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Abstract

Wireless networking protocols and mobile devices are key contributors to the ever-growing de-

mand for realtime services. These large throughput services are often prioritised and managed

using specialised traffic policies. Today’s wireless networks will be replaced by their newer,

faster, less expensive counterparts in the very near future. These Very High Throughput net-

works will deliver a significant increase in throughput and a reduction in effective cost.

Realtime services are sensitive to packet loss and delay, and their successful delivery de-

mands a high standard of Quality of Service (QoS). The quality perceived by the final user is

measured as the Quality of Experience (QoE). Hence, Telephone Companies (TELCOs) aim to

provide realtime services with the best QoE possible.

This thesis aims to extend the provision of QoE to realtime services on future wireless net-

works.

The first contribution of this work is a novel metric, the expected Quality of Service (eQoS),

that estimates QoE on future wireless networks using combinatorics. eQoS provides an almost

instantaneous estimate of the QoE at the node and is inferred from the traffic flows crossing the

node. It provides a statistical estimate of the end user perception of the network’s quality.

The second contribution is a theoretical model to capture the probability of successful and

unsuccessful channel access on a future wireless network. This theoretical model uses combi-

natorics to calculate the probabilities that (i) a collision occurs, (ii) a packet is transmitted and

(iii) the channel is idle.

The third contribution is to converge eQoS and the theoretical model into the Quality Queue

vi



Management (QQM) system for future wireless networks. QQM is designed using fuzzy logic

controllers, it manages wireless resources with the goal of providing real time traffic flows with

the best QoE possible in the network. QQM incorporates eQoS and is a robust, efficient, scalable

means of managing realtime services on future wireless networks. The novelty of the QQM

system is to use eQoS to manage network parameters.

The QQM system optimises the throughput between the flows, manages the queues and

provides the maximum number of realtime services with the best quality possible.
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Chapter 1

Introduction

Almost all global information exchanges take place across the Internet and it is continuously

growing and evolving to meet the needs of its ever-expanding multitude of users. It allows

for the exchange of information via a wide-range of protocols, from simple file transfers and

more complex database related web services through to the delivery of key realtime services

like phone calls and video streaming.

The demand for continuity of access to information, regardless of the user’s location, has

encouraged the development and refinement of existing wireless technologies and protocols.

The volume of network traffic generated by laptops, tablets and mobile phones is continuously

increasing [1] [2] [3] and these are now key instruments for information exchange.

The information being transmitted is, itself, changing in nature. The focus is now on re-

altime data delivery as these services are one of the major drivers of network traffic growth in

terms of volume and the number of data flows [1] [2] [3]. Consequently, those developing new

wireless network technologies must consider customer satisfaction as a key aspect of their pro-

visioning policy. This is mainly due by economic factors: customers pay for these services and

Telephone Companies (TELCOs) compete for business by offering their users low cost, high

quality services.
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1.1 Context

Mobile communications are a core element of the services provided by modern TELCOs. Mo-

bile devices are a practical, economic mechanism for everyday communications in the home and

office. ISPs are interested in wireless technologies and their evolution, as they are seen as a key

element of their future service offerings. They are constantly seeking to develop and expand the

number and variety of wireless services they offer so as to increase the number of sources of

revenue available to them.

There are two main technologies that mobile, wireless devices use to access internet. The

first of these is cellular networking; for example, Fourth Generation (4G) phone networks [4]

or Worldwide Interoperability for Microwave Access (WiMax) [5] networks that use existing

protocols such as the Internet Protocol (IP) [5]. The second access method that is commonly used

employs wireless networking technologies based on the IEEE802.11 [5] family of protocols.

Wireless networks can form Local Area Networks (LAN) using High Throughput (HT) wire-

less protocols, while some lower throughput wireless protocols form smaller Personal Area Net-

works (PAN). Wireless networking technologies are not limited to these settings and it should be

noted that it is equally possible to use wireless technologies to form the backbone or backhaul

of an access wireless network.

Future wireless networks, as heralded by the standardisation of Very High Throughput

(VHT) [6] in December 2013, are able to provide real time services that rival those on offer

on more expensive cellular networks. The widespread deployment of Quality of Service (QoS)

provision mechanisms and traffic management algorithms within these networks allow them to

provide mobile devices with access to the Internet at an almost negligible cost.

VHT [7] refers to the physical characteristics of the protocol with a larger channel than High

Throughput (HT) and, consequently, the ability to transmit data in the wireless channel at a

higher speed than traditional HT.
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1.1.1 Quality of Service

The prevalence of wireless networks, and the mobile devices that use them, have forced TELCOs

to explore ways to provide realtime services to their customers with some form of quality as-

surance. In particular, TELCOs are seeking to improve the quality of the services provided,

the QoS, and the quality as assessed by the end-users of those services, the Quality of Expe-

rience (QoE). Users may make decisions on whether to use a service, or not, based on their

perceived QoE [8].

QoE [8] is a well-established means of determining customer satisfaction. It indicates if the

service is provided with “good” quality from the end-users perspective. Hence, TELCOs are

interested in monitoring QoE and in managing the traffic on their network so as to guarantee

their customers a high level of QoE.

TELCOs can easily measure the QoS through the physical network parameters. Deteriora-

tion of the network parameters indicates that the service is provided with low QoE. The challenge

is to find an easily calculated, instantaneous mechanism that captures the relationship between

QoE and the physical network parameters and a mechanism that uses this to adjust the network

parameters and improve the quality of the service delivered to the end user and, consequently,

the QoE.

1.1.2 Traffic Management

This thesis explores ways to manage the traffic in a wireless network effectively and efficiently.

The first mechanism employed to do this will be the regulation of channel access through traffic

prioritisation, the second will use Active Queue Management (AQM) [9] algorithms.

AQM [9] algorithms were introduced over twenty years ago as a congestion avoidance mech-

anism for use in router buffers. A key objective of most AQM schemes is to avoid the queue

becoming full by dropping selected packets as they arrive at the queue. Traditional buffering sys-

tems simply drop arriving packets when the queue is full as there is no place to store then. These

systems will then continue to drop packets as long as the queue remains congested, regardless
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of the prevailing network conditions.

The key goal of all AQM schemes is to drop packets before the queue overflows [9]. This

signals traffic sources about the existence of network congestion and they respond by reducing

the packet arrival rate at the queue. AQM schemes can handle Transmission Control Protocol

(TCP) traffic, because the traffic throughput is regulated via acknowledgement packets sent to

the traffic source. On the other hand, User Datagram Protocol (UDP) traffic cannot be managed

in this way as, by definition, it does not respond to acknowledgements or packet drops [10].

These schemes have mainly been designed and implemented on wired networks and there

has been only limited exploration of how they may be successfully implemented on wireless

networks. Their use on wireless networks is complicated by the widely varying characteristics

of the traffic mix and the typically low traffic throughput observed on these networks [11] [12].

The benefits of AQM schemes are that they prevent and delay congestion, they can increase

fairness amongst traffic flows and they can control the throughput of traffic. From the point of

view of quality, they can help to manage physical network parameters; for example, they can

maximize throughput and reduce queueing delays. These improvements do not necessarily have

a knock-on effect on the delivery of QoE as network parameter improvements only have an

indirect impact on the QoE.

Traffic management schemes that are designed to provide specific QoE guarantees are at-

tractive for a number of reasons. For example, by improving the QoE it follows that the network

functionality will also improve; moreover, the network is protected from undesirable traffic and

any unfairness between flows is eliminated. In addition, QoE can provide network elements with

a form of feedback for unresponsive flows [13].

1.2 Motivation

This dissertation is motivated by three main technical and economic concerns: the provision of

high quality internet access that truly delivers on the performance promised by future wireless

networks, the need to provide an effective open resource sharing network infrastructure that
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offers an alternative to cellular systems and the financial desire to offer satisfactory, low cost

services to network users.

The evolution of network access methods, devices used and services required is well docu-

mented [1] [2] [3]. Wireless technologies are the most popular method of internet access, and

almost everyone has one or more mobile devices, such as a cell phone, tablet or laptop. Future

wireless protocols will soon become widely available on network devices for public use in the

home, office and wider environment. As inferred from [1] [2] [3], real-time communications

like phone calls, video calls and conferencing and more general audio and video streaming are

currently, and likely to remain, the dominant methods of communication.

Future wireless networks have the potential to offer the same services as cell phone networks

but on a network where local access points provide high quality internet connectivity. Such

networks could then provide services with a quality that is comparable to that of more expensive,

sophisticated cellular networks in terms of the available throughput, the cost and the geographic

spread of availability. This is most feasible in urban areas where the concentration of future

wireless network access points is likely to be most dense.

End users require the wireless services they are provided with to be of satisfactory quality

and, ideally, at minimal cost. If future wireless networks are to provide these services then it is

necessary to enhance the mechanisms for quality provision associated with them. In particular,

network traffic management systems need to extend beyond the provision of basic QoS to include

enhanced guarantees of end-user QoE.

The discussion above motivates the need to develop a system to optimise future wireless in

order to deliver their services with the highest quality possible and was the inspiration for the

work presented in this thesis.

1.3 Contribution

This thesis addresses the challenge of designing a system that is suitable for use in a typical

wireless access point and capable of delivering guaranteed QoE to realtime services. The design
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of this system relies on two core contributions of this thesis: the first is a metric to provide an

instantaneous estimate of the QoE at a node; the second is a theoretical model to predict some

key behaviours of future wireless networks.

The first contribution is the expected Quality of Service (eQoS) metric. It provides an instan-

taneous estimate of customer satisfaction. It is inferred at the node via per flow sampling. The

novelty is in the capability of eQoS to instantaneously capture the relationship between physical

network parameters and customer satisfaction.

The second contribution is a new practical, scalable theoretical model that captures packet

transmissions and collisions. It is a function of the future wireless network’s environmental vari-

ables. The novelty of the theoretical model is that it uses combinatorics to infer the probability

that, at a given node, the channel is idle, that a collision occurs or that a packet is transmitted.

Finally, the new traffic management algorithm, Quality Queue Management (QQM) exploits

eQoS and the theoretical model to control and maintain the quality of each flow in the system.

QQM has been designed for future wireless networks, but it is equally applicable to other high

throughput wireless networking systems. QQM’s novelty is in the way in which it is designed

to manage and exploit the interactions between the quality management features of the basic

priority queueing system and the channel access mechanisms deployed in multi-queue based

systems.

Four publications support the work developed in this thesis. The first two of these relate

to how existing AQM schemes can be successfully deployed in a wireless environment. In

particular, the first article [12] provides a clear articulation of how traffic prioritisation impacts

on wireless access point performance; while the second article sets out how existing queue

management algorithms need to be re-engineered for use in a wireless environment [11]. The

third publication [14] is of most relevance to this thesis as it is the first articulation of the eQoS

metric that forms one of the pillars on which the QQM algorithm is built. The fourth publication

[15] completes the contribution of this thesis including the theoretical model and the QQM

algorithm.
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1.4 Outcomes

This thesis describes the design of an innovative traffic management system that draws on novel

elements presented in this work to provide its key functionalities.

The eQoS metric provides instantaneous estimates of the QoE. It will be shown that these

estimates are comparable to those obtained using popular automated perceived quality metrics.

The theoretical model will be shown to efficiently estimate the probabilities that the channel

is idle, that a packet is transmitted or that a collision occurs when the Enhanced Distributed

Channel Access (EDCA) method is used in the wireless network.

The QQM traffic management system can be implemented in all nodes that have access to

a wireless network. It is designed to be used in a future wireless networks; however, it can

also be applied in all wireless networking environments that use priority systems with multiple

queues and a scheduler to manage access to the channel. The QQM traffic management system

is structured so that it does not interfere with, or alter, the wireless networking protocol used

but rather it works to improve the protocol’s performance and enhance its delivery of a quality

service to the end user.

1.5 Structure of the Thesis

This section provides a detailed description of the structure of this thesis and of the topics dis-

cussed in the remaining chapters.

Chapter two details current wireless network technologies and future wireless networking

protocols [6] [16] [17]. The chapter also introduces channel access methods and real time ser-

vices, such as voice and video, on wireless networks.

The third chapter provides a detailed description of the state of the art, describing the essen-

tial underpinnings of this dissertation. The chapter is divided into three parts. The first provides

the necessary definitions and sets out the state of the art in relation to QoS [8]. Particular atten-

tion is paid to QoE [8] and its evaluation in wireless networks. The second part of the chapter

describes wireless network architectures and the mathematical models used to describe wire-
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less network traffic and determine channel access contention. The last part of the chapter is a

thorough description of active queue management and its application in wireless networks.

Chapter four sets out the novel quality metric, eQoS. The chapter describes the combinato-

rial methods used to infer the eQoS for standard realtime services: Voice over IP (VoIP) [18],

audio and video traffic [19]. The chapter concludes with a discussion of possible application

scenarios for the formulas derived.

QQM and the theoretical model used to determine channel access priorities are detailed in

chapter five. This model, together with the eQoS metric, lies at the heart of the design of the

QQM algorithm.

Chapter six provides an evaluation of the algorithms and formulas detailed in chapters four

and five. It also includes a detailed description of the traffic mix, metrics and software platform

used for these evaluations. The results of simulations used to evaluate the eQoS metric are

presented and possible application scenarios for the theoretical model are explored. In addition,

the chapter presents an extensive exploration by simulation of a practical implementation of

QQM algorithm and its components. These results are compared with those obtained from a

traditional network that does not make use of QQM.

Chapter seven concludes this thesis, providing a summary of its contributions and sugges-

tions for future work.

1.6 Summary

This chapter provided a brief introduction to the central elements of this thesis. It discussed

the wireless network environments and the basics concepts underpinning Quality of Service and

Active Queue Management. The initial introduction was followed by a detailed description of

the key contributions of this work. Finally, a thesis road map was presented.
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Chapter 2

Wireless Networking and Real Time

Services

The increasing popularity, and growing capabilities, of mobile wireless communications devices

provides a strong motivation for the development of future wireless telecommunication systems.

These devices have rapidly overtaken desktop computers, home telephones and other communi-

cation devices that make use of wired connections [1] [2] [3].

The typical services provided by mobile wireless devices include telephony, video confer-

encing, media streaming and, of course, non real-time data. Telephone calls are usually provided

using VoIP [18] services, while audio and video are used for other services.

Mobile devices typically connect to the internet using Wide Area Network (WAN) and

Wireless Local Area Network (WLAN) technologies. WAN services may be delivered using

Third Generation (3G) [5] and 4G [4] mobile phone networks, or by WiMax [5] which is in-

cluded as one of the 4G standards in release 2 [4]. WLAN services are most often delivered by

the IEEE 802.11 standards that are collectively branded as WIreless FIdelity (WiFi) [5].

The newer WiFi protocols offer comparable performance per user to that of 4G technologies

[20] [21]. They form part of the future businesses model for TELCOs and it is anticipated that

they will dramatically reduce the costs for both TELCOs and their customers. This observation
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motivates the key contribution of this thesis, namely the enhancement of the quality of service

and experience that will be offered by future WiFi protocols for realtime and critical services

like VoIP and video streaming.

A brief description of wireless internet access methods is provided below. This is followed

by a more detailed description of the IEEE802.11 protocol family and its evolution pathways.

Real time services used for everyday, everywhere communications are then detailed in the con-

cluding section of this chapter.

2.1 Wireless Mobile Networks

Today’s mobile devices typically connect to the internet using cellular and WiFi networks. Mo-

bile phone networks are now in their fourth generation, 4G. These are capable of achieving

download speeds of up to 1 Gbit/s. Current WiFi networks achieve a throughput performance of

up to 600 Mbit/s but in the next few years it is envisioned that they will rival 4G technologies in

terms of throughput and diffusion.

Mobile phone networks are a mix of legacy 2G and 3G technologies alongside the newer 4G

ones. 3G mobile devices mainly use Universal Mobile Telecommunications System (UMTS)

[5]. The other popular 3G standard is CDMA2000 [5] which operates in a similar way to UMTS.

High Speed Packet Access (HSPA) or HSPA+ (HSDPA advanced) are used in conjunction with

multiple access schemes, such as Wideband Code Division Multiple Access (W-CDMA), to

access the network. Communications between the mobile device or User Equipment (UE) and

the Base Station (BS), are generally duplexed using Frequency Division Duplex (FDD) [5].

3G systems typically operate around the 2.0 GHz frequency band, but this varies from country

to country depending on licensing agreements. Four QoS classes are provided: VoIP and audio

streaming are given the highest priority, then video streaming; while services that require a lower

priority, such as non-real time data transfer, are managed by the final two classes [5]. Of the two

lower priority classes, one is used for best effort traffic and the other for background traffic [5].

By 2020 it is anticipated that most internet traffic will be generated by 4G devices [1]. 4G
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traffic is IP traffic only [22], thus TELCOs will offer IP services and effectively become Internet

Service Providers (ISPs). 4G networks offer similar service capabilities to those of existing WiFi

networks but they achieve higher performance in terms of quality assurance and the security

provided. Many telecommunications companies are repurposing their existing 3G architecture

to deliver 4G to their customers.

The technologies currently used for 4G are WiMax and Long Term Evolution Advanced

(LTE-A) [4]. WiMax is based upon the IEEE802.16 protocol [5]. IEEE802.16m is known as

WiMax Profile 2.0 and fits the 4G requirements [4]. It works in a frequency range from 450MHz

to 3.6 GHz [23] and communications are duplexed using Frequency Division Duplex (FDD)

and Time Division Duplex (TDD) over the digital encoding Orthogonal Frequency-Division

Multiplexing (OFDM). OFDM is also used for multi-user channel access. WiMax uses a time

slot based scheduler to manage channel access. Time slot allocations are managed by the base

station (BS) and used to control the QoS provided to the clients; hence it is necessary for the

mobile device to maintain an almost constant connection to the BS.

WiMax can be used in rural or low density population zones as a replacement for a wired

backhaul. IEEE802.16 [23] defines five QoS classes: a very high priority QoS class and the

four QoS classes specified for UMTS. WiMax achieves its best transfer rate when using 64

Quadrature Amplitude Modulation (QAM) with a channel width of 20MHz [24].

LTE Advanced [25] [22] is one of the few defined and tested wireless telecommunications

standards that meets 4G requirements. LTE Advanced introduces some new structural features

such as the use of Multiple Input Multiple Output (MIMO) [21] [26]. Section 2.1.4.1 of this

dissertation provides a more detailed description of MIMO. Communications are duplexed using

FDD and a mix of OFDMA and scalable FDMA for the uplink. LTE advanced includes other

features; for example, cognitive radio is used to optimise the radio communication parameters

and an Evolved Node B reduces the mobile node architecture complexity [25] [22].
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2.1.1 WiFi Networks

The mobile phone technologies listed above provide network access for mobile devices. An

alternate means of network access is provided by WiFi. This has some advantages over cellular

networks. First of all it is much cheaper to deploy. At a minimum it requires a Digital Subscriber

Line (DSL) and a small router with a wireless interface as an Access Point (AP). It does not

require the installation of any pylons or antennas.

Secondly, WiFi can provided network access for each Small Office/Home Office (SOHO)

and can also be used for local or personal area network communications. Users are managed

locally and do not depend directly on TELCOs. This makes the network much easier to configure

and the associated costs are much lower than for mobile phone networks. This can be considered

a disadvantage for the TELCOs, as they lose direct commercial control over their customers. On

the other hand customers do not have access to direct support from the TELCOs.

WiFi uses the IEEE802.11 [5] family of protocols. They are backward compatible and this

gives the user the opportunity to choose between protocols that are best suited to their needs.

WiFi has many of the same features for quality assurance as a cellular phone network. The work

detailed in this thesis seeks to expand the quality assurance features of future wireless networks.

One architecture used to provide internet access for mobile devices is an infrastructure based

wireless network [5]. This is the most popular architecture and is used for both WiFi and cellular

networks and is illustrated in figure 2.1. In an infrastructure based wireless network mobile

nodes communicate directly with the AP or BS, and the AP acts as gateway between the wired

backhaul network and the wireless network. By contrast, in an ad hoc network architecture all

the mobile devices can communicate with each other without the need for a gateway node. This

is used for many mesh and sensor networks [5]. The nodes on the left hand side of figure 2.1

are wired nodes, and act as both traffic sources and destinations. The nodes on the right hand

side of figure 2.1 are mobile devices and these are also potential traffic destinations or sources.

For example, during a voice or video call a mobile phone will be both a source and a destination

node for traffic; while a tablet downloading a file from the network is a mobile destination node.
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Fig. 2.1: Infrastructure Wireless Network

The typical traffic sources are shown in figure 2.1. These include IP-based phone calls, audio

sources such as Internet radio and video.

The AP in an infrastructure wireless network has the potential to be a network bottleneck.

This occurs when the rate at which traffic arrives at the AP along the wired connection exceeds

the channel throughput available at the AP. This causes the queue length at the AP to grow until

it reaches its maximum value.

The theoretical maximum throughput [27] achieved by future wireless network protocols

will be comparable to the capacity of the wired link connecting the AP to the rest of the net-

work. However, this may not be sufficient to prevent congestion due to buffer overflow. This is

because the wireless channel is shared amongst the mobile stations and the available throughput

is reduced due to the use of collision avoidance mechanisms, see section 2.1.2, the number of

mobile devices connected to the network and the services provided by the network. From this it

can be concluded that the WiFi AP is a key network node where the traffic has to be carefully

managed.

An ad hoc wireless network without any communication link to other networks is an

Independent Basic Service Set (IBSS) [5]. When the wireless network can communicate with

other wireless networks it is known as a Basic Service Set (BSS). The backhaul of a wireless

network, together with the backbone network is the Distribution System (DS). Through the
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backhaul the wired traffic is transported to and from the AP [5]. Multiple wireless networks can

be joined together, with the DS, creating an Extended Service Set (ESS) [5].

Wired links are typically full duplex and operate in both directions at the same time using

different physical cables; by contrast, mobile devices on a cellular network communicate in

both directions using FDD channels [5], while WiFi uses TDD for communication between the

mobile stations and the AP. Even when technologies like MIMO or MU-MIMO are used, see

sections 2.1.4.1 and 2.3.1, the communication is not full duplex.

In the following section a more detailed description of the protocols used in WiFi networks

is provided.

2.1.2 IEEE802.11 Protocols

IEEE802.11 [5] was standardised in 1997 and defines OSI layers 1 and 2 for wireless commu-

nication over the 2.4GHz frequency band. Its initial throughput of 1 Mbps was later extended to

2 Mbps and today’s variants achieve almost 7 Gbps.

IEEE 802.11 also specifies the following services: Station Services (SS) associated with a

mobile device and Distribution System Services (DSS) associated with an AP [5]. SS are ser-

vices such as authentication, deauthentication, privacy and MAC Service Data Unit (MSDU)

delivery [5]. DSS are similar to SS as, for example, they allow for association, disassociation,

distribution, integration, and re-association [5]. All these services are either provided with spe-

cial packets called beacons or inferred from normal communications via packet headers.

The most popular channel access method in IEEE802.11 is the Distributed Control Func-

tion (DCF) [5] [28] [29]. DCF uses Carrier Sense Multiple Access / Collision Avoidance

(CSMA/CA) to distribute traffic and avoid collisions between data packets. Before sending a

packet each station, including the AP, has to listen to the channel for a time called a Distributed

Inter Frame Spacing (DIFS). Each station that finds the channel idle after a DIFS has to wait

a random backoff time before starting to transmit. This backoff time depends on the size of

the contention window. The contention window is a random value between 0 and CW . The

stations start decrementing their backoff timers when the channel is idle. If one of the stations
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starts transmitting, all the other stations stop decrementing their backoff timers and wait until the

transmission is completed to continue decrementing their backoff timers. The channel is sensed

by each station every DIFS time. A the station can transmit when its backoff timer is zero and

the channel is idle. A collision occurs when two stations transmit simultaneously. In this case

the CW s of the colliding stations are doubled [5] [28] [29].

The alternative access method for IEEE802.11 uses a Point Coordination Function (PCF)

[30]. With PCF the AP is the coordinator and decides the time and the order in which every

station can transmit over the channel. As discussed in [30], PCF is not popular and it is usually

not implemented at the AP. A variety of enhancements to PCF have been developed to provide

quality assurance [31], but these are quite complex in nature and have not led to a rise in its

popularity.

Collision Avoidance [5] can be achieved by sending a Request To Send (RTS) packet and

then waiting for the destination node to respond with a Clear To Send (CTS) packet before the

transmission of a data packet. Each RTS and CTS packet is sent after an interval known as

a Short Inter Frame Spacing (SIFS). After the CTS packet is received, the station sends the

data packet. Data packet reception is confirmed to the source by the destination node using

Acknowledgement (ACK) packets. Once a data packet is received the destination waits a SIFS

interval before sending an ACK packet back to the source.

For backward compatibility control packets like RTS, CTS, ACK or ARP are sent at a lower

speed, usually 1Mbps, but their speed of transmission depends on the IEEE802.11 protocol

extension being used in the network.

In the following subsection the three of the earliest and most popular IEEE802.11 protocol

extensions are considered in more detail.

2.1.3 IEEE802.11a, b and g

The three protocols IEEE802.11a [32], IEEE802.11b [33] and IEEE802.11g [34] are extensions

of IEEE802.11 [5] [26]. Together with IEEE802.11n [21] these are the most widely used WLAN

protocols in mobile devices; both because they are supported by the equipment available on the
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market and because they are backward compatible with each other.

Other IEEE802.11 [5] extensions exist, but these often have a specific purpose such as the

provision of quality guarantees e.g. IEEE802.11e, or security e.g. IEEE802.11i, or because they

can work with special node architectures e.g. IEEE802.11s.

IEEE802.11a, b and g include CSMA for collision avoidance. This feature is optional, but it

is to be recommended if collisions between data packets are to be avoided.

IEEE802.11a [5] uses OFDM to transmit data on a 20 MHz channel. IEEE802.11a uses 48

subcarriers for data and 4 pilot carriers, giving a total of 52 subcarriers per channel on the 5 GHz

frequency band. On each carrier, it uses Binary Phase Shift Keying (BPSK), Quadrature Phase

Shift Keying (QPSK), 16-QAM or 64-QAM modulation. With 64-QAM it can use a 5/6 rate

encoder and a guard interval of 800 nanoseconds between symbols. IEEE802.11a has a spectral

efficiency of 2.7 bits per second per Hertz at the maximum speed of 54 Mbps on a 20 MHz

channel [26]. IEEE802.11a offers transmission at rates that vary between 6 Mbps and 54 Mbps.

IEEE802.11b [5] uses Complementary Code Keying (CCK) modulation on a 22 MHz chan-

nel at the frequency of 2.4 GHz. Its spectral efficiency is 0.5 bits per second per Hertz at the

maximum speed of 11Mbps [26]. IEEE802.11b achieves data rates from 5.5 Mbps to 11 Mbps.

IEEE802.11g [5] uses a 20MHz channel at the frequency of 2.4 GHz. Its spectral efficiency

is 2.7 bits per second per Hertz at a top speed of 54 Mbps [26]. IEEE 802.11g achieves the same

throughput as IEEE802.11a when OFDM is used. The data rates for IEEE802.11g vary between

1 Mbps to 54 Mbps. Rates of 22 Mbps and 33 Mbps can be achieved using 8 Phase-Shift

Keying (PSK) modulation.

These IEEE802.11 protocols have been superseded by IEEE802.11n and this is considered

in the following subsection.

2.1.4 IEEE802.11n

The final version of IEEE802.11n [21] [26] was released in September 2009. It not only in-

creases the available channel throughput but also includes features that improve efficiency and

quality of service. It introduces three major features: an increased radio channel size, the use of
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MIMO and frame aggregation.

IEEE802.11n includes improvements to the physical layer. Like IEEE802.11a and g, it uses

a 20 MHz channel but it also introduces a 40 MHz channel [26]. A single 40 MHz channel

offers greater potential when compared to the simple aggregation of two 20 MHz channels. By

using a single 40 MHz channel, the stopband between the two aggregated 20 MHz channels can

be used for additional OFDM subcarriers to increase spectral efficiency [26]. 20 MHz channels

are used at 2.4 GHz and 5 GHz, while 40 MHz channels are usually used only at 5 GHz.

The method used to transmit data is OFDM. There are 52 subcarriers in a 20 MHz channel

and 108 subcarriers in a 40 MHz channel [26]. The modulation used to reach the maximum

throughput is 64 QAM with a 5/6 encoder rate. The maximum throughput is 65 Mbps in a 20

MHz channel and 135 Mbps in a 40 MHz channel. The throughput can be multiplied by the

number of transmitters, up to a maximum of four, using space division multiple access. This

gives the maximum throughput on a 20 MHz channel as 260 Mbps and on a 40 MHz channel as

540 Mbps [26]. Another important IEEE802.11n feature to increase the data transmission rate is

the reduction of the guard interval and symbol times to 400 nanoseconds and 3.6 microseconds

respectively.

The second innovative feature of IEEE802.11n is that it optimises the throughput by aggre-

gating frames [26]. MSDU or MAC Sublayer Protocol Data Unit (MPDU) frames can be joined

together and transmitted as a single large frame. A large frame resulting from the aggregation

of MSDUs has a single MAC header and tailer. A large frame resulting from the aggregation

of MPDUs has one MAC header and one trailer for each MPDU. All large frames have a single

Layer 1 header. For both frame aggregation methods a block acknowledgement feature is avail-

able [26]. This returns a single acknowledgement frame for each aggregate frame, avoiding the

need for a single acknowledgement per frame.

There are two disadvantages associated with frame aggregation [26]. First of all, MSDU

frames can only be aggregated if they have the same destination; this is not the case for MPDU

frame aggregation. If the number of mobile stations sharing the network is large then it is

unlikely that MSDUs will have the same destination. The second disadvantage of frame aggre-
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gation is the large number of frames lost if a single large frame is damaged or not received at the

destination. This disadvantage is more evident when the collision avoidance feature is not used

as a whole frame is lost if a collision occurs.

Both frame aggregation and block acknowledgement are not considered in this thesis for

two reasons. First of all, the system proposed in this work does not include features to improve

the throughput introduced by the protocol. Secondly, the number of mobile stations involved in

the network simulations is large and so it is unlikely that any of the queues contain packets to

be sent to the same destination in sequence. When packets to the same destination are not in

sequence in the queue the frame aggregation and block acknowledgement features are inefficient

and effectively useless.

IEEE802.11n also includes a power saving feature that is useful for constrained mobile de-

vices. The feature switches the radio frequency transmitters on and off, either dynamically or

statically, reducing the power used at the transmitter [26].

Like the other members of this protocol family, IEEE802.11n is backward compatible.

IEEE802.11n permits different modulations for each spatial stream on the 2.4 GHz frequency

band, the legacy preamble and header are managed so as to avoid reception by mobile devices

that use older standards. Backward compatibility is not needed if the frequency band used is 5

GHz, and so IEEE802.11n operates on this band using a 40 MHz channel [26].

The increased throughput of IEEE802.11n does not mean that the bottleneck between wired

and wireless networks at the AP no longer exists. Using wireless standards with high, or very

high throughput, for example IEEE802.11ac [6], the bottleneck is likely to exist because the

wired backhaul capacity is almost always greater than the throughput available on the channel.

The wired throughput, the huge number of mobile devices connected to the access point and

services available on wireless networks all combine to create a bottleneck at the AP.

The other advantage of IEEE802.11n is that it uses MIMO. As this technology is used by

other members of the IEEE802.11 family of protocols it is considered separately below.
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2.1.4.1 MIMO

Multiple Input Multiple Output (MIMO) [21] [26] technology incorporates multiple transmit-

ters and receivers in the same device. The goal of MIMO is to increase the Signal-to-Noise Ra-

tio (SNR), so it is particularly suited for environments where radio communications are difficult;

for example, due to the presence of radio noise. MIMO was designed to overcome problems as-

sociated with multipath propagation and reflections, thereby increasing the available throughput

on the wireless network.

MIMO achieves different objectives depending on the number of transmitters and receivers

used and their configurations. When the number of transmitters is greater than the number of

receivers, MIMO can be configured in four modes. The antenna selection configuration chooses

the best antenna for transmission based on packet error measurements. Transmit beamforming

adjusts the transmitted signals giving rise to improvements in the SNR. Cyclic delay diversity

configures the transmitter to send a copy of the same signal on each antenna using different

subcarrier frequencies, but the SNR improvements achieved are not that significant. Space time

block coding is when blocks of data are sent by different transmitter antennas but in different

orders [26].

Using multiple transmitters and receivers, MIMO can be configured to achieve space divi-

sion multiplexing. This gives rise to a significant increase in the throughput by using a different

spatial stream for each antenna [26].

MIMO can be configured as an equaliser when the number of antennas at the receiver ex-

ceeds the number of transmitters. In this mode the receiver combines multiple signals to improve

the SNR [26].

MIMO provides improvements in throughput, radio signal reception and bit errors. This

dissertation focuses on channel access improvements and the management of packet scheduling

on a theoretical error free channel, therefore MIMO is not considered. On the other hand the

improvements introduced by MIMO are likely to be beneficial to the system proposed in this

thesis.
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In the next section the quality improvements achieved by the IEEE802.11e protocol are

detailed.

2.2 IEEE802.11e

IEEE802.11e [35] [36] is an amendment to the standard that redesigned the OSI Layer 2 of the

IEEE802.11 protocol to enhance QoS.

The IEEE802.11a, b and n protocols considered above, all manage traffic using a single

queue. In particular, they do not split the traffic into separate macro-categories and they do not

use multiple queues or priorities. IEEE802.11e improves upon the two coordination functions

DCF and PCF [5] by using Class of Service (CoS) [37] to manage traffic priorities. CoS is a tech-

nique developed to split the traffic into separate macro-categories, each of which is associated

with a specific queue and a specific priority.

A new coordination function, called the Hybrid Coordination Function (HCF) [35] [38] is

used to define two new channel access schemes: EDCA and HCF Controlled Channel Access

(HCCA). The traffic is split into Traffic Categories (TC) and each TC is managed in a queue

that has an associated priority for access to the channel. EDCA is an improvement of DCF and

it manages four traffic CoS. HCCA [35] [38] evaluates the services and sessions associated with

each mobile device in order to coordinate channel access. It also considers QoS parameters

when managing channel access. HCCA is more complex than EDCA and is a very efficient

algorithm in terms of the QoS achieved.

EDCA utilises four Access Categories [35]: AC0, AC1, AC2 and AC3. Each AC is defined

as a collection of parameters that characterise a queue and regulate the channel access priority.

Each AC has an associated queue: Q0, Q1, Q2 and Q3. These queues store packets prior to their

transmission on the wireless channel.

The first Access Category (AC) [35], AC0, also called ACV O, has highest priority; it is used

for voice and audio traffic. Q0 is the queue associated with AC0. The second AC is AC1, also

known asACV I . It has a lower priority thanACV O and it is reserved for managing video traffic.
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Access Category CW min CW max TXOP AIFSN Type of traffic

AC0 (AC_VO) 3 7 1.504ms 2 voice and audio

AC1 (AC_VI) 7 15 3.008ms 2 video

AC2 (AC_BE) 15 1023 0 3 best effort

AC3 (AC_BK) 15 1023 0 7 background

Table 2.1: Summary of AC parameters [35]

Q1 is the queue associated with AC1. The third AC is AC2, also called ACBE . It has a lower

priority than AC1. It is used for traffic that requires best effort; for example, telnet sessions or

database access. Q2 is the queue associated with AC2. The last AC is AC3. AC3 manages the

background traffic and is also known asACBK . It has the lowest priority. It handless traffic such

as that generated by file transfers and web browsers. The queue associated with AC3 is Q3.

For each AC queue EDCA controls access to the channel using a backoff time [35], a CW

that is set to be between a minimum and maximum value and an Arbitration Inter-Frame Space

(AIFS) Number (AIFSN). The backoff time is a randomly chosen number of time slots between

0 and the minimal contention window, CWmin. Every AC has a different CWmin as shown in

table 2.1. The CW is doubled every time a collision occurs between transmitted packets. The

CW can increase up to the value of CWmax.

Each AC has a specific Arbitration Inter-Frame Space (AIFS) [35]. AIFS(i) is the AIFS

associated with access category ACi where, for example, i = 1, 2, 3, 4. The AIFS is the interval

between frame transmissions, it replaces the DIFS used in IEEE802.11 and varies depending on

priority. AIFS is calculated by the formula [35]:

AIFS[AC] = AIFSN [AC]× SlotT ime+ SIFS. (2.1)

The AC with highest priority has the lowest CW and AIFS Number, therefore it is more likely

to access the channel before any other AC.

Another feature that characterises AC0 and AC1 is the Transmission Opportunity (TXOP).
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User Priority Access Category Type of traffic

1 AC_BK Background

2 AC_BK Background (Spare)

0 AC_BE Best Effort

3 AC_BE Best Effort (Excellent Effort)

4 AC_VI Video (Controlled Load)

5 AC_VI Video

6 AC_VO Voice

7 AC_VO Voice (Network Control)

Table 2.2: Summary of AC map between 7 and 4 ACS [35] [39]

When an AC has access to the channel, transmission is not limited to a single packet, rather

packets are transmitted for an interval of length TXOP, separated by a SIFS. Table 2.1 sum-

marises the most commonly defined parameters for each AC 1. While table 2.2 shows how the

four ACs can be remapped to the seven CoS defined in 802.1d [35] [39] and vice versa. These

parameters are re-purposed for the IEEE802.11ac [6] protocol.

IEEE802.11e also allows for Automatic Power Save Delivery (APSD) [40] [35] to reduce en-

ergy consumption. After the end of a service interval a station automatically switches into sleep

mode until the start of the next service period. Service intervals may follow a predetermined

schedule or may be triggered by the AP. The block acknowledgement, defined in IEEE802.11n,

is also defined in IEEE802.11e to turn off acknowledgements. It is also possible to save time

and throughput if the service does not require feedback and packet retransmission.

