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SUMMARY 

This thesis reports on a research project aimed at developing comprehensive methods for 

quantifying the benefits and risks of urban cycling, investigating the environmental exposures of 

cyclists and developing a tool for optimising the design of cycling infrastructure. These goals 

have been achieved through a combination of statistical modelling, mathematical programming 

and data collection and analysis. There are many good reasons to encourage urban cycling such 

as the reductions in the social costs of air and noise pollution and the promotion of active and 

healthy lifestyles. However, there are also risks associated with urban cycling such as traffic 

collisions and increased inhalation of air pollutants. Promotion of cycling also requires 

investment of resources such as capital and road space. For these reasons it is essential that all 

of these benefits and risks can be quantified in common units to enable evidence-based policy 

formulation. In order to mitigate the risks of cycling, the factors affecting the variability in these 

risks also need to be understood so that they can be mitigated. Finally, in order to design 

measures to promote cycling in such a way as to optimise for these impacts, it must be possible 

to model the change in travel behaviour and associated impacts resulting from such measures. 

The first step taken in this thesis was to conduct a thorough review of the literature relating to 

quantification of health and environmental impacts of transportation, in-travel environmental 

exposures and modelling of travel behaviour. The literature review revealed that there was 

significant heterogeneity in the modelling techniques and a lack of studies which considered the 

variation in benefits and risks experienced by individual cyclists. A comprehensive framework 

was therefore developed to quantify the health, environmental and travel time impacts of 

cycling. Different mathematical models from the literature were used to quantify impacts 

related to physical activity, pollution inhalation, traffic collisions, noise, vehicle emissions and 

travel time. Using census data, this framework was applied to a case study of an increase in 

cycling in Dublin. It was shown that, at a societal level, the total net health and environmental 

impacts of increased cycling in Dublin would be strongly positive. When travel costs are also 

considered, the uncertainty becomes greater but the best estimate of the net impact is still 

positive. A framework was also developed for quantification of the expected benefits and risks 

experienced by an individual cyclist switching from driving to cycling. The application of this 

framework to a case study of Dublin was the first study to investigate the variation in health 

impacts of cycling experienced by individuals of different ages, genders and travel distances. A 

stochastic simulation approach was employed in order to calculate distributions of each health 

impact reflecting both the uncertainty in the model parameters and the variation among 
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individual characteristics. It was shown that for some groups, in particular males aged 20-30, 

cycling can have negative expected net health impacts. 

The literature review also indicated that one particular health impact of cycling—in-travel 

pollutant inhalation—was relatively poorly understood in terms of the factors affecting its 

variation. In order to investigate this further using an exposure study, a new environmental 

sensing node—the BEE node—was first designed and built using relatively low-cost pollution 

sensors and electronics. The BEE node’s gaseous pollutant measurements were calibrated and 

validated to a degree of accuracy comparable with much bulkier and expensive equipment. 

Using the BEE node, two studies of the environmental exposures of cyclists in Dublin were 

designed and carried out. Volunteer cyclists cycled through Dublin while collecting data about 

the pollution and noise they were exposed to. These data were analysed along with time-

resolved information about the cycling facilities they used, the vehicle traffic volumes they 

interacted with and the weather conditions. The analysis produced new insights such as the 

observation that while segregated cycle lanes decreased pollution exposures, roadside cycle 

lanes and bus lanes actually increased exposures. 

Having developed models for quantifying the benefits and risks of cycling, the next step was to 

develop a model for predicting the change in levels of cycling and driving which would result 

from a given intervention. This required a disutility function for cycling and while a small number 

of studies have previously suggested functional forms, no study had attempted to calibrate or 

validate such a function. A new method for calibrating a cycling disutility function was therefore 

developed. The method involves formulating the calibration problem as a Mathematical 

Programme with Equilibrium Constraints (MPEC) and solving the MPEC using a descent-based 

method. A new cycling disutility function—the DOC function—was also proposed based on 

previous research into the factors affecting cycling disutility. Using the newly developed 

calibration method, this function was calibrated and its accuracy was validated based on data 

from the Dublin network. 

The final contribution of this thesis was a tool for systematically designing a cycle network in 

order to optimise the resulting net impacts to the network users and society. This Network 

Design Problem (NDP) is formulated as an MPEC and a solution approach is presented which is 

uses a genetic algorithm (GA) to find the optimal solution. The problem formulation and solution 

algorithm are tested using a numerical example and the GA algorithm was shown to efficiently 

converge to a near-optimal solution for the cycle network design. 
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Chapter 1: Introduction 

The overarching goal of this thesis was to develop models to quantify the benefits and risks of 

urban cycling and tools to allow these benefits and risks to drive infrastructure design and 

investment. 

There are many reasons why it is important to quantify and optimise for the benefits and risks of 

urban cycling. Cycling as a mode of transport avoids the negative external costs of driving such 

as air pollution, carbon emissions and noise and can also reduce the public health costs 

associated with physical inactivity and obesity. However, there are also risks associated with 

urban cycling which should be managed. These risks include traffic collisions and in-travel 

inhalation of harmful air pollutants. Any measures to promote cycling such as infrastructure 

provision and financial incentives also have a monetary cost. Therefore, it is essential that the 

health and environmental benefits and risks of urban cycling can be quantified in order to inform 

evidence-based policy formulation.  

Transportation engineers, urban planners and politicians cannot act to increase the modal 

shares of cycling directly. They can only implement measures which are expected to influence 

modal shares such as building new cycle lanes or offering tax relief on purchases of bicycles used 

for commuting. For this reason, there is also a need for models which can predict the changes in 

cycling modal shares and route choices which would result from particular interventions. The 

ideal solution would be an end-to-end tool allowing stakeholders to design cycling-focussed 

interventions in order to maximise the resulting societal benefit. With this overall goal in mind, 

the specific objectives of this thesis are outlined in the next section. 

1.1 Research Objectives 

The main objectives of this thesis are: 

1. To develop a comprehensive framework for quantification of the health, environmental 

and travel time impacts of increases in urban cycling at a societal level and to 

demonstrate this framework with a case study. 

2. To develop a framework for quantifying the health impacts of a single individual 

switching from driving to cycling and to assess whether or not the expected health 

impacts of cycling are positive for all age and gender groups. 

3. To design and build a prototype environmental sensing node capable of being carried by 

a cyclist and monitoring their exposure to gaseous and particulate pollution. 
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4. To investigate the extent to which the environmental exposures of cyclists are affected 

by factors such as motor vehicle traffic, cycling facilities and weather conditions. 

5. To develop a methodology for calibrating a disutility function for cyclists based on cyclist 

traffic observations on a small number of roads, and to use this methodology to produce 

and validate a suitable disutility function for cyclists. 

6. To develop a tool capable of finding the optimal design for a cycle network in an existing 

road network, taking into account health, environmental and travel time impacts as well 

as infrastructure costs. 

1.2 Organisation of thesis 

The organisation of the rest of this thesis, which is illustrated in Figure 1.1 is as follows. Chapter 

2 reviews the relevant literature in four research areas related to this thesis: quantifying the 

health and environmental impacts of cycling, monitoring of in-travel environmental exposures, 

analysis of travel-behaviour of cyclists and macroscopic modelling of transportation networks.  

Based on the insights gained from Chapter 2, Chapter 3 develops models for comprehensively 

quantifying the total societal impacts of a given increase in the modal share of cycling. The 

framework is also applied to a case study of Dublin and the results are reported. 

One of the findings from the literature review was that there has been a lack of research into the 

benefits and risks of cycling at an individual level. Chapter 4 describes a study carried out to 

addresses this need. Models are developed for quantifying the distribution of health benefits 

and risks experienced by individuals who switch from driving to cycling. A case study of Dublin is 

carried out and the results are reported. 

One particular health impact of urban cycling—in-travel exposure to air pollution—was found in 

the literature review to be relatively poorly understood in terms of the factors affecting its 

variability. In order to address this problem using an exposure study, a custom environmental 

sensing node, suitable for use by urban cyclists, was developed and calibrated. This process is 

described in Chapter 5. 

Chapter 6 describes the planning, implementation and results of two field studies which 

investigated the factors affecting the environmental exposures of cyclists. These studies made 

use of the sensing node developed in Chapter 5. 

With models in place for quantifying the benefits and risks of given amounts of cycling, the next 

step was to develop a model for predicting the change in levels of cycling and driving which 
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would result from a given intervention, such as a new piece of infrastructure. Chapter 7 

describes a study which achieved this by proposing a new disutility function for cycling, 

calibrating its parameters and validating its accuracy in predicting cyclist behaviour. 

Chapter 8 builds on the foundations of all the previous chapters in order to develop a modelling 

framework and solution algorithm for the optimal design of cycle networks, taking into account 

the health and environmental impacts of cycling and driving. 

Chapter 9 concludes the thesis by summarising the main contributions of the thesis, providing a 

critical assessment of the research, discussing the implications for research and policy and 

suggesting some directions for future research. 
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Figure 1.1 Organisation of the thesis. Legend provides explanations of connections between 

chapters 
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Chapter 2: Literature Review 

The research reported in this thesis lies at the intersection of several fields of research and, as 

such, builds on previous works in diverse fields. In particular, this thesis builds on previous 

studies in the following areas: quantifying the health and environmental impacts of transport, 

monitoring of in-travel environmental exposures, analysis of travel-behaviour of cyclists and 

macroscopic modelling of transport networks. The most relevant research to date in each of 

these areas is described in this chapter in order to provide context for the original work to 

follow. 

2.1 Quantification of the health impacts of active travel 

This contents of this section are based on work reported in Doorley et al. (2015b). 

2.1.1 Overview of Studies 

A comprehensive review was carried out of studies which quantitatively assessed the health 

impacts of real or simulated transport scenarios involving increased active travel and included 

health outcomes such as mortality, life expectancy or Burden of Disease (BOD). An overview of 

the 24 studies considered in this review is given in Table 2.1. Nine of the studies considered 

changes in walking and seventeen considered changes in cycling. The study designs in the papers 

considered can be grouped into five broad categories: studies where actual data from before 

and after an intervention were used; studies where a sub-population underwent a hypothetical 

change in travel behaviour; studies where the entire population underwent a hypothetical 

change in travel behaviour; studies where travel behaviour responses to a hypothetical 

intervention were simulated and one study which simulated the impacts of policy changes using 

System Dynamics Modelling (SDM).  

The first type of study design simply used recorded data regarding traveller behaviours before 

and after an intervention. However, in many cases reliable data regarding use of active travel is 

unavailable. Bike share schemes are a notable exception as they can provide reliable 

disaggregate information on the cycling patterns of a population in response to the introduction 

of the scheme. The first quantitative assessment of health impacts of such a scheme was 

conducted by (Rojas-Rueda et al., 2011) to evaluate the public bike sharing initiative, Bicing, in 

Barcelona, Spain. It was assumed that 90% of the trips made by Bicing users were new cycling 

trips which would have otherwise been made by car. However, this assumption has been 

criticised by Fishman (2011) who states that the available data show that only 9.6% of Bicing 
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trips substitute for a car journey and so, that study probably overestimated the benefits of the 

scheme. Fishman (2011) also evaluated the benefits of the Bicing scheme but used publicly 

available reports to estimate not only the number of trips and distance travelled per day, but 

also the proportions of these trips which were new trips and which substituted for trips by 

walking, private bike and other modes. A more recent study by Woodcock et al. (2014) 

evaluated the London bicycle sharing system, taking advantage of detailed user data. The modal 

shift attributable to the use of the scheme was estimated from survey responses from registered 

users which prevented unrealistic assumptions about the proportion of trips which were 

replacing car trips.  

The second and most commonly used approach for defining scenarios was to consider a 

situation where some portion of current or future trips undertaken by private car was shifted to 

active travel and/or public transport. This approach assumes that a small sub-population can 

make a fundamental change to their travel behaviour without any change to the behaviour of 

the rest of society. The third approach, taken by four studies, (Jarrett et al., 2012; Maizlish et al., 

2013; Woodcock et al., 2009; Woodcock et al., 2013) considered more holistic changes in travel 

behaviour whereby, instead of an isolated sub-population switching from motorised travel to 

active travel, the distribution of times spent in active travel across the whole population was 

shifted positively. Current and hypothetical transport scenarios being considered were used to 

derive mean distances walked and cycled per year and per week. Lognormal distributions 

(because distributions of time spent walking and cycling are non-negative and are empirically 

known to have long tails on the positive side of the peak) were fit about these means to give 

age-specific and sex-specific active travel-time distributions. A characteristic of all of these 

hypothetical approaches is that they give the assessment little value as a policy formulation 

instrument as no consideration is given to the courses of action which may help policymakers to 

achieve the scenarios.  

The fourth approach evaluated the impacts of travel behaviour changes resulting from specific 

interventions. Two studies (de Nazelle et al., 2009; Dhondt et al., 2013) simulated travel 

behaviours before and after the intervention. using activity based travel analysis (Axhausen and 

Gärling, 1992). de Nazelle et al. (2009) developed a custom MATLAB (The MathWorks Inc., 2016) 

model, BESSTE (Built Environment Stochastic Spatial Temporal Exposure), to simulate travel 

activity patterns before and after a built environment transformation. Activity diaries were 

generated for each simulated individual from the Environmental Protection Agency’s (EPA) 

Consolidated Human Activity Database (CHAD). The home locations and locations of daily 
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activities were then decided by a stochastic selection process subject to a trip generation gravity 

model, which models attraction between origins and destinations by an analogy to Newton’s 

gravitational formula (Sheffi, 1985). The mode choice taken to access each destination was then 

selected using a logit model.  

Dhondt et al. (2013) simulated travel activity patterns before and after an increase in the cost of 

fuel using the FEATHERS (Forecasting Evolutionary Activity-Travel of Households and their 

Environmental Repercussions) model, whose activity scheduling  engine is based on decision 

trees derived from activity diary data. FEATHERS uses these sequential decision trees to predict 

where and when individual activities are conducted and - if transport is required - the mode 

taken, for a simulated population. Origin-destination matrices and modal choices are then 

extracted from the simulated activity patterns, and iteratively assigned to the road network. 

These activity based models have greater potential for the evaluation of transport policies or 

interventions than methods which simply define hypothetical transport scenarios without 

considering the instruments which may affect such changes. However, they are much more data 

and resource intensive and so, may not be suitable for many practical applications. Schepers et 

al. (2015) estimated the impacts of increasing the density of cycle facilities in a hypothetical 

Dutch city. Previous research into the relationship between cycle lane density and cycling mode 

share was used to estimate how much additional cycling would take place due to the additional 

infrastructure. 

Finally, Macmillan et al. (2014) used SDM to simulate three policy scenarios. SDM is a field which 

incorporates knowledge of strategic decision making and feedback loops into simulation of 

complex bounded systems (Richardson, 2011). Using this framework, Macmillan and colleagues 

developed equations to simulate the effects of three intervention policies based on quantitative 

and qualitative research and local data. Feedback effects such as improvements in infrastructure 

in response to increases in cycling rates were also incorporated into their simulation. 

Having defined the scenario of interest, the health impacts of the increase in active travel 

relative to a baseline or counter-factual could be estimated.  Figure 2.1 and Figure 2.2 show a 

guideline of the various processes which were used for translating these study scenarios and 

interventions into quantified health impacts. In order to keep the diagrams compact, not every 

variation in these processes has been shown but the figures should give the reader an idea of 

the modelled pathways.  These processes are discussed in sections 2.1.2 and 2.1.3. 
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Table 2.1 Summary of studies reviewed 

Study Scenario Study Location 
Active 
modes 

de Nazelle et 
al. (2009) 

Hypothetical built environment 
transformation 

Orange County, NC, USA Walking 

Woodcock et 
al. (2009) 

Hypothetical transportation strategies to 
reduce greenhouse gas emissions. 

London, UK 
Delhi, India 

Walking  
Cycling 

Gotschi (2011) Three hypothetical transport scenarios 
involving higher modal shares of cycling 

Portland, Oregon Cycling 

Hartog et al. 
(2011) 

Hypothetical transition from car driving to 
cycling for 500,000 people for short daily 
trips 

Netherlands Cycling 

Lindsay et al. 
(2011) 

Hypothetical transition from car driving to 
cycling for short trips 

Urban areas in New Zealand Cycling 

Rojas-Rueda 
et al. (2011) 

Assessment of existing bicycle share scheme Barcelona, Spain Cycling 

Fishman et al. 
(2012) 

Assessment of existing bicycle share scheme Barcelona, Spain Cycling 

Grabow et al. 
(2012) 

Hypothetical elimination of short 
automobile trips and replacement of 50% 
with cycling.  

Upper midwestern USA Cycling 

Holm et al. 
(2012) 

Hypothetical transition from car driving to 
cycling for trips to place of work or 
education on weekdays 

Copenhagen, Denmark Cycling 

Jarrett et al. 
(2012) 

Seven hypothetical scenarios where changes 
in transport contribute to reductions in CO2 
emissions. 

Urban areas in England and 
Wales 

Walking  
Cycling 

Rabl and de 
Nazelle (2012) 

Hypothetical transition from car driving to 
walking or cycling for commuting to and/or 
from work. 

Not location-specific Walking  
Cycling 

Rojas-Rueda 
et al. (2012) 

Eight hypothetical transport scenarios 
involving replacement of car trips by active 
travel and public transport 

Barcelona, Spain Walking 
Cycling 

(Dhondt et al., 
2013) 

Hypothetical increase in fuel price Flanders and Brussels, 
Belgium 

Walking  
Cycling 

Maizlish et al. 
(2013) 

Three hypothetical transportation strategies 
to reduce greenhouse gas emissions (GHGE). 

San Francisco Bay Walking  
Cycling 

Olabarria et al. 
(2013) 

Hypothetical scenario where people not 
meeting physical activity guidelines convert 
walkable driving trips to walking. 

Catalonia, Spain Walking 

Rojas-Rueda 
et al. (2013) 

8 hypothetical transport scenarios involving 
replacement of car trips by active travel and 
public transport 

Barcelona, Spain Walking 
Cycling 

Woodcock et 
al. (2013) 

3 hypothetical scenarios described by the 
Visions 2030 project involving increased 
levels of walking, cycling, public transport 
and electric vehicle use. 

Urban areas in England and 
Wales outside of London 

Walking  
Cycling 

Deenihan and 
Caulfield 
(2014) 

Hypothetical increase in cycling share due to 
construction of a segregated cycleway. 

Leinster, Ireland Cycling 

Edwards and 
Mason (2014) 

Lifetime impact of switching from driving to 
cycling for a 10km daily round trip 

U.S.A. Cycling 

Macmillan et 
al. (2014) 

5 hypothetical policy scenarios over the next 
40 years. 

Aukland, New Zealand Cycling 
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Study Scenario Study Location 
Active 
modes 

Woodcock et 
al. (2014) 

Assessment of existing bicycle share scheme London, UK Cycling 

Buekers et al. 
(2015) 

Estimated actual cycling on two new bicycle 
highways. 

Flanders Cycling 

Schepers et 
al. (2015) 

Estimated travel behaviour changes in 
response to increased density of cycle lanes 

Hypothetical Dutch city Cycling 

Rojas-Rueda 
et al. (2016) 

Hypothetical transitions to walking and 
cycling from other modes. 

Six European cities: 
Barcelona, Paris, Prague 
and Warsaw, Basel and 
Copenhagen 

Walking  
Cycling 

 

 

 



 

 

 Figure 2.1 Process Flow for Quantification of the Health Impacts of Active Travel 
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Figure 2.2 Dose Response Function (DRF) Process Flow
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2.1.2 Outcome Variables 

All studies reviewed used a health summary measure(s) as the outcome of interest which was 

(were) sometimes converted to a monetary equivalent. Table 2.2 and the bottom row of Figure 

2.1 show the health summary measures which were the outcomes of interest in the studies 

reviewed. Although choice of transport mode can affect many aspects of both mortality and 

morbidity (Garber et al., 2011), many of the studies neglected morbidity. The Health Economic 

Assessment Tool (HEAT) released in 2011 (WHO, 2011) considers the economic value of 

reductions in mortality only and this was the most widely used tool for estimating the health 

effects of walking and cycling in the studies reviewed. As outlined in Rutter et al. (2013), 

evidence regarding all-cause mortality is considered to be more robust and so, the inclusion of 

morbidity would lead to greater uncertainty in the results of an assessment. Despite the 

apparent reliability of using all-cause mortality as the outcome variable, it can be expected that 

exclusion of the effects of morbidity in assessments of the health impacts of active travel may 

lead to underestimation of total health impacts. It should also be noted that in 2011, addressing 

morbidity was identified as the single most important improvement to be made to HEAT in 

future revisions (WHO, 2011) . However, focussing on mortality only may still be preferable in 

some cases. For example, when the aim is to influence policy, conservatism and transparency 

may be more important than precision. Several of the studies reviewed did consider morbidity 

as an outcome variable in addition to mortality. BOD is a summary measure of the impact of a 

disease on global health which takes into account both years lost and years spent in poor health. 

The BOD approach was taken by seven studies. It should be noted that BOD could produce more 

conservative results than mortality if the range of diseases considered is not comprehensive 

enough. For example, Rojas-Rueda et al. (2013) did not consider depression as an outcome but 

the studies of Woodcock and colleagues found significant increases in the BOD due to 

depression. Several other studies quantified individual health events such as hospitalisations or 

incidence of cancer. 
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Table 2.2 Health summary measures and monetisation in studies reviewed 

Study Health Summary Unit of Measurement Monetisation 

de Nazelle et 
al. (2009) 

- - - 

Woodcock et 
al. (2009) 

Disease-specific BOD Deaths 
YLL 
YLD 
DALYs 

- 

Gotschi (2011) All-Cause Mortality 
Cost of illness 

Deaths 
Health care costs 

VSL 

Hartog et al. 
(2011) 

All-Cause Mortality 
Disease-Specific 
Morbidity 

Deaths 
Disease Incidence 
ER Visits 
School-loss days 
Worker Productivity 

VSL 
"Damage Function" (BenMAP) 

Lindsay et al. 
(2011) 

All-Cause Mortality YLLs - 

Rojas-Rueda 
et al. (2011) 

Mortality 
Morbidity 
Health Care Costs 
Energy Expenditure 

Deaths 
Restricted Activity Days 
Hospital Admissions 
kJ expended over baseline 
MET rate 

VSL 
Cost per Health Event (HAPiNZ) 

Fishman et al. 
(2012) 

All-Cause Mortality Deaths - 

Grabow et al. 
(2012) 

Mortality 
Morbidity 

Not Stated Value per km of cycling 
Value per km of walking 

Holm et al. 
(2012) 

Disease-specific BOD DALYs - 

Jarrett et al. 
(2012) 

Incidence of specific 
diseases and injuries 

Treatment Costs to 
National Health Service 
(NHS) 

Estimates of disease  treatment 
costs from PubMed search. 
Estimates of injury treatment 
costs from NHS and the 
Personal and Social Services 
Research Unit 

Rabl and de 
Nazelle (2012) 

All-Cause Mortality Deaths 
YLLs 

VSL 
VOLY 

Rojas-Rueda 
et al. (2012) 

All-Cause Mortality Deaths 
YLLs 

- 

(Dhondt et al., 
2013) 

Mortality 
Morbidity 

YLLs 
YLDs 
DALYs 

- 

Maizlish et al. 
(2013) 

Disease-specific BOD DALYs - 

Olabarria et 
al. (2013) 

All-Cause Mortality Deaths VSL 

Rojas-Rueda 
et al. (2013) 

Disease-specific BOD DALYs - 

Woodcock et 
al. (2013) 

Disease-specific BOD 
All-Cause Mortality 

DALYs 
Deaths 

- 

Deenihan and 
Caulfield 
(2014) 

Mortality Deaths VSL 
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Study Health Summary Unit of Measurement Monetisation 

Edwards and 
Mason (2014) 

Mortality YLLs - 

Macmillan et 
al. (2014) 

Mortality 
Morbidity 
Health Care Costs 

Deaths 
Injuries 
Restricted Activity Days 
Hospital Admissions 

Cost of bicycling fatal injury 
(NZTA) 
Cost of pollution mortality 
(HAPiNZ)  
Cost of cycling serious injury 
(NZTA) 
Restricted Activity Days 
(HAPiNZ) 
Hospitalisation Costs (HAPiNZ) 

Woodcock et 
al. (2014) 

Disease-specific BOD 
All-Cause Mortality 

DALYs 
YLLs 

- 

Buekers et al. 
(2015) 

All-Cause Mortality 
Disease-specific 
Morbidity 

DALYs 
Medical Costs 
Productivity Losses 

VOLY 
Estimates of medical costs and 
productivity losses from Flemish 
studies. 

Schepers et 
al. (2015) 

All-cause Mortality Deaths 
YLLs 

VSL 

Rojas-Rueda 
et al. (2016) 

All-Cause Mortality Deaths - 

 

As shown in Figure 2.2, if mortality was the outcome variable; estimated changes to mortality 

rates could be used to directly estimate the reduction in number of deaths per year using a static 

approach or to calculate the resulting changes in life expectancy using a life tables approach. If 

BOD was the outcome variable, it was measured in Disability Adjusted Life Years (DALYs) 

(Murray and Acharya, 1997). DALYs can be considered as the sum of Years of Life Lost (YLL) and 

Years Lost Due to Disability (YLD). YLDs are calculated as the product of the duration of a 

condition in years and a “disability weight”, where a weight of 0 implies perfect health and the 

worst disabilities approach a weight of 1. As shown in Table 2.2, several of the studies reviewed 

also calculated equivalent monetary benefits for the estimated health benefits. If the health 

outcome considered was static mortality rate, the reduction in mortality could be translated to 

an equivalent monetary benefit using the Value of a Statistical Life (VSL) (Mankiw, 2011). This is 

the method used in HEAT. An advantage of VSL is that it is the most commonly used measure in 

transport appraisals and so it provides coherence and consistency with other estimates of 

mortality impacts. If the life tables approach was employed, the equivalent monetary benefit 

could be calculated using the Value of a Life Year (VOLY) (Desaigues et al., 2011).  None of the 

studies reviewed which considered DALYs, calculated an equivalent monetary benefit. As 

contended in Desaigues et al. (2011), VOLYs are a more appropriate measure of the cost of 

mortality due to air pollution and physical activity than VSL.  
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The strongest argument for this is that VSL is calculated with regard to accidental deaths which 

generally lead to many more years of life lost than deaths due to chronic pollution exposure or 

physical inactivity. Therefore, if VSL is used to monetise the mortality effects of pollution 

exposure or physical activity, the results are likely to be overestimated. This leads to the 

approach taken by Rabl and de Nazelle (2012) where the change in mortality due to air pollution 

and physical activity were monetised in VOLYs while deaths due to traffic collisions were 

monetised using VSL. The values used for VSL and VOLY are chosen at the discretion of the 

researcher and these values vary widely, particularly between Europe and North America. For 

example, Grabow et al. (2012) used a VSL of $7.4 million whereas Olabarria et al. (2013) used a 

VSL of € 1.3 million. In addition to the costs of morbidity and mortality, several studies 

quantified the impact on actual health care (Gotschi, 2011; Grabow et al., 2012; Jarrett et al., 

2012; Lindsay et al., 2011). However, with the exception of Jarrett et al. (2012), health care costs 

were only considered alongside morbidity and mortality costs, which were generally the main 

focus of these studies. 

2.1.3 Determinants of Health 

2.1.3.1 Physical Activity 

All studies reviewed included changes to physical activity levels as a determinant of health. As 

outlined in Table 2.3, physical activity levels could be described in terms of distance or time 

spent in active travel, metabolic equivalent of task (MET) hours or energy expenditure. These 

measures could relate to walking, cycling or engaging in any physical activity. The most suitable 

way of measuring physical activity depends on the data available as well as the Dose-Response 

Functions (DRF) to be used for estimation of health impacts. Various approaches were used 

across the studies to translate changes in physical activity to health benefits. The majority of 

these considered physical activity or walking and/or cycling as continuous variables and used 

published RRs and DRFs to determine the impact of the additional physical activity on a health 

summary measure as illustrated in  Figure 2.1 and Figure 2.2. This includes eight studies which 

calculated reductions in all-cause mortality using the approach of HEAT (see Table 2.3) and 

several studies which calculated reductions in mortality using RRs and/or DRFs from other 

sources. Five studies (Maizlish et al., 2013; Rojas-Rueda et al., 2013; Woodcock et al., 2009; 

Woodcock et al., 2013; Woodcock et al., 2014) used the WHO’s Comparative Risk Assessment 

(CRA) approach which involves estimating the change in DALYs due to specific diseases using RRs 

and DRFs. Conditions such as dementia, cardiovascular diseases, type II diabetes, breast cancer, 
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depression and colon cancer were considered. Since the exposure variable in these cases was 

total physical activity, it was necessary to also estimate non-travel physical activity. 

2.1.3.1 Air Pollution 

Pedestrians and cyclists do not produce any air pollution while travelling and thus, a modal shift 

towards active travel has the potential to decrease societal exposure to air pollution. However, 

persons switching from motorised travel to active travel may be exposed to higher inhalation 

doses of air pollution during travel time due to higher ventilation rates (McNabola et al., 2008). 

Therefore, both individual and external effects of air pollution should be considered in 

quantifying the health impacts of a modal shift. However, as shown in Table 2.4 most of the 

studies considered in this review only based their analysis on one or the other.  

Exposures to a range of particulate and gaseous pollutants were considered as determinants of 

health in the studies reviewed, including PM2.5, PM10, carbon monoxide (CO), sulphur dioxide 

(SO2), nitrogen dioxide (NO2), ozone (O3) and elemental carbon (EC). There is strong evidence 

that PM2.5 exposure is associated with increased long term risks of all-cause, cardiopulmonary, 

and lung cancer mortality (Brook et al., 2010; Chen et al., 2008). There has also been some 

evidence of effects of gaseous pollutants such as CO, SO2, NO2 and O3 on long term mortality. 

However, evidence has shown that, apart from SO2, the effects of these gaseous pollutants on 

mortality become non-significant when controlling for PM2.5 exposure and other covariates 

(Brook et al., 2010; Chen et al., 2008). The recent decline in the use of high-sulphur coal for 

domestic heating has led to large reductions in levels of sulphur dioxide in the U.S.A. and many 

European countries (Clancy et al., 2002; WHO, 2005) and this may be why SO2 was not 

considered in any of the studies reviewed. The most commonly considered pollutant in the 

studies reviewed was PM2.5. However, some other pollutants were also considered as shown in 

Table 2.4. In sensitivity analysis, several studies (Hartog et al., 2011; Rojas-Rueda et al., 2011; 

Rojas-Rueda et al., 2012) analysed the effect of an air pollutant not considered in their main 

analysis.  

The following two sub-sections discuss the methods used to quantify the impacts of external 

pollution and in-travel exposure to pollution respectively.  
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Table 2.3 Summary of physical activity effects considered in studies reviewed 

Study Unit of Measurement Exposure-Response Relationship 

de Nazelle et al. (2009) 

Daily energy expenditure 
Proportion of days exceeding USDHHS 
(1996) energy expenditure thresholds 

Woodcock et al. (2009) Physical Activity MET 
hours 

Various published RRs of specific 
diseases for physical activity. 

Gotschi (2011) 
Hartog et al. (2011) 

Time spent cycling 

HEAT for cycling 

Health care cost of inactivity 
proportional to number of inactive 
people 

Lindsay et al. (2011) Average distance cycled HEAT for cycling 

Rojas-Rueda et al. (2011) 

Distance cycled 
Range of RRs of mortality for cycling 
(0.5-0.90) based on published values 

Fishman et al. (2012) Average distance cycled HEAT for cycling 

Grabow et al. (2012) Average distance cycled HEAT for cycling 

Holm et al. (2012) Additional distance 
cycled 
Reduction in distance 
walked 

Values per km walked/cycled from 
New Zealand Transport Agency (2010, 
Vol. 2)  

Jarrett et al. (2012) Physical activity 
categorised as sufficiently 
active, moderately active 
or inactive. 

RRs of specific diseases between the 
physical activity categories from the 
WHO’s Comparative Quantification 
of Health Risks study 

Rabl and de Nazelle 
(2012) Physical Activity MET 

hours 

Various published RRs of specific 
diseases  for physical activity. 
Assuming linear relationship with 
maximum threshold. 

Rojas-Rueda et al. (2012) 

Time spent cycling 
Andersen RR of mortality for cycling 
with USDHHS (2008) DRF 

(Dhondt et al., 2013) Average distance cycled 
Average distance walked 

HEAT for cycling 
HEAT for walking 

Maizlish et al. (2013) Physical Activity MET 
hours 

RR of mortality for moderate physical 
activity from Woodcock (2011) 

Olabarria et al. (2013) Physical Activity MET 
hours 

Various published RRs of specific 
diseases for physical activity. 

Rojas-Rueda et al. (2013) Time spent in new 
walking 

HEAT for walking 

Woodcock et al. (2013) Average distance cycled 
Average distance walked 

Various published RRs of specific 
diseases for physical activity. 

Deenihan and Caulfield 
(2014) 

Physical Activity MET 
hours 

Various published RRs of specific 
diseases  for physical activity. 
RRs of all-cause mortality for walking 
and total physical activity from 
Woodcock (2011) 
RRs of all-cause mortality from 
Andersen (2000) 
HEAT for walking 
HEAT for cycling 

Edwards and Mason 
(2014) 

Average distance cycled HEAT for cycling 

Macmillan et al. (2014) 

Distance cycled 
RR of mortality from Andersen (2000) 
only applied to ages >45. 
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Study Unit of Measurement Exposure-Response Relationship 

Woodcock et al. (2014) 

Cycling distance range 

RR of mortality for cycling based on 
Andersen (2000) and Matthews (2007) 
with linear dose response vs. range of 
commuter cycling. 

Buekers et al. (2015) 

Physical Activity marginal 
MET hours 

Various published RRs of specific 
diseases  for physical activity. 
RRs of all-cause mortality for walking 
and total physical activity from 
Woodcock (2011). 
RR of mortality from HEAT (2014). 

Schepers et al. (2015) 
Time spent cycling RR of mortality from Kelly et al. (2014) 

Rojas-Rueda et al. (2016) 

Cycling MET hours 
RRs of disease-specific morbidity for 
physical activity from Woodcock 
(2013). 

 

 



 

 

 

Table 2.4 Summary of pollution effects considered in studies reviewed 

  In-travel exposure External exposure 

Study Pollutant Health Effects Pollutant Health Effects 

de Nazelle et al. (2009) PM10 

O3 

Proportion of days exceeding NAAQS 
thresholds 

- - 

Woodcock et al. (2009) - - PM2.5 RR of specific diseases from Ostro, 2004 

Gotschi (2011)   - - - 

Hartog et al. (2011) - - PM2.5 
 
O3 

Concentration response  functions for PM2.5 from US EPA 2006 
Regulatory Impact Analysis 
Exposure response functions for O3 from NAAQS 

Lindsay et al. (2011) PM2.5 
BS 

RR of mortality for PM2.5 from Pope, 
2002  
RR of mortality for BS from Beelen, 
2008  

NO2 
PM10 

RR of mortality from Tonne et al., 2008 

Rojas-Rueda et al. (2011) - - PM10 
CO 
Benzene 

Assumed impacts of air pollution estimated by HAPiNZ were 
proportional to vehicles kilometres travelled per square km 

Fishman et al. (2012) PM2.5 RR of mortality from Krewski 2009 - - 

Grabow et al. (2012)         

Holm et al. (2012) PM2.5 RR of specific diseases for PM2.5 from 
Pope, 2002  

- - 

Jarrett et al. (2012) - - - - 

Rabl and de Nazelle (2012) PM2.5 RR of mortality from Pope, 2002 PM2.5 RR of mortality from Pope, 2002 

Rojas-Rueda et al. (2012) PM2.5 RR of mortality from Krewski, 2009 PM2.5 RR of mortality from Krewski, 2009 

(Dhondt et al., 2013) EC RR of mortality from Janssen et al 
2011 

EC RR of mortality from Janssen et al 2011 
RRs of CVD hospital admissions from Tolbert et al., 2007 and Peng et al., 

1
9

 



  

  In-travel exposure External exposure 

Study Pollutant Health Effects Pollutant Health Effects 

RRs of CVD hospital admissions from 
Tolbert et al., 2007 and Peng et al., 
2009 

2009 

Maizlish et al. (2013) - - PM2.5 RR of specific diseases from Ostro, 2004 

Olabarria et al. (2013) - - - - 

Rojas-Rueda et al. (2013) PM2.5 RR of various diseases PM2.5 RR of various diseases 

Woodcock et al. (2013) - - PM2.5 RR of specific diseases from Ostro, 2004 

Deenihan and Caulfield (2014)  - - - - 

Edwards and Mason (2014) - - - - 

Macmillan et al. (2014) - - PM10 
CO 

Modelled health outomes based on changes in light vehicle emissions 
using HAPiNZ Health Effects Model. 

Woodcock et al. (2014) PM2.5 RRs of specific diseases from Ostro, B. 
2004 

- - 

Buekers et al. (2015) PM2.5 DRF based on WHO 2013 and Holland 
(2014) 

PM2.5 Assuming linear relationship between YLLs per person per year and 
concentration of PM2.5 

Schepers et al. (2015) BC 
NO2 

DRF based on Hoek et al. (2013b) - - 

Rojas-Rueda et al. (2016) PM2.5 RR of mortality from Hoek G. et al. 
(2013) 

- - 

2
0
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2.1.3.1.1 External Impacts of Air Pollution 

The first step taken in each study for calculating the avoided external cost of air pollution was to 

estimate the avoided emissions of various gaseous and particulate pollutants, usually using 

emission factors provided by an emissions prediction model as shown in  Figure 2.1. A number of 

emissions modelling software packages were used in the studies reviewed but the most 

common was the COPERT 4 model; a software tool which calculates average emission factors 

and total mass of air pollution and greenhouse gas emissions from road transport (Kousoulidou 

et al., 2008) based on data such as fleet characteristics and meteorological information. 

Woodcock et al. (2013) took a more simplified approach to this step by using published 

emissions factors. The external impacts of the avoided emissions could be estimated directly 

from the emissions by using cost estimates from previous studies or by estimating the resulting 

exposure concentrations, as shown in Figure 2.1. Rabl and de Nazelle (2012) combined the 

emissions results from COPERT 4 with the results of the ExternE study of the external costs of 

energy (ExternE) which reported damage costs per tonnes of transport emissions for various 

cities. Lindsay et al. (2011) and Macmillan et al. (2014) estimated the total morbidity and 

mortality impacts of their study scenario by using the results of the HAPiNZ study (Fisher et al., 

2007) which estimated the morbidity, mortality and health costs associated with road vehicle 

emissions in New Zealand. Other studies modelled the pollutant concentrations resulting from 

the change in emissions using an atmospheric dispersion model and estimated the impact of the 

change in population exposure. A range of commercial and non-commercial dispersion models 

were used but it is outside the scope of this thesis to discuss these in detail. Several reviews 

have already been devoted to the discussion of such models (Holmes and Morawska, 2006; 

Jerrett et al., 2005). Woodcock et al. (2013) used a simpler approach for this step, assuming that 

the change in transport related emissions would translate to a proportional change in ambient 

concentrations of primary PM2.5 attributable to transport. The concentration changes (or 

population-weighted concentration changes) of pollutants, estimated by a dispersion model or 

another method, could then be used to calculate the impacts on mortality (Hartog et al., 2011; 

Rojas-Rueda et al., 2012) or BOD (Maizlish et al., 2013; Rojas-Rueda et al., 2013; Woodcock et 

al., 2009; Woodcock et al., 2013) using published RRs and DRFs for different levels of pollution 

exposure as in Figure 2.2 or by using specialised software (Grabow et al., 2012).  Similar to the 

DRFs for physical activity, there were uncertainties associated with the published DRFs for 

pollution exposure used in these studies. In some cases, the responses of these models to 

variations in the RRs were tested using Monte Carlo simulation (Dhondt et al., 2013; Grabow et 

al., 2012; Rojas-Rueda et al., 2011; Rojas-Rueda et al., 2012) or by testing the upper and lower 
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confidence limits of the RRs directly (Holm et al., 2012). Rabl and de Nazelle (2012) created 

confidence intervals for the damage costs of air pollution analytically by assuming an 

approximately lognormal distribution, as described in (Spadaro and Rabl, 2008). 

The use of a dispersion model and DRF for quantifying external pollution impacts may provide 

more precise results than using generic cost estimates but also requires significantly more data 

and modelling effort and so may not be suitable in many cases. 

2.1.3.1.2 In-Travel Air Pollution Exposure 

Several of the studies reviewed considered the impacts of a change to in-travel exposures to air 

pollution for the travellers changing their mode of travel. (Dhondt et al., 2013) calculated the 

change in “dynamic exposure” for the population by taking an average of the concentrations of 

each zone at each time step, weighted based on the proportions of each zonal population 

exposed to each concentration (Dhondt et al., 2012a). In the rest of the studies which 

considered in-traffic pollution exposures, the methods used (illustrated in  Figure 2.1) were 

similar and based on inhaled dose rather than concentration. de Nazelle et al. (2009) estimated 

inhaled doses of PM10 and O3 by simulated individuals by integrating the product of 

stochastically determined minute ventilation rate (VE) and modelled pollutant concentration 

level over time for each activity throughout each day. Other studies used similar approaches but 

estimated the VE and pollutant concentrations in different ways.  The four studies by Rojas-

Rueda and colleagues obtained average exposure concentrations for each mode from previous 

studies (de Nazelle et al., 2008; de Nazelle et al., 2011). Hartog et al. (2011) and Rabl and de 

Nazelle (2012) took typical urban European concentrations and applied scaling factors to 

account for differences in exposure concentrations between modes. Holm et al. (2012) assumed 

constant in-travel concentrations for all modes based on average values from two street 

monitoring sites. Woodcock et al. (2014) used data on 24-hour average PM2.5 concentrations at 

20m2 resolution to estimate in-travel PM2.5 concentrations at the route-specific level and applied 

scaling factors to account for differences between each mode. A scaling factor was used for trips 

on the London Underground to account for the difference in potency between underground and 

surface-level PM2.5 (Seaton et al., 2005). The four studies by Rojas-Rueda and colleagues also 

obtained ventilation rates for each mode from previous studies (de Nazelle et al., 2008; de 

Nazelle et al., 2011). Hartog et al. (2011) and Holm et al. (2012) estimated the ventilation rate 

during cycling to be 2.2 times that of driving or resting based on the average of ratios reported 

by two studies (Vanwijnen et al., 1995; Zuurbier et al., 2009). Rabl and de Nazelle (2012) and 

Woodcock et al. (2014) assumed ventilation rates were proportional to MET rates. These 

methodological differences were minor and mostly dictated by the data which was available to 
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the researchers. The health impacts of short time periods spent in differentially polluted 

environments and inhalation doses of pollutants have not been studied extensively. For this 

reason, all of the studies which estimated health impacts using inhaled dose did so by calculating 

an “equivalent” long-term change in average concentration using the ratio of the time-averaged 

inhalation doses for the alternative scenarios as shown in Figure 2.1. The impact on mortality or 

BOD could then be calculated as illustrated in Figure 2.2 using concentration-response functions 

for all-cause mortality or specific diseases from the literature (Beelen et al., 2008a; Krewski et 

al., 2009; Ostro, 2004; Pope et al., 2002). This meant that the inhalation dose during the non-

travel daily activities also had to be estimated. This was done by assuming that non-travel time 

was spent in low intensity activities while exposed to typical ambient concentrations. Of the 

eleven studies which analysed in-travel pollution exposure, only three based their calculations 

on pollutant concentrations measured during travel in the study area (Rojas-Rueda et al., 2011; 

Rojas-Rueda et al., 2012; Rojas-Rueda et al., 2013). However, studies have shown that fixed 

monitoring stations can significantly underestimate or have little or no association with the 

exposure of commuters (Adams et al., 2001; Gulliver and Briggs, 2004). For this reason, future 

studies should consider taking in-travel measurements of pollution exposure where possible. 

Generally, the validity of using the “equivalent” concentration change is not totally clear but this 

seems to be the currently accepted approach in the literature. 

