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Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative con-

dition characterised by relentless upper and lower motor neuron degenera-

tion. The clinical spectrum, symptoms onset, genetic vulnerability and cog-

nitive profile of ALS is hugely heterogeneous making early diagnosis, accurate

prognosis and disease monitoring particularly challenging. There is no cure

available and life expectancy is limited to 2-3 years. Objective, accurate and

validated biomarkers are urgently needed for diagnostic applications, disease-

monitoring and as prognostic indicators.

The aim of this PhD thesis is to evaluate the role of magnetic resonance

imaging (MRI) as a potential biomarker of ALS.

First, a comprehensive systematic literature review was conducted to ex-

plore the methods, design and pitfalls of existing longitudinal imaging studies

across the spectrum of neurodegenerative conditions including Alzheimer’s

disease, amyotrophic lateral sclerosis, fronto-temporal dementia, Huntington

disease, multiple sclerosis, Parkinson’s disease, ataxia, HIV, alcohol depen-

dence and healthy ageing.

Subsequently, ALS-associated structural brain changes were evaluated cross-

sectionally and longitudinally. The results were used in diagnostic and prog-

nostic models to assess the biomarker potential of MRI metrics. The mul-

timodal analyses relied on complementary grey and white matter measures

based on T1-weighted and diffusion-weighted images. The methods included

voxel-based morphometry, vertex-based cortical thickness analyses and track-
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based analyses of fractional anisotropy, mean -, radial - and axial diffusivity

indices.

The most prominent imaging features identified in this ALS study are the

progressive degeneration of the corpus callosum, corticospinal tracts, corti-

cobulbar fibres and the precentral gyri.

The comprehensive analyses of longitudinal MRI data highlight progressive

grey matter alterations and suggest that grey matter metrics are better suited

for monitoring purposes than white matter indices.

Based on these imaging patterns, an automated classification protocol to

distinguish blinded MR data sets of ALS patients and healthy controls with

good accuracy and sensitivity was developed.

Finally, the prognostic value of MRI was demonstrated predicting 18-month

survival based on MR data sets alone and in combination with clinical data.

The supplementary prognostic value of neuroimaging measures in addition

to more-established clinical and demographic prognostic factors was shown.

In conclusion, it was demonstrated that MRI can be used as a diagnostic

or prognostic biomarker and it was shown that monitoring markers should

focus on grey matter degeneration.



"Dicebat Bernardus Carnotensis

nos esse quasi nanos gigantum umeris insidentes,

ut possimus plura eis et remotiora videre, non utique proprii visus

acumine, aut eminentia corporis, sed quia in altum subvehimur et

extollimur magnitudine gigantea."

Johannes von Salisbury: Metalogicon 3,4,46-50
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HC Healthy Control

HD Huntington’s Disease

IC Internal capsule

l Left
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MCI Mild Cognitive Impairment

MD Mean Diffusivity

MDT Multidisciplinary

ME Mesencephalic cruri

M Mean

MND Motor Neuron Disease

mo Months

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MRS Magnetic Resonance Spectroscopy

MS Multiple Sclerosis

NISALS Neuroimaging Society in ALS

NIV Non-Invasive Ventilation

PD Parkinson’s disease

PET Positon Emission Tomography

pIC Posterior limb of the internal capsule

PLS Progressive Lateral Sclerosis

PMA Progressive Muscular Atrophy

r Right

RD Radial Diffusivity

ROI Region of Interest

sCC Splenium of the corpus callosum

SD Standard Deviation

SNIP Sniff Nasal Inspiratory Pressure

SPECT Single Photon Emission Computed Tomography

SUP-CR Lateral fibres of the corona radiata

TBSS Tract-based spatial statistics

TFCE Threshold-free Cluster Enhancement

TMS Transcranial Stimulation

VBM Voxel-based morphometry

wks Weeks

yrs Years



Chapter 1

Amyotrophic Lateral Sclerosis

1.1 Introduction and Terminology

Amyotrophic lateral sclerosis (ALS) is characterised by degeneration of upper

motor neurons in the cerebral cortex and lower motor neurons in the spinal

cord (Kiernan et al., 2011; Al-Chalabi et al., 2016; Ludolph et al., 2015).

The symptoms are progressive muscle atrophy and weakness, fatigue, bulbar

symptoms and eventually respiratory failure. Several heterogeneous pheno-

types can be distinguished: classical ALS presents as a mixture of upper and

lower motor signs and is the most common form, its variants include upper

motor neuron dominant forms, i.e. primary lateral sclerosis (PLS) and lower

motor neuron dominant forms, i.e. progressive muscular atrophy (PMA), flail

arm or leg syndrome.

In Europe, the incidence of ALS is 2-3 people per 100,000 of the general pop-

ulation. The overall lifetime risk of developing ALS is 1:400 (Alonso et al.,

2009; Cronin et al., 2007; Johnston et al., 2006). Men are more commonly

affected than women; the ratio is 1.2 - 1.5:1 (Logroscino et al., 2010).

27
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1.2 Clinical manifestation

The clinical presentation varies regarding the site of symptoms onset: for the

majority of cases (65%) limb symptoms are initially experienced, followed by

symptoms of bulbar dysfunction (i.e. dysarthria or dysphagia; for 30% of all

ALS cases). Five per cent of ALS patients report respiratory onset (Hardi-

man et al., 2011).

Cognitive or behavioural changes have been repeatedly reported. Fifty per

cent of patients suffer from cognitive impairment and up to 10% present with

frank frontotemporal dementia (FTD, Phukan et al., 2012).

1.3 Diagnosis

The average delay between first symptoms and formal diagnosis is 9-16

months (Chiò, 1999; Cellura et al., 2012). There is no definitive diagnostic

test for ALS. The diagnosis relies on the integration of clinical signs, clinical

progression and negative laboratory tests for alternative diagnoses. Dur-

ing the diagnostic phase, progressive neurodegeneration occurs, challenging

biomarker studies and pharmaceutical trials (Wokke, 2009). The diagnostic

delay may mask medication effects as too much deterioration has taken place

to be able to measure the effectiveness of a new drug. The delay, further-

more, masks the subtle first degenerative changes which are the most likely

candidates for a diagnostic biomarker. The role of standard magnetic reso-

nance imaging (MRI) in the diagnosis of ALS is limited; it is used primarily

to rule out alternative pathologies rather than to confirm the diagnosis. At

present, research in various MRI techniques suggests its great potential as a

novel in vivo biomarker for ALS.
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1.4 Prognosis

The prognosis for ALS is poor. The median survival of patients with classi-

cal ALS is 2-3 years from symptom onset (Al-Chalabi and Hardiman, 2013).

Several clinical and demographic factors have been identified to predict fast

progression of classical ALS have been identified: older age at disease onset,

bulbar site of onset, short diagnostic delay, presence of cognitive impairment

or genotype (Chiò et al., 2009; Logroscino et al., 2010; Gordon et al., 2013;

Elamin et al., 2011).

Other phenotypes i.e. pure upper or lower motor syndromes such as PLS or

PMA carry a better prognosis.

1.5 Management

There is currently no cure for ALS; clinical management focuses on the

treatment of symptoms and on the preservation of quality of life. The only

evidence-based disease-modifying drug is riluzole, which is thought to block

presynaptic glutamate release (Rothstein, 1996). It prolongs life by about

three to six months (Miller et al., 2003).

Optimum care for patients with ALS is provided by a multidisciplinary

(MDT) approach, where physiotherapist, occupational therapists, speech

therapists, respiratory physicians, gastroenterologist, social workers and pal-

liative care physicians collaborate (Van den Berg et al., 2005). The MDT

approach has been linked to a better prognosis (Rooney et al., 2015).

The basic components of care are respiratory management, dietary manage-

ment and palliative care: Respiratory care includes monitoring for potential

respiratory muscle weakness. Eventually, non-invasive positive pressure ven-

tilation (NIPPV) can assist spontaneous breathing. It has been shown that

NIPPV increases quality of life and extends survival (Bourke et al., 2006).

Dietary management aims to avoid excessive weight loss and malnutrition;

both are associated with a poorer prognosis. The consistency of food and
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fluids may need to be modified early, postural advice given or enteral feeding

by gastrostomy initiated.

Early palliative care should focus on individual patient needs, dignity and

autonomy (Bede et al., 2011). Advanced health care directives and early

discussion of end of life decisions are paramount. Invasive mechanical ven-

tilation should be discussed; even though most patients decide against it

(Bourke et al., 2006).

The carefully assessment and management of caregiver burden is also essen-

tial. Counselling, support groups and a crisis management system repre-

sent some of the supportive strategies (Andersen and Al-Chalabi, 2011; Bede

et al., 2011).

1.6 Genetics

Up to 10% of ALS cases have a strong family history suggesting familial ALS

(fALS). The remaining 90% of cases appear sporadic, meaning they appear

to occur randomly (Renton et al., 2014). The clinical presentation of familial

ALS is very similar to sporadic ALS (Andersen and Al-Chalabi, 2011).

Genetics in ALS is a crucial research field. Recently, the gene NEK1 was

identified to be a risk variant in nearly 3% of ALS cases (Kenna et al., 2016).

Some clinical trials specifically focusing on gene-carriers report promising re-

sults: Arimoclomol has been proven safe and well tolerable with clinically

meaningful trends. 1

There is a scarcity of studies correlating genotypes with clinical phenotypes:

C9orf72 mutation is associated with cognitive and behavioural changes and

shorter survival (Byrne et al., 2012) and it is associated with a specific brain

signature: Patients present with marked frontal lobe involvement (Bede et al.,

1http://orphazyme.com/index.php/news/news-releases/73-phase-ii-arimoclomol-als-
sod1 accessed 15/12/2016
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2013a).

1.7 Neuroimaging

As described above, MRI plays only a secondary role in the clinical diagnosis

of ALS, but it is an important field of research (Turner et al., 2012; Chiò

et al., 2014; Menke et al., 2017). MRI has improved our understanding of

the pathological processes underlying ALS. It has been repeated suggested

as biomarker (Turner et al., 2011). Multiple studies across various platforms

have described the ALS-associated structural brain changes using group com-

parisons and healthy controls as a reference group.

T1-weighted images are used to analyse focal grey matter atrophy. Based on

voxel-based morphometry or vertex-based cortical thickness analysis, ALS-

associated grey matter changes include the degeneration of the precentral

gyrus and supplementary motor cortex (Bede et al., 2012a; Schuster et al.,

2013). Grey matter loss of the temporal and frontal lobes has been described

(Verstraete et al., 2012; Agosta et al., 2012; Lillo et al., 2012) and, addition-

ally, related to cognitive changes (Schuster et al., 2014a; Bede et al., 2013a).

White matter degeneration can be investigated using diffusion weighted imag-

ing (DTI). It allows to calculate the diffusion of water molecules and thereby

to characterise the integrity of the white matter tracts (Basser et al., 1994;

Pierpaoli et al., 1996). Decreased factional anisotropy (FA) and increased

mean diffusivity (MD) have been consistently described. Radial (RD) and

axial diffusivity (AD) are examined less frequently, but are able to highlight

ALS-associated structural white matter changes. Reliably reported brain

changes based on group comparisons included degeneration of the cortico-

spinal tract, particularly of the posterior limb of the internal capsule (Menke

et al., 2012; Canu et al., 2011; Agosta et al., 2010b) and corpus callosum

(Müller et al., 2012; Filippini et al., 2010; Kassubek et al., 2014). Extra-

motor areas have been identified and linked to cognitive changes (Sarro et al.,
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2011; Kasper et al., 2014).

Pathological grey and white matter changes have been reliably described

based on group comparisons, but rarely replicated using single patient data.

A successful biomarker needs to be meaningful for an individual patient.

1.8 Thesis Outline

This thesis investigates the potential of MRI as a biomarker for ALS. There

are different types of biomarkers each focusing on a different aspect of the

disease. Their aim is to either facilitate diagnosis, enable disease monitor-

ing, which is crucial for clinical trials, or evaluating prognosis. In order to

investigate MRI as one of these biomarkers, the first objective is to investi-

gate which brain areas are most vulnerable to the disease and what type of

MR images is able to reliably capture ALS-related brain changes. Eventu-

ally, these results then need to be evaluated for their potential as diagnostic,

prognostic or monitoring biomarker for ALS.

The following chapter is systematic methodological literature review of lon-

gitudinal imaging studies in neurodegeneration which was used to design this

PhD project (Chapter 2). Chapter 3 investigates patterns of ALS-associated

white and grey matter degeneration in relation to clinical phenotypes and

disability. Longitudinal brain changes are characterised in Chapter 4 evalu-

ating the role of MRI as a potential monitoring biomarker. Chapter 5 outlines

a computer-aided diagnostic tool based on key disease-associated brain re-

gions exploring the role of MRI as a diagnostic biomarker. Finally, Chapter

6 explores the role of MRI in predicting survival. Chapter 7 summarizes the

main findings of the thesis and reviews the overall clinical impact of MRI

biomarkers in ALS.
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1.9 Hypotheses

The primary hypothesis of this thesis is that MRI can be used as a biomarker

for ALS. The individual hypotheses investigated within each chapter are

stated below. For the background and justification please refer to the intro-

duction section of each chapter.

Chapter 3 investigates the hypothesis that there is a segmental vulnerability

of the cortico-spinal tract and the corpus callosum in ALS. This vulnerability

can be linked to ALS-phenotype specific grey and white matter degeneration.

The hypothesis for Chapter 4 is that MRI is able to highlight longitudinally

progressive neurodegenerative brain changes. This change can be found in

the key disease-related brain regions: the precentral gyrus and the corti-

cospinal tract. Furthermore, it can be described prior to symptom onset.

For Chapter 5, it is hypothesised that the diagnostic accuracy of a classifica-

tion model is increased by incorporating multiple imaging indices of multiple

disease-defining anatomical structures.

Finally, Chapter 6 investigated that MRI can predict the probability of 18-

month survival based on an individual structural MR scan. It is, further-

more, hypothesised that structural MRI measures enhance prediction accu-

racy compared to more-established clinical and demographic factors.
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Chapter 2

Methodological Review of

Longitudinal Imaging Studies

in Degenerative Disease

A concise version of this chapter has been published in the peer-reviewed

Journal of Neurology, Neurosurgery & Psychiatry (Schuster et al., 2015).

In order to optimise the design of this longitudinal study in ALS, a system-

atic review of longitudinal imaging initiatives in neurodegeneration was per-

formed. The focus lied on methodology, optimal statistical models, follow-up

intervals, attrition rates, primary study outcomes and presymptomatic stud-

ies.

The findings of this review have been taken into account in the design of the

longitudinal section of this PhD project and are discussed in detail in section

2.7 of this Chapter. Each of the subsequent chapters provides a detailed

description of the sample used to investigate the hypotheses.

35
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2.1 Introduction

In spite of their underlying pathological differences, neurodegenerative condi-

tions share a number of strikingly common features, such as insidious symp-

tom onset, diagnostic challenges, relentless disease progression, marked clin-

ical and genetic heterogeneity, lack of sensitive biomarkers and prognostic

indicators, a long preclinical phase, and lack of effective disease modifying

agents. Moreover, many of these conditions have a relatively similar rate of

decline, leading to considerable disability within a few years from diagnosis.

These similarities provide the rationale to appraise research methodologies in

imaging across a seemingly diverse set of conditions. While the core pathol-

ogy is different in various neurodegenerative conditions, the commonly used

imaging techniques, MRI pulse sequences and the methodological challenges

are surprisingly similar. Furthermore, the initiatives of setting up multi-

centre studies, validating cross-platform protocols and establishing multicen-

tre data repositories are also analogous, for example, the Alzheimer’s dis-

ease neuroimaging initiative (ADNI, Jack et al., 2008), TRACK-HD (Tabrizi

et al., 2009) or the Neuroimaging society in ALS (NISALS, Turner et al.,

2011). While most researchers are experts of a specific neurodegenerative

condition and attend disease-specific meetings, the imaging studies of other

neurodegenerative conditions are a valuable source of learning and potential

methodological templates for study design. Quantitative imaging measures

have been repeatedly proposed as candidate biomarkers of neurodegenerative

conditions. Non-invasive MRI-based approaches have successfully captured

disease-specific pathology in vivo in Alzheimer’s disease (AD), mild cogni-

tive impairment (MCI), fronto-temporal dementia (FTD) and amyotrophic

lateral sclerosis (ALS). Phenotype-specific imaging signatures have been de-

scribed in variants of AD, FTD (Lam et al., 2014) and ALS (Bede et al.,

2012a; Schuster et al., 2013).

The sensitivity of specific imaging techniques has been further demonstrated

by correlations between imaging parameters and clinical measures across the

spectrum of neurodegenerative conditions. For example, imaging measures
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have been correlated with neuropsychological performance in AD (Grothe

et al., 2013), FTD (Knopman et al., 2009) and with motor disability in

ALS (Bede et al., 2013a; Schuster et al., 2013). Novel imaging techniques

have been successfully utilised to describe genotype-specific changes, such as

MAPT -related and PGRN -related changes in FTD (Whitwell et al., 2009),

APO-E -associated changes in AD and MCI (Lu et al., 2011), C9orf72 -specific

changes in ALS (Bede et al., 2013a,b), repeat length-dependent changes in

Huntington’s disease (HD) (Ruocco et al., 2008), and PRKN -related changes

in in Parkinson’s disease (PD, Pavese et al., 2010). Imaging parameters are

routinely used in pharmaceutical trials in MS, but imaging-based outcome

measures have also been proposed in HD (Tabrizi et al., 2012) and ALS

(Kalra et al., 2006). While MRI is routinely used to establish the diagno-

sis of MS and Ioflupane single-photon emission CT (SPECT; DaTSCAN)

scan to confirm PD, recent classifier models also show promise of aiding the

diagnosis of early ALS and AD (Orrù et al., 2012). Recently, quantitative

imaging techniques have been successfully utilised to highlight changes in

grey and white matter integrity in presymptomatic mutation carriers in HD

(Aylward et al., 2004), AD (Fox and Warrington, 1996), PD (Tang et al.,

2010) and ALS (Turner et al., 2005).

The majority of imaging studies in neurodegeneration are cross-sectional,

even though longitudinal studies are crucial for the characterisation of natural

disease trajectories, evaluation of the presymptomatic disease phase, descrip-

tion of genotype-specific progression rates, reporting patterns of pathological

spread and appraisal of medication effects. Furthermore, longitudinal imag-

ing has the potential to contribute to the validation of prognostic markers,

establish imaging-based staging systems, define progression milestones and

identify triggers for clinical interventions. Finally, multimodal longitudinal

imaging studies can help to establish the relative sensitivity of the various

imaging techniques.
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2.2 Aims

The aim of this chapter is to systematically review longitudinal neuroimag-

ing studies in neurodegeneration, focusing on imaging methodology, sample

size considerations, enrolment bias, number of time points, statistical mod-

els, follow-up intervals, attrition rates and study deliverables. An additional

objective of this work is to review presymptomatic and preclinical studies

in neurodegeneration and outline the optimal methodological framework for

large, multi-centre, longitudinal neuroimaging studies.

2.3 Methods

Longitudinal imaging studies published between 1990 and 2014 were identi-

fied using PubMed. The search terms “longitudinal”, “imaging” and “MRI”

were combined with one of the following keywords: “Alzheimer’s disease”,

“Amyotrophic lateral sclerosis”, “Motor neuron disease”, “Frontotemporal

dementia”, “Huntington disease”, “Multiple sclerosis”, “Parkinson’s disease”,

“Ataxia”, “HIV”, “Alcohol”, “Healthy ageing”. A supplementary search in-

cluded the term “presymptomatic” in combination with the above listed con-

ditions. The search was performed between April and June 2014. Clinical

trials, animal-model studies and paradigm-based functional MRI studies were

excluded. Studies of multiple system atrophy, progressive supranuclear palsy,

Lewy body dementia, posterior cortical atrophy, and corticobasal degenera-

tion were also excluded due to their lower incidence compared with the most

common neurodegenerative conditions. While innovative longitudinal spinal

cord studies have been published in ALS (Agosta et al., 2009; El Mendili

et al., 2014) and MS (Freund et al., 2010), because of the lack of longitudinal

spinal cord studies in other neurodegenerative conditions, only brain imaging

papers were systematically reviewed. The identified studies were systemati-

cally reviewed for sample size, reference control groups, follow-up intervals,

attrition rates, statistical models and their ability to capture longitudinal

changes.
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2.4 Results

Based on the above search criteria a total of 526 publications were identified;

423 longitudinal imaging papers and 103 genotype-based presymptomatic

studies. One hundred and twenty-six longitudinal imaging papers were re-

viewed in AD, 18 in ALS, 18 in FTD, 21 in HD, 156 in MS, 26 in PD, 3 in

ataxia, 5 in HIV cognitive impairment, 7 in alcohol abuse and 43 publications

in healthy ageing. A list of the identified papers is provided at the end of

the chapter (section 2.11).

2.4.1 Sample size and cohort considerations

Relatively few studies disclose their formal power calculations and sample

size estimations (Teipel et al., 2011a). The average sample size of longitudi-

nal studies of AD and MS is approximately three times larger than studies of

ALS or FTD (Table 2.1). This is because of disease-specific factors, such as

sialorrhoea and orthopnoea in ALS. Behavioural impairment has implications

on recruiting phenotypes of FTD cohorts, motor disability makes recruitment

to ALS and MS studies difficult, and extrapyramidal impairment may limit

the scanning of symptomatic PD and HD patients. In addition to differences

in prevalence, these factors all contribute to the significant sample size differ-

ences observed in longitudinal studies across the neurodegenerative spectrum

(Table 2.1).

The reviewed articles included both prospective longitudinal projects and

retrospective studies, interrogating data from large international data reposi-

tories. Digital data repositories have been established for AD, healthy ageing,

ALS and HD; such as the ADNI, NISALS (Turner et al., 2011) or TRACK-

HD (Tabrizi et al., 2012). More than half of longitudinal AD studies and

more than a quarter of longitudinal FTD and MS studies utilise pre-existing

data banks (Table 2.1). In prospective longitudinal studies, recruitment of

prevalence cases as opposed to incidence cases introduces another bias to-

wards those who are progressing slowly, a cohort which is more likely to

participate in longitudinal imaging studies.
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2.4.2 Reference groups

It is well-established that physiological changes take place during healthy

ageing (Fjell et al., 2013b). Volume reductions and ventricular expansion

has been detected as early as at a 12-month follow-up interval (Fjell et al.,

2013a). However, the majority of longitudinal imaging studies do not include

a healthy control group, and accordingly do not account for physiological

changes over time. This seems an essential requirement in order to separate

disease-specific effects from those associated with healthy ageing.

Additionally, very few longitudinal studies enrol neurological control cohorts.

The inclusion of disease controls is particularly important in neurodegenera-

tion, where initial symptoms may considerably overlap. Despite the advan-

tage of characterising distinct phenotypic signatures, the longitudinal eval-

uation of multiple phenotypes of the same condition is seldom carried out

(Lam et al., 2014).

2.4.3 Attrition rates

Attrition rate refers to the gradual reduction of sample size over a certain pe-

riod of time. Foreseeable attrition rates should ideally be estimated prior to

recruitment and sample size calculations. In a condition with high-attrition

rates, a larger initial sample size and shorter follow-up intervals are required

to draw meaningful conclusions on longitudinal changes. Few studies directly

disclose their attrition rate, but most provide sufficient information for its

calculation. Attrition rates are largely condition specific, for example, due to

the rapid disease progression of ALS the average attrition rate after 1 year

is 56.2%, while in MS studies it is only 5.3%, in AD 6.8%, in PD 19.3%

and in FTD studies 28% (Table 2.1). Interestingly, attrition rates in studies

of healthy ageing is higher than in MS studies indicating a possible study

adherence bias of patients with chronic progressive conditions who are anx-

ious to participate in structured monitoring programmes. Attrition rate is

also a function of the recruitment strategy; carefully selected patients, who
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participate in clinical trials are less likely to drop out. However, participants

of population-based incidence studies may include relatively sicker patients

resulting in higher attrition rates. Ideally, the factors influencing attrition

rates in longitudinal studies should be thoroughly examined and their effect

on overall study results comprehensively discussed.