In the next section the main features of the two IEEE802.11 protocols that are likely to

dominate future wireless networks are detailed.
1http://www.ieee802.org/1/files/public/docs2008/avb-gs-802-11-qos-tutorial-1108.

pdf
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2.3 IEEE802.11ac

IEEE802.11ac [6] was approved in December 2013. This very powerful standard significantly

increases throughput on WiFi networks and, in conjunction with the existing EDCA standard, is

able to provide high quality performance. The actual IEEE802.11ac release is draft 3.0.

IEEE802.11ac is backward compatible with the existing popular standards IEEE802.11a, b,

g and n. It operates in the 5 GHz frequency band, and will include most of the important features

of its predecessors.

In contrast to IEEE802.11n, IEEE802.11ac increases the available channel sizes to 80MHz

and 160MHz. These 80MHz and 160MHz channels use a single spatial stream, while more spa-

tial streams are optional. The modulation used is 256-QAM, 3/4 and 5/6; whereas IEEE802.11n

uses 64-QAM, 5/6. Binary Convolutional Coding (BCC) is used to correct the errors at the re-

ceiver and Space-Time Block Coding (STBC) is used to improve transmission by sending mul-

tiple copies of the frame for each antenna. The throughput achieved goes from 780 Mbit/s for

a 160 MHz channel and single antenna up to a maximum of around 7 Gbit/s [7] when multiple

antennas are used.

IEEE802.11ac includes MIMO and also introduces the concept of Multi User - Multi Input

Multi Output (MU-MIMO). As MU-MIMO is not specific to IEEE802.11ac it will be considered

separately in section 2.3.1 below.

Most of the Layer 2 features of IEEE802.11n are included in IEEE802.11ac. These include

TXOP, aggregation of MSDUs and MPDUs together with a substantial increase in the maximum

frame size and CSMA/CA to avoid packet collision. The high speed data transmission achieved

by IEEE802.11ac contrasts with the low speed of the PPDU headers, as shown in [6] and [7],

making RTS and CTS control packets extremely onerous and costly in terms of throughput.

This is because RTS and CTS packets are backward compatible and so their transmission time

is comparable to that needed for much larger data packets. For this reason, this thesis does not

use RTS and CTS packets. In addition, the algorithm proposed in this dissertation makes RTS

and CTS packets redundant as it reduces the likelihood of collisions.
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For this dissertation the 160MHz channel is considered to have a throughput of 780 Mbit/s

for packet transmission using Single Input and Single Output (SISO). As discussed in section

2.1.4, Block Acknowledgment (BA) can be used for a sequence of frames with the same destina-

tion. However, such sequences are unlikely if the number of mobile stations sharing the network

is large and so the BA feature will not be implemented and used in this work. In the wireless

configuration considered in this thesis all mobile nodes and access points use the IEEE802.11ac

standard. The technical specifications of the IEEE802.11ac protocol, including VHT, packet

structure, etc., are given in [7] and [6].

As detailed in section 2.2, QoS enhancements for wireless networks are specified in

IEEE802.11e [35]. However, this discussion would not be complete without mention of two

other amendments that focus on improving quality: IEEE802.11aa [17] and IEEE802.11ae [16].

IEEE802.11aa [41] [42] [17] introduces specific features to improve the delivery of video

and audio streams over a wireless network.

One of these features is Groupcast with Retries (GCR). This feature mainly concerns broad-

cast traffic and makes it possible to deliver one media streaming to multiple recipients [41].

The intra-access category prioritisation feature introduces two more ACs for video and audio:

the Alternate Voice (A_VO) and Alternate Video (A_VI) classes [41]. A Stream Classification

Service (SCS) acts to arbitrarily map the media to these new ACs [41]. While these features

are beyond the scope of this work, they could be used to extend the functionality of the system

proposed in this dissertation.

Overlapping Basic Service Set (OBSS) management [41] is another IEEE 802.11aa feature,

but it is not relevant for this thesis as it is mainly concerned with the physical layer. The other

key feature to mention is the Stream Reservation Protocol (SRP) [41]. This assigns network

resources to deliver the media stream with better quality. This feature requires advance config-

uration and, unlike the system proposed in this thesis, it does not actively follow changes in the

traffic.

IEEE802.11ae [16] [41] uses the QoS Management Frame (QMF) procedure to prioritise

management frames. It also defines the interactions between the stations; in particular, it uses

25



beacon or frame exchanges to prioritise frames. In this thesis control packets will be prioritised

for all mobile stations and the AP. This is in agreement with the IEEE802.11ae protocol and so

this amendment does not affect the results presented in this work.

In order to conclude this overview of the IEEE802.11 family of protocols it is neces-

sary to discuss the functionality and key features of the extended version of MIMO used by

IEEE802.11ac, i.e. MU-MIMO. This is included in the subsection below.

2.3.1 MU-MIMO

IEEE802.11ac makes use of Multi User - MIMO (MU-MIMO) [43] [7]. To be more specific,

IEEE802.11ac implements DownLink MU-MIMO (DL MU-MIMO). DL MU-MIMO uses dif-

ferent spatial streams to transmit to different mobile stations at the same time. By contrast, the

mobile stations cannot communicate simultaneously with the AP, rather they transmit one at a

time.

In Layer 1, MU-MIMO [44] mixes beamforming and energy optimisation, known as Null

Steering, to optimise transmission to a specific mobile station and multiple communications with

a number of mobile stations.

One of the key features of MU-MIMO is at layer 2 where this thesis focusses on. MU-MIMO

applies TXOP at Layer 2. TXOP transmission of multiple frames is permitted only between

mobile devices with the same AC. A mechanism for improving TXOP between different ACs

has been proposed [43]: the AC that has the opportunity to use the TXOP can share the TXOP

simultaneously with other ACs.

Even though MU-MIMO provides significant improvements for multiple transmission, it

was not made available in the early releases of IEEE802.11ac compatible devices [44].

2.4 Wireless Network Services

Everyday communications involving mobile devices typically make use of a wide variety of

services. Real time services are the most popular and these have been experiencing sustained
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and rapid growth in recent years [1] [2] [3]. They include not only phone, conference and video

calls, but also all forms of audio and video streaming. These services are sensitive to packet

delay and packet loss [45]. They are also constrained by the available throughput on the link.

For these reasons they are generally knows as critical services because packet delay and packet

loss are critical for the proper delivery of these services. Other internet traffic services such as

email, online chat and social networks are not considered critical services as they are not as time

sensitive as real-time services.

The components of a real time service are described in detail in the following sections.

2.4.1 Streaming

The word streaming [19] is used to indicate the transmission of media events over the network.

These consist of constant or variable rate flows of packets containing the media data. The stream-

ing events considered in this work are audio and video streams: audio streaming may be a VoIP

call or digital audio transmitted over the Internet, video streaming may be a video call or digital

video events transmitted on internet. By definition VoIP [18] is a streaming service, but in this

work it is considered as a separate method of providing a real time service. This is because it

is a low throughput real time service that may sometimes be transmitted on a switched network

and therefore it is managed with high priority by the IEEE802.11e and IEEE802.11ac protocols.

A streaming event is live if it is transmitted to the final user instantaneously and so requires

minimal buffering. In this case the only possible sources of delay arise from the encoding/de-

coding and transmission of the data [19]. The stream is not live if it is an event that has already

been encoded and completely buffered, or where transmission is deferred until a later time. In

this case, packet retransmissions are possible if the buffer at the destination is large enough.

The simplest network protocols used for streaming are UDP and TCP [46]. TCP regulates

throughput at the source via adjustments in the Congestion Window size and analysis of the

acknowledgements (ACKs) received [47] [48] [49]. The Congestion Window is the number of

TCP packets transmitted per Round Trip Time (RTT). This is the time for a TCP packet to go

from the source to the destination and for the corresponding TCP acknowledgement to travel
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from the destination to the source. Every packet that is marked or dropped causes TCP to halve

the Congestion Window size.

Unlike TCP, the UDP [10] protocol is not affected by packet dropping or marking events at

the network layer; for this reason UDP flows are called unresponsive flows [10]. However, they

may have an indirect response to dropping or marking events when feedback to the source is

provided by the application layer. For example, the Real-time Transport Protocol (RTP) uses the

Real-time Transport Control Protocol (RTCP) [50] [51] to provide feedback to the source about

unreceived packets. For completeness, it should be noted that there are two other categories of

unresponsive flows [10]: intermittent UDP and TCP flows. These are very difficult to manage

because they only exist for an extremely short interval of time.

RTP [50] and the Real-time Transport Control Protocol (RTCP) [50] can also be used with

UDP. Both protocols operate at the Application Layer. RTP provides streaming over the net-

work and includes some features to improve quality, like the use of packet sequence numbers.

RTCP works in conjunction with RTP providing statistical feedback between the source and

destination.

Streams may be generated by the Hypertext Transfer Protocol (HTTP) [52]; for example,

when using HTTP Live Streaming (HLS) 2 [53] or MPEG-Dynamic Adaptive Streaming over

HTTP (MPEG-DASH) [54]. HLS uses the HTTP protocol and provides the streaming service as

a HTTP download, MPEG-DASH is similar to HLS with the additional ability to use selective

streaming speeds. Protocols at the application layer are not considered in this thesis, rather the

focus of this work is on lower layer packet flows.

The main streaming protocol considered in this work is the UDP protocol. There are many

reasons for this decision. First of all, the design and implementation of the work proposed in this

thesis uses the simple UDP protocol at the transport layer, automatically neglecting all protocols

at the application layer. This allows the user to implement any protocol they wish on top of

UDP. Secondly, the features of protocols such as RTP are not required; for example, the use of

packet sequence numbers. The system proposed in this thesis also provides some quality features
2http://tools.ietf.org/html/draft-pantos-http-live-streaming-13
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Fig. 2.2: VoIP protocol with compression G.729

of its own. Thirdly, realtime services transmitted live do not require packet retransmissions

or protocols like RTCP for the provision of quality feedback; rather they only need a simple

datagram protocol. As it is the goal of this thesis to propose a system to improve quality in

the most general way possible, protocols other than UDP can only improve the efficiency of the

system proposed in this work.

In the next three subsections the most popular encoding standards for VoIP, audio and video

streaming are discussed in greater detail.

2.4.2 Voice over IP

VoIP [18] is the service used to replace traditional switched telephony networks for the transport

of voice data from the call source to the call destination and vice versa. In today’s world,

switched networks are no longer needed as VoIP can be used with a simple internet connection.

Figure 2.2 shows the path followed by a voice call from a wired node to a wireless node.

The user voice is sampled on the wired terminal and transformed into a digital signal using Pulse

Code Modulation (PCM) [55]. The sampling frequency for a voice call in a TDM switched

network is 8 KHz [18]. This is twice the frequency of 4 KHz needed for effective reconstruction

of the voice signal.
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The sample is compressed to reduce the throughput needed for transport from the source to

the destination. Examples of popular voice compression algorithms are G.711 [56] and G.729

[57]; for more details on these and other algorithms see 3 [58].

A G.729 VoIP packet is composed of 2 blocks of length 10 ms requiring a speed of 8 Kbps.

Some compression algorithms, for example G.711, require higher data rates of the order of 64

Kbps, while other algorithms, like G.729 AnnexD, require less speed, e.g. 6.3 Kbps. G.729 is

the most common compression algorithm and it produces data at a constant bit rate data. This

makes it an ideal choice for use in the evaluation of the system proposed in this thesis.

The compression process naturally gives rise to delays in the transport of voice data. After

compression, the voice data is packetised and inserted into the network to be routed to the re-

ceiver’s terminal. The process is repeated in the opposite direction for the voice traffic generated

on the mobile terminal. Further detail on VoIP and its associated delay are given in [18].

Acceptable voice delay limits are set out by the International Telecommunication Union

(ITU) in Recommendation G.114 [59]: for optimal quality the packet delay cannot exceed

150ms. Delays over 150ms and less than 400ms are acceptable but, as a consequence, the

voice transmission may experience periods where the quality drops to an unacceptable level.

Delays in excess of 400ms are not acceptable as the voice communication quality will not be

tolerable [59].

The sources of transmission delay can be divided into two classes: intrinsic and extrinsic.

Intrinsic sources of delay are defined as those associated with sampling, compression or coding

delays, and also with delays due to the packetisation of data. Extrinsic delays are generated by

network nodes; for example, they are queueing, transmission, switching or routing delays.

Intrinsic sources of delay can only be reduced through improvements in the capabilities of

the coding algorithm used and in the CPU performance of the node. By contrast, extrinsic

sources of delay can be mitigated by the use of algorithms at the node to manage delay [18].

In the next section the encoding method used for audio and video will be detailed.
3http://www.cisco.com/c/en/us/support/docs/voice/h323/

14069-codec-complexity.html
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2.4.3 Audio encoding

In this dissertation the audio considered for streaming is high quality stereo, also known as CD

quality; that is 44KHz stereo with 16 bits per sample. This kind of audio can be encoded in

different formats, for example MP3 [60] [61], AAC [62] or AC-3 [63].

The audio encoding used in this work is Advanced Audio Coding (AAC) [62] [64], because

it has two main characteristics: a constant packet rate and a variable packet size. Using these

two characteristics it will be shown that the system proposed in this thesis can be applied to a

large range of traffic typologies. AAC is also representative of generic audio encoding and the

use of another audio encoding scheme will not change the validity of the results in this thesis.

AAC is used on popular video sharing websites, e.g. YouTube4. As an encoding method it

is more efficient in terms of quality than MP3 encoding. AAC also includes a large number of

scalable encoding features to provide high or low audio quality. Audio encoded in high quality

is used for services like digital radio or digital television; while audio encoded in low quality

can be used for streaming services like voice messaging in a web chat.

AAC encoding is performed in three stages [62]: in the first step the audio signal is subsam-

pled and the result is transformed from the time domain to the frequency domain. In the second

step, a filtering procedure is applied to eliminate non perceptual components; while in the final

step quantisation and encoding procedures are applied. This encoding process means that there

is a loss of quality associated with the use of AAC.

While AAC is usually configured to provide CD quality audio, it can also be configured to

use a large number of channels, each sampled at a high frequency. The frame is the smallest

block used for encoded audio, with each frame being decoded independently [62].

Figure 2.3 gives an example of audio encoding; in particular, it shows how frame sizes can

vary over time. This sample is taken from the trailer for the movie WarGames5. In this figure,

the x-axis is the time in seconds and the y-axis is the audio frame size as measured in bytes.

Each tiny vertical bar represents a single audio frame. The audio in AAC format is extracted
4http://www.youtube.com
5https://www.youtube.com/watch?v=hbqMuvnx5MU
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Fig. 2.3: Audio Frames size showing variations due to the nature of the data.

from a video that contains simultaneous dialogue and music. In the sample shown it can be seen

that at the beginning of the sample the audio is silent and so the frame size is only a few bytes,

then for a short interval of time the sound samples cover a much larger spectrum and the packet

size is over 300 bytes, finally the frame size stabilises and is practically constant.

In the case of audio, the packets coincide with the frames, therefore the number of frames

per second is the information unit used for quality calculations. It should be noted that while the

number of frames per second is constant, the packet size is not.

In the next section the most popular video encoding standard is discussed.

2.4.4 Video encoding

Video coding schemes like H.262 (MPEG-2 Part 2) [65] or H.264 [66] can be used to compress

video data. The video coding format H.264 is chosen because it has two key characteristics: a

variable packet rate and a variable packet size. These two characteristics are directly related to

the traffic typologies: a constant packet rate and a constant packet size are used for VoIP traffic,
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a constant packet rate and a variable packet size is used for audio while a variable packet rate and

variable packet size is employed for video. H.264 is used to represent generic video encoding

and can be replaced by another video encoding scheme without altering the validity of this work.

MPEG-4 [66] is one of the common methods used to encode audio and video to be streamed.

It is supported by the majority of mobile devices. MPEG-4 uses a file (.mp4) structure like a

box, where the encoded audio and video are separated. Video can be encoded using MPEG-4

Part 10 [66], also known like as Advanced Video Coding (AVC) or H.264. It was formulated

by the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts

Group (MPEG) [66] [19] [67].

Audio can be encoded and structured using AAC [62]. These are the methods used in this

thesis. The encoding and compression processes reduce the size of each stream and so increase

the number of streams that can be transmitted at the same time on the wireless link. In a similar

manner to the way the audio encoding process drops any frequencies that are imperceptible to

the human ear [62], the video encoding process drops any redundancies in the frames that are

imperceptible to the human eye [67]. A video photogram sequence is sampled and encoded

using three kind or frames: I frames, P frames, and B frames [67].

Each I frame [68] [67] is coded and decoded as a single, independent image and is not related

in any way to other frames. P frames are not independent, they are encoded and decoded using

information from the last I frame. P frames [68] [67] are encoded using the Motion Compensator

Algorithm. P frames are used when differences between the current frame and the last I frame

are small; for example, if the camera is in motion or when an object is moving. Bidirectional

(B) frames [68] [67] are coded using information from the last and the next I and P frames [68].

Figure 2.4 shows a Group of Pictures which is composed of a sequence of I, P and B frames.

It is denoted by GoP(N,M ) [67], whereN indicates the number of frames between two I frames,

and M indicates the number of frames between two I or P frames. In figure 2.4 N = 12 and

M = 5.

There are a variety of profiles available for use in the video encoding process. Each profile

determines the framing process: a high quality profile has more detail and provides a high level
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Fig. 2.4: Structure of the MPEG Group Of Pictures [67]. I Frames are in black, B Frames are in

light grey and P Frames are in light grey
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Fig. 2.5: Example of Video Frames showing variations in Frame Size.

of quality; while the baseline profile captures less detail and does not include any B frames [68].

On the network side, video is sent by default as a Variable Bit Rate (VBR) stream because

the frame sizes are not constant. While it is possible to force video to be sent with a constant bit

rate [69], for this dissertation the worst case scenario of transmission using VBR is considered.

I frames are larger than B and P frames and so they are more likely to be fragmented into

a large number of packets; on the other hand fewer packets are required for transmission of P

and B frames. Figure 2.5 gives an example of the frame size for a video stream. This sample is

taken from the trailer for the movie WarGames6. In this figure the x-axis is the time in seconds,

the y-axis it the audio frame sizes measured in bytes and each tiny vertical bar represents a

video frame. The H.264 format video sample is 140 seconds long and contains several fast

scene changes; for example, from outdoors and indoors. In this case the video encoding uses 30

frames per second, with one I frame for every 28 P frames. The figure also shows how video

frame sizes are, in general, much more variable in size than those used for audio streaming.
6https://www.youtube.com/watch?v=hbqMuvnx5MU
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2.5 Summary

This chapter described the wireless protocols and service standards that are used for everyday

communication between mobile devices. Real time services form an essential, and growing,

element of these communications. The 3G and the newer 4G cellular technologies offer per-

formance and quality assurance mechanisms that exceed those of future WiFi technologies.

The first implementation of WiFi was the IEEE802.11 standard. This was improved and ex-

tended through changes to Layer 1 in the basic extensions IEEE802.11a, IEEE802.11b and

IEEE802.11g. These were superseded by the High Throughput protocol 802.11n which not

only included improvements to Layer 1, but also new Layer 2 features and the introduction of

MIMO. MIMO technology configures multiple transmitters and receivers at the node to enhance

the SNR, optimise the channel and improve the throughput.

IEEE802.11e introduced significant quality improvements at Layer 2. These improvements

include quality features to manage the traffic when High Throughput protocols are implemented

in the network. They consist of a multi queue architecture and policies for network access for

these queues. These features of IEEE802.11e formed the main framework for the definition of

quality features in future wireless networking protocols.

Quality assurance for future WiFi technologies is defined in IEEE802.11ae at Layer 2, as

an extension of IEEE802.11e. The IEEE802.11ac protocol uses MultiUser-MIMO. MU-MIMO

not only improves on MIMO but also specifies procedures and features to allow multiple devices

contemporaneous access to the channel, thus enhancing the throughput.

This chapter concluded with a discussion on the provision of the main real time services

used for communications: VoIP, audio and video streaming.

In the following chapter the focus shifts to a review of the literature on the provision of

Quality of Service and, in particular, Active Queue Management. A description of suitable

mathematical models of the behaviour of wireless networks is also provided.
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Chapter 3

A Review of Network Quality Provision

Mechanisms

The chapter provides a detailed description of previous research related to the central contribu-

tion of this thesis. The focus is on three macro areas: Quality of Service, congestion control in

wireless networks and Active Queue Management. Most of the work reviewed touches on more

than one of these areas; where this is the case a classification is made according to the main

goals and objectives of the work.

Quality of Service (QoS) [8] is a collection of several network metrics, taken directly at

the physical layer or derived from it, used to measure and improve the quality of the services

provided on a network. In the first part of this chapter QoS levels are defined and classified. Of

key interest for this dissertation is the QoS metric known as Quality of Experience (QoE) [8].

It is a subjective measure of customer satisfaction that gives an indication of the end-user’s

perspective of the quality of the service being provided and the effectiveness of the network’s

operation. It is influenced by customer experience in the use of the service and is of increasing

interest to TELCOs.

Realtime services are some of the most challenging services for wireless networks to handle

because they are very sensitive to packet delay and packet loss. A description of automatic
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methods used to estimate QoE for realtime services is provided. Automatic QoE estimation

methods have been standardised by the International Telecommunication Union (ITU). They do

not depend on user feedback; rather they estimate measurements of QoE using mathematical

algorithms that compare the data streamed by the source with that received at the destination.

This chapter will describe these in more detail and discuss their limitations.

The next topic discussed in this chapter is that of wireless networking. Existing research

related to real-world wireless networks is reviewed and analysed. This forms the background

for an overview of the next generation of wireless networks, called future wireless networks.

The research findings of relevance to this dissertation are those related to the development of

a theoretical model to describe and predict the behaviour of wireless networks. Mathematical

models have been developed for single and multi queue systems, and they have been used to

design dynamic algorithms which optimise channel access.

In order to satisfy QoS guarantees it is not sufficient to simply improve the performance of

the wireless network and enhance existing wireless protocols. It is also necessary to manage

the traffic in single queue or multi queue systems. Active Queue Management (AQM) [9] [70]

provides an efficient set of algorithms for avoiding network congestion. These algorithms can

also be designed to simultaneously guarantee a high QoE in wired networks. This thesis will also

show that they are important tools for guaranteeing a high QoE in infrastructure based wireless

networks.

The most popular and important AQM algorithms are detailed in terms of both their basic

functionality and their efficiency. Other AQM algorithms that adopt techniques of relevance to

the design section of this dissertation are also discussed; in particular, AQM schemes that use

fuzzy logic and fuzzy control systems. The implementation of AQM in wireless networks forms

the starting point for the development of the new AQM algorithms for use in future wireless

networks detailed in this thesis.

The chapter is organised as follows: in the next section a detailed description of QoS is pro-

vided. This includes both QoE and possible QoS improvements for use in wireless networks. In

section 3.2 theoretical models used to capture the behaviour of wireless networks are discussed.
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Finally, AQM is defined and a classification of the most important AQM algorithms is provided.

This section also details some particular AQM algorithms that are of direct relevance to the work

contained in this thesis.

3.1 Quality of Service

Quality of Service [8] is usually defined as a metric that captures how well a service is provided

using a standard set of procedures and methodologies. The measurement of QoS has been

divided into three layers [8]: Intrinsic QoS, Perceived QoS and Assessed QoS; however, the

boundaries between these three layers are neither well defined nor clear-cut. The definitions of

these three layers are provided by the ITU [71] [72] [73] and IETF [74].

Intrinsic QoS (IQoS) [8] is commonly known as just QoS. It is an evaluation of quality at the

network performance level. The appropriate metrics for quality evaluation at the Intrinsic QoS

level are the network parameters. These are useful for determining if a network is performing

correctly and if a service is provided satisfactorily from the point of view of the network param-

eters, but they do not provide a direct measurement of the QoS. If the QoS parameters are good

then the service is likely to be provided with high quality and vice versa [8].

The quality of the service provided can generally be empirically deduced from measure-

ments of IQoS. The network parameters provide little direct information related to the service.

For example, if the number of packets lost is high, then it can be anticipated that the service is

provided with poor quality. On the other hand if the number of packet lost is low, the service

is more likely to be provided with good quality. IQoS does not specify an exact percentage of

packets lost that is to be considered high or low and consequently the quality level for the end

user cannot be easily defined as good, acceptable, bad, etc.

Perceived QoS (PQoS) is a measure of the human perception of the quality of the service

provided [8]. PQoS is inferred from the network parameters and it is often used by TELCOs to

monitor the quality of the service they provide. PQoS is divided into four classes [73] [75], each

of which focuses on an aspect of the QoS from the customer’s or TELCO’s point of view: QoS
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offered and achieved from the provider’s point of view, and QoS required and perceived from

the customer’s point of view. An evaluation of components to estimate the four perceived QoS

classes in future networks is proposed in [75].

The Assessed QoS (AQoS) [8] is a high level measure of customer satisfaction; for example,

when the user decides if they want to continue to use a service or not [8]. Like PQoS, it is

a subjective metric as it is based on the user’s opinion of the service. Quality of Experience

(QoE) [76] is a practical quantification of AQoS, even if QoE quantifies aspects of the PQoS

from the user’s point of view [8]. PQoS and AQoS may initially appear to be similar; however,

they are different as AQoS is not related to the the network parameters but only to customer

satisfaction. QoE is measured at the application level; while PQoS, from the TELCOs point of

view, is inferred from the network’s performance. The metrics used to evaluate QoE depend

only on the human, end user opinion and experience of the network quality.

3.1.1 QoE

TELCOs are interested in determining customer satisfaction in order to improve their business

proposition and revenue streams; allowing them to bill customers based on the QoE received

and also as a means of ranking the service they provide. Therefore TELCOs have been consid-

ering measurements of PQoS and QoE as key enablers in the development and planning of new

services.

As stated above, PQoS measures the quality perceived by end-users, while QoE measures

customer satisfaction. QoE captures end user opinion using a scale called the Mean Opinion

Score (MOS) [76]. MOS is a quantisation of the customer satisfaction into five distinct levels

[77], these are summarised in table 3.1 [77] [8].

It would obviously be very helpful to determine a direct relationship between the physical

network parameters and the end-user opinion. The most significant work in this direction [78]

established an exponential interdependency between QoE and QoS, known as IQX. This links

together the number of packets dropped and the QoE.

IQX and the QoE estimation method proposed in this thesis differ in three key ways: first of
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QoE MOS Impairment

Bad 1 Very annoying

Poor 2 Annoying

Fair 3 Slightly annoying

Good 4 Perceptible but not annoying

Excellent 5 Imperceptible

Table 3.1: Summary of MOS levels [77] [8]

all the method proposed in this work estimates the QoE instantaneously at the node. Secondly,

it is inferred mathematically from the network performance parameters. Thirdly, it can be used

for all real time services, regardless of the protocol used [14].

The central idea behind IQX is that QoE degrades exponentially with the number of packets

dropped. IQX is summarised by the exponential formula [78] [79]:

∂QoE

∂QoS
∼= −(QoE − γ) (3.1)

The solution of equation 3.1 is [78] [79]:

QoE = α · e−β·QoS + γ (3.2)

Where α, β and γ are proportionality factors introduced in the solution of the differential equa-

tion. IQX has been used for the voice codecs iLBC and G.711 [78] and captures an exponential

relationship between the number of dropped packets and the QoE.

In [79] the relationship between QoE and QoS was analysed for web services. Two possible

relationships between the metrics are explored: a logarithmic and an exponential one. The

logarithmic nature of the relationship between the QoS and QoE metrics was also noted in [80],

where the Weber-Fechner Law (WFL) was used as the basis for determining the relationship

between QoE and QoS.

When looking at QoE in a wireless network, the main focus of research has been on its

measurement and improvement [81]. This dissertation concentrates on the measurement of QoE
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at the Access Point (AP) as it is considered a critical point for traffic management. An AP is

often a bottleneck for traffic arriving from the wired network. It is the interface between the

wired network, where packet loss is negligible, and the wireless network, where packet loss can

have a significant impact on service provisioning [12].

There are two types of QoE measurement, those requiring human feedback and those using

automatic computational algorithms. Human feedback can be gathered using a scored opinion

after a service is provided; for example, by requesting a quality score of a phone call or video

streaming using the MOS [79]. The information collected then needs to be statistically analysed

to summarise the user feedback received.

The computational algorithms proposed by the ITU for the estimation of QoE can be classi-

fied for each type of realtime service that they are used for. The most popular realtime services

are phone calls, audio streaming and video streaming. Realtime services were discussed in more

detail in section 2.4.

Another way to classify the computational algorithms is as Full Reference (FR), No Ref-

erence (NR) and Reduced Reference (RR) algorithms [82] [83]. FR algorithms compare the

stream at the source with the stream at the destination; RR [83] algorithms send some parame-

ters to predict the QoE without the need for access to the orginal stream, NR algorithms use only

the stream at the destination to estimate the MOS [79].

The QoE of a phone call over the internet may be automatically estimated using the

Perceptual Evaluation of Speech Quality (PESQ) [84] algorithm. PESQ is designed to auto-

matically estimate the QoE of speech streaming without the need to ascertain the end-user’s

opinion. The algorithm simulates the subjective perception of the end-user through objective

mathematical approximations. It is a comparative or FR method that requires full information

on the speech at the source and at the destination. The source and the destination are compared

using the following main stages [85] [86]: alignment of the power levels, filtering and alignment

in time, removal of inaudible parts, disturbance calculations and perception estimation through

a cognitive model.

Virtual Speech Quality Objective Listener (ViSQOL) [87] is another method that can be used
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to evaluate speech quality. It is based on the NSIM (Neurogram Similarity Index Measure) [88],

a metric to predict speech intelligibility [88].

In 2011, PESQ was replaced by the Perceptual Objective Listening Quality Assessment

(POLQA) [89] score. POLQA is a more precise estimate of the MOS as it uses a larger band

of the audio signal than PESQ. It can be used to estimate the MOS for high quality audio. Like

PESQ, POLQA [90] is a comparative method or FR algorithm. It operates in the frequency

domain and it captures distortions between the original source audio transmitted and the audio

received at the destination that are not perceived by the PESQ algorithm. POLQA was designed

to enhance the performance of PESQ [90] and to obtain a more precise MOS estimation. The

increased sampling frequencies introduced in POLQA are comparable with CD audio quality.

A NR method to evaluate speech quality is proposed in ITU-T recommendation P.563: a

"Single-ended method for objective speech quality assessment in narrow-band telephony ap-

plications" [91]. This does not use the source data as a reference to estimate the MOS. The

disadvantage of NR methods is that the distortions have to be known in advance and not inferred

through comparisons with the source signal [92]. For this reason NR methods are not considered

in this thesis. As this dissertation uses speech sampled at low frequencies, methods like POLQA

are not utilised in this work. However, high quality audio at high frequency sampling will be

considered in this thesis.

Comparative methods are more precise than non comparative ones, but they have two main

limitations. The first limitation is the need to have access to the speech source; this means the

evaluation method cannot be used to obtain an instantaneous estimate of the MOS. The second

limitation is the algorithm’s complexity. The algorithm requires not only the time needed to

capture a stream of data but also the time needed to carry out the comparison with the source

data.

When an evaluation of high resolution sound quality is required, an automatic MOS score

estimate can be obtained using the Perceptual Evaluation of Audio Quality (PEAQ) [93] algo-

rithm. Like PESQ, PEAQ is a comparative algorithm and it compares the audio streaming source

data with that received at the destination. It works on audio data that is sampled at a frequency
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above the 8KHz used for phone calls: the conformance tests are conducted with samples at 48

kHz, 16-bit PCM [93]. As the audio quality is higher than that used with PESQ, PEAQ uses a

more sophisticated algorithm and is sensitive to small variations in the streaming samples. The

audio analysis results are classified using Objective Difference Grade (ODG) [93] [94] values.

ODG scores are in the range from 0 to −4 where 0 corresponds to a MOS score of 5 and −4

corresponds to a MOS score of 1.

In the case of video streaming, the MOS score estimate can be obtained using the Perceptual

Evaluation of Video Quality (PEVQ) [95]. PEVQ is a comparative algorithm for video stream-

ing as it needs access to the source video data stream for comparison with that received at the

destination. QoE of video streams may also be measured using the Peak Signal-to-Noise Ra-

tio (PSNR) [96]. This standard is based on image comparison and is assumed to have a direct

relationship with the subjective end-user opinion. PSNR compares the maximum power of the

signal to the noise. A nonlinear relationship between PSNR and MOS was proposed in [97].

PSNR is known to have some limitations as it does not always provide an accurate estimate of

the MOS; however, it is easy to calculate when compared to PEVQ and PSNR and is one of

the most common QoE metrics for video streams [97]. Objective quality metrics are detailed

in [98].

PSNR is not the only alternative mechanism to PEVQ for estimating the MOS metric for

video streaming. There is also the Structural Similarity (SSIM) metric [99] and the Media

Delivery Index (MDI) [100]. The first of these exploits similarities between images, while the

second focuses on measures which affect the quality of video streaming. Compared to PSNR

the SSIM metric is mathematically more complex [101]; however, it does show a fairly strong

correlation with subjective methods where PSNR has a poor correlation [101].

While [96] details the key limitations of PSNR, it also acknowledges that PSNR is a valid

metric for comparison of video with the same content at the same rate and that it is easy to

implement. Its measurement precision is sufficiently accurate for the evaluation work required

in this thesis.

Another way to measure the assessed quality of a video stream is using the Video Quality
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Metric (VQM) [101] [102]. VQM is a comparative method with the following steps: calibration,

estimation of features, comparison of features with the original video, calculation of the VQM

measure. The VQM method is mathematically very complex [101], but it has been shown to

correlate well with subjective metrics [101].

The Moving Pictures Quality Metric (MPQM) [101] [103] is a comparative measure that

considers two aspects of human perception. The first one is sensitivity of the human eye to

the perception of signals, the second one is the human eye’s sensitivity to the combination of

multiple signals. MPQM is not always reliable when compared with other subjective methods

[101]. MPQM is a mathematically complex method [101] and it has a varying [101] correlation

with subjective methods.

Algorithms like PESQ, PEAQ [93] and PEVQ [95] aim to reproduce human perception, so

their goal is to provide a QoE estimate using the MOS scale. In addition to their need for access

to the original source data, they are computationally intense and therefore they are onerous for a

network node to calculate and cannot be used to provide an instantaneous QoE estimate.

IQoS parameter thresholds that affect the QoE evaluation of voice, audio, video and text

of the end-user are summarised in the ITU-T G.1010 [104] categories. A specific description

of methodologies to evaluate the quality of television pictures from the end-user point of view

are given in ITU-R BT.500 [105]. ITU-T P.911 [106], and its correction ITU-T P.911C1 [107],

describes methods to evaluate the quality of unidirectional multimedia, audio and video streams.

Finally, ITU-T P.913 [108] proposes methods to subjectively evaluate internet television quality.

This recommendation can be used to compare multiple audiovisual streaming devices and the

performance of an audiovisual streaming device in multiple environments.

The discussion above shows a key limitation of existing QoE estimation methods: there is no

mechanism for instantaneous QoE estimation. If such a metric existed it would not only provide

feedback for improved network management, but would also permit a network node to manage

traffic and provide QoS guarantees.
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3.1.2 QoS in Wireless Networks

In this section the discussion shifts to the provision of QoS in wireless networks and the focus

moves from the challenge of instantaneous QoE estimation to the estimation of QoE in a wireless

environment.

Three approaches to improve QoS are considered: prioritisation, combining features across

multiple layers and error recovery. The provision of QoS guarantees in a wireless network has

mainly focused on backhaul and MAC layer improvements. Some approaches look to guarantee,

and improve, the QoS by prioritising traffic. In [109] the in-frame packets for video streaming

are prioritised. The scheme is proposed in a EDCA environment and it reorganises the video

transmission over the various Access Categories (ACs). The scheme improves the PSNR and,

consequently, the QoE.

Other approaches look to combine features across various network layers. In [110] a 3G ar-

chitecture is developed to provide services with better QoS network parameters. This approach

is based on the allocation of resources and QoS functionalities at different network layers. Scal-

able Streaming Video Protocol (SSVP), as proposed in [111], operates over UDP and is designed

to provide video streaming. It focuses on optimising network QoS parameters.

Alternate approaches have focused on network error recovery. [112] reviews Forward Error

Correction (FEC) in terms of a new protocol and architecture to use for providing improved

multimedia services. It also describes how the perceived QoS for video services can be improved

when packets are lost in bursts. Bursty packet loss is a key consideration for the model developed

later in this thesis.

The use of prioritisation and the combination of features across multiple layers are ap-

proaches that are adopted in this thesis. They are discussed in greater depth in the following

section. An exhaustive and complete description of link sharing for various classes of traffic

and QoS optimisation for real time services is provided in [37]. It also considers prioritisation

of traffic and hierarchical link sharing. This may be considered as a practical application of

CoS [37] provision. This has been defined in a number of ways [8], and plays an important role
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Fig. 3.1: Wireless infrastructure architecture

in wireless network QoS provision. CoS will be discussed in more detail below.

In this section QoS in both wired and wireless networks has been considered. In the follow-

ing section the focus shifts to wireless networks and their associated protocols.

3.2 Wireless Network Architectures and Protocols

There are many wireless communication architectures and protocols; however, this research

focuses on infrastructure wireless networks that utilise the ever-evolving IEEE802.11 [5] suite

of protocols. The contribution of this work is not restricted to this family of protocols and may be

easily extended to other network environments; for example, cellular networks and WiMax [5].

Future wireless networks were discussed in greater detail in chapter 2 as they are an essential

target for the work contained in this thesis.

There are two main wireless architectures: ad hoc wireless network and infrastructure wire-

less networks [5]. An infrastructure wireless network is shown in figure 3.1. Two aspects of the
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infrastructure network architecture affect the QoS [12]. The first of these is the wireless channel.

