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Summary 

Since the realisation of an unfavourable association between fertility and production traits 

in cattle, methods to select for improved fertility have been the subject of intense research. 

This research has focused primarily on fertility measures in the cow, and the role of the bull 

has received comparatively less attention. Significant resources are deployed by the 

agricultural industry to identify bulls with superior genetics for traits of agricultural interest. 

Using artificial insemination (AI), these bulls have a disproportionate impact on the genetics 

of subsequent generations. Despite intense selection of AI bulls and extensive in vitro 

analysis of sperm quality, pregnancy rates can still fall as low as 23% in sub-fertile bulls. 

While reliable bull fertility data is available on these AI bulls, it is time consuming and 

expensive to collect, and therefore more accurate measures of bull fertility are urgently 

required. In addition, 87% of calves born annually in Ireland are sired by a non-AI stock bull. 

Despite their significant influence on the national herd, the status of stock bull fertility 

remains unknown. It is known that current in vitro fertility tests poorly correlate with field 

fertility and they fail to identify sub-fertile bulls, resulting in economic losses to the industry. 

One important method to protect the fertility of the national herd is to identify the genes 

regulating this important trait, as selecting for these genes is both permanent and 

cumulative. A small number of studies have identified genetic variants associated with bull 

fertility; however, significant additional progress is required to understand the genetic 

architecture of this economically important trait. 

Antimicrobial peptides (AMPs), specifically β-defensins, have been shown to have a dual 

role in host defence against pathogens and in the regulation of male fertility in rodents and 

in humans. Male β-defensin knock-out mice are completely sterile and a dinucleotide 

deletion in the human DEFB126 gene results in a 40% reduction in the probability of 

conception for couples, if the male partner was homozygous for the variant. Previous 

research by our group identified an expansion of β-defensin genes in the bovine genome, 

now estimated to be 57 in total, and functional characterisation documented expression of 

these genes in the reproductive tract and protein staining of caudal sperm of the bull. 

However, the association of these genes with fertility in cattle has not previously been 

investigated. Targeted sequencing (TS) and whole exome sequencing (WES) approaches 

were used herein to catalogue genetic variation in β-defensin genes, and to identify exome-
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wide variants associated with bull fertility. Finally, validation of sequence variants in an 

independent population of AI bulls was performed. 

Based on phenotypic pregnancy rate (PR) records from over 7,000 AI bulls, strict filtering 

criteria (>1,000 insemination records) were applied to identify the most divergent high- and 

low-fertility bulls, of which 168 were selected for TS of β-defensin genes and a subset of 

bulls (n=24) were selected for WES. DNA was sourced and extracted, libraries were 

prepared by TruSeq (TS) or TruSeq Nano (WES), captured with the Nimblegen SeqCap EZSeq 

custom capture bait designs for each project and sequenced on a MiSeq (TS) or HiSeq 2500 

(WES). For both projects, quality control filtered reads were aligned to the UMD 3.1 version 

of the bovine genome and variants identified according to GATK Best Practice pipeline. Strict 

quality filtering criteria were applied. Association analyses between an adjusted animal 

model of bull fertility and the variant genotypes were performed for both datasets.  

Targeted sequencing from 4 chromosomal clusters of β-defensin genes had an average read 

depth of 197X. Following editing and quality control 2,836 SNPs were identified, 37% of 

which had not been previously described in cattle. 7.5% of SNPs were found in exons, and 

25%, 23% and 22.5% were upstream, intronic and downstream, respectively. A haplotype 

containing 94 SNPs covering ~138kb was significantly associated with fertility (P =0.002). 

This haplotype spans 8 β-defensin genes, including the bovine ortholog of DEFB126 which 

has been shown to play a role in male fertility in other species.  

WES had an average read depth of 18X, and following editing and quality control, 144,000 

SNPs were identified; 38% located in exons, 21% in introns and 2% in the 5’UTR. The 

remaining ~40% were in upstream, downstream, 3’UTR and intergenic regions. Association 

with adjusted animal model fertility phenotype identified 484 SNPs associated with the 

phenotype (P <0.01). This represents the first application of WES from bulls with divergent 

fertility phenotypes. 

SNPs most associated with bull fertility (n=58) were subsequently selected from both 

datasets for genotyping in an independent population of AI bulls (n=123). The SNP most 

associated with the adjusted animal model fertility phenotype in the validation analysis was 

in the FOXJ3 gene (P =0.0016), with a SNP frequency differential between low and high-

fertility bulls of more than 20% (low-fertility v high-fertility: 69% v 48%, respectively), and 

this SNP was the third most associated SNP in WES dataset (P =0.0005). FOXJ3 is a 
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transcription factor, and a recent publication showed that this gene is required for the 

survival of spermatogonia in mice. The fourth most associated SNP with fertility in bulls was 

in the 5’UTR region of the NOB1 gene, which is overlapping with the SPZ1 testis-specific 

transcription factor binding site. The SNP most significantly associated with the pregnancy 

rate phenotype is in the 3’UTR of DEFB128 (P =0.02), which is one of the 19 β-defensin 

genes found by our group to be expressed in bull reproductive tracts. SNPs in β-defensin 

genes were also associated with fertility in the validation dataset (BBD123, P = 0.07; 

BBD124, P = 0.06).  

This represents the first analysis of genetic variation in the expanded suite of β-defensin 

genes in cattle. Given the known association of β-defensin genes with somatic cell count, an 

important indicator of economic importance for mastitis, the identified variants were added 

to a SNP chip. In total, 863 SNPs discovered by this dual sequencing approach have been 

added to version 3 of the International Dairy and Beef SNP chip to validate their association 

in large numbers of cattle and across multiple phenotypes of economic interest. FOXJ3 and 

a β-defensin haplotype have been shown to be significantly associated with fertility in bulls. 

DEFB126 has been shown in humans to have a polymorphism resulting in decreased ability 

to penetrate cervical mucus, and BBD126, the bovine ortholog has been predicted to 

contain glycosylation sites, and two variants in BBD126 are contained in the β-defensin 

haplotype. In conclusion, this research supports a role for FOXJ3 and β-defensin genes, 

specifically, a β-defensin haplotype encompassing BBD126, in regulating male fertility in 

cattle. 
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1.1 Bovine fertility 

1.1.1 Domestication of cattle 

Cattle were domesticated 8 – 10 thousand years ago (Vigne, 2011) in two separate events, 

once  in the near East and once on the Indian sub-continent. These two domestication 

events led to two genetically divergent populations, Bos taurus and Bos indicus  

(Gotherstrom et al., 2005, MacHugh et al., 1997, Ramey et al., 2013). Domesticated cattle 

provided resources such as milk and meat and eventually, over time, came under artificial 

selection pressures to improve production of economically important products (Bovine 

HapMap et al., 2009, Evershed et al., 2008). Intense artificial selection pressure resulted in 

the emergence of breeds specialising in different traits, including milk production (e.g. 

Holstein-Friesian) and meat production (e.g. Belgian Blue). Currently in Ireland, there are 

over 7 million cattle of both dairy and beef breeds (Department of Agriculture, 2015a). 

There are over 1,000 cattle breeds worldwide, generally specialising in specific production 

outputs. As a result, cattle are an important resource to study the genetics of phenotypic 

variation, although the underlying genetic structure involved in complex traits is largely 

unknown  (Tellam et al., 2009).  

In Ireland, artificial selection for milk production has led to a replacement of the 

predominantly British Friesian breed by the North American Holstein breed, to give a 

Holstein-Friesian commonly found in dairy herds. In 1977, 10% of the herd was Holstein, 

which increased to 80% by 1998 (Dillon and Veerkamp, 2001). A corresponding increase in 

milk production from 5429 kg in 1991 to 5884 kg per cow per year in 2000 was also 

recorded (ICBF, 2000). 

 

1.1.2 Antagonistic relationship between milk production and fertility 

Intensive artificial selection for milk production has increased output with the undesirable 

side-effect of decreased fertility (Veerkamp and Beerda, 2007, Berry et al., 2014). Due to an 

antagonistic relationship between milk yield and fertility, a serious decline in fertility traits 

has occurred across the national herd, see Figure 1.1-1. Through augmented weightings in 

the national selection index, this has now been corrected and improvements have been 

detected in recent years (Berry and Evans, 2014). Nevertheless, fertility problems remain  
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including embryonic loss (Diskin et al., 2011), which have been studied for genetic causes 

(Killeen et al., 2016) and also herd management practices (Diskin et al., 2006, Diskin and 

Kenny, 2016). The genetic correlation between milk production and fertility is not in unity, 

therefore, genetic improvement in both traits should be possible with more accurate 

genomic variation and improved breeding selection (Berry et al., 2016). 

In April 2015, milk production quotas were abolished across the European Union. As a 

result, the Teagasc roadmap for the dairy sector predicts a 24% increase in the size of the 

dairy herd in 2020 and a corresponding increase in milk production by 50% (Teagasc, 2016c). 

This intensive increase in national herd size and production will herald a new focus on any 

issues that could exacerbate sub-fertility in the national herd. 

 

Figure 1.1-1: Milk yield and daughter pregnancy rate fertility correlation in Holstein-Friesian 

dairy cows. 

Figure adapted from: Animal Improvement Programs Laboratory, ARS-USDA (USDA, 2014). 

Milk yield (lbs) (left Y-axis) and daughter pregnancy rate fertility data (right Y-axis) from 

1950 – 2010 (X-axis) for US Holstein-Friesian dairy cows. These data show an inverse 

correlation between milk yield and fertility over the decades. 

 

  

Black = Milk yield (lb) 

White = DPR 
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1.1.3 Consequences of lower fertilisation rates 

Lower fertilisation rates for bulls results in an extended calving season, as cows fail to 

become pregnant early in the breeding season (Teagasc, 2016b). Slippages in fertilisation 

rates mean a serious mismatch between intake requirements and grass (the cheapest food 

source) availability which significantly increases variable costs on farm. Additionally, where 

pregnancy does not occur, extra AI services and pregnancy scans result in a less efficient 

farm system (Shalloo et al., 2004). 

One commonly measured female fertility phenotype is calving interval (CI). CI is the number 

of days between the birth of a calf and the birth of a subsequent calf, both from the same 

cow. To maintain a compact calving period, a key driver of on-farm efficiency in grass-based 

production systems, such as in Ireland, a 365-day calving interval is required (Ramsbottom, 

2014b). Data from the Irish cattle breeding federation (ICBF) shows that the average CI for 

the dairy herd in Ireland from 2008 – 2015 was 394 days, which is 29 days outside the 

Teagasc 2025 target of a 365-days calving interval to maintain compact calving (Teagasc, 

2016d). Similarly, for the Irish beef herd, the current calving interval is 407 days, a full 42 

days outside the Teagasc 2025 bull beef target  (Teagasc, 2016c). Every additional calving 

interval day costs the farmer €2.20 per cow or €3,100 per year on an average farm of 50 

cows (Ramsbottom, 2014a). 

The Animal Identification and Movement Bovine Statistics Report 2015 (Department 

of Agriculture, 2015a) shows a significant discrepancy in month of calving between beef and 

dairy breeds, see Figure 1.1-2. For dairy breeds, 38% of the annual calves are born in 

February, rising to 60% including March. This is compared to beef breeds which have just 

11% of annual calvings occurring in February, with 32% occurring with March included. A 

further 21% of calvings occur in April, totalling 53% of calvings. Slippage in calving intervals 

is hypothesised to be due to a combination of male fertility, female fertility and 

environmental factors. These data highlight the need to improve calving intervals for dairy 

and beef breeds to optimise production outputs for farmers.  
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Figure 1.1-2: Calf births by month and sire type 

Figure adapted from: Animal Identification and Movement (AIM) System report 2014 

(Department of Agriculture, 2014). 

The X-axis denotes month of year calf is born, and the y-axis denotes number of calves born. 

Blue bars indicate calves born to a beef breed sire and red bars denote calves born to a 

dairy breed sire. 
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1.1.4 Artificial selection in cattle production 

Ireland operates a pasture-based production system for cattle, which utilises the abundant 

grass growth in Ireland particularly during spring. The Economic Breeding Index (EBI) 

(Teagasc, 2014), based on a national farm economic model, is used to select sires for 

breeding by Irish farmers. Prior to 2001 milk production was selected for exclusively. After 

the introduction of EBI in 2001 fertility phenotypes (survival and calving interval) were 

included. Survival is the percentage of animals that stay alive during a set period of time (1 

year), and calving interval is the period of time (days) a cow takes from calving one year to 

calving the following year. Currently, fertility traits account for 35% of the dairy index, with 

two phenotypic traits, calving interval (days) and survival (%), included (Teagasc, 2014). 

Production traits account for 33%, which shows the change in emphasis in the EBI for Irish 

farmers to improve genetic gain for fertility in the herd. 

 

1.1.5 Genomic selection 

Genomic selection is a form of marker-assisted selection where genetic variants (i.e. SNPs) 

covering the genome can be used to detect quantitative trait loci (QTL) in linkage 

disequilibrium (LD) with a trait (Goddard and Hayes, 2007). Genomic selection can improve 

bull selection practices by identifying the bulls of high-fertility and other desirable traits 

(Amann and DeJarnette, 2012). To improve genomic selection predictions, a better 

understanding of the genetic variation underlying desirable traits is required to prevent 

deleterious alleles from becoming prevalent in the national herd. Previous studies have 

identified congenital, embryonic lethal abnormalities in Holstein cattle which were 

propagated in the breed affecting fertility (Agerholm et al., 2006). This autosomal recessive 

disorder was identified in multiple Holstein populations following intensive artificial 

selection. This highlights the importance of improving genomic selection practices to 

identify high-quality sires, without affecting overall herd fertility.  
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1.1.5.1 Balancing selection 

In humans, deleterious alleles are typically rare, however, in domestic animals, because of 

intense selection and reduction in effective population sizes, they have been observed at 

higher frequencies (Marsden et al., 2016). Intensive selection can expose the negative 

effects of alleles that are deleterious to fertility and milk production. This is a form of 

balancing selection where multiple alleles (different versions of a gene) are maintained in 

the gene pool of a population at frequencies longer than expected from genetic drift alone. 

This balancing selection has been shown in Nordic red cattle, where a 660kb deletion across 

4 genes was identified as a quantitative trait locus (QTL) that is lethal in homozygous 

embryos. Despite its dramatic effect on fertility, 13%, 23% and 32% of animals carry the 

deletion in Danish, Swedish and Finnish Red Cattle, respectively (Kadri et al., 2014).  

Other examples of balancing selection maintaining a deleterious allele at high frequency in 

livestock include variants in the BMP15 and GDF9 genes, increasing prolificity in 

heterozygous females yet causing infertility in homozygous ewes (Hanrahan et al., 2004, 

Galloway et al., 2000). Similarly, the V700E mutation in the ovine FGFR3 gene increases size 

in heterozygotes yet causes Spider Lamb syndrome in homozygotes (Cockett et al., 1999).  

This balancing selection in livestock species might be more common than previously 

appreciated. These examples of balancing selection clearly demonstrate how selection for 

production traits can lead to the maintenance of deleterious alleles for fertility.   
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1.2 Male fertility 

A study in humans found that male fertility factors contribute to ~50% of cases of infertility 

(Poongothai et al., 2009). Similar fertility data has been observed in multiple livestock 

species, including cattle (Al Naib et al., 2011). Many factors contribute to male fertility, 

including genetics, environmental factors and immunology (Behr et al., 2007, Akinloye et al., 

2009, Azenabor et al., 2015). Fertility is the ability to produce offspring, and infertility is 

when this does not occour, which is distinct from sterility, the inability to conceive. The 

reasons for low fertility relate principally to diseases, poor nutrition, hereditary and 

congenital factors, hormonal disturbances or environmental changes (Lee and Foo, 2014). 

Spermatogenesis is the process which generates sperm cells in the testes first by germ cell 

formation followed by development into primary and secondary spermatocytes, and finally 

the production of mature spermatozoa (Azenabor et al., 2015). Spermatogenesis is 

dependent on optimal environmental factors, as heat and inflammation can have negative 

effects on spermatogenesis and result in sub-fertility or infertility. Inflammation can be 

caused by bacterial infection, epididymitis (infection of the epididymis), orchitis 

(inflammation of the testes) or urogenital obstruction. Inflammation on the male 

reproductive tract leads to increased pro-inflammatory cytokines in the testes. Pro-

inflammatory cytokines, such as tumour necrosis factor-alpha (TNF–α), interleukin–1 alpha 

(IL–1 α) and interleukin 1 beta (IL–1 β) cytokines in the male reproductive tract play a 

normal role in regulating infection, but increased cytokine concentrations can be 

detrimental to sperm production (Azenabor et al., 2015). 

Sperm from the testes is ejaculated into the female reproductive tract and swim towards 

the female oocyte located in one of the fallopian tubes, using the flagellum (Tollner et al., 

2012). Sperm then attempt to penetrate the zona pelucida of the oocyte and fertilise the 

ovum using enzymes located in the acrosome region in the sperm head. Successful 

fertilisation occurs when the haploid DNA from sperm is transferred to the female egg.  

In mammals, tens of millions of sperm are deposited in the female reproductive tract, but 

only dozens reach the female ovum. Cervical mucus (CM) also acts as a natural selection 

barrier that sperm must traverse on their way to the oocyte. A significant factor determining 
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the ability of sperm to swim effectively through CM is the presence of attached sugar 

moieties on their outer membrane. Glycosylation of sperm occurs during spermatogenesis 

with maturation during transit and capacitation in the epididymis. The addition of sugar 

residues enhances the negative charge on sperm that repels mucus and enables their 

passage (Yudin et al., 2005a, Tollner et al., 2008). Interestingly, altered glycosylation on β-

defensin genes has previously been documented to retard the ability of human sperm to 

penetrate cervical mucus (Yudin et al., 2005b). However, little is known of the effects of 

glycosylation, spermatogenesis, and perturbations to these processes on male fertility in 

cattle.  

Given the focus on female fertility, male fertility factors have been largely unexplored in 

comparison, despite evidence in humans that 50% of problems in fertility are caused by 

male factors (Poongothai et al., 2009). Variation in bull fertility data has been demonstrated 

previously (Berry et al., 2011a), but more evidence of genetic variation and the underlying 

reasons for bull fertility variation is required. Berry et al. previously identified positive 

genetic correlation (0.52) between fertility rates in females and males, indicating an 

improvement in male fertility will correspond to an improvement in female fertility (Berry et 

al., 2011a).  

Male fertility is an important factor in bovine reproduction as a single bull is generally used 

to breed numerous cows (Peddinti et al., 2008). Approximately 20% of beef calves were 

sired by beef AI sires in 2014. Importantly, in the dairy sector, 40-50% of calves born from 

dairy cows were sired by dairy AI sires in 2014 (ICBF, 2014). This highlights the different 

artificial selection pressures on the beef and dairy herds and the effects of AI usage in the 

herd.  

Following a round of AI, cows which are not pregnant, can then be re-inseminated with a 

stock bull/sweeper bull, see section 1.2.2.5. Development of a genetic biomarker for bull 

fertility would aid in identifying sub-fertile bulls earlier. Previous studies have predominantly 

focused on large-scale association analyses for female-related fertility traits. These studies 

are discussed in detail below and summarised in Table 1.2-2. 
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1.2.1 Genetic association studies in cattle 

Genetic association studies investigate correlation between a phenotypic and a genetic 

variable (Lewis and Knight, 2012). Phenotypes can be binary (case-control studies for 

example) or quantitative (continuous traits such as height or fertility). A genetic variable is a 

locus on the genome with at least one difference between at least two individuals. The most 

studied genetic markers are single-nucleotide polymorphisms (SNPs) which are variants at a 

single locus that usually come in two variants (biallelic) with a minor allele frequency of at 

least 1%. Minor allele frequency (MAF) refers to the frequency at which the second most 

common allele occurs in a population. Loci with low MAF have significantly lower power to 

detect genetic associations compared to high MAF (Tabangin et al., 2009). Single nucleotide 

variants (SNVs) are variants without limitation on allele frequency. A genetic variant 

association study which spans the genome of the organism of interest is referred to as 

genome-wide association study (GWAS) (Ramanan et al., 2012). GWAS can identify 

candidate genes or regions affecting phenotypes of interest (Gao et al., 2012). This can lead 

to elucidation of the molecular pathways and processes underpinning the trait being 

investigated. To perform association tests, genetic variants are correlated with quantitative 

traits, with single SNP regression being a common method.  

 

1.2.1.1 Single SNP regression 

GWAS involves correlation of large numbers of genetic variants identified from a variety of 

sources (exome and targeted β-defensin sequencing for example), with a phenotype or trait. 

Single SNP regression is commonly used to associate these variants with quantitative 

phenotypes (Ziegler et al., 2008). Linear regression is a natural statistical tool for 

quantitative traits, such as fertility. Linear regression assumes a linear relationship between 

the mean value of the trait and the genotype. Single SNP linear regression tests require the 

trait to be approximately normally distributed for each genotype. Log transformations can 

be used if data are not normally distributed to ensure approximate normality. In addition, 

single SNP linear regression requires the trait variance to be the same for each genotype 

(Balding, 2006). However, others claim that heteroscedasticity, minor allele frequency and 
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sample size are more important factors to consider before phenotype distribution in linear 

regression analyses (Buzkova, 2013). 

A linear mixed model approach allows individual SNP regression allowing for fixed and 

random effects, such as breed and allele frequency. Additionally, as many thousands of 

individual statistical tests are performed for each variant identified, strict quality control 

needs to be performed (Balding, 2006), and correction for multiple testing considered.  

 

1.2.1.2 Linkage disequilibrium 

Linkage disequilibrium is the non-random association between two or more regions of DNA 

that occurs when they are inherited together (Khatkar et al., 2008). Linkage disequilibrium 

has been shown to be greater in livestock species compared to humans (Bovine HapMap et 

al., 2009). This is important as the number of SNPs required to cover the genome is less in 

cattle compared to humans (Matukumalli et al., 2009). This is because humans have a larger 

effective population size compared to livestock species, as in humans the effective 

population size is ~ 10,000  (Kruglyak, 1999) whereas in livestock effective population sizes 

can be as low as 100 (Riquet et al., 1999). Linkage disequilibrium can occur in livestock 

through migration, mutation, selection, small finite population size or other genetic events 

which the population experiences1. The extent of LD among markers within an interval also 

reflects selection on the genes within. This is because alleles will increase the frequency in 

the population of a surrounding segment of chromosome as they are driven toward fixation 

in selective sweeps.  

 

1.2.1.3 Hardy- Weinberg Equilibrium 

The Hardy-Weinberg equilibrium (HWE) principle states that allele frequencies in a 

population will remain constant from generation to generation in the absence of 

evolutionary influences. The HWE function is as follows: 

 

                                                 
1
 https://jvanderw.une.edu.au/genomic_selection_une.pdf 
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Where p and q are allele frequencies.  

HWE assumes the following are true: Organisms are diploid, only sexual reproduction 

occurs, generations are non-overlapping, mating is random, population size is large, allele 

frequencies are equal in the sexes, and there is no migration mutation or selection. 

Deviation from HWE indicates one or more of these basic assumptions have been violated. 

 

1.2.1.4 GWAS in cattle 

Previous GWAS have identified genetic variants associated with diverse fertility phenotypes, 

including sire conception rate, daughter pregnancy rate, age of first calving and cow 

conception rate. A selection of variants associated with male and female fertility 

phenotypes are summarised in Table 1.2-2. 

Sire conception rate is the expected difference in conception rate of a sire compared with 

the mean of all other evaluated sires. Genotype data from 1,755 Holstein dairy cattle, and 

38,650 SNPs spanning the genome were collected to conduct a GWAS with sire conception 

rate as the phenotype. Eight SNPs with genome-wide significance with sire conception rate 

were identified. Some of these SNPs are located close to or in the middle of genes with 

functions related to male fertility, such as the sperm acrosome reaction, chromatin 

remodelling during the spermatogenesis, and the meiotic process during male germ cell 

maturation. SNPs showed dominance effects which indicated the relevance of dominant 

SNP inheritance on traits such as fertility (Penagaricano et al., 2012). 

Genotyping of 10 high- and 10 low-fertility bulls using Bovine SNP Gene Chips containing 

approximately 10,000 random SNP markers was performed to identify variants in a 

population of divergent fertility bulls. Of these, 97 were found to be associated with fertility. 

The 4 most significant SNPs were analysed for allelic discrimination using TaqMan probes in 

a larger population with 100 high- and 101 low-fertility bulls. Two significantly associated 

SNPs were identified, one of which causes a synonymous mutation on integrin beta 5, 

located on chromosome 1, and incubation of spermatozoa with antibodies for integrin beta 

5 significantly decreased their ability to fertilize oocytes (Feugang et al., 2009). 
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An additional study used Bayesian analysis of 795 dairy bulls genotyped with 38,416 SNPs 

for association with non-compensatory fertility. Non-compensatory fertility data was found 

to be normally distributed, and that the correlation between true and predicted breeding 

value for non-compensatory fertility was r2 ~ 0.145, which is to be expected given the low 

heritability of the trait (Blaschek et al., 2011). 

SPAG11 has an important role in male reproductive function. Six SNPs in the SPAG11 gene in 

426 Chinese Holstein bulls were investigated and were found to be in linkage disequilibrium 

with each other (Liu et al., 2011). Correlation analysis showed one SNP (g.16974C>T ) had a 

marked effect on sperm motility and sperm concentration, whereas another (g.22696T>C) 

had a significant effect on post-thaw cryopreserved sperm motility and deformity rate (Liu 

et al., 2011). 

Divergent phenotype sampling has previously been used in a candidate SNP genotyping 

project design as a method to identify alleles that contribute to a trait. (Cochran et al., 

2013b). Semen from 550 Holstein bulls were genotyped for 434 candidate SNPs previously 

identified as being associated with reproductive traits, using the Sequenom MassARRAY® 

genotyping system. Cochran et al. identified 40 SNPs which were significantly associated 

with daughter pregnancy rate (DPR). These SNPs were in genes involved in endocrine 

system, cell signalling, immune function and inhibition of apoptosis. Ten of the genes were 

regulated by a sex hormone, estradiol, and 29 SNPs associated with DPR were not negatively 

associated with production traits (Cochran et al., 2013b). This highlighted the possibility of 

selecting for DPR, a fertility phenotype, without compromising milk production traits.  

The discordance between results highlights the different methods used to measure bull 

fertility in different countries. Berry et al. promote the use of an adjusted animal model as a 

model of pregnancy rate (Berry et al., 2011a), as a statistical model to better estimate the 

performance of service bulls. AAM is a multiple regression mixed model of pregnancy rate, 

where a cow/heifer was confirmed to be pregnant to a given service either by a calving 

event and/or whereby a repeat service (or a pregnancy scan) deemed the animal not to be 

pregnant. The model was then adjusted for random and fixed effects, including semen type 

(frozen, fresh), cow genotype, parity of cow, month of service, day of the week when 

inseminated, service number, herd, AI technician, bull breed, see Table 1.2-1. AAM is 
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expected to more accurately represent male-specific fertility, as the male-female 

interactions are decoupled in the AAM model, due to the fixed and random effects (as 

outlined in Table 1.2-1) being accounted for. The estimate from the model was weighted for 

number of insemination records. This gave the AAM, which was expressed relative to the 

mean of the population for all 7,000 AI bulls. The study identified correlations between 

rankings of service bulls on male fertility differs when systematic environmental, as well as 

genetic effects, are accounted for in a mixed model.   
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Table 1.2-1: Fixed and Random effects included in adjusted animal model. 

A list of fixed and random effects included in a statistical model used to better estimate the 

performance of service bulls. AAM is a multiple regression mixed model of pregnancy rate. 

 

 

Fixed effects Random effects 

Parity of cow Cow: Genotype and repeatability 

Dystocia in previous calving Service sire 

Stillbirth in previous calving Sire x year 

Calving to service days Technician x year 

Heterosis and recombination of cow and embryo Day of the week 

Service number  

Month of service  

Herd x year of service  

Straw type  
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Table 1.2-2: Selection of SNPs associated with bull fertility phenotypes in published literature 

This table shows the SNPs associated with a fertility phenotype, preferentially a male fertility phenotype. Each SNP is in or near the gene. All 

associations have been published in peer-reviewed literature per references.  SNP = Ref/Alt allele, Chr = Chromsome.

Gene 

Name 

SNP Chr Position SNP ID Phenotypic Association Reference 

STAT5a [C/G] 19 43045807 rs137182814 Sire conception rate Li, Khatib et al. 

2009 

STAT5a [G/C] 19 43041479 NA Fertilization Rate / Age of First Calving Li, Khatib et al. 

2009 

CAST [T/C] 7 98485273 rs137601357 Daughter pregnancy rate and cow conception rate Hansen, Cochran et 

al. 2013 

MAP1B [G/T] 20 9331992 rs109423562 Sire conception rate Li, Khatib et al. 

2012 

CWC15 [A/G] 15 15713532 rs210398455  Decreased reproductive efficiency Sonstegard et al.  

2013 

Unknown [A/G]  13 60468277 ss86288836 Calving to first insemination interval and Fertility Index Sahana, Lund et al. 

2010 

FGF2 [G/A] 17 35247483 g.11646A>G Fertilization rate and early embryonic survival Wang, Schutzkus et 

al. 2009 

ITGB5 [C/T] 1 69802307 rs41257187 Incubation of bull spermatozoa with integrin beta 5 antibodies 

significantly decreased the ability to fertilize oocytes. 

Feugang, Kaya et 

al. 2009 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=210398455
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1.2.2 Fertility evaluation in bulls 

Animal Health Ireland (AHI) state in their biennial report for 2012 – 2014 that “The causes of 

sub-optimal fertility are complex and varied and addressing these effectively requires a 

coordinated, holistic and multi-disciplinary response”, highlighting the importance of 

multiple different technologies, methods, and plans to tackle the problem (IRELAND, 2012). 

Such methods include, but are not limited to, genomic selection, genomics, breeding 

programs, and improved measures of fertility.  

