence the altered basic reproductive number calculated using averages is

R(0)L =
β2k2(∆− ∆T

Tend
+w1)

(k2 +µ)(r2 +µ +µIL)

Within this scenario T = 144 and the parameter values have already been established,

hence

R(0)L = 0.73(∆− ∆144
Tend

+0.35)

If we allow Tend → ∞ we have

lim
Tend→∞

(R(0)L) = lim
Tend→∞

(0.73(∆− ∆144
Tend

+0.35)) = 0.73(∆+0.35)
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The value 0.73(∆+ 0.35) is greater than one when ∆ > 0.99. Seeing as w1 is restricted

to being a proportion between zero and one, w1 +∆ must also be between zero and one.

Hence, as w1 = 0.35, ∆ has upper bound 0.65. This implies given the parameter set and

initial conditions, the basic reproductive number cannot be greater than one for all feasible

values of ∆.

In additional, if T
Tend
→ 0 as Tend→∞, the basic reproductive number is independent on of

the value T . As long as this condition holds, the time point the new parameter ẅ1 = w1+∆

is introduced does not impact whether R0 will be greater than one.
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7.3.2 Optimal Intervention For A Seasonal TB Model

The seasonal model established in §5.2 will be simulated with reduced transmission and

increased recovery rates. This is done to set a foundation for further analysis to be done.

Initially, an optimal change in parameters is established through numerical simulation. A

six month change in parameters is staged at various time intervals throughout the year and

the results tabulated. Then, given the optimal time interval, varying degrees of changes to

parameters are assessed ranging from a very small impact in parameter values up to a very

large.

Optimal Intervention Period Given Fixed Intervention Effects

Methods

This section numerically assesses the optimal time of year to change certain parameters

for a seasonal epidemic model in order to reduce the total infectious. This scenario was

evaluated using the initial conditions, parameter set, and time intervals established in §5.4.

The transmission rates and recovery rate determined were β0 = 0.1575,k0 = 0.00554 and

r = 0.016. In this section, it will be assumed a 10% reduction in the transmission parame-

ters will occur, and a 10% increase in the recovery rate parameter for a six month period.

This results in the alternative parameters β̈0 = 0.14178, k̈0 = 0.005 and r̈ = 0.0176. These

parameters will be used in the model for six consecutive months, then the original parame-

ters will be used for the following six months. The parameters will alternate continuously

in this way throughout the duration of time the model is run. The sensitivity values yΣI ,

yΣE , yS(144), and yR(144) established in §7.2 for the seasonal model will be used to assess

the impact. The optimal six month period within the year will be found by simulating

the model with the altered parameters at varying time intervals (January through June,

February through July, April through August etc.) and finding the six month period that

minimises the sensitivity parameter yΣI .
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Results

The results over time of varying reduction to parameters are illustrated in figure 7.7. Table

7.13 details percentage change on the sensitivity values for various times.
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Figure 7.7: The Seasonal Infectious Compartment Over Time With Various Interventions

Staged

218



Time Parameters
Were Changed

Reduction In
Total Infectious

Time Parameters
Were Changed

Reduction In
Total Infectious

Constant -12% Jun To Nov -2%
Jan To Jun -8% Jul To Dec -2%
Feb To Jul -7% Aug To Jan -3%
Mar To Aug -5% Sept To Feb -4%
Apr To Sept -4% Oct To Mar -6%
May To Oct -2% Nov To Apr -7%

Dec To May -7%

Table 7.13: The Percentage Change for Varying Six Month Intervention Intervals on the

Sensitivity Value yΣI , when Compared to a Model without Intervention.

January to June was numerically calculated to be the optimal time to reduce parameter

values. During this time interval is when the model increases monotonically each year. It

can be concluded that the model suggests that the optimal effects of reduced transmission

rates and increased recovery rates are seen when there is an increase in notifications. When

reduced transmission rates and increased recovery rates were implemented constantly all

year, there was an 12% reduction in notifications when compared to a model with no

change in parameters. When the rates were altered from January to June, a 8% reduction

in notifications was seen. The six month period having the least impact on notifications

was July through to December, implementing a change in rates over this period resulted in

a 2% reduction in total notifications.

Varying Intervention Effects

Methods

This section numerically examines varying impacts on model parameters. Denote the

change on the parameters 0 ≤ δ ≤ 1. Given this change, the transmission parameters

without change (β0 and k0) become β̈0 = β0(1− δ ) and k̈0 = k0(1− δ ) and the recovery

parameter becomes r(1+ δ ). Evaluating a range of values for δ will now occur, this in
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contrast of the previous section, in which δ = 0.10 = 10% was evaluated. Two scenarios

will now be assessed: a six month change in parameters staged from January to June, and

a constant change staged continuously.

Results

The results suggest implementation of a six month change in parameters can be highly

effective when compared to that of a constant change in parameters. Figure 7.8 and table

7.9 detail the percentage decline in infections for varying values of δ .

Figure 7.8: Percentage Reduction in Notifications (Between Constant Parameter Change

and Seasonal) for both Intervention Strategies and Varying Values of δ (Delta)
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Table 7.14 describes the sensitivity of yΣI , yΣE , yS(144), and yR(144) with respect to δ .

Model
Sensitivity

Change Of Parameters From January To June Change Of Parameters All Year

δ

Value
yΣI yΣE yS(144) yR(144) yΣI yΣE yS(144) yR(144)

0%
(Count)

5224 29558 693250 3927210 5224 29558 693250 3927210

10% -8% 2% -2% -2% -11% -1% 0% 0%
20% -15% 1% -2% -2% -22% -2% 0% 0%
30% -23% 1% -2% -2% -32% -2% 0% 0%
40% -31% 2% -2% -2% -41% -1% 0% 0%
50% -38% 2% -2% -2% -49% 0% 0% 0%
60% -45% 3% -2% -2% -58% 1% 0% 0%
70% -52% 4% -2% -2% -65% 3% 0% 0%
80% -59% 5% -2% -2% -72% 6% 0% 0%
90% -65% 7% -2% -2% -79% 9% 0% 0%

100% -72% 9% -2% -2% -86% 12% 0% 0%

Figure 7.9: Percentage Change in Sensitivity Values yΣI , yΣE , yS(144), and yR(144), Between the

Varying Values of δ (Delta)

The model suggests that the difference between the reduction in the number of cases

for a six month change in parameters and that of a constant change of parameters does

not remain constant for increasing values of δ (e.g. for δ = 10% the six month change in

parameters reduces cases by 8%, whereas the constant change of parameters reduces cases

11% - this is a 68% ratio between to two percentages. For δ = 90% this ratio grows to

80%, which indicates for larger values of δ a six month reduction becomes more effective).

7.4 Conclusion

In this chapter a sensitivity and scenario analysis was conducted of the models developed

in §5 and §6. The model parameters and initial conditions for those parameters were used
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in this chapter. A series of sensitivity values were constructed and the effects for varying

parameter values on those values evaluated. Key parameters were identified and various

forms of changes on those parameters were discussed. A scenario analysis was then con-

ducted within which two primary scenarios were examined. Given some limitations, the

model was simulated to investigate an increase in the number of susceptible individuals in

the population at a specific time point. It was found that, given an indefinite duration for

the model, the time point an alternative vaccination rate is implemented is considered to

be arbitrary. In addition, it was also found that, given seasonal dynamic of TB, a change

in parameters was found to be effective at times that coincided with an increase in notifi-

cations. It was also found a seasonal change in parameters could be as effective as a year

round change in parameters.
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Chapter 8

Discussion

8.1 Introduction

In this chapter we review the findings of thesis and examine the relationship to other re-

search found in literature. This thesis has examined and modelled notifications of TB

within an Irish national cohort. Ireland, like most western European countries, has shown

a progressive reduction in the frequency of TB over the last century. Since 2013, Ireland

has been categorized as a low incidence country by the World Health Organisation. De-

spite this, Ireland saw a resurgence in notifications, specifically during the Celtic Tiger

economic boom [139]. This resurgence was believed to have been caused by an increase

in foreign-born notifications. This study independently gave an evaluation of the epidemi-

ological situation from 2002 to 2013.

The study applied various statistical and mathematical analyses. One of the primary

objectives was to establish an empirically accurate model. In an attempt to formulate such

a model, the study acquired national TB surveillance data. Following ethical approval,

analysis of this data was conducted. The data was acquired from the HPSC which collects

various information on all notified cases of TB in the Republic of Ireland. It was assumed

that the data was reliable in terms of describing incidence of TB in Ireland. After the

dataset was evaluated, two main factors of the profile of the disease were found: (i) sea-

223



sonality of notifications and (ii) an increase in the proportion of foreign-born notifications

over time. A systematic approach to data exploration was then followed by a similarly

systematic approach in establishing an empirically accurate model. A systematic search

strategy was implemented identifying an appropriate model. Given the two key findings

of the exploratory analysis, a systematic search was then implemented that resulted in two

viable models being identified. These models were selected and refined to accommodate

an Irish setting.

The results of the exploratory analysis suggested numerous pathways the study could

have taken. In addition to the analysis of the Irish traveller community (see Appendix E),

notably high notification rates were calculated for other vulnerable populations such as:

refugees, prisoners, and the unemployed. Combining the results from the data exploration

with literature, the study elected to construct and analyse a model which focused on the

impact of migration on TB notifications. In addition, and due to the lack of research

completed on seasonality of TB in an Irish and global setting, the study also elected to

construct and analyse a model considering seasonality.

8.2 Data Quality

8.2.1 TB Data

The data from which a lot of the work in this thesis is conducted was obtained from the

Irish national surveillance organisation, the HPSC. The HPSC uses a conservative EU-

based clinical definition of TB. The disease is notifiable in Ireland under the Infectious

Disease Regulations 1981 (and subsequent amendments). Only symptomatic cases are

reported [200]. Despite this, this study must recognise the potential for incomplete or

incorrect data from this data source. Possible areas of under-reporting include lost to

sight cases, or the possibility of false-negatives positives occurring within the diagnosis

procedure, or indeed over reporting with false-positives occurring.

The study further concedes that the sample of data acquired is only a splice of all data.

The years 2002 through to 2013 are considered. The years prior this are not reported in
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this study. Potential trends in the data could be missed by not having data prior 2002.

The effects of under/over reporting could drastically alter model projections and the

descriptive analyses complete, which is a recognised limitation.

8.2.2 Denominator Data

When denominator data are used, they were acquired from the Central Statistics Office

(CSO), Ireland [201] or the World Bank [196]. These data are used in order to calculate

vital statistics for modelling and crude incidence rates. The CSO only has historical data

for 2002, 2006, and 2011. This is a limitation of this study, as interpolation/extrapola-

tion was required on the acquired data in order to get missing years. The CSO data and

the World Bank both are subject to reporting error, which this study acknowledges as a

limitation. This could also drastically alter model projections and the descriptive analyses

complete.

8.3 Foreign-Born Tuberculosis

8.3.1 Discussion On Statistical Results

Foreign-born TB notifications have seen a rise in multiple other countries in recent years.

Appendix D identifies nine European countries where low to medium national incidence

rates were evaluated. All countries had an increase number of foreign-born TB notifica-

tions from 2000 to 2013 and three countries saw an increase in national incidence. This

increase in notifications was not unique to Europe. Other countries such as the USA [141]

Canada[142], and New Zealand [143], all have witnessed various forms of increases in

foreign-born TB rates. Prior descriptive statistical work had been done on foreign-born

notifications in Ireland, evaluating data from 1998 to 2005 [1]. The increase in foreign-

born notification was noted then. While the study did not conduct a thorough statistical

analysis of national surveillance data, it did highlight the age distribution of foreign and

native-born cases. This result was replicated from 2002 to 2013 data in §4. It is apparent

from figure 8.1 the two distributions have changed very little over the years.
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Figure 8.1: Source: [1] Age Distribution Of Foreign and Native-Born TB Notifications

From 1998 to 2005.

For individuals with TB, this study found a significant difference between the foreign-

born composition and native-born composition when the following variables are taken

into account: gender, employment status, current living arrangement, and diagnosis type.

This suggests either the composition of the underlying populations differ significantly or,

that the populations are both similar and that foreign-born individuals experience TB dif-

ferently to native-born. For either event, the model had to accommodate this apparent

difference between the populations. In order to achieve this, it was decided that an ap-

proach using different compartments and parameter sets would help model the individual

populations. Similar results were found in other developed countries. In 1998, the work

of Chin and colleges in the USA [140] found homelessness, drug misuse, and positive

HIV/AIDS status to be infrequent in the foreign-born population with TB. A UK study

[144] using data from 2000 to 2011 found significant differences in variables such as gen-
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der, age, race/ethnicity, site of disease, and HIV status between foreign and native-born

populations. That study also notes that five countries (India, Pakistan, Bangladesh, Soma-

lia and Zimbabwe) contributed to 61% of all foreign-born notifications. This study finds

similar results, four of those countries (India, Pakistan, Somalia, and Zimbabwe) were

among the top ten contributors of foreign-born TB in Ireland, this distribution of notifi-

cations remains constant over time (Pakistan being the top contributor in 2002, and India

being top contributor in 2013).

An increase in notifications was documented in the USA from 1985 to 1992. Figure

8.2 details the research of Cantwell and colleagues [87], in which analysis of USA TB

surveillance data was conducted.

Figure 8.2: Source: [87] Figure (Right): A Rise in US TB Notifications, 1985 through

1992. Table (Left): Demographics of Excess Cases.

Cantwell noted: “From 1986 through 1992, the number of foreign-born cases in-

creased by 2345 (48%) and accounted for 60% of the total increase in the number of
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US cases”. The increase observed in Ireland appears to show a similar trend to that expe-

rienced of the USA from 1985 to 1992. Figure 4.5 illustrates very similar trends to Figure

8.2 (above). The study defines a distribution of people as “excess” and examines the demo-

graphics of that distribution. The “excess” cases were primarily found to be foreign-born

cases. Similar trends and demographics were observed for Irish notifications. The mean

age of the foreign-born population in Ireland over the review period was calculated to be

33 years of age. This is similar to the USA study in which it was found that the mode age

of “excess” cases was within the 25-45 category. With regard ethnicity, both studies used

different categories to place individuals. However, diverse proportions of ethnicity were

observed within excess cases for the US study and diverse proportions were also observed

in Irish data for foreign-born notification (Table 4.11).

8.3.2 Mathematical Modelling

The mathematical model used here was adapted from Jia and colleagues [93] with some

modifications to accommodate an Irish setting. Due to the complexity of the foreign-born

population it was decided to limit what would be modelled. The migrant population was

used and defined as a subset of the foreign-born population. The justification of this was

that the primary purpose of the chapter was to model TB and not to simulate a foreign-

born/native-born population model. Consequently, the top contributors were selected for

study. The top contributors were identified as those countries that contributed to 80%

of foreign-born notifications (20 birth countries in total). Two models were constructed

building on the original model identified during the literature review.

Rationale For Modelling

The first model considered did not allow for interaction between migrant and local pop-

ulations while the second incorporated a two way interaction occurring between these

populations. The reason for using the first model was that a previous systematic review

suggested foreign-born notifications do not effect native-born [94]. The second model was
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developed primarily for two reasons. Firstly, to evaluate if the assertion above regarding

the lack of importance of interaction between populations was accurate. Secondly, the

study from which the model is derived mentioned the importance of expanding the model

to include the impact of interaction, and suggested a two way interaction model which to

be used for further analysis. As a consequence it was decided that two models would be

presented here for simulation and qualitative analysis.

Discussion Of Results

The qualitative analysis showed that the basic reproductive number of the entire popula-

tion was the maximum of the basic reproductive number for the local population and the

basic reproductive number for the migrant population. The parameters indicate an out-

break occurring within the migrant population (R(0)M = 1.76 > 1) and not for the local

population ( (R(0)L = 0.257 < 1)). This result coincides with the increase in foreign-born

notification in European countries [145].

Furthermore, the fact that the basic reproductive number was greater than one in one

group and not in the other supports the suggestion that the populations have not interacted,

as if interaction was occurring, the likelihood of an outbreak occurring in both populations

or neither would increase as there would exist some form of correlation between the two

populations. This result ultimately supports the work of Sandgren et al. [94].

Similar results were found between the simulations in this study and the study iden-

tified during the literature review (§3.5.3). That model simulated Canadian data. Here,

the the basic reproductive number was calculated as greater than one for the migrant pop-

ulation and less than one for the local population. Figure 8.3 shows a distinct increase

in prevalence rates within the foreign-born population and a decrease in the native-born

population.
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Figure 8.3: Source: [93] Numerical Simulation Results of Model From Literature Review.

(§3.5.3) A Canadian Model with One-Way Interaction from Migrants to Locals.

The model was simulated to numerically evaluate the effects of increased recruitment

into the susceptible population. It was found increased recruitment had marginal effects

on the total number of infectious and exposed 10 years into the future. The number of

susceptible individuals after 10 years was found to be notably larger when compared to

a model without a change in vaccination procedure. A reduction in the number of recov-

ered individuals was also noted. The analysis went on to examine the effects on the basic

reproductive number for the local population. Given the parameters and conditions estab-

lished, it was found to be impossible for the basic reproductive number to be larger than

one, regardless of the increase in susceptibles. While this study does not put forward a rec-

ommendation, a report by HIQA recommended Ireland switch to a selective vaccination
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strategy as opposed to universal vaccination [146]. The report estimated that an additional

3.6 cases would occur each year if selective vaccination was used instead of universal vac-

cination. If there is any legitimacy, in terms of representing Ireland, can be given to the

scenario analysis conducted, then the results of this section corroborate the HIQA report.

Strengths Of Modelling

The model accurately partitions a very clear divide occurring within notifications, between

foreign and native-born cases. Each of the parameter sets calculated converged at their

local optimal values, which suggests they are reliable estimates. The models obtained

from the systematic search were adapted to an Irish setting successfully and simulated

with the relatively low error. These models provide a foundation for future modelling to

occur and for methods to be expanded on. The results of the chapter corroborate literature,

which indirectly indicates a type of legitimacy of the modelling approach. The calculation

of the basic reproductive number, and the subsequent calculation and difference in values

between the two populations, highlights a distinction between the foreign and native-born

populations. This can provides insight into treatment methods to lower overall incidence.

Limitations Of Modelling

For both migrant models, the residuals consistently suggest under-prediction was occur-

ring (albeit slight under-prediction). The model which incorporates interaction between

local and migrant populations has limitations which should be acknowledged. The inter-

action parameters β ∗1 and β ∗2 were both estimated using inferential methods. Within the

ABC method both parameters were assigned a uniform distribution with range between

0 and 0.1. This was selected to be one tenth the range of their counter parts β1 and β2.

It was later established within the sensitivity analysis that β ∗2 contributed to the total sum

of infectious within the migrant population more so than β1, even after the effects of the

other parameters were controlled for. This implies the infectious local population con-

tributes more to the number of infectious within the migrant population than the infectious

migrant population does. If it is accepted that there is, in fact, an interaction between

populations this is a plausible scenario, however, it does not coincide with literature [94].
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In addition, in order to calculate the basic reproductive number for this model, the as-

sumption of no recruitment into the exposed population was occurring, which in itself is

a limitation. In general, the foreign-born population is a very complex categorization of

a population, the models proposed are undoubtedly oversimplified representations of the

true processes they aim to model.

8.4 Seasonality Of Tuberculosis

8.4.1 Discussion On Statistical Results

Some studies have shown variable periods of peak seasonality in TB incidence rates in late

winter to early spring in South Africa [118], during summer in UK [119] and Hong Kong

[120] , and during spring and summer in Japan [117].

While the cause of seasonal TB remains unknown, a possible link between vitamin D

deficiency and impaired host defence to tuberculosis infection leading to primary TB has

been hypothesised [122]. Furthermore, in winter and spring, viral infections such as in-

fluenza are more prevalent and cause immunological deficiency leading to reactivation of

Tuberculosis [123].

This study examined claims of seasonal attributes within Irish TB and then proceeded

to model and investigate these attributes. Seasonal TB models have previously been con-

structed and evaluated within countries such as China [125] and the United States [121],

however, current research on the seasonal property of TB is very limited and the cause of

the seasonality is for the most part unknown. The occurrence of a seasonal high and low

periods also appears to differ from country to country.

This study identified seasonality within Irish notifications through data independent

of external research. Various analyses were completed following the methods of Box

and colleagues [110] to detect seasonality including simple moving averages, box plots,

and autocorrelation plots. Seasonality was concluded to be a significant characteristic in
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notifications over time. This study found that the high seasonal period for TB notifications

in Ireland was during the spring and summer months. As discussed in §5.1, varying high

seasonal periods occur from country to country. The high seasonal period in Ireland is

similar to that of the UK, Hong Kong, the USA, and Japan. One study [148] using USA

surveillance data from 1993 to 2008 reported results very similar to this study’s findings.

In that study there was a 21.4% increase in cases during the high season compared to that

of the low season. This study found a 20.4% increase in notifications during the high

season. A study conducted in New York, USA [132], conducted a similar autocorrelation

analysis to this study and found significant positive correlations not only every 12th month,

but significant negative correlations every sixth period (figure 8.4). This indicates that the

notifications sixth month prior, regardless if it’s a high or low period, negatively correlate

with the current months notifications.

Figure 8.4: Source: [132] Autocorrelation of Monthly Notifications In New York

It should also be noted that, given the available data associated with demographic
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variables, this study did not find strong evidence to suggest that seasonality affects those

demographics. No significant seasonal difference was detected for individuals with dif-

ferent gender, employment status, birth country, or race/ethnicity. With regards to “living

arrangements” a significant difference was detected however for the prisoner population

within the study. This maybe coincidental as the outbreak that occurred within the prisoner

population occurred within the high seasonal period.

The seasonal attribute was unknown to both the HPSC researchers and the research

team prior to discovery in this study. This discovery increases insight into the underlying

dynamics of the disease and specifically relates to research in Ireland.

Typically, seasonality is modelled using time series methods. Autoregressive processes

and exponentially weighted moving averages are the most common methods of forecasting

and have been previously used to model epidemiological processes [154]. An epidemic

model was selected for this research as it presented a deeper insight into the underlying

dynamics of the disease.

Multiple reasons have been put forward, to explain the underlying causes of seasonal-

ity. However, the two leading hypotheses developed so far relate to:

• Vitiman D deficiency - Vitamin D has been shown to enhance cellular immunity

against TB [57]. It has been hypothesized that the decline in vitamin D levels over

the summer months contribute to the activation of latent TB. This translates to vari-

able progression rates from latent to active TB throughout the year.

• Increased transmission rates due to overcrowding - Generally, the population spends

more time indoors in winter months than in summer months. The resultant potential

overcrowding, increased humidity, and low airflow provide a suitable environment

for TB to transmit as research has shown.

Both of these factors were considered within the seasonal model put forward. The

possible seasonal activation of latent TB is considered by allowing the progression rate

parameter to become a function of time. Similarly, the transmission rate parameter is

given a time dependent periodic functions represents overcrowding. As no prior deter-

ministic modelling for TB had been developed for Ireland in the past, and because of the
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apparent gap in the literature globally for work completed on seasonality in TB, this study

established parameters and initial conditions for such a model.

8.4.2 Mathematical Modelling

Rationale For Modelling

The rationale behind using a seasonal deterministic model was to provide the basis for

future modelling and to support further analysis of seasonal variation in TB. The exact

reason why TB case notification rates vary by season is unknown, although several factors

have been suggested. This is ultimately an open area of research and this study aims at

contributing to it through the construction, analysis, and simulation of a seasonal epidemic

model.

Discussion Of Results

The seasonal model was successfully constructed, analysed, and simulated and a basic

reproductive number was calculated. For the system as a whole, the basic reproductive

number was found to be less than one, indicating the infection will reach a disease-free

equilibrium after a long enough period of time. The model predicted a decline in total

notifications (8 per year expected), which is being observed in other European countries

(Appendix D).

