
Data Layout Oriented Compilation Techniques in
Vectorization for Multi-/Many-cores

by

Shixiong Xu

Dissertation

Submitted to the School of Computer Science and Statistics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
(Computer Science)

School of Computer Science and Statistics

TRINITY COLLEGE DUBLIN

September 2017

2

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or

any other university and it is entirely my own work.

I agree to deposit this thesis in the Universitys open access institutional repository or

allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trinity

College Library conditions of use and acknowledgment.

. .

Shixiong Xu

Dated: August 26, 2017

3

4

Abstract

Single instruction, multiple data (SIMD) architectures are widely adopted in both general-

purpose processors and graphic processing units for exploiting data-level parallelism. It

is tedious and error-prone for programmers to write high performance code to utilize

SIMD execution units on both platforms. Therefore, users often rely on automatic code

generation techniques in compilers. However, it is not trivial for compilers to generate

high performance code without considering the data layout of the data used in the com-

putation. Data layout determines data access patterns, and in turn have a great impact on

the memory performance of the automatically generated code for both CPUs and GPUs.

In this thesis, we demonstrate several data layout oriented compilation techniques

for efficient vectorization. We put forward semi-automatic data layout transformation

to help users to easily change their program, and exploit the best possible data layout

in terms of vectorization. Our proposed vectorization based on hyper loop parallelism

provides a way to take advantage the relationship between data layout and computation

structure. The experimental results demonstrated that this vectorization technique can

yield significant performance gain. In addition, we show that this technique is of great

use to boost the memory performance on CUDA GPUs.

We also present pioneering work that uses loop vectorization techniques to handle

nested thread-level parallelism (TLP) on CUDA GPUs. As loop vectorization prioritizes

vectorizing loops with contiguous data accesses, it is of great help to achieve an efficient

mapping strategy for nested TLP on CUDA GPUs.

Our new bitslice vector computing for customizable arithmetic precision on general-

purpose processors with SIMD extensions not only breaks the limit of hardware arith-

metic precision but also achieves great performance. It also shows the great power of

logic optimization widely used in hardware synthesis in optimizing C/C++ code with a

large amount of logic operations.

5

6

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr David Gregg. His

enthusiasm and encouragement ensured the completion of this thesis. As English is my

second language, he spent substantial amounts of time and effort on correcting gram-

matical and spelling errors in my papers for conferences and thesis. In addition, his rich

experience on research is inevitable to the completion of my PhD. He is one of the most

hard-working supervisors I have ever worked with. His dedication to research sets a

great example to me. Without him, it is impossible for me to get papers fully revised and

submitted in time.

I would also like to thank the members of the Software Tools Group who have been

great company and of great assistance through the years. Particular thanks to Andrew

Anderson, Aravind Vasudevan, Mircea Horea Ionică, Martin Marinov and Servesh Mu-

ralidharan for helping me improve my English significantly and get used to the life in

Dublin quickly.

Finally, my greatest appreciation is reserved for my mother for her support during

my study for the PhD. This thesis is also dedicated to my late father.

SHIXIONG XU

University of Dublin, Trinity College

September 2017

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

Contents

1 Introduction 21

1.1 Our Thesis . 21

1.2 Contributions . 24

1.3 Thesis Structure . 25

1.4 Published Work . 25

2 Background and Literature Review 27

2.1 SIMD Architectures . 27

2.1.1 Single Instruction Multiple Data (SIMD) 27

2.1.2 SIMD Instruction Set Extensions for Multimedia 28

2.2 Graphics Processing Units . 30

2.3 SIMD Extensions vs SIMT in CUDA GPUs 31

2.3.1 Single instruction, multiple register sets 31

2.3.2 Single instruction, multiple addresses 32

2.3.3 Single instruction, multiple control flow paths 33

2.4 Compilation Techniques for Automatic Vectorization 35

2.4.1 Loop Vectorization . 35

2.4.2 Super-word Level Parallelism Vectorization 38

2.4.3 Whole-function Vectorization . 39

2.4.4 Other Automatic Vectorization Techniques 40

2.5 CUDA and OpenACC . 42

2.5.1 CUDA Programming Model . 42

2.5.2 Compiler Directive Based Programming Model — OpenACC 44

2.6 Summary . 45

9

3 Semi-automatic Data Layout Transformations for Loop Vectorization 47

3.1 Introduction . 47

3.2 Language Support for Data Layout Transformations 48

3.2.1 Motivating Examples . 48

3.2.2 Data Layout Transformation Pragmas 51

3.2.3 Composition of Data Layout Transformations 55

3.3 Data Layout Aware Loop Transformations 57

3.4 Experimental Evaluation . 58

3.4.1 Implementation . 58

3.4.2 A Case Study: data layout tuning for loop vectorization 59

3.5 Related Work . 62

3.6 Summary . 64

4 Exploit Computation Structure Exposed by Data Layout in Vectorization 65

4.1 Introduction . 65

4.2 Hyper Loop Parallelism in Vectorization . 68

4.2.1 Overview . 68

4.2.2 Vectorization Analysis . 70

4.2.3 Vectorization Transformation . 72

4.3 Implementation . 77

4.4 Preliminary Experimental Results . 79

4.4.1 Experimental Setup . 79

4.4.2 Benchmarks . 79

4.4.3 Performance . 80

4.5 Related Work . 81

4.6 Summary . 82

5 Boost Memory Performance with HLP in Vectorization for CUDA GPUs 85

5.1 Introduction . 85

5.2 Hyper Loop Parallelism in Vectorization . 88

5.2.1 Hyper Loop Parallelism . 89

5.2.2 Hyper Loop Parallelism in Vectorization 90

10

5.3 Hyper Loop Parallelism on the CUDA GPU 94

5.3.1 SIMD Vectors . 94

5.3.2 SIMD Operations . 95

5.3.3 Mapping Execution Model . 98

5.4 Implementation . 101

5.5 Performance Evaluation . 102

5.5.1 Experiment Setup . 102

5.5.2 Test-cases . 102

5.5.3 Performance Evaluation and Analysis 102

5.6 Related Work . 107

5.7 Summary . 109

6 Loop Vectorization for Nested Thread-level Parallelism on CUDA GPUs 111

6.1 Introduction . 111

6.2 Loop Vectorization for Nested TLP on GPUs 114

6.2.1 Motivation . 114

6.2.2 New SIMD vector abstraction of GPU execution model 115

6.2.3 Thread-Reuse Execution Model . 116

6.2.4 Advantages of loop vectorization for nested TLP 121

6.3 Loop Vectorization Framework for Nested TLP 122

6.3.1 Language Extension . 122

6.3.2 Vectorization Analysis . 123

6.3.3 Vectorization Transformation . 125

6.4 Evaluation . 132

6.4.1 Experimental Methodology . 132

6.4.2 Experimental Results . 132

6.5 Related Work . 137

6.6 Summary . 139

7 Fine-grained AoS-to-SoA for Customizable Precision Arithmetic 141

7.1 Introduction . 141

7.2 Software Bitslice Representations . 143

11

7.3 Bitslice Vector Computing . 144

7.4 Operating on Bitslice Vectors . 145

7.4.1 Basic operations . 147

7.5 Bitslice Floating Point Vector Operations . 148

7.5.1 IEEE-754 Floating Point Format . 149

7.5.2 Bitslice Floating-point Operators . 150

7.6 Code Generator and Optimization . 154

7.6.1 Code Generation Framework . 154

7.6.2 Logic Optimization . 156

7.7 Experimental Evaluation . 159

7.7.1 Experiment Methodology . 159

7.7.2 Performance of Building Blocks . 159

7.7.3 Performance of BFP Operations . 160

7.7.4 Performance of Real-world Applications 164

7.8 Related Work . 168

7.9 Summary . 170

8 Conclusion and Final Thoughts 173

8.1 Future Work . 174

8.1.1 Integrate Semi-automatic Data Layout Transformation into Perfor-

mance Auto-tuning Systems . 174

8.1.2 Seamless Data Layout Transformations for C++ Code 174

8.1.3 A Source-to-source Vectorizing Compiler for Bitslice Vectors 175

8.1.4 Exploit More Logic Optimization for Bitslice Vector Operators . . . 175

8.2 Final Thoughts . 176

12

List of Figures

1-1 Data layouts: Array-of-Structures(AoS) and Structure-of-Arrays(SoA) . . . 22

1-2 The performance impact of strided memory access on effective memory

bandwidth on two Nvidia CUDA GPUs. 23

2-1 Single instruction multiple data (SIMD). 28

2-2 Add two vectors of numbers in SIMD. 31

2-3 Add two vectors of numbers in SIMT. 32

2-4 Sparse matrix vector multiplication in the format of compressed sparse

row (CSR) in SIMT. 33

2-5 Computation with control flow in SIMT. 34

2-6 Thread divergence in SIMT. 34

2-7 Vectorization on the loop in transposed matrix vector multiplication with

vectorization factor 4. 36

2-8 Example of SIMD-enabled functions in Intel’s C/C++ compiler. 39

2-9 CUDA execution model. 43

2-10 CUDA memory model. 43

2-11 The parallel loop annotated with OpenACC pragmas for the transposed

matrix vector multiplication (TMV). 45

3-1 The kernel of function tzetar() in the SP of NPB. 49

3-2 Syntax of the data layout transformation pragma. 51

3-3 Loop transformation without considering data layout. 57

3-4 Data layout aware loop transformation. 58

3-5 Performance of tzetar() with different data layout transformations 60

3-6 Performance of the SP in different data layouts. 60

13

3-7 Performance of the SP of the NAS Parallel Benchmarks. 61

3-8 Performance breakdown of the double precision SP of the NAS Parallel

Benchmarks. 61

3-9 Performance breakdown of the single precision SP of the NAS Parallel

Benchmarks. 62

4-1 C-Saxpy . 66

4-2 C-Saxpy by classic loop vectorization. 66

4-3 C-Saxpy by hyper-loop parallelism vectorization 66

4-4 Hyper loop parallelism for vectorization. 69

4-5 Collect program slices. 70

4-6 Group program slices. 71

4-7 Overlapping of fully grouped slices. 73

4-8 Reducible and scatterable computation attributes. 73

4-9 Expand program slices. 74

4-10 Global SIMD lane-wise optimization. 76

4-11 Compilation flow of hyper loop parallelism vectorization. 77

4-12 An example of code generation. 78

4-13 Performance of Group I benchmarks. 80

4-14 Performance of Group II benchmarks. 81

5-1 The performance impact of stride memory access on effective memory

bandwidth. 86

5-2 C-Saxpy on the data organized in an array of structures (AoS). 88

5-3 CUDA code for C-Saxpy generated by the Cetus compiler. 88

5-4 Identification of parallel hyper loop iterations with backward program slic-

ing. y[2*i] and y[2*i+1] are the slicing criteria. This is the same as HLP

vectorization for CPUs shown in Fig. 4-5. 90

5-5 Group slices in hyper loop parallelism vectorization. This is the same as

HLP vectorization for CPUs shown in Fig. 4-6. 91

14

5-6 Illustration of vectorization expansion with a loop unrolling factor 32. The

CUDA warp size is 32. Note the loop unrolling factor is different from the

one used in HLP vectorization for CPUs depicted in Fig. 4-9. 92

5-7 Global SIMD lane optimization. Note the length of SIMD vectors is dif-

ferent from the one used in HLP vectorization for CPUs depicted in Fig.

4-10. 92

5-8 Vector dot operation. 96

5-9 Stride-3 data layout transformation via shared memory. 97

5-10 Runtime generation of masks for intra-vector shuffle operations. 98

5-11 Mapping SIMD lanes representing hyper loop parallelism to GPU threads. 99

5-12 The overall compilation flow of hyper loop parallelism vectorization for

the CUDA GPU. The compiler passes in the dotted boxes are what we

introduce to the Cetus compiler. 101

5-13 The performance of loops with unit-stride data access on Jetson TK1. The

CUDA block size is 128. 103

5-14 The performance of loops with unit-stride data access on GeForce GTX

645. The CUDA block size is 128. 104

5-15 The performance of C-Saxpy on Jetson K1 and GeForce 645. The CUDA

block size is 128. 105

5-16 The performance of kernels with stride-3 data access on Jetson TK1. The

CUDA block size is 128. 106

5-17 The performance of kernels with stride-3 data access on GeForce GTX 645.

The CUDA block size is 128. 107

6-1 Naive mapping from parallel loop nest to the CUDA execution model. . . 112

6-2 The parallel loop annotated with OpenACC pragmas for the transposed

matrix vector multiplication (TMV). Note that the vector clause in the

example is our language extension for nested TLP (discussed in Sec. 6.3.1). 114

6-3 Our proposed hierarchical segmented vectors for CUDA GPUs (warp size

is 4 and thread block size is 8). 116

15

6-4 Comparison of execution models for nested TLP on CUDA GPUs. Assume

i-loop is the outermost parallel loop, j-loop is the nested parallel loop, data

access is contiguous across iterations of j-loop. For simplicity, each thread

block contains 8 GPU threads and the number of iterations of j-loop is 5. . 119

6-5 Our proposed two execution modes of thread-reuse execution model, par-

tial and full. 120

6-6 Virtual simply nested loops in vectorization analysis. Assume k-loop is

suitable for inner-loop vectorization while h-loop is suitable for outer-loop

vectorization. 124

6-7 Optimization on the execution guard for nested TLP. The execution guard

i < SIZE is distributed over the three parts of the original loop body. . . . 127

6-8 The generated CUDA code by inner-loop vectorization in partial mode.

The vectorization factor is 32 and loop unrolling factor is 4. 128

6-9 The generated CUDA code by outer-loop vectorization in full mode. The

vectorization factor is 32 , block size (TB) is 128, and the max block size

(TBmax) is 1024. 130

6-10 Performance comparison between our vectorization approach and Yang

and Zhou’s method [Yang and Zhou, 2014] (TB = 128) 134

6-11 Performance comparison between our approach and PGI compiler. The

loop seq directive is used to disable the default handling of nested TLP in

PGI compiler. 135

6-12 Performance impact of loop unrolling factor in partial mode. VF for Kmeans

and MV is 16 and 32. 135

6-13 Performance impact of vectorization factor and TBmax in full execution

mode in Backprop. The block size TB is set to vectorization factor VF. . . . 136

7-1 Standard and bitslice representation of an array of sixteen 8-bit floating-

point numbers. 143

7-2 Bitslice adder for two arrays of unsigned integers. Each integer has ADD -

BITS bits. The size of uint32 t decides the number of array elements are

being processed. 144

16

7-3 Two versions of code that negate the n’th bit of each element of a vector of

thirty-two 16-bit integers. The first code fragment operates on the standard

representation of arrays of numbers. The second operates on bitslice vectors.146

7-4 Floating-point word. 149

7-5 Bitslice floating-point vector types for FP32. 150

7-6 AIG representation of boolean network . 156

7-7 Output of ABC logic optimization for a 4-bit unsigned integer multiplica-

tion. AND2X1, OR2X1, XOR2X1, ANDNOT2X1, INVX1 are C macros for

logic instructions supported by the processor. 158

7-8 Performance of unsigned integer addition with bit sizes from 4 to 32. . . . 161

7-9 Performance of unsigned integer subtraction with bit sizes from 4 to 32. . . 161

7-10 Performance of unsigned integer multiplication with bit sizes from 4 to 32. 162

7-11 Performance of bitslice floating-point addition/subtraction with bit sizes

from 8 to 28. 163

7-12 Performance of bitslice floating-point multiplication with bit sizes from 8

to 28. 163

7-13 Performance of bitslice floating-point division with bit sizes from 8 to 28. . 164

7-14 Performance of BLAS-1 xSCALE in bitslice floating-point operations with

bit sizes from 8 to 16. 166

7-15 Performance of BLAS-1 xAXPY in bitslice floating-point operations with

bit sizes from 8 to 16. 166

7-16 Performance of BLAS-2 xGEMV where y = 0 in bitslice floating-point op-

erations with bit sizes from 8 to 16. 167

7-17 Performance of 1D Blur in bitslice floating-point operations with bit sizes

from 8 to 16. 167

8-1 The customized output from ABC logic optimizer for the 4-bit integer mul-

tiplication with a 3-LUT mapping strategy. 176

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

List of Tables

3.1 Data layout schemes and vectorization strategies. 50

3.2 Data layout transformations assuming the array u is originally in the Pure

AoS. 56

5.1 Test-cases with three representative data access strides: 1, 2 and 3. 103

7.1 Types of floating-point numbers. 149

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

Chapter 1

Introduction

1.1 Our Thesis

Single instruction, multiple data (SIMD) vector computational units are widely available

in commodity processors from energy-efficient embedded systems to large supercom-

puters. For example, Intel Haswell processors provide the AVX2 SIMD instruction set,

which supports up to eight 32-bit integer and single precision floating point SIMD op-

erations. In order to find sufficient data parallelism to feed the SIMD execution units,

programmers usually rely on compilers to automatically vectorize hot-spot parallel loops

and generate efficient SIMD instructions. Classic loop vectorizaton [Kennedy and Allen,

2002][Nuzman and Zaks, 2008] first determines if a loop in a loop nest is vectorizable

according to data dependence analysis, then examines every statement enclosed in the

loop to check if it is feasible and profitable to be transformed into a SIMD operation.

The payoff of forming SIMD operations is decided by several factors, such as data align-

ment [Eichenberger et al., 2004], and data access patterns [Nuzman et al., 2006].

General Purpose Graphics Processing Units (GPGPUs), in particular, the Nvidia CUDA

GPU, are also widely used in a variety of machines from embedded systems (e.g. Nvidia

Tegra K1) to super-computers. The deep hierarchy of both execution model — warp,

thread block, grid — and memory organization – local, shared and global memories

— makes manually writing high performance code for the CUDA GPU error-prone

and tedious. To reduce the programming efforts, GPU manufacturers have put for-

ward low-level programming models such as CUDA and OpenCL. Meanwhile, a long

21

#define SIZE 128
struct vec_type {
 int a;
 int b;
 int c;
};
struct vec_type vectors[SIZE];

for (i = 0 ; i < 128; i++) {
 vectors[i]. a = …
 vectors[i]. b = …
 vectors[i]. c = …
}

#define SIZE 128
struct vec_type {
 int a[SIZE];
 int b[SIZE];
 int c[SIZE];
} ;
struct vec_type vectors;

for (i = 0 ; i < 128; i++) {
 vectors.a[i] = …
 vectors.b[i] = …
 vectors.c[i] = …
}

a) An array of structures (SoA) b) A structure of arrays (SoA)

Figure 1 Data layouts: Array-of-Structures (AoS) and Structure-of- Arrays (SoA)

For contiguous data access, when doing vectorization for CPUs, compilers can simply replace a scalar

load or store operation with a vector load or store operation. By contrast, it is not trivial for the

compiler to generate efficient instructions to reorganize interleaved data into a vector. Vectorizing

compilers based on classic loop vectorization usually generate a sequence of data shuffling

instructions (e.g., pshuffle, pblend in Intel SSE) for data reorganization. Nonetheless, as long as data

is accessed in a non-linear pattern, there will always be a cost of shuffling or gathering data for

vectorization.

Figure 2 The performance impact of stride memory access on effective memory bandwidth.

Similarly, for parallel loops with data in AoS, directly mapping each loop iteration to a GPU thread

also exposes non-unit stride data access. When the data access pattern has a unit stride, global

memory access can be easily coalesced. Conversely, non-unit stride access lead to low memory

utilization and have a great impact on the memory bandwidth. As shown in Figure 2, all strides except

the unit one greatly decrease the effective memory bandwidth. Therefore, optimizing non-unit stride

memory access is of great importance to the memory performance of CUDA GPU programs.

Exploiting Hyper-Loop Parallelism in Vectorization
to Improve Memory Performance on the CUDA GPU

Name2 Name3
Affiliation2/3

Email2/3

Abstract
Memory performance is of great importance to achieve high perfor-
mance on GPUs. For the Nvidia CUDA GPU, the rules of thumb
of memory optimization are minimizing memory operations, max-
imizing shared memory and maximizing coalesced memory access
to global memory. Specific optimization techniques are put forward
to achieve either of these goals, such as thread coarsening, caching
data with a high degree of reuse in shared memory, global data lay-
out transformation for coalescing memory access to global mem-
ory. However, we think that vectorization based on hyper loop par-
allelism can be used as a unified technique to optimize the memory
performance. In this paper, we put forward a compiler framework
on top of the Cetus source-to-source compiler to efficiently exploit
hyper loop parallelism in vectorization to improve the memory per-
formance on the CUDA GPU. Abstractions of SIMD vectors and
SIMD operations with the execution model and memory model of
the CUDA GPU are introduced along with three different execu-
tion mapping strategies for efficiently offloading vectorized code
to the execution model of the CUDA GPU. In addition, as we em-
ploy the vectorization in C-to-CUDA with automatic paralleliza-
tion, our technique further refines the mapping granularity between
coarse-grain loop parallelism and GPU threads. We evaluated our
proposed technique on two platforms, an embedded GPU system -
Jetson TK1 and a desktop GPU GTX645. The experimental results
demonstrate that our vectorization technique based on hyper loop
parallelism can yield performance speedups up to 2.5⇥.

Categories and Subject Descriptors D3.4 [Processors]: code
generation, compilers, optimization

General Terms automatic vectorization for GPU, hyper loop par-
allelism vectorization

Keywords SIMD, vectorization, hyper loop parallelism, memory
performance, thread coarsening

1. Introduction
General Purpose Graphics Processing Units (GPGPUs), in particu-
lar, the Nvidia CUDA GPU, are widely adopted not only in super-
computers but also in embedded systems (e.g. Nvidia Tegra K1).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c� 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1. The performance impact of stride memory access on
effective memory bandwidth [1].

The deep hierarchy of both execution model and memory organiza-
tion makes manually writing high performance code for the CUDA
GPU error-prone and tedious. To alleviate the programming efforts,
low level programming models such as CUDA, OpenCL are put
forward by the manufacturers. Meanwhile, long standing research
has been done to automatically generate GPGPU code from ei-
ther auto-parallelization, compiler directive based languages (e.g.
OpenMP [17], OpenACC [16]) or domain-specific languages.

For parallel loops with data in an array of structures (AoS), di-
rectly mapping each loop iteration to a GPU thread may expose
non-unit stride data access. Unlike unit-stride accesses to global
memory that can be coalesced, non-unit stride accesses would lead
to low memory utilization and have a great impact on the mem-
ory bandwidth. As shown in Fig.1, all strides except the unit would
greatly decrease the effective memory bandwidth. Therefore, op-
timizing non-unit stride memory access is of great importance to
boost the performance of CUDA programs. One popular solution
is to apply global data layout transformation to transform the data
layout from an array of structures to an structure of arrays, resulting
in unit-stride data access.

Non-unit stride data access is also an obstacle for efficient vec-
torization on CPUs. Apart from optimization with data reorgani-
zation instructions, super-word level parallelism vectorization is
[10][12] deemed as an effective way to vectorize loops with data
in AoS. However, to the best of our knowledge, dealing with non-
unit stride memory access in C-to-CUDA with SLP vectorization
is not explored in both literature and existing compilers. In this pa-
per, we adopt an improved SLP vectorization technique based on
hyper loop parallelism to deal with the non-unit stride data access
in C-to-CUDA. Hyper loop parallelism (HLP) vectorization [23] is
introduced to deal with semi-isomorphic sub-graphs of data flow
graphs of a vectorizable loop and proves effective on the CPU. In

Figure 1-1: Data layouts: Array-of-Structures(AoS) and Structure-of-Arrays(SoA)

standing research goal has been to automatically generate GPGPU code from auto-

parallelization [Verdoolaege et al., 2013], compiler directive based languages (e.g. OpenMP,

OpenACC) and domain-specific languages (e.g. Halide [Ragan-Kelley et al., 2013] for im-

age processing).

Data layout has a great impact on the effectiveness of both automatic loop vector-

ization for the SIMD execution units of CPUs and automatic code generation for GPUs.

Two popular ways are commonly used to organize data in memory, an array of struc-

tures (AoS) and a structure of arrays (SoA). As depicted in Figure 1-1, compared to SoA,

data is in AoS is a more intuitive way to represent physical entities. However, data in

AoS often exposes interleaved data access patterns with non-unit strides. For the given

example, computation on the data in AoS reveals stride-3 interleaved data access. On the

other hand, computation on the data in SoA presents contiguous memory access.

For contiguous data access, when vectorizing loops for CPUs, compilers can simply

transform a scalar load or store operation to a vector load or store operation to load or

store a full vector of data. By contrast, it is not trivial for the compiler to generate efficient

instructions to reorganize interleaved data into a vector. Vectorizing compilers based on

classic loop vectorization usually generate a sequence of data shuffling instructions (e.g.,

pshuffle, pblend in Intel SSE) for data reorganization [Nuzman et al., 2006][Ren et al.,

22

2006]. Nonetheless, as long as data is accessed in a non-unit stride pattern, there will

always be a cost of shuffling or gathering data for vectorization.

0

5

10

15

20

25

30

35

40

45

0 4 8 12 16 20 24 28 32

Ef
fe

ct
iv

e
Ba

nd
w

id
th

(G
B/

s)

Stride (elements)

Effective Bandwidth vs. Stride for Single Precision

Jetson TK1 GTX 645

Figure 1-2: The performance impact of strided memory access on effective memory band-
width on two Nvidia CUDA GPUs.

Similarly, for parallel loops with data in AoS layout, directly mapping each loop it-

eration to a GPU thread also exposes non-unit stride data access. When the data access

pattern has a unit stride, memory access to global memory can be easily coalesced. Con-

versely, non-unit stride access leads to low memory utilization and can have a great

impact on the effective memory bandwidth [Wilt, 2013]. As shown in Figure 1-2, all

strides except the unit one greatly decrease the effective memory bandwidth. There-

fore, optimizing non-unit stride memory access is of great importance to the memory

performance of CUDA GPU programs.

In this thesis, we first present three new solutions to the problems mentioned above

— semi-automatic data layout transformation, vectorization based on the computation

structure exposed by data access patterns and loop vectorization for nested thread-level

parallelism. Then, we demonstrate how fine-grained SoA-to-AoS transformation is use-

ful to customizable precision arithmetic on general purpose processors with SIMD exten-

sions, and introduce our new programming method based on bitslice vectors and related

23

optimization techniques.

1.2 Contributions

The principal contributions of this thesis are as follows:

∙ We put forward a new program annotation (using C language pragmas) to enable

programmers to specify data layout transformations. The primitive data layout

transformations presented are suitable to be composed into more complex data

layout transformations. With data layout aware loop transformations, compilers

are able to do better vectorization.

∙ We introduce a new vectorizing technique based on hyper loop parallelism, which

is revealed by hyper loops. The hyper loops recover the loop structures of the vec-

torizable loop and help vectorization to employ global SIMD lane-wise optimiza-

tion. Experimental results demonstrate that our hype loop parallelism vectorization

can achieve significant speedups over the non-vectorized code in our test cases.

∙ We present a compiler framework to extract hyper loop parallelism in vectoriza-

tion and map the parallelism efficiently on CUDA GPUs. Our method achieves

thread coarsening, which can reduce memory operations in the presence of data

locality, and optimizes uncoalesced memory access to global memory. In addition,

the introduction of hyper loop parallelism further refines the mapping granularity

between coarse-grain loop parallelism and GPU threads.

∙ We advocate a loop vectorization approach to nested TLP in C-to-CUDA compila-

tion for CUDA GPUs. Our vectorization approach is designed to reuse the GPU

threads for outer parallel loop(s) to execute nested TLP.

∙ We propose a new model of SIMD vector computation based on software bitslicing

that allows bit-level customizable precision of numeric types on processors with

SIMD extensions We use ABC, a logic optimization and synthesis tool that is in-

tended to optimize hardware circuits, to optimize our arithmetic operators and

significantly improve their performance. Our results show that circuit optimization

techniques are applicable to both hardware and software.

24

1.3 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 provides some background on the compilation techniques on automatic

vectorization in modern compilers and the programming model for compute uni-

fied device architecture (CUDA) GPU by Nvidia.

Chapter 3 introduces a new program annotation (using C language pragmas) to en-

able programmers to specify data layout transformations for semi-automatic data-

layout transformations.

Chapter 4 presents hyper-loop parallelism, which is used to exploit the computa-

tion structure exposed by data-layout in vectorization.

Chapter 5 improves the memory performance of CUDA programs with hyper-loop

parallelism on CUDA GPUs

Chapter 6 proposes a novel loop vectorization approach to nested thread-level par-

allelism in C-to-CUDA compilation for CUDA GPUs.

Chapter 7 illustrates a new approach to vector computing based on bitslice vector

formats for processors with SIMD extensions and building arithmetic operators

from bitwise instructions.

Chapter 8 highlights some of the most notable contributions, and identifies some

interesting aspects arising from the work that warrant further research.

1.4 Published Work

Chapter 3, 4, 5 and 6 are based on the published work as follows:

[1] Shixiong Xu and David Gregg. An Efficient Vectorization Approach to Nested

Thread-level Parallelism for CUDA GPUs. In 2015 International Conference on Paral-

lel Architectures and Compilation Techniques, PACT 2015, San Francisco, CA, USA,

October 18-21, 2015, 2015. (DOI: 10.1109/PACT.2015.56) (Extended Abstract)

25

[2] Shixiong Xu and David Gregg. Bitslice Vectors: A Software Approach to Customiz-

able Data Precision on Processors with SIMD Extensions. In 46th International Con-

ference on Parallel Processing, ICPP 2017, Bristol, UK, August 14-17, 2017.

[3] Shixiong Xu and David Gregg. Exploiting hyper-loop parallelism in vectorization

to improve memory performance on CUDA GPGPU. In 2015 IEEE TrustCom/Big-

DataSE/ISPA, Helsinki, Finland, August 20-22, 2015, Volume 3, pages 5360, 2015.

(DOI: 10.1109/Trustcom.2015.612)

[4] Shixiong Xu and David Gregg. Efficient exploitation of hyper loop parallelism in

vectorization. In Languages and Compilers for Parallel Computing - 27th Interna-

tional Workshop, LCPC 2014, Hillsboro, OR, USA, September 15-17, 2014, Revised

Selected Papers, pages 382396, 2014. (DOI: 10.1007/978-3-319-17473-0 25)

[5] Shixiong Xu and David Gregg. Network and Parallel Computing: 11th IFIP Inter-

national Conference, NPC 2014, Ilan, Taiwan, September 18-20, 2014. Proceedings,

chapter Semi-automatic Composition of Data Layout Transformations for Loop Vec-

torization, pages 485496. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. (DOI:

10.1007/978-3-662-44917-2 40)

26

Chapter 2

Background and Literature Review

In this chapter, we present an account of the relevant background material necessary

for this dissertation. We first describe three variants of single instruction, multiple data

(SIMD) architectures. Then, we summarize compilation techniques on automatic vector-

ization in modern compilers. We briefly explain Compute Unified Device Architecture

(CUDA) GPU by Nvidia and a compiler directive based programming model — Ope-

nACC. For readers familiar with vectorization techniques and GPGPU programming,

this present chapter serves to introduce some terminology used in this dissertation.

2.1 SIMD Architectures

2.1.1 Single Instruction Multiple Data (SIMD)

Single instruction, multiple data (SIMD), is a class of parallel computer architecture in

Flynn’s taxonomy, proposed by Michael J. Flynn [Flynn, 1972][Duncan, 1990]. It de-

scribes computer architectures with multiple processing elements that perform the same

operation on multiple data points simultaneously. Therefore, such machines are mainly

used to exploit data level parallelism. In this model, only a single instruction is used for

multiple parallel computations at a given moment, as depicted in Fig. 2-1.

There are three variants of of SIMD architectures: vector architectures, SIMD instruc-

tion set extensions for multimedia and graphics processing units (GPUs) [Hennessy and

Patterson, 2011].

27

Instruction PoolSIMD

Da
ta
Po
ol

PU

PU

PU

PU

Ve
ct
or
U
ni
t

Figure 2-1: Single instruction multiple data (SIMD).

Vector architectures predate the other two SIMD architectures by more than 30 years.

Vector processors implements an instruction set that operates on 1-D arrays, called vec-

tors. Vectors contain multiple data elements and the number of data elements per vector

is typically referred to as the vector length. Both instructions and data are pipelined to

reduce decoding time. Cray platforms were the most notable vector supercomputers, for

example, the Cray-1, Cray-2, Cray X-MP and Cray Y-MP.

In the following sections, we present the other two SIMD architectures as well as the

difference and similarities between them.

2.1.2 SIMD Instruction Set Extensions for Multimedia

SIMD instruction set extensions for multimedia borrows the SIMD name to express si-

multaneous parallel data operations. This SIMD architecture was motivated by the nar-

row data types such as 8 and 16 bits integers used in many media applications. 32-bit

processors were not optimized for such narrow types. However, if the carry chains of

a 32-bit adder were partitioned, a processor could perform parallel operations on short

vectors of four 8-bit operands, or two 16-bit operands. The additional cost of such par-

titioned adders was small. A SIMD instruction performs the same operation on vectors

of data similar to vector instructions used in vector architectures. But compared to the

large register of traditional vector architectures, SIMD instructions tend to have fewer

28

operands and thus operate on narrower registers.

Many widely used instruction sets today provide SIMD instructions on short vectors

as an extension of the scalar instruction set. For instance, NEON technology is a 128-

bit SIMD architecture extension for the ARM processors. Separate functional units are

typically used to implement these short vector extensions with their own pipeline and

register files. These functional units provide parallel vectors of scalar arithmetic, data

movement and other functions.

SIMD extensions to the instruction set of general-purpose processors (GPPs) were de-

signed to exploit fine-grained data parallelism exposed by applications. They are driven

by the demand for accelerating rich multimedia applications. Such applications typically

incorporate computationally intensive operations like audio and video decoding [Lee,

1995] and image processing [Cypher and Sanz, 1989].

The width of SIMD vectors in general-purpose processors is getting wider and wider.

For example, Intel Xeon Phi co-processors with Intel AVX-512 SIMD instructions have

512-bit SIMD vectors, and Vision P6 digital signal processors from Cadence have 64-way

8-bit SIMD vectors for applications in computer vision.

In addition to the increasingly wider SIMD width, general-purpose processors tend to

be equipped with a richer set of SIMD instructions to meet the demand of emerging ap-

plications. For example, Intel AVX-512 are 512-bit extensions to the 256-bit Advanced

Vector Extensions for x86 architecture with several kinds of new SIMD instructions.

Among these new instructions, bitwise ternary logic instructions can logically implement

all possible bitwise operations between two inputs. These instructions in turn provide

better support for integer bit manipulation operations that are the major operations in

cryptography algorithms (e.g., Data Enryption Standard (DES), Advanced Encryption

Standard (AES) [Biham, 1997]).

Apart from the SIMD instructions for arithmetic operations, SIMD memory and data

permutation instructions play a critical role in accelerating applications with SIMD com-

putational units. Traditional vector processor such as the Cray-1 provided rich data

access instructions such as gather and scatter for strided memory operations. In con-

trast, general-purpose processors with SIMD extensions typically have poor support for

non-contiguous memory access. For such memory access, we need data permutation

29

instructions to pack the non-contiguous data access into a vector register. It is not triv-

ial to derive an optimal sequence of data permutation instructions to transform non-

contiguous memory access into contiguous memory access [Nuzman et al., 2006][Ren

et al., 2006][Anderson et al., 2015].

2.2 Graphics Processing Units

Graphics Processing Units (GPUs), in particular, Nvidia’s GPUs, have a unique execution

model — single instruction, multiple threads (SIMT). SIMT was coined by the Nvidia and

first implemented in the Nvidia G80 GPU chip in 2006. It describes the execution model

of the Nvidia’s Compute Unified Device Architecture (CUDA).

CUDA GPU is a many-core architecture and consists of a number of key blocks —

memory, streaming multiprocessors (SMs), streaming processors (SPs). Both SMs and

SPs form a two-level hierarchy of execution model. A GPU contains several SMs. An

SM is also refereed to as a next generation SM (SMX) in Nvidia’s Kepler architecture.

Each SMX consists of multiple SPs. An SMX can support thousands of threads running

concurrently. Groups of threads with consecutive thread indexes are bundled into warps;

one full warp is executed on the CUDA cores in SMs. The size of a warp depends on the

hardware. For example, on the K20 CUDA GPUs, thread blocks are divided into warps

of 32 threads for execution.

Because threads (and not data) are mapped to the processor and executed in the

SIMD-like fashion, the style of execution is called single instruction multiple thread

(SIMT).

SIMT is very similar to SIMD extensions. In SIMD extensions, multiple data can be

processed by a single instruction. In SIMT, multiple threads are processed by a single

instruction in lock-step. Each thread executes the same instruction, but possibly on dif-

ferent data. In the next section, we discuss the similarities and differences between SIMT

in CUDA GPUs and SIMD extensions in GPPs.

30

2.3 SIMD Extensions vs SIMT in CUDA GPUs

In this thesis, the similarity between SIMD extensions and SIMT in CUDA GPUs is the

foundation of the vectorization techniques for CUDA GPUs. Therefore, in this section,

we give a brief comparison between SIMD extensions and SIMT.

Both SIMD extensions and SIMT broadcast the same instruction to multiple execution

units. In other words, they both share the same instruction fetch/decode hardware with

replicated execution units.

There are three key features that distinguish SIMT from SIMD extensions.

2.3.1 Single instruction, multiple register sets

To utilize SIMD execution units in GPPs with SIMD extensions, we need explicitly to

write SIMD operations on data in SIMD data types. For example, with the GCC vector

extensions, adding two vectors of numbers can be implemented as in Fig. 2-2. The com-

piler generates SIMD memory operations to load data into vector registers, and translates

the operations on SIMD data types to SIMD instructions taking vector registers as input

operands. For other computations, such as address computation (e.g., &A[i]), loop index

increment, we can simply keep a single scalar copy of them.

1 #define N 1024
2 int a[N];
3 int B[N];
4 int C[N];
5

6 typedef int v4si attribute ((vector size (16)));
7

8 for (int i = 0; i < N; i+=4) {
9 v4si vec A = *(v4si *)&A[i];

10 v4si vec B = *(v4si *)&B[i];
11 v4si vec res = A[i] + B[i];
12 *(v4si *)&C[i] = vec res;
13 }

Figure 2-2: Add two vectors of numbers in SIMD.

On the other hand, in SIMT of CUDA GPUs, we need keep a copy for every computa-

tion in each thread for the code written in CUDA as shown in Fig. 2-3. This requires each

thread has its own registers to hold data across threads. The data in registers sometimes

31

1 global void vec add(int *C, int *A, int *B) {
2 int idx = blockIdx.x * blockDim.x + threadIdx.x;
3 C[i] = B[i] + A[i];
4 }

Figure 2-3: Add two vectors of numbers in SIMT.

can be redundant if the data used in different threads is the same. For example, the

intermediate result of blockIdx.x * blockDim.x is the same over the threads in a thread

block. Consequently, keeping redundant data in registers unnecessarily wastes registers.

2.3.2 Single instruction, multiple addresses

Random data access from applications like sparse matrix computation and loop-up ta-

bles can be quite problematic to general-purpose processors with SIMD extensions. As

discussed in Sec. 2.1.1, such processors typically have poor support for non-contiguous

memory access. For example, in the sparse matrix vector multiplication shown in Fig.