2.1.3.2 Traffic Collisions 

Increases in active travel affect collision risk for all users in a transport network. In this section, 

the quantification of collision risk is discussed first, followed by the quantification of the 

resulting benefits or detriments. In most transport environments, where modal share of active 

travel is low, pedestrians and cyclists face a greater risk of injury or death due to traffic collisions 

than motor vehicle users (Elvik, 2009) and cycling is perceived as being less safe than driving 

(Lawson et al., 2013). As shown in Table 2.5, many of the studies reviewed considered only the 

change in risk for the individuals who changed mode and assumed the risk was unchanged for 

those who did not. Eight studies (Edwards and Mason, 2014; Hartog et al., 2011; Holm et al., 

2012; Rojas-Rueda et al., 2016; Rojas-Rueda et al., 2011; Rojas-Rueda et al., 2012; Rojas-Rueda 

et al., 2013; Woodcock et al., 2014) took this approach by using historical collision data to derive 

the risk of a collision per unit distance for each mode under study. Dhondt et al. (2013) and 

Buekers et al. (2015) used a similar method but stratified by conflict type. Such methods are 

unrealistic and likely to overestimate the increase in traffic collisions due to increased active 

travel for a number of reasons.  
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Research has consistently shown a “Safety in Numbers” (SIN) effect associated with active travel 

modes (Jacobsen, 2003; Robinson, 2005) meaning that as distances travelled by cycling and 

walking increase, the risk of road traffic injury for pedestrians and cyclists decreases. For 

example, Robinson (2005) reported that “If cycling doubles, the risk per kilometre falls by about 

34%” and Jacobsen (2003) reported that “An individual’s risk while walking in a community with 

twice as much walking will reduce to 66%”. One study (Bhatia and Wier, 2011) has called into 

question the policy application of SIN given the small amount of empirical evidence supporting 

it. However, a later review (Elvik and Bjørnskau, 2017) of quantitative studies examining SIN 

found that the effect does indeed exist and that the model coefficient estimates found across 

different studies were highly consistent. Lindsay et al. (2011) accounted for the “Safety in 

Numbers” effect by first estimating the risk of traffic injuries and fatalities for motorised 

transport and cycling using historical collision data and then applying a correction factor to the 

cycling collision rates (see Figure 2.1) based on the aforementioned empirical estimate of  

Jacobsen (2003). However, this empirical correction does not account for the reduction in risk to 

the remaining users of all other modes due to the reduction in vehicle km travelled. Woodcock 

et al. (2009) and  Jarrett et al. (2012) used an elaboration of a traffic injury model described by 

Bhalla et al. (2007) to estimate the absolute numbers of road traffic collisions at the city level for 

all modes of transport after a modal shift. A traffic injury matrix was constructed for each road 

type and level of injury severity where the cells of each matrix contained the historical number 

of traffic collisions for each pairwise combination of striking mode and victim mode (e.g. the 

number of pedestrians injured by cars). To estimate the numbers of injuries after a modal shift, 

it was assumed that the number of injuries for each striking-victim pair was proportional to the 

distance travelled by the striking mode and to the distance travelled by the victim mode. 

Although this approach accounts for changes in collision risk for all modes after a modal shift, 

the proportionality assumption ignores evidence of a non-linear relationship between distance 

travelled and road traffic injuries (Elvik, 2009). Woodcock et al. (2013) and Maizlish et al. (2013) 

took a similar approach but introduced non-linearity by using power transformations of the 

exposure variables (distances). As the degree of the non-linearity of injury risk is not well 

established, both studies tested the sensitivity of these models by using a range of exponents of 

the distances travelled. Macmillan et al. (2014) also elaborated on the model of Bhalla et al. but 

only considered collisions between light vehicles and bicycles, ignoring other modes. Based on 

longitudinal collision data for the study area, they assumed a linear relationship between cycling 

trips and cycling collisions up to a threshold modal share of 2.5% after which a SIN effect of half 
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that recommended by Jacobsen (2003) was applied. A power transformation based on Turner et 

al. (2010) accounted for the non-linear impact of the number of light vehicles. 

Since most of the reviewed studies were based on hypothetical scenarios where cycling levels 

increased without any change in infrastructure, they did not consider the impact of cycling 

infrastructure on collision risk. The only study to consider this factor was (Schepers et al., 2015). 

The change in collision risk for cyclists resulting from provision of new cycle facilities was 

estimated using models from previous observational studies.  A range of effect sizes was used 

for each facility type In order to account for uncertainty in the effects of changes in routing and 

overall numbers of cyclists. 

Another factor which can confound predictions of road traffic injuries is underreporting of 

injuries in the baseline data. This is especially true for cycling as many cycling injuries are not 

recorded by police (Doherty et al., 2000). Woodcock et al. (2014) corrected their injury data for 

underreporting of injuries by applying London-specific scaling factors for each mode from 

published data comparing police data and hospitalisation rates. (Rojas-Rueda et al., 2013) also 

corrected their bicycle injury data in sensitivity analysis using generic European scaling factors 

recommended by the HEATCO (Developing Harmonised European Approaches for Transport 

Costing and Project Assessment) project (Bickel et al., 2006). 

For studies where mortality was the health outcome considered and only fatal injuries were 

modelled, the calculation of health impacts from the change in traffic injuries was trivial. In 

several studies where BOD was the outcome considered (Holm et al., 2012; Maizlish et al., 2013; 

Woodcock et al., 2009; Woodcock et al., 2011; Woodcock et al., 2013), the proportional change 

in incidence of non-fatal injuries was used to estimate the change in YLDs due to traffic injuries 

from baseline levels and the change in incidence of fatal injuries was used to estimate the 

change in YLLs . Rojas-Rueda et al. (2013) calculated the increase in YLDs due to non-fatal 

injuries by assuming for avoided minor injuries, a disability duration and severity weight equal to 

that of a sprain diagnosis which were obtained from a previous study. For major injuries, an 

average duration and severity weight of severe injuries was assumed. Dhondt et al. (2013) took a 

more complex approach. For each predicted fatal injury, a specific age was sampled 

stochastically from within the broader age strata being used for the analysis and life-table 

analysis with age-specific mortality rates was employed to calculate the YLLs (Dhondt et al., 

2012b). For each predicted non-fatal injury, first an injury diagnosis was sampled stochastically 

from injury distributions derived from national hospital data. Then an injury specific disability 

weight was assigned using values from a previous study (Haagsma et al., 2012). For temporary 
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injuries, a duration of 1 year was assigned and for long term injuries, the duration was assumed 

to be the remaining life expectancy. 

Table 2.5 Summary of road traffic collision analysis in studies reviewed 

Study Travelers changing 
mode 

Other travelers 

de Nazelle et al. (2009) - - 

Woodcock et al. (2009) 

 

Gotschi (2011) - - 

Hartog et al. (2011) - - 

Lindsay et al. (2011) 

 

Rojas-Rueda et al. (2011) 

 

Fishman et al. (2012) 

 - 

Grabow et al. (2012) - -  

Holm et al. (2012) 

 - 

Jarrett et al. (2012) 

 

Rabl and de Nazelle (2012) 

 

Rojas-Rueda et al. (2012) 

 - 

(Dhondt et al., 2013) 
 

Maizlish et al. (2013) 

 

Olabarria et al. (2013) - - 

Rojas-Rueda et al. (2013) 

 - 

Woodcock et al. (2013) 

 

Deenihan and Caulfield (2014)  - - 

Edwards and Mason (2014) 

 - 

Macmillan et al. (2014) 

 - 

Woodcock et al. (2014) 

 

Buekers et al. (2015) 

 - 

Schepers et al. (2015) 
 - 

Rojas-Rueda et al. (2016) 

 - 
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2.1.4 Results of reviewed studies 

In this section, some trends which can be found in the results of these studies are discussed. In 

some studies such as Dhondt et al. (2013) and Grabow et al. (2012), it was unclear how much of 

the resulting impacts could be attributed to increases in walking and cycling. However, in the 

remaining studies, although the scenarios under study were different, some interesting 

commonalities and differences could be found. The overall results are discussed first, followed 

by discussion of the relative impacts of each determinant. 

The total benefits of active travel outweighed the risks in all studies. However, Woodcock et al. 

(2014) found that the benefits for females were much lower than for males and that under 

certain modelling assumptions, there was no evidence of a benefit to women. This was partially 

due to the lower age distribution and baseline disease rate of women in this study as well as 

their higher background rate of fatal injuries from heavy goods vehicles. 

In almost all studies where several determinants of health were considered, physical activity was 

the most significant, in most cases by a substantial margin, and always had a positive impact. 

Traffic collisions were the next most significant determinant, particularly in studies which 

included non-fatal traffic collisions in addition to fatalities. Some studies (Macmillan et al., 2014; 

Rabl and de Nazelle, 2012; Rojas-Rueda et al., 2013) even found that the change in cost of non-

fatal collisions was more significant than the change in cost of fatal collisions. Although, in most 

cases, the cost of traffic collisions increased as a result of the increase in active travel, studies 

which considered the collision risk of motorised modes and the SIN effect yielded significantly 

more optimistic results than those which maintained the current injury rates for each mode. 

Woodcock et al. (2013) even found a reduction in the BOD due to traffic collisions in the 

increased active travel scenario. This was the only study to incorporate changes to freight and 

changes in travel distance in the more active scenario in their traffic collision model. Woodcock 

et al. (2009) found that the burden of road traffic injury increased for London but decreased for 

Delhi in the active travel scenarios, but it was noted that this difference in direction may indicate 

uncertainty. Holm et al. (2012) on the other hand, found the increase in health burden from 

traffic collisions to be comparable to the decrease in health burden due to physical activity.  

In all studies, the health impacts of changes in external pollution were positive but relatively 

small and the health impacts of in-travel exposures to air pollution were negative and almost 

negligible. 
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2.1.5 Conclusions 

In conclusion, assessments of the health impacts of active travel are invariably dominated by the 

health benefits of increased physical activity but there are also significant differences in the 

approaches used to quantify this impact and several studies have shown through sensitivity 

analysis that these modelling differences can drastically affect the scale of the estimated impact. 

The impacts related to individual and external air pollution are relatively small. The impacts of 

changes in traffic collision risk, however, tend to be negative and comparable in scale to the 

physical activity impacts. Failure to account for the SIN effect and the non-linearity of collision 

risk with respect to traffic volumes may produce estimates which are overly pessimistic and 

misleading. 

This review also has identified several methodological challenges to be addressed in this thesis. 

Almost all of the studies reviewed focussed on evaluating the health impacts resulting from a 

modal shift but did not attempt to simulate the pathways which lead to model shift. This 

presents an opportunity to build on this work and increase the applicability of such studies to 

transport planning and policy formulation, through further research into the integration of these 

methods with travel demand forecasting models. Two of the studies integrated activity based 

modelling into their models. However, although activity based approaches are frequently used in 

academic settings, Urban Transport Planning (UTP) models (such as, the four-stage model) are 

more commonly used in practical demand forecasting applications. Integration of a health 

impact model with a UTP model would be an ideal way of incorporating health impacts into 

policy formulation and infrastructure planning processes and bridging this area of research with 

practice. Additionally, research into identifying the causes for the large discrepancies between 

the results of different models of the health impacts of physical activity is necessary. Physical 

activity has been consistently shown to be the most significant determinant of the health 

impacts of increased active travel but the magnitude of the impact is still difficult to quantify due 

to wide variations in the results of different models. A consensus on the best approach would 

increase the credibility and policy relevance of these studies. 

2.2 Measurement and characterisation of environmental exposures of cycling  

2.2.1 Air Pollution Exposure Concentrations of Cyclists 

There have recently been considerable research efforts into measuring and characterising the air 

pollution exposures of urban cyclists. The pollutants considered have included PM, CO, NO2, O3, 

EC, black carbon (BC), volatile organic compounds (VOCs) and carbon dioxide (CO2). As discussed 
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in a recent review (Bigazzi and Figliozzi, 2014), most of these studies have been based on 

roadside concentration measurements. However, in reality, pollution concentrations can vary 

greatly even on the scale of a few metres (McNabola et al., 2009) and so the concentrations at 

roadside may not reflect the exposures of cyclists. Numerical modelling of the spatial 

concentration field could be used to account for this variation but as discussed in Tiwary et al. 

(2011), the existing numerical modelling techniques suffer from significant limitations and 

consequently, they tend to under predict the exposures of cyclists and pedestrians. For these 

reasons, the rest of this section will focus on studies which directly measured cyclist exposures 

using portable sensors. Such studies are more difficult to carry out but have become more 

prevalent in recent years thanks to improvements in sensor technology, low-power electronics 

and location tracking systems (Kumar et al., 2015; Snyder et al., 2013; Steinle et al., 2013). 

These designs of these studies can be broadly separated into two categories: modal comparison 

studies and studies of the factors which influence cyclist exposures. In modal comparison 

studies, exposure measurements are typically taken during multiple trips between the same 

origin and destination but using different modes of transport. In some cases the route is also 

fixed while in other cases, each traveller chooses their own route (Bigazzi and Figliozzi, 2014). 

Table 2.6 summarises the modal comparison studies to date and shows that there is 

considerable inconsistency as to whether cyclists experience higher or lower exposure 

concentrations than motorised modes. A recent review of this subject has suggested that likely 

reasons for the inconsistency include variations in cycling facilities and in intensity and proximity 

of motor traffic (Bigazzi and Figliozzi, 2014). 

The second type of study uses multivariate analysis to determine the factors which influence the 

exposure concentrations of cyclists. As shown in Table 2.7, the most commonly considered 

factors include weather variables, presence of cycling facilities, and proxy measures of traffic 

volume. Wind has consistently been shown to be the most important weather variable as it 

increases dispersion of pollutants. Temperature has been less consistently associated with 

exposure concentrations and its effects are difficult to separate from those of humidity (Bigazzi 

and Figliozzi, 2014). Since the weather is out of our control, cycling facilities and traffic volume 

more important factors from a design or planning perspective. 

Six of the studies reviewed considered the presence and/or type of cycle facilities as an 

explanatory factor. The presence of a cycle facility was consistently shown to decrease exposure 

concentrations and facilities with a higher degree of separation such as off-road bike trails 

provided the greatest benefits. Kingham et al. (1998) compared the exposures of cyclists on 
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roads and on cycle paths to benzene and particulates and found that the cyclists on the road had 

a higher exposure than the cyclists on the path. However, the sample size was small and only 

average concentrations for each trip were recorded. Hong and Bae (2012) measured the 

exposure of cyclists to black carbon (BC) on a single route at 1 minute intervals and found that 

the presence of a bicycle trail decreased BC exposure concentrations. Hatzopoulou et al. (2013) 

examined the impact of the presence of cycling facilities on the exposure of cyclists to UFPs, 

PM2.5 and CO at 1 second intervals and to BC at 1 minute intervals. Cycling lanes were found to 

decrease exposure to all pollutants except for PM2.5. Kingham et al. (2013) monitored exposures 

to PM1, UFPs, and CO on predefined routes and found that on-road cyclists were exposed to 

higher concentrations of all pollutants than off-road cyclists. Bigazzi and Figliozzi (2015a) 

monitored exposure concentrations of cyclists to CO and VOCs at 1 second intervals and found 

that exposures on off-street facilities were lower than on-street riding with the exception of an 

off-street path through an industrial corridor. Finally, Hankey and Marshall (2015) monitored BC 

concentrations and particle number concentration (PNC) while cycling and found that mean 

concentrations on bike-lanes were slightly reduced compared to roads with no facility. 

Almost all of the studies considered some measure of traffic intensity as a factor but in most 

cases real-time traffic data were not available so some proxy measure was used. Two studies 

aggregated Average Daily Traffic (ADT) data for a number of roads in an area to create a 

measure of traffic intensity for the area as a whole (Boogaard et al., 2009; Hong and Bae, 2012). 

Seven studies represented traffic intensity on routes using a binary distinction such as “heavy 

traffic” or light traffic”.  Exposure concentrations in these studies were generally higher for high 

traffic intensities. Of course, such dichotomous variables cannot reveal the influence of 

variations in traffic along the same route or from day to day. 

Eight studies incorporated real-time traffic volume data at the link level. Of these, six used 

observed real-time traffic volumes. McNabola et al. (2008) and McNabola et al. (2009) both 

obtained traffic counts from inductive loop detectors in Dublin for the sampling periods. 

McNabola et al. (2008) did not report any associations between traffic counts and pollutant 

concentrations but McNabola et al. (2009) found that the exposures of non-motorised modes of 

transport to PM2.5 and VOCs were less influenced by traffic congestion than those of motorised 

modes. Kaur and Nieuwenhuijsen (2009) used hourly traffic volumes for the approximate 

exposure timings of the study and found that traffic counts explained little of the variability in 

PM2.5 but had a greater influence of UFP and CO concentrations. Hatzopoulou et al. (2013) 

obtained 10-min traffic counts of total vehicles and diesel vehicles for sites along the cycling 
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routes during each sampling period. They found that 10 additional diesel vehicles per hour 

increased BC exposures of cyclists by 15%. Associations between all other pollutant 

concentrations (UFPs, PM2.5 and CO) and vehicle counts were insignificant. Quiros et al. (2013) 

obtained 5-min traffic counts of various vehicle types for their sampling periods and calculated a 

variable called emissions-weighted traffic volume to account for the effects of higher and lower 

emitting vehicles. The emissions-weighted traffic volume was found to be quadratically related 

to UFP concentrations under parallel wind conditions only. This relationship was based on only 

eleven observations. Emissions-weighted traffic volume was not found to be related to PM2.5. 

Hankey and Marshall (2015) used video recordings to take instantaneous counts of vehicles 

operating within one city block for a subset of the pollution sampling times. Additional trucks 

and buses on the city block had a greater impact on PNC and BC concentrations than additional 

passenger cars. Two studies did not have actual real-time traffic data but used the ADT of each 

link and accounted for temporal variation in other ways. Dons et al. (2013) estimated real-time 

traffic volumes from ADT for the sampling times using standard conversion factors (Jonkers and 

Vanhove, 2010). A positive linear relationship was found between BC exposure concentrations 

and estimated traffic volumes. Bigazzi and Figliozzi (2015a) used the ADT for each link and also 

included dynamic traffic data from 2 reference locations in the network to account for temporal 

variation. VOC and CO exposures both increased by 2% per 1000 ADT and CO exposure only was 

positively correlated with dynamic traffic intensity. 

A number of key observations can be drawn from these studies. Firstly, it appears that the 

relationship between exposure concentrations and traffic intensity is more consistent when 

simplifications and modelling are used rather than actual traffic counts for the sampling period. 

Secondly, although traffic volumes and the presence of cycling facilities are likely to be highly 

correlated; only three studies to date have considered both real-time traffic and the presence of 

cycle facilities in their analysis. The results of these studies showed inconsistent effects of both 

of these variables on exposure concentrations of cyclists. These observations suggest that more 

research is required in order to characterize the influence of traffic volumes and the presence of 

cycling facilities on cyclist pollution exposures and the interactions between these variables.  

An additional observation is that several important traffic-related pollutants such as NO2 and 

NOx have been overlooked in the studies to date. One reason for this may be that until recently, 

research had failed to uncover long term health effects of NOx which were independent of the 

health impacts of particulates. However, evidence regarding health effects of NO2 has 

strengthened substantially in recent years and the balance of probabilities now indicates that 
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NO2 is itself responsible for adverse health impacts (COMEAP, 2015). Another possible reason is 

that, until recently, instruments capable of real-time measurement of gaseous pollutants were 

prohibitively large and expensive, making them unsuitable for mobile use. However, a new 

generation of low-cost highly-mobile mobile gas sensors capable of high temporal resolution 

measurements has become available in recent years (Kumar et al., 2015; Snyder et al., 2013; 

Steinle et al., 2013), making mobile measurement of NOx exposures more achievable. 
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Table 2.6 Summary of studies which compare pollution exposure concentrations across modes 

Author(s) Location Modes compared Pollutant (s) Cyclists exposures 

Waldman et al. 
(1977)  

Washington, 
D.C, U.S.A. Cycling, Driving 

CO, O3, 

sulfates, 
nitrates, 
particulates 

No significant 
difference 

Vanwijnen et al. 
(1995)  

Amsterdam, 
Netherlands Cycling, Driving CO, NO2, VOCs 

Lower than 
motorised 

Kingham et al. 
(1998)  

Christchurch, 
Zew Zealand 

Cycling, Driving, 
Bus, Train PM10, Benzene 

Lower than Driving. 
Relationship to 
other modes varied 
by pollutant. 

Adams et al. 
(2001)  London, U.K. 

Cycling, Driving, 
Bus, Underground 
Rail PM2.5 

Lower than 
motorised 

Adams et al. 
(2002)  London, U.K. 

Cycling, Driving, 
Bus, Underground 
Rail EC 

Lower than 
motorised 

Chertok et al. 
(2004)  Sydney 

Cycling, Driving, 
Bus, Train, Walking NO2, VOCs 

Lower than Driving. 
Relationship to 
other modes varied 
by pollutant. 

Kaur and 
Nieuwenhuijsen 
(2009)  London, U.K. 

Cycling, Driving 
Bus, Walking, Taxi 
Passenger PM2.5, CO 

Lower than 
motorised 

McNabola et al. 
(2008)  

Dublin, 
Ireland 

 
Cycling, Driving, 
Bus 
Walking PM2.5, VOCs 

Lower than 
motorised 

Boogaard et al. 
(2009)  

Eleven 
medium-sized 
Dutch cities  Cycling, Driving PM2.5, PNC 

Lower than 
motorised 

Panis et al. 
(2010)  

Three Belgian 
locations Cycling, Driving 

PM2.5, PM10, 

PNC 

Insignificant or 
inconsistent 
differences. 

de Nazelle et al. 
(2012)  Barcelona 

 
Cycling, Driving, 
Bus, Walking 

PM2.5, CO, 
UFP, BC, CO2 

Lower than Driving. 
Relationship to Bus 
varied by pollutant. 

Dons et al. 
(2012)  

Flanders, 
Belgium 

Cycling, Driving, 
Bus, Walking, Car 
Passenger, Train, 
Light Rail BC 

Lower than 
motorised except 
for Train. 

Nwokoro et al. 
(2012)  London, U.K. 

Cycling, 
Walking/Public 
Tranport BC 

Higher than 
Walking/Public 
Transport 
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Author(s) Location Modes compared Pollutant (s) Cyclists exposures 

Yu et al. (2012)  

Shanghai, 
China 

Cycling, Bus, 
Walking, Taxi 
passenger, 
Underground Rail PM1 

Higher than 
motorised 

Kingham et al. 
(2013)  

Christchurch, 
Zew Zealand 

Driving,  
Bus 

PM10, PM2.5, 
PM1, UFPs, CO 

Lower than 
motorised 

Quiros et al. 
(2013)  

Santa Monica, 
CA, U.S.A. 

Cycling, Driving, 
Walking 

PM2.5 , UFPs, 
CO2 

Insignificant or 
inconsistent 
differences. 

Ragettli et al. 
(2013)  

 Basel, 
Switzerland 

Cycling, Driving, 
Bus, Walking, Tram UFPs 

Insignificant or 
inconsistent 
differences. 

Nyhan et al. 
(2014)  

Dublin, 
Ireland 

Cycling, Walking, 
Bus, Train PM2.5, PM10 

Higher than 
motorised 

Namdeo et al. 
(2014) Newcastle, UK 

Cycling, Electric 
Vehicle, Bus CO, PM10 Lower than Bus 

Goel et al. (2015) Delhi, India 

Cycling, Driving, 
Bus, Walking, 
Underground Rail, 
Motorcycle, Auto 
Rickshaw PM2.5 

Insignificant or 
inconsistent 
differences. 

Ramos et al. 
(2016)  

Lisbon, 
Portugal 

Cycling, Driving, 
Underground Rail, 
Bus, Motorcycle 

PM10, PM4, 
PM2.5, PM1, 

CO, VOCs, 
CO2, O3 

Insignificant or 
inconsistent 
differences. 

Huang et al. 
(2012)  Beijing, China 

Cycling, Bus, Taxi 
Passenger PM2.5, CO 

Lower than Bus for 
both pollutants. 
PM2.5 Higher than 
Taxi but CO lower 
than Taxi. 

 



 

 

 

Table 2.7 Studies which analyzed factors affecting cyclist pollution exposure concentrations 

      Factors Considered   

Author(s) Location Traffic Intensity Cycle Facilities Others Pollutant (s) 

Kleiner and Spengler 
(1976)  Boston, U.S.A. Busy vs Light - 

Street Type 
Time of Day CO 

Kingham et al. (1998)  

West Yorkshire, 
England - 

Use of bike 
path Weather variables 

Benzene 
PM10 

Adams et al. (2001)  London, U.K. - - 
Season 
Route Type PM2.5 

Kaur et al. (2005a)  London, U.K. Heavy vs Light -   
PM2.5, UFPs, 
CO 

McNabola et al. 
(2008)  Dublin, Ireland 

Real-time traffic volumes 
from inductive loop 
detectors - 

Weather variables 
Time of Day PM2.5, VOCs 

Boogaard et al. 
(2009)  

Eleven medium-sized 
Dutch cities  

Traffic volume proxy 
based on AADT for a 
limited number of major 
roads - 

Road type 
Weather Variables 
Passing cars/mopeds 

PM2.5, PNC, 
Noise 

Kaur and 
Nieuwenhuijsen 
(2009)  London, U.K. 

Hourly traffic volumes 
from SCOOT for the 
approximate exposure 
timings. - Weather Variables PM2.5, CO 

McNabola et al. 
(2009)  Dublin, Ireland 

Real-time traffic volumes 
from inductive loop 
detectors - Weather variables PM2.5, VOCs 

3
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      Factors Considered   

Author(s) Location Traffic Intensity Cycle Facilities Others Pollutant (s) 

Weichenthal et al. 
(2011)  Ottawa, Canada High vs. Low traffic - - 

VOCs, UFPs, 
PM2.5, CO 

Cole-Hunter et al. 
(2013a)  Brisbane, Australia 

High vs. low proximity to 
traffic - Weather Variables UFP 

Hong and Bae (2012)  Seattle, WA, U.S. 

Traffic intensity proxy for 
buffer area based on 
AADT 

Cycle Facility 
Types 

Time of Day 
Length of each Road Type 
Land Use Variables 
Weather Variables 
Number of stops BC 

Huang et al. (2012)  Beijing, China 

 
Wide High Traffic Route vs 
Narrow Congested Route - 

Time of Day 
Weather Variables PM2.5, CO 

Dons et al. (2013)  Flanders, Belgium 

AADT converted to 
instantaneous traffic 
intensity using standard 
conversion factors. - 

Trip duration 
Degree of urbanization 
Road type 
Travel speed 
Road speed BC 

Hatzopoulou et al. 
(2013)  Montreal, Canada 

Real-time 10-min traffic 
volumes 

Cycle Facility 
Types Weather Variables PM2.5, CO, BC 

Jarjour et al. (2013)  Berkeley, CA, U.S.A. High vs. Low traffic - Weather Variables   

Kingham et al. (2013)  

Christchurch, New 
Zealand - 

On-road route 
vs. cycleway 
route - 

PM10, PM2.5, 
PM1, UFPs, CO 

3
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      Factors Considered   

Author(s) Location Traffic Intensity Cycle Facilities Others Pollutant (s) 

Quiros et al. (2013)  

Santa Monica, CA, 
U.S.A. 

Categorised 5-min traffic 
counts - 

Time of Day 
Location 
Weather Variables 

PM2.5 , UFPs, 
CO2 

Ragettli et al. (2013)  Basel, Switzerland 
"High exposure" route vs 
"Low exposure" route - 

Time of Day 
Day of Week UFPs 

Bigazzi and Figliozzi 
(2015a)  Portland, OR, U.S.A 

ADT for each link 
Continuous traffic data for 
2 reference locations. 

Location/facility 
dummy 
variables 

Background concentration  
Weather Variables 
Road grade 
Intersection 
Stop-and-go riding CO, VOCs 

Hankey and Marshall 
(2015)  

Minneapolis, MN, 
U.S.A. 

Instantaneous categorised 
traffic volumes for a 
subset of observations 

Presence of 
cycling facility 

Street Type 
Distance from major roads 
Presence of nearby trucks 

PM2.5, BC, 
PNC 

3
7
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2.2.2 Air Pollution Inhaled Dose 

Although there is a lack of consistency regarding the concentrations experienced by cyclists 

relative to motorised modes, studies have consistently shown that cyclists experience greater 

intake doses and uptake doses of pollutants while in traffic mainly due to their elevated exertion 

and breathing rates. The intake dose can be defined as the mass of pollutants which cross the 

body boundary through the mouth and nose and the uptake dose is the mass of pollutant which 

is not exhaled but incorporated into the body (Bigazzi and Figliozzi, 2014; Ott et al., 2006). The 

intake dose can be estimated by integrating the product of the exposure concentration and the 

ventilation rate over time. Therefore, in addition to exposure concentrations, it is influenced by 

how heavily the subject is breathing and the time during which the exposure takes place. A 

number of studies have compared the VE of subjects travelling by different modes and the ratio 

cyclist VE to driver VE has ranged between 1.9 and 4.9 (Bigazzi and Figliozzi, 2014). A number of 

studies have also directly measured the pollutant inhalation of cyclists in transit. However, as 

outlined in Bigazzi and Figliozzi (2014), most of these studies assumed a constant respiration 

rate. This would be a reasonable assumption if respiration rate and exposure concentration 

were independent but in reality, there is likely to be spatial correlation between these variables, 

particularly at locations such as intersections and hills. Two recent studies of particulate 

exposure used variable ventilation rates by trip (Cole-Hunter et al., 2013b) and at two minute 

aggregations (Nyhan et al., 2014) respectively but no studies of gaseous pollution exposure have 

been found which used variable ventilation rates. 

Several studies have also measured the uptake of pollutants by cyclists. McNabola et al. (2008) 

and Nyhan et al. (2014) both modelled uptake of pollutants in the lungs by different modes 

based on a human respiratory tract model. Both studies found that cyclists had the highest 

uptake dose. Panis et al. (2010) modelled uptake of pollutants based on published deposition 

factor and also found that cyclists had the highest uptake. Nwokoro et al. (2012) measured 

biomarkers of long-term uptake of BC for London cyclists and non-cyclists and found that cyclists 

showed that the cyclists had signs of higher uptake than non-cyclists. Bergamaschi et al. (1999) 

measured biomarkers of VOC uptake in subjects before and after cycling on urban congested 

routes and on open rural routes. VOC biomarkers after urban cycling were significantly increased 

compared to before cycling.   

2.2.3 Noise Exposure 

Noise exposure of cyclists has not been studied as extensively as air pollution exposure but a few 

studies exist which analysed both air and noise pollution simulataneously. Boogaard et al. (2009) 
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measured both noise exposure and particulate exposure of cyclists in eleven Dutch cities. 

Moderate correlation was found between 1 minute averages of logged particle number 

concentrations and noise. Vlachokostas et al. (2012) measured the exposures of various modes 

to CO, VOCs and noise in Thessaloniki, Greece. Two combined exposure metrics were proposed 

to account for both air and noise pollution exposure: the Combined Exposure Factor (CEF) and 

the Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the intake dose 

rather than just the exposure concentration. Cyclists were found to have a favourable CEF 

compared to other modes but cyclists and pedestrians had the least favourable CDEF due to 

their increased physical exertion levels. Dekoninck et al. (2013) monitored the noise and BC 

exposures of cyclists in Ghent, Belgium and developed noise indicators based on particular 

frequency bands to represent different physical sources such as engine noise, rolling noise and 

short term noise events. They found that a proxy for personal BC exposure could be developed 

based on a combination of these noise indicators and some weather variables. 

Several other studies have simultaneously measured noise and air pollutant concentrations at 

fixed sites and found significant correlations between noise levels and air pollutants such as NOx 

and primary particles (Allen et al., 2009; Can et al., 2011; Fernandez-Camacho et al., 2015; 

Tobías et al., 2001). According to one review (Chowdhury et al., 2015), noise levels have most 

consistent correlations with NOx, UFPs and total suspended particles. They also found that lower 

wind speeds and longer averaging periods are associated with higher correlations between noise 

levels and pollutant concentrations. The level of correlation between air and noise pollution is 

important because both have been associated with mortality from cardiovascular and other 

causes (Babisch, 2014; Bluhm et al., 2007; Brook et al., 2010; Dzhambov, 2015; Hoek et al., 

2013b)  and it is unclear to what extent there is confounding between these two exposures. 

2.3 Models of cyclist travel behaviour 

This section describes the literature relating to modelling the travel behaviour of cyclists. Before 

discussing cyclist travel behaviour however, it is helpful to give some discussion of the state of 

the art in multi-modal traffic equilibrium modelling. 

2.3.1 Multi-Modal Network Equilibrium 

The formulation of the network equilibrium problem as an econometric equilibrium model was 

first described by Beckmann et al. (1956) in 1956. The application of the Frank and Wolfe 

algorithm to the solution of this problem was later suggested by Bruynooghe et al. (1969). 

However, in the intervening period, a sequential four-step paradigm had gained popularity 

which consisted of trip generation, trip distribution, modal split and traffic assignment. However, 
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each of these stages are interdependent and performing them in sequence leads to internal 

inconsistencies in the results of each stage. When researchers looked for ways to combine these 

steps into a method which would maintain internal consistency, they arrived back at Beckman’s 

original formulation. Such models which combine several of the four stages into a single 

equilibrium model became known as combined models (Boyce and Bar-Gera, 2004). 

The Frank and Wolfe algorithm introduced by Bruynooghe et al. (1969) allowed the deterministic 

user equilibrium (DUE) to be found for a network with a single mode of transport, fixed O-D 

demands and separable link cost functions. The assumption of separable cost functions was later 

relaxed to an assumption of symmetric cost functions by Dafermos (1971). This assumption 

requires that the Jacobian of the link-cost function is symmetric. However, even the assumption 

of no asymmetric link interactions is not always realistic. In particular, where multiple modes are 

involved it is reasonable to assume that the interactions between different modes on the same 

link may be asymmetric. Smith (1979) used the variational inequality (VI) to show the existence 

and uniqueness of traffic equilibrium under the weaker condition that the Jacobian of the link 

cost function is positive definite. This allows for asymmetric link interactions as long as the cost 

on each link is strictly increasing with the flow on that link and depends more strongly on its own 

flow than the flow on any other link. However, there is no known equivalent minimisation 

problem for this situation. The first solution to this problem was the diagonalisation method 

(sometimes referred to as the relaxation method) presented by Abdulaal and LeBlanc (1979). 

Other approaches to solving this problem include the projection method and decomposition 

methods such as the Gauss-Seidel algorithm (Nagurney, 1993). 

In recent years, the flexibility of the variational inequality approach has led to it being used to 

model more complex transport scenarios using various solution algorithms. Florian et al. (2002) 

proposed a VI model for the combined modal split, trip distribution and assignment problem and 

a solution algorithm based on  a block Gauss-Siedel decomposition method with the method of 

successive averages (MSA). The model and solution algorithm were tested using data from the 

road network of Santiago, Chile. Auto drivers, auto passengers, buses, taxis and pedestrians 

were included but cyclists were not. Li et al. (2015) proposed a model for a network problem 

with elastic demand, logit-based modal split and stochastic user assignment (SUE). The model 

included autos, buses and cyclists but it was assumed that there would be no interactions 

between cyclists and any other mode. A solution algorithm was proposed, also based on the 

Guass-Siedel decomposition approach with the MSA.  
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A key requirement for including any particular mode within a multimodal traffic equilibrium 

model is the availability of suitable functions to describe the travel costs of using this mode 

within the network. Previous efforts at developing such functions for cyclists are described in 

section 2.3.3. 

2.3.2 Modal Share of Cycling 

Mode choice in the context of cycling has been studied extensively, mainly using stated 

preference and revealed preference studies. Some studies examined factors affecting cycling 

modal share in the absence of any specific intervention while other studies were concerned with 

identifying the most effective interventions for increasing cycling levels. In this section, an 

overview of these studies is given. This section is not a comprehensive but further information 

can be found in reviews such as  Pucher et al. (2010), Heinen et al. (2010) and Buehler and Dill 

(2016). 

Wardman et al. (2007) collected revealed preference and stated preference data about mode 

choice of individuals travelling to work and developed a hierarchical logit model based on 

variables including demographic information, travel times and costs and environmental factors 

such as hilliness, noise and air pollution.  It was found that provision of segregated facilities 

would significantly increase propensity to cycle but that the most effective policy would involve 

a combination of en-route facilities, a daily payment and comprehensive trip end facilities. 

Parkin et al. (2008) studied the determinants of bicycle mode share for the journey to work at 

the ward level using census data. A logistic regression model was developed and the variables 

found to be important predictors of cycling mode share included sociodemographic factors, 

traffic intensity, hilliness and off-road cycle paths. Dill and Voros (2007) conducted a phone 

survey of adults in Portland, Oregan to explore the relationship between cycling levels and 

demographic, environmental factors and attitudes. It was found that perceptions of the 

availability of bike lanes were associated with more cycling but the density of bike lanes within 

one quarter mile of the home address was not. It may be that density of cycle lanes within one 

quarter mile of one’s address is not a good indicator of the availability of cycle lanes on the 

routes on which they would like to travel. The most common environmental barrier to cycling 

was “too much traffic”. Vandenbulcke et al. (2011) studied the spatial determinants of cycling in 

Belgium at the municipal level. They found that flat terrain, high quality facilities and low 

accident risk can encourage cycling while town size, travel distance and demographics also had 

some effect. They also found that high traffic volumes had less impact on cycling rates in 

Flanders, where high quality infrastructure was more common, than in the rest of the study 
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region. This suggests an interaction effect between traffic volumes and cycling facilities on the 

propensity to cycle. Pucher and Buehler (2008) studied the success of the Netherlands, Denmark 

and Germany in promoting cycling in order to discover the key policies which have led to such 

high levels of cycling. They found that the most important factors are provision of separate 

cycling facilities on busy roads and at intersections and traffic calming in residential 

neighbourhoods.  

Some studies have focussed in particular on the impact of cycle facilities on cycling mode share. 

Buehler and Pucher (2012) carried out a cross-sectional study of 90 American cities to explore 

the impact of cycling facilities and other explanatory variables on cycling levels. They found that 

the presence of both off-street paths and on-street lanes were associated with higher cycling 

levels. Buehler and Dill (2016) carried out a review of studies which considered the impact of 

cycling facilities on cycling levels. The cycling facilities considered ranged from individual lanes to 

entire bikeway networks and most studies reported positive associations between the 

infrastructure and cycling levels. They also found that separated facilities were preferred over 

on-road facilities and this was especially true when traffic levels were high. This also suggests an 

interaction effect between traffic volumes and facilities.   

Pucher et al. (2010) carried out a comprehensive review of studies which examined the 

effectiveness of various interventions aimed at increasing cycling levels. The types of 

interventions considered included infrastructure improvements, end-of-trip facilities, integration 

with public transport, access programmes and legal interventions. Stated preference studies 

consistently found that cyclists preferred cycling in bike lanes than in mixed traffic. Revealed 

preference studies at the aggregate level also found positive associations between cycling 

facilities and bicycling but at the individual level, results were mixed. Some of the studies also 

suggested the importance of bicycle parking but the evidence for this was limited to a few cities. 

Similarly to Wardman et al. (2007), it was suggested that in order to significantly increase cycling 

levels, a comprehensive package of complimentary measures would be required. 

In recent years, a different approach to understanding the choice to cycle has emerged based on 

an understanding of social and psychological factors (Heinen et al., 2010; Tapp and Parkin, 

2015). One popular psychological model is the Theory of Planned Behaviour (Armitage and 

Conner, 2001) which suggests that intentions and subsequent behaviours are influenced by 

three factors: attitudes, subjective norms and perceived behavioural control. The attitude to a 

behaviour encompasses the expectation of the outcomes of the behaviour and the value of 

those outcomes. Dill and Voros (2007) found that cyclists indeed have more positive attitudes 
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towards cycling than non-cyclists. Subjective norms relate to the regulating influence of the 

beliefs of other individuals or groups. (Dill and Voros (2007)) for example, found that individuals 

are more likely to cycle to work if their co-workers do. Pooley et al. (2013) in a qualitative study 

of travel behaviours in four British towns found that travel by car is seen as more normal than 

travel by bicycle and that most people prefer to adopt such norms of behaviour and to fit in with 

those around them rather than to stand out. Perceived behavioural control relates to an 

individual’s belief about their ability to perform a certain behaviour. Gatersleben and Appleton 

(2007) showed that individuals who do not cycle tend to perceive more barriers to cycling than 

individuals who do cycle. Bamberg et al. (2003) performed a longitudinal study to test an 

intervention—giving prepaid bus tickets to students—in the context of the Theory of Planned 

Behaviour. The results suggested that attitudes, social norms and perceptions of behaviour 

control with respect to mode choices are largely rational and can be influenced by interventions. 

2.3.3 Route Choice of Cyclists 

A number of studies have tried to identify and/or evaluate the importance of factors which 

contribute to the generalised travel costs of cyclists and thus influence their route choices. Both 

stated preference surveys and GPS tracking have been used in multiple studies. Sener et al. 

(2009) carried out a stated preference analysis on a survey of commuter and non-commuter 

cyclists in Texas and found that travel time and motorist volumes were the most important 

parameters for route choice. Winters and Teschke (2010) conducted a survey of current and 

potential cyclists using pictures of 16 routes. It was found that routes with traffic calming, bike 

lanes, paved surfaces, and no on-street parking were preferred. Tilahun et al. (2007) used a 

stated preference survey to show the value of different cycling facilities to bicycle users and 

showed that the most attractive facilities are segregated lanes followed by roads without 

parking. Dill (2009) used GPS tracking of cyclists and showed that disproportionately high 

numbers of cycling trips occurred on dedicated cycling infrastructure rather than roads without 

cycling infrastructure. Broach et al. (2012) used GPS tracking of cyclists in Portland, Oregan to 

estimate a bicycle route choice model and route choices were found to be affected by logged 

distance, turn frequency, slope, traffic signals and traffic volumes. Commuters were found to be 

more sensitive to time but less sensitive to other parameters than non-commuters. Hood et al. 

(2011) also used GPS tracking to study route choice of cyclists in San Francisco. Although 

distance, turn frequency, slope and traffic signals were again found to be significant, traffic 

volumes were not. The Highway Capacity Manual (TRB, 2000) suggested that the comfort of 

cyclists is also affected by presence of other cyclists due to the hindrance of passing and meeting 

manoeuvres. Bigazzi et al. (2016) considered the question of whether or not cyclists’ route 
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choices are affected by air pollution levels. It was found that, in many situations, cyclists will 

tend to choose routes with the lowest inhalation doses but that this is due to a preference for 

low-traffic routes rather than a preference for low-pollution routes. 

The preference of cyclists for lower traffic routes and segregation from vehicle traffic can be 

explained by the lower perceived risk associated with these conditions. Lawson et al. (2013) 

carried out a survey study of the perceptions of safety of cyclists in Dublin. The route-specific 

features which were found to increase perceptions of safety included quiet roads, streetlights 

and continuous cycling facilities. Parkin et al. (2008) explored the relationship between route 

characteristics and risk perceptions of cyclists using video clips from the perspective of the 

cyclist. It was found that volume, speed and composition of motor traffic influenced risk 

perceptions. In particular, traffic free routes significantly reduced risk perceptions. Cycling 

facilities which were off-road or adjacent to the road were more effective in reducing 

perceptions of risk than on-road cycle lanes.  

Other studies have developed measures of link suitability or attractiveness for cyclists such as 

the Bicycle Level of Service (BLOS) (Landis et al., 1997) or Bicycle Compatability Index (BCI) 

(Harkey et al., 1998). Some studies also considered the level of service of a bicycle network as a 

whole. Klobucar and Fricker (2007) built on the BLOS concept by developing a tool for evaluating 

the level of service of an entire cycle network, taking into account both BLOS and route length.  

Transport models in use by national or regional transport authorities typically do not model 

cyclist route choices or else model them based on simplistic models. Cyclists are often assigned 

to the shortest path based on arbitrarily chosen average speeds (Subhani et al., 2013). They also 

tend to ignore the impact of cycling facilities and the cross-modal impacts which cyclists and 

motorised traffic place on each other. For example, in the Regional Modelling System used by 

the NTA of Ireland, all cyclists are assigned to the shortest path and no cross-modal impacts are 

considered (National Transport Authority, 2011b). Similarly, in the UK, the WebTAG guidelines 

suggest that generalised costs for cyclists should be considered to be linearly dependent on O-D 

distance travelled via an average speed of 12km/hr (Department for Transport, 2017). Very little 

research effort has been devoted to developing a realistic bicycle link cost function which could 

be used in a traffic assignment model. One study did attempt to incorporate cycling into the 

Ottawa-Gatineau Transport Model (Subhani et al., 2013) using a link cost function based on the 

BLOS. This link cost function is sensitive to travel time, speed, level-of-stress, turn conditions at 

intersections and area type. The authors mention that validation of the function has taken place 

but the results of the validation are not reported in the paper (Subhani et al., 2013). Si et al. 
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(2011) suggested a multi-modal link cost function where travel impedance for any mode on any 

link depends on respective levels of congestion of each mode on the link. No attempt was made 

to validate the function. Lawson (2015) proposed a link cost function for cyclists which took into 

account car, bus and cyclist congestion as well as the presence of a cycling facility. However, the 

function was dependent on multiple parameters and no attempt was made to calibrate these 

parameters. Li et al. (2015) proposed path cost function for use of shared bicycle schemes; an 

additive function of rental prices, walking time, rider fatigue and additional travel time to return 

the bike to a station near the end point. It was assumed that there are no interactions with other 

modes and no attempt was made to validate the model. 