2.4.4 Imaging modalities

Positron emission tomography (PET)-based, SPECT-based and MRI-based

techniques dominate the methodology of longitudinal studies in neurodegen-

eration. Very few longitudinal studies have been carried out on PET/MRI

or magnetoencephalography platforms to date. Similarly, there is currently

a lack of high-field, such as 7-Tesla, longitudinal MRI studies in neurodegen-

eration, which is likely to change dramatically in the coming years.

The most commonly used grey matter MR techniques include voxel-based

morphometry, cortical thickness measurements and MR spectroscopy (MRS).

Frequently used white matter approaches included diffusion tensor imaging,

tractography, connectomic mapping or white matter density measurements.

Longitudinal imaging studies often report observations on a single white or

grey matter parameter (Lam et al., 2014; Ruocco et al., 2008). Over 85%

of longitudinal HD and ALS studies establish their conclusions based on a

single imaging measure, most frequently an imaging proxy of atrophy. Most

PD studies (84%) also use a single imaging technique, most frequently PET.

The majority of longitudinal MS and ataxia studies, however, rely on multi-

ple, complementary methods (Table 2.1).

As opposed to single-technique studies, a multimodal approach is clearly

required to comprehensively characterise a condition and also establish the

relative sensitivity of the various techniques in the different disease stages.

Combining multiple methods led to the observation that white matter pathol-

ogy can be detected relatively early in ALS, but shows limited progression
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over time compared with grey matter changes, which demonstrate progres-

sive anatomical spread in the later stages of the disease (Menke et al., 2014).

Observations on the detection thresholds of various techniques should have

a major impact on the design of new studies and development of viable di-

agnostic applications (Figure 2.1).

In all neurodegenerative conditions, structural MRI is by far the most fre-

quently utilised measure, followed by diffusion-based white matter tech-

niques, and only a small minority of longitudinal studies focus on metabolic

imaging using MRS. However, with the advent of whole brain MRS sequences,

spectroscopy is likely to gain further momentum. A significant proportion of

AD, HD and PD studies report longitudinal changes solely from a specific re-

gion of interest (ROI) such as the motor cortex or corticospinal tracts in ALS,

caudate nuclei in HD, temporal lobes in AD, etc. ROI-based analyses are of-

ten performed to highlight focal changes in disease-defining brain regions;

however, narrowing the ROI to a specific area introduces an anatomical se-

lection bias and ignores the multisystem nature of these conditions. Another

pitfall of ‘ROI-only’ studies is that considerable changes may have already

taken place at the initial time point making the detection of further changes

difficult. This review suggests that less than one-third of longitudinal MRI

studies report both ROI and whole-brain findings.

Currently, MRI-based techniques dominate the methodology of longitudinal

imaging, despite the significant contribution of PET studies to presymp-

tomatic and genotype-based research (Ciarmiello et al., 2012; Pavese et al.,

2010, Table 2.1). With the development of novel ligands however, PET is

likely to increasingly contribute to our understanding of pathophysiological

changes. In spite of its cost implications, the requirement for a near-site

cyclotron to produce short half-life isotopes, and limited availability, PET

offers unrivalled sensitivity to identify disease-specific pathology. For exam-

ple, amyloid-imaging and recently τ -imaging have the potential to provide

sensitive diagnostic and biomarker applications in AD. PET radioligands that

bind specifically to serotonin 5HT1A/5HT2A receptors, dopamine D2/D3 re-
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ceptors, opioid mu receptors, GABA-A benzodiazepine receptors or ligands

such as [11C]PMP which measures acetylcholinesterase activity enable the

selective assessment of neurotransmitter-specific networks.

While PET provides valuable functional insights, group-level interpretation

remains challenging, and the widespread availability of MRI scanners, their

high spatial resolution and relatively simple spatial registration renders the

interpretation of longitudinal MR data more straightforward. This is likely

to change with the availability of combined PET/MRI scanners.

2.4.5 Statistical methods

Most of the identified studies include 2–3 follow-up measurements with the

exception of MS studies where an average of 4.7 assessments have been car-

ried out. However, many studies have relied on a single follow-up assessment

making modelling on non-linear decline impossible.

The majority of the reviewed studies have used fixed time intervals which

were largely diagnosis dependent. Conditions with slower progression rates

use relatively longer follow-up periods compared with more rapid neurode-

generative conditions. The overall follow-up period from first to the last

assessment also shows significant variations from a maximum of 2 years in

ALS to up to 14 years in MS (Table 2.1).

A wealth of statistical approaches was identified, ranging from relatively sim-

ple methods to complex models. Many longitudinal studies directly compare

the first and second assessment (Aylward et al., 2004), calculating the rate of

change, percentage change or annualised percentage change from assuming a

linear decline (Grothe et al., 2013). It is well established, however, that linear

models are not applicable to most neurodegenerative conditions (McDonald

et al., 2009), or to physiological ageing (Fjell et al., 2013b, Figure 2.1).
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Other frequently utilised approaches include generalised estimating equa-

tions, or mixed effect linear models. The latter is particularly useful in

longitudinal studies as participants with only a single assessment can be

included (Leung et al., 2013; Nowrangi et al., 2013; Teipel et al., 2011a).

This approach may also be favourable in high attrition rate studies and to

model non-linear trajectories of decline. Furthermore, these models can be

readily utilised to correlate longitudinal brain changes with clinical measures

(Nowrangi et al., 2013). The superiority of the mixed effects model with a

random effects term, accounting for variable observation time points, com-

pared with fixed effects analyses, has been demonstrated by a longitudinal

study of AD (Teipel et al., 2011a).

Other approaches, such as the cumulative model or sigmoid model, have been

recently applied to model the rate of atrophy in AD (Sabuncu et al., 2011).

This model assumes initial acceleration of volume loss up to an inflection

point following which deceleration of atrophy occurs. This model has also

been applied to MCI cohorts where higher acceleration rates were associated

with conversion to AD (Leung et al., 2013). Acceleration–deceleration mod-

els may also explain why relatively little change is observed longitudinally

in disease-defining pathological regions, such as the primary motor cortex

(PMC) in ALS once significant changes have already taken place at the ini-

tial time point (Verstraete et al., 2014, Figure 2.1).

Primary regions of vulnerability, such as the PMC in ALS, the frontal lobes in

behavioural variant FTD, the hippocampus in AD, or the substantia nigra in

PD are affected early and progressively (acceleration) leading to substantial

pathology after which only modest further changes take place (deceleration).

The ‘deceleration phase’ may clinically manifest as a symptomatic ‘plateau’

and explain why several studies fail to detect significant longitudinal changes

(Laakso et al., 2000; Menke et al., 2014).

The same principle has been applied to neuropsychology data. The ‘change

point model’ is based on the time at which rate of decline begins to ac-
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celerate to predict conversion to disease (Hall and Lipton, 2000). Accelera-

tion–deceleration models rely on the interpretation multi-time point observa-

tions to predict disease outcomes, but such models require relatively uniform

inter-assessment intervals. Finally, multivariate classification analyses, such

as the support vector machine approach, enables individual participant clas-

sifications (Orrù et al., 2012).

Longitudinal statistical models should ideally have the ability to manage

missing data, incorporate participants with single assessments, interpret vari-

able follow-up periods and model non-linear decline.

Cluster analysis of progression rates has implication for genetics, prognosis,

diagnosis and stratification for clinical trials (Gomeni et al., 2014; Simon

et al., 2014). Most neurodegenerative conditions, particularly ALS and PD,

have a relatively uniform rate of clinical decline and short transition times be-

tween disease stages (Balendra et al., 2015). A predictable disease trajectory

enables the planning of support measures and the timing of assistive inter-

ventions. In patients who do not progress significantly over time or progress

very slowly, the diagnosis is sometimes revisited or restrictive phenotypes

are identified such as monomelic forms of ALS or primary lateral sclerosis.

Conversely, studying fast ‘progressors’ may help to identify and characterise

unique genetic or environmental factors (Byrne et al., 2012). Consequently,

cluster analysis of patients based on progression rates should be undertaken

in studies with sufficiently large sample sizes using a combination of imaging

and clinical data (Gomeni et al., 2014, Figure 2.1).

2.4.6 Presymptomatic studies

It is widely accepted that pathological changes occur long before the di-

agnosis of most neurodegenerative conditions. Patients often observe and

report subtle changes before the diagnosis of dementia syndromes and family

members often recognise behavioural changes many years before the diag-
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Figure 2.1: A schematic non-linear cumulative model of longitudinal change
in neurodegeneration highlighting the effect of diagnostic delay on recruit-
ment to pharmaceutical and longitudinal biomarker studies. The importance
of multimodal, multiparametric imaging is illustrated by a hypothetical hi-
erarchy of detection thresholds. Examples of colour coded progression rate
clusters are shown. DAT, Ioflupane (123I) DaTSCAN; GP, general practi-
tioner; PET, positron emission tomography; SPECT, single-photon emission
CT; VBM, voxel-based morphometry; DTI, diffusion tensor imaging.

nosis of FTD is formally established. It is also increasingly recognised that

ALS may have long preclinical phase (Eisen et al., 2014). Diagnostic delay

in neurodegeneration is very significant compared with other neurological

conditions and leads to considerable therapeutic delay as well as unneces-

sary interventions and investigations (Cellura et al., 2012). As illustrated

in Figure 2.1, considerable neurodegenerative change may have taken place

by the time patients are recruited into biomarker studies or pharmaceutical

trials. Based on the acceleration–deceleration model, pathogenic mutation

carriers in their preclinical stage are an optimal cohort to evaluate longi-

tudinal changes. The preclinical, pre-manifest phase of neurodegenerative

conditions also offers a valuable window for pharmacological and neuropro-

tective intervention. Presymptomatic longitudinal neuroimaging is one of

the most novel trends of neurodegeneration research, an exciting interface

of imaging, pathology and genetics (Table 2.8). The characterisation of key

presymptomatic MRI signatures in neurodegeneration assists the develop-

ment of more sensitive diagnostic protocols by identifying brain regions which
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are affected early and the techniques which are most likely to detect these

early changes. Presymptomatic studies may also have prognostic ramifica-

tions, by elucidating at what point a genotype is likely to translate into

symptomatic brain pathology (Ciarmiello et al., 2012). In ALS, a few pi-

oneering studies have examined the presymptomatic phase of the disease

(Turner et al., 2005). Studies of repeat length dependent syndromes, such as

the hexanucleotide repeats of C9orf72, or CAG repeats in HD have revealed

repeat length-dependent structural changes (Ruocco et al., 2008).

2.4.7 Objectives, deliverables and outcomes of longi-

tudinal imaging studies

The primary objective of the reviewed longitudinal studies ranges from the

characterisation of disease phenotypes (van der Graaff et al., 2011), eval-

uation of disease genotypes (Rohrer et al., 2010), development of prognos-

tic indicators (Grothe et al., 2013), establishment of study group-specific

rates of decline (Frings et al., 2012), prediction of disease manifestation in

presymptomatic cohorts (Ciarmiello et al., 2012), to the anatomical charac-

terisation of pathological spread (Verstraete and Heuvel, 2010). Other study

outcomes include the evaluation of the predictive value of baseline measures

(Tabrizi et al., 2013), appraisal of the sensitivity of specific imaging tech-

niques (Acosta-Cabronero et al., 2012), and correlation of longitudinal imag-

ing changes to clinical variables (Menke et al., 2014). The most commonly

stated study conclusion is that a specific imaging measure may serve as a

biomarker in the future, which however, in most cases, remains aspirational

(Tabrizi et al., 2012).

2.4.8 Optimal study designs

The systematic review of longitudinal imaging in neurodegeneration enabled

the identification of a core list of desirable study considerations and statis-

tical approaches, which are important for the design of future prospective

studies (Table 2.2). Despite a trend of large multi-centre studies, single-site
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studies have clear methodological benefits. Harmonising pulse-sequences and

analysis pipelines across different field-strengths, manufacturer platforms and

raw data formats requires complex quality control and validation procedures

with phantom studies (Teipel et al., 2011b). Such studies are routinely un-

dertaken in pharmacological studies of MS, but have to be carefully justified

in a research setting. Even longitudinal single-centre, single-scanner studies

are occasionally compromised by software updates, novel head coils, modifi-

cation of pulse sequences which requires stringent post-processing corrections.

Desirable study designs

- Inclusion of both whole-brain and region of interest (ROI) anal-

yses

- Evaluation of multiple grey and white matter imaging parame-

ters (structural, diffusion, metabolic) in the same study or mul-

tiplatform positron emission tomography/MRI designs

- Incidence-based studies

- Comprehensive clinical phenotyping and genotyping

- Multiple (more than two) time-point designs

- Inclusion of ’presymptomatic’, ’premanifest’ cohorts of patholog-

ical mutation carriers

- Inclusion of a longitudinal healthy control group

- Inclusion of neurological ‘mimic’ control groups also referred to

as ’disease-controls’

- Collection of longitudinal clinical data after imaging is no longer

possible for validation of prognostic markers

- Incorporation of standardised imaging protocols into pharma-

ceutical trials

- Postmortem brain banking and correlation of in vivo imaging

findings with post mortem evaluation
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Optimised statistical frameworks

- Interpretation of variable follow-up periods

- Ability to model non-linear decline

- Meaningful correlations with clinical variables

- Cluster analysis of progression rates

- Multivariate classification analyses (support vector machine ap-

proach) to classify individual patients

- Comparative evaluation of the sensitivity of various imaging

techniques

- Development, evaluation and validation of prognostic markers

based on initial time-point or multiple-time point imaging data

- Definition of stage defining imaging measures

Disclosures and discussions

- Formal power and sample size calculations for established modal-

ities

- Attrition rate estimations prior to recruitment

- Disclosure of recruitment strategies; incidence or prevalence

cases

- Presentation of attrition rates, discussing factors contributing to

attrition rates and discussion of the impact of attrition on overall

findings

- Disclosure of negative results, such as lack of progression in spe-

cific ROIs

Table 2.2: Desirable design features of longitudinal studies in neu-

rodegeneration.
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2.5 Discussion

In this review, the academic, clinical and pharmaceutical potential of high-

quality longitudinal studies in neurodegeneration were evaluated (Table 2.3).

It is clear that longitudinal neuroimaging offers superior descriptive power to

cross-sectional studies and is undoubtedly the optimal method to study pro-

gressive conditions. One of the biggest challenges of longitudinal analyses is

the non-linear nature of disease progression, coupled with the relatively late

recruitment of patients to biomarker studies (Figure 2.1). Presymptomatic

studies, early recruitment to biomarker studies at the time of diagnosis, ini-

tiation of incidence-based prospective studies, multi-centre collaborations,

comprehensive genotyping and implementation of robust statistical models

are just some of the options that may enhance longitudinal imaging stud-

ies. The expected attrition rate associated with the target disease should be

taken into account prior to study onset for accurate power calculations. This

has cost implications for conditions with high attrition rates. Longitudinal

scanning using MRI should seek to combine multiple complementary imaging

modalities for sensitivity analyses. Cross-sectional studies often attempt to

match patient groups for disease duration from symptom onset to the date

of scan (Bede et al., 2015) assuming relatively uniform progression rates.

Given the differences in rate of decline, however, this could be viewed as

a sub-optimal approach. Longitudinal imaging can address this concern by

generating models where single time point and longitudinal multipoint data

can be integrated. Single time point imaging data can also be utilised to val-

idate prognostic models by subsequent clinical assessments, when imaging

may no longer be possible. Cluster analyses of longitudinal data using clin-

ical, imaging and genetic data have the potential to identify protective fac-

tors in ‘slow progressors’ and potential risk factors in ‘fast progressors’. The

identification of ‘atypical’ patients based on objective imaging data makes

targeted deep-phenotyping possible and may help to explore unique environ-

mental and genetic factors in these cohorts.

One of the academic deliverables of well-designed longitudinal studies is the
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Pathophysiological insights
- Characterisation of genotype-specific rate of decline, anatomical

spread
- Characterisation of phenotype-specific rate of decline, anatomi-

cal spread
- Identification of distinct disease stages based on objective criteria
- Development and validation of prognostic indicators
- Characterisation of ’premanifest’, ’presymptomatic’ pathological

changes
- Identification of an optimal therapeutic window

Clinical applications
- Diagnostic applications: patient classification based on longitu-

dinal changes
- Prognostic indicators; introduction and withdrawal of interven-

tions
- Assessment for rehabilitation potential

Pharmaceutical applications
- Objective quantification of disease burden prior to therapy
- Patient stratification based on predicted disease trajectories; fast

versus slow ‘progressors’
- Evaluation of response to therapy
- Discrimination of symptomatic versus disease modifying effect

Table 2.3: Potential deliverables of longitudinal studies in neurodegeneration.

confirmation or rejection of attractive, but empirical theories, such as ’fo-

cal spreading’, ’spread along functional connections’ (Verstraete and Heuvel,

2010), ’dying-back’, ’dying-forward’, ’selective vulnerability’ (Schuster et al.,

2016a), ’wires together-dies together’ hypotheses (Bak and Chandran, 2012).

The time interval from first symptom to definite diagnosis is often regarded

as a prognostic indicator, suggesting that the longer it takes to establish the

diagnosis the slower the progression rate may be (Chiò et al., 2009). Using

well-constructed and adequately powered longitudinal imaging protocols, the

current technology is now well placed to objectively examine these clinical

observations.
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Disease-state ’staging’ is a fundamental medical concept widely used in neu-

rology, oncology and other specialities. It enables patient stratification into

clinical trials and examining the evidence for the introduction and with-

drawal of treatment in progressive conditions. Clinical staging frameworks

are extensively used in neurodegeneration, for example, Hoehn and Yahr

in PD (Hoehn and Yahr, 1967), El Escorial in ALS (Ludolph et al., 2015;

Brooks et al., 2000). Pathological staging systems, such as the Braak stag-

ing in AD (Braak and Braak, 1995), or the recently proposed TDP-43-based

staging in ALS (Brettschneider et al., 2013), are used for post-mortem char-

acterisation in neurodegeneration. Novel initiatives in biomarker research

have the capability to integrate the two approaches by developing objec-

tive, imaging-based staging systems that rely on measurement of disease-

specific pathological change in vivo (Kassubek et al., 2014). If ’staging’ rep-

resents artificially defined phases of progressive conditions, functional ’rat-

ing scales’ reflect on the continuum of clinical changes. Unified Parkinson

Disease Rating Scale (UPDRS), Expanded Disability Status Scale (EDSS,

Kurtzke, 1983), Revised ALS functional rating scale (ALSFRS-R, Cedar-

baum et al., 1999), Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-

Cog, Pea-Casanova, 1997), International Cooperative Ataxia Rating Scale

(ICARS, Trouillas et al., 1997) are just some of the disease-specific clinical

rating scales which are frequently utilised as end points of clinical trials.

As has been demonstrated in MS, quantitative imaging protocols have the

potential to complement these scales in neurodegeneration, and to assess re-

sponse to therapy in randomised controlled trials by objectively measuring

longitudinal changes in the various study groups (Radue et al., 2012).

2.6 Conclusion

Longitudinal studies in neurodegeneration are superior to cross-sectional

studies in characterising specific disease phenotypes and genotypes. Well-

designed longitudinal studies have both academic merits and important clin-

ical benefits. They enable the characterisation of genotype-specific progres-
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sion curves and presymptomatic changes, as well as the development of prog-

nostic markers, staging of the disease and accurate measurement of response

to therapy. While cross-sectional studies provide useful snapshots of group

level pathology, longitudinal neuroimaging studies have the potential to dis-

sect the dynamic and active biological processes underpinning neurodegen-

eration. The methodological challenges of longitudinal imaging are similar

across the spectrum of neurodegenerative conditions, such as non-linear dis-

ease progression curves, high attrition rates, heterogeneous patient cohorts

and relatively late recruitment to biomarker studies. Presymptomatic and

prospective incidence-based studies utilising robust statistical models to in-

terpret multimodal imaging data are likely to overcome these methodological

challenges.

2.7 Implications of the existing imaging stud-

ies for the present project

This chapter comprehensively reviews the study parameters for an optimised

longitudinal study in neurodegeneration. The findings of this review are

highly relevant for the design of this imaging project to achieve its objec-

tives in describing cross-sectional and longitudinal structural brain changes

in ALS and assessing the value of MRI metrics as potential biomarkers.

An ideal ALS study should not only include prevalence but also an incidence

cohort. An incidence cohort is essential for development of diagnostic aids

(Chapter 5). Brain changes presented by a prevalence cohort may be too

widespread and may mask the subtle changes associated with early-phase

disease. In contrast, a pure prevalence cohort provides the opportunity to

develop monitoring markers for the course ALS (Chapter 4).

The first scan should be performed shortly after diagnosis. This is essen-

tial to describe the initial brain changes. If possible studies should include

presymptomatic cohorts, if ethics approval and formal genetic counselling is

available. It is especially difficult to screen family members for gene muta-
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tions, where penetrance, clinical ramifications and molecular biology is poorly

understood.

Multiple assessments are required to capture a suspected non-linear radio-

logical decline. Based on the available literature, the interval for follow-up

assessments in an ALS study should be approximately 4 months in order to

capture patients with faster rate of decline. Nonetheless, a drop-out rate of

20% per time point is to be expected (Table 2.4).

Attrition rate after
3 months 6 months 8-9 months 12 months

mean 16.4% 12.5% 17.1% 36.7%
median 34.0% 38.0% 0% 55.0%
SD 48.1% 19.5% 26.0% 17.3%
available studies 2 5 3 5

Table 2.4: Attrition rate of longitudinal studies in ALS. SD = standard
deviation.

At each MRI time-point, the clinical assessment should be carefully recorded.

During the first assessment this includes site of onset (bulbar/ spinal/ respi-

ratory), medication, a detailed family history and genotype. Subsequently,

clinical progression and change in medications should be documented at each

follow-up scan. Some medications may potentially influence MRI measure-

ments - especially resting-state MRI - and should, therefore, be carefully

documented. Neuropsychological assessments should be performed close to

the MR acquisition. To investigate the prognostic value of MRI measures,

clinical data should be continued to be gathered after the MRI scanning is

no longer feasible due to respiratory failure or orthopnoea.

Ideally, multiple MR sequences should be included in the imaging protocol

in order to comprehensively characterise white and grey matter alterations

and to compare the sensitivity of the different approaches.

Healthy controls should undergo the same procedure as the patient cohort

including multiple brain scans: at the first MRI time-point, a detailed med-
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ical and family history should be recorded. At the subsequent time-points,

change in medications needs to be enquired. It has been demonstrated that

a healthy brain changes after only one year (Fjell et al., 2013a,b). Follow-

up assessments of healthy controls enhance the evaluation of disease-related

longitudinal changes, as the effect of healthy ageing can be regressed out of

the analysis. Hence, the sample size requirement to detect longitudinal brain

changes decreases. Inclusion of disease-controls or mimic neurodegenerative

conditions may improve the accurate characterisation of disease-specific pro-

cesses.

2.8 Methodology of the present project

2.8.1 Ethical approval

The imaging study was fully approved by Beaumont Hospital ethics commit-

tee. Informed consent was obtained from each participant.

2.8.2 Recruitment of participants

Patients were recruited through the Irish population-based ALS register

(Donaghy et al., 2009; Rooney et al., 2013).