2-4, the indirect data access to array x presents a random access pattern. In this case,

if the access pattern is known statically, random data access can be implemented with

vector load and data permutation instructions. Otherwise, we need hardware support

for gather/scatter instructions. Although some processors with SIMD extensions in-

deed provide gather/scatter instructions, the performance of these instructions is still

not good enough and thus the use of such instructions can only be beneficial in certain

scenarios [Intel, 2016]. In addition, in order to use gather/scatter instructions, we need

to explicitly put the addresses required in a vector register.

In contrast, thanks to the registers in each thread being able to keep a separate address

variable for memory loads and stores, writing applications like look-up table in SIMT is

much easier than SIMD extensions. However, similar to SIMD extensions, random data

access from SIMT can also be slow due to the characteristics of memory systems of CUDA

GPUs that we describe in Section 2.5.1. For global memory, if the memory access from

a warp cannot be coalesced, several memory transactions might be required depending

on the randomness. This may result in great performance loss from the reduced effective

DRAM memory bandwidth. Shared memory in CUDA GPUs is organized in banks, and

the hardware can only service one access at a time. As a result, random data access may

32

1 global void csr matvec s(ptr, indices, data, x, y) {
2 int row = blockDim.x * blockIdx.x + threadIdx.x ;
3 if (row < num rows) {
4 float dot = 0;
5 int row start = ptr[row];
6 int row end = ptr[row + 1];
7 for (int jj = row start; jj < row end; jj++) {
8 dot += data[jj] * x[indices[jj]];
9 }

10 y[row] += dot;
11 }
12 }

Figure 2-4: Sparse matrix vector multiplication in the format of compressed sparse row
(CSR) in SIMT.

lead to bank conflicts and thus memory transactions can become serialized.

Despite the performance penalties from non-coalesced memory access and bank con-

flicts, for large problem sizes we can still get decent speedups because of the latency

hiding strategy in CUDA GPUs. All the CUDA cores are oversubscribed with computa-

tion tasks due to the massive number of threads created. The hardware is able to quickly

switch between tasks when it would otherwise have to wait on memory. This latency

hiding strategy is similar to multi-threading in CPUs [Hennessy and Patterson, 2011].

2.3.3 Single instruction, multiple control flow paths

For computations with control flows, in order to use SIMD instructions, we have to either

convert the control flow into data flow in the form of conditional execution, or annotate

the computation with predicates for the condition internally in the process of vectoriza-

tion. Some SIMD extensions have support for conditional execution through vector select

operation c = vselect a, b, cond, where the element of cond is the condition for se-

lecting element from vector a or b. However, such vector select operations may introduce

redundant stores. For instance, array data in Fig. 2-5 should only be updated when the

condition is true. When the if statement is converted into a vector select statement, array

data will be always updated regardless the condition.

It is simpler and cleaner to write code with control flow in SIMT. As shown in Fig. 2-5,

explicit conversion from control flow to data flow is not required for SIMT. The control

flow is dealt with by the underlying hardware. SIMT executes the same instruction in

33

1 global void control flow example(data, x, y) {
2 int row = blockDim.x * blockIdx.x + threadIdx.x ;
3 if (row % 2 == 0) {
4 data[row] = x[row] + y[row];
5 }
6 }

Figure 2-5: Computation with control flow in SIMT.

lock-step with a group of threads. When it comes to the control flow, only one flow path

can be executed at a time, and threads that are running must wait, as depicted in Fig.

2-6. By doing this, control flow divergence is handled correctly but slowly. Deeply nested

control flows can occur significant costs as they effectively serialize the thread execution.

Figure 2-6: Thread divergence in SIMT.

Thread divergence also brings another performance issue in terms of memory access.

When the thread execution is serialized, the memory access can present random access

patterns. For example, memory accesses to array data, x and y in Fig. 2-5 show a

random access pattern and the randomness is determined by the condition row % 2 ==

0. As discussed above, random access to both global memory and shared memory will

lead to significant performance loss.

In summary, both SIMT and SIMD extensions are good at exploiting data parallelism

in applications. SIMT in CUDA GPUs is more flexible than SIMD extensions in general-

purpose processors in the respect of programmability and performance.

34

2.4 Compilation Techniques for Automatic Vectorization

In order to take advantage of SIMD extensions, programmers not only have to find suf-

ficient data parallelism to feed the SIMD computational units, but also need express

the computation in SIMD instructions taking into account of the memory patterns. Au-

tomatic vectorization in compilers alleviates such difficulties to certain extent by au-

tomatically extracting data parallelism and translating scalar computations into SIMD

instructions.

Automatic vectorization has been part of high performance compilers since the com-

pilers for vector supercomputers [Zima and Chapman, 1991][Kennedy and Allen, 2002].

Ever since the commodity general-purpose processors started to include SIMD exten-

sions, for example, the Hewlett-Packard PA-RISC processor family [Lee, 1995] and Sun

Microsystems UltraSPARC [Kohn et al., 1995], SIMD has been the mainstream approach

to exploit data parallelism. As the instructions set of SIMD gets richer, automatic vector-

ization becomes more and more important in optimizing compilers.

There are several ways of automatic vectorization in modern optimizing compilers.

These methods attempt to exploit data parallelism in different scopes of programs. Clas-

sic loop vectorization performs vectorization on the loop level [Kennedy and Allen,

2002] [Nuzman and Zaks, 2008] [Nuzman et al., 2011] [Kim and Han, 2012]. Super-

word level parallelism vectorization vectorizes straight line code in basic blocks [Larsen

and Amarasinghe, 2000] [Liu et al., 2012]. Whole function vectorization [Karrenberg and

Hack, 2011] transforms a function into a SIMD form.

In this section, we summarize the mainstream automatic vectorization techniques

adopted in both commercial and open-source compilers, as well as some experimental

approaches to automatic vectorization.

2.4.1 Loop Vectorization

Loop vectorization is an effective way of utilizing SIMD execution units on contempo-

rary CPUs with SIMD extensions. The simplest form of loop vectorization deals with

the innermost loops and is most common among optimizing compilers (e.g., GCC and

LLVM). However, in some cases, vectorization on the innermost loop is possible but not

35

profitable due to small trip counts or other characteristics (e.g., contiguous memory ac-

cess). Therefore, it might be profitable to vectorize the enclosing outer-loop [Nuzman

and Zaks, 2008]. Outer-loop vectorization refers to vectorizing a level of a loop nest

other than the innermost.

1 for (i=0; i< SIZE; i++) {

2 float sum = 0.0f;

3 for (j = 0; j < SIZE; j++) {

4 sum += M[j][i] * V[j];

5 }

6 C[i] = sum;

7 }

a) non-vectorized version

1 for (i=0; i< SIZE; i++) {

2 float vsum = {0.0f, 0.0f, 0.0f, 0.0f};

3 for (vj = 0; vj < SIZE; vj+=4) {

4 vsum += M[vj:vj+3][i] * V[vj:vj+3];

5 }

6 C[i] = reduction_sum(vsum);

7 }

b) inner-loop vectorization

1 for (vi=0; vi< SIZE; vi+=4) {

2 float vsum = {0.0f, 0.0f, 0.0f, 0.0f};

3 for (j = 0; j < SIZE; j++) {

4 vsum += M[j][vi:vi+3] * V[j];

5 }

6 C[vi:vi+3] = vsum[0:3];

7 }

c) outer-loop vectorization

Figure 2-7: Vectorization on the loop in transposed matrix vector multiplication with
vectorization factor 4.

Inner-loop Vectorization Vectorizing an innermost loop can be described as a process

of

1. unrolling the loop by the vectorization factor VF;

2. scheduling the instructions of the unrolled loop in order to make VF instances

36

of each instruction become adjacent. The adjacent instructions can be executed

concurrently by a SIMD execution unit, and

3. using a corresponding vector instruction to replace these VF instances of each in-

struction.

Data dependence analysis is used to check the validity of this transformation by prov-

ing that VF consecutive iterations of the original loop can be jammed together (i.e., step

(2)). When there are short cross-iteration dependencies, as in the case of reduction oper-

ations (in Fig. 2-7b), this transformation is not valid anymore and thus special treatment

for the reduction operations is required. Vectorizing an innermost loop computing a

reduction can be done by computing VF partial reductions in parallel, assuming the op-

eration is associative, and combining them together at the end. For example, Fig. 2-7(a)

is the non-vectorized loop for transposed matrix vector multiplication. The vectorized

results with VF = 4 from inner-loop vectorization is illustrated in Fig. 2-7(b).

Outer-loop Vectorization Outer-loop vectorization refers to vectorizing a level of a loop

nest other than the innermost, and can be described as a process of

1. unrolling the chosen outer-loop by the vectorization factor VF;

2. jamming the contents of the unrolled loop together (including inner loops), so that

VF instances of each instruction in the outer and inner loops become adjacent, and

3. using a vector instruction to replace these VF instances of each instruction.

Steps 1 and 2 are similar to the classical compiler optimization loop unroll-and-

jam [Kennedy and Allen, 2002]. Data dependence analysis is also critical to check the va-

lidity of this transformation by proving that VF consecutive iterations of the original loop

can be jammed together. Nuzman and Zaks summarized five ways to achieve outer-loop

vectorization such as vectorize innermost and enclosing outer loops, interchange outer

loop to innermost position for innermost vectorization, direct outer-loop vectorization

in-place [Nuzman and Zaks, 2008]. With the third method mentioned above, the vec-

torized loop after outer-loop vectorization on the i-loop in Fig. 2-7(a) is shown in Fig.

2-7(c).

37

2.4.2 Super-word Level Parallelism Vectorization

As the finest operating units for loop vectorization are loop iterations, in the cases of

unrolled loops or computations on tuples of data (e.g., 3D vectors), loop vectorization

techniques in Sec. 2.4.1 may not be able to find sufficient data parallelism for SIMD. To

supplement this inefficiency, super-word parallelism vectorization (SLP) is put forward

to exploit data parallelism in straight line code in basic blocks [Larsen and Amarasinghe,

2000].

SLP vectorization identifies groups of isomorphic instructions exposing super-word

level parallelism, and combines them into equivalent vector instructions [Larsen and

Amarasinghe, 2000]. It is a greedy algorithm and packs instructions into SIMD instruc-

tions based heuristics, such as contiguous data access.

SLP vectorization has been incorporated into several vectorizing compilers since its

introduction. Liu et al. improved SLP vectorization by first trying to find all the pos-

sible groups of instructions suitable for packing and then making decisions on packing

according to the data reuse between packed groups [Liu et al., 2012]. The improved

vectorization not only helps discover more super-word parallelism for vectorization, but

also enables better data layout transformation for efficient vectorization. However, both

SLP vectorization algorithms work similar to instruction scheduling, which is dealing

with instructions separately while ignoring the structure of computation done by the

instructions.

As the data parallelism in a single basic block is often quite limited, loop unrolling is

sometimes a prerequisite to form a larger basic block for SLP vectorization. The imple-

mentation of SLP vectorization in GCC [Ira Rosen and Zaks, 2007] makes loop unrolling

and SLP vectorization work seamlessly by introducing loop-aware SLP.

A flexible version of SLP is proposed by Porpodas to address the problem of partial

isomorphic operations [Porpodas et al., 2015]. They attempted to introduce redundant

operations to make partial isomorphic subgraphs of the data dependence graph isomor-

phic. Our work in Chapter 4 also tries to solve a similar problem but with different

approach. Park et al. introduced a vectorization technique based on sub-graph level

parallelism (SGLP), a coarser level of vectorization within basic blocks [Park et al., 2012].

An integrated SIMDization framework is put forward by Wu et al. to address several

38

orthogonal aspects of SIMDization, including SIMD parallelism extraction from different

program scopes (from basic blocks to inner loops), vectorization on loops with mixed

data lengths and alignment handling [Wu et al., 2005].

2.4.3 Whole-function Vectorization

Compared to loops in loop vectorization and basic blocks in SLP vectorization, whole-

function vectorization works on a larger scope of programs — functions [Karrenberg and

Hack, 2011]. This vectorization techniques transforms a scalar function in such a way that

it computes W executions of the original code in parallel using SIMD instructions, where

W is the size of SIMD vectors. It can vectorize arbitrary control flow structures in a

control-flow graph in static single assignment (SSA) form even on architectures without

explicit predicated execution.

Intel’s C/C++ compiler supports a general language construct — SIMD-enabled func-

tions (formerly called elemental functions) — to express a data parallel algorithm [Geva,

2011]. A SIMD-enabled function is written as a regular C/C++ function, and the algo-

rithm within describes the operation on one element, using scalar syntax. The function

can then be called as a regular C/C++ function to operate on a single element or it can

be called in a data parallel context to operate on many elements. When programmers

write a SIMD-enabled function, Intel’s C/C++ compiler generates a short vector form of

the function, which can perform the given function’s operation on multiple arguments

in a single invocation.

1 __declspec (vector) double ef_add_doubles(double x, double a)

2 {

3 return x + a;

4 }

5 //invoke the function

6 for (i = 0; i < n; ++i) {

7 y[i] = ef_add_doubles(x[i],42);

8 }

Figure 2-8: Example of SIMD-enabled functions in Intel’s C/C++ compiler.

The short vector version is implemented with the SIMD vector instruction set archi-

tecture in the CPU and can be used by loop vectorization to vectorize funtion calls. As

shown in Fig. 2-8, the function ef add doubles is a SIMD-enabled function. When

39

vectorizing the function call to ef add doubles in the i-loop, the vector version of ef -

add doubles will be used to replace the scalar version.

2.4.4 Other Automatic Vectorization Techniques

In addition to the three widely adopted techniques discuss above, there are also some

interesting experimental approaches to automatic vectorization in compilers.

Loop vectorization in polyhedral model

Loop vectorization starts with a data dependence analysis, which detects whether oper-

ators in a loop to be vectorized can run in parallel or not [Padua and Wolfe, 1986]. Many

classic scalar optimization and loop transformation techniques are often applied before

loop vectorization to make the loops easier to vectorize. [Muchnick, 1997][Kennedy and

Allen, 2002]. For example, if conversion is a widely used approach to converting control

flow in loops into data flow, making loop vectorized less difficult vectorize loops with

control flows.

Compilers sometimes use abstract syntax trees (ASTs) as intermediate representation

for programs. ASTs are not appropriate for complex program restructuring [Shirako

et al., 2014]. Complex transformations such as loop inversion, skewing, tiling and so

on. modify the execution order and this is far away from the syntax. The polyhedral (or

polytope) model based on a linear-algebraic representation of programs and transforma-

tions emerged in the eighties to address this issue [Bastoul, 2004][Shirako et al., 2014].

Some compilers such as LLVM and GCC implement optimizers based on the polyhedral

model such as Polly [Grosser et al., 2012] and Graphite [Pop et al., 2006].

The polyhedral framework works in three steps as follows:

1. takes programs in a compiler intermediate representation (IR) such as GIMPLE in

GCC and LLVM IR in LLVM, and translates the program parts that fit the model

into the linear-algebraic representation;

2. selects a new execution order by using a reordering function (a schedule, or a

placement, or a chunking;

40

3. the code generation creates an optimized implementation of the routine in a com-

piler intermediate representation or as source code implementing the execution

order implied by the reordering function.

Trifunovic et al. examined the interactions between loop transformations of the poly-

hedral framework and subsequent vectorization of programs in GCC’s IR GIMPLE [Tri-

funovic et al., 2009]. They modeled the performance impact of the different loop trans-

formations and vectorization strategies, and then showed how this cost model can be

integrated seamlessly into the polyhedral representation. However, in this work, loop

vectorization is done on programs in GCC’s IR GIMPLE translated back from the the

linear-algebraic representation in the polyhedral model.

Kong et al. stepped further to make the analysis and transformations in polyhedral

model and SIMD code generation work more seamlessly by putting forward vectorizable

codelet [Kong et al., 2013]. The vectorizable codelet is a tile of code with specific, SIMD-

friendly properties. SIMD code generation can take advantage of information expressed

by vectorizable codelets for better ISA-specific vector instruction selection, scheduling,

and register promotion.

Vectorization based on instruction selection and scheduling

When loops contain a mix of vectorizable and nonvectorizable operations, the classic

loop vectorization approach generates separate loops for the vector and scalar operations.

Scalar operations result in low utilization of scalars resources in the vectorized loops, and

vector resources in scalar loops.

To address this issue, Larsen et al. put forward a novel approach of exploiting SIMD

parallelism in software pipelined loops [Larsen et al., 2005]. Software pipelining is an

effective instruction scheduling technique on loops to overlap instructions from different

loop iterations and maximize resource utilization. Their work enables software pipeling

to fully exploit the potential of a multimedia architecture by explicitly selecting instruc-

tions for vectorizing operations. However, this work did consider mutating instructions

to possibly expose more SIMD parallelism for vector instructions [Novack and Nicolau,

1995].

Barik et al. presented an instruction selection based auto-vectorization framework in

41

the back-end of a dynamic compiler [Barik et al., 2010]. Their work not only generates

optimized vector code but is also well integrated with the instruction scheduler and

register allocator. They adopted a compile-time efficient dynamic programming-based

vector instruction selection algorithm for straight-line code. This algorithms expands

opportunities for vectorization in several ways such as exploring more opportunities

of packing multiple scalar variables into short vectors and judicious use of shuffle and

horizontal vector operations.

2.5 CUDA and OpenACC

In this section, we give a brief review of the CUDA programming model and a represen-

tative compiler directives based approach OpenACC. For more advanced details,

2.5.1 CUDA Programming Model

The CUDA programming model is an explicit parallel programming model in a manner

of single program multiple data (SPMD). All the threads are organized in a two-level

hierarchy — thread grids and thread blocks (TBs) — according to the physical execution

model shown in Fig. 2-9.

The threads in a thread block can be logically organized in up to three dimensions,

and indexed by the identifiers threadIdx.x, threadIdx.y, and threadIdx.z. The threads

aligned along the x dimension are adjacent to each other. Similarly, the thread blocks

can also be logically arranged in up to three dimensions and indexed by the identi-

fiers blockIdx.x, blockIdx.y, and blockIdx.z. When launching a GPU program, also

called a kernel, the shape of both the threads in a thread block and the grid of thread

blocks is configured and fixed during the whole execution.

CUDA GPUs provides five types of memories – shared, global, local, constant and

texture memory, as shown in Fig. 2-10. For each different memory type there are trade-

offs that must be considered when designing the algorithm for your CUDA kernel. For

example, global memory has a very large address space, but the latency to access is very

high. Shared memory has a very low access latency but the memory address is small

compared to global memory.

42

CUDA Programming Model

Th d g i ti O iTh d g i ti O iThread organization OverviewThread organization Overview

Host Device

Kernel
1

Grid 1

Block
(0, 0)

Block
(1, 0)

Block Block

Block (1, 1)
(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Kernel
2

(0, 1) (1, 1)

Grid 2 Thread
(0 1 0)

Thread
(1 1 0)

Thread
(2 1 0)

Thread
(3 1 0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,1,0) (1,1,0) (2,1,0) (3,1,0)

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Figure 2-9: CUDA execution model.

CUDA Programming Model

Th d C tiTh d C tiThreads CooperationThreads Cooperation
¾ Threads within a block
¾Shared memory
¾Atomic operation

¾Share memory

Grid

Block (0 0) Block (1 0)¾Share memory
¾Global memory

¾Barrier

Block (0, 0)

Shared Memory

Registers Registers

Block (1, 0)

Shared Memory

Registers Registers

¾ Threads between blocks
¾Atomic operation Thread (0, 0)

eg ste s

Thread (1, 0)

eg ste s

Thread (0, 0)

eg ste s

Thread (1, 0)

eg ste s

¾Global memory

¾ Threads between grids
¾No way!

Global MemoryHost

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes

¾No way! Figure 2-10: CUDA memory model.

43

Dynamic parallelism is introduced to CUDA GPUs with compute capability 3.5 or

higher. With this support, a GPU thread is able to launch another kernel during execu-

tion. This kernel exhibits an extra level of parallelism — thread-level parallelism (TLP).

Dynamic parallelism is an easy way to deal with nested TLP. But it requires the kernel

launched by a GPU thread to have a very high number of threads so that the overhead of

launching a kernel can be amortized. In addition, the parent thread communicates with

its child threads only through global memory.

2.5.2 Compiler Directive Based Programming Model — OpenACC

While the CUDA programming model makes GPU computing feasible, it still asks pro-

grammers to explicitly manage parallelism and usage of the GPU’s memory. This kind

of explicit programing model for GPU is often considered to be a low-level approach. In

order to take advantage of GPUs, specially trained programmers are often required, and

significant modifications of source code are inevitable. To alleviate the programming

burden, tools based on automatic parallelization and languages based on compiler di-

rectives are put forward to reduce programming efforts on accelerators while delivering

high performance.

OpenACC is a directive based extension for C, C++, and FORTRAN [OpenACC, 2011]

. It adopts a work-sharing model where loops are distributed over multiple execution

units. With OpenACC, programmers can use either parallel loop or kernel directives

to mark computationally intensive sections of the code, a compute region, to be executed

on an accelerator. The parallel loop directive is used for explicit parallelism so that the

compiler can simply follow the developer’s instructions. On the other hand, the kernel

directive is used for implicit parallelism; the compiler uses automatic parallelization

techniques. Fig. 6-2 gives an example of OpenACC directives. The parallel loop

directive is used to mark the outermost i-loop as a parallel loop for executing on GPUs.

Inside a compute region, loops can be distributed over three different levels of paral-

lelism. These levels are gang, worker, and vector. Gang is used for coarse-grain paral-

lelism. Iterations of a loop executing on different gangs do not share memory or synchro-

nization primitives. Each gang is composed of workers. Workers are used for fine-grain

parallelism. They can share local memory. Workers in the same gang can synchronize

44

1 #pragma acc parallel loop private(i, j)

2 for (i=0; i<SIZE; i++){

3 float sum = 0.0f;

4 for (j = 0; j < SIZE; j++){

5 sum += M[j][i] * V[j];

6 }

7 C[i] = sum;

8 }

Figure 2-11: The parallel loop annotated with OpenACC pragmas for the transposed
matrix vector multiplication (TMV).

with each other. Vector parallelism is for vector operation within one worker. The map-

ping of gang, worker and vector to the CUDA GPU execution hierarchy is discussed in

[Tian et al., 2013] in different scenarios.

2.6 Summary

In this chapter, we give an account of the relevant background material necessary for this

thesis. In addition to the background and related work presented in this chapter, for each

of our proposed data layout oriented compilation techniques for efficient vectorization in

the following chapters, we include more related work and detailed comparison between

our new approaches and existing ones.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

Chapter 3

Semi-automatic Data Layout

Transformations for Loop Vectorization

3.1 Introduction

Single instruction multiple data (SIMD) vector computational units are widely avail-

able in processors from large supercomputers to energy-efficient embedded systems.

Programmers often depend on compilers to auto-vectorize key loops. However, some

program features can hinder the compilers from fully unleashing the power of SIMD.

One important feature is interleaved data access coming from the data organized in

the manner of an array of structures (AoS). In order to efficiently deal with interleaved

data access, vectorizing compilers generate a sequence of data shuffling instructions (e.g.

pshuffle, pblend in Intel SSE) for data reorganization. As long as data is accessed in a non-

linear pattern, there will always be a cost of shuffling or gathering data for vectorization.

We observe that for many scientific computing applications with data in AoS, different

loops in the program often repeat the same patterns of data permutation during loop

vectorization. These patterns usually first do data permutations on a small portion of

the whole data needed before the computation in each loop iteration, and apply data

permutations on the results after the computation is done. One way of getting rid of these

repeated data permutation operations is to transform the layout of the data throughout

the program. There are two main approaches to transforming array layouts in programs:

automatic transformation by the compiler, or manual changes by the programmer.

47

Compilers face two major challenges when performing automatic data layout trans-

formations for vectorization. First, the compiler needs a very sophisticated whole-

program data dependency and pointer aliasing analysis to make sure that the trans-

formation is safe. Secondly, it is difficult for the compiler to choose the best layout. It

is perhaps easier for the programmer to determine whether modifying the data layout is

safe. But it is tedious and error-prone for programmers to change their code by hand.

They may have to change the type declarations and any code that operates on the array.

This may involve modifications to many parts of the program, and may result in changes

to array indexing, and even the introduction of new statements and loops.

To allow compositions of data layout transformations and evaluate the performance

impact of data layout transformations on vectorization, in this chapter we put forward a

new program annotation (using C language pragmas) to enable programmers to specify

a sequence of data layout transformations. This data layout transformation pragma is

implemented in the Cetus source-to-source compiler framework [Bae et al., 2013]. Our

prototype implementation currently supports static arrays but can be easily extended to

support dynamically allocated arrays using Sung et al.’s approach [Sung et al., 2010]. Our

compiler changes data type declarations for all modified arrays, rewrites all functions

that operate on modified arrays to change array indexing, and introduces additional

loops and other code. Similar to other pragma annotation systems, such as OpenMP,

we assume that where the programmer requests a transformation, that transformation is

safe.

3.2 Language Support for Data Layout Transformations

3.2.1 Motivating Examples

In this section, we take the kernel of tezar() in the SP (Scalar Penta-diagonal), one of

the benchmarks in the NAS Parallel Benchmarks (NPB) to demonstrate the advantage of

data layout transformations for efficient loop vectorization. This kernel conducts block-

diagonal matrix-vector multiplication on the data. For simplicity, we don’t consider other

cache optimizations, such as array padding.

There is a loop nest of depth three enclosing the main computations and all these

48

1 double us [KMAX][JMAXP][IMAXP];
2 double vs [KMAX][JMAXP][IMAXP];
3 double ws [KMAX][JMAXP][IMAXP];
4 double speed [KMAX][JMAXP][IMAXP];
5 double qs [KMAX][JMAXP][IMAXP];
6 double rhs [KMAX][JMAXP][IMAXP][5];
7 double u [KMAX][JMAXP][IMAXP][5];
8

9 for (k = 1; k <= nz2; k++) {
10 for (j = 1; j <= ny2; j++) {
11 for (i = 1; i <= nx2; i++) {
12 xvel = us[k][j][i];
13 yvel = vs[k][j][i];
14 zvel = ws[k][j][i];
15 ac = speed[k][j][i];
16 ac2u = ac*ac;
17 r1 = rhs[k][j][i][0];
18 r2 = rhs[k][j][i][1];
19 r3 = rhs[k][j][i][2];
20 r4 = rhs[k][j][i][3];
21 r5 = rhs[k][j][i][4];
22 uzik1 = u[k][j][i][0];
23 btuz = bt * uzik1;
24 t1 = btuz/ac * (r4 + r5) ;
25 t2 = r3 + t1 ;
26 t3 = btuz * (r4 − r5);
27 rhs[k][j][i][0] = t2 ;
28 rhs[k][j][i][1] = −uzik1*r2 + xvel*t2;
29 rhs[k][j][i][2] = uzik1*r1 + yvel*t2;
30 rhs[k][j][i][3] = zvel*t2 + t3 ;
31 rhs[k][j][i][4] = uzik1*(−xvel*r2 + yvel*r1) + qs[k][j][i]*t2 + c2iv*ac2u*t1 + zvel*t3;
32 }
33 }
34 }

Figure 3-1: The kernel of function tzetar() in the SP of NPB.

49

loops are parallel, shown in Fig. 3-1. When vectorizing the innermost parallel loop i,

compilers directly generate vector loads and stores for the data references to array us,

vs, ws. On the contrary, the inter-leaved data access exposed by the references to array u

and rhs may require compilers to apply suitable data reorganization. Compilers can treat

these inter-leaved loads as gather operations. But the support for these gather operations

in modern commodity processors is still not good enough [Ramachandran et al., 2013].

Instead, the compiler may utilize available data permutation instructions to transform

the inter-leaved data access into consecutive data access. On the other hand, the cost

of data permutation instructions introduced by the data reorganization may not be well

offset by the performance benefits gained by vectorization on the computations.

Table 3.1: Data layout schemes and vectorization strategies.

Description Declaration Vectorization Strategy

Pure AoS double u [KMAX][JMAXP][IMAXP][5]; Data permutation with stride 5

Split AoS (1:4)
double u1 [KMAX][JMAXP][IMAXP]; Consecutive data accesses
double u2 [KMAX][JMAXP][IMAXP][4]; Data permutation with stride 4

Split AoS (4:1)
double u1 [KMAX][JMAXP][IMAXP][4]; Data permutation with stride 4
double u2 [KMAX][JMAXP][IMAXP]; Consecutive data accesses

Split AoS (1:2:2)
double u1 [KMAX][JMAXP][IMAXP]; Consecutive data accesses
double u2 [KMAX][JMAXP][IMAXP][2]; Data permutation with stride 2
double u3 [KMAX][JMAXP][IMAXP][2]; Data permutation with stride 2

Split AoS (2:2:1)
double u1 [KMAX][JMAXP][IMAXP][2]; Data permutation with stride 2
double u2 [KMAX][JMAXP][IMAXP][2]; Consecutive data accesses
double u3 [KMAX][JMAXP][IMAXP]; Consecutive data accesses

Pure SoA double u [5][KMAX][JMAXP][IMAXP]; Consecutive data accesses

Hybrid SoA double u [KMAX][JMAXP][IMAXP/4][5][4]; Consecutive data accesses

Instead of compilers generating data permutation instructions to reorganize data,

programmers can change the data layout into a form amenable to vectorization. Table

3.1 gives several possible data layout schemes of array u and their related vectorizing

strategies compilers may take. The vectorizing strategies shown in Table 3.1 illustrate

that some data layout transformations may simplify the vectorization of interleaved data

50

access. For instance, compilers deal with the inter-leaved data access with stride 2 in

Split AoS instead of stride 5 in Pure AoS, demonstrated in Section 4. Similarly, since the

data references to the array rhs are inter-leaved with stride 5, the array rhs could also

have same data layout transformation schemes as the array u.

3.2.2 Data Layout Transformation Pragmas

In this chapter, we put forward a program annotation, array transform, a C language

pragma to express data layout transformations on static arrays. The syntax of this new

pragma is shown in Fig. 3-2.

⟨pragma⟩ ::= #pragma array transform ⟨array name⟩ ⟨descriptor⟩ ⟨actions⟩

⟨descriptor⟩ ::= [⟨identifier⟩] ⟨descriptor list⟩

⟨descriptor list⟩ ::= [⟨identifier⟩] ⟨descriptor list⟩ | ⟨empty⟩

⟨actions⟩ ::= -> ⟨pre actions⟩ ⟨post actions⟩

⟨pre actions⟩ ::= ⟨strip mine⟩ | ⟨interchange⟩ | ⟨pad⟩ | ⟨pre actions⟩ | ⟨empty⟩

⟨post actions⟩ ::= ⟨peel⟩ | ⟨empty⟩ | ⟨post actions⟩

⟨strip mine⟩ ::= STRIP MINE (⟨identifier⟩ , ⟨stride size⟩ , ⟨identifier⟩)

⟨interchange⟩ ::= INTERCHANGE (⟨identifier⟩, ⟨identifier⟩)

⟨pad⟩ ::= PAD (⟨identifier⟩, ⟨pad size⟩)

⟨peel⟩ ::= PEEL (⟨identifier⟩, ⟨peel size⟩)

Figure 3-2: Syntax of the data layout transformation pragma.

The array transform pragma consists of array descriptor and transform actions. The ar-

ray descriptor gives a name to each array dimension, and these names are used in the

transform actions to record the related data layout transformations. The transform actions

present the basic data layout transformations. In this chapter, we define four basic data

layout transformations, strip-mining, interchange, pad, and peel. These terms for data lay-

out transformations are borrowed from the classic loop transformations [Bacon et al.,

1994].

The data storage of an array A can be viewed as a rectangular polyhedron. In [O’Boyle

51

and Knijnenburg, 1997], formal indices ℐ⃗ are introduced to describe the array index space

ℐ⃗ = [i1, i2, . . . , in]
T (3.1)

where n is the dimension of the array A. The range of the formal indices ℐ⃗ describes the

size of the array, or index space, as follows:

λ⃗ ≤ ℐ⃗ < µ⃗ (3.2)

where the lower bound vector λ⃗ = [λ1, . . . , λn]T and the upper bound vector µ⃗ =

[µ1, . . . , µn]T are n × 1 vectors. The array index in C language can only start from 0,

therefore, the lower bound vector λ⃗ in this chapter is 0⃗. As each array dimension is given

a name by the array descriptor, these names can be treated as the formal indices to the

arrays.

In contrast to the loop transformations which transform the loop iteration space

formed by the loop indices, data layout transformations change the array index space.

Since the array index space is changed, the subscripts in references to the array also have

to be transformed accordingly.

The subscripts in a reference to an array in loops represent a function that maps the

values of the loop iteration space to the array index space and this function is often

expressed in the form of a memory access matrix [Jang et al., 2010]. Consider a data

reference to an M dimensional array in the loop nest of depth D, where D and M do not

need to match. The memory access pattern of the array in the loop is represented as a

memory access vector, m⃗, which is a column vector of size M starting from the index of

the first dimension. The memory access vector is then decomposed as an affine form:

m⃗ = M⃗i + o⃗ (3.3)

where M is a memory access matrix whose size is M× D, i⃗ is an iteration vector of size

D traversing from the outermost to the innermost loop, and o⃗ is an offset vector that is a

column vector of size M and determines the starting access point in an array.

The semantics of the four data layout transformations are defined as follows:

52

Strip-mining : STRIP MINE (id1, stride size, id2)

This transformation splits the array dimension i indicated by the id1 into tiles of size

stride size and creates a new formal indices vector ℐ⃗ ′ and two new dimension range

vectors λ⃗′ which is 0⃗ and µ⃗′. Intuitively, the strip-mining splits the array dimension

into two adjacent dimensions with dimension name id1 and id2, respectively. The

new dimension id1 takes the position of i and the new dimension id2 takes the

position of i + 1 in the ℐ⃗ ′. µ⃗′ is created by dividing µ⃗i into µ⃗h and µ⃗l, where

µ⃗h = ⌈µ⃗i/stride size⌉ and µ⃗l = stride size. For each reference with subscripts s⃗ to

the target array in the corresponding scope, new subscripts s⃗′ for each reference are

created by dividing s⃗i into s⃗h and s⃗l, where s⃗h = ⌊⃗si/stride size⌋ and s⃗l = s⃗i mod

stride size. Note that, when the original dimension size is not a multiple of block

size stride size, padding is introduced automatically at dimension i.

Interchange : INTERCHANGE (id1, id2)

This transformation interchanges the array dimensions i, j indicated by id1 and id2

and creates a new formal indices vector ℐ⃗ ′ and two new dimension range vectors λ⃗′

which is 0⃗ and µ⃗′. The upper bound vector µ⃗′ is created by interchanging µ⃗i and µ⃗j.

For each reference with subscripts s⃗ to the target array in the corresponding scope,

new subscripts s⃗′ for each reference are created by interchange s⃗i and s⃗j.

Pad : PAD (id, pad size)

This transformation pads the array dimension i indicated by id by the size of

|pad size| either from the beginning if the integer pad size is negative or from

the end if the integer pad size is positive. Two new dimension range vectors λ⃗′ and

µ⃗′ are created, where λ⃗′ is 0⃗ and µ⃗′ is formed by increasing µ⃗i by |pad size|. If

the pad size is negative, for each reference with subscripts s⃗ to the target array in

the corresponding scope, new subscripts s⃗′ for each reference are created, where

s⃗′i = s⃗i + |pad size|.

Peel : PEEL (id, peel size)

This transformation peels the dimension i of an array 𝒜 indicated by id by reduc-

ing the dimension size by |peel size| and creates two arrays 𝒜1,𝒜2. Two pairs of

range vectors (λ⃗′h, µ⃗′h),(λ⃗′l, µ⃗′l) are created for resulting arrays 𝒜1,𝒜2, respectively,

53

where λ⃗′h, λ⃗′l are 0⃗, and µ⃗′h, µ⃗′l are as follows:

µ⃗′h =

 |peel size| if peel size > 0

µ⃗i − |peel size| otherwise

µ⃗′l =

 |peel size| if peel size < 0

µ⃗i − |peel size| otherwise

For each reference with subscripts s⃗ to the target array 𝒜 in the corresponding

scope, new subscripts s⃗′ are created by first choosing the right array, 𝒜1 if s⃗i is less

than µi of array 𝒜1 or 𝒜2 otherwise; then new subscripts are calculated as follows:

s⃗′i =

 s⃗i if refers to 𝒜1

s⃗i − µ⃗′hi
otherwise

Note that, according to the semantics of array peeling, the subscripts in the dimen-

sion i of all the references to the array 𝒜 should be compile-time constants. As

the array peeling transformations can be chained together, in this case, all these

chained array peeling actions should apply on the same array dimension. The in-

put to the next array peeling transformation is decided by the current peeling size.

If the current peeling size is positive, which means the target array dimension is

peeled off from the beginning, the remaining array 𝒜2 will be the input for the next

array peeling action. Otherwise, the target array dimension is peeled off from the

end and thus the remaining array 𝒜1 will be the input for the next array peeling

action, demonstrated by the Split AoS in Table 3.2.

The four data layout transformations are classified into two classes, pre-action and

post-action. The post-action means all actions of this class can only be added after all the

actions in the class of pre-action. We define array peeling as a member of the class post-

action because we observe that for vectorization, array peeling is mainly used to split

one array dimension for the data alignment or making the size of the array dimension

power-of-two.

54

3.2.3 Composition of Data Layout Transformations

Our proposed array transform supports four primitive data layout transformations on

static arrays. More complex data layout transformations can be achieved by composing

these primitive transformations.

Array permutation permutes several array dimensions according to a given permu-

tation command. It is more general than array interchange, which only swaps two array

dimensions indicated by the dimension names. It is intuitive that array permutation can

be decomposed as a sequence of array interchange actions. For example, given an array:

float A[SIZE_I][SIZE_J][SIZE_K], where i, j, k are the dimension names for each array di-

mension from the first to the last dimension, the permutation command (k, i, j), which

rearranges the array dimensions indicated by i, j, k into a new order k, i, j, can be decom-

posed into a sequence of array interchange transformations, (k, j)− > (i, k). Therefore,

programmers can put the array transform pragma as #pragma array_transform A[i][j][k]

-> INTERCHANGE(k, j) -> INTERCHANGE(i, k)

Rectangular array tiling blocks array dimensions into tiles, and thus decomposes the

whole array into blocks which may help improve data locality. Array tiling is a process of

choosing suitable hyperplanes according to certain conditions (e.g. data reuse distance)

and partitioning the array data space with these hyperplanes. Here, rectangular array

tiling means the determined tiling hyperplane for each array dimension is perpendicular

to the axis of the array dimension to be tiled. Similar to the loop tiling which is a

combination of loop strip-mining and loop interchange, rectangular array tiling can be

decomposed into a sequence of array strip-mining, and array interchange, which are the

primitive transformations defined in the array transform pragma.

As listed in Table 3.1 in Section 2.1, there are seven possible data layout transforma-

tion schemes for the motivating example. With our proposed array transform pragma,

programmers can easily specify these data layout schemes by giving varying sequences

of valid transformation actions, as shown in Table 3.2.

55

Table
3.2:D

ata
layout

transform
ations

assum
ing

the
array

u
is

originally
in

the
P
u
r
e

A
o
S.

