PHYSICAL REVIEW B 96, 054411 (2017)

£

Ab initio dynamical exchange interactions in frustrated antiferromagnets

Jacopo Simoni,»?*" Maria Stamenova,' and Stefano Sanvito!
1School of Physics and CRANN Institute, Trinity College, Dublin 2, Ireland
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 1 February 2017; revised manuscript received 24 May 2017; published 9 August 2017)

The ultrafast response to an optical pulse excitation of the spin-spin exchange interaction in transition metal
antiferromagnets is studied within the framework of the time-dependent spin-density functional theory. We
propose a formulation for the full dynamical exchange interaction, which is nonlocal in space, and it is derived
starting from ab initio arguments. Then, we investigate the effect of the laser pulse on the onset of the dynamical
process. It is found that we can distinguish two types of excitations, both activated immediately after the action
of the laser pulse. While the first one can be associated to a Stoner-like excitation and involves the transfer
of spin from one site to another, the second one is related to the ultrafast modification of a Heisenberg-like
exchange interaction and can trigger the formation of spin waves in the first few hundred femtoseconds of the

time evolution.
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I. INTRODUCTION

Density functional theory (DFT) has been the workhorse
in material properties prediction from first principles for
nearly half of a century. Among the many physical quantities
that can be extracted from DFT, particularly relevant for
magnetism is the evaluation of the static Heisenberg exchange
parameters [ 1-3]. Their calculation has been closely related to
and motivated by the problem of theoretically predicting the
finite-temperature properties of magnetic systems. A possible
approach consists in assuming that the magnetic excitations
can be reasonably described by a Heisenberg-like Hamiltonian
of the following form:

1
H = _ﬁlg,l]mnsm 'Sn )

ey

where S,, designates the spin vector associated to the
site m, J,,, is the exchange interaction between the spins at
the two sites m and n, and N is the number of unit cells in the
macroscopic system. If one considers a low-energy excitation
of the magnetic system described in terms of a spin spiral
solution with wave vector ¢ and polar angle 6, the difference
in total energy between this configuration, E(q,0), and the
reference ferromagnetic one, £(0,0), will be in general related
to the magnon frequency wq. In case of a single magnetic
sublattice it can be shown that [4]

E(q.0) — E(0,6)

M sin2 6 ’
where M is the magnitude of the on-site magnetization. Such
frequency can be in turn related to the exchange parameter J(q)
through the relation wq = 2[J(0) — J(q)]/M. By employing
the magnetic force theorem [5-7], the difference in total energy
between the two magnetic configurations can be related to the
difference in the sum of the single-particle energies calculated
at the relevant spin densities. This allows one to estimate the
bare exchange interaction directly from DFT results [8].
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Exchange parameters can be also extracted from the dy-
namical linear response of the magnetic system to an external
perturbation that is usually expressed in terms of a small
homogeneous magnetic field b*'(z). Exact susceptibilities can
be, at least in principle, obtained from the time-dependent
extension of spin density functional theory (TDSDFT). In
Fourier space the linear response of the magnetization density
[9-11] is written

Sm_(q,0) = —x+(q,0)b>'(q,) , 3)
where the two functions §m_ and b are constructed through
a linear combination of the x and y components of the
respective vectors in the form fi(q,w) = (f; £if))(q,w),
while x4 (q,w) represents the full spin-transverse susceptibility
in Fourier space. The poles of xi(q,®) define the excitation
spectrum of the spin system, which in the zero-frequency limit
returns the expression for the exchange coupling parameter
of the effective Heisenberg Hamiltonian [2]. In contrast, at
higher frequencies the spin waves cannot be separated from
the Stoner continuum.

The two methods just discussed both rest on an adiabatic
assumption. Namely, that the time scales of the magnons and
of the electronic motion differ enough to allow for the total
energy differences between two magnetic configurations to be
calculated within the framework of constrained noncollinear
DFT. This, as it is well known, is designed to evaluate ground-
state properties only. As a consequence, neither the magnetic
force theorem nor the calculation of the spin-transverse
susceptibility are necessarily adequate to describe the out-
of-equilibrium dynamics driven by very short (femtosecond
scale) and strong laser pulses, when the electronic degrees
of freedom cannot be averaged out. One previous attempt to
map the spin dynamics resulting from TDSDFT simulations
into the Heisenberg Hamiltonian of Eq. (1) has been based
on a simple two-center molecule excited by very short pulsed
and local in space magnetic fields [12]. It was noticed that
after the extinction of the pulse excitation the two atomic
spins, deflected from the collinear ground state to an angle ¢,
display a precessional motion around the total spin axis with
angular velocity given by w = 4J S cos(¢/2)/h, similarly to
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a pair of classical Heisenberg-coupled spins. This method
was also employed to analyze the evolution of a hypothetical
H-He-H magnetic molecule, whereas in Ref. [13] the same
molecule was excited by applying an external scalar potential
that, acting as a small perturbation, contributed very little to
the modification of the electronic ground state. The system
was then evolved dynamically by solving the set of TDSDFT
equations with very similar findings for the dependence of J
on the misalignment angle.