In order to enable cycling to be modelled realistically in a network equilibrium modelling 

framework, there is a need to develop a bicycle link cost function which takes into account 

cyclist-specific considerations such as real-time traffic levels and cycling infrastructure and for 

the function to be validated with real world data. In order to improve the portability of the 

model and to ensure that calibration can be carried out, the function must also balance realism 

with simplicity. The development and calibration of such a link cost function will be addressed in 

the current study. 

2.3.4 Calibration of Link Cost Functions 

Link cost functions typically incorporate some parameters which must be calibrated. There have 

been two main approaches in the literature for calibrating the parameters of link cost functions 

(Garcia-Rodenas and Verastegui-Rayo, 2013). The first approach is calibration based on link data 

whereby links are considered in isolation in order to determine their speed-flow relationships. 

An advantage of such methods is that look-up tables of parameters can be developed based on 

functional characteristics of the link. A prime example of this is the Highway Capacity Manual 

(TRB, 2000) which lists parameterisations for the Bureau of Public Roads function (U.S. 

Department of Commerce and Bureau of Public Roads, 1964) to describe the speed-flow 

relationships for a number of link classes. Disadvantages of these methods are that the only 

travel cost they can account for is travel time and they also ignore the impact of other links on 

the link delay. 

The second approach is calibration based on network data. In this approach, calibration is 

achieved by using the inverse traffic assignment problem (ITAP) which can be formulated as a 

mathematical program with equilibrium constraints (MPEC) (Luo et al., 1996), of which bilevel 

optimisation is a more specific case. The ITAP aims to find values of the model parameters which 

lead to the best possible agreement between the model outputs and corresponding network 
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observations. The ITAP has most often been used as a tool for estimating or updating the O-D 

demand matrix for a network. The use of the ITAP for the current problem where the O-D 

demand matrix is known and the parameters of a link-cost function need to be estimated is 

relatively unexplored but some previous studies exist. There also exist some studies which use 

the ITAP to estimate other parameters of a network model such as dispersion parameters of 

logit models and mode bias parameters. Table 2.8 gives a summary of studies which have 

estimated network parameters or simultaneously estimated network parameters and O-D 

demand matrices using the ITAP. Four of these studies estimated parameters of a link cost 

function. All four of these related to auto link cost functions and estimated the parameters 

based on an auto-only network assignment model. Suh et al. (1990) calibrated the link capacity 

parameter of the BPR function for vehicles in order to appropriately represent the Korean 

highway system. Xu et al. (2004) also estimated parameters of the BPR function while 

simultaneously updating the O-D demand matrix. Meng et al. (2004) simultaneously estimated 

link cost function parameters and updated the O-D demand matrix. Finally, Garcia-Rodenas and 

Verastegui-Rayo (2013) calibrated link cost function parameters where each link in the network 

was associated with different values for the parameters.  

 



 

 

Table 2.8 Studies using the ITAP to calibrate network model parameters. 

    

Estimated Parameters Observed Data 

Network Model 

Calibration Algorithm Author Year OD Demands Mode Choice Route Choice 

Suh and Kim 
(1989) 1990 BPR function parameters Link flows Fixed Auto only DUE Descent-type algorithm 

Abrahamsson 
and Lundqvist 

(1999) 1999 

Logit dispersion parameter 
Mode bias parameter 

Balancing factors of doubly 
constrained gravity model 

Flow on each 
route by each 

mode 

Doubly 
constrained 

gravity 
model 

Binomial logit 
model 

with auto and 
transit DUE 

Upper level solved by maximum likelihood 
(MINOS optimisation package). Lower level 

solved by partial linearization (ref Boyce 
1983) 

Yang et al. 
(2001) 2001 

O-D demand matrix  
Route-choice dispersion 

coefficient 

Prior O-D 
demand 
matrix 

Link flows Fixed Auto only SUE 

Replaced logit model with equivalent 
differentiable constraint function. Solves as 

a nonlinear programming model. 

Meng et al. 
(2004) 2004 

Link cost function 
parameters Link flows Fixed Auto only DUE 

Transformed into a nonlinear programming 
problem by constructing a gap function. 

Program solved using Augmented 
Lagrangian method. 

Xu et al. (2004) 2004 
BPR function parameters 

O-D demand matrix 

Prior O-D 
demand 
matrix 

Link flows Fixed Auto only SUE Genetic Algorithm 

García-Ródenas 
and Marín 

(2009)  2009 
O-D demand matrix 

Nested logit parameters 

Prior O-D 
demand 
matrix 

Link flows Fixed 

Logit model with 
auto, park 'n' 

ride, transit with 
walk/cycle access DUE 

MPEC converted to a unilevel optimisation 
model by replacing the VI with its 

equilibrium conditions and linearly 
approximating the path cost functions. 

Garcia-Rodenas 
and Verastegui-

Rayo (2013) 2013 
Link cost function 

parameters 

(a) Link flows 
(b) Links flows 
and O-D costs Fixed Auto only DUE 

Restricted problem developed using 
column generation algorithm. 

Solution algorithm of restricted problem 
unspecified. 

4
7
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No example could be found in the literature of calibration of a cycling link cost function with 

either the link based or network based approach. The network-based approach is more 

appropriate for this problem. This is because estimating parameters based on link data requires 

that the costs can be observed directly. This is not a problem for traditional link cost functions 

for motor vehicles as the cost to be observed is simply the travel time. However, based on the 

current literature relating to cyclist route preferences, it is clear that the disutility experienced 

by a cyclist travelling on a link is significantly affected by factors such as risks perceptions and 

segregation from traffic, independently of their effect on travel time. Such intangible costs 

cannot be directly observed. However, in the network-based approach, there is no need to 

directly observe the travel costs on the links; it is only necessary to observe the network 

utilisation at a macroscopic level. 

2.3.5 Solution algorithms for the MPEC 

In order to use the ITAP to calibrate network parameters, it must be modelled and solved as a 

MPEC. Multiple approaches to solving the MPEC can be found in the literature. These are 

generally categorised as extreme-point methods, KKT methods and descent methods (Kolstad, 

1985). The first category, extreme-point methods, are only useful for linear problems and as 

such require no further discussion here. The second category, KKT methods—which include 

Branch-and-Bound and Complimentarity Pivoting—involve replacing the equilibrium problem by 

its KKT conditions. This replaces the MPEC by a single level problem which will not be convex due 

to the complimentarity constraint. Branch and Bound methods enumerate the different 

possibilities posed by the complimentarity constraint in order to find an exact solution. 

However, computation times increase rapidly with the size of the constraint region. In 

Complimentarity Pivoting, instead of minimising the objective of the MPEC, a feasible solution is 

found such that the objective function is below a certain upper bound. This is repeated with 

successively lower values for the upper bounds until no feasible solution can be found. This 

approach has only previously been used for linear and quadratic problems. Such KKT methods 

were not used in any of the studies in Table 2.8. The third type of algorithm, descent algorithms, 

relies on derivative information about the equilibrium problem with respect to the decision 

variables. If this information is available, then one of several descent algorithms can be used to 

find a local optimum of the MPEC. The sensitivity analysis of Fiacco (1983) or Tobin (1986) can be 

used to obtain this derivative information for a broad range of problems. A potential issue with 

using descent methods is that they do not guarantee a global solution. One of the studies in 

Table 2.8 used a descent-type algorithm to estimate parameters of a link-cost function (Suh et 

al., 1990). Descent algorithms have also been used to solve with other applications of MPECs 
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where the equilibrium problem is a traffic assignment model (Si et al., 2012; Si et al., 2011). 

Other solution algorithms which have been used with the ITAP to estimate cost function 

parameters but do not fit into these categories are genetic algorithms (Xu et al., 2004) and using 

a gap function to transform the problem into a single level nonlinear problem (Meng et al., 

2004). 

Since descent algorithms have been used successfully to solve bilevel programmes for several 

transport problems including calibration of a link cost function in a single-mode network; a 

descent-type algorithm is used in the main analysis in this study.  

2.4 Evaluation and  optimisation of cycle networks. 

Policymakers and transport authorities often use tools and guidelines in order to aid them in the 

design and evaluation of cycling facilities. Some countries have national guidelines for designing 

and appraising transport projects. Cost Benefit Analysis (CBA) is the most commonly used tool in 

such appraisals (Mackie et al., 2014) and the methodologies, valuations and applications are 

broadly similar across different countries. In Ireland, the Common Appraisal Framework (CAF) 

(Department of Transport, 2016) sets out guidelines for the appraisal of transport projects. The 

first stage in the CAF appraisal process is the Preliminary Appraisal. In this stage, a problem is 

identified, and a number of possible interventions are designed: a Do-minimum option and at 

least three better-performing Do-something options. The CAF recommends that these options 

are subjected to a Multi-Criteria Analysis in order to select a smaller number of options to be 

analysed in the next stage, Detailed Appraisal. Multi Criteria Analysis involves the decision maker 

assigning scores and weightings to various impacts and this can add some subjectivity to the 

appraisal process. In the Detailed Appraisal step, transport projects are typically appraised using 

a CBA. This involves generating a list of all benefits and costs expected to arise over the lifetime 

of the project. Benefits and costs should be represented by market prices where possible and 

values based on revealed preference should be used where market prices are unavailable. The 

CAF also recommends parameters for evaluating value of time, vehicle operating costs, emission 

values, collision costs and active travel values. Net Present Value, Cost Benefit Ratio and Internal 

Rate of Return are used as the main measures for deciding on the preferred option. 

In the UK, guidelines for transport appraisal are set out in WebTAG (Department of Transport, 

2013). Similarly to the CAF, the process involves an initial ‘Option Development’ stage in which a 

number of possible interventions are outlined and sifted in order to find a smaller number of 

options to take forward to the ‘Further Appraisal’ stage. In this stage a smaller number of 

options are subjected to more complex appraisal including CBA, environmental assessment and 
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a Transport Business Case. 

Some countries also have design guidelines specific to cycling facilities. The design guidelines of 

Ireland, the UK and other countries are strongly influenced by the Dutch cycling design guidance 

(CROW, 2007). The CROW guidelines identify coherence, directness, attractiveness, safety and 

comfort as the fundamental requirements for cycling infrastructure and these five dimensions 

are echoed in the National Cycle Manual of Ireland (National Transport Authority, 2011a) and 

the Handbook for Cycle Friendly Design (Sustrans, 2014) in the UK. These guidelines provide high 

level guidance for cycle friendly design as well as technical guidance and parameters such as 

minimum widths, turn radii and signal timings. This guidance can be used in order to aid in the 

design possible of interventions during the initial appraisal steps of the CAF or WebTAG appraisal 

process. 

The effectiveness of the guidelines discussed above is limited by the number of possible 

interventions which can feasibly be appraised. In a real urban transport network, there are an 

effectively unlimited number of possible interventions and so, even in the initial appraisal stage, 

only a very small subset of possible interventions will be considered. An even smaller number of 

interventions will go through the full appraisal due to the human effort involved in carrying out 

such analysis. 

In recent years there has been some research interest in designing software-based solutions in 

order to systematically identify suitable transport interventions for cycling. (Vandenbulcke et al. 

(2011)) built a regression model to predict the percentage of commuting by bicycle at the 

municipal level based on variables related to land use, urban structure, accident risk, traffic 

network and traffic volumes. By observing the residuals in the model for each municipality, they 

identified areas which were over-performing with respect to cycling levels and areas where 

there was still potential to develop the use of the bicycle for commuting. Lovelace et al. (2015) 

developed the Propensity to Cycle Tool (PCT) to identify O-D pairs in England with potential for 

increased cycling cycling levels. The PCT is uses a similar approach to (Vandenbulcke et al. 

(2011))  but on an O-D level rather than at the municipal level. The PCT is based on a logistic 

regression model which predicts cycling mode share for each O-D pair based on distance and 

hilliness of the fastest route. The tool was used to develop hypothetical scenarios with increased 

overall cycling levels whereby the increase in cycling between each O-D pair was determined by 

the propensity to cycle as predicted by the fitted model. The PCT is also available publicly as an 

open source web-tool. While the PCT is a useful tool for identifying O-D pairs with potential for 

greater cycling levels, it has limitations as a tool for aiding in the design of cycling infrastructure. 
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It does not consider the influence of some important factors such as motor traffic levels on the 

propensity to cycle nor does it consider the impacts of building new cycling infrastructure on 

other modes. It also works at the O-D level whereas infrastructure changes are ultimately made 

at the link level. For example, rather than designing a cycleway to cover an entire route, a cycle 

lane may be provided on a busy road which forms a small part of many routes. 

There have also been some examples in the literature of using the network design problem 

(NDP) to aid in cycle network design. The NDP is a strategic decision-making problem which aims 

to find best use of limited resources such as land use and monetary budget in order to optimise 

the performance of a transport network while giving consideration to the behaviours of the 

network users in response to the strategy (Xu et al., 2016). Traditionally, the main objectives of 

the NDP in the literature have been to minimise traveller delays and maximise network reserve 

capacity (Bell and Iida, 1997; Boyce, 1984). The sustainable road NDP, however, in addition to 

economic considerations also includes environmental and/or social impacts. A review of the 

literature on the sustainable road NDP is given by Xu et al. (2016). The NDP is generally 

formulated as bilevel optimisation problem or MPEC where the objective function represents 

the decisions of the transportation authority and the equilibrium problem represents the 

behavioural responses of the users of the network. The decision variables may include discrete 

variables relating to the network topology (addition/removal of links, one-way restrictions etc.) 

as well as continuous variables relating to the parameterisation of the network (capacity 

enhancement, signal timing etc.)  (Xu et al., 2016). Until recently there was a notable lack of NDP 

studies which aimed to optimise cycling networks. In the past six years, however, a number of 

studies have emerged which aimed to use the NDP to systematically design cycle facility layouts 

in multi-modal transport networks. These studies sought either a single optimal cycle network 

design or a set of pareto optimal designs. If a single solution was sought, it was necessary for all 

objectives such as functions of travel time or emissions to be expressed in common units or 

given relative weightings. 

The cycle network design optimisation studies to date can be placed into two categories: studies 

which aimed to find the optimal placement of cycle infrastructure based on network structure 

alone and studies which aimed to find the optimal placement of cycle infrastructure given the 

predicted response of the network users to the new infrastructure.  

In the first type of study, the problem is formulated as a single-level programming problem and 

the objective function is formed in relation to network characteristics.  Lin and Yang (2011) used 

an integer nonlinear program to design the layout of public bicycle rental stations and bicycle 
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paths connecting them to optimise a function of travel costs (based on shortest-path, not 

traveller behaviour), setup costs, service coverage and bicycle stock costs. Smith and Haghani 

(2012) formulated a mixed integer programme to find pareto optimal layouts for cycle facilities 

in the centre of Baltimore in order to minimise path length and maximise bicycle LOS. Lin and Yu 

(2012) found a pareto set of bikeway layouts in a small area of Taipei City to optimise functions 

of risk, comfort and service coverage.  Duthie and Unnikrishnan (2014) aimed to find the single 

lowest-cost solution to connect each O-D pair in the network by a fully connected path where 

each roadway segment and intersection exceeded a minimum bicycling LOS. Lin and Liao (2014) 

used a similar problem formulation to  Lin and Yu (2012) but in addition to bikeways, it 

considered optimal placement of service stations. 

In the second type of study, the problem is formulated as a bilevel programme or MPEC where 

the objective function represents the designer of the cycle facilities and the equilibrium problem 

represents the behavioural responses of the cyclists and/or other users of the network. Since 

these studies predicted the responses of users to the infrastructure, they could also take into 

account total travel costs in the system and/or the perceived benefits of travelling. Mesbah et al. 

(2012) formulated a bilevel programme to design the layout of cycle facilities where the top level 

optimised a function of distance cycled on cycle lanes and total travel time of autos and the 

lower level found the network equilibrium in response to the design. However, the cyclist and 

auto equilibrium solutions were found separately so that no interactions between the two 

modes were modelled. Li et al. (2015) developed a multi-modal equilibrium model including a 

public bicycle mode. They found the equilibrium for a small test network in response to a range 

of bicycle rental prices and emissions charges. Since only two design variables were considered, 

the solution which maximised the sum of consumer surplus and producer surplus could be found 

graphically. Bagloee et al. (2016) sought to find the optimal allocation of priority cycle links in 

the Winnipeg transport network by identifying links with latent misutilised capacity. A bilevel 

programming model was developed where the top level minimised the total system travel cost 

and the bottom level found the multi-modal traffic equilibrium in response to the design. The 

user equilibrium model included interactions between the cycling and driving modes but a 

simplified model of link congestion was used whereby each mode on a given link experiences the 

same delay. 

Since most of the studies in both categories considered only discrete variables such as whether 

or not to add a cycle lane and did not consider capacity enhancement in a continuous sense, the 

problems had a combinatorial structure. For this reason a popular class of solution algorithm 
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were Branch and bound methods, which were used in three studies (Lin and Yang, 2011; Smith 

and Haghani, 2012; Bagloee et al., 2016). Other solution approaches included genetic algorithms 

(Mesbah et al., 2012) and various commercial solvers. 

2.5 Scope of Research 

A number of research gaps and opportunities can be identified based on this literature review 

and these are discussed below. 

There have been many studies in recent years which have sought to quantify the total health 

and environmental impacts of cycling at a societal level. However, little attention has been given 

to the distribution of impacts experienced by cyclists at an individual level.  This is important 

because if these impacts are only considered at an aggregate level; negative impacts by some 

sub-populations may be masked by positive impacts experienced by others. Chapter 4 will 

address this gap In the research. 

Some of the studies which have quantified the health impacts of cycling included exposure to air 

pollution while travelling as a determinant of health. However, they have done so at a highly 

aggregate level, ignoring route specific considerations such as traffic volumes and presence of 

cycling facilities. Studies of the air pollution exposure of cyclists have found traffic levels and 

facilities to be important factors but only a small number of these have considered real-time 

traffic and presence of facilities in the same study these have shown inconsistent results.  Also, 

none of these studies have measured NOx, this may be because it was previously believed that 

NOx exposure had no long term health impacts independently from PM exposure. However, the 

evidence now points towards an independent  long term health impact of NOx exposure 

(COMEAP, 2015). Therefore, there is a need for further research into the relationship between 

cyclist exposures to air pollution—including NOx—and route specific characteristics such as 

traffic levels and presence of cycling facilities. This research gap will be address in Chapter 5 and 

6. 

Studies into the health and environmental impacts of cycling have focussed mainly on 

hypothetical scenarios where cycling mode shares are higher, with no consideration given to the 

policies which could achieve these scenarios. National guidelines such as the CAF and WebTAG 

offer guidelines on evaluating specific interventions but they are not suitable for properly 

evaluating cycling interventions as they cannot predict the change in travel behaviour of cyclists 

nor can they comprehensively quantify all of the expected impacts of changes in cycling levels. A 

software tool such as the PCT is useful for identifying areas with high potential for increased 
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cycling but it does not attempt to model how cycling behaviour would change in response to a 

new piece of infrastructure. There is a need for decision support tools which can help to identify 

infrastructure interventions with high potential for increasing cycling levels in such a way as to 

optimise the overall societal impacts. In this thesis, it is hypothesised that this can be achieved 

by combining quantification of impacts and network equilibrium modelling within an 

optimisation framework. 

Econometric network equilibrium models assume that travel behaviour is governed simply by a 

desire to minimise one’s expected disutility of travel. This ignores potentially 

important considerations such as social norms and attitudes which may be important in the 

context of cycling. However, equilibrium methods have many advantages such the ability to 

capture complex interactions between the transport network, route choice, mode choice and 

overall demand while maintaining internal consistency (Boyce and Bar-Gera, 2004). This 

advantage is particularly important when considering the impacts of an intervention which takes 

place at the link level on overall travel behaviour. The introduction of a new cycling facility can 

be expected to influence route choices of existing cyclists as well as to increase the modal share 

of cycling. The behaviour of other modes may also be influenced through changes in their 

interactions with cyclists and changes in the road capacity devoted to motor vehicles. All of 

these complex interactions can be readily accounted for in a combined equilibrium model. Also, 

the literature relating to cycling modal share suggests that the most consistently important 

determinants of cycling mode choice are route level characteristics such as traffic levels, 

topography and availability of facilities. This suggests that the choice to cycle is largely 

determined by the expected disutility of cycling on the most attractive cycling route. If 

these route-level characteristics can be captured in a measure of the disutility of cycling, then it 

should be possible to build and calibrate a combined model of mode and route choice based on 

route disutility alone with reasonable predictive accuracy. However, no studies in the literature 

to date have developed and calibrated such a disutility function for cyclists. Therefore, Chapter 7 

addresses the challenge of developing and calibrating a disutility function for cycling. Since no 

suitable method exists for this calibration, a new calibration algorithm based on sensitivity 

analysis of the underlying equilibrium problem is proposed.   

Chapter 8 then builds on the contributions of all the previous chapters in order to develop a tool 

for finding the optimal design for a cycle network, taking into account the responses of the 

network users to the intervention and the health, environmental and travel time impacts 

resulting from the changes in travel behaviour. In recent years, traditional appraisal methods for 
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transportation such as the CAF have been extended to consider impacts such as the health 

impacts of active travel. However, chapter 8 builds on this by integrating the impact calculations 

with modelling of the responses of cyclists to an intervention. This integrated approach is also 

placed in an optimisation framework so that rather than simply evaluating a particular existing 

design, an optimal design can be found automatically. 
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Chapter 3: Quantifying the Benefits and Risks of Urban Cycling in Dublin; 

Total Societal Impacts 

Motorised modes of transportation have profound negative impacts on both the users of these 

modes and the surrounding population Per-km costs from IMPACT handbook (Korzhenevych et 

al., 2014). Dependence on motorised transport promotes physical inactivity, a leading cause of ill 

health which is responsible for 6% of deaths globally (WHO, 2010).  In addition to personal 

impacts, motorised transport results in negative external impacts. In 2015, the transport sector 

was responsible for 37% of all energy-related carbon dioxide (CO2) emissions in Ireland, more 

than any other sector (Sustainable Energy Authority of Ireland, 2016). Road transport is also the 

main source of emissions of particulate matter, nitrogen oxides, carbon monoxide and benzene 

in Ireland (Environmental Protection Agency, 2016). Motorised travel is often the only realistic 

option for essential trips. However many other trips, particularly in urban environments, are 

short and could easily be made by bicycle (National Transport Authority, 2015b; Pucher and 

Dijkstra, 2003). The replacement of motorised transportation by cycling can significantly mitigate 

the external costs of motorised transportation (Bickel et al., 2006) while also improving the 

health of end users through increased physical activity (Mueller et al., 2015). However, there are 

also additional risks associated with cycling such as increased vulnerability to road traffic 

collisions and increased in-travel exposure to air pollution. Although there is a growing 

understanding that the benefits of active travel significantly outweigh these risks, it is essential 

that these benefits can be appraised quantitatively in order to inform evidence based policy 

formulation and promote the uptake of cycling if appropriate. Quantification of the negative 

external costs of motorised travel also allows for internalisation of those costs through taxes and 

charges so that transport users will take these societal costs into account when making 

decisions. For these reasons, methods of quantification in common units of the total societal 

benefits and risks of cycling are needed. 

As described in Chapter 2, a number of studies have previously quantified the impacts of 

increasing uptake of active modes of travel. However, many of these were not comprehensive in 

terms of the impacts considered. For example, the only reviewed study to consider noise and 

congestion impacts was Rabl and de Nazelle (2012) and they found these impacts to be highly 

significant. In addition, no study to date has included the change in travel costs to both the new 

cyclists and the rest of the network users alongside health and environmental impacts. 

Traditionally, travel costs have been the most important cost to be considered by transport 
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planners and so their exclusion is a major concern. This chapter aims to develop a framework for 

comprehensively quantifying the impacts of a modal shift in favour of cycling. This framework is 

also applied to a case study of work commuters in Dublin. In the next section, the scenario of 

interest in the case study is described. This is followed by a descriptions of the various models 

used to estimate the total societal impacts in monetary terms. The results are then presented, 

followed by a conclusion. The contents of this chapter are based on published work (Doorley et 

al., 2015a). 

3.1 Case Study of Dublin 

The scenario of interest in this study was one whereby all work commuter trips currently 

undertaken by car or van which would be considered as cycle-able are cycled. This is clearly an 

idealised scenario but it allows indicative estimates of the relative scale of the various benefits 

and risks of cycling to be made. For this purpose it was assumed that a journey of 5km or less 

each way is cycle-able. This was considered reasonable as a European study has suggested that 

cycling may be the fastest mode of transport for trips of 5km or less in urban environments 

(European Commission, 1999). The data for this study was sourced from the POWSCAR (Place of 

Work, School or College – Census of Anonymised Records), 2011 data (Central Statistics Office, 

2011a; Central Statistics Office, 2011b). This dataset includes details of commuter trips made by 

all persons over the age of 4, resident in Ireland on Apr/10/2011, including home and 

work/school/college locations, journey times and journey modes. This study focussed on work 

trips because certain important variables such as age group are not reported for school or 

college trips in the data. A summary of the daily work trips in county Dublin based on these data 

is shown in Table 3.1. Since POWSCAR, 2011 only specifies journey times; the journey distances 

were estimated using average driving speeds. Trips were categorised based on their origins and 

destinations as being city trips, outside-city or combined trips. For outside-city and combined 

trips, average journey speeds of 25km/hr and 21km/hr were estimated based on POWCAR 

(Place of Work – Census of Anonymised Records), 2006 (Central Statistics Office, 2006) which 

included both journey times and journey distances. For city trips, this method was not used as a 

speed limit of 30km/hr was introduced in Dublin city centre in 2010. A conservative average 

driving speed of 15 km/hr was assumed for city trips. These average driving speeds are simplified 

estimates which ignore variations due to time of day, road types etc. No data were available on 

average cycling speeds in Dublin and so average cycling speed was estimated to be 14km/hour, 

consistent with the assumptions of the WHO’s Health Economic Assessment Tool (HEAT) (WHO, 

2014). The impacts of this modal shift were quantified for a single year—2012. 



 

Table 3.1 Commuter trips by car/van, bicycle, walking and public transport (PT) in county Dublin  as per census, 2011 

    City Trips Outside-city Trips Combined Trips 

Gender Age N Car/Van Bicycle Walk PT N Car/Van Bicycle Walk PT N Car/Van Bicycle Walk PT 

Male 

15-19 458 18% 9% 34% 39% 666 42% 5% 31% 21% 409 37% 4% 7% 50% 

20-24 4349 21% 11% 38% 29% 4498 58% 5% 21% 16% 4031 44% 5% 3% 46% 

25-29 11443 21% 15% 39% 24% 9159 69% 5% 14% 11% 10837 48% 6% 3% 41% 

30-34 11266 26% 17% 32% 23% 10958 75% 5% 10% 8% 13452 53% 8% 2% 35% 

35-39 7865 33% 19% 25% 20% 9499 80% 5% 7% 7% 11477 58% 8% 1% 29% 

40-44 6054 41% 18% 21% 19% 7804 81% 5% 7% 5% 9400 63% 8% 1% 24% 

45-49 5424 46% 16% 18% 18% 6594 83% 4% 6% 4% 8283 67% 7% 1% 21% 

50-54 4804 48% 14% 19% 17% 5693 83% 4% 7% 5% 7291 67% 7% 1% 21% 

55-59 3607 48% 12% 19% 18% 4174 83% 4% 7% 4% 5478 69% 5% 1% 22% 

60-64 2287 52% 11% 18% 18% 2603 83% 4% 8% 4% 3103 72% 4% 1% 21% 

65-69 587 55% 6% 20% 17% 697 81% 2% 10% 5% 765 73% 3% 1% 22% 

70-74 177 57% 7% 14% 21% 256 79% 2% 14% 4% 234 74% 2% 1% 21% 

75+ 116 47% 8% 32% 12% 111 77% 3% 17% 3% 140 75% 1% 4% 19% 

Female 15-19 489 17% 2% 40% 41% 629 45% 1% 27% 28% 344 33% 0% 5% 62% 

20-24 6071 22% 4% 38% 36% 5692 61% 1% 20% 18% 5126 41% 1% 4% 53% 

25-29 15115 24% 7% 41% 28% 11491 70% 1% 16% 12% 12962 48% 2% 3% 47% 

30-34 13673 29% 8% 35% 28% 11575 78% 2% 12% 8% 14621 54% 2% 2% 41% 

35-39 9152 38% 7% 29% 25% 9182 81% 1% 11% 6% 11043 61% 2% 2% 35% 

40-44 7261 42% 6% 27% 24% 7556 81% 1% 12% 6% 8130 66% 3% 2% 29% 

45-49 6818 45% 5% 26% 24% 7705 79% 1% 13% 6% 7304 67% 2% 3% 28% 

50-54 5910 43% 4% 29% 24% 6896 75% 2% 16% 7% 6283 66% 2% 2% 29% 

55-59 4203 42% 3% 28% 26% 5134 74% 1% 18% 7% 4551 66% 1% 3% 30% 

60-64 2552 40% 3% 31% 26% 2705 70% 1% 21% 7% 2437 66% 1% 3% 30% 

65-69 570 43% 2% 29% 25% 571 72% 1% 21% 6% 453 65% 2% 3% 30% 

70-74 178 36% 2% 39% 24% 145 72% 3% 19% 6% 123 71% 0% 2% 27% 

75+ 85 38% 6% 36% 20% 55 71% 2% 18% 9% 57 70% 0% 4% 25% 5
9
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3.2 Estimation of Impacts 

The impacts of increased cycling which were considered in this study included both those 

experienced by the cyclists themselves—health effects of physical activity, in-transit pollution 

exposure, traffic collisions and travel costs—and those experienced by the rest of society—

traffic collisions, reduced emissions of air pollution and greenhouse gases, reduced noise and 

reduced congestion. Different models were used to quantify each of these impacts and convert 

them to equivalent monetary units. An outline of the methods used to quantify and monetise 

each impact is shown in Table 3.2 and each of these impacts is discussed in detail below. All 

monetary values from previous years were updated to 2015 values based on GDP per capita 

growth in Ireland (OECD Data, 2016). Since there are significant uncertainties associated with 

the models, upper and lower bounds are also calculated which take into account the main 

sources of uncertainty. 

All impacts are calculated as deviations from the current or business-as-usual scenario and this is 

consistent with the prevailing approach taken in the studies reviewed in Chapter 2. However, it 

is worth noting that this paradigm implies that the net cost of the current transport scenario is 

zero when in fact, the level of motor vehicle traffic in a city such as Dublin has major 

consequences in terms of air pollution, congestion and other external impacts. It would be 

arguably more appropriate to calculate the costs of driving relative to cycling rather than to 

calculate the benefits of cycling relative to driving.  

 



 

 

Table 3.2 Outline of models used to quantify and monetise impacts of active travel 

Impact Model Units Monetisation 

Physical Activity influences risk of 
specific diseases 

Dose-Response Functions based on 
Woodcock (Woodcock et al., 2009) DALYs VOLY 

In-travel pollution exposure influences 
risk of specific diseases 

Dose-Response Functions recommended by 
WHO (Ostro, 2004) DALYs VOLY 

Traffic collision risk changes for entire 
network 

Non-linear model based on Woodcock 
(Woodcock et al., 2013) with estimates of 
DALYs lost for each collision type DALYs VOLY 

External air pollution emissions are 
reduced 

Emission factors from TREMOVE 
(Breemersch et al., 2010) Tonnes 

Per-tonne costs from 
IMPACT handbook 
(Korzhenevych et al., 
2014) 

Greenhouse gas emissions are reduced 
Per-km costs from IMPACT handbook 
(Korzhenevych et al., 2014) Euro - 

External noise pollution is reduced 
Per-km costs from IMPACT handbook 
(Korzhenevych et al., 2014) Euro - 

Generalised cost of travel (GCoT) 
changes 

GCoT modelled as the sum of time cost and 
operating costs Euro - 

Congestion in network is reduced 
Per-km costs from IMPACT handbook 
(Korzhenevych et al., 2014) Euro - 

 

6
1
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3.2.1 Health Impacts of Physical Activity 

Cycling as a mode of travel is physical activity which is typically performed at a moderate 

intensity and such activities have positive long-term health impacts. As discussed in Chapter 2, 

the benefits of physical activity can be quantified in terms of mortality or BOD. In this study, the 

BOD approach is taken because, as outlined in Chapter 2, it is more appropriate for quantifying 

the health impacts of chronic exposure to air pollution and physical activity than mortality-based 

approaches. BOD is a summary measure of the impact of a disease on health, taking into 

account both Years of Life Lost (YLLs) and Years of healthy Life lost to Disability (YLDs). The sum 

of YLLs and YLDs gives the total Disability Adjusted Life Years (DALYs) lost. To calculate the 

change in DALYs due to physical activity, the average kms cycled by the additional cyclists in each 

age and gender group were first converted to Metabolic Equivalent of Task (MET) hours using a 

compendium of physical activity MET factors (Ainsworth et al., 2011). A MET factor of 6.8 was 

used for cycling, consistent with HEAT for cycling and several recent studies (Woodcock et al., 

2013; Woodcock et al., 2014). Non-travel related physical activity MET hours also needed to be 

estimated. The proportions of people in each age and gender group having a physical activity 

level of, low, moderate or high on the International Physical Activity Questionnaire (IPAQ) scale 

could be obtained from the results of the recent Health Ireland survey (IPSOS MRBI, 2015). The 

MET hours per week associated with low, moderate and high activity levels were estimated to 

be 0, 10 and 28 based on the IPAQ guidelines (IPAQ Research Committee, 2005). The 

relationships between MET hours of physical activities and the risk of various health conditions 

were modelled based on a systematic review by Woodcock et al. (2009). The health conditions 

modelled were cardiovascular disease, breast cancer, colon cancer, dementia, depression and 

type II diabetes. It was assumed that the Relative Risks (RR) applied to both YLLs and YLDs. The 

RRs of this review were based on specific levels of weekly physical activity and so they needed to 

be adapted to the appropriate levels of physical activity in the current study. Similarly to 

Woodcock et al. (2013) this was achieved by assuming a log-linear relationship between risk of 

each condition and a power of 0·5 transformation of MET hours (power of 0.375 for diabetes). 

The baseline expected YLLs and YLDs for each age and gender group were obtained from the 

WHO global BOD estimates for 2012 (World Health Organization, 2014). The new cyclists were 

grouped by age, gender and level of baseline activity and the change in YLLs for each group due 

to each condition, i, were calculated using Eq. 3.1 to Eq. 3.3. 
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  Eq. (3.3) 

Where N is the number of individuals in the group,
iYLL  is the change in expected YLLs due to 

condition i, i

BYLL is the YLLs expected at baseline, BMETS  is the MET hours of PA at baseline,  

i

RefRR and 
i

RefMETS are the reference RR and reference MET hours associated with disease i in 

the systematic review of Woodcock et al. (2009), CMETS  is the additional MET hours of cycling 

and 
i  is the power transformation of the exposure. The change in the expected YLDs was 

calculated in the same way. The sum of all DALYs saved across all groups gave the central impact 

for total DALYs saved due to physical activity. This impact could be represented by a monetary 

value by multiplying the number of DALYs saved by the Value of a Life Year (VOLY). A VOLY of 

€94,794  was used based on an Irish study (Deloitte Access Economics, 2011). To calculate upper 

and lower bounds based on this model, the analysis was repeated, replacing the reference RRs 

with limits of the 95% confidence intervals as reported by Woodcock et al. (2009). 

Since previous studies have shown that physical activity is the most important determinant of 

the impacts of cycling and also that the choice of model can have a significant effect on the 

results, some additional analysis of this impact was carried out for comparison using three 

different models: quantifying deaths using the 2014 version of the Health Economic Assessment 

Tool (HEAT) for cycling; quantifying YLLs using HEAT 2014; and quantifying deaths using the 2011 

version of the HEAT.  

As discussed in Chapter 2, the HEAT for cycling is the most widely used model for quantifying the 

mortality impacts of the physical activity of cycling. This tool was developed by the WHO as a 

user-friendly tool for anyone to conduct an economic assessment of the health benefits of 

cycling by estimating the value of the reductions in mortality resulting from the cycling. The first 

secondary model of this study was based on the most recent version of this tool, released in 

2014, which predicts the decrease in all-cause mortality due to increased cycling in a population 

after a build-up period of 5 years based on Eq. (3.4). 
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  Eq. (3.4) 

where PAD  is the change in deaths per year due to the cycling physical activity, N is the 

number of subjects, BMR is the baseline mortality rate, 
RefRR is the reference Relative Risk (RR) 

from the underlying studies in the HEAT meta-analysis, 
Refd is the reference cycling distance 

from the underlying studies and d is the average distance cycled in the scenario of interest. 

Baseline mortality rates associated with each 5-year age group in Ireland were obtained from 

the WHO Mortality Database (WHO). The resulting avoided fatalities were converted to an 

equivalent monetary value using the Value of a Statistical Life (VSL). The VSL of €5,128,420 

suggested by the WHO for use in Ireland was used. As with the main model, the limits of the 95% 

confidence interval for the reference RR were used to calculate upper and lower bounds. 

In another secondary model, the RRs estimated using the HEAT, 2014 model were applied to the 

baseline all-cause YLLs per year to find the change in YLLs per year as a result of the physical 

activity. The economic impact of this reduction in YLLs was estimated using the VOLY. As with 

the main model, the limits of the 95% confidence interval for the reference RR were used to 

calculate upper and lower bounds. The final secondary model was based on the 2011 version of 

HEAT, 2011. As discussed in Chapter 2, this older version of HEAT, released in 2011, was widely 

used and discussed in studies which assessed the benefits and risks of cycling (Deenihan and 

Caulfield, 2014; Grabow et al., 2012; Lindsay et al., 2011; Rojas-Rueda et al., 2011; Rojas-Rueda 

et al., 2012)  before the 2014 version was released. However, the base of epidemiological 

evidence for HEAT, 2011 was not as comprehensive as that of the 2014 version (WHO, 2014). 

3.2.2 Traffic Collisions 

Cyclists are generally at higher risk of being involved in road collisions than drivers and 

passengers of cars. However, evidence has consistently shown that there is a “Safety in 

Numbers” effect associated with cycling whereby increases in levels of walking and cycling lead 

to a reduction in the risk of collision for pedestrians and cyclists (Elvik, 2009; Robinson, 2005). 

Furthermore, the reduction in distance travelled by motorised modes in the network leads to a 

reduction in collision risk for users of all modes. For these reasons, the relationship between the 

distance travelled by a particular mode in a transport network and the collision risk for that 

mode is strongly non-linear (Elvik, 2009) and is also affected by the distance travelled by other 

modes. In this study, the change in the incidence of fatal and non-fatal collisions for each mode 

in response to the modal shift was modelled by using a non-linear model similar to that used by 
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Woodcock et al. (2013). For each pairwise combination of striking mode and victim mode, the 

number of fatal injuries and the number of non-fatal injuries were calculated using Eq. (3.5). 
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  Eq. (3.5) 

where I  is the change number of in injuries (fatal or non-fatal) per year, BI  is the number of 

injuries of the particular severity and striking/victim mode combination at baseline, 
Bsd  and 

Bvd

are the respective distances travelled by the striking and victim mode at baseline, sd and vd are 

the respective distances travelled by the striking and victim mode in the study scenario and   

and   are power transformations of the distance travelled which account for the non-linear 

relationship between road traffic injuries and distances travelled. These power transformations 

vary by mode and were obtained for this study from Elvik (2009) and Woodcock et al. (2013). 

The baseline distances travelled by each mode were estimated using a similar method to Short 

and Caulfield (2014). The baseline collision data was obtained from the Road Safety Authority 

(RSA) Road Collision Factbook 2011 and 2012 (Road Safety Authority, 2011, 2012). It was 

assumed that the apportionment of non-fatal injuries to victim-striking mode combinations in 

Dublin County was the same as in Ireland as a whole. It was also assumed that the ratio of 

serious injuries to minor injuries for each combination of modes in Dublin was the same as the 

ratio of serious injuries to minor injuries in Ireland as a whole.  

It is well documented that traffic collisions are significantly underreported, particularly minor 

collisions and collisions involving active modes. In Ireland the road collision information 

accumulated by the RSA is based on reports by the police service, An Garda Síochána. One study 

has estimated that the true number of cycling collisions in Ireland is six times greater than the 

police reported number (Short and Caulfield, 2014). In order to account for such underreporting, 

the baseline collision data from RSA was scaled using mode and severity specific correction 

factors provided by the HEATCO study (Bickel et al., 2006), a European study which developed a 

framework for consistent monetary valuation of transport projects. The scaled and unscaled 

results provided upper and lower bound estimates for the change in traffic collision casualties 

and the average of these was taken as the central estimate. 

In order to represent the change in traffic collisions in monetary terms, it was necessary to first 

estimate the resulting change in DALYs. The monetary cost could then be quantified based on 

the VOLY. It was assumed that the DALYs lost due to a fatal injury would be equal to the 
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remaining life expectancy of the casualty at the time of the collision. The average DALYs per fatal 

collision was therefore assumed to be equal to the average remaining life expectancy among the 

20-64 age group in the population of Dublin (CSO, 2015) . This resulted in an average of 42.5 

DALYs lost per collision. To estimate the YLDs lost due to serious and minor injuries, no suitable 

data from Ireland was available so reference was made to a recent study (Tainio et al., 2014) 

which estimated YLDs lost in traffic collision injuries based on data from the Swedish Traffic 

Accident Data Acquisition (STRADA) database. Values were estimated for each injury severity on 

the Abbreviated Injury Scale (AIS): minor, moderate, serious, severe, critical and maximal. The 

RSA collision statistics in Ireland do not clarify what is meant by a “serious” or “minor” injury or 

how these relate to the AIS so it was assumed that RSA minor injuries include those which would 

be classified as minor or moderate on the AIS and RSA serious injuries include those which 

would be classified as serious, severe, critical or maximal on the AIS. To estimate the YLDs lost 

for each RSA injury type, a weighted average was taken of the estimated YLDs for each 

corresponding AIS injury type, where the weighting was based on the relative frequency of these 

injury classes in STRADA. 

3.2.3 Health Impacts of In-travel Pollution Exposure 

Although pedestrians and cyclists do not produce air pollutants which are directly harmful to 

human health while travelling, they are exposed to higher inhalation doses of toxic pollutants, 

mainly due to their elevated ventilation rates (McNabola et al., 2008; Panis et al., 2010; Zuurbier 

et al., 2010). PM2.5 is commonly considered as the most important pollutant for predicting the 

long term health impacts of traffic related air pollution (Chen et al., 2008). To estimate the 

impact of the increased inhalation dose of travellers switching from car travel to active travel, an 

approach similar to Hartog et al. (2011) was taken. First, the ratio of yearly inhaled dose of PM2.5 

between the hypothetical and baseline scenarios was calculated. The ratio of inhalation doses, 

Rd was calculated using Eq. (3.6). 
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  Eq. (3.6) 

where w is the number of work days per year (221), the subscripts C, S, O and D denote the 

activities driving, sleeping, cycling and other; C is the concentration factor for the activity, MET is 

the estimated MET factor for the activity, t is the average time spent in the activity daily and T is 

24 hours. The concentration factor accounts for the relative exposure concentration experienced 

by different modes using the same routes due to vehicle type and road position. Similarly to a 

recent study (Woodcock et al., 2014), concentration factors of 0.8, 1 and 1.3 were used for 
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pedestrians, cyclists and drivers respectively based on a systematic review of air pollution 

exposure by different modes of transport in Europe. The MET factors, sourced from a 

compendium of MET factors (Ainsworth et al., 2011) were used to account for the relative 

ventilation rates between each travel mode. For non-travel time, a concentration factor of 1 and 

MET factors of 0.95 for sleeping (8 hours) and 1.5 for the rest of the day were assumed, similarly 

to Woodcock et al. (2014). It was then assumed that the health impact to these travellers of the 

increase in inhaled dose would be equivalent to the impact of an increase in average ambient 

PM2.5 concentration of the same proportion. The baseline average annual PM2.5 concentration 

used for this calculation was estimated at 10µg/m3 based on the EPA of Ireland Air Quality 

Report 2012 (Environmental Protection Agency, 2012). The health impacts of changes in 

ambient PM2.5 concentrations have been studied extensively. In this study, the results of the 

APHEIS (Air Pollution and Health: A European Information System) study (Boldo et al., 2006) 

were used to estimate the changes in YLLs from cardiorespiratory diseases and lung cancer of 

the new cyclists due to their change in PM2.5 exposure. This study found that a 10 μg/m3 increase 

in mean PM2.5 concentration was associated with RRs of 1.09 and 1.14 for cardiopulmonary and 

lung cancer mortality respectively. The change in YLLs could be modelled using Eq. 3.7 and Eq. 