D
escription

D
eclaration

D
ata

Layout
Transform

ation

Pure
A

oS
double

u
[K

M
A

X
][JM

A
X

P][IM
A

X
P][5];

N
A

Split
A

oS
(1:4)

double
u1

[K
M

A
X

][JM
A

X
P][IM

A
X

P];
#pragm

a
array

transform
u[i][j][k][m

]->
PEEL(m

,1)
double

u2
[K

M
A

X
][JM

A
X

P][IM
A

X
P][4];

Split
A

oS
(4:1)

double
u1

[K
M

A
X

][JM
A

X
P][IM

A
X

P][4];
#pragm

a
array

transform
u[i][j][k][m

]->
PEEL(m

,-1)
double

u2
[K

M
A

X
][JM

A
X

P][IM
A

X
P];

Split
A

oS
(1:2:2)

double
u1

[K
M

A
X

][JM
A

X
P][IM

A
X

P];
#pragm

a
array

transform
u[i][j][k][m

]->
PEEL(m

,1)
->

PEEL(m
,2)

double
u2

[K
M

A
X

][JM
A

X
P][IM

A
X

P][2];
double

u3
[K

M
A

X
][JM

A
X

P][IM
A

X
P][2];

Split
A

oS
(2:2:1)

double
u1

[K
M

A
X

][JM
A

X
P][IM

A
X

P][2];
#pragm

a
array

transform
u[i][j][k][m

]->
PEEL(m

,2)
->

PEEL(m
,2)

double
u2

[K
M

A
X

][JM
A

X
P][IM

A
X

P][2];
double

u3
[K

M
A

X
][JM

A
X

P][IM
A

X
P];

Pure
SoA

double
u

[5][K
M

A
X

][JM
A

X
P][IM

A
X

P];

#pragm
a

array
transform

u[i][j][k][m
]->

IN
TER

C
H

A
N

G
E(m

,k)
->

IN
TER

C
H

A
N

G
E(m

,j)
->

IN
TER

C
H

A
N

G
E(m

,i)

H
ybrid

A
oS

double
u

[K
M

A
X

][JM
A

X
P][IM

A
X

P/4][5][4];
#pragm

a
u[i][j][k][m

]->
STR

IP
M

IN
E(k,4,kk)

->
IN

TER
C

H
A

N
G

E(m
,kk)

56

3.3 Data Layout Aware Loop Transformations

Array strip-mining introduces modulus operations to get offsets in the resulting tiles,

illustrated in line 8 of Fig. 3-3. This kind of operation is not friendly to vectorization,

because it might hinder the native compiler from detecting possible consecutive data

access. Both the Intel C compiler and GCC are not able to identify that the data refer-

ences to the transformed array are consecutive. Although the Intel C compiler is able to

vectorize the code with the SIMD pragma #pragma simd annotated around the loop, the

vectorized code strictly conforms to the semantics of the modulus operations. Therefore,

the performance is not so good as the one with consecutive data accesses.

1 #pragma ary[i] -> STRIP_MINING(i, 4)

2 float ary[32];

3 /* before transformation: */

4 for (i = 1; i < 31; i++)

5 ... = ary[i];

6 /* after transformation: */

7 for (i = 1; i < 31; i++)

8 ... = ary[i/4][i%4];

Figure 3-3: Loop transformation without considering data layout.

The modulus operations in the data references to the transformed arrays are from the

array strip-mining. Therefore, if the data references to the target array to be transformed

are enclosed in loops, one easy way to get rid of the modulus operations is to strip-

mine the corresponding loops. In this chapter we only consider the case where all the

references to the arrays to be transformed have uniform effects to the surrounding loops.

By which it means, if a loop is strip-mined with stride δ according to one data reference,

there should be no other data references which require the same loop to be strip-mined

with stride other than δ.

Data layout aware loop strip-mining according to the array strip-mining may include

pre-loop peeling and post-loop peeling depending on whether the loop iteration space

and the data index space are aligned, as shown in line 6-8, 14-16 of Fig. 3-4. If a loop

starts from 0 and ends at SIZE-1 and the corresponding array dimension has a range from

0 to SIZE-1, in this case, the loop iteration space and the data index space are aligned,

otherwise they are unaligned. Regarding the legality of these data layout aware loop

peeling and loop strip-mining, they are always legal because these loop transformations

57

1 #pragma ary[i] -> STRIP_MINING(i, 4)

2 float ary[32];

3

4 /* data layout aware transformation:*/

5 /* from pre-loop peeling */

6 for (i = 0; i < 1; i++)

7 for (ii = 1; ii < 4; ii++)

8 ... = ary[i][ii];

9 /* from loop strip-mining */

10 for (i = 1; i < 7; i++)

11 for (ii = 0; ii < 4; ii++)

12 ... = ary[i][ii];

13 /* from post-loop peeling*/

14 for (i = 7; i < 8; i++)

15 for (ii = 0; ii < 3; ii++)

16 ... = ary[i][ii];

Figure 3-4: Data layout aware loop transformation.

inherently will not change the data dependencies across loop iterations.

In addition to the elimination of the modulus operations, the data layout aware loop

strip-mining helps solve the alignment issue in vectorization. If the loop iteration space

and the data index space are not aligned, pre-loop peeling and post-loop peeling are

applied according to the boundaries of tiles from the array strip-mining. If the array

starting address is aligned to 32 bytes and the tile size is 32 bytes, for instance, all the

boundaries of tiles will be aligned to 32 bytes as well. As a result, all the loads from these

boundaries are aligned to 32 bytes.

3.4 Experimental Evaluation

3.4.1 Implementation

Our proposed array transform pragma is implemented in the Cetus source-to-source C

compiler. All the transform actions are processed and collected in the pragma parsing

phase. The actual data layout transformations and the data layout aware loop opti-

mizations are done as transform passes in the Cetus compiler. We also introduce loop

unrolling and constant propagation as pre-processing passes. The high-level internal pre-

sentation in the Cetus compiler keeps the array access close to the source code and thus

simplifies the array transformation and the substitution of subscripts in array references.

58

3.4.2 A Case Study: data layout tuning for loop vectorization

We use the SP in the NAS Parallel Benchmarks [Bailey et al., 1991b] as a case study to

show the performance impact of data layout transformations upon loop vectorization. SP

is one of the simulated CFD applications that solve the discretized compressible Navier-

Stokes equations. We choose the data set of Class A in NPB, which has the size of 64×

64× 64 with 400 iterations. Note that, we don’t consider other cache optimizations (e.g.

array padding) in our evaluation. All the experiments are conducted on an Intel Haswell

platform (Intel Core i7-4770) running the Ubuntu Linux 13.04. We choose the Intel C

compiler 13.1.3 to compile both the original and transformed code with the compiler

option -march=core-avx2 -O3 -fno-alias for vectorization.

Performance of the Motivating Example

Fig. 3-5 gives the performance of the motivating example in different data layouts shown

in Table 3.2. The results show that the best vectorization performance is given by the

data layout transformation Split 1:2:2. Splitting the last dimension of the array u (line

22 in Fig. 3-1) into three parts with sizes of 1, 2 and 2 helps the native compiler vectorize

the load of array u with a contiguous vector load. In the mean time, data permutation

instructions (e.g. vperm2f128, vunpacklpd) are used for the data reorganization of the

array rhs (line 17 - 21 in Fig. 3-1) instead of gather instructions.

Overall Performance

We manually tune the data layout transformations for the SP and constrain the search

space of data layout transformations to the ones mentioned in Table 3.2. Fig. 3-6 presents

the overall performance of the SP in different data layouts. Among the seven data layouts,

the Hybrid SoA gives the best overall performance.

We also evaluated the performance of the single precision SP with the data layout

Hybrid SoA, where the strip-mining size is 8. Compared to the double precision SP, the

performance boost from vectorization for the single precision SP is more significant, as

depicted in Fig. 3-7.

Fig. 3-8 and Fig. 3-9 give the performance breakdown of the single precision and

double precision SP, respectively. With naive manual tuning of data layouts, for the SP,

59

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Pure
 AoS

Spli
t A

oS
(1:

4)

Spli
t A

oS
(4:

1)

Spli
t A

oS
(1:

2:2
)

Spli
t A

oS
(2:

2:1
)

Pure
 SoA

Hyb
rid

 SoA

Se
co

nd
s

Performance of tzetar() in the SP Benchmark

Non-Vectorize Vectorize

Figure 3-5: Performance of tzetar() with different data layout transformations .

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Pure AoS Split
AoS(1:4)

Split
AoS(4:1)

Split
AoS(1:2:2)

Split
AoS(2:2:1)

Pure SoA Hybrid
SoA

M
O

P/
s

Performance of the SP Benchmark in Different Data
Layout Schemes

Non-Vectorize Vectorize

Figure 3-6: Performance of the SP in different data layouts.

60

0

5

10

15

20

25

30

35

40

Single Precision Double Precision

Se
co

nd
s

Overall Performance of the SP Benchmark

non-vect-orig vec-orig non-vect-trans(hybrid SoA) vect-trans(hybrid SoA)

Figure 3-7: Performance of the SP of the NAS Parallel Benchmarks.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

rhs
x

rhs
y

rhs
z

res
t-r

hs

xso
lve

yso
vle

zso
lve

txi
nv

r
pin

vr
nin

vr
tze

tar

ad
d sp

ee
du

ps
 o

ve
r t

he
 n

on
-v

ec
t-t

ra
ns

Performance Breakdown of the Double Precision SP
Benchmark

non-vect-trans vect-trans

Figure 3-8: Performance breakdown of the double precision SP of the NAS Parallel
Benchmarks.

61

0

0.5

1

1.5

2

2.5

rhs
x

rhs
y

rhs
z

res
t-r

hs

xso
lve

yso
vle

zso
lve

txi
nv

r
pin

vr
nin

vr
tze

tar

ad
d

sp
ee

du
ps

 o
ve

r t
he

 n
on

-v
ec

t-t
ra

ns

Performance Breakdown of the Single Precision SP
Benchmark

non-vect-trans vect-trans

Figure 3-9: Performance breakdown of the single precision SP of the NAS Parallel Bench-
marks.

vectorization on the transformed data can outperform the vectorization on the untrans-

formed data by a factor of 1.8. The experimental results demonstrate that it is worthwhile

to introduce data layout tuning into existing performance auto-tuning systems, in partic-

ular, for the better performance of vectorization.

3.5 Related Work

Data layout transformations have primarily been applied to improving cache locality and

localizing memory accesses in nonuniform memory architectures and clusters [Kennedy

and Kremer, 1998]. Maleki et al. evaluated the vectorizing compilers and found that

manually changing the data layout is a valuable way to help compilers to efficiently

vectorize loops with non-unit stride accesses [Maleki et al., 2011]. However, due to the

limitation of inter-procedural analysis, most current compilers (e.g. Intel C Compiler,

GCC) do not apply this transformation or apply it conservatively (e.g. IBM XLC). As a

result, compilers rarely automatically perform the memory layout transformations. Our

approach is based on the observation that programmers often know that some data layout

62

transformations are safe but implementing the changes manually is impractical because it

requires many changes throughout the code. With our proposed array transform pragma,

programmers can specify the data layout transformations easily and our source-to-source

compiler propagates the changes throughout the program.

Our work is mainly inspired by the the work on semi-automatic composition of loop

transformations for deep parallelism and memory hierarchies [Girbal et al., 2006]. The

main approach of previous work is introducing a script language to control the loop

transformations upon the target loops. As far as we know, there are no such script

languages available to control the data layout transformations. Similar language support

for data layout transformations is designed mainly for optimizing data locality, such as

the align and distribute directives in HPF [Rice University, 1993].

Henretty et al. propose a novel data layout transformation, dimension-lifted trans-

position, for stencil computations [Henretty et al., 2011]. This domain-specific technique

solves the memory stream alignment issue. On the contrary, our work is a general solu-

tion to manual data layout transformations. Although our work currently applies data

layout transformations according to the scopes of the target arrays rather than the com-

putation structures, our array transform pragma can be easily extended to work for a

specific region of code.

Our work is very close to the work by Sung et al., which presents a framework that

enables automatic data layout transformations for structured grid code in CUDA [Sung

et al., 2010]. Our work not only supports more data layout transformations, but also

presents data layout aware loop transformations for loop vectorization.

Jang et al. optimize memory access into DRAM bursts (i.e. coalescing) by creating

unit-stride accesses with data layout transformations in the case of GPGPUs [Jang et al.,

2010]. Majeti et al. put forward a meta-data framework that allows both programmers

and tuning experts to specify architecture specific and domain specific information for

parallel-for loops of programs [Majeti et al., 2014]. The data layout transformations

considered in this work are only AoS-to-SoA and SoA-to-AoS. Sinkarovs et al. also

present a compiler driven approach towards automatically transforming data layouts

into a form that is suitable for vectorization [Sinkarovs and Scholz, 2013]. Their work

is studied in the case of a first-order functional array programming language while our

63

work focuses on the imperative C language.

3.6 Summary

In this chapter, we put forward a new program annotation (using C language pragmas)

to enable programmers to specify data layout transformations and implemented it in the

Cetus source-to-source compiler. In terms of loop vectorization, we introduce data layout

aware loop transformations to help native compilers to do better vectorization as well.

The four primitive data layout transformations presented are suitable to be composed

into more complex data layout transformations. The experimental results indicate that it

is necessary to introduce semi- or fully automatic tuning of data layout transformations

in order to help compilers to achieve better performance on vectorization.

64

Chapter 4

Exploit Computation Structure Exposed

by Data Layout in Vectorization

4.1 Introduction

The introduction of Single Instruction Multiple Data (SIMD) units in processors increases

the levels of parallelism in hardware, and results in a three-level hierarchy of parallelism,

instruction level parallelism, SIMD parallelism, and thread-level parallelism. In order

to take advantage of the SIMD parallelism, users usually resort to the automatic vec-

torization in compilers. So far, there are mainly two vectorizing approaches available

in compilers, classic loop vectorization [Kennedy and Allen, 2002] and super-word level

parallelism (SLP) vectorization [Larsen and Amarasinghe, 2000]. These two methods

usually supplement each other. Classic loop vectorization works on each statement in

the vectorizable loop while SLP vectorization attempts to pack the isomorphic opera-

tions in the basic blocks based on some heuristics (contiguous memory access [Larsen

and Amarasinghe, 2000] or data reuse [Liu et al., 2012]). What these two methods have

in common is that they both ignore the overall computation structure exposed by the

vectorizable loop.

With the advance of SIMD support in modern commodity processors with short vec-

tors, more and more advanced features are introduced to programmers and compiler

designers to exploit the performance of SIMD, such as the flexible lane-wise operations

(e.g. masking load/store, blend instructions). When using these SIMD lane-wise opera-

65

tions, we have to consider how the SIMD lanes change between SIMD instructions. With

the computation structure of the vectorizable loop, we can have a global view of how the

SIMD lanes can be allocated in each SIMD instruction. This view of SIMD lanes helps us

to achieve global SIMD lane-wise optimization, which may reduce unnecessary shuffling

operations on SIMD lanes.

1 float y[128], x[128], C[128];

2 for (int i = 0; i < 64; i++) {

3 y[2*i] += x[2*i] * C[2*i] - x[2*i+1] * C[2*i+1];

4 y[2*i+1] += x[2*i] * C[2*i+1] + x[2*i+1] * C[2*i];

5 }

Figure 4-1: C-Saxpy

1 y[0:126:2] += x[0:126:2] * C[0:126:2] - x[1:127:2] * C[1:127:2];

2

3 y[1:127:2] += x[0:126:2] * C[1:127:2] + x[1:127:2] * C[0:126:2];

Figure 4-2: C-Saxpy by classic loop vectorization.

1 // take full lanes

2 tmp0[0:127] = x[0:127:1] * C[0:127:1];

3 tmp1[0:127] = SwapEvenOddLanes (tmp0);

4 // actual computation on the even lanes

5 tmp1[0:127:1] = tmp0 - tmp1;

6 tmp2[0:127:1] = SwapEvenOddLanes (C[0:127:1]);

7 // take full lanes

8 tmp3[0:127:1] = x[0:127:1] * tmp2[0:127:1];

9 tmp4[0:127:1] = SwapEvenOddLanes (tmp3);

10 // actual computation on the odd lanes

11 tmp5[0:127:1] = tmp3 + tmp4;

12 // merge the results from both even and odd lanes

13 y[0:127:1] += MergeEvenOddLanes (tmp1, tmp5);

Figure 4-3: C-Saxpy by hyper-loop parallelism vectorization

Take the C-Saxpy, which multiplies a complex vector by a constant complex vector

and adds it to another complex vector, as an example, as shown in Fig. 5-2. When classic

loop vectorization attempts to vectorize the loop, it tries to aggressively squeeze all the

data needed by each memory operation into a SIMD vector regardless of how the data

will be used throughout the loop body. As shown in Fig. 4-2, all memory operations

are either interleaved loads (gather) or interleaved stores (scatter). The hardware support

66

for native gather and scatter instructions is still not good [Ramachandran et al., 2013],

therefore, most compilers use data permutation instructions to achieve gather and scatter

operations.

If we carefully examine the computation structure of the loop body in Fig. 5-2, we

can derive a vectorizing scheme with fewer data permutation instructions than the one

by classic loop vectorization. As we can see from Fig. 4-3, all the memory opera-

tions are contiguous memory loads and stores, and only two SwapEvenOddLanes and

a MergeEvenOddLanes operations defined in Section 4.2.3 are required to reorganize data.

This vectorizing scheme is obtained by putting in data reorganization operations to ad-

just the data needed by the SIMD computation according to the overall computation

structure.

Two key components are required by the vectorizing scheme shown in Fig. 4-3. One is

the computation structure recognition and the other is SIMD lane-wise mapping. Com-

putation structures can be obtained by program slicing with suitable slicing criteria. On

the other hand, SIMD lane-wise mapping requires detailed information on how to posi-

tion data in SIMD lanes along the computation structure. For classic loop vectorization,

as it strip-mines the vectorizable loop for vectorization, the numbering of the loop it-

erations of the resulting loop determines which SIMD lane a loop iteration will take.

Inspired by this mapping between loop iterations and SIMD lanes, we put forward hy-

per loops based on program slices to recover the loop structure of the vectorizable loop.

With hyper loops, we can apply global SIMD lane-wise optimization by taking advantage

of the mapping between loop iterations and SIMD lanes.

We define the program slices that can be partitioned into groups with respect to

certain relationships (i.e. contiguous memory stores) as hyper loop iterations. The com-

putations in each hyper loop iteration of a group do not have to be isomorphic. As all

the program slices are independent of each other, hyper loop iterations are all parallel.

The parallelism exposed by the hyper loop iterations is hyper loop parallelism. In this

chapter, we put forward a vectorizing technique based on the hyper loop parallelism.

Our vectorizing method addresses the problems of extracting hyper loop parallelism

and efficiently mapping it onto the target processor. We implemented our vectorizing

approach as a source-to-source compiler in the Cetus source-to-source compiler. The

67

preliminary experimental results show that our vectorizing technique can achieve signif-

icant speedups over the non-vectorized code.

4.2 Hyper Loop Parallelism in Vectorization

4.2.1 Overview

Classic loop vectorization strip-mines vectorizable loops. The loop iterations of the result-

ing loops correspond to the SIMD lanes in the SIMD vectors. In order to take advantage

of the instructions that have flexible control of the SIMD lanes in modern commodity

processors, we put forward hyper loops to recover the implicit loop structures of the

loop body.

The loop body of a vectorizable loop generally can be partitioned into parts in terms

of the downwards-exposed definitions. Program slicing is a widely used technique to

compute a set of program statements, a program slice, which may affect the values at some

point of interest (aka. a slicing criterion). Choosing the downwards-exposed definitions of

the vectorizable loop as the set of slicing criteria, with the backward program slicing, we

can derive a set of program slices, each of which represents a partition of statements of

the loop. Without considering control dependence, a program slice within a loop body is

essentially a sub-graph of the data dependence graph of the loop body. As each slice is

collected within the loop body, a slice is a direct acyclic graph (DAG) G(V, E), where V is

the set of computations within the slice, and E are the define-use relationships between

nodes in V.

There are three slices after program slicing in Fig. 4-4. Without considering the

relationships between the slices, we can treat each slice as a loop with only one iteration.

However, in real world applications, there usually exist relationships between the slices.

The relationships between the slices often come from two aspects: 1) unrolled loops from

the loops with no loop carried dependence; and 2) computations on the tuples of data

organized in an array of structures. For the former case, each unrolled loop iteration

is a slice and all the slices are isomorphic. In other words, the DAGs representing the

unrolled loop iterations have the same structure and computations on each DAG are

isomorphic correspondingly. On the other hand, for the computations on the fields of

68

for (i = 0; i < N; i ++){

}

Slice #0

Slice #1

Slice #2

for (i = 0; i < N; i ++){

}

Grouped Slices #1

Grouped Slices #2

hyper loop iterations
Grouping

① ②

Figure 4-4: Hyper loop parallelism for vectorization.

data organized in an array of structures, the DAGs for the elements of the tuple may have

different structures depending on the computation (e.g. C-Saxpy in Fig. 5-2). However,

as each slice is for the computations regarding an element of the tuple, the relationships

between elements (aka. contiguous memory access) build the relationships between the

slices.

The relationships between slices (aka. contiguous downwards-exposed definitions)

can be used to group slices into grouped slices, or grouped DAGs. We can deem a slice

group as a hyper loop where the number of hyper loop iterations is the same as the

number of slices in the group. As each slice is an independent partition of the loop

body, hyper loops are all parallel and eligible to vectorization. Grouped slices help

vectorization to achieve flexible control on SIMD lanes. For instance, as shown in Fig.

4-4, according to the iteration number of the hyper loop, when mapping the grouped

slices to the SIMD vector, the two slices in the grouped slices #1 prefer to take the even

and odd lanes, respectively. With this precise information on SIMD lanes, vectorization

can apply global SIMD lane-wise optimization when mapping the slices to the SIMD

vector in order to reduce the number of shuffling operations on SIMD lanes.

In this chapter, we propose a vectorizing technique by exploiting the hyper loop par-

allelism exposed by the hyper loop. Similar to other vectorization frameworks, our vec-

torizing technique consists of two stages, vectorization analysis and vectorization trans-

formation.

69

4.2.2 Vectorization Analysis

Before collecting program slices for hyper loop parallelism, we use existing data depen-

dence analysis to analyze whether a loop is vectorizable or not. Moreover, we apply

data-flow analysis to find the downwards exposed definitions in the vectorizable loop

and identify the types of the definitions, reduction definition or ordinary definition.

Collect Slices

All the downwards-exposed definitions in the loop are used as the slicing criteria for

program slicing. As the data dependence graph is already built in the vectorization

analysis, backward program slicing can be easily applied. As shown in Fig. 4-5, there

are two ordinary definitions, y[2*i] and y[2*i+1]. We can get two slices from program

slicing. Note that, the dash lines depict the define-use relationships among statements

and connect a node to its parent in the DAGs representing the slices.

x0 = x[2*i] C0 = C[2*i] x1 = x[2*i+1] C1 = C[2*i+1]

tmp0 = x0 * C0 tmp1= x1 * C1

tmp4= tmp0 – tmp1
y0 = y[2*i]

tmp6 = y0 + tmp4

y[2*i] = tmp6

x2 = x[2*i] C2 = C[2*i+1] x3 = x[2*i+1] C3 = C[2*i]

tmp2 = x2 * C2 tmp3= x3 * C3

tmp5= tmp2 + tmp3
y1 = y[2*i+1]

tmp7 = y1 + tmp5

y[2*i+1] = tmp7

Program Slice #0 from y[2*i] Program Slice #1 from y[2*i+1]

#6 #7

Figure 4-5: Collect program slices.

Group Slices

Grouping slices is a key stage for discovering hyper loop parallelism. In this stage, slices

collected are first partitioned into two sets according to the types of downward exposed

definitions.

Grouping slices works similar to the super-word level parallelism (SLP) vectorization

that tries to pack isomorphic instructions into groups for vectorization [Larsen and Ama-

rasinghe, 2000]. In contrast to the SLP vectorization, the grouping of slices starts from

70

x0 = x[2*i]
x1 = x[2*i+1]

C0 = C[2*i]
C1 = C[2*i+1]

tmp0 = x0 * C0
tmp1 = x1 * C1

tmp4= tmp0 – tmp1

y0 = y[2*i] tmp6 = y0 + tmp4 y[2*i] = tmp6
y[2*i+1] = tmp7

x2 = x[2*i]
x3 = x[2*i+1]

C2 = C[2*i+1]
C3 = C[2*i]

tmp2 = x2 * C2
tmp3 = x3 * C3

tmp5= tmp2 + tmp3

y1 = y[2*i+1] tmp7 = y1 + tmp5

Extract(0) Extract(1) Extract(0) Extract(1)

Merge(0)

Slice #0 ! Slice #1 !

Merge(1)

#0 #1 #2

#3

#5 #6

#4

#7 #8

Figure 4-6: Group program slices.

contiguous memory stores which are the downwards exposed definitions for program

slicing, and packs isomorphic operations from different slices. As stated in Section 4.2.1,

two slices in the same group do not necessarily have the same computation structure.

Thus, it is possible that some computations are not isomorphic. We define two types of

grouping, fully grouped and partially grouped. If all the computations from two slices are

isomorphic correspondingly, we call it fully grouped, otherwise partially grouped.

For partially grouped slices, in order to find more opportunities for vectorization,

we apply grouping to the parts which are not grouped when grouping different slices.

For example, when grouping the node #6 and node #7 in Fig. 4-5, as the computations

from both nodes are not isomorphic. Hence, the grouping on both slice #0 and slice #1

terminates. In order to find more grouping opportunities, the grouping continues on

each slice separately, and groups nodes with isomorphic operations within each slice.

Moreover, when dealing with partially grouping, we attach actions on the edges be-

tween two nodes in the grouped DAGs. We put forward two actions, extract and merge, to

depict how the data flows. The extract(number) deals with data-flow from a grouped

node to a non-grouped node while the merge(number) handles the data-flow from a

71

non-grouped node to a grouped node. The parameter number in both actions specifies

the position of definition in the source node or the position of use in the destination

node.

For the slices collected from the C-Saxpy, as shown in Fig. 4-5, Fig. 4-6 illustrates the

results of grouping slices. Because the computations for the definitions of the two slices

are different in some parts, the two slices are not fully grouped. Three grouped nodes

(node #0 - node #2) are created by the grouping on the two slices while six grouped

nodes (node #3 - node #8) are created by the grouping on the parts of slices which cannot

be grouped.

Calculate Computation Attributes

Slices for grouping may overlap with each other depending on the computations. For

fully grouped slices, the overlapping may lead to a grouped DAG that is not efficient for

directly vectorization transformation. For example, the grouped DAG of vector normal-

ization is shown in Fig. 4-7. All the nodes in the dashed boxes are from the overlapped

parts of the three slices. If this grouped DAG is directly used for vectorization transfor-

mation, there would be a lot of redundant computation within SIMD lanes that may not

be optimized out by compilers.

In order to achieve better vectorization transformation on the fully grouped slices, we

calculate the computation attributes from the data access of each node in the grouped

DAGs. As memory loads are in the leaf nodes of the DAGs, calculation starts with

leaf nodes, and propagates the computation attributes to the root nodes. Each node

by default has an implicit computation attribute decided by the data accesses pattens

(e.g. consecutive, gathering). Two more explicit computation attributes are calculated for

vectorization transformation, reducible and scatterable, as shown in Fig.4-8.

4.2.3 Vectorization Transformation

Expand Grouped Slices

After all the grouped DAGs have been collected and computation attributes for each node

in the fully grouped DAGs are calculated, the vectorization transformation transforms

72

points[i_24][0] = _15;
points[i_24][1] = _17;
points[i_24][2] = _19;

_15 = s_14 * x_4;
_17 = s_14 * y_5;
_19 = s_14 * z_6;

s_14 = d_13(D) / _12;
s_14 = d_13(D) / _12;
s_14 = d_13(D) / _12;

_12 = *__sqrtf_finite (s_11);
_12 = *__sqrtf_finite (s_11);
_12 = *__sqrtf_finite (s_11);

s_11 = _9 + powmult_23;
s_11 = _9 + powmult_23;
s_11 = _9 + powmult_23;

_9 = powmult_1 + powmult_22;
_9 = powmult_1 + powmult_22;
_9 = powmult_1 + powmult_22;

powmult_1 = x_4 * x_4;
powmult_1 = x_4 * x_4;
powmult_1 = x_4 * x_4;

x_4 = points[i_24][0];
y_5 = points[i_24][1];
z_6 = points[i_24][2];

x_4 = points[i_24][0];
x_4 = points[i_24][0];
x_4 = points[i_24][0];

powmult_22 = y_5 * y_5;
powmult_22 = y_5 * y_5;
powmult_22 = y_5 * y_5;

y_5 = points[i_24][1];
y_5 = points[i_24][1];
y_5 = points[i_24][1];

powmult_23 = z_6 * z_6;
powmult_23 = z_6 * z_6;
powmult_23 = z_6 * z_6;

z_6 = points[i_24][2];
z_6 = points[i_24][2];
z_6 = points[i_24][2];

Node 0 Node 1 Node 2

Node 3 Node 4 Node 5

Node 6

Node 7

Node 8

Node 9 Node 10

Node 11

Node 12

1.0
1.0
1.0

Figure 4-7: Overlapping of fully grouped slices.

Fig. 5. Data attributes for vectorization

3.3 Data-centric Vectorization Transformation

After the candidate DAGs are derived and data attributes for each node in the
DAGs are annotated, the vectorization transformation pass transforms each DAG into
a DAG with virtual vector operations on virtual registers. We borrow the idea of vir-
tual vector registers and their operations from [3]. The width of virtual register for
each DAG is decided by the loop unrolling factor, which is calculated by the least
common multiple of the width of the vector register of the target processor and the
width of a node in the a vectorized DAG.

Since each node in a given DAG is already annotated with data attributes, the vec-
torization transformation make decisions on how to schedule data and computation
along with generating virtual operations. In other words, vectorization transformation
decides which kind of data operation is needed for a given node, consecutive
load/store, load in gather/scatter (shown in Fig. 5(c)), load in broadcast and store in
scatter. The decision is made guided by a simple heuristic as follows:

1) Nodes with reducible data accesses in a DAG are always reduced; a reduced
node can be gatherable, consecutive, or constant depending on the data accesses in the
node; decisions on data scheduling are transitive along a path of reduced nodes.

2) According to the cost of data permutation, consecutive loads have higher priori-
ty than loads in gather/scatter, loads in gather and scatter have the same priority; con-
secutive stores have higher priority than stores in scatter.

3) If one of two children nodes of a node in DAGs is reduced and expanded as
gathered and the other node is not, then the non-reduced node will be scattered and
the computation sequence in the parent node will be scattered as well.

A[i] A[i] A[i] A[i]

A[i]

A[i] A[i+1] A[i+2]

A[i] A[i+3] A[i+6]

a) Reducible b) Scatterable

A[i+3] A[i+4] A[i+5]

A[i+1] A[i+4] A[i+7]

Figure 4-8: Reducible and scatterable computation attributes.

73

vx0[0:16:1] = x[2*i:16:1] vC0[0:16:1]= C[2*i:16:1]

vtemp0[0:16:1] = vx0[0:16:1] * vC0[0:16:1]

vy0[0:16:1] = y[2*i: 16: 1]

vtmp6[0:16:1] = vy0[0:16:1] + vtmp4_0[0:16:1]

y[2*i:16:1] = vtmp6[0:16:1]

vx2[0:16:1] = x[2*i:16:1] vC2[0:16:1] = vC2_0[0:16:1]

vtmp2[0:16:1] = vx2[0:16:1] * vC2[0:16:1]

vtmp4[0:8:1] = vtmp0[0:16:2] – vtmp0[1:16:2]

vC2_0[0:16:1] = permute(C[2*i], 16, […])

vtmp5[0:8:1] = vtmp2[0:16:2] + vtmp2[1:16:2]

vtmp4_0[0:16:1] =Merge (vtmp4, vtmp5)!

#7 #8

Figure 4-9: Expand program slices.

each grouped DAG into a vectorized DAG with virtual vector operations on virtual regis-

ters. We use the idea of virtual vector registers and vector operations similar to [Bocchino

and Adve, 2006]. The loop unrolling factor for vectorization transformation is calculated

by first finding the least common multiple (L.C.M.) value of the width of the physical

vector register and the size of the grouped node with the minimum number of isomor-

phic operations, then dividing the value by the size of the smallest grouped node. The

width of the virtual register of each node is decided by the multiplication of the loop

unrolling factor and the size of the node.

For the fully grouped DAGs, since each node is already annotated with computation

attributes, the vectorization transformation makes decisions on how to schedule data

operations and computation along with generating virtual vector operations. In other

words, the vectorization transformation decides when, where, and which kind of data

operation is needed, such as consecutive load/store, gathered load.

The data and computation scheduling is made by the simple heuristics as follows: 1)

All the reducible leaf nodes of the DAGs are always reduced into nodes with a single

operation; the data accesses in the reduced leaf nodes can be gatherable, consecutive

(or replicable for constants) depending on the data access pattern; 2) According to the

cost of data permutation, consecutive loads have higher priority than gathered loads;

74

consecutive stores have higher priority than scattered stores. 3) If the child nodes of a

node are all reduced, the node is also reduced; 4) If one of the child nodes of a node is

reduced and expanded as gathered and the other child nodes are not reduced and but

scatterable, all these non-reduced child nodes will be scattered and the corresponding

computation sequence in the parent node will be scattered as well.

For the fully grouped DAG in Fig. 4-7, according to the heuristics mentioned above,

the reducible leaf nodes 0-2 are first reduced. As the data accesses in the nodes 0-2 are

interleaved with stride 3, data gathering operations are introduced when these reduced

nodes are expanded. According to the rule 3, the reducible nodes 3-9 are reduced and

expanded with gathered data thanks to the reduced child nodes. For the join node 11,

according to the rule 4, although node 10 has consecutive data accesses, it is transformed

into a node with scattered loads. As a result, the computation sequence in node 11 is

skewed correspondingly. Because node 12 requires a consecutive store, data permutation

is needed to transform the data from the skewed computation in node 11 back to consec-

utive data for the store operation. As we can see, rule 4 helps defer the data permutation

operations needed to the final store operation, which may cut the number of vector reg-

isters required by data reorganization optimization and reduce the register pressure in

the generated code.

When expanding the grouped DAGs into the vectorized DAGs, we use SIMD lane

descriptors to describe the patterns of SIMD lanes for each node. SIMD lane descriptors

have the format of id[start_position: size: stride], where id is the name of an

array, a pointer or a virtual vector, size is the number of lanes, stride is the lane pattern.

In this chapter, we consider strided SIMD lane pattens. The support for arbitrary SIMD

lane patterns is beyond the scope of this thesis. For the grouped DAGs in Fig. 4-6, the

vectorized DAG after expanding is shown in Fig. 4-9.

Global SIMD Lane-wise Optimization

If all the nodes in the expanded grouped DAGs have valid SIMD lane descriptors, the vec-

torization transformation applies global SIMD lane-wise optimization on the expanded

grouped DAGs. The global SIMD lane-wise optimization tries to optimize the allocation

of SIMD lanes according to the changes of SIMD lanes between nodes in the DAGs by

75

vx0[0:16:1] = x[2*i:16:1] vC0[0:16:1] = C[2*i:16:1]

vtemp0[0:16:1] = vx0[0:16:1] * vC0[0:16:1]

vy0[0:16:1] = y[2*i: 16: 1]

vtmp6[0:16:1] = vy0[0:16:1] + vtmp4_0[0:16:1]

y[2*i:16:1] = vtmp6[0:16:1]

vx2[0:16:1] = x[2*i:16:1] vC2[0:16:1] = vC2_0[0:16:1]

vtmp2[0:16:1] = vx2[0:16:1] * vC2[0:16:1]

vtmp4[0:16:2] = vtmp0[0:16:2] – vtmp7[0:16:2]

vC2_0 = permute(C[2*i], 16, […])

vtmp5[1:16:2] = vtmp2_0[1:16:2] + vtmp2[1:16:2]

vtmp4_0[0:16:1] =MergeEvenOddLanes (vtmp4, vtmp5)!

Lane(0:16:1)

Lane(0:16:1)

Lane(0:16:2) Lane(1:16:2)

vtmp2_0 = SwapEvenOddLanes(vtmp2[0:16:2]) !

Lane(1:16:2) Lane(1:16:2)

Lane(0:16:1) Lane(0:16:1)
Lane(0:16:1) Lane(0:16:1)

vtmp7 = SwapEvenOdd(vtmp0[1:16:2]) !
Lane(0:16:2)

#8 #7

Lane(0:16:1)

Lane(0:16:2)

#9 #10

#12

Figure 4-10: Global SIMD lane-wise optimization.

inserting new nodes for four SIMD lanes operations - pack, unpack, merge and permute.

pack and unpack deal with the changes of the vector size. merge performs blending of two

vectors with the given SIMD lane information. permute handles the changes of ordering

of SIMD lanes between two vectors in the same size. The operations SwapEvenOddLanes

and MergeEvenOddLanes in Fig. 4-10 are concrete instances of the operations permute and

merge, respectively.

The global SIMD lane optimization consists of two passes, a top-down pass and a

bottom-up pass on the expanded DAGs. The top-down pass tries to adjust the widths

of virtual vectors and SIMD lane patterns according the memory loads in the leaf nodes

in the grouped DAGs. For example, the node #8 in the expanded grouped DAG shown

in Fig. 4-9 has a destination vector vtmp5 with the SIMD lane pattern of [0:8:1]. The

top-down pass changes the SIMD lane pattern into [0:16:2] according to the operand

vtmp2[0:16:2] because both operands have strided SIMD lane patterns. Note that, since

there is no other information to guide the choosing of SIMD lane patterns, the top-

down pass always picks the SIMD lane pattern of the first operand as the pattern of the

destination vector.

On the other hand, the bottom-up pass propagates the SIMD lane information of

76

the root nodes to the leaf nodes and inserts the four SIMD lane operations accordingly.

The bottom-up pass, in particular, takes care of the join nodes represented by Merge.

For instance, after the top-down pass, the destination vectors vtmp4 and vtmp5 have the

same SIMD lane pattern of [0:16:2]. When comes to the merge node #12 in Fig. 4-

10, according to the relationships between hyper loop iterations and SIMD lanes, the

optimization will assign the even lanes to the vtmp4 while giving odd lanes to the vtmp5.

Thus, the desirable SIMD lane pattern [0:16:2] and [1:16:2] are propagated to the

node #9 and node #10, respectively. Guided by the desirable SIMD lane patterns, a

SwapEvenOddLanes operation is introduced to transform the SIMD lane pattern of vtmp2

from [0:16:2] to [1:16:2] as the node #8.

4.3 Implementation

We implemented our proposed vectorization approach as a source-to-source compiler

based on the Cetus compiler infrastructure [Bae et al., 2013]. The compilation flow for

our vectorization approach is shown in Fig. 4-11.

