Indirect evidence for a NiIII-oxyl oxidant in the reaction of a NiII complex with peracid

Paolo Pirovano,a Abigail R. Berry,a Marcel Swart,b Aidan R. McDonalda,⁎

The reaction of a NiIII complex and \textit{meta}-chloroperoxybenzoic acid (m-CPBA) resulted in the formation of a long-lived NiIII–chlorobenzoate complex that is a capable hydrocarbon oxidant. Analysis of the post-reaction decay products showed the formation of oxidised derivatives of the supporting ligand (a benzoxazine), and heterolytic O–O bond scission in m-CPBA. This evidence indicates formation of a more potent transient NiIII-oxyl species, which was further supported by DFT calculations.

The study of high-valent transition metal oxidants has attracted recent interest, largely because of their postulated role as highly reactive intermediates in several industrially and biologically relevant oxidation processes.1 Nickel-oxo (Ni=O) and -oxyl (Ni–O−) species have been invoked as the putative oxidants in nickel-catalysed oxidation reactions. Ni=O complexes have been predicted to be the most reactive in a series of metals towards the oxidation of CH\textsubscript{2},2 although experimental insight into such species is limited.

Early mechanistic studies on Ni-catalysed epoxidation reactions proposed NiIV–O as an oxidising reagent, on the basis of analysis of product distribution and side reactions.3 More recently, Itoh and Palaniandavar have demonstrated Ni-catalysed alkane oxidations, and suggested a NiII–O− or NiIII–O− oxidant.4 Several bis-μ-oxo-NiII have been reported,5 but terminal Ni–O− or Ni=O are still largely unknown. The reactions of NiIII complexes with peracids have yielded highly reactive but poorly-defined species, postulated to be Ni=O(X)− or Ni–O−.6 Itoh and co-workers recently demonstrated the formation of a highly unusual NiII–aminoxyl radical from the reaction between a NiII complex and peracid.7 We recently reported well-characterised examples of NiIII-oxygen adducts, that were proficient hydrogen atom transfer (HAT) reagents.8 Further exploration of the active oxidants formed in the catalytic reactions would yield precious insights into their mechanisms of oxidation. Herein, we explore the reaction of a NiII complex (1, Scheme 1) towards \textit{meta}-chloroperoxybenzoic acid (m-CPBA), and provide evidence for the formation of a transient high valent NiIII–O− oxidant, and trap a thermodynamically more stable NiIII–carboxylate product.

Scheme 1. Preparation of 3 by ligand exchange with 1.

Upon addition of m-CPBA (2 equiv.) to a solution of 1 at 25 °C (0.5 mM, 2 mL, acetone or CH\textsubscript{3}CN), a colour change from orange to dark purple occurred. The maximum yield of the purple species, on the basis of the intensity of the newly formed electronic absorption bands (λ\textsubscript{max} = 560 nm, 760 nm (shoulder), Figure 2), was obtained after 350 s. The purple species subsequently decayed with a half-life of 2100 s at 25 °C. We previously reported that [NiIII(OX)(L*)] (OX = OCO\textsubscript{2}H, O\textsubscript{2}C\textsubscript{2}H\textsubscript{5}, O\textsubscript{2}CN\textsubscript{2}) complexes, displayed absorption features in the range λ\textsubscript{max} = 500-900 nm.9 The spectrum of the product of
the m-CPBA + 1 reaction is reminiscent of these compounds, suggesting a $[\text{Ni}^{III}(\text{OX})(L)]$ species had formed.

![Figure 2](image)

Figure 2. Electronic absorption spectra of 1 (0.5 mM, acetone, 25 °C, blue trace) and the same solution after addition of m-CPBA (2 equiv., 25 °C, purple trace); 3 (0.5 mM, acetone, -80 °C, orange trace) and of the oxidation product 2 resulting from the addition of 1 equiv. magic blue (red trace) to 3.

Electrospray ionisation mass spectrometry (ESI-MS) analysis of the 1 + m-CPBA mixture revealed one peak, with an isotopic pattern typical of a Ni-containing species, at $m/z = 696$, consistent with a $[\text{Ni}(\text{OOCOC}_{6}H_{5}Cl)(L)]^{+}$ ion (m/z 696.2139, Figure S3); presumably this species results from the ionisation of a neutral $[\text{Ni}^{III}(\text{O}_{2}CC_{6}H_{5}Cl)(L)]$ species present in solution.