The channel is the only link between the Access Point (AP) and all the mobile stations and has to

be shared between them. The second issue is the bottleneck at the Access Point. It is anticipated

that most of the traffic crossing the AP is in the downlink direction; that is from the AP to the

mobile stations. Downlink traffic arrives from the wired network where the link typically has a

much greater capacity than the wireless link, and can also be used bidirectionally.

Both these challenges are considered in [12] and [11] and are explored in greater depth in

section 3.3. In the following, the channel sharing problem is analysed in more detail.

Ad hoc wireless networks, also known as peer-to-peer networks, [5] do not have a defined

AP; therefore, the nodes can communicate with each other directly if they are in communication

range or indirectly through intermediate nodes. There is no fixed AP and the routing protocol

dynamically changes the path packets take depending on various aspects of the network and the

resources available. Some ad hoc wireless networks have a coordinator node; these are typically

not access networks, rather they are used as the architecture for Personal Area Network (PAN)

or sensor networks and employ protocols other than the IEEE802.11 suite [5] or they work in

conjunction with an infrastructure network to form a wireless mesh network.

Even when technologies like MIMO or MU-MIMO, see sections 2.1.4.1 and 2.3.1, are used

in a wireless infrastructure network; the wireless channel will be shared in at least one direction,

such as in MU-MIMO. In these cases the available channel throughput is shared between the

mobile stations; moreover, the channel capacity is drastically reduced due to the use of MAC

and physical layer headers and preambles.

In [27] the Theoretical Maximum Throughput (TMT) is calculated for the a, b and g variants

of the IEEE802.11 protocol. The TMT is the maximum throughput available, in theory, on a

wireless network with averaged backoff time when there are no errors or collisions. TMT is

defined as the ratio between the MAC layer Service Data Units (MSDUs) and the time needed

to transmit them, thus TMT depends mainly on packet size [27]:

TMT =
Size(MSDU)

Delay(MSDU)
(3.3)
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It should be noted that it is not correct to consider the nominal throughput available in a

wireless network as the effective throughput available at the transport layer. This is because

headers and delays introduced by lower layers substantially increase the time needed to send a

packet over the network.

The TMT is an overestimation of the effective throughput achievable on a wireless network

[12], mainly due to the TCP protocol [49]: for example, TCP acknowledgements do not affect

the data transmitted at the transport layer, rather they reduce the time available to transmit TCP

data packets. The throughput is also reduced by unavoidable collisions when the number of

mobile stations accessing the network is large and by the necessary transmission of control and

routing packets, even if the number of these packets is small [27].

Another important consideration is the variety of IEEE802.11 protocols accessing the net-

work simultaneously. It is not unusual to find various IEEE802.11 protocols with different

relative speeds accessing the network at the same time. Thus making it impossible to accurately

estimate the TMT. The coexistence of mobile stations with different bit-rates is addressed by

changing the initial contention window [113].

Improvements in wireless link utilisation is another issue to consider. Improvements to

the link utilisation in a network implementing the IEEE802.11e [5] protocol have been pro-

posed [114]. These employ a dynamic Contention Window (CW) adaptive technique to increase

throughput. IEEE802.11e, see section 2.2, is an existing enhancement of the IEEE802.11 proto-

col suite that uses a multi queue system to provide acceptable QoS guarantees. It achieves this

by managing the CW using the information available on the wireless channel status.

An important method to provide and guarantee high levels of QoS is Differentiated Services

(DiffServ) [115] [116]. DiffServ defines router behaviour for different classes of network traffic.

The DiffServ Request for Comments (RFC) considers traffic management [117], the definition

of different CoS [118] and the provision of QoS improvements [119].

CoS [37] is method to combine together and manage similar types of traffic with differing

priorities; for example, audio, video, e-mail and web traffic. The methods used to combine

different traffic types, depend on the nature of the traffic and the network technologies used [8].
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Traffic that has ben classified according to CoS is then managed by services like DiffServ [115]

[116].

DiffServ [115] [116] is designed to improve and guarantee QoS. It works by splitting the

traffic into classes and then managing each class according to a predefined set of rules. DiffServ

implements the well known Per Hop Behavior (PHB) configuration: a set of rules which defines

the priority and traffic policies to apply to each traffic class crossing the node. Traffic classes at

the node are recommended and specified so that DiffServ can be used across multiple routers.

The DiffServ [115] [116] definition itself allows for the use of 6 bits in the IP header to configure

a traffic class. A class of traffic can be defined based on traffic type or on physical IP fields; for

example, by source or destination addresses. While DiffServ has the advantage of being able

to manage different traffic types, it is not designed to manage the classes of service themselves

when the traffic mix changes. This is a big disadvantage of DiffServ.

Another disadvantage is related to link capacity: low link capacity typically gives rise to

an increase in packet drops and hence to a reduction in QoS. This has a significant impact in

wireless networks, where the AP can often be a network bottleneck.

Packet loss in the wireless environment [120] will now be considered in more detail. As

wireless channels can be affected by fading, packets can be lost during transmission between the

AP and the mobile stations and vice versa.

Two situations can occur after a packet is transmitted [120]: the packet is successfully re-

ceived by the destination either without error or with errors corrected, or the packet is not suc-

cessfully received by the destination either because it has been lost or because it contains too

many errors. The latter situation can create problems for traffic management systems and the

behaviour of TCP.

In the next section the focus turns to mathematical models used to describe the behaviour of

wireless networks.
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3.2.1 Mathematical Models of Wireless Networks

One of the most interesting aspects of research on wireless networks is the use of mathematical

models of channel access and sharing amongst the nodes. The mathematical description of

traffic behaviour plays a very important role in the management of traffic crossing the AP and

consequently in the provision of guaranteed QoS levels. In this section mathematical models

that describe the traffic mix in a wireless network are explored in more detail.

The DCF method discussed in 2.1.2 is used to coordinate the channel access for transmis-

sion between the mobile stations in a wireless network. The Bianchi model [123] is an analytical

model used to calculate the throughput available in a wireless network when the Distributed Co-

ordination Function (DCF) and Carrier Sense Multiple Access with Collision Avoidance (CS-

MA/CA) are used. The model is built using a Markov chain to estimate the backoff window size

and, consequently, the probability of channel access and collisions [123].

A mathematical approach to model EDCA is presented in [124]. The probabilistic model

proposed achieves results that are comparable with those proposed in this thesis. The model is

focused on the calculation of the probability that a station wins access to the channel. However,

the mathematical complexity of the model limits it applicability.

An analytical model to evaluate the throughput of an EDCA environment in saturation condi-

tions is proposed in [125]. It uses mean value analysis [125], a technique that is computationally

less complex than traditional Markov chain methods.

A Markov chain model of EDCA is proposed in [126]. This extends the backoff estimation

methodology through the inclusion of appropriate AIFS and Contention Windows (CW). The

model is then used to estimate throughput, delay and packet loss. Unfortunately, the framework

only captures saturation conditions and, moreover, the analysis includes the use of a Markov

chain, therefore is not immediate to be used at the node.

The EDCA method, discussed in 2.1.2, is an evolution of DCF where the mobile stations

and the AP implement multi queue systems. The coexistence of mobile stations that use both

DCF and EDCA methods in the same wireless network is considered in [127]. A controller
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to manage the Contention Windows (CW) of the stations that implement the DCF method to

access the channel is considered. The technique is called Dynamic ACK Skipping (DACKS)

and a Proportional Controller is applied to avoid growth of the CW due to missing control packet

acknowledgements at the MAC layer.

An alternate extension to capture wireless network behaviour where the EDCA method is

used to access the channel is proposed in [128]. The analysis focuses on estimating the through-

put and delay but adopts a different, more complex approach than in [126]. Like [126], the focus

is on EDCA in saturation, and to fully incorporate the AIFS the model is complex and not easy

to calculate instantaneously.

Another solution to describe, and then manage, traffic in a wireless environment focuses

on the CW. In [129] the General Contention window Adaptation (GCA) algorithm is proposed.

This algorithm manages the CW size and it is shown to be efficient, to optimise throughput and

to guarantee fairness. The GCA algorithm is complex when compared with that proposed in this

thesis and, in addition, the algorithm proposed in this thesis is part of larger scheme to manage

wireless network traffic.

Models of wireless sensor networks that use a probabilistic approach involving combina-

torics rather than Markov chains are of particular relevance to this thesis. In [130] the probability

of a collision in an ad hoc wireless environment where the DCF method is used to access the

channel is estimated using a binomial like formula. In [131] the binomial theorem and proba-

bilistic methods are used in the design of a protocol for saving power at a node in a wireless ad

hoc network.

A key advantage of this methodology is that the calculations involved are significantly less

complex than those required for a Markov chain model. This lack of complexity offers a dis-

tinct advantage as it is necessary to recalculate probabilities each time the protocol and network

parameters change. The computations required can be easily carried out at the node. The main

disadvantage of this method is in a reduction in the precision of the results obtained relative to

those achieved using a Markov model.

The model proposed in this dissertation is entirely based on combinatorics and address the
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need for a precise, simple model to describe the traffic and channel access within a future wire-

less network. It differs from the previous approach because it is designed for a general wireless

network where the EDCA method is used to access the channel with different priorities.

3.2.1.1 Other Mathematical Concepts

Before this section concludes it is necessary to discuss three other mathematical concepts of

relevance to this dissertation. The first, the German Tank Problem [132] [90], is an empirical

method that can be used for calculating the average CW size. The second concept is the Bernoulli

distribution [133]. This can be used to determine probabilities for a two state system. The final

concept is that of combinatorics [134]. This will be used for determining probabilities for packet

loss in chapter 4.

The German Tank Problem was designed during WWII and was used to estimate the number

of tanks in existence by sampling their production serial numbers [132] [90]. These values were

then used to estimate the maximum of a uniform distribution. Periodic sampling of the CW

allows for its size to be estimated using the German Tank problem formula [132]:

CWmax = (CWMaxSampled − 1) +
CWMaxSampled

NumOfSamples
(3.4)

Where:

CWmax is the maximum contention window size;

CWMaxSampled is the maximum CW in the samples;

NumOfSamples is the number of samples taken.

In order to apply this model, duplicated CW values in the range [0, 2 × CWmin] have to be

excluded, as do large CW values that exceed 2×CWmin. This method works best over a large

sampling time interval and with a large value of CWmin.

The second mathematical concept to discuss is the Bernoulli distribution [133] [134]. This is

a binomial distribution with two possible states, 0 and 1. If the probability of success, i.e. being

in state 1, is p; then the probability of being unsuccessful, i.e. being in state 0, is q = 1 − p.

This is useful for determining probabilities for a two state system when the probability of being

in one of the two possible states is known.
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Mathematical Symbol Formula

Permutation Pn,r
n!

(n−r)!

Permutation with repetition P ′n,r nr

Combinations Cn,r
(
n
r

)
= n!

r!(n−r)!

Table 3.2: Summary of the Notation used for Permutations and Combinations

The final mathematical topic to consider is combinatorics. Permutations and combinations

[134] can be extremely useful for determining probabilities. Before giving their more formal

mathematical definitions, it may be helpful to look at a simple example involving the digits 1,

2 and 3 and the number of possible arrangements of these digits. If it is assumed that the digits

cannot be repeated then these can be arranged as 123, 132, 213, 231, 312 and 321. If these

are read as decimal numbers then the order in which the digits occur matters, as 123 6= 132.

This is a permutation without repetition of the digits 1, 2 and 3. It can be seen that there are 6

such arrangements. This concept can be further extended to that of a permutation with repetition

where the repetition of digits is allowed. In this case the possible permutations of the digits 1,2

and 3 are 111, 112, 121, 122, etc. In contrast to a permutation, a combination is an arrangement

of items where order does not matter i.e. the combination 123 is viewed as being the same as

132, 213, 231, 312 and 321.

More formally, a permutation of n objects taken r at a time without repetition is n!
(n−r)! . This

is indicated by the symbol Pn,r. A permutation with repetition of n objects taken r at a time

is nr and is indicated by the symbol P ′n,r. A combination of r objects taken from a set of n

objects is
(
n
r

)
= n!

r!(n−r)! and it is indicated by Cn,r [134]. These are summarised in table 5.2

Having considered quality of service and wireless networks this chapter now turns to a dis-

cussion of Active Queue Management schemes.
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3.3 Active Queue Management

Active Queue Management (AQM) schemes form a category of algorithms designed to act on a

router queue to reduce, and ideally eliminate, queue overflows [9] [70]. The main goal of AQM

algorithms is to drop packets before the queue overflows. Without AQM the router uses the

drop-tail mechanism where arriving packets are dropped when the queue is already full.

The main action of AQM algorithms is to drop packets before the queue is full with the

intent of inducing a reduction in the speed of traffic being sent by a source [9] [70]. Another

way to achieve this goal is to set the Explicit Congestion Notification (ECN) [122] bit in the

packet header. Both solutions work well with the TCP protocol but they do not have any direct

impact on the sending rate of sources utilising the UDP protocol. They work indirectly as the

effect is achieved through feedback from the application layer at the destination node to the data

source.

AQM algorithms not only reduce the queue length, they also reduce the probability of net-

work congestion. Many AQM algorithms have been designed to improve some aspects of QoS

throughout packet marking or dropping processes. These can reduce the delay experienced by

packets in the queue, and also optimise throughput and network performance by reducing the

traffic speed so that it matches the network’s traffic capacity.

In addition to reducing the queue size and avoiding network congestion, AQM algorithms are

usually designed with a particular aim. The aim can be, for example, optimising traffic in order

to guarantee fairness between flows or reducing the packet delay at the queue. The particular

aim of an algorithm is often used as a method for classifying AQM algorithms.

The main AQM algorithms can be divided into categories using a variety of classification

schemes; for example, by objective or by approach [135]. Some AQM schemes try to reduce

packet delays at the queue, e.g. REM [70] and AVQ [136]. Other algorithms, like BLUE [137],

maximise link utilisation. Another class of algorithms aims to restrict the queue length so that it

is bounded between minimum and maximum threshold values, e.g. RED [9] and its derivatives

[138] [139] [140] [141] [142] [143] [144] [145] [146].
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A detailed AQM classification procedure is presented in [135] and is based on the algo-

rithm’s design philosophy. Some AQM algorithms are designed heuristically, e.g. RED [9],

AVQ [136] and BLUE [137], while others are designed using more formal mathematical meth-

ods such as Control Theory [147] [148], e.g. Proportional Integral control (PI) [149] or Pre-

dictive Functional Controller (PFC) [150]. Hybrid AQM algorithms, like PD-RED [138] and

FIPD [151], act so as to not only manage the queue size but also to optimise the throughput.

Other AQM algorithms try to optimise the calculation of the dropping probability by utilising

two competing metrics [135].

In the following section the AQM algorithms that are of most relevance to this disserta-

tion are detailed. All these AQM algorithms are generally designed for, and applied on wired

networks. AQM applications in a wireless environment will be considered later in this section.

3.3.1 Random Early Detection (RED) and its Derivatives

RED [9] is probably the most popular and well-known AQM algorithm. It is capable of manag-

ing a large range of traffic mixtures and forms the foundation for the development of many other

AQM schemes.

RED divides the queue into three sections using two distinct thresholds: the minimum and

the maximum threshold. If the average queue size is less than the minimum threshold, the

arriving packet is put into the queue. If the average queue size is between the minimum and

maximum thresholds, the packet may, or may not, be marked.

This is determined using two probabilities pa and pb. pb is given by [9] :

pb = maxp ×
avg −minth
maxth −minth

(3.5)

and varies between 0 and maxp. Where:

minth and maxth are the minimum and the maximum threshold;

avg is the average queue length calculated using an Exponential Weighted Moving Average

(EWMA) formula [9];

maxp is the max probability used to mark a packet;
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Fig. 3.2: RED probability distribution [121]

pa is given by [9] :

pa =
pb

1− count× pb
(3.6)

where count is the previous number of unmarked packets.

For each arriving packet pa is compared to a randomly generated probability. If the random

probability exceeds pa the packet is dropped or marked, otherwise the packet is unmarked and

placed in the queue.

If the average queue size exceeds the maximum threshold then all arriving packets are

dropped or marked. Figure 3.2 shows the probability distribution for the RED algorithm. This

can be modified by implementing the gentle1 [152] feature. This replaces the step in probabil-

ity value at thmax with a growing, gentle probability between maxth and 2 × maxth or the

maximum queue size, which ever is smaller.
1http://www.icir.org/floyd/red/gentle.html
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The RED algorithm is analysed in detail in [153], where its advantages for use in both

wired and wireless scenarios are evaluated. [153] also highlights some difficulties that arise

when applying the RED algorithm in wireless networks.

WRED [145] [146] is a version of the RED algorithm implemented in some commercial

routers. It was designed to improve QoS and is mainly applied in multi queue systems [37].

WRED changes the RED algorithm parameters for different classes of traffic. In multi queue

systems each queue manages a particular category of traffic with a specified priority and the

RED thresholds can be adjusted for each queue in the system. It is of note that in some imple-

mentations WRED is only applied to TCP traffic. This is an advantage in some situations; for

example, when important UDP traffic is passing through the queue. In other situations it can

result in an excessive reduction in TCP traffic throughput.

An alternative to WRED is the application of multiple RED algorithms on the same queue.

This is the case with the RIO algorithm [154]. RIO is a double application of RED to two

different classes of tagged traffic: input and output. These refer to the input and output traffic at

the router. The router checks if the arriving packet is marked as input or output and consequently

it applies the RED algorithm with the appropriate parameters. This means that, in practice, it

uses two RED algorithms on the same queue and both algorithms have the same average queue

size.

Many AQM algorithms have been derived from the RED algorithm [138] [139] [140] [141]

[142] [143] [144]. One RED-derived algorithm of particular interest is RED-PD [138] .

RED-PD [138] aims to improve the fairness between the flows at the queue. It identifies

the flow with high throughput using the history of the packet dropped by the RED algorithm.

Preferential Dropping (PD) is then applied to these higher throughput flows. RED-PD uses

a multiple list identification mechanism to identify the rate of each flow. Flows which have

an arrival rate that exceeds the target throughput have an increased dropping probability. Flows

which have an arrival rate below the target throughput have their dropping probability decreased.

Adaptive RED (ARED) [139] seeks to improve two aspects of the original RED algorithm:

the first is the average queue length which is related to the incoming traffic and to the algorithm
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parameters; the second is the number of packets dropped. RED usually drops too many packets

and so leads to an excessive reduction in throughput. ARED dynamically modifies the maximum

probability in order to stabilise the average queue length between the minimum and maximum

RED thresholds. The Additive Increase Multiplicative Decrease (AIMD) algorithm modulates

the maximum probability following changes in the traffic.

Another RED improvement is Hybrid RED (HRED) [140]. It incorporates key features of

other AQM algorithms into RED. HRED is designed to provide queue length stability and it

can be configured to meet various QoS parameters specification. HRED uses an adjustment

algorithm to identify and follow the traffic changes.

LRU-RED [144] is a combination of the RED algorithm with a Least Recently Used (LRU)

cache. The LRU cache stores information about the flows passing through the queue by

analysing packets. The cache is used to identify high throughput flows. Different RED con-

figurations are then used to substantially reduce the rate of the high throughput flows relative to

other flows passing through the queue.

High throughput flows are a feature of another AQM algorithm, CHOKe [141]. This was

designed to establish fairness between flows. Each packet arriving at the queue is compared

with an existing randomly selected packet from the queue. If the packets are from the same

flow it is more probable that the flow has an high throughput, and so both packets are dropped.

On the other hand, if the packets are from different flows the RED algorithm is applied to the

arriving packet. CHOKe’s main goal is to equalise the throughput across all flows. From a

statistical perspective, when the traffic sources are unresponsive flows then CHOKe responds

more quickly to bursty traffic than LRU-RED [141] [10].

Two more features are introduced in Self Adaptive CHOKe (SAC) [142]. The first of these

manages TCP in a different way to UDP traffic, the second is a self-tuning mechanism for

the algorithm’s parameters. These are achieved through modifications of the original CHOKe

algorithm. UDP traffic is always managed using CHOKe, whereas TCP traffic is only managed

if the average queue length exceeds minth. Two probabilities are associated with UDP traffic in

order to improve the management of unresponsive flows [10]; these are the probability that the
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traffic arriving at the queue is UDP, and the probability that the packet selected is from the same

UDP flow as the last packet to arrive at the queue. CHOKe performance can also be improved by

dividing the queue into regions, where each flow is assigned to a specific region. The algorithm

then drops the first packet from the tail of the region that corresponds to the flow of a randomly

selected packet.

Channel fairness is a feature of Temporal Fair RED (TFRED) [143]. It aims to provide a fair

share of time on the wireless link between the flows by monitoring their throughput. This AQM

algorithm also provides a means of congestion avoidance using the traditional RED mechanism.

3.3.2 Random Exponential Marking (REM)

The Random Exponential Marking (REM) [70] algorithm is one of the most popular AQM

schemes. REM’s main goals are to limit the queue length to a minimum value and to guarantee

an acceptable balance between the rate of traffic joining the queue and the link capacity. REM

uses a pricing mechanism to calculate the dropping or marking probability [70]:

pl(t+ 1) = [pl(t) + γ(αl(bl(t)− b∗l ) + xl(t)− cl(t))]+ (3.7)

Where:

pl(t) is the price;

γ and αl are two small, positive constants;

bl(t) is is the actual queue size;

b∗l is the desired queue size;

xl(t) is input rate;

cl(t) is link or channel capacity;

[z]+ is the max(z, 0).

The price is calculated using the queue input rate and link capacity. The price increases when

the input rate increases relative to the link capacity; similarly the price is reduced when the input

rate is less than the link capacity. The price is periodically updated and the dropping or marking
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probability is then calculated using [70]:

p(t) = 1− φ−pl(t) (3.8)

Where:

p(t) is the marking or dropping probability;

φ is a constant greater than 1.

Through this mechanism REM achieves shorter queue lengths with a high link utilisation.

3.3.3 Adaptive Virtual Queue (AVQ)

Adaptive Virtual Queue (AVQ) [136] marks or drops arriving packets based on a comparison

of the lengths of two queues that the system maintains: the first one is the real queue, C, and

the other is an ad hoc virtual queue, C̃. The virtual queue length is continuously updated to

guarantee the desired link or channel utilisation and its capacity is calculated using the formula

[136]:

C̃ = α(γC − λ) (3.9)

Where:

α is a smoothing parameter [136];

γ is the desired link or channel utilisation;

λ is the traffic rate of the link or the channel.

It is implicit that the virtual queue size is less than, or at most equal to, the real queue length.

The AVQ algorithm has been shown to maintain a stable queue length together with the desired

link utilisation.

3.3.4 BLUE

Unlike the RED [9] algorithm, which calculates the dropping or marking probability based on

the queue length, the BLUE [137] algorithm calculates this probability by considering both the

packets dropped at the queue and the link utilisation.
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BLUE [137] marks packets that cause the queue length to exceed a queue threshold L with

a probability pm. Time intervals of length freeze_time are used. Probability pm is updated

every freeze_time and if the packet is dropped then pm is increased by a quantity δ1. On

the other hand, if after a freeze_time interval the link is idle, the probability pm is decreased

by a quantity δ2. BLUE outperforms RED for some traffic configurations, but only when the

parameters L, freeze_time, δ1 and δ2 are adjusted to suit the traffic characteristics. The values

of δ1 and δ2 are chosen together with the freeze_time to set the probability pm to a value

between 0 and 1 according to variations in the traffic.

One refinement of BLUE is the Stochastic Fair BLUE (SFB) algorithm [137] [155]. SFB

uses a Bloom Filter [137] and a matrix ofN bins and L levels to identify unresponsive flows [10]

and to limit their throughput. The probability pm is increased or decreased depending on the flow

information contained in the associated bin.

The use of the names RED and BLUE caused others to name their AQM schemes after

colours; two such algorithms are YELLOW [156] and GREEN [157]. YELLOW [156] mon-

itors the link and its associated queue. A key feature of this algorithm is that it manages the

dropping probability based on the observed link load. The GREEN [157] algorithm works in

the opposite way from YELLOW. It checks the rate that packets arrive at the queue and it then

increases or decreases the dropping, or marking, probability by comparing the arrival rate with

the link capacity. If the arrival rate exceeds the link capacity then the dropping, or marking,

probability is incremented; while if the rate is below the link capacity then the dropping, or

marking, probability is decremented.

3.3.5 AQM using Control Theory

In this section AQM algorithms designed using control theory [148] are considered. The al-

gorithms follow a similar design philosophy to RED in that they have queue thresholds and

associated probabilities of dropping, or marking, packets. These algorithms use control theory

to determine how this probability should be calculated. The behaviour of TCP traffic can be

described through the evolution of its Congestion Window [147] [121]. This is captured in the
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following differential equations [147] [121]:

˙W (t) =
1

R(t)
− W (t)W (t−R(t))

2R(t−R(t))
p(t−R(t)) (3.10)

˙Q(t) =
W (t)

R(t)
N(t)− C (3.11)

R(t) = Tp +
Q(t)

C(t)
(3.12)

Where:

W (t) is the TCP window size;

N(t) is the number of TCP flows;

R(t) is the Round Trip Time (RTT);

Tp is the propagation delay;

Q(t) is the queue length;

C(t) is the link capacity;

p(t) is the packet drop probability [121].

The RTT is the time needed for a data packet to go from the source to the destination and for the

related acknowledgement packet to go from the destination back to the source [49] [121].

Equation 3.10 describes the TCP Congestion Window evolution: it increases by one unit

for each round trip time and is halved when a packet is dropped. p(t) is the dropping proba-

bility generated at the queue by the AQM algorithm. Equation 3.11 describes how the queue

length evolves. The queue length is calculated as the difference between the number of arriving

packets and the channel capacity. Equation 3.12 calculates the Round Trip Time; that is, the

time needed for a TCP packet to go from the source to the destination and for the related TCP

acknowledgement to be sent from the destination back to the source.

In the language of control theory, the AQM algorithm is the feedback controller in figure

3.3. This figure is a general description of a closed loop system. It includes the desired dropping

probability, p0, and the desired queue length, q0. It also includes the unresponsive flows [10],

u, which are added to the long lived TCP flows, θ. In [10] unresponsive flows are added to the

controller loop, these include: short lived TCP flows, UDP flows and intermittent UDP flows.
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Fig. 3.3: Closed loop AQM controller [10] [149]

AQM algorithms can be designed using traditional controllers, the most popular are the

Proportional Intergral (PI) controller [149], the Proportional Derivative (PD) controller [158]

and the Proportional Integral Derivative (PID) controller [159]. There are a number of AQM

schemes that make use of PID; for example [160] combines a PID controller with a neural

network.

The controllers used to design AQM schemes are not restricted to traditional PI, PD, and

PID controllers. For example, Predictive Functional Control (PFC) has been used in the design

of an AQM scheme [150]. This controller has low complexity and was designed to manage

delay in a wired, high speed network. When compared to traditional AQM algorithms and AQM

algorithms designed using control theory, PFC performs well in terms of link utilisation, fairness

and robustness.

Dynamic RED (DRED), presented in [161], also uses control theory. It uses a simple integral

controller to stabilise the queue length and is independent of the number of TCP connections

passing through the node.

64



3.4 Fuzzy Logic and Fuzzy Control Systems

An alternative to traditional control theory is fuzzy logic. This section provides a discussion of

fuzzy logic and fuzzy controllers [162] [163] [164] as these play an important role in the overall

contribution of this thesis.

Fuzzy logic was introduced in 1965 by Professor Lotfi Zadeh [162] [163] [164]. The term

fuzzy relates to the fact that rather than dealing with logical values that must be either true or

false, the system allows for the concept of values that are partially true or partially false. In

mathematical terms, if true is represented by 1 and false is represented by 0, then fuzzy logic

allows for values on a continuous scale between 0 and 1.

A fuzzy system consists of a fuzzy set and fuzzy rules. A fuzzy set is specified by giving

a suitable domain, called the universe of discourse, and a membership function to determine

elements of the set [162] [163] [164]. For any domain of discourse X , a membership function

on X is a function from X to the interval [0, 1] on the real number line, R. For example, if

µA(x) represents a membership function for a fuzzy set A where x ∈ X [163] then µA(x) = 0

if the element x is not in the set A, µA(x) = 1 if the element x is in the set A, while values

between 0 and 1 characterise elements that only partially belong to the fuzzy set A. The value

of µA(x) quantifies the grade of membership of the element x of the fuzzy set. The membership

function for a fuzzy set may represent the specific, crisp inputs with well known curves, such as

triangular, trapezoidal or bell curves [163] [164].

The fuzzification process transform the crisp inputs to a fuzzy controller into elements of

fuzzy sets [163]. Fuzzy rules then operate on the fuzzified inputs. The defuzzification process

consists of a sequence of operations that map the fuzzy set to a set of specific, crisp output values

that can be used outside the fuzzy domain. There many ways to perform defuzzification; of these

the three key methods are: Mean of Maximum (MOM), Center of Area (COA) and the Height

Method (HM) [163] [164].

The Mean of Maximum (MOM) method estimates the crisp value as the average of the

outputs with the highest degree. The Center of Area (COA), or Center of Gravity (COG), method
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Fig. 3.4: Example of Fuzzy set [163]

estimates the crisp value as the center of gravity of the area identified by the fuzzy set outputs.

The Height Method (HM) calculates the crisp value as the weighted average of the maximum of

each output [163] [164].

Figure 3.4 shows a temperature set, based on that given in [163]. The Good, Minimal and

Bad values are fuzzified by triangular curves, the values Very Good and Very Bad are half-

triangular with shoulders indicating the physical limits of the temperature system. Fuzzy rules

are of the form [163]:

If <condition> THEN <consequence>

where there can be more than one <condition> and <consequence>. The rules can be

related to an expression in a natural language, such as English. Linguistic variables can be

used to make the rules easier to comprehend. For example, in figure 3.4 the variable name of

VERY GOOD, for temperatures below −2oC might be more easily understood by using the

more natural description COLD [163].

One useful application of Fuzzy logic is in the design of controllers. Figure 3.5 shows a

diagram of a general closed loop architecture of a fuzzy controller.

The process is the system controlled by the fuzzy controller [164]. The loop input is the one
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Fig. 3.5: Closed loop Fuzzy Controller [162] [163] [164]

or more reference signals, r0, directed to the fuzzy controller. The error, e, is calculated as the

difference between the reference signal r0 and an output from the process. The inputs to the

fuzzification block are usually this error and the change in the error over the time, known as the

error rate. Before the input is fuzzified, gain blocks can be used to re-scale the inputs. If the gain

blocks are not needed, they can be bypassed by setting the gain to 1 [164].

The fuzzification block converts the crisp input values into members of a fuzzy set to be

used by the fuzzy controller. The reverse operation is performed by the defuzzification block,

which converts members of the fuzzy set into crisp output values. The fuzzy set input to the

fuzzy controller is represented by x. The fuzzy set output from the fuzzy controller is labelled

v. Where necessary, scaling operations are performed in the fuzzification and defuzzification

blocks [164].

The fuzzy controller consists of two elements: the rule base and the control logic. The rule

base contains all the rules needed to manage the system, while the control logic decides which

rules to use to achieve the appropriate input [164].

In the next subsection applications of fuzzy controllers to the design of AQM algorithms are
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discussed.

3.4.1 AQM using Fuzzy Logic and Fuzzy Control Systems

The use of fuzzy logic and fuzzy control systems in AQM has been explored in [165]. One

clear advantage of fuzzy control systems is that they are less complex and more robust when

compared to traditional control systems. They are particularly efficacious when a quick reaction

is required [166].

A Fast and Autonomic Fuzzy Controller (FAFC) has been proposed in [135]. It is based

on fuzzy logic and incorporates mechanisms for self configuration. When evaluated on a wired

network, its performance is comparable to that of traditional AQM algorithms and AQM algo-

rithms designed using control theory. The advantages of FAFC are mainly related to network

performance; in particular, it improves queue length control and QoS parameters such as delay

and latency. FAFC was not designed to manage QoE.

The calculations needed to determine the traditional RED dropping probability involve a

significant overhead. The Fuzzy Logic Controller (FLC) presented in [151] replaces this with a

Fuzzy-based Intelligent Packet Drop (FIPD). This reduces the calculation overhead by using a

decision table to determine when to drop packets.

Fuzzy logic controllers are not only advantageous for queue management, they also allow

for dynamic management of CW [167]. Contention window management reduces collisions and

optimises throughput. The Contention Window Fuzzy Controller (CWFC) [167] is an exam-

ple of a fuzzy logic controller used for contention window management on a wireless network

where the EDCA method is implemented. CWFC manages the CW size based on two inputs:

throughput information, as extrapolated from control packets, and the number of packet retrans-

missions. It should also be noted that, unlike most AQM schemes, it is an AQM algorithm

specifically designed for use in wireless networks.

In the following section AQM algorithm behaviour and design in a wireless network envi-

ronment will be considered in greater detail.
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3.5 AQM in Wireless Networks

The AQM algorithms detailed above were generally designed and implemented in wired net-

works. A different approach is needed for the design and implementation of AQM algorithms in

wireless networks.

Previous work by the author of this thesis has considered the approach needed for AQM

implementation in infrastructure wireless networks [12] [11]. This work sought to maintain the

original AQM algorithms’ characteristics, while adapting them for the wireless environment.

Two main challenges have to be overcome when implementing AQM in wireless networks.

The first challenge is that of variations in the traffic mix. In comparison to backbone routers,

a wireless Access Point (AP) manages a relatively small amount of traffic and so variations in

traffic can be considered to be discrete.

The second challenge relates to the wireless channel. Even when using technologies like

MIMO [21] [26] and MU-MIMO [43] [7], the wireless channel is completely or partially shared

between the mobile stations and the access point. Consequently the access point is often a traffic

bottleneck; moreover, the wired link to the access point often has a much greater capacity than

that of the wireless channel itself.

Wireless networks use a single link, the channel, to carry communications between a dis-

tribution node, the AP, and the mobile stations. In addition to their usual workload AQM al-

gorithms that operate on wireless networks must also manage control or routing packets; for

example, ARP messages that pass through the AP. These packets are essential for the operation

of a wireless network. In order to ensure their safe delivery, [12] proposed to put control and

routing packets at the head of the queue when the queue is managed by an AQM algorithm.

The incorporation of this into five existing AQM algorithms for use on wireless networks was

considered. The algorithms used were RED [9], REM [70], AVQ [136] , BLUE [137] and

RIO [154].

The RED algorithm was adapted for use on wireless networks by adding a module to move

routing and control packets to the head of the queue [12]. Some settings of the algorithm param-
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eters to adapt the RED algorithm to the prevailing traffic mix on a wireless network were also

suggested. As the RIO algorithm is simply a double application of the RED algorithm it can be

modified in a similar way.

When the REM [70] algorithm is used in an access point, routing and control packets can

be moved to the head of the queue in the same way as for RED. Unfortunately this prioritisation

process for control and routing packets creates a discontinuity in the price calculation and in

the calculation of the dropping and marking probability. A way to overcome this challenge is

presented in [12].

AVQ [136] can be modified to introduce control and routing packet prioritisation [12]. This

makes use of the Theoretical Maximum Throughput [27] as an estimate of the link capacity, as

used in the original AVQ algorithm [12].

BLUE [137], like RED, requires an adjustment of its parameters in order for the algorithm

to function correctly in a wireless network that prioritises control and routing packets [12].

A general discussion of AQM algorithms and their adaptation for use in a wireless envi-

ronment is presented in [11]. In particular, changes needed for the RED [9], REM [70] and

BLUE [137] algorithms are presented.

Analysis of RED [9] suggests the use of the Hold-Winters procedure [168] to determine the

average queue length at a wireless access point. The Hold-Winters procedure was originally

proposed in [168] for the RED algorithm. In [11] the procedure is adapted and repurposed

for use in a wireless network: the average queue length is calculated using a forecast formula

instead of the forecast average formula. In particular, two small free constants, α and γ, are used

to estimate the level and trend of the forecast. This modified version of RED performs better

than the original RED in a wireless network [11].

The REM [70] algorithm requires two substantial formula changes in order to operate cor-

rectly in a wireless environment. The first change is to set the channel link capacity, cl(t), to

be the Theoretical Maximum Throughput (TMT) [27] of the link. In order to estimate the TMT

it is necessary to consider how the wireless channel is shared between the Access Point and

mobile stations. The second change is to modify the calculation of the input rate, xl(t). An
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Exponentially Weighted Moving Average (EWMA) [9] is used to filter the bursty traffic and

transform xl(t) into a continuous variable.

The BLUE [137] algorithm has two parameters, δ1 and δ2, used to increase and decrease

the dropping probability. When the BLUE algorithm is applied at an access point, it becomes

necessary to dynamically change the δ1 and δ2 parameters. [11] proposes a function to adjust

these parameters according to variations in the traffic and in accordance with the design of the

original BLUE algorithm [137] .

In contrast to RED, REM and BLUE, some algorithms have been designed to operate in

wireless networks in order to solve specific wireless networking problems. For example [169]

considers the problem of fairness between upload and download traffic. The algorithm oper-

ates in an infrastructure wireless network when the Distributed Coordination Function is used.

It solves the fairness problem by implementing a PI controller to dynamically change the con-

tention windows.

VQ-RED [170] looks at the fairness between flows. It uses multiple virtual queues, one for

each flow. Each virtual queue is managed by a RED algorithm. The arriving packets at the AP

are distributed between the queues by a classifier. Fairness is achieved by seeking to analyse and

manage the queue lengths. The algorithm not only improves the fairness but also reduces packet

delay.

Issues related to fairness for TCP protocols can be addressed using two virtual queues [171]:

one virtual queue is maintained for TCP data packets and the other for TCP acknowledgements.

Each queue is managed by a PI algorithm. The algorithm also acts on the contention window by

implementing an AIMD algorithm.

Other AQM algorithms specifically consider congestion or channel status. In the case of

Channel-Aware Active Queue Management (CA-AQM) [172], a per flow price is calculated

using the queue length and the bit rate. This results in a stable queue and a fair sharing of the

channel access time.