Statement Simplification

If Conversion

Loop Parallelization Analysis

Vectorization Analysis

Vectorization Transformation

Data Dependence Analysis

Reduction Analysis

Privatization Analysis

Alias Analysis

Induction Analysis

Front-end

Cetus IR

IR with SIMD intrinsic

Vectorized IR

C
om

pi
le

r B
ac

ke
nd

Figure 4-11: Compilation flow of hyper loop parallelism vectorization.

The Cetus compiler uses a single level internal representation (IR) which contains all

77

the information needed for high-level loop optimization. Although the IR closely con-

forms to the source code, expressions in this IR may have multiple levels which hinders

compilers from detecting whether the expressions in two statements are isomorphic or

not. To tackle this problem, we introduce a Statement Simplification pass to lower each

statement into short statements with only one unary, binary or ternary expression and

add temporary variables to hold the immediate values of these resulting expressions. In

addition, we introduce a simple If-conversion pass to eliminate part of control dependence

by replacing if statements with conditional statements.

vtmp0[0:8:1] = x[i:8:1]

y[2*i:16:2] = vtmp0[0:16:2]

Lane(0:16:2)

1 vx1[0:8:1] = vload(&x[i], 8)
2 vx2[0:8:2] = unpack_lower(vx1);
3 vx3[0:8:2] =unpack_upper(vx1);
4 vy1[0:8:1] = vload(&y[2*i], 8)
5 vy2[0:8:1] = vload(&y[2*i+8], 8)
6 vy1[0:8:1] = vblend_even(vx2, vy1)
7 vy2[0:8:1] = vblend_even(vx3, vy2)
8 vstore(&y[2*i], vy1);
9 vstore(&y[2*i+8], vy2);

a)  Vectorized DAG after
lane-wise optimization

b)  Code Generation. Assume the size
of the target SIMD vector size is 8.

vtmp0[0:16:2] =
unpack(vtmp0[0:8:1], [0:16:2])

Figure 4-12: An example of code generation.

The vectorization analysis and transformation are applied as described in Section 4.2.

After vectorization transformation, we lower the virtual vector operations to Intel AVX2

SIMD intrinsics. As the code generator is independent of the target architecture, our

vectorizer can be easily extended to support other architectures (e.g., Intel AVX-512).

When lowering the SIMD lane-wise operations to the SIMD intrinsics, our compiler uses

data permutation and blend instructions to implement these operations. As shown in

Fig. 4-12, when dealing with strided stores, the code generator emits contiguous vector

loads (line 4-5), blends the results to be stored with the load vectors according to the

stride (line 6-7), and stores the blended results with contiguous vector stores (line 8-9).

In the code generation, data permutation optimization is applied to the interleaved

data access as well. Instead of general optimization on data permutation [Nuzman et al.,

2006][Ren et al., 2006], such as the one specific to strides of power-of-two [Nuzman et al.,

2006], we treat each specific case of interleaved data access separately. For example,

78

when dealing with interleaved data accesses with stride 3, we adopt the data permutation

scheme considered optimal for this case [Melax, 2012].

4.4 Preliminary Experimental Results

4.4.1 Experimental Setup

As our compiler generates C code with SIMD intrinsics for Intel AVX2, all the experi-

ments are conducted on an Intel Haswell platform, Intel(R) Core(TM) i7-4770, with Intel

AVX2 running Ubuntu Linux 13.10. We use the Intel C compiler (ICC) 14.02 for automatic

vectorization with compiler options -march=core-avx2 -O3 -fno-alias for performance

comparison. The non-vectorized execution time is collected by ICC with compiler options

-march=core-avx2 -O3 -no-vec

-fno-alias.

4.4.2 Benchmarks

We choose two groups of benchmarks to evaluate the effectiveness of our proposed vec-

torizing technique based on the hyper-loop parallelism. The Group I benchmarks are all

suitable for fully grouping and some of them require the data and computation schedul-

ing guided by the computation attributes (in Section 4.2.3). The Group II benchmarks

contain some vectorizable loops that can only be partially grouped, and most of the

vectorizable loops can benefit from the global SIMD lane-wise optimization.

∙ Group I: Five basic operations on 3D-vectors, multiplication, dot product, normal-

ization, rotation and cross product, are often encapsulated as library functions in

widely used libraries, such as Open Source Computer Vision Library (OpenCV).

YUVtoRGB and RGBtoYUV are important applications in image processing. The

3D-vectors used in these benchmarks is organized in an array of structures.

∙ Group II: C-Saxpy, which multiplies a complex vector by a constant complex vec-

tor and adds it to another complex vector. Two benchmarks from the NAS Paral-

lel Benchmarks, FT and MG. FT contains the computational kernel of a 3-D Fast

79

Fourier Transform (FFT). MG uses a V-cycle Multi Grid method to compute the

solution of the 3-D scalar Poisson equation.

4.4.3 Performance

examples, even with native gather instructions, ICC can get up to 3.5X speedups over
the non-vectorized code. However, because our proposed vectorization approach can
do data permutation optimization for data gathering with stride 3, we can get up to
6.8X speedups over non-vectorized code.

Fig. 5. The overall performance of vectorization based hyper loop parallelism.

5 Related Work

�����
��

���
���

���	��

�������

0

0.5

1

1.5

2

2.5

3

Vec Mul Vec Dot Vec Norm Vec Rotate Vec Crossproduct YUVtoRGB RGBtoYUV Sp
ee

ds
 u

p
ov

er
 n

on
-v

ec
to

riz
ed

 c
od

e
w

ith
 A

V
X

2

Hyper-loop Parallelism Vectorization Performance of Group I Benchmarks

Non-vectorization ICC Vectorization Hyper-loop Parallelism Vectorization

212.07%

14.79% 4.05%
21.13%

0

0.5

1

1.5

2

2.5

3

3.5

C-Saxpy FT (Class A)-Swarztrauber MG (Class A)-rprj3 MG (Class A)-interp Sp
ee

ds
 u

p
ov

er
 n

on
-v

ec
to

riz
ed

 c
od

e
w

ith
 A

V
X

2

Hyper-loop Parallelism Vectorization Performance of Group II Benchmarks

Non-vectorization ICC Vectorization Hyper-loop Parallelism Vectorization

Figure 4-13: Performance of Group I benchmarks.

The overall performance of the Group-I benchmarks is given in Fig. 4-13. As we

can see, the performance of vectorized vector multiplication, dot product, rotation and

cross product, YUVtoRGB, RGBtoYUV by ICC is all worse than the non-vectorized code.

The reasons for the performance degradation are 1) ICC by default chooses gather in-

structions (aka. vgather) to deal with interleaved data accesses with stride 3, and these

instructions are not efficiently supported by the hardware [Pennycook et al., 2013]; 2)

ICC has no support of optimization on data scattering with stride 3, thereby it generates

a sequence of scalar instructions to extract data out of vector registers. The vectorized

vector normalization by our method outperforms ICC because of the data permutation

optimization specific to interleaved access with stride 3.

Fig. 4-14 presents the overall performance of the Group-II benchmarks. This group

of benchmarks mainly test the effectiveness of the global SIMD-lane wise optimization.

For the C-Saxpy, as we can see from Fig. 4-3, fewer data permutation instructions are

required by the SIMD lane-wise optimization than the loop vectorization in Fig. 4-2.

80

59.01%

12.88% 3.90%
17.44%

0

0.5

1

1.5

2

2.5

3

C-Saxpy FT (Class A)-Swarztrauber MG (Class A)-rprj3 MG (Class A)-interp Sp
ee

ds
 u

p
ov

er
 n

on
-v

ec
to

riz
ed

 c
od

e
w

ith
 A

V
X

2

Hyper-loop Parallelism Vectorization Performance of Group II Benchmarks

Non-vectorization ICC Vectorization Hyper-loop Parallelism Vectorization

Figure 4-14: Performance of Group II benchmarks.

The reduction of data permutation instructions leads to a great speedup. Similar to the

C-Saxpy, our vectorizing technique achieves great performance improvement over the

non-vectorized execution for the functions from FT and MG while the vectorization by

ICC degrades the performance of FT-Swarztrauber and MG-rprj3. The performance gains

of the Group-II benchmarks by our vectorizing technique demonstrate the effectiveness

of the global SIMD-lane wise optimization.

4.5 Related Work

Most prior work on automatic vectorization is performed on the loop level [Kennedy

and Allen, 2002] [Nuzman and Zaks, 2008] [Nuzman et al., 2011] [Kim and Han,

2012], the basic block level [Larsen and Amarasinghe, 2000] [Liu et al., 2012], and the

whole function level [Karrenberg and Hack, 2011]. Some of these vectorizing techniques

are adopted in both commercial and open-source compilers such as Intel Compiler,

Open64 [Dibyendu Das, 2012], GCC, LLVM. There is also extensive work on automatic

vectorization with polyhedral model [Trifunovic et al., 2009]. Our hyper loop parallelism

(HLP) vectorization resembles the classic loop vectorization by taking advantage of the

mapping between loop iterations and SIMD lanes.

81

Super-word level parallelism (SLP) [Larsen and Amarasinghe, 2000] vectorization is

the closest related work but it cannot handle complex computation patterns, such as

intra-loop reduction. Although the variant of SLP in GCC handles intra-loop reduction,

it may incur redundant computations similar to the one in Fig. 4-7. Besides, the imple-

mentation of SLP in GCC [Ira Rosen and Zaks, 2007] is limited to only the cases where the

number of operations for packing is power-of-two. Park et al. introduces vectorization

based on sub-graph level parallelism (SGLP), a coarser level of vectorization within basic

blocks [Park et al., 2012]. Our proposed HLP is similar to the SGLP, but we consider HLP

as a complement to classic loop parallelism. Besides, SGLP tries to identify opportunities

for vectorization within the already vectorized basic blocks, while our work focuses on

vectorization of non-vectorized code. The most significant difference between HLP and

SGLP is that when mapping the SIMD parallelism to the target architecture, our method

takes into account the instructions that flexibly control the SIMD lanes.

An integrated SIMDization framework is put forward by Wu et al. to address sev-

eral orthogonal aspects of SIMDization, including SIMD parallelism extraction from dif-

ferent program scopes (from basic blocks to inner loops) [Wu et al., 2005]. Our HLP

vectorization achieves the same goal of the basic block aggregation in this work. Fur-

thermore, our vectorization transformation and code generation is similar to the length

de-virtualization in [Wu et al., 2005] which also works on virtual vector registers.

General code generation for interleaved data accesses with strides of power-of-two is

presented in [Nuzman et al., 2006] and implemented in GCC. This approach achieves

portability but does not always gives the optimal code for a specific target architecture.

Ren et al. work on optimizing data permutations on vectorized code [Ren et al., 2006].

Instead of general data permutation optimization, our approach directly generates well-

known optimal code for a specific case of interleaved data access in order to achieve high

performance.

4.6 Summary

In this chapter, we put forward a vectorizing technique based on the hyper loop paral-

lelism, which is revealed by the hyper loops. The hyper loops recover the loop structures

82

of the vectorizable loop and help vectorization to employ global SIMD lane-wise opti-

mization. We implemented our vectorizing technique in the Cetus source-to-source com-

piler to generate C code with SIMD intrinsics. The preliminary experimental results show

that our vectorizing technique can achieve significant speedups over the non-vectorized

code in our test cases.

In the next chapter, we are going to demonstrate how our proposed hyper loop par-

allelism based vectorizing compilation technique can be used to improve the memory

performance of applications on CUDA GPUs.

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

Chapter 5

Boost Memory Performance with HLP in

Vectorization for CUDA GPUs

5.1 Introduction

General Purpose Graphics Processing Units (GPGPUs), in particular, Nvidia CUDA

GPUs, are widely used in a variety of machines from super-computers to embedded

systems (e.g., Nvidia Tegra K1). The deep hierarchy of both execution model and mem-

ory organization makes manually writing high performance code for the CUDA GPU

error-prone and tedious. To reduce programming efforts, GPU manufacturers have put

forward low level programming models such as CUDA, OpenCL. Meanwhile, a long

standing research goal has been to automatically generate GPGPU code from either auto-

parallelization, compiler directive based languages (e.g. OpenMP [OpenMP, 2013], Ope-

nACC [OpenACC, 2011]) or domain-specific languages (e.g. Halide for image processing

[Ragan-Kelley et al., 2013]).

For parallel loops with data in an array of structures (AoS), directly mapping each

loop iteration to a GPU thread may expose non-unit stride data access. When the data

access pattern has unit stride, global memory accesses can be easily coalesced. However,

non-unit stride accesses have a great impact on the effective memory bandwidth. As

shown in Fig. 5-1, all strides except the unit greatly decrease the effective memory band-

width. Therefore, optimizing non-unit stride memory access is of great importance to the

performance of CUDA programs. One popular solution is to apply global data layout

85

0

5

10

15

20

25

30

35

40

45

0 4 8 12 16 20 24 28 32

Ef
fe

ct
iv

e
Ba

nd
w

id
th

(G
B/

s)

Stride (elements)

Effective Bandwidth vs. Stride for Single Precision

Jetson TK1 GTX 645

Figure 5-1: The performance impact of stride memory access on effective memory band-
width.

transformation to transform the data layout from an array of structures to a structure of

arrays, resulting in unit-stride data access. However, automatic global data layout is not

trivial due the complexity of whole program analysis as discussed in Chapter 3 [Xu and

Gregg, 2014b].

Non-unit stride data access is also an obstacle for efficient vectorization on CPUs.

Apart from optimization with data reorganization instructions, super-word level par-

allelism (SLP) vectorization [Larsen and Amarasinghe, 2000] [Liu et al., 2012] is often

used as an effective way to vectorize loops with data in AoS. However, to the best of

our knowledge, dealing with non-unit stride memory access in C-to-CUDA with SLP

vectorization has not been explored in either the research literature or in existing com-

pilers. In this chapter, we propose an improved SLP vectorization technique based on

hyper loop parallelism to deal with the non-unit stride data access in C-to-CUDA. Hyper

loop parallelism (HLP) vectorization is used to deal with semi-isomorphic sub-graphs of

data flow graphs of a vectorizable loop and has proven effective on the CPU in Chapter

4 [Xu and Gregg, 2014a]. In addition to optimizing non-unit stride access, HLP vectoriza-

tion can achieve thread coarsening, which is an important technique to reduce memory

86

operations to global memory by exploiting data locality. In this chapter, we argue that

efficient exploitation of hyper loop parallelism in vectorization can significantly improve

the memory performance on the CUDA GPU. Moreover, the abstraction of hyper loops

gives a way to further refine the mapping granularity between loop iterations and GPU

threads.

In this chapter, we put forward a compiler framework to efficiently exploit hyper

loop parallelism in vectorization to improve the memory performance on Nvidia CUDA

GPUs. Our approach consists of identification of hyper loop parallelism and efficient

mapping to the GPU. We present a scheme to map conventional SIMD operations to the

GPU. Based on this mapping scheme, we introduce a code generation technique to gener-

ate efficient CUDA code. Moreover, we examined three mapping strategies for offloading

vectorized code to the GPU. We implemented our technique on top of the Cetus source-

to-source compiler [Bae et al., 2013] [Lee and Eigenmann, 2010], which already contains

a basic code generation framework from C to CUDA. Though our work is based on C

to CUDA compilation, the core techniques are not specific to any programming mod-

els. Thus, our compilation technique can be used in other tools or programming models

to complement the existing mapping method. The experimental results demonstrate

that our vectorization technique based on hyper loop parallelism can yield performance

speedups up to 2.5 × compared to direct coarse-grain loop parallelism mapping.

87

5.2 Hyper Loop Parallelism in Vectorization

In this section, we first give a brief description of our proposed vectorization technique

based on hyper loop parallelism (HLP) for CPUs in Chapter 4, and then demonstrate how

HLP vectorization can be used to expose more coalesced memory accesses for CUDA

GPUs.

Same as Chapter 4, we take an important kernel, C-saxpy, in scientific computing as

the motivating example to present our proposed concept of hyper loop parallelism [Xu

and Gregg, 2014a] and how it helps tackle the memory performance issue due to the AoS

data layout for CUDA GPU. C-saxpy multiplies a complex vector by a constant complex

vector and adds it to another complex vector, as presented in Fig. 5-2. As the data is in

AoS layout, if the parallel loop in the kernel is directly mapped as a CUDA kernel, the

data layout leads to non-unit stride of 2 memory accesses to global memory as shown in

Fig. 5-3. The non-unit stride data access will have a great negative impact on the effective

memory bandwidth as depicted in Fig. 5-1.

1 float y[SIZE * 2], x[SIZE * 2], C[SIZE * 2];

2 for (int i = 0; i < SIZE; i++) {

3 y[2*i] += x[2*i] * C[2*i] - x[2*i+1] * C[2*i+1];

4 y[2*i+1] += x[2*i] * C[2*i+1] + x[2*i+1] * C[2*i];

5 }

Figure 5-2: C-Saxpy on the data organized in an array of structures (AoS).

1 float x[SIZE * 2], y[SIZE * 2], c[SIZE * 2];

2 __global__ void csaxpy_kernel0(float * c, float * x, float * y)

3 {

4 int i;

5 int _bid = (blockIdx.x+(blockIdx.y*gridDim.x));

6 int _gtid = (threadIdx.x+(_bid*blockDim.x));

7

8 if (i< SIZE) {

9 y[((2*i)+0)]=(y[((2*i)+0)]+((x[((2*i)+0)]*c[((2*i)+0)])

10 -(x[((2*i)+1)]*c[((2*i)+1)])));

11 y[((2*i)+1)]=(y[((2*i)+1)]+((x[((2*i)+0)]*c[((2*i)+1)])

12 +(x[((2*i)+1)]*c[((2*i)+0)])));

13 }

14 }

Figure 5-3: CUDA code for C-Saxpy generated by the Cetus compiler.

88

5.2.1 Hyper Loop Parallelism

The loop body of a vectorizable loop generally can be partitioned according to the

downwards-exposed definitions. With the downwards-exposed definitions as the slic-

ing criteria, we can use backward program slicing to derive a set of program slices. Each

slice represents a subset of statements of the loop. Without considering the control de-

pendence, a program slice within a loop body is essentially a sub-graph of the data

dependence graph of the loop body. As each slice is collected within the loop body, a

slice is a direct acyclic graph (DAG) G(V, E), where V is a set of nodes representing the

computation expressions within the slice, and E are the define-use relationships between

the nodes in V.

For the motivating example, as shown in Fig. 5-4, there are two slices after program

slicing. Without considering the relationships between the slices, we can treat each slice

as a loop with only one iteration. However, there exist specific relationships between

the slices. For C-saxpy, as the data is in AoS layout, each slice is for the computations

with respect to a structure component. Therefore, the relationships between the structure

components (aka. contiguous memory access) build the relationships among slices.

The relationships between slices (aka. contiguous downwards-exposed definitions)

can be is used to group slices into grouped slices, or grouped DAGs. We define a slice

group to be a hyper loop, where the number of hyper loop iterations is the same as the

number of slices in the group. As each slice is an independent partition of the loop

body, hyper loops are all parallel and potentially eligible for vectorization. We define the

parallelism exposed by the hyper loops is hyper loop parallelism.

89

5.2.2 Hyper Loop Parallelism in Vectorization

Similar to other vectorization frameworks, hyper loop parallelism (HLP) vectorization

consists of two phases, vectorization analysis and transformation.

Vectorization Analysis

Before HLP vectorization analysis, data dependence analysis is first applied to analyze

whether a given loop is vectorizable or not. Data-flow analysis is also used to collect the

downwards exposed definitions which are classified into ordinary definitions and reduction

definitions. The HLP vectorization analysis contains two steps, collect slices and group

slices. The results of these two steps are shown in Fig. 5-4 and Fig. 5-5, respectively.

x0 = x[2*i] C0 = C[2*i] x1 = x[2*i+1] C1 = C[2*i+1]

tmp0 = x0 * C0 tmp1= x1 * C1

tmp4= tmp0 – tmp1
y0 = y[2*i]

tmp6 = y0 + tmp4

y[2*i] = tmp6

x2 = x[2*i] C2 = C[2*i+1] x3 = x[2*i+1] C3 = C[2*i]

tmp2 = x0 * C0 tmp3= x1 * C1

tmp5= tmp2 + tmp3
y0 = y[2*i+1]

tmp7 = y0 + tmp5

y[2*i+1] = tmp7

Program Slice #0 from y[2*i] Program Slice #1 from y[2*i+1]

node #0 node #1

Figure 5-4: Identification of parallel hyper loop iterations with backward program slicing.
y[2*i] and y[2*i+1] are the slicing criteria. This is the same as HLP vectorization for
CPUs shown in Fig. 4-5.

Slice grouping works similar to the super-word level parallelism (SLP) vectorization

that tries to pack isomorphic instructions into groups for vectorization [Larsen and Ama-

rasinghe, 2000]. In contrast to the SLP vectorization, the grouping of slices starts from

contiguous memory stores that are the downwards exposed definitions, and packs iso-

morphic operations from different slices. Either fully grouping or partially grouping is

applied according to whether the computation structures of all the slices are the same or

not. For the motivating example, because the computations at the node #0 and node #1

in Fig. 5-4 are not isomorphic, only partially grouping is employed. As illustrated in Fig.

5-5, two kinds of actions extract and merge are annotated on some edges to depict how

the data flows between the connected nodes.

90

x0 = x[2*i]
x1 = x[2*i+1]

C0 = C[2*i]
C1 = C[2*i+1]

tmp0 = x0 * C0
tmp1 = x1 * C1

tmp4= tmp0 – tmp1

y0 = y[2*i] tmp6 = y0 + tmp4 y[2*i] = tmp6
y[2*i+1] = tmp7

x2 = x[2*i]
x3 = x[2*i+1]

C2 = C[2*i+1]
C3 = C[2*i]

tmp2 = x2 * C2
tmp3 = x3 * C3

tmp5= tmp2 + tmp3

y1 = y[2*i+1] tmp7 = y1 + tmp5

Extract(0) Extract(1) Extract(0) Extract(1)

Merge(0)

Slice #0 ! Slice #1 !

Merge(1)

#0 #1 #2

#3

#5 #6

#4

#7 #8

Figure 5-5: Group slices in hyper loop parallelism vectorization. This is the same as HLP
vectorization for CPUs shown in Fig. 4-6.

Vectorization Transformation

HLP vectorization transformation includes two phases before generating CUDA code,

expand grouped slices and global SIMD lane optimization.

Expand Grouped Slices Each grouped DAG is transformed into a vectorized DAG

with vector operations on virtual vectors with respect to a loop unrolling factor. The

width of the virtual vector of each node is decided by multiplying the loop unrolling

factor and the size of the node. For the CUDA GPU, we choose the warp size as the

width of the physical vector. In the expansion, SIMD lane descriptors are annotated to

describe the patterns of SIMD lanes for each node. SIMD lane descriptors are in the

format of id[start_position: size: stride], where id is the name of an array, a

pointer or a virtual vector, size is the number of lanes, stride is the lane pattern. For

the grouped DAG in Fig. 5-5, the vectorized DAG after expansion is shown in Fig. 5-6.

Global SIMD Lane Optimization The global SIMD lane-wise optimization tries to

optimize the allocation of SIMD lanes according to the changes of SIMD lanes between

nodes by inserting new nodes corresponding to any of the four SIMD lanes operations

— pack, unpack, merge and permute. The pack and unpack operations deal with the

changes of the vector size. The merge operation performs blending of two vectors with

91

vx0[0:64:1] = x[2*i:64:1] vC0[0:64:1]= C[2*i:64:1]

vtemp0[0:64:1] = vx0[0:64:1] * vC0[0:64:1]

vy0[0:64:1] = y[2*i: 64: 1]

vtmp5[0:64:1] = vy0[0:64:1] + vtmp4[0:64:1]

y[2*i:64:1] = vtmp5[0:64:1]

vx1[0:64:1] = x[2*i:64:1] vC2[0:64:1] = vC1[0:64:1]

vtmp2[0:64:1] = vx1[0:64:1] * vC2[0:64:1]

vtmp1[0:32:1] = vtmp0[0:64:2] – vtmp0[1:64:2]

vC1[0:64:1] = permute(C[2*i], 64, […])

vtmp3[0:32:1] = vtmp2[0:64:2] + vtmp2[1:64:2]

vtmp4[0:64:1] =Merge (vtmp1, vtmp3)

#1

Figure 5-6: Illustration of vectorization expansion with a loop unrolling factor 32. The
CUDA warp size is 32. Note the loop unrolling factor is different from the one used in
HLP vectorization for CPUs depicted in Fig. 4-9.

vx0[0:64:1] = x[2*i:64:1] vC0[0:64:1] = C[2*i:64:1]

vtemp0[0:64:1] = vx0[0:64:1] * vC0[0:64:1]

vy0[0:64:1] = y[2*i: 64: 1]

vtmp5[0:64:1] = vy0[0:64:1] + vtmp4[0:64:1]

y[2*i:64:1] = vtmp5[0:64:1]

vx1[0:64:1] = x[2*i:64:1] vC2[0:64:1] = vC1[0:64:1]

vtmp2[0:64:1] = vx1[0:64:1] * vC2[0:64:1]

vtmp1[0:64:2] = vtmp0[0:64:2] – vtmp7[0:64:2]

vC1 = permute(C[2*i], 64, […])

vtmp3[1:64:2] = vtmp6[1:64:2] + vtmp2[1:64:2]

vtmp4[0:64:1] =MergeEvenOddLanes (vtmp1, vtmp3)

Lane(0:64:1)

Lane(0:64:1)

Lane(0:64:2) Lane(1:64:2)

vtmp6 = SwapEvenOddLanes(vtmp2[0:64:2])

Lane(1:64:2) Lane(1:64:2)

Lane(0:64:1) Lane(0:64:1) Lane(0:64:1) Lane(0:64:1)

vtmp7 = SwapEvenOddLanes(vtmp0[1:64:2])
Lane(0:64:2)

Lane(0:64:1)

Lane(0:64:2)

#2 #3

#1

Figure 5-7: Global SIMD lane optimization. Note the length of SIMD vectors is different
from the one used in HLP vectorization for CPUs depicted in Fig. 4-10.

92

the given SIMD lane information. The permute operation handles the changes of ordering

of SIMD lanes between two vectors in the same size. The operations SwapEvenOddLanes

and MergeEvenOddLanes in Fig. 5-7 are concrete instances of the permute and merge,

respectively.

The global SIMD lane optimization consists of two passes, a top-down pass and a

bottom-up pass on the expanded DAGs. The top-down pass tries to adjust the widths

of virtual vectors and SIMD lane patterns according the memory loads in the leaf nodes.

For example, the node #1 in Fig. 5-6 has a destination vector vtmp3 with the SIMD lane

pattern of [0:32:1]. The top-down pass changes the SIMD lane pattern into [0:64:2]

according to the operand vtmp2[0:64:2] because both operands have strided SIMD lane

patterns.

On the other hand, the bottom-up pass propagates the SIMD lane information of the

root nodes to the leaf nodes and inserts the four SIMD lane operations accordingly. The

bottom-up pass, in particular, takes care of the join nodes represented by Merge. For

instance, after the top-down pass, the destination vectors vtmp1 and vtmp3 have the same

SIMD lane pattern of [0:64:2]. When comes to the merge node #1 in Fig. 5-7, according

to the relationships between hyper loop iterations and SIMD lanes, the optimization

will assign the even lanes to the vtmp1 while giving odd lanes to the vtmp3. Thus, the

desirable SIMD lane pattern [0:64:2] and [1:64:2] are propagated to the node #2 and

node #3, respectively. Guided by the desirable SIMD lane patterns, a SwapEvenOddLanes

operation is introduced to transform the SIMD lane pattern of vtmp2 from [0:64:2] to

[1:64:2] as the node #3.

93

5.3 Hyper Loop Parallelism on the CUDA GPU

In this section, we discuss how to map hyper loop parallelism in the form of SIMD

vectors and operations onto the CUDA GPU.

5.3.1 SIMD Vectors

Virtual SIMD vectors via thread local variables

It is intuitive that a thread local variable in a group can present a virtual SIMD vector.

According to the CUDA execution model, all GPU threads are divided into blocks, and

the threads in a block are executed in batch, that is, a warp with 16 or 32 GPU threads.

In this case, we have two options to decide the size of SIMD vectors, either the size of

a thread block or the size of a warp. Choosing the size of a warp as the vector size is

superior to the size of a thread block for two reasons:

1. threads in a warp can executed in lock-step without any explicit synchronization;

2. CUDA devices with computation capability of at least version 3.X support intrinsics

to perform data shuffling operations across the threads within in a warp.

In addition to the basic scalar types, CUDA has explicit SIMD vector types, for exam-

ple, float2, float4. These data types can help improve the memory efficiency by using

instructions such as LD.64 and LD.128 loading 8 and 16 bytes of data, respectively. When

using thread local variables in vector types, the size of the virtual SIMD vector increases

by a factor of the size of the vector type.

Explicit SIMD vectors via shared memory

In order to support both intra-vector and inter-vector SIMD operations across SIMD lanes

on the GPU, we also need explicit SIMD vectors in memory. Without shuffle intrinsics,

the only way to communicate across GPU threads is through the memory. According

to the CUDA memory hierarchy, it is beneficial to represent explicit SIMD vectors with

shared memory.

Explicit SIMD vectors via shared memory can be used to form super SIMD vectors

with the sizes that are multiples of a SIMD vector size. For example, if three explicit

94

SIMD vectors are allocated in shared memory contiguously, we can treat these three

SIMD vectors as a super SIMD vector with the same starting address as the first SIMD

vector. Super SIMD vector plays an important role in optimizing non-unit stride memory

access and exploiting data locality.

5.3.2 SIMD Operations

Arithmetic Operations

CUDA devices bundle several threads for execution. Each thread block is partitioned

into warps. The execution of warps is implemented by SIMD hardware. The execution

core of the processing units not only can perform 32-bit integer and single- and double-

precision floating-point arithmetic operations, but also has special function units (SFUs)

to compute single-precision approximations of log/exp, sin/cos, and rcp/rsqrt. It makes

sense to implement SIMD arithmetic operations performing on the SIMD vectors orga-

nized in warps. Due to the lack of SIMD execution units in each streaming core, each

SIMD operation on the data in SIMD types is decomposed into a sequence of scalar op-

erations. Therefore, the granularity of a CUDA thread is coarsened by the vectorization

when using SIMD data types.

Memory Operations

In this chapter, we only consider unit stride and non-unit stride memory operations.

Unit stride loads/store Each SIMD lane of a SIMD vector is mapped to a thread in a

warp. Thus, for a unit stride vector load/store, if it is aligned to 128-bytes, the memory

access to the global memory would be coalesced without extra overhead.

Non-unit stride load/store As shown in Fig. 5-1, non-unit stride loads and stores

lead to ineffective use of global memory bandwidth. Unlike CPUs, which support many

different data permutation instructions, GPUs have quite a limited data permutation

capability across GPU threads. Data permutation operations on the GPU usually have to

resort to other types of memory, such as shared memory and global memory, to exchange

data across threads with necessary synchronization.

In order to optimize non-unit stride loads and stores on GPU, we employ on-the-fly

95

data layout transformation with the virtual SIMD vectors in shared memory. Our pro-

posed on-the-fly data layout transformation works by first collecting a group of strided

loads or stores with spatial locality. For the non-unit stride loads, a sequence of unit-

stride vector loads with contiguous virtual SIMD vectors are generated to ensure all the

data to be accessed by each stride load in the group is cached in shared memory in the

form of virtual SIMD vectors. Then, the contiguous virtual SIMD vectors are converted

into a super SIMD vector. Finally, each original stride memory access to the global mem-

ory is transformed into a stride access to the super SIMD vector. The transformation

works similarly for the non-unit stride stores.

1 for (i=0; i<NUMPOINTS; i++){
2 results [i] = points1[i][0] * points2[i][0] +
3 points1[i][1] * points2[i][1] +
4 points1[i][2] * points2[i][2];
5 }

Figure 5-8: Vector dot operation.

For instance, the vector dot in Fig. 5-8 exhibits stride-3 data access. The result of on-

the-fly data reorganization through shared memory is presented in Fig. 5-9. Three stride

accesses to points1 in the global memory are transformed into three coalesced accesses

to global memory (line 3, 4, 5 in Fig. 5-9) and six stride accesses to the shared memory

(line 3, 5, 7, 12, 14, 16 in Fig. 5-9). Because the access stride 3 has no common factor with

the number of banks of shared memory (in this chapter, 32), there is no performance

degradation due to the bank conflicts. Another potential optimization technique to fur-

ther utilize the global memory bandwidth is to combine the first two coalesced accesses

into one access with the built-in vector type float2. However, the potential performance

gain by using vector types is rarely seen in experiments.

Data Reorganization Operations

In this section, we describe how to implement three widely used data reorganization

operations, intra-vector shuffle, inter-vector permutation and blend.

Intra-vector Shuffle The intra-vector shuffle operation takes a SIMD vector and a

mask vector as the input, and shuffles the data in the SIMD vector according to the mask

vector. There are two ways to implement the intra-vector shuffle operation on the GPU:

96

1 volatile shared float vregs 0[REG NUM *WARP NUM][32];
2 simd vptr points1 0=((((float *)(& points1[0][0]))+(bid*blockDim.x))+(warp id*(3*32)));
3 vregs 0[((warp id*3)+0)][lane id]= simd vptr points1 0[((0*32)+ lane id)];
4 vregs 0[((warp id*3)+1)][lane id]= simd vptr points1 0[((1*32)+ lane id)];
5 vregs 0[((warp id*3)+2)][lane id]= simd vptr points1 0[((2*32)+ lane id)];
6 vregs 0 ptr 0=(& vregs 0[((warp id*3)+0)][0]); /* Treat 3 vregs as a super−vreg. */
7 vregs 0 elem 0=vregs 0 ptr 0[((lane id*3)+0)]; /* Extract the vector element */
8 vregs 0 elem 1=vregs 0 ptr 0[((lane id*3)+1)]; /* Extract the vector element */
9 vregs 0 elem 2=vregs 0 ptr 0[((lane id*3)+2)]; /* Extract the vector element */

10 ...

Figure 5-9: Stride-3 data layout transformation via shared memory.

a software approach and a hardware approach.

A mask vector is required by the shuffle operation; thus, the first problem is how

to generate and represent the mask vector. There are two options to generate mask

vectors. For simple cases, such as the SwapEvenOddLanes operation, we can adopt runtime

generation at cost of control divergence due to the introduced if statements, as shown

in line 4 - 9 of Fig. 5-10. However, sometimes these if statements can be optimized by

predicated instructions. On the other hand, we can generate shuffle masks at compile-

time and store the masks in global memory. In this case, more complex data shuffling

patterns are possible because arbitrary shuffling masks can be generated and accessed

without any extra costs.

In order to ensure high performance, immediate results of computations are often

kept in thread-local variables rather than shared memory. When performing an intra-

vector shuffle operation, all the values participating in the shuffle operation need to

be copied into an explicit virtual SIMD register in shared memory. With the data in

the virtual SIMD register, the data shuffling operation across threads within a warp is

equivalent to random data access to shared memory.

The disadvantage of the earlier software approach through an explicit virtual SIMD

register in shared memory is the cost of extra memory accesses to the shared memory.

For devices with compute capability of at least 3.0, CUDA introduces a set of __shfl()

intrinsics to permit exchanging of variables between threads within a warp without use

of shared memory [NVIDIA, 2014]. The exchange occurs simultaneously for all active

threads within the warp, moving 4 bytes of data per thread.

There are four shuffle instructions available for different purposes - __shfl(), __-

shfl_up() , __shfl_down() and __shfl_xor(). For the SwapEvenOddLanes operation,

97

1 const int idx = threadIdx.x; // local thread id

2 const unsigned int lane = idx % 32; // lane id

3 const unsigned int warp_id = idx / 32; // warp id

4 if (((_lane_id%2)==0)){ // compute the shuffle masks

5 perm_mask_0=(_lane_id+1);

6 }

7 else{

8 perm_mask_0=(_lane_id-1);

9 }

10 // intra-vector shuffle

11 __simd_swap_even_odd_lanes_0=vregs_0[_warp_id][perm_mask_0];

Figure 5-10: Runtime generation of masks for intra-vector shuffle operations.

we can use the __shfl_xor(input, 0x1, 2), which partitions the SIMD lanes into sub-

groups with the size of 2 and gives the source lane ID by a bitwise XOR.

Inter-vector Permutation The Inter-vector permutation operation usually requires

two vectors as the source vectors and a mask vector to specify the permutation pat-

tern. Our solution to the inter-vector permutation operation is similar to the software

approach of the intra-vector shuffle operation, which is achieved via shared memory.

For inter-vector permutation, we combine all the participating explicit virtual SIMD reg-

isters into a super-vector, and then replace the inter-vector permutation operation with an

arbitrary memory access to the super-vector according the permutation mask computed

either at runtime or at compile-time and stored in global memory.

Blend The blend operation takes two vectors and a mask vector as the input, and se-

lects a value for each element of the destination vector from either input vector according

to the condition indicated by the mask vector. A simple solution to convert a blend oper-

ation into a conditional assignment statement, which would be optimized by predicated

instructions. Another solution is to convert the two input vectors into a super-vector in

shared memory similar to the inter-vector permutation operation, and replace the blend

operation with a memory gather operation from the super-vector.

5.3.3 Mapping Execution Model

In this section, we present three strategies of mapping SIMD lanes to GPU threads, direct

mapping, flatten mapping and nested SIMD mapping, as shown in Fig. 5-11.

98

!
!
� [0:64:1]�

!
!
�

!
!
�

(a) direct mapping�

warp size (32)�

warp ��

!
!
�

!
!
�

(b) flatten mapping�

warp �� warp 1�

!
!
� [0:64:1]�

!
!
�

(c) nested SIMD mapping with float2�

group size (2)�

[0:32:1]�

Figure 5-11: Mapping SIMD lanes representing hyper loop parallelism to GPU threads.

Direct Mapping

When a hyper loop is identified and the hyper loop parallelism is expressed as SIMD

operations on SIMD vectors, it is intuitive to directly map each SIMD operation to a GPU

thread as discussed in Sec. 5.3.2. However, the width of SIMD lanes after our global

SIMD lane optimization may differ from the width of SIMD units (the warp size). Given

that we treat a warp of GPU threads as a SIMD computation unit, when mapping SIMD

operations with larger width than the warp size, we can partition the SIMD operations

into several SIMD operations with width equal to the warp size. We call this mapping

strategy as direct mapping.

For instance, as shown in Fig. 5-11 (a), the SIMD operation to be mapped has a

SIMD lane descriptor [0:64:1], indicating the width of this SIMD operation is twice larger

than the warp size. Therefore, execution of this SIMD operation requires two warps of

threads. In direct mapping, the SIMD operation is partitioned into two SIMD operations,

and both of them are scheduled in the same warp and executed one after another.

Flatten Mapping

In contrast to direct mapping, another way of dealing with the SIMD operation with size

larger than the warp size is to partition the SIMD operation into small SIMD operations

99

and spread the resulting SIMD operations into different warps of GPU threads. As shown

in Fig. 5-11 (b), the SIMD operation with a SIMD lane descriptor [0:64:1] is split into two

SIMD operations with the SIMD lane descriptor [0:32:1]. We call this mapping strategy

flatten mapping.