3.8: 
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Where 
iYLL  is the change in the individual’s expected YLLs due to condition i, i

BYLL  is the 

individual’s baseline expected YLLs due to condition i, 
i

RefRR is the reference RR for condition i, 

RefC is the reference concentration change for condition i and 
eqC is the equivalent change in 

concentration of PM2·5. Since cardiovascular disease risk is influenced by both physical activity 

and pollution exposure, the impacts of the two exposures were modelled multiplicatively. To 

calculate upper and lower bounds based on this model, the analysis was repeated, replacing the 

reference RRs with limits of the 95% confidence intervals from the APHEIS study (Boldo et al., 

2006). 
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3.2.4 External Pollution Impacts 

Emissions of air pollutants by motor vehicles have negative societal impacts in the form of 

human health effects and damage to crops and eco-systems (Korzhenevych et al., 2014). In this 

study, the impacts of the decrease in toxic air pollution attributable to the reduction in vehicle 

km travelled was quantified in two steps. First, the reduction in emissions of PM2.5, nitrogen 

oxides (NOx), non-methane volatile organic compounds (NMVOC) and sulphur dioxide (SO2) were 

estimated and then the external impacts of these reductions were estimated. In the first step, 

estimates of the average emissions of each pollutant per km travelled by the Irish fleet were 

obtained from the TREMOVE v3.3.2 (Breemersch et al., 2010) database, a widely used source of 

aggregate emission factors based on COPERT v4 (Gkatzoflias et al., 2007). The avoided emissions 

of each pollutant in the study scenario could then be easily calculated based on the avoided 

vehicle km (vkm) travelled. The external impacts of these avoided emissions were calculated by 

reference to the updated IMPACT Handbook (Korzhenevych et al., 2014). The Handbook gives 

cost estimates per tonne of each pollutant, differentiated by country as well as by type of 

locality—rural, suburban or metropolitan. It was assumed that emissions from city trips were 

100% urban. For the central estimates, trips which had one end in the city centre were assumed 

50% urban and 50% suburban and trips with both ends outside of the city centre were assumed 

50% suburban and 50% rural. These assumptions were made due to a lack of data concerning 

the routes taken. These proportions were varied in the sensitivity analysis as described later in 

this section. 

To estimate the avoided cost of greenhouse gas (GHG) emissions due to the avoided vehicle km, 

the updated IMPACT Handbook was referenced again. The Handbook provides per-km GHG 

costs based on an avoidance cost per tonne of CO2 equivalent of €90, corresponding to efforts 

required to stabilise global warming at 2°C. The costs are differentiated by fuel type, technology 

class, engine size and locality type. In order to calculate the average per-km GHG cost of the Irish 

fleet, the apportionment of the Irish fleet to each fuel, technology class and engine size 

therefore needed to be estimated. This was estimated using the Irish Bulletin of Vehicle and 

Driver Statistics (Department of Transport Tourism and Sport Ireland, 2012). Trips were allocated 

to metropolitan, suburban and rural as described above.  

The avoided costs of noise pollution were also calculated using the updated IMPACT Handbook 

(Korzhenevych et al., 2014). Costs estimates are provided by locality and by type of traffic—thin 

or dense. For the central estimate, the average of the per-km cost estimates for dense and thin 

traffic was used. 
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In estimating each of the external pollution impacts, the allocation of trips to locality types and 

traffic levels was a significant source of uncertainty. Therefore, these choices were varied in 

calculating the lower and upper bound estimates. For all the lower bound estimates, trips with 

one end in the city centre were assumed 100% suburban and trips with both ends outside of the 

city centre were assumed 100% rural. For the upper bound estimates, trips with one end in the 

city centre were assumed 100% urban and trips with both ends outside of the city centre were 

assumed 100% suburban. In calculating the lower and upper bound estimates of avoided noise 

costs, traffic was assumed to be dense and thin respectively. Additionally, for the lower and 

upper bound avoided GHG cost estimates, the lower and upper bound unit costs per tonne of 

CO2 equivalent (€48 and €168) were used. The assumptions made regarding avoided external 

costs and the resulting unit costs values used for the central, lower and upper estimates are 

shown in Table 3.3. 



 

Table 3.3 Unit costs for avoided external impacts 

Central Estimate 

Trip type Assumed Locality Type 
Costs avoided (€/vkm) 

GHGs Noise Congestion PM2.5 NOx NMVOC SO2 

City Trips 100% Metro/Large-Urban 0.030 0.019 1.894 0.003 0.002 4.9E-04 1.3E-05 

Combined Trips 50% Metro/Large-Urban and 50% Suburban/Small-Urban  0.030 0.010 1.539 0.002 0.002 5.7E-04 1.3E-05 

Outside-City Trips 50% Suburban/Small-Urban and 50% Rural 0.024 0.001 0.782 0.000 0.002 3.5E-04 9.2E-06 

Lower Bound 

  Assumed Locality Type 
Costs avoided (€/vkm) 

GHGs Noise Congestion PM2.5 NOx NMVOC SO2 

City Trips 100% Metro/Large-Urban 0.016 0.011 1.779 0.003 0.002 4.9E-04 1.3E-05 

Combined Trips 100% Suburban/Small-Urban 0.016 0.001 0.008 0.001 0.002 6.5E-04 1.2E-05 

Outside-City Trips 100% Rural 0.010 0.000 0.005 0.000 0.001 4.6E-05 6.0E-06 

Upper Bound 

  Assumed Locality Type 
Costs avoided (€/vkm) 

GHGs Noise Congestion PM2.5 NOx NMVOC SO2 

City Trips 100% Metro/Large-Urban 0.056 0.027 3.055 0.003 0.002 4.9E-04 1.3E-05 

Combined Trips 100% Metro/Large-Urban 0.056 0.027 3.055 0.003 0.002 4.9E-04 1.3E-05 

Outside-City Trips 100% Suburban/Small-Urban 0.056 0.002 2.902 0.001 0.002 6.5E-04 1.2E-05 

7
0
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3.2.5 Travel Costs 

A modal shift from driving to cycling impacts both the travel costs of individuals who alter their 

mode and the rest of society. The individuals who begin cycling experience a change in their 

generalised cost of travel while other users of the transport network are affected by a reduction 

in total congestion in the network. In this study, generalised costs of travel (GCoT) were 

assumed to be a combination of time expended in traveling and vehicle operating costs. For 

drivers, a Value-of-Time (VoT) of €19/hr and car operating cost of €0.103/km were assumed, 

consistent with the National Transport Model (National Roads Authority, 2014) of Ireland. The 

VoT for cyclists has not been studied extensively but a Swedish study (Börjesson and Eliasson, 

2012) has estimated the VoT for cycling on streets and on cycle paths respectively to be greater 

than the VoT of the next preference mode by factors of 1.83 and 1.21. As cyclists in Dublin use a 

combination of shared streets and cycle paths, the driving VoT was scaled by the average of 

these two factors to estimate the cycling VoT. For the upper bound and lower bound estimates, 

the cycle-path factor and the on-street factor were used respectively. It was assumed that 

bicycle operating costs were negligible. 

The external congestion costs were estimated based on the updated IMPACT Handbook which 

provides per-km marginal congestion costs differentiated by locality type, road type, and current 

congestion level—free flow, near capacity or over capacity. The same assumptions regarding 

locality type described in section 3.2.4 were used. The average of the unit costs for main roads 

near-capacity and other roads near-capacity was used for each locality type. For the upper and 

lower bound estimates, the locality type was varied as in section 3.2.4. Also, for the upper bound 

estimate, it was assumed that all roads were over-capacity. For the lower bounds, it was 

assumed that suburban and rural roads were at free-flow. The unit congestion costs used can be 

seen in Table 3.3. 

3.3 Results and Discussion 

The impact of converting all driving trips under 5km to cycling on the numbers of cycling 

commuters is shown in Figure 3.1. The vehicle km avoided in this scenario are shown in Figure 

3.2. The modal share of cycling would increase from 8.85% to 21.5% for city trips, from 3.4% to 

14.4% for outside-city trips and from 4.5% to 7.3% for combined trips. Figure 3.1 shows that 

there were more females than males driving for trips inside Dublin City and outer Dublin County 

which could be cycled. Figure 3.2 also shows that the conversion to cycling of trips by females 

would lead to a greater number of vehicle km avoided than conversion of trips by males. For 

both males and females, the greatest potential for conversion of car trips was in the 25-29 and 
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30-34 age groups. The youngest and oldest age groups had the lowest potential for trip 

conversion. In terms of location, there was greatest potential for avoidance of vehicle kms in 

outer Dublin County.  Trips between Dublin City and Dublin County had the lowest potential for 

conversion to cycling and avoidance of vehicle kms. These findings suggest that in order to 

reduce vehicle traffic in Dublin by encouraging cycling, policies aimed at females aged 25-34 and 

improvement of cycling infrastructure outside of Dublin city centre have the greatest potential 

for positive impact. 

3.3.1 Health, Environmental and Travel Time Impacts 

Figure 3.3 summarises the health and environmental impacts of the modal shift envisioned in 

this study. Clearly, the positives outweigh the negatives and in particular, the physical activity 

benefits are significantly greater than any of the other impacts. This result is consistent with 

previous studies into the health and environmental impacts of increased cycling (Mueller et al., 

2015). The secondary analysis of the physical activity benefits produced even more positive 

results. As shown in Figure 3.4, both of the models based on HEAT 2014 predicted significantly 

higher benefits of physical activity than the main BOD model. More surprisingly, the HEAT, 2011 

model predicted benefits approximately five time greater than the main model. Previous studies 

have shown that different models of the health impacts of physical activity can produce 

significantly different results but this is the first study to have compared both versions of HEAT. 

The model which used the RRs from HEAT, 2014 to quantify the change in YLLs was slightly more 

conservative than the model which quantified deaths based on HEAT, 2014 model. However, the 

influence of quantifying YLLs rather than fatalities was much less dramatic than the influence of 

using a different model to calculate the RRs. In the analysis that follows, only the results of the 

BOD model are considered in order to maintain consistency with the other health impact 

estimates and because these were the most conservative estimates. 

The only one of the impacts which was significantly negative was the change in road traffic 

collisions. Further insights can be gained by examining the predicted changes in traffic collisions 

for individual combinations of striking mode and victim mode. As shown in Table 3.4, there was 

a decrease in the total car driver fatalities and non-fatal casualties. There was also a decrease in 

the number of fatalities where cars were the striking vehicles. Total pedestrian fatalities and 

non-fatal casualties both decreased despite an increase in pedestrians being injured by cyclists. 

All of these results can be attributed the reduced distances driven by cars in the road network. 

However, for cyclists, the numbers of fatal and non-fatal victims were both increased. This 

increase in cycling casualties was much more significant than the reductions in driver and 
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pedestrian casualties. Of particular concern is the large increase in the number of non-fatal 

cyclist injuries. These large increases are due to the significant increase in distance travelled by 

cyclists in the network. Clearly, the benefits of the reduction in vehicle kms driven and the 

“Safety in Numbers” effect were not sufficient to offset the relative vulnerability of cyclists to 

traffic collisions. The overall impact on traffic collisions was a significant cost, largely due to the 

increase in minor cyclist casualties. The scale of the cost of minor cyclist casualties is particularly 

concerning due to the high level of underreporting of this type of incident. The HEATCO study 

estimated that in Europe minor cyclist injuries are underreported by a factor of 8. If 

underreporting of minor cyclist injuries is not accounted for when considering projects to 

promote cycling, the benefits of such projects may be significantly overestimated. It should also 

be noted that the underreporting factors provided by the HEATCO study were broad estimates 

for Europe as a whole and—while recent research in Ireland suggests that underreporting of 

cyclist injuries is of a similar scale (Short and Caulfield, 2014) —meaningful cost-benefit analysis 

will only be possible with more accurate collision data. The only other negative impact of the 

increased cycling in this study was due to the in-travel pollution exposure of cyclists and the 

scale of this impact was insignificant when compared to the physical activity and traffic collision 

impacts. However, it is worth noting that the pollution exposure estimates were not based on 

measured concentrations but on a simple exposure model which did not take into account 

variability due to traffic levels, time of day or available cycling facilities. 

As shown in Figure 3.5, the positive external impact of reduced air pollution was of a similar 

scale to the negative individual pollution exposure impact. The benefit of the reduction in 

greenhouse gases was the greatest environmental impact. The uncertainty in the value of the 

GHG reduction is high due to the uncertainty in the per-tonne avoidance cost of a CO2 

equivalent. The value of the external noise reduction was greater than the value of the avoided 

air pollution, despite air pollution usually receiving much more attention than noise as a 

negative impact of motorised transport. 

Up to this point, only the health and environmental impacts of cycling have been considered, 

similarly to most recent studies into the benefits and risks of cycling. However, arguably the 

most important impact to consider in appraising any transport project or policy is the impact on 

the cost of travel itself, both to the new cyclists and the other users of the network. As shown in 

Figure 3.6, these impacts are both very significant in the study scenario, but as the increase in 

GCoT of the cyclists is almost equal to the decrease in congestion costs in the network as a 

whole, there is little change in the central estimate of the total net impact. However, there is 
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considerably uncertainty in both estimates, particularly with regard to the VoT associated with 

time spent cycling. This causes the lower estimate of the total net impact to be negative. No 

previous studies of the total benefits and risks of cycling have predicted negative net impacts, 

even in sensitivity analysis. However, no previous studies have considered GCoT in their 

calculations, despite this being traditionally the most important cost to consider in appraising 

transport projects. 



 

 

Figure 3.1 Commuters converted from driving to cycling in the case where all driving trips <5km are cycled.  
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Figure 3.2 Vehicle km avoided by converting trips from driving to cycling in the case where all driving trips <5km are cycled.
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Figure 3.3 Summary of health and environmental impacts. Bars indicate upper and lower 

bounds. 

 

Figure 3.4 Comparison of models for health impact of physical activity 
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Table 3.4 Change in traffic collision casualties. 

Change in fatalities 

                                          Victim 
       Striking 

Car Bicycle Pedestrian Total Cost of fatalities 

Car -0.02 0.00 -0.04 -0.06   

Bicycle 0.00 0.00 0.00 0.00   

Pedestrian 0.00 0.00 0.00 0.00   

Other 0.00 0.25 0.00 0.25   

No other vehicle -0.05 0.47 0.00 0.42   

Total -0.07 0.72 -0.04 0.61 €2,927,610 

Change in serious non-fatal casualties 

                                          Victim 
       Striking 

Car Bicycle Pedestrian Total Cost of casualties 

Car -0.93 5.66 -0.20 4.52   

Bicycle 0.00 0.14 0.15 0.28   

Pedestrian 0.00 0.00 0.00 0.00   

Other -0.18 1.31 0.00 1.13   

No other vehicle -0.33 1.04 0.00 0.72   

Total -1.44 8.15 -0.06 6.65 €3,096,652 

Change in minor non-fatal casualties 

                                          Victim 
       Striking 

Car Bicycle Pedestrian Total Cost of casualties 

Car -16.84 183.72 -3.95 162.93   

Bicycle 0.00 4.51 2.85 7.36   

Pedestrian 0.00 0.00 0.00 0.00   

Other -3.30 42.55 0.00 39.25   

No other vehicle -5.87 33.82 0.00 27.96   

Total -26.01 264.61 -1.11 237.50 €1,315,609 
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Figure 3.5 Summary of less significant impacts of cycling uptake. 

 

Figure 3.6 Summary of health, environmental and travel-cost impacts. Bars indicate upper and 

lower bounds. 
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3.3.2 Study Limitations 

A limitation of this study is that the hypothetical scenario under consideration was not realistic 

and there was no consideration given to how this scenario might be realised. No consideration 

was given to the possibility of trip chaining or the existence of major barriers to cycling for some 

individuals such as physical limitations or the need to escort children to school. Even without 

such barriers, the conversion of all trips less than 5km would represent a major change to the 

transport environment and it would be unrealistic to assume that such a change could occur 

without major interventions. However, the purpose of this study was simply to provide 

indicative estimates of the relative scale and direction of the various impacts which would be 

achieved if a modal shift in favour of cycling took place. Since all of the impacts under 

consideration increase linearly (or close to linearly) with the amount of driving converted to 

cycling, the relative scale of the positive and negative impacts can be expected to be relatively 

consistent for smaller, more realistic modal shifts. As discussed in Chapter 2, many previous 

studies which quantified the health and environmental impacts of cycling were based on 

similarly unrealistic scenarios (Grabow et al., 2012; Holm et al., 2012; Rojas-Rueda et al., 2012; 

Rojas-Rueda et al., 2013). In the model presented in Chapter 8, this limitation is addressed by 

making the intervention leading to the modal shift endogenous to the model.  

3.4 Conclusion 

Overall, this study suggests that the health and environmental impacts of increased cycling in 

Dublin would be strongly positive. Although the scenario considered was highly idealised, the 

conclusions are consistent with the studies reviewed in Chapter 2 and this adds credibility to the 

results. When travel costs are also considered, the uncertainty becomes greater but the best 

estimate of the net impact is still positive. The largest sources of uncertainty are related to the 

marginal congestion of travel by car and the VoT associated with cycling. In future studies, the 

uncertainty regarding congestion could be reduced by using a bottom-up estimation based on 

speed-flow curves or simulations for the study area (Korzhenevych et al., 2014). Estimates of the 

cycling VoT could be improved by means of choice modelling experiments with the local 

population. These results show that if commuters making trips of less than 5km are interested in 

maximising utility or minimising cost for society as a whole, they should cycle if possible, rather 

than drive. However, if commuters are viewed as rational consumers, they can be expected to 

be interested in maximising their own individual utility, and the balance of these benefits and 

costs may look very different. Additionally these results do not address the possibility that the 

benefits and risks of cycling are unevenly spread across participants of different demographics 
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and that some cyclists may even experience a net negative impact. The next chapter of this 

thesis focusses on addressing these questions.
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Chapter 4: Quantifying the Benefits and Risks of Urban Cycling in Dublin; 

Individual and Marginal Societal Impacts 

In Chapter 3, a framework was developed for quantifying the total societal benefits and risks of 

urban cycling and a case study of cycling in Dublin was carried out. The framework developed 

was largely consistent with best practices in the literature to date but special attention was paid 

to uncertainty analysis and ensuring that all significant types of impacts were included. 

Although estimating the total societal impacts of a modal shift is a useful tool for transport 

planners and policymakers, this has limited value in understanding the decisions and 

experiences of individual transport users for a number of reasons. Firstly, a positive net impact 

on society does not necessarily indicate that the net expected impacts for the individuals who 

switch from driving to cycling are positive. It is possible that expected external benefits simply 

outweigh the expected negative impacts on the cyclists. Secondly, the benefits and risks may be 

unevenly distributed across different demographic groups so that some groups of cyclists 

experience positive impacts on average while others experience negative impacts. Finally, 

changes in modal split (proportions of trips in the network using each transport mode) happen 

incrementally and the marginal health impacts (health impacts resulting from a unit increment) 

of motorised transport use are generally not equal to the average health impacts (European 

Commission, 2014) because these health impacts are influenced by the current modal split. 

Therefore, the expected individual and marginal external impacts of each individual switch from 

driving to cycling can be expected to be different from each other and from the averaged impact 

of a large cohort switching to cycling. Quantifying the individual and marginal external impacts 

of switching to cycling at the level of individual decisions has not been attempted in the 

literature to date and requires a different approach to those used to quantify total societal 

impacts. 

This chapter describes a study which aims to determine whether or not the benefits to an 

individual taking up cycling in Dublin outweigh the risks for all ages, genders and trips. Another 

objective is to examine how the individual and marginal external impacts of each additional 

cyclist vary with the overall level of cycling modal share. A model is developed for estimating 

both the individual and marginal external impacts of a single user unilaterally switching from 

driving to cycling for their commute in various modal splits, taking into account age and gender 

specific effects. A clear distinction is made between the impacts experienced by the individual 

cyclist and by the rest of society. This study focusses on health impacts only as these are highly 
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variable across age and gender and they have been the focus of much interest in the literature 

to date. The BOD approach is used once again to quantify health impacts for the reasons 

outlined in Chapter 3 and because age and gender specific variations are key considerations in 

this study and BOD takes into account the life expectancy at the time of death. 

The procedure described in this study also takes a different approach to uncertainty analysis by 

sampling key model parameters from appropriate probability distributions. In this way, the 

analysis accounts for variations in individual characteristic as well uncertainties in the health 

impact models. The contents of this chapter are based on published work (Doorley et al., 2017). 

4.1 Scenario Design 

In this study, the range of health impacts resulting from an individual—the test subject —

switching from driving to cycling are quantified using health impact models from the literature. 

The approach used involves defining a reference scenario where the test subject drives and a 

test scenario where the test subject cycles and quantifying the difference in expected BOD 

between these scenarios. This process is repeated many times for different test subjects and 

modal splits. The procedure can be described as follows. Three modal split (MS) stages were first 

defined: 

 The Current MS: the modal shares of walking, cycling, private car and public transport 

for commuter trips are 14·5%, 5·8%, 56·1% and 22·4% respectively as per the 2011 

census (Central Statistics Office, 2011b) 

 The Smarter Travel MS: the modal shares of walking and public transport remain at 

14·5% and 22·4% but the modal share of cycling has increased to 10% while private car 

share has fallen to 51·9%. This represents the achievement one of the goals of the 

National Cycle Policy Framework 2009-2020—to have 10% of work trips made by cycling 

(Smarter Travel, 2009). 

 The Intermediate MS: the modal shares of walking and public transport remain at 14·5% 

and 22·4% and the modal shares of cycling and private car are halfway between those of 

the Current and Smarter Travel MSs—7·9% and 54% respectively. 

The procedure that follows was repeated for each of the three MS stages as the target MS. The 

procedure was to create a reference scenario (RS) in which the target MS had been realised and 

a test scenario (TS) which only differed from the RS in that additional one additional private car 

user—the test subject—had switched to cycling for their commute. The individual and marginal 
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external benefits of the additional cycling were then estimated by finding the difference 

between the health impacts in each scenario. The procedure was repeated multiple times to 

produce distributions of estimates, illustrating the influence of individual characteristics and the 

uncertainties in the models for estimating the impacts. The scenarios were informed by the 

POWSCAR, 2011 data (Central Statistics Office, 2011a; Central Statistics Office, 2011b). Similarly 

to the study described in Chapter 3, journey distances were estimated based on reported 

journey times and estimated average driving speeds and it was assumed that current driving 

trips of 6km or less each way could be considered as cycle-able trips. Similarly to Chapter 3, this 

is a simplification as it ignores the possibility of trip-chaining and trips which could not 

realistically be cycled for reasons other than distance. Using MATLAB (The MathWorks Inc., 

2016), the following steps were followed as illustrated in Figure 4.1: 

1. From the individuals aged 20 to 64 who make cycle-able trips to and from work by 

private car, randomly select (with equal selection probability and without replacement) 

the required numbers of individuals to switch to cycling in order to meet the target MS. 

These individuals are assigned to the Converted group. In the case of the Current MS, a 

single individual is selected to switch to cycling and is the only individual added to the 

Converted group. Call the scenario in which the entire Converted group has made the 

change to cycling the Case scenario (CS). 

2. Randomly select a single test subject from the Converted group. Call the scenario in 

which the entire Converted group except for the test subject makes the change to cycling 

the Reference Scenario (RS). 

3. Calculate the individual health impacts to the test subject as a result of switching to 

cycling during one year by estimating the difference in expected DALYs lost by that 

individual between the CS and RS. Three determinants of individual health impacts were 

considered: physical activity (PA), individual exposure to air pollution during transit (APIn) 

and traffic collision risk (TCIn). The details of these calculations are presented in 4.2. 

4. Calculate the expected marginal health impacts to the rest of the population in the study 

area as a result of the test subject switching to active travel during one year by 

estimating the difference in DALYs lost by the rest of the population between the CS and 

the RS. Two determinants of marginal external health impacts were considered: 

reductions in external air pollution (APEx) and traffic collision risk (TCEx). The details of 

these calculations are presented in 4.2. 
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5. Repeat steps 1 to 4 for 50,000 iterations. This number was considered appropriate 

because increasing the iterations by an order of magnitude did not make any 

appreciable difference to the results. 

 

Figure 4.1 Process of defining the reference scenario and test scenario in each iteration 

4.2 Estimation of Health Impacts 

All health impacts in this study were modelled using a BOD approach. The health impact to an 

individual or group was defined as the change in the statistical expectation of DALYs lost by that 

individual or group in a single year. The calculation of the change in DALYs associated with each 

of the individual health determinants considered in this study is illustrated in Figure 4.2 and 

discussed in detail below. 



 

 
Figure 4.2 Process of estimating individual and external health impacts resulting from one additional cyclist

8
7
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4.2.1 Health Impacts of Physical Activity 

The additional kms cycled by the test subject in the CS were first converted to Metabolic 

Equivalent of Task (MET) hours using a compendium of physical activity MET factors (Ainsworth 

et al., 2011). A MET factor of 6.8 was used for cycling, consistent with HEAT for cycling and 

several recent studies (Maizlish et al., 2013; Woodcock et al., 2013; Woodcock et al., 2014). Non-

travel related physical activity MET hours also needed to be estimated. The probability of an 

individual in each age and gender group having a physical activity level of, low, moderate or high 

on the International Physical Activity Questionnaire (IPAQ) scale could be obtained from the 

results of the recent Health Ireland survey (IPSOS MRBI, 2015). At each iteration, the activity 

level of the test subject was sampled from a discrete distribution based on these probabilities. 

The MET hours per week associated with low, moderate and high activity levels were estimated 

to be 0, 10 and 28 based on the IPAQ guidelines (IPAQ Research Committee, 2005). The 

relationships between MET hours of physical activities and the risk of various health conditions 

were modelled based on a systematic review by Woodcock et al. (2009). For each health 

condition and iteration, a reference relative risk (RR) was sampled from a lognormal distribution 

with mean and 95% confidence interval (CI) equal to the mean and CI found in the review 

(Woodcock et al., 2009). Lognormal distributions are appropriate because RRs are ratios and so 

the log of a RR is normally distributed. The health conditions modelled were cardiovascular 

disease, breast cancer, colon cancer, dementia, depression and type II diabetes. No confidence 

intervals were available for the RR of depression, so the mean RR was used directly. It was 

assumed that the RRs applied to both YLLs and YLDs. The RRs of this review were based on 

specific levels of weekly PA and so they needed to be adapted to the appropriate level of PA for 

each test subject in the current study. Similarly to Woodcock et al. (2013) this was achieved by 

assuming a log-linear relationship between risk of each condition and a power of 0·5 

transformation of MET hours. For diabetes, a power transformation of 0·375 was used. The 

baseline expected YLLs and YLDs of the test subject for a given year were assumed to be equal to 

the per capita YLL and YLD rates of the same age and gender group in Ireland in 2012 which 

were obtained from the World Health Organisation (WHO) global BOD estimates for 2012 

(World Health Organization, 2014). The change in the expected YLLs of the test subject due to 

each condition, i, was calculated using Eq. (4.1) to Eq. (4.3). 
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Where 
iYLL  is the change in expected YLLs due to condition i, i

BYLL is the YLLs expected at 

baseline, BMETS  is the MET hours of physical activity at baseline, 
i

RefRR and 
i

RefMETS are the 

sampled reference RR and reference MET hours associated with disease i in the systematic 

review of Woodcock et al. (2009), CMETS  is the additional MET hours of cycling and i  is the 

power transformation of the exposure. The change in the expected YLDs was calculated in the 

same way. 

4.2.2 Health Impacts of External Pollution Exposure 

The marginal external air pollution health impact of a single additional cyclist was found by 

estimating in parallel, the societal air pollution health impacts in the CS and RS as shown in 

Figure 4.2. It was assumed that a reduction in the vehicle km travelled in Dublin would lead to a 

proportional reduction in PM2·5 emissions attributable to vehicular transport. It was also 

assumed that the change in ambient PM2·5 concentration would be proportional to the change in 

the total PM2·5 emissions. According to the Central Statistics Office (CSO) of Ireland, (Central 

Statistics Office, 2012), transport accounted for 31% of PM2·5 emissions in Ireland in 2010. In 

order to estimate the percentage reduction in motorised transport it was necessary to estimate 

the total baseline km travelled including non-commute trips. This was estimated from the 

National Transport Authority (NTA) travel survey of 2012 (National Transport Authority, 2013). 

For each RS and CS, the change in PM2·5 concentration was estimated. The health impact models 

based on the APHEIS model (Boldo et al., 2006), described in Chapter 3 were then used to 

calculate the RRs of cardiovascular diseases, respiratory diseases and lung cancer for the 

population in the CS and for the RS. Similarly to the physical activity models, for each health 

condition and iteration, a reference relative risk (RR) was sampled from a lognormal distribution 

with mean and 95% CI equal to the mean and CI found in APHEIS study. The age and gender 

structure of the population of Dublin was available from the CSO (Central Statistics Office, 

2011a) and the baseline YLLs and YLDs lost due to each condition in Ireland in 2012 were 

available for each age and gender group from the WHO (World Health Organisation, 2013).The 



90 

 

change in YLLs for each condition, i, in each age and gender group could then be calculated using 

Eq. (4.4) and Eq. (4.5). 

  , ,* 1i p i p i

p B CYLL N YLL RR     Eq. (4.4)  

 Ref

C
Ci i

C RefRR RR



   Eq. (4.5)  

Where 
,i pYLL  is the change in expected YLLs lost due to condition, i, by the exposed 

age/gender group p, 
pN is the number of individuals in the age/gender group p, ,i p

BYLL  is the 

baseline expected YLLs associated with condition i and group p, 
i

RefRR is the sampled reference 

RR for condition i, 
RefC is the reference concentration change for condition i and C is the 

change is concentration of PM2·5 in µg/m3. The marginal change in external air pollution YLLs was 

calculated by finding the difference between the changes in YLLs in the RS and the CS. 

4.2.3 Health Impacts of Individual Pollution Exposure 

To estimate the impact of the increased inhaled dose of the test subject switching from private 

car travel in the RS to cycling in the CS, first the ratio of the subject’s yearly inhaled dose of PM2·5 

compared to baseline was calculated for both the CS and RS using the same method outlined in 

Chapter 3. It was assumed that the health impact of the increase in inhaled dose would be 

equivalent to the impact of an increase in average ambient PM2·5 concentration which would 

lead the same increase in inhaled dose. As with the external health impacts of air pollution, the 

RRs of cardiovascular diseases, respiratory diseases and lung cancer were calculated for the test 

subject in  the CS and in the RS based on the reference RRs of the APHEIS study. The baseline 

expected YLLs and YLDs of the test subject for a given year were assumed to be equal to the per 

capita YLL and YLD rates of the same age and gender group in Ireland in 2012. The individual’s 

change in expected yearly YLLs due to the conditions could be estimated for the CS and RS using 

Eq. (4.6) and Eq. (4.7). 
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Where 
iYLL  is the change in the individual’s expected YLLs due to condition i, i

BYLL  is the 

individual’s baseline expected YLLs due to condition i, 
i

RefRR is the sampled reference RR for 
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condition i, 
RefC is the reference concentration change for condition i and 

eqC is the 

equivalent change in concentration of PM2·5. Since cardiovascular disease risk is influenced by 

both physical activity and pollution exposure, the impacts of the two exposures were modelled 

multiplicatively. The expected change in individual air pollution YLLs was calculated by finding 

the difference between the changes in air pollution DALYs in the RS and the CS. 

4.2.4 Individual Traffic Collisions 

The traffic collision model used in Chapter 3 was used to find the per-km risks for each mode of 

being a victim of a fatal, serious or minor collision in the RS and the CS. This model assumes that 

the number of traffic collisions between each pairwise combination of modes is non-linearly 

related to the total distance travelled by each of these modes in the network. The degree of 

non-linearity of the relationship between distance travelled and number of collisions is unclear 

and likely to vary between different transport environments. Therefore, instead of using the 

constants of non-linearity suggested by Woodcock et al. (2013), each constant in each iteration 

was sampled from a normal distribution with a mean of the value suggested by Woodcock et al. 

(2013) and coefficient of variation of 0·5. The baseline collision data used in the model were 

obtained from the RSA Road Collision Handbook, 2011 and 2012 (Road Safety Authority, 2011, 

2012). The collision data were also corrected for underreporting using the correction factors 

provided by the HEATCO study (Bickel et al., 2006). The baseline distances travelled by each 

mode were estimated using the same method as in Chapter 3.  

The modal per-km risks calculated in this way were generic values for all users of the mode in 

that scenario. However, it is well documented that age and gender have a significant impact on 

the likelihood of an individual using a particular mode being involved in a traffic collision (Short 

and Caulfield, 2014; Woodcock et al., 2014). Mindell et al. (2012) has estimated the risk of 

fatality and hospitalisation for different age groups and genders per km travelled by driving and 

by cycling in England. No similar estimates could be found for Ireland so these results were used 

to estimate scaling factors for each age/gender group representing the ratio of their risk of 

fatality or injury to the risk of fatality or injury for the general population. The estimated scaling 

factors are shown in Table 4.1. These factors were used to correct the per-km risks from the 

traffic collision model, based on the age and gender of the test subject. The expected numbers 

of each type of collision for the test subject were then calculated for the RS and CS by 

multiplying the appropriate modal per-km risk by the kms travelled annually. The change in 

collision risk for the test subject due to the switch to cycling could then be calculated by 

comparing the expected numbers of each type of injury between the CS and RS. 
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Table 4.1 Fatality and Injury risk factors by age and gender 

  
Gender 

  
Age Group 

Driver Cyclist 

Fatality Factor Injury Factor Fatality Factor Injury Factor 

Male 20-24 2.6 1.8 0.7 0.8 

Male 25-29 2.6 1.8 0.7 0.8 

Male 30-34 0.9 0.8 0.9 0.7 

Male 35-39 0.9 0.8 0.9 0.7 

Male 40-44 0.5 0.5 0.5 0.5 

Male 45-49 0.5 0.5 0.5 0.5 

Male 50-54 0.5 0.5 1.4 0.7 

Male 55-59 0.5 0.5 1.4 0.7 

Male 60-64 0.5 0.5 1.7 0.8 

Female 20-24 0.9 1.4 0.4 0.6 

Female 25-29 0.9 1.4 0.4 0.6 

Female 30-34 0.3 0.8 0.7 0.6 

Female 35-39 0.3 0.8 0.7 0.6 

Female 40-44 0.3 0.5 0.7 0.6 

Female 45-49 0.3 0.5 0.7 0.6 

Female 50-54 0.4 0.6 0.8 0.9 

Female 55-59 0.4 0.6 0.8 0.9 

Female 60-64 0.7 0.8 1.0 1.4 

 

In order to convert the change in expected incidence of injuries to a change in expected DALYs, 

the lost YLLs and YLDs associated with each type of injury needed to be estimated. For fatal 

injuries, the YLLs lost were assumed to be equal to the remaining life expectancy of the test 

subject. The average remaining life expectancy for an individual in each five-year age and gender 

group was obtained from the CSO (Central Statistics Office, 2009). For serious and minor non-

fatal injuries, the average YLDs per injury used were the same as those used in Chapter 3. 

4.2.5 External Traffic Collisions 

The traffic collision model described in Chapter 3 was also used to estimate the change in injury 

risk for other users of the network as a result of the test subject switching from driving to 

cycling. The km travelled by each mode excluding the test subject was constant between the CS 

and RS but the per-km risk of each type of injury was not. For both the CS and RS, the external 

injuries of each severity level in each mode were found multiplying the per-km injury risk by the 

km travelled by that mode excluding the test subject. The change in external traffic injuries could 

be calculated by taking the difference between the external injuries in the CS and RS. The lost 

YLLs associated with an external traffic fatality were found by calculating the average remaining 
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life expectancy among the20-64 age group in the population of Dublin. The YLDs associated with 

serious and minor injuries were the same as those used for injuries to the individual cyclist. 

4.3 Results and Discussion 

The procedure described was carried out 50,000 times for each target MS, producing 

distributions of health impacts for each MS. The mean impact on YLDs and YLLs are shown for 

each health condition in Table 4.2.  Negative values indicate increases in the YLLs or YLDs lost. 

For the health impacts to the individual cyclist, the changes in YLDs and YLLs are also expressed 

as percentages of the individual’s baseline expected YLDs and YLLs for each health condition. The 

most significant positive benefit for all MSs was due to a reduction in YLLs due to cardiovascular 

disease. Other significant impacts related to PA include a reduction in YLDs due to depression 

and diabetes and a reduction in YLLs due to breast cancer and colon cancer. On average, the test 

subject’s expected YLLs and YLDs due to traffic collisions increased by factors of 23 and 15 when 

they switched from private car to cycling in the Current MS but these factors decreased slightly 

in the Intermediate and Smarter Travel MS. These factors are higher than the typical ratio of 

cycling injury risk to driving injury risk (Elvik, 2009) and this difference can be attributed to the 

incorporation of underreporting and demographic risk factors in this study. As a result of these 

large increases in collision risk, there was a negative mean impact on TC DALYs for the cyclists 

themselves in each MS. However, a single driver switching to cycling in any MS had a positive 

mean impact on TC DALYs for the rest of the network. There was little difference in the APEx 

estimates between the Current Intermediate and Smarter Travel MSs but this is to be expected 

as the marginal external AP costs of transport tend to be similar to the average external air 

pollution costs (European Commission, 2014). Further insights can be gained by examining not 

just the mean values but the distributions of total DALYs saved across all subjects tested. The 

distributions are shown for the Current MS and the Smarter Travel MS in Figure 4.3. 

The histograms of all of the impacts look similar between the Current and Smarter Travel MS. In 

each case, the physical activity health impact is the most significant impact and is non-negative. 

The histograms of the APIn impact and the APEx impact respectively are entirely negative and 

entirely positive in both the Current and Smarter MS. Overall, the APIn and APEx impacts are not 

significant when compared to the other impacts. The histogram of the TCIn impact was entirely 

negative whereas the TCEx impact estimates are almost entirely positive. The distribution of TCIn 

impacts shifted positively in the Smarter MS relative to the Current MS while the distribution of 

TCEx impacts is shifted negatively. These were the only impacts which showed an obvious 

difference due to the change in background modal split.  
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Table 4.2 Mean YLLs and YLDs saved per year due to uptake of cycling by individual 

commuters. Positive values indicate health benefits. 

    Current Intermediate Smarter 

  
 

Mean 
Change 

Mean 
% 

Change 
Mean 

Change 

Mean 
% 

Change 
Mean 

Change 

Mean 
% 

Change 

Individual Physical Activity             

Breast Cancer 
10-3  YLDs 0.03 9.18 0.03 10.71 0.03 10.75 

10-3 YLLs 0.35 9.18 0.36 10.71 0.35 10.75 

Colon Cancer 
10-3  YLDs 0.01 10.70 0.01 19.20 0.01 19.22 

10-3 YLLs 0.33 10.70 0.33 19.20 0.33 19.22 

Cardiovascular Diseases 
10-3  YLDs 0.61 19.18 0.62 18.16 0.62 18.13 

10-3 YLLs 2.59 19.18 2.60 18.16 2.61 18.13 

Dementia 
10-3  YLDs 0.13 18.17 0.13 17.00 0.13 17.00 

10-3 YLLs 0.03 18.17 0.03 17.00 0.03 17.00 

Depression 
10-3  YLDs 2.30 17.00 2.30 15.88 2.29 15.86 

10-3 YLLs 0.00 17.00 0.00 15.88 0.00 15.86 

Diabetes 
10-3  YLDs 0.51 15.86 0.51 0.00 0.51 0.00 

10-3 YLLs 0.12 15.86 0.12 0.45 0.12 0.45 

Individual Pollution Exposure             

Respiratory Diseases 10-3 YLLs -0.01 0.45 -0.01 0.45 -0.01 0.45 

Cardiovascular Diseases 10-3 YLLs -0.07 0.68 -0.07 0.68 -0.07 0.68 

Lung Cancer 10-3 YLLs -0.04 0.00 -0.04 0.00 -0.04 0.00 

External Pollution Exposure             

Respiratory Diseases 10-3 YLLs 0.08 * 0.08 * 0.08 * 

Cardiovascular Diseases 10-3 YLLs 0.41 * 0.41 * 0.41 * 

Lung Cancer 10-3 YLLs 0.17 * 0.17 * 0.17 * 

              

Individual Collision Risk 
10-3  YLDs -1.99 1506.5 -1.82 1375.9 -1.68 1272.3 

10-3 YLLs -0.73 2214.6 -0.68 2075.1 -0.65 1971.5 

  
 

            

External Collision Risk 
10-3  YLDs 1.49 * 1.33 * 1.21 * 

10-3 YLLs 0.37 * 0.33 * 0.29 * 

* Percentage changes for external impacts are not informative so they are omitted.  



 

 

Figure 4.3 Distributions of health impacts in the Current and Smarter Travel MS 

9
5
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4.3.1 Net Individual and External Impacts 

The histogram of Net DALYs shows that the total expected public health impact of the switch 

from driving to cycling was positive in almost all cases. In both the Current and Smarter Travel 

MS the total expected health impact was negative in less than 1% of cases. By grouping the 

impacts into individual and marginal external impacts, we can see more clearly how both the 

individual new cyclists and the rest of society were affected. Figure 4.4 shows the net impact to 

individuals due to the sum of the PA, APIn and TCIn impacts and the net marginal external impact 

due to the sum of the APEx and TCEx impacts. When the net individual DALYs are considered in 

isolation, negative impacts are expected in a higher proportion of cases than when total Net 

DALYs were considered —8% and 6% in the Current and Smarter Travel MS respectively. This 

means that, within the bounds of the model uncertainties considered in this study, cycling may 

have a negative net health impact for individuals of certain broad characteristics. The net 

marginal impact to society, however, was almost always positive and was generally higher in the 

Smarter Travel MS. These observations show that, in some cases, if individual and external 

impacts are considered in aggregation, a negative expected impact to the individual may be 

masked by a positive expected external impact. 

 

Figure 4.4 Net individual health impacts and net marginal external health impacts in the 

Current and Smarter Travel MS 
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4.3.2 Effects of Age and Gender 

The specific cases in which negative individual health impacts may be expected were found to be 

closely related to age and gender. This is illustrated by Figure 4.5 and Figure 4.6 which show the 

distributions of Net individual DALYs and their two most significant components, PA DALYs and 

TC DALYsIn in each age and gender group. Only the Current MS results are shown but the results 

in the other MS stages were similar. In both genders, the DALYs saved due to PA were lowest for 

the 20-29 age groups and highest for the 60-64 age group. This is because the lowest age groups 

have a relatively low baseline risk of the health conditions considered, whereas the higher age 

groups have higher baseline disease risks. The increase in collision risk was also relatively 

significant for the highest age groups. However, the over 60 age group experienced the greatest 

net health benefits as this relatively high increase in injury risk seems to have been outweighed 

by their large reduction in disease risk. The 20-29 age groups were the only groups where some 

individuals experienced negative net heath impacts as the health benefits they gained from 

physical activity were not enough to counteract their increase in collision risk. This observation 

that the benefits of cycling may not outweigh the harms in the case of young people is in 

agreement with another recent study which also considered age-specific health effects 

(Woodcock et al., 2014). The effect of gender is most clear for the youngest and oldest age 

groups. Older males experienced greater positive health impacts than older females due to their 

higher baseline DALY rates but younger males also experienced greater negative health impacts 

than younger females due to their increased risk of traffic injuries. 

The individual net health benefits were also correlated with distance travelled. Figure 4.7 and 

Figure 4.8 show that, for ages 20-29, net individual DALYs were negatively correlated with 

distance and net negative impacts only occurred for longer trips. This can be explained by 

observing that individual collision risk increases linearly with distance travelled while the health 

benefits of physical activity increase log-linearly. Effectively, this means that a large part of the 

health benefits of cycling can be attained with a small amount of cycling per week and after this 

the physical activity benefits increase more slowly while the traffic collision risk continues to 

increase linearly. Above the age of 29, net individual DALYs were not strongly correlated with 

commute distance. 

  



 

 

Figure 4.5 DALYs saved by male test subjects disaggregated by age 
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Figure 4.6 DALYs saved by female test subjects disaggregated by age 
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Figure 4.7 Relationship between DALYs saved and commute distance for male test subjects disaggregated by age 
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Figure 4.8 Relationship between DALYs saved and commute distance for female test subjects disaggregated by age 

1
0

1
 



102 

 

4.3.3 Effect of Modal Split 

While net individual health impacts did not appear to depend strongly on the MS, the net 

external health impacts shifted negatively in the Smarter MS. The difference in the distribution 

of marginal external impacts between the Current and Smarter MS was mainly due to the 

difference in the distribution of TCIn and TCEx. The change in the TCIn and TCEx impacts between 

the MS stages can be seen more clearly in Table 4.3 which shows the mean of each impact in the 

Current, Intermediate and Smarter Travel MS. As the modal split changes in favour of more 

cycling and less private car use, the mean TCIn moves positively while the mean of TCEx moves 

negatively. This shows that as cycling increases, the negative impact on TC risk of the individual 

is mitigated by the “Safety in Numbers” effect (Elvik, 2009). However, the positive impact on TC 

risk for the rest of the users of the transport network is also slightly reduced. This indicates that 

in terms of improving the safety of the rest of the network, the marginal returns from replacing 

private cars with bicyclists diminish with increasing modal share of cycling. 