The AQM algorithm presented in [173] is based on multi class RED. Each traffic class has

a different loss priority and so the buffer is divided using multiple thresholds. The algorithm
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manages priorities using a separate RED algorithm for each class.

An alternate approach to the calculation of the dropping or marking probability in RED-

like algorithms is presented in [174]. Instead of the queue length, the time taken for a packet

to access the channel together with the number of RTS packets sent by the station are used as

indicators of channel congestion in an ad hoc network.

The proxy-RED Algorithm [175] is designed to address the issue of differing capacities

between a wired and wireless network. The RED, or ARED, algorithm is modified to fit the

network characteristics, and applied to the wired network before the AP, via a proxy function.

The difference in capacity between the wired network and the wireless channel is smoothed by

proxy-RED, improving the efficiency of the wireless network and reducing congestion at the AP.

To complete this overview of AQM in a wireless environment, three other AQM schemes

must be mentioned. The first of these is Ad hoc Hazard RED [176] (AHRED). This algorithm

is designed to sit on top of the RED algorithm. It calculates a dropping, or marking, probability

using a hazard function. This function makes AHRED more aggressive as the volume of traffic

grows and the queue length nears capacity and less aggressive when traffic levels are low and

the queue is nearly empty.

The second is EF-AQM [177]. It uses a controller at the intersection between heterogeneous

networks to avoid congestion. It is a simple application of control theory on wireless networks.

The final AQM scheme to be considered also uses control theory [120]. It is an application

of the H∞ controller [120] in a wireless network environment. It uses modified versions of

equations 3.10 and 3.11 to capture variations in the Congestion Window. [120] considers the

fading effects on wireless networks.

The discussion above illustrates the limitations of AQM that motivate this work. First of

all it is important to note that AQM algorithms are not specifically designed to improve QoE,

rather they are designed for congestion avoidance. However, as has been shown above, they can

contribute to aspects of QoS such as fairness or the refinement of IQoS parameters.

Secondly, if AQM is to be used on a wireless network then design modifications are needed;

not only because of the nature of the wireless environment but also due to the use of channel
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access methods like EDCA. AQM schemes need to be able to manage different kinds of traffic

with particular characteristics in each AC to fit CoS requirements.

Finally, wireless AQM schemes are not sufficient for the provision of services with the best

QoE possible. This is because they only act on the queue. A more holistic approach that includes

wireless AQM schemes as part of a larger traffic management system is needed.

3.6 Summary

The provision of quality of service guarantees on a wireless network is a challenging prob-

lem. Existing techniques and algorithms used for QoS provision at the MAC level are not well-

equipped to cope with a wide variety of traffic mixes and protocols used on wireless networks.

This chapter presented a detailed literature review that covered three main areas: Quality

of Service, the mathematical modeling of congestion on wireless networks and Active Queue

Management schemes.

The discussion in this chapter identified gaps in the existing body of knowledge. The first

of these is the lack of a technique to instantaneously estimate Quality of Experience (QoE), a

metric that is of particular interest to Internet Service Providers. The second is the need for a

wireless network traffic management system capable of providing near-optimal QoE.

In the following chapter a new quality metric for wireless networks is presented.

73



Chapter 4

eQoS

Efforts to capture Quality of Service (QoS) have given rise to a large collection of metrics,

measures, methods and procedures for the evaluation of network performance and service pro-

visioning. As a consequence, the specification of QoS [71] has evolved and been extended since

it was originally defined by the ITU in 1994.

QoS metrics can evaluate service provisioning at a low level, where network parameters are

measured; or at a high level, where end user satisfaction is measured using Quality of Experience

(QoE) [8]. QoS metrics are useful as they not only allow for management of the network and

control of services, but they also help in the improvement of service provisioning and in the

development of new network protocols and architectures.

TELCOSs have a vested interest in QoS metrics. On the one hand, they need to measure

network performance and plan future network development; on the other hand they need to

have good estimates of QoE to enable them to develop new services for their users and provide

Service Level Agreement (SLA) guarantees.

The research community has been looking for robust ways to automate QoE measurement

or estimation. The International Telecommunication Union (ITU) has designed computer al-

gorithms to automatically evaluate voice, audio and video services; providing estimates of the

human perception of these services. QoE can be automatically calculated via a comparison
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between services at the source and at the destination. This methodology does not depend on

end user feedback. QoE assumes an important role in QoS management when applied to critical

nodes for quality management purposes. When considering quality issues, an Access Point (AP)

is the most critical node in an infrastructure wireless network.

Two key characteristics are essential for capturing QoE: quick estimation and simple calcu-

lation. To achieve these a new metric to estimate the quality of a service provided is required.

This need is addressed in this chapter where a new metric, eQoS, is defined [14].

The chapter is structured as follows: in the first two sections the definition of eQoS and

the motivations behind it are presented. The three most important realtime services are then

considered as the application of eQoS to Voice over IP, audio and video streams is detailed.

Finally, some practical applications of eQoS are provided.

4.1 The Definition of eQoS

The perceived quality [8] of a network is measured through feedback obtained from the end user

or estimated using computer algorithms. These computer algorithms compare the service at the

source with that at the destination and estimate the human perception of the network quality.

Their complexity means they are not suitable for use in all networks for the estimation of QoE

at the network node. A new metric that is compatible with the definition of QoE is [14]:

Definition 1. eQoS is a metric that captures the perceived QoS through an almost instantaneous

measurement of loss in network quality.

eQoS is expressed as a proportion between 0 and 1 or as a percentage and is a dimensionless

quantity. It is a near instantaneous expression of the customer satisfaction. eQoS provides a

mechanism for calculating the perceived quality at a node for critical services. Critical services

are usually provided in real time and are highly sensitive to packet loss and delay. eQoS has

been designed to include some important characteristics: it is a near instantaneous measure, cal-

culated by sampling some physical network parameters over a suitable, short interval of time; it

is recalculated every sampling time interval and varies depending on the service being provided.
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Traditional QoE metrics require audio or video to be measured over an extended period of time

by the end user; for example, traditional algorithms typically require more than 10 seconds of

audio or video traffic in order to provide an objective evaluation [93].

The eQoS sampling time is not a fixed value; it is set according to the time needed to encode

the service. To simplify the calculation of eQoS and to allow for its application across a wide

variety of services, a one second sampling time interval is recommended. Use of different eQoS

sampling times does not affect the validity of the metric; what is essential is that the number of

packets transmitted per second by each service has to be sufficient to obtain a reasonable eQoS

estimate. In other words the granularity of the sampling interval must be such that the samples

are statistically acceptable and valid. For services provided with a particular protocol, like TCP,

the eQoS sampling intervals may vary. This is because the number of samples per second will

depend on the Round Trip Time (RTT) [121].

eQoS depends on a small number of QoS network parameters and so its calculation is very

simple. It measures the perceived QoS and, at the same time, provides an estimate of QoE.

Existing computer algorithms that seek to replicate the complex human perception of quality

use numerous variables and their complexity means that considerable CPU effort is needed for

their calculation.

eQoS does not follow the traditional algorithm methodology of comparing the service at the

destination with the original service provided at the source: It is inferred statistically using a

small number of QoS network parameters that are estimated at the node.

eQoS is designed to be calculated per flow and to provide a near instantaneous evaluation of

service quality at the node. It can be applied at an AP or where single or multi queue systems

are present and it can be used to inform the operation of queue management algorithms.

4.1.1 Description and Motivation

The definition of eQoS was motivated by the need for a simple mechanism to calculate the

perceived QoS at an AP. Traffic management is a critical issue for nodes like APs, where the

traffic is switched from a wired link to a wireless link and vice versa. The novel idea is to find
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an almost instantaneous estimate of a perceived QoS measure at the AP and immediately use it

as a parameter for traffic management.

The first step towards a complete eQoS definition is the identification of the key physical

network parameters that affect the perceived QoS. Throughput measurements do not give direct

information on the quality lost at the AP. This is because throughput is measured over time rather

than instantaneously. This makes it unsuitable for use in the calculation of eQoS. On the other

hand, the number of packets dropped or lost at the AP is easy to calculate and plays a significant

role in the QoS perceived by the end user. Each packet dropped is a small service interruption

that may be perceived by the human senses.

Packet delivery delay is another factor affecting the perceived quality. If the packet latency

at the AP exceeds the maximum delay allowed, then the packet cannot be used to reproduce

the service at the destination and has to be dropped. This is the case, for example, for an audio

packet that is delayed for too long in the AP and cannot be reproduced at the destination. Similar

considerations apply when the packet delay variation exceeds the maximum delay permitted. In

both these cases the packet should be dropped at the AP to prevent unnecessary transmissions

on the wireless link and the consequential waste of network time and bandwidth.

For VoIP services, the packet delay variation, or jitter, should not exceed 30ms [45], while

delay should be kept below 150ms [45] to provide the service with the best quality [45]. Thresh-

olds for jitter and delay are not strictly fixed, they can vary depending on the kind of service

provided and the network configuration. Jitter is defined as the transmission delay between two

consecutive packets from the same flow [178] but in the practice it is often considered as the

packet delay variation [45].

eQoS is calculated by considering packet loss at the AP; this includes packets that are

dropped at the node and packets that are delayed beyond the maximum limit permitted. The

number of lost packets per sampling time interval contributes to the loss in quality experienced

by the end user, and is expressed as a percentage of the total number of packets received in the

sampling time interval for the given service.

The number of packets lost is not sufficient to quantise the perceived loss of quality during
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Fig. 4.1: Illustration of packets transmitted and lost.

the sampling time interval. If two packets are lost and 98 packets are transmitted, this might not

be perceptually relevant for the final user. Rather it is the adjacencies between dropped pockets

that matter: the closer the loss or dropping events are in time, the more likely it is that the event

will be perceived by the end user. For example, when receiving an audio stream, if two packets

are lost, this may not be relevant for the audio quality; however if the two packets dropped are

consecutive the loss in quality may be significant, e.g. this could be the loss of an important

word in a conversation. Figure 4.1 illustrates a stream of packets flowing during a given time

window. It indicates where some of the packets are lost and it can be seen that two of the packet

loss events occur in sequence. When packet loss events occur in sequence or are temporally

close to each other then this may lead to a perceived loss of quality by the end user. Therefore,

there are two factors that contribute to our definition of eQoS: the ratio of packets lost to packets

transmitted and the probability of adjacencies between packet loss events. Both factors can be

determined numerically, the first one as the percentage of packets lost and the second through

a probabilistic estimate that packet losses occur in sequence. This numerical approach results
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in a metric that is simpler and quicker to calculate than a complex method involving subjective

human perception and recognition methodologies. It is also a more efficient way of estimating

QoE when a precise QoE value is not required.

eQoS values vary between 0 and 1 and indicate the level of customer satisfaction. In order to

make the metric easier to interpret, eQoS can be expressed as a percentage. eQoS can be used to

determine QoE by the use of threshold eQoS values. These thresholds mark the decision point

at which a user will decide to discontinue use of a service. The relationship between eQoS and

MOS is slightly more challenging to determine as eQoS provides a near instantaneous estimate

of quality, while a MOS value is an average computed over time.

As explained above eQoS is the sum of two contributions: one due to packet loss and the

other due to the loss of adjacent packets. It is expressed as:

eQoS = αF (PD, Pd) + βG(PD, Pd) (4.1)

Where:

F (PD, Pd) is the loss contribution,

G(PD, Pd) is the adjacency contribution,

PD is the number of dropped packets and

Pd is the number of packets dropped because they have experienced excessive delay.

α and β are two parameters with 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and α+ β = 1. These are discussed in

more detail in section 4.1.2.

The first contribution is the loss contribution F (PD, Pd). It was defined above as the ratio

between packets lost at the AP in one second and the number of packets generated at the source.

It is expressed by the formula:

F (PD, Pd) =
PD + Pd
PT

(4.2)

where PT is the number of packets per second generated at the source.

The second contribution to eQoS is G(PD, Pd). It is the contribution due to the loss of

adjacent packets. It can be viewed as a measure of the occurrence of an inter-packet loss distance

of zero [179]. It can be calculated in two ways. The first method is to continuously check for
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adjacencies of packet loss events. This method is complex and not practical for use when a

near instantaneous estimate of eQoS is needed. It requires a data structure to store the status

of each packet, as dropped or transmitted, and two algorithms: one to update the data structure

for each packet arriving at the AP and one algorithm to parse the data structure and count the

adjacencies between the lost or dropped packets. The second method is to create a statistical

model to calculate the probability that packet losses are sequential. This second method is

simpler and only requires measurements of the number of packets lost and transmitted; it then

uses combinatorics to obtain the required probability.

The use of combinatorics relies on the assumption that the packet loss events are independ-

ent. Wireless network conditions may mean that when a packet is lost some adjacent packets

in the sequence are lost as well. This is likely to happen for a large number of packets in a

row because of network congestion. If a few packets are lost then these can be considered as

independent events while if more packets are lost these should not be considered as independent

events. For the purposes of this work packet losses are considered independent because quality

degrades rapidly when just a few packets are lost.

In this section we show how combinatorics can be used to obtain an estimate of the adjacency

loss contribution to eQoS.

Considering a set of n numbers, the number of ways that k numbers can be taken from this

set without replacement is [180]: (
n

k

)
=

n!

k!(n− k)!
(4.3)

This is known as a combination. This formula can be used to find the number of way that k

packets can be dropped when n packets are transmitted.

The number of ways that k numbers can be drawn from a set of n numbers without any of

the k numbers being in sequence is:

(
n− k + 1

k

)
=

(n− k + 1)!

k!(n− 2k + 1)!
(4.4)

This formula, inferred by basic combinatorics [180], can be used to find the number of ways
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that k non-sequential packets can be dropped when n packets are transmitted. Using subtraction

the number of ways that k numbers can be drawn from a set of n numbers, with at least 2 of the

k numbers being in sequence, is given by:

 n

k

−
 n− k + 1

k

 =
n!

k!(n− k)!
− (n− k + 1)!

k!(n− 2k + 1)!
(4.5)

When k ≥ 2 this formula can be used to estimate when at least two sequential packets are

dropped.

The calculations above can be used to determine the probability that at least two packet

drops are in sequence when k packets are dropped from a set of n transmitted packets. This can

be expressed as:

P(n, k) =

 n

k

−
 n− k + 1

k


 n

k

 (4.6)

The adjacency contribution, G(PD, Pd), in equation 4.1 for eQoS can now be found using equa-

tion 4.6 as:

G(PD, Pd) = P(PT , (PD + Pd)) (4.7)

Where:

PD is the number of dropped packets,

Pd is the number of packets dropped because they have experienced excessive delay and

PT is the number of packets per second generated at the source.

It should be noted that P(n, k) is not related to a specific number of packets dropped in sequence;

it is the probability that at least two packets are dropped in sequence. Packet dropping events

are perceived by the end user regardless of the number of packet drops that occur. It easy to

see that if more than 25 packets are dropped from a set of 50 packets arriving at the queue,

then the probability that some packets are dropped in sequence is 1. The higher the probability
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of packets being sequentially dropped, the higher the probability that the number of packets

dropped in sequence is large. Long sequences of packet drops are more likely to be perceived

by the end user.

Before proceeding to the calculation of eQoS for a VoIP service the parameters α and β are

considered in more detail.

4.1.2 Setting the Parameters α and β

Parameters α and β play a very important role in the definition of eQoS. eQoS is given by:

eQoS = αF (PD, Pd) + βG(PD, Pd). (4.8)

eQoS values vary between 0 and 1. The two weights α and β are such that:

α ≥ 0;β ≥ 0. (4.9)

They also satisfy the following equation:

α+ β = 1. (4.10)

If the eQoS is close to 0, the service is expected to be provided with almost no loss of quality.

If the eQoS is close to 1, then the service provided is poor or is not provided at all. For practical

reasons, eQoS can also be expressed as a percentage.

Greater weight should be given to the contribution made to eQoS by the loss of adjacent

packets relative to that made by loss. This is captured by an additional constraint on α and β:

β > α. (4.11)

This imposes a logarithmic aspect to the eQoS curve as a function of the dropped packets. A

similar curve was observed in [78] where a relationship between dropped packets and QoE was

proposed. The logarithmic nature of this kind of event was also discussed in [80].

The challenge is to find the most appropriate values for α and β in order to capture the

eQoS for the service being considered. eQoS is a perceived QoS, therefore α and β have to be
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determined in order to make eQoS conformant with the nature of the QoS being measured; that

is, the achieved QoS, the perceived QoS, the offered QoS and the required QoS [8].

Two approaches are needed in order to determine α and β. The first is to evaluate the Mean

Opinion Sore (MOS) [71] for a given service when different numbers of packets are dropped.

The results are then used to inform the choice of the most appropriate eQoS curve to use. The

second approach is to determine the desired eQoS curve for the service and estimate the parame-

ters α and β from it. As quality decreases rapidly when a few packets are lost, precise estimates

of α and β are not required. The approach adopted will depend on the service provider and will

be dictated by business needs and by drawing on their experience of providing the service.

MOS and eQoS are two completely different measures. MOS is a metric that takes time to

evaluate as it is an average value. It depends upon feedback from the final user or a computer

algorithm. By contrast, eQoS gives a near instantaneous estimate for each sampling time inter-

val. It indicates that the end user is perceiving a loss of quality and may cancel the service if

no action is taken to improve its quality. This is in line with the definition of QoE and so eQoS

can be viewed as a realtime estimate of QoE. It should be noted that eQoS is valid only for the

sampling time interval for which it has been calculated. If in a given sampling time interval 50%

of packets are dropped and in the following sampling time no packets are dropped, then it is not

the case that the eQoS over the two intervals is the average value of 25%.

In the next section a practical application of QoS for VoIP is described.

4.2 eQoS for VoIP Services

In this section the practical calculation of eQoS for Voice Over IP (VoIP) streaming services is

considered. The calculation is performed using the network architecture shown in figure 2.2. It

replicates a phone call between a wired source and a destination that is a mobile device. As a

phone call is bidirectional a flow in the opposite direction needs to be considered also.

The VoIP packets generated at the source are transmitted to the Access Point (AP) via a

wired network, the last hop between the AP and the destination is a wireless link. The goal of
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eQoS is to evaluate the quality at the AP, taking into account packets dropped due to excessive

delay and packets that are lost. It is assumed that packets arrive at the AP queue from the source

at regular intervals, the delay is close to the theoretical minimum value and that jitter is close

to zero. These are reasonable assumptions for a wired link. If these assumptions are not true,

problems are already present in the backhaul or in the backbone and the quality of the service

provided is already compromised. In this case the problem will be detected at the AP, but cannot

be fixed by it. While beyond the scope of this work, it is theoretically possible for the system to

be designed to provide meaningful feedback to the backhaul or the backbone in this situation.

The AP is a critical point in the network. It is anticipated that it will be a bottleneck because

even if the rated throughput of the wired and wireless networks is comparable, the Theoretical

Maximum Throughput (TMT) available on a wireless network is lower than on the wired link.

Therefore, the AP is a bottleneck even when Very High Throughput (VHT) protocols are used

in the wireless channel. The wireless network channel is unique and operates bidirectionally

between the AP and the mobile devices. If the number of mobile devices is too high then packets

may be dropped due to delays at the AP queue or when the AP queue is full.

In this example G.729 [57] encoding is used, it is a PCM [55] that uses 8KHz sampling

for voice calls. The sampling time is 1s. The G.729 VoIP encoder transmits 50 packets per

second and each packet transports two 10ms code blocks of speech. If a packet is dropped, both

the blocks are lost and 20ms of speech cannot be heard at the destination. If two packets are

dropped in sequence the amount of speech lost will be 40ms long and the probability that the

loss will be perceived by the human ear increases.

As described in the previous section, combinatorics can be used to estimate the probability

that k packets in a series of n packets are dropped in sequence. In order to provide some insight

into the equations given above, a heuristic derivation is considered below. In this example n =

50 as 50 packets are transmitted per second. Let {a, b} indicate that packets a and b are dropped,

then the possible ways in which 2 packets from the 50 can be dropped are:

{1, 2}, {1, 3}, {1, 4}, ..., {48, 49}, {48, 50}, {49, 50} (4.12)
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From equation 4.3 there are 1225 ways this can occur.

The possible ways in which 2 packets from the 50 can be dropped in sequence are are:

{1, 2}, {2, 3}, {3, 4}, ..., {47, 48}, {48, 49}, {49, 50} (4.13)

It can be seen that there are 49 such events.

The possible ways in which 2 packets can be dropped without being in sequence is 1176 i.e

1225 - 49. Therefore, there are 1225 ways in which two packets can be dropped from the 50

packets transmitted. These heuristic calculations agree with the equations given above. From

equation 4.4 it can be seen that the number of combinations where two packets from the fifty

transmitted are not dropped in sequence is 1176. From equation 4.6 the probability of dropping

two packets is sequence from the 50 transmitted is found to be P(50, 2) = 0.04.

Figure 4.2 shows the adjacency contribution functionG(PD+Pd). The horizontal axis repre-

sents the number of dropped packets and the vertical axis represents the probability that packets

are dropped in sequence. The number of packets transmitted per second is 50. It can be seen

that the probability grows rapidly and after 15 packets are dropped the probability that packets

are dropped in sequence is very close to 1. This shows how the service quality is significantly

affected when just a few packets are lost.

The probability values in figure 4.2 are discrete, but they can be fitted with a sigmoidal

curve [181]. This curve is also shown in figure 4.2. The equation for this curve is:

f(x) = b+
a− b

1 + e(−
x−c
d

)
(4.14)

The probabilities shown were calculated using Matlab [182], the parameters a, b, c and d that

fit the curve were obtained through a sequence of automatic approximations using gnuplot [183].

They are: a ∼= 1, b ∼= −0.1, c ∼= 5.8, and d ∼= 2. a, b, are the bottom and the top of the

curve respectively, c is the point halfway between the bottom and the top and d is the slope

[184] [185]. The curve is a graphical continuous approximation of the discrete probabilities,

it is valid for x ≥ 2 and x ≤ 13, that is when between 2 and 13 packets are dropped. For

x > 13 the probability is close to 1 and the VoIP stream cannot be decoded and reproduced at

the destination.
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Fig. 4.2: Estimated probabilities and the fitted sigmodal curve for VoIP traffic.

The above discussion leads to the following equation for the calculation of the expected

Quality of Service (eQoS) for VoIP:

eQoS = α
PD + Pd
PT

+ β

(
−0.1 + 1.1

1 + e(−
PD+Pd−5.8

2
)

)
(4.15)

The family of eQoS curves obtained by varying α and β in equation 4.15 are shown in figure

4.3. This was obtained using Matlab [182]. If α is equal to 1 and β is equal to 0, then the eQoS

will be the line consisting of the F (PD, Pd) contribution. Similarly, if β is equal to 1 and α is

equal to 0, eQoS will be the sigmodal curve obtained from the G(PD, Pd) contribution alone.

The α and β parameters capture the contribution made to eQoS by the loss of packets and

due to loss of adjacent packets. In the example considered in Chapter 6 below, α is set to 0.25

and β to 0.75 for VoIP encoded with G.729.
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Fig. 4.3: eQoS curves for VoIP traffic with varying values of α and β.

4.2.1 eQoS for Audio Streaming

In the above the focus was on estimating eQoS for VoIP services, in this section the focus shifts

to the calculation of this quality metric for an audio streaming service.

As mentioned in section 2.4.3, audio streaming can be considered as a constant flow of

information and the eQoS formulas derived above for VoIP traffic can be reused with only a few

modifications.

As described in section 2.4.1 a streaming service can be either live or deferred. The stream-

ing is defined as live when it is transmitted from a live event or with a minimum buffer at the

destination so that the only delay permitted is due to encoding and transmission. An example of

live streaming is a live sports event, when audio and video are transmitted with only an encod-

ing delay and minimum buffering. Live streaming also occurs when the stream is stored at the

source and is provided upon request using the maximum throughput available. For example, the
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streaming of Video On Demand (VOD) from a web site is considered live streaming.

A deferred stream is partially stored at the destination and the transmission time and the play

time are not related. In this case packet transmission is deferred, thus packet retransmissions at

the application layer and throughput reductions do not impact on the quality of the stream.

eQoS has to be calculated for live, critical services, where the traffic is more sensitive to

delays and retransmissions are not possible. Non real time services are not critical and can be

considered and managed as a data transfer.

Audio streaming was described in section 2.4.3. For the calculation below it is encoded and

streamed using a Variable Bit Rate (VBR) service. This contrasts with VoIP which is a Constant

Bit Rate (CBR) service, with constant frame size and constant packet size. For design purposes,

audio streaming is considered as a constant flow of information with different packet and frame

sizes.

As for the VoIP service, the eQoS calculation for an audio streaming service is explained

using an example. Using AAC encoding the stream is divided into frames, where each frame

contains 1024 samples and is encapsulated in a packet [62]. There is a direct relationship be-

tween the packet and its audio information, that is the 1024 samples the packet contains. The

number of frames, and hence the number of packets transmitted per second, is constant at about

43 per second, but for AAC coding the packet size and sample duration varies. Each frame

reproduces about 23ms of audio. Figure 2.3 provides an example of audio streaming, showing

the frames and packets transmitted.

The packet sizes vary but, as mentioned above, the information per packet is constant. The

frames containing no information, i.e. no sound or silence, are an exception. These frames have

no information and if they are lost the quality is not affected. Unfortunately the contents of a

packet can only be analyzed at the application level, therefore these kinds of packets cannot be

detected and managed at a node. In this discussion they are considered like any other packet in

the system.

As the differences between audio streaming and VoIP are almost negligible, eQoS for audio
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streaming is calculated using the same formula as for VoIP:

eQoS = αF (fD, fd) + βG(fD, fd). (4.16)

Where:

F (fD, fd) is the loss contribution,

G(fD, fd) is the adjacency contribution,

fD is the number of frames lost through dropping and

fd is the number of frames lost due to excessive delays.

Both the loss and adjacency contribution are the same as for VoIP. However, the formula is

slightly different to the one used for VoIP as the adjacency probabilities are fitted by a sig-

moidal [186] curve with different coefficients due to the variation in the total number of packets

transmitted per second. Using these coefficients, the eQoS for an audio stream is given by:

eQoS = α
fD + fd
fT

+ β

(
−0.1 + 0.9

1 + exp(−fD+fd−5.4
1.8 )

)
. (4.17)

The formula is calculated using frames instead of packets as the information unit. Each

frame is contained in a packet, therefore the changes are only in notation rather than in substance.

In the next section the α and β parameters for an audio streaming service are considered.

4.2.2 Setting α and β for Audio Streaming

In this section the guidelines for setting the parameters α and β for audio streaming are explored.

Figure 4.5, obtained using Matlab [182], shows the family of curves that arise when the parame-

ters α and β are varied. As described for the VoIP service, the line is the F (fD, fd) contribution

when β is equal to zero; the purely sigmoidal function is the G(fD, fd) contribution when α is

equal to zero.

Audio streaming differs from VoIP in both the mode of transmission and the media contents

as an audio stream can transmit voice, sound and music. eQoS components are more impor-

tant than for VoIP, where the sampling process is at a low frequency, therefore more careful

consideration is needed when determining α and β.
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Fig. 4.4: Estimated probabilites and the fitted sigmodal curve for audio traffic.

The best solution is to use the two methods described for VoIP; that is, the MOS evaluation

and the desired eQoS curve. Due to the variable nature of the audio stream, the MOS evaluation

has a high variance and is affected by the client software and hardware. For example, there are

software algorithms designed to correct errors in the media stream induced by packet loss [187].

Hardware and the content of an audio stream can also give rise to intrinsic quality variations.

It is important to note that, like QoE, eQoS is an estimate of the perceived QoS and it is used

for decision making at the node. Therefore the settings for α and β need to reflect the desired

perceived QoS characteristics.

For an audio stream that is a mix of music, voice and sound, the QoS rapidly shows a loss

in quality when only a few packets are lost. Therefore the adjacency contribution plays a more

important role than that of loss. The equations defined for VoIP remain valid:

β > α (4.18)
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and

α+ β = 1 (4.19)

By definition, equation 4.10 restricts eQoS to values between 0 and 1.

The parameters α and β were set to 0.10 and 0.90 respectively for the simulations given in

Chapter 6. These were chosen based on an eQoS evaluation of audio streaming and the previous

discussion on the choice of α and β for VoIP. As detailed in section 3.1.1, PEAQ calculates

the loss in quality perceived by the end user. The perception of quality loss for a high fidelity

audio stream occurs when just a few packets are lost, therefore the values used for α and β will

differ from those used for VoIP. Figure 4.6 shows the QoE curve when the number of dropped

packets per second grows. Dropped packets are replaced by the last packet received, making it

easy for the PEAQ algorithm to detect audio losses. QoE decreases rapidly when a few packets

are dropped from the stream. Using the the PQevalAudio software1 [188], the ODG [93] score

varies between 0 and −4. This differs from MOS where a scale of values between 1 and 5 is

used. In the case of VoIP, the MOS does not decline as rapidly, because VoIP packets contain

less information: 8KHz sampling for VoIP results in 50 packet transmissions per second while

audio streaming has a sampling rate of 44KHz resulting in 43 packet transmissions per second.

4.2.3 eQoS for Video Streaming

In the previous section the focus was on audio services; attention now shifts to the calculation

of eQoS for video streaming services.

Video streaming exhibits a number of features that differ significantly from those of VoIP

and audio streaming services. Video services consist of a variable flow of information in terms

of both packets and frame sizes. Therefore the eQoS design needs to be extended to allow for

this variability in the information flow.

Video streaming, like audio streaming, can be provided as either a live or a deferred stream.

The deferred stream is partially stored at the destination and the transmission and play back

times are not related.
1http://www-mmsp.ece.mcgill.ca/Documents/Software/
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Fig. 4.5: eQoS curves for audio streaming with varying values of α and β

Fig. 4.6: MOS decreases as audio streaming packets are lost.
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In the following calculations of eQoS the MPEG-4 Advanced Video Coding (AVC) [66]

standard is used for video and audio streaming. However, the formulas obtained and conclusions

reached are applicable for other video streaming standards.

The application of eQoS to a video streaming service does not immediately follow from that

for VoIP and audio streaming. Some additional considerations and substantial changes to the

eQoS formula are required.

Video streaming is considered as a VBR service using the MPEG-4 part 10, known as H.264

or MPEG-4 Advanced Video Coding (AVC) [66] standard. Packets are of variable size and

frames are of different sizes and types. Figure 2.5 shows the relationship between I and P

frames in terms of size. Other standards can provide a video streaming service with different

characteristics, for example using a Constant Bit Rate (CBR) stream or fixed packet sizes.

In the example below basic profile H.264 [66] video with 30 frames per second is used. It

uses only I and P frames, with a ratio of approximately one I frame to every 23 P frames. The

ratio is calculated by the encoding software. This shows the applicability of the eQoS estimation

method to irregular and non-symmetric data structures.

When B frames are included in the H.264 profile, the GoP(N,M ) [67] configuration sug-

gests that the number of B frames between two I frames is usually larger than the number of P

frames. The loss of P and B frames have a similar consequence from the point of view of the

user’s perception of the service. Thus they can be considered together using a single adjacency

contribution.

A long time interval is needed to evaluate the perceived quality of service for such a video

service using a traditional algorithm that evaluates human perception. A method for determining

eQoS based on mathematical deduction is the most appropriate one for obtaining an almost

instantaneous estimate of the perceived QoS.

As before, eQoS is calculated by considering the contribution of lost packets and their adja-

cency. Unlike audio streaming, the loss contribution cannot be calculated based on the number

of packets lost. Video streaming packets are of variable size and do not contain the same amount

of information. This contrasts with VoIP and audio streaming where the amount of information
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in each packet is fixed. For video streaming the byte is the most appropriate unit of information

to use. The loss contribution for a video stream is:

F (BD, Bd) =
BD +Bd
BT

(4.20)

Where:

BD is the number of bytes lost due to packet drops,

Bd is the number of bytes lost due to delay and

BT is the total number of bytes transmitted in the sampling interval.

The reduction in quality also depends on the number of packets lost per second and from

the adjacency of these losses. It is also important to note that I frames contain more important

information than P frames. I frames are, in general, much longer than P frames and so typically

need more bytes than a P frame; however, they are less frequent than P frames.

Considering the loss contribution in bytes, a large amount of lost bytes can mean that a large

amount of information is lost; this may correspond to the loss of an I frame or of a number of

P frames or both. For this reason instead of calculating two loss contributions, one for I frames

and one for P frames, the loss contribution is calculated in bytes. Another solution that gives

more weight to the loss of I frames relative to P fames would be to use packet lengths.

It is necessary to add together two contributions to the adjacency component of eQoS for

a video stream: one for the adjacency between packet loss events for an I frame and another,

similar, contribution for adjacent loss events for a P frame. GI(PID, PId) is the contribution for

the loss of adjacent I frame packets. GP (PPD, PPd) is the contribution for the loss of adjacent

P frame packets.

The eQoS formula for a video streaming service includes both these contributions:

eQoS = αF (BD, Bd) + βGI(PID, PId) + γGP (PPD, PPd) (4.21)

where α, β and γ are the weights associated respectively with F (BD, Bd), GI(PID, PId) and

GP (PPD, PPd). These are considered in more detail in the following subsection.

GI(PID, PId) and GP (PPD, PPd) are adjacency contributions for I frame and P frame

loss. Both contributions are calculated using equation 4.6. If B frames are used then the
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GP (PPD, PPd) contribution is replaced by a GP,B(PPBD, PPBd) contribution. Comparing

equation 4.21 with equation 4.1 as previously used for VoIP and audio streaming, it can be seen

that there are two changes. The first change is the use of an adjacency contribution for each type

of frame used; here this translates into a separate contribution for I frames and P frames. The

second change is the use of bytes instead of packets as the unit of information in the calculation

of the loss contribution.

The adjacency contribution for I frame packets is shown in figure 4.7. The curve that fits

this discrete probability distribution is sigmoidal. In this simple example there are 30 frames

per second; of these 1.3 are I frames and 28.7 are P frames. Each I fame is comprised of 12

packets of maximum size 1024 bytes; therefore I frames are transmitted with an average rate of

15 packets per second.

Figure 4.8 shows the sigmoidal curve that fits the discrete probability distribution for the P

frames. In each second the number of P frames transmitted is approximately 29, with an average

size of 2 packets per frame. This results in the transmission of 58 packets per second with a

maximum packet size of 1024 bytes.

4.2.4 Setting the parameters α, β and γ for Video Streaming

To fully define eQoS for a video stream the three parameters α, β and γ need to be set. As for

audio streaming there are two key aspects to the evaluation of perceived quality. First of all it

is necessary to consider the video content, i.e. the details in the frames, the differences between

frames, changes of scene, colours, etc. The second aspect is the physical characteristics of the

video, i.e. resolution, frames per second, packet sizes etc.

The three parameters α, β and γ are set by drawing on the MOS evaluation and the desired

eQoS curve. Perceived quality is also affected by the client software and hardware. Corrections

by software algorithms or hardware can hide or amplify variations in quality. Both estimation

methods are used together for video streaming.

α, β and γ have a larger range of values than for VoIP and audio streaming. They have to
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Fig. 4.7: Probability two or more packets are dropped in sequence from I frames as the number

of packets dropped or lost increases.
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Fig. 4.8: Probability two or more packets are dropped in sequence from P frames as the number

of packets dropped or lost increases.
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satisfy the following two equations. The first equation limits eQoS to a range between 0 and 1,

α+ β + γ = 1; (4.22)

while the second equation,

β + γ > α, (4.23)

gives more weight to the adjacency contribution for I and P frames than to the loss contribution.

The values used in Chapter 6 are α = 0.4, β = 0.3, γ = 0.3. As for VoIP, these three parameters

are somewhat arbitrary in that they are chosen because they fit the desired and achievable QoE

for the control video stream. This is a short video2 with resolution 480×320. It is encoded using

a basic H.264 encoding that uses only I and P frames. The video snippet included quick shot

changes, many moving objects and a significant difference in contrast between objects. This

increases the quantity of information to be conveyed per packet and per frame. The three param-

eters were chosen to balance the F (BD, Bd), GI(PID, PId) and GP (PPD, PPd) contributions

with the desired quality and they capture the independent probabilities of dropping events for

GI(PID, PId) and GP (PPD, PPd).

4.3 Considerations for the Practical Application of eQoS

eQoS needs some adjustments in order to be implemented in an AP. eQoS has to sample the

number of dropped packets per second due to both queue overflow and queueing delays that

exceed a maximum permitted value. The number of dropped packets per second can be counted

using an array or a list for each flow which contains the time when the packet is dropped. This

data structure has to be checked periodically to count the packets dropped per second and to

remove packets that fall outside the one second window.

Mathematically the problem can be solved by implementing an EWMA to calculate the

average number of packets dropped in the last second. Such an EWMA was used in the active

queue management scheme RED to calculate the average queue length [9]. In this case the
2https://www.youtube.com/watch?v=hbqMuvnx5MU
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EWMA is defined as:

avg(PD+Pd)t = (1− w(PD+Pd))× avg(PD+Pd)t−1 + w(PD+Pd) × PD,d (4.24)

where:

avg(PD+Pd)t is the normalised packet dropped average in a second at the instant t,

avg(PD+Pd)t−1 is the normalised packet dropped average in a second at the instant t− 1,

w(PD+Pd) is the weight associated with each dropping event and

PD,d is a 0-1 variable to indicate if the current packet is dropped or transmitted.

The weight, w(PD+Pd), can assume values between 0 and 1. The dropping event PD,d is 0 if the

packet is not dropped or 1 if the packet is dropped. Therefore, avg(PD+Pd)t is normalised and

assumes values between 0 and 1.

To calculate the number of packets dropped in a second, avg(PD+Pd)t has to be multiplied

by the total number of packets transmitted by the service during the sampling time interval. So

the number of packets dropped in the sampling time interval is:

Nt × avg(PD+Pd)t, (4.25)

where Nt is the total number of packets transmitted in the sampling time interval.