It is not always possible to apply flatten mapping due to the across SIMD lane opera-

tion. We consider the flatten mapping to be legal only when the following two conditions

are satisfied:

1. the number of SIMD lanes of every node after global SIMD optimization is the

same, and this number is a multiple of the warp size;

2. all the data shuffling operations in the nodes are qualified to be split into several

data shuffling operations, and these operations only perform data permutation on

SIMD vectors of which the size is the same as the warp size.

The second condition is to ensure that no matter which kind of across SIMD lane op-

eration it is, the GPU threads engaged are never distributed into two different warps.

Because there is no efficient way to reorganize data across warps except through shared

memory with explicit synchronization, as discussed in Sec. 5.3.2,

Nested SIMD Mapping

Both direct and flatten mapping may introduce data reorganization across GPU threads

within a warp. Even with the CUDA 3.0 hardware support for data shuffling within a

warp without explicit shared memory access, the cost may be prohibitive. Using hyper

loops to represent the inner-loop computation structure, the data reorganization in fact

occurs only among the hyper loop iterations or within a hyper loop iteration when nested

SIMD parallelism is discovered. Therefore, one way to get rid of the data shuffling

operations across threads within a warp is to enlarge the the mapping granularity from

a hyper loop iteration to a hyper loop. As shown in Fig.5-11(c), each hyper loop instance

with two hyper loop iterations is scheduled to a GPU thread. Because the main purpose

of hyper loops is to expose an extra degree of parallelism for SIMD, we call this mapping

strategy nested SIMD mapping.

100

Representing inner-loop computation structure as hyper loops could logically achieve

AoS to SoA data layout transformation for the loops with data in AoS. When choosing

the hyper loop as a schedule unit, it is of great importance to preserve the contiguous

memory access exposed by hyper loops, because contiguous accesses to global memory

could be coalesced. In order to achieve contiguous memory access within a schedule

unit, we need to use vectorized loads and stores through the CUDA vector types.

5.4 Implementation

Our hyper loop parallelism vectorization for GPU is built on top of the Cetus source-to-

source C compiler. The Cetus compiler is capable of auto-parallelization of C programs

and generates C programs with OpenMP and Cetus directives [Lee and Eigenmann,

2010]. The overall compilation flow of hyper loop parallelism vectorization for the GPU

is illustrated in Fig. 5-12.

Cetus
Parser

Loop
Parallelization

HLP-Vect
Analysis

OpenMP
Generation

OpenMP
Analysis

Kernel
Splitter

Stream
Optimizer

O2G
Translator

input C
program

CUDA
Optimizer

HLP-Vect
Transformation

Output CUDA
program

Figure 5-12: The overall compilation flow of hyper loop parallelism vectorization for the
CUDA GPU. The compiler passes in the dotted boxes are what we introduce to the Cetus
compiler.

Our hyper loop parallelism vectorization analysis follows directly after loop paral-

lelization, which identifies the parallel loop nests and annotates the parallel loops with

Cetus internal directives. These parallel loop nests are the candidates to become GPU

kernels if the performance prediction model determines that annotation with OpenMP

directives is likely to be profitable. The HLP vectorization transformation is applied dur-

101

ing the kernel splitter phase, where code generation for CUDA takes place. A kernel

function call is generated and its execution configuration is decided as well. The execu-

tion configuration decides how many explicit virtual SIMD vectors via shared memory

are required.

5.5 Performance Evaluation

5.5.1 Experiment Setup

Platforms

We evaluated our hyper loop parallelism vectorization for CUDA GPU on the following

two platforms.

Jetson TK1 is a fully-featured embedded system designed for development of em-

bedded and mobile applications. Jetson K1 incorporates a Tegra K1 that has a Kepler

GPU with 192 CUDA cores, an Nvidia 4-plus-1 quad-core ARM Cortex-A15 CPU. The

significant difference between Tegra K1 and other desktop GPUs is that the memory on

Tegra K1 is physically unified but with separate CPU and GPU caches.

GeForce GTX 645 is a desktop GPU with the architecture of Kepler GK106. It sup-

ports computation capability 3.0 and has 576 CUDA cores and 1024MB GDDR5 memory.

5.5.2 Test-cases

We chose a range of parallel loops featuring both unit and non-unit strides as listed in

Table 5.1 to demonstrate the performance of our proposed technique. For non-unit stride

tests, we consider two representative strides: 2 and 3. For other strides, our technique

can work similarly. .

5.5.3 Performance Evaluation and Analysis

We compare the performance of HLP vectorization for CUDA GPU against the direct

coarse-grain loop parallelism mapping. When generating the CUDA code for a parallel

loop nest, the most common mapping strategy adopted is to directly map a loop iteration

102

Table 5.1: Test-cases with three representative data access strides: 1, 2 and 3.

Stride Test-case Description

1
Array Copy Copy 1D array.
1D Dot Dot operation on 1D vec-

tors.
Blur Blur in image processing

on an 1D linearized array.
2 C-Saxpy Complex vector operation.

3

Vec-Copy
Basic operations on
3D vectors in AoS in
image processing

Vec-Dot
Vec-
Crossproduct
Vec-Rotation
Vec-
Normalization

to a CUDA thread. The baseline CUDA code for performance comparison is generated

by OpenMPC [Lee and Eigenmann, 2010] with the direct coarse-grain loop parallelism

mapping.

Unit Stride Tests

0

0.2

0.4

0.6

0.8

1

1.2

Array Copy 1D Dot Blur Sp
ee

du
ps

 O
ve

r
th

e
D

ir
ec

t C
oa

rs
e-

G
ra

in

L
oo

p
Pa

ra
lle

lis
m

 M
ap

pi
ng

Direct Coarse-Grain Loop Parallelism Mapping HLP-Vect + float1

HLP-Vect + float2 HLP-Vect + float4

Figure 5-13: The performance of loops with unit-stride data access on Jetson TK1. The
CUDA block size is 128.

Array copy is a trivial test-case to demonstrate whether our nested SIMD mapping

could yield any performance improvement. As shown in Fig. 5-14, vectorized loads/s-

103

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Array Copy 1D Dot Blur Sp
ee

du
ps

 O
ve

r
th

e
D

ir
ec

t C
oa

rs
e-

G
ra

in

L
oo

p
Pa

ra
lle

lis
m

 M
ap

pi
ng

Direct Coarse-Grain Loop Parallelism Mapping HLP-Vect + float1

HLP-Vect + float2 HLP-Vect + float4

Figure 5-14: The performance of loops with unit-stride data access on GeForce GTX 645.
The CUDA block size is 128.

tores using CUDA built-in vector type float2/float4 would not give any performance

gain on the Jetson TK1 platform while a speedup of up to 1.1 × on GeForce GTX 645.

We suspect that the vectorized loads and stores are not well supported on the Jetson TK1

platform.

Although performing only vectorized loads and stores improves performance on

GeForce GTX 645, when computation is involved, the performance gain is reduced by the

long latency of the vectorized load instructions. For example, LD.E.64 can load 2 floats

into two registers, and all the instructions using these two registers explicitly have to wait

until the load is finished. The 1D dot has no other computations to overlap the memory

latency; thus, regardless of the kind of mapping, the performance stays the same.

Compared to 1D dot, which has no temporal locality, blur has lots because of the

stencil computation. Temporal locality is often exploited to handle unaligned vectorized

memory operations in vectorization for CPUs [Eichenberger et al., 2004]. Similarly, we

could exploit temporal locality to optimize memory access to global memory. When the

nested SIMD mapping is applied, a group of threads that share some data are squeezed

into a single thread. If there is shared data between the threads being coarsened, coars-

ening them will reduce the number of memory operations to global memory. As shown

in Fig. 5-14, nested SIMD mapping improves the performance of blur by 1.4×.

104

Non-unit Stride Tests

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

GTX645 Jetson-TK1

Sp
ee

du
ps

 o
ve

r
th

e
D

ir
ec

t C
oa

rs
e-

G
ra

in
 L

oo
p

Pa
ra

lle
lis

m
 M

ap
pi

ng
 Direct Coarse-Grain

Loop Parallelism
Mapping
HLP-Vect +
FlatExecution

HLP-Vect

HLP-Vect + CUDA
Shuffle

HLP-Vect + Float2

HLP-Vect + Float4

Figure 5-15: The performance of C-Saxpy on Jetson K1 and GeForce 645. The CUDA
block size is 128.

Stride 2 - C-saxpy C-saxpy is a good candidate to evaluate different execution map-

ping strategies on the CUDA GPU. As shown in Fig. 5-15, all the mapping strategies

proposed in this chapter yield better performance, when compared to the direct coarse-

grain loop parallelism mapping, which is common in existing compilers with semi-/fully

automatic code generation for CUDA. Speedups up to 1.7× are obtained from HLP vec-

torization. The major performance contribution comes from the global memory load

efficiency that is boosted from 50% to 100%. The performance difference between the

flatten mapping and direct mapping demonstrates that instruction level parallelism is

important for performance as well. The flatten mapping splits the SIMD operations with

width 64 into two short operations with width 32, and maps the resulting operations

onto two warps. Consequently, the ILP in each warp is reduced.

We are surprised to see that the hardware data shuffle degrades the performance of

HLP vectorization on GeForce GTX 645. Exchanging data via explicit shared memory

causes two extra memory operations to shared memory, but the compiler could sched-

ule these instructions and make them pipelined. On the other hand, the single shuffle

instruction may be a barrier to instruction scheduling.

Similar to the 1D dot, nested SIMD mapping does not give extra performance gain for

105

the csaxpy over the direct mapping. The nested SIMD mapping with float2 and float4

coarsens the thread granularity of the direct mapping by a factor of 2 and 4, respectively.

The thread coarsening reduces the overall number of threads. But the coalesced global

memory access via vectorized loads and stores and the extra ILP by threading coarsening

make the performance on a par with the direct mapping. However, casxpy is a memory

bounded kernel so that the performance difference between float2 and float4 is slight.

0

0.5

1

1.5

2

2.5

Vector Copy Vector Dot Vector
Crossproduct

Vector Rotation Vector
Normalization

Sp
ee

du
ps

O
ve

rt
he

D
ir

ec
t

C
oa

rs
e-

G
ra

in

L
oo

p
Pa

ra
lle

lis
m

 M
ap

pi
ng

Direct Coarse-Grain Loop Parallelism Mapping HLP-Vectorization

Figure 5-16: The performance of kernels with stride-3 data access on Jetson TK1. The
CUDA block size is 128.

Stride 3 As shown in Fig. 5-16 and Fig. 5-17, HLP vectorization can achieve significant

speedups for the stride-3 test-cases on both platforms. The profiling data obtained by the

nvprof in the CUDA toolkit shows that the global memory load efficiency is improved

to 100% from 33.3%. For Vector Copy, all the stride memory accesses to global memory

from the direct mapping are coalesced thanks to the hyper loop structure. Other stride-3

test-cases require on-the-fly data layout transformation via shared memory for load and

store operations. The great speedups achieved — up to a factor of 2.5 — demonstrate

that HLP vectorization can be an effective way to improve the memory performance on

the CUDA GPU.

106

0

0.5

1

1.5

2

2.5

3

Vector Copy Vector Dot Vector
Crossproduct

Vector Rotation Vector
Normalization

Sp
ee

du
ps

O
ve

rt
he

D
ir

ec
t

C
oa

rs
e-

G
ra

in

L
oo

p
Pa

ra
lle

lis
m

 M
ap

pi
ng

Direct Coarse-Grain Loop Parallelism Mapping HLP-Vectorization

Figure 5-17: The performance of kernels with stride-3 data access on GeForce GTX 645.
The CUDA block size is 128.

5.6 Related Work

There is extensive work on optimizing memory performance for the GPGPUs. For exam-

ple, Jang et al. introduced vectorization via data transformation to benefit vector-based

GPU architectures (e.g. AMD GPUs) and algorithmic memory selection for scalar-based

GPU architectures (e.g. Nvidia GPUs) [Jang et al., 2011a]. Che et al. proposes a simple

API to allow programmers to optimize memory mappings to improve the efficiency of

memory accesses on heterogeneous platforms [Che et al., 2011]. In Chapter 3, we intro-

duced a set of compiler directives to help the programmer to apply global data layout

transformations for better vectorization. Instead of global data layout transformations,

our proposed technique optimizes the memory performance by exploiting the computa-

tion structures of the vectorizable loops and applying on-the-fly data layout transforma-

tion.

Employing vectorization for the GPU is not a new idea. Kerr et al. put forward a dy-

namic compiler to compile explicitly data-parallel kernels for SIMD functional units [Kerr

et al., 2012] . In contrast, our work focuses on how to exploit SIMD parallelism when

107

automatically extracting data-parallel kernels and addressing the problem of non-unit

stride memory access with our vectorization technique.

Automatic code generation from high-level languages to CUDA has been studied

since CUDA was put forward. One pioneering approach is hiCUDA [Han and Abdel-

rahman, 2009], a high-level directive-based language for CUDA. Other directive based

programming method for heterogeneous devices have evolved into programming stan-

dards, such as OpenMP 4.0 [OpenMP, 2013] and OpenACC [OpenACC, 2011]. Since

these standards have been established, many attempts have been made to explore and

evaluate the ways of mapping coarse-grain loop parallelism to the heterogeneous de-

vices, including both the commercial compilers, such as PGI OpenACC compiler, and

open-source compilers such as OpenARC [Lee and Eigenmann, 2010], OpenUH-ACC

[Tian et al., 2014].

However, existing compiler work for directive based programming methods concen-

trates only on how to map the execution model of the programming model to the devices.

For example, Tian et al. demonstrated their way of mapping the gang, worker, vector ex-

ecution model of OpenACC to the CUDA execution model [Tian et al., 2014]. Even with

explicit annotations for SIMD parallelism, the compiler is not able to employ suitable

vectorization and efficiently map the vectorized code to the heterogeneous devices. To

the best of our knowledge, our work is the first work on employing a variant of super-

word level parallelism vectorization [Larsen and Amarasinghe, 2000] [Liu et al., 2012]

[Tenllado et al., 2005], HLP vectorization, in automatic C-to-CUDA.

108

5.7 Summary

In this chapter, we put forward a compiler framework to extract hyper loop parallelism

in vectorization and map the parallelism efficiently on the CUDA GPU. Our method

achieves thread coarsening, which can reduce memory operations in the presence of data

locality, and optimizes uncoalesced memory access to global memory. In addition, the

introduction of hyper loop parallelism further refines the mapping granularity between

coarse-grain loop parallelism and GPU threads. Our vectorization techniques are general,

and could be be adopted in existing directive based programming models for GPUs to

improve the memory performance. Our experimental evaluation demonstrates that our

proposed approach can deliver speedups of up to 2.5× compared to the direct coarse-

grain loop parallelism mapping.

109

THIS PAGE INTENTIONALLY LEFT BLANK

110

Chapter 6

Loop Vectorization for Nested

Thread-level Parallelism on CUDA

GPUs

6.1 Introduction

General-purpose graphics processing units (GPGPUs) have been widely adopted to accel-

erate data parallel applications in across a range of problems from embedded computing

to supercomputing. GPUs are particularly effective for nested loops that operate on ar-

rays of data. Indeed Nvidia CUDA model of parallelism is specifically aimed at nested

loops which may contain massive data parallelism in the outer, middle, and/or inner

loops. Such nested loops that expose thread-level parallelism at different levels of the

loop nest are common in array-oriented applications. We refer to this kind of parallelism

as nested thread-level parallelism (TLP).

Nested TLP revealed by nested parallel loops is pervasive in real applications. For

example, 75% (14 out of 19) of the applications in the Rodinia benchmark for heteroge-

neous accelerators contain kernels with nested TLP. It is easy to spawn worker threads

for nested TLP on CPU. In contrast, nested TLP contained in parallel programs puts an

extra burden on the orchestration of GPU threads. As execution configuration is fixed

when a GPU kernel starts, it is prohibitive to spawn new GPU threads for nested TLP

despite the support for dynamic parallelism on the latest CUDA devices [Yang and Zhou,

111

2014].

Mapping nested TLP to the model of parallelism offered by the GPU is not always

simple. CUDA GPUs offer a multi-level hierarchy of thread-level parallelism, which

suits nested loops with simple patterns parallelism and data access very well. When

converting a parallel loop nest to a GPU kernel, it is common practice to directly map

the closely nested parallel loops to the GPU execution model. For Nvidia CUDA GPUs,

GPU threads are partitioned into thread blocks, and threads within a thread block can be

organized in up to three dimensions – x, y and z. Thread blocks make up a grid, and can

also be managed in up to three dimensions. In many cases it is possible to simply map

the parallel loop nest directly to this hierarchy of parallel thread blocks and threads, as

shown in Fig. 6-1.

for (tile_j = 0; tile_j < num_j_tiles; tile_j++) {
for (tile_i = 0; tile_i < num_i_tiles; tile_i++) {

for (thread_j = 0; thread_j < num_threads_per_block_j; thread_j++) {
for (thread_i = 0; thread_i < num_threads_per_block_i; thread_i++) {

computation per thread;
}

}
}

}

Blocks

Threads per Block

Figure 6-1: Naive mapping from parallel loop nest to the CUDA execution model.

However, there also exists a large class of nested parallel loops where it is less clear

how the levels of the loop nest should be mapped to levels of the CUDA GPU paral-

lelism hierarchy. For array-oriented nested loops, we consider three main categories of

problems:

∙ Some loops in the nest may contain data dependences, which limit or prohibit

parallelism. Thus, the loop nest may contain both parallel loops and loops than

cannot be parallelized.

∙ Perfectly-nested loops consist of a simple hierarchy with exactly one loop nested

inside the next. In contrast, imperfectly-nested loops may contain multiple loops

within a single level of the loop hierarchy, or may contain a mixture of loops and

112

sequential statements at the same level of loop nest. Imperfectly-nested loops at

the same level of the loop hierarchy may have quite different parallel processing

requirements.

∙ Some loops within the nest may contain non-sequential or strided data access pat-

terns. As we demonstrate in Fig. 5-1 in Chapter 5, GPUs benefit significantly from

locality of data access. Even if the original loop nest maps perfectly to the GPU hi-

erarchy of parallelism, the resulting data access patterns may exhibit poor locality.

Loop nests with these properties can be difficult to map to CUDA GPU’s simple

hierarchy of parallelism. As a result of these problems, researchers have developed tech-

niques to break the link between the loop hierarchy and CUDA execution hierarchy.

For example, Yang and Zhou proposed automatic compiler transformations that attempt

to introduce a master-slave execution model for GPUs by restructuring the hierarchy

of GPU threads [Yang and Zhou, 2014]. These techniques can achieve good speedups,

particularly on loop nests with data dependences. However, in our own experiments

we have found some shortcomings with these approaches, particularly for imperfectly

nested loops, which we describe in more detail in Section 6.4.2.

In this chapter, we argue that the problem of mapping these difficult kinds of nested

TLP to GPUs can be solved by adapting traditional loop vectorization techniques de-

signed for CPUs with short vectors. We propose a novel model of nested vector paral-

lelism, and show how it can be used to break the link between loop nest and the CUDA

execution hierarchy. In addition, vectorization techniques are strongly-focused on con-

tiguous data access patterns, which in turn improves memory performance. To this end,

we first represent the nested TLP mapping problem as a loop vectorization problem. We

then introduce a thread-reuse execution model to support nested TLP on CUDA GPUs.

With this execution model, we present an automatic loop vectorization technique for

nested TLP that generates CUDA code from C code with pragmas. We implemented our

proposed vectorization approach for nested TLP in the Cetus source-to-source compiler

and compared the performance against both Yang and Zhou’s method and an industrial

compiler.

113

6.2 Loop Vectorization for Nested TLP on GPUs

6.2.1 Motivation

When the execution configuration of GPU threads is given for a GPU kernel, regardless

of the sources of loop parallelism exposed by the kernels, all the loop parallelism is

eventually handled by the same set of threads spawned at the start of execution. Mapping

the nested TLP contained in parallel loops to GPU threads is a problem of finding a set of threads

and deriving an efficient mapping strategy for nested TLP. In this chapter, we mainly focus

on nested TLP exposed by nested parallel loops. Other forms of nested TLP such as

coarse-grain task parallelism are beyond the scope of our work.

1 #pragma acc parallel loop private(i, j)

2 for (i=0; i<SIZE; i++){

3 float sum = 0.0f;

4 #pragma acc loop vector(32, full, outer-vect) reduction(+:sum)

5 for (j = 0; j < SIZE; j++){

6 sum += M[j][i] * V[j];

7 }

8 C[i] = sum;

9 }

Figure 6-2: The parallel loop annotated with OpenACC pragmas for the transposed
matrix vector multiplication (TMV). Note that the vector clause in the example is our
language extension for nested TLP (discussed in Sec. 6.3.1).

An efficient mapping strategy for nested TLP needs take the GPU memory hierarchy

into account. On CUDA GPUs, contiguous memory access to global memory can be coa-

lesced which in turn greatly improves performance. Therefore, we need make a decision

on which level of loop should be mapped to the consecutive GPU threads for the sake of

contiguous memory access. For example, transposed matrix vector multiplication in Fig.

6-2 has an imperfectly nested loop. The outer i-loop is embarrassingly parallel while the

inner j-loop is parallel with a reduction of addition on the scalar sum. The mapping strat-

egy depends on whether we would like to make the access to array M and C contiguous,

or array V across consecutive GPU threads.

As discussed in Section 2.3 in Chapter 2, the SIMT execution model of GPUs is a more

flexible form of SIMD on CPUs. Therefore, mapping each iteration of a single-level par-

allel loop representing a kernel to a GPU thread is equivalent to vectorizing the parallel

114

loop for an architecture with vector size equal to the number of GPU threads required

by the kernel. This simple SIMD vector abstraction of the GPU execution model suits

vectorized loops from outer-loop vectorization for a loop nest and inner-loop vectoriza-

tion on a single-level parallel loop. As each GPU thread has its own data context for

execution, explicit SIMD vector registers are not required.

Note that CUDA supports vector types, such as float2, float4. Arithmetic opera-

tions on these vector types are decomposed into a sequence of scalar operations due to

the lack of SIMD execution units in each SP. In addition, the execution model support for

control flow on GPUs simplifies loop vectorization by eliminating the need to vectorize

control flow with predication [Shin, 2007].

6.2.2 New SIMD vector abstraction of GPU execution model

The simple SIMD vector abstraction mentioned above becomes problematic when dealing

with multi-level parallel loops. For example, for a loop nest has two levels of parallel

loops, if we map the outer parallel loop to GPU threads with SIMD vector abstraction,

it would be a problem when we want to use SIMD vector abstraction to map the inner

parallel loop to GPU threads. Because there will not be any vectors formed by GPU

threads available for the vectorized inner loop. In other words, all the GPU threads are

occupied by the outer parallel loop. To solve this problem, we abstract GPU threads

as hierarchical segmented vectors by taking the execution hierarchy of GPU thread into

account. Figure 6-3 shows the hierarchy of segmented vectors. Short SIMD vectors with

varying sizes are formed by the GPU threads in a thread block, and a SIMD vector pool

represents a thread block.

The SIMD vectors in the vector pool of our hierarchical segmented vectors represent a

set of GPU threads in a thread block. The number of GPU threads in this set can change

dynamically according to the amount of nested TLP. In other words, when nested TLP

requires a set of GPU threads for execution, a SIMD vector representing the same number

of GPU threads can be dynamically formed. As these GPU threads are occupied by the

outer-most parallel loop(s), in order to form a SIMD vector, all the required GPU threads

have to be reclaimed from the outer-most parallel loop.

With our new SIMD vector abstraction of the GPU execution model, mapping nested

115

GPU Threads in SIMT

warps

SIMD vectors with size =4
SIMD vectors with size =2

SIMD vectors with size =8

SIMD vector with size =16

SIMD vector pools

thread block thread block

Figure 6-3: Our proposed hierarchical segmented vectors for CUDA GPUs (warp size is
4 and thread block size is 8).

TLP is equivalent to vectorizing the nested loop with SIMD vectors of size VF. In the

following sections, we use dominant parallel loop to refer to the outer parallel loop, of

which the iterations are mapped to the GPU threads aligned along the x dimension of

the thread block. For instance, the i-loop in Fig. 6-2 is a dominant parallel loop. We call

the parallel loop expressing nested TLP a target loop. The j-loop in Fig. 6-2 is a target

loop exposing nested TLP.

6.2.3 Thread-Reuse Execution Model

Consider a loop nest composed of a dominant parallel loop and a target loop, if we

ignore any nested TLP, the target loop is a serial loop. The thread on which an iteration

of the dominant parallel loop is running is in charge of executing the serial target loop, as

shown in Fig. 6-4(a). When considering nested TLP, if the target loop can be vectorized by

either outer-loop or inner-loop vectorization, SIMD vectors are required by the execution

of vectorized target loop. Therefore, we need find a set of GPU threads in order to form

SIMD vectors in our proposed hierarchical segmented vectors. As all GPU threads are

spawned and fixed at the start of kernel execution, we need an execution model in which

SIMD vectors can be easily created.

116

Review of existing execution models for nested TLP

If vectorization factor VF is the thread block size for the dominant parallel loop, one

possible execution model for nested TLP is to use only one thread in each thread block

to execute the dominant parallel loop, and keep other threads inactive. All the threads in

a thread block will become active when they meet the target loop. This inter-TB master-

slave execution model is depicted in Fig. 6-4(b).

If VF is smaller than the thread block size (TB), another choice is to use (TB/VF)

threads in each thread block to execute the dominant parallel loop. As a result, the

target loop can get VF threads in each thread block as shown in Fig. 6-4(c). We call this

model intra-TB master-slave. This model is quite similar to the model adopted in the Yang

and Zhou’s method, where they treat the GPU threads aligned along one dimension

as master threads, and the ones aligned along another dimension as slave threads in

multi-dimensional thread blocks [Yang and Zhou, 2014].

117

GPU Threads

(a) execution model without nested TLP.

Ex
ec
ut
io
n
tim

e 0

1

2

3

4

Thread Block 0 Thread Block 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration of i-loop Iteration of j-loop

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

GPU Threads

(c) intra-TB master-slave model (multi-dimensional)

Ex
ec
ut
io
n
tim

e 0

4

Thread Block 0 Thread Block 1

1 2 3 0

4

1 2 3 0

4

1 2 3 0

4

1 2 3

0 1 2 3

Iteration of i-loop Iteration of j-loop

j-loop j-loop j-loop j-loop

(d) thread-reuse execution model

Ex
ec
ut
io
n
tim

e

Thread Block 0 Thread Block 1

Iteration of i-loop Iteration of j-loop

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

i-l
oo

p

j-loop

GPU Threads

GPU Threads

(b) inter-TB master-slave model.

Ex
ec
ut
io
n
tim

e 0

Thread Block 0 Thread Block 1

1 2 3 4 0 1 2 3 4

0

Iteration of i-loop Iteration of j-loop

1

1

2

3

4

Execute in parallel

Each iteration of i-loop is
mapped to a GPU thread;
all the iterations of j-loop in
the same iteration of i-loop
are executed by a single
GPU thread sequentially.

Each iteration of i-loop is
mapped to a GPU thread
block and executed by a
single thread in the thread
block; all the iterations of j-
loop in the same iteration of
i-loop are executed by the
GPU threads in a thread
block in parallel.

Each iteration of i-loop is
mapped to a GPU thread
aligned along one
dimension (e.g.,
threadIdx.x); all the
iterations of j-loop in the
same iteration of i-loop are
executed by the GPU
threads aligned along
another dimension (e.g.,
threadIdx.y).

Each iteration of i-loop is
mapped to a GPU thread;
all the iterations of j-loop
in the same iteration of i-
loop are executed by the
GPU threads reclaimed
from i-loop in parallel. The
GPU threads used by every
8 iterations of i-loop form a
SIMD vector with size 8.

#pragma acc parallel for
for (i = 0 ; i < i_bound; i++){

computation 1;
// illegal to put our proposed vector directive around j-loop

for (j = 0; j < j_bound; j++){
computation 2;
for (k = 0; k < k_bound; k++){

for (m = 0; m < m_bound; m++){
computation 3;

}
}
for (h = 0; h < h_bound; h++){

computation 4;
}

}
}
#pragma acc parallel for
for (i = 0 ; i < i_bound; i++){

computation 1;
// illegal to put our proposed vector directive around j-loop

for (j = 0; j < j_bound; j++){
computation 2;

#pragma acc loop vector (32, partial, inner-vect)
// only for vectorization analysis
for (i = 0 ; i < i_bound; i++){

for (k = 0; k < k_bound; k++){
computation 3;

}
}

#pragma acc loop vector (32, partial, outer-vect)
// only for vectorization analysis
for (i = 0 ; i < i_bound; i++){

for (h = 0; h < h_bound; h++){
computation 4;

}
}

}
}

Vectorization analysis

Computation region 0

Computation region 1

(a) Execution model without nested TLP.

GPU Threads

(a) execution model without nested TLP.

Ex
ec
ut
io
n
tim

e 0

1

2

3

4

Thread Block 0 Thread Block 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration of i-loop Iteration of j-loop

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

GPU Threads

(c) intra-TB master-slave model (multi-dimensional)

Ex
ec
ut
io
n
tim

e 0

4

Thread Block 0 Thread Block 1

1 2 3 0

4

1 2 3 0

4

1 2 3 0

4

1 2 3

0 1 2 3

Iteration of i-loop Iteration of j-loop

j-loop j-loop j-loop j-loop

(d) thread-reuse execution model

Ex
ec
ut
io
n
tim

e

Thread Block 0 Thread Block 1

Iteration of i-loop Iteration of j-loop

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

i-l
oo

p

j-loop

GPU Threads

GPU Threads

(b) inter-TB master-slave model.

Ex
ec
ut
io
n
tim

e 0

Thread Block 0 Thread Block 1

1 2 3 4 0 1 2 3 4

0

Iteration of i-loop Iteration of j-loop

1

1

2

3

4

Execute in parallel

Each iteration of i-loop is
mapped to a GPU thread;
all the iterations of j-loop in
the same iteration of i-loop
are executed by a single
GPU thread sequentially.

Each iteration of i-loop is
mapped to a GPU thread
block and executed by a
single thread in the thread
block; all the iterations of j-
loop in the same iteration of
i-loop are executed by the
GPU threads in a thread
block in parallel.

Each iteration of i-loop is
mapped to a GPU thread
aligned along one
dimension (e.g.,
threadIdx.x); all the
iterations of j-loop in the
same iteration of i-loop are
executed by the GPU
threads aligned along
another dimension (e.g.,
threadIdx.y).

Each iteration of i-loop is
mapped to a GPU thread;
all the iterations of j-loop
in the same iteration of i-
loop are executed by the
GPU threads reclaimed
from i-loop in parallel. The
GPU threads used by every
8 iterations of i-loop form a
SIMD vector with size 8.

#pragma acc parallel for
for (i = 0 ; i < i_bound; i++){

computation 1;
// illegal to put our proposed vector directive around j-loop

for (j = 0; j < j_bound; j++){
computation 2;
for (k = 0; k < k_bound; k++){

for (m = 0; m < m_bound; m++){
computation 3;

}
}
for (h = 0; h < h_bound; h++){

computation 4;
}

}
}
#pragma acc parallel for
for (i = 0 ; i < i_bound; i++){

computation 1;
// illegal to put our proposed vector directive around j-loop

for (j = 0; j < j_bound; j++){
computation 2;

#pragma acc loop vector (32, partial, inner-vect)
// only for vectorization analysis
for (i = 0 ; i < i_bound; i++){

for (k = 0; k < k_bound; k++){
computation 3;

}
}

#pragma acc loop vector (32, partial, outer-vect)
// only for vectorization analysis
for (i = 0 ; i < i_bound; i++){

for (h = 0; h < h_bound; h++){
computation 4;

}
}

}
}

Vectorization analysis

Computation region 0

Computation region 1

(b) Inter-TB master-slave execution model. This is the default execution model used by
PGI compiler for nested TLP.

118

GPU Threads

(a) execution model without nested TLP.

Ex
ec
ut
io
n
tim

e 0

1

2

3

4

Thread Block 0 Thread Block 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration of i-loop Iteration of j-loop

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

GPU Threads

(c) intra-TB master-slave model (multi-dimensional)

Ex
ec
ut
io
n
tim

e 0

4

Thread Block 0 Thread Block 1

1 2 3 0

4

1 2 3 0

4

1 2 3 0

4

1 2 3

0 1 2 3

Iteration of i-loop Iteration of j-loop

j-loop j-loop j-loop j-loop

(d) thread-reuse execution model

Ex
ec
ut
io
n
tim

e

Thread Block 0 Thread Block 1

Iteration of i-loop Iteration of j-loop

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

i-l
oo

p

j-loop

GPU Threads

GPU Threads

(b) inter-TB master-slave model.

Ex
ec
ut
io
n
tim

e 0

Thread Block 0 Thread Block 1

1 2 3 4 0 1 2 3 4

0

Iteration of i-loop Iteration of j-loop

1

1

2

3

4

Execute in parallel

Each iteration of i-loop is
mapped to a GPU thread;
all the iterations of j-loop in
the same iteration of i-loop
are executed by a single
GPU thread sequentially.

Each iteration of i-loop is
mapped to a GPU thread
block and executed by a
single thread in the thread
block; all the iterations of j-
loop in the same iteration of
i-loop are executed by the
GPU threads in a thread
block in parallel.

Each iteration of i-loop is
mapped to a GPU thread
aligned along one
dimension (e.g.,
threadIdx.x); all the
iterations of j-loop in the
same iteration of i-loop are
executed by the GPU
threads aligned along
another dimension (e.g.,
threadIdx.y).

Each iteration of i-loop is
mapped to a GPU thread;
all the iterations of j-loop
in the same iteration of i-
loop are executed by the
GPU threads reclaimed
from i-loop in parallel. The
GPU threads used by every
8 iterations of i-loop form a
SIMD vector with size 8.

#pragma acc parallel for
for (i = 0 ; i < i_bound; i++){

computation 1;
// illegal to put our proposed vector directive around j-loop

for (j = 0; j < j_bound; j++){
computation 2;
for (k = 0; k < k_bound; k++){

for (m = 0; m < m_bound; m++){
computation 3;

}
}
for (h = 0; h < h_bound; h++){

computation 4;
}

}
}
#pragma acc parallel for
for (i = 0 ; i < i_bound; i++){

computation 1;
// illegal to put our proposed vector directive around j-loop

for (j = 0; j < j_bound; j++){
computation 2;

#pragma acc loop vector (32, partial, inner-vect)
// only for vectorization analysis
for (i = 0 ; i < i_bound; i++){

for (k = 0; k < k_bound; k++){
computation 3;

}
}

#pragma acc loop vector (32, partial, outer-vect)
// only for vectorization analysis
for (i = 0 ; i < i_bound; i++){

for (h = 0; h < h_bound; h++){
computation 4;

}
}

}
}

Vectorization analysis

Computation region 0

Computation region 1

(c) Intra-TB master-slave execution model (multi-dimensional). This is the execution
model used by Yang and Zhou’s method for nested TLP.

GPU Threads

(a) execution model without nested TLP.

Ex
ec
ut
io
n
tim

e 0

1

2

3

4

Thread Block 0 Thread Block 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration of i-loop Iteration of j-loop

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

GPU Threads

(c) intra-TB master-slave model (multi-dimensional)

Ex
ec
ut
io
n
tim

e 0

4

Thread Block 0 Thread Block 1

1 2 3 0

4

1 2 3 0

4

1 2 3 0

4

1 2 3

0 1 2 3

Iteration of i-loop Iteration of j-loop

j-loop j-loop j-loop j-loop

(d) thread-reuse execution model

Ex
ec
ut
io
n
tim

e

Thread Block 0 Thread Block 1

Iteration of i-loop Iteration of j-loop

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

i-l
oo

p

j-loop

GPU Threads

GPU Threads

(b) inter-TB master-slave model.
Ex
ec
ut
io
n
tim

e 0

Thread Block 0 Thread Block 1

1 2 3 4 0 1 2 3 4

0

Iteration of i-loop Iteration of j-loop

1

1

2

3

4

Execute in parallel

Each iteration of i-loop is
mapped to a GPU thread;
all the iterations of j-loop in
the same iteration of i-loop
are executed by a single
GPU thread sequentially.

Each iteration of i-loop is
mapped to a GPU thread
block and executed by a
single thread in the thread
block; all the iterations of j-
loop in the same iteration of
i-loop are executed by the
GPU threads in a thread
block in parallel.

Each iteration of i-loop is
mapped to a GPU thread
aligned along one
dimension (e.g.,
threadIdx.x); all the
iterations of j-loop in the
same iteration of i-loop are
executed by the GPU
threads aligned along
another dimension (e.g.,
threadIdx.y).

Each iteration of i-loop is
mapped to a GPU thread;
all the iterations of j-loop
in the same iteration of i-
loop are executed by the
GPU threads reclaimed
from i-loop in parallel. The
GPU threads used by every
8 iterations of i-loop form a
SIMD vector with size 8.

#pragma acc parallel for
for (i = 0 ; i < i_bound; i++){

computation 1;
// illegal to put our proposed vector directive around j-loop

for (j = 0; j < j_bound; j++){
computation 2;
for (k = 0; k < k_bound; k++){

for (m = 0; m < m_bound; m++){
computation 3;

}
}
for (h = 0; h < h_bound; h++){

computation 4;
}

}
}
#pragma acc parallel for
for (i = 0 ; i < i_bound; i++){

computation 1;
// illegal to put our proposed vector directive around j-loop

for (j = 0; j < j_bound; j++){
computation 2;

#pragma acc loop vector (32, partial, inner-vect)
// only for vectorization analysis
for (i = 0 ; i < i_bound; i++){

for (k = 0; k < k_bound; k++){
computation 3;

}
}

#pragma acc loop vector (32, partial, outer-vect)
// only for vectorization analysis
for (i = 0 ; i < i_bound; i++){

for (h = 0; h < h_bound; h++){
computation 4;

}
}

}
}

Vectorization analysis

Computation region 0

Computation region 1

(d) Our proposed thread-reuse execution model for nested TLP.

Figure 6-4: Comparison of execution models for nested TLP on CUDA GPUs. Assume
i-loop is the outermost parallel loop, j-loop is the nested parallel loop, data access is
contiguous across iterations of j-loop. For simplicity, each thread block contains 8 GPU
threads and the number of iterations of j-loop is 5.

119

The common weakness of both the inter-TB master-slave model and the intra-TB

master-slave model is that they fail to consider the parallelism exposed by the the dom-

inant parallel loop. In both models, the sequential sections before and after the target

loop are executed by either one thread or (TB/VF) threads in a thread block. Depending

on the amount of computation in the sequential sections, these two execution models

may result in low utilization of GPU threads.

Our thread-reuse execution model for nested TLP

To overcome the issue mentioned above, we put forward a thread-reuse execution model

as shown in Fig. 6-4(d) (VF is equal to TB in the example). In our thread-reuse model,

before VF threads of the dominant parallel loop enter the target loop, all these threads are

synchronized first. Then, VF iterations Id of the dominant parallel loop running on these

threads are serialized in order to give VF threads to the target loop in each iteration of Id.

However, whether the target loop will be executed by these threads or not depends on

the loop vectorization results. If the vectorization is on the dominant parallel loop, these

threads are returned back to the dominant parallel loop; otherwise, they are used for

the vectorized target loop. Our thread-reuse execution model requires the vectorization

factor to be a factor of the thread block size. The vectorization factor is suggested to be

the half-warp size, warp size or a multiple of warp size.