Table 4.3 Mean change in Traffic Collision DALYs in each modal split stage 

Modal Split  Mean Individual TC DALYs Mean External TC DALYs 

Current -2.73E-03 1.86E-03 

Intermediate -2.50E-03 1.66E-03 

Smarter -2.33E-03 1.50E-03 
 

4.3.4 Strengths and Weaknesses 

This study was based on highly reliable individualised census data for the study area and 

included age and gender specific effects and, as such, the results are more specific than studies 

based on population level data. However, for certain parameters such as the constants of non-

linearity in the collision model, no local estimates were available so estimates from other studies 

which were not location-specific were used. The use of local data where possible data increases 

the reliability of the findings of this study but also may make it more difficult to generalise these 

findings to other study areas. The method used to design the scenarios in order to estimate 

individual and marginal health impacts is a novel approach which allowed a unique perspective 

on the impacts of increments in cycling. In addition, the stochastic sampling of model 

parameters increases the robustness of the findings. The use of the models provided by 

Woodcock et al. (2009) and Boldo et al. (2006) allowed the health impacts to be broken down by 

individual health conditions, giving more specific insights than results based on mortality alone. 

Since there may be other conditions not included in these models which are relevant to cycling, 

it is possible that the PA and/or AP impacts are underestimates. However, it is unlikely that 
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other health conditions would have comparable impacts at the low levels of cycling being 

considered in this study (Woodcock et al., 2014). 

4.3.5 Implications and Future Work 

There are important policy implications of the finding that the external benefits of cycling may 

come at the expense of the individual cyclists. Firstly, economic incentives for commuter cyclists 

such as Ireland’s Bike to Work scheme are justified in principal since society gains from 

additional commuters switching to cycling whereas, in some cases, the new cyclists themselves 

may not. Secondly, it should be noted that the only significant negative health impact for the 

individuals who switch to cycling is due to the large increase in traffic collision risk. This suggests 

that in order to ensure that the net health impacts of switching from driving cycling are positive, 

the risk of traffic collisions for cyclists in the Dublin network must be reduced. This could be 

achieved through provision of adequate infrastructure and improving driver awareness and 

perception of cyclists (Pucher and Dijkstra, 2003). As this study was focussed on behavioural 

change, it was assumed that in the scenarios involving increased cycling, the infrastructure 

remained the same. However, if improvements in infrastructure lead to increased cycling or vice 

versa, the impact of increases in cycling on traffic collisions are likely to be more positive. Future 

studies which incorporate this possible correlation would provide further useful information for 

both the health and transportation sectors. The histogram of individual net impacts in the 

Smarter Travel modal shift was shifted slightly positively in comparison to the Current Modal 

shift implying that in a less motorised transport network, the benefits experienced by an 

individual who begins cycling would be higher. It is likely that the reverse would also be true and 

that the net health impact experienced by someone who begins cycling in a highly congested city 

would be less positive. This should be considered by policymakers considering measures to 

promote cycling in highly congested cities. Finally, the observation that younger individuals 

benefit less from switching to cycling than older individuals and may even experience negative 

health impacts on average is highly substantial. The results of Chapter 3 showed that many 

younger individuals drive for short trips and therefore, policies aimed at encouraging them to 

cycle may be most effective. However, these results suggest that caution should be taken in 

encouraging younger people to cycle. 

4.4 Conclusions 

In this chapter and the last, two different approaches to quantifying the benefits and risks of 

cycling have been explored. In Chapter 3, the societal benefits and risks of a large scale modal 

shift from driving to cycling were quantified. This chapter focussed on health impacts only and 
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quantified the impacts of individual changes from driving to cycling and the influence of personal 

characteristics on the impacts experienced. One of the key conclusions of the Chapter 3, 

similarly to many other recent studies on this subject, was that the total societal benefits of 

increased urban cycling outweigh the detriments. However, many individuals who choose to 

cycle do so in order to benefit their own health and this chapter has shown that for some 

individuals, particularly young people, the expected health impact of cycling may be negative. If 

the health impacts had been considered at an aggregate level, these negative individual health 

impacts would have been masked. This underscores the importance of distinguishing between 

individual and external health impacts and considering age-specific effects. 

In both studies, it was noted that the only significant negative impact of cycling is the increased 

risk of traffic collisions. The health impact of exposure to air pollution was relatively insignificant. 

However, a weakness of both of these studies as well as many other recent studies which have 

quantified the benefits and risks of cycling, has been a lack of measurement or detailed 

modelling of in–travel pollution exposure (Hartog et al., 2011; Rabl and de Nazelle, 2012; Rojas-

Rueda et al., 2016; Rojas-Rueda et al., 2011; Rojas-Rueda et al., 2012; Rojas-Rueda et al., 2013). 

For this reason, Chapter 5 is focussed on developing an environmental sensing node capable of 

measuring the exposure of a cyclist to harmful pollution. In Chapter 6, this node is applied to a 

study of the environmental exposures of cyclists in Dublin. 
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Chapter 5: Development of Environmental Sensing Node 

In chapters 3 and 4, methods were developed for quantifying the benefits and risks of cycling, 

based on best practices in the literature and novel simulation techniques. When applied to case 

studies of the Dublin area, it was found that the exposure of individuals to air pollution during 

transit was insignificant when compared to benefits such as increases in physical activity. This 

was consistent with the results of other studies on the benefits and risks of cycling. However, it 

was also noted that the estimation of air pollution exposure in this and many previous studies 

was either highly simplistic or absent entirely. In most cases, in-transit pollutant exposure 

concentrations were not measured but estimated based on ambient concentration data from 

fixed site monitoring (FSM) stations, sometimes applying a “concentration” factor to account for 

differences in exposure arising from different modes of travel. However, research has shown 

that air quality measurements from FSM stations can significantly underestimate or have little 

correlation with the pollution exposure of commuters (Adams et al., 2001; Gulliver and Briggs, 

2004). Additionally, such methods ignore route specific variables such as traffic levels and 

infrastructure which as discovered in Chapter 2, can be expected to influence pollution 

exposure. In order to accurately characterise the pollution exposures of cyclists and inform 

future studies on the benefits and risks of active travel, it must be possible to measure air 

pollution exposure of cyclists directly. 

In recent years, a new approach to air pollution monitoring has been emerging, whereby data 

from sparsely located FSMs are supplemented with data from low cost sensors which can be 

more finely distributed or mobile (Snyder et al., 2013; Steinle et al., 2015). This shift is being 

driven by advances in the technology of low-cost mobile pollution sensors, low-power 

electronics and communication networks. In addition to enhancing the spatial resolution of 

urban air quality data, such sensors can be used to assess the personal exposures of individuals 

wearing personal monitors. However, when using compact air quality sensors, the quality of 

data is an important concern as such sensors are emerging technologies which have not yet 

been subjected to rigorous field testing. Therefore, before such sensors can be used, their 

accuracy must be validated (Snyder et al., 2013; Steinle et al., 2015). 

This chapter reports the development and validation of the Bicycle Environmental Exposure 

(BEE) node, a prototype mobile sensing node incorporating low-cost air quality sensors, capable 

of measuring cyclist exposure to air pollution as well as noise. Two iterations of the prototype 

are described. The prototypes were later applied to two studies into the air and noise pollution 
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exposure of cyclists in Dublin, which are reported in Chapter 6. The rest of this chapter is 

organised as follows. The functional requirements of the BEE node are first described and 

justified. The development of each iteration of the prototype is then described in turn, including 

the calibration of the sensors. The chapter concludes with some comments on the advantages 

and limitations of the BEE node for personal exposure monitoring of cyclists. 

5.1 Design Requirements 

The first stage in the development process was to determine the functional requirements of the 

sensing node including the pollutants which should be measured. These are described below 

5.1.1 Measure concentrations of gaseous pollutants 

The gaseous pollutants initially considered for inclusion in the measurements of the node were 

NOx, CO, SO2 and O3 as all of these pollutants are present in urbans areas and are associated 

with adverse health outcomes. 

NOx is composed of nitric oxide (NO) and nitrogen oxides (NO2). Exposure to NO2 has been linked 

to increased risk of cardio-respiratory and all-cause mortality (Beelen et al., 2008b; Hoek et al., 

2013a) and NOx also acts as a precursor to formulation of particulates and O3. NOx 

concentrations are also highly spatially variable and the dominating source of NOx is vehicle 

traffic (Andersen et al., 2008; Environmental Protection Agency, 2015). As noted in Chapter 2, 

NOx measurements have not been included in studies of cyclist exposure to air pollution, 

possibly because there was not enough evidence for health impacts of NOx, independently of 

particulate matter. However, evidence regarding the health effects of NO2 has strengthened 

substantially in recent years and the balance of probabilities now indicates that NO2 is itself 

responsible for adverse health impacts (COMEAP, 2015). These factors make NOx measurements 

an important functional requirement of the BEE node. 

High concentrations of CO have been linked to short-term increases in total and cardiovascular 

mortality (Samoli et al., 2007). CO concentrations vary significantly in space and time and their 

main source of CO in Ireland in from motor vehicles. Highly trafficked areas therefore have 

higher concentrations of CO (Environmental Protection Agency, 2015). CO measurements were 

therefore considered an important requirement of the BEE node. 

Exposure to SO2 has been shown to be associated with increases in mortality from lung cancer, 

cardiovascular and all-cause mortality (Brook et al., 2010; Chau et al., 2002). However, the 

recent decline in the use of high-sulphur coal for domestic heating has led to large reductions in 

levels of SO2 in the U.S.A. and many European countries (US EPA; WHO, 2005). In Dublin in 
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particular, the marketing, sale and distribution of bituminous coals has been banned since 1990 

(Clancy et al., 2002). The decreased use of coal in favour of fuels which are low in SO2 

production, such as natural gas, has led to consistently low concentrations of SO2 in Dublin over 

the past 10 years (Environmental Protection Agency, 2015). For these reasons, SO2 

measurements were not considered to be a requirement of the Bee node. 

Exposure to ground-level O3 can decrease lung function and aggravate symptoms in individuals 

with respiratory conditions such as asthma and lung cancer. However, ground-level O3 is 

depleted through reactions with traffic-related pollutants and O3 concentrations are therefore 

reduced in urban areas, particularly close to street level (Environmental Protection Agency, 

2015). For this reason, O3 measurements were not considered to be required.  

5.1.2 Measure concentrations of particulate matter 

Long-term exposure to PM in the ranges currently common in both developed and developing 

countries has been consistently shown to be associated with a range of adverse health outcomes 

including long-term risk of lung cancer, cardiopulmonary disease and all-cause mortality (Brook 

et al., 2010; Chen et al., 2008; Pope and Dockery, 2006; Stieb et al., 2002). Concentrations of 

both respirable particles (PM10) and fine particles (PM2.5) are commonly used indicators of PM. 

While PM10 particles are small enough to enter the thoracic region, PM2.5 particles are 

particularly harmful as they have a high probability of deposition in the smaller conducting 

airways and alveoli. PM2.5 is also considered by the World Health Organisation (WHO) as the 

most relevant measure of PM (WHO, 2005). Measurement of PM2.5 was therefore considered to 

be essential to the sensing node while measurement of other size fractions such as PM10 and 

ultrafine particles (PM1) would be considered as useful but not essential. 

5.1.3 Measure noise 

Long term exposure to noise pollution has been linked to hypertension, cardiovascular disease 

and type II diabetes (Babisch, 2014; Bluhm et al., 2007; Dzhambov, 2015). However, although it 

is reasonable to assume that cyclists experience higher noise exposure than drivers while in 

transit, this noise exposure has not previously been considered in studies of the health impacts 

of cycling. This is possibly because the majority of dose response functions used for air pollution 

exposure have not been adjusted for noise. Also, the extent of correlation between cyclist 

exposure to traffic-related noise and traffic-related pollution is unclear. Therefore, if both 

impacts were considered in such studies there may be risk of double-counting. However, it is 

likely that an independent impact of traffic related noise exposure exists. Furthermore, the 
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inclusion of noise measurements in the BEE node would allow insights into the relationship 

between cyclist exposure to noise and air pollution to be generated. 

5.1.4 Mobility 

A key requirement of the sensing platform is that measurements can be recorded in high spatial 

and temporal resolution in urban environments. This means that the node must be compact and 

battery-powered so that it can be easily carried through an urban environment by a cyclist. The 

time and location of each observation must also be recorded. Finally, the node must be 

protected from the variable weather conditions of Dublin. In addition to protecting the 

electronic components from water, it must be ensured that variations in wind speed and 

direction do not affect the consistency of the air quality measurements. 

5.2 Development 

Two iterations of the BEE node were developed and the features of each are summarised in 

Table 5.1. The development of each prototype is discussed in detail below. 

5.2.1 Sensing node prototype 1 

The purpose of the 1st prototype was to allow a pilot study into the exposures of cyclists in 

Dublin to take place. This pilot would inform the design of a more comprehensive study and also 

inform the design of further iterations of the BEE node. For this reason, it was not necessary for 

the 1st prototype to have all of the functional requirements described in section 5.1. The 1st 

prototype is described in this section. 

Table 5.1 Measurement capabilities of each prototype of the BEE node 

 
Prototype 1 Prototype 2 

Measurement Units Sensor Units Sensor 

NOx ppb 
Alphasense NO2-
B42F ppb 

Alphasense NO2-
B42F 

CO ppb - ppb Alphasense C-B4 

PM2.5 ug/m3 - ug/m3 Alphasense OPC-N2 

PM10 ug/m3 - ug/m3 Alphasense OPC-N2 

Noise dBA - dBA 

Zoom Handy 
Recorder H4N 
& Pro Signal NPA415-
OMNI 

Location 

[lat, long] 
(WGS_1984
) Vodafone 975 

[lat, long] 
(WGS_1984
) 

Adafruit Ultimate 
GPS 

Speed knots Vodafone 975 m/s 
Adafruit Ultimate 
GPS 

Temperature °C TI LM35  °C - 
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5.2.1.1 Air Quality Sensors 

The most important function of the node was to record air quality measurements and thus the 

most important design decision was the choice of air quality sensors. This choice informed the 

design of all other aspects of the node. A number of models of miniature gas sensors were 

considered, including sensors from Figaro, e2v and Alphasense. Many of these small sensors 

however, were not suitable for low parts per billion (ppb) range detection. For example, the 

Figaro TGS2442 sensor—the CO sensor incorporated in the popular Waspmote sensing 

platform—has a detection range of 30-1000 parts per million (ppm). However, in Dublin, urban 

CO concentrations are often below 30ppm (Environmental Protection Agency, 2015). The only 

sensors which were found to be sufficiently mobile and to have acceptable detection ranges 

were the Alphasense B4 range of sensors. These are a range of miniature electrochemical 

sensors capable of detection of gas concentrations at low ppb levels. The sensors and 

accompanying circuit boards measure the local concentration of the target gas by generating 

voltages between 0V and 5V on two electrodes, the Working Electrode (WE) and the Auxiliary 

Electrode (AE). The voltage on the WE increases in proportion to the concentration of the target 

gas and the voltage on the AE can be used to correct for the influence of changes in 

temperature. The product range includes sensors for NO, NO2, CO and other pollutants. For the 

first prototype, a single gas sensor was included, a beta version of the Alphasense NO2-B42F, 

shown in Figure 5.1. According to the datasheet, the NO2-B42F responds linearly to NO2 

concentrations between 0 and 5ppm with errors of within ±1ppb (Alphasense, 2015a). An 

individual factory calibration equation is provided with each Alphasense sensor which allows the 

concentration of the target gas to be calculated from the voltages of the two electrodes. The 

beta version of this NO2 sensor had 100% cross-sensitivity to NO and so it was used in the BEE 

node to measure total NOx. Similarly to most other miniature electrochemical gas sensors, the 

NO2-B42F requires a warm-up period before it can give accurate measurements. It must be 

powered for 90 minutes before the first valid measurement. The 1st prototype of the BEE node 

did not include a PM sensor as it was not required for the pilot study. 
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Figure 5.1 Alphasense NO2-B42F sensor (Alphasense, 2015a) 

5.2.1.2 Data Acquisition System 

In order to provide power to and capture and record the measurements produced by the NOx 

sensor, a data acquisition (DAQ) system was required. The most widely used platform for 

prototyping of electronic sensor systems is the open-source, single-board Arduino platform. 

However, the Arduino was found to be unsuitable for use with the Alphasense sensors because 

the resolution of the voltage measurements was too low for the very small voltages produced by 

the Alphasense sensors. The Arduino analogue voltage measurement system uses a 10-bit 

analogue-to-digital converter (ADC). This divides the voltage range of 5V into measurement 

intervals of 4.88mV (5V/210). The NO2-B42F used with the sensing node, however, had a 

sensitivity of 0.571mV/ppb according to the factory calibration. This means that the 

measurement intervals of the Arduino ADC would correspond to NOx concentration intervals of 

8.5ppb. This would be a significant loss of measurement accuracy. An alternative to the Arduino 

platform is the Raspberry Pi (Raspberry Pi, 2016) shown in Figure 5.2. The Raspberry Pi is a 

credit-card sized computer based on the Broadcom BCM2835 System-on-a-Chip, which can run a 

Linux operating system. Although the Raspberry Pi does not include a built-in ADC, it can be 

combined with an external ADC. The ADC Pi is a 17-bit ADC which can be mounted to the 

Raspberry Pi in order to allow recording of analogue voltages between 0V and 5V at a resolution 

of 5e-17V.  The Raspberry Pi and ADC Pi were therefore used as the DAQ system for the sensing 

node. A custom Python script was created to record voltage observations from the NO2-B42F at 

a frequency of 0.5Hz and save these values along with a timestamp to a csv file. The Raspberry Pi 

was powered using a battery-bank designed for mobile charging of smart phones. 
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Figure 5.2 Raspberry Pi Miniature Computer (Raspberry Pi, 2016) 

5.2.1.3 Temperature Sensor 

Many compact pollution sensors, including the Alphasense B4 range, are sensitive to changes in 

temperature. For this reason, it is important that in calibrating and using the sensors, the local 

temperature is monitored so that if a dependence is noted during the calibration, the values 

recorded later can be corrected to remove the effects of temperature. Therefore, a Texas 

Instruments LM35 temperature sensor was added to the sensing node to provide temperature 

measurements concurrent to the air quality measurements. This sensor produces a voltage 

proportional to the ambient temperature, which was measured by the Raspberry Pi and saved to 

the csv file along with the measurements of the NOx sensor. 

5.2.1.4 GPS 

For the first iteration of the BEE node, location and speed information were recorded by a stand-

alone smart-phone, the Vodafone 975. The MyTracks app, running on the phone, retrieved 

coordinate and speed observations from the GPS satellites and saved them to a csv file in the 

phone’s local storage. A screenshot of the myTracks app is shown in Figure 5.3. 
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Figure 5.3: Screenshot from myTracks app 

5.2.1.5 Enclosure and Pump 

In order to protect the sensors and electronics from water damage and provide the sensors with 

a consistent flow of air, they were placed in an airtight ABS plastic enclosure which was 

connected to silicon tubing at both ends. As shown in Figure 5.4, one of the tubes led to a 

vacuum pump which forced air out of the enclosure and the other tube could be placed in the 

microenvironment to be sampled. This created an air flow of 4L/minute through the enclosure. 

The sensing node could be easily carried in a small backpack as shown in Figure 5.5. 
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Figure 5.4 Functional diagram of sensing node 1st prototype 

 
Figure 5.5 A cyclist carrying the sensing node 1st prototype in a backpack. 

 

5.2.1.6 Calibration 

In order to validate the accuracy of the NOx sensor, the 1st prototype was collocated with the 

monitoring inlet of the Dublin City Council (DCC) FSM station at Coleraine St., about 20m from a 

regional road in Dublin city. The test was carried out for 2 weeks during December, 2014. The 

collocated inlets of the sensing node and the FSM station are shown in Figure 5.6. The reference 
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instrument was a Thermo Electron Corporation Model 42i NOx analyser which is used to monitor 

ambient NOx concentrations at accuracy levels suitable for reporting to the European 

Commission for compliance purposes. Hourly NOx measurements of the reference instrument 

were compared to 1 hour averages of the factory calibrated NOx sensor and the temperature 

sensor. Hourly averages were used because higher frequency measurements were not available 

from the reference sensor. It should be noted that taking hourly averages can be expected to 

filter out some temporal variability in the sensor readings and so ideally, the calibration model 

would have been developed using a higher temporal resolution. A linear regression model was 

fitted to estimate actual NOx from the factory calibrated sensor readings. The collocated 

measurements were randomly split into a training set (70%) and test set (30%). The following 

model was fit to the data using the training set only: 

 

 298 1.39*NOx NOx     (5.1) 

 

Where NOx is the true concentration of NOx in ppb as measured by the reference instrument 

and NOx is the factory calibrated reading of Alphasense sensor. The correlation between the 

Alphasense sensor and the reference instrument was very high with an adjusted R2 of 0.96 over 

the training set. The test set was used to test the predictive accuracy of the fitted model.  The 

mean average percentage error (MAPE) over the test set was 17% showing that the fitted model 

generalised well to new data. A scatter plot of the reference instrument NOx measurements vs. 

the NOx estimates based on the fitted model is shown in Figure 5.7. In order to test whether 

changes in temperature were influencing the sensor readings, a multivariate linear regression 

model which included both temperature and the factory calibrated NOx readings as predictors 

was also considered. However, the inclusion of temperature as a predictor did not improve the 

adjusted R2 of the calibration model. Therefore, the simple linear model based only on the 

factory-calibrated NO2-B42F sensor readings was used. 
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Figure 5.6 Collocated inlets of sensing node (red funnel) and  DCC fixed site monitors (clear 

plastic) at Coleraine st. 

 
Figure 5.7 NOx values from DCC reference sensor vs NOx values estimated from calibration 

model 
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5.2.1.7 Limitations of 1st prototype 

The 1st prototype was used for the pilot study described in section 6.2.  This early prototype was 

missing some features which were considered essential. These included measurement of PM, CO 

and noise. Another limitation was that the location and speed measurements were recorded by 

a separate device to the main DAQ. This meant that when beginning and ending a recording, 

multiple devices needed to be turned on and off. The data from both devices also needed to be 

merged. As the speed and location observations were not sampled at exactly the same times as 

the rest of the data, it was necessary to average or interpolate the speed and GPS data before 

the data streams could be merged. Based on these limitations, a number of improvements were 

made to the design and these were incorporated into the 2nd prototype.  

5.2.2 Sensing Node Prototype 2 

5.2.2.1 Additional functionality 

The most significant additional functionality of the 2nd prototype was the addition of a PM 

sensor. A number of PM sensor models were considered. Some models, such as the Aerocet 531, 

were found to be too bulky to be integrated into a mobile sensing platform. Others such as the 

Sharp GP2Y1010AU0F were not accurate enough and/or did not allow measurement of 

particular PM size fractions. The only sensor which was found that had sufficient accuracy and 

size selectivity was the Alphasense OPC-N2 (Alphasense, 2015b). This sensor is an optical particle 

counter (OPC) which measures the light scattered by individual particles which are carried in the 

sample stream of air stream through a laser beam. The size of each particle is estimated based 

on the degree of light scattering. The sensor is compact as shown in Figure 5.8 and a further 

attractive feature is that it is possible to send and receive data over a Serial Peripheral Interface 

(SPI) connection. This allows the sensor to work as an integrated component of the BEE node 

rather than as a standalone sensor. Since the OPC features an integrated pump, it did not need 

to be stored within the same enclosure as the gas sensors. Instead, it was placed in a smaller 

enclosure for protection from water damage. This smaller enclosure could be placed in the 

microenvironment to be sampled such as on the strap of a backpack. 
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Figure 5.8 Alphasense Optical Particle Counter OPC-N2 

The Alphasense CO-B4 sensor was also added to the 2nd prototype to provide CO sensing 

capability to the sensing node. The CO-B4 operates similarly to the NO2-B42F and measures CO 

between 0 and 1000ppm with noise of 4ppb. 

Another additional feature of the 2nd prototype  was sound pressure level (SPL) measurement 

capability. In order to capture the entire audible frequency spectrum, it was necessary to record 

sound at a sampling rate of 44.1kHz which required a separate DAQ system with a sound card. 

The DAQ system chosen was a Zoom Handy Recorder H4N. It was out of the scope of this work 

to integrate this DAQ with the main DAQ system of the sensing node and so the noise recording 

system was stand-alone. Although the Zoom features built-in microphones, an external electret 

microphone was used so that it could be placed at head height while the Zoom remained 

protected in the backpack. The microphone used was the Pro Signal NPA415-OMNI. A recent 

study has shown that such consumer electret microphones can correlate well with type 1 

microphones (Van Renterghem et al., 2011). In order to prevent interference from wind noise, 

the microphone was fitted with a wind shield as shown in Figure 5.9. Recorded signals could be 

converted to A-weighted equivalent sound pressure level (dBA) using a Matlab script with a 

scaling factor calculated in the calibration described in section 5.2.2.3.3. 
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Figure 5.9 Microphone with wind shield mounted on backpack 

 

5.2.2.2 Improvements to existing functionality 

In addition to the added functionality some improvements were made to the existing 

functionality of the 1st prototype. In the first prototype, position and speed information had 

been captured by a stand-alone smart phone. In the 2nd prototype, this information was instead 

captured by a dedicated GPS module, the Adafruit Ultimate GPS. Since the GPS module features 

serial communication pins, it is easy to send and receive data between it and any DAQ system. 

This meant that the GPS measurements could be integrated into the BEE node instead of being 

captured by a standalone system. Also, the module was fitted with a GPS antenna, shown Figure 

5.10 which improved the signal reception from the GPS satellites. 
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Figure 5.10 Adafruit GPS module and antenna 

In order to make possible the recording of information from the gas sensors, OPC and GPS 

receiver using a single device, the main DAQ system was upgraded from the Raspberry Pi to the 

Intel Galileo. The Galileo is a compact microprocessor board based on Intel x86 architecture, 

designed for use in “Internet-of-Things” projects. The Galileo is also software compatible with 

the Arduino Software Development Environment. This was important as communication with 

the OPC was only possible using SPI communication and this is simple to implement using an 

Arduino sketch. A custom Arduino sketch was created which created one observation every 2 

seconds which consisted of NOx, CO and PM2.5 concentrations as well as GPS coordinates, 

speed and a timestamp. All observations were saved to a csv file on the on-board SD card. 

Similarly to the Raspberry Pi, the Galileo was powered using a battery-bank designed for mobile 

charging of smart phones. 

The 2nd prototype is illustrated in Figure 5.11. This version of the sensing node meets all of the 

functional requirements specified in section 5.1. Additionally, all of the measurements except for 

SPL are integrated in a single system. This system has a single power source and all of the 

sensors begin recording when the system is turned on.  
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Figure 5.11 Functional diagram of sensing node 2nd prototype 

5.2.2.3 Calibration 

The additional environmental sensors of the second prototype needed to be validated and 

calibrated before use. The NOx sensor was also recalibrated using a reference instrument with 

higher temporal resolution. 

5.2.2.3.1 OPC Calibration 

The Alphasense OPC-N2 is a nephelometer-type device which operates by measuring the 

scattering of light as it passes through a sample stream of air. It is well documented that these 

types of devices  

are sensitive to environmental variables such as relative humidity (RH) and temperature 

(Chakrabarti et al., 2004; Nyhan et al., 2014). Therefore, these variables must be controlled for 

during calibration. Even so, if a nephelometer is used in a location where the range of 

temperature and RH is very different to that of the location where the calibration took place, the 

calibration may not be valid. During the development of the BEE node, there was an opportunity 

to use the sensors for an exposure study in Chennai, India. This required the OPC to be 

calibrated in the local environment. Although the resultsof the Chennai exposure study are 
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outside the scope of this thesis, the results of the local calibration are informative. Therefore, 

the results of Chennai calibration are reported in this section followed by the results of the main 

calibration which took place in Dublin. 

In Chennai, the OPC was collocated with a Grimm portable aerosol spectrometer (PAS) 1.108. 

The Grimm PAS is also a nephelometer and so, it is not an ideal reference instrument. However, 

it was considered to be a higher fidelity instrument than the OPC as it has been used extensively 

in the literature (Hall et al., 2002; Peters et al., 2001) including one study which validated its 

performance (Teikari et al., 2003). The collocated test was run for 20 hours on 6/Apr/2015 to 

7/Apr/2015 and for 48 hours on 17/Apr/2015 to 19/Apr/2015 on the roof of a FSM station at the 

edge of the campus of the Indian Institute of Technology, Madras. Minute by minute PM2.5 

concentrations recorded by the Grimm PAS were compared to minute averages of the OPC PM2.5 

measurements. Temperature (°C) and RH (%) measurements recorded by the FSM were also 

available. The data from 6/Apr and 17/Apr were aggregated and randomly allocated to a training 

set (70%) and a test set (30%). Using the training data, regression models were fitted in order to 

predict the Grimm PAS PM2.5 observations based on the OPC PM2.5 measurements, temperature 

and RH. Interactions between the predictor variables were also considered. The best fitting 

model for PM2.5 used the OPC measurements, RH and the product of the OPC measurements 

and RH as predictors. The fitted model was as follows: 

 

 2.5 2.5 2.52.4 0.12 0.02 ( ) 1.35PM PM PMC OPC RH OPC RH           (5.2) 

 

 

Where 2.5PMC  was the concentration of PM2.5 as measured by the Grimm PAS, 2.5PMOPC  was 

the PM2.5 concentration as measured by the OPC and RH  is the percentage relative humidity. 

The adjusted R2 was 0.82 and the MAPE on the test set was 22%. It is interesting to note that the 

coefficients of OPC2.5 and RH were both positive but the coefficient of OPC2.5*RH was negative, 

indicating a complex influence of RH on the agreement between the OPC and the reference 

instrument. This may because both instruments were affected by RH. The final model does not 

include temperature as a predictor because temperature was not a significant predictor in any of 

the candidate models. 

 

The best fitting model for PM10 in Chennai used the OPC measurements as the only predictor. 

The fitted model was as follows: 
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 10 100.2 17.3PM PMC OPC      (5.3) 

 
The accuracy was lower than that of the PM2.5 model with an adjusted R2 of 0.38 and a MAPE 

on the test set of 53%. 

 

In Dublin, the OPC was collocated with the inlets of an EPA FSM station in Rathmines, close to a 

main road just outside the city centre of Dublin. The reference instrument at the FSM station 

was a Thermo Scientific TEOM 1405-DF. This monitor is a candidate US EPA equivalent sampler 

for PM2.5 and also has the advantage of producing continuous samples at 1 hour intervals, unlike 

gravimetric measurements which typically only produce one measurement per day. Since the 

OPC was to be used in applications requiring high temporal resolution; calibration using the 

TEOM sampler was considered to be most appropriate. Hourly weather data including 

temperature (°C), RH (%) and precipitation (mm) were available from a nearby weather station 

at the Phoenix Park. Conditions of very high RH and/or rainfall can be expected to influence the 

OPC measurements significantly (Chakrabarti et al., 2004; Nyhan et al., 2014). Therefore, in both 

the calibration process described here and the field measurements described in the next 

chapter, the OPC data recorded during hours of rainfall and/or RH of 95% or greater were 

discarded. The remaining valid data were randomly allocated to training (70%) and test (30%) 

sets. Regression models were fitted to predict the hourly measurements of the TEOM sampler 

from the hourly averages of the OPC, the temperature measurements and the RH 

measurements. Interactions between predictor variables were also considered. The best fitting 

model used the OPC measurements, RH and the product of the OPC measurements and RH as 

predictors. The fitted model was as follows: 

 

 2.5 2.50.54 0.24 1.003PM PMC OPC T        (5.4) 

Where 2.5PMC is the concentration of PM2.5 as measured by the EPA TEOM sampler, 2.5PMOPC is 

the PM2.5 concentration as measured by the OPC andT  is the temperature. The adjusted R2 was 

quite low at 0.15 and the MAPE on the test set was moderately high at 53%. The best fitting 

model for PM10 was as follows: 

 

 10 100.41 0.36 3.005PM PMC OPC T        (5.5) 
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The accuracy was better than the PM2.5 model with a R2 of 0.34 and a MAPE of 36.3%. Based on 

these results, it would appear that the OPC-N2 is suitable for no more than rough indicative 

measurements of PM exposure. Additionally, there were significant differences between the 

calibrations in the two cities. In Chennai, RH was significant in predicting the PM2.5 

measurements of the reference instrument and temperature was insignificant. In Dublin, 

temperature was a significant predictor but RH was not. The differences in calibration results 

show that even when environmental variables are controlled for, the performance of the OPC in 

one environment may be very different to its performance in another environment. This may be 

explained by differences in particle composition or density, differences in the performances of 

the reference instruments or some other factor. However, it is clear that if a low-cost PM sensor 

such as the OPC-N2 is to be used for measurements in a specific location, it should be tested and 

calibrated in that location during a range of typical meteorological conditions. Furthermore, in 

order test the performance of the sensor at a more general level, ideally, tests in multiple 

locations with differing environments and PM sources should be carried out. 

Overall, it appears that there is some level of agreement between the OPC-N2 and other higher 

fidelity PM monitors. However, since the OPC-N2 could not be validated to a high degree of 

accuracy during the testing in Dublin; the PM measurements reported in Chapter 6 should be 

treated as rough indicators only. 

5.2.2.3.2 Gas Sensors Calibration 

In order to validate the CO-B4 sensor, a collocated test was carried out with an EPA FSM station 

at Portlaoise, a town about 80km from Dublin city. The reference instrument of the FSM station 

was an Enviro Technology CO Analyser Model 300E. Hourly CO measurements of the reference 

instrument were compared to 1 hour averages of the factory calibrated CO sensor and the 

temperature sensor. The time series of readings from the factory calibrated Alphasense CO 

sensor and the EPA CO analyser are shown in Figure 5.12.The measurements from the EPA 

monitor were quantised in steps of 250ppb and so it was not possible to calculate an accurate 

measure of correlation between the two series. However, the Mean Average Percentage Error 

(MAPE) between the two series was 12%, a reasonably low value. It can also be seen from  

Figure 5.12 that there is generally good agreement between the two sensors and much of the 

deviation between the series seems to be resulting from the quantisation of the values from the 

EPA sensor. Based on these results, there was no reason to suspect that the factory calibration 

provided by Alphasense needed to be corrected. 
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Figure 5.12 Comparison of time series data from Alphasense CO-B4 and EPA reference sensor 

The NO2-B42F sensor had already been validated and recalibrated in the development of the 

first prototype. However, when developing the 2nd prototype, a reference instrument was 

available which could provide NOx measurements at a higher frequency. The calibration was 

therefore repeated using this reference instrument. The sensing node was collocated with the 

reference instrument, an Enviro Technology Chemiluminescence NOx Analyser Model 200E, in 

Trinity College for 4 days from 24/Jul/2015 to 27/Jul/2015. Both devices were sampling air from 

Pearse st.—a highly trafficked street adjacent to the college—through an open letterbox. 

Measurements taken by the reference instrument at 15 minute intervals were compared to 15 

minute averages of the NO2-B42F sensor readings.To predict NOx concentration from the sensor 

readings, linear regression models were considered using different predictors, including the 

factory calibrated measurements and the raw voltage readings from the WE and the AE. A linear 

model of NOx concentration vs WE voltage was chosen as it had the highest adjusted R2 on the 

training set. The model was as follows: 

 

 1275* 310WENOx V    (5.6) 
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Where WEV  was the measured voltage on the WE. A comparison of the reference instrument 

NOx measurements and the NOx estimates based on this model is shown in Figure 5.13. The 

MAPE on the test set was 11.5%. The voltage on the AE, which is meant to help control for the 

influence of temperature on the sensor readings did not improve prediction accuracies. This may 

be because extremely high or low temperatures were not encountered during the testing. 

However, during the test, the ambient temperature varied between 8°C and 18°C and 

temperatures outside of this range were expected to occur rarely during the planned exposure 

studies. The calibration model based on the WE voltage alone was therefore considered to be 

appropriate. 

 
Figure 5.13 NOx values from reference sensor vs NOx values estimated from calibration 

model. 
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5.2.2.3.3 Sound Recorder Calibration 

The microphone and sound recorder combination was calibrated using a microphone calibrator. 

The Brüel & Kjær Sound Calibrator Type 4231 was used for this purpose. Following the 

manufacturer’s instructions, the microphone was placed into the calibrator and the calibrator 

delivered a stable calibration pressure of 1 Pascal (Pa) for a period of 20s. The sound was 

recorded at a sampling rate of 44.1kHz by the sound recorder. The recorded signal is plotted in 

Figure 5.14. The Root Mean Square (RMS) value of the recorded signal was then calculated and a 

scaling factor to convert RMS voltage to RMS Pa was determined. The scaling factor could later 

be used to calculate the RMS sound pressure of any recorded signal. The sound pressure level 

(SPL), measured in decibels (dB) of the signal could then be calculated using the following 

formula (Hansen and Sehrndt, 2001) : 

 
10=20*log ( )p rms 0L P / P   (5.7) 

 

Where 
pL  is the SPL in dB, rmsP  is the RMS sound pressure and 0P  is the reference sound 

pressure. The value of the reference sound pressure is the auditory threshold of 20 µPa. 

 

 
Figure 5.14 Recorded signal from sound calibrator 
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5.3 Conclusions 

This chapter has reported the development of a low-cost mobile environmental sensing node 

capable of being used as a personal monitor by a cyclist. The node can record spatially resolved 

measurements of PM2.5, CO, NOx and SPL at high sampling rates. The node is inexpensive relative 

to traditional monitoring methods and simple to assemble and use. Although reliability of data is 

considered to be one of the main challenges in the use of low-cost pollution sensors, the 

accuracy of each of the low-cost sensors has been validated by means of collocated tests with 

high-fidelity instruments. 

A number of limitations of the design are noteworthy. One limitation is that the SPL 

measurements are recorded by a different device to the air quality measurements. This means 

that if SPL measurements are required, two separate devices must be turned on and off when 

taking measurements and recorded data must also be retrieved from two devices. Also, in the 

current design, all data is simply recorded to an on-board SD card which must later be removed 

to retrieve the data. This was sufficient for the studies described in Chapter 5 but for future 

studies, it may be advantageous for the recorded measurements to be periodically uploaded to 

an online database over a mobile data connection.  

Chapter 5 describes two studies which use the BEE node for the characterisation of cyclist 

exposure to environmental pollution while commuting. 
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Chapter 6: Environmental Exposure of Cyclists in Dublin 

6.1 Introduction 

In Chapters 3 and 4, it was noted that the approach used for quantifying the health impacts of 

environmental exposures—which was similar to the accepted approach in the literature—used 

approximations of exposure based on average concentrations from fixed site monitors. 

Therefore, the degree to which the health impacts of pollution exposure while cycling vary by 

route is unclear. As shown in Chapter 4, considering health impacts at a highly aggregated level 

may obscure the negative impacts to some individuals. In particular, this aggregate approach 

could not account for variations in exposure due to weather conditions or route-specific factors 

such as traffic levels or presence of cycling facilities. Based on the literature review discussed in 

Chapter 2, it can be reasonably expected that such factors would significantly influence pollution 

exposures but there are still significant gaps in the research. Of the many studies of cyclists’ 

exposures discussed in Chapter 2, only three considered presence of cycling facilities and link 

level traffic volumes in the same study and none of these considered NOx concentrations (Bigazzi 

and Figliozzi, 2015a; Hankey and Marshall, 2015; Hatzopoulou et al., 2013) or uptake dose of any 

pollutants. Also, very little research has considered the factors affecting the variation in noise 

exposure of cyclists. 

This chapter reports two studies of the pollution exposures of cyclists in Dublin. The 

aforementioned gaps in the literature are addressed by analysing the impact of traffic volumes, 

presence of traffic facilities and weather variables on exposure concentrations and intake doses 

of CO, NOx and PM2.5 and on exposure to noise. The first study was a pilot study which used the 

first iteration of the BEE node of Chapter 5 and aimed to generate insights to improve the design 

of both the BEE node and the exposure study. The second study was a larger scale study which 

used the second iteration of the BEE node. The study design and results are presented below for 

each study in turn. The chapter concludes with a discussion of the limitations of the studies and 

the implications of the results. 

6.2 Pilot Study: NOx exposures of a cyclist on fixed routes in Dublin 

A pilot study was carried out using the first prototype of the BEE node in order to (i) inform a 

later larger study and (ii) to identify potential improvements to the BEE node. In this pilot study, 

the NOx concentrations to which a cyclist was exposed to while cycling along two fixed routes in 

Dublin city were measured. Simultaneous measurement of heart rate allowed respiration rate to 
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be modelled in real time in order to estimate pollution intake rate. Linear mixed effects models 

(Pinheiro and Bates, 2000) were then used to explore the impacts of a range of traffic network, 

meteorological and behavioural variables on NOx exposure and intake. The study design is 

described in detail below followed by reporting of the results. 

6.2.1 Study Design 

The sampling was conducted on 9 days between February and March, 2015 in Dublin city, 

Ireland. A healthy male, aged 24, cycled along two fixed routes while carrying instrumentation 

for measurement of local NOx concentration, heart rate, position and speed. The two routes 

were chosen to cover common commuter routes and to include the four categories of cycling 

facilities common to Irish cities: on-road (no cycling facility), bus lane, cycle lane adjacent to road 

with no separation and separated cycle lane. The total length of unique road sampled was 

26.5km. Each route took approximately 45 minutes to cycle once and each route was cycled 3 

times during on-peak hours (between 4pm and 7pm) and 2 times during off-peak hours. Motor 

vehicle traffic counts during the sampling periods were provided by Dublin City Council at 15 

minute resolution. Figure 6.1 shows the two routes with the locations of the traffic counters. 

The first prototype of the BEE node described in Chapter 5 was used to measure the NOx 

concentrations and GPS locations. It was carried by the participant in a small backpack as shown 

in Figure 5.5 in the previous Chapter. The heart rate of the participant was measured 

simultaneously using a CamNTech Actiheart monitor. 
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Figure 6.1 Pilot study routes with counter locations (Google Maps, 2015) 

6.2.2 Data Analysis 

For the purpose of analyzing the relationship between NOx exposure and explanatory variables 

relating to cyclist behaviour, weather and the traffic network; 30 second averages of all the 

measured data were taken. Taking time-averaged gas concentrations when considering health 

impacts is typical practice in assessing in-transit exposure to pollutants (Bean et al., 2011; Kaur 

et al., 2005b; Kaur et al., 2007; Rakowska et al., 2014). Since the speed readings from the GPS 

system were not equally spaced, the averaging was weighted by the time since the previous 

measurement. As the health impacts of pollution exposure depend not just on the exposure 

concentration but on the intake dose, the minute ventilation rate (VE) of the subject also 

needed to be estimated. VE was estimated from the subject’s measured heart rate (HR) using 

the empirical model estimated by Zuurbier et al. (2009). 

  expVE c m HR     Eq. (6.1) 

where c and m are constants (1.03 and 0.021 respectively for males). The rate of NOx Intake per 

metre travelled could then be found by multiplying VE by NOx Concentration and dividing by 

Average Cycling Speed in metres per minute.  

Linear mixed-effects (LME) models were used in the analysis with fixed and random effects of a 

number of explanatory variables. The fixed effects were associated with all observations and the 
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random effects were associated with each Trip ID. The inclusion of random effects allows for 

unobservable heterogeneities between different trips to be accounted for by treating them as 

normally distributed random variables with zero mean. An LME model with a single level of 

grouping can be expressed as (Pinheiro and Bates, 2000): 
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  Eq. (6.2) 

Where M is the number of groups, 𝑦𝑖  are the observations in group 𝑖, 𝑋 and 𝑍 are the fixed and 

random design matrices, 𝛽 is the p-dimensional vector of fixed effects, 𝑏𝑖 is the q dimensional 

vector of random effects, 𝜀𝑖 are the residuals, Σ is the variance-covariance matrix of the mixed-

effects vectors, σ is the standard deviation of the residuals and 𝐼 is the identity matrix. The nlme 

package was used with the R software package to fit linear mixed-effects models. The 

dependent variables considered were NOx Concentration (ppb) and NOx Intake per metre 

travelled (µg/metre). The independent variables considered for fixed effects were Traffic 

Volume (vehicles/hr), Facility Type (no facility, bus lane, adjacent cycle lane or separated cycle 

lane), Background NOx Concentration (ppb) (as measured by a DCC fixed site monitoring station 

in a nearby public park, St. Annes’ Park), Wind Speed (knots), Rainfall (mm/hr), Temperature (° 

C), Relative Humidity (%) and Average Speed (m/s). The weather data from a weather station at 

Dublin airport were obtained from the Irish National Meteorological Service (Met Éireann, 

2016). Logged versions of all continuous variables were also considered. Random intercept 

terms associated with the Trip ID were also considered in order to allow for the possibility that 

unobserved differences between the conditions of each trip may have affected the exposure 

concentrations. 