The seasonal model was selected to simulate a change in parameters to investigate the

effects on notifications. With respect to the results of the scenario analysis, similar mod-

elling completed by Griffin [46] on optimal malaria interventions recommended: “The

best time for indoor residual spraying or a vaccine which reduces infection rates is just

before the high season”. This indicates the effects of the interventions should take place

during the high season period and, for that reason, lead to reduced transmission during

the seasonal high period. The findings presented in §7.3.2 seem to corroborate this result,

suggesting that a lower transmission and progression rate during the seasonally high pe-
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riod reduces infection. In addition, the numerical analysis suggests a seasonal or pulsed

intervention can be more cost effective than a constant intervention.

Strengths Of Modelling

Each of the parameter sets calculated converged at their local optimal values, which sug-

gests they are reliable estimates. The model obtained from the systematic search were

adapted to an Irish setting successfully and simulated and extrapolated with relatively low

error. The model provides a foundation for future modelling to occur and for methods to

be expanded on, this model is the first of it’s kind to be applied to an Irish setting. The

scenario analysis provides a basis for future, more clinically interpretable, scenarios to

be evaluated. In addition interventions could be simulated using this model, or a similar

model.

Limitations Of Modelling

Some of the limitations of the seasonal model include the inability to calculate the basic

reproductive number using traditional approaches. This study used an averaging method

to overcome this. However, this can be considered a limitation as it essentially represents

a basic reproductive number for a model without seasonal transmission parameters. The

seasonal functions assigned to the transmission rates are also subjectively selected. A

possible alternative approach would be to allow an additional amplifier parameter on the

periodic part of the function to allow the range of values to increase for each period. Also,

it would be preferable to investigate if seasonality is increasing or decreasing in strength

over time, as this study assumes seasonality is constant. In addition, seasonality may not

necessarily effect the transmission parameters (little research is present as to what it does

effect), and this study acknowledges it makes the assumption that it does.
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8.5 Modelling Methods

8.5.1 Inference Methods

In an effort to calculate model parameters, established statistical inference methods were

implemented. Bayesian methods are typically used in estimating parameters within com-

partmental models. Two common methods used in epidemiology are (a) the Approximate

Bayesian Computation (ABC) rejection algorithm and (b) the Metropolis-Hastings algo-

rithm [47]. The Metropolis-Hastings algorithm is used when it’s difficult to sample from

the target distribution (e.g., when the prior isn’t conjugate to the likelihood). So you use

a proposal distribution to generate samples and accept/reject them based on the accep-

tance probability. Within this study, the ABC algorithm served as a method for obtaining

the initial parameter set for the Metropolis-Hastings algorithm. It was implemented de-

spite the algorithm itself being a legitimate methodology for calculating parameters. The

advantages of the Metropolis-Hasting algorithm is the posterior distribution it generates,

and the uncertainty statistics that can be calculated for parameters. The results of both

inference methods approximately coincided for both methods for each model excluding

the migrant model with interaction (§6.4.4). The limitation of this method include the in-

ability to choose the optimal variance for the jump distributions used when proposing the

alternative parameter set.

When estimating parameters using these methods, as the number of parameters re-

quiring estimation increases, the more viable parameter sets can occur. This is due to an

increase in the number of dimensions which leads to more global minima occurring in

the sums of squares value. The study has not concluded that the parameter sets generated

are the sets that optimally fit the data, but rather happen to fit well when compared to

thousands of other simulations. Interpretation of the parameters can also become difficult

with inferential methods. For example, setting the usually positive death rate parameter to

µ =−103 may yield the smallest least squares value among all other simulations, however

verifying this value in any empirical sense is impossible. As such multiple parameters re-

quired estimating and implementation of the above algorithms was limited to only a few

parameters, namely the transmission parameters.
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8.5.2 Sensitivity and Scenario Methods

For the bio-mathematical and bio-statistical community to continue to have an impact in

important healthcare problems, it is clear that identifying uncertainty in models is of key

importance. Through classifying this uncertainty, we can identify the parameters that are

causing various model outputs. Some of the limitations to sensitivity analysis cited by

Drummond [36] include:

1. Variation of uncertain parameters one at a time ignores possible interaction between

parameters

2. The analyst has discretion as to which variables and what alternative values are

included in sensitivity analysis

3. Interpretation is arbitrary as there are not guidelines/standards as to what degree of

variation in results is acceptable evidence that the analysis is robust

The methods used in this study presented by Marino and colleagues [135] attempt to

overcome the first point. The partial rank correlation calculates the correlation between

an independent and dependent variable after the linear effects on the dependent variable

from the remaining variables are considered. In an attempt to overcome the second point,

data were used when possible to estimate the standard deviation and hence, the range

the parameter values could take within the sensitivity analysis. Given the parameter sets

calculated, this study provides a number of significant parameters from the partial rank

correlation p-values. Thus the partial ranked correlations can be informative in terms of

what parameters to target if we want to achieve specific goals. For example, within the

seasonal model an increase in the recruitment rate parameter was shown to significantly

increase the recovered population towards the end of the simulation, whereas an increase

in the death rate parameter and the proportion of individuals being recruited into the sus-

ceptible compartment resulted in a decline in the recovered population towards the end
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of the simulation. Hence, if a change in the number of recovered or immune individu-

als within the population was required, attempting an intervention to increase or decrease

these parameters would yield the desired results.

8.6 Conclusion

In addition to the extending the overall discussion presented throughout this paper, in this

chapter we also acknowledged some limitations of the study’s methodology. The study’s

approach to modelling was discussed and it was posited that other approaches could also be

taken. Foreign-born TB was discussed and compared to multiple other countries. Common

trends were seen to be emerging. In relation to the seasonality of TB, possible causes of

this attribute were considered and a comparison made to other research which considered

the the timing of intervention strategies. The limitations of the methodologies used were

then discussed and, in particular, the use of inferential methods for parameter estimation.

The following chapter concludes the thesis.
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Chapter 9

Conclusion and Further Work

9.1 Introduction

This thesis presented a range of recognised statistical and mathematical methodologies

used in epidemiology. Two deterministic models were constructed from classical epidemic

models and simulated to model TB infections within in the context of an Irish setting. The

models considered a seasonal fluctuation in disease notifications and the impact of migrant

individuals on total notifications. This chapter summarises the overall results in terms of

the main objectives of the thesis and the individual aims of each chapter. The objectives

of this study included:

• To describe and analyse existing cross-sectional TB data from a national source.

• To derive a deterministic model that accurately models underlying TB dynamics and

incorporates attributes of the aforementioned analysis.

• For each model derive R0, the basic reproductive number, for calculation and for

sensitivity analysis.

• Given data and statistical inference methods, estimate epidemiological parameters

and initial conditions for each model.
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• For each model, simulate and extrapolate the underlying dynamics and numerically

calculate the basic reproductive number.

• Perform a sensitivity analysis on the parameters and provide a scenario analysis for

each model.

A brief summary of original findings is now presented to give context to the following

conclusions section.

9.2 Summary Of Original Findings

Some of the original findings this study has produced includes:

• A thorough descriptive investigation on Irish national TB datasets.

• Proposal of seasonality in Irish TB notifications.

• Multivariate descriptives for TB.

• Construction three deterministic models with application to TB.

• Calculation of a basic reproductive number for each system proposed.

• Estimation of a range of epidemiological parameters, each with their own individual

interpretation.

• Estimation of the basic reproductive number for each system accompanied by un-

certainty intervals.

• Sensitivity analysis provided on the aforementioned parameters

• A scenario analysis of two models being considered.
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9.3 Conclusions

9.3.1 Mathematical Conclusions

In §5 and §6 two deterministic differential equation models of Tuberculosis were con-

structed and simulated to model the Irish population. For each model attempts were made

at deriving the basic reproductive number, R0, a value that can be calculated from the

model parameters. When R0 has a value greater than one, implies an outbreak will occur

in the population.

For the model considering seasonality, an averaging method was used to calculate the basic

reproductive number. Given the parameters estimated, it was determined R0 = 0.65 < 1

with a 95% credibility interval (0.43,0.87) which implies an outbreak would not be im-

minent in the total population. It was calculated, using a sensitivity analysis in §7, that

the three parameters to target in order to reduce R0 were (i) the proportion of individuals

entering into the recovered class w1, (ii) the transmission rate β1, and (iii) the infectious

death rate d. To reduce the number of overall infections it was identified that targeting the

transmission rate β0, the progression rate k0, the quick progression rate q, and the infec-

tious death rate d could result in a decrease in the total number of infections. Overall, the

model forecast a downward trend in notifications up until the year 2023.

In §7 a scenario analysis was carried out. It was concluded that the number of infec-

tions could be effectively reduced if the relevant parameters were changed at the time when

the model was witnessing an increase in the number of infections. The numerical results

also suggested a seasonal or pulsed intervention could be more effective in reducing cases

annually.

For the model considering migration, the basic reproductive number could not be de-

rived. This was due to the fact that the model was designed to recruit latent infections

at a constant rate. Because of this a disease-free equilibrium could not be calculated. To

compensate for this limitation a basic reproductive number was calculated assuming no
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recruitment was occurring in the latent infectious class. Two models were constructed:

one that considered no interaction occurring between the migrant and local populations,

another that considered an interaction.

For the model not considering an interaction, the basic reproductive number was cal-

culated to be R(0)L = 0.201 with a 95% credibility interval (0.05,0.37) which implies an

outbreak was not imminent in the local population. For the migrant population the basic

reproductive number was calculated to be R(0)M = 1.75 with a 95% credibility interval

(1.06,2.72). This implies an outbreak has occurred in the migrant population. It was also

calculated, using a sensitivity analysis, that the four parameters to target in order to reduce

the basic reproductive number in the migrant population R(0)M were (i) the transmission

rate β1, (ii) the infectious death rate µIM , (iii) the recovery rate r1, and (iv) the proportion

of individuals being recruited into the recovered class v2. For the the basic reproductive

number R(0)L of the local population, it was identified the three key parameters to target

included (i) the transmission rate β2, (ii) the proportion of recruits entering into the sus-

ceptible compartment w1, and (iii) the infectious death rate µIL

For the model considering an interaction, the basic reproductive number was calcu-

lated to be R0 = 0.832 < 1 with 95% credibility interval (0.26,1.75) which implies an

there exists a chance an outbreak occurred in the population. It was also calculated, using

sensitivity analysis, that the two parameters to target in order to reduce the basic repro-

ductive number were (i) the transmission rate β1, and (ii) infectious death rate µIM , both in

the migrant population. To target the total number of infections, the appropriate parameter

to target in this instance was the progression rate of the local exposed class k2. When

simulation took place of this model the mean residuals were the worst relative to all other

models indicating a poor fit.

For both migrant models a downward trend was identified when the models were ex-

trapolated up until the year 2023. An increase is to be expected in the migrant infectious,
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however, overall notifications are expected to decline.

Overall, the epidemiological parameters estimated contribute to on-going TB research.

With no prior modelling completed in an Irish setting, the construction and simulation of

viable models can form a basis for future research to be conducted.

9.3.2 Epidemiological Conclusions

Targeting key parameters in each model can serve as a method of disease prevention.

Some of the key parameters identified included the transmission and death rate parameters

which, as discussed in §7, indicate the importance of isolating infectious individuals to

reduce overall notifications and prevent disease outbreak.

The numerical extrapolations of each model took place from 2013 to 2023. For the

seasonal model (§5.6.3), the total number of infections projected are are expected to de-

crease approximately seven to eight cases per annum from 2013 to 2023. For the migrant

model with no interaction (§6.5.4), it was projected that the number of infectious migrants

would be expected to increase four to five cases per annum, and expected to increase one

to three cases per year if interaction is included. For the local population, it was projected

that the infectious population would be expected to decrease by between eight to 10 cases

per year for the model not considering interaction and to decrease 10 to 12 cases a year if

interaction is considered.

In §7 a scenario analysis was carried out and additional analysis was conducted on

the basic reproductive number for the local population. After numerical simulation took

place, the effects of altering the proportions of the population entering into the susceptible

class was evaluated. If the model is allowed to continue indefinitely, it was found that the

time point of vaccination alteration is arbitrary. Through numerical calculation it was also

determined that the basic reproductive number would remain less than one regardless of

how many newly recruited individuals enter into the susceptible compartment.
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For the seasonal model, given a six month intervention, it was numerically calculated

that January to June was the optimal time of year to implement an intervention. In this

way, the total number of infectious individuals was minimised numerically. It was also

concluded numerically that the larger impact an intervention has on the underlying param-

eters, the more cost effective a six month intervention can be when compared to that of a

constant, ongoing intervention.

9.4 Further Work

In §4, an exploratory analysis is conducted in which seasonality was concluded as being

a significant factor influencing notification rates. This study assumed seasonality effects

all demographics similarly, however it only reviewed seasonality for categories of gender,

employment status, currently living status, birth country, race/ethnicity, and refugee sta-

tus. Whether there exists additional categories which would be significantly effected by

seasonality is unknown. Possible future work could include spatial or temporal analysis to

examine the effects of seasonality in TB, or to examine the effects of sunlight on vitamin

D levels which may be influence seasonality.

The models used in this thesis were based on the work of Jai and colleagues [93] and

Liu and colleagues [89]. Although the models incorporated various attributes of TB in

Ireland, they may simplify the underlying dynamics and can be improved. For example,

it was seen that TB effects vulnerable populations such as homeless, unemployed, and

refugees. Constructing a model to consider these populations could be considered in fu-

ture work. Construction of such a model would enable a more accurate evaluation of a

vaccination strategy that targets such vulnerable groups.

Analytical work could be completed in the derivation of the basic reproductive num-

ber for the seasonal and migrant models, as problems arose for each derivation for the

each one. For the seasonal model, the basic reproductive number should be a dimension-
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less rate, and not incorporate seasonality. Further work to calculate the basic reproductive

number using numerical methods instead of deriving an explicit formula would be a possi-

ble approach here to overcome the seasonality. For the migrant model, working towards a

solution of obtaining an R0 when there is a larger, global, system contributing to notifica-

tions. This recommendation is based on the finding of a basic reproductive number greater

than one for this population, which warrants further investigation.

For the three models considered, additional work could be carried out on analysis of

the endemic equilibrium states. The conditions of stability of each equilibrium could be

considered. The predictability of each model could also be examined against other models,

such as linear regression or time series models that incorporate seasonality. These model

could be used as a baseline to measure the predictability of epidemic models.

The model with interaction (§6.4) could be improved to simulate Irish data. This is evi-

dent in the result of poor residual statistics relative to other models. Further work including

application of restrictions to the interaction parameters β ∗1 and β ∗2 could be completed or

more statistical analysis to fully quantify the level of interaction occurring, as the mod-

els proposed in this study can be considered over simplified. Statistical methods such as

cross-correlation, for instance, could be implemented to achieve this.

To conclude, the research demonstrates how a range of models can be implemented

for the benefit of surveillance, treatment, policy, and provision. While limitations are

highlighted, the results presented can be used to refine existing strategies both in Ireland

and globally.
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Disease
Type (N)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Pulmonary 269 264 275 278 297 316 294 288 241 257 219 228
Extrapulmonary 96 105 120 129 126 132 129 164 150 122 104 128
Pulmonary &
Extrapulmonary

37 34 37 40 40 33 43 26 29 32 33 23

Unknown 8 3 1 1 0 0 1 1 0 2 0 0

Disease
Type (%)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Pulmonary 65.6% 65.0% 63.5% 62.1% 64.1% 65.7% 63.0% 60.1% 57.4% 62.2% 61.0% 59.8%
Extrapulmonary 23.4% 25.9% 27.7% 28.8% 27.2% 27.4% 27.6% 34.2% 35.7% 29.5% 29.0% 33.6%
Pulmonary &
Extrapulmonary

9.0% 8.4% 8.5% 8.9% 8.6% 6.9% 9.2% 5.4% 6.9% 7.7% 9.2% 6.0%

Unknown 2.0% 0.7% 0.2% 0.2% 0.0% 0.0% 0.2% 0.2% 0.0% 0.5% 0.0% 0.0%

Disease
Type
Incidence

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Pulmonary 6.87 6.63 6.80 6.73 7.02 7.22 6.56 6.35 5.29 5.62 4.78 4.96
Extrapulmonary 2.45 2.64 2.97 3.12 2.98 3.02 2.88 3.62 3.29 2.67 2.27 2.79
Pulmonary &
Extrapulmonary

0.94 0.85 0.91 0.97 0.94 0.75 0.96 0.57 0.64 0.70 0.72 0.50

Table A.1: Notifications (Count, Percentage, Incidence) Categorized By Disease Type
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Statistics
(N) Min Q1 Median Q3 Max Mean S.Dev Mean

Change
Pulmonary 219 253 272 289.5 316 268.83 28.97 -3.73
Extrapulmonary 96 116.25 127 129.75 164 125.42 18.95 2.91
Pulmonary &
Extrapulmonary 23 31.25 33.5 37.75 43 33.92 5.93 -1.27

Unknown 0 0 1 1.25 8 1.42 2.27 -0.73

Statistics
(%) Min Q1 Median Q3 Max Mean S.Dev Mean

Change
Pulmonary 57.4% 60.8% 62.6% 64.4% 65.7% 62.5% 2.6% -0.5%
Extrapulmonary 23.4% 27.4% 28.3% 30.6% 35.7% 29.2% 3.6% 0.9%
Pulmonary &
Extrapulmonary 5.4% 6.9% 8.5% 9.0% 9.2% 7.9% 1.3% -0.3%

Unknown 0.0% 0.0% 0.2% 0.3% 2.0% 0.3% 0.6% -0.2%

Statistics
Incidence Min Q1 Median Q3 Max Mean S.Dev Mean

Change
Pulmonary 4.78 5.54 6.59 6.82 7.22 6.23 0.84 -0.17
Extrapulmonary 2.27 2.66 2.92 3.04 3.62 2.89 0.37 0.03
Pulmonary &
Extrapulmonary 0.50 0.68 0.80 0.94 0.97 0.79 0.16 -0.04

Table A.2: Statistics(Count, Percentage, Incidence) Categorized By Disease Type
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Strain (N) 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Standard 410 405 431 445 459 474 465 478 418 410 354 377
MDR 0 1 2 2 4 7 2 1 2 3 5 0
XDR 0 0 0 1 0 0 0 0 0 0 0 0

Strain (%) 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Standard 100% 99.8% 99.5% 99.3% 99.1% 98.5% 99.6% 99.8% 99.5% 99.3% 98.6% 100%
MDR 0.0% 0.2% 0.5% 0.4% 0.9% 1.5% 0.4% 0.2% 0.5% 0.7% 1.4% 0.0%
XDR 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Strain
Incidence

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Standard 10.47 10.18 10.65 10.76 10.84 10.83 10.37 10.54 9.18 8.96 7.72 8.21
MDR 0.00 0.03 0.05 0.05 0.09 0.16 0.04 0.02 0.04 0.07 0.11 0.00
XDR 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Statistics
(N)

Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
Standard 354 408.75 424.5 460.5 478 427.17 38.83 -3.00
MDR 0 1 2 3.25 7 2.42 2.07 0.00
XDR 0 0 0 0 1 0.08 0.29 0.00

Statistics
(%)

Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
Standard 98.5% 99.2% 99.5% 99.8% 100% 99.4% 0.5% 0.0%
MDR 0.0% 0.2% 0.5% 0.8% 1.5% 0.6% 0.5% 0.0%
XDR 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1% 0.0%

Statistics
Incidence

Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
Standard 7.72 9.12 10.42 10.68 10.84 9.89 1.09 -0.21
MDR 0.00 0.02 0.05 0.07 0.16 0.06 0.05 0.00
XDR 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00

Table A.3: Notifications (Count, Percentage, Incidence) Categorized By Strain Type,

Statistics (Count, Percentage, Incidence) Categorized By Strain Type
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TB Caused
Death (N)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Yes 0 6 5 11 10 7 9 10 8 10 3 7
No 1 22 15 23 22 30 24 22 14 12 6 4
Unknown 409 378 413 414 431 444 434 447 398 391 350 370

TB Caused
Death (%)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Yes 0.0% 1.5% 1.2% 2.5% 2.2% 1.5% 1.9% 2.1% 1.9% 2.4% 0.8% 1.8%
No 0.2% 5.4% 3.5% 5.1% 4.8% 6.2% 5.1% 4.6% 3.3% 2.9% 1.7% 1.0%
Unknown 99.8% 93.1% 95.4% 92.4% 93.1% 92.3% 92.9% 93.3% 94.8% 94.7% 97.5% 97.1%

TB Caused
Death
Incidence
(per 106)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Yes 0.00 1.51 1.24 2.66 2.36 1.60 2.01 2.21 1.76 2.19 0.65 1.52

Statistics
(N)

Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
Yes 0 5.75 7.5 10 11 7.17 3.27 0.64
No 1 10.5 18.5 22.25 30 16.25 9.08 0.27
Unknown 350 387.8 411 431.8 447 406.6 30.39 -3.55

Statistics
(%)

Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
Yes 0.0% 1.4% 1.9% 2.1% 2.5% 1.6% 0.7% 0.2%
No 0.2% 2.6% 4.0% 5.1% 6.2% 3.7% 1.9% 0.1%
Unknown 92.3% 93.0% 94.0% 95.8% 99.8% 94.7% 2.4% -0.2%

Statistics
Incidence
(per 106)

Min Q1 Median Q3 Max Mean S.Dev
Mean

Change

Yes 0.00 1.44 1.68 2.19 2.66 1.64 0.75 0.14

Table A.4: Notifications (Count, Percentage, Incidence) Categorized By Death, Statistics

(Count, Percentage, Incidence) Categorized By Death
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N 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Male 260 252 257 268 279 296 280 300 261 238 217 240

Female 149 153 176 180 184 185 187 176 159 175 141 139

Unknown 1 1 0 0 0 0 0 3 0 0 1 2

Total 410 406 433 448 463 481 467 479 420 413 359 381

% 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Male 63.4% 62.1% 59.4% 59.8% 60.3% 61.5% 59.9% 62.6% 62.1% 57.6% 60.5% 63%

Female 36.3% 37.7% 40.7% 40.2% 39.7% 38.5% 40% 36.7% 37.9% 42.4% 39.3% 36.5%

Unknown 0.2% 0.3% 0.00% 0.00% 0.00% 0.00% 0.00% 0.63% 0.00% 0.00% 0.3% 0.5%

Incidence

(per 105)
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Male 13.36 12.75 12.77 13.00 13.18 13.51 12.51 13.29 11.54 10.48 9.56 10.56

Female 7.56 7.64 8.66 8.69 8.70 8.47 8.32 7.73 6.94 7.59 6.09 5.99

Table A.5: Notifications (Count, Percentage, Incidence) For The Variable Gender
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(N) Average

Change
N %

(N) Overal

Change
N %

Male -1.82 -0.45% Male -20 -7.69%

Female -0.91 -0.23% Female -10 -6.71%

Unknown 0.09 NA Unknown 1 100.00%

Statistics

(%)
Male Female Unknown

(N) Largest

Change
N %

Min 57.63% 36.34% 0.00% Male -39 -13.00%

Q1 59.92% 37.45% 0.00% Female -34 -19.43%

Median 60.99% 38.87% 0.00% Unknown -3 100%

Q3 62.26% 40.08% 0.00%

Max 63.41% 42.37% 0.63% Statistics For % Data Male Female

Mean 61.02% 38.82% 0.16% Min 9.56 5.99

S.Dev 1.72% 1.87% 0.23% Q1 11.29 7.40

Median 12.76 7.69

Q3 13.21 8.52

Max 13.51 8.70

Mean 12.21 7.70

S.Dev 1.34 0.95

Table A.6: Descriptive Statistics (Count, Percentage, Incidence) For The Variable Gender

Notifications
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Age
Category (N) 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

0-4 7 14 2 14 12 28 8 8 7 6 2 8
5-9 7 6 2 6 5 5 3 3 4 5 2 2
10-14 5 6 7 8 6 8 4 7 10 9 6 0
15-19 10 19 20 21 22 17 19 14 24 13 21 11
20-24 34 51 41 51 41 42 41 37 46 30 26 37
25-29 52 48 74 56 70 80 85 64 66 47 42 42
30-34 42 37 47 38 53 49 52 63 39 62 37 47
35-39 41 30 28 38 52 48 46 39 32 47 42 48
40-44 30 22 32 31 28 40 23 43 37 27 25 32
45-49 27 22 29 25 22 26 31 36 24 39 39 31
50-54 27 26 13 29 23 20 31 25 26 25 18 24
55-59 18 18 23 17 20 18 20 27 14 19 23 26
60-64 17 15 22 25 26 21 20 27 12 16 20 19
65-69 30 22 23 19 12 14 23 23 22 24 16 21
70-74 21 22 22 23 24 18 18 21 20 13 13 8
75-79 18 23 17 16 15 18 18 21 15 13 12 13
80-84 15 12 16 19 21 17 12 15 7 10 8 8
>=85 9 13 15 12 11 12 13 6 15 8 6 4
Unknown 0 0 0 0 0 0 0 0 0 0 1 0