Currently, no single diagnostic test can accurately predict fertility in bulls which produce 

apparently normal semen (Braundmeier and Miller, 2001). Therefore, the focus is usually on 

field fertility. While it is the phenotypic parameter that matters most, records are 

complicated by several factors as outlined below. 

 

1.2.2.1 In vivo vs in vitro fertility  

Differences in the ability of sperm to inseminate eggs in vitro vs in vivo have been identified 

(Al Naib et al., 2011). In the study, bulls used in commercial AI breeding, which have passed 

all semen quality testing evaluations were assessed for pregnancy rate and determined to 

be high fertility (51 - 54%) or low fertility (23 – 26%). Sperm from low fertility bulls exhibited 

a reduced ability to penetrate artificial cervical mucus as well as to fertilize oocytes in vitro. 

Sperm which are morphologically normal, are motile, and pass all other criteria, yet have 

poor performance are of interest. The genes and processes involved in this need to be 

elucidated further.  

In vitro, sperm can fertilize the egg easier compared to in vivo fertility trials. An in vivo field 

fertility trial aimed to identify why frozen-thawed semen resulted in a lower fertilization 

rate. High and low fertility bulls were identified (Al Naib et al., 2011). The ability of sperm to 

penetrate artificial cervical mucus was assessed. In this study, larger numbers of sperm from 

high fertility bulls were better able to penetrate cervical mucus, trending towards 

significance (P-value = 0.08), and had an increased ability to fertilize oocytes in vitro (Al Naib 

et al., 2011). 
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1.2.2.2 Lack of male fertility phenotypes 

One limiting factor in evaluating bull fertility is a lack of detailed bull fertility phenotypic 

data (Carthy et al., 2016). Daughter pregnancy rate (DPR) is a common bull fertility 

phenotype used. DPR is a measure of a sire’s daughter’s ability to become pregnant, rather 

than a measure of his own ability to get cows pregnant. This may result in under-reporting 

of sub-fertility. DPR does not accurately measure male fertility, as additional effects need to 

be accounted for, including AI technician and cow health. Statistical models may provide 

more accurate assessments of male fertility given high-quality phenotypic data. Berry et al. 

suggest a benefit of using a statistical model to better estimate the performance of service 

bulls (Berry et al., 2011a). The study identified correlations between rankings of service bulls 

on male fertility differs when systematic environmental, as well as genetic effects, are 

accounted for in a mixed model. Sub-fertility may be caused by low libido, sperm quality, 

sperm quantity, sperm defects, or physical defects affecting bull motility and mating ability 

(Teagasc, 2016a). Use of sub-fertile bulls will result in low pregnancy rates, an extended 

calving interval, and increased culling of cows for infertility reasons. Sub-fertile bulls can go 

undetected in the herd for large periods of the breeding season, unless constant vigilance is 

maintained. In addition, bull breeding soundness evaluations may need to be performed 

(Teagasc, 2016b). 

 

1.2.2.3 Multiple measures of fertility - breeding soundness evaluations 

Bull breeding soundness evaluations are physical examinations performed by vets or trained 

evaluators on bulls, ideally 60 days prior to the start of the breeding season. Evaluations 

comprise of physical examination of the feet, legs, eyes, penis, and testicles. It also includes 

measurements for scrotal circumference. Semen examination, including analysis of sperm 

motility and shape are also performed. Additionally, mating ability can be assessed, and an 

overall classification of “satisfactory” or “unsatisfactory” is given. “Satisfactory” bulls will 

have passed a minimum threshold, although the test cannot accurately predict sub-fertile 

bulls, and these tests do not address all aspects of bull fertility. Current semen quality tests 

estimate viable sperm via live/dead counts, motility, progressive motility, and identify 

morphological abnormalities (Kastelic and Thundathil, 2008).  

  



19 

 

1.2.2.4 Compensation 

Semen from high genetic merit bulls is in demand to improve the genetic gain for important 

traits in the national herd. This can lead to a shortage of semen straws available for use in 

artificial insemination for popular bulls. Bull fertility can be compensatory or non-

compensatory. Compensatory fertility means the ability of a bull to impregnate a cow can 

be improved by increasing the number of sperm injected into semen straws for use in AI. By 

compensating for sub-fertility by increasing sperm number, fewer semen straws can be 

produced by bull ejaculate. Therefore, by identifying non-compensatory bulls, the cost-

benefit of rearing bulls to maturity for AI will become more favourable for the farmer and 

the industry. 

 

1.2.2.5 Stock bulls 

Natural service is the main breeding strategy for Irish suckler cow herds in Ireland with ~80% 

of calves born annually sired by stock bulls, according to data from the ICBF on beef breed 

statistics 2013 (ICBF, 2013). Stock bulls are exposed to less artificial selection pressures 

compared to AI bulls, which are intensively selected for production traits.  

Due to small herd sizes and single-sire mating in Ireland, a stock bull’s fertility is of great 

importance for calving interval, especially in the beef herd and for total number of calvings. 

While reports of sterility are generally low (~5% in stock bulls), subfertility 20-25% is more 

common in breeding bulls (Teagasc, 2016a).  

Furthermore, the EBI is an important tool for bull selection, as a measure of a bull’s 

progeny’s production potential, and does not necessarily indicate the ability of a bull to 

impregnate cows. Therefore, the identification of genetic markers which affect bull fertility 

would be important and valuable to farmers and breeders.  

Phenotypic databases for stock bulls are not routinely recorded nationwide. Development 

of a stock bull’s phenotype database may lead to improved genetic gain by identifying 

variants associated with fertility. Until then, AI bulls are the best source of phenotypic data 

to study male fertility, due to calving records, database management, and male fertility 
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phenotype collection. Phenotypic variation for fertility traits is likely to be higher in stock 

bulls compared to the highly selected pre-screened AI bulls.  

 

1.2.3 Current status of bull fertility 

Many reproductive phenotypes exist for dairy and beef breeds, with female fertility 

phenotypes shown to be lowly heritable (0.02 – 0.04 units) (Berry et al., 2014), with narrow-

sense heritability (h2) ranging between 0 and 1. The low heritability for female phenotypes 

does not imply that genetic selection cannot change phenotypic performance, as shown by 

the decline in dairy cow reproductive performance due to selection for increased milk 

production. Male reproductive phenotypes are not as widely available, (e.g. semen quality) 

but are more heritable (0.05 – 0.22 units) for semen related traits (Berry et al., 2014). For 

male fertility traits, a lack of genetic variance for male fertility has led to suggestions that 

male fertility cannot be improved using genetics (Berry et al., 2011a). However, only bulls 

which pass all sperm quality control tests (both microscopy based and computer-aided 

sperm analysis (CASA), including sperm morphology, sperm motility, and progressive 

motility), are used in artificial insemination and therefore, bulls with inferior semen quality 

are excluded, resulting in decreased variability. 

Large variations in bull fertility have been documented between elite sires used for AI in 

Ireland by national cattle breeding centre (NCBC), with recordings of 5% success rate in 

achieving high-quality breeding bulls. Approximately 400 bulls are selected for in vivo 

breeding trials, with ~20 bulls passing breeding trial selection satisfactorily. While the 

incidence of complete bull sterility is generally low (<5%), the incidence of subfertility of 20-

25% is more common in breeding bulls, with large variation in fertility among individual 

animals. Al Naib et al. (2011) identified that sperm from high-fertility bulls were better able 

to penetrate artificial mucus and to have an increased ability to fertilize oocytes in vitro (Al 

Naib et al., 2011), see Figure 1.2-1.  

With the use of artificial insemination, where the sperm bypasses the cervix, and therefore 

the mucus, bulls with sub-fertile sperm bypass the natural selection method of mucus 

penetration and could decrease national herd fertility.  
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Adapted from: (Al Naib et al., 2011) 

Figure 1.2-1: Artificial mucus penetration ability of sperm from high and low fertility 

Holstein Friesian bulls. 

Mean number of sperm from high and low-fertility Holstein-Friesian bulls penetrating 

artificial mucus. Fertility status of Holstein-Friesian bulls (X-axis) and the mean number of 

sperm at each 10 mm point (Y-axis) are shown. The mean number of sperm at each 10 mm 

point was 56.0 (95% CI 39.5 to 75.3) and 42.9 (95% CI 29.3 to 59.1) for high and low fertility 

Holstein Friesian bulls, respectively (P = 0.09). 

  

P = 0.09 
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1.2.4 Fertility and the immune system 

A number of factors have been shown to play a role in male fertility, including hormonal 

alterations, diet (Dance et al., 2016), genetic aberrations (Akinloye et al., 2009), infection 

and inflammation (Choudhury and Knapp, 2001). Upon inflammation of the male 

reproductive tract, one function of the innate immune system is to recruit phagocytes and 

effector molecules to the site of infection by releasing cytokines and other inflammatory 

mediators (Azenabor et al., 2015).  

The innate immune system is the body’s first line of defence against microorganisms 

present in the environment, such as bacteria, viruses, and pathogens. Seminal plasma 

protects sperm during transit through the female reproductive tract, but also contains 

soluble and exosome-associated cytokines, hormones, and other proteins and factors that 

affect female reproductive tissues (Robertson, 2005). The cervix is an important regulator of 

the female genital tract immune response to pathogens and foreign male sperm introduced 

upon ejaculation. Seminal fluid affects the cervical immune response, inducing 

proinflammatory cytokine synthesis, specifically TGF-β, and leukocyte recruitment (Sharkey 

et al., 2012).  

In bovines, there is little known about the interaction between the ejaculate and the female 

reproductive tract, with similarities being drawn from data in other species (Suarez and 

Pacey, 2006). Bovine sperm are deposited in the vagina, and migrate through the cervix, 

into the uterus, leaving large percentages of the seminal fluid behind (Alghamdi et al., 

2009). The sperm are coated in seminal plasma proteins which may explain how seminal 

plasma functions in the uterus (Alghamdi et al., 2010). This indicates the seminal plasma has 

a regulatory effect on the immune response, and neutrophil-sperm interactions may be a 

physiologically relevant pathway in bovine fertility (Schjenken and Robertson, 2014).  

Choline dehydrogenase (CHDH) and interleukin 17 receptor B (IL17RB) have been shown to 

be associated with changes in human sperm cell function. A non-synonymous SNP in CHDH 

results in altered sperm motility patterns and dysmorphic mitochondrial structure in sperm 

(Johnson et al., 2012). Meanwhile a SNP in the coding region of IL17RB results in altered 

sperm motility characteristics and changes in choline metabolite concentrations in sperm. It 

has been described that β-defensin genes protect sperm from attack by the female immune 
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system in the reproductive tract (Amjadi et al., 2014, Tollner et al., 2011). Ultimately, it may 

be immune genes that play a pivotal role in regulating bovine fertility. 

 

1.3 Defensin genes and male fertility 

1.3.1 Defensin family – structure 

Defensins are members of a group of molecules called anti-microbial peptides (AMP) and 

have more recently been referred to as host defence peptides (HDP). They range in size 

from 2-6kDa, are less than 100 amino acids in length, and exert broad-spectrum 

antimicrobial activities through membrane permeabilization (White et al., 1995). They 

function against bacteria, fungi, enveloped and non-enveloped viruses (Jenssen et al., 2006). 

Antimicrobial peptides have been found in multiple species from diverse taxa such as 

bacteria (Gao et al., 2009), humans (Ganz et al., 1985, Ganz and Lehrer, 1995) and plants 

(Thomma et al., 2002).  

Defensin peptides are divided into three groups: α, β, θ, and see Figure 1.3-1 on page 24. 

Each group is distinguished by their disulphide bond conformation. α-defensins are 

characterised by a disulphide bond between cysteines 1-6, 2-4 and 3-5. The disulphide 

bonds form a triple stranded beta-sheet structure, characteristic of defensins (Ganz and 

Lehrer, 1995), whereas β-defensins have a disulphide bond between cysteines 1-5, 2-4 and 

3-6 (Ganz, 2003). This defensin motif is conserved across various mammalian species (Lynn 

and Bradley, 2007).  Defensins are expressed by multiple cell types, most notably epithelial 

cells, and leukocytes (Schneider et al., 2005). 

Some primates express θ-defensin which are lectins that have an antimicrobial role, 

however, neither α-defensins nor θ-defensins are found in cattle (Lynn and Bradley, 2007). 

The third group, β-defensins play an important role in the innate immune system with 

various mechanisms of action, including aggregation, pore formation, and prokaryotic 

membrane depolarization (Sahl et al., 2005).  β-defensins are considered the ancestral 

group, with α-defensins found before placental and marsupial divergence, and θ-defensins 

only found in primates (rhesus macaque and olive baboon) (Lehrer, 2004).  
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Figure 1.3-1: Defensin categories and gene processing 

Adapted from: (Selsted and Ouellette, 2005) 

Left, alignment of defensin genes, and 5’UTR, signal sequence, mature peptide sequence, 

and 3’UTR present in mature defensin peptide. Right, numbers above diagrams indicate 

disulphide connections. Specific cysteine binding patterns determine whether the defensin 

peptide is α, β or θ. Folding determines active 3D peptide configuration. α-defensins are 

formed by 2 or 3 exons; β-defensin genes are formed by 2 and θ-defensins by 3 exons. 
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1.3.2 Bovine β-defensins – genetic structure and function 

The β-defensins are pore-forming cationic molecules that aggregate on the surfaces of 

bacterial cells to cause cell leakage and death. The β-defensin genes are typically composed 

of 2 exons. The first exon is translated into the signal and pro-segment. The second exon is 

translated into the mature peptide and for some genes a section of the pro-segment.  

Four β-defensin gene clusters exist in the bovine genome demonstrating an expansion of 

these genes, covering four Bos taurus chromosomes: 8, 13, 23 and 27, see Figure 1.3-2 (Patil 

et al., 2005).  

 
Figure 1.3-2: β-defensin syntenic map in cattle, humans and dogs. 

Adapted from Meade et al. (2014) 

Syntenic maps of β-defensin genes on four chromosomes in three species in a direct 1:1 

relationship. Chromosome 13 contains the 19 β-defensin gene cluster identified by our 

group as being an expansion of β-defensin genes in bovine, and having expression profile in 

the reproductive tracts of males and females. Chromosomes are colour coded: Bos taurus 

(blue), Homo sapien (green), and Canis familiaris (red) (Meade et al., 2014). A) Synteny map 

of bovine chromosome 8 to human chromosome 8 and canine chromosome 25. B) Synteny 

map of bovine chromosome 13 with human chromosome 20 and canine chromosome 24. 

There is evidence of an inversion event in human chromosome 20, between genes BBD132 

and BBD142. C) Synteny map of bovine chromosome 23 with human chromosome 6 and 
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canine chromosome 12. D) Synteny map of bovine chromosome 27, with human 

chromosome 8 and canine chromosome 16. 

 

A comprehensive bioinformatic search of the bovine genome, by our research group, 

identified 57 open reading frames with the characteristic six-cysteine spacing of the β-

defensin family of genes, and in vitro assays showed significant antimicrobial activity of 

BBD123 against a range of bacterial species (Cormican et al., 2008). Our group has also 

previously shown bovine β-defensin genes expressed in healthy male reproductive tracts 

(Cormican et al., 2008), indicating a dual role of β-defensins in immune response to 

infection and also reproduction. Expression of β-defensin genes was analysed in multiple 

tissues, and it was shown that expression of these genes was primarily detected in the 

reproductive tract (Narciandi et al., 2011). Subsequently, gene expression analysis of all 19 

genes in male and 9 genes in the female reproductive tracts determined that a subset of 

genes were expressed in the adult male reproductive tract and not in the immature (pre-

puberty) male, or female, suggesting a possible androgenic regulation of this subset, 

referred to as class 1. LAP, a β-defensin gene not part of the group of 19 genes, was 

expressed in both male and female reproductive tracts (Narciandi et al., 2011). 

The function of these 19 genes in cattle remains unknown, although some antimicrobial 

activity in vitro has been demonstrated showing antimicrobial activity of BBD123 in bacteria 

species (Cormican et al., 2008). For a full list of β-defensins being linked to fertility in 

comparable species, see Table 1.3-1. This table shows that β-defensin genes have been 

shown to play important roles in male fertility in multiple species. 
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Table 1.3-1: Possible mechanisms of β-defensin function in reproduction. Possible functions of β-defensins in reproduction in various species. 

The key papers from multiple species are listed here, with title of the paper, author, and key finding outlined in the abstract for each as a 

summary. 

Species Title Author Key Finding 

Human Deficient human β-defensin 1 
underlies male infertility associated 
with poor sperm motility and genital 
tract infection. 

Diao et al. 
2014 

Levels of DEFB1 in sperm from infertile men with either leukocytospermia or 
asthenozoospermia, both of which are associated with reduced motility and 
bactericidal activity in sperm, is lower compared to sperm from fertile men. 

Human A common mutation in the defensin 
DEFB126 causes impaired sperm 
function and subfertility. 

Tollner et 
al. 2011 

A two-nucleotide deletion in the open reading frame in DEFB126 generates 
abnormal mRNA. 

Macaque Macaque sperm coating protein 
DEFB126 facilitates sperm 
penetration of cervical mucus. 

Tollner et 
al. 2008 

DEFB126 and its high negative charge appears to be critical for the movement 
of sperm through CM in the macaque, while SPPs adhered to the sperm 
surface offer no advantage in CMP. 

Macaque β-defensin 126 on the surface of 
macaque sperm mediates 
attachment of sperm to oviductal 
epithelia. 

Tollner et 
al. 2008 

Treating Macaque sperm that result in alterations to DEFB126, result in loss of 
sperm-OEC binding that is independent of sperm motility. DEFB126 may be 
involved in forming a sperm reservoir in the oviduct of Macaques. 

Mouse Partial deletion of chromosome 8 β-
defensin cluster confers sperm 
dysfunction and infertility in male 
mice. 

Zhou et 
al. 2013 

β-defensins were shown in vivo to be essential for sperm maturation, and 
disruption leads to altered intracellular calcium, spontaneous acrosome 
reaction and male infertility. 

Rat The epididymis-specific antimicrobial 
peptide β-defensin 15 is required for 
sperm motility and male fertility in 
the rat (Rattus norvegicus). 

Zhao et 
al. 2011 

Knock down of Defb15 led to a reduction in fertility and embryonic 
development failure. Recombinant Defb15 showed antimicrobial activity in a 
dose-dependent manner.  

Cow  Reproductive tissue-specific 
expression profiling and genetic 
variation across a 19-gene bovine β-
defensin cluster. 

Narciandi, 
Lloyd et 
al. 2011 

Tissue-specific expression in the epididymis and fallopian tube suggest a 
reproductive-immunobiology for β-defensins in cattle. 
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1.3.3 Role of DEFB126 in fertility in multiple species 

In humans, DEFB126 facilitates movement of sperm through cervical mucus (Tollner et al., 

2012). DEFB126 is a peptide that covers the entire sperm surface, conferring a negative 

charge to the sperm. A net negative charge facilitates movement of sperm through the 

negatively charged cervical mucus of the female reproductive tract. DEFB126 also facilitates 

protection to the sperm from the female immune system in the reproductive tract via the 

long, glycosylated tail (Liu et al., 2013). Once sperm reach the oviduct, they form a reservoir, 

by binding to the oviductal epithelium via DEFB126 until ovulation occurs. Upon ovulation, a 

change in pH results in the release of DEFB126 from the sperm surface, which frees the 

sperm to continue migrating towards the egg. During this final swim, the sperm are 

capacitated via a reduction in glucose levels, which enables the sperm to penetrate the 

hyaluronan matrix, embed in the zona pelucida, release acrosome enzymes, and fertilize the 

egg (Tollner et al., 2012). The main stages of DEFB126-facilitated movement of sperm in 

humans are shown in Figure 1.3-3.  

 

 
Figure 1.3-3: Main stages of human β-defensin migration in the female reproductive tract, 

from ejaculation to fertilization 

a) Ejaculated sperm is coated with DEFB126 b) Sperm surface is negatively charged c) Sperm 

with DEFB126 coating in the uterus might provide protection from the innate and adaptive 
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immune systems. d) DEFB126 mediates attachment to the oviductal epithelium. A reservoir 

of sperm is formed as more sperm migrate into the oviduct and bind to the epithelium. e) 

During ovulation, an elevation in pH of oviductal fluid triggers the release of DEFB126 from 

the sperm surface. f) Once free of DEFB126 in the oviduct, sperm are able to migrate to the 

site of fertilization. Elevated bicarbonate and reduced glucose levels in oviductal fluid 

complete capacitation. With surface components now unmasked, such as the hyaluronidase 

PH20 and receptors for the egg, sperm can penetrate the hyaluronan-rich cumulus matrix 

and bind to the zona pellucida of the oocyte.  Adapted from Tollner et al. (2012). 

 

A dinucleotide mutation in the DEFB126 coding region (exon) results in a predicted 

frameshift and a reading frame lacking an in-frame stop codon. This non-stop abnormal 

mRNA results in mRNA from individuals homozygous for the mutation showing lower 

expression in the epididymis, compared to wild type individuals (Tollner et al., 2011). Sperm 

from the del/del donors exhibited an 84% reduction in the rate of penetration of a 

hyaluronic acid, see Figure 1.3-4. The allele frequency of this variant sequence is high in 

both a European (0.47) and a Chinese (0.45) population cohort. In a cohort study, couples 

were 40% less likely to become pregnant and took longer to achieve a live birth if the male 

partner was homozygous for the variant sequence (Tollner et al., 2011).   

Physiological regulation of sperm transport and function of cervical barrier are in part 

guided by glycosylation changes (Pluta et al., 2011). Previous work by our group identified 

longer c-termini in a group of innate immunity-related genes (Narciandi et al., 2011) and 

glycosylation sites were predicted. Immunoprecipitation of sperm against immune 

recognition in the uterus is mediated by sialic acid (Yudin et al., 2005a) and differential 

glycosylation levels may mediate immunoreactivity and lower fertility. Sperm from the 

del/del donors in DEFB126 have lower lectin binding which is associated with fewer O-linked 

oligosaccharides (Tollner et al., 2011). In addition, lectin (sugar-binding proteins) binding to 

the sperm surface glycocalyx was significantly lower in men with the homozygous variant 

(del/del) genotype than in those with either a del/wt or wt/wt genotype, suggesting an 

altered sperm glycocalyx with fewer O-linked oligosaccharides in del/del men, see Figure 

1.3-4. 

There is also evidence that β-defensins play a role in fertility in other species. In macaques, 

treatment of sperm with antibodies raised against DEFB126, resulted in significant inhibition 
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of the ability of sperm to penetrate cervical mucus. Addition of other Seminal Plasma 

Proteins (SPP) resulted in no significant inhibition. However, sperm that had DEF126 added 

back to coat the sperm surface showed restoration of the ability to penetrate cervical mucus 

(Tollner et al., 2008). This indicates that DEFB126 is critically important for the ability of 

sperm to penetrate cervical mucus.  

 

(Tollner et al., 2011) 

Figure 1.3-4: Cervical mucus penetration assay and lectin labelling in humans with DEFB126 

dincleotide polymorphism.  

A) Hyaluronic acid penetration assay - dinucleotide deletion in DEFB126 resulted in an 

84 % decrease in ability of sperm to swim through hyaluronic acid (a synthetic substitute for 

cervical mucus). Mutants (del/del) had significantly reduced HA penetration ability P = 

0.008, compared to homozygous wild-type (wt/wt) and heterozygous (wt/del). B) Lectin 

intensity - ABA lectin labeling intensity. Ŧ indicates significant differences at P = 0.030, P = 

0.008, and P = 0.0006, respectively.  

  

B 
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1.3.4 Role of other β-defensins in fertility in rodents 

In mice, deletion of 9 β-defensin genes on Mus musculus chromosome 8 results in 

dysfunctional sperm and infertility. All nine deleted genes and their human orthologs were 

most strongly expressed in the male reproductive tract. Four of the knockout genes were 

orthologous to the human genes DEFB1, DEFB106, DEFB105, and DEFB107. The remainder 

were related paralogues. Knockout male adult mice (-/-) resulted in no offspring, compared 

to heterozygotes (-/+) and wild-types (+/+) and their sperm had reduced motility. In 

contrast, adult female knockout mice showed no significant reduction in litter sizes, 

compared to heterozygotes, or wild-type individuals (Zhou et al., 2013). In addition, the 

authors also posited a reason for the reduced fertility, as sperm from Defb9/Defb9 (-/-) 

knockout male mice have disrupted microtubule structure. This indicates that deletion of β-

defensin genes resulted in a reduction of fertility specifically in males, suggesting a role for 

β-defensins in sperm function and fertility. 

In rats, epididymis-specific β-defensin 15 (Defb15), the ortholog of which in humans is 

DEFB106a, exhibits an androgen-dependent expression pattern. Similar to DEFB126 and its 

ability to bind to sperm surface, Defb15 can bind to the acrosomal region of caput sperm 

(sperm from the head region of the epididymis). Defb15 knockdown via RNAi results in 

reduced sperm progressive motility and total motility. In addition, knockdown led to a 

reduction in fertility, by a reduction in number of foetuses and offspring in knockdown 

individuals, compared to wild-type. Knockdown individuals had abnormal embryonic 

development, and recombinant Defb15 showed antimicrobial activity in a dose-dependent 

manner, which indicates a dual role for Defb15 in both an antimicrobial innate immune 

function and an epididymal reproductive function in male rats (Zhao et al., 2011).   
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1.4 Bioinformatics 

1.4.1 Bioinformatics in bovine research 

Bioinformatics has been described as the use of computers and computational tools to 

process, store and analyse biological data. Bioinformatics encompasses multiple disciplines 

and skills, including, database management, programming, genome annotation, pathway 

analysis, statistical analysis and graphic display of biological data. To answer the key 

biological questions, the analysis of high-throughput next generation sequencing data, 

curated databases of known genetic variants (Sayers et al., 2012), and gene annotation 

(Cingolani et al., 2012) and functional prediction (McLaren et al., 2016) tools are required. 

Here, sequencing of the bovine genome (Bovine Genome et al., 2009) for improving bovine 

research, the variant databases containing identified genetic variants in cattle (Sherry et al., 

2001), and a next-generation sequencing method (exome sequencing) are described in 

greater detail. 

 

1.4.2 The bovine genome 

Following the publication of the draft human genome from the human genome project in 

2001 (Lander et al., 2001), sequencing technologies have dramatically increased while the 

corresponding cost of sequencing has significantly decreased. The publication of the bovine 

genome (Bovine Genome et al., 2009, Tellam et al., 2009) showed that it is ~2.86 Gbp (2.86 

billion base pairs) long and it contains ~22,000 genes. The genes are located on 29 

autosomes and 2 sex chromosomes. L1 Dominette 01449 was the single Hereford cow used 

as the reference bovine genome in the sequencing project (Bovine Genome et al., 2009). 

The bovine genome provides an important resource to study genetic variation in cattle, to 

understand mammalian evolution and to perform genomics studies related to cattle health 

and fertility (Berry et al., 2011b, Tellam et al., 2009).  

Multiple assemblies of the bovine genome have been conducted with Baylor College of 

Medicine publishing their first assembly, Btau, in 2009. The current version, Baylor 

Btau_4.6.1, is available at the University of California Santa Cruz (UCSC) genome browser 

(Kent et al., 2002), and contains 43.3Mb of Y-chromosome sequence. 
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In an independent assembly project, University of Maryland, USA, developed the UMD 

assembly. UMD used paired-end sequence data and orthologs in the human genome to 

create an assembly of 2.86 Gbp. The current UMD assembly is UMD 3.1.1 available at the 

UCSC genome browser (Kent et al., 2002). UMD3.1 has a higher N50 contig size compared to 

Btau4.0.  N50 is the length N for which 50% of all bases in a number of sequences are in a 

sequence of length L >= N.  

 

1.4.3 SNP databases 

Single Nucleotide Polymorphisms (SNPs) are the largest group of genetic variants found in 

vertebrates. The importance of identifying genetic variation in species and individuals within 

the species has been shown previously for breeding and genetic improvement (Gao et al., 

2012). Across species there is little known on gene conservation with low to moderate 

effects on a multi-trait phenotype, such as fertility (Tellam et al., 2009).  

Following the publication of the bovine genome, the bovine HapMap project attempted to 

identify genomic structure in the bovine, by analysing 37,000 SNPs in Bos taurus and Bos 

indicus breeds. HapMap analysis of 497 cattle from 19 diverse breeds identified a rapid 

decrease in effective population size possibly due to bottlenecks associated with 

domestication, selection, and breed formation. Yet, the levels of diversity within cattle 

breeds are at least as large as exists within humans (Bovine HapMap et al., 2009).   

The development of the HapMap project showed the importance of genetic variation in 

understanding bovine evolution, helped identify markers associated with phenotypes of 

interest and has also led to the development of high-density genotyping arrays, such as the 

BovineSNP50 beadchip (Matukumalli et al., 2009). 

The SNP database, dbSNP, is a resource of 53 organisms with variant annotation on their 

genomes available for web search and FTP download (Sherry et al., 2001). As of June 2014, 

there were 40 million validated RefSNP Clusters (rs numbers), with over 293 million 

submissions (ss numbers) for the bovine genome.  Although this is actually low compared to 

humans, with over 154 million validated RefSNP Clusters (rs numbers), with 545 million 
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submissions, indicating large numbers of variants in the bovine genome are yet to be 

discovered, and their function characterised. 

 

1.4.4 Exome sequencing 

Extreme phenotype sequencing is an efficient method to capture genetic variation in 

important, functional genomic regions at relatively low cost compared to whole-genome 

sequencing (Perez-Gracia et al., 2010, Barnett et al., 2013). Exome sequencing captures and 

sequences only the protein coding exons in the genome. This method, while only 

sequencing a small portion of the genome, covers important, functional areas with variants 

which can cause synonymous or non-synonymous variants. A synonymous variant is a 

change in the DNA sequence that codes for amino acids in a protein sequence, but does not 

change the encoded amino acid. A non-synonymous variant is a DNA variant that does 

change the encoded amino acid. Synonymous mutations have been shown to have 

important effects, e.g. a synonymous change in a multidrug resistance gene MDR1 where 

the use of a synonymous codon was proposed to use a rarer tRNA which meant that the 

protein folded in a non-native fashion (Kimchi-Sarfaty et al., 2007). 