A group of neurologically healthy age- and gender-matched controls were re-

cruited from spouses of ALS patients, unrelated family friends and though

public advertising in accordance with the inclusion and exclusion criteria of

the study.

2.8.3 Inclusion Criteria

Patients with a diagnosis of Motor Neuron Disease who are recorded in the

Irish population-based ALS register were eligible.
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2.8.4 Exclusion Criteria

Patients with a co-morbid diagnosis of any other neurodegenerative condi-

tions (apart from frontotemporal dementia) or structural brain disease (e.g.

stroke) were excluded. Controls with a family history of ALS or other neu-

rodegenerative conditions were also excluded.

2.9 Data acquisition

2.9.1 Demographic and clinical data

For each participant the following demographic information were recorded:

date of birth, gender, handedness, education, list of medications, family his-

tory of neurodegenerative disease (motor neuron disease, Parkinson’s disease,

Alzheimer’s disease, frontotemporal dementia, Huntington’s disease, multiple

sclerosis). Additionally, for each patients the following clinical details were

recorded: date and site of symptom onset, date of diagnosis, use of Riluzole,

the presence of an enteral feeding tube, use of non-invasive ventilation (NIV),

revised ALS functional rating scale (ALSFRS-R, Cedarbaum et al., 1999) at

the date of the scan.

Statistical analysis of demographic and clinical data was conducted using

t-test or analysis of variance (ANOVA). The assumption of normality and

outliers were visually evaluated through histograms and boxplots of the cor-

responding data and statistically by using the Kolmogorov-Smirnov Test.

2.9.2 MRI acquisition

Each brain scan included a T1-weighted images, diffusion weighted images,

resting-state MRI and a FLAIR imaging. Flair sequences were utilised to

identify and exclude participants with severe white matter disease. MR data

were acquired on a 3 Tesla Philips Achieva system with a gradient strength

of 80 mT/m and slew rate of 200 T/m/s using an 8-channel receive-only head
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coil.

T1-weighted images were obtained using a three-dimensional inversion recov-

ery prepared spoiled gradient recalled echo (IR-SPGR) sequence with FOV:

FH = 256 mm, AP = 256 mm, RL = 160 mm; Fast Imaging mode = TFE;

TR = 8.5 ms; Rel. SNR = 0.864685357; Act. TR/TE = 8.5 ms / 3.9 ms;

ACQ matrix M × P = 256 × 240; ACQ voxel MPS = 1.00 mm / 1.07 mm

/ 1.00 mm. The total scan duration was 07:32.1 min.

DTI images were acquired using a spin-echo planar imaging (SE-EPI) se-

quence with a 32-direction Stejskal-Tanner diffusion encoding scheme: FOV:

RL = 245 mm, AP = 245 mm, FH = 150 mm; ACQ voxel size: RL = 2.5

mm, AP = 2.5 mm; slice thickness = 2.5 mm; reconstruction matrix = 112;

P reduction (AP) = 2.5; TE = 59 ms; b-values = 0, 1100 s/mm2; with SPIR

fat suppression and dynamic stabilisation in an acquisition time of 5:27.8 min.

2.10 MRI database - Final Sample

For this PhD project, participants were recruited and scanned between the

29.04.2014 until the 07.06.2016 (Table 2.5). Imaging data of 38 ALS patients

and 43 controls were also included in this study, which were acquired prior

to the start of this research project.

Table 2.6 summaries the basic demographic and clinical data of this sample.

Please note, each chapter described the sample available to the date of the

analysis and additional exclusion criteria if applicable.
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ALS patients
Baseline FU 1 FU 2 FU 3

Newly recruited 86 56 41 24
Existing data 38 14
Total 124 70 41 24

Healthy controls
Baseline FU 1 FU 2 FU 3

Newly recruited 26 18 14 8
Existing data 43
Total 69 18 14 8

Table 2.5: Newly acquired MRI scans acquired between 2014 and 2016.
FU: Follow-up

ALS patients Healthy controls p-value
N 124 69
Age in years
(mean/SD)

59.1 (11.1) 60.0 (9.9) p = .57

Gender
(male/female)

78/ 46 34/ 35 p = .09

Handedness
(right/left)

107/ 17 64/ 5 p = .17

Site of onset (bul-
bar/ spinal/ respira-
tory/ cognition)

31/ 91/ 1/ 1

Disease duration in
months at first scan
(mean/SD)

27.1 (20.6)

ALSFRS-R at first
scan (mean/ SD)

37.4 (7.6)

Table 2.6: Demographic and clinical profile of the sample at the time of the
first brain scan.
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2.11 List of reviewed articles

The papers identified by the search criteria cited above (section 2.4) are listed

here. These papers were systematically reviewed to draw conclusions about

an optimal longitudinal study design in neurodegeneration.
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Table 2.7: List of reviewed longitudinal studies in neurodegenera-

tion.
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Table 2.8: List of reviewed presymptomatic studies in neurodegen-

eration.



Chapter 3

The Segmental Diffusivity

Profile of ALS-associated

White Matter Degeneration

A concise version of this chapter has been published in the peer-reviewed

European Journal of Neurology (Schuster et al., 2016a).

3.1 Introduction

Clinical trials in ALS mostly rely on survival and clinical rating scales as

their primary end-points as no objective monitoring biomarkers have been

validated to date. Despite considerable advances in ALS imaging (Bede and

Hardiman, 2014; Schuster et al., 2015) the diagnosis of ALS remains pri-

marily clinical. Diagnostic delay in ALS has crucial implications for belated

recruitment to pharmaceutical trials (Zoccolella et al., 2006), unnecessary

interventions (Cellura et al., 2012), and tardy introduction of neuroprotec-

tive therapy (Cellura et al., 2012). Longitudinal and presymptomatic studies

suggest that considerable pathological change may have taken place by the

time the diagnosis is established rendering neuroprotective therapy ineffective

(Schuster et al., 2015; Eisen et al., 2014; Benatar and Wuu, 2012). While the

urgency for biomarker development for diagnostic and monitoring purposes
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in ALS is well recognised, sensitive biomarkers may also unveil patterns of

anatomical spread and contribute to our understanding of cellular and molec-

ular mechanisms.

Primary motor cortex (Bede et al., 2012a; Schuster et al., 2013) and cor-

ticospinal tract (CST, Bede et al., 2013a) pathology are the most exten-

sively studied anatomical regions in ALS. Over 100 DTI studies have been

published in ALS, most of which highlight CST and corpus callosum (CC)

degeneration. Despite the significant number of imaging studies, striking in-

consistencies can be identified in the literature (Bede and Hardiman 2014).

While most ALS studies focus on CST degeneration in the posterior limb of

the internal capsule (Menke et al., 2012), other key segments of the CST,

such as the corona radiata (Ciccarelli et al., 2006) or cerebral peduncles

(Hong et al., 2004) are surprisingly understudied. For the development of

automated classifier-type analyses, it is pivotal to establish which segments

of the CST best discriminate patients from controls and which diffusivity

parameter is the most sensitive to capture early-stage neurodegeneration.

While CST degeneration has been comprehensively characterised by numer-

ous pathology studies (Smith, 1960), few neuroimaging studies investigated

the segmental vulnerability of the CST in vivo (Toosy et al., 2003; Wong

et al., 2007).

Corpus callosum degeneration has also been extensively evaluated in ALS

by post-mortem studies (Smith, 1960) and genotype-based imaging stud-

ies (Bede et al., 2013a). Recent neuroimaging studies of ALS have focused

on extra-motor involvement; characterising fronto-temporal (Schuster et al.,

2014a), basal ganglia (Bede et al., 2013b), anterior cingulate (Woolley et al.,

2011), cerebellar (Bede et al., 2015) pathology and have demonstrated net-

work dysfunction of interconnected brain regions (Verstraete and Heuvel,

2010). With the emergence of automated classifier analyses (Chen et al.,

2008; Wang and Summers, 2012), however, there is a renewed interest in the

detailed characterisation of established, ’disease-defining’ pathological sites,

such as the CST.
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CST degeneration in ALS is most commonly evaluated by diffusion weighted

imaging (Bede et al., 2013a), but spectroscopy (Stagg et al., 2013), sus-

ceptibility - weighted imaging (Prell et al., 2015), white matter morphome-

try (Abrahams et al., 2005), connectivity analyses (Verstraete et al., 2014),

fractal dimension analyses (Rajagopalan et al., 2013), functional approaches

(Verstraete and Heuvel, 2010) and electrophysiological techniques, such as

transcranial stimulation (TMS, Desiato et al., 2002) have also been utilised.

Despite the plethora of promising imaging and electrophysiological methods

to assess CST integrity, diffusion weighted imaging remains one of the most

reliable techniques with a number of analysis options to detect voxel-wise,

tract-based, connectivity based or crossing fibre alterations. A number of

diffusivity-derived, white matter integrity proxies are available, but no con-

sensus exist as to which is the most sensitive to detect early CST degeneration

in ALS. This is partly because the majority of studies continue to solely use

fractional anisotropy (FA). The utility of other diffusivity measures, such

as axial (AD) and radial diffusivity (RD), is increasingly recognised in ALS

(Metwalli et al., 2010; Kasper et al., 2014). Importantly, these indices re-

flect on specific aspects of white matter microstructure. AD is generally

regarded as an axonal marker (Sun et al., 2006; Budde et al., 2009), RD as a

myelin related measure (Song et al., 2002, 2005). Fractional anisotropy and

mean diffusivity (MD) are histologically less specific, yet sensitive composite

markers of white matter integrity. While AD (λ1) and RD ((λ2 + λ3)/2) are

independent variables, MD is the mean of the three diffusion tensor eigen-

values λ1, λ2, λ3. Additional DTI parameters such as volume ratio, relative

anisotropy, linear component, planar component, spherical component are

rarely utilised in ALS (Westin et al., 2002; Sundgren et al., 2004).

Corticobulbar and corticospinal tract degeneration are phenotype-defining

features of ALS, yet these tracts are rarely examined separately and corre-

lated with clinical disability. These tracts are relatively well separated in the

internal capsule (IC) where corticobulbar tracts run in the genu of the IC
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and corticospinal tracts run in the posterior limb of the IC in a somatotopic

arrangement; representing the upper extremity, trunk, lower extremity in an

anteromedial to posterolateral anatomical organisation (Lee et al., 2012).

Spastic speech, dysphagia, positive jaw-jerk, and pseudobulbar affect are

some of the most frequently observed bulbar symptoms in ALS that can be

directly linked to corticobulbar tract dysfunction.

The evaluation of the CST in the corona radiata offers another opportunity

to examine somatotopically organised CST fibres and correlate white matter

alterations to clinical disability. While previous neuroimaging studies of ALS

linked motor disability to focal grey matter alterations in the precentral gyrus

(Bede et al., 2012a; Mezzapesa et al., 2013; Schuster et al., 2013), this has

not been replicated in white matter studies in the context of the functional

architecture of the pyramidal tracts.

The main objective of this chapter is to evaluate the segmental vulnerability

of CST and CC in order to assess which portions best discriminate patients

and controls. A further aim of the study is to evaluate the sensitivity of var-

ious diffusivity measures in detecting ALS-associated white matter degener-

ation. Furthermore, the white matter signature of the main ALS phenotypes

in the context of somatotopic anatomy was evaluated. Finally, clinical dis-

ability is correlated to white matter indices in anatomically-associated tracts.

3.2 Methods

3.2.1 Participants

Sixty-two ALS patients and 55 age-matched healthy controls were included

in this study based on the following criteria: Participating ALS patients

were diagnosed with either probable or definite ALS according to the revised

El Escorial criteria (Brooks et al., 2000) and were negative for a compre-
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hensive panel of established ALS-causing mutations, including FUS, OPTN,

SOD1, TARDBP, ANG, VAPB, VCP, SETX, ALS2 (Kenna et al., 2013).

DNA samples were also screened by repeat-primed PCR for the presence

of a GGGGCC hexanucleotide repeat expansion in C9orf72. Because of

the significant imaging changes associated with this phenotype (Bede et al.,

2013a), patients carrying the hexanucleotide expansion were excluded. Pa-

tients fulfilling the Rascovsky criteria for frontotemporal dementia (Rascov-

sky et al., 2011) were also excluded to avoid the confounding effect of imaging

changes associated with comorbid frontotemporal dementia (Chang et al.,

2005). Socio-demographic and clinical details of participating subjects are

presented in Table 3.1.

3.2.2 Data pre-processing

Diffusion tensor imaging datasets underwent eddy current corrections, mo-

tion correction and brain-tissue extraction using FMRIB’s software library

(Smith et al., 2006, 2004). Subsequently, a diffusion tensor model was fitted,

generating maps of fractional anisotropy (FA), mean diffusivity (MD), axial

diffusivity (AD), and radial diffusivity (RD). Tract-based spatial statistics

(TBSS, Smith et al., 2006) and permutation-based nonparametric inference

was used for group comparisons in a study-specific white matter template

applying the threshold-free cluster enhancement (TFCE) method (Salimi-

Khorshidi et al., 2011).

Grey matter analyses were carried out using voxel based morphometry us-

ing the VBM tool in FSL (Douaud et al., 2007). Following brain extrac-

tion, and tissue-type segmentation, grey matter partial volume images were

aligned to the Montreal Neurological Institute 152 standard space. The grey

matter partial volume estimates were non-linearly co-registered to a study-

specific template, modulated by a Jacobian field warp and smoothed with

an isotropic Gaussian kernel with a sigma of 3 mm. A grey matter region of

interest (ROI) was created based on the Harvard-Oxford probabilistic atlas
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ALS HC p-value
Bulbar
onset

Spinal
onset

p-value

N 62 55 26 36
Gender
(male/female)

36/26 29/26 p = .56 11/15 25/11 p = .1*

Age, years
(mean/SD)

61.1
(9.7)

61.3
(8.5)

p = .92
62.3
(8.5)

60.3
(10.5)

p = .7*

Handedness
(right/left)

55/7 52/3 p = .26 23/3 32/4 p = .53*

Disease
duration,
months
(mean/SD)

30.3
(18.3)

25.4
(14.8)

33.8
(19.9)

p = .07

ALSFRS-R
(mean, SD)
(max 48)

35.5
(6.6)

36.3
(6.9)

34.9
(6.4)

p = .41

Bulbar sub-
score (mean,
SD) (max 12)

8.7
(3.1)

6 (2.3)
10.7
(1.8)

p < .01

Spinal sub-
score (mean,
SD) (max 24)

15.8
(6)

19.6
(4.7)

13.1
(5.4)

p < .01

Table 3.1: Demographic profile of participants. *comparison of HC vs bulbar
onset/ spinal onset patients
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for the motor cortex (Desikan et al., 2006). A voxel-wise generalised linear

model was utilised for permutations-based non-parametric testing within this

ROI 10,000 permutations (Winkler et al., 2014).

3.2.3 Statistical analyses

1. Whole-brain group comparisons were carried out between patients and

healthy controls for the four diffusivity measures FA, MD, RD, and AD

correcting for age and gender. The significance level was set at p < .05

corrected for multiple comparisons using family-wise error (FWE) and

also visualised at p < .01 for FA and RD (Figure 3.1).

2. In order to explore the selective vulnerability of CST and CC, the CST

was segmented into the superior corona radiata, inferior corona radi-

ata, internal capsule, cerebral peduncle (mesencephalic crus) and the

CC into the splenium, body and genu. These regions were defined us-

ing the Johns Hopkins University DTI-based white-matter atlas (JHU

ICBM-DTI-81 white-matter labels atlas, Oishi et al., 2008). This at-

las consists of 48 white matter tract labels created from the manual

segmentation of DTI maps from 81 subjects. It does not include the

lateral fibres of the corona radiata, therefore, this label was created

manually. Figure 3.2 and Figure 3.3 shown the labels and the results.

The white matter regions identified by the above whole-brain TBSS

analyses, exhibiting significant alterations of FA and RD (p < .01

FWE) were anatomically segmented with the JHU labels and individ-

ual subject diffusivity data were extracted. The segmental diffusivity

profile of study-groups was displayed in boxplots (Figure 3.2 and Fig-

ure 3.3).

3. The percentage change between patients and controls in the most rel-

evant white matter segments was calculated. First, the average diffu-
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sivity alterations was calculated in each white matter segment for all

four DTI indices (Figure 3.4). Subsequently, diffusivity values were ex-

tracted from voxels in the relevant white matter segments which demon-

strated intergroup differences in analysis 1 (p < .05, FWE; Figure 3.5).

4. Pyramidal tract involvement in bulbar and spinal onset patients was

compared using ROI analyses restricted to the CST. Patients were

stratified based on the site of symptom onset, and tract-based DTI

analyses were conducted in comparison to healthy controls correcting

for age and gender. Statistical significance was defined as p < .05

(FWE). To highlight the corresponding phenotype-specific grey matter

degeneration, voxel-based morphometry analyses were also performed

among the same study groups in the motor cortex adjusting for age

and gender (Figure 3.6).

5. Additional correlative analyses were carried out between clinical vari-

ables and radial diffusivity values of individual patients in the corona

radiata. Bulbar scores were defined as the sum of scores on questions

1-3 of the ALSFRS-R (max = 12) and spinal scores defined as the sum

of scores on questions 4-9 (max = 24). The design matrix included age

as a nuisance variable. The significance level was set to p < .05, FWE

(Figure 3.7 and Figure 3.8).

3.3 Results

3.3.1 Whole-brain diffusivity analyses

Tract-based statistics over the entire brain revealed significant RD, MD and

FA alterations in patients in comparison to controls at p < .05 (FWE). While

FA and RD captured bilateral CST changes from the corona radiata to the

brain stem, MD only revealed unilateral changes in the right hemisphere.
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Figure 3.1: The sensitivity profile of diffusivity indices in capturing ALS-
associated white matter degeneration. Fractional anisotropy (FA) alterations
are displayed in red, radial diffusivity (RD) in blue, mean diffusivity (MD)
in green.

Using a more stringent statistical threshold of p < .01 (FWE), the sym-

metrical CST alterations highlighted by RD remained significant; alterations

highlighted by FA were more pronounced on the left side and no significant

change was detected by MD (Figure 3.1). Degeneration of the fibres within

the right temporal lobe was highlighted by MD and RD at p < .05 (FWE).

3.3.2 Individual patient data

The segmental evaluation of the CST and the CC using FA or RD demon-

strated discriminating diffusivity profiles in patients and controls in the

corona radiata, internal capsule, cerebral peduncle, and body of the cor-

pus callosum (Figure 3.2 for FA and Figure 3.3 for RD).
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Figure 3.2: The segmental vulnerability of the corticospinal tracts and the
corpus callosum. Average fractional anisotropy values of individual patients
and controls are plotted in the voxels identified by the whole-brain ALS
versus controls comparative analyses at p < .01 (FWE).
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Figure 3.3: The segmental vulnerability of the corticospinal tracts and the
corpus callosum. Average radial diffusivity values of individual patients and
controls are plotted in the voxels identified by the whole-brain ALS versus
controls comparative analyses at p < .01 (FWE).
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3.3.3 Comparison of diffusivity measures

In this study, RD was identified as the most sensitive measure of white mat-

ter degeneration, followed by FA and MD. The body of the CC was the most

affected white matter region followed by CST changes in the cerebral pedun-

cle, splenium of the CC and internal capsule.

Figure 3.4 shows the percentage change based on the average diffusivity al-

terations in each white matter segments. Figure 3.5 displays the percentage

change considering only voxels highlighting a significant change as described

in analysis 1.

Figure 3.4: The segmental sensitivity profile of the diffusion metrics. Per-
centage change in patients compared to controls in specific CST and CC
segments.
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Figure 3.5: The segmental sensitivity profile of the diffusion metrics. Percent-
age change in patients compared to controls in voxels displaying statistically
significant inter-group differences p < .05 (FWE).

3.3.4 Motor-phenotype specific degeneration

Based on RD, bulbar onset patients exhibit extensive white matter changes

in the genu and posterior limb of the internal capsule and in the lateral fibres

of the corona radiata subjacent to the bulbar representation of the motor ho-

munculus (p < .01, FWE).

Spinal onset patients show predominantly posterior internal capsule involve-

ment and medial corona radiata pathology based on RD (p < .01, FWE).

The direct comparison of bulbar and spinal onset patients did not reveal sta-

tistically significant differences.

A concordant pattern of grey matter pathology was identified. Grey matter

alterations of bulbar onset patients predominantly map to the inferior-lateral

portions of the precentral gyrus (p < .05, FWE). In contrast, patients with
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spinal onset show grey matter atrophy in the superior-medial region of the

precentral gyrus (p < .05, FWE; Figure 3.5).

Patients with bulbar onset exhibit reduced grey matter density of the infe-

rior precentral gyrus, which corresponds to the facial representation of the

homunculus compared with spinal onset patients (p < .05, FWE).

Figure 3.6: Motor phenotype-specific degeneration patterns.
Left: Bulbar onset patients versus controls; red colour indicates radial diffu-
sivity changes at p < .01 (FWE), yellow colour indicates grey matter changes
in the motor cortex at p < .05 (FWE).
Right: Spinal onset patients versus controls; blue colour indicates radial diffu-
sivity changes at p < .01 (FWE), green colour indicates grey matter changes
in the motor cortex at p < .05 (FWE).
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3.3.5 Correlation with ALSFRS-R sub-scores

Bulbar sub-score shows a negative correlation with RD in the inferior-lateral

fibres of the corona radiata (p < .05, FWE). Limb sub-scores shows a nega-

tive correlation with RD in the medial fibres of the corona radiata (p < .05,

FWE; Figure 3.8). A similar pattern of positive correlation was identified for

FA (Figure 3.7). For illustrative purposes, bulbar and spinal sub-scores were

plotted against average RD values in the relevant white matter regions.

Figure 3.7: Fractional anisotropy correlates with clinical scores in the corona
radiata. Regions of statistically significant positive correlation between FA
and the bulbar sub-scores of the ALSFRS-R are displayed in red. Green
colour indicates white matter regions in the corona radiata where spinal sub-
scores show positive correlations with FA (p < .05, FWE).
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Figure 3.8: Radial diffusivity correlates with clinical scores in the corona
radiata. Regions of statistically significant negative correlation between RD
and the bulbar sub-scores of the ALSFRS-R are displayed in red. Green
colour indicates white matter regions in the corona radiata where spinal sub-
scores show negative correlations with RD (p < .05, FWE).

3.4 Discussion

ALS is a phenotypically and genetically heterogeneous condition, showing

considerable variation in survival, rate of progression, cognitive and be-

havioural involvement. In this study, the segmental vulnerability of ALS-

associated white matter tracts was examined. Additionally, the sensitivity

of the four most widely used diffusivity measures was explored in a relatively

homogeneous ALS cohort with considerable disease duration and motor dis-

ability. As stated earlier, patients in this cohort did not have co-morbid

dementia and tested negative for a comprehensive panel of ALS-associated
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mutations including C9orf72 (Kenna et al., 2013).

The whole-brain analyses identified a core three-dimensional white matter

signature which, at stringent statistical thresholds, was confined to the cor-

ticospinal tracts and corpus callosum (Figure 3.1). By examining several

diffusivity parameters, AD was found of limited sensitivity in comparison to

FA and RD.

Automated classifier analyses are increasingly applied to neurodegenerative

conditions (Orrù et al., 2012) and have recently been applied to ALS (Welsh

et al., 2013). The comprehensive evaluation of the sensitivity profile of var-

ious diffusivity indices has important implications for future diagnostic ap-

plications. These models aspire to capture early white matter alterations.