Age
Category (%) 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

0-4 1.7% 3.4% 0.5% 3.1% 2.6% 5.8% 1.7% 1.7% 1.7% 1.5% 0.6% 2.1%
5-9 1.7% 1.5% 0.5% 1.3% 1.1% 1.0% 0.6% 0.6% 1.0% 1.2% 0.6% 0.5%
10-14 1.2% 1.5% 1.6% 1.8% 1.3% 1.7% 0.9% 1.5% 2.4% 2.2% 1.7% 0.0%
15-19 2.4% 4.7% 4.6% 4.7% 4.8% 3.5% 4.1% 2.9% 5.7% 3.1% 5.8% 2.9%
20-24 8.3% 12.6% 9.5% 11.4% 8.9% 8.7% 8.8% 7.7% 11.0% 7.3% 7.2% 9.7%
25-29 12.7% 11.8% 17.1% 12.5% 15.1% 16.6% 18.2% 13.4% 15.7% 11.4% 11.7% 11.0%
30-34 10.2% 9.1% 10.9% 8.5% 11.4% 10.2% 11.1% 13.2% 9.3% 15.0% 10.3% 12.3%
35-39 10.0% 7.4% 6.5% 8.5% 11.2% 10.0% 9.9% 8.1% 7.6% 11.4% 11.7% 12.6%
40-44 7.3% 5.4% 7.4% 6.9% 6.0% 8.3% 4.9% 9.0% 8.8% 6.5% 7.0% 8.4%
45-49 6.6% 5.4% 6.7% 5.6% 4.8% 5.4% 6.6% 7.5% 5.7% 9.4% 10.9% 8.1%
50-54 6.6% 6.4% 3.0% 6.5% 5.0% 4.2% 6.6% 5.2% 6.2% 6.1% 5.0% 6.3%
55-59 4.4% 4.4% 5.3% 3.8% 4.3% 3.7% 4.3% 5.6% 3.3% 4.6% 6.4% 6.8%
60-64 4.1% 3.7% 5.1% 5.6% 5.6% 4.4% 4.3% 5.6% 2.9% 3.9% 5.6% 5.0%
65-69 7.3% 5.4% 5.3% 4.2% 2.6% 2.9% 4.9% 4.8% 5.2% 5.8% 4.5% 5.5%
70-74 5.1% 5.4% 5.1% 5.1% 5.2% 3.7% 3.9% 4.4% 4.8% 3.1% 3.6% 2.1%
75-79 4.4% 5.7% 3.9% 3.6% 3.2% 3.7% 3.9% 4.4% 3.6% 3.1% 3.3% 3.4%
80-84 3.7% 3.0% 3.7% 4.2% 4.5% 3.5% 2.6% 3.1% 1.7% 2.4% 2.2% 2.1%
>=85 2.2% 3.2% 3.5% 2.7% 2.4% 2.5% 2.8% 1.3% 3.6% 1.9% 1.7% 1.0%
Unknown 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0%

Table A.7: Notifications (Count, Percentage) Categorized By Age
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Incidence
Age
Category 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

0-4 2.52 4.92 0.69 4.72 3.97 9.02 2.47 2.39 2.02 1.69 0.55 2.19
5-9 2.65 2.23 0.73 2.14 1.73 1.68 0.98 0.97 1.27 1.56 0.62 0.60
10-14 1.75 2.13 2.52 2.90 2.19 2.89 1.41 2.41 3.38 2.99 1.96 0.00
15-19 3.19 6.24 6.70 7.17 7.56 5.83 6.43 4.76 8.29 4.63 7.62 4.01
20-24 10.36 15.27 12.20 15.02 11.80 11.30 10.97 10.44 14.10 10.05 9.36 14.30
25-29 16.63 15.12 22.74 16.22 18.66 20.01 20.82 15.98 17.30 12.95 12.31 13.13
30-34 13.78 11.71 14.46 11.32 15.23 13.56 14.07 16.82 10.23 15.76 9.43 12.13
35-39 14.09 10.12 9.23 12.18 16.23 14.32 13.20 10.95 8.90 12.94 11.53 13.19
40-44 11.03 7.88 11.19 10.54 9.34 12.98 7.33 13.58 11.50 8.20 7.45 9.33
45-49 10.82 8.67 11.19 9.42 8.04 9.25 10.75 12.18 7.98 12.82 12.66 9.93
50-54 11.70 11.06 5.46 11.93 9.33 7.90 12.02 9.53 9.72 9.13 6.47 8.48
55-59 9.12 8.71 10.75 7.68 8.93 7.90 8.60 11.46 5.84 7.81 9.27 10.35
60-64 11.02 9.36 13.25 14.53 14.46 11.01 10.01 13.00 5.61 7.37 9.09 8.50
65-69 22.47 16.30 16.73 13.49 8.50 9.72 15.35 14.69 13.46 13.95 8.82 11.09
70-74 18.73 19.33 19.01 19.59 20.43 15.06 14.79 16.85 15.64 9.99 9.80 5.79
75-79 20.04 25.70 18.89 17.58 16.41 19.46 19.05 21.69 15.14 12.82 11.58 12.29
80-84 25.47 19.45 25.36 29.69 32.61 25.91 18.21 22.42 10.23 14.33 11.27 11.02
>=85 21.58 31.03 34.56 26.26 23.01 24.29 25.05 11.11 26.74 13.75 9.92 6.44

Statistics (N) Mean
Age Catgory Min Q1 Median Q3 Max Mean S.Dev Change
0-4 2 6.75 8.0 12.50 28 9.67 6.96 0.09
5-9 2 2.75 4.5 5.25 7 4.17 1.75 -0.45
10-14 0 5.75 6.5 8.00 10 6.33 2.61 -0.45
15-19 10 13.75 19.0 21.00 24 17.58 4.56 0.09
20-24 26 36.25 41.0 43.00 51 39.75 7.59 0.27
25-29 42 47.75 60.0 71.00 85 60.50 14.80 -0.91
30-34 37 38.75 47.0 52.25 63 47.17 9.12 0.45
35-39 28 36.50 41.5 47.25 52 40.92 7.77 0.64
40-44 22 26.50 30.5 33.25 43 30.83 6.53 0.18
45-49 22 24.75 28.0 32.25 39 29.25 6.09 0.36
50-54 13 22.25 25.0 26.25 31 23.92 4.93 -0.27
55-59 14 18.00 19.5 23.00 27 20.25 3.82 0.73
60-64 12 16.75 20.0 22.75 27 20.00 4.57 0.18
65-69 12 18.25 22.0 23.00 30 20.75 4.88 -0.82
70-74 8 16.75 20.5 22.00 24 18.58 4.87 -1.18
75-79 12 14.50 16.5 18.00 23 16.58 3.29 -0.45
80-84 7 9.50 13.5 16.25 21 13.33 4.56 -0.64
>= 85 4 7.50 11.5 13.00 15 10.33 3.68 -0.45
Unknown 0 0.00 0.0 0.00 1 0.08 0.29 0.00

Table A.8: Top: Notifications (Incidence) Categorized By Age. Bottom: Statistics Of

Count Data (N) For Age Categorized 256



Statistics (%) Mean
Age Catgory Min Q1 Median Q3 Max Mean S.Dev Change
0-4 0.5% 1.6% 1.7% 2.7% 5.8% 2.2% 1.4% 0.0%
5-9 0.5% 0.6% 1.0% 1.2% 1.7% 1.0% 0.4% -0.1%
10-14 0.0% 1.3% 1.5% 1.7% 2.4% 1.5% 0.6% -0.1%
15-19 2.4% 3.1% 4.3% 4.7% 5.8% 4.1% 1.1% 0.0%
20-24 7.2% 8.2% 8.8% 10.0% 12.6% 9.2% 1.7% 0.1%
25-29 11.0% 11.8% 13.0% 15.9% 18.2% 13.9% 2.5% -0.2%
30-34 8.5% 10.0% 10.6% 11.7% 15.0% 11.0% 1.8% 0.2%
35-39 6.5% 8.0% 9.9% 11.3% 12.6% 9.6% 1.9% 0.2%
40-44 4.9% 6.4% 7.1% 8.3% 9.0% 7.2% 1.3% 0.1%
45-49 4.8% 5.5% 6.6% 7.7% 10.9% 6.9% 1.8% 0.1%
50-54 3.0% 5.0% 6.1% 6.4% 6.6% 5.6% 1.1% 0.0%
55-59 3.3% 4.2% 4.4% 5.4% 6.8% 4.8% 1.1% 0.2%
60-64 2.9% 4.1% 4.7% 5.6% 5.6% 4.6% 0.9% 0.1%
65-69 2.6% 4.4% 5.1% 5.4% 7.3% 4.9% 1.3% -0.2%
70-74 2.1% 3.7% 4.6% 5.1% 5.4% 4.3% 1.0% -0.3%
75-79 3.1% 3.4% 3.7% 4.0% 5.7% 3.9% 0.7% -0.1%
80-84 1.7% 2.4% 3.0% 3.7% 4.5% 3.1% 0.9% -0.1%
>= 85 1.0% 1.9% 2.4% 2.9% 3.6% 2.4% 0.8% -0.1%
Unknown 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.1% 0.0%

Statistics
(Incidence) Mean

Age Catgory Min Q1 Median Q3 Max Mean S.Dev Change
0-4 0.55 1.93 2.43 4.16 9.02 3.09 2.32 -0.03
5-9 0.60 0.91 1.42 1.83 2.65 1.43 0.68 -0.19
10-14 0.00 1.91 2.30 2.89 3.38 2.21 0.90 -0.16
15-19 3.19 4.72 6.33 7.27 8.29 6.04 1.59 0.07
20-24 9.36 10.42 11.55 14.15 15.27 12.10 2.07 0.36
25-29 12.31 14.62 16.43 19.00 22.74 16.82 3.27 -0.32
30-34 9.43 11.61 13.67 14.65 16.82 13.21 2.27 -0.15
35-39 8.90 10.74 12.56 13.42 16.23 12.24 2.19 -0.08
40-44 7.33 8.12 9.94 11.27 13.58 10.03 2.11 -0.15
45-49 7.98 9.10 10.34 11.44 12.82 10.31 1.70 -0.08
50-54 5.46 8.33 9.43 11.22 12.02 9.39 2.10 -0.29
55-59 5.84 7.88 8.82 9.54 11.46 8.87 1.52 0.11
60-64 5.61 8.94 10.51 13.06 14.53 10.60 2.82 -0.23
65-69 8.50 10.74 13.72 15.59 22.47 13.71 3.94 -1.03
70-74 5.79 13.59 16.25 19.09 20.43 15.42 4.65 -1.18
75-79 11.58 14.56 18.24 19.61 25.70 17.55 4.16 -0.71
80-84 10.23 13.56 20.94 25.58 32.61 20.50 7.61 -1.31
>= 85 6.44 13.09 23.65 26.38 34.56 21.14 8.85 -1.38

Table A.9: Top: Statistics Of Percentage Data (%) Categorized By Age. Bottom: Statistics

Of Incidence Data (Incidence) Categorized By Age
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Emplyoment
Status (N)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Employed 128 113 155 142 164 171 185 156 119 104 107 102
Unemployed 85 71 56 59 88 92 84 121 92 91 69 96
Housewife/
Husband

49 33 44 39 42 33 38 35 36 30 33 38

Retired 70 78 84 75 74 73 66 77 65 45 50 44
Student 21 40 47 54 39 44 37 41 64 36 43 26
Other 25 27 10 24 23 24 27 30 15 20 15 14
Child 0 1 0 0 0 0 0 0 0 0 0 0
Unknown 32 43 37 55 33 44 30 19 29 87 42 61

Emplyoment
Status (%)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Employed 31.2% 27.8% 35.8% 31.7% 35.4% 35.6% 39.6% 32.6% 28.3% 25.2% 29.8% 26.8%
Unemployed 20.7% 17.5% 12.9% 13.2% 19.0% 19.1% 18.0% 25.3% 21.9% 22.0% 19.2% 25.2%
Housewife/
Husband

11.5% 8.1% 10.2% 8.7% 9.1% 6.9% 8.1% 7.3% 8.1% 7.3% 9.2% 10.0%

Retired 17.1% 19.2% 19.4% 16.7% 16.0% 15.2% 14.1% 16.1% 15.5% 10.9% 13.9% 11.5%
Student 5.1% 9.9% 10.9% 12.1% 8.4% 9.1% 7.9% 8.6% 15.2% 8.7% 12.0% 6.8%
Other 6.1% 6.7% 2.3% 5.4% 5.0% 5.0% 5.8% 6.3% 3.6% 4.8% 4.2% 3.7%
Child 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Unknown 7.8% 10.6% 8.5% 12.3% 7.1% 9.1% 6.4% 4.0% 6.9% 21.1% 11.7% 16.0%

Emplyoment
Status
(Incidence)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Employed 4.36 3.80 5.10 4.51 5.01 5.07 5.48 5.18 4.11 3.63 3.73 3.41
Unemployed 46.67 36.30 27.05 30.42 45.63 43.85 29.59 17.67 11.62 10.97 8.32 13.65

Table A.10: Notifications (Count, Percentage, Incidence) Categorized By Employment

Status
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Statistics (N) Mean
Employment
Status

Min Q1 Median Q3 Max Mean S.Dev Change

Employed 102 111.5 135 158 185 137.17 28.75 -2.36
Unemployed 56 70.5 86.5 92 121 83.67 17.86 1.00
Housewife/
Husband

30 33 36.5 39.75 47 37.17 5.13 -0.82

Retired 44 61.25 71.5 75.5 84 66.75 13.40 -2.36
Student 21 36.75 40.5 44.75 64 41.00 11.35 0.45
Other 10 15 23.5 25.5 30 21.17 6.28 -1.00
Housewife 0 0 0 0 2 0.33 0.78 -0.18
Child 0 0 0 0 1 0.08 0.29 0.00
Unknown 19 31.5 39.5 46.75 87 42.67 18.10 2.64

Statistics (%) Mean
Employment
Status

Min Q1 Median Q3 Max Mean S.Dev Change

Employed 25.2% 28.2% 31.5% 35.5% 39.6% 31.6% 4.3% -0.4%
Unemployed 12.9% 17.9% 19.2% 21.9% 25.3% 19.5% 3.9% 0.4%
Housewife/
Husband

6.9% 7.9% 8.4% 9.4% 11.5% 8.7% 1.4% -0.1%

Retired 10.9% 14.1% 15.7% 16.8% 19.4% 15.5% 2.6% -0.5%
Student 5.1% 8.3% 8.9% 11.1% 15.2% 9.6% 2.7% 0.2%
Other 2.3% 4.1% 5.0% 5.9% 6.7% 4.9% 1.3% -0.2%
Child 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1% 0.0%
Unknown 4.0% 7.1% 8.8% 11.8% 21.1% 10.1% 4.7% 0.7%

Statistics Min Q1 Median Q3 Max Mean S.Dev
Mean
Change

Employed 3.41 3.78 4.43 5.07 5.48 4.45 0.71 -0.09
Unemployed 8.32 13.14 28.32 38.19 46.67 26.81 14.24 -3.00

Table A.11: Descriptive Statistics (Count, Percentage, Incidence) For The Variable Em-

ployment Status
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Current
Living (N)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Home 342 359 364 380 396 431 410 429 382 302 294 313
Hostel 17 8 11 18 17 9 19 17 6 6 4 7
B&B/Hotel 6 0 2 1 3 1 2 1 1 2 2 0
Homeless 6 2 5 0 7 5 3 2 1 1 1 3
Prison 2 0 2 3 3 1 1 2 0 12 3 1
Institution 14 3 11 12 9 11 12 10 5 9 4 4
Other 6 8 13 12 14 11 8 6 10 8 8 2
Unknown 17 26 25 22 14 12 12 12 15 73 43 51

Current
Living (%)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Home 83.4% 88.4% 84.1% 84.8% 85.5% 89.6% 87.8% 89.6% 91.0% 73.1% 81.9% 82.2%
Hostel 4.1% 2.0% 2.5% 4.0% 3.7% 1.9% 4.1% 3.5% 1.4% 1.5% 1.1% 1.8%
B&B/Hotel 1.5% 0.0% 0.5% 0.2% 0.6% 0.2% 0.4% 0.2% 0.2% 0.5% 0.6% 0.0%
Homeless 1.5% 0.5% 1.2% 0.0% 1.5% 1.0% 0.6% 0.4% 0.2% 0.2% 0.3% 0.8%
Prison 0.5% 0.0% 0.5% 0.7% 0.6% 0.2% 0.2% 0.4% 0.0% 2.9% 0.8% 0.3%
Institution 3.4% 0.7% 2.5% 2.7% 1.9% 2.3% 2.6% 2.1% 1.2% 2.2% 1.1% 1.0%
Other 1.5% 2.0% 3.0% 2.7% 3.0% 2.3% 1.7% 1.3% 2.4% 1.9% 2.2% 0.5%
Unknown 4.1% 6.4% 5.8% 4.9% 3.0% 2.5% 2.6% 2.5% 3.6% 17.7% 12.0% 13.4%

Current
Living
Incidence

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Prison 20.58 0.00 22.68 34.54 30.93 10.30 9.15 16.21 0.00 86.01 21.65 7.66
Homeless Na Na Na Na Na Na Na Na Na 26.26 Na Na

Table A.12: Notifications (Count, Percentage, Incidence) Categorized By Current Living
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Statistics

(N)
Min Q1 Median Q3 Max Mean S.Dev

Mean

Change

Home 294 334.75 372 399.5 431 366.83 46.90 -2.64

Hostel 4 6.75 10 17 19 11.58 5.60 -0.91

B&B/Hotel 0 1 1.5 2 6 1.75 1.60 -0.55

Homeless 0 1 2.5 5 7 3.00 2.26 -0.27

Prison 0 1 2 3 12 2.50 3.18 -0.09

Institution 3 4.75 9.5 11.25 14 8.67 3.73 -0.91

Other 2 7.5 8 11.25 14 8.83 3.38 -0.36

Unknown 12 13.5 19.5 30.25 73 26.83 19.23 3.09

Statistics

(%)
Min Q1 Median Q3 Max Mean S.Dev

Mean

Change

Home 73.1% 83.1% 85.2% 88.7% 91.0% 85.1% 4.9% -0.1%

Hostel 1.1% 1.7% 2.3% 3.8% 4.1% 2.6% 1.2% -0.2%

B&B/Hotel 0.0% 0.2% 0.3% 0.5% 1.5% 0.4% 0.4% -0.1%

Homeless 0.0% 0.3% 0.6% 1.1% 1.5% 0.7% 0.5% -0.1%

Prison 0.0% 0.2% 0.4% 0.7% 2.9% 0.6% 0.8% 0.0%

Institution 0.7% 1.2% 2.1% 2.5% 3.4% 2.0% 0.8% -0.2%

Other 0.5% 1.7% 2.1% 2.5% 3.0% 2.0% 0.7% -0.1%

Unknown 2.5% 2.9% 4.5% 7.8% 17.7% 6.5% 5.0% 0.8%

Statistics

Incidence
Min Q1 Median Q3 Max Mean S.Dev

Mean

Change

Homeless 0 8.78 18.40 24.74 86.01 21.64 23.05 -1.17

Prison 26.26 26.26 26.26 26.26 26.26 26.26 Na Na

Table A.13: Statistics (Count, Percentage, Incidence) Categorized By Current Living
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Race/
Ethnic
(N)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

White 291 312 301 325 329 320 296 300 266 207 196 198
South
Asian

33 25 37 43 38 65 74 69 69 45 41 48

Black 47 25 47 41 55 53 48 72 47 42 41 32
Irish
Traveller

1 1 1 1 0 1 1 1 2 4 2 12

East/South
East Asian

7 10 11 22 13 23 30 18 19 30 21 27

Other 4 4 7 5 11 8 7 9 5 6 18 1
Unknown 27 29 29 11 17 11 11 10 12 79 40 63

Race/
Ethnicity
(%)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

White 71.0% 76.8% 69.5% 72.5% 71.1% 66.5% 63.4% 62.6% 63.3% 50.1% 54.6% 52.0%
South
Asian

8.0% 6.2% 8.5% 9.6% 8.2% 13.5% 15.8% 14.4% 16.4% 10.9% 11.4% 12.6%

Black 11.5% 6.2% 10.9% 9.2% 11.9% 11.0% 10.3% 15.0% 11.2% 10.2% 11.4% 8.4%
Irish
Traveller

0.2% 0.2% 0.2% 0.2% 0.0% 0.2% 0.2% 0.2% 0.5% 1.0% 0.6% 3.1%

East/South
East Asian

1.7% 2.5% 2.5% 4.9% 2.8% 4.8% 6.4% 3.8% 4.5% 7.3% 5.8% 7.1%

Other 1.0% 1.0% 1.6% 1.1% 2.4% 1.7% 1.5% 1.9% 1.2% 1.5% 5.0% 0.3%
Unknown 6.6% 7.1% 6.7% 2.5% 3.7% 2.3% 2.4% 2.1% 2.9% 19.1% 11.1% 16.5%

Race/
Ethnicity
Incidence

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

White 7.88 8.31 7.89 8.39 8.36 8.01 7.30 7.29 6.37 4.89 4.56 4.55
Black 169.6 78.46 130.5 102.1 124.1 109.3 91.22 126.8 77.14 64.54 59.22 43.61
Asian 151.1 106.3 121.8 141.7 97.43 149.6 159.3 121.3 112.5 88.56 68.01 76.82
Irish
Traveller

6.00 5.53 5.12 4.77 0.00 4.20 3.97 3.75 7.13 13.56 6.47 37.10

Other 7.84 8.02 14.37 10.51 23.69 17.66 15.85 20.93 11.94 14.73 45.48 2.60
Unknown 36.54 39.46 39.67 15.13 23.51 15.30 15.38 14.06 16.97 112.3 57.20 90.61

Table A.14: Notifications (Count, Percentage, Incidence) For The Variable Race/Ethnicity
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Statistics (N) Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
White 196 251.3 298 314 329 278.4 50.04 -8.45
South
Asian

25 37.75 44 66 74 48.92 16.22 1.36

Black 25 41 47 49.25 72 45.83 11.74 -1.36
Irish
Traveller

0 1 1 2 12 2.25 3.22 1.00

East/South
East Asian

7 12.5 20 24 30 19.25 7.75 1.82

Other 1 4.75 6.5 8.25 18 7.08 4.32 -0.27
Unknown 10 11 22 31.75 79 28.25 22.44 3.27

Statistics (%) Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
White 50.1% 60.6% 65.0% 71.0% 76.8% 64.5% 8.5% -1.7%
South
Asian

6.2% 8.5% 11.2% 13.7% 16.4% 11.3% 3.3% 0.4%

Black 6.2% 9.9% 10.9% 11.4% 15.0% 10.6% 2.1% -0.3%
Irish
Traveller

0.0% 0.2% 0.2% 0.5% 3.1% 0.6% 0.9% 0.3%

East/South
East Asian

1.7% 2.7% 4.7% 6.0% 7.3% 4.5% 1.9% 0.5%

Other 0.3% 1.1% 1.5% 1.7% 5.0% 1.7% 1.2% -0.1%
Unknown 2.1% 2.4% 5.1% 8.1% 19.1% 6.9% 5.8% 0.9%

Statistics
Incidence

Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
White 4.55 6.00 7.59 8.09 8.39 6.98 1.51 -0.30
Black 43.61 73.99 96.65 124.8 169.6 98.05 36.04 -11.46
Asian 68.01 95.21 116.9 143.7 159.3 116.2 30.16 -6.75
Irish
Traveller