Whole-exome sequencing was first developed in 2008 as a method to selectively target 

exonic regions to allow for identification of coding variants in an individual with minimal 

cost (Ng et al., 2008). In the first exome study of a Mendelian disorder eight HapMap 

individuals from three different populations, and four unrelated individuals, with a rare 

dominantly-inherited disorder, Freedman-Sheldon Syndrome (FSS), were sequenced (Ng et 

al., 2009). They showed that exome sequencing accurately identified candidate genes for a 

Mendelian disorder in a small number of affected individuals. More recent studies have 

utilised whole-exome sequencing strategies to identify Mendelian diseases in humans (Chen 

et al., 2013, Choi et al., 2009, O'Roak et al., 2011, Yan et al., 2011).  

At the time of writing, three studies have attempted to sequence the bovine exome to 

varying degrees (McClure et al., 2014a, Cosart et al., 2011, Hirano et al., 2013). It has been 

shown that exome capture arrays (covering 2,570 genes) can be applied to domestic and 

wild species (Cosart et al., 2011). In this study, 73% of targeted bases had 10X coverage, 
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with 54% having 20X coverage for Bos taurus. Exome sequencing has previously been used 

to sequence an individual. This study reported that 95% of the target region was sequenced 

with high sensitivity and specificity for detection of homozygous and heterozygous variants 

(Hirano et al., 2013). A previous study has performed whole-exome sequencing to identify 

causative variants for underlying defective bovine embryo development contained within 

three haplotypes in Holstein and brown Swiss breeds (McClure et al., 2014a). However, 

whole-exome sequencing of males with divergent fertility phenotypes has not been 

published to date. 

In a recent study, Robert et al. (2014) performed whole-exome sequencing of 96 boars and 

found that 72 of 96 samples had at least 10X coverage for more than 90% of the targeted 

bases, see Table 4.3-3. 236,000 SNPs, and over 28,000 InDels were identified. The boar 

whole-exome sequencing project used the same Roche Nimblegen EZ Developer Library as 

used by this bull whole-exome sequencing project. Comparisons between the two methods, 

results, and designs are highly beneficial when using a novel methodology, such as this. 

Robert et al. designed probes covering 98.4% of bases in the boar targeted region, which 

was 60.6MB in size. This compares to 56.7MB of targets in this bull exome, with 99.1% 

coverage of the target design.  

Taken together, these results illustrate the value of the SNP discovery to identify genetic 

variants and association with fertility phenotypes. Exome sequencing is one method of 

performing SNP discovery. Sequencing studies of complex traits can be limited due to 

sample size. Divergent phenotype sequencing is a way of overcoming this problem because 

allele frequencies that contribute to the trait are enriched in one or both groups (Emond et 

al., 2012, Barnett et al., 2013). Utilising whole-exome sequencing in a divergent phenotype 

population will allow application of research to the farming community by contributing to 

the identification of genetic variants and biological processes underlying sire fertility. These 

findings can provide opportunities for improving bull fertility via marker-assisted selection, 

amongst other applications.  
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1.5 Applications of research 

1.5.1 Biomarkers 

This project aims to improve identification of biomarkers for selection of animals with 

increased fertility and understanding of the immunological and reproductive role of these 

molecules. In boars, for example, biomarkers present in spermatozoa after capacitation 

have been shown to help identify increased male fertility from below-average fertility boars 

with high-sensitivity (Kwon et al., 2015). This biomarker-based approach to identify male 

animals of increased fertility would be beneficial in animal breeding programmes of various 

species, especially bovine. 

Recent developments of a beef breeding index have helped improve breeding strategies, 

allowing breeders identify traits they consider desirable in their herd, allowing greater 

control over their breeding program. Developing an accurate, efficient diagnostic tool for 

bull fertility would result in significant improvements in bovine fertility. In terms of costs to 

the farmer, poor bull fertility is a major contributing factor, together with female fertility. By 

identifying bulls with high-and low-fertility phenotypes early, significant savings can be 

achieved. 

Improvements in bull phenotypic records are also encouraged to improve association 

analysis and to remove the reliance on female fertility traits, such as pregnancy rate, to 

study bull fertility. By directly recording male characteristics in a large population of bulls, 

genome-wide association analysis studies would be more accurate, and improve candidate 

SNP identification. 

Genetic variants identified in this study could also lead to improved breeding targets. 

Following association of identified variants using a customised SNP-chip for bulls, genetic 

targets which improve or decrease fertility can be used to guide the breeding bull selection 

process and improve genetic gain for fertility traits without decreasing milk production. 
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1.5.2 National genotyping scheme for cattle 

The beef data and genomics programme (BDGP) 2015-2020 (Department of Agriculture, 

2015b) was launched by the Irish department of agriculture, food and the marine (DAFM) to 

genotype a large number of beef cows for inclusion in a genomic selection breeding 

program to advance genetic gain in beef cattle. The BDGP aims to support the suckler herd 

by improving the genetic merit of the national herd through the collection of phenotypic 

data and genotyping animals and to improve quality and efficiency. 

A phenotype (P) is a combination of an individual’s genetics (G) and environment (E) (P = G + 

E), therefore, by obtaining genotypic information related to important phenotypic traits, 

and modelling the environment, an accurate prediction of the genetic gain for an individual 

and their progeny can be made.  

The BDGP was initiated off the success of the dairy cattle genomics programme. Genomic 

selection of young bulls, primarily from dairy breeds, was launched in Ireland in 2009. The 

national genotyping scheme for dairy cattle has led to improvements in milk production, 

without a decrease in fertility, although further research is required to ensure selection of 

sires based on genomic selection doesn’t adversely affect health traits. Additional markers 

(SNPs etc.) need to be incorporated to achieve this, and as an hypothesis, β-defensin 

variants may be used to improve fertility without adversely affecting health or production, 

as β-defensins have an innate immunity function in bovine (Cormican et al., 2008).  

 

1.5.3 IDB SNP chip – large GWAS dataset 

The International Dairy and Beef (IDB) SNP chip was developed by Teagasc as a low-cost 

custom genotyping panel for the dairy and beef breeding industries. The SNP chip is being 

utilized for genetic evaluations, parentage verification and screening for lethal recessives, 

congenital disorders and other mutations with effects on performance in cattle (Mullen. et 

al., 2013). Deleterious recessive mutations have been linked with inbreeding depression, the 

reduced survival and fertility of related individuals (Charlesworth and Willis, 2009). IDB SNP-

chip version 1 contained 9,973 variants added to the Illumina low density genotyping 

platform, with 5,500 SNPs for imputation to higher density genotypes (Mullen. et al., 2013). 
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Version 2 contained approx. 17k SNPs (McClure et al., 2014b). Version 3 contains 

approximately 50k SNPs, with ~25,000 for imputation. It is planned that ~330,000 animals 

will be genotyped using this SNP chip in 2016. Genotyping will be of various breeds, and 

both cows and bulls. However, a large proportion will be genotyped in bulls, which will allow 

for association analysis of genotypes from variants identified via literature review for 

version 2 or targeted β-defensin sequencing and whole-exome sequencing for version 3.  

  



 

39 

 

 

1.6 Aims 

One of the overall aims of this study was to improve bull selection practices by identifying 

candidate variants and genes involved in regulating male fertility which may be used in the 

future as biomarkers for bull fertility. To achieve this overall aim, several inter-linking 

collaborative projects have been performed, two of which are described in this thesis. In 

reference to this project, the aims helped to identify genetic variation in a divergent 

population of animals and to associate the variants with phenotypes of interest.  

 

1.7 Hypothesis 

We propose that genetic variation in exons and promoter regions of β-defensin genes 

explain some phenotypic variation in AI bulls divergent for fertility.  We also propose that 

genome-wide genetic variation of the exome and promoter regions will explain some of the 

phenotypic variation in AI bulls divergent for fertility. 

 

1.8 Objectives 

The specific objectives of this project were: 

1. To identify variants in bovine β-defensin genes and promoter regions in AI bulls of two 

groups divergent for a fertility phenotype. This objective is addressed in Chapter 3. 

2. To identify whole-exome variants and promoter region variants in a subset of animals from 

objective 1. This objective is addressed in Chapter 4. 

3. To validate candidate variants identified in variant identification, from objective 1 and 2, in 

an independent population of AI bulls. This objective is addressed in Chapter 5. 

4. To add variants to the IDB SNP-chip for future variant association to a fertility phenotype in 

the national herd and improve genetic gain for fertility. This objective is covered primarily in 

Chapter 5. 
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2 Materials and methods 
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2.1.1 Phenotypic data 

Fertility data for 7,000 AI bulls were obtained from national cattle breeding centre (NCBC) 

over four years (2010 – 2013). Two fertility phenotypes were examined, pregnancy rate and 

adjusted animal model. PR in this study was defined as a binary score (1 or 0), where 1 is an 

assumed pregnancy following insemination via AI by a trained technician unless proven 

otherwise via scanning or calving records. The AAM is a statistical model used to better 

estimate the performance of service bulls. It is based on the PR phenotype data, but also 

models environmental factors, including random and fixed effects, such as the AI 

technician’s ability, date of insemination (i.e. time of year), health of the cow and day of the 

week, parity of the cow, as well as other environmental parameters, which have been 

shown to affect the ability of a cow to conceive (Berry et al, 2014). A ful list of fixed and 

random effects are shown in Table 1.2-1. Data from all recorded artificial inseminations 

were provided by the National Cattle Breeding centre (NCBC).  

 

2.1.2 Sample selection 

Divergent (extreme) phenotype sample selection was employed, as the frequencies of 

alleles that contribute to the phenotype of interest will be enriched in one or both 

phenotype groups (Barnett et al., 2013). Bulls with divergent high-fertility and low-fertility 

were identified based on PR and AAM, identifying two groups of bulls that are divergent for 

both fertility phenotypes (PR and AAM). Sires with the highest reliability phenotype (>1,000 

inseminations) were retained, and divergent phenotypes were defined as +/- 1 standard 

deviation from the mean for PR or AAM. Inseminations were assumed successful unless 

proven otherwise. Further filtering of bulls required that less than 25% of sire fertility data 

sourced from 2013 (this was due to the lack of calving records for these bulls at the time of 

sample selection). Bulls were required to be in the divergent phenotype category for the 

most number of years possible. A pedigree analysis identified bulls related to each other 

and bulls with the lowest genetic similarity were preferentially selected. In addition, the 

breeds selected were at least 85 % purebred for their respective breeds. 

  

2.1.3 Probe design – β-defensin and WES 
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Probes were designed according to the manufacturer’s instructions2. The Nimblegen SeqCap 

EZ Developer Library from Roche (Roche NimbleGen, Inc.) was used to perform a custom-

designed capture of the whole bovine exome and separately, a targeted region of genes 

containing β-defensin genes. Two separate sequencing projects were performed as the 

bovine β-defensin genes were not annotated in bovine at the time. The EZ developer kit is 

intended for targeted capture of any animal genome, and provides up to 2.1 million 

oligonucleotide probes to capture the targeted region. It is intended for non-human 

applications, as a separate, human-specific whole-exome kit is also available. It is based on 

the same technology as the human-specific SeqCap EZ Exome library. However, the 

developer library is fully customisable by the user, meaning specific regions of interest can 

be included in the probe design step, such as 5’UTR regions, 3’UTR regions, or intronic 

regions.  

Oligonucleotide probes are magnetically labelled, allowing capture of targeted regions 

during library preparation. The bovine UMD3.1 Ensembl version 70 was used to identify the 

exome target sequence. The UMD 3.1 genome assembly was chosen as it has been shown 

to have fewer unassigned sequences compared to Btau_4.2 and it has improved annotation 

(Partipilo et al., 2011).  

 

2.1.3.1 WES probe design 

Liquid capture probes were designed to target all exons annotated in the Bos taurus 

UMD3.1 genome, plus 100 base pairs of 5’UTR, according to their standard protocols. An in-

house Perl script was used to identify target regions. This resulted in approximately 48Mb 

targeted region. This capture design was obtained and used to capture targeted region of 

gDNA in two groups, high- and low-fertility AI bulls. To identify critical promoter regions, 

100bp of 5’ untranslated region (UTR) was also targeted for each gene. In total, there were 

227,647 exons in UMD3.1 Ensembl version 70. Of these, 202,899 are targeted in this design, 

covering 56,671,697 bp. Five total matches and five mismatches were allowed. Of these 

probes, 92.5% were unique to a single genomic position, and 4.5% had only 2 possible 

matches within the genome. The length of probes was 200bp with approximately 2.1 million 

                                                 
2
 Design of probes for whole-exome sequencing was performed by Dr. Bruce Moran, Teagasc. 

http://www.nimblegen.com/company/terms/index.html?expanddiv=terms4
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probes made to cover the exome. Probes were also designed to target mitochondrial DNA 

and were 1/5th of the concentration of nuclear DNA. Uniquely mapping probes covered 80% 

of the targeted regions. Probes that mapped up to 5 times in the genome covered 

approximately 98.4% of the targeted regions, and were used for capture design.  

 

2.1.3.2 β-defensin probe design  

Complete gene sequences (introns and exons), plus 1,000 bp 5’UTR of the predicted 

transcription start site for all β-defensin genes annotated in UMD3.1 Ensembl version 70 (a 

total of 387 kb) were targeted for Roche Nimblegen SeqCap EZ Developer probe design, 

according to standard protocols NimbleGen SeqCap EZ Library SR User’s Guide v4.2. A full 

list of targeted β-defensin genes and chromosomal locations is shown in Table 1.8-1. The 

final targeted area from bait design was reduced to 235kb, to exclude repetitive regions. 

Table 1.8-1: Gene names and locations of all defensin genes and cathelicidin genes targeted 

in the custom-designed capture probes for targeted re-sequencing. 

Gene name = Gene ID, Chr = Chromosome, Start position = chromosomal location of exon 

start, End position = chromosomal location of exon end. 

Gene name Chr Start position End position 

BBD132 13 61297228 61297434 

DEFB129 13 61314417 61316744 

BBD128 13 61327495 61329038 

BBD127 13 61336426 61338919 

DEFB126 13 61348964 61353549 

BBD125A 13 61371518 61377487 

BBD125 13 61391575 61402006 

BBD115 13 61416164 61418920 

BBD142 13 61436531 61447433 

DEFB116 13 61462905 61468041 

BBD117 13 61501532 61501753 

DEFB118 13 61512890 61522849 

DEFB119 13 61523658 61533444 

BBD120 13 61531991 61533379 

BBD121 13 61550485 61551769 

DEFB122a 13 61562053 61566096 

DEFB122a 13 61572837 61578011 

DEFB123 13 61584480 61595780 

DEFB124 13 61612683 61615456 

DEFB133 23 22319719 22319840 

DEFB114 23 22330039 22333711 
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BBD113 23 22351938 22353313 

BBD110combined 23 22362601 22374885 

BBD112 23 22381956 22387980 

SBTBD1 27 4831108 4838674 

TAP 27 4888377 4890195 

DEFB103 27 4898705 4899642 

SPAG11B 27 4920221 4942958 

BBD104combined 27 4944581 4954375 

BBD105 27 4956824 4958583 

BBD107 27 4965545 4969446 

DEFB103b 27 5046949 5057903 

DEFB130 27 5064722 5064902 

BBD109 27 5072979 5073182 

LAP 27 5124202 5125990 

LOC783012 27 5129114 5133058 

BNBD6 27 5160482 5162187 

BNBD6 27 5185069 5186715 

BBDB403 27 5219420 5219479 

BBDB403 27 5220343 5220402 

BBDB403 27 5221191 5221250 

DEFB7 27 5221842 5223732 

BBD138 27 5247817 5247870 

BBD138A 27 5274804 5274929 

BBD138 27 5297139 5297201 

BBD138 27 5300000 5300107 

BNBD6 27 5327174 5328857 

BBD108 27 5376114 5389581 

DEFB4a 27 5425378 5427298 

DEFB 27 5457175 5465032 

SBTBD1 27 5473206 5473352 

DEFB1 27 5483406 5539158 

DEFB5 27 5560976 5564586 

BT402 27 5599460 5600761 

BT300 27 5614286 5614330 

BT300 27 5638525 5638581 

BNBD11 27 5788753 5788812 

BBD140 27 5808756 5809848 

DEFB10 27 6194470 6196146 

BBDB403 27 6223461 6223514 

BNBD14 27 6225015 6225125 

BBDB131 8 7280952 7287888 

BBD135 8 7288666 7288833 

BBD134 8 7301132 7303564 

BBD136 8 7331611 7332290 

Table 1.8-2 continued 
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2.2 Materials and methods related to Chapter 3.  

2.2.1 Targeted β-defensin sequencing of AI sires - library preparation and sequencing3 

Genomic DNA from high- and low-fertility sires were selected, quantified, libraries prepared, 

and sequenced. gDNA was extracted from hair and semen for AI bulls genotyped. DNA was 

quantified using Qubit® dsDNA BR Assay Kit for use with the Qubit® 2.0 Fluorometer (Life 

Technologies). DNA was then cleaned using DNA Clean & Concentrator™ kit (Zymo 

Research), 200ng cleaned gDNA was sheared and size selected using Bioruptor Plus 

(Diagenode), with fragment lengths confirmed to be approximately 600bp by Bioanalyzer 

(Agilent). DNA fragments were then prepared for sequencing as specified in the TruSeq 

Nano DNA LT Sample Prep protocol (Illumina). In total, 168 libraries were prepared for 

sequencing in pooled batches of 24 samples.  

A dual-capture protocol was used. Following pre-capture amplification 24 libraries were 

pooled to form 1μg of DNA to hybridise with baits overnight, captured, amplified, hybridised 

with another aliquot of the baits overnight, amplified and cleaned. Libraries were quantified 

using Qubit Hi Res (Life Technologies) and run on an Illumina MiSeq at 10pM with 1% PhiX 

(300bp paired-end protocol). 

 

2.2.2 Data analysis of targeted β-defensin sequencing dataset 

Paired end reads were analysed via fastQC, quality filtered with phred quality score of 25 (q 

25), for paird-end reads with BWA and adaptor trimmed with TrimGalore! (version 0.4.2) 

using a custom PERL script, see electronic appendix4. Btau.UMD3.1 version 70 was 

downloaded from Ensembl and BWA (version 0.7.15) was used to align the reads to it. 

Picard tools (version 1.60) SamFormatConverter and SortSam were used to convert BAM to 

SAM format and sort the SAM files. PCR duplicates were marked using the Picard tools 

MarkDuplicates walker, assuming sorted files. Enrichment, insert size and alignment metrics 

were calculated using the CalculateHsMetrics (picard-tools-1.60), CollectInsertSizeMetrics 

                                                 
3
 Targeted β-defensin sequencing and data analysis for 144 sires was performed with Dr. Emma 

Finlay, Teagasc, in collaboration with the same research project and funding source. Whole-exome sequencing 
data was analysed, and targeted β-defensin library preparation, sequencing, and data analysis of remaining 24 
sires was performed, by Mr. Ronan Whiston. 

4
 Electronic Appendix 2.1  Trim_fastqc_map_gatk_filter.pl 



 

46 

 

(picard-tools-1.60), and CollectAlignmentSummaryMetrics (picard-tools-1.60) walkers, 

respectively, with VALIDATION_STRINGENCY=LENIENT for each. Variant discovery was also 

performed using GATK, following the Best Practice Pipeline (Broad, 2017); variants were 

called individually using the HaplotypeCaller (Genome Analysis Toolkit: Version 3.4-0-

g7e26428) and joint genotyping performed on all samples simultaneously using 

GenotypeGVCFs. 

 

2.2.3 SNP filtration of β-defensin sequencing dataset 

SNPs identified via the targeted β-defensin sequencing GATK best practice pipeline were 

filtered to remove variants of low quality and which fall outside certain parameters, to 

reduce the number of false positives. The parameters for hard filtering of variants were as 

follows: Filter out variant calls if located within a cluster where three or more calls are made 

in a 10 bp window [clusterWindowSize 10]; filter out variant if there are at least four 

alignments with a mapping quality of zero (MQ0) and if the proportion of alignments 

mapping ambiguously corresponds to 1/10th of all alignments [MQ0 > =4 && ((MQ0/(1.0 * 

DP)) > 0.1)], DP: total (unfiltered) depth over all samples; filter out variants which are 

covered by less than 5 reads [DP < 5]; filter out variants having a low quality score [Q < 50]; 

filter out variants with low variant confidence over unfiltered depth of non-reference 

samples (QD) [QD < 1.5]; filter out variants based on strand bias using Fisher's exact test: 

FS > 60.0 for SNP calling, FS > 200.0 for InDel calling. In-house Perl scripts were also written 

to identify any individual genotypes identified as heterozygous with an allele ratio of> 80:20 

and any SNP which had a read depth of less than 8 in a given individual and code them as 

missing data. 

 

2.2.4 SNP association analysis of β-defensin sequencing 

SNP association analysis of targeted β-defensin SNPs with AAM fertility phenotype was 

performed using the R package GenABEL (version 1.8-0) (Aulchenko et al., 2007). This 

package and it’s usage is described in section 2.3.8. Quality control was performed with the 

check.marker function. A SNP call rate filter of 0.8, individual call rate (maximum percent of 

missing genotypes in an individual) cut off = 0.9, and minor allele frequency cut off = 0.05, 
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were applied. SNPs were examined for association to fertility using breed and the number of 

matings performed as fixed effects. 

 

2.2.5 Targeted β-defensin re-sequencing in sire subset 

Using the same 24 bulls sequenced in the Whole Exome Sequencing (WES) project, β-

defensin and cathelicidin genes were also sequenced. Targeted re-sequencing targets 

included ~378kb, comprising 69 target genes, including introns, exons and regulatory 

regions. These 69 targets included 1,000bp of 5’ UTR promoter region, to target gene 

regulation in the promoter region.  

 

2.2.6 Targeted β-defensin gene re-sequencing library preparation in sire subset  

To prepare libraries for targeted capture and sequencing, firstly, a sample library was 

created. The sample library is the initial shotgun library generated from gDNA by 

fragmentation and ligation of sequencing–specific adapters. Sequencing libraries were 

prepared according to the manufacturer’s protocol (TruSeq® Nano DNA Library Prep 

Reference Guide), using the Illumina TruSeq Nano LT Sample Prep Kit (Illumina, San Diego, 

California). Briefly, 200ng DNA was sheared using a Bioruptor Plus and the fragment length 

of ~600bp was confirmed using the Bioanalyzer (Agilent). Library preparation, end-repair, A-

tail and adapter ligation were performed according to the TruSeq Nano DNA LT sample prep 

protocol (Illumina). Samples were pooled at random into groups of 24. The same 24 bulls 

sequenced in the Whole Exome Sequencing (WES) project were pooled together in one 

reaction. One equimolar pool of all 24 sample libraries was then used for library sequence 

capture, which is the enrichment of targeted regions from the sample libraries.  

Sequence capture of pooled sample libraries with the SeqCap EZ library of a customised, 

complete set of biotinylated oligonucleotide probes provided by Roche Nimblegen was 

performed. These probes were designed to capture 69 whole genes of interest, including 

introns, and 1,000 bp of 5’ UTR.  

Following sequence capture, unbound probes and DNA were washed twice, using a 

magnetic separation column. Bound probes and DNA were amplified with 4 cycles of 
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ligation-mediated PCR, LM-PCR. Immediately prior to the sequencing run, the pooled 

sample library is denatured and diluted to 8pM, according to the Illumina MiSeq protocol. 

All 24 libraries were pooled in equimolar concentrations and underwent sequencing on an 

Illumina MiSeq instrument using the 300-cycle MiSeq Reagent Kit v3 (Illumina) to give 

paired-end reads of 300bp. Sequences were downloaded from BaseSpace, the Illumina 

genomics cloud computing tool. 

  

2.2.7 Targeted re-sequencing data analysis in sire subset  

Sequencing reads (300bp) were aligned to UMD3.1 ENSEMBL 70 release using the Burrows 

Wheeler Transform Aligner (BWA) (Li and Durbin, 2009) with the following parameters “bwa 

aln -q 20 -t 8”. This set the phred-scaled quality cut-off at 20 and threading was performed 

across 8 cores. Duplicates were removed and variant calls were made using GATK’s 

HaplotypeCaller walker (GATK Version 3.4-0-g7e26428), with the following commands:  

“java -Xmx3g -jar /data/efinlay/GenomeAnalysisTK.jar -T HaplotypeCaller -R 

/home/bmoran/bin/ens70/Btau.UMD3.1.70.short.fa -I $output1/$sample.recal.bam -o 

$output1/$sample.raw.2.vcf --dbsnp 

/data/rwhiston/Project_RonanTS/exome/Bos_taurus_78.fixed_2_sorted.vcf -

stand_call_conf 30 -stand_emit_conf 10 -minPruning 3“ 

“java -Xmx3g -jar /data/efinlay/GenomeAnalysisTK.jar -T HaplotypeCaller -R 

/home/bmoran/bin/ens70/Btau.UMD3.1.70.short.fa -I $output1/$sample.recal.bam --

emitRefConfidence GVCF --variant_index_parameter 128000 -variant_index_type LINEAR -o 

$output1/$sample.raw.g.2.vcf --dbsnp 

/data/rwhiston/Project_RonanTS/exome/Bos_taurus_78.fixed_2_sorted.vcf -

stand_call_conf 30 -stand_emit_conf 10 -minPruning 3”. 

GATK’s best practice pipeline was followed to identify variants. SNPs were filtered to 

remove SNPs with coverage < 5, quality < 30 or displaying strand or read position bias: 

“java -Xmx3g -jar /data/efinlay/GenomeAnalysisTK.jar -T VariantFiltration -R 

/home/bmoran/bin/ens70/Btau.UMD3.1.70.short.fa --variant combined_files_g.vcf -o 

combined_140_files_filtered.vcf --clusterWindowSize 10 --filterExpression "DP<5" --

filterName "LowCoverage" --filterExpression "QUAL<30.0" --filterName "VeryLowQual" --
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filterExpression "QUAL > 30.0 && QUAL < 50.0" --filterName "LowQual" --filterExpression 

"MQ0 >=4 && ((MQ0 /(1.0*DP)) > 0.1)" --filterName "HARD_TO_VALIDATE" --

filterExpression "FS >60.0" --filterName "STRAND_BIAS" --filterExpression 

"vc.hasAttribute('ReadPosRankSum')&&ReadPosRankSum <-8.0" --filterName "READ_POS" -

-filterExpression "vc.hasAttribute('QC')&&QD<1.5" --filterName "LowQD"” 

Individual sample genotypes were filtered to mark individuals with read depth less than 8 as 

missing data, using an in-house Perl script available in Thesis\Appendix chapter 4 - Whole-

exome\R Scripts \filter_on_snp_DP.pl 5.  

  

                                                 
5
 Electronic Appendix 2.2  snpfiltration.sh 
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2.2.8 SNP frequency analysis in sire subset 

SNP frequency analysis between high and low-fertility groups was performed on the SNPs 

identified in targeted β-defensin sequencing. In-house Perl scripts were also written to 

identify any individual genotypes identified as heterozygous with an allele ratio of greater 

than 80:20 and any SNP which had a read depth of less than 8 in a given individual and code 

them as missing data within that individual, as shown in Thesis\Appendix chapter 4 - Whole-

exome\R Scripts \filter_on_snp_DP.pl . 

 

2.2.9 O-linked glycosylation analysis 

The NetOglyc server produces neural network predictions of mucin type GalNAc O-

glycosylation sites in mammalian proteins (Julenius et al., 2005). Protein sequences for β-

defensin genes were downloaded from NCBI 6 in FASTA format in March 2013, 2 years after 

(Narciandi et al., 2011) performed glycosylation analysis on BBD genes. Protein sequences 

were then sent to NetOglyc 3.1 server, available online 7 using default parameters.   

 

  

                                                 
6
 http://www.ncbi.nlm.nih.gov/ 

7
 http://www.cbs.dtu.dk/services/NetOGlyc-3.1/ 
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2.3 Materials and Methods related to Chapter 4 

Following filtering of sires for which fertility phenotype data from 7,000 bulls was available, 

94 bulls were identified as being divergent for both phenotypes, 91 bulls were divergent in 

AAM only and 79 bulls were divergent for PR only. From these bulls, 24 were selected for 

whole-exome sequencing of bulls divergent for fertility. Priorities for selection were given to 

bulls which were divergent for both phenotypes, followed by bulls which were divergent for 

AAM, and then for PR. DNA availability in the Teagasc DNA databank was also considered. 

Phenotype values for each breed are shown in Figure 2.3-1 on page 52, for adjusted animal 

model and Figure 2.3-2 for pregnancy rate. AAM is shown to have less variability in the 

phenotype in BB animals in comparison to HF and LM, which are similar. The adjusted 

animal phenotype demonstrated less variability over different breeds and over time, and 

was determined to be the more robust phenotype. In total, 18 bulls from the Teagasc DNA 

databank were selected, and semen straws were obtained from ICBF for a further 6 bulls for 

DNA extraction. 

Six high- and six low-fertility HF bulls, three high- and three low-fertility BB and three high-

and three low-fertility LM bulls were selected, see Table 2.3-1.  
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Figure 2.3-1: Adjusted animal model phenotype values by breed of sire 

Boxplot of AAM fertility phenotype values (n=24) for each breed (BB = Belgian Blue; n=6), 

(HO = Holstein-Friesian; n=12) and (LM = Limousin; n=6). Black lines denote median values, 

box denotes the upper and lower quartiles, and dashed lines (whiskers) denote variability 

outside the upper and lower quartiles. Of the 24 bulls selected, BB animals show less 

variability in the AAM phenotype than HO and LM. 
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Figure 2.3-2: Average pregnancy rate phenotype values by breed of sire 

Boxplot of average PR fertility phenotype values (n=24) for each breed (BB = Belgian Blue; 

n=6), (HO = Holstein-Friesian; n=12) and (LM = Limousin; n=6). Black lines denote median 

values, box denotes the upper and lower quartiles, and dashed lines (whiskers) denote 

variability outside the upper and lower quartiles. Of the 24 bulls selected, BB animals show 

less variability in the PR phenotype than HO and LM. 