Electron paramagnetic resonance (EPR) analysis of the reaction mixture (Figure 3) displayed a signal suggestive of a mixture of two low-spin $S = \frac{1}{2}$ d^9 NiIII species, similar to previously reported NiIII complexes.9 We simulated the spectrum as an approximately 1:1 mixture of an axial signal ($g_{\perp} = 2.23$, $g_{\parallel} = 2.01$) and a markedly more rhombic one ($g_{\perp} = 2.42$, $g_{\parallel} = 2.26$, $g_{z} = 1.99$). Double integration of the signal and comparison with a radical standard (0.5 mM 2,2,6,6-tetramethylpiperidin-1-yl)oxyl, TEMPO) demonstrated a total yield of $S = \frac{1}{3}$ of about 50 ± 20%, on the basis of the starting concentration of 1. On the basis of the electronic absorption, mass, and EPR spectra, and in analogy with previously studied $[\text{Ni}^{III}(\text{OX})(L^*)]$ complexes, we postulated that one of the products was $[\text{Ni}^{IV}(\text{O}_{2}CC_{6}H_{5}Cl)(L)]$ (2).

We have previously demonstrated that $[\text{Ni}^{III}(\text{OX})(L^*)]$ could be prepared by the one electron oxidation of the corresponding $[\text{Ni}^{III}(\text{OX})(L^*)]$9. In order to prepare the putative $[\text{Ni}^{III}(\text{O}_{2}CC_{6}H_{5}Cl)(L)]$, we synthesised Et$_3N[\text{Ni}^{III}(\text{O}_{2}CC_{6}H_{5}Cl)(L)]$, 3 (Scheme 1), by the reaction of 1 with crude Et$_3$N(OOCOC$_6$H$_5$Cl) (obtained by the metathesis of Et$_3$NCl and NaOOCOC$_6$H$_5$Cl in CH$_3$OH, see supp. info). Single crystal X-ray diffraction measurements confirmed the structure of 3 (Figure 1), and was supported by NMR, FT-IR, and ESI-MS (see supp. info).

The oxidation of 3 with tris(3-bromophenyl)ammoniumyl hexachloroantimonate (magic blue, 1 equiv., -80 °C, acetone) resulted in a purple solution, whose electronic absorption spectrum displayed bands at $\lambda_{\text{max}} = 580$ and 780 (shoulder) nm (Figure 2). Such features have been identified as typical for $[\text{Ni}^{III}(\text{OX})(L^*)]$ complexes,9 allowing us to identify this compound as $[\text{Ni}^{III}(\text{O}_{2}CC_{6}H_{5}Cl)(L)]$ (2). Critically, the obtained spectrum possessed a similar profile to that obtained from the 1 + m-CPBA mixture, with intense bands in the visible region (Figure 2, Figure S1). However, there was a shift in the λ_{max} values (20 nm), which we attribute to the presence of at least two NiIII species in the 1 + m-CPBA reaction mixture. The EPR spectrum of 2 (Figures 3 and S2) corresponded to a single species ($g_{\perp} = 2.42$, $g_{\parallel} = 2.26$, $g_{z} = 1.99$). Such signals are typical of $[\text{Ni}^{III}(\text{OX})(L^*)]$ species.8 Importantly, 2 displayed EPR features identical to the rhombic component in the mixture obtained from the mixture of 1 and m-CPBA (Figure 3). ESI-MS analysis of pure 2 showed a peak at $m/z = 696$, corresponding to a $[2]^+$ ion, which was also observed in the 1 + m-CPBA mixture (Figure S4). The same product (2, $[\text{Ni}^{IV}(\text{OOCOC}_{6}H_{5}Cl)(L)]$) was thus acquired from the one-electron oxidation of 3, as from the reaction of 1 with excess m-CPBA.

The formation of 2 corresponds to a net one-electron oxidation of 1. m-CPBA can react either as a two- or one-electron oxidant. Two-electron oxidation by m-CPBA results from heterolytic O–O bond scission, while a one-electron oxidation derives from homolytic O–O bond scission. It has been previously reported that these two occurrences can be distinguished on the basis of the m-CPBA-derived product.4,10 In the former a NiIV=O/NiIII–O moity and meta-chlorobenzoic acid (m-CPBA) would form and in the latter a NiIV=O/NiIII–O entity and a meta-chlorobenzeno carbonyl radical would form. The meta-chlorobenzeno carboxyl radical would decay further by decarboxylation and further radical-type reactions to yield chlorobenzene, 1,3-dichlorobenzene, or 3-chlorophenol.10 We analysed the 1 + m-CPBA reaction mixture by GC-MS, after