0.00 4.14 5.33 6.63 37.10 8.13 9.64 2.83

Other 2.60 9.89 14.55 18.48 45.48 16.14 10.94 -0.48
Unknown 14.06 15.36 30.03 44.06 112.3 39.68 32.21 4.91

Table A.15: Statistics (Count, Percentage, Incidence) For The Variable Race/Ethnicity
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Refugee/
Asylum
Seeker

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Yes 46 28 32 36 37 29 30 41 19 30 14 9
No 346 344 373 394 404 445 426 431 372 288 283 271
Unknown 18 34 28 18 22 7 11 7 29 95 62 101

Refugee/
Asylum
Seeker

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Yes 11.2% 6.9% 7.4% 8.0% 8.0% 6.0% 6.4% 8.6% 4.5% 7.3% 3.9% 2.4%
No 84.4% 84.7% 86.1% 87.9% 87.3% 92.5% 91.2% 90.0% 88.6% 69.7% 78.8% 71.1%
Unknown 4.4% 8.4% 6.5% 4.0% 4.8% 1.5% 2.4% 1.5% 6.9% 23.0% 17.3% 26.5%

Refugee/
Asylum
Seeker

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Yes 855.0 468.9 489.1 506.1 467.3 310.7 308.3 428.4 208.6 363.7 221.3 150.0

Statistics
(N)

Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
Yes 9 25.75 30 36.25 46 29.25 10.80 -3.36
No 271 330 372.5 409.5 445 364.8 59.73 -6.82
Unknown 7 16.25 25 41 101 36 32.54 7.55

Statistics
(%)

Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
Yes 0.02 0.06 0.07 0.08 0.11 0.07 0.02 -0.01
No 0.70 0.83 0.87 0.9 0.9 0.84 0.07 -0.01
Unknown 0.01 0.04 0.1 0.1 0.3 0.1 0.09 0.02

Statistics
Incidence

Min Q1 Median Q3 Max Mean S.Dev
Mean

Change
Yes 150.0 286.6 396.1 474.0 855.0 398.1 187.1 -64.09

Table A.16: Notifications (Count, Percentage, Incidence) And Statistics For The Variable

Refugee Status
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Risk
Factor

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Tobacco 1 2 2 2 5 1 0 4 7 3 0 0
Substance
Abuse

52 39 39 39 53 51 46 40 35 52 45 40

Immuno
Suppressive
Medication

1 8 5 8 7 3 8 6 6 16 14 11

Immuno
Suppressive
Illness

23 10 19 16 22 19 23 22 28 31 25 20

High
Endemicity
Affiliation

105 74 108 114 131 157 181 184 161 251 164 242

Diabetes 2 6 6 8 6 5 2 2 6 6 8 9
Contact 19 28 26 22 24 26 37 25 29 77 64 53
Anti-TNF 0 0 1 1 1 1 3 2 4 6 3 6
Other 17 36 27 23 32 29 36 47 60 37 0 0
Unspecified 10 4 6 3 9 7 9 16 5 20 0 0

Risk
Factor

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Tobacco 0.4% 1.0% 0.8% 0.8% 1.7% 0.3% 0.0% 1.1% 2.1% 0.6% 0.0% 0.0%
Substance
Abuse

22.6% 18.8% 16.3% 16.5% 18.3% 17.1% 13.3% 11.5% 10.3% 10.4% 13.9% 10.5%

Immuno
Suppressive
Medication

0.4% 3.9% 2.1% 3.4% 2.4% 1.0% 2.3% 1.7% 1.8% 3.2% 4.3% 2.9%

Immuno
Suppressive
Illness

10.0% 4.8% 7.9% 6.8% 7.6% 6.4% 6.7% 6.3% 8.2% 6.2% 7.7% 5.2%

High
Endemicity

Affiliation
45.7% 35.7% 45.2% 48.3% 45.2% 52.5% 52.5% 52.9% 47.2% 50.3% 50.8% 63.5%

Diabetes 0.9% 2.9% 2.5% 3.4% 2.1% 1.7% 0.6% 0.6% 1.8% 1.2% 2.5% 2.4%
Contact 8.3% 13.5% 10.9% 9.3% 8.3% 8.7% 10.7% 7.2% 8.5% 15.4% 19.8% 13.9%
Anti-TNF 0.0% 0.0% 0.4% 0.4% 0.3% 0.3% 0.9% 0.6% 1.2% 1.2% 0.9% 1.6%
Other 7.4% 17.4% 11.3% 9.7% 11.0% 9.7% 10.4% 13.5% 17.6% 7.4% 0.0% 0.0%
Unspecified 4.3% 1.9% 2.5% 1.3% 3.1% 2.3% 2.6% 4.6% 1.5% 4.0% 0.0% 0.0%

Table A.17: Frequency Of Risk Factor Notifications (Count, Percentage)
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Statistics
(N)

Min Q1 Median Q3 Max Mean S.Dev Mean Change

Tobacco 0 0.75 2 3.25 7 2.25 2.18 -0.09
Substance
Abuse

35 39 42.5 51.25 53 44.25 6.40 -1.09

Immuno
Suppressive
Medication

1 5.75 7.5 8.75 16 7.75 4.27 0.91

Immuno
Suppressive
Illness

10 19 22 23.5 31 21.50 5.45 -0.27

High
Endemicity
Affiliation

74 112.5 159 181.8 251 156.00 53.88 12.45

Diabetes 2 4.25 6 6.5 9 5.50 2.39 0.64
Contact 19 24.75 27 41 77 35.83 18.63 3.09
Anti-TNF 0 1 1.5 3.25 6 2.33 2.10 0.55
Other 0 21.5 30.5 36.25 60 28.67 17.37 -1.55
Unspecified 0 3.75 6.5 9.25 20 7.42 5.98 -0.91

Statistics
(%)

Min Q1 Median Q3 Max Mean S.Dev Mean Change

Tobacco 0.0% 0.3% 0.7% 1.0% 2.1% 0.7% 0.7% 0.0%
Substance
Abuse

10.3% 11.2% 15.1% 17.4% 22.6% 15.0% 3.9% -1.1%

Immuno
Suppressive
Medication

0.4% 1.8% 2.4% 3.3% 4.3% 2.5% 1.1% 0.2%

Immuno
Suppressive
Illness

4.8% 6.3% 6.7% 7.8% 10.0% 7.0% 1.4% -0.4%

High
Endemicity
Affiliation

35.7% 45.5% 49.3% 52.5% 63.5% 49.1% 6.6% 1.6%

Diabetes 0.6% 1.1% 1.9% 2.5% 3.4% 1.9% 0.9% 0.1%
Contact 7.2% 8.4% 10.0% 13.6% 19.8% 11.2% 3.8% 0.5%
Anti-TNF 0.0% 0.3% 0.5% 1.0% 1.6% 0.7% 0.5% 0.1%
Other 0.0% 7.4% 10.1% 11.8% 17.6% 9.6% 5.6% -0.7%
Unspecified 0.0% 1.4% 2.4% 3.3% 4.6% 2.3% 1.5% -0.4%

Table A.18: Statistics Of Risk Factor Notifications (Count, Percentage)
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Count 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Jan 34 28 32 32 27 32 43 40 30 25 27 35
Feb 31 30 34 38 45 25 45 29 39 54 34 29
Mar 35 30 39 33 40 46 42 45 34 43 30 28
Apr 35 37 46 39 44 70 53 48 40 27 34 45
May 24 36 43 47 45 44 39 25 29 30 42 30
Jun 37 38 36 43 46 45 32 60 54 49 26 37
Jul 47 40 29 31 41 48 43 56 36 37 27 46
Aug 30 27 36 36 38 42 39 31 42 27 29 41
Sept 32 37 31 35 28 30 33 35 20 27 22 21
Oct 35 40 36 40 43 37 38 36 28 32 33 33
Nov 32 37 33 31 33 26 36 37 42 35 26 19
Dec 38 26 36 43 31 31 24 37 26 27 29 17

Annual
Statistics 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Mean

Min 24 26 29 31 27 25 24 25 20 25 22 17 24.58
Q1 31.75 29.50 32.75 32.75 32.50 30.75 35.25 34.00 28.75 27.00 26.75 26.25 30.67
Median 34.50 36.50 36.00 37.00 40.50 39.50 39.00 37.00 35.00 31.00 29.00 31.50 35.54
Q3 35.50 37.25 36.75 40.75 44.25 45.25 43.00 45.75 40.50 38.50 33.25 38.00 39.90
Max 47 40 46 47 46 70 53 60 54 54 42 46 50.42
Range 23 14 17 16 19 45 29 35 34 29 20 29 25.83
IQ Range 3.75 7.75 4.00 8.00 11.75 14.50 7.75 11.75 11.75 11.50 6.50 11.75 9.23
Mean 34.17 33.83 35.92 37.33 38.42 39.67 38.92 39.92 35.00 34.42 29.92 31.75 35.77
Std.Dev 5.47 5.22 4.87 5.25 6.93 12.50 7.34 10.58 9.14 9.59 5.23 9.65 7.65
Skewness 0.68 -0.36 0.82 0.40 -0.62 1.19 -0.19 0.68 0.42 1.08 0.96 -0.05 0.42
Kurtosis 2.73 -1.69 0.49 -0.86 -1.23 2.12 1.09 -0.19 0.44 0.04 1.55 -0.99 0.29

Monthly
Statistics Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Mean

Min 25 25 28 27 24 26 27 27 20 28 19 17 24.42
Q1 27.75 29.75 32.25 36.5 29.75 36.75 34.75 29.75 25.75 33 29.75 26 30.98
Median 32 34 37 42 37.5 40.5 40.5 36 30.5 36 33 30 35.75
Q3 34.25 40.5 42.25 46.5 43.25 46.75 46.25 39.5 33.5 38.5 36.25 36.25 40.31
Max 43 54 46 70 47 60 56 42 37 43 42 43 48.58
Range 18 29 18 43 23 34 29 15 17 15 23 26 24.17
IQ Range 6.5 10.75 10 10 13.5 10 11.5 9.75 7.75 5.5 6.5 10.25 9.33
Mean 32.08 36.08 37.08 43.17 36.17 41.92 40.08 34.83 29.25 35.92 32.25 30.42 35.77
Std.Dev 5.37 8.46 6.23 10.99 8.23 9.54 8.59 5.77 5.75 4.10 6.17 7.17 7.20
Skewness 0.80 0.86 0.00 1.19 -0.21 0.33 0.11 -0.14 -0.47 -0.17 -0.74 0.00 0.13
Kurtosis 0.21 0.21 -1.48 2.55 -1.63 -0.08 -0.46 -1.67 -1.04 0.09 0.78 -0.08 -0.22

All Data Min Q1 Median Q3 Max Range IQR Mean S.Dev Skew Kurt
Statistic 17 30 35 41 70 53 11 35.77 8.3 0.73 1.53

Table A.19: Descriptive Statistics Of Notifications For Each Month Of Year
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Count 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Quarter 1 100 88 105 103 112 103 130 114 103 122 91 92
Quarter 2 96 111 125 129 135 159 124 133 123 106 102 112
Quarter 3 109 104 96 102 107 120 115 122 98 91 78 108
Quarter 4 105 103 105 114 107 94 98 110 96 94 88 69

Statistics Min Q1 Q2 Q3 Max Range IQ Range Mean S.Dev Skew Kurt
Quarter 1 88 98 103 112.5 130 42 14.5 105.25 12.56 0.57 -0.08
Quarter 2 96 109.75 123.5 130 159 63 20.25 121.25 17.24 0.64 0.80
Quarter 3 78 97.5 105.5 110.5 122 44 13 104.17 12.43 -0.56 0.48
Quarter 4 69 94 100.5 105.5 114 45 11.5 98.58 11.97 -1.33 2.57

Table A.20: Notifications (Count, Percentage, Incidence) Of Cases Categorized By Quar-

ter Of Year

Trend 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Quarter 1 106.17 106.42 106.93 110.86 113.47 112.59 112.47 114.60 110.01 99.97 94.29 97.71
Quarter 2 106.18 106.49 107.88 111.67 113.57 112.24 113.12 114.01 107.37 98.00 95.08 98.80
Quarter 3 106.19 106.56 108.83 112.48 113.68 111.89 113.77 113.41 104.72 96.04 95.87 99.90
Quarter 4 106.31 106.75 109.85 112.97 113.13 112.18 114.19 111.71 102.35 95.17 96.79 101.19

Seasonality 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Quarter 1 -5.59 -5.59 -5.59 -5.59 -5.59 -5.59 -5.59 -5.59 -5.59 -5.59 -5.59 -5.59
Quarter 2 13.59 13.59 13.59 13.59 13.59 13.59 13.59 13.59 13.59 13.59 13.59 13.59
Quarter 3 -2.68 -2.68 -2.68 -2.68 -2.68 -2.68 -2.68 -2.68 -2.68 -2.68 -2.68 -2.68
Quarter 4 -5.31 -5.31 -5.31 -5.31 -5.31 -5.31 -5.31 -5.31 -5.31 -5.31 -5.31 -5.31

Irrefularity 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Quarter 1 -0.58 -12.83 3.66 -2.27 4.12 -4.00 23.12 4.99 -1.42 27.62 2.30 -0.12
Quarter 2 -23.77 -9.08 3.53 3.74 7.84 33.18 -2.71 5.41 2.05 -5.59 -6.67 -0.39
Quarter 3 5.49 0.12 -10.15 -7.80 -3.99 10.79 3.91 11.27 -4.04 -2.36 -15.18 10.79
Quarter 4 4.01 1.57 0.47 6.34 -0.82 -12.87 -10.88 3.60 -1.03 4.15 -3.47 -26.87

Table A.21: The three additive components of quarterly notifications obtained from a

robust STL decomposition with flexible trend and fixed seasonality.
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Trend 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Jan 31.95 33.98 36.26 36.15 39.08 39.87 39.15 38.05 37.43 35.23 31.64 31.78
Feb 32.22 33.85 36.04 36.33 39.24 40.25 39.02 38.41 36.93 35.01 31.15 32.39
Mar 32.50 33.72 35.82 36.50 39.39 40.62 38.88 38.76 36.43 34.80 30.66 33.01
Apr 32.74 33.82 35.63 36.58 39.28 40.67 38.93 39.00 36.05 34.67 30.31 32.69
May 32.99 33.93 35.44 36.66 39.17 40.71 38.97 39.24 35.67 34.53 29.95 32.37
Jun 33.16 34.14 35.54 36.88 38.88 40.77 38.71 39.43 35.44 34.18 29.91 31.85
Jul 33.34 34.36 35.64 37.09 38.58 40.83 38.44 39.62 35.21 33.83 29.86 31.32
Aug 33.50 34.77 35.66 37.41 38.37 40.84 37.97 39.54 35.42 33.40 29.99 30.80
Sept 33.66 35.18 35.67 37.72 38.16 40.86 37.49 39.46 35.63 32.97 30.12 30.28
Oct 33.88 35.65 35.72 38.09 38.49 40.46 37.36 38.98 35.64 32.71 30.38 29.71
Nov 34.11 36.13 35.77 38.47 38.81 40.05 37.23 38.51 35.66 32.45 30.64 29.13
Dec 34.05 36.19 35.96 38.77 39.34 39.60 37.64 37.97 35.44 32.05 31.21 28.48

Seasonality 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Jan -3.82 -3.82 -3.82 -3.82 -3.82 -3.82 -3.82 -3.82 -3.82 -3.82 -3.82 -3.82
Feb 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
Mar 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14
Apr 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28
May 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
Jun 6.14 6.14 6.14 6.14 6.14 6.14 6.14 6.14 6.14 6.14 6.14 6.14
Jul 4.36 4.36 4.36 4.36 4.36 4.36 4.36 4.36 4.36 4.36 4.36 4.36
Aug -0.86 -0.86 -0.86 -0.86 -0.86 -0.86 -0.86 -0.86 -0.86 -0.86 -0.86 -0.86
Sept -6.41 -6.41 -6.41 -6.41 -6.41 -6.41 -6.41 -6.41 -6.41 -6.41 -6.41 -6.41
Oct 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
Nov -3.39 -3.39 -3.39 -3.39 -3.39 -3.39 -3.39 -3.39 -3.39 -3.39 -3.39 -3.39
Dec -5.20 -5.20 -5.20 -5.20 -5.20 -5.20 -5.20 -5.20 -5.20 -5.20 -5.20 -5.20

Irregularity 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Jan 5.88 -2.16 -0.44 -0.33 -8.26 -4.05 7.67 5.77 -3.60 -6.40 -0.82 7.05
Feb -1.38 -4.01 -2.19 1.52 5.61 -15.40 5.83 -9.56 1.92 18.83 2.69 -3.55
Mar 1.37 -4.86 2.05 -4.64 -0.53 4.24 1.98 5.10 -3.57 7.06 -1.80 -6.15
Apr -5.02 -4.10 3.10 -4.86 -2.56 22.06 6.80 1.72 -3.33 -14.94 -3.58 5.03
May -9.33 1.74 7.23 10.00 5.50 2.95 -0.31 -14.57 -7.00 -4.87 11.71 -2.70
Jun -2.30 -2.28 -5.68 -0.02 0.98 -1.91 -12.84 14.43 12.42 8.68 -10.05 -0.99
Jul 9.30 1.28 -11.00 -10.45 -1.94 2.81 0.20 12.02 -3.57 -1.19 -7.22 10.32
Aug -2.64 -6.91 1.20 -0.55 0.48 2.01 1.89 -7.68 7.44 -5.54 -0.13 11.05
Sept 4.75 8.23 1.74 3.69 -3.75 -4.45 1.92 1.95 -9.22 0.44 -1.71 -2.87
Oct 0.85 4.08 0.01 1.64 4.25 -3.72 0.37 -3.25 -7.91 -0.98 2.35 3.02
Nov 1.28 4.26 0.62 -4.08 -2.42 -10.67 2.16 1.88 9.73 5.93 -1.25 -6.75
Dec 9.15 -5.00 5.23 9.42 -3.15 -3.41 -8.44 4.23 -4.25 0.15 2.99 -6.28

Table A.22: Monthly notification additive components obtained from a robust STL de-

composition with flexible trend and fixed seasonality.
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Figure A.1: Monthly Notification Data With A Second, Fourth and Second on Fourth

Order Moving Average
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Appendix B

National TB Notifications form
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B. SOCIODEMOGRAPHIC DETAILS

A. PATIENT DETAILS

C. CLINICAL DETAILS

National Tuberculosis Notification Form v2.5
Page 1 of 4

Is this case linked to an outbreak?

BCG scar present UnkNoYes

Risk factors present (specify below) UnkNoYes

If other/additional risk factors present (please specify)

Age (years)

Date of Birth

Current/most recent occupation
    (within last 2 years)

Current employment status

Paid employment

Housewife/husband

Unemployed

Other (please specify):

Date contact tracing commenced

Date treatment commenced

Date of notification

Date diagnosed

Date of onset of symptoms

UnkNoYes

UnkNoYes

UnkNoYes

UnkNoYes

UnkNoYes

UnkNoYes

UnkNoYes

UnkNoYes

UnkNoYes

Anti-TNF treatment

Contact of case

Diabetes

Immunosuppressive illness

Other immunosuppressive medication

Born in country of high endemicity

Drug misuse

Alcohol misuse

Residence in country of high endemicity

CIDR EVENT ID HSE ID

Symptomatic NoYes

Chest x-ray

Active Non-cavitary TB

Active Cavitary TB

If other X-ray result, please specify:

Unk

CCA DED name/code

Hospital name

Hospital number

Treating Physician

If other notification source, please specify:

CountyHSE area

Patient forename Patient surname

Patient
address

School/
college
address
Work
address

Phone First notified by: Occupational Health

Hospital clinician
Laboratory
Public Health

GP

Other

Retired

Student

Other

Other

If YES, please specify outbreak code:

Current living status

Institution

Hostel

Prison

Home (private/rented)

B&B/hotel

Homeless

Other (please specify):

Country of birth

Ireland Other (please specify):

Sex: FemaleMale

If born outside Ireland, year of entry into Ireland:

Race or ethnic group

Black

White East/south east Asian descent

South Asian descent

Irish Traveller Other (please specify):

Refugee / asylum seeker UnkNoYes

This case was found by

Pre-employment screening

Presenting as case

Contact tracing

Immigrant screening

Post-mortem diagnosis

Other (please specify):

Inactive/Old TB

Pleural

Not done

Normal

Diagnosis (tick one only)

Pulmonary Extrapulmonary

Pulmonary & Extrapulmonary (P+E)

If Extrapulmonary or P+E, please specify site(s):

EP site 1

EP site 2

Was this case hospitalised due to TB? UnkNoYes

CT thorax

Not done

Normal Other CT resultAbnormal with cavitation

Abnormal without cavitation Unknown

If other CT result, please specify:

Did this case previously undergo TB screening in Ireland?

UnkNoYes
If yes,
please
specify:

History of BCG vaccination

If yes, year of BCG vaccination

UnkNoYes

Immune code Unk

Is this case currently on ARV* treatment?

Previous history of TB (specify below) UnkNoYes

UnkNoYes

UnkNoYes

Unk

(b) Previous treatment (>1 month)

(c.) Previous treatment completed

(a) Previous year of diagnosis

Yes

Positive

Yes
No

Negative

No



D. DIAGNOSTIC DETAILS

E. OUTCOME DETAILS

National Tuberculosis Notification Form v2.5
Page 2 of 4

Culture results

Direct sputum microscopy (DSM)

2nd DSM date:

(a) 1st DSM result

Not done

Negative
Positive

1st DSM date:

(b) 2nd DSM result

Not done

Negative
Positive

Nucleic acid amplification test (e.g. PCR)

If positive, were genetic resistance determinants to the following drugs
detected:

(a) 1st Culture result

1st Culture specimen type

1st Culture specimen site

2nd Culture specimen type

2nd Culture specimen site

(b) 2nd Culture result

Not done

Culture negative

Culture positive

Not done

Culture negative

Culture positive

MIRU-VNTR

Drug sensitivities (R= res, S = sens, ND = not done)
(Please fill for each drug used)

Sensitivity / resistance pattern (tick 1 only)

A) Pansensitive

B) MDR-TB

C) XDR-TB

UnkNoYes

Para-amino salicylic acid (PAS)

Prothionamide

Mycobacterium tuberculosis complex (MTC) isolated?

If YES, please tick species identified (1 species only)

M. tuberculosis

M. bovis

M. africanum

M. canetti M. microti

M. caprae

Histology specimen site

Histology Not doneNegativePositive

Microscopy of other specimens (e.g. BAL, gastric washings etc)

1st microscopy specimen type

2nd microscopy date:

(a) 1st microscopy result

Not done

Negative
Positive

1st microscopy date:

(b) 2nd microscopy result

Not done

Negative
Positive

2nd microscopy specimen type

Treatment Outcome
(at 12 months)

Treatment Outcome for MDR TB
(at 24 months)

Culture

Treatment Outcome for XDR TB
(at 36 months)

If YES, please specify new diagnosis

Case denotified (i.e. was diagnosis changed?) UnkNoYes

Case classification (tick 1 only): Possible ConfirmedProbable

Rifabutin

Streptomycin

1st line drugs

Isoniazid

Rifampicin

Ethambutol

Pyrazinamide

NDS R

Amikacin

Capreomycin

Ciprofloxacin

Kanamycin

2nd line drugs

Ofloxacin

NDS R

Moxifloxacin

Ethionamide

Positive for MTC Negative for MTC PCR not done

Isoniazid

Rifampicin

Unk

Unk

No

No

Yes

Yes

MTC lineage

NoYes Unk

If deceased, was TB the direct cause?

If deceased, date of death

If treatment completed, date of completion

Did drug resistance develop during treatment? UnkNoYes If YES: MDR XDR Other resistance

If other resistance, please specify:

Laboratory results : (Pulmonary cases ONLY):
Not doneNegPos Sputum n/a

Completed - failed

Completed - cured Completed - status unknown

Still on treatment

Interrupted

Lost to follow up Died

Transferred

Completed - failed

Completed - cured Completed - status unknown

Still on treatment

Interrupted

Lost to follow up Died

Transferred

Completed - failed

Completed - cured Completed - status unknown

Still on treatment

Interrupted

Lost to follow up Died

Transferred

Genotyping UnkNoYesMIRU done?