 

 

Table 2.3-1: AI sire sample selection criteria  

Overall Adjusted Animal Model (AAM) effect, and Average PR phenotypes, breed and total 

straw count used per sire are shown, with AI bulls separated into breed and fertility status 

based on phenotypic data. Minimum (Min), Mean and Maximum (Max) values for PR and 

AAM for all 24 selected samples are also shown. Images depict the three different breeds 

selected: Holstein-Friesian (HO), Limousin (LM) and Belgian Blue (BB). 
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  Sire ID Mean PR Overall AAM Effect Breed Total Straw Count 

Holstein-Friesian High     
Bull 1 0.56 0.07 HO 12916 
Bull 2 0.57 0.06 HO 6216 
Bull 3 0.59 0.05 HO 2758 

Bull 4 0.54 0.06 HO 5308 
Bull 5 0.57 0.06 HO 8529 
Bull 6 0.6 0.06 HO 7420 
Holstein-Friesian Low     
Bull 7 0.4 -0.06 HO 2424 
Bull 8 0.34 -0.09 HO 1844 
Bull 9 0.35 -0.04 HO 1061 
Bull 10 0.32 -0.12 HO 5449 

Bull 11 0.38 -0.06 HO 5928 
Bull 12 0.39 -0.03 HO 1948 
Limousin High     
Bull 13 0.57 0.06 LM 6196 
Bull 14 0.53 0.07 LM 4506 
Bull 15 0.51 0.07 LM 3246 
Limousin Low     

Bull 16 0.38 -0.09 LM 1138 
Bull 17 0.37 -0.06 LM 1354 
Bull 18 0.38 -0.06 LM 1227 
Belgian Blue High     
Bull 19 0.51 0.08 BB 2705 

Bull 20 0.5 0.06 BB 1515 
Bull 21 0.47 0.05 BB 9062 

Belgian Blue Low     
Bull 22 0.37 -0.04 BB 9959 
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Bull 23 0.39 -0.02 BB 10529 
Bull 24 0.38 -0.02 BB 31680 

Min 0.32 -0.12   
Mean 0.45 0.0025   
Max 0.6 0.08   

Table 2.3-1 continued 
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2.3.1 Genomic DNA extraction, purification and quality control 

Genomic DNA was previously extracted using the Maxwell® 16 research instrument system, 

according to manufacturer’s instructions, and were stored in the Teagasc DNA bank. The 

Teagasc DNA bank is a biobank of gDNA extracted from semen straws for thousands of sires. 

DNA for this project was obtained from this DNA bank (n = 18). In addition, six samples 

required DNA extraction from semen straws obtained from the National Cattle Breeding 

Centre (n=6)8. 

For Whole-Exome Sequencing, gDNA was purified using Zymo Research’s DNA Clean and 

concentrator ™ kit. At least 1ug of gDNA was purified and stored at -20oC. Genomic DNA 

was heated to 52oC for 2 mins prior to concentration estimation. Genomic DNA 

concentrations were estimated using the Qubit® dsDNA BR Assay Kit for use with the Qubit® 

2.0 Fluorometer and separately, concentrations were estimated using Nanodrop ND-1000 

spectrophotometer. Qubit® concentration values were preferentially accepted as a more 

accurate estimation of double-stranded gDNA, due to the nature of the two methods. 

Nanodrop estimates all nucleic acid material in a sample, which could include RNA. 

However, with Qubit, the dye fluoresces upon contact with double stranded DNA, which is a 

more accurate method for dsDNA quantification. Nanodrop readings were used to assess 

protein contamination and solvent contamination via the 260/280 nm, and 260/230 nm 

wavelength ratios, see Table 2.3-2 for both Qubit and Nanodrop concentration 

measurements for each bull. Due to large variations in concentration readings, lower 

readings were considered, and a low DNA input TruSeq Nano kit was used. Exome capture 

was performed by pooling 6 samples and performing 1X capture, whereas 1X capture per 4 

samples is common for human whole-exome captures. 

 

                                                 
8
 Six genomic DNA extractions from semen straws were performed by Ms. Margaret Murray, Teagasc. 
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Table 2.3-2: Quality control of gDNA from Teagasc DNA databank of sires selected for whole-exome sequencing and targeted sequencing.  

Table of 24 AI bulls selected for whole-exome sequencing, indicating their gDNA quality control prior to library preparation and sequencing by 

Clinical Genomics, Canada. Qubit quantification (ng/µl), Nanodrop quantification (ng/µl) and quality (260/280, 260/230 ratios were analysed, 

data not shown), volume and total amount (ng) are displayed for each of the 24 sires selected for whole-exome sequencing.   

Sample ID Qubit (ng/µl) Nanodrop (ng/µl) Volume (µl) Nanodrop Total (ng) Qubit Total (ng) 

Holstein-Friesian High      
Bull 1 32.2 40.28 60 2416.8 1932 
Bull 2 56 40.91 30 1227.3 1680 
Bull 3 12.2 12.26 60 735.6 732 
Bull 4 27.26 27.28 30 818 818 
Bull 5 13.1 13.73 60 823.8 786 
Bull 6 12.4 13.8 60 828 744 
Holstein-Friesian Low      
Bull 7 85.5 85.5 30 2565 2565 
Bull 8 17.6 17.78 60 1066.8 1056 
Bull 9 11.3 15.88 60 952.8 678 
Bull 10 99 154.3 50 7715 4950 
Bull 11 42.3 43.43 50 2171.5 2115 
Bull 12 7.47 12.63 60 757.8 448.2 
Limousin High      
Bull 13 103 112.6 50 5630 5150 
Bull 14 6.62 7.95 60 477 397.2 
Bull 15 19.2 22.57 60 1354.2 1152 
Limousin Low      
Bull 16 19 20.83 50 1041.5 950 
Bull 17 80 76.32 30 2289.6 2400 
Bull 18 46 52.99 60 3179.4 2760 
Belgian Blue High      
Bull 19 12.9 301 50 15050 645 
Bull 20 39 41.12 60 2467.2 2340 
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 Bull 21 33.24 136.2 50 6810 1662 
Belgian Blue Low      
Bull 22 16.9 21.05 60 1263 1014 
Bull 23 20 32.93 68 2239.24 1360 
Bull 24 38.6 31.75 30 952.5 1158 

Table 2.3-2 continued 
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2.3.2 Sample preparation 

Whole-exome sequencing library preparation was performed commercially (Clinical 

Genomics, Ontario, Canada). Library preparation was performed according to the Roche 

Nimblegen SeqCap EZ Developer Library protocol, as per manufacturer’s instructions. 

Briefly, 100ng gDNA of each sample were prepared using the TruSeq Nano DNA Library Prep 

Kit. This step involved shearing of gDNA using Covaris DNA shearing and Agencourt AMPure 

XP beads, end-repair of fragments, adapter ligation, LM-PCR and quality control. The 

strategy to hybridise fragments of gDNA to the exome baits was to make one equimolar 

pool of all 24 gDNA libraries. This pool was then split into four separate pools and 

hybridisation captures were performed on each pool with oligonucleotide probe capture 

reagents, resulting in 1X capture for every 6 samples. All captures were then re-pooled and 

split into four groups for sequencing on four HiSeq 2500 lanes. Pooling ensures that samples 

are mixed prior to capture, and to give an even distribution of sample to each sequencing 

lane. Sample preparation for Roche Nimblegen EZ developer system is summarised in Figure 

2.3-3.  
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Figure 2.3-3: Roche Nimblegen SeqCap EZ Developer workflow system 

Eight steps involved in sequencing library preparation: 1) gDNA shearing 2) Adaptor ligation 

3) Hybridization of custom-designed probes 4) Capture of DNA by magnetically labelled 

oligonucleotide probes 5) Washing away unbound probes and DNA 6) PCR Amplification of 

bound probes with DNA 7) Quality Control and 8) Sequencing amplified libraries. 
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2.3.3 Exome data analysis 

FASTQ files were uploaded to a 16 CPU server running GNU bash, version 3.2.51(1) (x86_64-

suse-linux-gnu) from an external hard drive containing exome sequencing data obtained 

from Clinical Genomics, Canada. FASTQ files were concatenated into two individual files, 

*R1* and *R2*, to designate paired-end reads, read 1 and read 2. Quality control of raw 

sequencing data was performed with FastQC, which takes each file for a given sample and 

produces a quality control report consisting of a number of different modules. FASTQ files 

were trimmed using Trim Galore! This tool uses the first 13 bp of Illumina standard adapters 

('AGATCGGAAGAGC') by default, to trim adapter sequences. A Phred quality score threshold 

of 25 was applied, to discard poor quality base calls, and to reduce the rate of incorrect base 

calling, using the following command: 

“trim_galore --paired --fastqc -q 25 $read1 $read2”. 

 

2.3.4 Alignment 

All remaining reads were aligned to the Bos taurus UMD3.1.70 genome using the Burrows-

Wheeler Aligner (BWA) ‘sampe’ algorithm with default parameters (Li and Durbin, 2009). 

Picard Tools (version 1.60) was used to convert the resulting SAM file to BAM format, sort 

and index BAM files, and to remove PCR duplicates from all BAM files (Broad, 2017). PCR 

duplicates arise during the library preparation step, where the DNA is amplified to increase 

probability of probes binding to each DNA fragment. However, this also introduces PCR 

amplification bias, which needs to be mitigated. PCR duplicates are identified by two or 

more reads having the same chromosome start position and the same CIGAR string, 

signifying identical reads, which are not informative, and need to be removed from analysis. 

Alignment summary metrics, insert size metrics, and PCR duplicate metrics were all 

collected. GATK’s DepthOfCoverage walker determined coverage levels per interval. 

Intervals were defined as the exome intervals used to design bait probes.  

 

2.3.5 Variant calling 
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Variant calling and genotyping across all 24 animals was performed using Genome Analysis 

Toolkit (GATK Version 3.4-0-g7e26428), following the GATK best practice guidelines for 

whole-exome sequencing (DePristo et al., 2011), see Figure 2.3-4, on page 63. Local re-

alignment around InDels (Insertions and Deletions) was performed using the GATK tools: 

RealignerTargetCreator (using -known 

/home/bmoran/bin/ens70/Bos_taurus_74.headed.vcf), IndelRealigner (using -

targetIntervals $output1/$sample.forIndelRealigner.interval_list and -known  

/home/bmoran/bin/ens70/Bos_taurus_74.headed.vcf), and FixMateInformation (using 

SORT_ORDER=coordinate VALIDATION_STRINGENCY=LENIENT), as described in Electronic 

Appendix 2.1  Trim_fastqc_map_gatk_filter.pl. Base quality score re-calibration via GATK 

BaseRecalibrator was then applied, which recalibrates scores around known variants. 

HaplotypeCaller walker was used to call mutations on BAM files with Phred-scaled emit and 

call confidences of 30, in ‘GVCF’ mode and with a BED file of the exome targets. This BED 

target file is used by the walker to identify regions in the genome which are active/variable, 

which are marked for local de-novo assembly (via de-Bruijn graphs) of reads aligning to such 

regions. 

A modified read alignment and variant calling Perl script is shown in the electronic 

appendix9. This script takes in a list of FastQ files, by submitting the following command in a 

directory containing all FastQ files to be analysed: ls *.fastq.gz > fastqlist.txt. 

This Perl script then performs quality control, aligns reads to the genome using BWA, 

converts files from SAM to BAM format, sorts BAM files based on coordinates, marks PCR 

duplicates, fixes paired-end reads mate information, builds a BAM file index, and generates 

quality control metrics for alignment and coverage. Base quality score recalibration is then 

applied to detect and reduce systematic errors in base quality scores, followed by variant 

calling using HaplotypeCaller walker.  

                                                 
9
 Electronic Appendix 4.2 R Scripts/ 1 - total_list_Brucerefs_newGATK.pl 
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Figure 2.3-4: Genome analysis toolkit best practice pipeline. 

Indicates the key steps required to obtain high-quality variants from raw sequencing reads. 

Mapping reads to reference genome, duplicate removal, sorting, InDel realignment, base 

recalibrations, HaplotypeCaller variant calling, variant recalibration, Annotation, and custom 

filtering (GATK, 2015). 

 

2.3.6 Variant filtering  

Strict hard-filtering of variants was performed to remove variants of low quality and which 

fall outside certain parameters, to reduce the number of false positives. The parameters for 

hard-filtering of variants were as follows: Filter out variant calls if located within a cluster 

where three or more calls are made in a 10 bp window [clusterWindowSize 10]; filter out 

variant if there are at least four alignments with a mapping quality of zero (MQ0) and if the 

proportion of alignments mapping ambiguously corresponds to 1/10th of all alignments 

[MQ0 > =4 && ((MQ0/(1.0 * DP)) > 0.1)], DP: total (unfiltered) depth over all samples; filter 

out variants which are covered by less than 5 reads [DP < 5]; filter out variants having a low 

quality score [Q < 50]; filter out variants with low variant confidence over unfiltered depth 

of non-reference samples (QD) [QD < 1.5]; filter out variants based on strand bias using 

Fisher's exact test: FS > 60.0 for SNP calling, FS > 200.0 for InDel calling, similar to other SNP 

filtering protocols (Robert et al., 2014). In-house Perl scripts were also written to identify 

any individual genotypes identified as heterozygous with an allele ratio of> 80:20 and any 

SNP which had a read depth of less than 8 in a given individual and code them as missing 

data within that individual.  
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Following HaplotypeCaller and VariantFiltration walkers, variants were filtered using a 

custom Perl script10. This script filtered variants based on low coverage with variants at an 

overall depth of coverage less than 5, and not located within the targeted region. Variants 

were further filtered for read depth, with each individual genotype requiring at least 5X 

depth, in addition to the overall depth of coverage filter for each variant. Variants with 

individual genotype coverage less than 5X were set as missing data.  

A custom Perl script was applied to identify rare variants11. This script takes a filtered VCF 

file and outputs the zero, one and missing alleles for each variant. Allele frequencies can be 

calculated based on different categories of interest. Fertility and breed were categories 

analysed for this project. 25 percentage points between groups of high- and low-fertility was 

used to identify variants to be added to a custom-designed SNP chip. A SNP frequency 

differential between high-and low-fertility groups was chosen as a parameter to identify 

candidate SNPs involved in male fertility, as SNPs with large SNP frequency differences may 

be under genetic selection pressures (Mullen et al., 2012). 

 

2.3.7 Quality control 

The GenABEL (version 1.8-0) package tool check.marker was used to perform quality control 

on variant calls. This package filters variants to help select the variant which should enter 

GWA analysis based on call rate, MAF, value of chi-square test for Hardy-Weinberg 

equilibrium (HWE) and redundancy (concordance between distributions of the genotype). 

Variants were filtered based on a SNP call rate of 80% (call rate = 0.8), an individual SNP call 

rate of 90% (maximum percentage of missing genotypes in an individual sample; perid.call 

=0.9) and a minor allele frequency cut-off threshold of 5% (MAF = 0.05).  

Further stringent quality control filtering for association analysis removed variants which 

had low call rate, low minor allele frequency, or were out of Hardy-Weinberg equilibrium. 

Samples were also removed with high autosomal heterozygosity (FDR <1%), or high identity 

by state (IBS) > 95%. Two samples, a HF low-fertility sire (Bull 8), and a LM high-fertility sire 

(bull14) were then removed from analysis due to high autosomal heterozygosity. Excluded 

                                                 
10

 Thesis\Appendix chapter 4 - Whole-exome\R Scripts \filter_on_snp_DP.pl 
11

 Thesis\Appendix chapter 4 - Whole-exome\R Scripts\ count_alleles_by_category_new.pl’ 
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sires had autosomal heterozygosity rates of 56% and 48%, probably due to sequencing 

errors for these two samples or high heterozygosity in a highly-selected breeding 

population. However, as this could not be determined here, the two bulls were excluded 

from association analysis. Bull 14 (LM) was the bull with the lowest input gDNA (~400ng) for 

library preparation, as shown in Table 2.3-2. Bull 8 had ~1µg of total gDNA for input. This 

indicates that either bull 8 and 14 had poor library preparation or capture efficiency. This 

reduced the number of sires available for SNP association analysis to 22, see Figure 4.3-4 

and Figure 4.3-5 for pre- and post-QC principal component analysis (PCA). 

 

2.3.8 Association analysis 

The R package GenABEL (version 1.8-0) (Aulchenko et al., 2007) was used to perform 

association analysis between the fertility phenotype and SNP genotypes. A custom Perl file 

converted a Variant Call Format (VCF) file containing all variants from GATK HaplotypeCaller 

to GenABEL format12. The phenotypes were then defined and the association analysis 

performed, with the most significant chromosomes and SNPs identified. SNPs of significance 

(unadjusted P-value < 0.01) were sorted based on their P-value with 1 degree of freedom. 

Adjusted P-values were not used in this analysis to identify the largest number of SNPs in 

this SNP discovery project as possible, as further validation in an independent population 

will be carried out, and separate genotyping in a large population via SNP chip has been 

performed. Due to the low numbers involved in WES association analysis, this was 

determined to be the optimal strategy. 

A linear mixed model (LMM) approach analysed each SNP separately for association with a 

phenotype, which allows for fixed and random effects. SNPs identified were analysed as 

continuous variables, in which case an allelic effect will be estimated. The null hypothesis is 

that there is no association between the SNP and the fertility trait. This model assumes a 

linear relationship between the trait and genotype as well as a common variance at each 

genotype. Association analysis commands are shown in the electronic appendix13. 

 

                                                 
12

 Thesis\Appendix chapter 4 - Whole-exome\R Scripts\vcf_to_GenABEL_format.pl 
13

 Electronic Appendix 4.6 5 - Association commands.R 
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2.3.9 Gene ontology 

To identify a set of enriched terms from gene ontology (GO) and other relevant biological 

databases, GO over-representation analysis on whole-exome sequencing SNP Ensembl gene 

IDs was performed. The 484 SNPs most associated with the adjusted animal model fertility 

phenotype (unadjusted P-value < 0.01) were identified and SnpEff annotated each SNP to 

the gene it is in or the nearest gene. Ensembl gene IDs of the annotation to UMD3.1 for 

each SNP was obtained. GO term analysis was performed using the DAVID Functional 

Annotation Tool, DAVID Bioinformatics Resources 6.7, NIAID/NIH (Huang da et al., 2009b, 

Huang da et al., 2009a). 

 

2.3.10 Transcription factor binding site analysis 

The top 20 SNPs most associated with AAM fertility phenotype and which were predicted to 

be upstream or in the 5’UTR of the nearest gene, via SnpEff, were analysed for transcription 

factor binding site analysis.  MatInspector (Quandt et al., 1995) v3.7 was used to identify 

potential binding sites for transcription factors which are affected by polymorphisms 

identified in this whole-exome sequencing dataset. MatInspector is a software tool that 

searches a library of matrix descriptions for transcription factor binding sites and locates 

matches in DNA sequence. It assigns a quality rating to matches and allows quality-based 

filtering and selection of matches. gDNA sequences for the promoter region of interest were 

submitted to the MatInspector database, using default parameters, to identify potential 

transcription factor binding sites which may be affected by the identified genetic variants in 

silico.  
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2.4 Materials and methods related to Chapter 5 

 

2.4.1 Sire selection for validation 

An independent population of bulls were used to validate variant calls from whole-exome 

sequencing. Fertility phenotypes of bulls from ICBF fertility records were used, as previously 

described. However, updated fertility data for this dataset from year 2013, 2014 and 2015 

were available which were not used for initial sample selection for whole-exome sequencing 

or targeted β-defensin sequencing. Fertility phenotype data for 2013 – 2015 are shown in 

Figure 2.4-1, for identification of sires suitable for validation of variant calls from whole-

exome sequencing and targeted β-defensin sequencing. Sires were selected which had > 

100 inseminations, to ensure reliable data, and also to allow selection of larger numbers to 

ensure the robustness of the variant calling.  Sires were also required to be of three breeds 

Limousin (LM), Belgian Blue (BB), or Hostein-Friesian (HF). Average PR and AAM fertility data 

for all 1,400 sires with phenotypic data available for 2013 – 2015 are shown in Figure 2.4-2 

and Figure 2.4-3, showing the AAM as being the more stable fertility phenotype over time. 
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Figure 2.4-1: All phenotypic data for adjusted animal model and pregnancy rate between 

the years 2013 - 2015 for identification of sires for SNP validation 

X-axis denotes the PR fertility phenotype values for all (1,400) sires with phenotypic data 

available between 2013 and 2015, inclusive. Y-axis denotes the AAM fertility phenotype 

values for all sires with phenotypic data available between 2013 and 2015, inclusive.  

 

 

Phenotypic data 2015 



 

69 

 

 
Figure 2.4-2: Pregnancy rate fertility values for 2013 - 2015 to identify sires with stable 

fertility phenotypes for SNP validation 

Boxplots of average PR phenotypes for each individual year 2013, 2014 and 2015. Data is 

used for selection of sires to be used in validation of variant calling via whole-exome 

sequencing and targeted β-defensin sequencing. Average PR values are denoted on the y-

axis. Year of average PR phenotype data is denoted on the x-axis.   

 

 2015          2014      2013 

Average pregnancy rate phenotype 2013 -2015 
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Figure 2.4-3: Adjusted animal model fertility values for 2013 - 2015 to identify sires with 

stable fertility phenotypes for SNP validation 

Boxplots of overall adjusted animal model phenotype values for each individual year 2013, 

2014 and 2015. Data is used for selection of sires to be used in validation of variant calling 

via whole-exome sequencing and targeted β-defensin sequencing. Overall adjusted animal 

model values are denoted on the y-axis. Year of phenotypic data collection is denoted on 

the x-axis. 

 

2.4.2 Assay design 

To design primers for the SNP validation assay, annotated sequence information for the 

markers of interest were provided. At least 100 base pairs of flanking sequence on each side 

of the SNP of interest were provided to obtain suitable primer binding sites. For each 

marker, the target SNP in the submitted sequence was annotated by placing square 

brackets around the polymorphic locus, using a forward slash to separate the alleles. 

Proximal SNPs in the flanking sequence were annotated using the International Union of 

 2015          2014      2013 

Adjusted animal model phenotype 2013 -2015 
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Pure and Applied Chemistry (IUPAC) convention. For full assay design files, see electronic 

appendix14. 

 

2.4.3 SNP validation 

Agena Bioscience MassARRAY® System was used for assay design and SNP validation. In 

total, 58 SNPs were targeted for validation in 4 multiplex reactions (29-, 18-, 8-, and 3-plex) 

to prevent similar primer sequences binding to each other in the reaction, see the Electronic 

Appendix 5.4. Suitable primers for one SNP (4792) could not be designed, as the bases 

flanking the SNP do not differ sufficiently and therefore, cannot be distinguished from the 

insertion/ deletion base of interest. See electronic appendix15 for full SNP validation assay 

design information. 

In total, 123 sires were genotyped for the 58 SNPs in 4 multiplex reactions. DNA (10ng) of 

each sire was obtained from the ICBF DNA database, and was used for each multiplex 

reaction. gDNA concentrations were estimated using a Nanodrop ND-1000 

spectrophotometer. gDNA was dried down overnight in a PCR-free environment and sent, in 

separate 384-well plates, to Agena Bioscience GmbH, Germany.  

 

2.4.4 Data analysis 

Of 58 SNPs targeted for validation in the MassARRAY assay design suite, 42 variants and 123 

cattle pass filters and QC. SNPs which had a call rate < 80%, or minor allele frequency (MAF 

< 0.04) were filtered out of the dataset, see the Electronic Appendix 5.4. Hardy-Weinberg 

Equilibrium (HWE) of SNPs was determined, to identify deviations from HWE which may 

have been caused by systematic errors in genotyping, unexpected population structure or 

presence of homologous regions in the genome. To do this, the allele frequencies and 

expected counts were calculated, and a Fisher’s exact test for contingency tables was 

performed by Sequenom (California, USA). 

                                                 
14

 Electronic Appendix 5.4 Validation\Assay Design\4 - validation_assay_primer_design.xslx 
15

 Electronic Appendix 5.1  Validation\Assay Design\ 1 - 250_replex2.xslx 
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SNP frequencies of SNPs which passed call rate filtering were calculated using an in-house 

Perl script, which was a modified version of electronic appendix file16.  

Statistical analysis of association was performed using PLINK v1.90b3l. The basic association 

test is for a disease trait and is based on comparing asymptotic allele frequencies between 

cases and controls (High-fertility v low-fertility).  

The following PLINK v1.90b3l commands were used to perform SNP association analysis of 

the genotyped validation SNPs, and fertility phenotypes (AAM and PR): 

#bed file generated from .ped and .map input files, with cow as the model organism for 

chromosome number designation. 

plink --file input_file_name --make-bed --out output_file --cow 

 

# Quantitative traits (AAM and PR) tested for association, using Wald test. 

plink --file out_out --assoc --out assocofsnps --cow --allow-no-sex 

 

 

See Electronic Appendix 5.4 to Electronic Appendix 5.11 for .map .ped and associated SNP 

files for both AAM and PR phenotypes. 

 

                                                 
16

 Electronic Appendix 4.4 3 - count_alleles_by_category_new.pl 
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3 Targeted β-defensin gene sequencing in divergent 

fertility bulls 
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3.1 Introduction 

The inability of some cows to get pregnant from artificial insemination or from stock bulls 

can result in increased costs to the farmer including vet bills, scanning for cows in calf, 

repeat AI services, premature culling and lost productivity (e.g. milk production) (Shalloo et 

al., 2004).  

In recent years, there has been an inverse correlation between cow fertility and milk 

production (Berry and Evans, 2014). The focus of the scientific community has been on 

female fertility traits. However, male fertility also plays an important role in determining 

whether the cow becomes pregnant, yet no single diagnostic test can predict bulls of low-

fertility. 

Sub-optimal fertility of a single bull can have a large impact on a herd, due to the 

predominance of single-sire mating in the form of stock bulls and small herd size. A mature 

bull will mate with, on average, 40 cows in each breeding season (Teagasc, 2016b). Any 

fertility issues in the bull will have a larger impact than fertility issues in any individual cow 

(Teagasc, 2016b). Male fertility is not explicitly factored into the EBI star rating for bulls, the 

only fertility measurement included is based on the bull’s daughter’s fertility (DPR) (Teagasc, 

2014). 

Our group has identified an expansion of β-defensin genes in the bovine genome, estimated 

to be 57 different genes, found on four Bos taurus chromosomes, 8, 13, 23 and 27. 

Bioinformatic analysis identified 19 novel β-defensins in the bovine genome located on 

chromosome 13, which were subsequently shown to be expressed in the male and female 

reproductive tracts, indicating a role in reproduction (Narciandi et al., 2011). Orthologs of 

these genes have been shown to be involved in male fertility in various species, including 

humans (Tollner et al., 2011), macaques (Tollner et al., 2008), mice (Zhou et al., 2013), rats 

(Zhao et al., 2011), and cattle (Narciandi et al., 2011).  

Part of the larger research project investigates whether β-defensin genes and mutations 

affecting β-defensin gene function have an effect on bull fertility. For this, it is necessary to 

investigate whether differences in the fertility phenotype are a result of β-defensin 

variation, or whether other coding and 5’UTR variants play a role in regulating fertility.  
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At the time of designing the exome targeting probes in 2013, only seven of nineteen β-

defensin genes located on chromosome 13, which form a group of genes identified by our 

group in cattle, were annotated in the bovine genome. These seven genes were DEFB117, 

DEFB119, DEFB122, DEFB122a, DEFB123, DEFB124 and DEFB129. The remainder were not in 

exome sequencing design, due to poor annotation of the bovine genome, in comparison to 

more extensively studied species, such as human. 

Targeted sequencing (TS) of bovine β-defensin genes in bulls divergent for fertility was 

performed.  
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3.2 Aims and hypothesis 

Following the discovery by our group of an expansion of β-defensins and their expression in 

adult reproductive tracts, our aim in this chapter was to investigate whether variants in the 

β-defensin gene cluster are associated with male fertility in cattle. To do this, targeted β-

defensin gene and regulatory region sequencing was performed in a large cohort of bulls 

divergent for a fertility phenotype, to identify candidate variants to be added to a custom-

designed SNP chip for genotyping in a large population of cattle in Ireland.  

The hypothesis for this chapter was: genetic variation in β-defensin genes and regulatory 

regions explain a portion of the phenotypic variation for fertility in AI bulls. 

 

3.3 Results 

3.3.1 Fertility phenotypes of AI sires 

Sires were selected for sequencing based on the PR and AAM fertility phenotypes (as noted 

in section 2.1.1.) over four years (2010 – 2013). Sires of divergent fertility were selected, as 

described in section 2.1.2, after filtering. The percentage PR of males used in >1,000 matings 

ranged from 20% to 70% with a mean of 49.17%. The AAM fertility phenotype ranged from -

0.21 to 0.12 with a mean of 0.01744. The groups of high and low-fertility were defined as 

greater than one standard deviation from the mean, percentage PR < 42.6% or > 55.74%, 

adjusted fertility phenotype < -0.0167 or > 0.0515. Restricting the samples to sires which 

have been used in more than 1,000 matings increased the reliability of the fertility 

phenotypes but removed sires identified as having most divergent percentage PRs based on 

small numbers of matings. Fertility phenotype data of sires selected for PR sequencing are 

shown in Figure 3.3-1 for adjusted animal model in various breeds, and Figure 3.3-2 for 

divergent phenotype identification of sires with 1 standard deviation above and below the 

mean. Figure 3.3-3 shows the sires which were selected based on their fertility phenotypes 

and which had gDNA already extracted and in the Teagasc DNA databank. 
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Figure 3.3-1: Adjusted Animal model fertility phenotype per breed – data from 7000 sires for 

sample selection. 