However, the external fields cannot always be treated as
perturbations. This is certainly true for a class of ultrafast
demagnetization phenomena [14] discovered by Beaurepaire
et al. [15], where an intense femtosecond laser pulse induces
an abrupt loss of a large portion of the magnetization of a
metallic film. There is little doubt that the exchange interaction
plays a crucial role in the demagnetization observed at the
femtosecond time scale and, in general, the spin dynamics in
transition metal systems has always been explained within the
framework of two different competing scenarios. In the first
it is assumed that the main contribution to the spin dynamics
can be attributed to collective magnonic excitations [16,17],
while in Ref. [18] a new out-of-equilibrium spin-spin type
of interaction was introduced starting from the Kadanoff-
Baym formalism. The second scenario only considers the
single-particle (Stoner) nature of the excitations in metals, and
recently it has been employed to justify ultrafast modifications
of the exchange splitting driven by the external laser pulse
[19,20].

In Ref. [21] TDSDFT calculations were employed to study
the ultrafast magnetization dynamics in Heusler compounds,
showing the important role played by the spin currents in
the process. In this work we aim at introducing within
the TDSDFT framework the concept of effective dynamical
exchange interaction (EDEI), and we will use such a con-
cept to analyze the laser-induced magnetization dynamics
in antiferromagnetic metals directly in the time domain.
The paper is organized as follows. In Sec. II we derive
the fundamental equation of motion for the magnetization
density in TDSDFT and introduce the kinetic field By, (r,?).
In Sec. III we investigate the possibility to rewrite By, (r,?)
in a form where its dependence on the spin vector becomes
explicit and the local and semilocal contributions of the spin
gradient are separated. In Sec. IV we look at the ultrafast
magnetization dynamics of the frustrated antiferromagnet
FeMn (see Fig. 1) by analyzing the contribution of the different
magnetic excitations and in particular by focusing on the role
of the EDEI at ultrafast time scales. Finally in Sec. V we
conclude.

II. METHODS

When one neglects second-order contributions arising from
the solution of the coupled Maxwell-Schrodinger system of
equations, the dynamics is then governed by the following set
of time-dependent Kohn-Sham (KS) equations:

d
B = Hwmoven. @

The KS Hamiltonian Hgg(r,) can be written by using
the velocity gauge formulation and the minimal coupling
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FIG. 1. Time-averaged observables evaluated in spheres of radius
0.5 A around each atom (the choice of the radius is not particularly
special or significant, the main guiding principle for this selection is
that it encloses enough of the on-site density yet avoiding substantial
overlaps with neighboring spheres). (a) The averaged temporal
variation of the spin-density module |[ASN(7)| = & fs;} d*r(|s(r,1)| —
|s(r,0)]) under various laser pulses for the two Fe and Mn sites
respectively. The dashed bold lines represent the previous quantity
rescaled by the factor (A/Aq)? with Ay = 0.9 and A indicating the
amplitude of the other two pulses, at the Fe site. (b) The different
laser pulses employed in the dynamical simulations with shape
E,(t) = A -sin(0.1 - 1) - exp(—(t — 5)?/3) for ¢ in femtoseconds. The
amplitudes A are in units of V/A . (The black arrow in the inset
indicates the electric field polarization direction.)

substitution in the following form:

Hies(e.0) = 5[~V = Ao @]+ ulnlen
— g6 - By[n,m](r,1), ®)
where vy(r,?) represents the usual scalar KS potential, while
Bi[n,m](r,t) = BAPA[n,m](r,1) + Bex(r,t) . (6)

Here we have implied the use of the adiabatic local density
approximation (ALDA). The full noninteracting magnetic
field B4(r,7) is expressed as the sum of the external one and
the exchange-correlation field, Bx.(r,7) = § Ex./ém, with Ey,
being the exchange-correlation energy.

Starting from the set of equations (4), the following
continuity equation for the spin density can be derived:

d t 2
% = V. L) + %m(r,t)  By(r.1)

+ Tso(r,1), @)

where Tso(r,?) defines the spin-orbit coupling contribution to
the spin loss and Js(r,?) is the noninteracting KS spin-current
tensor. The KS magnetic field, By(r,?), in absence of an exter-
nal magnetic field simply reduces to the exchange-correlation
contribution. In Refs. [22-25] it was already pointed out that
the spin-current tensor term can be rewritten in a different
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form through the prescription V - J(r,t) = —Z’LT”S X Byin +
V - [vm(r,?)]. This expression, which introduces the so-called
kinetic field Byin, 1s, however, valid only in the single-particle
case. For a many-particle system such a reformulation of the
divergence of the spin current leads to the following expression
[26]:

%m(r,t) =—-V . -D(r,t) — Z m;(r,1)V - v;(r,t)

Jjeocc.
+ upm(r,7) X Begr(r,1) + Tso(r,1).  (8)

The term on the left-hand side of the equation is the material
derivative, % = % + v - V, of the magnetization density. On
the right-hand side the term V - D(r,t) represents dissipation
due to the probability-current flow among different Kohn-

Sham states,

Dor=-Y Y f,j[Jgf’”(r,t)

Jje€oce. r#jeocc.