While corticospinal degeneration is widely regarded as a hallmark feature of

ALS imaging, surprisingly little is known of its segmental diffusivity profile

(Wong et al., 2007). The vast majority of ALS imaging papers comment on

the CST degeneration in the posterior limb of internal capsule (Menke et al.,

2012; Turner et al., 2012). However, the comprehensive segmental analysis

of the CST demonstrates that CST measures in the cerebral peduncles and

corona radiata also reliably discriminate patients and controls (Figure 3.2

and Figure 3.3).

A hierarchy of segmental degeneration can be outlined based on diffusiv-

ity changes, which suggest that changes in the cerebral peduncles and body

of the corpus callosum may be more significant than those in the internal

capsule. In a condition where diagnosis is mainly clinical and significant

pathological change is likely to have already taken place before the diagnosis

(Schuster et al., 2015) the discussion of the most established anatomical sites

of degeneration and most sensitive imaging markers is particularly timely

(Figure 3.4).

The present study focuses on the two main motor phenotypes of ALS, those
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with spinal and bulbar onset, in the context of the somatotopic anatomy of

the motor system. A dual approach using comparative and correlative anal-

yses to localising pathological change in association to motor phenotypes

was adapted. Comparative analysis of phenotypes to controls outlined the

core spatial patterns where neurodegeneration occurs (Figure 3.6). Design

matrices containing specific clinical variables mapped homunculus-wise de-

generative changes in the corona radiata independently from pre-established

phenotypes (Figure 3.6). These findings complement previous reports of

grey matter alterations in relation to motor disability, by demonstrating fo-

cal white matter degeneration subjacent to the motor homunculus (Bede

et al., 2012a; Mezzapesa et al., 2013; Schuster et al., 2013).

Decreased FA, increased AD and increased RD are generally interpreted as

proxies of impaired fibre integrity. Specific diffusivity variables reflect on

various aspects of fibre microstructure. AD (λ1), the eigenvalue along the

direction of maximal diffusivity reflects on axonal integrity (Budde et al.,

2009). RD is the mean of the second and third (λ2 + λ3)/2) eigenvalues

which are orthogonal directions perpendicular to the main diffusion direction.

RD is affected by the degree of myelination (Beaulieu, 2002), axon diame-

ter (Pierpaoli et al., 2001) and the extracellular microenvironment such as

cell infiltration (Wang et al., 2011). Very few histopathologically validated

neuroimaging papers exist in ALS (Abe et al., 1997). Our understanding

of the microstructural correlates of DTI metrics derives from pathologically-

validated animal imaging studies (Wang et al., 2011; Zhang et al., 2012). It is

though that combined axonal and myelin degeneration lead to increased RD

and inflammatory changes also contribute to RD alterations (Wang et al.,

2011; Zhang et al., 2012). Reports on AD changes in ALS are inconsis-

tent. While some groups report widespread AD alterations (Metwalli et al.,

2010), other studies are consistent with our finding of limited axial diffusivity

change (Agosta et al., 2010b). DTI studies of relatively long disease duration

often report modest AD alterations (Ben Bashat et al., 2011) which may be

explained by increased intracellular protein accumulation such as pTDP-43

restricting axonal water diffusivity.
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Reports on the diagnostic sensitivity of diffusion-tensor imaging (DTI) data

depend on the specific diffusivity parameters utilised. An individual patient

data meta-analysis of 11 case-control studies including 221 ALS patients and

187 healthy controls using FA, found that the discriminatory power of CST

DTI alone is insufficient for the accurate diagnosis of ALS (Foerster et al.,

2013). Other studies however, which included radial diffusivity in their mod-

els reported a sensitivity of 87.5% and a specificity of 85.0% (Ben Bashat

et al., 2011). Our analysis of individual subject RD in specific white matter

segments indicates that inclusion of RD in discriminatory models is likely to

increase the diagnostic accuracy (Figure 3.4).

Future studies are needed to investigate possible combinations of MRI de-

rived markers and brain areas to increase diagnostic accuracy (Chapter 5).

One of the limitations of this study lies in its cross-sectional nature, longitu-

dinal data on diffusivity indices (Chapter 4) helps to elucidate the temporal

nature of white matter degeneration and clarify if axonal degeneration pre-

cedes inflammatory or myelin-associated processes. It is conceivable that

various stages of ALS are dominated by stage-specific diffusivity alterations.

In this study, a patient sample with relatively long disease duration was

characterised. Another limitation is the lack of spinal diffusivity measure-

ments. The spinal portion of the CST is associated with significant dif-

fusivity alterations (El Mendili et al., 2014), but anatomical factors, such

as small cross-sectional area, CSF flow and cardiac pulsation make spinal

DTI methodologically challenging (Bede et al., 2012b). Finally, novel non-

parametric diffusion imaging techniques such as Q-ball imaging and diffusion

spectrum imaging and parametric methods such as spherical deconvolution

are likely to characterise the degeneration of crossing fibres in more detail.

Notwithstanding these limitations, this study shows that the corticospinal

tracts and corpus callosum exhibit phenotype-specific segmental vulnerability

in ALS, which manifest in selective alteration of diffusivity parameters.
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Chapter 4

Longitudinal brain changes

during the course of ALS

4.1 Introduction

Heterogeneity is one of the hallmarks of ALS which includes clinical presen-

tation, progression rates, genetic vulnerability, cognition and poses a major

challenge to biomarker development.

Previously in this thesis, cross-sectional analyses were presented. The find-

ings so far confirm widespread ALS-related changes soon after the diagnosis.

Similarly to other neurodegenerative conditions such as HD, it is well es-

tablished that considerable presymptomatic changes occur in ALS (Tabrizi

et al., 2013; Benatar and Wuu, 2012).

In order to develop a monitoring biomarker, which would be essential to

improve clinical trials, the candidate markers need to detect subtle changes

occurring during the course of the disease and the change needs to be mea-

surable within a short period of time. It remains unclear whether current

MRI measures can fulfil these requirements. Furthermore, it remains un-

clear whether early during the course of the disease a floor or ceiling effect is

reached, that means, the brain changes are too severe to progress any further.

Well-designs longitudinal studies are likely to answer these questions.

99
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There is a scarcity of longitudinal ALS studies, which vary considerably in

methods, sample sizes and follow-up intervals (Table 4.1). Therefore, it is

not surprising that the results are rather inconsistent (Menke et al., 2017).

While some studies describe a significant progressive grey matter change over

time (Kwan et al., 2012; Menke et al., 2014), others report no measurable

longitudinal change (Verstraete et al., 2012; Schuster et al., 2014b; Cardenas-

Blanco et al., 2016). This inconsistency also applies to white matter studies:

The studies by Blain et al. (2007); Agosta et al. (2009); Kwan et al. (2012)

report no progressive changes, whereas other studies detect significant degen-

eration (Zhang et al., 2011; Menke et al., 2014; Cardenas-Blanco et al., 2016).

The core ALS-associated pathology has been described in the previous chap-

ter, and includes the precentral gyrus and supplementary motor cortex, the

corticospinal tract and the corpus callosum (Schuster et al., 2013, 2016a).

These are the most promising anatomical locations for candidate biomarkers.

Longitudinal changes within these regions have been previously described by

several research groups using different methods (Chiò et al., 2014; Grolez

et al., 2016; Menke et al., 2017).

The cerebellum is also involved in ALS. It integrates sensory and predictive

inputs to regulate timing, coordination, fine motor control, spatial target-

ing, preventing undershoot and overshoot, and correct errors. As ALS is a

neurodegenerative disease involving the motor system, it is not surprising

that the cerebellum also exhibits disease-related changes over time and is

therefore another biomarker candidate (Bede et al., 2016). Cerebellar in-

volvement is somewhat understudied (Prell and Grosskreutz, 2013). Prell et

al. 2013 reviewed the current literature describing structural and functional

changes of the cerebellum arguing for a compensatory mechanism. Cere-

bellar changes have been linked with a c9orf72 ALS genotype (Mackenzie

et al., 2014). Whereas Walhout et al. (2015) reported no difference in total

grey matter volume between c9orf72 -associated ALS patients and controls,

Bede et al. (2015) described extensive cerebellar white matter pathology in
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patients with no known pathogenic genetic variants. Longitudinal studies

do either overlook the potential cerebellar pathology or do not report any

changes (Menke et al., 2014; Cardenas-Blanco et al., 2016; Schuster et al.,

2014b).

One of the key differences in the different longitudinal studies is whether a

voxel-wise/vertex-wise analysis was performed or whether the authors chose

to average the voxels within a certain ROI. The disadvantage of averaging

multiple voxels is that valuable focal information may be sacrificed. For ex-

ample, if only a subsection is affected by the disease it will not affect the

average, hence, this information would be lost, but with a voxel-wise/vertex-

wise approach this subsection could be identified. Another example is that

the precentral gyrus and the internal capsule present with a different pattern

of degeneration depending on the disease onset: Bulbar onset patients ex-

hibit thinning of the inferior part of the precentral gyrus and the genu of the

internal capsule, whereas spinal onset patients present with thinning of the

superior part of the precentral gyrus and the posterior part of the posterior

limb of the internal capsule. By averaging, e.g., the entire precentral gyrus,

this information may be lost. This is another example how disease hetero-

geneity in ALS affects the focal brain changes observed.

4.2 Objectives and outline

The objective of this project is to determine whether progressive changes

can be captured in ALS using MRI. This would support the role of MRI

as a potential monitoring marker in ALS. The analyses were restricted to

disease-associated key brain regions. The ROI for the grey matter analyses

include the precentral gyrus and supplementary motor cortex and for the

white matter analyses the corticospinal tract and corpus callosum.

In order to comprehensively interpret longitudinal changes, it is important

to describe the baseline pathology. Therefore, the first comparison is a cross-
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Year Authors Journal Sample
Size

Time between
baseline and
1st follow-up
scan

2016 Cardenas-Blanco
et al.

NeuroImage:
Clinical

34 6 months

2015 Westeneng et al. Neurobiology of
Aging

39 5.5 months

2014 El Mendili et al. PloS One 14 11 months
2014 Menke et al. Brain 27 16 months
2014 Schuster et al. J Neurol 51 3-12 months
2014 Verstraete et al. Hum Brain

Mapp
24 5.5 months

2013 Kwan et al. NeuroImage:
Clinical

45 12 months

2012 Keil et al. BMC Neurosci 24 6 months
2012 Menke et al. Arch Neurol 21 6 months
2012 Verstraete et al. J Neurol Neuro-

surg Psychiatry
45 3-12 months

2011 Senda et al. ALS 17 6 months
2011 van der Graaff et

al.
Brain 48 6 months

2011 Zhang et al. ALS 17 8 months
2009 Agosta et al. ALS 17 9 months
2009 Agosta et al. JNNP 28 6-12 months
2009 Avants et al. Archives of Neu-

rology
4 5 months

2009 Nickerson et al. Clin Neuroradiol 2 3 months
2008 Vucic et al. Brain 74 12 months
2007 Blain et al. ALS 23 6 months
2007 Unrath et al. J Neurol 11 3 months
2004 Rule et al. ALS 45 3 months
2002 Aggarwal et al. JNNP 31 6 months
2002 Suhy et al. Neurology 28 1 month
2001 Hecht et al. JNS 31 12 months
1999 de Carvalho et al. Muscle Nerve 11 3.7 months
1998 Block et al. Arch Neurol 33 24 months

Table 4.1: List of longitudinal studies in ALS.
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sectional one between the baseline scans of the patients and a large age- and

gender-matched group of healthy controls. Secondly, the last follow-up scan

of the patients is compared to the same group of healthy controls to establish

if progressive change can be detected. It is hypothesised that pathological

degeneration is measurable within the ROI at both time points.

Subsequently, as the main objective, neurodegenerative change within 4 and

within 8 months was explored. It is hypothesised that a 4-month follow-up

interval is sufficient to detect significant changes measured by MRI.

Next, the cerebellum was selected as ROI to explore longitudinal changes in

ALS.

Additionally, whole-brain longitudinal analyses were conducted to explore

whether changes within the motor areas are dominant and whether other

brain areas are also affected over time.

A final objective was to explore whether longitudinal degeneration corre-

sponds to physical disability. To this aim, brain areas were evaluated in

patients with no corresponding functional disability based on self-reported

sub-scores of the ALSFRS-R. These patients can be described as presymp-

tomatic. The change within 4 or 8 months within the motor regions (i.e. the

ROI described above) was explored. It was hypotheses that structural brain

changes are detectable prior to symptom onset.

4.3 Methods

4.3.1 Sample

For this analysis, the sample was limited to patients with at least 2 follow-up

scans. Participating patients were diagnosed according to the revised El Es-

corial criteria (Brooks et al., 2000). In an attempt to control for some aspects
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of disease heterogeneity, patients with a co-morbid diagnosis of frontotempo-

ral dementia according to the Rascovsky Criteria were excluded (Rascovsky

et al., 2011). It has been shown that this patient cohort present with addi-

tional extra-motor brain changes which may have implication for longitudinal

analyses (Chang et al., 2005; Lillo et al., 2012). Sixty-nine age- and gender

matched healthy controls were included in this study. The clinical and de-

mographical details are reported in Table 4.2.
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4.3.2 Imaging data pre-processing and analyses

Cortical Thickness

Cortical thickness was analysed using FreeSurfer (version 5.3.0).1 Cortical

thickness has been defined as the distance (vertex) from the white matter

surface to the nearest point on the pial surface. The automated process-

ing stream comprises skull-stripping, registration, intensity normalization,

Talairach transformation, tissue segmentation, which determines the bound-

aries between the white and grey matter (white matter surface), the grey

matter and the cerebrospinal fluid (pial surface), as well as surface parcella-

tion. Tissue segmentation was individually reviewed, if necessary errors were

corrected and the segmentation step was repeated.

The longitudinal processing steam of FreeSurfer (Reuter et al., 2012) was

used. Based on all MRI scans available using a robust inverse consistent reg-

istration, an individual unbiased within-subject template space and image

(temporal average) was created. Next, skull-stripping, Talairach transforma-

tion, spherical maps, and parcellation were initialised from the within-subject

template for each subject’s time point, utilising common information, thereby

increasing reliability and statistical power.

For each vertex-wise analysis (cross-sectional or longitudinal), the cortical

thickness data were smoothed using a 10 mm full-width/half-maximum Gaus-

sian kernel on the surface in standardised space. If not reported otherwise,

the results are significant at p < 0.5, corrected for multiple comparisons using

false discovery rate method (FDR) implement in FreeSurfer.

Grey matter density

In addition to analysing cortical thinning, progressive change in the grey

matter density was also explored. Therefore, the T1-weighted images were

1http://surfer.nmr.mgh.harvard.edu/
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bias-field corrected, brain-extracted, tissue-types were segmented and aligned

to Montreal Neurological Institute 152 standard space using non-linear reg-

istration. These processing steps are part of the FSL imaging suite (Smith

et al., 2004) A study-specific template was created using the scans relevant

for the specific analyses. In the next step, the segmented grey matter images

were non-linearly registered to the study-specific template and modulated to

correct for local contraction or enlargement due to the non-linear component

of the spatial transformation. To smooth the modulated grey matter images,

an isotrophic Gaussian kernel of σ = 3 mm was used.

Voxel-wise generalised linear models were applied and permutation-based

non-parametric testing (10,000 permutations) correcting for age. The re-

ported results are, if not stated otherwise, significant at p < .05, corrected

for multiple comparisons using family-wise error (FWE).

Diffusion tensor imaging

Diffusion-weighted images were also analysed with FMRIB’s imaging suite

(Smith et al., 2004). The datasets were pre-processed as described previ-

ously including eddy current corrections, motion correction and brain-tissue

extraction. After this, a diffusion tensor model was fitted at each voxel,

generating maps of FA, MD, AD and RD. Voxel-wise statistical analysis of

the FA data was carried out using TBSS (Smith et al., 2006). Each dataset

was aligned to the FMRIB58a FA standard-space images. Subsequently, a

mean FA image was created and thinned to create a mean FA skeleton which

represents the centres of all tracts common to the sample (FA < 0.2). Each

subject’s aligned FA data was then projected onto this skeleton and the re-

sulting data fed into voxel-wise cross-subject statistics. For each analysis a

study-specific mean FA skeleton was created. For the longitudinal analysis,

the skeleton was based on all available scans.

The tool ’randomise’ was used for non-parametric permutation inference with

10,000 permutations and corrections for age. The threshold-free cluster en-
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hancement (TFCE) method was applied (Smith and Nichols, 2009). If not

stated otherwise, the significance level was set at p < .05, corrected for mul-

tiple comparisons using family-wise error (FWE) method.

4.4 Statistical analyses and results

Due to the large number of different analyses, this section describes the eval-

uation of each hypothesis as described in section 4.2 separately. Cortical

thickness, grey matter density and diffusion tensor imaging analyses are de-

scribed separately for clarity.

4.4.1 Cross-sectional analysis of baseline scans

The aim of this analysis is to establish a baseline measurement to later in-

terpretable the results in context of a possible floor or ceiling effect. The

hypothesis is that patients exhibit considerable brain changes already at the

first scan in comparison to healthy controls (Figure 4.1, Comparison 1). Us-

ing the same group of controls, a second cross-sectional analysis is under-

taken to investigate whether these changes are more pronounced 8 months

later (Figure 4.1, Comparison 2). Both comparisons focus on the region of

interest only.

The baseline scan of patients was compared to a group of age- and gender-

matched healthy controls scan using age as a covariate of no interest. The

ROI for the cortical thickness analysis consisted of the precentral gyrus and

supplementary motor cortex. For grey matter density analyses, the ROI in-

cluded the precentral gyrus and supplementary motor cortex according to

the Harvard-Oxford atlas (FSL Harvard-Oxford atlas, Desikan et al. (2006)).

The ROI for the white matter analysis consisted of the corticospinal tract

and corpus callosum (Chapter 3).
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Figure 4.1: Cross-sectional analyses. Green arrows indicated the group com-
parisons.

Cortical thickness

The vertex-wise group ROI comparison between the baseline scan of patients

and age- and gender-matched healthy controls correcting for age did not re-

veal significant differences.

Next, the scans conducted 8 months later were compared to the same group

of healthy controls using the same ROI and age as nuisance variable. Sig-

nificant cortical thinning of the entire precentral gyrus and supplementary

motor cortex was found p < .05 (FDR), Figure 4.2.

Grey matter density

A voxel-based ROI group comparison between the baseline scan of the pa-

tient with healthy controls showed changes predominately within the right

superior (MNI: x = 14, y = -12, z = 72) and inferior precentral gyrus (MNI:

x = 62, y = 10, z = 20), p < .05 (FWE), Figure 4.3.

The results of comparing the same group of healthy controls to the 2nd follow-

up scan of the patients are shown in Figure 4.3. The patients exhibit de-
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Figure 4.2: Cortical thinning - cross-sectional analysis. Group comparison
of the 2nd follow-up scan with healthy controls, p < .05 (FDR). The ROI is
outlined in yellow.

creased grey matter density in almost the entire ROI, p < .05 (FWE).

White matter integrity

A tract-based group ROI comparison between the baseline scan of the pa-

tients and healthy controls was performed using age as nuisance variable.

Analyses of FA, RD, MD or AD changes were done separately. FA and RD

highlighted degeneration of the entire ROI (p < .05 (FWE), Figure 4.4);

whereas no significant difference was found using MD or AD.
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Figure 4.3: Grey matter degeneration - cross-sectional ROI analysis. Group
comparison of grey matter density between baseline scan of the patients with
healthy controls on the left and between 2nd follow-up scan of the patients
and healthy controls on the right, p < .05 (FWE).

Comparing the 2nd follow-up scan of the patients with healthy controls re-

vealed significant FA alterations in the bilateral corticospinal tract and RD

changes within the right ME, inferior and superior part of the corona radiata,

at p < .05 (FWE, Figure 4.5). MD did not reveal significant differences. Un-

expectedly, patients showed significant decrease of AD in the superior part

of the corona radiata, p < .05 (FWE).



112 CHAPTER 4. LONGITUDINAL BRAIN CHANGES

Figure 4.4: White matter degeneration - cross-sectional ROI analysis of base-
line scans. Group comparison of white matter degeneration between baseline
scans of the patients with healthy controls, p < .05 (FWE). FA in red, RD
in blue.
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Figure 4.5: White matter degeneration - cross-sectional ROI analysis of 2nd

follow-up scans. Group comparison of white matter degeneration between
the 2nd follow-up scans of the patients with healthy controls, p < .05 (FWE).
FA in red, RD in blue, AD in yellow. Note for AD: ALS < HC.
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4.4.2 Longitudinal ROI analyses

The baseline scans of the patients were compared with the 1st follow-up or

the 2nd follow-up scans (Figure 4.6, Comparison 3 and 4).

For the cortical thickness analyses, paired t-tests were performed using age

and time between scans as covariates. The dependent variable was the im-

ages pre-processed using the longitudinal stream described above.

In FSL, the difference between the baseline and follow-up scan was calculated

and the single group average (‘one-sample t-test’ as implemented in FSL) was

determined using age and the time interval between scan as covariates.

Figure 4.6: Longitudinal comparisons.

Cortical thickness

There was no significant difference with the ROI when comparing the base-

line scan to the 1st follow-up scan (4 months follow-up).

The evaluation of longitudinal change in 8-month revealed extensive cortical

thinning in the ROI, Figure 4.7. The results are significant at p < .05 (FDR),

the ROI is outlined in yellow.
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Figure 4.7: Cortical thinning within 8 months, p < .05 (FDR). The ROI is
outlined in yellow.

Grey matter density

Figure 4.8 shows the results of paired t-tests between the baseline scan and

the 1st follow-up scans of ALS patients and the 2nd follow-up scans.

Within the first 4 months the change is confined to the medial part of the

motor cortex (MNI: x = -14, y = -28, z = 46; x = -18, y = -28, z = 54; x =

38, y = -26, z = 18) and subsequently spreads over the entire ROI (within 8

months).
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Figure 4.8: Reduction in grey matter density within 4 months in yellow,
within 8 months in purple, p < .05 (FWE).

White matter integrity

None of the white matter indices highlighted changes within the first 4

months using age and scan interval as covariates in the corticospinal tract

ROI.

Within 8 months each index captured significant changes at p < .05 (FWE)

in the left superior part of the corona radiata (RD, MD, AD) and the pos-

terior limb of the internal capsule (FA, MNI: x = -23, y = -9, z = 14). For

illustration purposes, a significant trend at p < .1 is also shown in Figure 4.9.
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Figure 4.9: Longitudinal ROI white matter changes at p < .05 (FWE). FA
in red, RD in blue, MD in green, AD in yellow. The results at p < .1 (FWE)
are added in light brown.
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4.4.3 Longitudinal analyses of cerebellar changes

Grey matter density

Within 4-month of the initial scan, significant changes were identified in the

right V. lobe, vermis VI, left crus II, left VIIb.

Within 8-month interval, the reduced grey matter density reductions were

identified additionally in the bilateral VI. lobe, right V, bilateral crus I and

II, bilateral VIIb, VIIIa and VIIb, at p < .05 (FWE), Figure 4.10 and Figure

4.11. There areas are labelled according to the Diedrichsen cerebellar atlas

(Diedrichsen et al., 2009).

Figure 4.10: Cerebellum – extent of grey matter density loss at p < .05
(FWE).

White matter integrity

No statistically significant change was found between the baseline and the

1st or 2nd follow-up scans for any of the DTI indices in the cerebellar ROI.
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Figure 4.11: Cerebellum – localisation of grey matter density loss at p <
.05 (FWE); Top: coronal view, MNI: y = -78, y = -68, y = -58, y = -48.
Bottom: axial view, MNI: z = -50, z = -38, z = -20, z = -10. Change within
4 months in red, change within 8 months in yellow, their overlap in orange.

4.4.4 Longitudinal whole-brain analyses

The analyses described under 4.4.2. were repeated focusing on a whole–brain

level. The aim was to explore whether change within the motor areas would

dominate over extra-motor areas. The objective was to characterise progres-

sive extra-motor changes in ALS.