Boxplots of adjusted animal model fertility phenotype values for all 7000 bulls for which we 

had fertility phenotypes, grouped by breed. Sire breed is shown on the X-axis and the 

adjusted animal model fertility phenotype values on the Y axis; Aberdeen Angus (AA), 

Belgian Blue (BB), Charolais (CH), Friesian (FR), Hereford (HE), Holstein (HO), Jersey (JE), 

Limousin (LM), Montbéliarde (MY), Norwegian red (NR), Shorthorn (SH), Simmental (SI), and 

Saler (SR). 
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Figure 3.3-2: Identification of sires divergent for fertility 

A) PR % in all sires (n=683). B) PR % in sires divergent for fertility (1 s.d.). C) AAM fertility 

phenotype data for all sires (n=683). D) AAM fertility phenotype frequency data for sires 

divergent for fertility (1 s.d.). 
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Figure 3.3-3: Phenotypic values of DNA collected from sires in Teagasc’s DNA databank. 

R scatterplot of phenotypic values for PR and adjusted animal model for each sire selected 

for targeted sequencing, with dots coloured per breed.  X-axis denotes the PR phenotypic 

value. Y-axis denotes the adjusted animal model phenotypic value. Each dot represents a 

sire selected for targeted sequencing, coloured per breed, to show the range of sire breeds 

collected. 
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3.3.2 Targeted β-defensin sequencing coverage statistics 

Of the total 235 kb targeted region for β-defensin sequencing, an average of 8.29%, 

ranging from 3.2% to 19.7%, had less than 1X coverage. This means an average of 

91.71%, ranging from 96.8% to 80.3% of the targeted region was captured and 

sequenced by the Roche Nimblegen developer capture design. A mean of 88% of the 

234,754 bp targeted per sample had a sequencing coverage of >10X, the median 

proportion with >30X coverage was 84%. The total number of reads per sample ranged 

from 68,247 to 4,924,576 with a mean value of 460,862, see Table 3.3-1. 

For internal quality control, 9 animals were sequenced in duplicate in different captures and 

sequencing runs. After GATK variant calling, the genotypes called in each duplicate were 

compared. One pair had only 64% identity, so both were removed. The other 8 had an 

average genotype identity of 96.8% (95.9 – 97.4%). The copy with the highest call rate of 

each pair was retained for analysis. 

Mean total reads were 460,862 for all 168 sequenced sires, of which 83% were uniquely 

aligned to UMD3.1 bovine genome. As shown in Table 3.3-2, 58.5% of bases were aligned, 

on-target after PCR duplicate removal. This resulted in a mean of 8,009-fold-enrichment of 

targeted regions compared to non-targeted regions (background), ranging from 830 to 

9,929. High mean coverage over targeted regions (84% at 30X) was deemed sufficient for 

GATK variant calling following best practice pipelines. 

Given the high levels of read coverage, the percentage target region covered is low. This 

means that despite the abundance of probes, certain areas could not be captured by the 

probe design. In total, 16% of aligned bases failed to map on bait, and 22% of target regions 

had less than 2X coverage. The reason for low targeted coverage is most likely due to 

properties of the targeted region, as we can see from Figure 3.3-8, on page 92. In a 

representative sample (bull 6), non-targeted regions are clustered together (e.g. gene 57-

61), located on chromosome 27 between 5483406-5638581. This may be due to repetitive 

sequences in the region, as the β-defensin gene region is amongst the most copy number 

variable regions in the human genome (Hollox et al., 2008). 
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Table 3.3-1: Targeted β-defensin sequencing coverage statistics  

Table of coverage statistics for targeted β-defensin sequencing of the large AI bull population (n=168). Mean coverage of targets is the average 

number of times each targeted region in the β-defensin probe design contains a mapped read after filtering. The remaining columns show the 

percentage of targeted regions with the number of sequencing reads mapping to that region. The mean, min and max values for all sires in the 

targeted β-defensin sequencing project are displayed.  

  

 
Mean coverage of targets %  < 1X  %> 2X  % > 10X  %  > 20X  %  > 30X  %  > 40X  % > 50X  %  > 100X 

Mean 325.05 8.29% 90.96% 87.66% 85.52% 83.76% 82.07% 80.36% 72.20% 

Min 35.04 3.25% 85.45% 77.44% 71.33% 65.25% 42.35% 15.30% 0.07% 

Max 1189.46 19.68% 95.16% 93.31% 92.12% 91.20% 90.54% 89.90% 86.63% 
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Table 3.3-2: Targeted β-defensin sequencing alignment and enrichment statistics 

Table displaying the alignment of sequencing reads to the bovine genome, and fold enrichment of the targeted regions. Total number of reads 

for all sequenced sires, percentage of those reads which are unique (reports the best alignment), number of bases aligned, percentage of 

aligned bases in or near targeted area, percentage of aligned, de-duplicated and on-target bases, and targeted region fold enrichment values 

are all reported in this table. The mean, min and max for all sequenced sires in the targeted β-defensin sequencing project are displayed.  Full 

sequencing alignment and enrichment statistics are available in the electronic appendix17. 
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 Electronic Appendix 3.3 targeted_combined_metrics - sequencing stats - exome subset.xslx 

 

Total 

reads 

Unique 

reads 
Bases aligned 

Aligned bases in or near 

targeted area 

Aligned, de-duped, on-

target bases 
Targeted region fold enrichment 

Mean 460862 82.54% 107000000 86.41% 58.47% 8009.1 

Min 68247 36.36% 15792716 9.23% 4.95% 830.2 

Max 4924576 96.38% 940000000 98.36% 83.32% 9929.6 
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3.3.3 Targeted sequencing variant discovery and filtering 

In total, after GATK HaplotypeCaller SNP calling, there were 92,829 unfiltered variants from 

all reads that had mapped to UMD 3.1 bovine genome. Following variant filtering and 

removal of variants with call rates < 80%, 3,134 variants remained. These variants consisted 

of 2,892 SNPs, 105 insertions and 137 deletions.  

Variants were located throughout the complete gene sequence of β-defensin genes, and are 

summarised in Figure 3.3-4.  

 

 

 

Figure 3.3-4: Percentage of variants located in genomic regions for targeted β-defensin 

sequencing (all bulls). 

Bar chart of percentage of total SNPs identified in TS of 168 sires in various genomic 

features. The X-axis denotes the genomic features where SNPs are located, Intron (Non-

coding sections of DNA), Upstream (5’UTR of a gene), Intergenic region (Sequence between 

genes), Downstream (3’UTR of a gene), Missense (SNP results in a codon that codes for a 

different amino acid), Synonymous (SNP in exon that does not alter amino acid code). 
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3.3.4 Targeted sequencing variant association analysis 

Variants were further filtered to remove variants of low minor allele frequency (MAF < 0.05) 

(1,578 variants), less than 95% call rate (907 variants), and variants not in Hardy-Weinberg 

equilibrium (913 variants). The check.marker quality control tool also suggested high 

Identity by state (IBS) in 33 bulls. However, this tool is optimised for whole-genome 

association data, and this high level of IBS is not unusual for such a short region of the 

genome. These animals were not removed from the analysis. After quality control filtering, 

there were 1,399 SNPs in 149 bulls, 25 on chromosome 8, 626 on chromosome 13, 356 on 

chromosome 23 and 392 on chromosome 27. 

The variants most associated with the adjusted animal model fertility phenotype from 

targeted β-defensin sequencing are located on chromosome 13, see Figure 3.3-5. The SNP 

most associated is rs378043559 (unadjusted P-value = 0.00197), located in the upstream 

region of DEFB127 at position 61340027 on chromosome 13. Interestingly, a group of 97 

SNPs have a similar P-value = 0.00202. This group of SNPs are located on chromosome 13 

and are inherited as a haplotype. Nine sires (5 Holstein-Friesian, 1 each of Limousin, 

Simmental, Charolais and Belgian Blue) are heterozygous, whilst all other sires have 

reference alleles. The 9 heterozygous sires are of medium to high fertility, according to the 

adjusted animal model phenotype (overall AAM = 0 to 0.07, mean = 0.04, s.d. = 0.027).  

The 97 SNPs lie between positions 61329700 to 61467209, a region of 137.5 kb containing 

the genes BBD128, BBD127, BBD126, BBD125, BBD115, BBD142, and BBD116, see Figure 

3.3-6. In Figure 3.3-7, the sires found to contain the haplotype of SNPs located on 

chromosome 13 are highlighted in red. Of the 97 SNPs in the haplotype, 3 lie within coding 

regions, a non-synonymous SNP in BBD115 (Ser52Asn), two synonymous SNPs in BBD126 

and BBD125. 76 SNPs lie within introns, 5 downstream and 13 upstream of genes, 18 are 

intergenic.  
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Figure 3.3-5: Analysis of variants located on chromosomes 8, 13, 23 and 27 associated with 

adjusted animal model fertility phenotype 

Manhattan plot shows the association of variants identified by targeted β-defensin 

sequencing and their associated –log10 P-value with the adjusted animal model fertility 

phenotype. The –log10 P-value for each variant association is on the y-axis. The 

chromosomal position of each variant is on the x-axis. Red rectangle = SNPs most associated 

with AAM. 

8                          13         23        27 

β-defensin variant association with AAM phenotype 
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Figure 3.3-6: Variants located in β-defensin genes on chromosome 13 associated with 

adjusted animal model phenotype with variants inherited as an haplotype. 

Variants identified via targeted β-defensin sequencing located on chromosome 13, with 

position on x-axis, and associated P-value for each variant on the y-axis. Variants are 

associated with the AAM fertility phenotype. β-defensin genes located on chromosome 13 

are highlighted in blue, with a group of variants inherited as an haplogroup highlighted in 

red. 

 

 

 

 

Associated variants inherited as a haplotype on chr13 
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Figure 3.3-7: Scatterplot of sires identified as being divergent for fertility phenotypes AAM 

and PR, with those containing haplotype located in chromosome 13 highlighted in red. 

Scatterplot of variants identified via targeted β-defensin sequencing in the phenotypic 

groups of fertility for AAM and PR. Variants located in chromosome 13 haplotype are 

highlighted in red. Variants not in the divergent fertility groups (+/- 1 s.d. from mean) for 

both AAM and PR have been blanked out.   

  

Sires containing haplotype on chr13 
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To determine which SNPs are biologically important, SnpEff predicted the functional effect 

of each SNP. The 59 missense SNPs identified from the targeted β-defensin sequencing in a 

large cohort of sires, were located in 32 of the targeted genes. Two of these SNPs were of 

particular interest due to a change in one of the cysteine residues, which are characteristic 

of β-defensin genes. Rs477570826, located at position 5162114 on chromosome 27 resulted 

in a Cys34Ser amino acid change in the second cysteine residue in ENSBTAG00000047421. 

This SNP is heterozygous in two sires of medium fertility. 

Rs437613002 located at position 7287847 on chromosome 8 results in a Cys55Arg (5th 

Cysteine) amino acid change in BBD131 gene. The SNP is homozygous in one sire of low 

fertility and heterozygous in 6 sires of low, average and high fertility. 
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3.3.5 Targeted sequencing coverage in subset of sires 

Targeted β-defensin re-sequencing was performed on the same 24 bulls as whole-exome 

sequencing. This ensured for 24 sires, TS and WES data were available. For full targeted 

sequencing coverage statistics in the 24 bull subset, see the electronic appendix 3.218. 

Targeted re-sequencing attempted to sequence 69 genes in total, including β-defensins and 

cathelicidins. The β-defensin gene region is approximately 378kb in length. However, 

targeting of this region with custom-designed capture baits was limited to 235kb, due to 

repetitive regions. Targeted sequencing statistics are shown in Table 3.3-3. Mean bait 

coverage over all sites for targeted re-sequencing of the 24 bulls cohort, selected for whole-

exome sequencing, was 435X, ranging between 218X to 602X. Mean percentage PCR 

duplication was 54%, ranging from 45.9% to 75.6%, meaning 54% of reads aligned to the 

same position in the genome and contained the same CIGAR string. This is probably due to 

the large number of baits available in the capture design (approximately 2.1 million), 

compared to the small target area (235kb). Baits would have a limited number of target 

sequences and so large amounts of duplication.  

Percentage of bases covered at 30X was 66%, with 78% at 2X coverage, meaning 22% of 

targeted bases have less than 2X coverage. Coverage statistics for one sample indicative of 

other samples (bull 6), are shown in Figure 3.3-8 on page 92. This sample highlights the 

regions of low coverage in the targeted re-sequencing probe design. In particular, poor 

sequencing coverage is evident between genes 55 and 64, located on chromosome 27 

between positions 5473206-6196146. 

To confirm WES reads are predominantly aligned to exons, and to highlight the success of 

the custom-designed bait capture protocol for identifying exome genetic variants, an 

annotated gene of interest was selected for viewing via integrated genomics viewer (IGV). 

DEFB122a which was annotated in the bovine genome and was included in exome capture 

was visualised in IGV to show depth of coverage, a coding region SNP and 2 5’UTR SNPs; see 

Figure 3.3-9.  

                                                 
18

 Electronic Appendix 3.2 Targeted Sequencing coverage Stats - Exome subset.xslx 
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Table 3.3-3: Summary of coverage statistics for targeted β-defensin re-sequencing 

Table of read coverage for targeted re-sequencing of β-defensin and cathelicidins genes. Information on bull Sample identification, total 

number of reads per sample, % of reads aligned to bovine genome, average coverage of each targeted sequence, % of sequenced bases which 

map on targeted probes, fold enrichment of targeted region (more than would be expected by chance), and 2X, 10X and 30X read coverage are 

all shown here. 

Sample ID Total Reads % Aligned 
Avg. 
Coverage 

% Bases on 
Target 

Fold 
Enrichment % 2X % 10X % 30X 

Holstein-Friesian High         
Bull 1 438545 92.2 288.7 67.1 6619.8 79.2 72.2 66.8 
Bull 2 651339 94.6 449.5 70.4 6741.7 78.6 72.2 66.4 
Bull 3 544935 94.4 371.2 69.6 6728.1 78.9 73.1 66.9 
Bull 4 630665 94.4 440.2 71.8 6864.5 78.5 71.8 65.4 

Bull 5 649537 94.5 450.5 71.2 6822.2 78.6 71.8 65.9 
Bull 6 340382 91.3 218.1 65.3 6515.4 79.5 72.9 66.6 
Holstein-Friesian Low 

        Bull 7 681106 96.3 483.9 72.1 6824.5 78.9 72.7 66.1 
Bull 8 661779 95.1 458.9 70.8 6800.1 79.1 72.5 66.6 
Bull 9 701543 95.8 492.4 71.5 6806.2 78.8 72.5 66.9 
Bull 10 560394 95.3 389.3 70.6 6743.7 78.8 73.1 66.9 

Bull 11 714683 95.5 499.7 71.4 6811.3 77.5 71.3 66.2 
Bull 12 855507 95.7 602.7 71.6 6825.2 78.9 72.1 66.6 
Limousin High 

        Bull 13 792361 95.6 556.2 71.6 6825.6 79 73.5 67.6 
Bull 14 646738 95.4 451.1 71.1 6811.5 78.7 71.9 67.5 
Bull 15 734337 95.4 513.8 71.3 6828.5 79.9 74.1 67.7 
Limousin Low 

        Bull 16 632236 95.9 447.1 71.9 6831.7 78.5 72.4 66 

Bull 17 567005 94.2 387.4 69.7 6747.3 79.5 73.9 68.3 
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Bull 18 598511 96 424.2 72.1 6843.2 78.9 72.5 66.8 
Belgian Blue High 

        Bull 19 641749 95.4 445.9 70.9 6776.7 78.8 72.5 67 
Bull 20 649660 94.9 449.8 70.6 6779 79.6 73.5 68.1 
Bull 21 603576 95.6 423.6 71.3 6799.1 78 71.6 66 
Belgian Blue Low 

        Bull 22 616297 95.4 429.3 71.1 6796.1 79.1 72.7 67 
Bull 23 461952 94.1 314.4 69.2 6702.3 78.6 72.4 66.4 
Bull 24 668819 94.9 464.5 70.8 6809.7 79.1 72.9 66.4 

Min 340382 91.3 218.1 65.3 6515.4 77.5 71.3 65.4 
Mean 626819 94.9 435.5 70 6777.2 78.9 72.6 66.8 
Max 855507 96.3 602.7 72.1 6864.5 79.9 74.1 68.3 

 

  

Table 3.3-4 continued 
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Figure 3.3-8: Mean coverage per gene in representative sample. 

Targeted regions are shown on x-axis. Each region is a targeted gene or gene region, with 69 in total. Mean coverage is shown on the y-axis. 

Coverage stats show the variation in coverage amongst targeted regions for β-defensin targeted sequencing. Low coverage may be due to 

repetitive regions resulting in low probe binding or capture efficiency. 
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Figure 3.3-9: DEFB122a IGV - reads mapping to exons and depth of coverage. 

Integrated genomics viewer (IGV) image of A) sequencing reads mapping to exonic regions of DEFB122A in 1 sire and B) Reads aligned to exon 

1 of DEFB122a, showing SNP in coding region and 2 SNPs in 5’UTR. Grey bars are quality filtered sequencing reads aligned to UMD3.1 bovine 

genome. Multiple aligned reads show depth of coverage at individual positions across the targeted region.  

A 

B 

DEFB122a reads mapping to exon regions 
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3.3.6 Variant discovery 

Variant discovery following GATK’s best practice guidelines was performed and identified 

4,948 unfiltered SNPs. After filtering SNPs based on read depth and to SNPs located within 

the targeted regions, 274 SNPs remained. Annotation of these SNPs identified two high-

effect variants, as determined by SnpEff, which are predicted to result in a stop-gained 

mutation in BBD118 and DEFB4a. SnpEff, the variant predictor package, was used to predict 

the location, class and effect of SNPs. Examples of high effect variants include exon deletion, 

frame shift, start lost, stop lost and stop gained etc. BBD118 is part of the cluster of 19 β-

defensin genes, located on chromosome 13, which were identified by our group as being an 

expansion of β-defensin genes in cattle, and are expressed in the male reproductive tract. 

 

3.3.7 Annotation 

Following variant discovery, SnpEff, the variant annotation and effect predictor tool 

predicted the effects of genomic changes (such as amino acid changes) of the variants on 

the genes. Of the 274 SNPs identified following filtering, 2.27% were predicted to be located 

in exons, and 0.41% were located in the 5’UTR. Intergenic and intronic SNPs comprised 85% 

of these SNPs. Of the exonic SNPs, 1.47% were non-synonymous, and 0.68% were 

synonymous. This targeted capture design is inherently different to the exome target 

design, as this targeted capture includes 1,000bp 5’UTR, and all introns for each of the 69 

genes, as well as the exon regions. This explains the differences in percentage of variants 

located in exons.  

SNP frequencies for breed-specific SNPs cannot be performed on this dataset due to the low 

numbers in each group (3 per fertility phenotype, except for HF which is 6 per fertility 

phenotype).  
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Figure 3.3-10: Targeted sequencing SNP location (subset of bulls). 

Bar chart of percentage of total SNPs identified in targeted β-defensin sequencing for 24 

bulls selected for whole-exome sequencing located in various genomic features. X-axis 

denotes the genomic features where SNPs are located, intron (non-coding sections of DNA), 

Intergenic region, Upstream (5’UTR of a gene), downstream (3’UTR of a gene), missense 

(SNP results in a codon that codes for a different amino acid), and synonymous (SNP in exon 

that does not alter amino acid code).  

 

3.3.8 β- defensin SNP frequency analysis 

SNP frequency analysis between high and low-fertility groups was performed on the 274 

SNPs identified in targeted β-defensin re-sequencing. Of these 274, 20 SNPs were found to 

have a SNP frequency difference between groups of greater than 25%, as large SNP 

frequency differentials between groups indicate selective pressures. SNPs were also filtered 

to ensure a genotyping call rate > 80% in animals for each SNP. These 20 SNPs are shown in 

Figure 3.3-11, on page 96. SNP frequency differences were similar for most SNPs, with 33 % 

being the highest SNP frequency difference between groups. Seven SNPs had this SNP 

frequency difference, located in DEFB122, DEFB123, and BNBD6.  

Intron
Intergenic

region
Upstream

Downstrea
m

Missense Synonymous

Series1 41.79% 22.60% 17.31% 14.76% 1.31% 0.78%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%
P

e
rc

e
n

ta
ge

 o
f 

To
ta

l V
ar

ia
n

ts
 

Targeted β-defensin variant location (subset) 
 



 

96 

 

 
Figure 3.3-11: SNP frequency scatter plot between high-fertility and low-fertility groups for 

targeted β-defensin genes. 

Each point denotes a filtered targeted β-defensin re-sequencing variant (n=20). Multiple 

SNPs are plotted on top of each other as they have the same frequency differentials, with a 

SNP frequency difference between high- and low-fertility groups of greater than 25%. The x-

axis denotes the frequency of the alternate allele for 12 samples in the high-fertility group, 

and the y-axis denotes frequency of the alternate allele for 12 samples in the low-fertility 

group. 
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3.3.9 Targeted β-defensin SNP association in subset of sires 

The SNP most significantly associated with AAM from targeted β-defensin re-sequencing in 

subset of 24 sires was g.5296571A<G, P=0.005. This SNP is located in the intron of BBD138. 

The second and third most significantly associated SNP are both located in the BNBD6 gene. 

 

Table 3.3-5: Top 20 targeted SNPs associated with fertility phenotype. 

Table of top 20 SNPs from targeted β-defensin and cathelicidins gene sequencing associated 

with an Adjusted Animal Model, a quantitative trait. Unadjusted P-values were considered 

significant at P < 0.05. Following Benjamini-Hochberg multiple testing correction, no SNP 

was statistically significant at P < 0.05. A full list of defensin SNPs associated with fertility are 

shown in the electronic appendix19. 

No. ID Chromosome Position P-Value Gene 

1 rs377872690 27 5296571 0.00569 BBD138 

2 rs210662027 27 5162095 0.00572 BNBD6 
3 rs209040542 27 5162243 0.00572 BNBD6 
4 rs134258076 13 61529933 0.00588 DEFB119 
5 rs135560000 13 61529943 0.00588 DEFB119 
6 rs43708181 13 61563319 0.00629 DEFB122A 
7 rs383291516 13 61315310 0.00645 BBD129 
8 rs209203024 13 61339530 0.00645 BBD127 
9 rs380883000 13 61340123 0.00645 BBD127 
10 rs208521215 13 61353275 0.00645 BBD126 

11 rs208842439 13 61375380 0.00645 BBD125A 
12 rs207983987 13 61397108 0.00645 BBD125 

13 rs207932860 13 61436311 0.00645 BBD142 
14 rs211216958 13 61447139 0.00645 BBD142 
15 rs43708180 13 61563327 0.00792 DEFB122A 
16 rs109671949 13 61519650 0.00891 DEFB118 
17 rs110402015 13 61566133 0.01028 DEFB122A 
18 rs43708157 13 61566114 0.01028 DEFB122A 
19 rs110199159 13 61566125 0.01028 DEFB122A 
20 rs43708155 13 61566664 0.01028 DEFB122A 
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 Electronic Appendix 3.1 Defensin_Association_Multiple_Testing.txt 
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3.3.10 O-linked glycosylation analysis in β-defensin genes 

O-linked glycosylation sites were predicted in silico for all 19 β-defensin genes located on 

chromosome 13 using NetOGlyc 3.1 available at (Joshi, 2017 ). Graphs of β-defensin genes 

with predicted glycosylation sites are shown in Figure 3.3-12. Graphs of β-defensin genes 

without predicted glycosylation sites are shown in Figure 3.3-13. In total 46 predicted 

glycosylation sites were identified, located in the following genes, BBD115 (1), BBD116 (2), 

BBD117 (2), BBD118 (4), BBD120 (2), BBD122a (1), BBD125 (6), BBD125a (8), BBD126 (8), 

BBD127 (1), BBD129 (9) and BBD132 (2). These 12 genes contained at least one predicted 

glycosylation site above a threshold determined by the NetOGlyc 3.1 tool. Numbers of 

glycosylation sites are indicated in brackets. Seven genes, BBD119, BBD121, BBD122, 

BBD123, BBD124, BBD128, and BBD142 contained no predicted O-linked glycosylation sites.  
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Figure 3.3-12: O-linked glycosylation analysis in β-defensin genes with predicted 

glycosylation sites. 

NetOGlyc 3.1 graphs of predicted glycosylation sites in β-defensin genes. X-axis denotes the 

sequence position of the glycosylation site in the coding region of the β-defensin gene. Y-

axis is the O-linked glycosylation potential, and red threshold line denotes the potential of 

glycosylation. 

  

BBD126 
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Figure 3.3-13: O-linked glycosylation analysis in β-defensin genes with no predicted 

glycosylation sites. 

NetOGlyc 3.1 graphs of predicted glycosylation sites in β-defensin genes. X-axis denotes the 

sequence position of the glycosylation site in the coding region of the β-defensin gene. Y-

axis is the O-linked glycosylation potential, and red threshold line denotes the potential of 

glycosylation. 
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3.4 Discussion 

This is the first comprehensive analysis of sequence variation present in bovine β-defensin 

genes, which play critical roles in immunity and fertility. Fertility phenotypes identified from 

ICBF fertility data for all 168 sires in this study show that pregnancy rate ranged from 20% to 

70% with a mean of 49%. This is consistent with the phenotypic variation seen in bull 

fertility data (Al Naib et al., 2011). It is interesting to note here the presence of AI bulls 

highly-selected for fertility traits, with PR as low as 20%. The AAM fertility phenotype 

ranged from -0.21 to 0.12 units with a mean of 0.017 units. In addition, even taking the low 

numbers of low PR bulls into account, there is still large variation of ~20% between bulls of 

40% PR compared to 60%.  

Sires of high- and low-fertility were selected based on two indirect male fertility 

phenotypes: 1 standard deviation above and below the mean for pregnancy rate and 

adjusted animal model, determined the sires selected for sequencing, as described in detail 

in methods. Importantly, the fertility phenotype data obtained from ICBF is for artificial 

insemination bulls, which are used in active service. Sires in active AI, have undergone 

stringent semen quality evaluation testing prior to use on AI and therefore, even low-

fertility sires have already passed semen quality control measures. Low-fertility AI sires may 

not be synonymous with low-fertility stock bulls. Future studies by our research group will 

examine stock bull fertility which may analyse low-fertility bulls in the stock bull population.  

Bovine fertility has major cost implications for farmers, especially in Ireland. Approximately 

20% of calves born in Ireland are sired by AI bulls. The process of AI bypasses the cervix, 

which may reduce the natural selection pressures on the ability of sperm to penetrate 

cervical mucus. Taking this into account, the use of AI sires which have passed semen QC is 

interesting in this study, as the semen appears morphologically normal, but still results in 

low-fertility sires. This may be explained by reduced ability of sperm to swim through 

cervical mucus as shown in macaque (Tollner et al., 2008), caused by mutations in β-

defensin genes containing glycosylation sites, such as DEFB126. Therefore, mutations in 

genes containing glycosylation sites may affect the ability of sperm to penetrate cervical 

mucus in the female reproductive tract. Altered glycosylation has previously been shown to 

affect sperm penetration in humans (Tollner et al., 2011).  
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The objective of this study was to investigate whether variants in the β-defensin gene 

cluster are associated with male fertility in cattle. After targeted sequencing of bulls (n=168) 

divergent for fertility, 3,134 variants were identified after variant filtering (2,892 SNPs, 105 

insertions and 137 deletions). These variants were then associated with the AAM phenotype 

using GenABEL: An R package for Genome Wide Association Analysis.  

A group of 97 SNPs located on chromosome 13 are associated with the adjusted animal 

model fertility phenotype. Evidence suggests these SNPs are inherited as a haplotype. Nine 

sires (5 Holstein Friesian, 1 each of Limousin, Simmental, Charolais and Belgian Blue) are 

heterozygous, whilst all other sires have reference alleles. The 9 heterozygous sires are of 

medium to high fertility, according to the adjusted animal model phenotype (overall AAM = 

0 to 0.07, mean 0.04, s.d. 0.027).  

Of the SNPs in the haplotype, 76 were annotated by SnpEff to be located within introns, 5 

downstream and 13 upstream of genes and 18 are intergenic. This total is more than 97, as 

multiple annotations can be called for the same SNP as they may be located upstream or 

downstream of gene 1, and be intergenic between gene 1 and 2, for example. The 97 

haplotype SNPs span ~130kbp and contain 8 β-defensin genes (BBD128, BBD127, BBD126, 

BBD125, BBD125a, BBD115, BBD142 and BBD116).  

Targeted re-sequencing of bovine β-defensin genes was performed in the same 24 animals 

which have also undergone whole-exome sequencing due to a lack of annotation for β-

defensin genes in the bovine genome for whole-exome target probe design. Complete gene 

sequences for targeted re-sequencing of β-defensins plus 1,000bp upstream of the genes 

cover 387kb, however, by limiting baits which align to between 1 and 5 locations in the 

genome reduce the target area to 235kb.  

This larger project has sequenced 69 genes of interest in 168 AI bulls.  Over 2,000 SNPs have 

been identified, with a block of 59 SNPs on chromosome 13 being among the most 

associated with the fertility phenotype. All 168 (including these 24) samples are included in 

the association analysis, and will lead our future direction of research.  

O-linked glycosylation analysis identified predicted O-linked glycosylation sites in the tail 

region of BBD126, see Figure 3.3-12, the bovine ortholog of DEFB126, which in humans has 
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been shown to contain a dinucleotide polymorphism in exon 2, which resulted in sub-fertile 

males, who were 40% less likely to conceive. Importantly, men with this polymorphism in 

DFEB126 had an 84% reduction in the ability of sperm to penetrate an artificial cervical 

mucus substitute, see Figure 1.3-4. Also, mouse β-defensin 122, orthologous to bovine 

BBD126, is characterized as one of the most abundant proteins of the mouse sperm 

glycocalyx (Yudin et al., 2008). 