During treatment (at least 2 months)

Treatment end

Direct Sputum microscopy

Pos Not done Sputum N/ANeg

DOTS recommended? DOTS commenced? DOTS successful?
NoYes Unk NoYes Unk NoYes Unk

UnkNoYes



F. CONTACT TRACING DETAILS

National Tuberculosis Notification Form v2.5
Page 3 of 4

Is this case: Index case OR Contact of another case (please tick one)

If this case is a contact of another case, please complete the following questions:

CIDR Event ID  of index case

Nature of contact:
Family
School/college

WorkHealthcare setting
Longstay care facility Prison

If other, please specify:

Other

Name of index case
Date of notification of index case

Did this case comply with contact tracing? NoYes

COMPLETING DOCTOR SIGNATURE Tick section(s) completed:

Signature 1
Signature 2

EDC

Signature 5
Signature 4
Signature 3

Date 1
Date 2

Date 5
Date 4
Date 3

Section completed:
Section completed:

Section completed:
Section completed:
Section completed:

A B

COMMENTS



EU Case Definition for TB

National Tuberculosis Notification Form v2.5
Page 4 of 4

Irish standardised case definitions for notification of a TB case:
under S.I. No. 452/2011 Infectious Diseases (Amendment) Regulations 2011

Tuberculosis (Mycobacterium tuberculosis complex including; M. africanum, M. bovis, M. canetti, M. caprae,
M. microti, M. pinnipedii and M. tuberculosis)

Clinical Criteria - Any person with:

Signs, symptoms and/or radiological findings consistent with active tuberculosis in any site
AND
A clinician's decision to treat the person with a full course of anti-tuberculosis therapy

OR

A case discovered post-mortem with pathological findings consistent with active tuberculosis that would
have indicated anti-tuberculosis antibiotic treatment had the patient been diagnosed before dying

Possible case - A person meeting the clinical criteria without laboratory confirmation

Probable case - A person meeting the clinical criteria with at least one of the following:

Microscopy positive for acid-fast bacilli or equivalent fluorescent staining bacilli on light microscopy

OR

Detection of Mycobacterium tuberculosis complex nucleic acid in a clinical specimen

OR

Histological appearance of granulomata

Confirmed case - A person meeting the clinical criteria with:

Detection of M. tuberculosis complex nucleic acid in a clinical specimen
AND
Positive microscopy for acid-fast bacilli or equivalent fluorescent staining bacilli on light microscopy

OR

Isolation of M. tuberculosis complex (excluding M. bovis-BCG) from a clinical specimen

*ARV treatment: Anti-retroviral treatment

Abbreviations:
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Memorandum of Understanding between Trinity College Dublin (Dr. Ronan 

O’Toole, Professor Catherine Comiskey, Aidan Hanway, and Dr. Katy Tobin) and 

HSE- Health Protection Surveillance Centre (HSE-HPSC), regarding the 

provision of TB data for a study on  (i) Risk Factors associated with TB in Ireland  
 

April 2014 

 

The HSE- Health Protection Surveillance Centre (HSE-HPSC) has been collecting 

surveillance data on TB since 1998.  The collection of these data is a collaborative process 

with TB cases notified to regional departments of Public Health by clinicians and 

laboratories.  Data collected include all available clinical, microbiological, histological and 

epidemiological data. Surveillance forms are then collated in the regional departments of 

public health, where data were entered onto an Epi2000 database (NTBSS) up to 2011. Data 

from 2011onwards are reported via the Computerised Infectious Disease Reporting (CIDR) 

system. Each HSE area provides finalised annual data (with outcome information) to HSE-

HPSC. Data are validated with each area and national data are collated from which annual TB 

reports are produced.  

 

A team from Trinity College Dublin which includes Dr. Ronan O’Toole (Department of 

Clinical Microbiology, School of Medicine) and Professor Catherine Comiskey, Aidan Hanway,  

and Dr. Katy Tobin (School of Nursing and Midwifery, Trinity College Dublin) are currently 

collaborating with HSE-HPSC on exploring the following issue:  (i) risk factors associated 

with TB in Ireland. Mr. Hanway is using these data to form the basis of his PhD thesis. This 

work will be conducted in accordance with AMNCH/SJH Research Ethics Committee 

approval (Reference REC: 2013/3/12). 

 

 

(i) The aim of this work is to use bio-mathematical and bio-statistical modelling 

techniques to model the impact of host-specific and environmental risk factors on 

the development of TB in Ireland. Univariate and multivariate statistical analyses 

will be used to analyse data on risk factors for TB. TB case factors that will be 

analysed in this study include the following: 

Birth or Residence in a country of high endemicity 

Diabetes 

Alcohol or drug misuse 

Immunosuppressive illness or medication 

Contact with a confirmed case 

Homelessness (where data are available) 

Imprisonment (where data are available)  

Other risk factors where data are available 

 

Non linear ordinary differential equation compartment models will be generated. 

Using the refined models and the epidemiological parameters, a series of 

simulations and scenario analyses will be performed to predict the impact that 

increasing, or decreasing level of specific risk factors would have on the 

incidence of TB in Ireland. The knowledge generated will assist in identifying 

changes, or emerging trends, with respect to the effect of specific risk factors on 

TB incidence over time.  
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In order to facilitate the research outlined above, HSE-HPSC has made the national TB 

surveillance data available to the aforementioned team from Trinity College Dublin in order 

to further explore the possibilities for these studies. In addition, the aforementioned team will 

work with these data at TCD to explore their potential for use in the research.  

 

 In the above context, HSE-HPSC is requesting that they are advised of the progress of 

this research work e.g. used for PhD thesis or any other projects, publications etc.  It is 

critical that this request is met as HPSC have legal and ethical obligations as trustees of 

this national data.  

 

In the context of this study, if ethnicity data are used in the analyses, consultation will 

be made, and agreement sought with the Director of the Pavee Point Traveller and 

Roma Centre prior to publication of data or findings specifically referring to TB in the 

Irish Traveller population. This work will be conducted in accordance with 

AMNCH/SJH Research Ethics Committee approval (Reference REC: 2014/037 

2014/02).  
 

In addition, HSE-HPSC requests that it  be included as joint authors in any publications 

relating to these data as per the criteria outlined by the International Committee of 

Medical Journal Editors as outlined below (ICMJE) 

 

 Substantial contributions to the conception or design of the work; or the acquisition, 

analysis, or interpretation of data for the work; AND  

 Drafting the work or revising it critically for important intellectual content; AND  

 Final approval of the version to be published; AND  

 Agreement to be accountable for all aspects of the work in ensuring that questions 

related to the accuracy or integrity of any part of the work are appropriately 

investigated and resolved.  

The purpose of this memorandum is to outline the nature of the data being made available to 

the Trinity College team by HSE-HPSC and also to satisfy all parties involved that Data 

Protection legislation is not being breached.  

 

To facilitate the afore-mentioned research, HSE-HPSC will provide following data to the 

Trinity College team: 

 

- Anonymised data on the recording of host and environmental risk factors associated 

with the incidence of TB  

 

The HPSC-HSE will not provide the Trinity College team with any data that 

could be used to identify an individual under any circumstance. 

 

The Trinity College team will not seek to link-back the data received from HSE-

HPSC to any individual patient under any circumstance.   

 

The Trinity College team will also not share the data with any third party 

without prior agreement with HSE-HPSC. For the avoidance of doubt, TCD 
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employees and/students working on the dataset in conjunction with the Trinity 

College team are not considered third parties.  

 

Signed by: 
__________________________________________________ 

 

Dr. Ronan O’Toole (TCD):  
 

 
 

Date:                                16 April 2014  

__________________________________________________ 

 

Professor Catherine Comiskey (TCD):  

  
Date:                                 9 June 2014 

__________________________________________________ 

 

Aidan Hanway (TCD) 

 

 
Date:                                 9 June 2014 

__________________________________________________ 

 

 

Dr. Katy Tobin (TCD)  

 
 

Date:                                 9 June 2014  

__________________________________________________ 

 

 

 

Dr. Joan O’Donnell:   

(on behalf of HPSC)                                ____________________ 

 

 

Date:   
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s u m m a r y

The level of immigration from high tuberculosis (TB) burden countries (HBCs) which impacts on the
foreign-born TB notification rate is largely unknown. In this work, we performed a cross-sectional
analysis of epidemiological data from 2000 to 2013 from nine European countries: Austria, Denmark,
Finland, Hungary, Netherlands, Norway, Spain, Sweden, and the United Kingdom. Crude notification rates
were calculated for foreign- and native-born populations and a multiple-linear regression model pre-
dicting notification rates with HBC population data was generated. From 2000 to 2013, the population
percentage with a foreign birthplace increased on average each year in all nine countries, ranging
from þ0.11%/year in the Netherlands to þ0.66%/year in Spain. An annual increase in HBC migrants
above þ0.43% per year (95% Confidence Interval: 0.24%e0.63%) corresponded with higher TB notification
rates in the foreign-born population of the countries analyzed. This indicates that migration from HBCs
can exert a measurable effect on the foreign-born TB notification rate. However, an increase in the
foreign-born TB notification rate coincided with an average annual rise in national TB notification rates
only in countries, Norway (þ3.85%/year) and Sweden (þ2.64%/year), which have a high proportion
(>80%) of TB cases that are foreign-born.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

TB is on the decline in most European countries. In the World
Health Organization (WHO) European Region, the annual notifi-
cation rate of TB has fallen from 47.2 cases per 100,000 in 2003 [1]
to 39 cases per 100,000 in 2013 [2]. In the European Union (EU)
and European Economic Area (EEA), the notification rate has
continued to decrease from 19.8 per 100,000 in 2003 [3] to 12.7
per 100,000 in 2013 [2]. Within individual countries, there has also
been a shift in the demographics of TB during this time with an
increasing proportion of cases occurring in the foreign-born pop-
ulation. In the United Kingdom (UK), for example, the proportion
of TB cases that occur in the foreign-born population, as a per-
centage of total cases, rose from 51% in 2000 to 70% in 2013.

Foreign-born TB cases account for a high proportion of notifica-
tions in non-European high-income countries including Australia
(88%) [4], New Zealand (79.5%) [5], Canada (71%) [6], and the USA
(66%) [7].

It should be noted that a number of studies have found that
immigrants do not appear to be amajor source of TB for the native-
born population in Europe. Using IS6110 DNA fingerprinting and
spoligotyping, Barniol and co-workers in Germany determined
that of 16 mixed TB clusters, defined as clusters containing both
native- and foreign-born persons, 7 were first identified in
German-born individuals [8]. They estimated the proportion of
German TB cases that were caused by foreign-born cases to be
18.3% (95% CI: 8.3e28.3%) [8]. In Denmark, this proportion was
between 2.7% (95% CI: 2.0e3.6) and 5.8% (95% CI: 4.8e7.0) in terms
of cases in Danes caused by foreign-born cases. Conversely, 6.5%
(95% CI: 5.6e7.5) to 7.9% (95% CI: 7.0e8.9) of migrants were esti-
mated to be infected by Danes [9]. In a study from Spain, the
prevalence of latent TB infection (LTBI) and of TB disease was
higher in contacts of immigrant TB cases (51.5% and 1.8%,

* Corresponding author. Breathe Well Centre, School of Medicine, Faculty of
Health, University of Tasmania, Medical Science 1 Building, 17 Liverpool Street,
Hobart, TAS 7000, Australia.

E-mail address: ronan.otoole@utas.edu.au (R.F. O'Toole).
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respectively) compared to contacts of indigenous cases (29.3% and
1.3%, respectively) [10]. However, when controlling for country of
origin and BCG vaccination status, the investigators did not find
evidence that immigrant index cases transmitted TB more than
indigenous index cases [10]. This is in agreement with a study from
Switzerland which found that immigrants were not more signifi-
cantly linked to recent transmissions than Swiss-born TB patients
(adjusted odds ratio of 1.58, 95% CI: 0.73e3.43, p ¼ 0.25) [11]. In
their systematic review, Sandgren and colleagues concluded that
“TB in a foreign-born population does not have a significant in-
fluence on TB in the native population in EU/EEA” [12].

Nevertheless, a major focus of TB control in a number of low
incidence countries has been on detecting TB in the foreign-born
population through pre-immigration screening [19]. For
example, of an estimated 378,939 visa applicants to Australia who
underwent pre-immigration medical examinations during the
2009e2010 financial year, 519 people were diagnosed with active
TB [13]. This corresponded to a TB prevalence of 137 per 100,000
examined population compared to 7.9 per 100,000 general popu-
lation in Australia in 2009 [13]. Thus, the authors of this study
concluded that premigration health screening of intending mi-
grants is successful in identifying substantial numbers of people
who would otherwise require treatment for TB after arriving in
Australia [13]. But pre-entry screening of foreign-born individuals
is not always possible in the case of asylum seekers or humani-
tarian refugees, or with regard to the provision of passport-free
movement of people within the EU Schengen Area. Furthermore,
it is believed that most cases of TB in the foreign-born population
occur due to reactivation of latent LTBI rather than continuation of
an existing case of active TB [14]. For example, among 65,529 new
TB cases reported to the National Tuberculosis Surveillance System
in the USA from 2005 to 2009, 83.4% of cases in foreign-born
persons were attributed to reactivation of latent TB infection
[15]. Therefore, even with active pre-immigration screening
measures, a substantial proportion of TB that occurs in the foreign-
born population in low TB incidence countries may not be
detectable prior to entry.

The objective of this work was to explore the possibility that
temporal monitoring of the demographics of a country's population
may offer a measure that could be used to calculate whether TB
incidence in a given section of the population is expected to in-
crease. Statistical and mathematical modelling was performed on
population census and TB surveillance data from 2000 to 2013.
These analyses identified a predictor of changes in TB notification
rates in the foreign-born population.

2. Materials and methods

2.1. Data sources

TB disease notifications along with foreign and native-born
notifications from 2000 through 2013 were obtained from the
Surveillance Atlas of Infectious Diseases, a tool publicly hosted by
the European Centre for Disease Prevention and Control (ECDC)
[16]. The ECDC defines each country within this study as having
compulsory reporting of notifications, having comprehensive
reporting, having case-based notification rates, and as having na-
tional coverage [2]. Foreign- and native-born notification data were
complete (2000e2013) for all countries that passed the selection
criteria except for Spain and the Netherlands, which had data
available from 2007 to 2013 and 2005 to 2013, respectively.
Publicly-available denominator data was obtained from the Orga-
nization for Economic Cooperation and Development (OECD) [17].
Denominator data of EU/EEA countries included total population
estimates, foreign-born population estimates (aggregate total for

each year), and each country's population estimates for individuals
originating from high TB burden countries (HBC).

The 30 HBCs analysed in this study were as per the WHO's
updated HBC definition i.e. the 20 countries with the highest esti-
mated numbers of incident TB cases (Angola, Bangladesh, Brazil,
China, DPR Korea, DR Congo, Ethiopia, India, Indonesia, Kenya,
Mozambique, Myanmar, Nigeria, Pakistan, Philippines, Russian
Federation, South Africa, Thailand, UR Tanzania, Viet Nam), plus the
top 10 countries with the highest estimated TB incidence rate per
100,000 population, that are not in the top 20 by absolute number,
with a minimum threshold of 10,000 estimated incident TB cases
per year (Cambodia, Central African Republic, Congo, Lesotho,
Liberia, Namibia, Papua New Guinea, Sierra Leone, Zambia,
Zimbabwe).

The UK had population data for 18 of the 30 HBC populations
living within their states, Spain had 19 of the 30 HBC populations,
and the Netherlands had 29 of the 30 HBC populations livingwithin
its state. The remaining six countries had population data for all of
the 30 HBC populations living within their jurisdiction.

2.2. Country selection criteria

Country selection criteria were applied for the purposes of
establishing common underlying trends within countries with
large foreign-born populations. The selection criteriawere based on
foreign-born population estimates and the quality of countries
population surveillance data. A country was selected for analysis if:

1. It had documentation for at least half1 of the 30 HBC populations
living within its jurisdiction.

2. In the year 2013, it had an aggregate total of 300,000 foreign-
born individuals or more living within its jurisdiction.

Applying these criteria resulted in 9 European Union countries
being selected for analysis i.e. Austria, Denmark, Finland, Hungary,
Netherlands, Norway, Spain, Sweden, and the UK. As each of these
countries have large foreign-born populations, an aggregation of
foreign-born data was performed to determine whether mutual
trends exist within the population, specifically trends relating to
country of origin.

2.3. Statistical analysis

All statistical analyses were completed in R and Excel. Crude
notification rates were calculated for foreign- and native-born
populations in each respective country for each year. Odds ratios
with 95% confidence intervals were calculated for foreign-born
populations of each country in each year. A multiple linear
regression model was calculated to estimate foreign-born notifi-
cation rates using the predictors: time; and HBC population density
using all country data. The regression took the following form:

YðtÞ ¼ B0 þ B1�XðtÞ þ B2�t þ ε

Where B0, B1, and B2 are the constant coefficients of the regression
model that represent the underlying change in the dependent
variable (Y(t)) which is a function of the independent variables
(X(t), t). The variable Y(t) represents a country's foreign-born
notification rate (per 100,000) at time t, the variable X(t)

1 The study included countries that documented, at a minimum, half of the 30
high TB burden countries of origin. The nine countries which met this criterion had
surveillance data for 18 of the HBCs.
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represents the percentage of a country's foreign-born population of
HBC origin at time t, and where t is time (in years, from 2000 to
2013).

The equationwas derived by simply examining the relationship
between countries' foreign-born notification rates (Y(t)) and
countries' respective densities of HBC individuals (X(t)). This
would be represented by the simple linear regression
YðtÞ ¼ B0 þ B1�XðtÞ þ ε, for which a time variable, t, has been
added. This was due to the fact that there also exist an underlying
trend within foreign-born notifications as time progresses. This
trend represents other factors the model has not considered. The
original equation can be summarized within the statement
“Foreign-born notification rates depend on the density of HBC
individuals and the time point a country is currently at”.

The equation has the expectancy

E½YðtÞ� ¼ B0 þ B1�XðtÞ þ B2�t:
Taking the derivative with respect to time gives

dE½YðtÞ�
dt

¼ B1�
dXðtÞ
dt

þ B2

which is an estimate of change over time of foreign-born TB inci-
dence. The equation yields the following equality:

dE½YðtÞ�
dt

¼ 0 holds when
dXðtÞ
dt

¼ �B2
B1

This states that when HBC density has changed exactly �B2
B1

units, expected foreign born notification rate will not change. The
inequalities are also true:

dE½YðtÞ�
dt

>0 holds when
dXðtÞ
dt

> � B2
B1

;

dE½YðtÞ�
dt

<0 holds when
dXðtÞ
dt

< � B2
B1

Put simply, this states that when HBC density has increased
from one year to the next at a rate greater than �B2

B1
units, the ex-

pected foreign-born notification rate will increase. When HBC
density has changed less than �B2

B1
units, expected foreign-born

notification rate will decrease. Calculation of confidence interval
values for the estimate � B2

B1
required advanced bootstrapping

techniques. Bootstrapping methods were used due to the under-
lying theoretical distribution of �B2

B1
being a Cauchy distribution

(with undefined variance) [18]. The R package ‘boot’was utilized to
acquire the interval [24]. A 95% adjusted bootstrap percentile in-
terval [19] was calculated on the estimate �B2

B1
. To demonstrate the

above inequalities empirically, categories were established. A large
increase in HBC density was classed to be any increase greater than
the upper limit of the 95% confidence interval, and a moderate
increase was classed as being the range between the point estimate
and the upper 95% confidence limit. A small increase was classed as
being the range between the point estimate and the lower 95%
confidence limit, and lastly a very small increase/decrease was
constructed to be less than the lower 95% confidence interval limit.

3. Results

3.1. Population proportion that is foreign born from 2000 to 2013

The foreign-born population, as a percentage of total popula-
tion, increased in all nine countries between 2000 and 2013. The
descriptive data can be seen in Table 1. The largest average annual
percentage increase in foreign-born population was observed for

Spain. The foreign-born population for 2013 in Spainwasmore than
three times higher than in 2000. When the data from all nine
countries are aggregated, the foreign-born populations have
doubled in percentage terms from 2000 to 2013 (i.e.1.97 times their
level in 2000).

3.2. TB notifications between 2000 and 2013

Between 2000 and 2013, the national TB notification rate (per
100,000) increased in three of the nine countries: Norway, Sweden,
and the UK. The remaining countries saw a decline notification
rates. Data for each country can be seenwithin Table 2. The greatest
decline was seen in Hungary, whereby, notification rates in 2013
were approximately 30% of their level in 2000.

3.3. Proportion of TB notifications among foreign- and native-born
residents from 2000 to 2013

Between 2000 and 2013, there has been an increase in the
proportion of TB cases that occur in the foreign-born population,
compared to native born, in eight of the nine countries i.e. Austria,
Finland, Hungary, the Netherlands, Norway, Spain, Sweden, and
the UK (Figure 1). In 2013, foreign-born TB accounted for 51.2% of
all TB notifications in Austria (þ1.84% on average annually from
2000 to 2013), 60.4% of TB notifications in Denmark (�0.27% on
average annually), 31.4% of TB notifications in Finland (þ1.81% on
average annually), 3.3% of TB notifications in Hungary (þ0.13% on
average annually), 73.9% of TB notifications in the Netherlands
(þ5.68% on average annually), 86% of TB notifications in Norway
(þ1.19% on average annually), 31.7% of TB notifications in Spain
(þ2.44% on average annually), 88.7% of TB notifications in Sweden
(þ1.7% on average annually), and 70.1% of TB notifications in the
UK (þ1.44% on average annually).

From 2000 to 2013, there has been a decline in the notification
rate of TB in native-born populations for all nine countries. The
average annual percentage changes in native-born TB incidence
between 2000 and 2013 are as follows: Austria (�7.38%), Denmark
(�2.37%), Finland (�5.97%), Hungary (�8.21%), Netherlands
(�5.93%), Norway (�0.35%), Spain (�4.79%), Sweden (�2.68%), and
the UK (�0.17%). The foreign-born TB notification rate has shown
an average annual decline in six countries i.e. Austria (�2%),
Denmark (�6.44%), Hungary (�2.44%), the Netherlands (�3.28%),
Spain (�2.5%), and the UK (�1.04%). On the other hand, the
foreign-born notification rate has exhibited an average annual
increase in three of the nine countries i.e. Finland (þ6.19%), Nor-
way (þ0.07%), and Sweden (þ2.09%).

3.4. Odds ratios of TB in the foreign-born population

Odds ratios were constructed to minimize any mutual trends
occurring between foreign-born and native-born TB notification
rates. Table 3 details the annual odds ratios of TB for the foreign-
born population compared to that of the native-born population.
Norway has consistently had the largest odds ratio, averaging 44.1
each year (with a peak of 75.21 in 2009). Finland has shown the
greatest average percentage growth in the odds ratio (þ14.19% on
average annually) while Denmark has shown the greatest decline
(�3.91% on average annually). For the nine countries except the UK
and Denmark, the odds ratio of foreign-born to native-born TB
notification rate has increased between 2000 and 2013 (Table 3).

3.5. Predicting foreign-born TB notification rates

The proportion of the foreign-born population originating
from high TB burden countries has on averaged changed
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annually þ0.08% for Austria, þ0.10% for Denmark, þ0.60% for
Finland, þ0.22% for Hungary, �0.09% for the Netherlands, þ0.05%
for Norway, þ0.24% for Spain, þ0.34% for Sweden, and �0.40% for
the UK. Examining foreign-born notification rates as a function of
the concentration of the HBC population yields the following
model, Figure 2 displays a scatter plot indicating a potential
relationship.

A multiple linear regression model was calculated using the
data from all nine countries in order to construct a general model
that predicts foreign-born notification rate based on HBC density
within the foreign-born population and on a country's time point.
A significant regression equation was found (F(2,109) ¼ 250.89,
p < 0.001), with an R2 of 0.82 and adjusted R2 of 0.818, which in-
dicates a potential relationship between a country's high TB
burden population proportion and its overall foreign-born TB
notification rate. Tables 4 and 5 illustrate the regression model's
coefficients and residual statistics for each individual country. The
model predicts that when the percentage of HBC born individuals
is set to zero within a country and time is set to one (the year
2000), the foreign-born notification rate is expected to be 16.43
and will decline 0.96 units each year thereafter. In contrast, if a
country has 100% of its foreign-born population originating from a
HBC and time is set to one, the foreign-born notification rate is
expected to be 240.94 with an annual decline of 0.96 units each
year.