The weight w(PD+Pd) is a key parameter in equation 4.24. As discussed in [9], the EWMA is

a low-pass filter and w(PD+Pd) is the time constant for this filter. It serves two purposes in the

average calculation in equation 4.24. It can determine the precision of the average calculation

and it captures the reaction time needed for the prediction. Upper and lower bounds onw(PD+Pd)

can be obtained experimentally using the methodology given in [9].

An example is now used to illustrate this concept: if 10 packets are dropped per second

from a sequence of 43 packets transmitted in an audio stream then figure 4.9 shows the average

number of lost packets calculated using the EWMA given above when the lower limit set for

w(PD+Pd) is 0.01. Figure 4.10 shows the EWMA when the upper limit set for w(PD+Pd) is 0.05.

By the definition of EWMA [9], the standard deviation grows as w(PD+Pd) grows. For a high

value of w(PD+Pd) the transient between the beginning of the stream and the calculation of 10

dropped packets per second is very small.
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Fig. 4.9: Average number of lost packets for the example when w(PD+Pd) = 0.01

Fig. 4.10: Average number of lost packets for the example when w(PD+Pd) = 0.05
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Fig. 4.11: Average number of lost packets for the example when w(PD+Pd) = 0.05 for the first

100 packets transmitted.

Figure 4.11 shows the first 100 packets transmitted by the system shown in figure 4.10. The

average value stabilises at approximately 10 dropped packets per second after less than half

second. In this case the estimate provided by the system responds rapidly, but it should be noted

that the standard deviation is higher than that obtained when lower values of w(PD+Pd) are used.

High values of w(PD+Pd) are preferable, in this case 0.05, because the purpose of eQoS is

to estimate the value of QoE and use it to adjust the node properties so as to avoid future packet

loss. A small transient is extremely helpful as it means the average number of dropped packets

can be found quickly. It is possible to use other, more precise values for w(PD+Pd). The value of

0.05 is sufficiently precise for use with the media stream discussed above as it is an acceptable

compromise when oscillations in the EWMA are between 2 and 4 packets. Different values can

be used depending on the specific application scenario used for eQoS.

Another important feature of the EWMA formula is that the number of packets dropped per
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second can be considered as continuous, rather than discrete. The EWMA equation can then be

used to consider a small variation in the number of packets lost over time [121]:

avg((t+ 1)δ) = (1− w(PD+Pd))× avg(tδ) + w(PD+Pd) × P(t)δ (4.26)

In the limit this yields the differential equation [121]:

d(avg)

dt
=
loge(1− w(PD+Pd))

δ
avg(t)−

loge(1− w(PD+Pd))

δ
P (t) (4.27)

This differential equation can then be used as a input in a control theoretic representation of the

system [121].

4.4 Summary

In this chapter a new expected Quality of Service metric, eQoS, has been introduced. eQoS is

defined as a perceived QoS metric and it captures the assessed QoS, i.e. the QoE. The goal of

eQoS is to provide a better, near instantaneous estimate of the QoE at the AP in a infrastructure

wireless network.

eQoS is designed to be used for real time services, it is calculated by counting the number

of packets dropped or delayed beyond an acceptable limit in a one second time window. This

chapter has shown how eQoS can be calculated for the three main real time services: VoIP, audio

and video streaming. These time critical services are the most popular ones used on mobile

devices in current and future wireless networks.

VoIP produces CBR traffic and the eQoS metric for it is a linear combination of two compo-

nents: the first is the number of packets lost or delayed beyond the maximum limit allowed and

the second is associated with the probability of dropping adjacent packets. The two components

are appropriately weighted and graphically they are, respectively, a line and a sigmoidal curve.

Audio streaming does not, in general, produce CBR traffic. In this case the encoding algo-

rithm chosen for the application of eQoS involved variable packet sizes, with a constant number

of packet transmissions per second. Audio streaming produces a constant flow of information.
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Hence eQoS for audio streaming can to be measured in the same way as, and with a similar

formula to, VoIP.

Video Streaming uses VBR traffic; the encoding algorithm chosen for the calculation of

the eQoS used variable packet sizes and a variable number of packet transmissions per second.

Video streaming packets are not produced at regular intervals and their information content

varies. The eQoS formula for video streaming uses a statistical average and is composed of

three weighted factors: the loss contribution measured in bytes and the adjacency contribution

for each type of frame as measured in packets.

The eQoS metric established in this chapter will form a key element of a novel Quality Queue

Management, QQM, framework. The following chapter will introduce the components of the

QQM algorithm and set out how they can operate together to manage traffic passing through a

wireless access point.
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Chapter 5

Quality Queue Management

One of the key components for managing traffic in wireless network controllers are the queues

used to buffer data within the Access Point (AP). Traffic management algorithms can be imple-

mented on these AP queues. If they are well designed then these clearly improve performance

and provide Quality of Service (QoS) guarantees for real time services.

Queues can be managed using Active Queue Management (AQM) algorithms and some of

these algorithms have been implemented on the network equipment most commonly used for

routing in wired networks today. AQM schemes were originally designed to avoid and mitigate

congestion on wired networks and they were not intended to provide quality assurance in a

wireless environment. Such congestion avoidance mechanisms act to limit or prevent queue

overflow. Typical parameters used in AQM schemes are the queue length, arrival rate and output

speed. The schemes drop packets regardless of the impact this might have on the Quality of

Experience (QoE) where the loss of a few packets can make an appreciable difference to the

QoE provided.

Next generation wireless networks aim to achieve significantly higher throughput then ex-

isting systems and will make extensive use of multi queue systems; thus the wireless queue

management algorithms of the future will carry out many functions beyond that of simple con-

gestion avoidance. These new algorithms will address not only congestion avoidance but also
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QoS assurance.

This chapter introduces a new mathematical model to describe packet transmission in a fu-

ture wireless network where the Enhanced Distributed Channel Access (EDCA) method is em-

ployed. The mathematical model [15], derived using combinatorics, forms the basis for the de-

sign of a new class of traffic management algorithms called Quality Queue Management (QQM)

schemes [15].

QQM schemes measure eQoS and implement congestion avoidance mechanisms whilst si-

multaneously managing contention windows (CW) and queueing priorities. QQM operates on

a per flow basis across all services and traffic types. It is designed to reduce delay and discard

traffic that is of poor quality.

Others have used combinatorial approaches for the modeling of the Distributed Coordination

Function (DCF) in wireless sensor networks [130] [131] [189]. These methods were limited in

scope, but indicated that a similar mathematical approach might provide insightful results for

EDCA.

The chapter is organised as follows: firstly a novel combinatorial model that can be used

to estimate the probability that a successful transmission occurs, the probability that a collision

occurs and the probability that the channel is idle is presented. The QQM algorithm is then

introduced along with its components: the active eQoS measurement system, the contention

window controller and the queue management system. The systems are subsequently evaluated

in Chapter 6.

5.1 Theoretical Analysis of a Multi Queue System

In this section the multi queue system detailed in chapter 2 is analysed. The analysis focuses

on a theoretical description of packet behaviour in a future wireless network. Before presenting

this analysis a brief review of Enhanced Distributed Channel Access (EDCA) is provided.

The formulation of a theoretical model necessitates the making of some underlying assump-

tions; the first of these relates to the wireless environment. It is assumed that the network uses

105



a 160MHz channel with a Single Input and Single Output (SISO) configuration and a theo-

retical maximum throughput of 780Mbps on the channel, i.e. it is assumed that the VHT

IEEE802.11ac [6] standard is used. All nodes in the wireless environment are assumed to use the

IEEE802.11ac standard and packet headers contain all the information necessary for backward

compatibility. Some SISO characteristics, such as Block Acknowledgment (BA) to improve the

quality of the signal, Binary Convolutional Coding and Space-Time Block Coding (STBC) are

omitted as they do not affect MAC layer behaviour. Packet transmission times for the wireless

network are estimated using the relevant equation from the IEEE standard [6]. This will be

discussed in more detail in Chapter 6. This first set of assumptions improves the design and op-

timisation of the mathematical model, and hence QQM, for use in a future wireless environment.

The second set of underlying assumptions relates to the channel access method used. It is

assumed that the EDCA procedure implemented in IEEE802.11ae is used. This extension gives

high priority to particular traffic and message types. It is assumed that Contention Free Bursting

(CFB), also known as TXOP, is used. This was introduced along with EDCA in IEEE802.11e

and was discussed in section 2.2. This second assumption makes sure that the mathematical

model and QQM are suited for use on more modern mobile devices that implement TXOP.

The third assumption relates to the sequential transmission of packets in the wireless net-

work. In the analysis it is supposed that the CSMA/CA feature is not used in the network. As

mentioned previously, this feature negatively impacts on throughput and this is undesirable for

high speed protocols such as IEEE802.11ac. At first glance this may seem to be contrary to the

objectives of the QQM algorithm; that is, to optimise the throughput and efficiency of future

wireless networks. The high speed of future wireless networks makes CSMA/CA an obstacle

for enhancing IEEE802.11ac performance as CSMA/CA control packets are sent at a very low

speed for backward compatibility. In the IEEE802.11ac protocol the MSDU dwarfs the amount

of effective data contained in the packet. Collisions can be avoided using RTS and CTS packets

but only at the expense of a significant reduction in throughput. The probability that a colli-

sion occurs can be reduced by employing techniques to conserve the channel bandwidth through

avoidance of the transmission of control packets. This will be explored in section 5.5.1.2. Taken
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Fig. 5.1: EDCA: AIFS and Backoff times with CWmin

together, both QQM and the mathematical model aim to reduce the number of collisions and

make CSMA/CA redundant. This third assumption focuses on eliminating the need for CS-

MA/CA through the deployment of QQM.

As set out in table 2.1, each AC has a backoff time of between 0 and CWmin time slots

with an associated AIFS[AC]. For example, for AC0 the backoff time is between 0 and three

timeslots and AIFS[0] is a SIFS time plus two time slots. Figure 5.1 summarizes graphically

the relationship between each AIFS and the CWmin time slots for each AC given in table 2.1.

For each new transmission attempt, each backoff time slot has an equal probability of being

randomly chosen, therefore this probability follows a discrete uniform distribution across the

interval [0, CW ]. In the subsequent calculations the number of time slots in a contention window

are considered rather than the contention window size. The probability of picking backoff time

slot i follows a uniform distribution on the interval [1, CW + 1] [190]:

unif{1, CW + 1}. (5.1)

The key probabilities of interest in this thesis are the probability that a successful transmis-
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Access Category Prob. of TX Prob. of collision Prob. channel idle

AC0 Pt(AC0)x Pcx Pex
AC1 Pt(AC1)x Pcx Pex
AC2 Pt(AC2)x Pcx Pex
AC3 Pt(AC3)x Pcx Pex

Table 5.1: Notation for key probabilities associated with events that occur in time slot x

sion occurs, the probability that a collision occurs and the probability that the channel is idle.

The probability a transmission occurs is denoted Pt, the probability a collision occurs is Pc and

the probability there are no packets queued for transmission is Pe. The corresponding notation

used for each access category is given in table 5.1. In the following subsections the focus shifts

to determining these probabilities.

5.1.1 Determining the Probability a Packet is Successfully Transmitted

In this section we use combinatorics to determine the probability a packet is transmitted by

a given AC [15] . The first challenge is to obtain a mathematical description of how each

AC obtains access to the channel. The number of access categories with a packet ready for

transmission is NAC . This number will vary over time. As the focus of this section is on

calculating the probability an AC gains access to the channel, a discussion on how NAC can be

estimated is deferred to section 5.4 below.

The probability of picking a time slot between [1, CWj + 1] is:

P(ACj) =
1

CWj
, (5.2)

where:

j is the index for each AC, for the system considered j = 0, 1, 2, 3 and

CW j is the minimum time slot CW for each ACj .

For example, if there are four ACs with a CW of eight backoff time slots, the probability of
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picking slot 0 is 1
8 . Using a similar methodology to [130], the probability that each of the other

ACs chooses a slot other than slot 0 is:

1− P(ACj) =
CWj − 1

CWj
. (5.3)

In this example, this is 7
8 . Hence the probability that the first AC picks time slot 0 and the other

three ACs pick time slots other than slot 0 will be the product of 1
8 for the first AC and (78)

3

for the other three. Since any one of the four ACs could have chosen slot 0, there are a total

of four ways in which only one AC can pick slot 0 and so the result has to be multiplied for

4. Therefore, the probability that one AC picks slot 0 and the other three ACs do not will be

4 ×
(
1
8 ×

(
7
8

)3). As will be shown below, this probability can be found more directly through

the use of permutations and combinations.

Returning to the previous example of four ACs each with a CW of eight backoff time slots,

the probability that an AC gains access to the channel is given by the ratio between the number

of backoff time scenarios where only one AC is ready to transmit and the total number of

backoff time scenarios possible. This can be found using combinatorics as follows: The number

of possible ways in which three of the ACs are not ready to transmit is 73. This is the number

of permutations with repetition, P ′n,r = nr, of r = 3 numbers chosen from n = 7 numbers.

The number of scenarios where one AC is ready to transmit and the other three are not is given

by 4× 73. The total number of possible backoff time scenarios possible is the permutation with

repetition that gives the number of ways 8 objects can be taken 4 at a time i.e. 84. Therefore,

the probability that one AC picks slot 0 and the other three ACs do not will be 4×73
84

. This agrees

with the previous calculation of this probability.

In order to describe the ECDA system it is necessary to generalise these calculations. Let

each distinct access category in the system be indexed by j. The number of slots in the contention

window associated with each ACj is given by CWj . Let the number of ACjs that are seeking to

access the channel at a given instant in time beNACj . Assuming that x is the number of ACs that

are ready to transmit and that y is the index of the time slot to be used for the transmission then

the total number of ways (NACj − x) ACs are not ready to transmit is given by the following
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permutation with repetition [130]:

P ′(CWj−y),(NACj
−x) = (CWj − y)NACj

−x.

The following notational simplification is used to assist the reader in the subsequent discussion:

P ′(CWj−y),(NACj
−x) = P ′NACj

(x,y).

This gives the total number of ways (NACj − x) ACs are ready to transmit in slot y or later:

P ′NACj
(x,y) = (CWj − y)NACj

−x. (5.4)

The repetitions included in P ′NACj
(x,y) represent future collisions. Repetitions are selections

of the same slot, as shown in [130], and in this scenario the backoff times will expire at the same

time and a collision will occur.

The probability that an ACj transmits in time slot i is:

Pt(ACj)i = NACj
× (PACj

)NACj × P ′NACj
(1,i+1). (5.5)

This can be used to verify the calculations given previously for a system consisting of four ACs,

each with a CW of eight backoff time slots. For this example, equation 5.5 gives the probability

that an AC gains access to the channel at time slot 0 as:

Pt(ACj)0 = NACj
× (PACj

)NACj × P ′NACj
(1,0+1) = 4×

(
1

8

)4

× 73 = 4× 1

8
×
(
7

8

)3

.

The focus of this dissertation is on an infrastructure wireless network that implements

EDCA. In this case there will be four different types of AC that compete for access to the

channel. From figure 5.1, it can be inferred that at time slot 0 only two types of ACs are able to

transmit: AC0 and AC1. Using equations 5.4 and 5.5 it is possible to calculate the probability

that one AC0 is transmitting in slot 0 as [130]:

Pt(AC0)0 = NAC0(PAC0)
NAC0P ′NAC0

(1,1) × (PAC1)
NAC1P ′NAC1

(0,1). (5.6)

Equation 5.6 captures the probability that slot 0 is chosen for a single AC0 and that the

remainingAC0s and allAC1s have chosen a time slot other than slot 0. Using a similar argument

it is possible to calculate the probability that one AC1 is transmitting in time slot 0 as:

Pt(AC1)0 = (PAC0
)NAC0P ′NAC0

(0,1) ×NAC1
(PAC1

)NAC1P ′NAC1
(1,1). (5.7)
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No packets are transmitted when slot 0 is empty for all AC0s and all AC1s . The probability

that slot 0 is empty, Pe0 , is the product of the probability that slot 0 is not randomly chosen by

any of the AC0s and the probability that slot 0 is not randomly chosen by any of the AC1s:

Pe0 =
P ′NAC0

(0,1)

P ′NAC0
(0,0)

×
P ′NAC1

(0,1)

P ′NAC1
(0,0)

. (5.8)

Each term in the product is the ratio of the number of ways that any slot other than slot 0 can be

chosen to the total number of possible slot choices when there are no restrictions on the slot that

can be chosen.

5.1.2 Determining the Probability a Collision Occurs

The other important events in the network that need to be accounted for are collisions [15].

Collisions occur when the backoff periods for at least two ACs expire at the same time. For the

purposes of this work it is assumed that collisions occur between a maximum of two stations

at the same time [130]. This is a reasonable assumption as the number of ACs competing to

access the channel depends on the number of ACs that are ready to transmit data and it is likely

that only a few ACs are in saturation at the same time, i.e. it is likely that only a few ACs have

packets waiting to be transmitted.

The probability a collision occurs, Pc, at a given slot time is the sum of the collision proba-

bilities between two AC0s, two AC1s or between one AC0 and one AC1. The probability of a

collision in time slot 0, Pc0 is:

Pc0 = Pc(AC0)0 + Pc(AC1)0 + Pc(AC0, AC1)0. (5.9)

Using a similar methodology to [130], the probability two AC0s give rise to a collision,

Pc(AC0)0, is given by:

Pc(AC0)0 =

 NAC0

2

 [(CW0 − 1)(NAC0
−2)(CW1 − 1)(NAC1

)]

(CW0)
NAC0 (CW1)

NAC1
. (5.10)

Equation 5.10 is obtained by calculating the number of possible combinations that arise when

two NAC0 have chosen time slot 0 and all the NAC1s have chosen a time slot other then 0. This
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is divided by all of the slot time choices between NAC0 and NAC1 . Similarly the probability two

AC1s give rise to a collision, Pc(AC1)0, is:

Pc(AC1)0 =

 NAC1

2

 [(CW0 − 1)(NAC0
)(CW1 − 1)(NAC1

−2)]

(CW0)
NAC0 (CW1)

NAC1
. (5.11)

The final probability to be calculated is that of a collision due to the time slot choices of one

AC0 and one AC1. The probability that both an AC0 and an AC1 have chosen time slot 0 is:

Pc(AC0, AC1)0 = (NAC0
×NAC1

)× [(CW0 − 1)(NAC0
−1)(CW1 − 1)(NAC1

−1)]

(CW0)
NAC0 (CW1)

NAC1
.

The calculation of Pc is more complicated when more than two types of AC are involved.

The two possible outcomes are that a collision occurs or that a collision does not occur. These

two probabilities must sum to 1 because one or other of these possible outcomes must happen. In

order to find the probability a collision occurs we must subtract the probability a collision does

not occur from one. If a collision does not occur then either a successful packet transmission

occurs or there are no packets queued for transmission. There are two possible ways that a

successful transmission might occur: either a packet is successfully transmitted by AC0 or a

packet is successfully transmitted by AC1. So the probability a collision occurs in time slot 0 is:

Pc0 = (1− ((Pt(AC0)0 + Pt(AC1)0) + Pe0)) = 1− Pt(AC0)0 − Pt(AC1)0 − Pe0 . (5.12)

This argument can be extended to find the probability a collision occurs when more than two

ACs are competing for access in a given time slot.

5.1.3 Extending the Model to AC2 and AC3

Figure 5.1 shows three ACs competing for access to the channel in time slot 1. In particular,

it shows the arbitration inter-frame spacing, AIFS, for each of the access categories. For AC0

and AC1, AIFS[AC0] and AIFS[AC1] are both one SIFS and two time slots long. AC0 and

AC1 have the highest priority and so the AIFS for AC2 and AC3 will be greater. For AC2,

AIFS[AC2] is one SIFS and three time slots long. This means that for AC2 time slot 0, the

first slot it can use for transmission, corresponds to time slot 1 for AC0 and AC1. For AC3 the

arbitration inter-frame spacing, AIFS[AC3], is longer than for all the other ACs as it has the
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lowest priority. Its AIFS is one SIFS and 7 time slots long. So time slot 0 for AC3 corresponds

to time slot 5 for AC0 and AC1 and time slot 4 from AC2. AIFS[AC] values are summarized

in table 2.1 .

The probability an AC2 transmits in a given time slot depends on the status of the AC0s and

AC1s. If time slot 0 is not chosen by any AC0s or AC1s, or if they do not have any packets to

transmit, then an AC2 has the opportunity to transmit data. The probability an AC2 transmits

data in time slot 1, Pt(AC2)1, is the product of three probabilities. The first two of these are the

probabilities all AC0s and AC1s competing for the channel have chosen a time slot other than

slot 1. The third is the probability that only one of the AC2s has randomly chosen time slot 1.

This gives:

Pt(AC2)1 =
P ′NAC0

(0,2)

P ′NAC0
(0,0)

×
P ′NAC1

(0,2)

P ′NAC1
(0,0)

×NAC2
(PAC2

)NAC2P ′NAC2
(0,1).

Though CWAC1min
overlaps with CWAC3 in practice it is unlikely that Pt(AC3)5 con-

tributes significantly when AC1 is competing to access the channel, see section 5.1.4. Thus the

contribution of all AC1s will be neglected in the calculation of Pt(AC3), Pc5 and Pe5 below.

Assuming that a transmission fromAC3 occurs when theAC0s andAC1s are not competing

to access the channel. The probability that AC3 transmits a packet is:

Pt(AC3)5 =
P ′NAC2

(0,5)

P ′NAC2
(0,0)

×NAC3
(PAC3

)NAC3P ′NAC3
(0,1). (5.13)

Pe1 is the probability time slots 0 and 1 have not been randomly chosen by any of the AC0s

and AC1s, and that time slot 0 is not randomly chosen by any of the AC2s. It is given by:

Pe1 =
P ′NAC0

(0,2)

P ′NAC0
(0,0)

×
P ′NAC1

(0,2)

P ′NAC1
(0,0)

×
P ′NAC2

(0,1)

P ′NAC2
(0,0)

. (5.14)

Neglecting the contribution of the AC1s, Pe5 is the probability that time slots 0 to 4 are not

randomly chosen by the AC2s, and that time slot 0 is not randomly chosen by any of the AC3s.

This gives:

Pe5 =
P ′NAC2

(0,5)

P ′NAC2
(0,0)

×
P ′NAC3

(0,1)

P ′NAC3
(0,0)

. (5.15)

The procedure to estimate the CW used in this thesis, assumes that the probability two

sequential time slots are empty is low and so it is neglected in these calculations i.e. It is as-

sumed that the number of empty time slots does not exceed one. Pe should be interpreted as the

probability there is an interval of length e time slots where no transmission occurs.
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The probability of a collision in time slot 1 is:

Pc1 = 1− Pt(AC0)1 − Pt(AC1)1 − Pt(AC2)0 − Pe1 . (5.16)

In time slot 5 the probability of a collision is:

Pc5 = 1− Pt(AC2)4 − Pt(AC3)0 − Pe5 . (5.17)

Using the methodology outlined above it is now possible to estimate the probability that a

successful transmission occurs, the probability that a collision occurs and the probability that the

channel is idle. Before looking at how these can be used in practice, some consideration must

be given to both the contention window sizes and the queues associated with AC0 and AC1.

5.1.4 Contention Window Sizes and Queueing in AC0 and AC1

The first important consideration that merits further discussion relates to how the CW size is

determined. The CW value is chosen randomly in the interval [0, CWmin].

The time slot is chosen randomly and is decremented when the channel is idle and remains

unchanged when the channel is busy. Therefore, the distribution of CW values is skewed to-

wards time slot 0 over a range of values between 0 and CWmin.

A suitable methodology for instantaneous sampling of CW values at all the stations com-

peting for access the channel is not straightforward and is beyond the scope of this work. On the

other hand, it is possible to estimate CW sizes by considering each station separately. This can

be estimated using either an empirical or a theoretical approach.

One empirical method that might be suited for CW estimation is the German Tank Prob-

lem [132]. This was discussed in section 3.2.1.1. With just a few samples this method can be

used to estimate the average CW size to an acceptable level of precision. An alternate, theo-

retical approach would be to use the statistical expectation associated with a discrete uniform

distribution. If time slots are randomly distributed in the range between 0 and E[CWi], then an

integer upper bound for E[CWi] is [134]:

dE[CWi]e =
CWmin∑
n=0

Pn × n, (5.18)
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where Pn is the probability of picking a time slot between 1 and (CWmin + 1), i.e. 1
CWmin+1

Both these methods are dynamic: using the first method the CW size needs to be estimated

periodically, while using the second method the CW size needs to be estimated every time the

upper CW limit is exceeded. Despite their differences, both methods provide acceptable results

for use in the theoretical calculations discussed above.

The results from subsection 5.1.2 can be used to determine the impact collisions have on the

QoE and on the CW size used by the QQM algorithm. They cannot be used to determine the

precise value of CW ; for example, when it is doubled because a collision has occurred. For

practical applications, and for the evaluation of the mathematical model presented above, the

CWmin value is estimated by using the value for an individual mobile station.

A second important consideration relates to the AC0 and AC1 queues. Q0 is the queue

associated with AC0 and Q1 is the queue associated with AC1. Both Q0 and Q1 are functions

of the characteristics of AC0 and AC1 respectively.

Future wireless networks will have a very high throughput particularly in comparison to

the packet transmission frequency for VoIP traffic. The exact instant a VoIP conversation starts

is unpredictable. Protocol G.729 [57] transmits and receives at a frequency of 50 packets per

second, fV oIP = 50Hz, i.e. a packet is transmitted or received every 20ms. The IEEE802.11ac

protocol can be considered as a spatial stream with a 160MHz channel. In this case a packet is

transmitted about every 0.265ms, not including collisions and empty slots due to backoff. At

a frequency of 3.8KHz and assuming a worst case scenario where CSMA/CA control packets

are used, this corresponds to more than three thousand packets per second. Even if a very large

number of VoIP conversations are present in the network, the frequency at which they access

the channel is low when compared to the transmission frequency used for the IEEE802.11ac

packets. Since AC0 has highest priority, Q0 is likely to contain at most one or two packets.

VoIP calls may be synchronised by application software or software running on the node

itself or by network quality management software; therefore, VoIP packets from wired nodes

may arrive at the AP at the same point in time. This problem is evident in class based networks

[37] where the TXOP feature is used.
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AC1 has a lower priority thanAC0, but it is still subject to similar effects and considerations.

An audio or video stream, encoded using MPEG4 [66] [67] as described in section 2.4.4, trans-

mits one I frame per second and 29 P frames per second. I frames are, on average, composed

of 12 packets with a size of 1024 bytes each. An average of 2 packets is needed for each P

frame. The frequency of the video transmission, fV ideo, is 30 frames per second but the number

of packets per frame is variable. AC1’s TXOP feature is 2.008ms long and is sufficient for the

transmission of 45 streaming packets.

From this discussion it can be concluded that AC0 and AC1 only periodically occupy the

channel for packet transmissions. The frequency with which they transmit packets is related to

the total number of VoIP and streaming packets passing through the AP . AC2 manages traffic

that has a low frequency of demand for access to channel. This traffic is similar to that of AC1

and the considerations for AC0 and AC1 remain valid for AC2. AC3 will either make use of

any remaining transmission time to send its data or else will transmit until it exceeds the upper

limit imposed on its throughput.

In the next section a practical application of the theoretical model is proposed.

5.2 An Application of the Theoretical Model

This section describes an application of the mathematical model to estimate the average time

needed to transmit a packet over a future wireless network. This application is also useful for

estimating the throughput on a future wireless network [15].

The Bianchi model [123] can be used to estimate the average time needed to transmit a

packet in a DCF environment. It can also be used to estimate the throughput. In this section

this model is extended for use in future wireless networks, where the EDCA method is used to

access the channel.

In subsection 5.1.4 it was noted that AC0s have the smallest CW size and so have the best

opportunity for access to the channel in order to transmit all their packets. AC0s are in competi-

tion with AC1s for access to the channel; however, AC1 has a larger CW size than AC0. Both
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AC0s and AC1s transmit all their queued packets if the total volume of traffic to be transmitted

does not exceed the available throughput. The number of AC0s and AC1s competing for access

to the channel affects the associated transmission, collision and idle channel probabilities.

The average time required to transmit a packet is equal to the time need to transmit the packet

itself plus the time lost due to collisions, when the channel is idle and due to backoff [123]. Both

the collision time and the backoff time are estimated using the probabilities found in subsection

5.1.2. The average packet transmission time for AC0 is [123]:

TxT imeAC0
= TxAC0

+ Tc× Pc0 + Te× Pe0 (5.19)

where:

TxAC0 : is the time to transmit CSMA/CA packets, a VoIP packet and ACK packet on

IEEE802.11ac,

Tc: is the time lost for a packet transmission, or RTS if CSMA/CA is used, and the AIFS

time when a collision occurs,

Te: is idle time, it can be considered as a single empty 9µs time slot.

Similarly, the average packet transmission time for AC1 is:

TxT imeAC1
= TxAC1

+ Tc× Pc0 + Te× Pe0 . (5.20)

BothAC0s andAC1s manage UDP traffic with different packet sizes. When G.729 encoding

is used AC0s have a fixed packet size of 20 bytes and a fixed transmission rate. AC1s have a

variable packet size, but this can be approximated by an average value.

Packet transmission times for the other two Access Categories AC2 and AC3 are as follows:

TxT imeAC2
= TxAC2

+ Tc× Pc1 + Te× Pe1 , (5.21)

TxT imeAC3 = TxAC3 + Tc× Pc5 + Te× Pe5 . (5.22)

TxAC2 and TxAC3 depend on the Transport Layer protocol used; for example, TCP and its ACK

or UDP.

The throughput calculation depends on the network traffic configuration. Considering that

AC0 and AC1 have the highest probability of access to the channel, Pe1 and Pc1 are calculated

when both Q0s and Q1s are empty, that is when AC0 and AC1 have transmitted all their queued
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packets. AC2 has an higher probability of access to the channel than AC3, thus the probabilities

Pe5 and Pc5 are calculated when Q2 is empty or when the protocols used for AC2 have reached

their upper throughput limits.

In each one second interval the time spent transmitting AC0 packets at the access point is:

TimeAC0
= TxT imeAC0

× fV oIP × (NAC0
− 1) + TXOPTimeAC0

× fV oIP , (5.23)

where

fV oIP is the VoIP frequency of access to the channel, for G.729 this is 50Hz i.e. 50 packets

per second, and

TXOPTimeAC0 is the time spent for the transmission of (NAC0 − 1) VoIP packets and, if

necessary, the associated CSMA/CA control packets.

The audio is transmitted by AC0 with a frequency fAudio. For example, AAC encoding

needs to transmit 47 packets per second, i.e. at a frequency of 47 Hz. fAudio is approximated by

fV oIP and audio packets are considered to be transmitted with VoIP packets in TXOPTimeAC0

when the audio is being streamed from the wired to the wireless network.

As packets may arrive at the AP at the same time; channel access using the TXOP feature

has the same Pe and Pc as for a single packet transmission. In order to take account of this

TXOPTimeAC0 must be multiplied by (NAC0 − 1).

Future wireless networks have enough throughput available to transmit a large number of

video streams. The number of streams that can be handled depends only on the bandwidth, in

bits per second, that each stream requires. The time needed to transmit a video stream through

AC1 is:

TimeAC1 = TXOPTimeIAC1 × fI ×NAC1 + TXOPTimePAC1 × fP ×NAC1 , (5.24)

where TXOPTimeIAC1 and TXOPTimePAC1 are the TXOP times needed to transmit I

frames and P fames respectively. For example, an I frame may, on average, consist of 12 packets

with 1024 bytes per packet and a P frame may have, on average, 2 packets with 1024 bytes per

packet. Taking all frames together, a single video stream has a typical channel access frequency
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of 30Hz. For I frames alone the channel access frequency, fI , is typically of the order of 1Hz,

while for P frames the channel access frequency, fP , is of the order of 29 Hz.

As mentioned above, when the Q0s and Q1s are empty then the AC0s and AC1s have no

packets to transmit and the channel is shared between AC2 and AC3.

In each one second interval the respective times spent transmitting AC2 and AC3 TCP

packets per flow at the Access Point (AP) are:

TimeAC2
= NfAC2

× TxT imeAC2
× CWavgAC2

×NRTT , (5.25)

TimeAC3
= NfAC3

× TxT imeAC3
× CWavgAC3

×NRTT . (5.26)

where NfAC2
and NfAC3

are, respectively, the number of flows in AC2 and AC3. TxT imeAC

includes the time to transmit the TCP data packet and the time it takes for the TCP acknowledge-

ment packet to travel in the opposite direction. NRTT is the average number of round trip times

per second. CWavgAC is the average congestion window size for a given AC. The product

of CWavgAC and NRTT may be viewed as way of averaging across the TCP flows. If UDP

traffic is present then it will have to be included in the TimeAC calculation in a similar way to

the traffic managed by AC0. The product of CWavgAC and NRTT acts to smooth bursty traffic

and take account of intervals when other ACs are sending packets. An example of a source of

AC2 traffic is a Telnet connection.

The TCP protocol transmission speed is limited by the congestion window [49] and queue

size. The expected TCP throughput is:

dE[Thrtcp]e =
CongestionWindowMax

RTT
×NTCP , (5.27)

where:

RTT : is the Round Trip Time,

CongestionWindowMax is the maximum contention window size for the TCP flow,

Ntcp is the number of TCP flows.

The total throughput is estimated over a long period of time; for example, over a one second

interval. One possible application of this model is in the optimisation of throughput as it can be

used to control the CW [114] [129] based on the observed traffic mix.
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5.3 Model Limitations

This section summarises a few limitations of the model presented above.

By sampling just a few variables at the AP, it is possible to predict the volume of traffic gen-

erated by each of the fourACs. However, it is impossible to predict which station is transmitting

and when. This is because the model is based on combinatorics and some of the variables used

in the formulas are estimated using average values. For this reason it is not possible to use the

model to provide specific detail on the traffic at each mobile station in the network.

The model estimates the probability that a collision occurs, but it does not provide an esti-

mate of the number of packets involved in a collision. It is not possible to infer from the model

if the packets involved in a collision are from VoIP, audio or video streams, best effort or back-

ground traffic. Finally, it is not possible to infer the number of times the same packet is involved

in collisions.

5.4 Estimating the Number of ACs Simultaneously Contending for

Channel Access

The transmission, collision and idle channel probabilities calculated using the theoretical model

given above will be used in section 5.5 to design a system to manage the contention window and

optimise transmissions in a wireless network. Before the complete Quality Queue Management

algorithm is described it is necessary to find a method to use to determine the number of ACs

simultaneously contending for channel access [15].

A wireless network withN VoIP calls in progress has, in effect,N+1 classes in competition

for access to the channel because the AP must be included in the calculations. In this dissertation

it is assumed that the AP accesses the channel with the same frequency as a mobile station.

However, the frequency at which an AP seeks to access the channel may well differ from that of

the mobile stations because the AP manages all traffic being transmitted to the mobile stations.

It is necessary to determine the relationship between the frequency of channel access re-
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quests for a service and the number of mobile stations simultaneously accessing the channel. In

the following discussion this is explored for the three traffic types considered in this dissertation.

Protocol G.729, described in section 2.4.2, is used for VoIP traffic. It needs to transmit 50

packets per second, corresponding to a frequency of 50 channel access requests per second, i.e.

one access attempt every 20ms. Without considering TXOP, the worst case transmission time

for a single packet, including the Layer 2 ACK control packet, on future wireless networks is

about 150µs. If a packet is transmitted every 20ms, then, theoretically, a maximum of 120

packets can be transmitted in 20ms.

If it is assumed that every mobile station with a phone call in progress needs to transmit a

packet every 20µs, then there are N + 1 ACs seeking access to the channel in each of the 120

slots that make up a 20ms interval. The problem is to estimate the likelihood that more than

one AC accesses the channel in the same 150µs slot as this will give rise to a collision.

Statistically, the number of ACs competing for the channel have the same likelihood of

picking each individual time slot for transmission. It is necessary to find how many possible

ways there are for at least two of the N + 1 mobile nodes to pick the same slot amongst the

120 slots on offer. Using the same methodology as in section 5.1.1 this can be found using

permutations with repetition. The required probability will be given by the ratio of the number

of permutations with at least one repetition, i.e. the number of ways that at least one collision

can occur, to the number all the possible permutations:

P(rep) =
P ′AC0(slots,N+1)

− PAC0(slots,N+1)

P ′AC0(slots,N+1)

(5.28)

Where P(rep) is the probability that multiple ACs choose the same time slot. As in section

5.1.1, P and P ′ are the permutations without repetitions and with repetitions respectively. Here,

n = slots and k = N + 1, so that:

PAC0(slots,N+1)
=

(slots)!

((slots)− (N + 1))!
(5.29)

and

P ′AC0(slots,N+1)
= slots(N+1) (5.30)
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The probability that a repetition occurs i.e. that two ACs compete for access to the channel is

given by:

P(rep=2) =

slots×

 N + 1

2

× PAC0(slots−1,N−1)

P ′AC0(slots,N+1)

(5.31)

Figure 5.2 shows the variations in P(rep=2) as the number of phone calls in the system grows.

In the graph on the left there are 120 slots in each 20ms interval. In the graph on the right a

worst case scenario of 60 slots in each 20ms interval is shown. From the graphs it can be seen

that until there are more than ten calls in progress, the probability only two AC0s compete for

access to the channel at the same time is over 90%; therefore it is reasonable to consider that only

two AC0s are ready to transmit at any given time provided the number of phone calls flowing in

the wireless network does not exceed ten.

Audio streams must be considered next. These are managed by AC0 and are similar to

unidirectional phone calls and have, approximately, the same channel access frequency as VoIP

calls.

Finally, video streams must be considered. In this case the traffic rate is variable and there

are 30 frames transmitted per second, i.e. one frame is transmitted every 33ms. In the worst

case, when many flows are being streamed from the same node, the transmission time for each

frame containing video can be assumed to be twice the TXOP time. Each slot is assumed to be

1.5ms long, therefore in every 33ms interval there are 22 slots are available for transmission,

or in the worst case only 11 slots are available.