Cortical thickness

While there was no significant cortical thinning detected within 4 months of

the initial scan, within 8-month follow-up, significant thinning was identified

within both motor and extra-motor areas.

Adjacent to the precentral and supplementary motor cortices, parietal and

temporal lobe thinning was highlighted at p < .001 (uncorrected), Figure

4.12. After applying a correction for multiple comparisons (p < .05, FDR),

the changes were limited to the right hemisphere, Figure 4.13.
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Figure 4.12: Whole brain cortical thinning within 8 months, p < .001 (un-
corrected).

Grey matter density

Within 4 months of the initial scan, a reduction in grey matter density was

detected in the right insular cortex (MNI: x = 38, y = -26, z = 18), right

hippocampus (MNI: x = 32, y = -38, z = -10), left superior precentral gyrus

(MNI: x = -18, y = -28, z = 54) and the cerebellum (MNI: x = 6, y = -62,

z = -22). Figure 4.14 shows the extent of the degeneration and Figure 4.15

provides information about the localisation.

Within 8 months, grey matter degeneration spreads considerably involving
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Figure 4.13: Whole brain cortical thinning within 8 months, p < .05 corrected
using FDR.

the bilateral frontal, temporal and parietal lobes and the cerebellum. The

bilateral precentral gyrus showed significant progressive changes, all p < .001

(FWE). Figure 4.16 displays the extent of degeneration and the exact loca-

tion is shown in Figure 4.17 using a multi-slice view.
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Figure 4.14: Whole-brain grey matter density loss within 4 months, p < .05
(FWE).

Figure 4.15: Localisation of whole-brain grey matter density loss within 4
months, p < .05 (FWE). Top: coronal view, MNI: y = -62, y =-38, y = -28,
y = -20. Bottom: axial view, MNI: z = -22, z = -10, z = 18, z = 46. Note:
The images are shown according to radiological orientation – right is on the
left side.
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Figure 4.16: Whole-brain grey matter density loss within 8 months, p < .001
(FWE).

Figure 4.17: Localisation of whole-brain grey matter density loss within 8
months, p < .001 (FWE). Top: coronal view, MNI: y = -66, y = -26, y = 4,
y = 34. Bottom: axial view, MNI: z = -32, z = -2, z = 18, z = 48. Note:
The images are shown according to radiological orientation – right is on the
left side.
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White matter integrity

There was no significant difference between baseline and the 1st follow-up

scans in any of the DTI indices.

Significant white matter degeneration was identified within 8 months after

the initial scans. FA showed unilateral change within the right hemisphere:

within the corona radiata, the longitudinal fasciculus, posterior thalamic ra-

diation, and the splenium of the corpus callosum p < .05 (FWE). RD, MD

and AD highlighted progressive unilateral change within the left hemisphere

p < .05 (FWE). RD displayed changes within the superior and inferior corona

radiata, posterior part of the superior longitudinal fasciculus and the poste-

rior limb of the internal capsule; MD within the superior corona radiata,

posterior part of the superior longitudinal fasciculus; and AD within the

superior and inferior corona radiata, posterior part of the superior longitudi-

nal fasciculus, and body of the corpus callosum (Figure 4.18 and Figure 4.19).
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Figure 4.18: Longitudinal whole-brain white matter degeneration within 8
months at p < .05 (FWE). FA in red, RD in blue, MD in green, AD in yellow.



126 CHAPTER 4. LONGITUDINAL BRAIN CHANGES

Figure 4.19: Localisation of whole-brain white matter degeneration at p <
.05 (FWE). Order starting from the first row: FA in red, RD in blue, MD in
green, AD in yellow.



4.4. STATISTICAL ANALYSES AND RESULTS 127

4.4.5 Longitudinal analyses of presymptomatic changes

In an attempt to model pre-symptomatic change, brain areas were evalu-

ated in patients with no corresponding functional disability. Accordingly,

the patient sample was stratified based on the ALSFRS-R sub-scores; and

study groups were limited to patients who did not report any bulbar im-

pairment during any of the visits or any impairment in their lower limbs.

There was no patient without upper limbs symptoms; therefore, there is no

such subgroup could be created. The analysis was restricted to (1) patients

without bulbar impairment and (2) patients without lower limb involvement.

Table 4.3 describes the clinical and demographical profile of these subgroups.

The hypothesis was that patients without bulbar symptoms would still ex-

hibit some structural brain changes within the bulbar representation of their

motor homunculus in the inferior section of the precentral gyrus and the un-

derlying white matter fibres, as well as in the genu of the internal capsule

where the corticobulbar tracts are located. Similarly, it was hypothesised

that the patients without lower limb involvement would still exhibit brain

changes in the lower limb segment of their motor strips, the white matter

regions subjacent to that, and the posterior limb of the internal capsule. For

these ROI analyses, age and time between scans were used as covariates of

no interest.
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Cortical thickness

None of the results in the ROI survived correction for multiple comparisons

at p < .05 (FDR). Considering the exploratory nature of this analysis and

the small size, results at p < .01 (uncorrected) are reported.

Patients without bulbar symptoms exhibited significant cortical thinning

within 4 months in the inferior part of the right precentral gyrus correspond-

ing to the bulbar representation of the motor homunculus. Within 8 months,

thinning of the left supplementary motor cortex was also identified, Figure

4.20.

Patients without lower limb symptoms showed thinning of the superior part

of the precentral gyrus within the right hemisphere throughout 4 months,

and bilateral throughout 8 months was found. Throughout 8 months, thin-

ning of the inferior part of the precentral gyrus was affected as well, Figure

4.21.

Figure 4.20: Presymptomatic cortical thinning exhibited by the patient group
without bulbar symptoms.. Left: thinning within 4 months. Right: thinning
within 8 months. ROI is outlined in yellow. Results are significant at p <
.01 (uncorrected).
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Figure 4.21: Presymptomatic cortical thinning exhibited by the patient group
without lower limb symptoms. Left: thinning within 4 months. Right: thin-
ning within 8 months. ROI is outlined in yellow. Results are significant at
p < .01(uncorrected).

Grey matter density

Only comparing the baseline scans to the 1st follow-up scans of the bulbar

subgroup revealed a significant result in the ROI. A small region of signifi-

cant loss of grey matter density was found within the right precentral gyrus

representing the arm muscles (MNI: x = 44, y = -30, z = 62) at p < .05

(FWE).

No significant difference was found between the baseline scans and any other

follow-up scans for the bulbar or lower limb subgroups.

White matter integrity

Patients without bulbar impairment showed progressive change between base-

line and follow-up scans within the left lateral fibres of the corona radiata

including the inferior fibres innervating the precentral gyrus highlighted by
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RD, MD and AD, Figure 4.22. Using MD the effect was found bilateral

between baseline and 1st follow-up. Figure 4.24 and 4.25 show the extent

and localisation of these changes. FA highlighted no differences between the

baseline scans and any of the follow-up scans in the ROI. Progressive RD

and MD alterations were identified in the genu of the left internal capsule

between the baseline and the 2nd follow-up scan (p < .05 (FWE), Figure 4.23).

Patients without lower limb involvement did not show longitudinal changes

between their baseline scans and any of the follow-up scans (p > .05, FWE).

Figure 4.22: Presymptomatic white matter degeneration within 4 months
(top) and 8 months (bottom) exhibited by the patient subgroup without
bulbar symptoms, p < .05 (FWE). Blue = RD, Green = MD, Yellow = AD.
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Figure 4.23: Presymptomatic white matter degeneration within the genu
internal capsule within 8 months exhibited by the patient subgroup without
bulbar symptoms, p < .05 (FWE), Axial view: MNI: z = 11, z = 15.
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Figure 4.24: Localisation of presymptomatic white matter degeneration
within 4 months exhibited by the subgroup without bulbar symptoms, p <
.05 (FWE). Coronal view: y = -9, y = -5, y = 1, y = 6. RD in blue, MD in
green, AD in yellow.
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Figure 4.25: Localisation of presymptomatic white matter degeneration
within 8 months displayed by the subgroup without bulbar symptoms, p <
.05 (FWE). Coronal view: y = -9, y = -5, y = 1, y = 6. RD in blue, MD in
green, AD in yellow.
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4.5 Discussion

The aim of this chapter was to explore the role of MRI as a disease monitor-

ing biomarker. Validated monitoring markers are indispensable for clinical

trials to objectively evaluate response to therapy.

Only voxel-based morphometry was able to detect neurodegenerative change

within 4 months. This change was located within the medial precentral gyrus.

In 8 months from the initial scan, each method was able to highlight signif-

icant progressive changes. Cortical thinning and a reduction of grey matter

density occurred throughout the bilateral precentral gyrus and supplemen-

tary motor cortex. FA decreased within the posterior limb of the internal

capsule, and RD, MD and AD increased within left lateral fibres of the su-

perior corona radiata. One could conclude that for an ‘average’ patient a

4-month follow-up period is not enough to exhibit degenerative change mea-

surable with current technology.

In their baseline scans, ALS patients already showed significant changes in

their white matter integrity. Consequently, it is not surprising that no signif-

icant further change was detected throughout the 4-month follow-up period

and only a small additional change was detected throughout the 8-month

period. White matter loss likely exhibited a ceiling effect early during the

disease course.

The baseline scans on the other hand revealed only limited grey matter loss

and no significant cortical thinning, which explains the considerable progres-

sive changes throughout the 8-month period.

Comparing the 2nd follow-up to the healthy control group further supports

the notion of ceiling effect for white matter changes. At the 2nd follow-up loss

of white matter integrity is severe, and loss of grey matter integrity and cor-

tical thickness has become more pronounced. In conclusion, most segments

of the corticospinal tract display a ceiling effect.

These findings suggest that radiologically detectable white matter degener-

ations occur earlier than grey matter pathology during the course of the
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disease. Accordingly, white matter may be a superior diagnostic biomarker

whereas grey matter may be more useful as a monitoring biomarker.

This is further supported by the results of the “presymptomatic” sample.

Patients were selected based on the absence of bulbar or lower limb disabil-

ity. Considering the natural course of ALS, these patients can be regarded

as presymptomatic for the involvement of those domains as they are more

than likely to experience some degree of bulbar or lower limb symptoms and

anatomically corresponding brain alterations at a later stage of their disease.

DTI and the cortical thickness analyses were able to capture degeneration

in these regions before clinical disability. ALSFRS-R has its limitations as

a clinical proxy, as it is a self-reported questionnaire. It may be affected by

psychological factors, insight, personality and mood

Despite its limitation, ALSFRS-R is currently the gold standard instrument

used in clinical trials.2 While trained clinicians may detect subtle impair-

ment before patients report a specific symptom, the findings suggest that

MRI may be used as a useful objective measure, capturing degeneration ear-

lier than ALSFRS-R.

Whilst white matter analyses were only able to capture presymptomatic bul-

bar involvement, cortical thinning was found in both subgroups. A drawback

of the present sample is that, even though these subgroups are likely to lose

the function of their bulbar or lower limb muscles, it is unknown when the

first symptoms may appear.

There are multiple ways to measure cortical morphology: cortical thickness,

cortical surface, cortical volume and grey matter density or concentration

(Ashburner and Friston, 2000; Fischl and Dale, 2000). By nature, these

measures are related to each other. Cortical volume is the product of corti-

cal thickness and cortical surface (Winkler et al., 2010). The current project

focused on cortical thickness as it has been successfully shown to capture pre-

central gyrus thinning in ALS (Roccatagliata et al., 2009; Agosta et al., 2012;

2http://www.als.net/als-research/als-clinical-trials/
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Kwan et al., 2012; Verstraete et al., 2012; Schuster et al., 2013, 2014a,b). Fur-

thermore, the results are independent of the folding pattern in a biological

meaningful metric, i.e. thickness in mm.

Grey matter density reflects difference in cortical thickness and the amount

of cortical folding. A meta-analysis of studies on whole-brain grey matter

density revealed that only 24%-50% of the considered studies were able to

highlight precentral gyrus atrophy (Chen and Ma, 2010). Even in the whole-

brain analysis, atrophy of the precentral gyrus was measureable with both

methods within 8 months. But only analysing grey matter density, a signifi-

cant loss was measured within 4 months.

Due to the heterogeneity of the sample, the relationship between disease

stage, grey matter brain changes and analysis technique remains unclear.

Future research is needed to disentangle which technique is most sensitive

during which stage of the disease.

Based on the present results, it appears that the most vulnerable brain re-

gions are the lateral fibres of the corona radiata. Several MRI indices detected

degeneration in the lateral fibres of the corona radiate both cross-sectionally

and longitudinally.

Grey matter measures of the cerebellum may also be a good biomarker can-

didate. Overall, the cerebellum is less studied in ALS (Prell and Grosskreutz,

2013). Even though this study did not find significant white matter pathol-

ogy in the cerebellum over time, grey matter changes were significant and

warranting further studies.

The whole brain analyses readily confirmed precentral gyrus atrophy and the

superior corticospinal tract pathology. Moreover, frontal, temporal, parietal

lobe and the cerebellar changes were detected. The corona radiata, the su-

perior longitudinal fasciculus and the posterior limb of the internal capsule

also showed changes. It is striking that the degeneration is limited to one

hemisphere. Whereas grey matter atrophy is more pronounced in the right

hemisphere based on both the cortical thickness analysis and the voxel-based

morphometry, white matter degeneration was limited to the left hemisphere
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measured by radial, mean and axial diffusivity.

It is established that cortical thickness differs between the hemispheres in

healthy individuals: The average cortical thickness of the right hemisphere

is smaller than in the left hemisphere (Salat et al., 2004). This may suggest

a more vulnerable right hemisphere regarding disease related changes, and

may be reflected in these results.

Patients typically report unilateral symptom onset and symptoms subse-

quently spread to the contralateral side (Ravits and La Spada, 2009; Ravits

et al., 2007). This observation may have implications to longitudinal analy-

ses. The brain changes in the hemisphere corresponding to the side of onset

may initially be more pronounced, but as the disease progresses this differ-

ence may decrease.

A key question of longitudinal ALS studies is what time interval is necessary

to identify progressive pathological change. Whether or not significant pro-

gressive change is detectable is a function of the time interval between scans

and sample size. It is furthermore affected by the pulse sequence parame-

ters. If either the time interval or the sample size is increased the likelihood

of finding a significant changes increases as well. Most published longitudinal

studies in ALS have a limited sample sizes. It is clear that a longer time in-

terval is associated with more significant findings. For example, focusing only

on longitudinal ALS study which evaluated multiple MRI measurements:

Cardenas-Blanco et al. (2016) concluded, based on a sample of 34 ALS pa-

tients with an average ALSFRS-R of 40.2 at baseline which were scanned

three times within 6 months, that DTI was successful to track degenerative

change, whereas cortical thickness and VBM was not. This is in contrast to

Menke et al. (2014) who, based on 27 patients with an average ALSFRS-R

of 35 at baseline which were scanned twice within 6 months to 2 years, con-

cluded that only grey matter degeneration was detectable over time. Finally,

Kwan et al. (2012) based on 9 ALS patients with an average ALSFRS-R

score of 40.2 at baseline who were scanned ∼1.5 years apart, reported cor-
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tical thinning and grey matter volume loss of the precentral gyri, whereas

fractional anisotropy of the corticospinal tract remained stable.

There may be no simple answer which time interval is optimal; it depends

on the specific research question and should be adjusted accordingly. If the

focus is on patients with fast progression rates the interval has to be much

shorter. These present findings need to be interpreted with care as in this

sample, the baseline scans were acquired on average 2 years after the initial

symptoms. A larger sample may be needed, preferably scanned shortly after

the diagnosis, to elucidate whether the sensitivity of the various MRI mea-

sures depends on disease stage.

4.5.1 Limitations

The present sample was diagnosed 2 years prior to their initial scans and was

too small to subdivide into further subgroups. For this reason, no conclu-

sions can be drawn regarding slow and fast progressors and phenotype- or

genotype-specific patterns of progression.

4.5.2 Future directions

Future research need to focus on the timeline when the changes occur within

each segment of the brain. It needs to be further evaluated which method is

the most sensitive to detect early changes.

4.6 Conclusions

In conclusion, this study captured longitudinal changes in disease-specific

brain regions. The main research question was to determine whether MRI

could be used as a monitoring marker for clinical trials by exploring the time
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course of ALS-related brain changes. A clinical trial would be similar to

this study including patients at various stages of the disease. The biomarker

would have to be useful for an average patient. Based on the presented re-

sults, grey matter density of the precentral gyrus or the cerebellum may be

the most likely monitoring biomarker candidate. White matter changes oc-

cur earlier in the course of the disease and consequently are better suited as

diagnostic markers.



Chapter 5

Development of an imaging

based automatic diagnostic

protocol for ALS using

disease-specific pathognomonic

features

The research study described below has been published in the peer reviewed

Journal PloS One (Schuster et al., 2016b).

5.1 Introduction

5.1.1 Diagnostic delay

The initial presentation of ALS varies substantially making an early diagno-

sis and accurate prediction of prognosis difficult (Kraemer et al., 2010). The

average diagnostic delay between symptom onset and definite diagnosis is 9 -

16 months, and this is independent of the health system in place (Chiò, 1999;

Cellura et al., 2012). A number of barriers for a timely diagnosis have been

identified including delayed referral to specialist neurologists, misdiagnosis

141
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of the symptoms to other conditions and consequently unnecessary interven-

tions (Househam and Swash, 2000; Donaghy et al., 2008). Carpal tunnel

syndrome, degenerative spinal conditions are just some of the commonest

early misdiagnoses and interventions such as lumbar laminectomies, carpal

tunnel release surgery, immunoglobulin therapy are not uncommon prior to

the diagnosis of ALS (Cellura et al., 2012).

More importantly, diagnostic uncertainty delays the introduction of neuro-

protective therapy and recruitment to pharmaceutical trials (Wokke, 2009).

In clinical practice MRI is mainly used to exclude intracranial and spinal

pathologies which may mimic ALS. Cross-sectional studies of ALS have con-

sistently confirmed extensive grey and white matter degeneration at a group-

level including the precentral gyrus and frontal cortex, the basal ganglia, the

corticospinal tracts and the corpus callosum (Chiò et al., 2014). The evalu-

ation of these structures at an individual-level has proven more challenging

and research-based MRI biomarkers are not readily applicable to clinical

practice (Bede and Hardiman, 2014). Until recently, it has been challenging

to confirm ALS-specific patterns of neurodegeneration in a single MRI scan

as part of the diagnostic process.

5.1.2 Classification in Neurodegeneration

In recent years, several attempts have been made to reliably discriminate

various neurological and psychiatric conditions from healthy controls based

on imaging data from single individuals. The most commonly used statisti-

cal methods include support-vector machines or receiver-operator-curves for

categorical binary classification of single individuals often based on a single

imaging marker. These studies pave the way for the development of diagnos-

tic MRI biomarkers (Orrù et al., 2012; Teipel et al., 2015a).

Computer aided diagnostic tools have been previously proposed for neurode-

generative conditions. Table 5.1 lists ALS-related classification studies pub-
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lished before November 2015 (Filippini et al., 2010; Bashat et al., 2015; Gupta

et al., 2012; Foerster et al., 2013; Welsh et al., 2013; Pagani et al., 2014; Van

Laere et al., 2014). Foerster et al. (2013) performed an individual patient data

meta-analysis evaluating the diagnostic accuracy of diffusion tensor imaging

(DTI). The assessment of one brain region and one imaging measure from

pooled data of 11 studies suggested limited discriminative power. Smaller

studies on the other hand, reported relatively good specificity and sensitiv-

ity. Welsh et al. (2013) report 71% accuracy for disease state classification

based on resting-state functional MRI data. The study provided a proof of

concept and highlights that a single imaging measure of the single technique

may not be reliably sufficient to separate ALS from healthy ageing.

With few exceptions, the commonest shortcomings of classification studies

in ALS include reliance on a single imaging measure, evaluation of a sin-

gle anatomical structure and a categorical classification outcome instead of

probability values. Additionally, classification studies often restrict their dis-

criminating features to significant voxels only, rendering their model sample-

specific i.e. ’over-fitting’ and hindering model generalisability. Moreover, clas-

sification models are seldom cross-validated in an independent sample.
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5.1.3 Objective

The objective of this study was to develop a robust, imaging based automatic

diagnostic protocol for ALS, which determines the probability of a single MRI

data set representing changes consistent with ALS based on multiple imaging

indices of multiple ‘disease-defining’ anatomical structures.

Based on the available literature, it was hypothesised that the diagnostic ac-

curacy of a classification models may be increased by incorporating multiple

imaging indices of multiple disease-defining brain regions, and that instead

of binary categorical classification, it is feasible to provide more meaningful

diagnostic probability scores.

5.2 Methods

Figure 5.1 outlines the methodology. First, imaging data were divided into a

training sample to develop the probability algorithm, and a validation sam-

ple to access its generalisability. Discriminating input features were selected

based on group comparisons between the patients and controls of the train-

ing sample. The selected features were adjusted for age-related differences

(Koikkalainen et al., 2012). Subsequently, a binary logistic regression was

conducted. The resulting algorithm was then validated in the independent

validation sample and further assessed based on the follow-up scans of these

participants. The sensitivity, specificity and accuracy of this approach were

evaluated in each sub-cohort separately.

5.2.1 Participants

The study is based on 147 participants, i.e. 81 patients with classical ALS

and 66 HC. Participating patients were diagnosed according to the revised El

Escorial criteria (Brooks et al., 2000). Patients with a co-morbid diagnosis

of frontotemporal dementia according to the Rascovsky Criteria (Rascovsky
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Figure 5.1: Flowchart of the study method.

et al., 2011) were excluded because of the confounding effects of imaging

changes (Chang et al., 2005; Lillo et al., 2012).

The classification model is validated with an independent sample to assess

generalisability of the approach, therefore, 75% of the data was allocated

to the training sample and 25% as the validation sample. For a subset of

the sample, the scans were repeated after at least 4 months. It was hypoth-

esised that on follow-up, patients are more likely to be correctly classified,

since ALS-related degeneration is expected to be more pronounced. The con-

trol sample allows to further evaluate the reliability of the algorithm. The

specificity should be in a similar range as calculated based on the validation

sample.

For 52 patients and 15 HC, follow-up scans were available. Of these, 21 pa-

tients for the validation sample and 15 HC were randomly selected (hereafter

called follow-up validation sample).

5.2.2 Model Creation

The training sample consists of a group of 60 ALS patients and 50 age-

and gender matched healthy controls. Their socio-demographic and clinical

details of this cohort is summarised in Table 5.2.
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ALS patients Healthy controls p-value
N 60 50
Male sex, n 39 24 p = .10
Age, yrs (mean, SD) 59.9 (10.88) 60.6 (8.8) p = .68
Handedness (r/ l) 52/ 8 47/ 3 p = .33
Disease duration,
months (mean, SD)*

26.1 (19.5)

Type of onset (bul-
bar/ spinal/ respira-
tory)

19/ 40/ 1

ALSFRS-R (mean,
SD)

38.2 (6.2)

Table 5.2: Socio-demographic and clinical data of the training sample. *dis-
ease duration from symptom onset until data of scan

Selection of Input Variables - Feature reduction

In order to develop a classifier based on neuroimaging data, one has to face

the curse-of-dimensionality (Bellman, 1961). It refers to the fact that the

number of variables (in this case voxels) used in the classifier outnumber

the number of observations (i.e. the sample size). A good generalisation of

a model with a large number of variables (also called features) requires a

larger number of observations. Otherwise, one runs the risk of overfitting.

This implies that the model follows the error or noise within the data too

closely and is, therefore, not able to make reliable prediction for new data.