6.2.3 Description of dataset 

 
Sampling was carried out during a total of 12 trips giving 919 observations over approximately 8 

hours of cycling. Table 6.1 shows descriptive statistics for the sampled dataset. Route 2 which 

stayed close to the city centre had a higher mean traffic volume and slightly higher mean NOx 

concentration. 

The temporal and spatial resolution of the sampled data allows the NOx concentrations on key 

commuter routes in Dublin city to be visualised as shown in Figure 6.2. This allows pollution 

hotspots to be identified in way which is not possible with traditional static monitoring. In 
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particular, Figure 6.2 shows very high NOx concentrations on parts of Wellington Quay on route 

2, adjacent to the popular tourist area of Temple Bar. A Google Street View image (Google Maps, 

2014) of the location is shown in Figure 6.3. These very high levels should be interpreted with 

caution as, during the calibration process, no values were recorded as high as these and 

therefore the linearity of the sensor cannot be guaranteed at these levels. However, it is clear 

that the NOx exposure concentrations were relatively very high at these locations. Further 

insights can be gained by looking at the average recorded NOx concentration on each type of 

cycling facility. As shown in Figure 6.4 and Figure 6.5, bus lanes had the highest average NOx 

concentrations followed by on-road cycling, adjacent cycle lanes and separated cycle lanes. The 

effect of different cycling facilities on pollution exposure will be further explored in the next 

section.  

 
Table 6.1 Summary of data collected in pilot study 

Route N 
NOx Concentration 

(ppb) 
NOx Intake rate 

(µg/m) 
Traffic Volume 
(vehicles/hr) 

    Mean SD Mean SD Mean SD 

Route 1 499 204.5 151.4 0.29 2.09 408.3 318 

Route 2 420 283.3 217.4 0.12 0.4 807.6 526.7 

 
 

 
Figure 6.2 NOx concentrations measured in pilot study in Dublin city. 
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Figure 6.3 Google Street View of NOx hotspot close to Temple Bar area of Dublin (Google Maps, 

2014) 

 

 
 

Figure 6.4 Average NOx exposure concentrations by facility type in pilot study 
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Figure 6.5 Cycling facility types on both routes in the pilot study 
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6.2.4 Results of Analysis 

Linear mixed models were fit to the dependent variables on ln(NOx) and ln(NOx Intake/metre). 

Log transformations were used because the distributions of the raw variables showed high 

positive skew whereas the log transformed distributions were close to normal. To determine the 

best combination of fixed effects for each mixed effects model, a process of backwards 

elimination was followed whereby, in the first instance, all possible variables were included and 

then non-significant variables were eliminated one at a time, ensuring that the Bayseian 

Information Criterion (BIC) improved with each variable removed. In fitting the mixed effects 

model for NOx concentration, it was found that the best model was a model of ln(NOx) with fixed 

effects for ln(Hourly Traffic), Facility Type, ln(Background NOx)  and Wind Speed and random 

effects of Trip ID on the intercept. The other weather variables and Average Speed were all 

found to be insignificant. The model parameters are shown in Table 6.2. In fitting a mixed effects 

model for NOx Intake/metre, it was found that the best model was a model of ln(NOx 

Intake/metre) with fixed effects for ln(Hourly Traffic) and Wind Speed and random effects of 

Trip ID on the intercept. The model parameters are shown in Table 6.3. As expected, logged 

hourly traffic volume was positively associated with both NOx concentration and NOx Intake per 

metre travelled. Facility type was found to be linked to NOx concentration but not to NOx 

inhalation rate. Since the dependent variable is log transformed, the exponentiated coefficient 

of each facility type gives an estimate of the ratio of the expected value of NOx concentration for 

that facility vs the expected value of NOx concentration for the reference facility (on-road). 

Interestingly, bus lanes were associated with a 12% increase in NOx concentration compared to 

no facility. This may suggest that in terms of pollution exposure, the separation from main traffic 

offered by bus lanes is outweighed by the higher emissions from buses compared to other 

traffic. Cycle lanes adjacent to the road and separated cycle lanes are associated with 32% and 

17% decreases in NOx concentrations. Similarly to other studies of cyclist and pedestrian 

pollution exposure, Wind Speed is the only significant weather variable. However, in this case 

NOx concentrations seem to  be increasing with Wind Speed whereas most previous studies have 

shown that pollution concentrations decrease with increasing wind speed (Bigazzi and Figliozzi, 

2014; Greaves et al., 2008; Kaur et al., 2007). For the second model with NOx Intake per metre as 

the dependent variable, logged Hourly Traffic and Wind Speed had similar impacts. However, 

neither Facility nor Background NOx were found to be significantly associated with intake per 

metre.  This is not what would be expected since NOx intake is proportional to NOx 

concentration and NOx Concentration was found to be significantly associated with both of these 

variables. However, it appears that since NOx intake per metre also depends on Heart Rate and 
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Average speed, the proportions of the total variance which could be explained by Background 

Concentration and Facility were lower, leading to non-significant associations. If this explanation 

is accurate, analysis of a larger sample size should show significant associations between these 

variables. The standard deviations of the random effects terms are sufficiently large to suggest 

that there were significant differences between the different sampling sessions which were not 

accounted for by the measured variables. These differences may be due to the effects of traffic, 

meteorological or behavioural variables not considered here.  

Since only a single subject participated in this study, it was not possible to say whether the 

results relating to the intake dose would be similar for an individual with different level of 

cycling ability or cardiovascular fitness. Since measurements were only taken on two routes, it is 

possible that the model results were influenced by a correlation between facility type and traffic 

volumes. These concerns will be addressed by the second study in this chapter which features 

multiple participants and a larger sample size of routes with a variety of traffic levels and facility 

types. 

 

Table 6.2 Parameters of the Linear Mixed Model of log(NOx Concentration) for the pilot study 

Fixed Effects 

Variable Estimate Standard Error p-Value 

(Intercept) 2.66 0.44 0.00 

log(Hourly Traffic) 0.06 0.02 0.00 

Facility: Bus Lane* 0.12 0.04 0.00 

Facility: Adjacent* -0.39 0.06 0.00 

Facility: Separated* -0.18 0.07 0.00 

Wind 0.10 0.01 0.00 

log(Background NOx) 0.31 0.06 0.00 

Random 
Effects 

Variable Standard Deviation     

(Intercept) 1.15 
 

  

Residual 0.43     

* Relative to Facility: No Facility 
 
 
Table 6.3 Parameters of the linear mixed model of ln(NOx Intake/metre) for the pilot study 

  Variable Estimate Standard Error p-Value 

Fixed Effects 
(Intercept) -4.77 0.41 0.00 

log(Hourly Traffic) 0.12 0.02 0.00 
Wind 0.07 0.02 0.00 

Random 
Effects 

Variable Standard Deviation     

(Intercept) 0.95 
 

  

Residual 0.97     
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6.3 Full Scale Exposure Study: exposure of commuter cyclists to NOx, CO, 

PM2.5 and Noise in Dublin 

The full study differed from the pilot study in a number of ways. Firstly, the second iteration of 

the BEE node was used so that exposures to CO, PM2.5 and Noise could also be monitored. 

Secondly, instead of measuring the exposures of a single participant cycling on two fixed routes, 

a group of volunteers were recruited to cycle their own regular commutes. The study design is 

described in detail below followed by reporting of the results. 

6.3.1 Study Design 

Volunteer cyclists of all ages, genders and cycling experience levels were recruited to participate 

in the study using a number of avenues. In order to recruit regular cyclists, posters were placed 

in local cycling shops and contact was made with local cycling communities. Individuals who 

cycled infrequently were also recruited through personal contacts and by contacting businesses 

located in Dublin. Each participant completed an online survey prior to participating in order to 

record basic personal characteristics. Each participant was also required to read a participant 

information form which explained the study procedure and to sign the form indicating that they 

understood the information and consented to take part in the study. This form can be found as 

an appendix of this thesis. In addition, a Risk Assessment Statement was written by the author 

and reviewed and approved by technicians in the department of Civil, Structural and 

Environmental Engineering, of Trinity College Dublin. A formal ethics approval for the study was 

not judged to be necessary as the volunteers would not incur any significant additional risk as a 

result of their participation in the study. 22 volunteers participated in the study. The 

demographics of the study group are summarised in Table 6.4. The sampling protocol for the 

study was designed in order to develop a realistic representation of the pollution exposures 

faced by commuter cyclists in Dublin. Volunteers participated in the study by simply completing 

their usual commute as normal while carrying the monitoring equipment. Each volunteer 

completed between 1 and 4 trips with the equipment. Sampling was carried in both directions, 

on weekdays only. Before their first recorded trip, each participant was trained in the use of the 

monitoring equipment. After the measurements were completed, the equipment was collected 

and the recorded data were retrieved. As discussed in Chapter 5, air samplers which use light 

scattering methods are known to be unreliable during precipitation so if precipitation occurred 

at any time during the recording, the data were discarded.  
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Table 6.4 Demographics of the study group of the full scale exposure study 

Variable Category Frequency %  

Age Group 

18 - 30 6 27.3% 

31 - 44 11 50.0% 

45 + 5 22.7% 

Gender 
Male 13 59.1% 

Female 9 40.9% 

Physical Activity Level 

Sedentary: Little or no physical 
exercise 5 22.7% 

Active: Engage in moderately intense 
or vigorous physical exercise 2 - 5 
times per week 10 45.5% 

Fitness Enthusiast: Engage in 
moderately intense or vigorous 
physical exercise more than 5 times 
per week 7 31.8% 

Main Mode of Transport 

Walking 1 4.5% 

Cycling 19 86.4% 

Private Car 1 4.5% 

Public Transport 1 4.5% 
 

The equipment carried by the volunteers during each recorded trip included the second iteration 

of the BEE node described in Chapter 5 and a heart rate monitor (HRM). The BEE node allowed 

concentrations of CO, NOx, and PM2.5, location, speed and noise level to be recorded. The HRM 

used was a Zephyr HxM Bluetooth Heart Rate Monitor. The data from the HRM was logged in 

real time to a Samsung Galaxy Ace II smart phone via Bluetooth connection using the MyTracks 

app. This HRM was less cumbersome for the volunteers than the CamNTech monitor used in the 

pilot study. Additionally, the HRM data logged by the MyTracks app could also be accompanied 

by a GPS timestamp. This allowed the heart rate data to be accurately synchronized with the 

data collected by the BEE node which also used GPS timestamps. 

Similarly to the first exposure study, linear mixed models were used to study the relationship 

between the exposure variables and the explanatory variables. The exposure data were analysed 

at 2 second intervals—the sampling rate of the BEE node. The seven exposure variables 

considered were CO exposure (ppb), NOx exposure(ppb), PM2.5 exposure (μg/m3), Noise Level 

(dBA), Inhaled CO (μg), Inhaled NOx (μg) and inhaled PM2.5 (μg). The explanatory variables were 

Traffic Volume (veh/hr), Facility Type (no-facility, bus lane, roadside lane or separated cycle 

lane), Wind Speed (knots), Temperature (° C) and Relative Humidity (%). Because of the scale of 

this study and the variety of road sections covered by the volunteers, it would have been 
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impractical to obtain the Traffic Volume and Facility Type information manually as done for the 

first exposure study. Instead, this information was obtained using GIS software. A shape file was 

provided by the National Transport Authority (NTA) which contained all cycling facilities in the 

Dublin network and included information on the facility type and direction. Using the ArcMap 

GIS software, the closest cycling facility to every sampled data point could be found. In order to 

allow for possible inaccuracies in the GPS coordinates, a search radius of 20m was used. This 

value was chosen after testing several values and checking for clear errors. If a cycling facility 

was found in the search radius of a sampling point, which allowed travel in the same direction of 

travel as the cyclist at the sampling point, it was assumed that the cyclist was using the facility. 

There may have been some instances where a cyclist cycled alongside a facility without using it 

but, since the cyclists were all very familiar with their routes, this would be expected to be 

uncommon. 

The NTA also provided vehicle network specification files for the Greater Dublin Area Transport 

Model. These files included the spatial coordinates of each junction in the network and the 

details of the links joining the nodes. The spatial information was used to create a shape file in 

ArcMap. However, since only the end points of each link were specified, curved links in the 

actual network were approximated by straight lines in the shape file. Some minor links were also 

not included in the model. The closest vehicle link to each data point was found using the 

ArcMap GIS software with a search radius of 50m. This larger search radius was used in order to 

allow for the aforementioned inaccuracies in the shape file. The NTA also provided hourly traffic 

volume estimates produced by the model for each link during the peak period. The traffic 

volume estimates were available for three 1-hour periods: 7-8am, 8-9am and 9-10am. Where 

traffic volume estimates were required for other time periods, the estimates were corrected to 

the appropriate time period using the expansion factors of the National Road Authority 

(National Roads Authority, 2012). For each data point where a vehicle link was found in the 

search radius, the Traffic Volume variable was given the value of the estimated traffic volume on 

that link for the appropriate time period. For two-way links, the sum of the estimated traffic 

volumes in both directions was used. 

6.3.2 Description of dataset 

Sampling was carried out during a total of 47 trips giving 38,544 observations over 

approximately 22 hours of cycling. The size of the dataset is comparable to other studies of 

cyclist multi-pollutant exposure. For example, Bigazzi and Figliozzi (2015b) recorded 20 hours of 

exposure to VOCs and 24 hours of exposure to CO. Table 6.5 shows descriptive statistics for the 
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sampled dataset, categorised by the type of cycling facility. Equipment malfunctions occurred on 

some trips so that the number of observations was not the same for each exposure variable. As 

shown in Table 6.6, there were significant correlations between some of the observed variables. 

CO and NOx were the most highly correlated air pollutants. Noise was more correlated with NOx 

than any other pollutant, similarly to previous studies (Chowdhury et al., 2015; Davies and Van 

Kamp, 2012). As expected, temperature was inversely related to RH. CO and PM2.5 were both 

positively correlated with temperature (and inversely correlated with RH). Speed, HR and Noise 

were correlated with one another. The correlation between HR and Speed is easily explained as 

greater exertion is generally required to cycle at higher speeds. The correlation between these 

variables and Noise is less obvious. It may be that the noise produced by the bicycle itself was 

louder during faster cycling. It may also be that loud events such as overtaking cars caused 

temporary increases in heart rate due to the cyclist’s perception of risk. There were only 

moderate correlations between the air pollution exposures and Traffic Volume. This is likely 

because the pollutant levels were significantly influenced by many other factors such as time of 

day, facility type and density of other nearby roads.  

The distributions of the recorded pollution exposure variables, CO concentration (ppb), NOx 

Concentration (ppb), Noise (dBA) and PM2.5 Concentration (μg/m3) are shown in Table 6.5. Only 

the noise data appears to conform to a normal distribution; the air pollutant data appear to be 

closer to log-normal distributions. In order to examine the spatial variability of the data, maps 

were produced using ArcScene. All recorded data for CO, NOx, Noise and PM2.5 are displayed in 

Figure 6.7, Figure 6.8, Figure 6.9 and Figure 6.10 respectively. Clearly, CO and NOx 

concentrations were much higher in the city centre than outside, as would be expected due to 

the higher traffic density and taller buildings. The Noise data also show relatively high values in 

the city centre but the pattern is not as clear. This is also to be expected as noise pollution 

disperses much more quickly than air pollution. Therefore, the level of noise produced by 

sources in the immediate vicinity to the cyclist (such as road traffic on the same road) are much 

more important than the density of other sources in the wider neighbourhood. The PM2.5 data 

do not show any clear spatial patterns. It may be that the variability in PM2.5 concentrations was 

more influenced by other factors such as time of day and proximity to traffic. However, it was 

noted in Chapter 5 that the PM2.5 sensor was not validated to a high degree of accuracy and so 

the data may not be very accurate. 



 

Table 6.5 Summary of data collected by facility type in full scale exposure study 

 
No Facility Separated Cycle Lane Bus Lane Adjacent Cycle Lane 

  N Mean StDev N Mean StDev N Mean StDev N Mean StDev 

CO Concentration (ppb) 18356 1018.1 322.7 5371 1013.0 237.7 4495 1176.7 378.4 9923 1079.5 357.7 

NOx Concentration (ppb) 18507 84.0 77.4 5384 81.6 50.3 4529 136.5 96.7 10124 115.8 96.2 

Noise (dBA) 13248 66.9 5.8 3618 68.5 6.7 3311 69.0 5.0 7694 69.5 5.1 

PM2.5 Concentration (μg/m3) 14843 4.56 4.83 4832 6.07 4.60 4252 4.46 3.62 8734 4.61 3.57 

Heart Rate (bpm) 18262 126.2 33.2 5257 139.2 22.2 4313 131.3 33.7 9973 133.8 27.0 

Cycle Speed (knots) 18506 8.24 5.63 5384 11.63 5.24 4529 8.88 5.55 10124 9.49 5.39 

CO Intake (μg) 18111 1.76 1.24 5244 2.15 1.04 4279 2.27 1.54 9772 2.10 1.36 

NOx Intake (μg) 18262 0.24 0.24 5257 0.28 0.21 4313 0.42 0.37 9973 0.35 0.28 

PM2.5 Intake (μg) 14610 0.01 0.01 4705 0.01 0.01 4036 0.01 0.01 8593 0.01 0.01 

Traffic Volume (veh/hr) 18507 771.4 806.2 5384 1286.5 1163.5 4529 961.4 651.6 10124 941.8 590.3 

Temperature (°C) 18507 12.5 4.3 5384 12.7 2.6 4529 12.4 4.2 10124 11.6 3.9 

Relative Humidity (%) 18507 75.1 13.8 5384 77.1 10.9 4529 74.6 15.2 10124 73.4 13.0 

Wind Speed (knots) 18507 10.28 4.65 5384 9.57 2.54 4529 9.51 3.54 10124 10.72 5.14 
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Table 6.6 Correlations between the observed data in the full scale exposure study 

  
CO 

Conc 
NOx 
Conc Noise PM2.5 HR Speed 

CO 
Intake 

NOx 
Intake 

PM2.5 

Intake 
Traffic 

Volume Temp RH Wind 

CO Concentration (ppb) 1.00 0.38 0.10 0.08 -0.02 -0.06 0.52 0.31 0.07 0.11 0.37 -0.33 -0.06 

NOx Concentration (ppb) 0.38 1.00 0.20 0.04 -0.04 0.01 0.14 0.73 -0.02 0.08 0.14 -0.16 -0.02 

Noise (dBA) 0.10 0.20 1.00 0.16 0.14 0.23 0.18 0.25 0.22 0.18 0.00 0.02 0.10 

PM2.5 Concentration (μg/m3) 0.08 0.04 0.16 1.00 0.11 0.09 0.14 0.09 0.79 0.11 0.24 -0.07 -0.07 

Heart Rate (bpm) -0.02 -0.04 0.14 0.11 1.00 0.36 0.70 0.45 0.47 0.00 0.02 -0.01 -0.17 

Cycle Speed (knots) -0.06 0.01 0.23 0.09 0.36 1.00 0.24 0.19 0.25 0.07 0.04 0.05 -0.09 

CO Intake (μg) 0.52 0.14 0.18 0.14 0.70 0.24 1.00 0.58 0.53 0.11 0.17 -0.12 -0.14 

NOx Intake (μg) 0.31 0.73 0.25 0.09 0.45 0.19 0.58 1.00 0.30 0.10 0.04 -0.07 -0.10 

PM2.5 Intake (μg) 0.07 -0.02 0.22 0.79 0.47 0.25 0.53 0.30 1.00 0.15 0.20 0.00 -0.15 

Traffic Volume (veh/hr) 0.11 0.08 0.18 0.11 0.00 0.07 0.11 0.10 0.15 1.00 0.05 -0.05 0.03 

Temperature (degC) 0.37 0.14 0.00 0.24 0.02 0.04 0.17 0.04 0.20 0.05 1.00 -0.58 -0.17 

Relative Humidity (%) -0.33 -0.16 0.02 -0.07 -0.01 0.05 -0.12 -0.07 0.00 -0.05 -0.58 1.00 -0.12 

Wind Speed (knots) -0.06 -0.02 0.10 -0.07 -0.17 -0.09 -0.14 -0.10 -0.15 0.03 -0.17 -0.12 1.00 
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Figure 6.6 Distributions of recorded pollution exposures in full scale study 
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Figure 6.7 All CO concentrations measured in full scale exposure study 

1
4

5
 



 

 
Figure 6.8 All NOx  concentrations measured in full scale exposure study 
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Figure 6.9 All noise levels measured in full scale exposure study 
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Figure 6.10 All PM2.5 concentrations measured in full scale exposure study
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6.3.3 Results of Analysis 

Similarly to the pilot study, the exposures of the cyclist were analysed using linear mixed models. 

The 2 second intervals at which the BEE node logged measurements were analysed without 

further aggregation. Models were developed for seven exposure variables: log(CO 

Concentration), log(NOx Concentration), Noise, log(PM2.5 Concentration), log(Inhaled CO), 

log(Inhaled NOx) and log(Inhaled PM2.5). Logged versions of the air pollution exposure variables 

were used because they were closer to normally distributed than the raw variables. Noise was 

not log transformed as the dBA scale is itself a logged scale and  the distribution was already 

reasonably close to normal. The explanatory variables considered were Traffic Volume, Facility, 

Temperature, RH and Wind Speed. Log transformed Traffic Volume was also considered as an 

alternative. For the inhalation models, an additional variable, Cycling Speed (knots), was also 

considered. The model results are shown in Table 6.7 to Table 6.13. 

Table 6.7 Mixed Effects Model for log(CO Concentration) 

Fixed Effects 

Variable Estimate 
Standard 

Error 
p-Value 

(Intercept) 7.460 0.100 0 

log(Hourly Traffic) 0.003 3.37E-04 0 

Facility: Separated* -0.037 0.002 0 

Facility: Bus Lane* 0.054 0.002 0 

Facility: Road Marking* 0.031 0.002 0 

Temperature  -0.016 0.004 0 

RH -0.004 0.001 0 

Wind -0.003 0.002 0.0497 

Random Effects 

Variable 
Standard 
Deviation 

    

(Intercept) 0.286 
 

  

Residual 0.140     

* Relative to Facility: No Facility 

  



150 

 

Table 6.8 Mixed Effects Model for log(NOx Concentration) 

Fixed Effects 

Variable Estimate 
Standard 

Error 
p-Value 

(Intercept) 4.728 0.106 0 

log(Hourly Traffic) 0.027 0.001 0 

Facility: Separated* -0.147 0.009 0 

Facility: Bus Lane* 0.319 0.009 0 

Facility: Road Marking* 0.243 0.007 0 

Temperature  - - - 

RH -0.008 0.001 0 

Wind - - - 

Random Effects 

Variable 
Standard 
Deviation 

    

(Intercept) 0.508 
 

  

Residual 0.532     

* Relative to Facility: No Facility 

 
Table 6.9 Mixed Effects Model for Noise 

Fixed Effects 

Variable Estimate 
Standard 

Error 
p-Value 

(Intercept) 62.662 1.003 0 

Hourly Traffic 0.001 4.54E-05 0 

Facility: Separated* 0.769 0.112 0 

Facility: Bus Lane* 1.558 0.109 0 

Facility: Road Marking* 2.293 0.084 0 

Temperature  - - - 

RH 0.028 0.010 0.0079 

Wind 0.143 0.048 0.0029 

Random Effects 

Variable 
Standard 
Deviation 

    

(Intercept) 1.667 
 

  

Residual 5.381     
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Table 6.10 Mixed Effects Model for log(PM2.5 Concentration) 

Fixed Effects 

Variable Estimate 
Standard 

Error 
p-Value 

(Intercept) 1.334 0.269 0 

log(Hourly Traffic) 0.002 0.001 0.0451 

Facility: Separated* -0.016 0.007 0.0261 

Facility: Bus Lane* -0.013 0.007 0.0706 

Facility: Road Marking* -0.029 0.006 0 

Temperature  0.062 0.010 0 

RH -0.011 0.002 0 

Wind - - - 

Random Effects 

Variable 
Standard 
Deviation 

    

(Intercept) 0.4809742 
 

  

Residual 0.3908196     

 
Table 6.11 Mixed Effects Model for log(CO Intake) 

Fixed Effects 

Variable Estimate 
Standard 

Error 
p-Value 

(Intercept) 0.953 0.267 0.0004 

Hourly Traffic 1.04E-05 2.83E-06 0.0002 

Facility: Separated 0.063 0.007 0 

Facility: Bus Lane 0.025 0.007 0.0003 

Facility: Road Marking 0.122 0.006 0 

Cycle Speed 0.031 0.000 0 

Temperature  -0.042 0.010 0 

RH -0.0048433 0.00181731 0.0077 

Wind - - - 

Random Effects 

Variable 
Standard 
Deviation 

    

(Intercept) 0.673 
 

  

Residual 0.392     
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Table 6.12 Mixed Effects Model for log(NOx Intake) 

Fixed Effects 

Variable Estimate 
Standard 

Error 
p-Value 

(Intercept) -1.401 0.032 0 

Hourly Traffic 0.000 0.000 0 

Facility: Separated 0.152 0.015 0 

Facility: Bus Lane 0.612 0.016 0 

Facility: Road Marking 0.506 0.012 0 

Cycle Speed 0.048 0.001 0 

Temperature  - - - 

RH -0.010 3.59E-04 0 

Wind -0.024 0.001 0 

 
Table 6.13 Mixed Effects Model for log(PM2.5 Intake) 

Fixed Effects 

Variable Estimate 
Standard 

Error 
p-Value 

(Intercept) -4.854 0.161 0 

Hourly Traffic 0.000 0.000 0 

Facility: Separated 0.094 0.010 0 

Facility: Bus Lane -0.041 0.010 0 

Facility: Road Marking 0.055 0.008 0 

Cycle Speed 0.030 0.001 0 

Temperature  - - - 

RH -0.011 0.001 0 

Wind - - - 

Random Effects 

Variable 
Standard 
Deviation 

    

(Intercept) 0.865 
 

  

Residual 0.533     

 
As expected, Hourly Traffic was positively associated with all exposure variables. For the three 

pollutant concentration variables, logged traffic was included but for Noise and the three 

pollutant intake variables, unlogged Traffic was more appropriate based on the BIC of the 

models. For the models with logged dependent variables and logged traffic, the effect on the 

exposure variable of increasing traffic by x% could be estimated by taking (1+x) to the power of 

the coefficient of log(Traffic). Based on the models, it can therefore be estimated that increasing 

the traffic on a link by 10% increases NOx concentrations on that link by 0.3%, CO concentrations 

by 0.03% and PM2.5 concentrations by 0.02%. For the models with logged dependent variable 

and unlogged traffic, the effect of increasing traffic by x vehicles/hour can be found by 
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exponentiating the coefficient of Traffic multiplied by x. Therefore, based on the models, it is 

estimated that adding 100 additional vehicles/hour to a link increases NOx intake by 1%, CO 

intake by 0.1% and PM2.5 intake by 0.2%. For the Noise model where both the dependent 

variable and traffic variable are unlogged, the effect of adding 100 additional vehicles/hour to a 

link is estimated to increase noise exposure by 0.1dBA. 

The presence of cycling facilities also influenced all exposure variables. Concentrations of CO 

were reduced by 4% and concentrations of NOx were reduced by 14% on separated facilities 

relative to no facility. On bus lanes, concentrations of CO were increased by 5% and 

concentrations of NOx were increased by 37%. These results are consistent with the results of 

the pilot study. On adjacent lanes, CO concentrations were increased by 3% and and NOx 

concentrations were increased by 27%. This is in contrast to the results of the pilot study which 

showed that on-road cycle lanes significantly reduced exposure concentrations of NOx. However, 

in the pilot study, the observations on adjacent lanes were restricted to a single short segment 

on one route. This segment was adjacent to the river Liffey as it widens near to Dublin port and 

so it may have been the location rather than the facility type which caused the lower exposure 

concentrations on adjacent cycle lanes in the pilot study. The intake dose per sampling period of 

both CO and NOx was lowest when no cycling facility was present. Even cycling on segregated 

lanes increased the rate of intake of the gaseous pollutants compared to no facility. This is likely 

because, as shown in Table 6.6, when no cycling facility was present, cycling speeds and 

therefore heart rates and breathing rates were lowest. The lower speeds and exertion can be 

expected as the cyclist must navigate through motor vehicle traffic. It should be noted that due 

to the lower cycling speed when cycling on no facility, the cyclist may spend a longer time in 

traffic and ultimately have a higher intake. The total intakes would also depend on the lengths of 

the respective routes however. Bus lanes were associated with the greatest increase in NOx 

intake and roadside lanes were associated with the greatest increase in CO intake. Noise levels 

were higher for all facility types than for no facility. This is surprising as separated lanes, at least, 

would be expected to have lower noise levels due to the increased distance from traffic. 

However, it may be that motor vehicles were more likely to overtake a cyclist in a cycle lane than 

one sharing the road. Overtaking cars would be expected to significantly increase the noise 

exposure of the cyclists. PM2.5 concentrations were lower on separated lanes and adjacent lanes 

compared to no facility. Bus lanes were also associated with a decrease in PM2.5 concentrations 

compared to no facility but the effect was not statistically significant. PM2.5 intakes were higher 

on roadside lanes and segregated lanes compared to no facility and this can again be explained 

by the cycling speeds and breathing rates. However, PM2.5 intake rates were lower for bus lanes 
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than for no facility. Cycling speed was positively associated with intake rates of all pollutant due 

to the correlation between heart rate and breathing rate.  

All weather variables which were considered had some influence on the exposure variables. RH 

was negatively associated with exposure concentrations and intakes of all air pollutants. RH was 

also positively associated with noise exposure. This is as expected because atmospheric 

attenuation of sound is influenced by humidity. Temperature was negatively associated with 

concentrations and intakes of CO and positively associated with concentrations of PM2.5. Wind 

speed was negatively associated with CO concentrations and with NOx intake. This is inconsistent 

with the results of the pilot study but consistent with the results of many other studies which 

have shown that wind decreases pollution levels through increased dispersion (Kaur et al., 2007) 

. The results of the pilot study may have been biased by the weather conditions which occurred 

during the small number of sampling days. Wind was also positively associated with Noise. This 

is to be expected as the wind shield used with the microphone could not eliminate 100% of wind 

noise.  

Both fixed and random intercept terms were included for all models apart from the NOx Intake 

model. For this model, when the random intercept was introduced, the intercept term became 

non-significant. For the rest of the models, the standard deviations of the random intercept 

terms are sufficiently large to indicate that there were unobserved differences in the 

background pollution levels between the different trips. Unfortunately, background 

concentrations were not available to include in the models and so it is unclear whether or not 

the random intercept terms would still be significant if background concentrations were 

included as explanatory variables. 

6.4  Conclusions 

In this chapter, the environmental exposures of cyclists in Dublin were studied using a custom 

environmental sensing platform. Two studies were carried out, a pilot study and a full scale 

study, and some but not all of the findings were consistent across both studies. The 

inconsistencies between the two studies can be attributed to issues with the sample size and 

choice of routes in the pilot study.  

This chapter built on previous studies of in-travel pollution exposure in a number of ways. Firstly, 

measurements of a number of different exposures were measured simultaneously, including 

NOx concentrations, which had been neglected in the studies to date. This work also showed 

that time-resolved link traffic volumes are positively associated with all the negative 
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environmental exposures experienced by cyclists on those links. Although some previous studies 

have shown similar associations, most of these studies were based on aggregate measures such 

as AADT. As discussed in Chapter 2, the few studies which considered temporally and spatially 

resolved traffic volumes were inconsistent in their findings in this regard. In the full scale study, 

participants cycled on their regular routes rather than a predesignated route. All previous 

studies which analysed the factors influencing cyclist exposures used predefined routes, except 

for Dons et al. (2013) where cycle facilities were not considered. Studying the influence of 

cycling facilities is easier to do using predefined routes as this avoids the difficulty of assigning 

facility types to measurements after they are recorded. However, in this study GPS 

measurements were combined with a GIS shape file of cycle facilities in the study area in order 

to assign facility types to recorded data without difficulty. In this way, it was found that cycling 

on separated cycling facilities can reduce the air pollution exposure concentrations to which 

cyclists are exposed. However, cycling on bus lanes or on roadside cycle lanes without 

segregation actually increases exposure to air pollution. Also, since cyclists tend to increase their 

speed and effort when using cycling facilities, their rate of intake of pollution with respect to 

time increases when using cycling facilities, even if they are segregated. However, this study 

does not consider pollution intake at a route level and it is possible that a route which includes 

segregated lanes will decrease total intake because the cyclist will cycle faster and spend less 

time in the polluted environment. If the use of a segregated facility does not significantly reduce 

travel time, it is likely to increase pollution intake. The levels of noise exposure were also higher 

on cycling facilities than on roads with no facilities.  

Overall these findings suggest that cycling facilities, and particularly those without physical 

separation from traffic, do not provide as much protection against environmental exposures as 

previously thought. Multiple studies have found that in terms of cycling infrastructure, there is a 

hierarchy of cyclist preferences, with segregated facilities generally being preferred over on-road 

facilities (Buehler and Dill, 2016; Buehler and Pucher, 2012; Tilahun et al., 2007). This work has 

shown that segregated facilities also provide significantly greater protection from environmental 

exposures than other types of facilities. This strengthens the case for providing segregated 

cycling facilities whenever possible rather than roadside cycling facilities. The higher pollution 

exposures in bus lanes compared to on-road cycling may be an indication of the level of 

pollution produced by buses in Dublin city. However, in recent years, the fleet of Dublin Bus—

the metro bus operator in Dublin city—has been upgraded significantly. The first buses to meet 

the Euro 6 standard were introduced to the fleet in 2014 and these now make up almost 30% of 
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the fleet (Dublin Bus, 2017). If the technology of buses in Dublin continues to be upgraded, the 

exposures experienced by cyclists in bus lanes may decrease significantly.  

A number of limitations of these studies are noteworthy.  Firstly, spatial and temporal 

autocorrelation of observations were not considered in this work and the existence of such 

autocorrelations could potentially have inflated the test statistics and increased the likelihood of 

type 1 errors. However, since almost all of the significant p-values were highly significant (<0.01), 

it is highly unlikely that non-significant associations would have been found had the observations 

been serially independent. Secondly, as discussed in Chapter 5, the accuracy of the PM2.5 sensor 

used in this chapter was questionable and so, the results pertaining to this particular pollutant 

should be treated with caution. Since the pollution exposure models used in Chapters 3 and 4 

were based on PM2.5 exposure, the insights from this chapter can’t be used directly to improve 

the accuracy of these models. However, it has been shown that there traffic volumes and 

presence of cycling facilities significantly influence intra-urban pollution exposures of cyclists and 

so, further exposure studies using more reliable PM2.5 monitors are needed in order to improve 

studies of the benefits and risks of urban cycling. 
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Chapter 7: A Cycling Cost Function; development, validation and 

calibration 

In Chapter 3, a framework was developed for quantifying the benefits and risks resulting from 

cycling where the amount of cycling taking place could be known or hypothesised. Chapters 4 

and 5 analysed one particular risk of cycling—exposure to traffic-related air and noise 

pollution—in more detail in order to allow the risk to be quantified more accurately in this 

framework. However, as noted in Chapter 3, the usefulness of this framework is limited by the 

need for actual or hypothesised data on cycling. In many situations, for example, when 

considering building a new piece of cycling infrastructure, it would be more useful to predict the 

benefits and risks resulting from this decision. To enable this, it must be possible to estimate the 

change in cycling patterns that would result from a change in infrastructure. In the context of 

motor traffic modelling, similar predictions have been made for decades using macroscopic 

transport models. These models can be extended to other modes of transport but only if a cost 

function for that mode is available. As discussed in chapter 2, cycling has typically been ignored 

in transport models or else modelled using very simplistic models, often assuming that all 

cyclists take the shortest path with arbitrary average speeds (Subhani et al., 2013). In this 

chapter, a more realistic and useful cost function for cyclists will be developed and calibrated for 

the Dublin transport network. 

Calibration of the cycling cost function will be carried out using the Inverse Combined Mode 

Choice and Traffic Assignment Problem (I-CMC-TAP). Before discussing the ITAP, however, it is 

necessary to describe the Combined Mode Choice and Traffic Assignment Problem (CMC-TAP). 0 

will describe the CMC-TAP and 7.2 will propose a cycling cost function which can be used within 

this CMC-TAP formulation. Sections 7.3 and 7.4 will describe the proposed I-CMC-TAP and 

solution algorithm. Section 7.5 will present a numerical experiment which demonstrates the 

efficacy of the proposed I-CMC-TAP using a theoretical problem and section 7.6 will report the 

calibration of the proposed cost function with the ITAP using data from the Dublin city network. 

The notation used in the rest of the chapter is defined in Table 7.1 to Table 7.4 below.  
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Table 7.1 Notation: Travel modes 

Notation Definition 

m   mode 
a   auto mode 

b   bus mode 
c   bicycle mode 

 
Table 7.2 Notation: Sets 

Notation Definition 

S   set of all links in transport network 

Ŝ   set of links in S where flows are observed 

W   set of O-D pairs 
m

wP   set of route alternatives between O-D pair w  by mode m   

M set of possible modes in network 

𝑀̂ set of modes for which flows are observed on links  

 

Table 7.3 Notation: Variables 

Notation Definition 

m

ph   flow of mode m  on route p  

wq   travel demand between O-D pair w  

Q   vector of all O-D travel demands wq w W    
m

wq   travel demand for mode m  between O-D pair w  

q   vector of all modal O-D demands ,m

w w Mq W m     
m

st   travel time by mode m  on link s  
0m

st  free-flow travel time by mode m  on link s  
m

pu   disutility of travel on route 𝑝 by mode 𝑚 

,0cr  baseline modal bias factor associated with choosing bicycle as travel mode 

  
parameter which determines the scale of the impact of link congestion on cycling 
link cost  

  
parameter which determines the degree of nonlinearity of the relationship between 
link congestion and cycling link cost. 

m

sx   modelled flow of mode m  on link s  
c m

sx   modelled flow of mode m with which cyclists on link s interact 
m

sx   observed flow of mode m  on link s  
m

w   expected travel disutility by mode m  between O-D pair w  

w   expected travel disutility between O-D pair w  

λ  vector of all dual variables , ,m

w m M w W    and ,w w W    

p

mPS   path size of path p by mode m 
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Table 7.4 Notation–constants 

Notation Definition 

sK   total capacity of link s in PCU. 

K   vector of total link capacities ,sK s S   
c

sK   capacity of segregated link s for mode m. 

0

wq   potential (latent) travel demand between O-D pair w  

m

sv   average free-flow speed of mode m on link s. 

v   vector of all free-flow speeds , ,m

s s Mv S m    

𝑑𝑠
𝑚 length of link s for mode m 

𝒅 vector of link lengths , ,m

s s Md S m     

p   length of route p  

s   length of link s  

t   value of travel time 

 
Logit model parameters representing the importance of travel disutility in route and 
mode choices respectively 

   parameter that reflects O-D demand sensitivity to O-D travel disutility 

,    parameters that reflect the importance of traffic volumes to travel times (in the BPR 
function) 

Φ  Vector of calibration parameters in the ITAP 
ψ step-size for MPEC descent-type solution algorithm 
   tolerance for convergence of MPEC solution algorithm 

sp   indicator variable; if link s  is on route p  1sp  , 0 otherwise 

 
link-path incidence matrix; entry in row s, column p will be 1 if link s  is on route p, 
0 otherwise 

 
OD mode-path incidence matrix; entry in row wm, column p will be 1 if path p is 
associated with OD-mode pair wm, 0 otherwise. 

 
OD-OD mode incidence matrix; entry in row w, column wm will be 1 if O-D mode 
pair mw is associated with OD-mode pair w, 0 otherwise. 

 

7.1 The Combined Mode Choice and Traffic Assignment Problem 

The traffic assignment problem is concerned with finding the equilibrium traffic flows over a 

given urban transportation network. The basic formulation is based on the behavioural 

assumption that all users of the transport network aim to minimise their own travel cost. There 

are, however, several common variations and extensions to this basic formulation. Those which 

are relevant to this chapter will briefly be described below. 

There are two main conditions which are alternately used in the literature to describe the route 

choice behaviour in a transport network: deterministic user equilibrium (DUE) and stochastic 

user equilibrium (SUE). DUE is the condition which corresponds to Wardrops’s First Principal 

which states “The journey times on all routes actually used are equal, and less than those which 
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would be experienced by a single vehicle on any unused route.” (Patriksson, 1994). A way to 

relax the DUE condition and to make it more realistic is to allow some portion of O-D flow to be 

“dispersed” to higher cost routes. This can be achieved by allowing route flows between each O-

D to be allocated to different routes according to a logit or probit choice model. In the case of 

the logit model, the logit parameter can be thought of as a measure of user knowledge about 

route costs or as an inverse measure of the dispersion. The simple logit model for route choice 

can be expressed as follows: 
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A limitation of the simple logit model for route choice is that it cannot account for similarities 

between alternate routes. Several extensions of the logit model have been developed to address 

this limitation. The Path-Size logit model uses the notion of “size” from the theory of aggregate 

alternatives. The model is formed by adding the log of the path size to the path utility (Bekhor et 

al., 2006): 
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Where p

mPS , the path size of path p by mode m is defined as: 
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  Eq. (7.3) 

The TAP can be extended to the CMC-TAP which also considers mode choice. The choice of 

mode can be modelled by a logit model: 
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Where 
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The CMC-TAP may also allow the demand for travel between each origin-destination (O-D) pair 

to vary as a decreasing function of the total expected travel disutility between the O-D pair. One 
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such function is given below, where  is a parameter which would need to be calibrated by 

survey data: 

  0exp ,  w w wq q w W      Eq. (7.6) 

Where 
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The solution to the CMC-TAP with path-size logit-based route choice, logit-based mode choice 

and elastic demand is, therefore, the flow pattern which satisfies eqt. Eq. (7.2) to Eq. (7.7). 

7.2 The Disutility of Cycling (DOC) Function 

In Eq. (7.2) and Eq. (7.5), the route disutility,  m

pu x  must be calculated using a cost function 

which estimates the cost of travel by mode m on route p  based on the network flow pattern x

. An example of a commonly used cost function for motor vehicles is the Bureau of Public Roads 

(BPR) function which estimates the congested travel time for motor vehicles on a link based on 

the total flow of motor vehicles on that link (US Department of Commerce and Bureau of Public 

Roads, 1964): 

   0 1 s
s s s

s

x
t x t

K




  
    
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  Eq. (7.8) 

Where st  and 0

st  are the congested and free-flow travel time for motor vehicles on link s , sx  is 

the total motor vehicle traffic on link s and sK  is the capacity for motor vehicles on link s.   

and   are parameters of the function whose values may vary by application. The travel cost for 

a link can then be calculated by multiplying the travel time by the Value of Time (VoT). The travel 

cost for a route can be found by summing the individual travel costs for each link on the route 

and adding any fixed costs such as tolls or operating costs. The BPR function is parameterised by 

two parameters,  and   which can be adjusted to suit a particular transport network. 

No suitable cost function exists for cycling. In this chapter, we propose such a cycling cost 

function. Based on the existing literature on link cost functions and route preferences of cyclists 

discussed in Chapter 2, it was concluded that a cost function for cyclists should have the 

following characteristics:  
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1. It should allow the type of cycling facility to influence disutility, independently of any 

effect on travel time or distance (Winters and Teschke, 2010). 

2. The link cost should be monotonically increasing with bicycle traffic volumes (TRB, 

2000). 

3. Unless the link is a fully segregated cycle lane, the link cost should be monotonically 

increasing with volume of motor vehicle traffic with which the cyclist interacts on the 

corresponding auto and bus links (Sener et al., 2009). 

4. In order to be widely useful, the function should exclude parameters which are unlikely 

to be readily available to transport authorities. 

A new cost function for cycling—the Disutility of Cycling (DOC) function—is proposed as follows: 

 *  *
c

c cs
s t sc

s

d
c r

v
   Eq. (7.9) 

Where c

sc  is the cost of cycling on link s , c

sd  is the length of bicycle link s , c

sv  is the average 

cycling speed on link s and c

sr  is the discomfort factor associated with cycling on link s . It can 

be seen from equation 9 that if, for example c

sr  were equal to 1, there would be no discomfort 

cost and if c

sr  were equal to 2, the discomfort cost would constitute half of the total link cost. 

The discomfort factor can be calculated as follows: 
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  Eq. (7.10) 

Where 
,0cr  is a baseline modal bias factor associated with cycling,   is a parameter which 

determines the scale of the impact of link congestion of cycling link cost and   is a parameter 

which determines the degree of nonlinearity of the relationship between link congestion and 

cycling link cost. c a

sx   and c b

sx    are the flows of private cars and buses respectively with which 

cyclists on link s  interact in passenger car units (PCU). c

sx  is the flow of cyclists on link s  and

sK  is the capacity of link s  in PCU. The travel cost, 
c

pu , of travel by bicycle on a route p can be 

calculated by simply summing the individual travel costs for each link on the route. This cost 

function meets each of the requirements specified above. Since the cycling link cost is influenced 

only by other vehicles with which the cyclist interacts, the separation from traffic afforded by 
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separated cycle lanes will influence link costs. Requirement 1 is therefore satisfied. The link cost 

function is increasing with cyclist volumes on the link so requirement 2 is satisfied. On links 

which are shared with motor vehicle traffic, cyclist link cost is increasing with car and bus 

volumes so requirement 3 is satisfied. Finally, the only input data required for the function are 

the VoT, traffic volumes of other modes—which would be solved for simultaneously in a multi-

modal traffic model—and the link capacities which would be readily available to transport 

planners and researchers. An additional attractive feature of this function is its similarity to the 

BPR function. 