The key idea of our thread-reuse execution model is that we want to maximally reuse

the threads used for execution of sequential sections of the dominant parallel loop. The

granularity of thread reuse is decided by the vectorization factor VF.

Inter-TB level

Intra-TB level

vector pool

Partial mode Full mode

Master Slave Slave

TB/VF
vectors

TB_MAX/TB -1 slave pools

Figure 6-5: Our proposed two execution modes of thread-reuse execution model, partial
and full.

120

Two execution modes of thread-reuse execution model

Given the vectorization factor VF, for a one dimensional thread block with size TB, the

number numvect of existing vectors of size VF is TB/VF, as shown in Fig. 6-5. Without

resizing TB, there is only one vector available for each vectorized nested loop. The

execution model is in the partial mode. This would be a constraint for the vectorized

loop due to outer-loop vectorization because the nested loop is kept intact. It would

be profitable to enlarge the pools of vectors. The chosen TB is often smaller than the

maximum size TBmax supported by the CUDA devices. Therefore, if we enlarge the

number of GPU threads by TBmax/TB times, this would give TBmax/TB vectors for each

vectorized loop. The execution model is in the full mode. These two execution modes

can be specified by our language extension for nested TLP (see in Sec. 6.3.1).

6.2.4 Advantages of loop vectorization for nested TLP

The greatest benefit of using loop vectorization to handle nested TLP is that vectoriza-

tion favors memory performance for GPU. Loop vectorization usually employs either

outer-loop vectorization or inner-loop vectorization depending on which loop can help

expose contiguous memory access. Contiguous memory access to global memory can

be coalesced on GPU and is thus important to the memory performance of CUDA pro-

grams. When using loop vectorization to handle nested TLP exposed by a target loop,

our compiler decides which type of loop vectorization is profitable for the target loop in

terms of contiguous memory access.

Apart from memory performance benefit, loop vectorization helps deal with target

loops with a small number of iterations. Vectorization on the target loop, which is the

case of inner-loop vectorization, is performed according to a given vectorization factor

VF. Therefore, the vectorized target loop can be executed by VF threads rather than the

whole thread block.

121

6.3 Loop Vectorization Framework for Nested TLP

With our proposed thread-reuse execution model, we introduce a compiler framework

for our vectorization approach to nested TLP on CUDA GPUs. Similar to other existing

vectorization frameworks such as GCC and LLVM, our vectorization approach to nested

TLP consists of two major components — vectorization analysis and vectorization trans-

formation. We use the transposed matrix vector multiplication in Fig. 6-2 as the running

example.

6.3.1 Language Extension

Sometimes it is very hard for automatic loop vectorization to find the right loop in a

loop nest for vectorization due to the lack of a precise enough cost model. In addition,

our proposed thread-reuse execution model for nested TLP gives two options for the

execution mode (see in Sec. 6.2.3). In order to let users specify the desired vectorization

type and execution mode for the execution model, we extend the vector clause in the

OpenACC loop pragma as follows:

vector(vector_length, (partial | full), (inner-vect | outer-vect))

, where vector_length specifies the vectorization factor VF, inner-vect and outer-vect

indicate inner-loop and outer-loop vectorization, respectively. Vectorization type should

be specified according to which loop exposes contiguous memory access that can be

coalesced by the hardware. partial and full are the two execution modes of our thread-

reuse execution model.

Note that our new language extension can only be used on the innermost nested loop

within the outermost parallel loop(s). Therefore, it is orthogonal to the original vector

clause and will not affect the semantics of the original one. It is illegal to put our language

extension around the target loop in the following cases:

1. loop bounds of the enclosing loops of the target loop are not uniform across itera-

tions of the dominant parallel loop;

2. the target loop is nested under decision-making statements (e.g., if-then, if-then-

else, switch).

122

6.3.2 Vectorization Analysis

Vectorization analysis is applied after automatic loop parallelization. Loop paralleliza-

tion is useful for the OpenACC kernel directive, which asks the compiler to automati-

cally identify a parallel loop for a GPU kernel. If automatic loop parallelization is not

turned on, programmers have to use the parallel loop directive to explicitly annotate

the parallel for-loops as GPU kernels. It is common that for a given loop nest, compilers

take the outermost closely nested parallel loops as the candidate for a GPU kernel while

leaving the identified parallel loops inside the loop nest as sequential loops. Our moti-

vating example in Fig. 6-2 uses the parallel loop directive to annotate the outermost

i-loop to be off-loaded as a computation kernel to GPU. Without considering the paral-

lelism exposed by the j-loop, all the computation within i-loop is carried out sequentially.

Vectorization for short-vector machines usually works on simply nested loops (SNLs),

where the loop at each level of the loop nest contains only one loop inside. For ex-

ample, the loop vectorization in GCC is capable of applying either inner or outer loop

vectorization upon a simply nested loop [Nuzman and Zaks, 2008]. If there is no other

computation around each loop in the loop nest, the simply nested loop becomes a per-

fectly nested loop. If a given nested loop is not qualified as an SNL, loop fission can

be used to recursively split the loops from the innermost loop to the outermost loop in

order to make some of the resultant loops simply nested. For example, the j-loop in Fig.

6-6 is not an SNL because it contains two loops, k-loop and h-loop. However, loop fission

often replaces scalar variables with array accesses to break data dependence between two

nested loops.

The only loop transformation in our method is loop vectorization. Therefore, instead

of applying loop fission to form a simply nested loop, we directly put the dominant par-

allel loop around the target loop to form a virtual simply nested loop. This process avoids

the consequences from loop fission, such as scalar expansion. In addition, it is always

legal to form virtual simply nested loops because the dominant parallel loop is parallel

and moving it inwards in the loop nest will not change the loop dependence. In Figure

6-6, there are two innermost loops nested in the dominant parallel loop. Therefore, with

the dominant parallel loop, there are two virtual SNLs annotated as computation region

0 and 1, respectively. Note that for the purpose of vectorization analysis, it is not neces-

123

#pragma acc parallel for
for (i = 0 ; i < i_bound; i++){

/* computation 1 */
// illegal to put our proposed vector
// directive around j-loop

for (j = 0; j < j_bound; j++){
/* computation 2 */
for (k = 0; k < k_bound; k++){

/* computation 3 */
}
for (h = 0; h < h_bound; h++){

/* computation 4 */
} // end-j

}// end-k
}// end-h

#pragma acc parallel for
for (i = 0 ; i < i_bound; i++){

/* computation 1 */
// illegal to put our proposed vector directive around j-loop

for (j = 0; j < j_bound; j++){
/* computation 2*/

#pragma acc loop vector (32, partial, inner-vect)
// only for vectorization analysis
for (i = 0 ; i < i_bound; i++){

for (k = 0; k < k_bound; k++){
/* computation 3 */

}}
#pragma acc loop vector (32, partial, outer-vect)

// only for vectorization analysis
for (i = 0 ; i < i_bound; i++){

for (h = 0; h < h_bound; h++){
/* computation 4 */

}}}}

Vectorization
analysis

Computation
region 0

Computation
region 1

Figure 6-6: Virtual simply nested loops in vectorization analysis. Assume k-loop is suit-
able for inner-loop vectorization while h-loop is suitable for outer-loop vectorization.

sary to change the loop bounds of the dominant parallel loop in terms of vectorization

factor VF. Because the virtual SNLs are only used for the compiler to decide which loop

to vectorize.

The classic loop vectorization analysis – inner-loop or outer-loop vectorization – per-

forms on the resultant virtual simply nested loops mentioned above. Data dependence

analysis checks whether the loop at a certain level of the loop nest is legal for vector-

ization. In the case that several loops are all permitted for vectorization, compilers take

contiguous memory access into account to decide the final candidate. With the notations

defined in 6.2.2, in this chapter we refer to inner-loop vectorization as the vectorization

on the target loop and outer-loop vectorization as the vectorization on the dominant par-

allel loop in a virtual simply nested loop. Without any explicit vector directives, after

the vectorization analysis, vector directives with default configuration – warp size as the

vectorization factor, partial mode for the execution model – are annotated around the

target loop for vectorization transformation. For example, the vector directives in Fig.

6-6 are the results from automatic vectorization analysis.

In vectorization analysis, our compiler also checks the legality of the usage of our

proposed vector clause for nested TLP. First, the vector pragma should be annotated

only on an innermost loop nested in the dominant parallel loop. For example, it is

illegal to put a vector pragma on the j-loop in Fig. 6-6. Second, the loop bounds of the

124

loops enclosing the target loop have to be the same at runtime across iterations of the

dominant parallel loop. This is the same as the uniform scalar analysis in the whole

function vectorization [Karrenberg and Hack, 2011]. The compiler then can guarantee it

is always feasible to reclaim SIMD vectors for the vectorized loops. Third, it is illegal to

put the target loop under an if statement either directly or indirectly or other decision-

making statements (e.g., switch in C). This can be eliminated in the future work when our

proposed loop vectorization approach is extended to support parallel loops with control

flows.

6.3.3 Vectorization Transformation

Given a parallel loop nest with nested loops annotated with our extended vector clause

defined in 6.3.1, vectorization transformation on the nested loops is performed in the

phase of extracting the outer parallel loops into a GPU kernel. It first splits the compu-

tation of the dominant parallel loop into several regions according to the given vector

pragmas, and then transforms the target loops contained in the resultant regions into

vectorized forms. These two steps can proceed side by side.

Compute Computation Regions

Splitting computation in the dominant parallel loop into several regions is a critical step

for vectorization transformation. The thread-reuse execution model for nested TLP re-

quires that all GPU threads spawned at the start of execution must be active when reach-

ing the target loop. The start of each region indicates a synchronization across GPU

threads in a thread block. With threads synchronized, the vectorized loop can reuse the

existing GPU threads for execution. The algorithm for computing computation regions

is presented in Alg. 1.

When generating CUDA code from C programs, the execution guard derived from

the targeted parallel loop is often directly put around the computation of the loop body.

The execution guard may make some of the GPU threads inactive during the whole exe-

cution. Vectorization thus may not be able to get enough active threads for the vectorized

loop. When the computation is split into different regions, the execution guard can be

distributed to each region. As a result, each region has freedom to decide how to use

125

Algorithm 1 Compute computation regions for nested TLP
INPUT: dom loop, a parallel loop nest to be extracted as a GPU kernel.
OUTPUT: ntp region list, regions with nested TLP; region list, regions without nested
TLP.

pragma set S← vector directives in the loop body
exe guard← loop condition of dom loop
if exsits a directive in S has the attribute full then

exe guard← min((bid + 1) * TB, exe guard)
end if
for each directive annot in S do

if loop L with annot is directly nested in dom loop then
add loop L to partition stmts and mark L as simply nested

else
find the directly nested loop Parent L in dom loop enclosing loop L and add Parent L to
partition stmts

end if
end for
last stmt idx ← 0, new region← new CompoundStatement
for each loop L in partition stmts do

cur idx ← statement index of L in dom loop
if L is simply nested then

if inner-vect || outer-vect in full mode then
need split ← true

end if
else

deeply nested ← true , need split ← true
end if
add statments from last stmt idx to (cur idx− 1) to new region
if need split == true then

i f stmt← an if statement with exe guard as the condition and new region as it body
add i f stmt to region list; add L to ntp region list
new region← new CompoundStatement

else
add L into new region

end if
last stmt idx ← cur idx + 1

end for

the GPU threads. Furthermore, some instances of the execution guard can be optimized

out with redundant computation to reduce control divergence. Fig. 6-7 shows the re-

sults of computing computation regions without our vectorization transformation. The

execution guard around the region 1 is eliminated with redundant computation.

Transform Computation Regions with Nested TLP

Vectorization transformation is performed on the target loops in each computation region

according to the vector directive annotated on the target loop.

126

1 __global__ void tmv_kernel(...)

2 {

3 const int _bid = ...;

4 const int _gtid = ...;

5 const i = _gtid;

6 float sum;

7 sum= 0.0f; // region 1

8

9 for (j = 0; j < SIZE && i < SIZE; j++) // region 2

10 sum += M[j][i] * V[j];

11

12 if (i < SIZE) C[i] = sum; // region 3

13 }

Figure 6-7: Optimization on the execution guard for nested TLP. The execution guard i

< SIZE is distributed over the three parts of the original loop body.

Step 1: Collect the vectorization information. The compiler first collects vectorization

transformation information from the vector directive: vectorization factor, vectorization

type, and execution mode of the thread-reuse execution model. The reduction scalar and

its reduction operation is also gathered for reduction transformations.

Step 2: Build the thread-reuse execution model. The compiler sets up the GPU threads

in a thread block in the form of SIMD vectors. Each GPU thread is given a vector id and

a lane id in a vector (line 4-5 in Fig. 6-8). If the thread-reuse execution model is specified

in the full mode, master and slave vectors are also built according to the vectorization

factor VF, the block size TB, and the max block size TBmax (line 2-7 in Fig. 6-9). Note

that TBmax is the actual thread block size when launching the generated GPU kernel. If

one of the computation regions with nested TLP asks the execution model to work in the

full mode, the TBmax is by default set to the max number of threads that a thread block

can accommodate (1024 in this chapter). Otherwise, TBmax is the same as TB, which is

by default 128 in our compiler.

Step 3: Serialize the dominant parallel loop. The key part of our proposed thread-

reuse execution model for nested TLP is reusing existing running GPU threads modeled

by SIMD vectors. The given vectorization factor VF decides the granularity of thread-

reuse. Before entering the target loop, the existing running GPU threads are distributed

over the iterations of the dominant parallel loop. Therefore, in order to claim VF threads

127

1 const int _bid = ...;

2 const int _gtid = ...;

3 float sum;

4 int l_i1_vect_id = (threadIdx.x>>5);

5 int l_i1_lane_id = (threadIdx.x&31);

6 int l_i1_vect_offset = (l_i1_vect_id*32);

7 int l_i1_start = ((_bid*128)+l_i1_vect_offset);

8 int l_i1_end = (l_i1_start+32);

9 __shared__ float _sh_tmp0[128], _sh_tmp1[128], _sh_tmp2[128], _sh_tmp3[128],

_sh_tmp4[128];

10 i=_gtid;

11 for (seq_l_i1=l_i1_start; seq_l_i1<l_i1_end; seq_l_i1=(seq_l_i1+(1*4))){

12 float red_var_sum=0.0F;

13 float red_var_sum_unroll_v1=0.0F;

14 float red_var_sum_unroll_v2=0.0F;

15 float red_var_sum_unroll_v3=0.0F;

16 for (l_j1_strip=0; l_j1_strip<(2*1024); l_j1_strip=(l_j1_strip+32)){

17 j=(l_j1_strip+l_i1_lane_id);

18 if (j<(l_j1_strip+32)) {

19 red_var_sum+=(M[j][seq_l_i1]*V[j]);

20 red_var_sum_unroll_v1+=(M[j][(seq_l_i1+1)]*V[j]);

21 red_var_sum_unroll_v2+=(M[j][(seq_l_i1+2)]*V[j]);

22 red_var_sum_unroll_v3+=(M[j][(seq_l_i1+3)]*V[j]);

23 }}

24 _sh_tmp0[l_i1_vect_offset+l_i1_lane_id]=red_var_sum;

25 _sh_tmp1[l_i1_vect_offset+l_i1_lane_id]=red_var_sum_unroll_v1;

26 _sh_tmp2[l_i1_vect_offset+l_i1_lane_id]=red_var_sum_unroll_v2;

27 _sh_tmp3[l_i1_vect_offset+l_i1_lane_id]=red_var_sum_unroll_v3;

28 __syncthreads();

29

30 (reduction on _sh_tmp0, _sh_tmp1, _sh_tmp2, _sh_tmp3)

31

32 if ((l_i1_lane_id==0))

33 { put results back to _sh_tmp4}

34 __syncthreads();

35 if (i<SIZE) {

36 sum=_sh_tmp4[((threadIdx.y*32)+threadIdx.x)];

37 C[i]=sum;

38 }

Figure 6-8: The generated CUDA code by inner-loop vectorization in partial mode. The
vectorization factor is 32 and loop unrolling factor is 4.

128

for the target loop, the compiler needs to serialize the dominant parallel loop so that

threads within the same vector can execute the same iteration of the dominant parallel

loop. The lower bound and upper bound of the serialized loop are calculated in terms

of VF and the mode of execution model. The loop at line 11 in Fig. 6-8 presents the

results of the serialization of the dominant parallel i-loop in Fig. 6-2. The lower bound

and upper bound are calculated in terms of the vector id at line 7-8 in Fig. 6-8.

For multiple dimensional thread blocks, we treat the loop mapped to the GPU threads

aligned along the dimension x (aka. threadIdx.x) as the dominant parallel loop. As a

result, the compiler is only able to reclaim these threads rather than all the GPU threads

in a thread block.

Step 4: Handle live-in/live-out scalars and arrays. The iterations of the dominant par-

allel loop are executed by different GPU threads, and thus all the scalar and array defi-

nitions in the loop body are thread-local. When the dominant parallel loop is serialized

to hand over the occupied threads to the target loop, all the live-in scalars and thread-

local arrays need to be promoted to thread-block visible arrays in either shared memory

or global memory of GPUs. These promoted arrays are initialized before executing the

target loop. This data promotion can be optimized when the vectorization type is consid-

ered. If outer-loop vectorization in partial mode is applied, it indicates that the dominant

parallel loop takes back the threads it gives away; thus, the data context in each thread

need no changes.

Step 5: Strip-mine the target loop. As discussed in Sec. 2.4.1, loop vectorization for

short SIMD vectors usually first strip-mines a loop with VF and then directly transforms

the computation in the resulting element loop to into vector operations. In our vector-

ization approach to nested TLP, the compiler also applies loop strip-mining upon the

target loop according to the given VF, which results in two loops, strip loop and element

loop. Computation in the element loop can be directly transformed into vector opera-

tions in the case of inner-loop vectorization. The iterations of the strip loop are useful for

scheduling the vector operations over slave vectors in the full mode of execution model.

129

1 (same as inner-vect in partial)

2 const int master_vect_id_l1 = (l_i1_vect_id>>3);

3 const int slave_vect_id_l1 = (l_i1_vect_id&7);

4 const int slave_offset_id_l1 = (master_vect_id_l1*8);

5 int l_i1_master_vect_offset = (master_vect_id_l1*32);

6 int l_i1_start = ((_bid*128)+l_i1_master_vect_offset);

7 int l_i1_end = (l_i1_start+32);

8 int l_j1_strip, int seq_l_i1;

9 __shared__ float _sh_tmp0[1024], _sh_tmp1[128];

10 i=_gtid; seq_l_i1=(l_i1_start+l_i1_lane_id);

11 if (seq_l_i1<l_i1_end){

12 float red_var_sum=0.0F;

13 for (l_j1_strip=(0+(slave_vect_id_l1*32)); l_j1_strip<SIZE;

l_j1_strip=(l_j1_strip+(32*8))){

14 for (j=l_j1_strip; j<(l_j1_strip+32); j ++){

15 red_var_sum+=(M[j][seq_l_i1]*V[j]);

16 }}

17 _sh_tmp0[...]=red_var_sum;

18 __syncthreads();

19

20 inter-vect reduction across slave vectors

21 intra-vect reduction

22

23 __syncthreads();

24 if ((slave_vect_id_l1==0))

25 _sh_tmp1[...]= _sh_tmp0[...];

26 }

27 __syncthreads();

28 if (i<block_guard){

29 sum=_sh_tmp1[((threadIdx.y*32)+threadIdx.x)];C[i]=sum; }

Figure 6-9: The generated CUDA code by outer-loop vectorization in full mode. The
vectorization factor is 32 , block size (TB) is 128, and the max block size (TBmax) is 1024.

130

Step 6: Schedule the vector operations. When inner-loop vectorization is applied on

the target loop, it indicates the dominant parallel loop is serialized so that the GPU

threads occupied are given to the vectorized target loop. In the partial execution mode,

the vectorized target loop in each iteration of the serialized dominant parallel loop is

executed one after another by the reclaimed vectors. Sometimes there exists data reuse

across iterations of the serialized dominant parallel loop, such as V[j] at line 6 in Fig. 6-2.

Loop unroll-and-jam can be applied on the dominant parallel loop to take advantage of

this kind of data reuse. Line 11-27 in Fig. 6-8 presents the results of loop unroll-and-jam

with a loop unrolling factor 4. The loop unrolling factor is an important performance

factor for the GPU kernel because loop unroll-and-jam may introduce more memory

usage and in turn affects the occupancy of the GPU kernel.

When the thread-reuse execution model is running in the full mode (in Section 6.2.3),

there are extra free vectors for executing the vectorized loop. In either inner-loop or

outer-loop vectorization, the strip loop from loop strip-mining on the target loop is used

to distribute the vector operations over the slave vectors. For example, the strip-loop

at line 13 in Fig. 6-9 is distributing the work of the target loop in the size of 32, the

vectorization factor, to 8 slave vectors.

Step 7: Transform reduction operations. The target loop sometimes has reduction op-

erations on scalars. We use interleaved log-step reduction [Wilt, 2013] to handle reduc-

tion. In the partial execution mode, intra-vector reduction is performed such as the one

on _sh_tmp0 in Fig. 6-8. On the other hand, in the full execution mode, inter-vector

reductions across the slave vectors are followed by intra-vector reductions, as depicted in

Fig. 6-9. The intermediate reduction results are kept in shared memory.

Step 8: Generate vectorized code. The generation of vectorized code from the resulting

loops – the serialized dominant parallel loop, the strip-loop, and the element loop –

is simply performed by changing the relevant loop into a vectorized form according

to the vectorization type. In the case of inner-loop vectorization, the element loop is

transformed into a vectorized form, as shown in line 17-23 in Fig. 6-8. For the outer-loop

vectorization, the serialized dominant parallel loop is transformed back to a parallel loop.

131

6.4 Evaluation

6.4.1 Experimental Methodology

Our proposed vectorization approach is implemented in the Cetus source-to-source com-

piler [Lee et al., 2009]. The Cetus compiler can generate OpenMP code with automatic

loop parallelization and CUDA code from OpenMP programs. The front-end of the Ce-

tus compiler is modified to take C code with OpenACC pragmas. We implemented new

vectorization for nested TLP as optimization passes and reused the existing optimization

passes to work with the new passes. The generated CUDA code from our vectorization

is compiled by Nvidia CUDA compiler of version 6.5. The same compiler is used for

building other versions of benchmarks in CUDA.

The performance evaluation is carried out on a Nvidia GTX 645 with 1G memory.

Most of the benchmarks used are from Rodina benchmark suite [Che et al., 2009] and

NPB benchmark [Bailey et al., 1991a]. Among these benchmarks, Streamcluster (SC),

K-means (KM) and Backprop (BP) are from Rodina. CG is from NPB benchmark. For

simplicity, we only evaluate the performance of the hot-spot loops with nested TLP in

these benchmarks. In addition, three synthesized benchmarks, matrix vector multiplica-

tion (MV), transposed vector multiplication (TMV) and a mix of these two (TMV-MV)

are the typical examples of nested TLP in scientific computing.

We also compared the performance against an industrial compiler, PGI compiler 15.5

64 bit, with options -O3 -acc -ta=nvidia -Minfo=accel. The PGI compiler supports

OpenACC directives and is highly optimized for GPUs and accelerators. Because PGI

compiler cannot output CUDA code, we use the Nvidia profiler (nvprof) to collect the

kernel execution time for the performance comparison. We also use the information from

-Minfo=accel to inspect the mapping strategies adopted by PGI compiler.

6.4.2 Experimental Results

Performance Comparison between Execution Models for Nested TLP

In this section, we compare the performance between different execution models for

nested TLP on CUDA GPUs. As mentioned in Sec. 6.2.3, there exist two execution

132

models for nested TLP, inter-TB master-slave (Fig. 6-4(b)) and intra-TB master slave (Fig.

6-4(c)).

In Fig. 6-10, we report the speedups over the Yang and Zhou’s method [Yang and

Zhou, 2014]. Yang and Zhou’s work adopts the intra-TB master-slave execution model

(in Fig. 6-4(c)) to deal with nested TLP in the CUDA programs. They use GPU threads

aligned along one dimension in a thread block (e.g., threadIdx.x) as master threads and

ones aligned along another dimension (e.g., threadIdx.y) as slave threads. The choices

of thread dimensions for master and slave threads lead to two mapping strategies, inter-

warp and intra-warp. The inter-warp strategy uses threads in different warps to work

collaboratively for the workload of a master thread. The intra-warp uses threads within

a warp to distribute the nested loop.

The drawback of Yang and Zhou’s method is that the number of threads for nested

TLP is limited by the max thread block size TBmax. In order to allocate more slave

threads, programmers have to carefully balance the number of master and slave threads.

In contrast, our method reuses the threads used by the dominant parallel loop. The

number of threads for nested TLP is reclaimed according to the vectorization factor, and

thus it can be as large as the thread block size.

The performance of TMV, MV and TMV-MV shows another disadvantage of Yang and

Zhou’s method. The master-slave thread configuration tailored to one nested parallel

region may not fit another. On the other hand, our vectorization approach is flexible

to adapt to different regions. In summary, our vectorization approach to nested TLP

can achieve the same or even better performance than Yang and Zhou’s method without

tweaking the structure of thread blocks.

We also compared our vectorization approach to the inter-TB master-slave execution

model (in Fig. 6-4(b)). The performance comparison is depicted in Fig. 6-11. Without

specific execution configuration through the OpenACC gang, worker, and vector clauses,

PGI compiler automatically uses the inter-TB master-slave execution model to handle

nested TLP. A block size of 128 is used by default for nested loops. In general, if the

nested parallel loop is a candidate for inner-loop vectorization, MV, for example, PGI

compiler is also able to deliver better performance than without optimizing for nested

TLP. However, if outer-loop vectorization is more suitable for the nested parallel loop,

133

0 2 4 6 8 10 12 14

SC
KM

CG(SpM
V)

TM
V

M
V

BP
TM

V-‐M
V

Speedups over Non-‐nested TLP

non-‐nested	 TLP
intra-‐w

arp(2)
intra-‐w

arp(4)
intra-‐w

arp(8)
inter-‐w

arp(2)
inter-‐w

arp(4)
inter-‐w

arp(8)
O
ur	 Vect-‐N

ested	 TLP

Figure
6-10:Perform

ance
com

parison
betw

een
our

vectorization
approach

and
Yang

and
Z

hou’s
m

ethod
[Yang

and
Z

hou,2014]
(T

B
=

128)

134

0

3

6

9

12

15

18

21

24

SC KM CG(SpMV) TMV MV BP TMV-‐MV

Sp
ee
du

ps
ov
er
No

n-‐
ne
st
ed

TL
P

PGI PGI	 +	 non-‐TLP Our	 Vect-‐Nested	 TLP

Figure 6-11: Performance comparison between our approach and PGI compiler. The loop

seq directive is used to disable the default handling of nested TLP in PGI compiler.

0

0.5

1

1.5

Kmeans MV

Sp
ee
du

ps
ov
er
In
ne
rL

oo
p
Ve
ct

w
ith

ou
tU

nr
ol
lin
g

without	 unrolling

unroll	 factor	 =	 2

unroll	 factor	 =	 4

unroll	 factor	 =	 8

unroll	 factor	 =	 16

Figure 6-12: Performance impact of loop unrolling factor in partial mode. VF for Kmeans
and MV is 16 and 32.

the same optimization strategy would lead to significant performance degradation, for

instance, TMV. Compared to the default approach in PGI compiler, our vectorization

method is able to give better performance in all the benchmarks.

135

0

4000

8000

12000

16000

20000

24000

16 32 64 128 256 512 1024

Ex
ec
ut
io
n
Ti
m
e(
us
)

Max Thread Block Size (BSmax)

Outer	 loop	 vect	 with	 VF=16

Outer	 loop	 vect	 with	 VF=32

Figure 6-13: Performance impact of vectorization factor and TBmax in full execution mode
in Backprop. The block size TB is set to vectorization factor VF.

Performance Factors

Loop Unrolling Factor As mentioned in Sec.6.3.3, for inner-loop vectorization, we also

use loop unroll-and-jam to schedule vector operations over the salve vectors. Fig. 6-12

shows the performance impact of loop unrolling factors. Both Kmeans and MV have

data reuse across the dominant parallel loop. Therefore, unrolling and jamming the

serialized dominant parallel loop will help reduce the number of memory accesses due

to the reused data. However, as the unrolling factor increases, the shared memory usage

for the reduction operation goes up as well, which affects the overall thread occupancy

and in turn leads to performance degradation.

Vectorization Factor and Execution Configuration We use Backprop (BP) to study the

performance impact of the vectorization factor and the max thread block size for outer-

loop vectorization. The performance results shown in Fig. 6-13 indicate that the vec-

torization factor should be decided according to the ratio of the iteration count of the

dominant parallel loop and the target loop. The dominant parallel loop in BP only has

16 iterations so that a larger vectorization factor (32) makes half of the threads in a vector

inactive. In addition, for outer-loop vectorization, the execution model in full mode with

a proper max thread block size gives more slave vectors to distribute the work of the

target loop.

136

The hand-tuned CUDA version of BP in the Rodina benchmark changed the compu-

tation structure and introduced global reduction running on the CPU side. But by only

comparing to the GPU part alone, our method already obtains a speed-up of 1.52 ×.

6.5 Related Work

There has been extensive work on vectorization for short SIMD vectors on CPUs. Dif-

ferent vectorization techniques exploit SIMD parallelism from different scopes of the

program, such as basic blocks [Larsen and Amarasinghe, 2000], loop nests [Nuzman and

Zaks, 2008][Kennedy and Allen, 2002], and functions [Karrenberg and Hack, 2011]. Some

work [Wu et al., 2005] also attempted to build a unified framework to integrate above

mentioned techniques together. Finding contiguous memory access and transforming

data access into contiguous forms underlies these vectorization techniques.

On the other hand, automatic vectorization in C-to-CUDA compilation seems un-

necessary for CUDA GPUs because of the underlying SIMT execution model and lack

of SIMD execution units in the CUDA steaming processors. Jang et al. introduced

vectorization via data transformation to benefit vector-based architectures (e.g., AMD

GPUs) [Jang et al., 2011b]. Our work in Chapter 4 extended the SLP vectorization [Larsen

and Amarasinghe, 2000] to support semi-isomorphic instructions [Xu and Gregg, 2014a]

and applied it in the C-to-CUDA compilation to improve the memory performance of

GPU programs [Xu and Gregg, 2015]. However, our work in Chapter 4 and 5 does not

consider using vectorization to deal with nested TLP. Nested TLP is also an important

source of contiguous memory access. Our loop vectorization approach to nested TLP in

this Chapter is demonstrated as an efficient way of exploiting contiguous memory access

in nested TLP for better performance.

Yang and Zhou put forward a compiler framework CUDA-NP based on OpenMP-

like pragmas for nested TLP in CUDA code [Yang and Zhou, 2014]. They adopt the

intra-TB master-slave execution model, which we found not to be as effective as our

thread-reuse execution model. Our work uses loop vectorization technique to deal with

nested TLP in the C code with pragmas and automatically generates CUDA code. Lee

et al. studied nested TLP in the presence of their high-level language [Lee et al., 2014].

137

Their high-level language utilizes computation patterns (e.g., map and reduce) to enable

automatic compilation to GPU kernels. A multi-dimensional analysis is presented to

map nested TLP to the GPU. However, their solution as well as Yang and Zhou’s method

is not suitable for the cases where a parallel loop has several nested parallel loops with

varying features. Because some of these loops may require a different mapping strategy

from others. In contrast, our loop vectorization method is flexible to adapt to parallel

loops with different features. The decision on which type of loop vectorization should be

applied is determined by data access patterns, in particular, contiguous memory access.

Kim et al. put forward a locality-centric thread scheduling to schedule work-items in

OpenCL for CPUs [Kim et al., 2015]. The problem they solved is essentially the same

as how to efficiently map nested parallel loops but in a different scenario. The choices

of scheduling strategies are decided by the data locality, which is also the foundation of

vectorization. Therefore, our vectorization approach to nested TLP can be used as an

another solution to their problem.

Other approaches proposed efficient code generation strategies for GPU from com-

piler directive based programming models [Lee and Vetter, 2014]. Bertolli et al. intro-

duced inspector-executor schemes to coordinate threads for mapping OpenMP 4.0 to

CUDA [Bertolli et al., 2014]. Tian et al. discussed how to map the three levels of paral-

lelism expressed in OpenACC directives – gang, worker and vector – to the GPU [Tian

et al., 2013]. Our vectorization method can be adopted to derive an efficient configuration

of these directives for nested TLP.

Hong et al. put forward a warp-centric programming method to improve the per-

formance of graph algorithms [Hong et al., 2011]. In addition to using warps as basic

execution units, their work introduced dynamic work scheduling to resolve load imbal-

ance issues. Bauer et al. presented a domain specific language for combustion chem-

istry [Bauer et al., 2014]. Their method partitions computations into sub-computations

and assigns them to different warps within a thread block. In contrast, we use loop

vectorization technique to off-load sub-computations contained in nested TLP to GPU

threads.

138

6.6 Summary

In this chapter, we present a loop vectorization approach to exploit nested TLP in C-to-

CUDA compilation for CUDA GPUs. Our vectorization approach is designed to use the

GPU threads for outer parallel loop(s) to execute nested TLP. To this end, we introduced

a thread-reuse execution model, which characterizes the deep hierarchy of execution

model of CUDA GPUs from the vector point of view. Due to the imprecision of cost

models in automatic vectorization, we extended the vector clause in OpenACC to allow

users to specify the vectorization factor, vectorization type – inner-loop vectorization

or outer-loop vectorization, and the mode of execution model. We implemented our

method in the Cetus compiler and compared performance against both existing research

work and an industrial compiler. The experimental evaluation shows that our method is

feasible and highly effective.

139

THIS PAGE INTENTIONALLY LEFT BLANK

140

Chapter 7

Fine-grained AoS-to-SoA for

Customizable Precision Arithmetic

7.1 Introduction

One of the most important developments over the last decade has been the move from

desktop computing to battery-powered computing in hand-held, wearable and mobile

devices. This move from the desktop to the wider world is also reflected in the growth of

applications that operate on real world data such as images, video, sound and motion.

These applications are highly computationally intensive, and pose huge challenges both

for mobile devices and for cloud-based services that receive and process large amounts

of such data.

One popular approach to improving the performance of these types of applications

is to use reduced precision data. The inputs and outputs of media applications are

approximations, and introducing additional imprecision in the computation may have

little or no effect on the final result. For example, ARM embedded processors support

half precision binary-16 floating-point (FP), as compared with the more common single

precision (FP) binary-32.

When designing custom hardware such as FPGA and ASIC designs, data precision

can be customized precisely to the needs of an application. Reducing precision can re-

duce the size of the hardware, but crucially it can also allow less data to be transfered

between the processor and memory. Reduced precision data may allow faster compu-

141

tation, and crucially it reduces the amount of memory traffic. The energy required to

fetch a word of data from main memory is a large multiple of that required to perform

an arithmetic operation on that data.

On general-purpose processors it is much more difficult to customize the precision

of data to the application. Most general-purpose processors provide only two floating-

point sizes — single and double precision — and a limited range of integer data sizes,

typically 8, 16, 32, and 64-bit. For example, if 9 bits of integer precision are required

for an application, the programmer will normally use a 16-bit type. Similarly, if one

needs 13-bit floating-point (FP), one might use a half precision binary-16 FP type if it is

available, or single precision binary-32 if not.

When the data consists of a large array of values, the cost of using more precision than

necessary can become large. The obvious problem is that the larger data size requires

more space in memory. But the larger data size also requires more memory bandwidth

when transferring between processor and memory, and more energy to drive external

pins, wires and buses when transferring unnecessarily large data.

In this chapter, we propose a new approach to supporting arrays of irregular precision

floating-point and integer data types on general purpose architectures with SIMD exten-

sions. We use software bitslice format to represent arrays (vectors) of data. Using bitwise

logical instructions we build arithmetic operators that perform addition, multiplication

or division on an entire vector of 32, 64, or 128 values at once. By building operators out

of fundamental logical operators, we achieve enormous flexibility in the precision and

type of operators that we support.

142

7.2 Software Bitslice Representations

In the standard representation of simple types, such as integer and floating-point values,

a single value fits inside an 8, 16, 32 or 64-bit word. In a bitslice representation, the

different bits of a single number are spread across multiple machine words.

0th bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1st bit 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

2nd bit 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

3rd bit 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

4th bit 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

5th bit 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

6th bit 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

7th bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) Standard Representation (b) Bit-slice Representation

Sign

Exponent

Mantissa

7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 1 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 1 0

1.0
1.25
1.5
1.75
2.0
2.25
2.5
2.75

0 0 1 1 1 0 0 0
0 0 1 1 1 0 1 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 1 0

Sign Exponent Mantissa

1.0
1.25
1.5
1.75
2.0
2.25
2.5
2.75

Figure 7-1: Standard and bitslice representation of an array of sixteen 8-bit floating-point
numbers.

Figure 7-1 shows an example of standard and bitslice representations of arrays. Both

the standard and bitslice representations show an array of sixteen 8-bit floating-point

numbers. Each number has 1 sign bit, 4 exponent bits and 3 mantissa bits. However, the

physical representation of the data in memory is quite different. Instead of using sixteen

8-bit words, the bitslice representation uses eight 16-bit machine words. The first bit of

each of these eight 16-bit words corresponds to one of the eight bits of the first array

element. Similarly, the other 8-bit values are represented by a bit from each of the eight

16-bit words.

Bitslice representations are sometimes used for highly efficient implementations of

symmetric cryptography algorithms such as the Data Encryption Standard (DES) or

Advanced Encryption Standard (AES) [Biham, 1997]. These cryptography algorithms

perform large numbers of bit-level operations, which can be very fast on bitslice repre-

143

sentations. Bit-serial parallel systems built using one-bit processors (e.g. MPP [Batcher,

1980], DAP [Active Memory Technology Inc., 1988] and CM-2 [Thinking Machine Corp.,

1989][Hillis, 1992]) can natively support operations on data in bitslice representation. But

to our knowledge they have not been applied to more general purpose computation on

general-purpose processors with SIMD extensions.

7.3 Bitslice Vector Computing

In this chapter, we propose using bitslice representations of arrays as the basis of a

new approach to vector SIMD computing on general-purpose processors with SIMD

extensions. We show how to construct vector SIMD operations in software that operate

on these types. This allows us to construct SIMD vector types of a fixed number of

elements but with arbitrary bit precision per element. For example, we can construct a

vector of thirty-two 8-bit elements, but equally we can construct a vector of thirty-two

17-bit elements.

1 #define ADD_BITS 13

2 uint32_t ary1[ADD_BITS];

3 uint32_t ary2[ADD_BITS];

4 uint32_t result[ADD_BITS];

5

6 uint32_t carry = ALLZEROS;

7 for (int i = 0; i < ADD_BITS; i++) {

8 t1 = ary1[i];

9 t2 = ary2[i];

10 xxor = t1 ^ t2;

11 aand = t1 & t2;

12 // add

13 result[i] = xxor ^ carry;

14 // update carry

15 carry = (carry & xxor) | aand;

16 }

Figure 7-2: Bitslice adder for two arrays of unsigned integers. Each integer has ADD -
BITS bits. The size of uint32 t decides the number of array elements are being processed.