Figure 5.3 shows the experiments carried out to explore the probability that a maximum of

two AC1 video streams access the channel at the same time in the same slot. From this it can be

inferred that for less than six flows, there is a 90% chance that only two of them are competing

for access to the channel.

The discussion and experiments above confirm that the number of AC0s and AC1s compet-

ing for access to the channel at the same time does not exceed two if less than ten phone calls

and audio streams or less than six video streams are present in a wireless network.

Based on the above discussion, the probability that one AC0 is transmitting in slot 0 is now
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Fig. 5.2: Probability a maximum of two AC0s access the channel at the same time in the same

slot for VoIP calls.
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Fig. 5.3: Probability a maximum of two AC1s access the channel at the same time in the same

slot for video streams.

explored in more detail. NAC0 and NAC1 are fixed and equation 5.6 is plotted in figure 5.4. This

shows how the probability an AC0 chooses a backoff time of 0 varies with the CW size for both

AC0 andAC1. In other words, it shows how the probability that oneAC0 transmits immediately

after the SIFS[0] is distributed.

In figure 5.4 the x axis represents the AC0 contention window size, the y axis represents the

AC1 contention window size and the z axis represents the probability AC0 transmits in the time

slot 0 as found using equation 5.6. The resulting surface shows the probablity AC0 transmits

achieves a maximum value when CWAC0 is small and CWAC1 is large. It also shows that the

probability AC0 transmits achieves a minimum when CWAC1 is small and CWAC0 is large.

When both CWAC0 and CWAC1 are small the probability AC0 transmits does not achieve a

minimum value, this is due to the increased probability of collisions.

Figure 5.5 shows the distribution of the probability that one AC1 transmits in backoff times-

lot 0 as calculated using equation 5.7. The graph is a mirror image of that in figure 5.4. Like

figure 5.4 the x axis is the AC0 contention window size, the y axis is the AC1 contention win-

dow size and the z axis is the probability AC1 transmits in time slot 0. The resulting surface

shows that the probability AC1 transmits achieves a maximum value when CWAC1 is small and

CWAC0 is large. It can also be seen that the probability AC1 transmits achieves its minimum
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Fig. 5.4: Probability that oneAC0 is transmitting at slot 0 for a range of CW sizes for bothAC0

and AC1
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Fig. 5.5: Probability oneAC1 is transmitting at slot 0 for a range of CW sizes for bothAC0 and

AC1

value when CWAC0 is small and CWAC1 is large. When both CWAC0 and CWAC1 are small

the probability AC1 transmits is not a minimum due to the large probability of collisions.

The probability the channel is idle at the backoff timeslot 0, Pe0 , is shown in figure 5.6. It is

calculated in MatLab [182] using equation 5.8. The x axis is the AC0 contention window size,

the y axis is the AC1 contention window size and the z axis is Pe0 . The minimum Pe value is

achieved when CW0 and CW1 are small; while Pe achieves a maximum value when CW0 and

CW1 are large.

Figure 5.7 shows the probability a collision occurs in backoff timeslot 0, Pc0 . It is calculated

in Matlab [182] using equation 5.9 . The x axis is the AC0 contention window size, the y axis

is the AC1 contention window size and the z axis is Pc0 . Pc0 achieves a minimum value when
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Fig. 5.6: Probability no transmissions occur at slot 0 for a range of CW sizes for both AC0 and

AC1
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Fig. 5.7: Probability a collision occurs at slot 0 for a range of CW sizes for both AC0 and AC1

CW0 and CW1 are large and reaches a maximum when CW0 and CW1 are small.

As the three probabilities considered are mutually exclusive, the sum of the three surfaces in

figures 5.4, 5.5 and 5.6 is a surface with a constant vertical axis probability value of 1.

Three observations can be made about the model. First, time is considered to be discrete

therefore it is possible to use combinatorics to obtain probabilistic estimates about the behaviour

of the wireless network.

The second is that the calculations are built on the hypothesis than only two AC0s and two

AC1s are ready to transmit a packet at the same time and they both have the same CWmin size.

In reality the two CW0s or CW1s competing to access the channel are not necessarily the same

size as there is no communication between the nodes to set the same CWmin on both.

The final observation is that the discussion of the model focuses on timeslot 0, and the
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goal of the algorithm is to transmit in time slot 0 with the predefined priority. As described in

section 2.2, the CW s act differently; they do not start from the AIFS[i]s each time they stop

the backoff time for a packet transmission.

The goal of the CW management part of QQM is to optimise the CW size based on the

measured eQoS.

A collision event occupies the wireless channel for a time Tc [123]. Tc can be approximated

as the AIFS for AC0 plus the time needed for an AC0 packet transmission:

Tc = AIFS + TxAC0
. (5.32)

The expected transmission time is, therefore:

Tc0 = Pc0 × Tc (5.33)

where Pc0 is the probability that a collision event occurs.

The channel idle time, Te [123], has been estimated to be one TimeSlot. Te0 can be

approximated as:

Te0 = Pe0 × Te (5.34)

As discussed above, the probability the channel is idle grows with the size of CW0 and CW1;

while the probability of a collision event decreases as CW0 and CW1 grow.

Figure 5.8 shows the intersection of Pc0 and Pe0 surfaces.

Using a similar methodology to [167], table 5.2 shows the CW0 and CW1 sizes needed

to achieve the five different qualitative QoE levels for AC0 and AC1. These levels vary on a

qualitative scale from Excellent quality to Bad quality. The value N/A is used to indicate that

the service is not provided by the node. Table 5.2 reports the CW s used to randomly estimate

the backoff time. This differs from the three dimensional surface shown in figure 5.8 as the

surface shows the expected value for the CW s determined using equation 5.18.

The table is obtained from the optimal theoretical sizes for CW0 and CW1, as shown by the

intersecting surfaces in figure 5.8 and from figures 5.4, 5.5, 5.6 and 5.7. Based on the measured

eQoS it can be used to simultaneously optimise Pe0 , Pc0 and the probability to transmit a packet

depending on the quality of the service provided. The sizes of CW0 and CW1 are set to the
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Fig. 5.8: Intersection of surfaces representing Pc0 and Pe0

.
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aaaaaaaaa
CW0

CW1 Excell. Good Fair Poor Bad N/A

Excellent 8
16

8
12

8
8
8

8
8

8
4

8

Good 6
16

6
12

6
8
6

8
6

8
4

8

Fair 4
16

4
12

4
8
4

8
4

8
4

8

Poor 4
16

4
12

4
8
4

8
4

8
4

8

Bad 4
16

4
12

4
8
4

8
4

8
4

8

N/A 4
8

4
8

4
8

4
8

4
8

4
8

Table 5.2: Video streaming details

maximum when the qualitative score is evaluated as Excellent, to the minimum size when the

qualitative score is Fair, Poor or Bad and to the median value when the score is Good.

This configuration has two major advantages. First of all, when the quality is Excellent the

larger CW value reduces the collision probability and optimises the throughput as a packet is

always ready to be transmitted across the wireless network. Secondly, the use of a low CW

value when the quality is Fair, Poor or Bad increases the probability of transmission in time slot

0 and avoids transmission delays. If packets are not transmitted then the flow quality deteriorates

rapidly.

The differences in the CW0 and CW1 sizes reflects the different priorities assigned by the

EDCA method. When a collision occurs the CW s are doubled. The optimal CW0 and CW1

values summarised in table 5.2 are used to design a fuzzy CW controller within the QQM

algorithm. This will be discussed further in section 5.5.1.2.

5.5 The Quality Queue Management Algorithm

The Quality Queue Management (QQM) algorithm is detailed in this section [15]. It manages

traffic at the Access Point (AP) to provides services over the network with the best possible

Quality of Experience (QoE). It is designed to operate on future wireless networks and to manage
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the AC’s parameters, and their interactions, according to the measured eQoS.

QQM brings together, and manages, the information inferred by the mathematical model, the

eQoS metric and a queue management algorithm. QQM not only manages the traffic crossing

the AP but it can also give feedback to the applications to reduce the traffic generated by some

services. Feedback can be provide in various forms; for example, it can be the quality estimated

at the AP by QQM or an estimate of the traffic as determined from the queue lengths. Feedback

can also be provided as a packet generated by the AP and forwarded to the application server

with an appropriate protocol.

The QQM algorithm incorporates three key features. The first feature is quality assurance.

This is achieved by implementing eQoS flow preservation; flows are dropped if the minimum

eQoS cannot be guaranteed. The minimum eQoS is a QoE value; by definition once the eQoS

drops below this level the end-user makes the decision to drop the service. The second feature is

the management of the transmission, collision and idle channel probabilities through modulation

of the contention window (CW). The third feature of QQM is that it seeks to manage the queue

length and avoid congestion.

The novelty of QQM is that these three features are combined in a single system. The

interaction and information exchange between the features contributes to provision of the service

with the best quality possible over the network. The implementation of these features is now

considered in detail.

The first feature of QQM is eQoS flow preservation. This is achieved through continuous

checking of the eQoS for each flow and comparison of the values obtained with historical eQoS

data. Flows for which the eQoS falls below an acceptable threshold are dropped. This feature

guarantees that only flows that achieve a minimum and acceptable eQoS are transmitted.

Packets are lost in the wireless network when one of three types of dropping event occurs.

The first such dropping event is a collision. In this case a packet retransmission is carried out by

the QQM algorithm and packets may be dropped if the delay exceeds the maximum acceptable

delay for the service. Quality thresholds and levels have been inferred from literature [45]. Major

manufacturers of network equipment specify suitable ranges or bounds for the physical network
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parameters where the quality of service provided is not affected provided the parameters remain

within these bounds. These may be specified using critical threshold values; for example, as

a threshold beyond which the quality of the service is affected or as a threshold beyond which

the service is not provided. The second type of dropping event occurs when the queue length

exceeds the congestion threshold or if the queue is such that the delay will exceed the maximum

delay allowed for the service. The third type of dropping event occurs due to eQoS quality

preservation. This occurs when a flow does not achieve the minimum eQoS required to provide

a satisfactory service to the end user and so all of the flow’s packets are dropped.

The second feature of QQM exploits the theoretical model presented in section 5.1. The CW

sizes at the access point are managed by a control system that uses information on the network

status to adjust priorities. It manages the average packet transmission time using an optimisation

aimed at providing services with the highest quality. This optimisation is a function of the

backoff time and the probability of a collision occurring. This optimisation also takes account

of the dynamic variability in the TXOP time size.

The third feature of QQM is a queue management algorithm. The packet dropping decision

process differs from that of traditional AQM algorithms: it uses eQoS to guarantee, in so far as

possible, the provision of services that meet at least the minimum quality standards.

A key feature of QQM is the application of fuzzy logic and a fuzzy control system to manage

traffic on future wireless networks. These networks divide traffic into separate access categories

and can be viewed in the frequency domain as a succession of channel access requests from

the mobile stations and the AP. Traffic management can be viewed as an optimisation in the

frequency domain acting on both the queue and the contention window. Traffic management

limits the input traffic speed and optimises the output traffic.

In the next subsection these features of the QQM algorithm will be described and detailed

for each AC. The interactions between the features will also be discussed.
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Fig. 5.9: QQM algorithm flow chart.

5.5.1 Algorithm Operation

Figure 5.9 shows a flow chart that captures the key operational elements of QQM. The algorithm

is composed of three fuzzy controller blocks and it aims to manage the queues and the contention

windows under the control of the eQoS block. These three blocks measure and control the traffic

flows to guarantee an acceptable level of QoE for real time services, and a good level of QoS for

all other services.

The eQoS block estimates the quality of service per flow. It is also an active block which

interacts with the traffic through the AQM and contention window manager blocks, dropping

packets that do not conform to the minimum quality level established for provision of the service.

The AQM block is at the heart of the QQM system. It provides queue management and

queue length control. The AQM block can also provide application layer feedback to the traffic

sources.

The contention window management block is based on the model described above and per-

forms priority management of the contention windows. Its main goal is to optimise priorities
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across all ACs in order to reduce queue lengths.

All three QQM blocks are described in greater detail in the next three subsections.

5.5.1.1 The Active eQoS Measurement System

The eQoS block is designed to perform two important operations: the first one is to estimate

the eQoS and the second is to drop packets when they do not conform to the desired eQoS. The

block is a controller which provides services with the desired QoE by dropping non conformant

traffic. Decisions on which packets to drop are made using a set of simple rules.

Figure 5.10 show the complete eQoS measurement and controller block diagram. The con-

troller has four inputs. The eQoS error and the sign of its derivative are inputs for a closed loop

fuzzy controller as described in section 3.4. The delay and the jitter are used to determine if an

arriving packet is to be accepted or dropped. As a consequence their evaluation must be carried

out at the packet level in order to calculate the eQoS. The controller uses these four inputs to

determine the output decision.

The first operation performed by the controller is to measure the eQoS per flow using the

EWMA method described in section 4.3. The measured eQoS has to be compared with the

desired eQoS value in order to determine if the service is being provided with at least the desired

QoE. The difference between the desired eQoS and the measured eQoS gives the eQoS error.

The range of possible eQoS values is rescaled to an integer value between 1 and 5 to simplify

the calculation and allow for an immediate interpretation of the eQoS data. Five qualitative

levels were chosen as five levels are used for MOS. As previously noted, there is not an exact

correspondence between eQoS and MOS as the former is a nearly instantaneous measure while

the latter is an averaged, long term value. When no packets are dropped the eQoS is excellent,

but the qualitative score may not be 5.

Figure 5.11 show the fuzzification of the eQoS error input in the controller. The fuzzy values

at the top of the graph are the five qualitative levels. The conversion between eQoS and the five

qualitative level values, and vice versa, is performed using the fuzzification and defuzzification

processes inside the controller. The eQoS error is 0 when the estimated eQoS is equal to the
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Fig. 5.10: eQoS Fuzzy Controller.

Fig. 5.11: eQoS Error Input
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Fig. 5.12: eQoS Derivative Sign Input

desired eQoS, it is negative when the estimated eQoS is greater than the desired eQoS and

positive when the estimated value is lower than the estimated eQoS.

The second controller input is the sign of the eQoS derivative. It calculates the variation

between the eQoS actually measured and the previous eQoS value; it is the tangent to the curve

of values assumed by the eQoS based on the previous two estimates. The derivative sign input

indicates if the eQoS is instantaneously increasing, when it assumes positive values, decreasing,

when it assumes negative values or stable, when the value is close to 0. Figure 5.12 shows the

fuzzy set for the eQoS derivative.

Two other inputs need to be evaluated before a packet transmission can take place. A packet

transmission is only permitted if the packet delay does not exceed a set limiting threshold. This

is because packets that have accumulated a long delay are already considered as lost by the

destination and so their transmission is a waste of wireless throughput. Packets with a jitter in

excess of a declared threshold, typically 30ms as inferred from [45], are also considered to be

unacceptable and should not be transmitted.

Like QoE, the delay and jitter limits depend on the application scenario under consideration.

As discussed in section 2.4, the parameters used in this thesis are established values from the
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Fig. 5.13: Packet Delay Input

literature. In this case, the limits and threshold values used to guarantee good quality follow the

VoIP guidelines in [45]. The fuzzy sets for delay and jitter are shown in figures 5.13 and 5.14

respectively.

The controller has two possible outputs shown in figure 5.15. If the output value is between

0 and 1 then no action has taken place, as indicated by NA in figure 5.15. While if the output

is between 2 and 3 then the packet is dropped, as indicated by DP in figure 5.15. The output

fuzzification rules are internally designed to rescale the output in two discrete values: 0 for NA

and 1 for DP.

Fuzzy reasoning rules are inferred from the simple logic applied to the wireless system and

are expressed by the following linguistic rules:
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Fig. 5.14: Jitter Input

Fig. 5.15: eQoS Fuzzy Controller Output
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if ((Packet delay < Unacceptable) || (Jitter < Unacceptable)) {

if (eQoS >= Fair) {

Transmit the packet

} else {

if (derivative eQoS >= Zero) {

Transmit the packet

} else {

Drop the packet

}

}

} else {

Drop the packet

}

The rules concerning delay and jitter form the first decision layer before the application of

the other rules. The logical structure is, in fact, a controller with a controller. The defuzzification

follows the maximum criterion [164]:

outputcrisp ∈ {argsup{µi(x)}} (5.35)

where µi(x) is the member function of the crisp input i.

The eQoS calculation is performed in the EWMA block with the EWMA formula given in

section 4.3. This makes use of the stored eQoS estimate from the previous cycle.

The controller is shown as a single box in figure 5.10; in reality the controller algorithm

is split into a number of parts that operate at different points in the wireless network system.

Packets enter the queue and are then passed to a transmission buffer before being transmitted.

The first point where the algorithm acts is at the queue input. Here the controller checks if

the packet delay exceeds the maximum limit and that the queue is not full. The full queue check

is not one of the controller rules but it is a system event that has to be considered. Jitter and delay

checks are then performed. Finally, the eQoS measurement and its derivative are determined.

In the transmission buffer at the output of the queue the packet’s delay and jitter are checked
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once more. This check is repeated for every packet retransmission attempt. eQoS considers a

packet to have been successfully transmitted when its acknowledgement has been received. The

eQoS is determined after these checks and the value stored in an array for use in subsequent

calculations. The measured eQoS is used by the other parts of the QQM algorithm and this is

described below.

5.5.1.2 The Contention Window Controller

This section details the CW size management system used to optimise transmissions by the

wireless stations. Its design logic is inferred from the descriptive model of EDCA given in

section 5.1.

The first step in the design of the Contention Window Management controller (CWMC) is to

estimate the number of ACs contending for the channel at the same time. As described above,

AC0 and AC1 access the channel with a frequency that depends on the number of flows in the

class and the throughput needed to provide the given services. AC2 and AC3 do not access the

channel with a fixed, regular frequency as these access classes often handle bursty traffic. Only

CBR flows can access the channel with a fixed frequency.

The model estimates the transmission, idle channel and collision probabilities for the four

ACs. The optimal CW size for each AC is estimated using the eQoS measured within the

system. In addition, variations in the eQoS are used to manage the CW . As the eQoS decreases,

the CW size is increased. This has the effect of increasing the transmission probability and

reducing the collision probability. While there are other controllers that act in a similar manner

on the CW, for example [167], these do not include any quality measure related to the end user

experience.

The hypothesis formulated in section 5.4 was that mobile nodes are used for a single service

such as a phone call, audio streaming or audio and video streaming. By contrast the AP manages

multiple services and flows that originate in the backhaul.

In a wireless infrastructure network the mobile nodes and the AP are aware of the nature of

this traffic from the backhaul network. The CW size is estimated for each flow based on the
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Fig. 5.16: Contention Window fuzzy controller.

eQoS. The algorithm is structured to independently manage the CW size on each mobile node

and at the AP, therefore each node must adapt its CW to the traffic in its queue.

The inference rules for the contention window controller are given by the following expres-

sion:

if AC0 eQoS is X and AC1 eQoS is Y than CW0 is Z and CW1 is W;

The CW controller block diagram is shown in figure 5.16. It is a fuzzy controller applied

at each node. It has two inputs for CW0 and CW1, and separate outputs for CW0 and CW1.

It is specifically designed for the real time traffic in AC0, and AC1. The contention window

controller does not manage AC2 and AC3 because delay is not a priority for best effort and

background traffic. The AP manages more than one flow for each AC. The eQoS of the packet

in the transmission buffer is used to estimate the CW, because this flow is transmitted together

with the other flows during a TXOP time.

The inputs used for the CW0 and CW1 flows are the error, i.e. the difference between the

measured and the desired values, and the sign of the derivative. These are similar to the error
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Fig. 5.17: Controller input error for CW0 and CW1

and derivative inputs for the active eQoS measurement system. They are shown in figures 5.17

and 5.18.

The lower input quality limit is fixed at the Fair level where the eQoS error is set to 0; this

corresponds to a MOS value of 3, i.e. an eQoS value of approximately 0.25. EachCW controller

also uses the second derivative of the eQoS error as an input; the first input is the actual derivative

over time, and the second is the comparison of this derivative with that obtained for the previous

instant in time.

These are used to determine if two consecutive eQoS derivative sign values are negative. In

other words, it checks to see if two packets are dropped in sequence. The second input can be

positive or negative.

No scaling is required for the eQoS error and so the gains for each kind of flow, G00 and

G01 or G11 and G10, are set equal to 1. By contrast, the eQoS error is decreased by a half of one

unit to take account of the fact that the MOS is never 5.

The outputs are shown in figure 5.19. The output is obtained using the maximum criterion

for defuzzification [164], as used in the eQoS measurement system. The values for CW max,
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Fig. 5.18: Controller input derivative sign for CW0 and CW1

CW mid and CW min are, respectively, the maximum, the median and the minimum values of

CW0 and CW1 based on the input error.

5.5.1.3 The Queue Management System

The queue management system is the third component of QQM. The specific task of this system

is not only to avoid congestion by keeping the queue size within an acceptable bound, but also

to maintain an acceptable QoE level for real time services and to optimise packet transmissions

for all other types of traffic. Packet optimisation is performed indirectly through the packet

dropping process and related to changes in eQoS through the optimisation of the contention

window controller.

The EDCA method implemented maintains four queues. The traffic managed by each queue

can have a constant or variable bit rate; it can be bursty, unresponsive or flow-controlled [10].

The Queue Management subsystem algorithm must be sufficiently versatile to be able to deal

with all these traffic types.

Figure 5.20 shows the Queue Management system flowchart [191]. Packets arriving at the

node are directed to one of the system’s queues depending on their traffic type. The packets
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Fig. 5.19: Controller output for CW0 and CW1

are served by the node according to the priority assigned to each queue. As per1 [192], packet

delay has to be contained within acceptable limits. Delay checks are already performed by the

active eQoS measurement system. Unlike [192], delay checks are not only performed at the

queue output, they are also carried out before the packet is transmitted. This is particularly

important for low priority ACs as the packets may have to wait several backoff times before

being transmitted.

Delay control is applied in a different way to [192]. In addition to the checks performed by

the active eQoS measurement system, the queue management system checks the delay between

each packet transmission and averages it using an Exponentially Weighted Moving Average

(EWMA) [9]. The average time needed to transmit a packet multiplied by the number of packets

in the queue gives the theoretical total delay due to time spent in the queue. This gives a queue

threshold for determining if packets are acceptable. This threshold is variable and represents the

limit for a virtual queue [136]. The length of the virtual queue described in [136] is related to

the channel capacity. In this case the queue length relates to the time needed to transmit each

packet.
1http://www.bufferload.net
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Fig. 5.20: The Queue Management System Flowchart
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This process is slightly more complex than [192] but it has many advantages when the focus

is on the delivery of a quality service for flows where the number of packets per second varies or

for packets that have already accumulated variable delay within the wired network. The delay

is used to estimate the maximum number of packets that can be managed by the queue without

exceeding the maximum acceptable delay for provision of a good quality service. Packets that

exceed the queue limit can be immediately dropped or observed for a certain amount of time

before a decision is made as to whether to drop the flow or not. The decision will depend on the

kind of service being provided and the AC.

The calculation of the average delay accumulated by the packets arriving at the queue is

performed using EWMA [9]:

avgdelay = (1− wdelay)× avgdelayt−1
+ wdelay ×Delay (5.36)

where:

avgdelay is average of packet delay,

avgdelayt−1
is the average of packet delay at time t− 1,

wdelay is the weight and

Delay is the delay of the arriving packet.

EWMA provides the average delay, it is updated every time a packet is moved from the

head of the queue to the transmission buffer and it is not reset. Peaks and rapid variations are

smoothed by the weights used in the EWMA formula. The average delay is immediately used

to update the queue length limit.

Equation 5.36 is used for real time services on AC0 and AC1. AC2 and AC3 manage TCP

and UDP traffic, so their flows may be unresponsive [10]. This allows for longer delays without

any impact on the service. Nevertheless, delay and jitter remain valid measures by which to

gauge the level of the network congestion.

The application of a queue limit based on the delay in a future wireless environment ne-

cessitates a modification of the features of EDCA. The main impact on the structure of the

mathematical formulas is due to TXOP, where blocks of packets are transmitted at the same
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time. The TXOP is long enough to transmit a large number of packets, and it is frequently fully

used each time the AC accesses the channel. Thus it is acceptable to hypothesise that each time

either AC0 or AC1 accesses the channel a packet from each VoIP call and each audio frame are

sent and a frame from each video stream is transmitted.

The calculation of the transmission delay accumulated at the transmission buffer is per-

formed using EWMA [9]:

avgtx = (1− wtx)× avgtxt−1 + wtx × TxT ime (5.37)

where:

avgtx is average of packet transmission time,

avgtxt−1 is the average of packet transmission time at time t− 1,

wtx is the weight and

TxT ime is the Transmission time of the packet.

The AP is the only node which manages packets in both directions. The mobile nodes man-

age only a single real time flow at a time for the service provided or, occasionally, multiple

background traffic flows. Translating all these considerations for the AP and the mobile nodes

into a mathematical formula, the queue limit Qtmax can then be calculated by dividing the av-

erage maximum delay allowed for a packet by the average time needed to transmit each packet.

Mathematically, Qtmax is expressed as:

Qtmax
=
Pdelaymax

− avgdelay
avgtx

(5.38)

where:

Pdelaymax is the maximum delay allowed for a packet,

avgdelay is the delay accumulated by the packet arriving at the queue, and

avgtx is the average transmission time.

The value of Pdelaymax is defined per service and Qtmax lies between minimum and maxi-

mum threshold values. In the simulations presented in Chapter 6 80% of Qtmax is used as the

virtual queue threshold. In practice, Qtmax is very large if packets are transmitted regularly
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by the high priority ACs; in this case the network is not congested and can be considered to

be working well. By contrast, a reduction in Qtmax indicates that the network is experiencing

congestion as the average packet delay is increasing. In this case, the queue buffer needs to be

extremely large as the delay at each queue is controlled by the queue management system.

The next three subsections describe how the queue management system is applied for each

of the four access class.

5.5.1.4 AC0 Queue Management System

Each mobile station involved in the provisioning of a VoIP service has only a small number

of packets in its AC0 queue, Q0. The AP is the point where the wired and wireless network

meet. It manages all the input and output traffic to and from the wireless network. The AP has

in its Q0 all the VoIP packets that arrive for transmission on the wireless network. Due to the

synchronisation problem discussed in section 5.5.1.2 one packet from each flow is transmitted

every TXOP. The AC0 at the AP makes full use of the TXOP feature offered by the ECDA

method.

VoIP produces CBR traffic and as there are only a few VoIP packets in each mobile node,

the queue size can be easily kept under control by applying equation 5.38. Packets that exceed

the dynamic threshold at a mobile node provide an indication of network congestion.

Equation 5.38 has a more significant application in queue size control and for quality man-

agement at the AP. The packet group transmission feature of TXOP does not require any modifi-

cations to the formula. The delay threshold, calculated using equation 5.38, includes an average

over time of the packets transmitted at different TXOP times in the EWMA averaging formula.

Routing control and message packets are managed by AC0 and they cross Q0 together with

the VoIP packets. They are not considered in the mathematical formulation presented because

their influence on the system is negligible. The active eQoS measurement system functionalities

require Q0 to include features to enable it to drop VoIP flows with unacceptable QoE. At the

queue level this means that it is possible to drop all the packets from an unacceptable flow or

from the newest flow in the queue in order to increase throughput and provide other flows in the
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queue with an acceptable QoE.

5.5.1.5 AC1 Queue Management system

. Video streaming is managed by AC1. This is VBR, critical real time traffic. The number

of flows and the throughput have to be carefully considered in order to manage the queue and

guarantee acceptable QoE levels.

In this dissertation the streaming traffic in AC1 includes services such as video calls, where

there is bidirectional traffic between the AP and the mobile stations. The AP is then the node

which manages the majority of the streaming traffic that is crossing the network. Therefore at

the access point Q1 will easily become full when there are only a few high throughput streams

in the network.

Q1 needs to have a threshold value that varies depending on packet delays. To avoid queue

congestion, it should also be constrained by a maximum threshold value. At the AP frames

arrive at the same time due to the same synchronisation problem found for traffic in AC0. As a

consequence the queue length exhibits large oscillations and these can be observed in the results

provided in Chapter 6.

The queue management system drops all packets that exceed the maximum threshold value.

This is done progressively and in proportion to the throughput for each flow. This balances the

eQoS between the flows. Flows with a high throughput have more packets dropped than flows

with low throughput, but in a proportion that means they experience the same eQoS. Equation

5.38 defines a dynamic threshold that varies with time. It is assumed that each AC1’s TXOP is

sufficient long to transmit a frame from each flow.

When the queue continuously exceeds the upper threshold and the eQoS of each flow is close

to the accepted limit, the flow with the worst eQoS according to the provider’s quality specifica-

tions will be dropped. If required by the eQoS status of the flows, the dropping operation may

then be repeated. Instead of dropping a flow it can be provided with feedback for the underlying

application. This feedback requests a reduction in the throughput of the stream. The flow can

then be readmitted to the system. New streaming flows are not admitted if the queue size is close
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to the threshold.

It is possible to further optimise the flow dropping process but the operations required are

very expensive in terms of software complexity and beyond the scope of this work.

5.5.1.6 AC2 and AC3 Queue Management systems

The services crossing AC2 must be provided with the best effort possible after the real time

services in AC0 and AC1 have been provisioned for. In this dissertation the services in AC2

are considered to be delivered using TCP and UDP traffic. The first TCP traffic type is short

lived flows. These are used for bidirectional communications and are typical of connections like

telnet or database requests. The second TCP traffic type is regular TCP traffic; for example, this

may represent a request for a large data or file transfer at the best effort level.

The packets managed by AC3 and crossing Q3 are background traffic. This is composed

of a mix of TCP and UDP flows as used, for example, for P2P file transfer, FTP file transfer

etc. Unresponsive flows [10] crossing Q3 cannot be controlled and it is difficult to maintain an

acceptable queue length if the volume of input traffic to the queue exceeds the volume of output

traffic.

The QQM system does not operate over AC2 and AC3. These two access categories require

instant QoE estimation methods that differ from that provided by eQoS. This is because of the

nature of the services AC2 and AC3 provide. This is beyond the scope of this dissertation;

however, some key features emerge from the theory discussed in this chapter and these are

considered below.

Equation 5.38 can be used for TCP and UDP traffic as it represents traffic that has exceeded

a dynamic queue threshold or that has been delayed in the network. A distributed dropping

policy can be applied to the flows to guarantee fairness. Dropping events regulate TCP flow

throughput: when a TCP packet is dropped the source halves the congestion window, reducing

the throughput after a RTT delay. Fairness between the flows is based on the same principles

proposed in the CHOKe (SAC) [142] and TFRED [143] AQM algorithms as it depends on delays

in the queue and between packet transmissions.
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It is also possible to increase throughput by dropping TCP acknowledgement packets and

banning flows that have dropped an excessive number of packets in a given interval of time.

TCP acknowledgement packets can be dropped without affecting the TCP traffic when the Cu-

mulative ACK [171] feature is implemented in the TCP protocol: the last TCP acknowledgement

packet received by the source triggers an automatically assumption that all the previous TCP ac-

knowledgement packets were correctly received.

5.6 Algorithm Limitations and Applicability

The QQM algorithm has been designed and developed for use in future wireless networks where

the EDCA method is used. However, its range of application is not limited to these networks

and it should be applicable on, and be beneficial to, the operation of a wider range of wireless

networks.

The QQM algorithm is designed for practical application. The system’s decision to drop

a flow cannot be taken based on an instantaneous sampling of the flow’s eQoS; rather a more

longitudinal evaluation of the eQoS is needed. This evaluation is performed using three aspects

of the calculated eQoS. The first is the eQoS level and if this is below the minimal acceptable

value that has been fixed for that service. The second is to determine the length of time that

the eQoS level remains below this threshold. The third factor is to establish the frequency with

which the eQoS remains below the minimal acceptable. These three features allow the system

to decide if, and when, a flow has to be excluded from the network. If a flow is excluded then its

packets are immediately dropped, followed by the dropping of the service between the source

and the destination. When a flow is dropped the system needs to wait for a few seconds to adjust

to the new regime before it re-evaluates the quality parameters for each flow and any further

decisions to drop a flow are reached.

QQM’s design makes two assumptions about the nature of the wireless environment being

used: that it uses multiple queues and that it transmits its traffic using a broadband channel.

QQM assumes that the system is managing macro traffic types using multiple queues. If QQM
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is to be applied in a different wireless network then the Queue Management system will need

to be adapted to suit the queueing regime and traffic characteristics of the new environment.

QQM is designed to perform best in a broadband channel where throughput is high and traffic

volumes are large. As a consequence features like CSMA/CA obstruct the proper functioning of

the algorithm. This is because the CSMA/CA control packets reduce the throughput available

for data packets. The QQM contention window controller performs best when EDCA is used

without CSMA/CA.

The use of discrete system variables is a limitation of the QQM system. On one hand, these

are advantageous when fuzzy logic and controllers are used to design the algorithm; on the other

hand, the restriction to a discrete range of values reduces the algorithm’s ability to act and react

to traffic changes.

The algorithm combines multiple fuzzy logic controllers and their design will influence the

complexity of the system. Each controller is implemented with one or more conditional loops.

The active eQoS measurement system uses linguistic rules where the conditional loops do not

need to be nested. As a consequence, the complexity of this controller is in the worst case

O(n) [193]. The contention window controller has a linguistic rule with a single conditional

loop. In the worst case its complexity is O(n). The final subsystem, to consider is the queue

management system. It estimates the maximum number of packets with acceptable delay that

the queue can contain, it uses the eQoS values to determine if a flow should be dropped. The

first operation is a simple calculation and does not effect the complexity of the system. The

checks and the decision making are performed in conjunction with the active eQoS measurement

system. The operations consist of simple conditional loops and the complexity of this subsystem

is, in the worst case, O(n).

Even though the algorithm contains a large number of checks and conditional loops, it is

still very simple and straightforward. The fuzzy controller and logic make the algorithm much

simpler than those developed using traditional controllers. The number of operations needed per

unit time are negligible for the hardware used in a simple wireless AP.
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5.7 Summary

This chapter describes the Quality Queue Management (QQM) algorithm. QQM is composed of

three subsystems. Each subsystem carries out measurement, adaptation and decision making. It

is assumed that QQM is intended for use on future wireless networks where the ECDA method

is used.

At the beginning of the chapter a novel mathematical model to capture the probability that a

transmission occurs, a collision occurs or that the channel is idle was established.

The first QQM subsystem is the active eQoS measurement system. Its primary activity is

to measure the eQoS of each flow. It interacts with the traffic, checking on packet delays and

packet drops, in order to estimate the quality of the service being provided.

The second subsystem is the contention window controller, designed to use the measured

eQoS in order to control the CW size and adjust priorities. It receives a measure of the eQoS for

each flow and consequently acts to manage the CW size to adapt priorities. It aims to optimise

the three key probabilities; that is, the probability that a transmission occurs, that a collision

occurs or that the channel is idle.

The third subsystem is the quality queue management system. This is at the heart of the

QQM algorithm and gives it its name. The queue management system performs decision making

based on the traffic flows arriving at each queue. It uses the measured eQoS value to make

decisions and, indirectly, alters the eQoS by dropping entire flows. Its decisions impact on the

other two subsystems; that is, on the contention window controller and active eQoS measurement

subsystem.

The chapter ends with some considerations regarding the limitations of the algorithm. These

mainly arise from the theoretical aspects of the design and relate to the algorithm’s applicability

in a wireless network environment.

In the next, penultimate chapter the eQoS metric and the QQM algorithm are explored and

evaluated by simulation.
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Chapter 6

Algorithm Evaluation

In the previous chapter a novel queue management system, QQM, was introduced. It builds

upon and exploits the features and functionality of the eQoS quality metric and the theoretical

model of a multi queue system. QQM is more than just a simple queue management algorithm:

it is an efficient mechanism for managing traffic in an AP and it is the key to quality management

in future wireless networks.

In this chapter the efficiency of eQoS, the theoretical model and the QQM algorithm are

explored via simulation. This evaluation of QQM not only validates the mathematical formulae

derived and their underlying assumptions, but also serves as a demonstrator of the QQM algo-

rithm and the significant role it could play in the implementation of future wireless networks.

The methods used to evaluate the efficiency of QQM concentrate on true-to-life, real time

traffic scenarios in an infrastructure wireless network. Simulations where QQM implemented at

the MAC layer are compared with simulations where the EDCA [35] method is implemented at

the MAC layer. Simulation are perfomed using ns-2 [194] and, when necessary, using Matlab

[182].

This chapter starts with a detailed description of the platform, traffic and quality metrics used

in the simulations. It is then divided into three parts: the first of these validates the eQoS metric

by comparing its performance with the traditional computational algorithm used to estimate the
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MOS. The second part of the chapter validates the theoretical model by providing evidence to

support the underlying hypotheses and the mathematical equations derived in Chapter 5. Finally

the QQM subsystems and overall performance are evaluated using scenarios that have been

carefully chosen to replicate the anticipated traffic volume and mix in future wireless networks.

6.1 Simulation Platform

This section details the software platform used to explore the efficiency of the QQM algorithm.

The objective is to show how QQM can be used to enhance the quality of real time service

provision in a network.

The methodology used to explore QQM’s efficiency is focussed on an exploration of the

settings required for the physical variables in a hypothetical everyday scenario. It is based on a

realistic scenario, with a traffic mix that mirrors a real-life situation and existing QoS metrics.

These will be described in more detail below. The impact that the correct setting of these physical

variables has on meeting existing QoE guarantees and on the delivery of enhanced QoE are

discussed.