—m" () ® (v‘f”(r,z) + iA(m))} )]
mc

vl

with 7 = and n(r,?) being the electron density of the
system. The spin-current field can be written as

. ih |
Y00 = ——[y e vy — vy SleyfS],  (10)
2m*t"7 J
while the velocity field becomes

. VUV -V PSS e
v t) = — n —— . an
2mi wj‘?S'erS mc

A second important term introduced in Eq. (8) has the form
of an effective magnetic field acting on the magnetization
density. This is

1 [ Vn(r,t) - Vs(r,t
Besi(r,1) = Bo(r,1) + =— Ynir1) - Vo) + V3s(r,0) |,
Fe n(r,t)
(12)
= W),
with F = ’nT’)’ The spin vector field s(r,?) is defined
through the relation s(r,t) = mr) The second term on the

n(r,t)

right-hand side of Eq. (12) is the kinetic field
Vn(r,t) - Vs(r,t)

1
Byin(r,t) = ——[ D)

Fe
In Ref. [22] an expression analogous to that enclosed in
the square brackets on the right-hand side of Eq. (13) was
identified as an effective dynamical exchange interaction
responsible for possible spin-wave excitations in a magnetic
system.
The charge continuity equation reads

+ st(r,t)] . (13)

D

—n(r,t) = —n(r,t)V - v(r,1) , 14

D tn( ) n(r,r) (r,1) (14)
and it is valid for the density of every single KS state. It
may also be rewritten in the form %n(r,t) = —V - [nv], with

v(r,t) = "y‘l((rr:)) — -=A(r,t) and jj,(r,t) being the paramagnetic

current of the noninteracting system. We have determined
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that the electron density variation during the action of the
laser pulse can be considered, in our calculations, much
smaller than the temporal variation of the magnetization
density [see, for instance, Fig. 2(a)]; this appears as a quite
general feature of the out-of-equilibrium dynamics observed
in transition metals, as it was clearly shown also in Ref. [26]
for ferromagnetic systems. By considering an approximately
homogeneous electron density 7(¢) in the vicinity of the atoms
we have i = —7i(¢)V - v. Thus the small value of /7 compared
to m(r,?) suggests that, in the first approximation, the velocity
field v(r,t) can be safely neglected from our discussion on
the spin dynamics. The spin-orbit coupling contribution to the
dynamics will also be neglected in the TDSDFT calculations
because it is much weaker, in general, compared to the
other terms appearing in Eq. (8). The spin-orbit coupling
contribution to the energy of the transition metals is very small
compared to the exchange interaction component; however,
this approximation has no general validity, and in particular it
is not justified in the case of rare earth materials.

In conclusion, we are left with the following simplified
equation of motion for the magnetization:

%m(r,t) ==V - -D(r,t) + upm(r,t) X Beg(r,t). (15)

The effective field B (r,) = Bs(r,1) + By (r,7) is not nec-
essarily parallel to the magnetization m(r,¢) at every point in
space; hence it can produce an effective contribution to the
dynamics of the magnetization vector.

In the absence of an external magnetic field, By = By, and
the properties of the two components of B, within the ALDA,
have been already described elsewhere [26,27]. Here our aim
is to draw a more conventional physical interpretation of the
role of By, and By, during the evolution of the system far
away from equilibrium and their relation to established spin
dynamics models. We start this analysis by noting that the
expression for By (r,t) = Bx(r,t) + B.(r,?) is local in space
within the ALDA. In fact, Bx.(r,#) depends uniquely on the
value of density and magnetization at the given point.

The same argument cannot be used for the kinetic field. In
fact, the expression (13) does not depend explicitly on the spin
vector s(r,t) but on its gradient Vs(r,t). A consequence of
such a property of By, is that at every point in space, the value
of the field depends not only on the value of the magnetization
at that particular point, but also on the value of the spin vector
in its vicinity.