![Figure 3](image)

Figure 3. X-Band EPR spectra of the reaction mixture of 1 and m-CPBA (top, black line; dashed line = simulated spectrum) and of 3 and magic blue (purple, bottom); measured at 77 K in frozen acetone solution, 2 mW microwave power. Simulated spectra (middle) of the two individual components of the 1 + m-CPBA mixture are in red ($g_{\perp} = 2.23$, $g_{\parallel} = 2.01$) and blue ($g_{\perp} = 2.42$, $g_{\parallel} = 2.26$, $g_{z} = 1.99$).
acidic work-up, but didn’t identify any of chlorobenzene, 1,3-dichlorobenzene, or 3-chlorophenol. Moreover, separation by column chromatography of the post-reaction mixture showed recovery of m-CBA in high yield (>90%, see supp. Info.). These observations suggest that the reaction of 1 with m-CPBA resulted in heterolytic cleavage of the O–O bond, and the formation of a NiIII=O/NiII–O species. 2 is not a NiIV=O/NiII–O complex, and therefore, we assume it derives from the transient NiIV=O/NiII–O species (Scheme S1).

Heterolytic O–O bond scission is further corroborated by DFT calculations (S12g/TZ2P//BP86-D\textsubscript{2}/TDZP including COSMO solvation and ZORA relativistic effects11) which showed that after binding of m-CPBA, the O–O bond broke spontaneously resulting in a hydroxo-NiII–carboxylate adduct (Figure S21). Subsequent spontaneous loss of m-CBA, after proton transfer from this adduct, lead to the formation of a NiIV–O2− species (Figure S22). The NiIII–O2− entity (S = 1) was found to be more stable than the NiIVO− (S = 0) by ca. 9 kcal/mol−1, and carries unpaired spin density on both the metal, nitrogens, and the oxygen atom (Figure 4).

In order to understand the 1 + m-CPBA reaction further we performed an acidic work-up of the reaction mixture, which caused demetallation, and isolated all organic products by column chromatography. Alongside non-derivatised ligand (LH\textsubscript{2}) one major ligand-oxidised product (4) was obtained (Figure 5), as well as traces of other degradation products (see supp. info., Scheme S2). Importantly, none of these ligand-derived organic molecules were formed in the reaction of LH\textsubscript{2} with m-CPBA (room temperature, acetone) or from the natural decay of the NiIII–carboxylate 2 (prepared with magic blue in acetone, -45 °C to room temperature).

Crystals of 4 that were suitable for X-ray diffraction, obtained from ethanol/H\textsubscript{2}O, demonstrated 4 to be a benzoazine derivative of LH\textsubscript{2} (Figure 5). The yield of 4, after column chromatography, was 35% relative to the quantity of 1. We believe there are two plausible mechanisms for the formation of 4 in the reaction of 1 with m-CPBA (Scheme 2). In both cases, the putative NiIII–O2− presumably abstracts a hydrogen atom from a methine H–C(CH\textsubscript{3})\textsubscript{2}, yielding a methine radical and a NiII–OH. These products could undergo radical rebound to yield a hydroxylated species (mechanism A, Scheme 2). The hydroxylated ligand could then undergo cyclisation-condensation, to yield the benzoazine product. Alternatively, the methine radical would react directly with the carboxamide oxygen, in a radical coupling fashion, ultimately yielding the benzoazine (mechanism B, Scheme 2). Analogous benzo-1,3-oxazines have typically been prepared by the acid-promoted cyclisation-condensation of 2-acylamido-benzylalcohols, thus supporting mechanism A.12 Metal based oxidants such as MnO\textsubscript{2} or PbO\textsubscript{2} have been observed to effect this kind of transformation.13 To the extent of our knowledge, radical-type mechanisms (as in mechanism B, Scheme 2) have not been investigated.

The two mechanisms can be differentiated by the source of the oxygen atom in the product: the putative NiIII–O2− oxidant in case A, or the carboxamide O-atom originally present in the ligand in case B. In order to resolve this question, we performed the reaction between 1 and m-CPBA in the presence of H\textsubscript{2}O18 (435 equiv.). By ESI-MS, we observed ~30% 18O incorporation in the benzoazine product 4 (Figure S5). This is a strong indication that the benzoazine is formed through the intermediate alcohol product, derived from hydroxylation by a putative NiIII–O2− species, because such a species is likely to exchange with H\textsubscript{2}O18 whereas the carboxamide oxygen is unlikely to undergo exchange with H\textsubscript{2}18O.