The underlying regression equation has threshold �B2
B1

, which is
the value �ð�0:96Þ

224:51 , which is 0.43%. A 95% confidence interval was
constructed on this value using an adjusted bootstrap percentile
(BCa) interval [19] (N ¼ 106, std. error ¼ 0.099%) with lower limit
0.24% and upper limit 0.63%. The result of 0.43% is a threshold value
which relates to foreign-born TB notification rate within the model.
If the annual change in HBC density is greater than þ0.43% for a
specific year, the foreign-born TB notification rate is expected to
rise. If the change is less thanþ0.43% for a specific year, the foreign-
born TB notification rate is predicted to decline. Using the point
estimate, along with the upper and lower limits of the confidence
interval, distinct categories were established. A large increase in
HBC density is considered to be a year-to-year change of greater
than þ0.63%. A moderate increase in HBC density is considered to
be a year-to-year change between þ0.43% and þ0.63%. A small
increase in HBC density is considered to be a year-to-year change
between þ0.24% and þ0.43%. Lastly, a very small increase or a
decline in HBC density is considered to be a year-to-year change
less than þ0.24%. The threshold can be empirically visualized in
Table 6 using the data from all nine countries.

Table 1
Descriptive population data and rates of changes for foreign-born populations in
each of the European countries.

Foreign
population
statistics

2000 2013 Average
annual
increase

N Percentage
of total
population

N Percentage
of total
population

Austria 843,000 10.52% 1,414,624 16.70% þ0.48%
Denmark 308,674 5.78% 476,059 8.50% þ0.21%
Finland 136,203 2.63% 304,268 5.59% þ0.23%
Hungary 294,573 2.88% 447,657 4.53% þ0.13%
Netherlands 1,615,377 10.14% 1,953,436 11.63% þ0.11%
Norway 305,035 6.79% 704,511 13.87% þ0.54%
Spain 1,969,270 4.86% 6,263,693 13.44% þ0.66%
Sweden 1,003,798 11.31% 1,533,493 16.10% þ0.37%
United Kingdom 4,184,429 7.11% 7,860,000 12.56% þ0.42%

Table 2
TB notification rates for the years 2000 and 2013 in each of the European countries,
along with the average annual percentage change.

Country notification
rates (per 100,000)

2000 2013 Average annual
percentage change

Austria 15.29 7.66 �5.00%
Denmark 10.26 6.35 �3.28%
Finland 9.84 4.98 �4.13%
Hungary 35.24 10.57 �8.37%
Netherlands 8.82 5.05 �3.94%
Norway 5.28 7.89 3.85%
Spain 20.70 11.89 �4.05%
Sweden 5.16 6.80 2.64%
United Kingdom 11.42 12.61 0.87%

Figure 1. Trends in the proportion of TB cases among the native-born and foreign-born populations from 2000 to 2013. The proportion of TB cases that occurred in the foreign-born
population, compared to native born, was examined between 2000 and 2013. An increase in the proportion of TB cases that occurred in the foreign-born population was observed in
eight of the nine countries. Denmark was the only country to exhibit an average annual decrease in the proportion of TB cases that occurred in foreign born (�0.27% on average per
year). Note, the observed simultaneous increase in both of the knowns i.e. native-born and foreign-born, as a percentage of total TB cases for Spain is due to a decrease in the
“Unknown” variable with respect to birthplace between 2000 and 2013.
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3.6. Model reliability

Data for Spain and the Netherlands were limited to the years
2007e2013 and 2005e2013, respectively. An alternativemodel was
calculated excluding Spain and the Netherlands. An additional
altered model was calculated excluding 2013 data to validate the
predictability of the model. The results of both regression models
are presented in Table 7.

Examining the direct effects of HBC density on foreign-born
notifications, a linear model displayed one of the largest R-square
values (R-square ¼ 0.79) when compared with a(n): exponential
model (R-square ¼ 0.64), logarithmic model (R-square ¼ 0.67), and
a power model (R-square ¼ 0.69). In addition, polynomial models
were calculated up to order six. The R-square and Akaike Infor-
mation Criterion (AIC) estimates for polynomial of order one were:

R-square ¼ 0.79, AIC ¼ 527.66; of order two: R-square ¼ 0.79,
AIC ¼ 529.67; of order three: R-square ¼ 0.79, AIC ¼ 531.63; of
order four: R-square ¼ 0.80, AIC ¼ 532.64; of order five: R-
square ¼ 0.80, AIC ¼ 533.99; and of order six: R-square ¼ 0.80,
AIC¼ 535.99. The R-square value was observed to be largest within
a polynomial model of order six, however, the AIC estimate was
minimised within a linear model.

4. Discussion

In this work, we used population census and TB surveillance
data to analyze the demographics of TB in nine low to medium
incidence countries within the EU and EEAwith the most complete
TB data available. In all nine countries, there was an average annual
increase in the foreign-born population with the highest increases
of þ0.54% and þ0.66% per year occurring in Norway and Spain,
respectively. However, the national TB notification rate (per
100,000) increased in just three of the nine countries i.e. Norway,
Sweden, and the UK, but declined in Austria, Denmark, Finland,
Hungary, Netherlands, and Spain. In all nine countries, therewas an
annual decline in the notification rates of TB within the native-born
populations. An examination of odds ratios of foreign-born to
native-born TB notification rates revealed that Norway has
consistently had the largest odds ratio, averaging 44.1 each year
between 2000 and 2013 (Table 3). An average annual increase in
the TB notification rate in the foreign-born population was

Table 3
Odds ratios of foreign-born to native-born TB notification rates in 2000, 2005, 2010 and 2013. A 95% confidence interval on the point estimate is provided (lower 95%, upper
95%).

Country 2000 2005 2010 2013

Austria 3.19 (2.82, 3.62) 4.57 (4.03, 5.18) 4.23 (3.64, 4.92) 5.27 (4.51, 6.14)
Denmark 28.88 (24.26, 34.38) 21.86 (17.98, 26.58) 17.99 (14.59, 22.17) 16.44 (13.29, 20.33)
Finland 3.21 (2.32, 4.42) 3.92 (2.83, 5.43) 9.83 (7.76, 12.46) 7.89 (6.1, 10.2)
Hungary 0.55 (0.42, 0.71) 1 (0.77, 1.28) 0.26 (0.17, 0.4) 0.72 (0.51, 1.01)
*Netherlands 17.45 (15.4, 19.76) 22.35 (19.5, 25.62) 21.53 (18.47, 25.09)
Norway 32.81 (24.82, 43.38) 39.8 (30.1, 52.63) 46.66 (34.28, 63.49) 40.48 (30.31, 54.07)
ySpain 2.97 (2.83, 3.12) 3.05 (2.88, 3.23)
Sweden 15.82 (13.02, 19.23) 19.28 (15.99, 23.25) 34.89 (28.07, 43.36) 40.91 (32.08, 52.17)
United Kingdom 20.76 (19.67, 21.9) 24.17 (23, 25.41) 21.21 (20.18, 22.29) 18.36 (17.46, 19.3)

* Foreign-born TB notification data for the Netherlands were available from 2005.
y Foreign-born TB notification data for Spain were available from 2007.

Figure 2. The TB notification rate in the foreign-born population versus the percentage of foreign born from a high TB burden country of origin. The proportion of the foreign-born
population originating from high TB burden countries (HBC) was examined. A scatter plot illustrates an apparent linear relationship between the foreign-born TB notification rate
and HBC population density as a proportion of the foreign-born population.

Table 4
Coefficients, standard errors, and significance of the multiple linear regression.

Model Coefficients p value

Beta SE-B

Intercept 16.43 2.55 <0.001
Percentage of foreign-born

population from a high
TB burden country

224.51 10.12 <0.001

Time �0.96 0.24 <0.001
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observed for Finland (þ6.19%), Norway (þ0.07%), and Sweden
(þ2.09%) but not for the other six countries. This raised the ques-
tion as to why the notification rate of TB in the foreign-born pop-
ulation was increasing in some countries but declining in others.
We therefore examined whether different levels of annual immi-
gration fromHBCs correspondedwith a decrease, or increase, in the
foreign-born TB notification rate.

The average annual change in the proportion of the foreign-born
population originating from high TB burden countries between
2000 and 2013 ranged from �0.4% for the UK to þ0.6% for Finland.
Regression analysis indicated that a significant relationship
(p < 0.001, R2 ¼ 0.82) exists between a country's high TB burden
population proportion, and its overall foreign-born TB notification
rate. The effects of changes in the HBC density on the TB notification
rate of the foreign-born population are illustrated in Table 6 and
Figure 3. Very small or small increases in HBC density have a
negligible effect on the foreign-born TB notification rate. Moderate
or large increases in HBC density have a measurable effect on the
foreign-born TB notification rate. A specific threshold was observed
with respect to the level at which immigration from HBCs corre-
sponded with a higher foreign-born TB notification rate in the
countries analysed. Under the regression model, if the annual
change in the HBC population, as a proportion of the foreign-born
population, is greater than þ0.43% (95% CI: 0.24%e0.63%) for a
specific year, the foreign-born TB notification rate is predicted to
rise. The threshold is an additive value rather than a percentage
increase value or a multiplication factor. For example, if a country
has 10% of its foreign-born population originating from a HBC in
year 1, and 10.2% in year 2, the foreign-born TB notification rate
would not be expected to increase going from year 1 to year 2. In
contrast, if the foreign-born population originating from a HBC in

year 2 was 10.8%, the foreign-born TB notification rate would be
expected to increase going from years 1 to 2.

Two examples from the nine countries that illustrate the
threshold are Finland and the Netherlands. From 2000 to 2009,
Finland had 9 consecutive years in which its HBC density increased
on average þ0.71% each year, which is above the annual þ0.43%
threshold. HBC density started at 11.01% in the year 2000 and
increased until 2009 where it reached 17.4%. The foreign-born TB
notification rate also increased on average 1.123 units each year
(per 100,000 population) in Finland. From 2005 to 2013 in the
Netherlands, HBC density started at 17.85% and changed on average
�0.14% each year (less than þ0.43%). During this time, the foreign-
born notification rate on average decreased 1.45 units each year
(per 100,000 population) in the Netherlands. Examining the re-
siduals for each individual country, the model appeared to fit best
for Sweden and the UK (average residual 0.33 and �0.54, respec-
tively) (Table 5). The models coefficients changed marginally when
subsets of the data were used. When Spain and the Netherlands
were excluded from the analysis, there was a minimal increase in
the threshold from 0.43% to 0.44%. When 2013 data were excluded,
the threshold decreased from 0.43% to 0.39%, within the confidence
intervals of the threshold. It is worth noting that the calculation of
the threshold can only be done within this specific regression
model. While the model's coefficients and the underlying threshold
exhibited minor variation within the alternative models detailed in
Section 3.6, it is uncertain whether replication of this work can be
accomplished within other temporal or spatial settings. The model
appears appropriate when a linear relationship exists between two
variables over a time interval.

Between 2000 and 2013, the proportion of TB cases that
occurred in the foreign-born population, compared to native born,
increased in eight of the nine countries. Figure 1 illustrates the
“stage” each country was positioned with respect to this trend
between 2000 and 2013. Sweden and Norway are within an
apparent “late stage” as most of their TB is foreign born (>80%). An
observed annual average increase in the foreign-born TB notifica-
tion rate in Norway (þ0.07% per year) and Sweden (þ2.09% per
year) coincided with an increase in the national TB notification rate
in both countries i.e. þ3.85% and 2.64% per year, respectively.
Hence, in a so-called “late stage” country, an increase in the foreign-
born TB notification rate can correspond with an increase in the
national TB notification rate.

There are a number of limitations of this study that require
acknowledgement. The term foreign-born is a broad term as it re-
fers to an individual from any one of the other 197 countries in the
world. Secondly, there are other potential factors besides HBC

Table 6
Effect of changes in HBC density on the foreign-born TB notification rate.

Annual change in a country's *HBC density Average change in foreign-born
TB notification rate

Average change in foreign-born
TB cases (N)

Frequency of occurrence
within the data (N)

Decrease/very small increase �2.32 þ7 63
Small increase �2.12 þ21 16
Moderate increase þ0.7 þ19 13
Large increase þ3.48 þ75 13

* HBC density is defined as the proportion of the foreign-born population from a high TB burden country of origin.

Table 5
Regression model residual statistics for each individual country.

Country Model residual statistics 2013 data

Max Min Range Average Model
notification
rate

Actual
notification
rate

Austria 11.20 �6.01 17.21 2.51 20.0 23.5
Denmark 31.96 3.47 28.49 15.59 40.3 45.2
Finland 10.63 �24.21 34.84 �13.14 45.3 28.0
Hungary 2.47 �17.55 20.02 �4.29 14.8 7.7
Netherlands 0.33 �12.68 13.01 �6.65 40.5 32.1
Norway 18.37 �8.42 26.79 2.33 46.7 49.0
Spain 7.48 �2.00 9.48 7.41 24.6 28.0
Sweden 11.76 �5.82 17.58 0.33 31.5 37.5
United Kingdom 8.02 �16.56 24.59 �0.54 75.1 70.4

Table 7
Re-calculating the model with subsets of the data.

Intercept coef. (B0) HBC density coef. (B1) Time coef. (B3) Threshold value Model Resquare

Original model (all data) 16.43*** (SE ¼ 2.55) 224.51*** (SE ¼ 10.12) �0.96*** (SE ¼ 0.24) 0.43% 0.82
Altered model 1 (Spain and the Netherlands excluded) 15.96*** (SE ¼ 2.67) 229.8*** (SE ¼ 10.62) �0.994*** (SE ¼ 0.26) 0.44% 0.83
Altered model 2 (exclusion of the year 2013) 15.78*** (SE ¼ 2.7) 225.86*** (SE ¼ 10.58) �0.88*** (SE ¼ 0.27) 0.39% 0.82

***Significant at the p < 0.001 level.
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proportion that could affect the TB notification rate in the foreign-
born population. The TB notification rate of the foreign-born pop-
ulation of a given country may be influenced by the strength of TB
risk factors that are present in its HBC cohort, in addition to the
proportion of that population that originate from a HBC. Factors
including homelessness, drug misuse, HIV/AIDS status, and diag-
nostic delay have been reported to potentially impact TB in foreign-
born populations [20,21]. However, in one study, homelessness,
drug misuse, and positive HIV/AIDS status were found to be infre-
quent in the foreign-born population [22]. Our study does not
measure the contribution of individual risk factors but examines TB
notification rates as a function of population density. Nevertheless,
the validity of comparing notification rates is consistent with the
finding from the USA that persons who have immigrated from areas
of the world with high TB rates exhibit notification rates that
approach those of their regions of origin for a number of years after
arrival [23]. Despite limitations, our study indicates that the de-
mographics of the immigration population can assist in predicting
the probability of an increase in the foreign-born TB notification
rate. It is not advocated or expected that a threshold alone be used
in determining whether to introduce post-immigration TB
screening. There are multiple other factors that will be considered
by public health departments prior to the deployment of post-
immigration TB screening. These factors, and the cost-
effectiveness of a post-immigration TB screening strategy, may
differ from one jurisdiction to another.

In summary, we have found that migration from HBCs can exert
a measurable effect on the foreign-born TB notification rate. An
annual increase in HBC migrants above þ0.43% per year (95% CI:
0.24%e0.63%) in the nine countries analysed corresponded with
higher TB notification rates in the foreign-born population. Only in
countries Norway and Sweden, which have a high proportion of TB
cases that are foreign-born (>80%), did an increase in the foreign-
born TB notification rate, þ3.85%/year and þ2.64%/year, respec-
tively, coincide with an average annual rise in national TB notifi-
cation rates.
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SUMMARY

The health status of the Irish Traveller ethnic minority is low compared to the general population
in Ireland in terms of infant mortality rates and life expectancies. Respiratory disease is an area
of health disparity manifested as excess mortalities in Traveller males and females. In this study,
we examined the available data with regard to tuberculosis (TB) notifications in Ireland from
2002 to 2013. We found an increase in TB notifications in Irish Travellers from 2010 onwards.
This resulted in a crude incidence rate for TB in Irish Travellers that was approximately threefold
higher than that of the white Irish-born population in 2011 and 2012. An outbreak of TB in
Irish Travellers in 2013 increased this differential further, but when outbreak-linked cases were
excluded, a higher incidence rate was still observed in Irish Travellers relative to the general
population and to white Irish-born. The mean age of a TB patient was 26 years in Irish
Travellers compared to 43 years in the general population, and 49 years in white Irish-born.
Based on available data, Irish Travellers exhibit a higher incidence rate and younger age
distribution of TB compared to white Irish-born and the general population. These observations
emphasize the importance of routine use of ethnicity identifiers in the management of TB and
other notifiable communicable illnesses in Ireland. They also have implications for the orientation
of preventive services to address health disparities in Irish Travellers and other ethnic minority
groups.

Key words: Epidemiology, mycobacteria, tuberculosis (TB).

INTRODUCTION

A survey of the Irish Traveller population in Ireland
and Northern Ireland published in 2010 found that

infant mortality rates are about 3·5 times higher
than in the general population [1]. Life expectancy
at birth in Irish Traveller males and females is report-
edly 15·1 and 11·5 years lower, respectively, compared
to the national average [1]. In the 2011 Census of
England and Wales, the median age of the Gypsy or
Irish Travellers group was 26 years compared to the
national median age of 39 years in the in the UK
[2]. A local baseline census study indicated poor life

* Author for correspondence: Dr R. F. O’Toole, Breathe Well
NHMRC Centre of Research Excellence, School of Medicine,
University of Tasmania, Hobart, Australia.
(Email: ronan.otoole@utas.edu.au)

Epidemiol. Infect. (2015), 143, 2849–2855. © Cambridge University Press 2015
doi:10.1017/S0950268815000138



expectancy for Gypsies and Travellers in Leeds com-
pared to the general Leeds population [3]. Currently,
our understanding of the burden of communicable ill-
nesses in the Traveller community, and the extent of
its contribution to mortality and morbidity rates is
relatively limited.

With respect to certain health conditions, general
information is available in relation to mortalities in
Irish Travellers. The All Ireland Traveller Health
Study (AITHS) found that 13% of General Register
Office-confirmed deaths in Irish Travellers in Ireland
during a 1-year period (October 2007 to October
2008) were due to respiratory disease. The standar-
dized mortality ratios due to respiratory disease were
about 5·4- and 7·5-fold higher in Traveller females
and males, respectively, than in the general Irish popu-
lation [1]. Data outlining the proportion of Irish
Traveller deaths in Ireland that were caused by respir-
atory infectious disease are not currently available.
This limits the characterization of differential respirat-
ory disease rates, and their associated determinants.

Tuberculosis (TB) is the leading cause of mortality
due to respiratory infection worldwide, killing ∼1·5
million people each year [4]. Using routine Irish
enhanced TB surveillance data [5], we examined in
this work the available case notification data with re-
spect to TB in the Irish Traveller population.

METHODS

TB disease notifications for the period from 2002 to
2013 were extracted from the National TB
Surveillance System and the Computerised Infectious
Disease Reporting (CIDR) system (since 2011) by
the Health Protection Surveillance Centre (HPSC).
These data are collected by local departments of
Public Health in Health Service Executive (HSE)
areas in Ireland on each case of TB notified. Crude
incidence rates (CIR) based on reported ethnicity
were calculated using denominator data from the
Census 2002, 2006, and 2011 data from the Central
Statistics Office (CSO), Ireland [6], and also the
AITHS data [1] on Traveller population size. Crude
incidence rates (CIR)/100000 population were deter-
mined for each year from 2002 to 2013. Five-year
cumulative CIR values were calculated for the period
2009–2013. Stratification of case based TB notifica-
tions by association with an outbreak is available
from 2011 onwards. Average incidence rates for
the period 2002–2013 were determined for each age
group using Census data from the CSO [6]. Ethical

approval for this study was obtained from the St
James’s Hospital/Adelaide & Meath National Chil-
dren’s Hospital Research Ethics Committee, Dublin,
Ireland (reference: 2014/037/2014/02).

RESULTS

As illustrated in Figure 1, the CIR of TB in the Irish
Traveller population, based on the number of cases
notified, was at a level of <5 cases/100000 population
per annum from 2002 to 2009. From 2010 onwards,
an increase in notifications of TB cases in Irish
Travellers was recorded. This resulted in a CIR >10
cases/100000 population per annum in 2011 to 2013
using the CSO Traveller population enumeration. In
the general population during the same period, the
CIR decreased from 10·5 new TB cases/100 000 popu-
lation [95% confidence interval (CI) 9·5–11·5] in 2002
to 8·3/100000 population (95% CI 7·5–9·1) in 2013.
The CIR for TB in Irish Travellers was about three-
fold higher than that of the white Irish-born popu-
lation in the years 2011 and 2012. In 2013, an
outbreak of TB in the Irish Traveller population
resulted in a CIR of 40·6/100 000 (95% CI 21·0–
71·1). When excluding outbreak cases, the CIR of
TB in the Traveller population for 2013 was still
higher (16·9/100000, 95% CI 5·5–39·6) than that of
the general population (8·3/100000, 95% CI 7·5–9·1),
and of the white Irish-born population (4·2/100000,
95% CI 3·5–4·8) (Fig. 1).

To allow for annual variations in TB cases in differ-
ent populations, 5-year cumulative crude incidence
rate values were calculated for the period 2009–
2013. As illustrated in Table 1, the 5-year cumulative
CIR of TB in Irish Travellers was 81·4/100000 (95%
CI 29·6–197·7) compared to 45·5/100000 (95% CI
41·9–50·8) in the general population and 27·3/100000
(95% CI 22·9–30·3) in the white Irish-born population
for 2009–2013.

The CIR is dependent upon the population data
used for Irish Travellers. The total number of Irish
Travellers in Ireland, enumerated from the April
2011 Census by the CSO, was 29573 (0·64%) of the
total population [6]. The total number of Irish
Travellers in Northern Ireland, enumerated from the
March 2011 Census by the Northern Ireland
Statistics and Research Agency, was 1301 (0·07%) of
the total population [7]. This corresponds to an Irish
Traveller population size in the region of 30874 for
the island of Ireland in March/April 2011. By con-
trast, the AITHS conducted from 2007 to 2010
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estimated the Irish Traveller population to be 36 224
in Ireland and 3905 in Northern Ireland, or 40 129
for the island of Ireland. As can be seen from
Table 1, where the AITHS population data is used in-
stead of the official Census data, the CIR of TB in the
Irish Traveller population is lower. Where the higher
enumeration of the Traveller population size from the
AITHS is used, the 5-year cumulative CIR was still
higher in Irish Travellers than in the general population
and in the white Irish-born population (Table 1).

When the average incidence of TB for the period
2002–2013 is analysed by age, notable differences
emerge between Irish Traveller cases and those in
the general and white Irish-born populations.
Figure 2 shows age-specific rates by Irish Traveller
ethnicity from 2002 to 2013. The majority of cases
in Irish Travellers were in the 0–34 years age groups
with a mean age of 26 years and median age of 24
years. In the general population, the majority of
cases occurred in the 25 to 565 years age groups

Table 1. Cumulative notifications and crude incidence rates of TB from 2009 to 2013*

Ethnicity
Cumulative no. of TB
notifications, 2009–2013

Cumulative TB CIR,
2009–2013 (Census 2011
population)

Cumulative TB CIR,
2009–2013 (AITHS
population)

All ethnicities
(including unknown)

2060 45·5 n.a.

White & CoB = IRL 983 27·3 n.a.
Irish Traveller
CoB = IRL +UK

24 81·4 66·3

CIR, Crude incidence rate/100000; AITHS, All Ireland Traveller Health Study; CoB, country of birth; n.a., not available.
* Notification data for 2013 are provisional.