The simulations were performed using the well-known network simulator ns-2 [194]. This

is an open simulation platform written in C++ and OTcl, it has been developed through the

collaborative effort of many individuals and it allows for simulation of the most popular wired

and wireless networking protocols.

ns-2 is an old simulator but it is functional, efficient and widely used. While newer simu-

lators exist, ns-2 can also be used to simulate new technologies and protocols. It is also easy

to extend its functionality by developing and customising packages for it. In this thesis, Mat-

lab [182] is used to analyse traffic data, carry out any mathematical calculations, perform the

necessary statistical and fuzzy analysis, and to graph data.

Over the past fourteen years, ns-2 has evolved rapidly to enable researchers to simulate a

wide variety of network scenarios. Its initial releases were designed for protocols with very low

throughput, e.g. of around 1 Mbps, and for wireless sensor networks [5]. The simulation of very
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Fig. 6.1: IEEE802.11ac packet structure [6]

high throughput networks, such as those defined in the protocol IEEE802.11ac [6], pushes the

ns-2 simulator to its limits but does not affect its simulation efficiency.

ns-2 has many existing modules for the simulation of IEEE802.11a/b, while some of

its components have been developed to simulate other wireless networks, e.g. IEEE802.11e

and IEEE802.16. For this thesis it was necessary to simulate the features of the protocol

IEEE802.11ac [6]. To achieve this the existing code developed to simulate IEEE802.11e [36]

was modified and extended.

The main code development work required for this thesis, consisted of the implementation

of the IEEE802.11ac protocol within ns-2. It was a radical refinement and improvement of the

existing IEEE802.11e codebase [36]. Four ACs are maintained with a parameterisation that is

consistent with the IEEE802.11ac protocol. While it is possible to implement IEEE802.11ac if

the node has only a single type of traffic to transmit, this is unlikely to reflect the usage pattern

of future wireless networks.

One aspect of the implementation of IEEE802.11ac is in the modification of the header to

reflect that of High Throughput (HT) and Very High Throughput (VHT), as used in IEEE802.11n

and IEEE802.11ac [7]. In [36] the EDCA coordination function is implemented and reused to

simulate the traffic AC. The IEEE802.11ac packet transmission speed is implemented using a

time estimation method based on the standard [6].

The packet structure of a Very High Throughput PPDU is shown in figure 6.1. This structure

is used to transmit both data and control packets, i.e. RTS, CTS ACK, packets. The number of

VHT Long Training Fields (VHT-LTF) required in the header depends on the space-time stream
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as specified in the standard [6] . The transmission time, TxT ime, estimated for a single frame

in the IEEE802.11ac environment is obtained using the formula [6]:

TxT ime = TL−STF + TL−LTF + TL−SIG + TV HT−SIG−A + TV HT−STF +

+NES × TV HT−LTF + TV HT−SIG−B + TSYM ×NSYM (6.1)

where

TL−STF is the Legacy short training sequence duration,

TL−LTF is the Legacy long training sequence duration,

TL−SIG is the Legacy SIGNAL field duration,

TV HT−SIG−A is the VHT SIGNAL A field duration,

TV HT−STF is the VHT short training field duration,

TV HT−LTF is the VHT LTF training field duration,

TV HT−SIG−B is the VHT SIGNAL B field duration,

NES is the number of BCC encoders,

TSYM is the symbol transmission interval, i.e. 4µs and

NSYM is the number of symbols.

NSYM is given by:

NSYM = mSTBC ×
⌈
8× PktLen+ 16 + 6

mSTBC ×NDBPS

⌉
(6.2)

where

mSTBC is the Space Time Block code parameter,

PktLen is the packet length and

NDBPS is the number of data bits per symbol.

It should be noted that if STBC is not used then mSTBC is set to 1 [6]. The Guard Interval

is set to 800ns and the Number of Binary Convolutional Codes, NES , is set to 2. All settings

for the frame are extrapolated from the tables in [6] for a frame data rate of 780.0Mbps.

The main features of IEEE802.11ac [6] that are implemented in the simulations carried out

are discussed below. Features of IEEE802.11ac [6] that are neglected are also detailed together

with the rationale for their omission.
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A 160MHz channel with a single spatial stream is implemented, i.e. MU-MIMO is not de-

ployed. The code allows the user to set different channel sizes and alter the number of spatial

streams used. The TXOP feature is implemented in this work.

The IEEE802.11ac CSMA/CA feature is not used for the following reasons. Firstly, it is

expensive in terms of time. RTS and CTS control packets have to be transmitted with the same

Layer 1 header used for data packets. Even if Layer 2 RTS and CTS frames are used they are very

small in comparison to data frames, IEEE802.11ac throughput is so high that the transmission

time for RTS and CTS control packets is comparable to that of data packets. Therefore RTS and

CTS control packets can be considered as an inefficient use of bandwidth that gives rise to an

unacceptable loss in channel throughput. Secondly, the QQM algorithm manages the contention

window so as to reduce the number of collisions. If one considers the trade-off between the time

lost when transmitting the RTS and CTS packets and the time lost when a collision occurs then

it can be concluded that QQM makes CSMA/CA redundant.

Backward compatibility and a mix of various IEEE802.11 protocols on the wireless network

are neglected in the code implementation, even if the Layer 1 packets are backward compatible.

This is because the simulations aim to explore the improvements to be gained through deploy-

ment of the QQM algorithm and these will be significantly reduced when a mix of different

protocols is used, mainly due to variations in the channel size. This is a reasonable assump-

tion as it is likely that the IEEE802.11ac protocol will become dominant, fully replacing many

of the protocols in use today. This is not an unreasonable assumption as this has been the

case for its predecessors to date. Its advantages and the limited additional overhead cost make

IEEE802.11ac the most likely candidate to replace current wireless network protocols.

The Frame Aggregation and Block Acknowledgement features were not implemented in the

simulator. These can be used when there are a number of packets transmitted in sequence to

the same destination. There are two important reasons for not implementing these two features.

First of all, as assumed in section 5.5.1.2, the number of mobile stations that access the channel

at the same time is small. This makes it improbable that more than one packet at a time is

directed to the same destination for the number of traffic flows used in the simulations. Secondly,
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Fig. 6.2: Infrastructure wireless network used for the simulations.

these features provide an additional improvement to the network efficiency that goes beyond that

offered by the QQM algorithm and, therefore, they are superfluous for the design, development

and evaluation of QQM.

6.1.1 Simulation Environment

The simulation scenarios used reflect those of popular infrastructure wireless architectures,

i.e. those typically used by Internet Service Providers.

The architecture used for the simulations is shown in figure 6.2. The number of source

and destination nodes is set to a maximum of 50 and the number of ACs can vary for each

simulation. Theoretically, as the model treats the AP like a node, up to 204 ACs can compete

for access to the channel. Nodes in the network are not solely source or destination nodes: each

node can be the source or destination for different kinds of traffic or a source and a destination

at the same time. For example, nodes involved in a VoIP conversation are a source of traffic in

one direction and a destination for traffic in the opposite direction.

The nodes are arranged along the diagonal of a 50 × 50 meter square. The AP is positioned

close to the middle of the diagonal. The nodes are located at a distance of
√
2 meters from
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each other. The backbone and backhaul are replaced by a 100 Mbps link from the source to the

aggregation router and by a 1 Gbps link from the aggregation router to the AP respectively.

The network delay is set to 10ms for each wired link between the sources and the aggregation

router and from the aggregation router to the AP. The total RTT exceeds that of an ICMP request

to a popular website, such as www.cisco.com. In the simulations it is assumed that a uniform

number of packets cross the router in both directions and that the delay is set to the average link

delay.

The radio propagation model used in the simulation is the free space model [195]. The

propagation range is a circle. If a node is in the propagation range of another node then packet

exchange between the nodes can take place. It is not unusual for packet transmissions to occur at

mobile nodes that are located at different distances from the AP. This distance affects the receiv-

ing power. Packets are assumed to have been correctly received if their received power at the

destination exceeds an established threshold. The transmission power of the station close to the

AP is such that any transmitted packet will be correctly received, while the packets transmitted

by more distant mobile stations are more likely to be lost. If a mobile station located far from

the AP does not receive an acknowledgement from the AP then it assumes that the transmitted

packet has been lost due to a collision. It then adjusts its CW and retransmits the packet at a

later time.

Packet loss due to fading occurs at Layer 1 of the OSI model [5]; however, this loss also af-

fects higher layers. This dissertation focuses on future wireless networks and fading is expected

to have a marginal impact on such future technologies. Therefore fading is not considered in the

simulations discussed below.

Limitations in the ns-2 design can also impact on the results obtained. As mentioned above,

it is an older simulator and it was created at a time when network throughput was relatively low.

It was optimised to simulate protocols that were in use or development at that time. High speed

protocols, like IEEE801.11n, and more recently IEEE802.11ac, achieve far higher speeds than

those anticipated by the initial designers of ns-2. For the architecture used in these simulations,

detailed monitoring of the traffic showed that these potential limitations of ns-2 did not impact
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on the simulation results.

In the following subsection the traffic mix used for the simulatons is described in detail.

6.1.2 Traffic Mix

This subsection describes the different traffic types used to replicate real world traffic mixes

in the simulations. The traffic mix was chosen to replicate real time traffic volumes that are

consistent with everyday life settings where multimedia services are provided alongside other

services. These other services are considered as background traffic.

The volume of traffic used for each experiment was chosen in order to balance three factors

associated with the network. The first of these is the actual composition of the wireless network

traffic [1] [2] [3] and, in particular, the use of a wireless network that is capable of carrying

data from both a traditional wired network and a phone network. The second factor is the need

to be able to push the network to the limit in order to explore the efficiency of the algorithm.

The third consideration relates to the discussion on the contention window controller in section

5.5.1.2. This is needed to ensure the validity of the hypothesis relating to simultaneous access

to the network.

The objective is to demonstrate by simulation that QQM operates satisfactorily in that is

guarantees the highest level of QoE possible. This means there are some key features to the

simulations and these are described below.

Firstly, the simulations must include traffic from every AC; however, it is not realistic to

assume that network is in saturation at every instant in time i.e. that all nodes have at least one

packet available to transmit at timeslot 0.

Secondly, the number of ACs accessing the channel must be comparable to a real-life sce-

nario, with regular traffic volumes and a consistent number of flows. The simulations aim to

show that QQM operates efficiently when dealing with a consistent volume of traffic. Logically,

low traffic volumes are not as challenging for the QQM algorithm and are unlikely to demon-

strate the added benefits of using QQM in a wireless network.

Thirdly, the traffic mix is not only determined based on experience, but also on observations
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of wireless networks. It is expected that future wireless networks will replace existing wireless

networks and, to some extent, other networks such as wired access networks or wired and wire-

less phone networks. The traffic mix on such networks is likely to be a mix of traffic from a

wide range of sources.

As previously discussed, VoIP traffic is transmitted as a CBR flow of UDP packets at a speed

of 8 Kbps. In each second 50 packets are sent from the source to the destination and vice versa.

This traffic is simulated in ns-2 by using CBR flows with the appropriate speed and packet sizes.

The simulations use an extended and refined version of 1 [196] 2 and support codecs G.711 and

G.729. The latter is used in the QQM evaluation simulations; in particular, in the evaluation of

eQoS.

The number of VoIP calls in progress at the same same time will be determined by a number

of hypotheses about the end users of the service. For example, a wireless network serving a

business is used by employees during the course of their work. If a TDMA network is not

available for regular phone calls, then it is reasonable to assume that a VoIP service over the

wireless network will be used instead. In this case, the number of calls at the same time can be

estimate using the standard Erlang [197] formulae.

The VoIP traffic model used in the simulations below is that of a constant presence of simul-

taneous VoIP calls on the network. The Erlang [197] calculation supposes 300 minutes of VoIP

traffic per hour, generated by 5 VoIP calls of 5 minutes duration. Therefore, each AP manages at

least 5 flows of VoIP traffic, and these are then increased up to a maximum of 10 simultaneous

calls per Access Point.

The audio streaming traffic is represented in the simulations by UDP-like packets using

Evalvid3 [198] [199] [200] [97] [201] in ns-2. It was necessary to extend Evalvid to provide and

monitor streaming services in the simulator.

Evalvid was adapted to the last release of ns-2 to include EDCA [36], VoIP [196] and
1http://www.tkn.tu-berlin.de/research/software_tools/
2https://www.tkn.tu-berlin.de/fileadmin/fg112/Hard_Software_Components/

Software/qofis_v2.pdf
3http://www.tkn.tu-berlin.de/menue/research/evalvid/

163

http://www.tkn.tu-berlin.de/research/software_tools/
https://www.tkn.tu-berlin.de/fileadmin/fg112/Hard_Software_Components/Software/qofis_v2.pdf
https://www.tkn.tu-berlin.de/fileadmin/fg112/Hard_Software_Components/Software/qofis_v2.pdf
http://www.tkn.tu-berlin.de/menue/research/evalvid/


IEEE802.11ac. A few modifications were made: information on the time when UDP pack-

ets were created was added to the header and TCP acknowledgements were moved from AC0 to

the same AC as the TCP data packets. The later is to prevent an increase in the priority of TCP

acknowledgement packets and an associated increase in the queue length at AC0. This means

that these packets do not compromise the efficiency of the traffic prioritisation system or the

delivery of VoIP and audio traffic.

Changes were also made to the software procedure used to create and rebuild streams. Audio

was included in the streams and the Evalvid software procedures were modified to fill any gaps

left by missing audio packets with the last one received. All the procedures to create and transmit

a stream over the network were automatised using scripts. Finally, the software used to create

and manage the streaming files was updated to the latest release.

The streamed audio traffic is assumed to be related to video transmission. The audio is

configured as detailed in section 2.4.3 as CD quality; that is, 44KHz stereo sampling at 16

bits and encoded using AAC [62]. It is transmitted over the network using an average of 47

packets per second and the UDP protocol is used for both audio and video. Variable packet sizes

do not give rise to any bias because the high speed of packet transmission on future wireless

networks flattens any differences in packet transmission times. Audio traffic is managed by

AC0 together with the phone calls and in any associated calculations its transmission frequency

is approximated at 50 packets per second i.e. to be the same as that used for phone calls.

The video stream used for the ns-2 simulations was the first 2 minutes and 20 seconds of a

Star Wars movie 4. This was chosen as it has a lot of rapid movements within each scene, uses

a wide range of colours and contains contrasting scene elements. This means that it exhibits a

great variability in frame sizes. Video streaming was simulated using UDP-like packets. It was

implemented in ns-2 using an extended version of Evalvid [198] [199] [200]. Video was coded

using MPEG-4 as described in section 2.4.4. The original video has a format of 1920 × 1080,

i.e. a format ratio of 1.78, and required 69.8 MBytes of data to be streamed in 140 seconds. The

stream chosen was sufficiently long to ensure it contains all possible frame types.
4http://www.starwars.com/films/star-wars-episode-iv-a-new-hope
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Lower video resolutions will have a different standard ratio to that chosen above; however,

the video quality evaluations discussed in this chapter do not focus on the quality of the frames,

their compression or the video content. The loss of video streaming packets during transmission

is not affected by the frame resolution ratio.

The streaming formats for video are summarised in table 6.1. The video streaming format

720 × 480, used for TV streaming in NTSC systems, is the best possible but is not recom-

mended for use on future wireless networks, as the format requires a very large throughput and

compromises the network’s other real time services.

In the simulations presented in this thesis, a video resolution of 480 × 320 is used. This

means that thirty frames are transmitted per second; with, on average, 13 packets for each I

frame and 3 packets for each P frame. The packet sizes are set to a maximum of 1024 Bytes

and the traffic is approximated by 100 video packets per second, of which 20% are I frames and

80% are P frames. Audio is simulated by the streaming of 47 frames per second.

As mentioned in the previous chapter, QQM was designed to manage real time traffic at

the AP; therefore, AC2 and AC3 traffic is considered as background traffic. They are only of

interest in terms of the volume of traffic produced; all other qualitative aspects of this traffic are

neglected in the analysis. To simulate a large amount of AC2 traffic, FTP flows with a packet

size of 1024 bytes are created. These originate from sources distributed throughout the wired

and wireless nodes. UDP flows in CBR configuration are also used to generate AC2 traffic with

a packet size of 256 bytes and at a rate of 50 Kb per second. The background AC3 traffic is a

mix of FTP and CBR flows. The FTP traffic is composed by TCP flows with a packet size of

1024 bytes and the CBR traffic is composed by UDP flows with a constant bit rate of 200 Kbits/s

and a packet size of 256 bytes, i.e. at a rate of 49 packets per second in total.

The throughput per flow is sufficient to ensure the channel is always occupied and that there

is always a packet waiting to be transmitted.

In ns-2 each flow has an unique identifier, flowID, in the packet header. The flowID

identifies the source, the destination and the traffic flow characteristics. All packets passing

through the queue at Layer 2 are statically mapped at the node. It is possible to implement
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Video Format Stream size I frame size P frame size Format Bitrate

size (in MB) (average in packets) (average in packets) ratio

720× 480 22.20 19 4 1.5 976

480× 320 17.36 13 3 1.5 662

320× 240 13.66 8 2 1.3 457

160× 120 8.49 4 2 1.3 227

Table 6.1: Video Stream Formats

dynamic packet queue switching by using deep packet inspection. For modern processors, this

is not too costly in terms of the CPU time required.

In the next subsection the QoS metrics implemented within the simulator are presented.

6.1.3 QoS Metrics

The efficiency of QQM is assessed through simulation. Its performance is compared with that

of networks that only use EDCA. The quality metrics used for this comparison are measures

of perceived and intrinsic QoS. The previously defined perceived metric, eQoS, is used to esti-

mate the assessed QoS i.e. the QoE. The intrinsic QoS is captured through physical parameters;

improvements in these will indicate an increase in end-user satisfaction.

The most important intrinsic QoS metric used to evaluate the benefits of QQM are the num-

ber of dropped packets and the packet delay. Packets may be dropped due to network events

like, for example, queue overflow, routing errors or an excessive number of transmission at-

tempts. This also includes the new version of Controlling Queue Delay [192] where real time

service packets are dropped because the delay induced by the queue latency and the serving time

means that their overall delay would exceed the set threshold.

The packet delay and jitter are two intrinsic QoS metrics that are significant for QoE eval-

uation. The average delay is a key metric that can be used to estimate how QQM reduces the

incidence of packet drops due to an inability to meet delay thresholds. In conjunction with

packet delay, jitter is another mechanism for capturing changes in eQoS. Jitter is defined as the
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effective delay between the transmission of two sequential packets. The jitter metric is unsuit-

able for use with variable bit rate traffic. An upper limit on the transmission delay is sufficient

to determine if packets can be transmitted without a loss of quality.

Other metrics, such as throughput, are of less interest when evaluating the systems under

consideration in this thesis as they give indirect and imprecise information on the network’s

performance. For example, real time VoIP services send packets at regular intervals and their

throughput is unchanged over a long period of time, i.e. over time periods of the order of 1

second. Throughput variations become evident when instantaneous throughput calculations are

used. These capture the variation in packet delay times due to queueing delays at the node.

However, metrics of this kind do not provide information on the aggregate benefit of QQM for

the management of the entire wireless network.

6.2 Evaluation of the eQoS Metric

In this section the eQoS metric is applied to media streams [14]. The results are used to inves-

tigate a possible relationship between eQoS and a traditional computational algorithm used to

estimate the MOS of a stream.

As explained in section 3.1.1, QoE, as evaluated using the MOS, and eQoS are different

metrics; not only because QoE is subjective and eQoS is objective, but also because eQoS

is evaluated almost instantaneously while QoE is determined over a much longer time frame.

Therefore it is not possible to directly compare the two metrics. One way to over come this

limitation is to evaluate both metrics for the same network stream under very specific conditions

where a constant number of packets per second is lost and then compare an average of the eQoS

values with those obtained using the MOS.

There are three reasons to conduct the evaluation in this way. The first reason is due to

the different time frames needed for the calculation of eQoS and QoE. While instantaneous

drops in quality are perceived by eQoS, they can have little or no impact on the traditional

computational algorithm. This underlines a significant advantage of eQoS; namely its ability to
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capture instantaneous variations in quality.

Second, the use of network traffic focuses the eQoS and QoE evaluation on scenarios where

some of the streamed data is lost. The causes of this loss of information; for example due to

traffic variations or a increasing number of mobile stations, are not important for this evaluation.

What is key is that some information, in the form of packets, is missing.

Third, the artificial loss of information is achieved by randomly dropping a few packets per

second. This means that loss events are independent. As previously noted when loss events

are caused by congestion it is more likely that packet drops occur in sequence; causing a rapid

decrease in quality to the lowest MOS value.

The evaluation was performed using some streamed files. The files were altered in order to

replicate the desired average packet loss. Each file was then streamed across the network and

the MOS and eQoS calculated for the same stream in various scenarios. For each scenario a

constant number of packets was dropped per second: in the first scenario one packet is dropped

per second, in the next scenario two packets per second are dropped and so on. The number

of loss events per second is increased until the encoded stream can no longer be rebuild by the

receiver. The average eQoS and MOS values calculated for each scenario are compared. A

statistical regression [202] analysis is used to show a possible relationship between the average

eQoS and the MOS.

As concluded in the discussion about media sampling in sections 2.4.2, 2.4.3 and 2.4.4, the

highest MOS score of 5 will never be measured by the computational algorithms even when no

packets are lost. To simplify the calculations, the conversion of an eQoS value to a MOS score

starts from the highest MOS score of 5 even though any measured value will be at most 4.5.

In the following three subsections this evaluation is performed for VoIP, audio and video

streams.

6.2.1 Evaluation of eQoS for VoIP services

In this section a VoIP service is artificially corrupted to simulate packet loss and eQoS and

PESQ [84] are calculated. The experimental platform uses a tailor-made system of scripts to
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simulate the loss of packets in the VoIP stream and to then evaluate the eQoS.

Each scenario consists of a stream, in this case a phone call, that has a constant number of

packets dropped per second. In the first scenario one packet is dropped per second, and in the

final scenario 16 packets are dropped per second. G.729 [57] encoding can tolerate the loss of

up to 16 packets per second. If more than 16 packets are lost per second then it is not possible

to decode the stream.

The software created works in conjunction with that described in [203] and [196] for simu-

lating a VoIP service over ns-2 [194]. The ns-2 simulation environment consists of an AP and a

mobile station, both are at fixed positions a few meters apart.

It was necessary to adapt the ns-2 software and procedures in order to use G.729 encoding.

The simulation streams used for the VoIP evaluation are speech files that simulate a phone call.

These streams are provided as examples by the ITU [84] [57]. Their content has the same

characteristics as a phone call, for example, in terms of language and tone. The encoded file

is processed by a script to simulate the loss of information described before. As the G.729

encoding process reduces the call quality through compression the initial MOS score is below

the maximum value of 5.

The original transmission file, where no packets have been dropped, is compared with the

file received where packets have been lost, using the PESQ [84] [203] algorithm. The results

are plotted using Matlab [182]. PESQ is the algorithm used by the ITU-T to evaluate QoE for

speech. eQoS is also calculated for each stream. The average value of eQoS for each stream is

plotted using Matlab [182]. The results are shown in figure 6.3.

The relationship between the PESQ and average eQoS is demonstrated using a scatter plot

and linear regression. Three curves are shown in figure 6.3: The central line is the regression line,

while the two dashed curves either side of it are the associated 95% confidence interval. It can

be seen that all points are inside the 95% confidence interval bounds. The statistics associated

with the regression analysis are:

β0=3.3929 β1=-1.7149

R2=0.9507 adjR2=0.9474
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Fig. 6.3: PESQ MOS vs average eQoS for VoIP: Experiment 1

The high values of the coefficient of determination, R2, and the adjusted R2 value, suggest

that the linear regression model is a good fit. The correlation coefficient is r = −0.975. This

indicates a strong linear relationship between the measured PESQ values and the average of the

calculated eQoS values. Just under 5% of variation in the relationship between PESQ and eQoS

is not explained by the regression model. This may be due to unpredictable extrinsic streaming

delays.

The experiment was repeated with another speech file [84]. The results are shown in figure

6.4. The regression analysis data for this second experiment are:

β0=3.4666 β1=-1.3615

R2=0.8926 adjR2=0.8849

In the second experiment the values of R2 and adjR2 are high and the coefficient of corre-

lation is r = −0.9448. These all indicate a strong linear relationship between the two variables.

All but one of the points lies inside the 95% confidence interval for the regression line.
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Fig. 6.4: PESQ MOS vs average eQoS for VoIP: Experiment 2

6.2.2 Evaluation of eQoS for Audio Services

In this section it will be shown that, when averaged, the eQoS metric for audio streaming has a

direct linear relationship with the existing QoE metric PEAQ [93].

A tailor-made system was created to produce streams with known quality impairments and

to then evaluate them using PEAQ [93] and the eQoS method. The system used to carry out

the simulations was derived from Evalvid [198] [199] [200]. In particular, the procedures were

modified and software packages were added to reproduce audio and video streams.

The audio stream is a stereo 16 bit, 44KHz audio file encoded using AAC. The encoded

file was inserted into an MPEG-4 file as audio track together with associated video. It was than

transmitted over a simulated wireless network. The evaluation was performed using the same

methodology as for VoIP traffic.

A loss of quality was created by dropping a constant number of packets per second from the

stream file at the receiver. The first stream had one dropped packet per second, and the experi-
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ment was then repeated, increasing the number of dropped packets per second each time up to

a maximum of 30. The data from the impaired streams were then evaluated using a traditional

QoE metric and eQoS. The results are reported in figure 6.5.

If an audio packet in a data stream is lost the system can attempt to recover it. For example,

this could be done by a multimedia player used at the application level. Rebuilding processes,

like interpolation or averaging between two received packets, are excluded from the calculations

in this thesis. It is important to calculate the effect each dropped packet produces, even if it can

eventually be rebuilt so that the streaming gap and associated loss in quality are hidden from the

end user. A loss in quality may also be hidden by the hardware used; for example, by headphones

for audio or by high definition screens in the case of video.

Since it is not possible to predetermine the application capabilities or the hardware equip-

ment at the receiver, eQoS estimates the quality at the node. In the simulations lost packets are

replaced by the last packet received as a simple, worst-case approximation of a data recovery

mechanism and to make the results obtained more realistic.

As previously noted, comparisons between QoE and eQoS are only possible for the specific

scenario used as they are very different metrics: eQoS is an objective instantaneous metric

while QoE is a subjective metric. The evaluation shows a strong linear relationship between

the average eQoS and the QoE, even in the case of streaming services.

Figure 6.5 shows a graph of PEAQ [204] [188] against average eQoS. The PEAQ software

used for this experiment is PQevalAudio5 [204] and it has two particular features. First, quality

is measured using the ODG [93] [94]. Second, the audio files have a sampling rate of 48KHz.

The regression line shows a strong linear relationship between the two metrics and the associated

statistical parameters are:

β0=-1.4435 β1=-2.5783

R2=0.9573 adjR2=0.9558

The coefficient of correlation r = −0.9784, confirms a strong linear relationship between

the two metrics. In the next section an example of eQoS calculations for video streaming is
5http://www-mmsp.ece.mcgill.ca/documents/downloads/PQevalAudio/
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Fig. 6.5: Regression graph of PEAQ vs average eQoS for Audio Streaming

detailed.

6.2.3 Evaluation of eQoS for Video Services

In this section a possible relationship between the eQoS metric and PSNR/MOS is investigated.

While PSNR is not the best estimator of QoE, it is widely used in the literature as a valid

estimation metric [97]. PSNR values can be passed to the MOS metric [97] to give an estimate

of QoE for a video stream. This follows the software procedures given in [200], [198] and [199].

The video stream is encoded using H.264. The encoded data was inserted into an MPEG-4

file and transmitted over a simulated wireless network to verify the correct encoding, MPEG-4

structure and packetisation. As in the previous subsection transmission was performed using

ns-2 [194], version 2.35 with the addition of the Evalvid package for ns-2 [200].

The streamed file was 140 seconds long. The video size was 480 × 320 pixels at a rate of

30 frames per second. This is one of the most popular ways to provide streaming services on

mobile devices and streaming websites.
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Following the procedures for Evalvid [198] [201], at the beginning of the simulation the file

is in a raw YUV format, where each frame is a complete picture. The file is then encoded using

H.264. Transmission loss is introduced by dropping a constant number of packets per second in

each simulation. Each dropped packet is replaced by zeros, and the stream is then decoded from

H.264 to the raw YUV format.

PSNR is calculated by comparing the YUV files at the source with those at the destination

[97]. The PSNR score is an average across the PSNR values calculated per frame. The PSNR

value is then translated onto the MOS scale.

eQoS is calculated at the AP using equation 4.21 for video streaming. The values used for

the parameters α, β and γ are: 0.4, 0.3 and 0.3 respectively. The weights given to the adjacency

contribution for I and P frames are equal and are conformant with equations 4.22 and 4.23. α, β

and γ were chosen by drawing the desired eQoS curve. The eQoS is set to measure a low MOS

level when just a few packets are dropped as it is assumed that the end user perceives only a

minimal loss in quality.

MOS results and averaged eQoS values are shown in figure 6.6. A linear regression relation-

ship between PSNR/MOS and average eQoS is evident. The horizontal and vertical axes give

the average eQoS and PSNR respectively. The horizontal dashed lines are the MOS levels, they

assist in the visualisation of the relationship between the metrics. The linear regression analysis

gives:

β0=38.1162 β1=-30.879

R2=0.9772 adjR2=0.9764

The coefficient of correlation is r = −0.9886. This shows a strong negative correlation between

the two metrics.
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Fig. 6.6: Regression graph of PSNR vs average eQoS for Video Streaming

6.3 Packet Transmission Times & Throughput Evaluation for

802.11ac

This section shows a practical application of the theoretical model described in section 5.1 [15].

This model is used to estimate the probabilities that a packet is transmitted, that there is a colli-

sion or that the channel is found to be idle by an AC accessing it.

A practical application of the model is in the calculation of the average time needed to

transmit a single packet in a future wireless network. This is done numerically by comparing

the average number of packets transmitted in one second during a simulation with the expected

time needed to transmit the same number of packets as inferred from the theoretical model. The

time need to transmit a packet is inferred from equations 5.19, 5.20, 5.21 and 5.22.

The results of five experiments are presented in this section. In general, each experiment

builds on the previous one by increasing the number of flows and mobile stations in the traffic

mix. In each experiment the average number of packets transmitted in one second during the
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simulation is compared with the time needed to transmit the same number of packets using the

theoretical model. Results are reported as the percentage difference between the estimate time

obtained from the simulator and the value predicted by the model. These are used to show how

accurate the theoretical model is at predicting the average transmission time for each packet.

The calculations for the theoretical model were carried out using Matlab [182], while the

simulations were performed using ns-2 [194]. Matlab was used to draw the graphs. The number

of packets transmitted per second and the time estimated by the theoretical model to transmit

them are shown to be in close agreement. That means that the theoretical model can estimate the

average time to transmit a packet in future wireless networks when the probability of events not

captured by the model is low e.g. collisions between more than 2 ACs, channel interrupts etc.

The first experiment is a simulation of 5 VoIP calls together with 5 Video and Audio stream-

ing flows. These flows are in the downlink direction from the wired network to the wireless

nodes. The VoIP and audio traffic are managed by AC0, while the video traffic is managed by

AC1. The best effort traffic on AC2 is simulated by 10 TCP flows: 5 from wired nodes to wire-

less nodes, and, vice versa, 5 flows from wireless nodes to wired nodes. The background traffic

on AC3 is provided by a mix of 5 TCP flows and 5 UDP flows, i.e. CBR flows, from the wired

to the wireless nodes.

The traffic is summarised in table 6.2. While this experiment is intended to model a real life

situation, the traffic managed by AC2 is greater than would be expected in order to saturate the

network without a loss of any real time service packets.

Table 6.2 reports the CW sizes used in the calculations for the theoretical model and the

maximum number of ACs competing for the channel.

The ns-2 simulation results and the average values are shown in figure 6.7. The x-axis shows

the simulation time, while the y- axis shows the packets per second exchanged between the AP

and the wireless nodes. The blue lines are the simulation results and the red dashed lines are the

averages.

The lines marked with AC_VO represent the traffic managed by AC0. The lines represent-

ing AC0 traffic overlap because VoIP and audio traffic is transmitted using a constant number
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AC CW size Flows from AP to MS Flows from MS to AP
Maximum number

of competing MS

AC0 / AC_VO 4 5 phone + 5 audio 5 phone 2

AC1 / AC_VI 8 5 video 1

AC2 / AC_BE 16 3 TCP 2 TCP 2

AC3 / AC_BG 16 3 TCP + 2 UDP (CBR) 2

Table 6.2: Summary of CW Sizes and Traffic Flows for Experiment 1

Fig. 6.7: Simulation results and traffic averages for 5 VoIP, 5 Audio and 5 Video streams, 5 TCP

flows and a mix of 3 TCP and 2 UDP flows
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of packets per second. The lines marked AC_VI represent the sum of the traffic managed by

AC1 with the AC_VO traffic. All the video traffic flows start at the same instant in time. This

represents a worst case scenario for video traffic because all the peaks in video transmission

overlap and so these peaks are amplified.

The lines marked with AC_BE represent the sum of the traffic managed by AC2 and the

AC0 and AC1 traffic.

The lines marked with AC_BG represent the sum of the traffic managed by AC3 and the

AC0, AC1 and AC2 traffic.

The calculations performed using the theoretical model are based on those given in section

5.2. All flows managed by AC0 and AC1 are transmitted first and they are competing to access

the channel. The calculations for these two ACs include the TXOP feature. After this traffic

has been transmitted, the traffic managed by AC2 is transmitted. This is TCP/FTP traffic. The

remaining time is then reserved for the transmission of the traffic managed by AC3, when only

AC3 flows are competing to access the channel. In general, AC2s andAC3s transmit UDP/CBR

traffic before any TCP/FTP packets are sent in their respective transmission time slots. In both

cases the TCP/FTP traffic consists of data packets in one direction and acknowledgement packets

in the opposite direction.

As discussed in section 5.2, the number of AC2s and AC3s accessing the channel at the

same time has to be fixed. It should be noted that the number of AC0s and AC1s accessing the

channel at the same time is also fixed, see section 5.4. AC2 has three TCP/FTP flows from the

wired to the wireless network and two flows in the opposite direction. As mentioned above for

each TCP/FTP data packet received at the destination a TCP/FTP acknowledgement is sent back.

Considering that AC2 and AC3 have a large CWmin, the timeslot to access the channel for AC2

and AC3 can be approximated as dE[CWmin
2 ]e using equation 5.18 . Therefore following the

theoretical model four timeslots will be added to the transmission time of AC2 and AC3 packets

and the competition to access the channel will be between only AC2s or only AC3s.

It is assumed that the RTT for TCP/FTP flows exceeds the typical delay accumulated on

the wired network; that is, it exceeds 40 milliseconds [47]. This means there are less than 25
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RTTs per second. In each RTT a flow can transmit a maximum of 32 packets if the congestion

window is large [47]. In the case of Experiment 1, less than 4000 packets are transmitted by

the AC2s. This includes both data and acknowledgement packets. In theory, one of the 5 AC2s

in the simulation can transmit 400 packets. This corresponds to an average congestion window

size of 16 packets. Based on the discussion in section 5.4 it can be assumed that, in theory, each

AC2 is accessing the channel less than 16 times every 40 milliseconds. About 13 packets can be

transmitted every 2.5 milliseconds; this corresponds to a slot as described in section 5.4.

A large number of flows are from the wired to the wireless network; so the AP has always

a packet ready to transmit. This means that a maximum of 2 AC2s are competing to access

the channel at any instant in time. AC3 traffic sources all originate on the wired network and

converge at the AP; therefore, the only traffic flowing from the wireless to the wired network is

TCP/FTP acknowledgement packets. From the discussion in section 5.4 it can be assumed that

a maximum of 2 AC3s are competing to access the channel at the same time.

In the first experiment an average of about 5400 packets are transmitted each second. This

is shown in figure 6.7. The theoretical model described in section 5.1 estimates that it will take

1.001684 seconds to transmit this number of packets.

This means that the average transmission time for each packet estimated by the theoretical

model differs from the average time observed in the simulation by 0.1684%. The difference is

0.001684 seconds and this corresponds to the time needed to transmit 9 packets of the total.

In Experiment 2 the number of flows managed by AC2 and AC3 is increased. Table 6.3

summarises the details of the flows used in this simulation.

In the second experiment, it can be observed that an average of about 5410 packets are

transmitted per second. This is shown in figure 6.8. The theoretical model estimates that 1.00464

seconds are needed to transmit this number of packets. The average transmission time estimated

for each packet by the theoretical model differs from the average time observed in the simulation

by 0.464%. The difference of -0.00464 seconds corresponds to the theoretical time needed to

transmit 25.1 packets of the total.

In Experiment 3 the flows managed by AC2 are changed, while the flows used for AC3
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AC CW size Flows from AP to MS Flows from MS to AP
Maximum number

of competing MS

AC0 / AC_VO 4 5 phone + 5 audio 5 phone 2

AC1 / AC_VI 8 5 video 1

AC2 / AC_BE 16 5 TCP 5 TCP 4

AC3 /AC_BG 16 5 TCP + 5 UDP (CBR) 2

Table 6.3: Summary of CW Sizes and Traffic Flows for Experiment 2

Fig. 6.8: Simulation results and traffic averages for 10 VoIP, 5 Audio and 5 Video streams, 10

TCP flows and a mix of 5 TCP and 5 UDP flows
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AC CW size Flows from AP to MS Flows from MS to AP
Maximum number

of competing MS

AC0 / AC_VO 4 5 phone + 5 audio 5 phone 2

AC1 / AC_VI 8 5 video 1

AC2 / AC_BE 16 3 TCP (cw=2) + 2 UDP 3 TCP (cw=2) 3

AC3 / AC_BG 16 3 TCP + 2 UDP (CBR) 2

Table 6.4: Summary of CW Sizes and Traffic Flows for Experiment 3

remain the same as those used in Experiments 1. Table 6.4 summarises the details of the flows

used in this simulation.

The AC2 traffic is now bidirectional TCP/FTP traffic with a congestion window size of two

packets and CBR traffic with a throughput of 50 Kbits per second and packet size of 256 bytes.