To reduce the risk of overfitting a model, one can apply one of various feature

reduction techniques prior to the model creation.

I selected the most relevant features by identifying brain changes which pre-

cede the diagnosis of ALS. This was done conducting a group comparison

between ALS patients and healthy controls using age, gender and disease

duration (from the date of their diagnosis until the date of the scan) as co-

variates of no interest. The objective was to identify brain regions which

degenerated prior to the diagnosis of ALS independent of the patient’s age

and gender. For a diagnostic protocol, it is important to mimic a clinical
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setting, thus, to focus on brain changes appearing prior to the definite diag-

nosis of ALS.

The affected brain areas highlighted by this analysis were divided into sub-

regions according to the underlying anatomical structures. This was done in

accordance with different brain atlases and is described in more detail below.

The advantage of using an atlas based parcellation is its good interpretabil-

ity and general versatility. It allows interpreting the results within a clinical

framework. It, furthermore, facilitates the generalisation of the approach to

different centres and the inclusion of other neurodegenerative diseases which

may spare these brain structures. Overall, the model does not reply on the

identified pattern of significant change which strongly depends on the train-

ing sample.

The average value of the anatomical structures was extracted and used as

input features in the classification approach. The masks to extract one single

value per structure were stored to be applied to future data (i.e. an indepen-

dent validation sample).

Grey matter - VBM

A voxel-based morphometry (VBM) analysis of structural imaging data was

carried out using FSL. Images were brain-extracted, tissue-types were seg-

mented and aligned to Montreal Neurological Institute 152 standard space

using non-linear registration. A study-specific grey matter template was cre-

ated including 16 randomly selected ALS patients and 16 age- and gender-

matched healthy controls (ALS: male = 8, mean age = 62.9 years ± 9.3;

HC: male = 8, mean age = 62.3 years ± 9.3; p = .85). Next, all native grey

matter images were non-linearly registered to the study-specific template

and modulated to correct for local contraction or enlargement due to the

non-linear component of the spatial transformation. An isotropic Gaussian

kernel (σ = 3 mm) was used to smooth the modulated grey matter images.
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A voxel-wise generalised linear model was applied to determine differences

between ALS patients and healthy controls with age, gender and disease du-

ration as nuisance variable using permutation-based non-parametric testing

(10,000 permutations). The significance level was set at p < .05, corrected

for multiple comparisons using family-wise error (FWE).

A trend for a significant difference between patients and controls was iden-

tified within the precentral gyrus based on the Harvard-Oxford atlas (FSL

Harvard-Oxford atlas, Desikan et al. (2006), at p < .15 (FWE). Figure 5.2

shows statistically significant regions and the corresponding brain mask. The

average grey matter density was extracted using FSLUTILS (fslmeants). In

summary, two GM features were selected – the left and right precentral gyrus.

Figure 5.2: VBM - Grey matter feature selection. Grey matter (in red) af-
fected preceding the diagnosis of ALS (p < .15, FWE) and the corresponding
label for the precentral gyrus (in green).
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White matter - DTI

Diffusion weighted images were pre-processed including eddy current cor-

rections, motion correction, brain-tissue extraction using FSL (Smith et al.,

2006). A diffusion tensor model was fitted at each voxel, generating maps of

FA, RD, MD and AD. Each dataset was aligned to standard-space images

and each subject’s aligned FA data was projected onto the mean FMRIB58

skeleton representing the common white matter tracts.

ALS patients were compared with healthy controls correcting for age, gen-

der and disease duration using a voxel-based tract-based generalised linear

model and permutation-based non-parametric testing with 10,000 permuta-

tions. The threshold-free cluster enhancement (TFCE) method (Smith and

Nichols, 2009) was applied and the significance level was set at p < .05, cor-

rected for multiple comparisons using the family-wise error (FWE) method.

Significant differences were detected within the corticospinal tract highlighted

by FA or RD at p < .01 (FWE), and by MD at p < .05 (FWE). There was

no significant difference in AD between patients and controls.

Analogue to the GM analysis, features were defined as the brain structures

which were significantly different between patients and controls (based on the

Johns Hopkins University, FSL JHU atlas: JHU-ICBM-labels-1mm.nii.gz;

(Oishi et al., 2008)).

FA and RD were selected, as these are the most recognised markers of white

matter change in ALS, using a significance threshold of at p < .01, FWE (cf.

Chapter 3). The FSL Johns Hopkins University atlas (FSL JHU atlas: JHU-

ICBM-labels-1mm.nii.gz) was used for spatial segmentation, which consists

of 48 white matter tracts labels created based on the diffusion tensor maps

from 81 subjects (Oishi et al., 2008). As it does not include the lateral fibres

of the corona radiata, this label was created manually (SUP-CR). The same

labels were used in a previous study described in Chapter 3 (Schuster et al.,

2016a). The average value was retrieved separately for the left and right
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Figure 5.3: DTI - White matter feature selection. Top: Factional anisotrophy
(FA) group comparison results are shown in red. Bottom: Radial diffusivity
(RD) group comparison results are shown in red. The underlying anatomical
labels colour coded as follows: dark green - lateral fibres of the corona radiata,
blue - body of the corpus callosum, turquoise - genu of the corpus callosum,
pink – splenium of the corpus callosum, yellow – inferior corona radiata,
green - the internal capsule, light yellow - bilateral mesencephalic cruri, grey
– inferior corticospinal tract.

hemispheres.

The white matter data were reduced to 26 features: average FA and the av-

erage RD of the genu (gCC), the body (bCC) and the splenium of the corpus

callosum (sCC), the left and right corticospinal tract (CST), mesencephalic

cruri (ME), limbs of the internal capsules (IC), the corona radiata (CR) and
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the lateral fibres of the corona radiata (SUP-CR).

Figure 5.3 depicts the results and the corresponding brain masks. The aver-

age diffusivity value of each brain structures was extracted for each partici-

pant using FSLUTILS (fslmeants).

Validation Sample

The demographic and clinical profile of the validation sample is presented

in Table 5.3. The pre-processing steps of the independent validation sample

were analogous to the pre-processing pipeline of the training sample.

For grey matter analyses, data from each new subject was co-registered to

the template created for the training sample. The same smoothing kernel

was applied (σ = 3 mm) and the anatomical masks described above were

used to extract average grey matter density in the left and right precentral

gyrus.

For white matter analyses, the data from new subjects were co-registered to

the FMRIB58a FA standard space image. The above described white mat-

ter masks were used to extract average FA and average RD values for each

pathognomonic white matter region.

Removal of nuisance variability - age effect

Several imaging studies have demonstrated that brain changes occur with

healthy ageing (Fjell et al., 2013a). Further studies have suggested that

classification accuracy can be improved by removing nuisance variability

(Koikkalainen et al., 2012). Accordingly, the age-related variability was re-

moved prior to calculating a binary linear regression.

For each feature, a linear regression model was fitted to the distribution of

the values of each feature of the control group using age as independent

variable. In order to prevent the removal of disease-specific changes, only
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Validation Sample Follow-up
Validation Sample

ALS HC p-value ALS HC p-value
N 21 16 21 15
Male sex, n 10 6 p = .74 12 9 p = .86
Age, yrs (mean,
SD)

62.5
(10.5)

60.6
(9.4)

p = .56 62.9
(10.4)

61.6
(9.2)

p = .69

Handedness
(r/ l)

19/ 2 14/ 2 p = .77 19/ 2 13/ 2 p = .72

Disese dura-
tion, months
(mean, SD) *

20.6
(15.9)

25.8
(15.6)

Type of onset
(bulbar/ spinal/
respiratory)

6/ 15/
0

6/ 15/
0

ALSFRS-R
(mean, SD)

39 (7) 35.3
(8.2)

Time between
scans, months
(mean, SD)

5.3
(1.5)

4.2
(0.8)

p < .05

Table 5.3: Socio-demographic and clinical data of the Validation Sample and
their follow-up scans. * disease duration from symptom onset until data of
scan

control data was used (Koikkalainen et al., 2012). Based on this equation,

each feature was estimated for each subject. These values were then sub-

tracted from the measured values resulting in age-corrected measurements

for each feature. This approach has been described in Koikkalainen et al.

(2012). As an example, Figure 5.4 and 5.5 illustrates these corrections, by

plotting the original and age-corrected FA and RD values of the body of the

corpus callosum.
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Figure 5.4: Removal of nuisance variance. Top: average FA of the body of
the corpus callosum, Bottom: age-corrected FA of the body of the corpus
callosum, Red: patients, Black: healthy controls.
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Figure 5.5: Removal of nuisance variance. Top: average RD of the body of
the corpus callosum, Bottom: age-corrected RD of the body of the corpus
callosum, Red: patients, Black: healthy controls.
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Binary logistic regression

There are various classification methods such as binary logistic regression,

discriminant analysis or support vector machine (SVM) (Arbabshirani et al.,

2016). All of them have been successfully applied to classify groups based

on neuroimaging data (e.g. Gupta et al. (2012); Orrù et al. (2012); Pagani

et al. (2014); Teipel et al. (2015a,b)). In this study, a binary logistic regres-

sion approach was selected for several reasons: It is a relatively simple and

well-established classification method which can be easily interpreted. It is

as so-called ’white box’ method as it allows us to evaluate why a test subject

has been assigned to a particular category. Moreover, it provides the prob-

ability of a subject belonging to a category. Probability outcomes may be

particularly useful in a clinical setting, where a clinician can integrate these

values among other diagnostic indicators (Orrù et al., 2012). In contrast,

SVM is essentially a ’black box’ assigning the new data to one of two cate-

gories.

Herein, a binary logistic ridge regression model is fitted using all ALS-specific

features and class (patient vs healthy control) as outcome variable using R (R

Core Team 2015) and the package ’glmnet’ (α = 0) (Friedman et al., 2010).

The tuning parameter λ was selected based on ten-folded cross-validation

which was repeated 100 times. The model with the smallest misclassification

error averaged over the 100 estimations was selected.

5.3 Results

Table 5.4 shows the classification results for the training and the validation

samples if the probability cut-off is set to 50%. Figure 5.6 plots the proba-

bility of each MRI data set of the training sample representing ALS-specific

change. The probability of each data of the validation sample is plotted in

Figure 5.7 and of the follow-up validation sample in Figure 5.8.
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Training Sample

XXXXXXXXXXXXXXX
Predicted class

True class
ALS HC

ALS 50 24 Sensitivity 83.34%
HC 10 26 Specificity 52.00%

Accuracy 69.09%

Validation Sample

XXXXXXXXXXXXXXX
Predicted class

True class
ALS HC

ALS 19 6 Sensitivity 90.47%
HC 2 10 Specificity 62.50%

Accuracy 78.37%

Follow-up Validation Sample

XXXXXXXXXXXXXXX
Predicted class

True class
ALS HC

ALS 18 5 Sensitivity 85.71%
HC 3 10 Specificity 66.77%

Accuracy 77.77%

Table 5.4: Classification results using a 50% probability threshold.
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Figure 5.6: Classification accuracy in the training sample. The probabil-
ity of individual participant’s MRI data demonstrating ALS-specific change
based on the classification algorithm. Patients with ALS are represented by
filled circles, healthy controls by empty circles. Misclassified participants are
displayed in red; correctly classified participants in green.
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Figure 5.7: Classification accuracy in the validation sample. The probabil-
ity of individual participant’s MRI data demonstrating ALS-specific change
based on the classification algorithm. Patients with ALS are represented by
filled circles, healthy controls by empty circles. Misclassified participants are
displayed in red; correctly classified participants in green.



160 CHAPTER 5. COMPUTER-AIDED DIAGNOSTIC

Figure 5.8: Classification accuracy in the follow-up validation sample. The
probability of individual participant’s MRI data demonstrating ALS-specific
change based on the classification algorithm. Patients with ALS are rep-
resented by filled circles, healthy controls by empty circles. Misclassified
participants are displayed in red; correctly classified participants in green.
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5.3.1 Misclassified participants

The basic demographics of the misclassified participants of the training sam-

ple are provided in Table 5.5. The corresponding information for the valida-

tion sample and their follow-up cohort can be found in Table 5.6 and Table

5.7.

ALS patients
True Positive False Negative p-value

N 50 10
Male sex, n 32 7 p = .72
Age, yrs (mean, SD) 60.66 (10.46) 56.04 (12.69) p = .30
Handedness (r/ l) 44/ 6 8/ 2 p = .86
Disease duration from
symptom onset until
date of scan, mo (mean,
SD)

25.72 (16.07) 28.2 (33.01) p = .82

Type of onset, (bulbar/
spinal/ respiratory)

18/ 31/ 1 1/ 9 p = .23

ALSFRS-R (mean, SD) 37.46 (6.57) 42 (4.06) p < .01
Probability of ALS
(mean, SD)

61.16 (8.44) 47.63 (1.79) p < .01

Healthy controls
True Positive False Negative p-value

N 26 24
Male sex, n 16 8 p = .08
Age, yrs (mean, SD) 60.34 (8.48) 60.99 (9.33) p = .80
Handedness (r/ l) 25/ 1 22/ 2 p = .94
Probability of ALS
(mean, SD)

56.08 (4.39) 43.08 (5.07) p < .01

Table 5.5: Comparison of misclassified and correctly classified ALS patients
and HC of the training sample.
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ALS patients
True Positive False Negative p-value

N 19 2
Male sex, n 11 1 p = .83
Age, yrs (mean, SD) 62.96 (10.9) 57.85 (1.91) p = .10
Handedness (r/ l) 17/ 2 2/ 0 p = .63
Disease duration from
symptom onset until
date of scan, mo (mean,
SD)

21.58 (16.47) 11.5 (4.95) p = .12

Type of onset, (bulbar/
spinal/ respiratory)

6/ 13 0/ 2 p = .91

ALSFRS-R (mean, SD) 38.58 (7.27) 43 (1.41) p < .05
Probability of ALS
(mean, SD)

59.84 (5.87) 44.73 (5.48) p = .13

Healthy controls
True Positive False Negative p-value

N 10 6
Male sex, n 7 3 p = .42
Age, yrs (mean, SD) 57.44 (10.07) 65.8 (5.29) p < .05
Handedness (r/ l) 9/ 1 5/ 1 p = .70
Probability of ALS
(mean, SD)

44.36 (1.76) 60.53 (7.72) p < .01

Table 5.6: Comparison of misclassified and correctly classified ALS patients
and HC of the validation sample.
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ALS patients
True Positive False Negative p-value

N 18 3
Male sex, n 10 2 p = .72
Age, yrs (mean, SD) 63.44 (11.04) 56.67 (0.38) p < .05
Handedness (r/ l) 17/ 1 2/ 1 p = .65
Disease duration from
symptom onset until
date of scan, mo (mean,
SD)

22.11 (16.58) 11.67 (8.14) p = .14

Type of onset, (bulbar/
spinal/ respiratory)

5/ 13 1/ 2 p = .84

ALSFRS-R (mean, SD) 38.58 (7.27) 43 (1.41) p < .05
Probability of ALS
(mean, SD)

61.38 (4.69) 42.08 (6.39) p < .05

Healthy controls
True Positive False Negative p-value

N 10 5
Male sex, n 7 2 p = .58
Age, yrs (mean, SD) 59.35 (10.16) 65.28 (5.74) p = .17
Handedness (r/ l) 9/ 1 4/ 1 p = .59
Probability of ALS
(mean, SD)

40.91 (4.57) 57.34 (5.89) p < .01

Table 5.7: Comparison of misclassified and correctly classified ALS patients
and HC of the follow-up validation sample.
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5.4 Discussion

Classification methods as well as imaging biomarkers are increasingly used

in medicine, and are particularly well integrated into clinical decisions in

oncology and Alzheimer’s disease. Biomarker development in ALS yielded

mostly to descriptive results to date, but the establishment of multi-centre

data repositories creates a unique opportunity to test classification models

in cross-platform data sets. The main aim of this study was to develop a

computer-aided diagnostic tool based on disease-specific pathological signa-

tures and multiple imaging measures. The aim was to assess the discrimina-

tive power of these regions in a blinded data set and explore the diagnostic

accuracy of an imaging based biomarker. The object was to translate re-

search into clinical use and make interference at the level of the individual.

Based on the multi-modal neuroimaging approach, diagnostic classification

accuracy was achieved with good sensitivity and moderate specificity. Pre-

vious classification studies of ALS did not use an independent validation

sample, instead they solely relied on cross-validation. Consequently, their

results correspond to the results based on the present training sample. The

training and test data were separated prior the feature reduction technique

(feature reduction technique without double-dipping (Mwangi et al., 2013).

Furthermore, the test data did not form part of the template created during

the pre-processing steps. Such an independent validation is essential to as-

sess the generalisability of the results, and it also paves the way for inclusion

of cross-platform data sets.

There are further differences between the methodology of the previous stud-

ies and the present one. Previous studies have relied on highly discriminatory

voxels of the initial comparisons (Filippini et al., 2010). This tailors the ap-

proach to a specific sample. By including an average value per anatomical

structure, the generalisability to new data sets was increased. Brain areas

which are affected early in the course of ALS were selected by regressing

out the effect of disease duration. Thus, a real life clinical application was

mimicked. Previous studies succeeded in classifying patients during the later
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stages of the disease, when the neurodegenerative change has become pro-

nounced, and controls. This approach represents a proof of concept, but it

is less useful to evaluate a potential diagnostic biomarker.

The development of biomarkers needs to be tailored to its primary purpose

whether the aim is a diagnostic or a prognostic application. If the aim

is to develop a population-base screening tool, it is crucial to have a very

high specificity, i.e. no healthy subject is wrongly confronted with the conse-

quences of being ill. Regarding ALS, the application of a biomarker is most

likely within a specialized clinic. The sample is pre-selected; it will consist

of subjects who have symptoms which made them seek medical attention. A

timely diagnosis of ALS is crucial for the patient, for therapy and for clinical

trials. For clinical trials, it is crucial to assess the effect of a medication

before too much neurodegenerative change has taken place. It is, therefore,

important that a potential biomarker for ALS has a high sensitivity. A high

specificity is also paramount to prevent patients with mimic neurodegenera-

tive conditions to be misclassified as ALS.

The sensitivity and specificity are based on a binary decision criterion. A

50% cut-off was selected for illustration purposes. The advantage of the bi-

nary logistic ridge regression model is that it provides probability outcomes,

as opposed to categorical classification. The clinician can integrate this infor-

mation into his diagnostic decision. For example, if a new patient is classified

with 47% probability of suffering from ALS, the binary results would classify

him as control. Considering additional diagnostic test results for this patient,

the clinician can carefully consider the risks and benefits before prescribing

a disease modifying treatment. As discussed above, the need for a biomarker

for ALS is clear and the most likely option, to cope with the heterogeneity

clinical picture of ALS, is a combination of diagnostic tests including neu-

roimaging based classifier.

Oncology research established guidelines to facility the development of a

biomarker (Pepe et al., 2001). Research in Alzheimer’s disease has recog-

nized their value and adapted them to their own effort to translate diagnostic
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AD biomarkers from research into clinical practice (The Lancet Neurology,

2014). MND researchers should adapt this framework for their own research.

The first phase is pre-clinical exploratory. The aim is to identify potentially

useful biomarkers. The second phase evaluates the ability of the candidate

markers to distinguish patients and controls. A secondary aim is to assess

the reproducibility of the assay within the same and different setting (i.e.

different scanners), the relationship between different biomarkers, the asso-

ciation to different factors such as sex, age, environment, lifestyle, disease

stage, and prognosis. The third phase determines the capability to detect a

prodromal state of the disease. Eventually, the sensitivity and specificity of

the biomarker regarding an unselected sample such as tertiary and primary

care population has to evaluated (phase 4) and its potential to reduce mor-

tality, morbidity and disability (phase 5).

Phase 1, i.e. the need to establish a characteristic signature of ALS has suc-

cessfully accomplished (Turner et al., 2012; Chiò et al., 2014). The present

study targets the second phase. Next, the relation of different biomarkers

needs to be evaluated, i.e. can an imaging biomarker in combination with a

physiological diagnostic test make a more accurate diagnosis than the current

gold standard?

The analysis of misclassification revealed that patients with a higher ALSFRS-

R score where more likely to be misclassified. Within the validation sample,

older healthy controls were more likely to be misclassified. ALS is more com-

mon in people within 50-70 years of age (Logroscino et al., 2010), but younger

and older people can develop the disease as well. It is expected that it be-

comes increasingly difficult to correctly classify the extrema of this spectrum

– young patients who apart from the ALS-related changes have a healthy

brain and older controls who may display age-related microangliopathy.

In contrast to the hypothesis, the probability of suffering from ALS did not

increase based on the follow-up scan of the patients. One reason may be that

by averaging each anatomical structure the change within 4 months was not

pronounced enough to influence the average. Ideally, the model should be
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developed based on patients who recently received a diagnosis of ALS. Con-

sidering the implication of this diagnosis, these patients are not always able

to participate in research studies. The present approach, regressing out the

time since diagnosis to identify the brain areas which are most likely affected

at that stage, tries to overcome this shortcoming.

Regarding the healthy controls, also no change in probability of suffering

from ALS was found. This is in line with the hypothesis and supports the

validity of this classification approach.

5.4.1 Limitations

The presented study is not without limitations. The study uses a standard

single-platform, single-centre approach and is not validated on data acquired

from other centres. Despite advances in cross-centre harmonisation (Müller

et al., 2016), the effect of pulse sequence differences on spatial statistics is

well established (Teipel et al., 2011b). Multicentre MR studies have been

successfully conducted in Alzheimer’s disease, (Stonnington et al., 2008) and

the cross platform calibration of the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI, Mueller et al., 2005) using travelling MRI phantoms has been

comprehensively described.

Furthermore, the sample is restricted to patients with classical ALS. Mimic

conditions are needed to truly evaluate the generalisability of the results.

The study is restricted to the most common phenotype of ALS. Patients

with PLS or PMA were not included. Both phenotype present with a differ-

ent brain signature (Kwan et al., 2012; Schuster et al., 2013) which needs to

be considered in the development of a diagnostic biomarker.

The study also did not include ALS patients with an additional diagnosis of

FTD. The results are, therefore, not generalizable to this phenotype. A diag-

nosis of FTD is associated with pronounced brain changes (Lillo et al., 2012;

Schuster et al., 2014a). Including ALS patients with a co-morbid diagnosis



168 CHAPTER 5. COMPUTER-AIDED DIAGNOSTIC

of FTD in the training sample would have biased the results in a way that

brain areas which deteriorate due to FTD would have been selected as input

features. The final probability algorithm would have reflected FTD-specific

rather than ALS-specific changes. Restricting the sample to pure ALS pa-

tients allowed selecting features which represent the core pathology of ALS.

Including ALS patients with a co-morbid diagnosis of FTD to the valida-

tion sample would have likely resulted in a correct classification. It would

have been unclear whether these is due to the fact that ALS-FTD patients

generally present more pronounced brain changes or whether the developed

algorithm is truly reliable. To distinguish these reasons, both a validation

sample of pure FTD patients is needed.

5.4.2 Future directions

The Neuroimaging Society in ALS (NiSALS) has established a large data

repository which is an ideal resource to test classification models in ALS

(Turner et al., 2011). The present study is limited to patients with clas-

sical ALS and controls. Patients with comorbid frontotemporal dementia

and mimic conditions were not included. Notwithstanding the relatively

modest specificity results, the data suggest that the inclusion of additional

pathognomonic regions such as basal ganglia (Machts et al., 2015), spinal

cord (El Mendili et al., 2014), or cerebellar measures (Prell and Grosskreutz,

2013) may increase the diagnostic accuracy of the model further. Moreover,

the inclusion of other imaging parameters such as cortical thickness mea-

surements, volumetrics, connectivity measures, or spectroscopy may further

enhance diagnostic models (Chiò et al., 2014). From a clinical perspective,

urgent work is required to develop classification models which can reliably

identify early-stage ALS and distinguish it from mimic conditions and other

neurodegenerative conditions. Such models also have to include anatomical

regions which are not typically affected in ALS but are implicated in other

neurodegenerative conditions (Bede et al., 2016). The accurate classification

of overlap syndromes such as ALS-FTD may be particularly challenging.
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These conditions have a less distinctive imaging signature with features of

both ALS and FTD.