III. THE DYNAMICAL EXCHANGE INTERACTION

We start by rewriting the kinetic field, Byy,, introduced
in Eq. (13). This object could be thought as a vector field
defined on a three-dimensional space spanned by the spin
vector components, namely,

Byin(r,t) = (F[fy,n], F[f2,n], F[f3,n]), (16)

where we have introduced the scalar functional

\Y
Flfn] = ~ £ 4+ V-1, (17)
n
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and f(r,t) represents a generic differentiable vector field in R?
such that

fitr,t) € C'[R? x [0,4+00)] fori=1,2,3. (18)

Suppose now that we want to evaluate the functional in Eq. (17)
at a certain point in space, xg € R3 x [0,400). The function
f(x) may be then separated into a local and a nonlocal part
around x, as follows:

f(xo) =h(xO)+/d3x€(xO,x)n(X), (19)
where €(xg,x) and n(x) are, respectively, a nonlocal vector
field and a scalar field. Hence, at xo one can write

V()n

F[f,n](xo) = o)

.[h(x0)+/d3xe(x0,x)n(x)}

+ V- |:h(x0)—|— / d3xe(x0,x)n(x)]. (20)

By separating in the previous expression the local from the
nonlocal contribution we have

A\
Flf.n](xo) = Tj;)”) ~h(x0) + Vo - h(xo)

3 Vol’l
+/d x - €(o.x) + Vo - €(xo,x) [n(x) . @21

n(xop)

where we identify a local field,

Von - h(xg)
Biocal(x0) = ————" + V(- h(xp) , 22)
n(xo)
and an effective nonlocal field,
V()I’l
J(x,x0) = - €(x0,x) + Vo - €(xg,x) . (23)

n(xop)
We now need a proper definition for the nonlocal vector field,
€(x0,x). This definition depends on the choice of the scalar
field n(x) in Eq. (19). Here we substitute n(x) with a given
component e;(x) of the unitary magnetization vector:

£ (xo) = hy(xo) + f Fre(onex) . 24

By taking the average of the unitary magnetization component
ei(x) over the integration region we can approximate the
integral as follows:

f; (x0) = hi(xo) + €;(x0)é; , (25)

where f;(xo) has been separated into two components, the first
orthogonal to the spin direction ¢; and the second parallel
to it. In this form €;(xo) simply defines the projection of the
vector f;(x() along the direction é; in spin space:

€i(xo) = (fi(x0).2;) . (26)

By substituting f;(xy) with the gradient of the spin vector
Vsi(xp), we are now in the position to separate the local
from the nonlocal component of the kinetic field, By, (r,?),
of Eq. (13). From the linearity of the functional F[f,n] in the
f variable,

F[h; + €;e;,n](xo) = F[h;,n](xo) + F[€,nl(x0)e;. (27)
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The first term gives rise to an effective local field of the
following form:

Biocal(r,t) = {F[hy,n](x,1), F[hy,n](r,1), F[hs,n](r,1) },
(28)

while the second term on the right-hand side can be rewritten in
a way that displays an explicit dependence on the spin vector §,
thus generating a new effective mean field object,’

3
Bus(r.t) =) FI&.n](r,1)(&.8)3 . (29)
i=1
The kinetic magnetic energy can be, therefore, finally sepa-
rated into two contributions:

Exanln,§] = / Prse) - B0 + Burm0] . (30)

By summing up the noninteracting part of the energy with
the interacting one dominated by the exchange-correlation
potential, we obtain

Egingxc[n,8] = /d3r§(r9t) : [Blocal(r’t) + 3xc(rvl‘)]

+ / d3ri(,1) - Bug(r,t) . (31)

While the first term on the right-hand side of Eq. (31)
represents a dynamical Stoner-like field, the nature of the
second term, due to its spatial nonlocality, is completely
different and resembles the form of a Heisenberg exchange
with mean-field energy:

3
Eneln, 3] = Z/d3r§(r,t) CF&,n)r,n(é.5)5 . (32)
i=l

From the previous expression we can finally identify an EDEI:

3
Tn(e,0) = ) F[&,n](r,0)(8.5) . (33)

i=1

IV. ULTRAFAST SPIN DYNAMICS IN FeMn

In order to analyze how the quantities previously defined
evolve dynamically in a real magnetic system under the action
of an external electric pulse, we look at bulk FeMn. The
ground-state properties of this material have been already
studied in the past [28,29], even though there is no full
consensus on the magnetic structure of the ground state, since
the various theoretical results often vary with the method
and approximation employed. Here we consider the antifer-
romagnetic ground state in its fcc phase with lattice constant
a =3.7A [see inset in Fig. 1(b)]. This structure represents
the starting point of our dynamical evolution. We use the
ALDA [30] exchange-correlation functional with the Perdew

"Here § indicates that we are considering a simple vector in spin
space. The number of points used in the average depends on the
definition of the gradient over the grid, usually 4 points for every
direction with a total of 12.
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and Wang [3 1] parametrization as implemented in the OCTOPUS
code [32]. The ground state is characterized by two localized
magnetic moments over the Fe and Mn sites with a magnitude
[S| >~ 0.57//2, computed by integrating the spin density
within atom-centered spheres of radius 0.5 A. The amount
of noncollinearity is not negligible, but the ratio among S, and
Sx (or Sy) is always approximately 4 and it has the tendency
to increase with the distance from the atom. The z component
of the magnetization vector is thus locally dominant, even if
over the entire simulation box it is approximately zero due to
the overall antiferromagnetic nature of the system.