These settings were chosen to match those of real world best effort traffic; for example, telnet

and p2p traffic.

The results obtained by simulation and using the theoretical model are shown in figure 6.9.

The simulation shows that an average of about 4822 packets are transmitted each second. This

means that the average time needed to transmit a packet is greater than in the previous experi-

ments. There are two reasons for this. Firstly, once all the possible packets managed by AC0,

AC1 and AC2 are transmitted there is still sufficient bandwidth available to allow the AC3s to

transmit a large number of packets. Secondly, the number of packets transmitted in the wireless

network is smaller than Experiments 1 and 2 because AC2 flows have a low CBR rate and small

TCP congestion window.

The number ofAC2s andAC3s accessing the channel at the same time can be set to two. The

timeslot to access the channel for AC3 can be approximated as dE[CWmin
2 ]e+ 1 to compensate

the low CBR rate and the small tcp congestion window of AC2. The average transmission time

estimated for each packet by the theoretical model differs from the average time calculated using

the simulator by 0.296%, that is 0.00296 for a total time of 1.00296 or 14.3 packets.

The traffic settings for Experiment 4 are summarised in table 6.5. This experiment is similar
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Fig. 6.9: Simulation results and traffic averages for 10 VoIP, 5 Audio and 5 Video streams, 6

TCP flows, 2 UDP flows and a mix of 5 TCP and UDP flows
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AC CW size Flows from AP to MS Flows from MS to AP
Maximum number

of competing MS

AC0 / AC_VO 4 5 phone + 5 audio 5 phone 2

AC1 / AC_VI 8 5 video 1

AC2 / AC_BE 16 5 TCP (cw=2) + 5 UDP 5 TCP (cw=2) 4

AC3 / AC_BG 16 5 TCP + 5 UDP (CBR) 3

Table 6.5: Summary of CW Sizes and Traffic Flows for Experiment 4

to Experiment 3; however, the number of flows managed by AC2 and AC3 is increased. The

number of AC2s and AC3s accessing the channel at the same time is still set to a maximum of

two in the theoretical model.

The simulator shows that an average of about 4890 packets are transmitted each second. This

is shown in figure 6.10. The wireless network is still not in saturation, even though the number

of flows has been increased. The average transmission time estimated for each packet by the

theoretical model differs from the average time calculated using the simulator by 0.06%, that is

0.0006 for a total time of 1.0006 or 3 packets. . This indicates that, in this case, the estimates

obtained using the theoretical model are in line with those observed in the simulator.

In the final experiment in this section the traffic managed by each of the ACs is increased.

Table 6.6 shows the number of flows used for each AC. Based on the discussion in section 5.4,

the number of flows competing to access the channel is now set to three for AC0 and two AC1.

The number of AC2 flows competing to access the channel is increased to a maximum of four.

The increased traffic for AC0 and AC1 means that there are longer gaps between transmissions

for the AC2 traffic. The number of AC3 flows competing to access the channel is increased to a

maximum of eight.

The results obtained from the simulator and the theoretical model are shown in figure 6.11.

The simulator transmits an average of about 5362 packets each second. Due to the large volume

of traffic being transmitted the system is in saturation.

The average transmission time estimated for each packet by the theoretical model differs
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Fig. 6.10: Simulation results and traffic averages for 10 VoIP, 5 Audio and 5 Video streams, 10

TCP flows, 5 UDP flows and a mix of 5 TCP and 5 UDP flows
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AC CW size Flows from AP to MS Flows from MS to AP
Maximum number

of competing MS

AC0 / AC_VO 4 10 phone + 5 audio 10 phone + 5 audio 3

AC1 / AC_VI 8 5 video 5 video 2

AC2 / AC_BE 16 5 TCP (cw=2) + 5 UDP 5 TCP (cw=2) 4

AC3 / AC_BG 16 10 TCP + 5 UDP (CBR) 5 TCP 8

Table 6.6: Summary of CW Sizes and Traffic Flows for Experiment 5

from the average time calculated using the simulator 0.703%, that is 0.00703, for a total time of

1.00703 or 37.7 packets.

In this section a practical application of the theoretical model presented in section 5.1 has

been explored. In the following section attention shifts to QQM and, in particular, to an evalua-

tion of the subsystems that form a key part of QQM.

6.4 Performance Evaulation of the QQM Subsystems

In this section each of the QQM subsystems is evaluated by simulation [15]. QQM’s efficiency

is demonstrated through simulations that compare the performance of future wireless networks

where EDCA is implemented with that of the same networks where QQM is implemented.

Six distinct configurations are used. The first scenario is labelled configuration 0 and the

last scenario is configuration 5. Configuration 0 includes: 5 VoIP calls managed by the AC0s;

10 audio and video unidirectional flows from the wired to the wireless network managed by the

AC0s and AC1s respectively; 5 audio and video bidirectional flows managed by the AC0s and

AC1s respectively; 5 TCP bidirectional flows with a congestion window size of eight packets

and a packet size 1024 bytes, managed by the AC2s; five UDP/CBR unidirectional flows from

the wired to the wireless network with a packet size of 256 bytes and a speed of 50 Kb managed

by the AC2s; 5 TCP unidirectional flows from the wired to the wireless network with a packet

size of 1024 bytes managed by theAC3s; 5 UCP CBR unidirectional flows from the wired to the
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Fig. 6.11: Simulation results and traffic averages for 20 VoIP, 10 Audio and 10 Video streams,

10 TCP flows, 5 UDP flows and a mix of 15 TCP and 5 UDP flows
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wireless network with a packet size of 256 bytes and a speed of 200 Kb managed by the AC3s.

Each subsequent configuration adds one more VoIP call to those managed by the AC0s and

one additional audio and video bidirectional flow to those managed by the AC0s and AC1s

respectively.

VoIP phone calls are replicated in the network by ten CBR flows from the wired nodes to

the wireless mobile nodes and ten CBR flows from the mobile nodes to the wired nodes. Video

traffic is simulated using an extended and refined version of Evalvid [198] [199]. The audio and

video streams are each 140 seconds long.

Traffic volumes were chosen in order to explore the upper bound on the real time traffic that

can be delivered by the network while, at the same time, guaranteeing the minimum amount of

traffic needed to maintain the best effort and background traffic access categories.

In the first set of simulations the IEEE802.11ac wireless protocol is implemented. The

eQoS controller and the EDCA [35] method are also used. For each of the six configurations the

Access Point estimates the eQoS directly by measuring the number of packets dropped at the

queue, the transmission delay for each packet and the jitter. The jitter metric used is the delay

between two packet transmissions. Delay and jitter checks are performed at the access point’s

output queue and in the transmission buffer of each node.

The eQoS controller performs two operations: it estimates the eQoS and determines packet

transmission delays and jitter. The delay and jitter are not used to actively drop the packets in

the experiments performed with the original system, i.e. with IEEE802.11ac with EDCA only,.

Each node in the wireless network stores the EWMA estimate of the number of packets dropped

in a one second sliding window. This is done at the MAC layer and in the queues. When this

variable is updated it triggers an immediate re-calculation of the eQoS and QoE.

There are three ways that packet drops can occur. Firstly, a packet is dropped if the queue

buffer is full and there is no space to store it. Secondly, if a packet has exceeded its transmission

or packet delay threshold then it is dropped at the queue output. Thirdly a packet is dropped if it

has exceeded the number of acceptable retransmissions after a collision. The number of packets

dropped is decreased when an acknowledgement packet is received as this confirms that a packet
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has been successfully transmitted.

Two new features were added to the ns-2 simulator. The first is the association of a priority

with TCP acknowledgements. By default ns-2 associates a priority of zero with these, causing

them to be managed byAC0 instead of by the relevantAC2s orAC3s. The second is the addition

of a timestamp to the UDP packet headers to facilitate delay calculations at the node.

In the next subsections the QQM algorithm and its components are tested using the scenarios

described above.

6.4.1 The Contention Window Controller

The first experimental configuration uses the IEEE802.11ac [6] protocol with EDCA [35]. The

system also measures the eQoS but the values obtained are not used in the active eQoS controller;

therefore packets exceeding the maximum jitter and delay accepted to deliver the service with a

high quality are not dropped. This means that the system will overestimate the QoE.

The contention window controller is implemented with the IEEE802.11ac protocol. Table

5.2 is used to set the initial contention windows for the AC0s and AC1s depending on the

measured eQoS. When a collision occurs the contention window is doubled. The AC2s and

AC3s are not considered by the contention window controller.

As mentioned in section 5.5.1.2 a large CW size is used when the quantitative score exceeds

4 and a small CW size is used when the score is below 3. This has two main advantages: first

of all it reduces the number of collisions and secondly it gives to a clear definition of the quality

of a flow. The smaller CW value means that the system tries to transmit each packet as quickly

as it can. This will give rise to an increase in the quality. If traffic conditions mean that a large

CW size is used then this will increase the packet transmission delay. This, in turn, increases

the likelihood of packet drops and so the quality is reduced.

Figure 6.12 compares configurations 0 and 1 using IEEE802.11ac with the EDCA channel

access method, shown in red, with the corresponding configuration where the contention window

controller is deployed, shown in blue. The left hand figures show the number of packets involved

in collisions per second. The right hand side figures show the packets received per second.
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Fig. 6.12: Simulation results for configurations 0 and 1 comparing the number of collisions per

second and the number of packets received per second for two systems: (i) IEEE802.11ac with

EDCA and (ii) the same system with the addition of the contention window controller

The experiments are repeated for configurations 2 and 3 and the results shown in figure 6.13.

The results for configurations 4 and 5 are shown in figure 6.14.

Figures 6.12, 6.13 and 6.14 show a reduction in the number of packets involved in collisions

per second when the CW controller is used. By contrast, the number of packets transmitted per

second is practically the same. This is due to the large volume of traffic on the network. The

reduction in collisions becomes more evident as the number of VoIP, audio and video streams

grows.
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Fig. 6.13: Simulation results for configurations 2 and 3 comparing the number of collisions per

second and the number of packets received per second for two systems: (i) IEEE802.11ac with

EDCA and (ii) the same system with the addition of the contention window controller
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Fig. 6.14: Simulation results for configurations 4 and 5 comparing the number of collisions per

second and the number of packets received per second for two systems: (i) IEEE802.11ac with

EDCA and (ii) the same system with the addition of the contention window controller
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6.4.2 The Active eQoS Controller

The active eQoS controller drops packets that exceed the maximum thresholds for delay and

jitter. As described in section 5.5.1.1, packets from a real time stream that exceed the maximum

delay and jitter threshold values are transmitted across the wireless network despite that fact that

they are of no use to the destination node. Therefore, in an ideal world, these packets should be

dropped before they are transmitted so that they do not occupy the available wireless channel

with unnecessary traffic.

The active eQoS controller has a direct effect on the estimated eQoS values. If the active

eQoS controller is not deployed then all enqueued packets are transmitted and the eQoS is not

affected. When the active eQoS controller is implemented, packets that exceed the maximum

thresholds for delay and jitter are dropped before transmission across the wireless network.

The packet delay and packet transmission delay calculations are performed at the transmis-

sion buffer, because packets that exceed these delays should be dropped before they are trans-

mitted. The active eQoS controller uses the packet start time in the UDP header to estimate the

delay. The jitter, or delay variation [45], is calculated at the transmission buffer by looking at

the variation in delay between packets from the same flow. When an ACK is received or before

a packet is dropped the transmission time is recorded so that it can be used in the calculation of

the jitter associated with any subsequent packet from the same flow. Delay checks at the queue

input are performed by the queue management controller.

The acceptable value for the jitter was chosen using [45]. The upper jitter limit for two

video packets transmitted in sequence was set to be 0.040 seconds. For two audio and VoIP

packets this is set to 0.025 seconds in order to conform to the video conferencing standard. The

maximum delay is set to 0.2 seconds for all real time traffic packets.

In figures 6.15, 6.16 and 6.17 the performance of IEEE802.11ac with EDCA is compared

with that of the same system where both the contention window and active eQoS controllers are

included. As described in the previous subsection the results for IEEE802.11ac alone are shown

in blue, while the results for the system that includes both the contention window and the active
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eQoS controllers are shown in red.

The number of packets that collide per second is lower when the active eQoS controller is

used. The differences between this system and IEEE802.11ac alone is more noticeable then the

case where just the contention window controller is deployed. This is because some packets are

now dropped before transmission as they have exceeded the maximum limits for delay and jitter.

6.4.3 The Queue Management Controller

The queue management controller estimates the theoretical maximum queue size and automat-

ically drops packets the exceed this threshold. As mentioned in section 5.5.1.3, the maximum

queue size is variable and it is found using the average time needed to transmit a packet. The

transmission time is checked at the queue output and when the MAC Layer acknowledgement

is received by the transmitting station. The average delay accumulated by arriving packets is

calculated at the queue input. An EWMA is used to smooth differences between the average

delay and any delay peaks, the system then drops packets whose average delay exceeds 80% the

theoretical maximum queue size.

Simulations have been performed using implementations of all three controllers: the con-

tention window controller, the eQoS controller and the queue management controller.

Figures 6.18, 6.19, 6.20, 6.21, 6.22 and 6.23 show Queue 0 ad Queue 1 during the simulation

of configurations 0, 1, 2, 3, 4 and 5 respectively.

In each figure the red line is the theoretical maximum queue size, the black line shows

the fixed maximum queue length for the simulations, that is 250 packets. The blue line is the

instantaneous queue length. In the simulations of configurations 0, 1, 2 and 3, the theoretical

maximum queue length differs significantly from the real queue length and it is concluded that

the queue management controller is not affecting the simulations. On the other hand as the

traffic grows in configurations 4 and 5, the theoretical maximum queue length is less than the

maximum queue length and the instantaneous queue length and so it is becomes necessary to

drop some packets.

It is important to note that some packets that are successfully transmitted by the system with
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Fig. 6.15: Simulation results for configurations 0 and 1 comparing the number of collisions per

second and the number of packets received per second for two systems: (i) IEEE802.11ac with

EDCA and (ii) the same system with the addition of both the contention window and active

eQoS controllers

194



Fig. 6.16: Simulation results for configurations 2 and 3 comparing the number of collisions per

second and the number of packets received per second for two systems: (i) IEEE802.11ac with

EDCA and (ii) the same system with the addition of both the contention window and active

eQoS controllers
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Fig. 6.17: Simulation results for configurations 4 and 5 comparing the number of collisions per

second and the number of packets received per second for two systems: (i) IEEE802.11ac with

EDCA and (ii) the same system with the addition of both the contention window and active

eQoS controllers
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Fig. 6.18: Real and Virtual lengths of Queue 0 and Queue 1 for the Configuration 0 Simulation

IEEE802.11ac and EDCA alone are dropped when all three controllers are implemented. The

eQoS measured in the system without the three controllers is not affected by the transmission of

these packets as they do not enhance the QoE of the service being delivered.

6.4.4 The QQM Controller

In this subsection the three controllers evaluated above are brought together using the QQM al-

gorithm. This algorithm manages the interactions between the three controllers. It is configured

to work in the worst case, i.e. with minimal changes to the traffic, to show how QQM can have

a significant impact on the provision of high quality services.

QQM is implemented at the queue inputs and, as described in section 5.5, it operates and
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Fig. 6.19: Real and Virtual lengths of Queue 0 and Queue 1 for the Configuration 1 Simulation
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Fig. 6.20: Real and Virtual lengths of Queue 0 and Queue 1 for the Configuration 2 Simulation
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Fig. 6.21: Real and Virtual lengths of Queue 0 and Queue 1 for the Configuration 3 Simulation
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Fig. 6.22: Real and Virtual lengths of Queue 0 and Queue 1 for the Configuration 4 Simulation
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Fig. 6.23: Real and Virtual lengths of Queue 0 and Queue 1 for the Configuration 5 Simulation
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interacts with the controllers through the eQoS metric. To assist the reader in their understanding

of the QQM rules and of the graphs presented below, the eQoS estimates are translated onto a

scale that is comparable with that used for the MOS score. This is indicated on the graphs as

QoE.

For each packet that arrives at the node, QQM checks the QoE for the associated flow. If the

QoE is less than the the acceptable threshold value of 3 and the previous two packets have been

dropped, then the flow is marked. When the QoE for a marked flow stays below the threshold

value of 3 for one second the flow is dropped. QQM then drops any other flows associated with

the marked flow; for example, in the case of a phone call the flow in the opposite direction will

also be dropped. This can be easily achieved using a control packet that is generated by the node

that dropped the original flow. To limit the number of dropped flows, QQM drops only flows

associated with the same service; e.g. VoIP, audio or video. A more aggressive choice would be

to drop the entire service; for example, to drop an entire video conference if the audio in one

direction is not working. These choices can be made by the TELCO depending on how they

market their services.

When a flow is dropped the node does not drop any other flow for the next five seconds. This

time interval is needed for the system to adapt to the loss of the dropped flow. The time interval

settings adjust QQMs tolerance to both the magnitude and duration of quality loss events. For

the evaluation presented below, the system is set to the worst case with long time intervals.

Simulations of configurations 0, 1, 2 and 3 were chosen to have a sufficient amount of traffic

to enable the three controllers to work independently, but without sufficient loss to cause QQM

to have an impact on the system. Configurations 4 and 5 have flows with a loss in quality that

will be detected by QQM and cause it to take action .

In the configuration 4 simulation only a VoIP flow is dropped at the beginning of the simu-

lation, therefore the subsequent analysis focuses on the configuration 5 simulation.

Table 6.7 summarises the VoIP flows in progress during the simulation of configuration 5.

The table reports the name and type of service in operation, the source node, the destination

node and the flowID, that is a unique number that identifies the flow in the packet header. In-
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Service Source Destination flowID

VoIP call 1 wired node 1 wireless node 1 31

VoIP call 1 wireless node 1 wired node 1 41

VoIP call 2 wired node 7 wireless node 7 37

VoIP call 2 wireless node 7 wired node 7 47

VoIP call 3 wired node 11 wireless node 11 311

VoIP call 3 wireless node 11 wired node 11 411

VoIP call 4 wired node 17 wireless node 17 317

VoIP call 4 wireless node 17 wired node 17 417

VoIP call 5 wired node 21 wireless node 21 321

VoIP call 5 wireless node 21 wired node 21 421

VoIP call 6 wired node 27 wireless node 27 327

VoIP call 6 wireless node 27 wired node 27 427

VoIP call 7 wired node 31 wireless node 31 331

VoIP call 7 wireless node 31 wired node 31 431

VoIP call 8 wired node 37 wireless node 37 337

VoIP call 8 wireless node 37 wired node 37 437

VoIP call 9 wired node 41 wireless node 41 341

VoIP call 9 wireless node 41 wired node 41 441

VoIP call 10 wired node 47 wireless node 47 347

VoIP call 10 wireless node 47 wired node 47 447

Table 6.7: Summary of VoIP Flows in Configuration 5

stantaneous variations in QoE for each VoIP flow are reported in figures 6.24, 6.25, 6.26, 6.27

and 6.28.

In figures 6.24, 6.25, 6.26, 6.27 and 6.28 configuration 5 is simulated for the original system,

i.e. for IEEE802.11ac with EDCA only, and for the enhanced system where the QQM algorithm

is deployed. Results for the former are on the right hand side of each figure; while those for the

latter are on the left side.

It can be seen that, in general, the quality of flows from the wireless to the wired network are

most affected by the introduction of QQM. Drops in QoE are smoothed and reduced in amplitude
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Fig. 6.24: Comparison of the QoE of VoIP Flows at Wireless Nodes 1 and 7 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation

by the QQM algorithm through the actions and interactions of the three individual controllers

and the dropping of a few flows from the system. After 113 seconds the flow with ID number

411 is dropped along with the related flow with ID 311 and VoIP call 3 is terminated.

A similar comparison between a simulation of IEEE802.11ac with EDCA and the same

system with the use of QQM are repeated for video and audio flows. Table 6.8 summarises the

details of the unidirectional video and audio flows used in the simulation of configuration 5.

Figures 6.29, 6.30, 6.31, 6.32 and 6.33 show the comparison between the QoE of the original

system, i.e. for IEEE802.11ac with EDCA only, and the same system with the addition of QQM.
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Fig. 6.25: Comparison of the QoE of VoIP Flows at Wireless Nodes 11 and 17 for two sys-

tems: (i) IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the

Configuration 5 Simulation
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Fig. 6.26: Comparison of the QoE of VoIP Flows at Wireless Nodeses 21 and 27 for two sys-

tems: (i) IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the

Configuration 5 Simulation
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Fig. 6.27: Comparison of the QoE of VoIP Flows at Wireless Nodes 31 and 37 for two sys-

tems: (i) IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the

Configuration 5 Simulation

208



Fig. 6.28: Comparison of the QoE of VoIP Flows at Wireless Nodes 41 and 47 for two sys-

tems: (i) IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the

Configuration 5 Simulation
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Service Source Destination flowID

Audio 1 wired node 0 wireless node 0 20

Video 1 wired node 0 wireless node 0 10

Audio 2 wired node 8 wireless node 8 28

Video 2 wired node 8 wireless node 8 18

Audio 3 wired node 10 wireless node 10 210

Video 3 wired node 10 wireless node 10 110

Audio 4 wired node 18 wireless node 18 218

Video 4 wired node 18 wireless node 18 118

Audio 5 wired node 20 wireless node 20 220

Video 5 wired node 20 wireless node 20 120

Audio 6 wired node 28 wireless node 28 228

Video 6 wired node 28 wireless node 28 128

Audio 7 wired node 30 wireless node 30 230

Video 7 wired node 30 wireless node 30 130

Audio 8 wired node 38 wireless node 38 238

Video 8 wired node 38 wireless node 38 138

Audio 9 wired node 40 wireless node 40 240

Video 9 wired node 40 wireless node 40 140

Audio 10 wired node 48 wireless node 48 248

Video 10 wired node 48 wireless node 48 148

Table 6.8: Summary of VoIP flows in configuration 5
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Fig. 6.29: Comparison of QoE of audio and video unidirectional flows at Wireless Nodes 0 and

8 for two systems: (i) IEEE802.11ac with EDCA and (ii) the same system with the addition of

QQM for the Configuration 5 Simulation

In figure 6.31 the flow with ID 128 is dropped by the QQM algorithm after 26 seconds. Audio

quality is not affected in the unidirectional flows from the wired to the wireless network.
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Fig. 6.30: Comparison of QoE of audio and video unidirectional flows at Wireless Nodes10 and

18 for two systems: (i) IEEE802.11ac with EDCA and (ii) the same system with the addition of

QQM for the Configuration 5 Simulation

Tables 6.9 and 6.10 summarise the details of the bidirectional video and audio flows used in

the simulation of configuration 5.

Figures 6.34, 6.35, 6.36, 6.37 and 6.38 show the comparison between the QoE of the original

system, i.e. for IEEE802.11ac with EDCA only, and the same system with the addition of QQM

for table 6.9. In this case no flows are dropped by the QQM algorithm.

Figures 6.39, 6.40, 6.41, 6.42 and 6.43 show the comparison between the QoE of the original

system, i.e. for IEEE802.11ac with EDCA only, and the same system with the addition of QQM

for table 6.10. In this case the flows with ID numbers 246 and 247 have been dropped by the
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Fig. 6.31: Comparison of QoE of audio and video unidirectional flows at Wireless Nodes 20 and

28 for two systems: (i) IEEE802.11ac with EDCA and (ii) the same system with the addition of

QQM for the Configuration 5 Simulation
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Fig. 6.32: Comparison of QoE of audio and video unidirectional flows at Wireless Nodes30 and

38 for two systems: (i) IEEE802.11ac with EDCA and (ii) the same system with the addition of

QQM for the Configuration 5 Simulation
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Fig. 6.33: Comparison of QoE of audio and video unidirectional flows at Wireless Nodes 40 and

48 for two systems: (i) IEEE802.11ac with EDCA and (ii) the same system with the addition of

QQM for the Configuration 5 Simulation
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Service Source Destination flowID

Audio 11 wired node 6 wireless node 6 26

Video 11 wired node 6 wireless node 6 16

Audio 11 wireless node 6 wired node 6 27

Video 11 wireless node 6 wired node 6 17

Audio 12 wired node 9 wireless node 9 29

Video 12 wired node 9 wireless node 9 19

Audio 12 wireless node 9 wired node 9 211

Video 12 wireless node 9 wired node 9 111

Audio 13 wired node 16 wireless node 16 216

Video 13 wired node 16 wireless node 16 116

Audio 13 wireless node 16 wired node 16 217

Video 13 wireless node 16 wired node 16 117

Audio 14 wired node 19 wireless node 19 219

Video 14 wired node 19 wireless node 19 119

Audio 14 wireless node 19 wired node 19 221

Video 14 wireless node 19 wired node 19 121

Audio 15 wired node 26 wireless node 26 226

Video 15 wired node 26 wireless node 26 126

Audio 15 wireless node 26 wired node 26 227

Video 15 wireless node 26 wired node 26 127

Table 6.9: Summary of VoIP flows in configuration 5
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Service Source Destination flowID

Audio 16 wired node 29 wireless node 29 229

Video 16 wired node 29 wireless node 29 129

Audio 16 wireless node 29 wired node 29 231

Video 16 wireless node 29 wired node 29 131

Audio 17 wired node 36 wireless node 36 236

Video 17 wired node 36 wireless node 36 136

Audio 17 wireless node 36 wired node 36 237

Video 17 wireless node 36 wired node 36 137

Audio 18 wired node 39 wireless node 39 239

Video 18 wired node 39 wireless node 39 139

Audio 18 wireless node 39 wired node 39 241

Video 18 wireless node 39 wired node 39 141

Audio 19 wired node 46 wireless node 46 246

Video 19 wired node 46 wireless node 46 146

Audio 19 wireless node 46 wired node 46 247

Video 19 wireless node 46 wired node 46 147

Audio 20 wired node 49 wireless node 49 249

Video 20 wireld node 49 wireless node 49 149

Audio 20 wireless node 49 wired node 49 251

Video 20 wireless node 49 wired node 49 151

Table 6.10: Summary of VoIP flows in configuration 5
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Fig. 6.34: QoE of audio and video bidirectional Flows at Wireless Node 6 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation
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Fig. 6.35: QoE of audio and video bidirectional Flows at Wireless Node 9 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation
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Fig. 6.36: QoE of audio and video bidirectional Flows at Wireless Node 16 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation
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Fig. 6.37: QoE of audio and video bidirectional Flows at Wireless Node 19 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation

221



Fig. 6.38: QoE of audio and video bidirectional Flows at Wireless Node 26 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation
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QQM algorithm.

Two observations can be made about the VoIP, audio and video flows. Firstly, issues with

quality are only visible for flows from the wireless to the wired network. The reason for

this is that the mobile nodes access the channel with frequency 30Hz for AC1 and 50 Hz for

AC0; whereas the AP accesses the channel much more frequently due to the large number of

flows going from the wired to the wireless network. Secondly, as mentioned above, the active

eQoS controller drops packets whose delay and jitter exceed the maximum thresholds, whereas

IEEE802.11ac with EDCA alone would transmit these packets. Therefore the effective eQoS

measured at the receiving node is lower than the eQoS measured at the AP, as shown by the QoE

in the figures above.
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Fig. 6.39: QoE of audio and video bidirectional Flows at Wireless Node 29 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation
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Fig. 6.40: QoE of audio and video bidirectional Flows at Wireless Node 36 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation
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Fig. 6.41: QoE of audio and video bidirectional Flows at Wireless Node 39 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation
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Fig. 6.42: QoE of audio and video bidirectional Flows at Wireless Node 46 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation

6.5 Overhead and Complexity Analysis

One of the key theoretical design goals for the QQM algorithm was that it should have low

overhead and complexity. Its complexity can be summarised as O(n), as the algorithm does

not include any loops or recursive functions. However, the algorithm does include some nested

conditional expressions.

The active eQoS measurement system performs the eQoS calculation by counting the pack-

ets dropped at the queue and the packets that exceed the maximum delay or jitter thresholds.
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Fig. 6.43: QoE of audio and video bidirectional Flows at Wireless Node 49 for two systems: (i)

IEEE802.11ac with EDCA and (ii) the same system with the addition of QQM for the Configu-

ration 5 Simulation
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The operations required to achieve this are comparisons and a few conditional expressions.

The contention window controller compares the eQoS value with the contention window

size table. The operation performed by the contention window controller are, once again, just a

few conditional expressions.

The queue management system samples the time to transmit a packet. The packet transmis-

sion time is then used to calculate the maximum threshold for the queue length and the average

transmission time. These operations do not require any conditional expressions.

The resources required by the QQM algorithm are very limited. A few variables are needed

to keep track of each flow and each queue in order to store information on lost packets, quality

and sampling times. The CPU effort required is minimal compared with the capabilities of

modern CPUs. The operations performed by the algorithm are mainly packet header analysis

and variable comparisons, operations similar to a those carried out by most routing algorithms.

6.6 Summary

This chapter presented an evaluation of eQoS metric, theoretical model and the Quality Queue

Management (QQM) algorithm and its subsystems through computer simulation. The range of

scenarios explored clearly demonstrate the efficiency of the metric and the algorithms.

eQoS not only provides long term average estimates of the QoE that are shown to be consis-

tent with existing full reference methods via simulation, it also provides an almost instantaneous

estimate of the QoE.

In the second part of the chapter the mathematical model is evaluated. Simulations com-

pare the average time needed to transmit packets from each AC, with the time estimated by

the theoretical model via the sampling of packets in the queue. These demonstrated that the

theoretical model can be used to predict traffic and to estimate the probabilities associated with

transmission, collision and idle events on the wireless network.

The third part of the chapter evaluated the performance and efficiency of the QQM algorithm

subsystems through computer simulations. Traffic simulations of the QQM controller with pro-
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tocol IEEE802.11ac and EDCA were compared with those obtained from a system that also

implemented protocol IEEE802.11ac and EDCA. The queue management controller was evalu-

ated using similar scenarios. The active eQoS controller and the contention window controller

were evaluated separately to highlight the benefits of both these algorithms. The simulations

were performed using suitable estimates of real time flows and traffic.

The simulation results indicate the validity of the theoretical model derived in this thesis and

provide compelling evidence of the effectiveness of QQM. The following chapter concludes this

dissertation.

230



Chapter 7

Conclusion

This dissertation has analysed and solved the challenging problem of the provision of Quality

of Experience (QoE) to real time services on future wireless networks. Future wireless network

will soon replace existing wireless networks and this thesis investigated a mechanism for guar-

anteeing these new wireless networking technologies a level of QoE comparable to that achieved

on existing cellular telephony networks.

Future wireless networks are innovative because they introduce VHT and a novel Layer 1

technical design, which makes it easy to apply EDCA efficiently. Moreover, they are inexpensive

and it is anticipated that they will rapidly become dominant.

Future wireless networking technologies must be capable of providing popular real time

services. The ability to provide real time services with the same high quality that TELCOs

offer as a premium product will bring many advantages for the end user. Firstly, there will be a

dramatic reduction in the cost of high quality services; secondly, there will be a huge increase in

the throughput available for mobile devices.

Real time services have been shown to be very sensitive to packet loss and packet delay. The

quality with which they are provided to the end user is measured by the QoE metric. This is an

indicator of the customer’s level of satisfaction with the service they are receiving. QoE is one of

the most important quality and, indirectly, network performance metrics available to TELCOs. It
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is the end-user’s subjective measure of the combined impact of the network’s physical parameter

settings on their experience.

This dissertation has determined a relationship between these physical parameters and QoE,

through a novel quality measure called eQoS. Packet dropping events that occur at the node

are mathematically related to the human perception of the impact of packet dropping events that

occur in sequence. Therefore, eQoS is a perceived QoS measure that can be used to obtain an

instantaneous estimate of the QoE.

As shown in this thesis, the access point of a wireless network is a critical node in the network

for the maintenance of acceptable quality levels. On wired networks the throughput is high and

the percentage of packets lost is negligible; by contrast, wireless networks struggle to provide

good QoE to their users. Packets can easily accumulate delays at the AP or be dropped when

congestion occurs. Therefore an appropriate traffic management algorithm at the AP, that can

also be used in its associated mobile nodes, is strategically essential for future quality assurance

purposes.

Traffic management algorithms are based on theoretical models which describe the network

environment. This dissertation analysed the environment that future wireless networks are likely

to inhabit. It proposed a novel theoretical model, based on probabilistic methods and combina-

torics, to describe the EDCA method to access the channel applied in a Very High Throughput

wireless environment. One of the key contributions of this work is the design of a traffic man-

agement algorithm that guarantees high levels of QoE. This algorithm brings together priority

classes, quality metrics, traffic flow management and queue length control mechanisms.

Decision making within QQM is driven by the QoE metric. Its key design goals are the

provision of high QoE to real time traffic and optimisation of packet transmission scheduling.

Through QQM this dissertation achieves its aim of ensuring services with an expected QoE

and optimising throughput on future wireless networks.
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7.1 Achievements and Contributions

The dissertation provides a comprehensive description of wireless networks and their traffic

management, within the context of which the three research contributions were presented.

The first contribution is the novel eQoS metric. This fills an important research gap as it

provides an almost instantaneous estimate of the QoE for real time services. eQoS has two

important and evident advantages. Firstly, by providing an almost instantaneous estimate of the

QoE it supersedes existing systems where there is a non-negligible delay in the calculation of the

QoE estimate. Moreover, it can be successfully incorporated into a management system for the

network; providing quality information that can be used directly by the node. eQoS is obtained

through the use of combinatorics and is composed of two elements: the number of packets

dropped in a one second window and the probability the packets are dropped in sequence. eQoS

provides an almost instantaneous estimate of the QoE. It has been shown that, on average, it is

comparable to one of the most popular automatic perceived quality metrics, MOS.

A new efficient and simple theoretical model to describe the channel access probabilities

is the second contribution of this thesis. The theoretical model is designed to work on future

wireless networks where the EDCA method is used to access the channel. It replaces other,

more complex, models in the design of a controller for wireless networks. It fully captures the

EDCA method and is suitable for use in a fuzzy controller. The model uses combinatorics to

estimate the probability of collisions, the probability the channel is idle and the probability a

collision occurs between packets.

QQM is the final contribution of this dissertation. It combines eQoS and the theoretical

model to create a system to manage traffic on a future wireless network. The novelty of this

traffic management method is in the combination of three subsystems that usually work in isola-

tion. To be precise, it creates mutual collaboration between three systems: a queue management

system, a contention window controller and an eQoS controller. All with the stated aim of im-

proving the provision of real time services over the wireless network. QQM provides as many

real time flows as possible with the best QoE possible in the network.
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7.2 Applicability and Limitations

The three main contributions presented in this work are clearly defined and can be used to

achieve near optimal results in some specific environments. All contributions can be brought

together in a system designed to manage the traffic with the goal of providing real time services

with the best possible QoE available.

The first consideration is that the system achieves its best performance when the available

throughput is sufficiently large to allow for the exchange of a significant amount of real time

traffic. Future wireless networks offer an ideal environment for the utilisation of QQM. Wire-

less protocols, like IEEE802.11ac, and wireless networks, like WiMax and 4G networks, have

sufficient available throughput to make best use of QQM.

Each of the main QQM subsystems requires some particular environment characteristics to

be correctly used. eQoS, for example, operates to its full potential when it is used as part of

a traffic management algorithm, like QQM, which acts to instantaneously adjust the network

parameter settings. To apply eQoS, the network characteristics of each real time flow have to

be known in advance. eQoS does not depend on the number and structure of the queues in the

system.

QQM can be used efficiently with multiple queue systems where the queue structure is well

defined and the characteristics of each real time streaming flow are known; but it can also be

used in systems where a single queue is present.

With just a few modifications, QQM can be applied in a wide variety of wireless environ-

ments. However, the design will need more significant changes for use in networks where the

method of channel access differs significantly from EDCA. It can be adapted for use in WiMax

networks with time sharing or in cellular telephony networks but the substantial modifications

required to achieve this are beyond the scope of this work.

QQM works to maintain the QoS parameters within predetermined thresholds, but it is more

efficient when it works together with higher level applications to smooth any fluctuations in the

QoS parameters.
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7.3 Future Work

QQM allows for the investigation of various future directions in QoE measurement and the use

of traffic management to provide services with QoE guarantees.

QQM was designed to be independent of the wireless protocol, therefore the main ideas for

future work are three: the application of QQM in a different scenario from WiFi to extend its

functionalities, to expand eQoS functionalities in the network and, finally, to modify QQM to

work on networks that uses lower throughput than VHT.

The first suggestion for future work is to extend the functionality of QQM to wireless proto-

cols that do not use EDCA to access the channel. This includes the development of a QQM-like

system for a cellular architecture. Such a system could look to guarantee high QoE when a

mobile node moves between two access points, i.e. when frequent handover events occur.

Another interesting starting point is to expand QQM functionalities. For further exploration,

it is interesting to investigate on the distribution of eQoS measurements over the network and at

the application layer. It might be of benefit in the development of an application layer protocol

to manage real time service flows and unresponsive flows.

The challenging proposal is the investigation of QQM applicability and performance when

the throughput of the network is lower than VHT. QQM is designed to work with VHT networks,

but in low throughput network, for example sensor networks [5], it is possible to deliver very

limited real time services. When a very low throughput is available, like in underwater sensor

networks [205], a few packets are transmitted per second. In this case no realtime services can be

delivered, therefore QQM has to be redesigned to guarantee the quality of the delivered packets.

7.4 Final Remarks

Even though combinatorics, statistics and fuzzy logic are widely used in the design of QQM and

eQoS, they are straightforward to implement and do not place an unacceptable computational

burden on the system. The hardware and software resources required are those that are common

to almost all APs and mobile devices.
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eQoS and QQM were developed and implemented entirely at Layer 2, they do not affect

the Layer 2 protocol or other layer protocols. As noted during the evaluation in chapter 6, they

perform best when they are applied at all nodes in the wireless network.
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