To operate on the elements of bitslice vector types, we propose building arithmetic

and other operators from native integer bitwise instructions. Figure 7-2 shows a simple

integer adder routine for bitslice vectors with thirty-two elements, each of 13 bits. Note

that the addition is performed by a sequence of bitwise operations that are the software

144

equivalent of a hardware adder. Thus the sum of two bits t1 and t2 is t1 XOR t2 and the

carry from the addition is t1 AND t2. By applying a sequence of these bitwise operations,

an entire k-bit addition can be performed.

In a hardware adder, each logic gate operates on one binary value. However, the

bitwise logical operators in the adder in Fig. 7-2 operate on an entire 32-bit register of

values at once. Thus, the addition is performed sequentially by a sequence of bitwise

operations. But each bitwise instruction operates on thirty-two separate 13-bit values at

a time and exploits thirty-two way bitwise parallelism. So our adder operates in vector

SIMD style, requiring a number of steps that is proportional to the number of bits in each

value, but operating on a vector of different values that is equal to the word-size of the

underlying native machine type.

A big advantage of our proposal for bitslice vector types is that they allow vectors of

values with an arbitrary number of bits. One can easily support vectors of numbers with

5, 9, or 13 bits. Operating on bitslice vector types is laborious from a sequential point of

view, but exploits large amounts of bit-level parallelism within the conventional machine

word. The major downside of operating on bitslice vector types is that each operation

requires large numbers of bitwise operations. As the number of bits in each value grows,

the execution time of the arithmetic operators increases rapidly. However, as we show in

the following sections, it can work well for vectors of short, irregularly-sized types.

It has been demonstrated that not all programs need the precision provided by the

generic FP hardware and different sections of a program can benefit from different

bitwidths for the sake of overall accuracy and power consumption [Tong et al., 2000].

The balance between accuracy and performance makes our solution perfectly suited to

the needs of approximate computing.

7.4 Operating on Bitslice Vectors

Bitslice vectors have previously been used for the implementation of cryptography al-

gorithms. These algorithms perform a large number of operations on individual bits.

The bitslice representation provides direct access to the individual bits within a vector of

numbers. Figure 7-3 shows two versions of code that negates the n’th bit of each number

145

in an array of thirty-two 16-bit numbers. In the standard representation, negating every

n’th bit requires a loop with separate instructions to operate on each number. In contrast,

the bitslice representation gives direct access to the n’th bit of all thirty-two numbers in

the vector with just a few instructions.

1 void negate_bit_standard(uint16_t a[32], int n)

2 {

3 for (int i = 0; i < 32; i++) {

4 a[i] = a[i] ^ (1 << n);

5 }

6 }

7

8 void negate_bit_bitslice(uint32_t a[16], int n)

9 {

10 a[n] = a[n] ^ 0xFFFFFFFF;

11 }

Figure 7-3: Two versions of code that negate the n’th bit of each element of a vector of
thirty-two 16-bit integers. The first code fragment operates on the standard representa-
tion of arrays of numbers. The second operates on bitslice vectors.

Bitslice representations can be highly-efficient for bit manipulation operations where

the same operation is applied to the same bit of a vector of numbers as in Figure 7-3.

Similarly bit shift, bit rotate and bit permutation can all be implemented efficiently in

bitslice format. This makes bitslice formats ideal for symmetric cryptography algorithms

which perform large numbers of bitwise operations.

However, there is another property of bitslice representations that to our knowledge

has not been previously been exploited for approximate operators on general-purpose

processors with SIMD extensions. Bitslice formats allow us to represent vectors of num-

bers with non-standard numbers of bits. We can create vectors of 9, 13 or 17 bit integers.

Equally, bitslice formats allow the creation of floating-point vector types with arbitrary

mantissa and exponent bit widths.

This flexibility in bit-widths of integer and floating-point numbers raises the possi-

bility of vectors of numbers with just enough precision. One of the main strengths of

custom hardware designs with FPGAs or ASICs is the possibility to customize the data

precision to the needs of the application, which simplifies circuits and reduces the size

of data in memory. Our bitslice vector types offer the same sort of bit-level customized

precision in software when operating on vectors.

146

A nice feature of our approach is that we implement arithmetic operators using

Boolean logic in the form of bitwise logical software instructions. We adapt existing

circuit design techniques that were developed for Boolean logic in hardware and use

them to build arithmetic circuits in software.

Thus, our bitslice vector approach offers a new model of vector computing that ex-

ploits the bitwise parallelism in existing bitwise logical instructions of general purpose

processors with SIMD extensions. However, our bitslice approach can also exploit tech-

niques that arose out of decades of research on implementing efficient hardware Boolean

circuits. Our approach breaks down the traditional boundaries between hardware cir-

cuits and software instructions.

7.4.1 Basic operations

For our bitslice vector types to be useful, we need to be able to perform basic arithmetic

operations, such as vector add. We focus on “vertical” vector operations, such as adding

the values in the corresponding lanes of a pair of vectors to produce a result vector. These

vertical vector operations benefit from significant bitwise parallelism, because the same

bitwise operation is applied to a given bit of all element of the vector. In all cases we

consider vectors where the number of bits of precision, n, is known statically in advance.

∙ Integer addition/subtraction can be performed by building full adders from xor

and and operations, as shown in Figure 7-2. Integer addition requires O(n) op-

erations to add a pair of vectors, where each element of the vector has n bits of

precision.

∙ A wide range of techniques exist for optimizing integer multiplication circuits, es-

pecially for combining partial sums [Ercegovac and Lang, 2004]. We implemented a

relatively simple shift-and-add multiplier which requires O(n2) operations to mul-

tiply two vectors with n digits.

∙ A range of division circuits has been proposed, with various trade-offs in area

and latency. We implement a restoring division [Muller et al., 2010] circuit that

requires O(n2) operations to divide the elements of one vector by the corresponding

elements of another.

147

∙ A constant bit shift/rotate that is applied to all lanes of a vector can be implemented

in a simple loop to permute the bits, that requires O(n) operations to shift/rotate a

vector of n digits.

∙ A variable bit shift where each lane may be shifted by a different amount is a more

expensive operation. We have implemented a logarithmic shifter, which can per-

form a variable bitwise shift independently on each lane using O(nlog2(n)) bitwise

logical operations. Logarithmic shifters have been shown to be an effective way of

saving power in hardware [Pillai et al., 1997][Acken et al., 1996].

The variable bitwise shift is particularly instructive. When implementing variable shifts

in hardware, single-cycle barrel shifters are popular. However, single-cycle hardware

shifters are typically designed to minimize latency rather than area.

When operating on software bitslice vectors, each gate in the circuit performing the

operation must be implemented with a bitwise logical instruction. A circuit with fewer

gates requires fewer instructions to execute and is therefore usually faster to implement

in software. This is an important difference between circuit design for software bitslice

vectors and for hardware. In hardware, the primary goal is usually to minimize latency,

whereas for software bitslice vectors the aim is to minimize gate count.

7.5 Bitslice Floating Point Vector Operations

The basic operators from Section 7.4.1 operate on vectors of integer types. However,

the great flexibility provided by bitslice types allows us to implement vectors of any

numeric type. In this section we describe how to build vectors of floating-point types

with customized mantissa and exponent. We implement the floating-point operators

using circuit techniques that were originally developed for hardware. We start with a

brief description of IEEE 754 floating-point, and then describe the operators in more

detail.

148

s exp mantissa

1 eb mb

Figure 7-4: Floating-point word.

7.5.1 IEEE-754 Floating Point Format

The IEEE Floating-point Standard 754 was developed so that all machines could provide

consistent floating-point behaviour. The standard is designed for several floating-point

types, the most common of which are 32 bit words (single precision) or 64 bit words

(double precision). Each word consists of a sign bit(s, 1 bit), a mantissa (mnt, mb bits)

and an exponent (exp, eb bits) as shown in Fig. 7-4, and presents the value of a number:

s×mnt′ × 2exp′ = s× h ·mnt× 2exp−bias (7.1)

where h is an implicit bit known as the hidden bit; bias is a constant depending on eb

and has the value 2eb−1 − 1. The floating-point format in this number presentation can

represent zeros, infinites, exceptions and two number types, normal ones (normalized)

and numbers very close to zero (denormalized). These five types are differentiated by

the exponent and mantissa values. All possible combinations of exponent and mantissa

values are depicted in Table 7.1.

Table 7.1: Types of floating-point numbers.

Type Exponent Mantissa h value
Zero 0 0 - ±0

Denormalized 0 ̸= 0 0 Eq.7.1
Normalized 1 to 2eb − 2 - 1 Eq.7.1

Infinites 2eb − 1 0 - ±∞
NaN 2eb − 1 ̸= 0 - -

Note that the IEEE 754 standard also supports rounding of intermediate results when

performing operations such as addition and multiplication. The intermediate result must

normally be computed to a greater precision than the final result, after which rounding

is applied. The IEEE standard provides four different rounding methods:

∙ Nearest: rounding to the nearest value, to even when tie

149

∙ Up: towards +∞

∙ Down: towards −∞

∙ Zero: towards 0, truncate

7.5.2 Bitslice Floating-point Operators

We present three bitslice floating-point (BFP) operators – addition/subtraction, multipli-

cation and division. BFP operators can be constructed from logic gates in the same way

as the integer operations in Section 7.4.1. In fact, the bitslice integer operations form

building blocks that we use to construct BFP operators.

1 typedef uint16_t BFP_ELEM_TYPE;

2 #define SIGN_BIT 1

3 #define EXPO_BIT 8

4 #define SIG_BIT 23

5 typedef struct{

6 BFP_ELEM_TYPE data[SIGN_BIT + EXPO_BIT + SIG_BIT];

7 } BFP_FP_VEC_TYPE;

Figure 7-5: Bitslice floating-point vector types for FP32.

Figure 7-5 shows an example of a bitslice type that is used to implement a vector of

sixteen 32-bit floating-point numbers. Our BFP operators follow the classic implementa-

tion of floating arithmetic circuits in hardware [Ercegovac and Lang, 2004] but with the

aim of minimizing the number of gates rather than the overall latency.

The IEEE-754 floating-point standard handles five number types in a common format

while maximizing the total set of numbers that are represented. This design increases the

complexities of the arithmetic units because apart from the calculation, a preprocessing

of input numbers (i.e., pre-normalization) and a post-processing of output numbers (i.e.,

post-normalization) are required to deal with different types of floating-point numbers.

Therefore, when implementing a floating-point operator either in hardware or software,

additional logic is required to handle the complexity of the format. In order to reduce the

number of logic operations for BFP operations, we assume the input values are normal-

ized numbers so that the logic for pre-normalization can be eliminated. In addition, we

do not take care of subnormals and special values (except zero) as results and exceptions

arising from the operations.

150

To get the exactly-rounded result of any operation, up to three extra mantissa bits

– guard bit, round bit and sticky bit – are needed in addition to the bits provided by

the standard format. At the stage where the result is rounded, these extra bits of the

result and the sign of the result (in the case of round-towards-up/down) are analyzed

to perform the rounding. Of the four rounding modes, round-to-zero is the simplest

to implement. It is almost equivalent to truncating the result rather than rounding it.

A major complication of rounding modes such as round-to-nearest is that it may result

in an extra 1 being added to the least significant digit of the result. Propagating the

carry from this increment potentially requires O(eb + mb) additional gates. Although our

implementation supports both round-round-to-nearest and round-to-zero, we confine

ourselves to round-to-zero throughout this chapter.

For each of the following operators, we present a brief high-level description of the

operation, followed by a more detailed description of the algorithm we use to implement

it. Note that our goal is to minimize the gate count rather than minimizing hardware

circuit latency, and we therefore favour smaller software circuits with fewer gates. Let x

and y be the floating-point operands represented by (Sx, Ex, Mx) and (Sy, Ey, My) respec-

tively. In IEEE 754 format, the first bit of the mantissa of a normalized number is always

1, and is therefore not stored. However, we need to consider both the number of stored

montissa bits mb and the total number of mantissa bits m = mb + 1. Both x and y are

normalized numbers.

Bitslice Floating-point Addition

Our bitslice floating-point addition/subtraction is implemented as the following steps:

1. Find the operand with maximum absolute value, and if necessary swap the operands

so the maximum is first. We do both steps in a single pass in O(eb + mb) time.

151

2. Produce sign of result in time O(1).

Sr =

{ Sx if |x| > |y|

Sy if |x| < |y|

Sx = Sy if |x| = |y| and Sz = 0

0 if |x| = |y| and Sz = 1

where Sz = Sx
⊕

Sy.

3. Subtract exponents d = Ex − Ey in time O(eb).

4. Align the mantissa. Shift the mantissa of the operand with the smaller exponent

right by d positions. Each lane of the vector may be shifted by a different amount,

so a variable distance shifter is used, which takes O(mlog(m)) time.

5. Add/subtract mantissas. Some vector lanes may require addition, while others

require subtraction. We implement a fused add/subtract software circuit which

exploits common sub-expressions between the two, and takes O(m) time.

6. Normalization of result. There are three situations:

(a) The results may already be normalized.

(b) For addition, overflow can occur, in which case normalization increments the

exponent while shifting the mantissa right by one in O(m) time.

(c) In the case of subtraction, the result might have several leading zeros. In

this case, normalization shifts the mantissa left by a number of the positions

correspondingly to the number of leading zeros, and decrements the exponent

by the number of leading zeros. We count the leading zeros in O(mlogm)

time, and use the logarithmic shifter described in Section 7.4.1, which takes

O(mlogm) time.

7. Pack result with truncation towards zero in time O(1 + eb + mb).

Extra bits for rounding Our implementation supports the rounding mode round-to-

zero, which is almost the same as truncation. However, it is not quite the same. As

152

noted above, subtraction can create a result with leading zeros, which must be shifted

left so that the result is a normalized number. It is not sufficient to simply shift in zeros

on the left when normalizing the number. Instead, the subtraction must take account of

the lower bits of the number with the smaller exponent. We must track two extra bits

of mantissa in the result beyond those bits that are stored in the normal format, to take

proper account of these lower bits [Brumley and Page, 2011].

Bitslice Floating-point Multiplication

Our bitslice floating-point multiplication is implemented as the following steps:

1. Compute the sign of the result Sz = Sx
⊕

Sy in O(1) time.

2. Multiply mantissas. Multiplication of mantissas produces a magnitude P of 2m bits.

We adopt the unsigned integer multiplier described in Section 7.4.1. This multiplier

finishes in time O(m2).

3. Add exponents. In the biased representation, the addition of exponents is per-

formed as EB,z = EB,x + EBy − B, where B is the bias (2eb−1 − 1). For customizable

precision, we compute the bias for a given specification of precision and directly

put the value into bitslice vectors for computation. The time complexity is O(eb).

4. Normalization. Since 1 ≤ Mx, My < 2, the result of multiplication is in the range

[1, 4). Therefore, it might be necessary to normalize the result by shifting right by

one position and incrementing the exponent by one. The cost of normalization is

O(m + eb).

5. Pack result with truncation towards zero in time O(1 + eb + mb).

Bitslice Floating-point Division

Our bitslice floating-point division is implemented as the following stages:

1. Compute the sign of the result Sz = Sx
⊕

Sy in O(1)time.

153

2. Compare and shift. The normalization step depends on the range in the repre-

sentation of the mantissas. Since 1 ≤ Mx, My < 2, the result of division is in the

range (1/2, 2). If the the value is less than 1, normalization is required, and is

implemented by a left shift of one position and decrement of the exponent. Given

2Mx/My ∈ (1, 4) ⊂ [1, 4], 2Mx/My · 2−c ∈ [1, 2) provided c satisfies

c =
{

0 if Mx < My

1 if Mx ≥ My

Therefore, to avoid a separate normalization after mantissa division, we first check

whether Mx < My. If Mx < My, we directly shift Mx left by one position, and set

c to 1, which will be used in the exponent subtraction. The cost of comparison is

O(eb + mb) and a conditional shift by the constant 1 is O(m).

3. Subtract exponents. In the biased representation, the subtraction of exponents is

performed as EB,z = EB,x − EBy + B, where B is the bias 2eb−1− 1. When c in Step 2

is 1, it means we need to decrement exponent by one [Muller et al., 2010]. The cost

is O(eb).

4. Divide mantissas. We adopt the restoring division algorithm with a complexity of

O(m2), which is the simplest digit-recurrence algorithm [Muller et al., 2010].

5. Pack result with truncation towards zero in time O(1 + eb + mb).

7.6 Code Generator and Optimization

7.6.1 Code Generation Framework

Software floating-point libraries (e.g., Berkeley Softfp [Hauser, 2017]) are usually di-

rectly implemented in the C/C++ language. This approach works well for the standard

floating-point types (FP32 or FP64) because there are only a couple of different types to

support. In contrast our BFP vector types can use a fully-customized number of expo-

nent and mantissa bits, so we need to support an unbounded number of BFP precision

levels. In addition, we need minimize the number of logic operations required by each

154

floating-point operation in the specified precision.

Ideally, we would be able to write our floating-point operators in simple C, such as

the bitslice adder in Figure 7-2 and let the compiler generate highly optimized code for

the particular data size. However, we found that standard compilers do not optimize

these operators as much as we need. There are a number of problems:

∙ Pointer aliasing. Arrays are often passed around with pointers and in general

pointer aliasing is a hard problem for compilers.

∙ Loop unrolling. Most of our operators benefit from full loop unrolling, but compil-

ers will not consistently unroll them.

∙ Elimination of memory access. We represent our bitslice vector types as arrays, but

when operating on them we would like to keep intermediate values in registers.

In principle compilers can promote array elements to scalar variables using array

scalarization [Bacon et al., 1994][Gao et al., 1993], but current compilers such as

GCC and LLVM do not perform this optimization on our code.

∙ Boolean Expression Optimization. Compilers optimize boolean expressions with

boolean identities, such as De Morgan’s laws. However, we found that existing

compilers do not optimize logical expressions as effectively as specific logic opti-

mization tools.

To overcome these limitations we have constructed a program generator that emits cus-

tomizable precision BFP operators. Our code generator is a very simple one, but it allows

us to generate efficient code for our operators. Our code generation framework takes the

implementation of floating-point operations on bitslice vectors with our predefined bit-

slice vector library. However, when executing the simple C/C++ code we overload the

bitwise operators to emit to file a record of each operation as it executes. This gives us a

trace of all bitwise operations executed when performing the operator, with loops fully

unrolled, calls to sub-operators inlined, and all accesses to intermediate results converted

to scalar variables.

This simple tracing approach works because the code to implement our bitslice op-

erators contains no conditional statements. The only control flow is on the number of

155

loop iterations, which is constant for a given BFP type. The generated file consists of a

pure combinational circuit, built from simple boolean operators such as and, or and xor.

The resulting logic operations are passed into a logic optimizer to apply advanced logic

optimization used in hardware synthesis.

7.6.2 Logic Optimization

For logic optimization, we embed a popular and widely-used synthesis and verification

tool – Berkeley ABC [Berkeley Logic Synthesis and Verification Group, 2017] [Brayton

and Mishchenko, 2010] – in our code generation framework. ABC is software system

for synthesis and verification of binary sequential logic circuits in synchronous hardware

designs. ABC includes scalable logic optimization based on and-inverter graphs (AIGs),

optimal-delay DAG-based technology mapping for look-up tables and standard cells,

and some innovative algorithms for sequential synthesis and verification. Compared to

other systems for logic synthesis and optimization (e.g., SIS [Sentovich et al., 1992], VIS

– Verification Interacting with Synthesis [Brayton et al., 1996], MVSIS– multivalued SIS),

the ABC synthesis tool uses simple data structure — two input ANDs and Inverters, and

transforms logic network by rewriting AIGs.

x1 x2 x3

𝑥1 ∙ 𝑥2+𝑥2 ∙ 𝑥3

AND

INVERT

Figure 7-6: AIG representation of boolean network

AIG provides a number of optimization and verification layers, and we use its circuit

optimizations for combinatorial logic. For a given boolean network, ABC converts it into

an AIG. For example, for the given boolean expression f = x1 · x2 + x2 · x3, the equiv-

alent logic expression in terms of ANDs and Inverters is f = ((x1 · x2)′ · (x2 · x3)′)′ and

156

the corresponding AIG is shown in Fig. 7-6. Using AIG representation, ABC reduces the

AIG size by choosing AIG sub-graphs rooted at a node and replacing with pre-computed

smaller subgraphs, preserving functionality at root node. AIG rewriting selectively col-

lapses, refactors and balances AIGs with the aim of reducing the number of AIG nodes

(logic operations) and number of logic levels (delay) [Mishchenko et al., 2006a]. When

AIG rewriting is complete, ABC can map the resulting AIG to a set of hardware “stan-

dard cells”. These standard cells can be the lookup tables found in FPGAs, or simple

boolean gates.

ABC can take a logic network in simple gate-level Verilog as input, and output the

mapped results in Verilog. Verilog is a hardware description language (HDL) used to

model electronic systems [Thomas and Moorby, 1996]. To integrate ABC into our code

generation framework, we need to transform our bitwise bector implementation in C

language to gate-level Verilog, and convert the output of ABC in Verilog to C code. Our

code generator first executes the implementation of floating-point operations on bitslice

vectors to collect all the logical operations. These resulting logic operations are rewritten

in Verilog. The inputs and outputs of a floating-point operation are mapped to input and

output parameters of a Verilog function. All other intermediate variables are mapped to

wire variables.

To generate C code from ABC, we define all the logic operations supported by the

target processor as standard cells, and put them in a combinational gate specification

.genlib file. We use ABC to map the optimized logic network in the form of AIGs to

our defined standard cells. We modified the code generation of ABC so that for each

logic operation, it emits a C assignment statement with the computation in the form of

macros which represents the standard cells. For example, for our 4-bit unsigned integer

multiplication, the output of ABC is shown in Fig. 7-7.

In addition to ABC’s powerful logic optimization, the specification of standard cells

provides an efficient way to utilize more complex bitwise logic instructions provided by

the target processor. For the example in Fig. 7-7, ANDNOT2X1 represents the unique

bitwise logical “andnot” instruction in the Intel processor. Given this instruction as a

standard cell, with the optimal-delay DAG mapping based on k-feasible cuts, ABC is able

to select and generate corresponding C macros. Suppose we use SIMD integer m256i

157

1 BFP_ELEM_TYPE n14, n15, n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27,

n28,

2 n30, n31, n32, n33, n34, n35, n36, n37, n38, n39, n40, n41, n42, n43,

3 n44;

4 result_0 = AND2X1 (b_0, a_0);

5 n14 = AND2X1 (b_0, a_1);

6 n15 = AND2X1 (b_1, a_0);

7 result_1 = XOR2X1 (n15, n14);

8 n17 = INVX1 (b_1);

9 n18 = INVX1 (a_0);

10 n19 = ANDNOT2X1(n18, n14);

11 n20 = INVX1 (a_1);

12 n21 = AND2X1 (b_0, a_2);

13 n22 = XOR2X1 (n21, n20);

14 n23 = XOR2X1 (n22, n19);

15 n24 = OR2X1 (n23, n17);

16 n25 = ANDNOT2X1(b_1, n21);

17 n26 = ANDNOT2X1(n25, n24);

18 n27 = INVX1 (b_2);

19 n28 = OR2X1 (n27, n18);

20 result_2 = XOR2X1 (n28, n26);

21 n30 = ANDNOT2X1(n26, a_0);

22 n31 = OR2X1 (n30, n20);

23 n32 = ANDNOT2X1(n31, b_2);

24 n33 = OR2X1 (n28, n26);

25 n34 = ANDNOT2X1(n33, n20);

26 n35 = OR2X1 (n34, n32);

27 n36 = AND2X1 (b_0, a_3);

28 n37 = ANDNOT2X1(n14, a_2);

29 n38 = ANDNOT2X1(a_2, a_1);

30 n39 = AND2X1 (n38, result_0);

31 n40 = OR2X1 (n39, n37);

32 n41 = ANDNOT2X1(n17, n40);

33 n42 = XOR2X1 (n41, n36);

34 n43 = XOR2X1 (n42, n35);

35 n44 = AND2X1 (b_3, a_0);

36 result_3 = XOR2X1 (n44, n43);

Figure 7-7: Output of ABC logic optimization for a 4-bit unsigned integer multiplication.
AND2X1, OR2X1, XOR2X1, ANDNOT2X1, INVX1 are C macros for logic instructions
supported by the processor.

158

in Intel AVX-2 as the BFP ELEM TYPE, the code generated by the compiler contains

45 instructions. Without ANDNOT2X1, the generated code will have 49 instructions.

The saving of four instructions due to ANDNOT2X1 already can reduce the number of

operations for the given simple operation on bitslice vectors by 8%. When it comes to

large operations such as floating-point multiplication and division, as demonstrated in

Section 7.7, this architecture aware logic optimization and mapping in ABC can yield

significant performance improvement.

The output of the logic optimization is a single C function without any control flow

statements (e.g., if, for loops), and compiled by the compiler for the target architecture

to generate a library. All intermediate values in the C code generated by our modified

ABC are stored in scalar local variables, and we rely on the C compiler to allocate these

variables to registers or memory locations. Register pressure in our generated code is

high, because an intermediate bitslice vector with n bits of precision requires n separate

scalar variables. Our code generation framework in this chapter depends on the chosen

compiler for efficient register allocation and instruction scheduling.

7.7 Experimental Evaluation

7.7.1 Experiment Methodology

We evaluated the performance of our BFP operations on a Linux platform with an In-

tel(R) Core(TM) i7-4770 (Haswell) CPU, which supports AVX-2 SIMD instructions. For

each test, we compared the performance of operations on bitslice vectors generated from

our code generator with and without advanced logic optimization against the equivalent

operation on data in standard representations – unsigned integer and single precision

floating-point. For both we use Clang/LLVM 3.8 as the back-end compiler with compi-

lation options -std=c99 -march=core-avx2 -O3 -fno-vectorize -fno-slp-vectorize.

7.7.2 Performance of Building Blocks

We first evaluated the performance of three building blocks – unsigned integer addition,

subtraction, and multiplication that multiplies two n bit numbers producing a n bit num-

159

ber. For each building block, we present the performance with input data in a range of

bit sizes from 4 to 32. We also evaluate four different underlying machine-word types

that are used to construct our software bitslice vectors: unit32 t, unit64 t, m128i (Intel

SSE 128-bit word), and m256i (Intel AVX 256-bit word). The number of lanes in each of

our bitslice vectors is determined by the number of bits in the underlying machine word.

For example, we use unit64 t to construct vectors with sixty-four lanes. To construct a

vector of sixty-four lanes with bit size of 4-bits, we need four unit64 t values.

To evaluate the relative performance of the different types, we use a loop with a

power-of-two number of iterations which performs the operation, such as addition or

multiplication, on two input arrays and produces a result array. Our baseline is the

amount of time needed by a loop which performs the operation in the scalar 32-bit

integer or floating-point implemented natively by the hardware. The performance of

each of the bitslice vector types is based on them performing the operation on arrays

in bitslice vector format. The bitslice vector types that are based on wider underlying

machine types (e.g., unit64 t as compared to unit32 t) have more bitwise-parallel vector

lanes, and so complete the benchmark loop more quickly.

As shown in Figure 7-8 and Figure 7-9, for all bit sizes, unsigned integer addition and

subtraction on bitslice vectors with m256i SIMD integer types (256-bit wide) are able to

outperform hardware scalar integer addition/subtraction on data in unit32 t. The main

reason is the large amount of bitwise parallelism available in the m256i type. How-

ever, for addition and subtraction even bitslice vectors based on unit32 t provide enough

bitwise parallelism to be competitive up to 15 bits of precision. For unsigned integer

subtraction, the logic optimization in our code generator can deliver slight performance

improvement depending on the integer types of bitslice vectors. In contrast, logic opti-

mization significantly improves the performance of unsigned integer multiplication, as

depicted in Figure 7-10. However, as the bit size increases, the costs of multiplication on

bitslice vectors become prohibitive.

7.7.3 Performance of BFP Operations

We evaluated the performance of each BFP operation with varying precision up to 28

bits. Floating-point formats with 8 bits to 15 bits use an exponent of four bits. For

160

 0

 5

 10

 15

 20

 25

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

S
p

e
e

d
u

p
s
 o

v
e

r
O

p
e

ra
ti
o

n
 o

n
 u

in
t3

2
_

t

Number of Bits

TEST_ADD_INT

baseline
uint32_t

uint32_t + ABC opt
uint64_t

uint64_t + ABC opt
__m128i

__m128i + ABC opt
__m256i

__m256i + ABC opt

Figure 7-8: Performance of unsigned integer addition with bit sizes from 4 to 32.

 0

 5

 10

 15

 20

 25

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

S
p

e
e

d
u

p
s
 o

v
e

r
O

p
e

ra
ti
o

n
 o

n
 u

in
t3

2
_

t

Number of Bits

TEST_SUB_INT

baseline
uint32_t

uint32_t + ABC opt
uint64_t

uint64_t + ABC opt
__m128i

__m128i + ABC opt
__m256i

__m256i + ABC opt

Figure 7-9: Performance of unsigned integer subtraction with bit sizes from 4 to 32.

161

 0

 5

 10

 15

 20

 25

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

S
p

e
e

d
u

p
s
 o

v
e

r
O

p
e

ra
ti
o

n
 o

n
 u

in
t3

2
_

t

Number of Bits

TEST_MUL_INT

baseline
uint32_t

uint32_t + ABC opt
uint64_t

uint64_t + ABC opt
__m128i

__m128i + ABC opt
__m256i

__m256i + ABC opt

Figure 7-10: Performance of unsigned integer multiplication with bit sizes from 4 to 32.

example, 15-bit floating-point has 1 sign bit, 4 bit exponent bits and 10 mantissa bits.

Similarly, from 17-bit to 28-bit floating-point, they all have the same 5-bit exponent as

16-bit floating-point, which is also known as half-precision in the IEEE 754 floating-point

standard.

As discussed in Section 7.5, to reduce the cost of handling five types numbers and

different round methods defined in IEEE 754 standard, our BFP operations adopt round-

to-zero as the rounding method. Figure 7-11 depicts the performance of BFP addition,

and Figure 7-12 and Figure 7-13 present the performance of BFP multiplication and divi-

sion, respectively. As we can see, the performance of our BFP operations is competitive

with the scalar single precision floating-point in hardware when the precision is below

around 16 bits, and when a sufficiently wide underlying data type is available.

Our results show that bitslice vectors are not competitive when the precision becomes

higher. Nonetheless, we believe that bitslice vectors fill an important niche in the repre-

sentation of numeric data. The standard types provided by general-purpose processors

provide a very limited range of sizes and precisions. In contrast, bitslice vectors pro-

vide a solution that is effective for a case that standard representations do not deal well

with: customized numeric types with low precision. In particular, our BFP operations

162

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S
p

e
e

d
u

p
s
 o

v
e

r
O

p
e

ra
ti
o

n
 o

n
 f

p
3

2

Number of Bits

baseline
uint32_t

uint32_t + ABC opt
uint64_t

uint64_t + ABC opt
__m128i

__m128i + ABC opt
__m256i

__m256i + ABC opt

Figure 7-11: Performance of bitslice floating-point addition/subtraction with bit sizes
from 8 to 28.

 0

 1

 2

 3

 4

 5

 6

 7

 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S
p

e
e

d
u

p
s
 o

v
e

r
O

p
e

ra
ti
o

n
 o

n
 f

p
3

2

Number of Bits

baseline
uint32_t

uint32_t + ABC opt
uint64_t

uint64_t + ABC opt
__m128i

__m128i + ABC opt
__m256i

__m256i + ABC opt

Figure 7-12: Performance of bitslice floating-point multiplication with bit sizes from 8 to
28.

163

 0

 5

 10

 15

 20

 25

 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S
p

e
e

d
u

p
s
 o

v
e

r
O

p
e

ra
ti
o

n
 o

n
 f

p
3

2

Number of Bits

baseline
uint32_t

uint32_t + ABC opt
uint64_t

uint64_t + ABC opt
__m128i

__m128i + ABC opt
__m256i

__m256i + ABC opt

Figure 7-13: Performance of bitslice floating-point division with bit sizes from 8 to 28.

can be used in approximate computing to explore the precision required by the appli-

cation without resorting to any dedicated hardware. Indeed one important use case for

bitslice vectors may be emulating non-standard precisions for the design of approximate

computing accelerators.

The width of integer types used for bitslice vectors plays a critical role in the perfor-

mance of BFP operations. Because a wider integer data type such as m256i in Intel

AVX-2 with 256 bits allows more data items being processed in parallel by a BFP opera-

tion. Processors from supercomputers to embedded systems are inclined to have wider

and wider SIMD vectors. For example, Intel Xeon PHI coprocessors give support for 64

way 8-bit SIMD vectors. This architecture design trend of wider SIMD vectors will trans-

late into improved bitslice vector performance with customizable precision, alongside

the performance improvements to standard precision operations with wider vectors.

7.7.4 Performance of Real-world Applications

We evaluated the combinations of BFP operations in four real-world computational ker-

nels as follows:

164

∙ BLAS-1 operations:

– xSCALE, which computes x ← αx;

– xAXPY, which computes y← αx + y;

∙ BLAS-2 operation: xGEMV, the matrix × vector multiplication, which calculates

y = Ax + y;

∙ Stencil Computation: One-dimensional (1D) Blur, which performs a 3-point stencil

computation, Y[i] = (X[i] + X[i + 1] + X[x + 2])/3.

We present the performance of each computational kernel in BFP operations with bit

sizes between 8 and 16 bits. The BFP operations used in each application are optimized

by the advanced logic optimization in our code generator.

Figure 7-14 depicts the performance of xSCALE. This kernel performs a BFP multi-

plication but with a loop invariant scalar coefficient. Compared to a single BFP multi-

plication, the performance of xSCALE includes the cost of broadcasting a scalar value

into a bitslice vector. Despite the cost of on-the-fly data reorganization, xSCALE in BFP

operations still can achieve a speedup of up to 4.8 ×.

The performance of BLAS-1 xAXPY is illustrated in Figure 7-15. xAXPY combines a

BFP multiplication and a addition. Unlike xSCALE, we transformed the scalar coefficient

into a bitslice vector ahead of execution so that there is no extra overhead due to on-the-

fly data transformation.

Figure 7-16 presents the performance of BLAS-2 xGEMV. The input n× n matrix A in

column-major is represented by n bitslice vectors, where n is the size of the underlying

machine type used in the bitslice vectors; the input vector x has n elements organized

in a bitslice vector. xGEMV involves a addition reduction operation. Since we do not

support BFP horizontal addition, each element of x is first duplicated across a bitslice

vector and then is multiplied by a row of A, which is also a bitslice vector. The result of

multiplication is accumulated to a bitslice vector y. The performance shown contains the

cost of broadcasting a single data item in a bitslice vector.

The performance of 1D Blur is shown in Figure 7-17. It is not trivial to perform stencil

computation on bitslice vectors because the computation is not a pure “vertical” vector

165

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 7 8 9 10 11 12 13 14 15 16 17 18

S
p

e
e

d
u

p
s
 o

v
e

r
O

p
e

ra
ti
o

n
 o

n
 f

p
3

2

Number of Bits

baseline
uint32_t + ABC opt
uint64_t + ABC opt
__m128i + ABC opt
__m256i + ABC opt

Figure 7-14: Performance of BLAS-1 xSCALE in bitslice floating-point operations with
bit sizes from 8 to 16.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 7 8 9 10 11 12 13 14 15 16 17 18

S
p

e
e

d
u

p
s
 o

v
e

r
O

p
e

ra
ti
o

n
 o

n
 f

p
3

2

Number of Bits

baseline
uint32_t + ABC opt
uint64_t + ABC opt
__m128i + ABC opt
__m256i + ABC opt

Figure 7-15: Performance of BLAS-1 xAXPY in bitslice floating-point operations with bit
sizes from 8 to 16.

166

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 7 8 9 10 11 12 13 14 15 16 17 18

S
p

e
e

d
u

p
s
 o

v
e

r
O

p
e

ra
ti
o

n
 o

n
 f

p
3

2

Number of Bits

baseline
uint32_t + ABC opt
uint64_t + ABC opt
__m128i + ABC opt
__m256i + ABC opt

Figure 7-16: Performance of BLAS-2 xGEMV where y = 0 in bitslice floating-point oper-
ations with bit sizes from 8 to 16.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 7 8 9 10 11 12 13 14 15 16 17 18

S
p

e
e

d
u

p
s
 o

v
e

r
O

p
e

ra
ti
o

n
 o

n
 f

p
3

2

Number of Bits

baseline
uint32_t + ABC opt
uint64_t + ABC opt
__m128i + ABC opt
__m256i + ABC opt

Figure 7-17: Performance of 1D Blur in bitslice floating-point operations with bit sizes
from 8 to 16.

167

operation and instead requires values in the neighborhood. To solve this problem, we ap-

ply data realignment optimization on bitslice vectors. Data realignment is widely adopted

by automatic vectorization in compilers [Nuzman and Zaks, 2008]. To form a bitslice vec-

tor for X[j + 1:j + 1+sizeof(BFP ELEM TYPE)], where j is a multiple of sizeof(BFP -

ELEM TYPE), we shift the bitslice vector B0 representing X[j:j+sizeof(BFP ELEM -

TYPE)] right by one bit, and then blend the first bit of the bitslice vector B1 for X[j+sizeof(BFP -

ELEM TYPE):j + 2×sizeof(BFP ELEM TYPE)] at the last bit of B0. The performance

shown includes the cost of data realignment. Despite this kind of costly data transfor-

mation, our BFP operations are still able to deliver significant performance for small

precision.

7.8 Related Work

The closest work to our bitslice vector computing is bit-serial parallel processing systems.

Examples of such systems include the MPP [Batcher, 1980], DAP [Active Memory Tech-

nology Inc., 1988] and CM-2 [Thinking Machine Corp., 1989][Hillis, 1992]. These SIMD

architectures are built using one-bit processors, which is designed for processing data

stream bit by bit [Batcher, 1982]. Smitely and Iobst investigated bit-serial SIMD program-

ming and related optimization techniques on both CM-2 and the vector parallel processor

Cray-2 [Smitley and Iobst, 1991]. In contrast, our work takes advantage of the wide ma-

chine words available on modern general-purpose processors with SIMD extensions. To

the best of our knowledge, we are the first proposing a software approach to customiz-

able data precision using bitslice representations and related compiler optimizations on

general-purpose processors with SIMD extensions.

Fisher et al. propose a model of sub-word bitwise parallelism which they refer to

as SIMD within a register (SWAR) [Fisher and Dietz, 1998] . For example, three 10

bit integers can be packed into a single 32-bit integer. With appropriate use of explicit

spacer bits, or with additional operations, it is possible to simultaneously operate on

all three of the 10-bit subword values using 32-bit operations. This approach works

well for integer addition and simple bitwise operations, but less well for more complex

integer operations and cannot be used to implementing floating-point operatoions. An

168

advantage of the SWAR approach is that it can make use of existing hardware circuits,

at least for addition and subtraction. In contrast, we build our circuits entirely from

scratch using bitwise logical operators, which allows us to implement arbitrary circuits

but makes less use of existing hardware.