In all our calculations the system is perturbed from the
initial equilibrium ground state by applying intense, spatially
homogeneous, electric pulses, with duration typically between
7 fs and 10 fs. The pseudopotentials for both Fe and
Mn employed in the calculations are fully relativistic and
norm conserving. They are generated using a multireference
pseudopotential (MRPP) scheme [33] at the level implemented
in APE [34,35], which evolves the valence states and the
semicore states simultaneously.

In order to analyze the spin dynamics in an antiferromag-
netic material we need to partition the spin density so as
to isolate the magnetic moments and the electronic charges
associated with each atomic site N in the unit cell. The simplest
choice consists in integrating the densities inside a sphere S}
of radius R centered on the atomic site N. Thus the local spin
and charge densities read, respectively,

SN = / drsr,ry,  ON@) = f &rn(,t) . (34)

Sy Sy

In Fig. 1(a) we show the demagnetization observed around
the Fe and the Mn sites in the first 20 fs under different
laser pulses, all polarized along the z direction but with
different amplitudes. The on-site demagnetization process is
quite pronounced since, in all the cases, each atom loses around
60% of the initial magnetization almost immediately after the
action of the pulse and then it stabilizes around a different
value of the magnetization vector. The demagnetization rate,
instead, differs in the three cases. In particular, we observe
from Fig. 1(a) an initial decay rate proportional to the the cube
of the laser field amplitude:

IS(tin + 80)| — IS(tin)] = —A> (35)

where f, is the initial time at which the laser pulse is applied,
8t is a small time step, while A represents the amplitude of
the applied laser pulse in V/A. Hence the demagnetization
rate increases substantially for larger excitation amplitudes.
At the same time the overall magnetization loss for longer
times following the laser pulse does not change significantly.

The observed magnetization dynamics, localized in the
vicinity of the two atomic sites, suggests the existence of a
spin-density transfer mechanism among different occupied
and unoccupied Kohn-Sham states. This clearly requires
the availability of a state with the same global spin character
above the Fermi level. Our analysis is, however, based on the
magnetization continuity equation (15), where the velocity
field has been, in first approximation, neglected. We have
that the dissipative term —V - D(r,t), on the right-hand of
the expression, is the one driving the entire dynamics during
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the action of the laser pulse. This influences also the other
field B¢ (r,?), which is modified by the local changes in the
spin-density gradient.

After having neglected in Eq. (15) the exchange-correlation
magnetic field By.(r,7), which does not contribute to the
dynamics in the ALDA but represents only an energy barrier
between the spin-up and spin-down states, we are left with the
equation

%m(r,t) = =V - -D(r,t) + ppm(r,t) x By (r,7). (36)
Here we finally distinguish two contributions to the spin
dynamics. The first one on the right-hand side of Eq. (36)
represents a measure of the spin dissipation due to the internal
charge currents flowing between the different Kohn-Sham
states. This term is, by construction, responsible for effective
Stoner-like excitations in real time. In fact, Stoner excitations
are due, by definition, to terms in the Hamiltonian of the
form éz 4.4+Ck,B,,, Where A and B label the atomic site. These
excitations are local in momentum space and nonlocal in real
space and correspond to intersite electronic excitations, which
are included in the previous spin dissipation term.

The second contribution to the dynamics is due to the torque
exerted by the kinetic field By,(r,#) on the magnetization
vector. Due to its dependence on the gradients of the electron
density and magnetization, By;, drastically changes during
the action of the electric pulse. In Fig. 2(b) we compare
the evolution of the z component of the magnetization
with its transverse component S,I:;(t) = /Y07 +8Y@?. The
predominant change (loss) of on-site magnetic moment
during and after the action of the laser pulse is in the
z component, while the magnitude of the noncollinear part of
the magnetization is only slightly affected.

It is clear that while the component S?I (t) collapses
during the action of the electric field, after that it starts to
oscillate around a new averaged value.? The behavior of
the noncollinear component of the magnetization is instead
different. After an initial driven variation during the action
of the pulse, S}C‘Iy(t) returns to a value that is approximately
equal to its initial one and then it remains constant for the
rest of the time evolution. This kind of dynamics suggests the
existence of different effective equations of motion for the two
magnetization components. The reason for this very different
dynamical behavior observed in the S?I and Sfj‘ components
lies in the fact that the Stoner excitations connect only up
and down states along the spin quantization axis. In the
initial (r = 0) state the magnetic configuration of the system
is predominantly aligned along the z axis. Hence, we would
expect a pulse-driven Stoner-like excitation to mainly affect
the S?’ component and to a lesser degree the noncollinear S}C\Iy
magnetization.