The parameters 
,0cr ,   and   of Eq. (7.10) must be calibrated before the function can be used 

in practice. As discussed in Chapter 2, there are two main approaches in the literature for 

calibrating the parameters of link cost functions (Garcia-Rodenas and Verastegui-Rayo, 2013). 

The first approach is calibration based on link data whereby links are considered in isolation in 

order to determine their speed-flow relationships. The second approach is calibration based on 

network data using the ITAP. The network-based approach is more appropriate for the current 

problem. This is because estimating parameters based on link data requires that the costs can be 

observed directly. This is not a problem for traditional link cost functions for motor vehicles as 

the cost to be observed is simply the travel time. However, since the DOC function of Eq. (7.9) 

and Eq. (7.10) assumes that cycling link costs are influenced by an unobservable discomfort 

factor, the link-based method cannot be used. Conversely, in the network-based approach, there 

is no need to directly observe the travel costs on the links; it is only necessary to observe the 

network utilisation at a macroscopic level. 

7.3 The Inverse Combined Mode Choice and Traffic Assignment Problem (I-

CMC-TAP) 

Whereas the CMC-TAP aims to find the network flow pattern resulting from a network model, 

given a set of assumptions and parameters, the I-CMC-TAP aims to find values of the network 

model parameters which lead to the best possible agreement between the modelled flows and a 

set of corresponding network observations. In this study, the network parameters to be 

estimated are the parameters of the DOC function and the network observations are observed 

link flows on a subset of links in the network. This I-CMC-TAP can be modelled as a Mathematical 

Programme with Equilibrium Constraints (MPEC). The general form of the MPEC will now be 

introduced and then an MPEC will be proposed to model an I-CMC-TAP for to calibrating the 

parameters of the DOC function. 
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The general form of a MPEC can be expressed as follows (Colson et al., 2007): 
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  Eq. (7.11) 

Where  ,F x y  is the objective function, x  and y  are the decision variable and dependent 

variables respectively, 1 2n nZ   is a non-empty closed set and 
 V x

 is the solution set of the 

following parameterised variational inequality (VI) defined over the closed convex set 

  2nC x   
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The following MPEC is proposed to model the I-CMC-TAP in this study: 
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  Eq. (7.13) 

Where 
,0

2,, ,
T

cr     Φ =  is the vector of network parameters to be calibrated, 1  defines 

the constraints on the decision variable and  V Φ  is the solution set of the following 

parameterised VI: 
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  Eq. (7.14) 

The feasible set, 2  is defined by the following constraints: 



165 

 

 

,

,

0, , ,

0, ,

0

,

,

m
w

m m

w pp P

m

w wm M

m m

p w

m

w

w

q h w W m M

q q w W

h p P w W m M

q w W m M

q w W





   

  

    

   

  





  Eq. (7.15) 

The objective is to minimise the sum of squared differences between the modelled link flows, 

sx  and the observed link flows, sx  . The VI ensures that the solution satisfies the combined 

mode and traffic assignment conditions described by Eq. (7.2) to Eq. (7.7). It can be easily shown 

that the Karush-Kuhn-Tucker (KKT) conditions of the VI, described by Eq. (7.14) and Eq. (7.15), 

are equivalent to Eq. (7.2) to Eq. (7.7). A similar proof is given by (Li et al., 2015), where route 

choice is governed by a simple logit model rather than a PS logit model. 

7.4 Solving the I-CMC-TAP 

7.4.1 Descent Method 

The proposed solution algorithm for estimating network model parameters in the current study 

is a descent algorithm. Descent algorithms are a class of algorithms for the solution of MPECs 

which rely on derivative information about the VI with respect to the decision variables. In order 

to use such an algorithm to solve the current problem, it must be possible to compute the 

derivatives of the equilibrium link flows with respect to the network parameters being 

calibrated. This is not trivial but can be achieved using an adaptation of the sensitivity analysis 

described by Tobin and Friesz (Tobin, 1986). This sensitivity analysis will be described in detail in 

section 7.5.2.2.  

Assuming that the aforementioned derivatives are available, the MPEC can be solved using a 

descent algorithm as follows. Starting from any given feasible solution, 
0

Φ , we can find a local 

approximation of the objective function by using a Taylor expansion: 
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         0 0 0ˆ
T

   
Φ

x Φ x Φ x Φ Φ Φ   Eq. (7.17) 

Where Φ x  is the Jacobian matrix of the modelled flows with respect to the vector of network 

calibration parameters. By replacing the objective function of the MPEC described by Eq. (7.13) 

with this approximation, the MPEC is reformulated as a single level optimisation problem. The 

solution of this single level optimisation problem (or an arbitrary number of iterations of the 

single level problem) can then be input into the VI of the MPEC. By alternating between solving 

the VI and optimising the approximated objective function, a locally optimal solution to the 

MPEC can be reached (Si et al., 2011). In the next section, this process will be demonstrated in 

detail using a numerical example. 

7.5 Numerical Experiment 

A numerical experiment was carried out using the Sioux Falls network in order to test the 

calibration process described in section 7.4. The purpose of this numerical experiment was not 

to validate the form of a particular cycling cost function but to determine whether or not the 

parameters of a cycling cost function can be effectively calibrated using the I-CMC-TAP 

described—assuming that a suitable model form is chosen. The Sioux Falls network (LeBlanc et 

al., 1975), shown in Figure 7.1, was used for the experiment. This network is a simplification of 

the road network of the real city of Sioux Falls and is commonly used for testing transport 

models. A map of Sioux Falls is provided in Figure 7.2. Two modes of travel are considered in this 

experiment: private auto and bicycle. The experiment can be described in three stages: 

simulation, calibration and prediction. The simulation stage simulates a traffic survey being 

taken on a subset of links on a real multi-modal network. In the calibration stage, the I-CMC-TAP 

described in section 7.3  is used to work backwards from the observed flows to find the model 

parameters which best reproduce these observed flows. Finally, in the prediction stage, the 

calibrated model parameters are used to make link flow predictions for those links where 

simulated counters were not present. The assumptions underlying the experiment will now be 

described, followed by a more detailed description of the methodology and reporting of the 

results. 
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 Figure 7.1 Sioux Falls Test Network 
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Figure 7.2 Map of Sioux Falls 

7.5.1 Modelling Assumptions 

For the purposes of this numerical experiment, it is assumed that the behaviour of users of the 

test network is governed by Eq. (7.2) to Eq. (7.7). The travel cost of cyclists is assumed to be 

described by the DOC function given by Eq. (7.9) and Eq. (7.10). The travel costs of private car 

drivers are assumed to be consistent with the BPR function, Eq. (7.8), with no fixed costs or tolls. 

Cyclists are allowed to travel on every link in the network but there are no segregated cycling 

facilities on any of these links. It is also assumed that the only unknown parameters in the model 

are the parameters of the DOC function, 
,0cr ,   and  and the modal split dispersion 

parameter, 2 . Since the goal of this procedure is to allow an existing transport model to be 

extended in order to include cyclists, it can be assumed that the parameters which do not relate 

specifically to cycling or to modal choice are known. The values of the other modelling 
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parameters used in the experiment were as follows: c

sv =15km/hr, a

sv =30km/hr, 1  =0.2 ,   

=0.01,  =0.15,  =4 and t =20€/hr. 

7.5.2 Methodology 

7.5.2.1 Simulation 

The first stage of the experiment, the simulation stage, simulated a traffic survey being taken on 

a subset of links on a real multi-modal network. First, “true” values of the model parameters 

were arbitrarily chosen and then the equilibrium link flows for the network corresponding to the 

modelling assumptions and the chosen values of the parameters were found. The arbitrarily 

chosen “true” values of the model parameters were as follows: 

,0

21.1, 0.1, 2 0.2cr and      . For both the simulation and calibration stages, it was 

necessary to generate a choice set of route alternatives for each combination of mode and O-D 

pair. The choice set generation algorithm used in this study was a simulation algorithm which 

generated up to five alternative routes for each mode-O-D combination. For each alternative, 

link travel times for each link were drawn from a normal distribution centred at the free flow 

travel time with coefficient of variation of 0.5. The Floyd-Warshall algorithm (Cormen, 2009) was 

then used to find the shortest path between each O-D pair by each mode. A method for finding 

the equilibrium of the elastic-demand multi-modal network with SUE assignment was also 

required in the simulation and calibration stages. The Guass-Siedel decomposition approach 

with the Method of Successive averages (described in detail in Li et al. (2015)) was used for this. 

Having solved for the equilibrium link flows in the network, half of the links were randomly 

allocated as the counter links and the auto and bicycle flows on these links became the 

“observed” flows. The resulting flows on the rest of the links were the “unobserved” flows.  

7.5.2.2 Calibration 

In the calibration stage, the MPEC model described section 7.3 was solved using the descent 

algorithm in order find the model parameters which best reproduce the observed flows. Since 

the solution algorithm described here only aims to find local optima, the descent algorithm was 

repeated multiple times with different initial values for all of the model parameters. These initial 

values were sampled from uniform distributions between the upper and lower limits of each 

parameter. The upper and lower limits, shown in Table 7.5, were chosen to include a reasonable 

range of possible values. After each run, the final parameters and the final value of the objective 

function were recorded and after all runs were completed, the set of model parameters 

corresponding to the lowest objective function value was chosen as the ultimate solution. As 
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described in section 7.4.1, the descent algorithm requires calculation of the Jacobian matrix of 

the modelled flows with respect to the vector of network calibration parameters. This was 

achieved using an adaptation of the sensitivity analysis described by Tobin (1986). Tobin (1986) 

describes a method of analysing the sensitivity of the solution to a VI to perturbations in the 

parameters of the model. The output of this analysis is y , a matrix of derivatives of each 

variable of the VI with respect  to a vector of model perturbation parameters . The matrix can 

be found as follows: 

  
1

* *y J Jy 



     Eq. (7.18) 

Where y is the vector of equilibrium variables and dual variables, 
*J y  is the Jacobian matrix of 

the KKT conditions of the problem with respect to y and  is the Jacobian matrix of the KKT 

conditions of the problem with respect to the perturbation parameters. Tobin and Friesz (1988) 

demonstrate this analysis for a simple transport network with a single mode, fixed O-D demands 

and DUE assignment. This sensitivity analysis has not previously been presented for the network 

equilibrium model with elastic demand, logit based modal split and path-size logit SUE route 

assignment before. This sensitivity analysis will now be described.  

According to Facchinei and Pang (2007), the KKT conditions of a 𝑉𝐼(𝐾, 𝐹), where the feasible set, 

K is defined by   0h x  and   0g x   are: 

 

     

 

 

0

0

0 0

T T

x xF x h x g x

h x

g x

 



  



  

  Eq. (7.19) 

Where   and   are the dual variables associated with the equality and inequality constraints 

respectively. The KKT conditions for the VI represented by equations Eq. (7.14) and Eq. (7.15) are 

as follows. Since all variables in the model must be positive at optimal, it is not necessary to 

consider the non-negativity constraints or the associated dual variables (Fiacco, 1983) (Yang and 

Chen, 2009): 

𝜇𝑝
𝑚(Φ) +

1

𝜃1
𝑙𝑛 (

1

𝑃𝑆𝑝
𝑚

ℎ𝑝
𝑚

𝑞𝑤
𝑚) − 𝜆𝑤

𝑚 = 0, ∀𝑚 𝜖 𝑀, 𝑝 𝜖 𝑃𝑤
𝑚, 𝑤 𝜖 𝑊 

 

Eq. (7.20) 
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1

𝜃2
𝑙𝑛

𝑞𝑤
𝑚

𝑞𝑤
+ 𝜆𝑤

𝑚 − 𝜆𝑤 = 0, ∀𝑚 𝜖 𝑀,𝑤 𝜖 𝑊 

 

1

𝜂
𝑙𝑜𝑔 (

𝑞𝑤

𝑞𝑤
0 ) + 𝜆𝑤 = 0, ∀𝑤 𝜖 𝑊 

 

𝑞𝑤
𝑚 = ∑ ℎ𝑝

𝑚,

𝑝 𝜖 𝑃𝑤
𝑚

           ∀ 𝑤 𝜖 𝑊,𝑚 𝜖 𝑀 

 

𝑞𝑤 = ∑ 𝑞𝑤
𝑚, ∀ 𝑤 𝜖 𝑊 

𝑚 𝜖 𝑀

 

  

The Jacobian of this system of equations with respect to the vector of equilibrium variables and 

dual variables,  ,  , ,
T

y h q Q λ   is below. The non-zero elements are detailed in the Appendix of 

the thesis. 

∇𝑦𝐾𝐾𝑇 =

[
 
 
 
 
 
∇ℎ𝐾𝐾𝑇1 ∇𝑞𝐾𝐾𝑇1 0 −∆𝑤𝑚−𝑝

𝑇 0

0 ∇𝑞𝐾𝐾𝑇 ∇𝑄𝐾𝐾𝑇2 𝐼 −∆𝑤−𝑤𝑚
𝑇

0 0 ∇𝑄𝐾𝐾𝑇3 0 𝐼

−∆𝑤𝑚−𝑝 𝐼 0 0 0

0 −∆𝑤−𝑚𝑤 𝐼 0 0 ]
 
 
 
 
 

 

Where 

𝐾𝐾𝑇 =

[
 
 
 
 
𝐾𝐾𝑇1

𝐾𝐾𝑇2

𝐾𝐾𝑇3

𝐾𝐾𝑇4

𝐾𝐾𝑇5]
 
 
 
 

=

[
 
 
 
 
 
 
 
 [(𝜇𝑝

𝑚(Φ) +
1

𝜃1
ln (

1

𝑃𝑆𝑝
𝑚

ℎ𝑝
𝑚

𝑞𝑤
𝑚) − 𝜆𝑤

𝑚) ∀ 𝑝 𝜖 𝑃𝑤
𝑚 , 𝑚 𝜖 𝑀, 𝑤 𝜖 𝑊 ]

𝑇

[(
1

𝜃2
ln (

𝑞𝑤
𝑚

𝑞𝑤
) + 𝜆𝑤

𝑚 − 𝜆𝑤)   ∀𝑚 𝜖 𝑀,𝑤 𝜖 𝑊]
𝑇

[(
1

𝜂
log (

𝑞𝑤

𝑞𝑤
0 ) + 𝜆𝑤)   ∀ 𝑤 𝜖 𝑊]

𝑇

[(𝑞𝑤
𝑚 − ∑ ℎ𝑝

𝑚
𝑝 𝜖 𝑃𝑤

𝑚 )   ∀ 𝑤 𝜖 𝑊,𝑚 𝜖 𝑀]
𝑇

[(𝑞𝑤 − ∑ 𝑞𝑤
𝑚

𝑚 𝜖𝑀 )   ∀ 𝑤 𝜖 𝑊]𝑇 ]
 
 
 
 
 
 
 
 

 

Eq. (7.21) 

  

  

The Jacobian of the system of KKT equations with respect to the vector of calibration 

parameters, ,0

2

cr     Φ  𝑖𝑠 below. The non-zero elements are detailed in the Appendix 

of the thesis. 



172 

 

 

,0

2

1 1 1

2

0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

cr
KKT KKT KKT

KKT

KKT

 



   
 


 
  
 
 
 
 

Φ   Eq. (7.22) 

Based on Eq. (7.18), we can then find the Jacobian of the equilibrium variables with respect to 

the vector of calibration parameters, Φ : 

 
1*KKT KKT

 
 

     
 
 
 

Φ

Φ

Φ y Φ

Φ

Φ

h

q
y

Q

λ

  Eq. (7.23) 

The Jacobian of the link flows with respect to Φ can then easily by found: 

 spΔ  Φ Φx h   Eq. (7.24) 

This gives us the required gradients in order to carry out the descent algorithm. The full descent 

algorithm used in the calibration stage of this numerical experiment is summarised in Table 7.6. 

The values used for the algorithmic parameters in Table 7.6 were 
710  , 1110   and 

300Iteration Limit  . 

 

Table 7.5 Upper and lower limits of each calibration parameter in the numerical experiment. 

Parameter Min Max 
,0cr   0.5 2 

  0.1 1 

  1 3 

2  0.01 0.99 
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Table 7.6 Solving the I-CMC-TAP using the descent algorithm with sensitivity analysis 

 
Step 0: 

 

Initialise each of the calibration parameters, 
0

Φ . Set 0k   
 

Step 1: Find the equilibrium link flows k
x  corresponding to 

k
Φ  using Gauss-Seidel 

Decomposition with the Method of Successive Averages 
 

Step 2: Use sensitivity analysis to find the Jacobian of the link flows with respect to
0

Φ : 
 

  1*
T

yy KKT KKT        
Φ Φ Φ Φ Φ Φ

h q Q λ   

sp *Δ Φ Φx = h   

Step 3: Construct a local approximation to the objective function: 

    
ˆ

2ˆ ˆ  s s

s S

F


 Φ x x Φ   

Where       ˆ
T

k k k

   x x Φ x Φ Φ Φ   

Step 4: Find ˆkv  , the direction of steepest descent of  F̂ Φ  

 
Step 5: Update the model parameters: 

 
1 * ˆk k    kΦ Φ v   

 
where 0 1   is a step-size parameter. 

 
Step 6: Ensure feasibility of the calibration parameters: 
 

If 
 
Else if 
 

1k u

i i   , 

 
1k l

i i   , 

 

1k u

i i    

 
1k l

i i    

 
 1 1kk

i
 Φ  

Step 7: Check convergence: 
 
If 
 
 
Or 

   1 1*
T

k k k k    Φ Φ Φ Φ  , 

      
k>Iteration limit  

 
 
 
terminate 

 
Otherwise, 
 

 
k=k+1 
Return to Step 1 
 

 

 Where  is a small constant 
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7.5.2.3 Prediction 

Finally, in the prediction stage, the calibrated model parameters are used to make link flow 

predictions for those links where counters were not present. The correlation coefficient 

between the predicted and “actual” flows is used as a measure of the accuracy of the 

predictions and the effectiveness of the calibration.  

7.5.3 Results 

The calibration algorithm was run 10 times from different starting points as described and the 

results of each run are shown in Table 7.7. The lowest value of the objective function was 

recorded on run 10. The wide range of final objective function values achieved in each run 

demonstrate the existence of many local optima for this problem and importance of using 

multiple starting points. The final parameter values for run 10 were 𝑟𝑐,0 = 1.09, σ=0.17,  τ
 

=2.27, and θ2=0.1. There were significant differences between the final calibrated parameter 

values and the “true” parameter values set in the simulation stage. In particular, 𝑟𝑐,0 was 

underestimated by 17% while τ was overestimated by 13%.  

Despite these errors in the calibrated parameters, the calibrated model was capable of making 

highly accurate flow predictions. These parameter values of run 10 were used to make flow 

predictions on the unobserved links and the correlation coefficient between the actual and 

predicted flows was 0.9997. The Mean Absolute Percentage Error (MAPE) of the predictions was 

1.5%. Figure 7.3 shows that there was a strong linear relationship between the actual and 

predicted flows. The reason for the errors in calibrated parameters despite the high prediction 

accuracy is likely that the form of the DOC function was more complex than required for the 

relatively simple network used in this experiment. This, along with the flexibility of the function 

allowed errors in each parameter to compensate for one another so that the behaviour of the 

calibrated function very closely matched the behaviour of the function with the “true” 

parameter values. This simple experiment validates the methodology and algorithm described in 

this paper for network-based calibration of a cycling link cost function based on a multi-modal 

transport model. The next step will be to apply this methodology to a real transport network 

using actual traffic counts. This will determine (i) whether good prediction accuracies and 

acceptable computation times can still be achieved using a larger network with real data and (ii) 

whether the form of the DOC function can accurately capture urban cycling behaviour. 
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Table 7.7 Calibration results of the numerical experiment 

  ,0c
r         2      

Run Initial Final Initial Final Initial Final Initial Final Final F Iterations 

1 1.13 1.02 0.75 0.62 1.00 0.98 0.32 0.07 1.81E+06 227 

2 1.15 0.95 0.12 0.15 2.10 2.10 0.44 0.14 3.29E+05 300 

3 1.33 1.19 0.74 0.51 1.58 1.52 0.51 0.06 1.75E+06 300 

4 1.95 1.94 0.59 0.59 2.95 2.95 0.69 0.67 3.72E+08 41 

5 0.83 0.83 0.88 0.88 1.41 1.41 0.88 0.88 3.68E+08 19 

6 1.84 1.80 0.40 0.30 2.64 2.62 0.09 0.04 8.12E+06 22 

7 0.61 0.89 0.80 0.17 1.88 1.67 0.70 0.17 5.63E+06 300 

8 1.81 1.79 0.97 0.96 2.74 2.74 0.53 0.46 3.71E+08 37 

9 0.52 0.82 0.55 0.32 1.99 1.83 0.17 0.11 1.23E+07 300 

10 1.66 1.09 0.12 0.17 2.27 2.27 0.72 0.10 2.90E+05 227 

 

 

Figure 7.3 Predicted and actual flows on unobserved links 

7.6 Calibration of cost function for Dublin city network 

The last piece of work in this chapter is concerned with using the theory and algorithm 

developed earlier in the chapter to validate the DOC function proposed in section 7.2 and 

calibrate its parameters. This is done using data from the actual transport network of Dublin, 

Ireland. An ITAP is modelled as an MPEC where the equilibrium problem is a TAP for cyclists 
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only, using a model of the road network of the Greater Dublin Area (GDA) including segregated 

cycle lanes. The ITAP seeks values for network parameters—including the parameters of the 

DOC function—which induce the greatest agreement between modelled flows and actual 

observations of cyclist flows on a sub-set of links in the Dublin city network. The accuracy of the 

calibrated model is tested by comparing link flow predictions to actual observations on links not 

used in the calibration process. All analysis is carried out using Matlab R2016b (The MathWorks 

Inc., 2016). 

For context, the transport model currently in use in Dublin by the National Transport Authority 

(NTA) is briefly described next. The model inputs and assumptions used in the ITAP are then 

described, followed by the methodology used and the results of the experiment. 

7.6.1 Transport Models for the Greater Dublin Area 

The macroscopic transport model which has been used in recent years for the Greater Dublin 

Area (GDA) is the GDA Transport Model of the NTA (National Transport Authority, 2011b). The 

geographical area covered by this model includes the county of Dublin as well as the adjacent 

counties of Kildare, Meath and Wicklow in the mid-east of Ireland, as shown in Figure 7.4 

(National Transport Authority, 2015a). Both a “Peak” model for the morning peak hours 

between 7am and 10am and an “Off-Peak” model exist. The components of the “Peak” model 

are illustrated in Figure 7.5 (National Transport Authority, 2011b). After the demands are divided 

into “Car Available” trips and “Car Not Available” trips, they are further divided into Slow Modes 

(SM) and Mechanised modes (Mech). It can be seen that, for “Slow Modes” which include 

walking and cycling, no further modelling takes place. For cars, assignment to the road network 

takes place in Saturn (Hall and WILLUMSEN, 1980).  The GDA transport model was not used 

directly in this study but did provide some model inputs for the ITAP which are discussed in the 

next section. 

The NTA has recently developed a new macroscopic transport model, the Eastern Regional 

Model (National Transport Authority, 2015a), which encompasses an area including the GDA. 

The Eastern Regional Model was used to support the development and assessment of the 

proposed GDA Transport Strategy 2015 – 2035 (National Transport Authority, 2015a). Unlike the 

GDA model, the Eastern Regional Model includes an Active Modes Model which assigns active 

modes (walking and cycling) to the network. However, all trips undertaken by active modes are 

assumed to simply take the shortest path between the trip origin and trip destination. 
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Figure 7.4 The Greater Dublin Area (National Transport Authority, 2015a) 
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Figure 7.5 Components of the NTA Peak GDA Model (National Transport Authority, 2011b) 

7.6.2 Model Inputs and Assumptions 

Similarly to the GDA Peak Transport Model, the time period considered in this study was the 

morning peak period between 7am and 10am. All data corresponded to the years of 2011 or 

2012. 

7.6.2.1 Cycling Demand 

The demand data for cycling trips between each origin and destination in the study period were 

obtained from the POWSCAR (Place of Work, School or College – Census of Anonymised 

Records), 2011 data (Central Statistics Office, 2011a; Central Statistics Office, 2011b). This 

dataset includes details of commuter trips made by all persons over the age of 4, resident in 

Ireland on 10/Apr/2011, including home and work/school/college locations, journey times and 

journey modes. This dataset only contains trips going to and from work, school or college. 

However, it was assumed that during the morning peak period, the effect of recreational cycling 

trips on city centre traffic would be negligible. The POWSCAR data include a field indicating the 

time at which the individual usually begins their journey to work in 30 minute intervals. The time 

period between 6:30am and 9:30m was chosen as the most appropriate time period to 

represent the demand contributing to traffic in the city centre during the peak period of 7am to 

10am. Trips leaving outside of this time interval were ignored. For the sake of parsimony, it was 
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also assumed that only cycling trips which begin or end in the city centre would significantly 

affect cycling traffic in the city centre during the morning rush hour and so, all other trips were 

ignored. The POWSCAR data include the residence location and work/school/college location of 

each individual at the level of Small Areas as set out by the Central Statistics Office (CSO). The 

GDA Transport model, on the other hand, divides the GDA into 666 “zones” which are coarser 

than the CSO Small Areas. These GDA zones were used to represent origins and destinations in 

the current study and so, before the O-D demand matrices could be created, the Small Area level 

origins and destinations needed to be mapped to zones. This was done by finding the centroid of 

each Small Area and each zone and matching each Small Area centroid to the closest zone 

centroid. A 666*666 O-D demand matrix was then produced from the trip data with 12,447 non-

zero entries. Figure 7.6 compares the CSO Small Areas with the NTA zones. 
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(a) 

 

(b) 

Figure 7.6 Comparison of (a) CSO Small Areas and (b) NTA zones and their centroids 
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7.6.2.2 Transport Network 

The network model used in this study was composed of four sub-networks: the motor vehicle 

network, the centroid connectors, the segregated cycle lane network and the super-connectors 

joining the motor vehicle and segregated cycle lane networks. The motor vehicle network and 

the centroid connectors were obtained from the highway assignment component of the NTA 

GDA model (National Transport Authority, 2011b)  which is implemented in Saturn (Hall and 

WILLUMSEN, 1980) .The motor vehicle network and centroid connector network were 

composed of 5,834 and 3,518 links respectively. It was assumed that cyclists could cycle on the 

road network with the direction of traffic. However, since cycling on motorways is not permitted 

in Ireland, the motorways were removed from the network (Road Safety Authority, 2012). The 

centroid connectors joined the GDA zones to the motor vehicle network and could only be used 

as the first and last links on a route. The segregated cycle lane network was modelled from a GIS 

shape file of cycle facilities in Dublin as of 2012, provided by the NTA. The information in the 

shape file was processed into a suitable format using Matlab, producing 5,591 links. Maps of the 

combined motor vehicle network and segregated cycle networks for the whole GDA and the 

Dublin city centre are shown in Figure 7.7 and Figure 7.8. In order to allow cyclists to use routes 

comprising links in both the motor vehicle and segregated cycle networks, super-connectors 

were added to join any pair of nodes in the two networks which were closer than 50m. The 

length assigned to each super-connector was equal to the straight-line distance between the car 

node and segregated cycle node. 325 super-connectors were added in total. 
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Figure 7.7 Motor vehicle network and segregated cycle network of GDA 

 

Figure 7.8 Motor vehicle network and segregated cycle network of Dublin city centre. 

7.6.2.3 Link Flow Observations 

Similarly to the numerical experiment of section 7.5, network observations were used to 

calibrate the network parameters and then test the prediction accuracy of the calibrated model. 

However, in this case, the observations were not simulated flows but actual cyclist flow 
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observations from the Dublin city network. Cyclist flows for the 7am to 10am weekday peak 

period were gathered from a number of sources. The first source was the 2012 canal cordon 

count carried out by Dublin City Council (DCC) which recorded cyclist flows during several days in 

November, 2012 at 33 locations around the cordon formed by the Royal Canal and Grand Canal. 

This survey was designed to ensure that any person entering or leaving must pass through one 

of the survey locations. The second source was another traffic survey carried out by DCC in May, 

2012 which included counts along the bridges crossing the river Liffey in the city centre. The 

third source was traffic counts provided by the NTA at 35 junctions close to the city centre on 

days during March and May, 2012. Finally, continuous cyclist counts from a cyclist-specific 

inductive loop detector beside the Grand Canal were available from 1/Oct/2011 to 1/Oct/2012: 

the counts between 7am and 10am on all weekdays were averaged to give a single flow 

observation in each direction. Since the NTA model is a simplified representation of the Dublin 

network, there were a number of links for which observations were available but which either 

did not exist or were over-simplified in the model. These link observations were excluded from 

the calibration and predictions. In total, valid cyclist flow observations were available for 249 

directional links which are shown in Figure 7.9. 

 

 

Figure 7.9 Links in city centre for which flow observations were available 
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7.6.2.4 ITAP formulation 

Since data were available on the actual mode-specific travel demands in the Dublin network, 

there was no need to model modal choice in the ITAP. Also, since the demands were actual 

demands rather than potential demands, there was no need to model elasticity of demand. The 

equilibrium constraint TAP then, was subject to the following flow conservation constraint: 

 ,c
w

c c

w pp P
q h w W


     Eq. (7.25) 

Similarly to the model used for the numerical experiment of section 7.5, traffic assignment was 

assumed to follow the SUE principal, governed by the path-size logit model described by 

Eq. (7.2) and Eq. (7.3). It was hypothesised that the travel costs of cyclists in the Dublin city 

network can be modelled by the DOC function described by Eq. (7.9) and Eq. (7.10). Since motor 

vehicle traffic was not modelled, estimates of a

sx  and b

sx , the flows of cars and buses in PCU on 

each link s of the motor vehicle network during the morning peak period, were obtained from 

the GDA Peak Transport Model. Since modal choice was not modelled in this experiment, it 

would not have been appropriate to calibrate the modal bias parameter, 
,0cr . This parameter 

was therefore assigned a fixed value of 1, implying no bias for or against cycling. The only 

unknown parameters then were  ,  and 1 . The ITAP could be represented by the following 

MPEC: 
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  Eq. (7.26) 

Where  1, ,
T

  Φ =  is the vector of network parameters to be calibrated, 1  defines the 

constraints on the network parameters and  V Φ  is the solution set of the following 

parameterised VI: 
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     Eq. (7.27) 

The feasible set, 
2  is defined by the following constraints: 
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
  
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
  Eq. (7.28) 

7.6.3 Methodology 

The methodology was similar to the methodology of the numerical experiment in section 7.5. 

However, since actual observations from the Dublin network were used for calibration and 

validation, there was no simulation stage. 2/3 of the link observations were randomly allocated 

to a training set and the other 1/3 were allocated to the test set. In the calibration stage, the 

MPEC of Eq. (7.26) was solved using the descent method described in section 7.4, which was run 

10 times from different starting points, sampled from uniform distributions. The upper and 

lower limits set for each calibration parameter are shown in Table 7.8. The method of finding 

derivative information based on sensitivity analysis described in section 7.5.2.2, was found to be 

inefficient for this problem due to the large number of possible routes. In particular, the matrix 

inversion in step 2 of the algorithm described in Table 7.6 was computationally expensive. It was 

found to be more efficient to simply calculate the derivatives of the objective function with 

respect to each of the parameters empirically. At each iteration of the descent algorithm, the 

empirical gradients and direction of steepest descent of the objective function could be 

calculated as follows: 
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Table 7.8 Upper and lower limits on model parameters. 

Parameter Min Max 

  0.01 2 

  1 5 

1  0.01 1.6 

 

In order to ensure that the empirically calculated gradient vectors were in agreement with the 

gradient vectors which would be calculated using sensitivity analysis, both methods were used 

to calculate gradients for a random sample of 50 points within the feasible region of the MPEC. A 

value of 0.01 was used for all three perturbations, d , d and 1d , as it was deemed that the 

interval should be 2 orders of magnitude smaller than the expected value of each parameter. 

The agreement of each pair of gradient vectors was compared by computing the dot product of 

the normalised vectors. A result of 0 would indicate perpendicular gradients while a value of 1 

would indicate parallel gradients. The mean of the dot products over the 50 samples was 0.91 

with a standard deviation of 0.13, showing that there was good agreement between the 

gradients calculated with both methods. Therefore, the more efficient empirical calculation was 

used in the descent algorithm. 

The descent algorithm with empirical derivatives can be summarised by Table 7.9. The chosen 

values of the algorithmic parameters were d =0.01, d =0.01 , 1d =0.01,  = 1E-7 and  =1E-

11. After the calibration process was completed and the best set of parameters was chosen, the 

accuracy of the calibration was tested by comparing the predicted and observed cyclist flows on 

the links in the test set. 
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Table 7.9 Solving the ITAP using the descent algorithm with empirical gradients 

 
Step 0: 

 

Initialise each of the calibration parameters, 
0

Φ . Set 0k   
 

Step 1: Find the equilibrium link flows k
x  corresponding to 

k
Φ using the Method of 

Successive Averages. 
 

Step 2: Evaluate the objective function,  kF x , corresponding to k
x : 

 kF x =  
2

c ck

s ss S
x x


  

 
Step 3: For each parameter,  z , in  Φ , add a perturbation, dz , to z and find the 

equilibrium link flows 'z kx  corresponding to the perturbed parameter vector 
'kz

Φ  

Step 4: For each parameter,  z , in  Φ ,  evaluate the perturbed objective function, 

 'z kF x  

 
Step 5: Evaluate the empirical gradients of the upper objective function with respect to 

each z  in  Φ : 

   'z k kk
dF F x F

dzd

x

z



 

 
Step 6: Find ˆkv  , the direction of steepest descent of  kF x : 

 

1
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k k k
dF dF dF
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 

k
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Step 7: Update the model parameters: 

 
1 * ˆk k    kΦ Φ v   

 

where 0 1   is a step-size parameter. 
 

Step 8: Ensure feasibility of the calibration parameters: 
 

If 
 
Else if 
 

1k u

i i   , 

 
1k l

i i   , 

 

1k u

i i    

 
1k l

i i    

 
 1 1kk

i
 Φ  

Step 9: Check convergence: 
 

 If    1 1*
T

k k k k    Φ Φ Φ Φ  , where ι  small 
 

 Otherwise, k=k+1,     Return to Step 1  



188 

 

7.6.4 Results 

The results of each run of the descent algorithm are shown in Table 7.10. The lowest value of the 

objective function was recorded on run 4 and so the values of the network parameters at the 

local optimum of run 4 were chosen as the final parameters. The final parameters were  = 

0.68,  =4.46 and 1 =1.37. A different local optima was found in each run of the descent 

algorithm but the values of   and 1  were relatively consistent across each of these points. All 

results for   were reasonably close to the final value of 0.68 except for run 7 and run 10. 

Similarly, all results for 1  were reasonably close to the final value of 1.37 except for run 7. The 

values of  , however, were not as consistent. The final value for  of 4.46 represents a strong 

non-linearity in the relationship between congestion level and increase in travel cost. It implies 

that at low or moderate levels of congestion, the cost of cycling does not increase significantly 

but as the traffic on a link approaches full capacity, the cost of cycling increases sharply. The final 

value for   of 0.68 implies that a cyclist  

on a shared link which is at full capacity has an average perceived travel cost of 62% higher than 

a cyclist on an empty link or segregated lane. These values seem reasonable with respect to 

previous research into the perceived travel costs of cyclists. For example, a Swedish study 

(Börjesson and Eliasson, 2012) has estimated that the value of time while cycling on a cycle lane 

to be approximately 45% higher than the value of time while cycling on the street. A reasonably 

high coefficient of correlation of 0.82 was found between the predicted and observed flow 

observations on the links assigned to the test set. The level of agreement between the predicted 

and observed flows is also shown by the linear pattern of the scatterplot in Figure 7.10. The 

spatial distribution of the prediction errors is illustrated in Figure 7.11. Two of the largest errors 

were close to another in space but apart from this there were no clear spatial patterns in the 

error distributions. 

In order to provide context for the prediction results, a shortest-path assignment was carried out 

using the same network model and O-D demand matrices. This assignment model simply 

assigned all cycling trips to the shortest path between the trip origin and destination. Figure 7.12 

compares the absolute percentage errors on the test links from both assignment models by 

means of their cumulative distributions functions (CDF). It can be seen that the CDF from the 

assignment using the DOC function is entirely to the right of the CDF from the shortest path 

assignment. This shows that for any given level of ‘acceptable’ error, a higher proportion of 

acceptable link flow predictions were achieved with the DOC function than with the shortest 

path assignment. The MAPE on the test set using the shortest path assignment was 67.6% while 
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the MAPE on the test set using the DOC function was 48.6%. This is a significant improvement 

considering the simplicity of the cost function and the small number of link observations which 

were available for the calibration process. This has important implications for transport 

modelling in Ireland, where the NTA is in the process of adopting a new transport model, the 

Regional Modelling System (National Transport Authority, 2015a). This model uses a simple 

shortest path assignment for cycling. While shortest-path assignment is an improvement on the 

previous GDA model which did not assign cycling trips to the network at all, the results of this 

study show that more accurate assignments could be achieved by using the DOC function. 

Moreover, it is likely that further iteration on the form of the DOC function would lead to further 

improvements in accuracy.  

The calibrated parameters reported here are specific to the Dublin network and so it is uncertain 

whether they would generalise well to other transport networks. However, the methodology 

and/or form of the DOC function could easily be adopted in order to calibrate a cycling cost 

function for any other network where observations of cyclist traffic volumes are available. 

Table 7.10 Calibration of DOC function results 

        1       

Run Initial Final Initial Final Initial Final Final F Iterations 

1 0.84 0.76 3.88 3.85 0.01 1.35 4.18E+06 39 

2 0.88 0.99 1.10 1.22 0.88 1.17 4.16E+06 33 

3 1.11 0.82 3.83 3.76 0.47 1.35 4.08E+06 49 

4 0.45 0.68 4.48 4.46 0.34 1.37 4.06E+06 44 

5 0.16 0.67 4.12 4.12 0.71 1.37 4.09E+06 38 

6 0.03 0.70 3.01 3.04 0.80 1.34 4.23E+06 36 

7 1.54 1.54 1.08 1.08 1.02 1.03 4.21E+06 26 

8 0.37 0.76 1.08 1.22 0.75 1.22 4.14E+06 36 

9 0.32 0.70 3.96 3.95 0.43 1.36 4.10E+06 42 

10 1.70 1.36 1.72 1.72 0.10 1.18 4.20E+06 51 
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Figure 7.10 Scatterplot of predicted vs observed flows on the links of the test set. 

 

Figure 7.11 Prediction errors on test links; link widths shown are proportional to absolute 

percentage errors. 
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Figure 7.12 Empirical CDFs of absolute percentage errors on the test set using (i) shortest path 

assignment and (ii) assignment using the Disutility of Cycling (DOC) function. 

 

7.7 Conclusions 

In this chapter, it has been demonstrated that cycling cost functions can be calibrated using the 

ITAP by formulating the ITAP as a MPEC and solving it using a descent method. It has further 

been shown that the gradient information required by the MPEC can be obtained either by 

sensitivity analysis or an empirical method, both of which provide similar gradient directions. 

The sensitivity analysis method appears to work more efficiently for small network problems but 

for larger problems, the empirical method is more efficient. Furthermore, a particular form of a 

cycling cost function has been suggested and, using the descent algorithm described, it has been 

shown that even when calibrated using a small number of network observations, it outperforms 

shortest path assignment. It should be noted that the cost function chosen in this chapter was 

simple and did not taken into account many other potentially important variables such as hills, 

turn frequency and route aesthetics. It is therefore likely that further iterations of cost functions 

calibrated using this method will produce better predictions, particularly if larger numbers of link 

observations are available. 
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The inclusion of cycling in the NTA Regional Modelling System was an important step towards 

improved planning for cycling. However, the model of cycling behaviour used is based on a 

principle which has been shown by many studies to be inadequate and so the results of the 

model with respect to cycling are unlikely to be of much value. Such modelling may even have a 

negative impact on the planning process by giving a false sense of precision to highly simplistic 

predictions of cyclist behaviour. This chapter has also shown that transport authorities could 

significantly improve models of cycling behaviour by replacing shortest path assignment with 

assignment based on a disutility function which accounts for motorised traffic levels and cycling 

facilities—even if this disutility function is still relatively simple. Transport authorities and 

policymakers wishing to include cyclists in strategic transport modelling should consider using a 

more realistic disutility function such as the DOC function to model cyclist behaviour. 
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Chapter 8: Optimal design of cycle networks 

8.1 Introduction 

In the second chapter of this thesis, it was noted that although many studies in the past ten 

years have quantified the health and environmental impacts of cycling, most of the 

methodologies had limited value for evaluating real-world transport policies. This is because 

they were based on hypothetical scenarios where increased cycling takes place but gave no 

consideration to the courses of action which may help policymakers to achieve the scenarios. 

Similarly, in Chapters 3 and 4 of this thesis, the impacts of cycling in Dublin were evaluated with 

reference to hypothetical increases in cycling. A useful extension to this framework would be 

one which allowed a user to find the optimal infrastructure design and/or policies which would 

maximise total societal benefit, taking into account the health and environmental impacts of 

cycling. 

The tool which is used in the literature for optimising the decisions of transport authorities in 

general is the Network Design Problem (NDP) (Boyce, 1984). This problem is generally 

formulated as a bilevel optimisation problem whereby the objectives and decisions of the 

transport authority are represented by the upper level and the behavioural responses of the 

users within the network are represented by the lower level. If the network equilibrium is 

represented as a VI instead of an optimisation, the NDP can be formulated as an MPEC. As 

described in Chapter 2, very few studies have experimented with using the NDP to design cycling 

infrastructure layouts. Cycle network design is instead based on evaluation of alternatives, 

sometimes making use of tools such as evaluation matrices. A limitation of these approaches is 

that they can only reveal the value of an existing design but cannot find the optimal or near-

optimal design, nor can they determine whether the existing design is optimal. Even in an 

unrealistically small network of 20 links where a cycle lane can be either built or not built on 

each link, the number of possible alternatives would be over a million. Clearly, for even a very 

small transport network, it is highly unlikely that the optimal cycle network would be found 

through evaluation of alternative designs. Although in recent years a small number of studies 

have used the NDP to design cycle networks, no study to date has considered the health and 

environmental impacts of cycling in the objective of a NDP. Additionally, the models of network 

equilibrium in the lower level optimisation have tended to be overly simple. 
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In order to formulate a NDP to optimise a cycle network, taking into account the health and 

environmental benefits of cycling, it must be possible to (i) quantify the net benefit of given 

amounts of cycling and motorised transport and (ii) predict the amounts of cycling and 

motorised transport which would result from any possible design of a cycle network. Chapters 3 

to 6 and chapter 7 of this thesis addressed the first and second tasks respectively. This chapter 

will draw on elements from all of the work up to this point in the thesis in order to develop a 

NDP for systematically designing cycling network layouts in order to maximise the net benefits 

to the network users and society. The rest of the chapter is organised as follows. The model 

formulation will first be described, followed by a Genetic Algorithm (GA) which may be used to 

solve the problem. A simple numerical example will then be given to demonstrate the process 

and the chapter will be concluded with some discussion of the significance of this work. 

8.2 Methodology 

This section describes a mathematical model and solution algorithm for allowing a transport 

authority to identify the links in an existing transport network where cycle facilities should be 

introduced in order to maximise societal benefit (SB). The SB is a function of travel costs, 

infrastructure costs, health impacts, traffic collisions and environmental impacts. The SB is 

influenced by the decisions of the both the transport authority and the network users. 

The decision making process which must be represented by the model is complex. The transport 

planner first decides where in the network the facilities should be introduced and in response to 

this decision, the network users choose their travel behaviour in order to maximise their own 

perceived benefits. However, the transport planner would also like to anticipate the travel 

responses of the network users and make decisions such that when the network users choose 

their travel behaviour, the resulting SB is as high as possible. Since the transport planner makes 

decisions before the network users, the decision making process can be thought of as a 

Stackelberg game where the transport authority is the leader and the network users are the 

followers (Colson et al., 2007). The decision making process can therefore be represented by a 

Mathematical Programme with Equilibrium Constrains (MPEC) and this MPEC can be solved to 

find the optimal design of the cycle network to maximise the SB. The MPEC, as described in 

Chapter 7 is a generalisation of the bilevel optimisation framework which allows the lower level 

optimisation to be replaced with a variational inequality (VI). 