Interestingly, previous work by our group identified 52 sites predicted across 13 genes in 

this 19 gene β-defensin cluster. In comparison, re-analysis with updated annotation 

information identified 46 predicted glycosylation sites across 12 genes, with seven 

containing no predicted sites. BBD126 as mentioned above contained predicted 

glycosylation sites. However, it also contained the second highest number of sites with 8 in 

total, compared to BBD129 which had the most with 9 predicted sites and BBD125a which 

also had 8 sites. 

Taken together, these data support the theory that β-defensin genes play a role in male 

fertility. By bypassing the cervix and cervical fluid, a natural source of semen selection, AI 

bulls with decreased ability to penetrate cervical mucus are possibly contributing to 

decreased fertility of the Irish national herd. 

In this chapter, our aim was to investigate whether variants in the β-defensin gene cluster 

are associated with male fertility in cattle and identify candidate SNPs for validation in an 

independent population. Targeted sequencing of the β-defensin gene cluster for the first 

time in bulls divergent for fertility identified significantly associated SNPs located on 

chromosome 13, which are inherited as a haplotype. This haplotype appears to be driven by 

9 medium-high fertility bulls, and subsequent functional validation identified that sperm 

from high-fertility bulls with the haplotype were significantly better at binding to oviductal 

epithelial cells, a key step in fertilisation where sperm aggregate in the oviduct prior to 

capacitation (Finlay, E. et al. 2017, unpublished data). 
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4 Whole-exome sequencing of bulls divergent for 

fertility 
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4.1 Introduction 

Male fertility is a complex, polygenic trait with multiple phenotypes. Previous studies have 

identified genetic variants with effects on male fertility (Akinloye et al., 2009, Krausz et al., 

2015, Akinloye et al., 2007). Coding region variants have been shown to affect fertility in 

cattle (Sonstegard et al., 2013). Interestingly, exome sequence analysis and targeted SNP 

genotyping of recessive fertility defects has identified the causative variant in cattle 

(McClure et al., 2014a). These data demonstrate the importance of variant discovery, 

particularly in coding regions, in identifying causal variants in bovine.  

Whole-exome sequencing is where every known exon in the genome is sequenced, to 

identify functional, coding region variants that may have a significant impact on gene 

function, protein coding, and ultimately, phenotype. Previous studies have indicated that 

genome-wide variants have an association with and impact on fertility (Penagaricano et al., 

2012, Cochran et al., 2013a, Feugang et al., 2009). In addition to genetic variants identified 

in Chapter 3, variants located in coding regions genome-wide were also identified, as they 

may also be associated with male fertility. As male fertility is a polygenic trait, multiple 

genes and biological processes will influence the phenotype.  

Application of a genomic-scale sequence-based approach to association studies has 

previously been proposed as a method for identifying genes underlying complex phenotypes 

(Botstein and Risch, 2003). To identify coding region variants which may underlie complex 

phenotypes, whole-exome sequencing was performed on Irish AI bulls divergent for fertility. 

Whole-exome sequencing was performed as part of a dual-sequencing approach, as 

discussed in the previous chapter and is also part of a larger research project, investigating 

potential molecular biomarkers for fertility in cattle. Therefore, it was important to 

characterise the effect of exonic variants in the genome, on the male fertility phenotype 

obtained. 

Our hypothesis proposes that genome-wide genetic variation of the exons and promoter 

regions will explain some of the high phenotypic variation in AI bulls divergent for fertility. 
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4.2 Aims 

The main aim of whole-exome sequencing was to identify variants in coding regions, and 5’ 

regulatory regions of all annotated genes in the genome, for AI bulls which are divergent for 

a fertility phenotype. The secondary aim was to perform genome-wide association analysis 

on identified variants and fertility phenotypes collected, to identify significantly associated 

variants for further analysis. The final aim was to validate variants of interest by genotyping 

a large sample size using a custom-designed SNP chip, containing variants of interest. 

 

4.3 Results 

4.3.1 Exome sequencing coverage 

Whole exome sequencing of 24 bulls was performed and a summary of minimum, 

maximum, mean sequencing reads, and reads aligned to the reference genome and reads 

remaining following duplicate removal are shown in Table 4.3-1. Coverage of on-target 

regions (regions of the exome targeted by our sequence capture probes) was found to be 

98.6%. This shows that 98.6% of targeted regions were covered by at least 1 read. The 

remaining 1.4% was not captured by this bait design for unknown reasons.  

An average of 39 million reads per sample were retained following read filtering, ranging 

from 23,716,853 to 78,048,261. The proportion of reads uniquely aligned to the genome 

averaged 94%, with 3.45% PCR duplication of reads. Percentage genome coverage at low 

read coverage was 95.5% at 2X coverage, and 69% at 10X coverage, ranging from 95% to 

98% and 49% to 88% respectively. However, at higher coverage, the percentage of the 

genome sequenced was low with a mean of 33% at 20X and 12% at 30X coverage, ranging 

from 11% to 69% and 2% to 50%, respectively. At higher depths of coverage, the boar 

sequencing capture design has larger genome coverage i.e. 75% at 30X, see Table 4.3-3. This 

is probably due to the targeted genome capture methods used with the bull method 

focusing on identifying as many variants in as many animals as possible. 
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Table 4.3-1: Summary of coverage statistics for whole-exome sequencing. 

Table of whole-exome sequencing coverage statistics for all 24 AI bulls of divergent fertility. Total Reads – Total number of sequencing reads 

per sample; % Aligned – Percentage of sequencing reads aligned to UMD3.1 bovine genome; % On Target – Percentage of sequenced reads per 

sample which map to a bait in the exome bait capture design used to manufacture baits; % Duplication – Percentage of reads which are 

identical to each other due to PCR duplication during library preparation; % ‘n’ X – Percentage of the targeted region covered by aligned 

sequences  more than or equal to ‘n’ amount of times. 

Bull AI Code  Total Reads % Aligned % On target % Duplication %2X %10X %20X %30X 

Holstein-Friesian High Fertility          
Bull 1  78048261 94.4 51.4 3.9 97.9 88.1 69.4 50.4 
Bull 2  35550206 92.9 55.1 3.1 94.7 66.0 31.3 9.3 
Bull 3  53731626 94.3 53.3 3.6 97.1 81.4 54.9 30.3 
Bull 4  43239255 93.8 53.8 3.0 96.7 77.2 42.2 15.0 

Bull 5  23716853 94.3 55.9 3.0 92.4 49.3 11.2 1.6 
Bull 6  41483730 94.0 54.4 3.0 96.3 74.0 40.5 15.1 
Holstein-Friesian Low Fertility          
Bull 7  36979092 93.6 55.6 2.9 96.3 72.6 33.8 9.4 
Bull 8  64031638 94.6 50.9 3.4 97.0 82.4 59.5 38.5 
Bull 9  27839780 94.1 56.0 2.9 94.6 58.7 16.9 2.8 
Bull 10  34814185 94.3 55.0 2.9 95.1 66.5 30.5 8.7 

Bull 11  45393737 94.2 51.4 6.4 95.4 71.4 42.8 19.3 
Bull 12  29749347 93.6 54.3 2.7 93.5 58.0 21.1 4.5 
Limousin High Fertility          
Bull 13  36575977 94.3 51.2 6.3 95.7 67.5 28.4 6.7 
Bull 14  30797458 93.1 55.0 3.0 95.3 64.6 22.0 4.3 
Bull 15  37479255 93.6 55.6 3.1 95.9 72.7 34.0 9.5 
Limousin Low Fertility          

Bull 16  35911606 93.5 55.6 2.8 96.2 71.5 30.9 7.7 
Bull 17  36495314 94.2 54.9 3.5 95.8 69.6 33.2 9.9 
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Bull 18  43534826 93.6 52.0 3.9 96.4 76.1 40.9 14.0 
Belgian Blue High Fertility          
Bull 19  33132619 94.7 53.4 2.6 93.9 60.9 26.9 7.6 
Bull 20  40152528 93.4 53.5 3.4 96.6 75.2 37.3 11.1 
Bull 21  33592242 93.4 51.7 3.3 95.6 66.0 22.4 4.2 
Belgian Blue Low Fertility          

Bull 22  31737661 93.9 53.7 4.0 95.5 65.3 21.5 3.9 
Bull 23  30025158 93.6 54.9 2.8 93.2 57.7 22.9 5.6 
Bull 24  31034034 94.3 53.7 2.9 92.8 57.2 23.9 6.2 

Mean  38960266 93.9 53.8 3.4 95.4 68.7 33.3 12.3 
Min  23716853 92.9 50.9 2.6 92.4 49.3 11.2 1.64 
Max  78048261 94.7 56.0 6.4 97.9 88.1 69.4 50.4 

Table 4.3-2 continued 
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Table 4.3-3: Comparison of bull and boar exome sequencing coverage statistics.  

Bull whole exome sequencing mean (24 samples) sequencing statistics and boar whole-exome sequencing mean (96 samples) statistics. 

Percentages refer to percentage of genome covered by reads at specified coverage (X). Boar exome sequencing data was obtained using the 

same Roche Nimblegen Developer kit, and was obtained from (Robert et al., 2014). 

 

 Total Reads Aligned Bases on target Duplication 2X 10X 20X 30X 

Bull Mean 38,960,266 93.9 % 53.8 % 3.45 % 95.4% 68.7% 33.3% 12.3% 

Boar Mean 38,415,939 89.62 % 60.74 % 3.78 % 95% 91% - 75% 
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4.3.2 Variant discovery 

Following variant calling, 3,437,419 unfiltered variants were discovered in all 24 bulls using 

GATK’s HaplotypeCaller walker. Filtering for variants located within targeted regions, and 

with a minimum read coverage threshold of 5X, reduced variants to 284,042. Of these, 

12,124 were insertions and 13,048 were deletions, leaving 264,038 SNPs. There were 91,047 

(31.5%) novel variants, with no known dbSNP identifier. Further quality control filtering to 

remove variants with low call rate, low minor allele frequency, or that were out of Hardy-

Weinberg equilibrium, reduced SNPs brought forward for analysis to 144,178, following 

check.marker quality control filtering. This additional filtering is required for variant 

association analysis to remove as many false-positive variants as possible. However, false-

positive filtering also results in true-positive removal, which may not be necessary for SNP 

frequency estimation, variant annotation, or GO analysis.  

 

4.3.3 Variant annotation 

SnpEff, the variant predictor package, was used to predict the location, class and effect of 

SNPs. Variants were predicted to have high, moderate, low or modifier functional effect. 

The effect of the SNP on gene sequence and function was grouped as high – low, based on 

position and codon change. High effect variants accounted for 1.6%, moderate impact 

variants accounted for 17.3%, low impact variants were 24.4% and modifier variants were 

56.6%.  Examples of high effect variants include exon deletion, frame shift, start lost, stop 

lost and stop gained etc. Moderate effect variants include non-synonymous variants, coding 

sequence variants, and inframe insertions. Low effect variants include 5’UTR premature 

start gain, start retained and stop retained mutations. Modifier effect variants include 5’UTR 

variants, intron variants, and downstream gene variants. Variant impact and numbers are 

summarised in Table 4.3-4, on page 111. Of the 23 high effect variants, (the variants with 

the biggest predicted effect on gene function) 15 were predicted to result in frameshift 

mutations, 5 were predicted to result in stop-gained codon modifications, and 3 predicted 

to be splice acceptor variants.  
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Table 4.3-4: SnpEff variant effects annotation predictions for whole-exome sequencing 

SnpEff, the variant predictor package, was used to predict the location, class and effect of 

SNPs. Predicted SNP effects with ‘high’ having the largest effect on gene function, followed 

by ‘Moderate’, ‘Low, and then ‘Modifier’. The effect of the SNP on gene sequence and 

function was grouped as high – low, based on position and codon change. Total variants 

sum to more than 144,178, due to multiple annotations for single variants. 

High Low Moderate Modifier Total 

2656 40510 28779 93612 165557 

 

 

Variants were located in 37.85% of exons, 21.41% of introns and 2.06% of 5’UTR. The 

remaining ~40% are located upstream or downstream of genes, 3’UTR and between variants 

(intergenic). Variant locations are shown in Figure 4.3-1. 
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Figure 4.3-1: Chromosomal locations for whole-exome variants 

Bar chart of variant locations in genes for whole-exome sequencing dataset. The percentage 

of variants in each region (y-axis) and genomic region of variant (x-axis) are shown.  

 

Of the 38% of variants in exons, 53% were synonymous, 46% were non-synonymous, and 

~1% were predicted to result in frameshift mutations. Transition to transversion ratio 

(Ts/Tv) found in the whole–exome sequencing project is 2.84 (only SNPs are used to 

calculate this statistic). A missense (28,380) to silent (35,455) ratio of variants is 0.8005.    

 

4.3.4 Exome variant SNP frequency analysis 

Following variant annotation and filtering SNPs based on depth of coverage, a custom-made 

Perl script was used to count SNP alleles, determine SNP frequencies, and proportions of 

alleles being in a category of interest (fertility). SNPs with greater than 25% difference in 

SNP frequency between fertility groups and which have a genotyping call rate > 80% to 

remove missing data, are shown in Figure 4.3-2. 
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Figure 4.3-2: SNP frequency scatter plot between high- and low-fertility groups 

Each point denotes a filtered exome sequencing variant (3,430), with a SNP frequency 

difference between high- and low-fertility groups of greater than 25%. The x-axis denotes 

the frequency of the alternate allele for 12 samples in the high-fertility group, and the y-axis 

denotes frequency of the alternate allele for 12 samples in the low-fertility group. 

 

SNP frequencies between high- and low-fertility groups 
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Table 4.3-5: Top 20 variants with SNP frequency differences between groups of divergent fertility 

A Table of the top 20 variants with SNP frequency differences between high-and low-fertility groups. Chrom = Bovine chromosome number; ID 

= dbSNP identifier; High Fertility Frequency = SNP frequency in bulls of high-fertility; Low Fertility Frequency = SNP frequency in bulls of  

Low-fertility; Nearest Gene = Nearest annotated gene to SNP according to dbSNP database. 

No. Chrom Position ID High 
Fertility 
Frequency 

Low 
Fertility 
Frequency 

Nearest Gene 

1 X 3476025 rs42198964 0.791 0.083 PGRMC1 
2 17 71933266 rs41853791 0.833 0.166 MORC2 
3 X 129382246 rs110385224 0.708 0.041 PGM3 
4 X 3481991 rs42198966 0.166 0.833 LOC536148 
5 15 30414498 rs135635704 0.166 0.75 CBL 
6 24 30374980 rs380970509 0.166 0.75 Csmd1 

7 10 81033222 rs43644083 0.125 0.708 ACTN1 
8 25 2122895 rs137616491 0.166 0.75 KCTD5 
9 7 9178070 rs109973752 0.25 0.833 CCDC105 
10 X 58420106 rs209828298 0.041 0.625 LOC523458 
11 18 60633324 rs380059125 0.75 0.166 LOC100337403; LOC101906794; LOC101908336; LOC785408 
12 18 55955510 rs41891074 0.136 0.708 NUCB1 
13 10 20804716 rs137800911 0.416 0.958 IPO4 

14 16 2668990 rs110598472 0.25 0.791 CNTN2 
15 17 72453195 rs135340962 0.083 0.625 PISD 
16 1 151166317 rs380830493 0.208 0.75 DSCR3 
17 7 9170968 rs110367026 0.333 0.875 CCDC105 
18 X 15389344 rs110425744 0.416 0.958 LOC528106 
19 18 60633305 rs383220134 0.833 0.291 LOC100337403; LOC101906794; LOC101908336; LOC785408 
20 18 60633347 rs385598203 0.75 0.208 LOC100337403; LOC101906794; LOC101908336; LOC785408  
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4.3.5 Breed-specific SNP frequencies 

Three breeds of bull were sequenced via whole-exome sequencing, HF, LM, and BB. SNP 

frequencies for HF bulls were analysed, however, LM and BB breed-specific SNP frequencies 

are inaccurate due to low sample numbers (n=6). BB had 21,062 SNPs and a SNP frequency 

difference between fertility groups of greater than 25%, whilst LM had 21,925. 

For HF (n=12), 15,984 SNPs had a SNP frequency difference between fertility groups of 

greater than 25%. Three different breeds were sequenced to ensure robust variant calls for 

validation, and to reduce single breed specific SNPs being reported. 

 

4.3.6 Gene ontology 

Gene ontology analysis was used to identify significantly over-represented gene ontology 

terms from the 484 SNPs associated with AAM fertility. Initially, the SNP dataset was 

annotated to identify the nearest gene for each SNP. Two functional categories were 

significantly over-represented in this dataset after Benjamini-Hochberg correction for 

multiple testing. The term ‘glycoprotein’ was a significantly over-represented keyword in 

this dataset (adjusted P-value = 0.0056). The term ‘glycosylation site: N-linked’ is a 

significantly over-represented feature in this dataset (adjusted P-value = 0.00024).  For GO 

term over-representation analysis, approximately 200 genes were not annotated in the 

DAVID databases and were not accounted for. 

In addition, other terms were over-represented in the dataset, with significant uncorrected 

P-values, however, after Benjamini-Hochberg correction; the P-values were not significant. 

These over-represented terms include ‘immune response’ (unadj. P-value = 0.0018), 

‘disulfide bond’ (unadj. P-value = 0.003). 
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Table 4.3-6: Gene ontology analysis of SNPs divergent between fertility groups. 

Variant association analysis of 484 variants identified by whole-exome sequencing associated with Adjusted Animal Model (AAM) fertility 

phenotype. Variants are ranked based on their P-values. The unadjusted P-value significance threshold was set at (p < 0.1). Category, denotes 

original database/resource where the terms orient (i.e. KEGG pathways, Protein information resource keyword, or UniProt feature), Term, 

denotes enriched terms associated with the gene list. Count, refers to the number of genes involved in the term. % refers to involved genes / 

total genes. P-value is a moderated Fisher exact P-value, EASE score. BH, refers to Benjamini-Hochberg multiple testing correction.  

 

Category Term Count % P-Value BH 

UP_SEQ_FEATURE Glycosylation site: N-linked (GlcNAc...)  28 10.5 8.3E-7 2.3E-4 
SP_PIR_KEYWORDS Glycoprotein  29 10.9 3.1E-5 5.6E-3 
SP_PIR_KEYWORDS Immune response  6 2.3 1.8E-3 1.5E-1 
SP_PIR_KEYWORDS Disulfide bond  20 7.5 3.3E-3 1.8E-1 
GOTERM_BP_FAT Acute inflammatory response  5 1.9 2.1E-3 3.2E-1 
UP_SEQ_FEATURE Disulfide bond  18 6.8 2.8E-3 3.3E-1 
SP_PIR_KEYWORDS Complement pathway  3 1.1 1.2E-2 3.6E-1 
GOTERM_BP_FAT Activation of plasma proteins involved in acute inflammatory response  4 1.5 1.7E-3 3.7E-1 
GOTERM_BP_FAT Complement activation  4 1.5 1.7E-3 3.7E-1 
GOTERM_BP_FAT Humoral immune response  4 1.5 4.2E-3 3.7E-1 
SP_PIR_KEYWORDS Innate immunity  4 1.5 1.0E-2 3.7E-1 
KEGG_PATHWAY Complement and coagulation cascades  5 1.9 1.4E-2 7.8E-1 
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4.3.7 Quality control 

Stringent quality control filtering was applied to whole-exome variants identified, to ensure 

robust association analysis. Initially, 284,042 filtered variants were identified from GATK 

variant calling prior to quality control. Filtering based on a SNP call rate of 80% (call rate = 

0.8), an individual SNP call rate of 90% (maximum percentage of missing genotypes in an 

individual sample; perid.call =0.9) and a minor allele frequency cut-off threshold of 5% (MAF 

= 0.05) reduced the number of variants to 144,178. In addition, two sires were removed 

from association analysis, due to high autosomal heterozygosity. Principal component 

analysis of genomic kinship both pre-QC, see Figure 4.3-4 and post-QC, see Figure 4.3-5  

shows the principal components leading to variation between breeds, in bulls of high- and 

low-fertility. Sires removed from association analysis had autosomal heterozygosity over 

40% for SNPs identified in those sires.   

The genomic inflation factor (lambda) is defined as the ratio of the median of the empirically 

observed distribution of the test statistic to the expected median, thus quantifying the 

extent of the inflation and the false positive rate (Yang et al., 2011, Aulchenko et al., 2007). 

The genomic inflation factor for the whole-exome sequencing dataset was calculated as 0.8, 

less than 1, suggesting either population stratification or polygenic inheritance (Yang et al., 

2011), see Figure 4.3-3. Given that population stratification has been accounted for via 

selection of unrelated bulls, using a pedigree matrix, this was deemed to be acceptable for 

further analysis. For association analysis lambda was set to 1. 
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Figure 4.3-3:  χ2−χ2 plot for a GWA scan.  

The λ is computed by regression in a Q-Q plot. The estimate of λ is less than 1, suggesting deflation of the test and some degree of 

stratification. X-axis denotes the Expected χ2 and the Y-axis denotes the observed χ2 for the GWA scan. Black line of slope 1: expected under 

no inflation; Red line: fitted slope. 
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Figure 4.3-4: Principle components resulting from analysis of genomic kinship - identifying genetic outliers 

X-axis denotes the 1st principal component. The y-axis denotes the second principal component. Sires are grouped according to breed. HF = 

Holstein-Friesian, LM = Limousin, BB = Belgian Blue.  



 

120 

 

 

Figure 4.3-5: Principle components resulting from analysis of genomic kinship post quality control  

After dropping the outliers, check.marker QC was repeated to identify any further genetic outliers. None were identified. 

X- axis denotes the 1st principal component. Y-axis denotes the 2nd principal component.  



 

121 

 

4.3.8 SNP association 

In total, 144,178 variants were identified in whole-exome sequencing after filtering and 

quality control for SNP association analysis20. The genes most significantly associated with 

the fertility phenotype, adjusted animal model, are shown in Table 4.3-7. Of the top 20 most 

significantly associated SNPs, 11 SNPs were predicted to be in the intron region of a gene, 7 

were predicted to be in exons (4 synonymous, 1 missense and 2 unknown), 2 were 

predicted to be non-coding, and 2 were upstream of their respective genes.  

The most significantly associated gene is located on chromosome 11 at position 49,866,493 

with an unadjusted P-value = 0.00014. It is predicted to be in the U6 novel snRNA in 

humans, a pseudogene of the small non-coding RNA class. In addition, this gene is highly-

expressed in the testes of bulls (Merkin et al., 2012). This data set was originally submitted 

to NCBI Gene Expression Omnibus under accession number GSE41637 and is available in 

ArrayExpress as E-GEOD-41637. Little is known about the function of this gene, and future 

studies would be required to verify its function, especially in relation to fertility.   

A SNP in the signal regulatory protein alpha, SIRPA, gene located on chromosome 13 at 

position 53691410 is the 2nd most significantly associated variant. This variant is in the 

exonic region of SIRPA, and is associated with AAM, (P-value = 0.00044). The exact function 

of this variant is unknown, and it is not annotated in the dbSNP database. However, SIRPA is 

a promising candidate gene for spermatogenic impairment and male fertility (Krausz et al., 

2015). 

The 3rd most significantly associated SNP, rs109065788, is located on chromosome 3 in the 

exonic region of the forkhead box J3 gene (FOXJ3). This SNP results in a synonymous 

mutation, resulting in no change of the amino acid sequence. However, synonymous 

mutations can affect mRNA abundance, resulting in altered protein concentrations, and can 

alter substrate specificity via altered protein conformations, as shown in humans (Kimchi-

Sarfaty et al., 2007). FOXJ3 is a transcription factor and is required for the survival of 

spermatogonia and participates in spermatocyte meiosis (Ni et al., 2016), see section 5.4. 

                                                 
20

 Electronic Appendix 4.1 Results Files/1 - qcbreedcountadjGWAS.txt 
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Two SNPs, rs137356698 and rs210428031, have multiple annotations being both intronic 

and upstream in different genes. SNP rs137356698 is in the 5’UTR of the NOB1 gene and in 

the intron of WWP2, with both genes located on alternate strands. SNP rs210428031 is in 

the intron of NFAT5 and possibly the 5’UTR of an alternative transcript.  

 

Figure 4.3-6: Manhattan plot of whole-exome sequencing variants associated with adjusted 

animal model fertility phenotype.  

Manhattan plot shows the association of variants identified by whole-exome sequencing 

and their associated P-value with the adjusted animal model fertility phenotype. The P-value 

for each variant association is on the y-axis. The chromosomal position of each variant is on 

the x-axis. In total, there are 144,178 variants after quality control shown. Red box indicates 

cluster of associated SNPs with fertility located on chromosome 13, located near the β-

defensin gene region (16 out of 38 SNPs in this region are within the β-defensin gene 

region). 

Whole-exome variant association with AAM – Manhattan plot 
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Table 4.3-7: Whole-exome sequencing variant genes most associated with adjusted animal model fertility phenotype. 

Variant association analysis of 144178 variants identified by whole-exome sequencing associated with Adjusted Animal Model (AAM) fertility 

phenotype. Variants are ranked based on their unadjusted P-values. The unadjusted P-value significance threshold was set at (p < 0.01). 

Variant ID gives the ‘rs’ number for any variant in dbSNP, otherwise ‘Unknown’ is used. Chr (Chromosome) is the chromosome number each 

variant is located on. Position is the location of the variant on its chromosome. P-value is the unadjusted P-value prior to multiple comparison 

testing, which is not shown due to Linkage Disequilibrium (LD) of variants. Gene shows the predicted gene each variant is in or near. Type 

refers to the type of variant and where it is in each gene. Function attempts to describe any known function related to the gene each variant is 

in or near. 

No. Variant  ID Chr. Position P-value Gene Type Function 

1 Unknown 11 49866483 0.00014 U6 novel snRNA Intron Pseudogene affiliated with the snRNA class 
2 Unknown 13 53691410 0.00044 SIRPA Exon Signal regulatory protein alpha 
3 rs109065788 3 104587541 0.00057 FOXJ3 Synonymous Transcription factor activity 

4 rs137356698 18 36955817 0.00060 NOB1 WWP2 Intron variant,  
UTR variant 5 prime 

Pre-rRNA processing 

 
5 

rs42670353 15 47385334 0.00061 CCKBR Synonymous G-protein coupled receptor for gastrin and 
cholecystokinin (CCK), regulatory peptides of the 
gastrointestinal tract 

6 rs133213758 14 56982732 0.00065 SYBU Intron Anterograde axonal transport of active zone 
components 

7 Unknown 5 102028024 0.00068 C3AR1 Intron Complement Component 3a Receptor 1 
8 rs42033755 23 45098361 0.00074 ELOVL2 Intron Fatty acid elongase activity 
9 rs41874538 18 36941544 0.00089 NOB1 Intron Pre-rRNA processing 
10 Unknown 15 80338451 0.00091 LOC519317 Exon Bos taurus olfactory receptor 8J2 
11 rs380166658 10 25168531 0.00092 LOC100298264 Non-coding  Unknown 

12 rs109194993 14 56790188 0.00099 LOC521950 Non-coding  Unknown 
13 rs210428031 18 36847662 0.00105 NFAT5 Intron variant,  

upstream variant 
2KB 

Inducible gene transcription during the immune 
response 
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14 rs378294791 18 36888695 0.00105 NFAT5 Intron Inducible gene transcription during the immune 
response 

15 rs110682224 23 47671466 0.00125 DSP Missense Anchors intermediate filaments to desmosomal 
plaques 

16 rs42039246 23 47671486 0.00125 DSP Synonymous Forms an obligate component of functional 
desmosomes 

17 Unknown 5 101799144 0.00145 DPPA3  Intron Developmental Pluripotency Associated 3 
18 Unknown 28 35602644 0.00147 SFTPD Intron Lung Surfactant Protein D 
19 Unknown 28 35602648 0.00147 SFTPD Intron Lung Surfactant Protein D 
20 rs110891650 21 58173287 0.00152 CHGA Synonymous Parathyroid Secretory Protein 1 

Table 4.3-6 continued 
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In total, 484 variants had an association with the adjusted animal model fertility phenotype 

at an unadjusted significance level of P < 0.01. No SNP was significantly associated after 

correction for multiple testing via Bonferroni or Benjamini-Hochberg at P < 0.05 significance 

level.  

As shown in Figure 4.3-6, clusters of SNPs associated with fertility are found on 

chromosomes 3, 13 and 23. Chromsomes 13 and 23 are known to contain β-defensin genes 

with 38 SNPs located on chromosome 13 associated with fertility (unadj. P-value < 0.01). Of 

these, 16 are located within positions 61,000,000 and 62,000,000, which includes the β-

defensin gene locations on chromosome 13 and the haplotype region. 

 

4.3.9 Transcription factor binding site analysis 

MatInspector (Quandt et al., 1995) v3.7 was used to identify potential binding sites for 

transcription factors which are affected by mutations identified in this whole-exome 

sequencing dataset. The fourth most associated SNP with fertility in bulls was located in the 

5’UTR region of the NOB1 gene, located on chromosome 18 at position 36,955,817. 

MatInspector transcription factor (TF) binding site analysis identified this SNP is located in a 

spermatogenic zip 1 transcription factor (SPZ1) binding site, which is a testis-specific bHLH-

Zip TF.  

In addition, a DEFB125 SNP located in the upstream region of rs385102822, contains a 

mutation in the TF homeobox B3, and NK6 homeobox TF.  

 

4.3.10 Exome sequencing validation 

To validate the success of exome sequencing capture design, genetic variants previously 

identified as being involved in male fertility, or listed in Table 1.2-2, were identified in the 

exome sequencing dataset. This method identifies whether the divergent phenotype 

sequencing approach and the capture design were successful in identifying genetic variants 

known to be involved in male fertility, and specifically bull fertility. 

From Table 1.2-2, three SNPs, rs137601357, rs137182814, rs210398455 located in CAST, 

STAT5a and CWC15, respectively, were also identified in the whole-exome sequencing 
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dataset of bulls divergent for fertility. However, the 3 SNPs were not significantly associated 

with the adjusted animal model fertility phenotype (rs137601357 P-value = 0.36, 

rs137182814 P-value = 0.86 and rs210398455 P-value = 0.59). 

