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Epidemiological studies have established an association between obesity, insulin resistance,
type 2 diabetes and a number of cancer types. Research has focused predominantly on altered
endocrine factors, growth factors and signalling pathways, with little known in man about the
immune involvement in the relevant pathophysiological processes. Moreover, in an era of ex-
citing new breakthroughs in cancer immunotherapy, there is also a need to study the safety
and efficacy of immunotherapeutics in the complex setting of inflammatory-driven obesity-
associated cancer. This review addresses key immune cell subsets underpinning obesity-
associated inflammation and describes how such immune compartments might be targeted
to prevent and treat obesity-associated cancer. We propose that the modulation, metabolism,
migration and abundance of pro- and anti-inflammatory cells and tumour-specific T cells
might be therapeutically altered to both restore immune balance, alleviating pathological
inflammation, and to improve anti-tumour immune responses in obesity-associated cancer.

Obesity: Cancer: Lymphocytes: Immunotherapeutics: Inflammation

The burgeoning global health burden of obesity is of
grave concern, affecting over half a billion adults world-
wide, with approximately 3·5 million attributable deaths
each year(1). Despite national and international interven-
tions to promote a healthy diet and lifestyle, recent
reports predict that global obesity rates show no signs
of abating, with predictions that half of all adults will
be overweight or obese by 2030 (WHO). The worldwide
prevalence of obesity almost doubled in the period 1980–
2008. In 1980, 5 % of men and 8 % of women were obese
and by 2008, these rates were 10 and 14 %, respectively.
In many areas of the western world, the overweight
phenotype is now the most prevalent body type. For ex-
ample, in the USA in 2010 the prevalence of a BMI≥ 25
was 69·2 %, with 35·9 % of people being obese (BMI ≥
30)(2). A cause of current concern is that more than
one-third of children are overweight or obese in the
USA, with adolescent obesity rates quadrupling over
the past 30 years(3). WHO figures also show that one in
three European children are overweight or obese and of
these, 60 % are predicted to be obese in adulthood(1).

Obesity may fuel pathological chronic inflammation
and therefore a substantial proportion of adults and
children worldwide are at risk of developing obesity-
associated morbidities such as cardiovascular disease
(CVD), type 2 diabetes mellitus (T2DM), non-alcoholic
steatohepatitis and cancer(1,4–7). Obesity contributes to
between 3 and 20 % of cancer deaths in western popula-
tions(8,9). Since obesity is a pro-inflammatory state, an
altered immune system may fuel this process, with vis-
ceral adipose tissue and liver being primary sources of
cells and cytokines. Understanding the role of obesity
and related metabolic syndrome, insulin resistance, and
T2DM in carcinogenesis and tumour biology is conse-
quently the focus of significant present research interest,
with most lessons learned from experimental models but
with an increasing focus on studies in human subjects. In
an era of novel immunotherapeutics in cancer, when tar-
geted therapies such as nivolumab and ipilimumab have
shown promise for several tumour types, a greater under-
standing in man of the impact of such approaches on
obesity-associated cancers is required(10). Such cancers
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represent a unique immunotherapeutic challenge because
an enhanced T helper type 1 (Th1) immune response is
required to augment anti-tumour immunity, but without
exacerbating tumourigenic obesity-associated inflamma-
tion(10). Herein, we address the pathophysiological pro-
cesses driving obesity-associated inflammation with a
focus on both the innate and adaptive arms of the im-
mune system, and discuss future prospects for treatment
of obesity-associated malignancy.

Epidemiology

The epidemiological evidence underpinning the associ-
ation between obesity and cancer incidence is now com-
pelling. Large population-based prospective studies have
demonstrated convincingly consistent increased cancer
incidences per 5 kg/m2 increase in BMI(4,8,11–13). For ex-
ample, a recent UK population based prospective cohort
of 5·2 million patients with a median follow-up of 6 years
recorded 166 966 incident cancers across twenty-two of
the most common cancers(12). BMI was positively asso-
ciated with cancers at the following sites: colon, rectum,
liver, gallbladder, pancreas, breast (post-menopausal
only), cervix, ovary, uterus, kidney, thyroid and leukae-
mia(12). The derived hazard ratios from this study are dis-
played in Table 1. The administrative dataset used in this
study was unable to subtype cancers, for example both
squamous and adenocarcinomas of the oesophagus
were pooled as oesophageal cancer. This probably
accounts for the lack of association between oesophageal
adenocarcinoma and obesity, which has been consistent
and marked in other studies (approximate hazard ratios
4·76, 95 % CI 2·96, 7·66; for patients with BMI≥ 40 com-
pared with normal BMI)(8,14). A meta-analysis prospect-
ive study of 282 000 cancer cases from population of
4·8 million patients demonstrated similarly consistent
findings across disease sites and sexes(8). Applying
the Bradford-Hill hypotheses of strength, consistency,
specificity, temporality, biological gradient, plausibility,
coherence, experimental evidence and analogy, obesity
is a strong candidate to be a causal factor in the develop-
ment of cancer as detailed in a review by Renehan
et al.(15,16).