The rest of this section describes the formulation of the MPEC to represent this decision making 

process and the solution algorithm which can find a near-optimal strategy for the transport 

authority. 
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8.2.1 Model Formulation 

8.2.1.1 Equilibrium constraints: multi-modal network equilibrium 

The equilibrium constraints of the MPEC in this study represent the travel choices of the 

network users who are assumed to try to maximise their own utility in response to the decisions 

of the transport authority. The behaviours of the cyclists and motorists in the network are 

assumed to be governed by the network equilibrium model described in Chapter 7 with path-

size logit-based route choice, logit-based mode choice and elastic demand. The equilibrium flow 

pattern therefore must satisfy Eq. 7.2 to Eq. 7.7. These conditions are equivalent to the Karush-

Kuhn-Tucker (KKT) conditions of the following variational inequality (VI): 
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  Eq. (8.1) 

Where  is the vector of decision variables of the transport authority and all other variables 

have the same meaning as in Chapter 7.The equilibrium path flow vector *h  can depend on the 

vector of decision variables   due to the influence of  on the mode-path disutilities,  m

pu  . 

For example, the cycling cost function could depend on the traffic with which the cyclist 

interacts, as is the case with the DOC function. Also, the addition of a cycle lane can be assumed 

to decrease the road capacity available to motor vehicles. If, for example, the BPR function is 

used to model driver disutility, the addition of the cycle lane would increase driver disutility on 

that link. 

8.2.1.2 Objective function: system optimal network design 

The objective function of the MPEC represents the decision making process of the transport 

authority. The transport authority is assumed to be concerned with maximising total SB for both 

the users of the transport network and the surrounding population. The total  is quantified by an 

objective function which includes the cost of the infrastructure and all of the benefits and risks 

of travel considered in Chapter 3: health impacts of physical activity and pollution exposure, 

societal impacts of environmental emissions, traffic collisions and travel costs. Additionally, since 

elasticity of demand will be considered, the total number of trips will not be fixed and so the 

benefits of travel itself must be included. The transport authority must decide which cycling 
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facility, if any, to place on each existing link in the network in order to maximise this . This 

optimisation problem is represented as follows: 
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Where ( , )SB x  is the , f

s is a binary decision variable indicating whether or not link s is 

assigned to facility type f, F is the set of possible facility-types, is the vector of all decision 

variables f

s , S  is the set of all links where a cycle facility could be added and nf F indicates 

no cycling facility. The constraints ensure that no more than one type of cycling facility can be 

added to each link and no cycling facilities can be added to links not contained in S . The 

equilibrium constraints also ensure that at any feasible point, the network equilibrium problem, 

parameterised by  , is satisfied. In the framework of this study, the  over a given time period 

can be defined as follows: 

 ( , ) In Ex Ex C ISB x PA AP TC AP GHG N S C          Eq. (8.3) 

Where PA is the value of the physical activity health impact, InAP is the cost of the traveller 

pollution exposure health impact, TC is the cost of traffic collisions, ExAP is the cost of air 

pollution emissions, GHG  is the cost of greenhouse gas emissions, ExN is the cost of noise 

pollution, CS  is the consumer surplus and IC  is the cost of the cycling facilities. 

8.2.2 Solution Algorithm 

As discussed in Chapter 7, MPECs are intrinsically hard problems, particularly if a guaranteed 

global optimum is required. The research focus to date has been on efficient procedures for 

finding near-optimal solutions. The descent based approach used to solve the MPEC in Chapter 7 



197 

 

would not be appropriate for the current problem as the decision variables are discrete and 

therefore it would be impossible to estimate gradients with respect to them. Genetic algorithms 

(GA) are a class of algorithms which are applicable to a wide range of problems as they don’t 

require the computation of gradients or Hessians (Chong and Zak, 2013). Yin (2000) also showed 

that GAs can be used to solve common bilevel programmes in transportation system planning 

and recently Mesbah et al. (2012) used a GA to solve a cycle network design problem, with some 

structural similarity to the one presented in this chapter. For these reasons, a GA was used to 

solve the MPEC in this study. 

GAs aim to generate progressively better solutions to an optimisation problem by a process 

resembling biological evolution. The process involves first generating an initial pool of candidate 

solutions known as chromosomes. The attractiveness of each of these candidates is then 

evaluated by means of a fitness function. A new pool of candidates is formed by selecting 

candidates from the old pool with a selection probability proportional to their fitness. Some of 

the chromosomes are then modified using operations known as crossovers and mutations to 

create the next generation of candidate solutions. This process continues iteratively until the 

algorithm converges to an acceptable solution. Because GAs search from a population of 

candidate solutions rather than a single point, they are less likely to get stuck at a local optimum. 

The use of probabilistic transition rules also contributes the robustness and globality of the 

solutions found by GAs (Yin, 2000). 

The first step in applying a GA to the solution of the MPEC in this study was to define the 

representation scheme which maps the vector of decision variables   to a string of symbols. 

Each symbol is referred to as a gene and the string of genes is referred to as a chromosome. The 

chromosome used to represent the layout of cycle facilities in a transport network was a string 

of genes s   of length L where L was the number of links in the network. The set of possible 

values of each gene was the set F . Each gene s  in the chromosome represented the type of 

facility on link s such that &1 0,f g

s ss gf f      . Having defined the 

representation scheme, the rest of the steps of the GA could then be carried out. These steps 

are summarised in Table 8.1 and explained in detail below. In the Initialisation step, an initial 

population of chromosomes of size, N, is created where each gene of each chromosome is 

randomly assigned a value from the set F. In the Evaluation step, the value of the objective 

function corresponding to each chromosome must be calculated. Since the objective function is 

parameterised by the dependent variable x, the VI must be first be solved by finding the network 
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equilibrium corresponding to the network design represented by the chromosome. The 

equilibrium link flow pattern x is found by combining diagonalization and the method of 

successive averages as discussed in Chapter 7. The value of the objective function ( , )SB x  is 

then calculated and its value becomes the fitness of the chromosome. In the Crossover step, 

pairs of chromosomes are randomly selected from the mating pool without replacement such 

that the proportion of chromosomes selected is equal to the predetermined crossover 

probability, cP . For each pair of chromosomes selected, a crossing site is randomly selected 

between 1 and L-1 according to a uniform distribution. The crossover operation exchanges the 

substrings to one side of the crossing site between the two parents to create two new offspring 

chromosomes which replace the parents in the mating pool. In the mutation step, each gene in 

each chromosome is taken and with a pre-determined probability, mP , is randomly assigned a 

new value from the set, F. In the Evolution step, this evolved mating pool becomes the new 

population. If a predetermined stopping criterion is met, the algorithm terminates. Otherwise, it 

returns to the Evaluation step with the new population. 

During each iteration of the GA; the best-so-far chromosome—the chromosome with the 

highest fitness function in any iteration so far—is tracked. As long as the best-so-far fitness is 

increasing over time, the algorithm is working effectively. When the algorithm terminates, the 

best-so-far solution becomes the ultimate solution to the MPEC.  

Table 8.1 Steps of the Genetic Algorithm for solving the MPEC 

Step Description 

Initialisation Set 0k    
Create initial population of chromosomes ( )P k . 

Evaluation Evaluate the fitness of each chromosome in ( )P k . 

Selection Create a mating pool ( )M k  of chromosomes by selecting chromosomes 

from ( )P k  (with replacement) where the probability of selection is in 

proportion to the fitness of the chromosome. 

Crossover Perform the crossover operation on pairs of parent chromosomes 
randomly chosen from ( )M k  such that the probability of any 

chromosome being chosen is a predetermined value, cP . 

Mutation Perform the mutation operation on randomly chosen genes from ( )M k

such that the probability of any gene being chosen is a predetermined 

value, mP . 

Evolution Assign the altered ( )M k  to become the new population ( 1)P k   

Iteration If stopping criterion has been met, terminate algorithm. 

Otherwise, increment k  and return to the Evaluation step 
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8.3 Numerical Example 

In this section, the model formulation and solution are demonstrated using a numerical example 

on a test network. For simplicity, travel is modelled during a single time period which is assumed 

to representative of the total average traffic per day. In practical applications, it would most 

likely be necessary to model several periods of the day and days of the week. 

8.3.1 Test network 

The test network used in this example is based on the simple network presented in Li et al. 

(2015). The network is shown in Figure 8.1. It has 9 nodes, 12 links, 2 origins and 1 destination. 

The details of the links are summarised in Table 8.2. In this example, there are three possible 

facility types for each link: no facility, kerbside cycle lane and segregated cycle lane. It is 

assumed that if a cycle facility is introduced on a link, the capacity for motor vehicles on that link 

is reduced. Therefore, each car link has three possible capacities according to the cycle facility 

which is present. The car capacities for all links with no cycle lanes, roadside cycle lanes and 

segregated cycle lanes are  5000, 4000 and 3000 respectively. As in Chapter 7, it was assumed 

that cyclists on segregated cycle lanes do not experience any increase in disutility due to 

increased cyclist traffic and so the capacities of segregated cycle lanes can be considered to be 

effectively unlimited. The first O-D pair is from node 1 to node 9 and the second O-D pair is from 

node 5 to node 9. There are six possible routes between O-D pair (1,9) and 2 possible routes 

between O-D pair (5,9) and these are detailed in Table 8.3. The same routes are available to both 

cyclists and drivers. The potential travel demand, 0

wq , was 10000 for each O-D pair. 
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Figure 8.1 Test network 

 

 

Table 8.2 Link characteristics of test network 

Link A Node B Node Length (km) 

1 1 2 3 

2 2 3 6 

3 1 4 4 

4 2 5 6 

5 3 6 3 

6 4 5 7 

7 5 6 5 

8 4 7 6 

9 5 8 5 

10 6 9 5 

11 7 8 4 

12 8 9 4 

 

  



201 

 

Table 8.3 Route characteristics of test network 

OD Route Links 

(1,9) 1 1,2,5,10 

(1,9) 2 1,4,7,10 

(1,9) 3 1,4,9,12 

(1,9) 4 3,6,7,10 

(1,9) 5 3,6,9,12 

(1,9) 6 3,8,11,12 

(5,9) 7 7,10 

(5,9) 8 9,12 

 

Since the test network is a simple “toy” network, the choice of parameters used in the problem 

can be considered to be arbitrary. However, as discussed below, parameter values which are 

relevant to Ireland and/or Europe were used wherever possible. 

The disutility of motorists is governed by the BPR function with the same parameters as in 

Chapter 7. A fixed operating cost of €10 per driving trip also applies. The disutility of cyclists is 

governed by the DOC function. For on-road cycling, the calibrated parameters from Chapter 7 

are used:  = 0.68 and  =4.46. Cyclists using roadside lanes are assumed to experience a real or 

perceived interaction with traffic and so their disutility increases with motor vehicle traffic on 

the link. However, it can be expected that the increase in disutility would not be as great as if 

they were cycling on a road without any lane. Since kerbside lanes were not modelled in Chapter 

7, for the purpose of this demonstration it is assumed that the cyclists on roadside lanes 

experience an increase in disutility due to link congestion equal to half that which would be 

experienced if no lane were present. This is a somewhat arbitrary value. However, multiple 

studies have shown that the perceived benefit of roadside lanes to cyclists lies somewhere 

between the benefit of segregated lanes and no cycling facility (Buehler and Dill, 2016). 

Therefore, sigma is given a value of 0.34 for cycling on roads with a kerbside lane. The values of 

the other network parameters were 1 0.2  , 2 0.2  , €10 /t hr  , 14km /c

s rv h , 

40km /a

s rv h . 

8.3.2 Calculating Societal Benefit 

Societal benefit, which defined in Eq. 8.1, was evaluated by drawing from the finding of Chapters 

2 to 6. IC is the only component of the SB  which occurs at a single point in time. For all other 

impacts, the benefit/cost over a timeframe of ten years was calculated. This was done by first 

calculating the annual value and then calculating the Net Present Value (NPV) over ten years 

with a discount rate of 5%—the rate recommended by the World Health Organisation (WHO) for 
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calculating NPV of cycling using the Health Economic Assessment Tool (HEAT) (WHO, 2014). For 

the impacts associated with chronic illnesses of the travellers themselves- PA  and InAP - a 

linear build-up period of 5 years for the health impacts to take effect was also assumed. This is 

consistent with the approach recommended by the WHO (WHO, 2014). 

The annual benefits due to physical activity were calculated using the same models as described 

in Chapter 3. It was assumed that the type of cycling facility did not influence the quality or 

intensity of physical activity. The dose response function (DRF) required estimation of the 

baseline physical activity levels. Since this numerical example was based on simulated individuals 

rather than census data, the baseline DALY rates and proportions of individuals with low, 

moderate and high activity levels were simply assumed to be the same as for the general 

population of Ireland (IPSOS MRBI, 2015). 

The change in annual DALYs lost due to air pollution was estimated using similar models to 

Chapter 3 with one important difference. It was shown in Chapter 6 that the presence of cycling 

facilities affects cyclist exposure to air pollution. Therefore in addition to the mode-specific 

scaling factor, additional facility-specific scaling factors were used to correct for the effect of 

cycling facilities on pollution exposure. Based on the results of Chapter 6, the scaling factors 

used for on-road cycling, kerbside cycle lanes and segregated cycle lanes were 1, 1.15 and 0.91 

respectively based on the average of the impacts of these facilities on CO concentrations and 

NOx concentrations. 

The costs associated with fatal, serious and minor injuries were estimated using the same non-

linear collision model and collision data as in Chapter 3. In this numerical example, the effect of 

cycle lanes on actual collision risk of cyclists was not modelled as there was insufficient 

quantitative evidence regarding the level of protection offered by cycling facilities. Although the 

collision risks while cycling on a segregated facility may appear to be minimal, many collisions in 

reality occur during manoeuvres at junctions where the segregation breaks. A difference in 

collisions risks for different facility types can be easily included in future studies if sufficient 

collision data are available. 

The costs of noise pollution and GHG emissions were calculated based on the IMPACT 2014 

handbook, similarly to Chapter 3. However, in this study, instead of estimating the avoided 

emissions costs attributable to the replacement of driving trips by cycling trips, the emissions 

costs due to the driving that did take place were calculated. This means that it was required to 

use average unit costs rather than marginal unit costs. For air pollution and GHG costs, the 
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average and marginal costs can be considered to be equal (Korzhenevych et al., 2014). However, 

for noise pollution, the marginal costs tend to be lower than the average costs. The IMPACT 

2014 handbook only gives marginal noise costs of driving. However, the IMPACT 2008 handbook 

gives an average per-km noise cost for driving in European urban areas and so this estimate was 

used instead.  

The consumer surplus represents the difference between the benefits of travel and the costs of 

travel as perceived by the network users themselves. For the network model with exponential 

demand function described by Eq. 8.1, the consumer surplus for a single modelled time period 

can be expressed as wq   (Li et al., 2015). 

The infrastructure cost could be calculated as follows assuming constant per-km costs for each 

facility type: 

 
f f

I s s

f F s S

C d c
 

     Eq. (8.4) 

Where sd is the length of link s and fc is the construction cost per km of cycle facility type f. 

The construction costs of roadside cycle lanes and segregated cycle lanes were based on 

estimates for the UK (Sustrans). The middle values of the cost range estimates for “Cycle lane 

with few junctions “ and “Segregated path with minor junctions” were used. The values given in 

2007 GBP were converted from GBP to Euro and corrected for inflation to 2015 to give values of 

€59,787/km and €298,935/km for roadside cycle lanes and segregated cycle lanes respectively. 

8.3.3 Baseline 

In order to establish a baseline, the network equilibrium was first found for the case where there 

are no cycle facilities on any links and the SB corresponding to this case was evaluated. The link 

flows of cyclists and motor vehicles are illustrated by Figure 8.2, Figure 8.3 and Table 8.4. Since 

node 9 is the destination node for all trips, the traffic volumes were highest on links in its 

vicinity. The total 10-year value of SB in the base case was €28.96M. As shown in Figure 8.4, this 

figure is dominated by the health benefits of physical activity, the health cost of traffic collisions 

and the greenhouse gas emission costs. 
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Figure 8.2 Car traffic in base case (no cycling facilities). Link thickness is proportional to 

traffic volume. 

 

Figure 8.3 Bicycle traffic in base case (no cycling facilities). Link thickness is proportional to 

traffic volume.
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Table 8.4 Link traffic volumes in base case (no cycle facilities) 

Link A Node B Node Length (km) Car Traffic Cyclist Traffic 

1 1 2 3 1707 900 

2 2 3 6 787 498 

3 1 4 4 1597 738 

4 2 5 6 919 402 

5 3 6 3 787 498 

6 4 5 7 829 294 

7 5 6 5 2193 1857 

8 4 7 6 768 444 

9 5 8 5 2316 2050 

10 6 9 5 2981 2355 

11 7 8 4 768 444 

12 8 9 4 3085 2494 

 

 

Figure 8.4 Societal benefit values at baseline (no cycle facilities) 

8.3.4 Initial Results of GA 

For the initial run of the GA algorithm, the algorithmic parameters, cP , mP , and N  were given 

arbitrary values based previous on a previous study (Yin, 2000). In the next section, the impact of 

varying these parameters will be explored. The values chosen for the initial run were
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0.6, 0.033, 30c mP P N   . As a stopping criterion, an iteration limit of 300 was chosen. 

Figure 8.5 shows the evolution of the best-so-far fitness in each iteration. The highest fitness 

was found on iteration 263 which was close to the chosen iteration limit of 300. However, the 

algorithm was run again with an iteration limit of 600 and the fitness did not improve after 

iteration 263, indicating that the iteration limit of 300 is likely to be high enough for this 

example. The final value of the fitness function was a SB of €62.6M. The cycle network design 

which led to this SB value is shown in Figure 8.6. The segregated lanes have been introduced 

mainly on the links close to the destination node 9, which had the highest traffic of both cyclists 

and drivers. Only one roadside cycle lane was introduced and this linked node 1, one of the two 

origin nodes, to node 4. The placement of segregated lanes on the busiest links makes intuitive 

sense in that it creates the greatest reduction in travel costs for cyclists. However, the decrease 

in capacity for cars would also affect the travel times of a large number of drivers and so, even in 

this simple example, the best design was not clear in advance. The values of each component of 

the SB are shown in Figure 8.7. The biggest change from the baseline values was the increase in 

the physical activity benefit. This is due to an increase in cycling demand caused by the 

introduction of cycle facilities. The other positive changes were reductions in greenhouse gases, 

noise and external pollution. The negative impacts included an increase in traffic collisions and 

the cost of the infrastructure. These changes in societal benefit resulting from the introduction 

of cycle facilities are similar to the results of increasing modal share of cycling found in Chapter 

3. 



207 

 

 

Figure 8.5 Evolution of best-so-far fitness in initial run of GA 

 

Figure 8.6 Cycle network design suggested by initial run of GA 
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Figure 8.7 Societal benefit values resulting from solution of initial GA run 

 

8.3.5 Effect of GA parameters 

Some additional experiments were run in order to test whether the solution found by the GA 

was influenced by the values of the GA parameters: cP  and mP . The GA was run in a nested 

loop, varying the value of cP between 0 and 1 in steps of 0.04 and varying the value of mP

between 0 and 0.2 in steps of 0.008. This resulted in 625 runs in total. Of interest were the SB 

associated with the best solution found in each run and the number of iterations required to find 

the best solution in each run. As shown in Figure 8.8, there was no clear relationship between 

cP  and the ultimate SB or the number of iterations required. mP also did not seem to influence 

the number of iterations required. However, the maximum societal benefit tended to increase 

with the value of mP until mP reached a value of about 0.05. Above this value, the value of mP

did not seem to have a strong influence on maximum SB. In general, low values of mP  in a GA 

increase the risk of the algorithm getting stuck at local optima but high values of mP disturb the 

search direction too much so that the candidate solutions do not move towards better solutions. 

Since increasing mP results in a slight increase in computation time, a mP of about 0.1 would 
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seem to be an appropriate value for this example in order to avoid local optima without 

increasing computation time unnecessarily. The highest SB found across all 625 runs was a value 

of €62.83M, marginally higher than the highest SB found in the initial run of the GA. The design 

corresponding to this SB is shown in Figure 8.9. This same solution was found in 61 of the 625 

runs. Since almost 10% of the runs of the GA produced the solution shown in Figure 8.9 and no 

better solutions were found, it is likely that this is the globally optimal solution to the problem. 

The values of cP  and mP at which this solution was found are plotted in Figure 8.10. The figure 

does not show a strong pattern in the values of cP  and mP which produced the best solution. 

This and the small difference between the initial best solution and the ultimate best solution 

suggest that, for this example, the efficacy of the algorithm is affected only slightly by the choice 

of these parameters. Even without tuning of the parameters, a solution to this problem which 

was very close to the global optimum could be found. However, it can be seen in Figure 8.10 that 

a relatively high number of the globally optimal solutions were found with 0.25 0.5cP  and 

0.04 0.08mP   and so this is suggested as an appropriate range of these parameters for this 

problem. 



 

 

Figure 8.8 Influence of GA parameters Pc and Pm on the optimum SB value found by the GA and the iterations taken to find it.

2
1

0
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Figure 8.9 Best cycle network design found across all runs of GA 

 

 

Figure 8.10 Value of Pc and Pm for the GA runs which found the overall best solution. The 

highlighted box shows the suggested interval. 
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8.4 Conclusions 

This study has combined traditional transport network optimisation tools with recent research 

into the health and environmental impacts of active travel to develop a useful tool for 

maximising the societal benefits of investments in cycling infrastructure. A MPEC formulation 

and solution algorithm were developed which can identify the best design of a cycle network in 

order to optimise public health, environmental impacts and travel benefits and costs at the 

societal level. This adds to growing area of research which aims to develop software based tools 

to aid in the design of cycle networks. Studies such as (Lovelace et al. (2015)) and (Vandenbulcke 

et al. (2011)) had previously developed tools to identify areas or O-D pairs with high potential for 

increased cycling. The tool presented in this chapter builds on this work in a number of ways. 

While previous tools could identify potential for cycling at the O-D or municipal level, this tool 

identifies interventions at the level of individual streets. Previous tools were ultimately 

concerned only with increasing levels of cycling. This tool aims to find the optimum investment 

in order to maximise the net benefit to society taking into account health and environmental 

impacts, travel costs and infrastructure costs. The intervention which maximises this 

combination of impacts will not necessarily be the intervention which would maximise the 

increase in cycling. The tool presented in this chapter also has advantages over traditional 

appraisal methodologies such as the CAF (Department of Transport, 2016) or WebTAG 

(Department of Transport, 2013) as they are only suitable for evaluation of a small number of 

predefined designs. They cannot suggest new designs or find the optimal design. A few previous 

studies had presented cycle network optimisation models but none of these had considered 

health impacts which are an important driver of investment in cycling infrastructure. Previous 

optimisation based tools had also used very simple models of driving and cycling behaviour 

which could not be expected to accurately capture the changes in behaviour of cyclists and 

drivers in response to an intervention. Using the foundations built by the previous chapters of 

this thesis, this study included more aspects of societal benefit and modelled driver and cyclist 

behaviour more realistically than any previous studies. It has been shown that the model and 

algorithm presented can efficiently find optimal or near-optimal solutions to the cycle network 

design problem. By tuning the algorithmic parameters, the globality of the solution could be 

ensured but this would not necessary in order to find a near-optimal solution. The algorithm 

presented is robust as it does not depend on gradients or Hessian information. This means that 

the objective function and equilibrium formulations of the model can easily be changed without 

numerical difficulties. This framework can be applied to case studies of real transport networks if 

data such as baseline DALY rates and traffic collision risks and calibrated disutility functions for 



213 

 

each transport mode are available. The calibration approach introduced in Chapter 7 can be 

used to calibrate a cycling cost function if needed. 
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Chapter 9: Conclusions 

The main objective of this thesis was to develop methods for quantifying the benefits and risks 

of urban cycling and for optimising a cycle network with regard to these benefits and risks. This 

has been achieved through use of statistical models, analysis of data collected using a custom 

sensing node and development of optimisation models and solution algorithms. 

This chapter concludes the thesis by summarising the main contributions, providing a critical 

assessment of the work carried out, discussing the implications of the findings and suggesting 

directions for future research. 

9.1 Main Contributions 

The main contributions of this thesis can be discussed under three themes: quantification of the 

benefits and risks of urban cycling, measuring and analysing the environmental exposures of 

urban cyclists and development of tools for modelling and optimisation of cycling in multi-modal 

transport networks. Each of these areas will now be discussed in turn. 

Chapter 2 of this thesis, among other contributions, provided a critical assessment of the existing 

methodologies for quantifying the health benefits and risks of cycling at the societal level. It was 

found that there were significant heterogeneities in the approaches taken by different studies in 

recent years and that these differences in approaches, could significantly influence the results. In 

particular, the physical activity impacts could vary widely—the BOD approach being more 

conservative than mortality based approaches. Based on the findings of this review, a 

framework for quantifying the benefits and risks of cycling was developed in Chapter 3, which 

was conservative, realistic and included a comprehensive analysis of uncertainties. This 

framework was applied to a case study of Dublin and it was found that the net health and 

environmental impacts of increasing the modal share of cycling in Dublin would be strongly 

positive, largely due to the health benefits of physical activity. This was the first study to quantify 

the health and environmental impacts of cycling alongside the change in travel costs to both the 

cyclists and the rest of the network. When the costs of travel itself were also included, the 

central estimate of net impact was similar but the uncertainty increased significantly—mainly 

due to the uncertainty with regard to the disutility of travel by bicycle. A limitation of the 

approach taken in this chapter, shared with all previous studies in this area was that in reporting 

total impacts, the potential for negative health impacts to some individuals may be masked by 

the health benefits to others. Chapter 4 therefore extended this modelling framework in order 
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to carry out the first study to estimate the distribution of the health impacts which can be 

expected as a result cycling at an individual level. This methodology was also applied to a case 

study of Dublin and it was found that, contrary to popular belief, there may be certain 

demographic groups for whom the expected health impacts of cycling are negative. In particular, 

male cyclists between the ages of 20 and 30 may experience negative health impacts on 

average. If the benefits and risks of cycling are only studied at a more aggregate level, these 

negative impacts can be expected to be masked by the positive health impacts experienced by 

other groups of cyclists and by non-cyclists. 

Chapters 5 and 6 aimed to analyse the factors influencing the environmental exposures 

experienced by urban cyclists in Dublin. First, an environmental sensing node, the BEE node, was 

developed which is capable of being easily carried by a cyclist in a backpack and measuring their 

exposure to air and noise pollution. The BEE node included low-cost electrochemical gas sensors 

which were validated to a high degree of accuracy through comparisons with much more 

expensive and bulky equipment. The node also incorporated a low-cost particulate matter 

sensor but the accuracy of this sensor could not be validated to the same degree of accuracy. 

Previous research into the pollution exposures of cyclists had shown that traffic volumes and 

facilities were likely to be significant factors but most studies were based on aggregate measures 

of traffic such as ADT and the studies which considered temporally and spatially resolved traffic 

volumes were inconsistent in their findings. Also, none of these studies had considered exposure 

NOx. The study described in Chapter 6 found that temporally resolved link traffic volumes were 

positively associated with all the negative environmental exposures experienced by cyclists on 

those links. This study also found that cycling on separated cycling facilities can reduce the air 

pollution exposure concentrations to which cyclists are exposed but cycling on bus lanes or on 

roadside cycle lanes without segregation actually increases exposure to air pollution. The levels 

of noise exposure were also higher on cycling facilities than on roads with no facilities. Overall 

these findings suggest that adjacent traffic volumes are strongly correlated with all 

environmental exposures and that the only cycling facilities which provide protection from 

environmental exposures are segregated facilities. 

Chapters 7 and 8 were aimed at extending the models of Chapters 3 and 4 in order to allow the 

potential health and environmental impacts of cycling to drive the design process of cycle 

networks. In order to achieve this, it was necessary to develop, calibrate and validate a disutility 

function for cyclists. Although disutility functions are an essential tool in transportation planning, 

no study to date had attempted this, possibly because the link-based calibration methods used 
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for motor vehicle disutility functions are not suitable for cycling. Chapter 7 proposed a Disutility 

of Cycling (DOC) which incorporates factors which have been previously shown to affect the 

route choices of cyclists such as intensity of vehicle traffic and the protection afforded by cycling 

facilities. The calibration is performed  by formulating the problem as a Mathematical 

Programme with Equilibrium Constraints (MPEC) and solving the MPEC using a descent method. 

The DOC function significantly outperformed route choice predictions based on cyclists seeking 

the shortest path. Perhaps more importantly, by developing a suitable calibration method, this 

chapter lay the foundations for future studies to explore different functional forms which may 

be even more accurate than the DOC function proposed in this thesis. The final contribution of 

this thesis brought together all of the contributions of the previous chapters in the development 

of an optimisation model for optimal design of cycle networks, taking into account the health 

and environmental impacts of cycling and driving. A solution algorithm was proposed  and the 

efficacy of the method was demonstrated using a simple network example. The solution 

algorithm is robust as it does not depend on gradients or Hessian information. This means that 

the objective function and equilibrium formulations of the MPEC can be changed without 

changing the solution algorithm. This tool allows cycle network design and investment to be 

driven by the potential health and environmental impacts of cycling and driving. 

9.2 Critical Assessment 

The strengths and weaknesses of the thesis will be discussed in terms of the same three themes 

used above. 

The level of uncertainty analysis was a strength of Chapters 3 and 4. Although many previous 

studied had addressed uncertainty in the parameters of the models they used, Chapter 3 took an 

additional step by comparing the estimates of different models for the same impact. This was an 

important step due to the aforementioned heterogeneity evident in the results of these models. 

Chapter 4 also addressed uncertainty in the model parameters by using stochastic sampling of 

parameters. This allowed distributions of impacts to be produced rather than just central, upper 

and lower estimates. A further strength of Chapter 4 was the novelty and timeliness of the 

individual-level analysis of the benefits and risks of cycling. Both Chapter 3 and Chapter 4 were 

largely based on local data. This can be seen as a strength in terms of the accuracy of the results 

but also as a weakness as it is unclear how well these results would generalise to a different 

setting. For example, in an urban environment where cycling rates are high and collision rates 

for cyclists are low, the expected net health benefits may turn out to be positive for all. Another 

limitation of these chapters is that there are likely to be other physical benefits of cycling which 
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were not accounted for such as improved fitness and agility. There may also be mental benefits 

such as improved focus, confidence and happiness. Finally, the models used for quantifying the 

impact of individual pollution exposure ignored many potential sources of variation and this was 

part of the motivation for Chapters 5 and 6. 

The BEE node developed in Chapter 5 was based on low-cost sensors and electronics and so the 

node could be easily and cheaply replicated by other researchers. The node was also shown to 

have a high degree of accuracy in measuring gaseous pollutants when compared to much larger 

and more expensive devices. However, the accuracy of the particulate matter sensor could not 

be validated to a high degree of accuracy in the Dublin environment. The ambient particulate 

matter concentrations are low in Dublin and so it is possible that the accuracy would be higher 

when measuring higher concentrations. Due to the high sampling rate of the BEE node, a large 

number of data points could be collected. Additionally, the data collection in the full scale study 

was carried out by a group of volunteers completing their normal commute rather than a course 

decided by the researchers. This allowed for a large sample of realistic exposure data to be 

collected and analysed. 

Chapter 7 addresses the problem of modelling of cyclist behaviour in a comprehensive way by 

suggesting a functional form for the model, developing a framework for the calibration problem 

and developing and testing the solution algorithm using a test network as well as an actual city 

network. The accuracy of the calibrated function was better than that of the most commonly 

used alternative but still left much room for improvement. This may be because only a single 

type of disutility function was tested and there may be many other aspects of cyclist behaviour 

not reflected by this model. However, another strength of this work is the calibration process 

can easily be adapted to other functional forms and so the foundation has been lain for future 

studies to propose and test other disutility functions. The methodology described in Chapter 8 

could be used in practice to help transport planners to achieve a goal which is becoming 

increasingly relevant. Also, the solution algorithm does not depend on the equilibrium 

formulation or the objective function having any particular form and so it is very robust. A 

weakness of Chapter 8 is that the genetic algorithm is not guaranteed to find global solution. 

Also, the method was only tested on small network and so it is not clear how efficient it will be 

for networks of higher complexity. However, this will continue to become less of an issue with 

the increasing availability of cheap commoditised computing power; especially since genetic 

algorithms are particularly well suited to parallelisation. 
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9.3 Policy Implications and Directions for Future Research 

The results of Chapters 2 and 3 have this have added to the evidence basing showing that the 

total net benefits of modal shifts in favour of cycling are strongly positive. However, it has also 

been demonstrated in Chapter 4 that younger demographics are less likely to experience a net 

benefit from cycling than older people as they do not benefit as much from the physical activity 

and their risk of traffic collision is higher. In light of the positive impacts for the local population 

and for the majority of cyclists, it remains important to promote cycling as an alternative to 

driving, particularly for short trips. However, promotion of cycling should be accompanied by 

measures to mitigate risks to the cyclists themselves to ensure that the overall health benefits 

do not come at the expense of a small group of cyclists. Since traffic collisions are the only 

significant health risk to cyclists, measures which mitigate traffic collision risk such as such as 

traffic calming in residential areas and segregated facilities in urban areas are of particular 

importance. 

The studies in this thesis were based on the population and transportation system of Dublin and 

the vast majority of the other studies which have quantified the health and environmental 

impacts of cycling have been carried out in a European context. It is unclear if the same 

conclusions would be reached for different environments. For example, in a city with higher 

baseline collision rates of cyclists, the promotion of cycling could lead to less positive health 

impacts. Future research in other environments with different levels of economic development, 

congestion, air pollution and traffic collision risk would add to the evidence base.  

The results of Chapter 6 suggest that cycling facilities do not protect cyclists from environmental 

exposures as much as previously thought. However, this does not mean that transport planners 

should not try to provide cycling facilities or that cyclists should not use them. As shown in 

Chapters 3 and 4, the risk of traffic collisions is a more significant health hazard than air pollution 

exposure and it is still likely that cycling facilities, especially separated cycle lanes, reduce the 

risk of traffic collision for cyclists. A similar exposure study with more reliable measurement of 

coarse, fine and ultrafine particulate matter would be necessary to reliably test whether the 

conclusions of this thesis apply specifically to particulate matter. Segregated facilities were 

shown to decrease environmental exposures of cyclists more effectively than roadside lanes or 

bus lanes. This superiority of segregated lanes over other facility types adds to previous evidence 

indicating that cyclists prefer segregated lanes over other types of facilities (Buehler and Dill, 

2016) and that roadside lanes do little to reduce risk perceptions of cyclists (Parkin et al., 2007). 

Transport planners wishing to encourage cycling should therefore endeavour to provide cycling 
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facilities with physical separation from traffic wherever possible, especially on highly trafficked 

roads. The National Cycle Manual of Ireland refers to roadside cycle lanes as “Standard Cycle 

Tracks” but the results of this thesis as well as previous work suggest that lanes with physical 

segregation should become the standard cycling facility. 

The NTA, by incorporating cycling assignment into the new Regional Modelling System has 

demonstrated an intention to take cyclists into account in strategic transport models. However, 

the model still relies on the assumption that cyclists take the shortest path without any regard 

for levels of motorised traffic or available facilities. Assignment of cyclists to a network using the 

shortest path method is unrealistic and this thesis has shown that superior accuracy can be 

achieved by using a function which takes account of volumes of motor vehicle traffic and 

presence of cycling facilities. Transport authorities such as the NTA should consider more 

realistic models of cyclist behaviour in order to ensure that any insights or strategies generated 

through modelling efforts are based on a reasonable approximation to reality. Future research in 

this area should also test different forms of disutility function for cyclists in order to arrive at a 

widely accepted disutility function such as the BPR function for motorised traffic.  

Finally, this thesis has shown that is possible to take a rigorous and systematic approach to 

designing cycle facilities in order to maximise societal benefit. In the approaches currently taken 

by government bodies to appraise transportation projects, only a small number of options can 

be considered in detail, due to the time and resources required for each appraisal. These options 

are generally chosen from a larger group using tools such as Multi-Criteria Analysis as 

recommended by the CAF. Multi Criteria Analysis involves the decision maker subjectively 

assigning scores and weights to various impacts (Department of Transport, 2016). Taking a 

rigorous optimisation based approach towards appraisals would make the process less resource-

intensive, more objective and make it less likely for appraisals to become “case-making” 

exercises. Some further research is required to make this approach ready for practical 

applications as the model and algorithm presented in this thesis have not yet been tested on a 

realistic sized network. However, if this method can be validated for realistic problems it should 

be possible to implement it in practical situations with very little adaptation. This would provide 

a valuable decision support tool for transportation planners and policymakers.
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Chapter 10: Appendices 

10.1 Jacobians of KKT equations 

For the TAP described by Eq. (7.2) to Eq. (7.7), the Jacobian of the KKT equations with respect to 

the equilibrium variables and dual variables is given by Eq. (7.21). For the case where there are 

two possible modes—private car and bicycle—with disutilities described by the BPR function and 

DOC function respectively, the non-zero elements of Eq. (7.21) are detailed below. 
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 Eq. (A5) 

 

The Jacobian of the KKT equations with respect to the calibration parameters is given by Eq. 

(7.22). The non-zero elements of Eq. (7.22) are detailed below. 
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Eq. (A7) 



224 

 

𝑑

𝑑𝜎
(𝜇𝑝

𝑚(Φ) +
1

𝜃1
ln (

1

𝑃𝑆𝑝
𝑚

ℎ𝑝
𝑚

𝑞𝑤
𝑚) − 𝜆𝑤

𝑚)

= {
𝛼𝑡 ∑𝛿𝑠𝑝

𝑑𝑠
𝑚

𝑣̅𝑠
𝑚 (

𝑣𝑎−𝑐 + 𝑣𝑎−𝑏 + 𝑣𝑐

𝐾𝑠
)
𝜏

𝑠∈𝑆

        𝑖𝑓 𝑚 = 𝑐

 
0                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

 

∇𝜏𝐾𝐾𝑇1 = [
𝑑

𝑑𝜏
(𝜇𝑝

𝑚(Φ) +
1

𝜃1
ln (

1

𝑃𝑆𝑝
𝑚

ℎ𝑝
𝑚

𝑞𝑤
𝑚) − 𝜆𝑤

𝑚) ∀  𝑝 𝜖 𝑃𝑤
𝑚, 𝑚 𝜖 𝑀,𝑤 𝜖 𝑊 ]

𝑇

 

 

Where 

𝑑

𝑑𝜏
(𝜇𝑝

𝑚(Φ) +
1

𝜃1
ln (

1

𝑃𝑆𝑝
𝑚

ℎ𝑝
𝑚

𝑞𝑤
𝑚) − 𝜆𝑤

𝑚)

= {
𝛼𝑡𝜎 𝜏 ∑𝛿𝑠𝑝

𝑑𝑠
𝑚

𝑣̅𝑠
𝑚 (

𝑣𝑎−𝑐 + 𝑣𝑎−𝑏 + 𝑣𝑐

𝐾𝑠
)
𝜏−1

𝑠∈𝑆

      𝑖𝑓 𝑚 = 𝑐

 
0                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Eq. (A8) 

 

 

 

 

 

∇𝜃2
𝐾𝐾𝑇2 = [

𝑑

𝑑𝜃2
(

1

𝜃2
ln (

𝑞𝑤
𝑚

𝑞𝑤
) + 𝜆𝑤

𝑚 − 𝜆𝑤)   ∀𝑚 𝜖 𝑀,𝑤 𝜖 𝑊]

𝑇

 

 

Where 

𝑑

𝑑𝜃2
(

1

𝜃2
ln (

𝑞𝑤
𝑚

𝑞𝑤
) + 𝜆𝑤

𝑚 − 𝜆𝑤) =  −𝑙𝑛 (
𝑞𝑤

𝑚

𝑞𝑤
)(

1

𝜃2
2) 

Eq. (A9) 

 

 



225 

 

10.2 Dissemination from thesis 

The contributions of this thesis have been published in the following international peer-

reviewed journal articles. 

Doorley, R., Pakrashi, V. and Ghosh, B., 2017. Health impacts of cycling in Dublin on individual 

cyclists and on the local population. Journal of Transport & Health. 

 

Doorley, R., Pakrashi, V. and Ghosh, B., 2015. Quantifying the health impacts of active travel: 

assessment of methodologies. Transport Reviews, 35(5), pp.559-582. 

 

Doorley, R., Pakrashi, V. and Ghosh, B., 2015. Quantification of the Potential Health and 

Environmental Impacts of Active Travel in Dublin, Ireland. Transportation Research Record: 

Journal of the Transportation Research Board, (2531), pp.129-136. 

 

Contributions from the thesis have also been presented at the following conferences. 

R. Doorley, V. Pakrashi and B. Ghosh, "Designing cycle networks to maximise health, 

environmental and travel time impacts: an optimisation-based approach" in Universities’ 

Transport Study Group 49th Annual Conference, 2017 

 

R. Doorley, V. Pakrashi, C. de Courcy, F. Pilla  and B. Ghosh, " Intake of Air Pollutants by Cyclists 

in Urban Environments: Characterization Using Low-Cost Mobile Monitoring" in Transportation 

Research Board, 95th Annual Meeting, 2016 

 

R. Doorley, V. Pakrashi and B. Ghosh, " Quantification of the potential health and environmental 

impacts of active travel in Dublin" in Irish Transportation Research Network Conference, 2014 
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10.3 Participant Information and Consent Form 

Introduction 

This research aims to quantify the benefits and risks of active travel by means of a field 

measurement study. Study participants will carry out their regular commute by bicycle while 

carrying a backpack containing a number of sensors which will provide information about the 

physical hazards to which they are exposed as well as the amount and intensity of physical 

activity. This research is being conducted as part of PhD degree project in Trinity College, Dublin. 

 

Procedure 

You will be one of 20-25 participants who will complete their commutes as usual by bicycle while 

wearing a backpack containing an environmental sensing platform and wearing a heart rate 

monitor. You will carry out measurements during 2-4 commutes. You may use your own bicycle 

if available or, if not, you may use the project bicycle. Before starting your first measurement 

session, you will be trained in the use of the equipment by the research team. You will also be 

provided with a document which will explain the steps to be taken in carrying out the 

measurements. Before starting each session, you will switch on the equipment, ensure that all 

instruments are working correctly and continue with your commute as normal while wearing the 

backpack. After reaching your destination, you will turn off the equipment and prepare the 

equipment for the next measurement session. The data which will be recorded during each 

commute are: 

 Concentrations of airborne particulate matter (PM1, PM2.5, PM10) 

 Concentrations of carbon monoxide (CO), nitrogen dioxide (NO2) and nitrogen oxides 

(NOx) 

 Sound Pressure Level 

 Heart Rate 

 GPS location 

Benefits 

You find out how much you are benefiting (or harming) your health and the environment by 

cycling instead of driving. The benefits of physical exercise as well as reductions in emissions of 

CO2 and toxic pollutants will be quantified and weighed against your personal exposures to air 

pollution and noise pollution. We can also provide estimates of the percentage reduction in risk 

of mortality you will be experience if the same programme of cycling is sustained in the long 

term. If you are interested in learning more about the outcomes of the research project we can 

arrange to give you this information upon the project’s completion. 
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Inclusion Criteria 

You must be over the age of 18 and in good health to participate in this study.  

 

Confidentiality 

The identities of all participants will remain confidential. Names will not be published and will 

not be disclosed to anyone outside the study group. Only non-personally identifiable 

information will be used in analysis, publication and presentation of resulting data and findings. 

The data may be published in such a way that the participants remain anonymous. The data will 

be retained after the study is completed. 

 

Voluntary Participation 

You have volunteered to participate in this study and you may quit at any time. You have the 

right to omit information without penalty. Choosing to limit certain information may reduce the 

accuracy of the reported results.  

 

Risks 

You understand and appreciate the risks involved in urban cycling and voluntarily assume those 

risks. You will be responsible for your own welfare and personal property. 

 

Stopping the study 

You understand that the investigators may stop your participation in the study at any time 

without your consent. 

 

Conflict of Interest 

The study organisers might take advantage of their existing relationships (friends and colleagues) 

to recruit study participants, and thereby make progress in their research. 

 

Further information 

You can get further information about the study, your participation in the study, and/or your 

rights, by contacting the investigators: Mr. Ronan Doorley (0871214006/ doorleyr@tcd.ie) or Dr 
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Bidisha Ghosh (bghosh@tcd.ie). If the study team learns of important new information that 

might affect your desire to remain in the study, you will be informed at once. 



 

229 

 

 Please Initial Box 

 

I confirm that I have read and understand the information form for this 

study. 

 

  

I understand that my participation is voluntary and that I am free to 

withdraw at any time, without giving reason. 

 

 

I agree to take part in this study. 

 

 

  

 

 

Name of Participant    Date    Signature 
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