In Fig. 2 we introduce also a time-dependent effective
Stoner parameter, /(t). Typically within the DFT formalism [
is a measure of the drag in transferring charge density between
the spin-up and spin-down bands of a solid. At the level of
ground-state collinear spin DFT it is therefore commonly

ZNote that in Fig. 2(b) only the first period of the oscillation is
shown.
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FIG. 2. Time-averaged observables evaluated in spheres of radius
0.5 A around the Fe atomic site with the same type of pulses (A =
0.7V/ A): (a) the averaged temporal variation of the two on-site elec-
tronic charges AQN(t) = ON(r) — ON(¢ = 0), Fe site (black curve)
and Mn site (red curve); (b) the averaged temporal variation of the
magnetization along the z axis S;‘(t) and the noncollinear component
Sf’y(t) at the Fe site; (c) dynamical Stoner exchange parameter /(¢)
obtained by spatial integration, /(¢) = @ /. & d3*r||I(x,1)]||, around
the Fe site [see Eq. (38)]; (d) the averaged temporal variation
of FIE](r) = [{Sre(1), E())|/(ISre(1)] - [E(1)]), where Sg(r) is the
on-site averaged magnetization computed within a radius R = 1.4 A
(higher with respect to the one employed before in order to improve
the spatial integration). Z () represents the spin calculated within the
same radius over the Mn site (solid line) and the kinetic field BY, (1)
over the Fe site (dashed line).

associated with the ratio between the exchange-correlation
magnetic field B (r,) and the local value of the magnetization
density. In order to generalize this concept to the case of a
noncollinear magnetic system evolving in time, we note that
the effective local Hamiltonian, corresponding to the magnetic
energy in Eq. (31), contains together with the exchange-
correlation field also a second local contribution so that we
can introduce the following effective local magnetic field:

Btot(rat) = Bxc(r’t) + Blocal(rvt) . (37)

We use this expression to define a local Stoner vector I(r,?),
parallel to By (r,r) and normalized with respect to the
amplitude of the magnetization at each spatial point:

Bioi(r,r) = I(r,2) - [m(r, 1) . (38)

Hence, similar to Eq. (37), I(r, ) can be identified from the sum
of the two separate contributions originating from the local and
the exchange-correlation field, I(r,t) = Ixc(r,?) + Ljoc.(1,1).
In Fig. 2(c) we plot the module of the vector field I(r,?)
integrated over a sphere centered at the Fe site. Its real-time
evolution within the first 20 fs shows some oscillations
activated by the action of the laser pulse. However, the
overall change in the Stoner parameter during the evolution
is not appreciable and /(¢) remains approximately constant
throughout the entire dynamics and close to its initial value.
This behavior suggests that the initial large drop in the on-site
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z component of the magnetization is mainly driven by the
dissipation term V - D(r,t) and cannot be attributed to a
collapse of 1(¢), which instead describes the resistance of the
band structure to interband transitions.

Figure 2(d) shows the dynamical evolution of the function
F(t), which represents a measure of the normalized scalar
product between the spin vector computed over the Fe site
and the spin vector over the Mn site (solid line). During
the action of the laser pulse, F(¢) changes from an almost
antiferromagnetic configuration (slightly noncollinear) to a
ferromagnetic one, with the amount of spin misalignment with
respect to the z axis being preserved during the process. We
have seen that such an effect is determined by the Stoner
excitations activated in the antiferromagnet by the action of
the laser pulse through the spin dissipation term V - D(r,t).
At longer times F(t) oscillates around its new value and
eventually approaches 1, with the spin misalignment that
is lifted out during the process. The dashed curve, instead,
represents the evolution of F[Z](¢), where Z(¢) corresponds to
the Fe on-site kinetic field. Within the first 5 fs of the dynamical
evolution F'(¢) is characterized by strong fluctuations induced
by the internal currents activated by the laser and its behavior is
similar to that described by the solid curve. However, after this
initial phase, the evolution of F(¢) in the two cases appears
quite different. Now, F(¢) strongly oscillates also after the
action of the pulse, inducing a torque on the magnetization
vector. In practice, while the initial phase of the spin evolution
is dominated by interband transitions activated by the action
of the pulse, with consequent enhanced electronic hopping
between the two atomic sites, after the action of the pulse
the interband transitions are suppressed and the Kohn-Sham
states evolve separately. The role played by the kinetic field
becomes then more important, inducing intraband transitions
with consequent spin relaxation over the two sites.