Fig. 1. Crude incidence rate (CIR)/100000 of TB in Ireland from 2002 to 2013. CIR of TB in the general population,
white Irish-born in Ireland (white&CoB= IRL) and Irish Travellers are illustrated. The CIR in Irish Travellers excluding
outbreak cases (IT non-outbreak) is also illustrated.
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with a mean age of 43 years and median age of 38
years. In the white Irish-born population, the majority
of cases occurred in the 55 to 565 years age groups
with a mean age of 49 years and a median age of 49
years.

DISCUSSION

As recently noted by Tollefson et al.: ‘the paucity of
published information on TB burden among indigen-
ous peoples highlights the need to implement and im-
prove TB surveillance to better measure and
understand global disparities in TB rates’ [8]. For in-
digenous minority populations in the USA, the eth-
nicity data available have revealed that American
Indians and Alaskan Natives have a 5·4-fold higher
rate of TB compared to non-Hispanic Caucasians.
The TB incidence rate in the Aboriginal population
is 5·3- and 12·9-fold higher in Australia and
Canada, respectively, compared to the domestic-born
non-Aboriginal population [9, 10]. In New Zealand,
Māori have an approximate sixfold higher rate
of TB compared to people of European descent
[11, 12]. An earlier study conducted on Roma in
Barcelona found that they have a TB incidence rate
which is 5·3-fold higher than the national incidence
rate for Spain [8]. While one cannot deduce from the
above findings alone that Irish Travellers as an in-
digenous minority experience a higher rate of TB
with respect to the general population, they share
with indigenous minority populations in other coun-
tries a number of determinants of poor health status
such as lower levels of employment and education

attainment, as well as social exclusion. While studies
in the UK have identified higher numbers of Gypsy
Travellers (including Irish, English, Scottish and
Welsh Gypsies and Travellers) reporting illnesses
that include bronchitis and asthma with respect to
an age-matched comparator group [13, 14], data
with respect to the incidence of TB in Irish
Travellers in the UK have not been reported [15].

As a first step in examining the incidence of TB in
the Irish Traveller population, we examined TB case
notifications in Ireland for the period from 2002 to
2013. Based on the available data, notified cases of
TB in Irish Travellers increased from 4·2 cases/100
000 in 2002 to more than 10/100000 from 2011
onwards. In comparison, notified cases of TB in the
general population decreased from 10·5 cases/100
000 in 2002 to 8·3/100000 in 2013. The available
notification data from 2011 onwards indicate an
approximate threefold higher incidence rate of TB in
Irish Travellers compared to their white Irish-born
compatriots (Fig. 1). This differential is also seen in
the respective 5-year CIR of TB for the period
2009–2013 for Irish Travellers (81·4/100000) and the
white Irish-born population (27·3/100000) (Table 1).
In terms of the age-specific distribution of TB cases,
the mean age of cases in Irish Travellers (26 years)
was notably lower than that of the general population
(mean age of 43 years) and of the white Irish-born
population (mean age of 49 years).

Studies in different jurisdictions may provide an in-
sight into why the incidence of TB could be higher in
Irish Travellers. Socioeconomic position is known
to affect people’s health. As noted by Fiscella &

Fig. 2. Average TB incidence rate (per 100000) for the period 2002–2013 by age group (years) and age-specific rates by
Irish Traveller ethnicity, and white Irish-born ethnicity.
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Williams: ‘Differences in socioeconomic status,
whether measured by income, educational achieve-
ment, or occupation, are associated with large dispari-
ties in health status. This association persists across
the life cycle and across measures of health, including
health status, morbidity, and mortality. Although ef-
fects are largest for those living in poverty, gradients
of disparity are seen across the socioeconomic spec-
trum’ [16]. More recently, Boccia and colleagues es-
tablished a specific association between household
socioeconomic position and TB [17]. It is widely ac-
cepted that Irish Travellers experience a lower socioe-
conomic status as indicated by parameters such as
unemployment and education. Unemployment was
measured at 84·3% in the Irish Traveller community
(percentage of people in the labour force who were
either looking for their first job or unemployed) in
the Irish Census 2011 [6]. This compared to 14·6% un-
employment in the general population in 2011. In
terms of education, only 3·1% of Irish Travellers con-
tinued their education beyond the age of 18 years in
contrast to 41·2% of the general population [6].

A lower socioeconomic status in Irish Travellers
may coincide with a higher prevalence of one or
more known risk factors for the development of TB.
Poor accommodation has previously been cited as a
factor in the lower health status of Irish Travellers
[1]. According to the Irish Census 2011, the average
number of rooms in Irish Traveller households was
4·3 compared to 5·5 rooms for all private households
in the state in 2011. Two and a half per cent of Irish
Traveller households have 510 persons compared to
0·04% of non-Irish Traveller households. Therefore,
Irish Traveller households have a higher occupant den-
sity compared to non-Traveller households. It is worthy
of note that in New Zealand, household crowding has
been identified as a risk factor for increased TB inci-
dence [18], and that exposure to extreme crowding
was high in the indigenousMāori population compared
to the European/Other group [19].

In terms of other known risk factors for the devel-
opment of TB, a study published in 2009 reported
that the prevalence of pre-diabetes and diabetes in
the Irish Traveller population was about twofold
higher than in the background population in Ireland
[20]. In the UK, relatively high rates of smoking
prevalence have been reported for Irish Traveller
males and females [14, 21]. Further research is needed
to establish and quantify each of the specific risk fac-
tors that underlie a higher incidence of TB in Irish
Travellers. This information would be valuable in

guiding intervention measures to reduce the risk of
TB development in Irish Travellers.

Although this study illustrates differences in the in-
cidence of TB in the Irish Traveller population com-
pared to the general and white Irish populations, a
number of limitations of the study should be noted.
One limitation pertains to the completeness of the
available ethnicity data. The proportion of TB cases
in the Irish Traveller population that was correctly
identified with respect to ethnicity is not known. A
similar limitation was reported recently with respect
to an assessment of meningococcal surveillance data
in Ireland [22]. The definition of the Irish Traveller
community in Irish Law (Equal Status Act, 2000,
Part I) is given as follows: ‘“Traveller community”
means the community of people who are commonly
called Travellers and who are identified (both by
themselves and others) as people with a shared his-
tory, culture and traditions including, historically, a
nomadic way of life on the island of Ireland.’ In the
Irish Census 2011, people were asked the question:
‘What is your ethnic or cultural background?’
Hence, for census purposes, self-declaration of eth-
nicity is used. In terms of the surveillance of notifiable
infectious diseases, it is possible for local departments
of public health to record ethnicity for all notifications
of notifiable diseases as per the CSO ethnicity categor-
ies. However, it is not clear if the practice of self-
declaration of Irish Traveller ethnicity is in widespread
use with respect to notifiable disease surveillance in
Ireland. Incomplete recording of ethnicity could po-
tentially result in an underestimation of the number
of TB cases in the Traveller community. National
guidance on the standardized collection of ethnicity
identifiers has been noted as a possible future project
within the HPSC of the HSE, Ireland in conjunction
with relevant stakeholders.

Another limitation of the study relates to the rela-
tively small population size of Irish Travellers who
constitute 0·64% of the total population in Ireland
[6]. An outbreak of TB in the Traveller population
can significantly affect the CIR/100000. This is evident
in wide confidence intervals that were obtained with
respect to CIRs for Irish Traveller cases. In 2013, an
outbreak of TB in the Irish Traveller community
resulted in a CIR of 40·6/100000 per annum, using
the CSO traveller population as a denominator. Due
to the impact of this outbreak on the incidence rate,
we examined the data excluding cases linked to the
outbreak. The incidence rate of TB in Irish
Travellers in 2013 was still higher (16·9/100000) than
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in the general population (8·3/100000) and in the
white Irish-born population (4·2/100000) when Irish
Traveller outbreak TB cases were excluded (Fig. 1).

With an increase in notifications of a notifiable dis-
ease, there is often the consideration of whether it may
be due to enhanced surveillance, or due to a true in-
crease in incidence. An earlier study found that under-
notification of TB in different studies in the UK
ranged from 7% to 27% of cases [23]. For the whole
of the UK, data completeness with respect to known
ethnicity of TB cases was 98% in 2013 [15]. The com-
pleteness of the ethnicity data for TB cases in Ireland
before an increase in TB notifications in Irish
Travellers stood at 97·9% in 2009, compared to
ethnicity data completeness of 83·5% in 2013 where
notifications in Irish Travellers were highest.
Therefore, a surge in ethnicity reporting for all TB
cases in Ireland would not appear to be responsible
for the increase in TB cases in Irish Travellers. This
does not preclude the possibility of a differential en-
hancement of TB surveillance in a given population
group such as Irish Travellers. At this stage, it is not
possible to conclude whether enhanced surveillance
or increased incidence, or both, are responsible for
the increase in TB notifications in Irish Travellers.
Nevertheless, the data point to a dissimilar incidence
rate and age distribution of TB in Irish Travellers
with respect to the general and white Irish populations
and provide evidence that the monitoring of TB over a
longer period in Irish Travellers is warranted.

In terms of ethnicity identifier use for Irish
Travellers, the Irish Department of Health and
Children’s document ‘Traveller Health: A National
Strategy 2002–2005’ made the following points:

Making significant progress in tackling Traveller health sta-
tus will be difficult unless an adequate system can be put in
place to gather data on an ongoing basis on Traveller health.
This data, effectively the baseline from which progress can
be measured and by which services can be planned and mon-
itored, is now an urgent necessity. However, for the purpose
of effectively gathering information on the health status of
the Traveller community, it may be necessary to modify
existing health information systems in order to identify
Travellers as an ethnic group [24].

The above recommendation has been employed by
HPSC with regard to the use of enhanced surveillance
forms for TB, invasive meningococcal disease/bac-
terial meningitis, salmonellosis, which specifically
identify Irish Travellers under ethnicity. In addition,
the CIDR system, which is used to record all cases

of notifiable infectious disease in Ireland, contains a
core variable which allows ethnicity to be recorded
for every case of notifiable disease reported. These
developments, where applied routinely with case in-
vestigation, would reduce passive reporting or third-
party declaration of Irish Traveller ethnicity in disease
surveillance, and consequently, increase the complete-
ness and robustness of Irish Traveller health data.

In summary, it has been reported previously that
the population age structure of the Irish Traveller
population in Ireland resembles that of a developing
country with high mortality rates at a younger age
[1]. The extent to which infectious diseases may con-
tribute to this observation deserves investigation.
Acknowledging the limitations of the data available,
this study constitutes one of the first reports to exam-
ine the incidence of the respiratory disease, TB, in the
Irish Traveller population. We detected in our study a
higher incidence rate of TB in Irish Travellers relative
to the general population, and in particular, with re-
spect to the white Irish-born population. With the
general decline in TB in the white Irish-born popu-
lation, TB cases may be concentrated in marginalized
groups such as Irish Travellers. Routine recording of
Irish Traveller ethnicity for TB, as well as other notifi-
able infectious diseases, could strengthen the detection
of inequities in infection rates and the characterization
of their respective determinants. This would in turn
provide guidance on appropriate preventive measures
that may reduce communicable disease morbidity and
mortality in the Irish Traveller population.
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Glossary

• Basic reproduction number - The basic reproduction number (R0) is defined as

the average number of secondary cases caused by a single infectious individual in a

totally susceptible population.

• Exposed - The term ’exposed’ is used when an individual has encountered a disease

causative pathogen. This is necessary for infection or transmission to take place.

However, it is not necessarily the case that infection or transmission occurs.

• Foreign-born - Not native-born.

• Immunity - Immunity refers to an individual’s resistance to infection or re-infection

by a causative pathogen.

• Incidence - Incidence refers to the number of new cases of a disease over a period

of time.

• Infected - The term ’infected’ refers to an individual who has contracted a disease

causative agent and infection (or transmission) has occurred.

• Infectious - Individuals who are infected and can transmit a pathogen (the cause of

an infection) to other individuals.

• Latent period - The latent period is defined as the period of time between the oc-

currence of infection and the onset of infectiousness (when the infected individual

becomes infectious).
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• Native-born - An individual who was born to a country, and resides within that

country.

• Prevalence - Prevalence is defined as the number of cases of a disease at a specific

time point

• Recovered - Recovery refers to a transitional stage from the infectious state to an-

other non-infectious state.

• Susceptible - Susceptible refers to a non-infected individual (or population) who

may become infected through contact with individuals or environmental organisms

that can transmit the disease

• Vaccine efficacy - Vaccine efficacy refers to the percentage reduction in the attack

rate of unvaccinated and vaccinated cohorts as observed in a randomized control

trial.

299



Code For Metropolis-Hastings
Algorithm

l i b r a r y ( deSo lve )

MH S e a s o n a l = f u n c t i o n (N=10000){
t h e t a = array ( dim=c (N+ 1 , 2 ) )

t h e t a 2 = array ( dim=c (N, 2 ) )

e r r o r = array ( dim=c (N) )

e r r o r 2 = array ( dim=c (N) )

i n i t = c ( S=1382374 , E=240 , I = 34 , R = 2535000)

t i m e s = 1 :144

nam1 = c ( b e t a 0 = . 5 , k0 = . 0 0 5 ,A=7267 , u =0 .000549905 , q = . 0 5 ,

r = .016 , d = .01667 , w1 = 0 . 3 5 )

t r u e = ode ( y = i n i t , t i m e s = t imes , func = s e i r s , parms = nam1 )

t r u =c ( 3 4 , 3 1 , 3 5 , 3 5 , 2 4 , 3 7 , 4 7 , 3 0 , 3 2 , 3 5 , 3 2 , 3 8 , 2 8 , 3 0 , 3 0 , 3 7 , 3 6 , 3 8 ,

4 0 , 2 7 , 3 7 , 4 0 , 3 7 , 2 6 , 3 2 , 3 4 , 3 9 , 4 6 , 4 3 , 3 6 , 2 9 , 3 6 , 3 1 , 3 6 , 3 3 , 3 6 ,

3 2 , 3 8 , 3 3 , 3 9 , 4 7 , 4 3 , 3 1 , 3 6 , 3 5 , 4 0 , 3 1 , 4 3 , 2 7 , 4 5 , 4 0 , 4 4 , 4 5 , 4 6 ,

4 1 , 3 8 , 2 8 , 4 3 , 3 3 , 3 1 , 3 2 , 2 5 , 4 6 , 7 0 , 4 4 , 4 5 , 4 8 , 4 2 , 3 0 , 3 7 , 2 6 , 3 1 ,

4 3 , 4 5 , 4 2 , 5 3 , 3 9 , 3 2 , 4 3 , 3 9 , 3 3 , 3 8 , 3 6 , 2 4 , 4 0 , 2 9 , 4 5 , 4 8 , 2 5 , 6 0 ,

5 6 , 3 1 , 3 5 , 3 6 , 3 7 , 3 7 , 3 0 , 3 9 , 3 4 , 4 0 , 2 9 , 5 4 , 3 6 , 4 2 , 2 0 , 2 8 , 4 2 , 2 6 ,
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2 5 , 5 4 , 4 3 , 2 7 , 3 0 , 4 9 , 3 7 , 2 7 , 2 7 , 3 2 , 3 5 , 2 7 , 2 7 , 3 4 , 3 0 , 3 4 , 4 2 , 2 6 ,

2 7 , 2 9 , 2 2 , 3 3 , 2 6 , 2 9 , 3 5 , 2 9 , 2 8 , 4 5 , 3 0 , 3 7 , 4 6 , 4 1 , 2 1 , 3 3 , 1 9 , 1 7 )

s igma02 =.01

n0 =0.001

a v a l =0 .5 * ( n0* s igma02+ l e n g t h ( t i m e s ) )

t h e t a [ 1 , ] = nam1 [ 1 : 2 ]

s igma=array ( dim=c (N+ 1 ) )

s igma [ 1 ] = sum ( ( t r u−ode ( y = i n i t , t i m e s = t imes , func = s e i r s ,

parms = c ( b e t a 0 = t h e t a [ 1 , 1 ] , k0= t h e t a [ 1 , 2 ] ,A=7267 , u =0 .000549905 ,

q = . 0 5 , r = .016 , d = .01667 , w1 = 0 . 3 5 ) ) [ , 4 ] ) ˆ 2 ) / l e n g t h ( t i m e s )

modd=array ( dim=c (N+1 , 1 4 4 ) )

f o r ( i i n 1 :N){

modd [ i , ] = ode ( y = i n i t , t i m e s = t imes , func = s e i r s , parms =

c ( b e t a 0 = t h e t a [ i , 1 ] , k0= t h e t a [ i , 2 ] ,A=7267 , u =0 .000549905 , q = . 0 5 ,

r = .016 , d = .01667 ,w1 = 0 . 3 5 ) ) [ , 4 ]

e r r o r [ i ]=sum ( ( t r u−modd [ i , ] ) ˆ 2 )

t h e t a 2 [ i , 1 ] = max ( min ( t h e t a [ i , 1 ] +

r u n i f ( 1 , min=−0.01 ,max = 0 . 0 1 ) , 1 ) , 0 )

t h e t a 2 [ i , 2 ] = max ( min ( t h e t a [ i , 2 ] +

r u n i f ( 1 , min=−0.001 ,max = 0 . 0 0 1 ) , 1 ) , 0 )

e r r o r 2 [ i ]=sum ( ( t r u−ode ( y = i n i t , t i m e s = t imes , func = s e i r s ,

parms = c ( b e t a 0 = t h e t a 2 [ i , 1 ] , k0= t h e t a 2 [ i , 2 ] ,A=7267 , u =0 .0005499 ,
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q = . 0 5 , r = .016 , d = .01667 , w1 = 0 . 3 5 ) ) [ , 4 ] ) ˆ 2 )

t h e t a [ ( i + 1 ) , ] = t h e t a [ i , ]

i f ( l o g ( r u n i f ( 1 ) ) < −0.5* ( e r r o r 2 [ i ] − e r r o r [ i ] ) / s igma [ i ] ) {
t h e t a [ ( i + 1 ) , ] = t h e t a 2 [ i , ]

e r r o r [ i ]= e r r o r 2 [ i ]

}
b v a l =0 .5 * ( n0* s igma02+ e r r o r [ i ] )

s igma [ i +1]=1 / rgamma ( 1 , ava l , b v a l )

p r i n t (100 *round ( ( i ) /N, 2 ) )

}
re turn ( t h e t a )

}

MH F o r e i g n Loca l = f u n c t i o n (N=10000){
N=10000

t h e t a = array ( dim=c (N+ 1 , 2 ) )

t h e t a 2 = array ( dim=c (N, 2 ) )

e r r o r = array ( dim=c (N) )

e r r o r 2 = array ( dim=c (N) )

i n i t = c ( SL=1280078 , EL=222 , IL = 27 , RL = 2347409)

t i m e s = 1 : ( 1 4 4 )

nam1 = c ( w1= 0 . 3 5 , b2 =0 .03065148 , k2 =0 .005630639 ,

r2 =0 .01515 , u i l = .02221 ,A=4770 , u =0 .00 055 )

i n f 2 =c ( 7 , 7 , 6 , 6 , 8 , 7 , 1 4 , 7 , 5 , 1 3 , 7 , 1 2 , 4 , 4 , 3 , 2 , 5 , 2 , 1 0 , 4 ,

1 0 , 5 , 4 , 4 , 4 , 6 , 9 , 7 , 1 2 , 7 , 7 , 7 , 6 , 8 , 1 0 , 7 , 6 , 1 3 , 8 , 1 0 , 8 , 1 2 ,

7 , 1 2 , 4 , 9 , 6 , 1 0 , 7 , 1 1 , 7 , 9 , 7 , 1 5 , 1 1 , 1 3 , 6 , 1 4 , 1 1 , 6 , 1 0 , 7 ,

1 5 , 1 5 , 1 8 , 1 4 , 1 2 , 1 2 , 1 1 , 1 0 , 9 , 8 , 1 5 , 1 2 , 1 1 , 2 1 , 1 2 , 1 5 , 1 9 ,

1 7 , 9 , 1 2 , 1 1 , 1 0 , 1 2 , 8 , 1 4 , 1 8 , 1 0 , 2 0 , 1 6 , 8 , 1 2 , 1 3 , 1 2 , 1 4 ,
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1 0 , 9 , 1 2 , 1 5 , 1 1 , 2 1 , 9 , 1 3 , 3 , 1 1 , 1 5 , 9 , 9 , 2 0 , 1 5 , 1 5 , 1 4 , 2 0 ,

1 2 , 1 1 , 1 2 , 1 1 , 9 , 1 4 , 8 , 9 , 6 , 1 5 , 1 9 , 8 , 1 0 , 1 1 , 9 , 1 1 , 8 , 1 0 , 1 4 ,

8 , 1 1 , 1 5 , 1 3 , 1 5 , 1 6 , 1 6 , 9 , 1 3 , 5 , 5 )

i n f =c ( 3 4 , 3 1 , 3 5 , 3 5 , 2 4 , 3 7 , 4 7 , 3 0 , 3 2 , 3 5 , 3 2 , 3 8 , 2 8 , 3 0 , 3 0 ,

3 7 , 3 6 , 3 8 , 4 0 , 2 7 , 3 7 , 4 0 , 3 7 , 2 6 , 3 2 , 3 4 , 3 9 , 4 6 , 4 3 , 3 6 , 2 9 , 3 6 ,

3 1 , 3 6 , 3 3 , 3 6 , 3 2 , 3 8 , 3 3 , 3 9 , 4 7 , 4 3 , 3 1 , 3 6 , 3 5 , 4 0 , 3 1 , 4 3 , 2 7 ,

4 5 , 4 0 , 4 4 , 4 5 , 4 6 , 4 1 , 3 8 , 2 8 , 4 3 , 3 3 , 3 1 , 3 2 , 2 5 , 4 6 , 7 0 , 4 4 , 4 5 ,

4 8 , 4 2 , 3 0 , 3 7 , 2 6 , 3 1 , 4 3 , 4 5 , 4 2 , 5 3 , 3 9 , 3 2 , 4 3 , 3 9 , 3 3 , 3 8 , 3 6 ,

2 4 , 4 0 , 2 9 , 4 5 , 4 8 , 2 5 , 6 0 , 5 6 , 3 1 , 3 5 , 3 6 , 3 7 , 3 7 , 3 0 , 3 9 , 3 4 , 4 0 ,

2 9 , 5 4 , 3 6 , 4 2 , 2 0 , 2 8 , 4 2 , 2 6 , 2 5 , 5 4 , 4 3 , 2 7 , 3 0 , 4 9 , 3 7 , 2 7 , 2 7 ,

3 2 , 3 5 , 2 7 , 2 7 , 3 4 , 3 0 , 3 4 , 4 2 , 2 6 , 2 7 , 2 9 , 2 2 , 3 3 , 2 6 , 2 9 , 3 5 , 2 9 ,

2 8 , 4 5 , 3 0 , 3 7 , 4 6 , 4 1 , 2 1 , 3 3 , 1 9 , 1 7 )

t r u = i n f−i n f 2

sigma02 =.01

n0 =0.001

a v a l =0 .5 * ( n0* s igma02+ l e n g t h ( t i m e s ) )

t h e t a [ 1 , ] = c ( nam1 [ 2 ] , nam1 [ 3 ] )

s igma=array ( dim=c (N+ 1 ) )

s igma [ 1 ] = sum ( ( t r u−ode ( y = i n i t , t i m e s = t imes , func = s e i r f 2 ,

parms = c ( w1= 0 . 3 5 , b2= t h e t a [ 1 , 1 ] , k2= t h e t a [ 1 , 2 ] , r2 =0 .01515 ,

u i l = .02221 ,A=4770 , u = 0 .0 005 5 ) ) [ , 4 ] ) ˆ 2 ) / l e n g t h ( t i m e s )

f o r ( i i n 1 :N){
e r r o r [ i ]=sum ( ( t r u−ode ( y = i n i t , t i m e s = t imes , func = s e i r f 2 ,

parms = c ( w1= 0 . 3 5 , b2= t h e t a [ i , 1 ] , k2= t h e t a [ i , 2 ] , r2 =0 .01515 ,

u i l = .02221 ,A=4770 , u = 0 .0 005 5 ) ) [ , 4 ] ) ˆ 2 )
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t h e t a 2 [ i , 1 ] = max ( min ( t h e t a [ i , 1 ] +

r u n i f ( 1 , min=−0.01 ,max = 0 . 0 1 ) , 1 ) , 0 . 0 0 0 0 0 1 )

t h e t a 2 [ i , 2 ] = max ( min ( t h e t a [ i , 2 ] +

r u n i f ( 1 , min=−0.001 ,max = 0 . 0 0 1 ) , 1 ) , 0 . 0 0 0 0 0 1 )

e r r o r 2 [ i ]=sum ( ( t r u−ode ( y = i n i t , t i m e s = t imes , func = s e i r f 2 ,

parms = c ( w1= 0 . 3 5 , b2= t h e t a 2 [ i , 1 ] , k2= t h e t a 2 [ i , 2 ] , r2 =0 .01515 ,

u i l = .02221 ,A=4770 , u = 0 .0 0055 ) ) [ , 4 ] ) ˆ 2 )

t h e t a [ ( i + 1 ) , ] = t h e t a [ i , ]

i f ( l o g ( r u n i f ( 1 ) ) < −0.5* ( e r r o r 2 [ i ] − e r r o r [ i ] ) / s igma [ i ] ) {
t h e t a [ ( i + 1 ) , ] = t h e t a 2 [ i , ]

e r r o r [ i ]= e r r o r 2 [ i ]