The classification methodology outlined in this study can be used beyond

the initial diagnosis to segregate ALS phenotypes. ALS is an outstandingly

heterogeneous condition encompassing distinctive motor phenotypes, geno-

types, (McLaughlin et al., 2015) cognitive cohorts, (Elamin et al., 2013) slow

and fast progressors (Kiernan et al., 2011; McLaughlin et al., 2015). As

these phenotypes have distinguishing imaging features, newly diagnosed or

suspected patients could potentially be sub-phenotyped for stratification into

pharmaceutical trials. Subgroups may respond differently to the medication

or randomly allocation of one subgroup to e.g. the placebo group may bias

the results (Chapter 6). Finally, classification pipelines developed for ALS

are transferable to other neurodegenerative conditions where pathological

change also occurs in a unique, disease-specific anatomical pattern.

5.5 Conclusions

The classification approach outlined in this study relies on assessing multiple

imaging measures in multiple disease-defining anatomical regions in individ-

ual data sets to provide a diagnostic probability score. In an era where

cross-platform harmonisation is gaining increasing momentum and acquisi-

tion protocols constantly improve, the presented approach is likely to lead to

increasingly accurate diagnostic classification. Ultimately, imaging biomark-

ers in ALS are gradually expanding beyond their descriptive role to be de-

veloped into viable diagnostic and prognostic markers.
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Chapter 6

Predicting 18-months mortality

rate in ALS using structural

brain changes and clinical

characteristics

6.1 Introduction

While the clinical features of ALS are highly heterogeneous, the overall dis-

ease trajectory and life expectancy is relatively uniform, making it a template

neurodegenerative condition for the development of diagnostic and prognos-

tic biomarker (Hardiman et al., 2011). It is generally accepted that a long

pre-symptomatic phase precedes clinical manifestation (Schuster et al., 2015;

Benatar and Wuu, 2012) which may be dominated by bulbar or spinal symp-

toms at onset, but progresses to respiratory failure over time. The only

neuroprotective drug licensed in ALS, Riluzole, offers only modest survival

benefit (Miller et al., 2007).

Clinical heterogeneity has multiple dimensions in ALS such as site of onset,

coexisting cognitive and behavioural deficits, dominance of upper or lower

motor neurodegeneration, variability of progression rates and distinct ALS

171
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phenotypes (Byrne et al., 2012). All of these factors make the accurate pre-

diction of individual prognosis challenging. Clinical heterogeneity precludes

smaller clinical trials as a given drug may only be effective in certain ALS

phenotypes (Mitsumoto et al., 2014). A prognostic framework would en-

hance stratification in clinical trials and enable individual patients to make

important end-of-life decisions. The planning and timing of supportive inter-

ventions such as feeding tube insertion, non-invasive ventilation and pallia-

tive measures could also be optimised by accurate prognostic markers (Bede

et al., 2011).

Previous studies have successfully linked specific demographic and clinical

variables to reduced survival, e.g. older age, bulbar or respiratory onset,

short symptom to diagnosis interval and poor motor function. Attendance

of a multidisciplinary ALS clinic has been linked to a better prognosis (Chiò

et al., 2009; Gordon et al., 2013; Rooney et al., 2015). A recent study focusing

on prediction of one-year mortality identified the following factors: age over

75 years, less than 6 months from symptom onset to diagnosis, rapid decline

of body weight and advanced functional impairment (Wolf et al., 2014).

MRI has been repeatedly suggested as a prognostic biomarker in ALS (Turner

et al., 2009, 2011; Chiò et al., 2014), but has not been convincingly validated

to date. As described in in Chapter 3 and 4, structural brain changes dur-

ing the course of ALS have been well characterised: grey matter atrophy of

the precentral gyrus and white matter degeneration of the corticospinal tract

(Agosta et al., 2010a; Li et al., 2012; Turner et al., 2012).

Imaging measures in ALS have been previously explored as prognostic indi-

cators. The neuronal integrity of the motor cortex has been directly linked to

survival (Kalra et al., 2006); fractional anisotropy (FA) of the corticospinal

tract was used to predict survival after 3 years (Agosta et al., 2010b).
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6.2 Objectives

The objective of this study was to develop and test a prognostic tool in ALS

to predict the probability of 18-month survival based on individual struc-

tural MRI data sets. The hypothesis was that structural MRI measures will

enhance prediction accuracy compared to clinical variables alone.

6.3 Methods

6.3.1 Overview

The available imaging data were divided into a training sample to perform bi-

nary ridge logistic regression to predict the probability of surviving less than

18 months and an independent validation sample to access the generalisabil-

ity of the approach (Figure 6.1). Clinical characteristics related to survival

were selected based on a literature review. MRI measures were defined based

on group comparisons between patients and healthy controls. The control

group was also used to extract age-related variability of the MRI measure-

ments (Koikkalainen et al., 2012).

A total of three binary ridge regressions were computed with (1) clinical

indices alone, (2) MRI features alone and (3) with a combination of both

MRI and demographic variables. A cut-off score of 50% probability was

selected to evaluate the accuracy, sensitivity and specificity of the models.

6.3.2 Participants

The sample included 60 ALS patients selected from the MRI database for

whom a minimum follow-up period of 18-month after their brain scan was

available. The census date was the 9th of June 2016. Survival was defined as

time between MRI scan and date of death or, for patients who were alive, it

was censored. Participating ALS patients were diagnosed with either proba-

ble or definite ALS according to the revised El Escorial criteria (Brooks et al.,
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Figure 6.1: Overview of methods.

2000). Patients with a comorbid diagnosis of fronto-temporal dementia ac-

cording to the Rascovsky Criteria (Rascovsky et al., 2011) were excluded due

to the confounding imaging changes associated with this phenotype (Chang

et al., 2005; Lillo et al., 2012). Table 6.1 presents clinical and demographic

details of the ALS patients. Regarding the site of onset, bulbar and respi-

ratory onset patients are grouped together as non-spinal onset. The sample

includes only one patient with respiratory onset, who is part of the validation

sample.

Subsequently, 80% of the patient sample was randomly allocated to the train-

ing sample and 20% to the validation sample. Of note, there were no signifi-

cant demographic or clinical differences between the patient groups surviving



6.3. METHODS 175

shorter or longer than 18-month (with the exception of survival) which is cru-

cial to untangle the influence of demographic, clinical and MRI variables.

To highlight the ALS specific pathology, the training sample was compared to

an age- and gender-matched group of 69 healthy controls. The demographic

details can be found in Table 6.1.
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6.3.3 MRI pre-processing

Cortical thickness (CT) analysis

The cortical thickness was measured using FreeSurfer (version 5.3.0), an

imaging analysis suite which has been both validated using histological (Rosas

et al., 2008) and manual measurements (Kuperberg et al., 2003; Salat et al.,

2004).1 The automated processing stream consists of skull-stripping, registra-

tion, intensity normalization, Talairach transformation, tissue segmentation,

and surface parcellation. Tissue segmentation determines the boundaries

between the white and the grey matter (white matter surface) as well as

between the grey matter and the cerebrospinal fluid (pial surface). The re-

sult of this process was individually reviewed, errors were corrected and the

segmentation step was repeated. Cortical thickness has been defined as the

distance (vertex) from the white matter surface to the nearest point on the

pial surface.

White matter (WM) analysis

As described in the previous chapters, the pre-processing of DTI data in-

cluded eddy current corrections, motion corrections, and brain-tissue extrac-

tion in FSL (Smith et al., 2006). A diffusion tensor model was fitted at each

voxel, generating maps of FA, MD, AD and RD. Each dataset was aligned

to the FMRIB58a FA standard-space images. Next, the mean FA image was

created. Each subject’s aligned FA data was then projected onto the FM-

RIB58a FA standard-space skeleton and the resulting data fed into voxel-wise

cross-subject statistics.

6.3.4 Feature selection

In order to identify ALS-specific pathological brain regions, patients of the

training sample were compared to healthy controls using age as a nuisance

1http://surfer.nmr.mgh.harvard.edu/
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variable.

For the cortical thickness analysis, the results are significant at p < .05 cor-

rected using for multiple comparisons using false discovery rate (FDR). The

selected input variables, also called features, which were selected based on

these results and in accordance with the literature, included the precentral

gyrus and the paracentral gyrus (Verstraete and Heuvel, 2010; Schuster et al.,

2013, 2014a). The Desikan-Killiany atlas (Desikan et al., 2006), Figure 6.2

was used to define the cortical regions and the average cortical thickness was

extracted from both regions.

Figure 6.2: Cortical thickness features. Blue: precentral gyrus, Light green:
paracentral gyrus. Only the right hemisphere is displayed.

For the comparative white matter analyses, the significance level for the

group comparison was set to p < .01 corrected using family-wise error (FWE).

Similarly to Chapter 3, the following core white matter regions were selected

as discriminatory features for the binary regression: the superior corona ra-

diata, inferior corona radiata, anterior and posterior limbs of the internal

capsule, cerebral peduncles (mesencephalic crus) and the genu, body and

splenium of the corpus callosum (Figure 6.3). These regions were defined

using the JHU DTI-based white-matter atlas (Oishi et al., 2008). The aver-

age measurement for each DTI index (i.e. FA, RD, MD, AD) for each brain

region was extracted.

For all features, the left and right hemisphere were averaged.
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Figure 6.3: White matter features. Green: superior corona radiata, grey:
corona radiata, orange: posterior limb of the internal capsule, lilac: anterior
limb of the internal capsule, rose: cerebral peduncle, yellow: genu of corpus
callosum, red: body of the corpus callosum, brown: splenium of the corpus
callosum.

6.3.5 Validation Sample

The pre-processing steps of the independent validation sample were anal-

ogous to the pre-processing pipeline of the training sample. The average

cortical thickness and diffusivity values were extracted as described in Chap-

ter 5.

6.3.6 Group comparison of selected features

T-tests were conducted using the MRI features as dependent variable and

group as independent variable, in order to analyse whether patient groups

surviving more or less than 18 months differed regarding the selected MRI

features. The significant level was set to p < .05.
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6.3.7 Reducing age-related variability

The effect of ageing on MRI measures is well established (Fjell et al., 2013a,b)

and it has been shown that classification accuracy may be improved by re-

moving this nuisance variable (Koikkalainen et al., 2012). The confounding

effect of age is particularly important in ALS which affects a fairly wide

age range. From an imaging perspective, a young patient with severe phys-

ical disability may exhibit similar brain changes to older patients with less

advanced disease. Moreover, age in ALS is considered a prognostic factor

(Chiò et al., 2009; Wolf et al., 2014). To account for age-related variability

the method of Koikkalainen et al. (2012) was implemented. A linear regres-

sion model was fitted to the distribution of the values of each feature of the

control group using age as independent variable. Based on this equation, the

predicted value for each feature for each individual subject was estimated.

These values were then subtracted from the measured values resulting in

age-corrected measurement for each feature.

6.3.8 Binary logistic regressions

Three binary ridge logistic regressions were fitted using (1) clinical indices

related to shortened survival, (2) MRI features or (3) both. Clinical features

included age at disease onset, site of disease onset (bulbar/ spinal), diag-

nostic delay (time interval from symptom onset to diagnosis), ALSFRS-R

at the time of the scan (Table 6.2). MRI features corrected for age-related

variability consisted of the average cortical thickness of the precentral gyrus

(Figure 6.2), the average FA, RD, MD and AD of the superior corona radiata,

inferior corona radiata, anterior and posterior limbs of the internal capsule,

cerebral peduncles and the genu, body and splenium of the corpus callosum

(Figure 6.3). The outcome variable was patient group stratified surviving

more than 18 months or less than 18 months. The statistical software R

(R Core Team 2015) and the package ’glmnet’ (α = 0) (Friedman et al.,

2010) was utilised to carry out the logistic regression. The tuning parameter

λ was selected based on ten-folded cross-validation which was repeated 100
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Clinical indices MRI features
- Age at disease onset Cortical thickness
- Site of disease onset - Precentral gyri
- Diagnostic delay - Paracentral gyri
- Disease severity White matter

- Superior corona radiata
- Inferior corona radiata
- Anterior limbs of the internal capsule
- Posterior limbs of the internal capsule
- Cerebral peduncles
- Genu of the corpus callosum
- Body of the corpus callosum
- Splenium of the corpus callosum

Table 6.2: Discriminating features.

times. The model with the smallest misclassification error averaged over the

100 estimations was selected. Subsequently, the regression algorithm was

used to estimate the probability of each participant in the validation sam-

ple to belong to the group surviving less than 18 months after the brain scan.

6.4 Results

6.4.1 Group comparisons

Comparing ALS patients in the training sample with the control group high-

lighted the same pathognomonic brain regions as described in Chapter 3.

The results are shown in Figure 6.4 for the cortical thickness analyses and in

Figure 6.5 for the white matter analyses.

The direct comparison of patients surviving more than 18 months and those

surviving less than 18 months, did not reach statistical significance corrected

for multiple comparisons.

When comparing the average values of each brain regions within the training

sample, the precentral gyrus was the only region showing a trend towards a
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Figure 6.4: Cortical thickness. Group comparison between ALS patients and
controls. The significant level is set to p < .05 (FDR).

significant difference between patients surviving less than 18 months (M =

2.31 mm, SD = 0.15) and patients surviving more than 18 months (M = 2.39

mm, SD = 0.15, t(45.99) = 1.87, p = .07). There was no difference in the

other MRI based features.

6.4.2 Binary logistic regression - clinical features alone

Figure 6.6 and Figure 6.7 display the resulting probabilities surviving less

than 18-month based on the regression including only clinical characteristics

available at the time of the scan.

For illustrative purposes, a cut-off of 50% probability of surviving less than

18 months was selected to evaluate prediction sensitivity, specificity and ac-

curacy. Table 6.3 reports the binary classification results. An analysis of

misclassified patients is reported under below (Training sample: Table 6.4:
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Figure 6.5: White matter analyses. Group comparisons between ALS pa-
tients and controls. The significant level is set to p < .01 (FWE).

patients surviving < 18 months, Table 6.5: patients surviving > 18 months;

Validation sample: Table 6.6: patients surviving < 18 months, Table 6.7:

patients surviving > 18 months).

Misclassified patients

Table 6.4 and Table 6.5 shown the demographic and clinical details of the

misclassified patients in the training sample surviving less or longer than 18

months, respectively. For the validation sample this information is present

in Table 6.6 and 6.7.

Misclassified patients different significantly regarding the ALSFRS-R score.
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Figure 6.6: Clinical features. Training sample: The probability of surviving
less than 18 months. Red: patients surviving < 18 months from the date of
their scan; Black: patients surviving > 18 months.

Figure 6.7: Clinical features. Validation sample: The probability of surviving
less than 18 months. Red: patients surviving < 18 months from the date of
their scan; Black: patients surviving > 18 months.
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Training Sample

XXXXXXXXXXXXXXXX
Predicted group

True group Surviving
< 18 months

Surviving
> 18 months

Surviving < 18 months 17 9
Surviving > 18 months 7 15

Sensitivity 62.50%
Specificity 70.84%
Accuracy 66.67%

Validation Sample

XXXXXXXXXXXXXXXX
Predicted group

True group Surviving
< 18 months

Surviving
> 18 months

Surviving < 18 months 5 2
Surviving > 18 months 1 4

Sensitivity 66.67%
Specificity 83.34%
Accuracy 75.00%

Table 6.3: Clinical features. Classification results using a cut-off of 50%
probability.
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Survival < 18 months

True Positive False Negative p-value
N 15 9
Gender (male/ female) 11/ 4 6/ 3 p = 1
Age, yrs (mean, SD) 64.58 (9.64) 60.85 (3.38) p = .18
Handedness (r/ l) 14/1 9/ 0 p = 1
Site of onset (non-
spinal/ spinal)

3/ 12 5/ 4 p = .18

Diagnostic delay, yrs
(mean, SD)

1.14 (0.8) 1.29 (0.88) p = .68

Disease duration from
symptom onset until
scan, yrs (mean, SD)

30.93 (6.39) 40.11 (2.03) p < .01

Survival from scan, yrs
(mean, SD)

0.86 (0.22) 1.06 (0.44) p = .23

Table 6.4: Clinical features. Demographic and clinical data of correctly and
misclassified patients surviving < 18 months of the training sample.

Survival > 18 months

True Negative False Positive p-value
N 17 7
Gender (male/ female) 10/ 7 3/ 4 p = .79
Age, yrs (means, SD) 67.17 (11.73) 59.52 (9.78) p = .16
Handedness, (r/ l) 14/ 3 6/ 1 p = 1
Site of onset (non-
spinal/ spinal)

8/ 9 2/ 5 p = .70

Diagnostic delay, yrs
(mean, SD)

1.1 (0.85) 0.93 (0.45) p = .52

Disease duration from
symptom onset until
scan, yrs (mean, SD)

2.37 (1.21) 2.2 (1.72) p = .83

ALSFRS-R (mean, SD) 40.06 (2.79) 30.86 (7.56) p < .05
Survival from scan, yrs
(mean, SD)

2.01 (0.58) 2.87 (1.79) p = .26

Table 6.5: Clinical features. Demographic and clinical data of correctly and
misclassified patients surviving > 18 months of the training sample.
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Survival < 18 months

True Positive False Negative p-value
N 4 2
Gender (male/ female) 3/ 1 0/ 2 p = .39
Age, yrs (means, SD) 60.81 (6.38) 70.25 (9.02) p = .35
Handedness (r/ l) 4/ 0 1/ 1 p = .69
Site of onset (non-
spinal/ spinal)

1/ 3 2/ 0 p = .39

Diagnostic delay, yrs
(mean, SD)

1.54 (1.32) 0.75 (0.11) p = .32

Disease duration from
symptom onset until
scan, yrs (mean, SD)

2.34 (1.67) 1.14 (0.15) p = .25

ALSFRS-R (mean, SD) 30.75 (7.68) 43 (1.41) p = .06
Survival from scan, yrs
(mean, SD)

1.01 (0.28) 0.74 (0.08) p = .14

Table 6.6: Clinical features. Demographic and clinical data of correctly and
misclassified patients surviving < 18 months of the validation sample.

Survival > 18 months

True Negative False Positive p-value
N 5 1
Gender (male/ female) 2/3 0/1 -
Age, yrs (means, SD) 52.64 (7.21) 67.38 (NA) -
Handedness (r/ l) 4/ 1 1/ 0 -
Site of onset (non-
spinal/ spinal)

2/ 3 0/ 1 -

Diagnostic delay, yrs
(mean, SD)

0.91 (0.32) 0.75 (NA) -

Disease duration from
symptom onset until
scan, yrs (mean, SD)

2.01 (0.41) 1.05 (NA) -

ALSFRS-R (mean, SD) 38.8 (4.55) 41 (NA) -
Survival from scan, yrs
(mean, SD)

2.83 (1.36) 1.56 (NA) -

Table 6.7: Clinical features. Demographic and clinical data of correctly and
misclassified patients surviving > 18 months of the validation sample.
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Training Sample

XXXXXXXXXXXXXXXX
Predicted group

True group Surviving
< 18 months

Surviving
> 18 months

Surviving < 18 months 18 5
Surviving > 18 months 6 19

Sensitivity 79.16%
Specificity 75.00%
Accuracy 77.08%

Validation Sample

XXXXXXXXXXXXXXXX
Predicted group

True group Surviving
< 18 months

Surviving
> 18 months

Surviving < 18 months 3 2
Surviving > 18 months 3 4

Sensitivity 66.70%
Specificity 50.00%
Accuracy 58.33%

Table 6.8: MRI features. Classification results using a cut-off of 50% proba-
bility.

6.4.3 Binary logistic regression - MRI features alone

Figure 6.8 depicts the probability of each patient of the training sample to

survive less than 18 months based on MRI features alone. The results for

the validation sample are shown in Figure 6.9. Table 6.8 reports the binary

classification results and the resulting sensitivity, specificity and accuracy

using a cut-off score of 50%.
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Survival < 18 months

True Positive False Negative p-value
N 19 5
Gender (male/ female) 14/ 5 3/2 p = .96
Age, yrs (means, SD) 62.94 (8.26) 64.12 (7.7) p = .77
Handedness (r/ l) 18/ 1 5/0 p = 1
Site of onset(non-
spinal/ spinal)

5/14 3/ 2 p = .38

Diagnostic delay, yrs
(mean, SD)

1.09 (0.71) 1.61 (1.13) p = .37

Disease duration from
symptom onset until
scan, yrs (mean, SD)

2.14 (1.01) 2.28 (1.1) p = .80

ALSFRS-R (mean, SD) 34.05 (7.26) 35.6 (5.46) p = .61
Survival from scan, yrs
(mean, SD)

0.91 (0.34) 1.05 (0.23) p = .30

Table 6.9: MRI features - Demographic and clinical data of correctly and
misclassified patients surviving < 18 months of the training sample.

Misclassified patients

Misclassified patients of the training sample are described in Table 6.9 and

Table 6.10; of the validation sample in Table 6.11 and Table 6.12. There

was no significant demographic or clinical difference between correctly and

misclassified patients within the training sample or in the validation sample.
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Survival > 18 months

True Negative False Positive p-value
N 18 6
Gender (male/ female) 8/ 10 5/ 1 p = .24
Age, yrs (means, SD) 62.31 (10) 60.09 (13.61) p = .72
Handedness, (r/ l) 14/ 4 6/ 0 p = .53
Site of onset (non-
spinal/ spinal)

6/ 12 4/ 2 p = .34

Diagnostic delay, yrs
(mean, SD)

1.08 (0.79) 0.96 (0.64) p = .73

Disease duration from
symptom onset until
scan, yrs (mean, SD)

2.42 (1.38) 2.03 (1.27) p = .54

ALSFRS-R (mean, SD) 37.5 (6.05) 37 (7.27) p = .88
Survival from scan, yrs
(mean, SD)

2 (0.57) 3.07 (1.87) p = .22

Table 6.10: MRI features - Demographic and clinical data of correctly and
misclassified patients surviving > 18 months of the training sample.

Survival < 18 months

True Positive False Negative p-value
N 4 2
Gender (male/ female) 2/2 1/1
Age, yrs (means, SD) 66.4 (8.42) 59.08 (6.18) p = .31
Handedness (r/ l) 3/1 2/0 p = 1
Site of onset (non-
spinal/ spinal)

3/1 0/2 p = .38

Diagnostic delay, yrs
(mean, SD)

1.5 (1.34) 0.84 (0.33) p = .41

Disease duration from
symptom onset until
scan, yrs (mean, SD)

1.84 (1.44) 2.14 (1.99) p = .87

ALSFRS-R (mean, SD) 35.25 (9.46) 33 (8.49) p = .79
Survival from scan, yrs
(mean, SD)

0.79 (0.08) 1.19 (0.35) p = .34

Table 6.11: MRI features - Demographic and clinical data of correctly and
misclassified patients surviving < 18 months of the validation sample.
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Survival > 18 months

True Negative False Positive p-value
N 3 3
Gender (male/ female) 2/ 1 0/ 3 p = .39
Age, yrs (means, SD) 50.47 (5.83) 59.72 (9.81) p = .25
Handedness (r/ l) 2/ 1 3/ 0 p = 1
Site of onset (non-
spinal/ spinal)

1/ 2 1/ 2 p = 1

Diagnostic delay, yrs
(mean, SD)

0.88 (0.26) 0.89 (0.39) p = .97

Disease duration from
symptom onset until
scan, yrs (mean, SD)

1.97 (0.57) 1.74 (0.6) p = .66

ALSFRS-R (mean, SD) 41.33 (1.15) 37 (5.29) p = .29
Survival from scan, yrs
(mean, SD)

2.96 (1.72) 2.28 (1.03) p = .59

Table 6.12: MRI features - Demographic and clinical data of correctly and
misclassified patients surviving > 18 months of the validation sample.
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Figure 6.8: MRI features. Training sample: The probability of surviving less
than 18 months. Red: patients surviving < 18 months from the date of their
scan; Black: patients surviving > 18 months.