This was supported by DFT analysis, which showed that although in the NiIII–O2− species the methine hydrogen H–C(CH\textsubscript{3})\textsubscript{2} was further away from the oxygen atom (2.95 Å) than the methyl hydrogens HCH\textsubscript{2}CH\textsubscript{3} (2.51 Å), the barrier for HAT was found to be significantly lower for the methine (8.7 kcal-mol−1) than the methyl (13.8 kcal-mol−1) hydrogen atoms (Figure 6). For the subsequent step (Scheme 2), where either hydroxide radical rebound (mechanism A) or carboxamide O-
atom radical coupling (mechanism B), DFT also supports the experimental observations. The barrier for the rebound pathway was found to be substantially lower (6.5 vs. 14.4 kcal·mol$^{-1}$, Figure 6), corroborating the results from the isotopic labelling experiments. This allowed us to conclude that a metal-based oxidant, distinct from the NiIII-containing 2, is transiently formed when 1 was reacted with m-CPBA, and causes the oxidation of the supporting ligand.

The formation of degradation product 4 demonstrates that the putative NiIII–O$^{-}$ intermediate can be reduced by the transfer of one of the ligand’s hydrogen atoms. In the reaction between 1 and m-CPBA, we postulate that the observed species 2 is formed by a similar process, in which an exogenous reductant, most likely the solvent, causes the conversion of NiIII–O$^{-}$ to NiIII–OH (Scheme S1). The latter subsequently reacts with m-CBA via ligand exchange, to form 2. While we cannot confirm the structure of the second EPR-active product (axial signal, Figure 3) in the reaction of 1 and m-CPBA, we postulate that it is a NiIII species supported by the oxidised ligand (thus a NiIII ion supported by 4).

We have previously demonstrated3b that [NiIII(OX)(L*)] complexes were not capable of oxidising cyclohexane (BDE$_{C-H}$ = 99 kcal/mol).15 We believe the putative NiII–O$^{-}$ will be a more potent oxidant than the [NiIII(OX)(L*)] complexes. We reacted 1 and m-CPBA in the presence of excess cyclohexane (80% by volume). Cyclohexanol, the hydroxylated product of cyclohexane, was found in trace amounts by GC-MS. The putative transient NiIII–O$^{-}$ is thus capable of oxidising non-activated, alkylic C–H bonds, and is a superior oxidant compared to well-characterised [NiIII(OX)(L*)] complexes.

In conclusion, the reaction of 1 with m-CPBA leads to the formation of a stable [NiIIIL(O$_2$C$_2$H$_4$C)] species, that previous studies have shown can oxide substrates with relatively weak C–H bonds (e.g. toluene). The analysis of organic decay products led us to surmise the existence of a more powerful, transient NiIII–O$^{-}$ precursor to this NiIII species. The slow reaction of m-CPBA and instability of the NiIII–O$^{-}$ prevented its spectroscopic observation. When compared to the previously investigated [NiII(OX)(L*)], this formally NiIV entity demonstrated a greater oxidative power, reacting with strong C–H bonds in cyclohexane and effecting the degradation of the supporting ligand. The NiIII–O$^{-}$ mediated ligand oxidation resulted in the unexpected formation of benzoazine 4. Future efforts will focus on the stabilisation of the NiIII–O$^{-}$ to facilitate its isolation.

Conflicts of interest: There are no conflicts of interest to declare.

Acknowledgements: This publication has emanated from research supported by the European Union (FP7-333948, ERC-2015-STG-678202). Research in the McDonald lab is supported in part by a research grant from Science Foundation Ireland (SFI/12/RC/2278, SFI/15/RS-URF/3307), and in the Swart lab by the Ministerio de Economía y Competitividad (MINECO, projects CTQ2014-59212-P and CTQ2015-70851-E), the DUE of the Generalitat de Catalunya (project 2014SGR1202), and the European Fund for Regional Development (FEDER, UNG10-4E-801). We are grateful to Dr. Brendan Twamley for X-ray diffraction data collection and refinement, and to Prof. Robert Barkley for training and use of EPR.

References

Graphical Abstract

The oxidation of a NiII complex with m-CPBA is shown to promote the formation of a transient NiIII-O\cdot species. Methine C-H bond activation in the supporting ligand led to a benzoxazine product.