There are various software implementations of the IEEE 754 standard for binary

floating-point arithmetic, such as SoftFloat [Hauser, 2017] and FLIP [Jeannerod et al.,

2010]. FLIP is a C library that provides a software support for binary-32 floating-point

arithmetic on integer processors. Compared to SoftFloat, FLIP is particularly targeted

at DSP processors, and has been validated on VLIW integer processors (e.g., the ST200

family from STMicroelectronics). However, both libraries are only capable of perform-

ing fixed-precision floating-point arithmetic such as 32-bit single-precision and 64-bit

double-precision. In contrast, our BFP operations support customizable bit precision.

FloPoCo is a generator of customizable precision floating-point arithmetic cores for FP-

GAs [de Dinechin and Pasca, 2011]. Our BFP operations provide arbitrary precision but

using a software approach.

Some programs may not need the dynamic range or the precision of FP arithmetic.

For these programs, it is a general design practice to translate the floating-point arith-

metic into a suitable finite fixed point presentation [Tong et al., 2000]. However, some

programs may still require 6 bits or more in the exponent to preserve a reasonable degree

of accuracy. In other words, these applications need more than the typical 32 bits of pre-

cision that fixed point arithmetic offers. Therefore, support for small, irregularly sized

floating-point makes our bitslice vector types a perfect fit for this kind of application.

We support just enough precision by providing vector types with exactly the right

number of bits. Existing research on FPGAs shows that even greater benefits from

data type customization are possible. For example, when implementing a multiply-

accumulate unit, performing the multiply in floating-point and the addition in a wide

fixed-point type can improve accuracy while reducing hardware cost [de Dinechin et al.,

2008]. Exactly the same approach can be implemented with our custom bitslice vector

types.

Lowering energy consumption is one of the major benefits of approximate computing.

Disciplined approximate programming asks programmers to specify which parts of a

169

program can be computed approximately. The approximate computation thus reduces

the energy cost. An ISA extension is put forward to provide approximate operations and

storage [Esmaeilzadeh et al., 2012]. With this extension, hardware has freedom to save

energy at the cost of accuracy. Our customizable precision BFP vector types and related

operations can serve as a software ISA for approximate computation.

Existing research on approximate computing has proposed a large variety of circuits

for approximate operators, which compute an approximation of an operator such as

multiplication [Shao and Li, 2014]. These approximate operators significantly reduce the

number of gates needed for multiplication or addition [Liu et al., 2014]. A promising

area of future research is to investigate the implementation of approximate arithmetic

operators in bitslice vector format.

The bit plane slicing [Cho et al., 2005] image format stores images in bitslice format,

where the most significant bit of each pixel is stored in one group, followed by the next

most significant bit of each pixel. When an image is transferred over a communications

link using bit plane format, the most significant bits are sent first. This allows an increas-

ingly detailed approximation of the image to be displayed, as successive bits of each pixel

are transferred. Our bitslice vector operators offer a mechanism for computing directly

on bit plane format images without converting back to a standard format.

7.9 Summary

In this chapter, we propose an new approach to vector computing based on bitslice vector

formats and building arithmetic operators from bitwise instructions on general-purpose

processors with SIMD extensions. This approach allows us to support a vector process-

ing model that can operate on data with an arbitrary number of bits. Thus, we can create

vectors of integer or floating-point types of five, nine, eleven or any number of bits. This

ability to customize the precision of vector data exactly to the application creates new

opportunities for optimization. In particular, it allows data precision optimizations on

general-purpose processors with SIMD extensions that were previously available primar-

ily on custom hardware. In addition, matching precision to the application may reduce

the memory footprint of applications, which may in turn reduce memory traffic and the

170

energy required for data movement [Dally et al., 2008].

The complexity of the arithmetic operators is related to the number of bits of precision

in the data types. On the other hand, all our bitslice vector types benefit from significant

bit-level parallelism, as the same bitwise operation is applied in parallel to all 32, 64

or 128 lanes of the vector. Our experiments show that for larger precision, the costs of

arithmetic operators become prohibitive. However, for smaller data types the benefits of

exploiting bitwise parallelism across a vector of values can outweigh the costs of bitwise

arithmetic. To our knowledge we are the first to propose and evaluate general-purpose

bitslice vector representations on general-purpose processors with SIMD extensions. We

believe that it is a promising approach for approximate computing using just enough

precision.

171

THIS PAGE INTENTIONALLY LEFT BLANK

172

Chapter 8

Conclusion and Final Thoughts

In this thesis, we have demonstrated several data-layout oriented compilation techniques

for efficient vectorization. Our semi-automatic data layout transformation in Chapter 3

can help users to easily change their program, and exploit the best possible data layout

in terms of vectorization. The vectorization based on hyper loop parallelism in Chapter 4

provides a way to take advantage the relationship between data layout and computation

structure. The experimental results demonstrated that this vectorization technique can

yield significant performance gain. In addition, this technique is of great use to boost the

memory performance on CUDA GPUs as demonstrated in Chapter 5.

We showed pioneering work that uses classic loop vectorization techniques to deal

with nested thread-level parallelism on CUDA GPUs in Chapter 6. As loop vectorization

prioritizes vectorizing loops with contiguous memory access patterns, it is of great help

to achieve efficient mapping between loop parallelism and the deep execution hierarchy

of CUDA GPUs.

The last but not the least work is our new bitslice vector computing for customizable

arithmetic precision on general-purpose processors with SIMD extensions in Chapter 7.

Our proposed bitslice vector computing not only breaks the limit of hardware arithmetic

precision but also achieves great performance. It demonstrates the great power of logic

optimization widely used in hardware synthesis in optimizing C/C++ code with a large

amount of logic operations.

173

8.1 Future Work

Despite the results achieved by our proposed data layout oriented compilation tech-

niques, there are several directions for future work.

8.1.1 Integrate Semi-automatic Data Layout Transformation into Per-

formance Auto-tuning Systems

One possible extension to our semi-automatic data layout transformation is to integrate

our compiler directive based method into an existing program transformation framework

(e.g., POET [Nesterenko et al., 2015]) . Despite a large variety of advanced compiler op-

timizations in modern compilers, it is of great difficulty to have a single sequence of

optimizations that can achieve good performance for any kinds of applications. This is

because compiler can only perform conservative optimizations without sufficient under-

standing of the input code.

To alleviate the difficulty, two general approaches are widely adopted: 1) we can keep

the sequence of optimizations fixed in the compiler, but try to figure out a combination

of optimizations that yield the best performance for the given program with the help of a

performance auto-tuning system; 2) we can annotate the program with some directives to

direct the compiler to perform the optimizations as we specified. For example, POET is a

program transform system allowing user to write scripts to control the desired sequence

of loop transformations. The compiler directives used in our semi-automatic data layout

transformation can be easily integrated into such program transformation systems. This

gives another alternative when search for the best-performing solutions.

8.1.2 Seamless Data Layout Transformations for C++ Code

When writing C++ code with the object-oriented design, it is more intuitive to model a

real world entity as an object that are represented by user defined data types like struct or

class. A collection of such entities will become an array of structures that are not friendly

to vectorization. Efficient vectorization requires changes not only to the data structures,

which breaks the object-oriented design, but also to the existing C++ algorithms. Intel

SIMD data layout template is a possible solution to this problem [Nimisha R., 2016]. It

174

uses a special C++ template class as a replacement for C++ arrays, and the template class

allows different possible data layouts. However, it can only handle a small set of data

layout transformations. Our data layout transformation directives are capable of express-

ing different forms of data layout. It would be a nice extension to our semi-automatic

data layout transformation if we can support seamless data layout transformation for

C++ code.

8.1.3 A Source-to-source Vectorizing Compiler for Bitslice Vectors

In this thesis, we put forward bitslice vector types and compose arithmetic operators with

primitive logic operations on bitslice vectors. But it is tedious and error-prone for users

to explicitly transform their existing code into bitslice vector operations. One possible

extension to our current work is to provide a source-to-source vectorizing compiler. This

compiler would not only vectorize loops with arithmetic operators composed of bitslice

vector operations, but would also perform necessary data layout transformation from

conventional array layout to bitslice vectors. This would greatly simplify the program-

ming of bitsclice vectors. Thus, it would allow researchers to more easily evaluate bitslice

vectors on a variety of approximate computing problems.

8.1.4 Exploit More Logic Optimization for Bitslice Vector Operators

With the advance of instruction sets in modern processors, more advanced logic op-

erations have become available to perform complex computations. For example, In-

tel AVX512 supports user-defined ternary bitwise operators based on look-up tables

(LUT) [Intel, 2016]. As the loop-up table can be used to describe different patterns of

ternary logic operations, it is not obvious how to automatically take advantage of such

instructions in compilers. In order to use such instructions for our bitslice vector op-

erations, we can define all the possible cells with ternary bitwise logical operators, and

use ABC’s standard cell mapping techniques to map an optimized logic graph built with

and-inverter graphs to such cells.

We can also utilize the results in the form of LUTs from ABC. For instance, for the

4-bit integer multiplication, with a 3-LUT mapping strategy, the output of ABC logic

175

1 BFP_DATA_AVX_TYPE n16, n18, n19, n20, n21, n22, n24, n25, n26, n27, n28, n29,

n30, n31;

2 assign n31 = a_0 & b_3;

3 assign n30 = a_0 & (n18 | n22);

4 assign n29 = (~b_2 | ~n30 | a_1) & (~b_2 | n30 | ~a_1);

5 assign n28 = a_3 & b_0;

6 assign n27 = a_1 & a_2 & b_0;

7 assign n26 = ~n27 & (n19 | ~n20);

8 assign n25 = ~n26 ^ (n28 ^ ~a_2);

9 assign n24 = b_1 ? n25 : ~n28;

10 assign result_3 = n31 ^ (n24 ^ n29);

11 assign n22 = a_2 & b_0 & ~b_1;

12 assign n21 = a_0 & b_2;

13 assign n20 = a_0 & a_1 & b_0;

14 assign n19 = a_1 ^ (~a_2 | ~b_0);

15 assign n18 = b_1 & (n19 | ~n20) & (~n19 | n20);

16 assign result_2 = n21 ^ (n18 | n22);

17 assign n16 = a_1 & b_0;

18 assign result_1 = ~n16 ^ (~a_0 | ~b_1);

19 assign result_0 = a_0 & b_0;

Figure 8-1: The customized output from ABC logic optimizer for the 4-bit integer multi-
plication with a 3-LUT mapping strategy.

optimizer is illustrated in Fig. 8-1. In this case, we do not need define all the possible cells

in advance. We can instead simply translate each LUT to a ternary logic instruction. As

there are several LUT mapping techniques [Mishchenko et al., 2006b], we need evaluate

and choose the best mapping method suitable for our bitslice vector operations.

8.2 Final Thoughts

In this thesis, we discussed several compilation techniques and a programming method

bitslice vectors to take advantage of the characteristics of different data layouts for better

utilization of the underlying SIMD instructions. But data layout is only one of the factors

that affects the efficiency of automatic vectorization techniques in compilers.

There has been extensive work on improving both loop vectorization and super-word

level parallelism vectorization to accommodate new SIMD instructions in modern proces-

sors. Maleki et al. reviewed the capabilities of several vectorizing compilers , and sum-

marized the solutions to the difficulties they encountered [Maleki et al., 2011]. However,

the advance of SIMD instructions imposes more challenges on vectorization techniques.

176

One of the great challenges comes from the increasingly wider SIMD widths. It is not

trivial to utilize wider SIMD instructions because it demands more SIMD parallelism to

feed the instruction. Take loop vectorization as an example; when the SIMD width gets

wider, if the old SIMD width is not available anymore, existing loops with small loop

trip counts may not be efficiently vectorized or not vectorized at all. Masked SIMD in-

structions are getting more and more popular in modern processors. Such instructions in

fact can give us a better way to vectorize the small loops with wider SIMD instructions.

However, none of the existing open-source compiler can so far perform such vectoriza-

tion.

Masked SIMD instructions can also be of great use to vectorize scalar wind-down

loops from loop vectorization, because sometimes the loop trip count is only 1 or 2

smaller than the SIMD width, still revealing enough SIMD parallelism. For example, if

the SIMD width is 2048, the scalar wind-down loop may have 2047 iterations. In this case,

vectorizing the loop with masked instructions should be better than either executing it as

a scalar loop or vectorizing it with a smaller SIMD width plus a scalar wind-down loop.

177

THIS PAGE INTENTIONALLY LEFT BLANK

178

Bibliography

[Acken et al., 1996] Acken, K., Irwin, M., and Owens, R. (1996). Power Comparisons
for Barrel Shifters. In Proceedings of the 1996 International Symposium on Low Power
Electronics and Design, ISLPED ’96, pages 209–212.

[Active Memory Technology Inc., 1988] Active Memory Technology Inc. (1988). AMT
DAP series technical overview.

[Anderson et al., 2015] Anderson, A., Malik, A., and Gregg, D. (2015). Automatic vector-
ization of interleaved data revisited. ACM Trans. Archit. Code Optim., 12(4):50:1–50:25.

[Bacon et al., 1994] Bacon, D. F., Graham, S. L., and Sharp, O. J. (1994). Compiler Trans-
formations for High-performance Computing. ACM Comput. Surv., 26(4):345–420.

[Bae et al., 2013] Bae, H., Mustafa, D., Lee, J.-W., Aurangzeb, Lin, H., Dave, C., Eigen-
mann, R., and Midkiff, S. P. (2013). The Cetus Source-to-Source Compiler Infrastruc-
ture: Overview and Evaluation. Int. J. Parallel Program., 41(6):753–767.

[Bailey et al., 1991a] Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L.,
Dagum, L., Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., Simon,
H. D., Venkatakrishnan, V., and Weeratunga, S. K. (1991a). The NAS Parallel Bench-
marks — Summary and Preliminary Results. In Proceedings of the 1991 ACM/IEEE Con-
ference on Supercomputing, Supercomputing ’91, pages 158–165, New York, NY, USA.
ACM.

[Bailey et al., 1991b] Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L.,
Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Simon, H. D., Venkatakrishnan, V.,
and Weeratunga, S. K. (1991b). The nas parallel benchmarks. Technical report, The
International Journal of Supercomputer Applications.

[Barik et al., 2010] Barik, R., Zhao, J., and Sarkar, V. (2010). Efficient selection of vec-
tor instructions using dynamic programming. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, pages 201–212,
Washington, DC, USA. IEEE Computer Society.

[Bastoul, 2004] Bastoul, C. (2004). Code generation in the polyhedral model is easier than
you think. In Proceedings of the 13th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’04, pages 7–16, Washington, DC, USA. IEEE Computer
Society.

[Batcher, 1982] Batcher, K. (1982). Bit-serial parallel processing systems. IEEE Transactions
on Computers, 31(5):377–384.

179

[Batcher, 1980] Batcher, K. E. (1980). Design of a massively parallel processor. IEEE
Transactions on Computers, C-29(9):836–840.

[Bauer et al., 2014] Bauer, M., Treichler, S., and Aiken, A. (2014). Singe: Leveraging Warp
Specialization for High Performance on GPUs. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’14.

[Berkeley Logic Synthesis and Verification Group, 2017] Berkeley Logic Synthesis and
Verification Group (2017). ABC: A System for Sequential Synthesis and Verification.

[Bertolli et al., 2014] Bertolli, C., Antao, S. F., Eichenberger, A. E., O’Brien, K., Sura, Z.,
Jacob, A. C., Chen, T., and Sallenave, O. (2014). Coordinating gpu threads for openmp
4.0 in llvm. In Proceedings of the 2014 LLVM Compiler Infrastructure in HPC, LLVM-HPC
’14, pages 12–21.

[Biham, 1997] Biham, E. (1997). A fast new DES implementation in software. In Biham,
E., editor, Fast Software Encryption, volume 1267 of Lecture Notes in Computer Science,
pages 260–272. Springer Berlin Heidelberg.

[Bocchino and Adve, 2006] Bocchino, Jr., R. L. and Adve, V. S. (2006). Vector LLVA: A
Virtual Vector Instruction Set for Media Processing. In the 2006 International Conference
on Virtual Execution Environments.

[Brayton and Mishchenko, 2010] Brayton, R. and Mishchenko, A. (2010). Computer Aided
Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings, chapter ABC: An Academic Industrial-Strength Verification Tool, pages
24–40. Springer Berlin Heidelberg.

[Brayton et al., 1996] Brayton, R. K., Hachtel, G. D., Sangiovanni-Vincentelli, A. L.,
Somenzi, F., Aziz, A., Cheng, S., Edwards, S. A., Khatri, S. P., Kukimoto, Y., Pardo,
A., Qadeer, S., Ranjan, R. K., Sarwary, S., Shiple, T. R., Swamy, G., and Villa, T. (1996).
VIS: A system for verification and synthesis. In Computer Aided Verification, 8th Interna-
tional Conference, CAV ’96, New Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings,
pages 428–432.

[Brumley and Page, 2011] Brumley, B. and Page, D. (2011). Bit-sliced binary normal basis
multiplication. In 2011 20th IEEE Symposium on Computer Arithmetic (ARITH), pages
205–212.

[Che et al., 2009] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H.,
and Skadron, K. (2009). Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing. In Proceedings of the 2009 IEEE International Symposium on Workload Characterization
(IISWC), IISWC ’09, pages 44–54.

[Che et al., 2011] Che, S., Sheaffer, J. W., and Skadron, K. (2011). Dymaxion: Optimiz-
ing Memory Access Patterns for Heterogeneous Systems. In Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis,
SC’11.

180

[Cho et al., 2005] Cho, C.-Y., Chen, H.-S., and Wang, J.-S. (2005). Smooth quality stream-
ing with bit-plane labeling. In Li, S., Pereira, F., Shum, H.-Y., and Tescher, A. G.,
editors, Visual Communications and Image Processing 2005, volume 5960, pages 2184–
2195.

[Cypher and Sanz, 1989] Cypher, R. and Sanz, J. L. C. (1989). SIMD architectures and
algorithms for image processing and computer vision. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 37(12):2158–2174.

[Dally et al., 2008] Dally, W. J., Balfour, J., Black-Shaffer, D., Chen, J., Harting, R. C.,
Parikh, V., Park, J., and Sheffield, D. (2008). Efficient embedded computing. Computer,
41(7):27–32.

[de Dinechin et al., 2008] de Dinechin, F., Detrey, J., Cret, O., and Tudoran, R. (2008).
When FPGAs Are Better at Floating-point Than Microprocessors. In Proceedings of the
16th International ACM/SIGDA Symposium on Field Programmable Gate Arrays, FPGA ’08,
pages 260–260.

[de Dinechin and Pasca, 2011] de Dinechin, F. and Pasca, B. (2011). Designing Custom
Arithmetic Data Paths with FloPoCo. IEEE Design & Test of Computers, 28(4):18–27.

[Dibyendu Das, 2012] Dibyendu Das, Soham Sundar Chakraborty, M. L. (2012). Experi-
ence with Partial SIMDization in Open64 Compiler Using Dynamic Programming. In
Open64 Workshop.

[Duan and Yang, 2016] Duan, J. and Yang, Y. (2016). Efficient virtual network embed-
ding for variable size virtual machines in fat-tree data centers. In 45th International
Conference on Parallel Processing, ICPP 2016, Philadelphia, PA, USA, August 16-19, 2016,
pages 1–10.

[Duncan, 1990] Duncan, R. (1990). A Survey of Parallel Computer Architectures. Com-
puter, 23(2):5–16.

[Eichenberger et al., 2004] Eichenberger, A. E., Wu, P., and O’Brien, K. (2004). Vectoriza-
tion for SIMD Architectures with Alignment Constraints. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementation, PLDI
’04.

[Ercegovac and Lang, 2004] Ercegovac, M. D. and Lang, T. (2004). Digital Arithmetic.
Morgan Kaufmann Oxford, San Francisco (Calif.).

[Esmaeilzadeh et al., 2012] Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D.
(2012). Architecture support for disciplined approximate programming. In Proceedings
of the 17th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2012, London, UK, March 3-7, 2012.

[Fisher and Dietz, 1998] Fisher, R. J. and Dietz, H. G. (1998). Compiling for SIMD Within
a Register. In 11th International Languages and Compilers for Parallel Computing Workshop
(LCPC’08).

181

[Flynn, 1972] Flynn, M. J. (1972). Some Computer Organizations and Their Effectiveness.
IEEE Trans. Comput., 21(9):948–960.

[Gao et al., 1993] Gao, G., Olsen, R., Sarkar, V., and Thekkath, R. (1993). Languages and
Compilers for Parallel Computing: 5th International Workshop New Haven, Connecticut,
USA, August 3–5, 1992 Proceedings, chapter Collective loop fusion for array contrac-
tion, pages 281–295. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Geva, 2011] Geva, R. (2011). Elemental functions: Writing data-parallel code in C/C++
using Intel Cilk Plus.

[Girbal et al., 2006] Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler,
M., and Temam, O. (2006). Semi-automatic Composition of Loop Transformations for
Deep Parallelism and Memory Hierarchies. Int. J. Parallel Program., 34(3):261–317.

[Grosser et al., 2012] Grosser, T., Größlinger, A., and Lengauer, C. (2012). Polly - per-
forming polyhedral optimizations on a low-level intermediate representation. Parallel
Processing Letters, 22(4).

[Han and Abdelrahman, 2009] Han, T. D. and Abdelrahman, T. S. (2009). hiCUDA: A
High-level Directive-based Language for GPU Programming. In Proceedings of 2Nd
Workshop on General Purpose Processing on Graphics Processing Units, GPGPU-2.

[Hauser, 2017] Hauser, J. (2017). The SoftFloat and TestFloat packages.

[Hennessy and Patterson, 2011] Hennessy, J. L. and Patterson, D. A. (2011). Computer
Architecture, Fifth Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 5th edition.

[Henretty et al., 2011] Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam,
J., and Sadayappan, P. (2011). Data Layout Transformation for Stencil Computations on
Short-Vector SIMD Architectures, pages 225–245. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[Hillis, 1992] Hillis, W. D. (1992). The Connection Machine. MIT Press.

[Hong et al., 2011] Hong, S., Kim, S. K., Oguntebi, T., and Olukotun, K. (2011). Accel-
erating CUDA Graph Algorithms at Maximum Warp. In Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, PPoPP ’11.

[Intel, 2016] Intel (2016). Intel Architecture Instruction Set Extensions Programming Ref-
erence.

[Ira Rosen and Zaks, 2007] Ira Rosen, D. N. and Zaks, A. (2007). Loop-aware SLP in
GCC. In Proceedings of GCC Developers Summit (GCC Developers Summit07).

[Jang et al., 2010] Jang, B., Mistry, P., Schaa, D., Dominguez, R., and Kaeli, D. (2010).
Data Transformations Enabling Loop Vectorization on Multithreaded Data Parallel
Architectures. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’10, pages 353–354, New York, NY, USA. ACM.

182

[Jang et al., 2011a] Jang, B., Schaa, D., Mistry, P., and Kaeli, D. (2011a). Exploiting Mem-
ory Access Patterns to Improve Memory Performance in Data-Parallel Architectures.
IEEE Trans. Parallel Distrib. Syst., 22(1).

[Jang et al., 2011b] Jang, B., Schaa, D., Mistry, P., and Kaeli, D. (2011b). Exploiting Mem-
ory Access Patterns to Improve Memory Performance in Data-Parallel Architectures.
IEEE Trans. Parallel Distrib. Syst., 22(1):105–118.

[Jeannerod et al., 2010] Jeannerod, C.-P., Mouilleron, C., Muller, J.-M., Revy, G., Bertin,
C., Jourdan-Lu, J., Knochel, H., and Monat, C. (2010). Techniques and Tools for Imple-
menting IEEE 754 Floating-point Arithmetic on VLIW Integer Processors. In Proceed-
ings of the 4th International Workshop on Parallel and Symbolic Computation, PASCO ’10,
pages 1–9.

[Karrenberg and Hack, 2011] Karrenberg, R. and Hack, S. (2011). Whole-function vec-
torization. In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’11, pages 141–150, Washington, DC, USA. IEEE
Computer Society.

[Kennedy and Allen, 2002] Kennedy, K. and Allen, J. R. (2002). Optimizing Compilers for
Modern Architectures: A Dependence-based Approach. Morgan Kaufmann Publishers Inc.

[Kennedy and Kremer, 1998] Kennedy, K. and Kremer, U. (1998). Automatic Data Layout
for Distributed-memory Machines. ACM Trans. Program. Lang. Syst., 20(4):869–916.

[Kerr et al., 2012] Kerr, A., Diamos, G., and Yalamanchili, S. (2012). Dynamic Compila-
tion of Data-parallel Kernels for Vector Processors. In Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimization, CGO ’12.

[Kim et al., 2015] Kim, H.-S., El Hajj, I., Stratton, J., Lumetta, S., and Hwu, W.-M. (2015).
Locality-centric Thread Scheduling for Bulk-synchronous Programming Models on
CPU Architectures. In Proceedings of the 13th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’15, pages 257–268.

[Kim and Han, 2012] Kim, S. and Han, H. (2012). Efficient SIMD Code Generation for Ir-
regular Kernels. In the 2012 Symposium on Principles and Practice of Parallel Programming,
PPoPP ’12.

[Kohn et al., 1995] Kohn, L., Maturana, G., Tremblay, M., Prabhu, A., and Zyner, G.
(1995). The visual instruction set (VIS) in UltraSPARC. In Compcon ’95.’Technologies
for the Information Superhighway’, Digest of Papers., pages 462–469.

[Kong et al., 2013] Kong, M., Veras, R., Stock, K., Franchetti, F., Pouchet, L.-N., and Sa-
dayappan, P. (2013). When Polyhedral Transformations Meet SIMD Code Generation.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, pages 127–138, New York, NY, USA. ACM.

[Larsen and Amarasinghe, 2000] Larsen, S. and Amarasinghe, S. (2000). Exploiting Su-
perword Level Parallelism with Multimedia Instruction Sets. In the 2000 Conference on
Programming Language Design and Implementation, PLDI ’00.

183

[Larsen et al., 2005] Larsen, S., Rabbah, R., and Amarasinghe, S. (2005). Exploiting vector
parallelism in software pipelined loops. In Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 38, pages 119–129, Washington,
DC, USA. IEEE Computer Society.

[Lee et al., 2014] Lee, H., Brown, K. J., Sujeeth, A. K., Rompf, T., and Olukotun, K. (2014).
Locality-Aware Mapping of Nested Parallel Patterns on GPUs. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-47, pages
63–74.

[Lee, 1995] Lee, R. B. (1995). Accelerating Multimedia with Enhanced Microprocessors.
IEEE Micro, 15(2):22–32.

[Lee and Eigenmann, 2010] Lee, S. and Eigenmann, R. (2010). OpenMPC: Extended
OpenMP Programming and Tuning for GPUs. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analy-
sis, SC ’10, pages 1–11, Washington, DC, USA. IEEE Computer Society.

[Lee et al., 2009] Lee, S., Min, S.-J., and Eigenmann, R. (2009). OpenMP to GPGPU: A
Compiler Framework for Automatic Translation and Optimization. In Proceedings of
the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’09, pages 101–110.

[Lee and Vetter, 2014] Lee, S. and Vetter, J. S. (2014). OpenARC: Extensible OpenACC
Compiler Framework for Directive-based Accelerator Programming Study. In Proceed-
ings of the First Workshop on Accelerator Programming Using Directives, WACCPD ’14,
pages 1–11.

[Liu et al., 2014] Liu, C., Han, J., and Lombardi, F. (2014). A Low-power, High-
performance Approximate Multiplier with Configurable Partial Error Recovery. In
Proceedings of the Conference on Design, Automation & Test in Europe, DATE ’14, pages
95:1–95:4.

[Liu et al., 2012] Liu, J., Zhang, Y., Jang, O., Ding, W., and Kandemir, M. (2012). A
compiler framework for extracting superword level parallelism. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, pages 347–358, New York, NY, USA. ACM.

[Majeti et al., 2014] Majeti, D., Barik, R., Zhao, J., Grossman, M., and Sarkar, V. (2014).
Compiler-Driven Data Layout Transformation for Heterogeneous Platforms. In Euro-
Par 2013: Parallel Processing Workshops. Springer Berlin Heidelberg.

[Maleki et al., 2011] Maleki, S., Gao, Y., Garzarán, M. J., Wong, T., and Padua, D. A.
(2011). An Evaluation of Vectorizing Compilers. In Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation Techniques, PACT ’11, pages 372–382,
Washington, DC, USA. IEEE Computer Society.

[Melax, 2012] Melax, S. (2012). 3D Vector Normalization Using 256-Bit Intel R○ Advanced
Vector Extensions. Intel Developer Zone.

184

[Mishchenko et al., 2006a] Mishchenko, A., Chatterjee, S., and Brayton, R. (2006a). DAG-
aware AIG Rewriting a Fresh Look at Combinational Logic Synthesis. In Proceedings
of the 43rd Annual Design Automation Conference, DAC ’06, pages 532–535.

[Mishchenko et al., 2006b] Mishchenko, A., Chatterjee, S., and Brayton, R. (2006b). Im-
provements to Technology Mapping for LUT-based FPGAs. In Proceedings of the 2006
ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays, FPGA ’06,
pages 41–49, New York, NY, USA. ACM.

[Muchnick, 1997] Muchnick, S. S. (1997). Advanced Compiler Design and Implementation.
Morgan Kaufmann.

[Muller et al., 2010] Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P.,
Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., and Torres, S. (2010). Handbook of
Floating-Point Arithmetic. Birkhäuser Boston.

[Nesterenko et al., 2015] Nesterenko, B., Wang, W., and Yi, Q. (2015). Interactive Com-
position of Compiler Optimizations. In Languages and Compilers for Parallel Computing -
28th International Workshop, LCPC 2015, Raleigh, NC, USA, September 9-11, 2015, Revised
Selected Papers, pages 91–105.

[Nimisha R., 2016] Nimisha R., Alex Wells, G. R. (2016). Data Layout Optimization Using
SIMD Data Layout Templates.

[Novack and Nicolau, 1995] Novack, S. and Nicolau, A. (1995). Mutation scheduling: A
unified approach to compiling for fine-grain parallelism. In Proceedings of the 7th In-
ternational Workshop on Languages and Compilers for Parallel Computing, LCPC ’94, pages
16–30, London, UK, UK. Springer-Verlag.

[Nuzman et al., 2011] Nuzman, D., Dyshel, S., Rohou, E., Rosen, I., Williams, K., Yuste,
D., Cohen, A., and Zaks, A. (2011). Vapor SIMD: Auto-vectorize Once, Run Every-
where. In the 2011 International Symposium on Code Generation and Optimization.

[Nuzman et al., 2006] Nuzman, D., Rosen, I., and Zaks, A. (2006). Auto-vectorization
of Interleaved Data for SIMD. In Proceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’06.

[Nuzman and Zaks, 2008] Nuzman, D. and Zaks, A. (2008). Outer-loop Vectorization:
Revisited for Short SIMD Architectures. In the 2008 Conference on Parallel Architectures
and Compilation Techniques.

[NVIDIA, 2014] NVIDIA (2014). CUDA Programming Guide 6.5.

[O’Boyle and Knijnenburg, 1997] O’Boyle, M. F. P. and Knijnenburg, P. M. W. (1997).
Non-singular Data Transformations: Definition, Validity and Applications. In Pro-
ceedings of the 11th International Conference on Supercomputing, ICS ’97.

[OpenACC, 2011] OpenACC (2011). OpenACC: Directives for Accelerators.

[OpenMP, 2013] OpenMP (2013). OpenMP: Version 4.0.

185

[Padua and Wolfe, 1986] Padua, D. A. and Wolfe, M. J. (1986). Advanced Compiler Op-
timizations for Supercomputers. Commun. ACM, 29(12):1184–1201.

[Park et al., 2012] Park, Y., Seo, S., Park, H., Cho, H. K., and Mahlke, S. (2012). Simd de-
fragmenter: Efficient ilp realization on data-parallel architectures. In Proceedings of the
Seventeenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 363–374, New York, NY, USA. ACM.

[Pennycook et al., 2013] Pennycook, S. J., Hughes, C. J., Smelyanskiy, M., and Jarvis, S. A.
(2013). In the 27th International Symposium on Parallel and Distributed Processing.

[Pillai et al., 1997] Pillai, R. V. K., Al-Khalili, D., and Al-Khalili, A. J. (1997). Energy Delay
Measures of Barrel Switch Architectures for Pre-alignment of Floating Point Operands
for Addition. In Proceedings of the 1997 International Symposium on Low Power Electronics
and Design, ISLPED ’97, pages 235–238.

[Pop et al., 2006] Pop, S., Cohen, A., Bastoul, C., Girbal, S., andr Silber, G., and Vasilache,
N. (2006). Graphite: Polyhedral analyses and optimizations for gcc. In In Proceedings
of the 2006 GCC Developers Summit, page 2006.

[Porpodas et al., 2015] Porpodas, V., Magni, A., and Jones, T. M. (2015). PSLP: Padded
SLP Automatic Vectorization. In Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’15, pages 190–201, Washington,
DC, USA. IEEE Computer Society.

[Ragan-Kelley et al., 2013] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F.,
and Amarasinghe, S. (2013). Halide: A Language and Compiler for Optimizing Par-
allelism, Locality, and Recomputation in Image Processing Pipelines. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13.

[Ramachandran et al., 2013] Ramachandran, A., Vienne, J., Wijngaart, R. V. D.,
Koesterke, L., and Sharapov, I. (2013). Performance Evaluation of NAS Parallel Bench-
marks on Intel Xeon Phi. In Proceedings of the 2013 42Nd International Conference on
Parallel Processing, ICPP ’13, pages 736–743, Washington, DC, USA. IEEE Computer
Society.

[Ren et al., 2006] Ren, G., Wu, P., and Padua, D. (2006). Optimizing data permutations
for simd devices. In Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’06, pages 118–131, New York, NY, USA.
ACM.

[Rice University, 1993] Rice University, C. (1993). High Performance Fortran Language
Specification. SIGPLAN Fortran Forum, 12(4).

[Sentovich et al., 1992] Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Sal-
danha, A., Savoj, H., Stephan, P., Brayton, R., and Sangiovanni-Vincentelli, A. (1992).
SIS: A system for sequential circuit synthesis. In Technical report, U.C. Berkley.

186

[Shao and Li, 2014] Shao, B. and Li, P. (2014). A Model for Array-based Approximate
Arithmetic Computing with Application to Multiplier and Squarer Design. In Proceed-
ings of the 2014 International Symposium on Low Power Electronics and Design, ISLPED
’14, pages 9–14.

[Shin, 2007] Shin, J. (2007). Introducing Control Flow into Vectorized Code. In Proceedings
of the 16th International Conference on Parallel Architecture and Compilation Techniques,
PACT ’07, pages 280–291.

[Shirako et al., 2014] Shirako, J., Pouchet, L.-N., and Sarkar, V. (2014). Oil and water
can mix: An integration of polyhedral and ast-based transformations. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’14, pages 287–298, Piscataway, NJ, USA. IEEE Press.

[Sinkarovs and Scholz, 2013] Sinkarovs, A. and Scholz, S.-B. (2013). Semantics-
Preserving Data Layout Transformations for Improved Vectorisation. In Proceedings
of the 2nd ACM SIGPLAN Workshop on Functional High-performance Computing, FHPC
’13.

[Smitley and Iobst, 1991] Smitley, D. and Iobst, K. (1991). Bit-serial simd on the cm-2 and
the cray-2. Journal of Parallel and Distributed Computing, 11(2):135 – 145.

[Sung et al., 2010] Sung, I.-J., Stratton, J. A., and Hwu, W.-M. W. (2010). Data Layout
Transformation Exploiting Memory-level Parallelism in Structured Grid Many-core
Applications. In Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’10.

[Tenllado et al., 2005] Tenllado, C., Piñuel, L., Prieto, M., Tirado, F., and Catthoor, F.
(2005). Improving Superword Level Parallelism Support in Modern Compilers. In Pro-
ceedings of the 3rd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis, CODES+ISSS ’05.

[Thinking Machine Corp., 1989] Thinking Machine Corp. (1989). Connection machine
technical summary – Version 5.1.

[Thomas and Moorby, 1996] Thomas, D. E. and Moorby, P. R. (1996). The VERILOG Hard-
ware Description Language. Kluwer Academic Publishers, Norwell, MA, USA, 3rd edi-
tion.

[Tian et al., 2014] Tian, X., Xu, R., Yan, Y., Yun, Z., Chandrasekaran, S., and Chapman, B.
(2014). Compiling a High-Level Directive-based Programming Model for GPGPUs. In
Languages and Compilers for Parallel Computing, pages 105–120. Springer International
Publishing.

[Tian et al., 2013] Tian, X., Xu, R., Yan, Y., Yun, Z., Chandrasekaran, S., and Chapman,
B. M. (2013). Compiling a high-level directive-based programming model for gpgpus.
In 26th International Workshop on Languages and Compilers for Parallel Computing, LCPC
2013. Revised Selected Papers, pages 105–120.

187

[Tong et al., 2000] Tong, J. Y. F., Nagle, D., and Rutenbar, R. A. (2000). Reducing Power by
Optimizing the Necessary Precision/Range of Floating-point Arithmetic. IEEE Trans.
Very Large Scale Integr. Syst., 8(3):273–285.

[Trifunovic et al., 2009] Trifunovic, K., Nuzman, D., Cohen, A., Zaks, A., and Rosen, I.
(2009). Polyhedral-model guided loop-nest auto-vectorization. In Proceedings of the
2009 18th International Conference on Parallel Architectures and Compilation Techniques,
PACT ’09, pages 327–337, Washington, DC, USA. IEEE Computer Society.

[Verdoolaege et al., 2013] Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J.,
Tenllado, C., and Catthoor, F. (2013). Polyhedral Parallel Code Generation for CUDA.
ACM Trans. Archit. Code Optim., 9(4):54:1–54:23.

[Wilt, 2013] Wilt, N. (2013). The CUDA Handbook: A Comprehensive Guide to GPU Program-
ming.

[Wu et al., 2005] Wu, P., Eichenberger, A. E., Wang, A., and Zhao, P. (2005). An Inte-
grated Simdization Framework Using Virtual Vectors. In the 2005 Annual International
Conference on Supercomputing, SC’ 2005.

[Xu and Gregg, 2014a] Xu, S. and Gregg, D. (2014a). Efficient Exploitation of Hyper Loop
Parallelism in Vectorization. LCPC ’2014.

[Xu and Gregg, 2014b] Xu, S. and Gregg, D. (2014b). Semi-automatic Composition of Data
Layout Transformations for Loop Vectorization, pages 485–496. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[Xu and Gregg, 2015] Xu, S. and Gregg, D. (2015). Exploiting Hyper-Loop Parallelism
in Vectorization to Improve Memory Performance on CUDA GPGPU. In 2015 IEEE
International Symposium on Parallel and Distributed Processing with Applications, ISPA
’2015.

[Yang and Zhou, 2014] Yang, Y. and Zhou, H. (2014). CUDA-NP: Realizing Nested
Thread-level Parallelism in GPGPU Applications. In Proceedings of the 19th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’14, pages
93–106.

[Zima and Chapman, 1991] Zima, H. and Chapman, B. (1991). Supercompilers for Parallel
and Vector Computers. ACM, New York, NY, USA.

188