Further epidemiological studies may lead to refinement
of the associated increases in relative risk of incident
cancers, especially cancers at sites with a less frequent
incidence. Current estimates are subject to wide CI
at disease sites where few incident cancers are reported.
Heterogeneity in already reported relative risks at different
cancer sites indicates that there is probably not a universal
mechanism by which obesity drives cancer development.
For example, the attributable fraction of endometrial
cancers is approximately 41 % v. 10 % for cancers of the
colon(12). The main caveat concerning the association be-
tween obesity and cancer is the fact that a number of
other environmental factors including dietary compos-
ition, energy intake and physical activity represent import-
ant confounding factors in obese patients, and no
specifically designed prospective studies have yet to de-
marcate the relative contribution of each.

Pathological inflammation in obesity is associated with
insulin resistance and altered cellular energetics

Obesity-associated inflammation and cancer are inextric-
ably linked and despite robust epidemiological evidence
connecting obesity and cancer, the pathophysiological
mechanisms underpinning the association remain poorly
characterised(17,18). The expanded adipose tissue mass
associated with an obese phenotype is deposited in both
the intra-abdominal compartment, where it is known as
central or visceral adiposity, and beneath the skin, where
it is called subcutaneous adipose tissue. Visceral adipose
tissue (VAT) is more highly correlated with an altered glu-
cose and lipid metabolic profile as well as increased risk of
CVD than subcutaneous adipose tissue(19–21). Obese
patients often have a relative abundance of fat in one or
other compartment(22). Those with excess visceral fat
have an increased risk (independent of BMI) of breast can-
cer, oesophageal adenocarcinoma, colorectal adenocar-
cinoma and colorectal adenoma(9,23–26).

Adipose tissue in obese subjects has altered endocrine
function and a secretory profile with predominantly
pro-inflammatory cytokines, which are secreted by both
adipocytes (and called adipokines) and immune cells.
This results in a state of chronic low-grade inflammation
which is thought to be pro-tumourigenic(27–29).
Inflammation provides the selective pressure that may
fuel the accumulation of mutations driving tumour
growth and survival and could result in poor immune
surveillance of tumours once they develop(30). The rela-
tive contribution of each individual adipokine to this sys-
temic inflammation is not understood and it is likely that
a complex interplay between the various pro- and anti-
inflammatory immune cells and their secreted cytokines
contributes to tumourigenesis.

Another consequence of systemic inflammation in the
obese state is insulin resistance and T2DM(31). These
conditions are associated with increased levels of inflam-
matory mediators including acute phase reactants such
as fibrinogen, C-reactive protein, IL-6, plasminogen acti-
vator inhibitor-1(32–34). The prevalence of insulin resist-
ance increases as body weight increases and can be

Table 1. Hazard ratio (HR) for cancers per 5 kg/m2 increase in BMI(12)

Site HR CI P-value

Colon 1·1 1·07, 1·13 <0·0001
Rectum 1·04 1·0, 1·08 0·017
Liver 1·19 1·12, 1·27 <0·0001
Gallbladder 1·31 1·12, 1·52 <0·0001
Pancreas 1·05 1·0, 1·1 0·012
Breast (post-menopausal) 1·05 1·03, 1·07 <0·0001
Cervix 1·1 1·03, 1·17 <0·0001
Ovary 1·09 1·04, 1·14 <0·0001
Uterus 1·62 1·56, 1·69 <0·0001
Kidney 1·25 1·17, 1·33 <0·0001
Thyroid 1·09 1·00, 1·19 0·0088
Leukaemia 1·09 1·05, 1·13 <0·0001
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reversed with weight loss(35,36). Epidemiological studies
on the role of T2DM in carcinogenesis report consistent
increases in cancer incidence at certain sites, which dis-
play considerable overlap with those sites associated
with obesity-associated cancers as previously described,
including liver in particular, as well as pancreas, endo-
metrium, breast, colorectal, bladder, non-Hodgkin’s
lymphoma and kidney cancers(37).