In addition, 24 SNPs were identified in the whole exome sequencing dataset between 

position 61,316,000 on chromosome 13 and position 61,620,000 which contains all 

annotated β-defensin genes in the whole-exome capture design. These 24 SNPs were 

compared against the targeted β-defensin sequencing dataset, and 18 SNPs out of 24 were 

called in both sequencing approaches. Two of the 6 SNPs (rs134076463, and rs137275002) 

that were not in both datasets did not have probes specifically targeting their genomic 

location. The remaining four SNPs did have probes overlapping their genomic coordinates, 

and the reason they were not called in both approaches is unknown. There were no 

overlaps between the two cohorts of bulls. 

 

Table 4.3-8: Probes targeting β-defensin genomic region in exome-sequencing dataset. 

This table shows the probes targeting the β-defensin genomic region in the whole-exome 

sequencing dataset, indicating chromosome number (Chromosome), start position (Start) of 

exome sequencing capture probe and end position (End) of capture probe. 

Chromosome Start End 

chr13 61314567 61315016 
chr13 61316680 61316838 
chr13 61501425 61501651 
chr13 61523658 61523917 
chr13 61531963 61532148 
chr13 61533321 61533544 
chr13 61562052 61562204 
chr13 61566038 61566196 
chr13 61572837 61573073 
chr13 61577345 61577555 
chr13 61584290 61584540 
chr13 61595538 61595672 
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Table 4.3-9: SNPs identified in both sequencing datasets with overlapping probes. 

Table of 6 SNPs identified which were not found in both sequencing datasets, indicating 

which have overlapping probes. SNP ID: dbSNP number, chromosome: bovine chromosome 

number, position: genomic position, overlapping probes: Do exome capture probes 

designed target this region? 

 

 

 

 

 

  

SNP ID Chromosome Position Overlapping probes 

rs43709489 13 61584406 Yes 
rs134076463 13 61566201 No 
rs43708157 13 61566114 Yes 
rs43708158 13 61566112 Yes 
rs137275002 13 61566020 No 
rs41702271 13 61501580 Yes 
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4.4 Discussion 

This is the first whole-exome sequencing of bulls with divergent fertility phenotypes. 

Previous studies have performed whole-exome sequencing to identify causative variants for 

underlying defective bovine embryo development contained within three haplotypes in 

Holstein, and brown Swiss breeds (McClure et al., 2014a). However, whole-exome 

sequencing of males with divergent fertility phenotypes has not been published to date.  

Whole-exome sequencing targeted region coverage was 98.6% indicating only 1.4% of the 

targeted region was not sequenced by the probes designed. The remaining 1.4% may be due 

to repetitive regions, highly polymorphic regions, or due to inter-probe hybridisation. 

Percentage targeted region coverage at low read depth was 95.5% at 2X, and 69% at 10X, 

ranging from 95% to 98% and 49% to 88% respectively. The 69% of the genome sequenced 

at 10X coverage was deemed sufficient for SNP discovery, as shown previously (Yu and Sun, 

2013). Further sequencing would result in increased duplicates, and although would be 

beneficial in terms of read depth, the cost-benefit ratio was assessed to be too high. For 

additional analyses, such as copy number variation analyses, a higher depth of coverage 

over the entire targeted region would be required, however, for SNP discovery, lower read 

depths can accurately call variants. GATK HaplotypeCaller has been shown to be the SNP 

caller of choice for low-coverage areas (Cheng et al., 2014). 

The use of TruSeq Nano library preparation kits was chosen due to low gDNA availability 

from the Teagasc DNA database after DNA extraction. This was a concern due to the 

possibility of increased PCR duplicates due to the use of PCR cycles in library preparation. 

However, the low PCR duplicate rate of 3.4% on average, ranging from 2.6 - 6.4, meant that 

PCR duplicates were not likely to adversely affect GATK SNP calling, as the low numbers of 

duplicates were filtered out of the dataset. 

Variant calling identified 284,042 filtered variants in 24 bulls prior to quality control for 

association analysis. To identify variants most likely to result in functional differences 

between fertility groups, SNP frequencies in divergent fertility categories were calculated. 

SNPs that were divergent between high and low-fertility samples (> 25%) are shown in 

Figure 4.3-2. This SNP allele frequency correlation identified ~5,000 variants which had 

significant SNP frequency differences between high- and low-fertility. However, further 
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filtering for variants which also had at least 80% SNP call rate for each group was also 

applied.  

A SNP, rs42198964, located in PGRMC1 gene, with a high SNP frequency difference between 

high- and low-fertility groups was identified as the most divergent SNP between fertility 

groups for SNP frequency, see Table 4.3-5. This SNP was added to the IDB SNP chip, due to 

high SNP frequency differentials, but was removed during quality control filtering prior to 

association analysis. PGRMC1 encodes a putative membrane-associated progesterone 

steroid receptor. The homolog of this gene in humans functions in steroid signalling, p450 

activation and drug metabolism. Steroid signalling is of particular importance as 

progesterone is part of the androgen production system which includes testosterone, the 

male sex hormone. Androgen/androgen receptor signalling has been shown to differentially 

regulate 23 β-defensin genes in the mouse epididymis (Hu et al., 2014). This PGRMC1 SNP 

was added to IDB SNP chip version 3, together with 668 SNPs from whole-exome 

sequencing and 195 from targeted β-defensin sequencing. 

SNP association analysis of all 144,178 variant genotypes post quality control filtering with 

fertility phenotypes identified 484 variants with association (unadjusted P < 0.01) to the 

fertility phenotype, see Figure 4.3-6. The top 20 variants most associated with fertility are 

shown in Table 4.3-7. P-values for association analysis are relatively high, due to the low 

number of individuals included in the exome sequencing project (n=22). Correction for 

multiple testing using Bonferroni correction results in no significantly associated variants (P 

< 0.05). However, they can be conservative if the independence assumption does not hold, 

and this is usually the case for densely typed single nucleotide polymorphisms in genetic 

association studies (Gao et al., 2010). 

To identify the processes involved in male fertility, a gene ontology analysis of all the genes 

containing variants identified as being associated with AAM fertility phenotype was carried 

out. ‘Complement and coagulation cascades’ KEGG pathway was found to be the most over-

represented biological pathway in this dataset, from the KEGG database (P-value = 1.4E-2). 

‘Glycosylation’ (P-value = 2.3E-4), ‘Glycoprotein’ (P-value = 5.6E-3), ‘Immune response’ 

(unadj. P-value = 1.8E-3) and ‘Disulphide bond’ (unadj. P-value = 3.3E-3) were the most 

over-represented GO terms from the list of genes identified as containing variants via 
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whole-exome sequencing of bulls divergent for a fertility phenotype. Glycoproteins have 

been shown to be involved in male fertility in humans (Xin et al., 2016) and that variants in 

glycoprotein genes, particularly β-defensins, are important for male infertility and 

pregnancy rate following IVF (Lindgren et al., 2016). In addition, as shown in Table 4.3-6, 10 

of the 12 gene ontology features are immune-related terms. Terms such as ‘innate 

immunity’, ‘complement’, ‘immune response’ and ‘acute inflammatory response’ indicate 

the importance of immune system related genes in male fertility, and also demonstrates the 

emphasis on innate immune gene variation in this study was warranted. 

The transition to transversion ratio (Ts/Tv) is the ratio of transitions (mutations that result in 

pyrimidine to pyrimidine or purine to purine nucleotides) versus transversions (mutations 

that result in a change from pyrimidine to purine or vice versa). For exomes, the increased 

methylated cytosines in CpG dinucleotides in exons, leads to an increased ratio. Methylated 

cytosine can undergo deamination and transition to a thymine. Whole-exome sequencing 

projects in human are predicted to have Ts/Tv ratios of 2.8 (DePristo et al., 2011), ratios 

lower than 2.8 mean the dataset may contain false-positives, which can be filtered out 

(DePristo et al., 2011). However, the ratio of 2.84 for this whole-exome sequencing study is 

consistent with previous reported values for exome studies (DePristo et al., 2011). 

To perform SNP association of candidate SNPs in a large national dataset, SNPs of interest 

were added to the International Dairy and Beef SNP chip version 3, which is a custom-

designed SNP chip developed to genotype approximately 330,000 cows per year at a density 

of ~50k SNPs. The aim of the SNP-chip is to facilitate genomic selection predictions. By 

genotyping these SNPs of interest in a large population of cattle of mixed breeds, a robust 

association analysis of SNPs identified as being divergent for fertility can be performed. In 

total, 668 SNPs, identified as being divergent between fertility groups by at least 25% and 

195 SNPs from targeted re-sequencing of β-defensins were added to the SNP chip. 

One method of validating the success of exome sequencing capture design is identifying 

genes previously identified in other species as being involved in male fertility and comparing 

to variants identified via exome sequencing. Choline dehydrogenase has previously been 

shown, in mice and humans, to be associated with sperm cell function (Johnson et al., 

2012). Chdh gene deletion in mice results in decreased male fertility due to diminished 
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sperm motility. In humans, a non-synonymous SNP in the CHDH gene and a coding region 

SNP in IL17BR are associated with altered sperm motility characteristics. Variants were 

identified in both CHDH and IL17BR in exome sequencing, as shown in the electronic 

appendix21, a table of 144,000 SNPs identified in bulls divergent for fertility after QC. In this 

dataset 5 CHDH SNPs were identified, 4 in coding regions and 1 in the 5’UTR. One SNP, 

rs380632306, was predicted to be deleterious to the function of the protein via SIFT variant 

effect predictor tool. The other three coding SNPs were predicted to be tolerated missense 

variants. The 5’UTR variant was identified by MatInspector to be located in the RUSH 

transcription factor binding site region which is a SWI/SNF related nucleophosphoprotein 

with a RING finger DNA binding motif.  

Another method to validate the capture designs is to compare the sequencing datasets at 

overlapping regions, and identify whether the same SNPs were called. In this study, 18 out 

of 24 SNPs in the critical β-defensin region were identified in both datasets. Probes targeting 

the β-defensin genomic region in the exome-sequencing dataset were identified, see Table 

4.3-8. According to Table 4.3-9, 2 of these 6 SNPs did not have probes targeting them, 

indicating mis-binding of probes. The β-defensin region is a highly copy number variable 

region with high levels of repetitive sequences, which makes this region hard to predict 

(Hollox et al., 2003).  

MatInspector transcription factor binding site analysis identified that a SNP in the 5’UTR of 

NOB1 was located in the TF binding site region of SPZ1. This SNP is also associated with AAM 

fertility phenotype. SPZ1 is a testis-specific transcription factor. SPZ1 has been shown 

previously in mice models to be involved in male fertility. It has been predicted in mice that 

Spz1 and PP1cγ2 may be required for proper regulation of spermatogenesis and fertility in 

males (Hrabchak and Varmuza, 2004). In this study, Spz1 is shown to be a binding partner of 

the catalytic subunit of protein phosphatase-1 and male mice homozygous for a null 

mutation in the protein phosphatase-1cγ (PP1cγ) gene are infertile and display impairment 

in spermatogenesis. 

In addition, a study in mice has shown early lethality of homozygous Pno KO lineage, a 

ribosomal partner of NOB1, caused by arrest of embryo development before compaction 

                                                 
21

 Electronic Appendix 4.1 Results Files/1 - qcbreedcountadjGWAS.txt 
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stage (Wang et al., 2012). These findings indicate that NOB1 may not be directly affecting 

male fertility, but is regulating spermatogenesis with binding partners.  

In conclusion, the aims of this chapter were to identify variants in coding regions and 

regulatory regions of all annotated genes in the bovine genome, to associate these variants 

with fertility, to identify candidate SNPs for male fertility, and to validate the selection, using 

a SNP chip and validation by genotyping an independent population. These aims were 

largely achieved, as 144,000 variants were identified in bulls divergent for fertility after 

quality filtering and QC. Of these, 485 variants were identified in or near genes associated 

with the AAM fertility phenotype (unadjusted P<0.01). A subset of these variants were then 

validated in an independent population of AI bulls to determine if the association is robust 

across the population. This is discussed in the following chapter. Additionally, variants with a 

SNP frequency differential greater than 25% were added to a custom-designed SNP chip 

which genotyped hundreds of thousands of cattle in Ireland in 2016 and beyond. The results 

of this genotyping will feed into future research projects and are not discussed in this thesis, 

as the data were unavailable at time of writing. 
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5 Variant validation in an independent bull population 
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5.1 Introduction 

Investigation of polymorphisms in candidate genes for association with production traits has 

been one of the first approaches used to dissect the complexity of quantitative traits in 

livestock genomes. One study applied a whole genome scan for QTL affecting milk protein 

percentage in Italian Holstein cattle (Russo et al., 2012), followed by a candidate gene 

association study for nine economically important traits in Holstein cattle (Fontanesi et al., 

2014). This candidate SNP identification, and validation approach allows identification of 

variants which are assumed to be functional and important, followed by association of these 

candidate variants, and validation of candidate SNP identification methods, in an 

independent, larger population. 

Previously, identification of genes affecting fertility traits in dairy cattle was performed 

(Khatib et al., 2009) and subsequently validated in Holstein cattle which highlighted 

association with estimated relative conception rate for FGF2 and STAT5A polymorphisms 

(Khatib et al., 2010). These studies showed that FGF2 and STAT5A genes can be used in 

gene-assisted selection programs for reproductive performance in dairy cattle. This shows 

the importance of validation of variants in identifying causative polymorphisms.  

Validation of genome-wide association studies has previously been shown to be beneficial 

and required to infer causality of association data, due to association not necessarily 

meaning causation (Konig, 2011). Validation of association data is performed in an 

independent population (Ioannidis et al., 2009), as distinct from replication which is 

performed on the same sample population.  

Selection of polymorphisms is based on known association data, SNP function, or candidate 

SNPs. As shown in the previous chapters, several SNPs have been identified that are 

associated with a male fertility phenotype. A list of all 58 SNP IDs are shown in the 

electronic appendix22. In this study, 123 sires were genotyped for the 58 SNPs in three 

breeds, HF (n=72), LM (n=29) and BB (n=22). Of the 58 SNPs, 48 passed quality control and 

are shown in the electronic appendix23. In summary, 16 SNPs in the validation dataset were 

                                                 
22

 Electronic Appendix 5.12 Appendix chapter 5 – Validation\validation_snp_ids.txt 
23

 Electronic Appendix 5.14 Appendix chapter 5 – Validation\SNPs_pass_qc.txt 



 

135 

 

located on chromosome 13, within the β-defensin region, a further 4 were located on 

chromosome 23, and 6 on chromosome 27.  

 

5.2 Aims 

The aim of this study was to validate variants, identified via a dual-sequencing approach, 

which are associated with a male fertility phenotype in an independent population of AI 

sires.  

 

5.3 Results 

5.3.1 Variant validation 

The minor allele frequencies of all tested SNPs with a call rate over 80% ranged from 0.04 to 

0.49 in the genotyped bull population. In this study, 58 SNPs were selected in more than 28 

genes on 21 cattle chromosomes. These polymorphisms were genotyped in 123 sires of 

three different breeds, Holstein-Friesian (n = 79), Limousin (n = 29), and Belgian Blue (n = 

22). DNA was extracted from tail hair, and genotyping was outsourced to Agena Bioscience, 

which used its proprietary MassARRAY genotyping system, which utilises matrix-assisted 

laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Eleven SNPs, 

rs207766302, 54062, rs211574498, rs382911827, 69049, 74405, rs210032266, 

rs380166658, rs41614899, rs208650133 and rs383357007 were removed due to call rate < 

80%. Nine SNPs, 21107, rs208577116, rs42198966, rs383833589, rs43708145, rs209828298, 

rs42198964, 10509 and 42210 were removed due to MAF < 0.04, although some of these 

SNPs were also removed via call rate. 

Fifteen SNPs 10509, 21107, 42210, rs208577116, rs209828298, rs383833589, rs42198964, 

rs42198966, rs43708145, rs380459900, rs211675142, rs378043559, rs378340775, 

rs382968726 and rs473033039 were not in Hardy-Weinberg Equilibrium at P < 0.05 level of 

significance, as shown in Table 5.3-1. 
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5.3.2 SNP frequency  

A list of SNPs passing QC, with call rate over 80% is shown in Table 5.3-1. SNPs are sorted 

based on Hardy-Weinberg p-value, with p indicating the major allele frequency for each SNP 

and q indicating the minor allele frequency. A mean of 16 ‘NA’ allele calls (NA means missing 

allele calls), ranging from 5 to 23, was present for all SNPs. Four SNPs rs211092264, 42068, 

6641 and rs468598994 had minor allele frequencies < 0.04 and were removed from further 

analysis. These four SNPs had fixed alleles in this population. These SNPs were removed 

during QC prior to association analysis for the whole-exome sequencing dataset. The 4 were 

included in the validation due to a re-analysis of the association dataset to account for 

genetic stratification. Following the reanalysis, these SNPs were removed.  

SNP frequencies of validated SNPs along the line of regression are shown in Figure 5.3-1. 

The coefficient of determination for validation SNP frequencies is R2 = 0.948. This shows 

high levels of correlation, overall, with some variance, which can be accounted for later in 

Table 5.3-4 and Table 5.3-5. 
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Table 5.3-1: Validated SNPs sorted by Hardy-Weinberg P-value, showing SNP frequencies for all 123 sires genotyped for validation. 

Coverage = call rate; No call = sum of NA calls; Total = sum of all possible genotype calls; common = sum of common homozygous calls; Het = 

sum of heterozygous calls; sum of rare homozygous calls; p = common allele frequency; q = minor allele frequency; expCommon = expected 

common homozygotes; expHet = expected heterozygotes; expRare = expected rare homozygotes; HWp = Hardy-Weinberg P-value. 

SNPID Chr Position Ref Alt Call 
Rate% 

NoCall Total Common Het Rare p q Exp 
Common 

expHet expRare HWp 

10509 13 53691410 C T 87.8 15 108 88 15 5 0.88 0.12 84.45 22.11 1.45 0 
21107 17 25057141 G A 92.6 9 114 8 101 5 0.51 0.49 30.02 56.96 27.02 0 
42210 23 26938067 C T 81.3 23 100 92 5 3 0.94 0.06 89.3 10.4 0.3 0 
rs208577116 27 4814291 G T 90.2 12 111 3 108 0 0.51 0.49 29.27 55.46 26.27 0 

rs209828298 X 58420106 A G 84.5 19 104 70 3 31 0.69 0.31 49.16 44.69 10.16 0 
rs383833589 11 73186745 A G 86.9 16 107 27 79 1 0.62 0.38 41.33 50.34 15.33 0 
rs42198964 X 3476025 G C 85.3 18 105 46 59 0 0.72 0.28 54.29 42.42 8.29 0 
rs42198966 X 3481991 A G 92.6 9 114 63 4 47 0.57 0.43 37.06 55.88 21.06 0 
rs43708145 13 61567203 C G 95.9 5 118 37 81 0 0.66 0.34 50.9 53.2 13.9 0 
rs380459900 3 1.18E+08 G A 88.6 14 109 45 42 22 0.61 0.39 39.96 52.07 16.96 0.04 
rs211675142 13 61394596 G A 85.37 18 105 97 7 1 0.96 0.04 96.19 8.61 0.19 0.05 

rs378043559 13 61340027 G A 86.9 16 107 99 7 1 0.96 0.04 98.19 8.62 0.19 0.05 
rs378340775 13 61329930 G T 86.1 17 106 98 7 1 0.96 0.04 97.19 8.62 0.19 0.05 
rs382968726 13 61416468 G A 86.1 17 106 98 7 1 0.96 0.04 97.19 8.62 0.19 0.05 
rs473033039 13 61351971 C T 86.9 16 107 99 7 1 0.96 0.04 98.19 8.62 0.19 0.05 
rs207557631 13 61531039 A G 82.9 21 102 94 7 1 0.96 0.04 93.2 8.6 0.2 0.06 
rs207958235 13 61391268 A G 82.1 22 101 93 7 1 0.96 0.04 92.2 8.6 0.2 0.06 
rs385102822 13 61378548 T A 82.9 21 102 94 7 1 0.96 0.04 93.2 8.6 0.2 0.06 

rs383941311 18 63028784 G C 84.5 19 104 64 31 9 0.76 0.24 60.77 37.46 5.77 0.08 

rs378655691 4 1.03E+08 G A 86.1 17 106 78 28 0 0.87 0.13 79.85 24.3 1.85 0.12 
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rs43710844 13 61595572 G A 82.9 21 102 38 42 22 0.58 0.42 34.13 49.75 18.13 0.12 
rs43710899 13 61614764 A C 81.3 23 100 41 41 18 0.62 0.38 37.82 47.36 14.82 0.18 
rs43710842 13 61595302 T C 86.9 16 107 42 45 20 0.6 0.4 38.88 51.24 16.88 0.21 
rs43710917 13 61613313 C T 88.6 14 109 43 46 20 0.61 0.39 39.96 52.07 16.96 0.22 
71552 5 1.02E+08 A G 87.8 15 108 76 31 1 0.85 0.15 77.52 27.96 2.52 0.26 
rs43710895 13 61615527 A G 86.1 17 106 41 46 19 0.6 0.4 38.64 50.72 16.64 0.34 

rs211102509 27 36306768 T C 89.4 13 110 62 39 9 0.74 0.26 60.38 42.23 7.38 0.42 
rs379013274 27 5386029 C T 91.8 10 113 55 45 13 0.69 0.31 53.15 48.69 11.15 0.42 
rs133317825 8 1.12E+08 G A 82.1 22 101 33 46 22 0.55 0.45 31.05 49.9 20.05 0.43 
rs137792726 11 7412973 A T 84.5 19 104 32 48 24 0.54 0.46 30.15 51.69 22.15 0.47 
rs382595242 19 45726994 C T 88.6 14 109 82 26 1 0.87 0.13 82.8 24.4 1.8 0.49 
rs42670353 15 47385334 G A 86.1 17 106 44 51 11 0.66 0.34 45.57 47.86 12.57 0.5 
rs137816373 9 98323680 T C 84.5 19 104 35 48 21 0.57 0.43 33.47 51.06 19.47 0.54 

rs437191942 27 6225144 C T 89.4 13 110 87 21 2 0.89 0.11 86.42 22.16 1.42 0.58 
rs207884301 29 45029782 G A 84.5 19 104 59 40 5 0.76 0.24 60.01 37.98 6.01 0.59 
rs109065788 3 1.05E+08 A G 82.1 22 101 46 46 9 0.68 0.32 47.14 43.72 10.14 0.6 
rs210428031 18 36847662 A C 82.9 21 102 66 33 3 0.81 0.19 66.73 31.54 3.73 0.64 
rs385599841 13 61377460 G A 93.5 8 115 106 9 0 0.96 0.04 106.18 8.65 0.18 0.66 
rs210662027 27 5162095 C A 84.5 19 104 60 39 5 0.76 0.24 60.77 37.46 5.77 0.67 
rs378294791 18 36888695 A C 85.3 18 105 70 32 3 0.82 0.18 70.44 31.12 3.44 0.77 
rs137356698 18 36955817 A G 86.9 16 107 68 35 4 0.8 0.2 68.32 34.36 4.32 0.85 

rs110682224 23 47671466 T C 85.3 18 105 37 50 18 0.59 0.41 36.61 50.78 17.61 0.87 
rs211092264 17 25119394 G A 83.7 20 103 102 1 0 1 0 102 1 0 0.96 
42068 23 26926961 G A 82.9 21 102 102 0 0 1 0 102 0 0 1 
6641 12 708425 G A 89.4 13 110 110 0 0 1 0 110 0 0 1 
rs468598994 27 6224921 G A 84.5 19 104 104 0 0 1 0 104 0 0 1 

Mean      16.6 106 62.2 35 9.0 0.75 0.24 62.3 34.9 9.12 0.27 
Min      5 100 3 0 0 0.51 0 29.27 0 0 0 

Max      23 118 110 108 47 1 0.49 110 56.96 27.02 1 

Table 5.3-1 continued 
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Figure 5.3-1: SNP frequencies of validated SNPs in independent population of bulls. 

Scatterplot of SNP frequencies of validated SNPs (n=42) with x-axis = low-fertility bulls SNP 

frequencies and y-axis = high-fertility bulls SNP frequencies (n=123 bulls). Red line = line of 

regression. R2 = Pearson’s correlation coefficient. The most significantly associated SNP in 

the validation dataset (located in FOXJ3) is highlighted in red (SNP frequency difference 

=21% (48%-69%). 

 

5.3.3 Correlation 

In total, 28 SNPs were compared between validation SNP calls and Whole-exome 

sequencing SNP calls, to determine correlation between the SNP frequencies between both 

genotyping methods. For high-fertility bulls the SNP frequency correlation was 0.42, a 

R
2
 = 0.948 

Validated SNP frequencies 
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moderate positive correlation between genotyping methods, whereas low fertility bulls had 

a weak positive correlation of 0.25. 

Total genotyping rate was 0.8279. This is the proportion of genotypes per SNP with non-

missing data. These data mean that 83% of genotyped bulls had SNP calls on average. This 

figure is in line with expectations, due to failure of the SNP genotyping assay in 1 column of 

the assay plate containing DNA from 5 bulls. These 5 bulls were omitted from further 

analysis, leaving n=118.  

In total, seven SNPs had a P-value less than 0.1, and of these, four SNPs were below the 

significance threshold of P-value < 0.05 for association to adjusted animal model phenotype. 

For pregnancy rate, 8 SNPs had an unadj. P-value < 0.01. SNPs with unadj. P < 0.01 are 

shown in greater detail, including SNP frequencies in high- and low-fertility groups in Table 

5.3-4 for AAM and Table 5.3-5 for PR. A full list of validation SNP association data is available 

in Table 5.3-2 for AAM and Table 5.3-3 for PR. 
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Table 5.3-2: Validation SNPs associated with AAM fertility phenotype. 

Table of SNPs associated with fertility phenotypes. CHR = chromosome, SNP = SNP ID, BP = location (Base pair), NMISS denotes the number of 

animals with genotypes for the SNP after QC, from a total of 123. BETA refers to the regression coefficient for each single SNP regression, with 

SE being the associated standard error for this measure.  R2 is how close the SNP data are to the line of regression. T is the Wald test 

distribution. The Wald statistic is the ratio of the square of the regression coefficient to the square of the standard error of the coefficient and 

is asymptotically distributed as a chi-square distribution. P-value is the Wald test asymptotic P-value.  

 

CHR SNP BP NMISS BETA SE R2 T P 

3 rs109065788 1.05E+08 101 0.01473 0.004565 0.09519 3.227 0.001695 

30 rs42198966 3481991 110 -0.00775 0.002952 0.05996 -2.625 0.009931 

27 rs437191942 6225144 110 0.01466 0.006308 0.04762 2.324 0.02201 

4 rs378655691 1.03E+08 106 -0.01466 0.006881 0.04182 -2.131 0.03548 

13 rs43710895 61615527 106 0.007818 0.004226 0.03186 1.85 0.06714 

13 rs43710844 61595572 102 0.007353 0.004096 0.03122 1.795 0.07566 

13 10509 53691410 108 0.01016 0.005786 0.02829 1.757 0.08185 

15 rs42670353 47385334 106 0.007159 0.004502 0.02374 1.59 0.1148 

13 rs43710842 61595302 107 0.006223 0.004162 0.02085 1.495 0.1379 

13 rs43710899 61614764 100 0.006032 0.004048 0.02216 1.49 0.1394 

27 rs208577116 4814291 111 -0.02565 0.01759 0.01914 -1.459 0.1476 

13 rs43710917 61613313 109 0.005538 0.003898 0.01852 1.421 0.1583 

27 rs211102509 36306768 110 0.006093 0.004622 0.01583 1.318 0.1902 

13 rs385599841 61377460 115 0.01418 0.01108 0.0143 1.28 0.2031 

13 rs43708145 61567203 118 0.007457 0.006325 0.01184 1.179 0.2408 

23 42210 26938067 100 0.00893 0.007762 0.01332 1.15 0.2528 

11 rs137792726 7412973 104 0.003431 0.003962 0.007295 0.8658 0.3886 

30 rs209828298 58420106 101 0.002415 0.003318 0.005321 0.7277 0.4685 

29 rs207884301 45029782 104 -0.00368 0.005094 0.005089 -0.7223 0.4718 

17 21107 25057141 114 0.005825 0.008626 0.004055 0.6753 0.5009 

5 71552 1.02E+08 108 -0.00408 0.006346 0.003885 -0.643 0.5216 
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27 rs210662027 5162095 104 0.003048 0.005372 0.003146 0.5674 0.5717 

18 rs210428031 36847662 102 0.00259 0.005432 0.002269 0.4769 0.6345 

11 rs383833589 73186745 107 -0.00295 0.006548 0.001932 -0.4509 0.653 

18 rs137356698 36955817 107 0.002433 0.005515 0.001851 0.4412 0.6599 

13 rs385102822 61378548 102 0.003833 0.008869 0.001864 0.4322 0.6666 

8 rs133317825 1.12E+08 101 0.001781 0.004205 0.00181 0.4237 0.6727 

23 rs110682224 47671466 105 -0.00168 0.004502 0.001342 -0.3721 0.7106 

27 rs379013274 5386029 113 -0.00146 0.004161 0.001112 -0.3515 0.7258 

13 rs207958235 61391268 101 0.00299 0.009266 0.001051 0.3227 0.7476 

18 rs383941311 63028784 104 0.001408 0.00467 0.00089 0.3015 0.7637 

18 rs378294791 36888695 105 -0.00131 0.0053 0.000596 -0.2477 0.8048 

13 rs382968726 61416468 106 0.002304 0.009521 0.000563 0.242 0.8093 

13 rs207557631 61531039 102 0.002392 0.01017 0.000553 0.2351 0.8146 

13 rs378043559 61340027 107 0.002126 0.009651 0.000462 0.2203 0.8261 

19 rs382595242 45726994 109 0.001376 0.006496 0.000419 0.2118 0.8327 

13 rs211675142 61394596 105 0.001983 0.009734 0.000403 0.2037 0.839 

9 rs137816373 98323680 104 -0.00074 0.004154 0.000313 -0.1788 0.8585 

13 rs378340775 61329930 106 0.001641 0.009765 0.000271 0.168 0.8669 

13 rs473033039 61351971 107 0.001469 0.009925 0.000209 0.148 0.8826 

3 rs380459900 1.18E+08 109 -9.45E-05 0.003944 5.36E-06 -0.02396 0.9809 

30 rs42198964 3476025 46 NA NA NA NA NA 
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Table 5.3-3: Validation SNPs associated with PR fertility phenotype. 