}
b v a l =0 .5 * ( n0* s igma02+ e r r o r [ i ] )

s igma [ i +1]=1 / rgamma ( 1 , ava l , b v a l )

p r i n t (100 *round ( ( i ) /N, 2 ) )

}
re turn ( t h e t a )

}

MH F o r e i g n Mig = f u n c t i o n (N=10000){
t h e t a = array ( dim=c (N+ 1 , 2 ) )

t h e t a 2 = array ( dim=c (N, 2 ) )

e r r o r = array ( dim=c (N) )

e r r o r 2 = array ( dim=c (N) )

i n i t = c (SM=239603 , EM=58 , IM = 7 , RM = 50136)

t i m e s = 1 :144
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nam1 = c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , pp =2497 , b1 =0 .0514155 ,

u =0 .00055 , k1 =0 .0048265 , r1 = .01695 , uim = 0 .0 087 2 )

t r u =c ( 7 , 7 , 6 , 6 , 8 , 7 , 1 4 , 7 , 5 , 1 3 , 7 , 1 2 , 4 , 4 , 3 , 2 , 5 , 2 , 1 0 , 4 ,

1 0 , 5 , 4 , 4 , 4 , 6 , 9 , 7 , 1 2 , 7 , 7 , 7 , 6 , 8 , 1 0 , 7 , 6 , 1 3 , 8 , 1 0 , 8 , 1 2 ,

7 , 1 2 , 4 , 9 , 6 , 1 0 , 7 , 1 1 , 7 , 9 , 7 , 1 5 , 1 1 , 1 3 , 6 , 1 4 , 1 1 , 6 , 1 0 , 7 ,

1 5 , 1 5 , 1 8 , 1 4 , 1 2 , 1 2 , 1 1 , 1 0 , 9 , 8 , 1 5 , 1 2 , 1 1 , 2 1 , 1 2 , 1 5 , 1 9 ,

1 7 , 9 , 1 2 , 1 1 , 1 0 , 1 2 , 8 , 1 4 , 1 8 , 1 0 , 2 0 , 1 6 , 8 , 1 2 , 1 3 , 1 2 , 1 4 , 1 0 ,

9 , 1 2 , 1 5 , 1 1 , 2 1 , 9 , 1 3 , 3 , 1 1 , 1 5 , 9 , 9 , 2 0 , 1 5 , 1 5 , 1 4 , 2 0 , 1 2 , 1 1 ,

1 2 , 1 1 , 9 , 1 4 , 8 , 9 , 6 , 1 5 , 1 9 , 8 , 1 0 , 1 1 , 9 , 1 1 , 8 , 1 0 , 1 4 , 8 , 1 1 , 1 5 ,

1 3 , 1 5 , 1 6 , 1 6 , 9 , 1 3 , 5 , 5 )

s igma02 =.01

n0 =0.001

a v a l =0 .5 * ( n0* s igma02+ l e n g t h ( t i m e s ) )

t h e t a [ 1 , ] = c ( nam1 [ 4 ] , nam1 [ 6 ] )

s igma=array ( dim=c (N+ 1 ) )

s igma [ 1 ] = sum ( ( t r u−ode ( y = i n i t , t i m e s = t imes , func = s e i r f 1 ,

parms = c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , b1= t h e t a [ 1 , 1 ] , k1= t h e t a [ 1 , 2 ] ,

pp =2497 , u =0 .00055 , r1 = .01695 , uim = 0 . 0 0 8 7 2 ) ) [ , 4 ] ) ˆ 2 ) / l e n g t h ( t i m e s )

f o r ( i i n 1 :N){

e r r o r [ i ]=sum ( ( t r u−ode ( y = i n i t , t i m e s = t imes , func = s e i r f 1 ,

parms = c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , b1= t h e t a [ i , 1 ] , k1= t h e t a [ i , 2 ] ,

pp =2497 , u =0 .00055 , r1 = .01695 , uim = 0 . 0 0 8 7 2 ) ) [ , 4 ] ) ˆ 2 )

t h e t a 2 [ i , 1 ] = max ( min ( t h e t a [ i , 1 ] +

r u n i f ( 1 , min=−0.05 ,max = 0 . 0 5 ) , 1 ) , 0 . 0 0 0 0 0 1 )
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t h e t a 2 [ i , 2 ] = max ( min ( t h e t a [ i , 2 ] +

r u n i f ( 1 , min=−0.005 ,max = 0 . 0 0 5 ) , 1 ) , 0 . 0 0 0 0 0 1 )

e r r o r 2 [ i ]=sum ( ( t r u−ode ( y = i n i t , t i m e s = t imes , func = s e i r f 1 ,

parms = c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , b1= t h e t a 2 [ i , 1 ] , k1= t h e t a 2 [ i , 2 ] ,

pp =2497 , u =0 .00055 , r1 = .01695 , uim = 0 . 0 0 8 7 2 ) ) [ , 4 ] ) ˆ 2 )

t h e t a [ ( i + 1 ) , ] = t h e t a [ i , ]

i f ( l o g ( r u n i f ( 1 ) ) < −0.5* ( e r r o r 2 [ i ] − e r r o r [ i ] ) / s igma [ i ] ) {
t h e t a [ ( i + 1 ) , ] = t h e t a 2 [ i , ]

e r r o r [ i ]= e r r o r 2 [ i ]

}
b v a l =0 .5 * ( n0* s igma02+ e r r o r [ i ] )

s igma [ i +1]=1 / rgamma ( 1 , ava l , b v a l )

p r i n t (100 *round ( ( i ) /N, 2 ) )

}
re turn ( t h e t a )

}

MH F o r e i g n I n t = f u n c t i o n (N=10000){
t h e t a = array ( dim=c (N+ 1 , 6 ) )

t h e t a 2 = array ( dim=c (N, 6 ) )

t h e t a 2 a = array ( dim=c (N, 6 ) )

e r r o r = array ( dim=c (N) )

e r r o r 2 = array ( dim=c (N) )

e r r o r a = array ( dim=c (N) )

e r r o r 2 a = array ( dim=c (N) )

i n i t = c (SM=239603 , EM=58 , IM = 7 , RM = 50136 ,
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SL=1280078 , EL=222 , IL = 27 , RL = 2347409)

t i m e s = 1 :144

nam1 = c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , pp =2497 , b1 =0 .02814503 ,

u =0 .00055 , k1 =0 .004931357 , r1 = .01695 , uim =0 .00872 ,

w1= 0 . 3 5 , b2 =0 .02520684 , k2= 0 .005589813 , r2 =0 .01515 ,

u i l = .02221 ,A=4770 , bs1 =0 .006560251 , bs2 =0 .009016213)

trum=c ( 7 , 7 , 6 , 6 , 8 , 7 , 1 4 , 7 , 5 , 1 3 , 7 , 1 2 , 4 , 4 , 3 , 2 ,

5 , 2 , 1 0 , 4 , 1 0 , 5 , 4 , 4 , 4 , 6 , 9 , 7 , 1 2 , 7 , 7 , 7 ,

6 , 8 , 1 0 , 7 , 6 , 1 3 , 8 , 1 0 , 8 , 1 2 , 7 , 1 2 , 4 , 9 , 6 ,

1 0 , 7 , 1 1 , 7 , 9 , 7 , 1 5 , 1 1 , 1 3 , 6 , 1 4 , 1 1 , 6 , 1 0 ,

7 , 1 5 , 1 5 , 1 8 , 1 4 , 1 2 , 1 2 , 1 1 , 1 0 , 9 , 8 , 1 5 , 1 2 ,

1 1 , 2 1 , 1 2 , 1 5 , 1 9 , 1 7 , 9 , 1 2 , 1 1 , 1 0 , 1 2 , 8 , 1 4 ,

1 8 , 1 0 , 2 0 , 1 6 , 8 , 1 2 , 1 3 , 1 2 , 1 4 , 1 0 , 9 , 1 2 , 1 5 ,

1 1 , 2 1 , 9 , 1 3 , 3 , 1 1 , 1 5 , 9 , 9 , 2 0 , 1 5 , 1 5 , 1 4 , 2 0 ,

1 2 , 1 1 , 1 2 , 1 1 , 9 , 1 4 , 8 , 9 , 6 , 1 5 , 1 9 , 8 , 1 0 , 1 1 ,

9 , 1 1 , 8 , 1 0 , 1 4 , 8 , 1 1 , 1 5 , 1 3 , 1 5 , 1 6 , 1 6 , 9 , 1 3 , 5 , 5 )

i n f =c ( 3 4 , 3 1 , 3 5 , 3 5 , 2 4 , 3 7 , 4 7 , 3 0 , 3 2 , 3 5 , 3 2 , 3 8 , 2 8 ,

3 0 , 3 0 , 3 7 , 3 6 , 3 8 , 4 0 , 2 7 , 3 7 , 4 0 , 3 7 , 2 6 , 3 2 , 3 4 , 3 9 , 4 6 , 4 3 ,

3 6 , 2 9 , 3 6 , 3 1 , 3 6 , 3 3 , 3 6 , 3 2 , 3 8 , 3 3 , 3 9 , 4 7 , 4 3 , 3 1 , 3 6 , 3 5 ,

4 0 , 3 1 , 4 3 , 2 7 , 4 5 , 4 0 , 4 4 , 4 5 , 4 6 , 4 1 , 3 8 , 2 8 , 4 3 , 3 3 , 3 1 , 3 2 ,

2 5 , 4 6 , 7 0 , 4 4 , 4 5 , 4 8 , 4 2 , 3 0 , 3 7 , 2 6 , 3 1 , 4 3 , 4 5 , 4 2 , 5 3 , 3 9 ,

3 2 , 4 3 , 3 9 , 3 3 , 3 8 , 3 6 , 2 4 , 4 0 , 2 9 , 4 5 , 4 8 , 2 5 , 6 0 , 5 6 , 3 1 , 3 5 ,

3 6 , 3 7 , 3 7 , 3 0 , 3 9 , 3 4 , 4 0 , 2 9 , 5 4 , 3 6 , 4 2 , 2 0 , 2 8 , 4 2 , 2 6 , 2 5 ,

5 4 , 4 3 , 2 7 , 3 0 , 4 9 , 3 7 , 2 7 , 2 7 , 3 2 , 3 5 , 2 7 , 2 7 , 3 4 , 3 0 , 3 4 , 4 2 ,

2 6 , 2 7 , 2 9 , 2 2 , 3 3 , 2 6 , 2 9 , 3 5 , 2 9 , 2 8 , 4 5 , 3 0 , 3 7 , 4 6 , 4 1 , 2 1 ,

3 3 , 1 9 , 1 7 )

t r u l = i n f−t rum

sigma02 =.01
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n0 =0.001

a v a l =0 .5 * ( n0* s igma02+ l e n g t h ( t i m e s ) )

t h e t a [ 1 , ] = c ( nam1 [ 4 ] , nam1 [ 6 ] , nam1 [ 1 0 ] , nam1 [ 1 1 ] ,

nam1 [ 1 5 ] , nam1 [ 1 6 ] )

s igma=array ( dim=c (N+ 1 ) )

s igmaa =array ( dim=c (N+ 1 ) )

s igma [ 1 ] = sum ( ( trum−ode ( y = i n i t , t i m e s = t imes , func = s e i r f m ,

parms =c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , pp =2497 , b1= t h e t a [ 1 , 1 ] , u =0 .00055 ,

k1= t h e t a [ 1 , 2 ] , r1 = .01695 , uim =0 .00872 ,w1= 0 . 3 5 , b2= t h e t a [ 1 , 3 ] ,

k2= t h e t a [ 1 , 4 ] , r2 =0 .01515 , u i l = .02221 ,A=4770 , bs1= t h e t a [ 1 , 5 ] ,

bs2= t h e t a [ 1 , 6 ] , p1 = . 8 , p2 = . 8 ) ) [ , 4 ] ) ˆ 2 ) / l e n g t h ( t i m e s )

s igmaa [ 1 ] = sum ( ( trum−ode ( y = i n i t , t i m e s = t imes , func = s e i r f m ,

parms = c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , pp =2497 , b1= t h e t a [ 1 , 1 ] , u =0 .00055 ,

k1= t h e t a [ 1 , 2 ] , r1 = .01695 , uim =0 .00872 ,w1= 0 . 3 5 , b2= t h e t a [ 1 , 3 ] ,

k2= t h e t a [ 1 , 4 ] , r2 =0 .01515 , u i l = .02221 ,A=4770 , bs1= t h e t a [ 1 , 5 ] ,

bs2= t h e t a [ 1 , 6 ] , p1 = . 8 , p2 = . 8 ) ) [ , 4 ] ) ˆ 2 ) / l e n g t h ( t i m e s )

f o r ( i i n 1 :N){

e r r o r [ i ]=sum ( ( trum−ode ( y = i n i t , t i m e s = t imes , func = s e i r f m ,

parms =c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , pp =2497 , b1= t h e t a [ i , 1 ] , u =0 .00055 ,

k1= t h e t a [ i , 2 ] , r1 = .01695 , uim =0 .00872 ,w1= 0 . 3 5 , b2= t h e t a [ i , 3 ] ,

k2= t h e t a [ i , 4 ] , r2 =0 .01515 , u i l = .02221 ,A=4770 , bs1= t h e t a [ i , 5 ] ,

bs2= t h e t a [ i , 6 ] , p1 = . 8 , p2 = . 8 ) ) [ , 4 ] ) ˆ 2 )

t h e t a 2 [ i , 1 ] = max ( min ( t h e t a [ i , 1 ] +
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r u n i f ( 1 , min=−0.005 ,max = 0 . 0 0 5 ) , 1 ) , 0 . 0 0 0 0 0 1 )

t h e t a 2 [ i , 2 ] = max ( min ( t h e t a [ i , 2 ]

+ r u n i f ( 1 , min=−0.0005 ,max = 0 . 0 0 0 5 ) , 1 ) , 0 . 0 0 0 0 0 1 )

t h e t a 2 [ i , 6 ] = max ( min ( t h e t a [ i , 6 ] +

r u n i f ( 1 , min=−0.0005 ,max = 0 . 0 0 0 5 ) , 1 ) , 0 . 0 0 0 0 0 1 )

t h e t a 2 [ i , 3 ] = t h e t a [ i , 3 ]

t h e t a 2 [ i , 4 ] = t h e t a [ i , 4 ]

t h e t a 2 [ i , 5 ] = t h e t a [ i , 5 ]

e r r o r 2 [ i ]=sum ( ( trum−ode ( y = i n i t , t i m e s = t imes , func = s e i r f m ,

parms =c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , pp =2497 , b1= t h e t a 2 [ i , 1 ] , u =0 .00055 ,

k1= t h e t a 2 [ i , 2 ] , r1 = .01695 , uim =0 .00872 ,w1= 0 . 3 5 , b2= t h e t a 2 [ i , 3 ] ,

k2= t h e t a 2 [ i , 4 ] , r2 =0 .01515 , u i l = .02221 ,A=4770 , bs1= t h e t a 2 [ i , 5 ] ,

bs2= t h e t a 2 [ i , 6 ] , p1 = . 8 , p2 = . 8 ) ) [ , 4 ] ) ˆ 2 )

t h e t a [ ( i + 1 ) , ] = t h e t a [ i , ]

i f ( l o g ( r u n i f ( 1 ) ) < −0.5* ( e r r o r 2 [ i ] − e r r o r [ i ] ) / s igma [ i ] ) {
t h e t a [ ( i + 1 ) , ] = t h e t a 2 [ i , ]

e r r o r [ i ]= e r r o r 2 [ i ]

}
b v a l =0 .5 * ( n0* s igma02+ e r r o r [ i ] )

s igma [ i +1]=1 / rgamma ( 1 , ava l , b v a l )

p r i n t (100 *round ( ( i ) /N, 2 ) )

}
f o r ( i i n 1 :N){

e r r o r a [ i ]=sum ( ( t r u l −ode ( y = i n i t , t i m e s = t imes , func = s e i r f m ,

parms =c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , pp =2497 , b1= t h e t a [ ( i + 1 ) , 1 ] ,
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u =0 .00055 , k1= t h e t a [ ( i + 1 ) , 2 ] , r1 = .01695 ,

uim =0 .00872 ,w1= 0 . 3 5 , b2= t h e t a [ ( i + 1 ) , 3 ] ,

k2= t h e t a [ ( i + 1 ) , 4 ] , r2 =0 .01515 ,

u i l = .02221 ,A=4770 , bs1= t h e t a [ ( i + 1 ) , 5 ] , bs2= t h e t a [ ( i + 1 ) , 6 ] ,

p1 = . 8 , p2 = . 8 ) ) [ , 8 ] ) ˆ 2 )

t h e t a 2 a [ ( i ) , 3 ] = max ( min ( t h e t a [ ( i + 1 ) , 3 ] +

r u n i f ( 1 , min=−0.005 ,max = 0 . 0 0 5 ) , 1 ) , 0 . 0 0 0 0 0 1 )

t h e t a 2 a [ ( i ) , 4 ] = max ( min ( t h e t a [ ( i + 1 ) , 4 ]

+ r u n i f ( 1 , min=−0.0005 ,max = 0 . 0 0 0 5 ) , 1 ) , 0 . 0 0 0 0 0 1 )

t h e t a 2 a [ ( i ) , 5 ] = max ( min ( t h e t a [ ( i + 1 ) , 5 ]

+ r u n i f ( 1 , min=−0.0005 ,max = 0 . 0 0 0 5 ) , 1 ) , 0 . 0 0 0 0 0 1 )

t h e t a 2 a [ ( i ) , 1 ] = t h e t a [ ( i + 1 ) , 1 ]

t h e t a 2 a [ ( i ) , 2 ] = t h e t a [ ( i + 1 ) , 2 ]

t h e t a 2 a [ ( i ) , 6 ] = t h e t a [ ( i + 1 ) , 6 ]

e r r o r 2 a [ i ]=sum ( ( t r u l −ode ( y= i n i t , t i m e s = t imes , func = s e i r f m ,

parms=c ( v1 =0 .00002 , v2 = 0 . 1 7 3 , pp =2497 , b1= t h e t a 2 a [ i , 1 ] , u =0 .00055 ,

k1= t h e t a 2 a [ i , 2 ] , r1 = .01695 , uim =0 .00872 ,w1= 0 . 3 5 , b2= t h e t a 2 a [ i , 3 ] ,

k2= t h e t a 2 [ i , 4 ] , r2 =0 .01515 , u i l = .02221 ,A=4770 , bs1= t h e t a 2 a [ i , 5 ] ,

bs2= t h e t a 2 a [ i , 6 ] , p1 = . 8 , p2 = . 8 ) ) [ , 8 ] ) ˆ 2 )

t h e t a [ ( i + 1 ) , 3 ] = t h e t a [ i , 3 ]

t h e t a [ ( i + 1 ) , 4 ] = t h e t a [ i , 4 ]

t h e t a [ ( i + 1 ) , 5 ] = t h e t a [ i , 5 ]

i f ( l o g ( r u n i f ( 1 ) ) < −0.5* ( e r r o r 2 a [ i ] − e r r o r a [ i ] ) / s igmaa [ i ] ) {
t h e t a [ ( i + 1 ) , 3 ] = t h e t a 2 a [ i , 3 ]

t h e t a [ ( i + 1 ) , 4 ] = t h e t a 2 a [ i , 4 ]

t h e t a [ ( i + 1 ) , 5 ] = t h e t a 2 a [ i , 5 ]

e r r o r a [ i ]= e r r o r 2 a [ i ]
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}
b v a l a =0 .5 * ( n0* s igma02+ e r r o r a [ i ] )

s igmaa [ i +1]=1 / rgamma ( 1 , ava l , b v a l a )

p r i n t (100 *round ( ( i ) /N, 2 ) )

}
re turn ( t h e t a )

}

s e i r s <− f u n c t i o n ( time , s t a t e , p a r a m e t e r s ) {

wi th ( as . l i s t ( c ( s t a t e , p a r a m e t e r s ) ) , {

N= S+E+ I+R
beta = b e t a 0 * (1+ s i n ( ( 2 * p i * time ) / ( 1 2 ) ) )

k= k0* (1+ s i n ( ( 2 * p i * time ) / ( 1 2 ) ) )

dS= w1*A−beta *S* I /N−u*S

dE= (1−q ) * beta *S* I /N − k*E − u*E

dI = ( q ) * beta *S* I /N+k*E − r * I − ( u+d ) * I
dR= (1−w1 ) *A + r * I − u*R
return ( l i s t ( c ( dS , dE , dI , dR ) ) )

} )

}
s e i r f m <− f u n c t i o n ( time , s t a t e , p a r a m e t e r s ) {

wi th ( as . l i s t ( c ( s t a t e , p a r a m e t e r s ) ) , {
NM= SM+EM+IM+RM

NL= SL+EL+IL+RL
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dSM= (1−v1−v2 ) *pp−b1*SM*IM /NM−bs2 *SM* IL /NM−u*SM

dEM= v1*pp+b1*SM*IM /NM + bs2 *SM* IL /NM

−p2* bs2 * IL *EM/NM − k1*EM − u*EM

dIM= k1*EM +p2* bs2 *EM* IL /NM − ( r1 +u+uim ) *IM

dRM= v2*pp + r1 *IM − u*RM

dSL= w1*A−b2*SL* IL /NL − bs1 *SL*IM / NL−u*SL

dEL= b2*SL* IL /NL +bs1 *SL*IM / NL−p1* bs1 *IM*EL / NL− k2*EL − u*EL

dIL= p1* bs1 *IM*EL /NL+k2*EL − ( r2 +u+ u i l ) * IL

dRL= (1−w1 ) *A + r2 * IL − u*RL

re turn ( l i s t ( c (dSM, dEM, dIM ,dRM, dSL , dEL , dIL , dRL ) ) )

} )

}

s e i r f 2 <− f u n c t i o n ( time , s t a t e , p a r a m e t e r s ) {

wi th ( as . l i s t ( c ( s t a t e , p a r a m e t e r s ) ) , {
NL= SL+EL+IL+RL

dSL= w1*A−b2*SL* IL / NL−u*SL

dEL= b2*SL* IL /NL − k2*EL − u*EL

dIL= k2*EL − ( r2 +u+ u i l ) * IL

dRL= (1−w1 ) *A + r2 * IL − u*RL

re turn ( l i s t ( c ( dSL , dEL , dIL , dRL ) ) )

} )

}
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s e i r f 1 <− f u n c t i o n ( time , s t a t e , p a r a m e t e r s ) {

wi th ( as . l i s t ( c ( s t a t e , p a r a m e t e r s ) ) , {
NM= SM+EM+IM+RM

dSM= (1−v1−v2 ) *pp−b1*SM*IM /NM−u*SM

dEM= v1*pp+b1*SM*IM /NM − k1*EM − u*EM

dIM= k1*EM − ( r1 +u+uim ) *IM

dRM= v2*pp + r1 *IM − u*RM

re turn ( l i s t ( c (dSM, dEM, dIM ,dRM ) ) )

} )

}
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