A further confirmation of these conclusions is provided by
Fig. 3(d), where we show a comparison between the local
z component of the magnetization Sfe(t) and its module
|Ske(?)]. During the action of the laser both quantities decrease
even if at different rates. After this first phase Sf €(t) starts
to oscillate around its new average value, while the module
remains approximately constant. These two different dynam-
ical behaviors may be explained in terms of initial interband
transitions, followed by an intraband dynamical relaxation
mechanism with the spin that is exchanged among the different
components while its module remains constant.

Similarly, we find in Fig. 3(b) that the module of the
exchange component |B§e(t)|, after the initial decay, during
the action of the laser remains approximately constant. In
contrast, the module of the local component of the kinetic
field |Bjo. ()], introduced in Eq. (31), after the initial excitation,
appears more oscillatory, resembling the long-time dynamics
of the Sf ¢ component. In Fig. 3(a) we compare |BE§”C| under
the application of the pulses shown in Fig. 1(b). In all three
cases this quantity is excited by the application of the pulse,
but in the second phase of the dynamical evolution it collapses
to a new lower value and it starts to oscillate around it. The
application of different laser amplitudes does not seem to be
reflected in a clear trend of the dynamical evolution of the local
field. Finally, we look at panel (c) where we plot the value of
cos 0, with 6 being the angle formed by the spin vector Sge
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FIG. 3. Time-averaged observables evaluated in spheres of
radius 1.4 A around the atomic sites: (a) the averaged tem-
poral evolution of |BI(s)| for different pulse amplitudes A =

loc
0.5 V/A, 0.7 V/A, 0.9 V/A; (b)cornparisonof|Bﬁfc(t)|and|Bfe(t)|
under a single pulse with amplitude A = 0.7 V/A; (¢) averaged
value of cosf during the time evolution, with 6 angle formed
with the z axis by the Sg.(f) vector (black curve) and by the
Biﬁl(t) vector (red curve), the pulse employed is the same of (b);
(d) comparison between |Sg.(f)| and Sfe(t) during the temporal

evolution, the pulse employed is the same of (b).

(black curve), or the kinetic field —Blffn(t) (red curve) with
the z axis. This clearly shows, as we have already seen in
Fig. 2(d), that after the application of the pulse the two vectors
are highly nonparallel, with By;, playing a major role in the
local dynamics of the spin vector.

We can now focus our attention on the effective mean-
field term introduced in Eq. (32) that has the form of a
spin-spin interaction. This object, a nonlocal function of the
magnetization vector density, can effectively be the source
of spin waves in the dynamical evolution of the system.
The temporal evolution of the dynamical exchange parameter
Jme(?) is presented in Fig. 4 panels (a) and (b), and it appears
to be strongly dependent on the laser-pulse excitation. In
panel (b) it is shown that Ji,¢(¢) follows the shape of the pulse.
The value of the field is integrated within a sphere of small
radius (R = 0.5 A) around the Fe site; therefore higher pulse
amplitudes excite the electronic system more with consequent
higher modification of Jy¢. The quantity sharply increases
from its initial value and then returns close to its ground-state
magnitude on the time scale of the pulse disappearance. The
maximum amplitude of Jy¢ also scales systematically with
the amplitude of the laser pulse, i.e., it increases for the more
intensive pulses. The trend of Jy,¢(¢) shown in panel (a) is very
similar; the quantity is computed within a sphere of larger
radius. While during the application of the pulse J¢(¢) looks
strongly affected, and its growth rate scales proportionally to
the pulse amplitude, after that the exchange coupling stabilizes
around an average value, different in the three cases. This
reflects the different amount of energy injected into the system
by the three pulses.
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FIG. 4. Exchange coupling evaluated inside spheres of different
radii R centered on the Fe atomic site and of Sfye calculated
inside the same spatial regions using three different types of
pulses (A = 0.7 V/A, A = 0.9 V/A, A = 0.5 V/A). The dynamical
exchange coupling here corresponds to the expression of Eq. (33):

A Ime(®)

(a) the averaged temporal variation of TS = T — 1 in
the first 10 fs, the quantity is integrated within a sphere of radius
R =1.1A; (b) the averaged temporal variation of —2m®_ jngide

[Tt (1=0)]

a smaller sphere; (c) the averaged temporal variation of ASfyc(t)
obtained by spatial integration inside a sphere of radius R = 1.1 A;
(d) the averaged temporal evolution of the quantity Sfye(t).

In comparison, Figs. 4(c) and 4(d) show the evolution
of the noncollinear spin function Sf;f(t) for the same set of
simulations with increasing laser-pulse intensity. We find clear
similarities during the pulse-coherent stage of the dynamics.
Both Jp,¢(¢) and Sf;’(t) follow the pulse, and their amplitudes
vary with the pulse intensity. At times longer than the
pulse duration the dynamics of the two objects, however,
is completely different. This difference stems from the fact
that the noncollinear spin component Sfjv(t) is driven by
two torques, as described by Eq. (32), and only a part of
the second torque is related to Jy¢. The dynamical exchange
coupling shown in Fig. 4(b) is characterized by a large variation
during the action of the laser pulse and it could, at least in
principle, activate an out-of-equilibrium dynamics involving
the noncollinear components of the two atomic spins. We will
see now that this is indeed the case.