Table of SNPs associated with fertility phenotypes. CHR = chromosome, SNP = SNP ID, BP = location (Base pair), NMISS denotes the number of 

animals with genotypes for the SNP after QC, from a total of 123. BETA refers to the regression coefficient for each single SNP regression, with 

SE being the associated standard error for this measure.  R2 is how close the SNP data are to the line of regression. T is the Wald test 

distribution. The Wald statistic is the ratio of the square of the regression coefficient to the square of the standard error of the coefficient and 

is asymptotically distributed as a chi-square distribution. P-value is the Wald test asymptotic P-value. 

CHR SNP BP NMISS BETA SE R2 T P 

13 rs378340775 61329930 104 -0.03283 0.01041 0.0888 -3.153 0.002124 

8 rs133317825 112149281 101 -0.06978 0.02404 0.0784 -2.902 0.00457 

18 rs137356698 36955817 107 -0.06974 0.02473 0.07037 -2.819 0.005754 

17 21107 25057141 107 -0.06793 0.02444 0.06855 -2.78 0.006446 

13 rs43710917 61613313 106 -0.06789 0.02448 0.06887 -2.774 0.006573 

13 rs43710842 61595302 106 -0.06772 0.02452 0.06834 -2.762 0.006793 

13 rs382968726 61416468 105 -0.06793 0.02468 0.06851 -2.752 0.006992 

11 rs383833589 73186745 102 -0.06677 0.02464 0.0684 -2.71 0.007927 

4 rs378655691 103370232 101 0.02736 0.01216 0.04865 2.25 0.02666 

27 rs379013274 5386029 110 0.03051 0.01674 0.02982 1.822 0.07121 

9 rs137816373 98323680 102 -0.04409 0.02558 0.02885 -1.724 0.08789 

13 rs473033039 61351971 104 0.02207 0.01306 0.02723 1.69 0.09415 

13 rs43708145 61567203 105 -0.02367 0.01553 0.02206 -1.524 0.1305 

29 rs207884301 45029782 114 -0.01145 0.007672 0.01951 -1.493 0.1383 

13 rs43710899 61614764 106 0.01613 0.01203 0.01698 1.34 0.183 

13 rs43710844 61595572 106 -0.02189 0.01751 0.0148 -1.25 0.2141 

13 rs207557631 61531039 105 -0.01668 0.01489 0.01205 -1.121 0.265 

13 rs207958235 61391268 104 -0.01329 0.01222 0.01147 -1.088 0.2792 

30 rs42198964 3476025 13 0.02725 0.02431 0.1025 1.121 0.2862 
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3 rs380459900 117667441 100 0.02139 0.01995 0.01159 1.072 0.2863 

27 rs208577116 4814291 109 -0.01079 0.01062 0.009561 -1.016 0.3118 

11 rs137792726 7412973 102 -0.01471 0.01485 0.009724 -0.9909 0.3241 

27 rs437191942 6225144 111 -0.0438 0.04733 0.007794 -0.9253 0.3568 

18 rs378294791 36888695 107 -0.009702 0.01072 0.007737 -0.9048 0.3676 

3 rs109065788 104587541 100 -0.008924 0.0109 0.006795 -0.8188 0.4149 

15 rs42670353 47385334 107 -0.01134 0.01394 0.006266 -0.8137 0.4177 

13 rs211675142 61394596 105 -0.008709 0.01137 0.005664 -0.766 0.4455 

27 rs210662027 5162095 110 0.008154 0.01206 0.004218 0.6763 0.5003 

18 rs383941311 63028784 108 -0.01013 0.01515 0.0042 -0.6686 0.5052 

13 rs378043559 61340027 104 -0.007015 0.01082 0.004102 -0.6482 0.5183 

13 rs385599841 61377460 104 -0.005412 0.008727 0.003757 -0.6202 0.5365 

13 rs43710895 61615527 106 -0.006804 0.01097 0.003683 -0.62 0.5366 

13 10509 53691410 102 -0.006671 0.01086 0.003762 -0.6145 0.5403 

19 rs382595242 45726994 108 -0.009041 0.01625 0.002912 -0.5564 0.5791 

18 rs210428031 36847662 107 -0.008875 0.0173 0.002502 -0.5132 0.6089 

23 42210 26938067 109 0.004717 0.01035 0.001936 0.4556 0.6496 

27 rs211102509 36306768 113 -0.005061 0.01129 0.001806 -0.4482 0.6549 

23 rs110682224 47671466 109 -0.007514 0.01722 0.001776 -0.4363 0.6635 

13 rs385102822 61378548 104 0.004417 0.01371 0.001016 0.3221 0.748 

5 71552 102028024 101 -0.0008962 0.01099 6.72E-05 -0.08157 0.9352 

30 rs42198966 3481991 106 NA NA NA NA NA 

30 rs209828298 58420106 37 NA NA NA NA NA 

Table 5.3-3 continued 
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Table 5.3-4: Validated variants associated with adjusted animal model fertility phenotype. 

Table of validated variants associated with the adjusted animal model fertility phenotype P-value < 0.1. Gene = SNP annotated to nearest 

gene; CHR = Chromosome number; SNP = SNP identifier; BP = Physical position (base-pair); NMISS = Number of non-missing genotypes; BETA = 

Regression coefficient; SE = Standard error; R2 = Regression r-squared; T = Wald test (based on t-distribution); Frequency ‘low’ = SNP 

frequency in low-fertility bulls; Frequency ‘high’ = SNP frequency in high-fertility bulls; P = Wald test asymptotic P-value; BH = Benjamini-

Hochberg multiple testing correction.  

Gene CHR SNP BP NMISS BETA SE R2 T Frequency 
‘low’ 

Frequency 
‘high’ 

P-value BH 

FOXJ3 3 rs109065788 104587541 101 0.01473 0.0045 0.095 3.227 0.691 0.486 0.0016 0.069 
LOC536148 30 rs42198966 3481991 110 -

0.007747 
0.0029 0.059 -2.625   0.0099 

0.203 
LOC100337009 27 rs437191942 6225144 110 0.01466 0.0063 0.047 2.324 0.085 0.113 0.0220 0.300 
KIAA1549 4 rs378655691 103370232 106 -0.01466 0.0068 0.041 -2.131 0.074 0.133 0.0354 0.363 
DEFB124 13 rs43710895 61615527 106 0.007818 0.0042 0.031 1.85   0.0671 0.479 
DEFB123 13 rs43710844 61595572 102 0.007353 0.0040 0.031 1.795 0.531 0.453 0.0756 0.479 
SIRPA 13 10509 53691410 108 0.01016 0.0057 0.028 1.757 0.095 0.1 0.0818 0.479 
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Table 5.3-5: Validated variants associated with pregnancy rate fertility phenotype. 

Table of validated variants associated with the Pregnancy rate fertility phenotype with P-value < 0.1). CHR = Chromosome number; SNP = SNP 

identifier; BP = Physical position (base-pair); NMISS = Number of non-missing genotypes; BETA = Regression coefficient; SE = Standard error; R2 

= Regression r-squared; T = Wald test (based on t-distribution); Frequency ‘low’ = SNP frequency in low-fertility bulls; Frequency ‘high’ = SNP 

frequency in high-fertility bulls; P = Wald test asymptotic p-value (P < 0.05); BH = Benjamini-Hochberg multiple testing correction. 

Gene CHR SNP BP NMISS BETA SE R2 T Frequency 
‘low’ 

Frequency 
‘high’ 

P 
BH 

DEFB128 13 rs378340775 61329930 104 -0.0328 0.010 0.0888 -3.153 0.053 0.026 0.0021 0.084 
PHF19 8 rs133317825 112149281 101 -0.0697 0.024 0.0784 -2.902 0.329 0.373 0.0045 0.178 
NOB1/ WWP2  18 rs137356698 36955817 107 -0.0697 0.024 0.0703 -2.819 0.148 0.2 0.0057 0.218 
HPVC1 17 21107 25057141 107 -0.0679 0.024 0.0685 -2.78 0.478 0.466 0.0064 0.238 
DEFB124 13 rs43710917 61613313 106 -0.0678 0.024 0.0688 -2.774 0.287 0.38 0.0065 0.238 
DEFB123 13 rs43710842 61595302 106 -0.0677 0.024 0.0683 -2.762 0.574 0.513 0.0067 0.238 
DEFB115  13 rs382968726 61416468 105 -0.0679 0.024 0.0685 -2.752 0.053 0.026 0.0069 0.238 
LOC101906131 11 rs383833589 73186745 102 -0.0667 0.024 0.0684 -2.71 0.319 0.346 0.0079 0.261 
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5.4 Discussion 

A SNP genotyping assay was designed for validation of 58 SNPs identified as being 

associated with bull fertility phenotypes, adjusted animal model and pregnancy rate, see 

electronic appendix24. Of these 58 SNPs which were targeted in the assay design, 42 passed 

all QC filters and were validated in an independent population of 123 bulls for allele 

frequencies and association to the adjusted animal model and pregnancy rate fertility 

phenotypes.  

The SNP most associated with adjusted animal model of fertility, rs109065788, is in the 

exonic region of FOXJ3, on chromosome 3 at position 104,587,541 and results in a 

synonymous mutation. This is the only significant SNP associated with adjusted animal 

model after Benjamini-Hochberg correction for multiple comparison testing, with an 

adjusted P-value < 0.1, P = 0.086. FOXJ3 is a forkhead box protein transcription factor. 

Interestingly, in mice, FOXJ3 has been shown to be required for the survival of 

spermatogonia and is involved in spermatocyte meiosis (Ni et al., 2016). A recent study 

deleted Foxj3 from either spermatogonia or meiotic spermatocytes. Results showed that 

both models exhibited complete male sterility, but with different etiologies. Foxj3 knockout 

resulted in decreased testis weight, complete sterility and no round spermatids were found 

in the seminiferous tubules. Therefore, Foxj3 is required for survival of spermatogonia. 

The fifth most associated SNP in the validation dataset, rs43710895, is in the 5’UTR region of 

DEFB124. Previous work by our group has identified a SNP in DEFB124 exon 1 in HF bulls at a 

high minor allele frequency, 47% (Narciandi et al., 2011). The SNP in exon 1 of DEFB124 was 

further shown to have lower MAF in Norwegian Red cattle with 28%, a difference of ~20% 

SNP frequency between breeds. This SNP and rs43710895 are located approximately 150bp 

apart and may be inherited together. In this whole-exome sequencing dataset, rs43710895 

has a SNP frequency of 62% in high-fertility animals, and 38% for low-fertility animals. These 

data highlight the selective pressures β-defensin genes are under in bulls of different 

breeds.  

The SNP most associated with the pregnancy rate phenotype, rs378340775, is in the 3’UTR 

of DEFB128 at position 61329930, in a gene which was not annotated in the bovine genome 

                                                 
24

 Electronic Appendix 5.2 Validation\Assay Design\ 2 - Superplex1.xslx 
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at the time of designing baits for whole-exome sequencing capture. DEFB128 is located on 

chromosome 13, and is one of 19 genes identified previously by our group as being 

expressed in the reproductive tracts of adult cows and bulls. From the validation dataset, 

the SNP frequency in low-fertility and high-fertility bulls was 5.3% and 2.6%, respectively, 

see Table 5.3-5. This lack of SNP frequency difference in fertility groups means this SNP is 

likely to be a contributor to overall bull fertility, as a polygenic trait, but is unlikely to have 

an impact in isolation of other variants.  

DEFB123 is one of 19 genes expressed in the male reproductive tract of bulls (Narciandi et 

al., 2011). A SNP located in DEFB123, rs43710844, is located on chromosome 13 at position 

61595572. This SNP is just 265 kbp (kilobase pairs) away from rs378340775 in DEFB128, 

with a SNP frequency of 53% in low-fertility bulls and 45% in high-fertility bulls, see Table 

5.3-4. These SNPs, along with others in the same genomic region on chromosome 13, are 

associated with and contribute to the polygenic fertility phenotypes, adjusted animal model 

and pregnancy rate. To determine the accuracy of the identified associations, these SNPs 

were added to the IDB customised SNP-chip for genotyping in a large Irish cattle population, 

and association of these variants with over 40 phenotypes, including female fertility, and 

immunological traits.  

Correlation of SNP frequencies in low-fertility bulls and high-fertility bulls, between whole-

exome sequencing (n=24) sires, and validated (n=123) sires was also performed. Low-

fertility bulls had a weak SNP frequency correlation of 0.25, whereas high-fertility bulls had 

a moderate SNP frequency correlation of 0.42. This level of correlation may have been 

affected by the relatively low sample number for whole-exome sequencing and the 

validated dataset is probably a more accurate representation of SNP frequencies due to the 

increase in sample number. This question will be answered conclusively following SNP 

genotyping via the IDB SNP chip in ~330,000 cattle. 

Of the 58 SNPs selected for genotyping, 19 were from the targeted β-defensin sequencing 

study, the remaining 39 were from the whole-exome sequencing dataset. Following QC, 42 

SNPs were associated with fertility phenotypes and of these, 5 were validated as being 

associated with AAM at P < 0.1 and 6 were associated with PR at P < 0.1. After Benjamini-

Hochberg correction, 1 SNP is significant in each association, FOXJ3 for AAM, and DEFB128 

for PR. 
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6 Final discussion 
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In recent decades, molecular genetic research has made significant contributions to 

increasing livestock efficiency by identifying mutations underlying single-gene disorders 

which have been eliminated from the breeding stock (Charlier et al., 2012, Charlier et al., 

2008). The identification of genes and genetic variants associated with cow fertility and 

production traits has facilitated the selection of economically superior animals to such an 

extent that a reversal in the previously documented decline in female fertility has been 

observed and simultaneous genetic improvement in both traits is possible (Berry et al., 

2016). The advent of genomic selection means that genetic progress can accelerate gain, 

even in low heritability traits. While it is known that intensive selection for production traits 

can have a negative impact on health and fertility characteristics (Veerkamp and Beerda, 

2007, Berry et al., 2014), multi-trait selection indices now account for unfavourable 

relationships in the generation of a more sustainable cow. However, limitations remain. For 

some important traits, such as bull fertility, phenotypes are limited in number and in terms 

of reliability and so cannot be accurately measured and monitored. Furthermore, the rate of 

genetic progress is so rapid that other as yet unidentified antagonistic relationships could 

only be uncovered when significant phenotypic effects have been observed. For example, 

health traits are not accurately accounted for in most selection programmes, and these 

traits are known to be unfavourably related to production, and are particularly important in 

this period of agricultural expansion. Therefore, it is critical that we understand the 

mechanisms underlying genomic selection in cattle, and in that regard, a comprehensive 

characterisation of the genes and processes involved in bull fertility is warranted.  

Cattle have undergone a rapid decrease in effective population size, mainly due to 

domestication and intensive selection (Bovine HapMap et al., 2009). Artificial selection has 

influenced the genetic structure of the bovine genome; however, the variation within 

breeds is similar to human genetic variation (Bovine HapMap et al., 2009). This shows the 

importance of highlighting variant deviation in SNP frequencies due to natural selection 

pressures. One group of genes undergoing natural selection pressures are the β-defensin 

genes, due to their newly discovered multi-function ability in host defence and emerging 

roles in reproduction. 

Antimicrobial peptides (AMPs), specifically β-defensins, have been shown to have a dual 

role in host defence against pathogens and in the regulation of male fertility in rodents and 
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in humans (Tollner et al., 2011, Zhou et al., 2013). Male mice with a β-defensin gene cluster 

knock-out are completely sterile and a dinucleotide deletion in the human DEFB126 exon 

resulted in a 40% reduction in the ability of couples to conceive. Previous research by our 

group identified an expansion of β-defensin genes in the bovine genome (Cormican et al., 

2008), and functional characterisation documented expression of these genes in the 

reproductive tract of the bull (Narciandi et al., 2011). However, the association of these 

genes with fertility in cattle had not previously been investigated. 

This is the first targeted sequencing of novel β-defensin genes in AI bulls with divergent 

fertility phenotypes. A targeted capture of all 57 β-defensin genes in 168 AI bulls divergent 

for two fertility phenotypes, pregnancy rate and adjusted animal model (a statistical model 

of pregnancy rate data) was performed. Genetic variants identified, after quality control 

filtering, were associated with the AAM fertility phenotype that identifies genetic variants 

most associated with male fertility. The SNP most associated was rs378043559, located in 

the upstream region of DEFB127 at position 61340027 on chromosome 13 (unadjusted P-

value = 0.00197). Interestingly, a group of 97 SNPs, located on chromosome 13 were the 

second most associated variants (P-value = 0.00202). The 97 SNPs are contained within 7 β-

defensin genes (BBD142, BBD128, BBD127, BBD126, BBD125, BBD116 and BBD115), 

covering 137 kbp. These 97 SNPs and rs378043559, the most significantly associated SNP, 

are all heterozygous in 9 sires (5 Holstein Friesian, 1 each of Limousin, Simmental, Charolais 

and Belgian Blue) of medium to high AAM fertility (0 to 0.07, mean 0.04, s.d. 0.027).  Other 

variants were also predicted to have synonymous and non-synonymous effects on β-

defensin genes: a non-synonymous SNP in BBD115 (Ser52Asn) and two synonymous SNPs in 

BBD126 and BBD125 were identified. In silico prediction of o-linked glycosylation sites in 

these and all 19 β-defensin genes located on chromosome 13 identified predicted o-linked 

glycosylation sites in the tail region of BBD115, BBD125, and BBD126. This indicates that 

altered glycosylation in these β-defensin genes could affect sperm penetration ability in 

cattle. 

A recent study by our group showed expression of BBD126 on the caudal sperm surface, by 

confocal microscopy, with staining concentrated on the sperm cell tails, where glycosylation 

is predicted to occur (Narciandi et al., 2016). Following SNP discovery and association of a 

haplotype of SNPs with a fertility phenotype in this project, subsequent work performed by 
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other members of our group demonstrated that sperm from high fertility bulls with the β- 

significantly better at binding to oviductal epithelial cells, a key step in fertilisation where 

sperm aggregate in the oviduct prior to capacitation, compared to high-fertility bulls 

without the haplotype and low-fertility bulls (Finlay, E. et al. 2017. unpublished data). 

Together, these data support a role for BBD126 in regulating male fertility in the bovine. In 

addition, glycosylation analysis of sperm from bulls of high and low-fertility may help 

identify whether altered glycosylation in bull sperm influences sperm function in bovine, as 

has been demonstrated in humans (Tollner et al., 2011). Defensins may modulate the ability 

of sperm to penetrate cervical mucus via altered glycosylation of the peptide tail, as has 

been shown in primates (Tollner et al., 2008) and humans (Tollner et al., 2011). However, as 

the variants are inherited as a haplotype, further studies would be required to identify the 

causative variant(s).  

Interestingly, a recent study detected a QTL for bull fertility located on chromosome 13, just 

1.3Mbp from the β-defensin gene region (Han and Penagaricano, 2016). Given the 

significant structural variation in the β-defensin region, particularly in the chromosome 13 

cluster, further accurate annotation of this gene cluster will be required to accurately 

enable assessment of their role in bull fertility. 

Following identification and association of β-defensin genetic variants with male fertility, a 

genome-wide identification and association of exon and promoter region variants was 

performed to identify other potential contributing variants. As β-defensin genes were not 

sufficiently annotated in the bovine genome at the time of capture probe design, a custom-

designed exome capture probe set was used to sequence the annotated bovine genome. 

Exome sequencing data in bovine has not been widely published (Cosart et al., 2011, Hirano 

et al., 2013, McClure et al., 2014a). Fertility and milk production in Nordic Red cattle was 

assessed by McClure et al. however, previous studies have not analysed fertility in popular 

Irish breeds using exome sequencing.  A successful probe design provided good coverage of 

the bovine genome at low depth. The level of exome coverage at low read depth makes the 

capture design a viable tool for further exome sequencing studies for SNP discovery, as 

exome captures have previously been used in other studies (Robert et al., 2014, Cosart et 

al., 2011). Variant calling, after filtering and quality control, identified 144,178 variants in 24 

bulls. Candidate SNPs for male fertility were identified by association with AAM fertility 
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phenotype, using the R package, GenABEL. Single SNP regression of variants in a linear 

mixed model with breed as a fixed effect identified 484 SNPs associated with the AAM 

fertility phenotype (unadjusted P < 0.1). The term ‘glycoprotein’ was a significantly over-

represented keyword in this dataset (P-value = 0.0056). The term ‘glycosylation site: N-

linked’ is a significantly over-represented feature in this dataset (P-value = 0.00024). Gene-

ontology terms such as ‘innate immunity’, ‘complement’, ‘immune response’ and ‘acute 

inflammatory response’ were amongst the most over-represented terms in the GO dataset. 

This indicates the importance of immune system related genes in male fertility, and 

demonstrates the emphasis on innate immune gene variation in this study was warranted, 

and concurs with targeted sequencing analysis of β-defensin genes above.  

Variants identified as having a SNP frequency differential of greater than 25% were added to 

a custom-designed SNP-chip which was used to genotype ~300,000 cattle in Ireland in 2016, 

and in future years. Future studies are needed to associate additional variants identified as 

being associated with a male fertility phenotype, as well as with additional available 

phenotypes of economic importance in large numbers of cattle of various breeds.   

Validation of genetic variants in genome-wide association studies is required to infer 

causality of a genetic factor to a phenotype (Konig, 2011). To validate the genetic variants 

identified via whole-exome sequencing and targeted sequencing of the β-defensin gene 

cluster, validation was performed in an independent dataset of AI bulls. Of the 58 SNPs 

selected for genotyping, 19 were from the targeted β-defensin sequencing study, the 

remaining 39 were from the whole-exome sequencing dataset. Following QC, 42 SNPs were 

associated with fertility phenotypes, and of these, 5 validated as being associated with AAM 

at P < 0.1, and 6 associated with PR at P < 0.1. After Benjamini-Hochberg correction, 1 SNP is 

significant in each association, FOXJ3 for AAM, and DEFB128 for PR. A successful validation 

of 5 SNPs for AAM and 6 for PR show the successful sequencing of bovine exome and β-

defensin region in AI bulls divergent for fertility for the first time. FOXJ3 is a transcription 

factor which has been shown to play an important role in male fertility in mice. Further 

studies are required to determine the function of FOXJ3 in bovine. This shows the success of 

a novel whole-exome bait capture design in identifying exome-wide variants and their 

association with relevant phenotypes. 



 

154 

 

By applying the Bradford-Hill criteria, the association of these SNPs with fertility can be 

assessed (Bradford, 1965). The strength, consistency, specificity, temporality biological 

gradient, plausibility, coherence, experiment and analogy are a set of nine criteria to 

provide epidemiologic evidence of a causal relationship between a cause and effect. In this 

analysis, we can say there is a strong association for the FOXJ3 SNP and the β-defensin 

haplotype with male fertility. This can be concluded from the identification of FOXJ3 as 

being associated with AAM in two independent datasets, even in small numbers of bulls. 

The haplotype was also significantly associated with fertility in a larger number of bulls, and 

the β-defensin region was found to have a cluster of SNPs associated with fertility in the 

WES dataset as well. In addition, DEFB128, a gene in the haplotype, was validated in an 

independent population as being significantly associated with pregnancy rate. This also 

demonstrates a consistent association for both the haplotype and FOXJ3 across 

independent populations of bulls, although further data on these variants in diverse 

populations would be welcomed. In addition, the association is plausible and coherent, as 

FOXJ3 has been shown by others (Ni et al., 2016) to be necessary for survival of 

spermatogonia and deletion results in sterility in male mice. Also, the β-defensin haplotype 

has been shown to function in bovine oviductal epithelial cell binding (BOEC), with 

significant differences in the ability of high-fertility bulls with the haplotype to cluster and 

bind to BOECs compared to high-fertility bulls without the haplotype (unpublished data25). 

In this thesis, two fertility phenotypes were available: PR and AAM, which is a model of PR 

to include additional fixed and random effects, as outlined in Table 1.2-1. During association 

analysis in the validation dataset, both PR and AAM were associated with the genotypes 

identified, although the most associated SNPs were not similar. Given that the AAM is based 

on PR, one might expect similar SNPs associated with both phenotypes. However, this may 

be explained due to female-specific fertility effects in the AAM, which decouples the effects 

of female fertility that is present in the PR phenotype, but has been accounted for in the 

AAM phenotype. Therefore, the AAM is highlighting the male-specific factors related to 

fertility. One way to examine this in the data is to look at the function of the SNPs 

significantly associated in the two phenotypes, and determine whether one is more male-

                                                 
25

 Paper submitted to Scientific Reports (Whiston et al. 2017. “A dual targeted β-defensin and exome 
sequencing approach to identify, validate and functionally characterise genes associated with bull fertility). 
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specific compared to the other. Indeed, the FOXJ3 SNP is involved in survival of 

spermatogonia as described in the previous paragraph, a male-specific function. In contrast, 

the DEFB128 SNP is in the β-defensin haplotype region, involved in binding to oviductal 

epithelial cells, which is dependent on interactions with the female reproductive tract. 

Recently, an international consortium of researchers, led by the Roslin institute and EMBL-

EBI, developed the functional annotation of animal genomes (FAANG) project. The aim of 

this project was the functional annotation of genomes of domesticated animals. They have 

identified improvement of animal reference genome sequences and comprehensive 

annotation of their functional elements and variants as priorities for understanding the link 

between genotype and phenotype. Development of improved annotation of the bovine 

genome would also improve association analysis studies such as GWAS, and improve ‘omics’ 

studies in cattle, as poor annotation of the bovine genome in comparison to the latest 

human genome annotation (hg38) is limiting bovine genomic analyses. 

The beef data and genomics programme (BDGP) 2015-2020, was launched by the Irish 

department of agriculture, food and the marine (DAFM) to improve the genetic merit of the 

national beef herd through collection of data and genotypes of selected animals which will 

allow for genomic selection in the beef herd to advance genetic gain in beef cattle. The 

BDGP aims to support the suckler herd by improving the genetic merit of the national herd 

through the collection of phenotypic data and genotyping animals and to improve quality 

and efficiency. The genetic variants identified in this thesis may be incorporated into the 

BDGP to achieve this objective. Inclusion of genetic variants associated with fertility, from 

bulls divergent for fertility and validated in an independent population can be selected for 

to improve genomic selection, without affecting other economic traits or health traits. 

In conclusion, this is the first comprehensive analysis of sequence variation present in 

bovine β-defensin genes, the first whole-exome sequencing of AI bulls divergent for a 

fertility phenotype, and has successfully identified novel variants associated with a 

pregnancy rate phenotype. The proposed hypothesis that genetic variation in exons and 

promoter regions of β-defensin genes explain a portion of phenotypic variation in AI bulls 

divergent for fertility, can be accepted, due to the association of genetic variants with the 

phenotype, validation of several β-defensin gene SNPs, and subsequent functional 
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characterisation by other members of our group. The exact portion of the observed 

phenotype that is explained by these SNPs requires further study.   

Our second proposed hypothesis was that genome-wide genetic variation of the exome and 

promoter regions will explain a portion of phenotypic variation in AI bulls divergent for 

fertility. Again, this hypothesis can be considered accepted. This conclusion is based on the 

association of variants with a fertility phenotype, validation of SNPs in an independent 

population, and identification of over-represented gene ontology terms related to the 

immune system, and glycosylation, possibly implicating β-defensin genes.  

This thesis contributes to the identification of genetic variants and biological processes 

underlying sire fertility. Genetic variants identified as being associated with fertility and 

validated in an independent bull population may be used to improve breeding strategies via 

marker assisted selection and in the future aid in developing genetic biomarkers for male 

fertility. 
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6.1 Future research opportunities 

1. Candidate SNPs (n = 863) identified in this thesis have been added to the IDB SNP 

chip v3 and may be used to perform association analysis with phenotypes available 

from Irish cattle breeding federation. Over 40 phenotypes are available for both 

dairy and beef breeds. Available phenotypes are related to production, and fertility, 

although male fertility is not currently a routinely recorded phenotype in Ireland. 

Improving male fertility phenotypes is a priority for improving the genetic gain for 

bull fertility.  

2. In collaboration with XLVets Ireland, we obtained bull fertility records from breeding 

soundness evaluations for stock bulls to create the first phenotypic database on 

stock bull fertility in Ireland. Due to the highly-selected AI bull population, it is 

expected that stock bulls will have larger variation in male fertility phenotypes, and 

future research may focus on identifying the variants associated with male fertility in 

the stock bull population. The β-defensin SNPs added to the IDB SNP chip will 

facilitate association analysis with stock-bull fertility. 

3. In addition, complementary work has validated the effects of a β-defensin haplotype 

on the divergent ability of sperm from high and low bulls to bind to oviductal 

epithelial cells (unpublished data). In a similar manner, bulls carrying specific β-

defensin variants could be further evaluated to identify causative mutations 

underlying this haplotype, or indeed bulls carrying FOXJ3 variants. FOXJ3 knockout in 

mice affected testis weight, resulted in completely sterile male mice, and altered 

seminiferous tubule development (Ni et al., 2016). Therefore, sperm from bulls 

carrying FOXJ3 variants could be assessed using computer-aided sperm analysis 

(CASA) (Amann and Waberski, 2014). In vivo field fertility data could be used to 

determine whether the FOXJ3 variants were affecting field fertility. 
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