Figure 6.9: MRI features. Validation sample: The probability of surviving
less than 18 months. Red: patients surviving < 18 months from the date of
their scan; Black: patients surviving > 18 months.
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Training Sample

XXXXXXXXXXXXXXXX
Predicted group

True group Surviving
< 18 months

Surviving
> 18 months

Surviving < 18 months 20 6
Surviving > 18 months 4 18

Sensitivity 75.00%
Specificity 83.34%
Accuracy 79.17%

Validation Sample

XXXXXXXXXXXXXXXX
Predicted group

True group Surviving
< 18 months

Surviving
> 18 months

Surviving < 18 months 5 2
Surviving > 18 months 1 4

Sensitivity 66.67%
Specificity 83.34%
Accuracy 75.00%

Table 6.13: Classification results based on both clinical and MRI features
using a cut-off of 50% probability.

6.4.4 Binary logistic regression – Combinations of both

clinical and MRI features

Figure 6.10 shows the probability of each patient of the training sample to

survive less than 18 months based on clinical and MRI features. Figure 6.11

summaries the results for the validation sample. The corresponding classifi-

cation results are shown in Table 6.13; the cut-off score was set to 50%.
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Figure 6.10: Clinical and MRI features. Training sample: The probability of
surviving less than 18 months. Red: patients surviving < 18 months from
the date of their scan; Black: patients surviving > 18 months.

Figure 6.11: Clinical and MRI features. Validation sample: The probability
of surviving less than 18 months. Red: patients surviving < 18 months from
the date of their scan; Black: patients surviving > 18 months.
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Survival < 18 months

True Positive False Negative p-value
N 18 6
Gender (male/ fe-
male)

13/ 5 4/ 2 p = 1

Age, yrs (means, SD) 63.38 (8.69) 62.59 (6.09) p = .81
Handedness (r/ l) 17/ 1 6/ 0 p = 1
Site of onset (non-
spinal/ spinal)

6/ 12 2/ 4 p = 1

Diagnostic delay,
yrs (mean, SD)

1.03 (0.69) 1.71 (1.01) p = .17

Disease duration
from symptom on-
set until scan, years
(mean, SD)

1.99 (0.79) 2.71 (1.43) p = .29

ALSFRS-R (mean,
SD)

34 (7.21) 35.5 (6.06) p = .63

Survival from scan,
yrs (mean, SD)

0.97 (0.3) 0.84 (0.4) p = .50

Table 6.14: Clinical and MRI features - Demographic and clinical data of
correctly and misclassified patients surviving < 18 months of the training
sample.

Misclassified patients

Table 6.14 and Table 6.15 describe the misclassified patients for the train-

ing sample; Table 6.16 and Table 6.17 misclassified patients surviving less

than 18 months of the validation sample. There was no difference in demo-

graphic or clinical details between correctly and misclassified patients within

the training sample or the validation sample.
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Survival > 18 months

True Negative False Positive p-value
N 20 4
Gender (male/ female) 10/ 10 3/ 1 p = .71
Age, yrs (means, SD) 61.82 (10.7) 61.42 (13.72) p = .96
Handedness, (r/ l) 16/ 4 4/ 0 p = .81
Site of onset (non-
spinal/ spinal)

8/ 12 2/ 2 p = 1

Diagnostic delay, yrs
(mean, SD)

1.11 (0.77) 0.73 (0.58) p = .30

Disease duration from
symptom onset until
scan, yrs (mean, SD)

2.46 (1.41) 1.64 (0.65) p = .10

ALSFRS-R (mean, SD) 37.95 (5.9) 34.5 (7.9) p = .46
Survival from scan, yrs
(mean, SD)

1.98 (0.54) 3.66 (2.11) p = .21

Table 6.15: Clinical and MRI features - Demographic and clinical data of
correctly and misclassified patients surviving > 18 months of the training
sample.

Survival < 18 months

True Positive False Negative p-value
N 4 2
Gender (male/ female) 2/2 1/ 1 p = 1
Age, yrs (means, SD) 66.4 (8.42) 59.08 (6.18) p = .32
Handedness (r/ l) 3/ 1 2/ 0 p = 1
Site of onset (non-
spinal/spinal)

3/ 1 0 / 2 p = .39

Disease delay, yrs
(mean, SD)

1.5 (1.34) 0.84 (0.33) p = .40

Disease duration from
symptom onset until
scan, yrs (mean, SD)

1.84 (1.44) 2.14 (1.99) p = .87

ALSFRS-R (mean, SD) 35.25 (9.46) 33 (8.49) p = .79
Survival from scan, yrs
(mean, SD)

0.79 (0.08) 1.19 (0.35) p = .35

Table 6.16: Clinical and features - Demographic and clinical data of correctly
and misclassified patients surviving < 18 months of the validation sample.
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Survival > 18 months

True Negative False Positive p-value
N 5 1
Gender (male/ fe-
male)

2/ 3 0/ 1 -

Age, yrs (means, SD) 52.64 (7.21) 67.38 (NA) -
Handedness (r/ l) 4/ 1 1/ 0 -
Site of onset (non-
spinal/ spinal)

2/ 3 0/ 1 -

Diagnostic delay,
yrs (mean, SD)

0.91 (0.32) 0.75 (NA) -

Disease duration
from symptom onset
until scan, yrs (mean,
SD)

2.01 (0.41) 1.05 (NA) -

ALSFRS-R (mean,
SD)

38.8 (4.55) 41 (NA) -

Survival from scan,
yrs (mean, SD)

2.83 (1.36) 1.56 (NA) -

Table 6.17: Clinical and MRI features - Demographic and clinical data of
correctly and misclassified patients surviving > 18 months of the validation
sample.
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6.5 Discussion

The present study explores the role of MRI as prognostic biomarker in ALS.

While more and more studies focus on diagnostic and monitoring biomark-

ers for ALS, there is a scarcity of prognostic studies. The overall objective

was to explore the value of structural MRI measures of ALS-related brain

changes and clinical characteristics in predicting the probability of 18-month

survival. Such a tool could, on the one hand, ensure more appropriate plan-

ning of invasive therapeutic interventions and, on the other hand, reduce

clinical variability for future clinical trials.

Based on the combination of structural brain measures and clinical character-

istics, mortality within 18-month was predicted with relatively high accuracy;

79.17%. Moreover, 83.3% of patients were correctly identified as surviving

for longer than 18 months following their brain scan, and 75% of the sam-

ple was correctly identified as surviving less than 18-months. Applying the

regression algorithm to an independent validation sample further supports

the validity of these findings. Despite the relatively small sample size of the

validation cohort, the algorithm reached 75% accuracy. 83.34% of patients

were correctly identified as surviving more than 18-months and 66.67% of

patients were correctly identified as surviving less than 18 months. Based on

MRI measures alone, the accuracy and sensitivity of the classification was

similar, but the patients surviving more than 18 months were less likely to

be identified correctly.

Using clinical and demographic measures alone, without MRI indices, pre-

diction accuracy was considerably lower (66.67%). Similarly, the sensitivity

and specificity profile of these predictions were inferior to the ones also in-

corporating MRI measures. These findings underscore the benefit of MRI

measures of pathognomonic brain regions in predicting 18-month survival.

Evaluating misclassified patients based on clinical features alone, the group

incorrectly classified surviving less than 18 months was significantly less phys-
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ically impaired. They had a higher ALSFRS-R score. In contrast, patients

misclassified as surviving longer than 18 months, had significantly longer dis-

ease duration. Adding MRI measure, there was no difference found between

misclassified patients, again emphasizing the benefit of this additional infor-

mation.

Previous studies have linked MRI measures to survival. Two-year survival

was predicted using motor cortex spectroscopy with a sensitivity of 67% and a

specificity of 83% (Kalra et al., 2006). Corticospinal tract diffusivity changes

were utilised to predict three-year survival with a specificity of 61.5% and

accuracy of 71.0% (Agosta et al., 2010b).

In contrast to previous studies, the present one employs a multi-modal ap-

proach assessing cortical thinning in addition to the four most commonly

used indices of white matter degeneration. Additionally, the generalisability

of this classification method is higher. As discussed in more detail in Chapter

5, the binary ridge regression was cross-validated to increase its generalisabil-

ity. Additionally, the results were validated with an independent sample.

ALS patients in all stages of the disease are eager to participant in clinical

trials and each trial is met with high hopes by patients and clinicians. It is

desirable to enrol patients early after diagnosis so that as little as possible

neurodegenerative change has taken place. Consequently, an early diagnosis

is required. Various trials within the last years have failed (Mitsumoto et al.,

2014) which could be attributed to the excitement with which each clinical

trial is welcomed. In order to ensure rapid enrolment and to reach targeted

sample size of the trial, patients are included regardless of their clinical sub-

types (Nicholson et al., 2015). A further possible explanation for the failure

is the variability of disease stages of the patients when they are recruited to

the study. The heterogeneity of the sample may mask any possible success

of the medication. Riluzole remains the only medications proven to extend

survival of patients. But even the effectiveness of riluzole failed to be proven

in the advanced stages of ALS (Bensimon et al., 2002).

A newly research area is targeted therapy i.e. the focus lies on possible ther-
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apeutic approaches for specific ALS subgroups (Nicholson et al., 2015). For

example, stem cells therapy is regarded to be less successful in bulbar onset

ALS patients as the cells have to be delivered to the most affected regions

and it is unlikely to benefit patients in advanced stages as stems cells are not

able to replace lost motor neurons (Mitsumoto et al., 2014; Goutman and

Feldman, 2015).

de Carvalho and Swash (2006) proposed that the inclusion of patients with

rapid progression rates may shorten clinical trials. Nevertheless, one has

to keep in mind that certain subtypes might respond differently to therapy

(Bakkar et al., 2015). An effective medication for fast progressing patients

might not be as successful in slow progressing patients. Overall, it is impor-

tant that clinical trials include a variety of phenotypes while trying to reduce

the variability of the sample by other means. It is necessary to control for

confounding variables known to affect the study endpoint (Beghi et al., 2011).

If patients drop out due to death it may not be related to the medication

effect instead it might be that the disease has progressed too far for the med-

ication to have any effect. Consequently, this represents a potential source of

bias. As discussed above, there is no difference between the included patient

groups despite their survival is significantly different. Employing the present

approach would narrow the variability within the patient sample and could

potentially distinguish patient groups for which the medication effect is dif-

ferent.

One may argue that the classification results of three different approaches

do not sufficiently differ to only support one single approach. Therefore, one

has to take into account the advantages of each approach. Whereas clini-

cal indices are very cost-efficient and easily acquired, the advantage of using

solely MRI measures lies in its objectivity. An observer-independent prog-

nostic marker may be helpful for patient stratification into clinical trials. It

is also important that study end-points, such as survival are independent

from demographic factors.
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6.6 Limitations and future directions

The study outlines a prediction method based on single-time point MRI data,

which is a snapshot of in vivo pathology at specific moment in the patient’s

disease trajectory. Degeneration is a continuous process. In order to pre-

dict survival, one needs to know what brain structures are affect in the late

stages of the disease. The current approach to split the patient into two

groups is a crude approach. Survival prediction may be more accurate if

multiple time-points are included and longitudinal change over time is con-

sidered. Moreover, the inclusion of other disease-specific anatomical regions,

such as basal ganglia (Machts et al., 2015), spinal cord (El Mendili et al.,

2014), cerebellar (Bede et al., 2015) or electrophysiological measures (de Car-

valho and Swash, 2006) may improve prognostic categorisation further.

As only patients scanned at least 18 months ago were included, the sample

size of the study is relatively limited and 20% of the patients were ran-

domly allocated to the validation sample to demonstrate the generalizability

of the methods. Using cross-validation within the training sample renders

the results generalizable, and the validation sample supports the findings.

Nevertheless, the present pilot study only outlines a proposed prognostic al-

gorithm which should ideally be replicated in larger cohorts or data pooled

from multiple centres.

Other future directions include assessment of two-year survival, or other clin-

ical milestones, such as introduction of non-invasive ventilation, walking aids,

feeding tubes etc. In this study, the cognitive and behavioural profile of the

patients were not considered, despite evidence that executive dysfunction is

associated with shorter survival (Elamin et al., 2011) and compliance with

assistive devices (Olney et al., 2005). Furthermore, the effect of riluzole could

not be assessed due to a lack of corresponding data. The majority of patients

were on riluzole at the time of the scan.
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6.7 Conclusions

In conclusion, this project outlines a potential approach to reduce clinical

variability of ALS. The combination of MRI measures of pathognomonic

brain regions and key clinical indices enable the accurate prediction of 18-

month survival in ALS. Accurate, objective and validated prognostic markers

are urgently required in ALS, and have implications both for clinical trial de-

signs and individualised patient care.



Chapter 7

Summary

ALS is a fatal neurodegenerative condition affecting both upper and lower

motor neurons. The initial diagnosis can be challenging and there are cur-

rently no disease-modifying treatments available.

The main objective of this thesis was to comprehensively evaluate the role of

MRI as a biomarker of ALS. There is currently an urgent and unmet need for

viable diagnostic, prognostic and monitoring biomarkers for the management

for ALS. A diagnostic biomarker would ideally reduce the diagnostic delay

and consequently, belated entry into clinical trials. A prognostic biomarker

provides much needed information for patients, caregiver and healthcare pro-

fessionals which is essential for care-planning, end-of-life decisions and strati-

fication for clinical trials. A monitoring marker is essential for the evaluation

of emerging disease modifying-drugs.

In order to thoroughly evaluate MRI as a biomarker the following approach

has been adopted: First, an extensive literature review was conducted to

identify optimal methodological frameworks. The consequently gathered

data was then used to describe key patterns of ALS-associated structural

brain changes based on cross-sectional and longitudinal comparisons. Lon-

gitudinal brain changes in ALS were discussed from a monitoring perspec-

tive. The core disease-related imaging measures were evaluated as diagnostic

203
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biomarkers and used to predict survival.

The reason to conduct a literature review across multiple neurodegenerative

conditions is to evaluate imaging methodology, sample size consideration,

enrolment bias, follow-up rates and drop-out rates can be gained.

The main methodological lessons learned from the formal literature review is

to include incidence and prevalence patients, enrolment patients shortly after

their diagnosis, incorporate multiple follow-up assessments, which helps to

evaluate the potential of MRI as a monitoring marker. Based on the reviewed

literature, a follow-up interval of 4 months seems optimal in ALS. It allows

for follow-up data of fast progressing patients, where a comparatively high

drop-out rate is expected. It is also clear from the review, that a multimodal

imaging approach is advisable to detect the different sensitively thresholds

of these techniques to capture disease-related changes.

In general, ALS patients are eager to participate in research. In total, 86

patients were recruited and scanned every 4 months up to three times. The

drop-out rate was as expected 23.25% for the 1st follow-up, 26.78% for the

2nd follow-up and 41.46% for the 3rd follow-up which took place a year after

the baseline scan. In combination with the existing MRI data included in

these studies, the average disease duration was 2.25 years at baseline and the

average baseline ALSFRS-R was 37.4/48.

The objective of Chapter 3 was to describe key brain changes associated with

ALS. Even though the core pathology, such as the corticospinal tract degen-

eration has been extensively investigated in the past, the key segments, such

as the lateral fibres of the corona radiata, have been surprisingly understud-

ied. From a biomarker perspective, it is crucial to identify which segments of

the CST are the most vulnerable as this would be the most likely biomarker

candidate. In addition, it is essential to define which diffusion parameter is

the most sensitive to capture disease-related change. These questions also

apply to the degeneration of the corpus callosum as another key brain region

affected by ALS. A simple group comparison was first performed to highlight
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ALS-associated change. Next the average white matter integrity of CST and

CC segments were calculated. The radial diffusivity within the body of the

corpus callosum and the cerebral peduncle best discriminated patients and

controls.

The corticospinal tract and the corticobulbar tracts run separately in the

internal capsule. In accordance to previous grey matter studies, phenotypic-

specific degeneration was successfully highlighted within the white matter by

stratifying patients based on their site of onset (bulbar or spinal onset). Ad-

ditionally, clinical variables mapped homunculus-wise degenerative change

in the corona radiata complementing previous grey matter studies. This

chapter demonstrated that the corticospinal tracts and corpus callosum ex-

hibit phenotype-specific segmental vulnerability in ALS. Furthermore, it was

demonstrated that the diffusivity various parameters have distinct sensitivity

profile to capture ALS-related change.

These results have direct implications for the biomarker research, e.g. which

brain areas and which diffusivity measures are optimal candidate for a diag-

nostic biomarker which was further explored in the follow-up chapters.

The next chapter focused on longitudinal MRI changes in ALS from a moni-

toring biomarker perspective. An ideal monitoring biomarker is expected to

capture structural changes within a relatively short period of time.

The inherent heterogeneity in ALS makes the interpretation of longitudinal

studies challenging. Patients enrolled in such a study may already differ

considerably at baseline. Additionally, longitudinal studies of ALS employ

distinctly different study designs and statistical models which makes drawing

unifying conclusions on the longitudinal course of ALS difficult. This chapter

discusses differences in study design and how it affects study outcomes.

The main aim was to describe the evolution of pathological change over time

and explore whether cortical thickness, grey matter density and white matter

diffusivity indices can be used to map these longitudinal changes.
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First, disease-related changes at baseline were compared to a group of healthy

controls. This is essential to evaluate possible floor or ceiling effects. Patients

exhibited considerable changes in the fractional anisotropy and radial diffu-

sivity of the corticospinal tract as well as grey matter density alterations in

the precentral gyrus. No significant cortical thinning was identified.

The subsequent analyses explored if a 4-month follow-up interval is sufficient

to capture progressive radiological changes. This analysis simulated a clinical

trial scenario, where patients in different stages of their disease are enrolled.

The approach was repeated using a longer follow-up interval of 8 months.

Only grey matter density changed significantly within the 4-month interval

in the precentral gyrus and the cerebellum. Based on the 8-month follow-

up interval, each MRI measure was able to detect progressive degenerative

change.

In an additional analysis, presymptomatic patients were selected. These pa-

tient subgroups did not report physical disabilities of their lower limbs or

their bulbar muscles over the course of the study, but exhibited structural

brain change in the corresponding brain regions: patients without bulbar dis-

ability exhibited reduced white matter integrity of the inferior lateral corona

radiata and patients without physical impairment of their lower limbs present

cortical thinning of the superior precentral gyrus.

This chapter concluded that a 4-month interval was not sufficient to capture

change for an average patient. Diffusion tensor imaging captured disease-

related structural brain changes early during the course of the disease, reach-

ing a floor effect. Grey matter degeneration appeared to start later which

could potentially become an objective measurement to track disease progres-

sion.

In chapter 5, the findings of chapter 3 were evaluated from a clinical perspec-

tive. Even though brain changes due to ALS have been extensively charac-

terised cross-sectionally, few studies capitalised on these results for clinical

applications. The difficulties in diagnosing ALS and the pathway how MRI
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may be used to decrease diagnostic delay has been established. Referring to

oncology research as an example of biomarker development, ALS research

needs to focus on discriminating patients from healthy controls and mimics

using candidate biomarkers.

In this chapter, a binary logistic ridge regression was performed to determine

the probability of an individual brain scan exhibiting ALS-related changes.

The advantage of this approach is that the clinician can integrate this infor-

mation with other clinical markers.

Using multiple MR metrics of multiple brain regions and correcting for age-

related brain changes, classification accuracy was achieved with good sensi-

tivity and moderate specificity. The results have been further validated in

an independent sample and by their follow-up scans.

Future research needs to focus on discriminating mimic conditions and ex-

pand the approach to include different MRI platforms.

Chapter 6 explored MRI measures as possible prognostic biomarkers. The

heterogeneity of ALS makes accurate individual prognosis challenging. It,

furthermore, precludes smaller clinical trials to demonstrate effectiveness of a

medications. A validated prognostic tool could stratify patient subgroups for

clinical trials and would enable the planning of supportive interventions for

an individual patient. This chapter describes the development and validation

of a prognostic tool to predict 18-month survival based on ALS-associated

white and grey matter changes. Three binary ridge regressions were per-

formed based on: 1. clinical and demographical variables linked to survival,

2. disease-related MRI measures and 3. both clinical and MRI data.

Combining clinical and MRI variables, high prediction accuracy was achieved

with high sensitivity and specificity. Using MRI metrics alone, similar ac-

curacy and sensitivity was reached, but specificity was slightly lower. Using

clinical measures alone, accuracy was considerably lower and misclassified

patients had significantly less physical disability. The analyses of misclassi-
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fied patients based on MRI features or the combined features did not reveal

any differences. The advantages of each approach are discussed from a cost-

efficiency, practicality, accuracy perspective as well as their utility for clinical

trials. Overall, the results support the role of MRI as an objective prognostic

tool in ALS.

7.1 Future directions

The overall aim of the thesis was to comprehensively evaluate the role of MRI

as a biomarker for ALS. Throughout the chapters, it was demonstrated that

MRI has the potential to identify core ALS-related changes, it can be used

to predict survival and can capture progressive changes longitudinally. In

conclusion, the findings suggest the MRI is indeed a robust surrogate marker

of ALS-associated pathology and MRI metrics may be used as diagnostic,

prognostic and monitoring markers in ALS. The findings of this large single-

centre biomarker study need to be replicated in large, multi-centre, multi-

platform studies and tested in real-life clinical applications and clinical trials.
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S., Meindl, T., Pouwels, P. J., Hauenstein, K.-H., and Hampel, H. (2011b).



236 BIBLIOGRAPHY

Multicenter stability of diffusion tensor imaging measures: A European

clinical and physical phantom study. Psychiatry Research: Neuroimaging,

194(3):363–371.

The Lancet Neurology (2014). Bringing forward the diagnosis of Alzheimer’s

disease. The Lancet. Neurology, 13(10):961.

Toosy, A. T., Werring, D. J., Orrell, R. W., Howard, R. S., King, M. D.,

Barker, G. J., Miller, D. H., and Thompson, A. J. (2003). Diffusion

tensor imaging detects corticospinal tract involvement at multiple levels

in amyotrophic lateral sclerosis. Journal of neurology, neurosurgery, and

psychiatry, 74(9):1250–7.

Trouillas, P., Takayanagi, T., Hallett, M., Currier, R., Subramony, S., Wes-

sel, K., Bryer, A., Diener, H., Massaquoi, S., Gomez, C., Coutinho, P.,

Hamida, M., Campanella, G., Filla, A., Schut, L., Timann, D., Honnorat,

J., Nighoghossian, N., and Manyam, B. (1997). International Coopera-

tive Ataxia Rating Scale for pharmacological assessment of the cerebellar

syndrome. Journal of the Neurological Sciences, 145(2):205–211.

Turner, M., Hammers, A., and Al-Chalabi, A. (2005). Distinct cerebral

lesions in sporadic and ’D90A’SOD1 ALS: studies with flumazenil PET.

Brain.

Turner, M. M. R., Grosskreutz, J., Kassubek, J., Abrahams, S., Agosta, F.,

Benatar, M., Filippi, M., Goldstein, L. H., van den Heuvel, M., Kalra, S.,
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