Further evidence of the validity of this argument for the
spin-spin exchange is provided in Fig. 5(b), where we present
the Fourier transform of the angle 6(¢) formed by the spin
vector ST(¢) on the Fe site [see Eq. (34)] with the z axis. In
panel (a) we present the corresponding temporal evolution of
6(t) by measuring the on-site spin misalignment (Fe atom).
As before, we compare the results from the three different
simulations with increasing pulse amplitudes. Focusing on
the lowest part of the spectrum, we observe that the lowest
frequency peak in the spectrum blueshifts with increasing the
pulse amplitude. Although our resolution is limited by the
length of the numerically stable time integration and we only
observe one or two periods of the lowest frequency mode, it is

054411-7



JACOPO SIMONI, MARIA STAMENOVA, AND STEFANO SANVITO

—
I — A=1
os| @ A=07
~ | -- A=05
‘g LN
£ o4
A
= 0
sy A
Vo4t 4
\I
R R RN TR AR RN BRI R B
5 15 25 30 5 45 50
t (fs)
" @ ‘ " [coa=1
(®) AN GOA=07
03k P GO A=0.5
~ T / v 1
A
§,0.27 /) v -
@ r // ."x‘ . ]
0.1 / ) -
L L C RN, Ll o
7 | ‘ ‘ ~E=Ras-
Ri 0.05 0.1 0.15 02

® /27 (fs-1)

FIG. 5. Time-averaged observables evaluated in spheres of radius
0.5 A around the Fe atomic site with three different types of
pulses (A = 1.0 V/A,0.7 V/A,0.5 V/A): (a) the temporal variation
of the angle 0(¢) = arccos (Sf °(¢)/|SF|) with respect to its temporal
averaged value (0(1)) = Z,I,V:l 6(t,)/N; (b) the Fourier transform
F(0)(w), where 6(¢) is the angle previously defined.

clear that the laser-pulse amplitude affects directly the energy
of that spin-wave mode. This correlates with our previous
observation of a strongly pulse-intensity-dependent effective
exchange interaction Jyy.

In summary, it is clear that the laser excites directly
only the electronic system and this is propagated to the
spin system through the consequent formation of Stoner
excitations, resulting in transfer of magnetization between
the two sites. However, at the same time the excitations
in the electronic subsystem contribute also to the ultrafast
modification of the effective intersite EDEI Jy,¢(f) depicted in
Fig. 4(a). Certainly, the degree of laser-induced modification
of this quantity is proportional to the amount of energy injected
into the system by the pulse, namely, to the amplitude of the
applied external field. The physical interpretation of Ji¢(f) as
a Heisenberg-like exchange parameter is further validated by
the observation that the lower-energy spin-wave modes follow
an analogous scaling with the excitation magnitude.
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V. CONCLUSIONS

In conclusion, starting from the hydrodynamical formu-
lation of the spin dynamics in the ALDA, we introduce
an out-of-equilibrium nonlocal spin-spin interaction term
and define an effective out-of-equilibrium Heisenberg-like
exchange coupling. We evaluate the latter through TDSDFT
calculations by applying ultrafast external electric pulses
(of duration of about 5 fs and amplitudes ranging between
A=0.5V/A and A =1 V/A) to fcc FeMn, which has a
frustrated antiferromagnetic ground state. These simulations
show that the observed pulse-coherent on-site demagnetization
can be attributed mainly to a Stoner-like excitation activated
by the action of the laser pulse. The local dynamics, at longer
time, appears to be driven by an intersite exchange coupling
Jme(?), which also exhibits a strong pulse-coherent variation
proportional to the laser amplitude. After a strong nonadiabatic
modification during the action of the pulse, the EDEI acquires
a new value that remains approximately constant for the rest
of the evolution. The analysis of the Fourier spectrum of the
angle 0(¢) formed by the on-site spin direction with the z axis
suggests that the laser pulse can activate spin-wave excitations
with a frequency that grows with the amplitude of the applied
pulse and correlates also with the new value acquired by
the effective exchange coupling Jys. According to these
observations we can summarize the main findings of this
work, namely, that the out-of-equilibrium dynamics activated
by the application of a strong and ultrashort laser field to
a transition metal antiferromagnet is characterized by the
interplay between two distinct types of excitations (Stoner-like
and Heisenberg-like) of the spin system. This phenomenon
should be common to any frustrated antiferromagnetic metal,
even if it could change quantitatively depending on the
characteristics of the considered material.
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