Diet-induced insulin resistance develops as a metabolic
adaptation to increased circulating levels of non-esterified
fatty acids (NEFA), which are constantly released from
adipose tissue, especially from visceral fat stores(14).
Increased NEFA levels force liver, muscle and other tis-
sues to shift towards increased storage and oxidation of
fats for their energy production(38). The compensatory ef-
fect is a reduced capacity of these tissues to absorb, store
and metabolise glucose. Patients with insulin resistance
also exhibit a reduction in cellular insulin-receptor levels
and reduced responsiveness of some intracellular trans-
duction pathways mediating the effects of insulin binding
to its receptor(39). Interestingly, insulin resistance leads to
increased insulin production and the mitogenic effects of
insulin have been associated with several cancers(24,40,41).
The insulin-like growth factor (IGF) axis comprising two
growth factors (IGF-1 and IGF-2) as well as a number of
binding proteins and two receptors (IGF-1R and
IGF-2R), sharing homology with the insulin receptor,
has been cited as a mediator of hyperinsulinaemia on
cell growth and energy metabolism(42). Increased expres-
sion of IGF-1R is reported in a number of cancer sub-
types but a large systematic review and meta-analysis
of studies of serum concentrations of IGF-1 and insulin
as biomarkers reveals there to be significant bias
found in the studies which have been published in the
literature(43–46). New prospective specifically-designed
epidemiological studies are warranted to help clarify
the relative contribution of insulin resistance, inflamma-
tion and obesity to cancer development.

Changes in cellular energetics and dysregulated metab-
olism are hallmarks of cancer and it is not surprising that
associations between metabolic changes and obesity are
being uncovered(47). Recent findings of our group show
that secreted factors from VAT of obesity-associated can-
cer patients induce metabolic changes in oesophageal
adenocarcinoma cell lines; increasing mitochondrial
mass, mitochondrial membrane potential and inducing a
shift to glycolysis(48). Moreover, these studies identified a
positive correlation between obesity and the expression
of the glycolytic marker pyruvate kinase M2 in the
tumours of oesophageal adenocarcinoma patients sup-
porting a shift to glycolysis in obesity. Further analysis
revealed that the VAT of obese oesophageal adenocarcin-
oma patients exhibited a glycolytic profile with increased
expression of lactate, an established carcinogen(48,49).
Therefore, these data present a possible link between obes-
ity and the dysregulated bioenergetics that are characteris-
tic of cancer, thus providing a mechanism through which
increased VAT mass might promote tumourigenesis.

The sex differential in cancer incidence in obese
patients has also been repeatedly reproduced in epi-
demiological studies(8,12). This, as well as the marked

increased incidence in endometrial cancers in obese
females in particular, has led to the hypothesis that sex
hormones play a role in the carcinogenic process in obes-
ity, at least for some sites. There is a well-recognised as-
sociation between the development of endometrial cancer
and oestrogen excess(50,51). A factor analysis of inflamma-
tory, insulin-regulated physiological axes and sex steroids
measured from the pre-diagnostic serum levels of patients
enrolled in the European Prospective Investigation into
Cancer and Nutrition cohort compared patients who
developed endometrial cancer v. matched controls(52).
This allowed an analysis of these highly correlated biomar-
kers for their relative contribution to endometrial cancer
development and demonstrated a contribution to cancer
risk in all three of these axes.

In light of the metabolic changes that occur with increas-
ing visceral adipose tissue mass, it stands to reason that
obesity may be a confounding factor when developing
immune-based anti-cancer therapies for obesity-associated
malignancies. However, an improved understanding of
the interplay between the immunity–obesity–cancer axis
may allow novel insights into cancer development, and
can allow improvement of current strategies for persona-
lised therapy.

Adipokines and immune function

In addition to their direct roles in cellular energetics and
metabolism(53), emerging evidence demonstrates roles for
adipokines in immune system regulation. For example,
leptin, produced by adipose tissue, is a long-term regula-
tor of weight and acts via its receptor to decrease appetite
and food intake and increase energy consumption(54).
Leptin is also a pro-inflammatory cytokine inducing ac-
tivation of T cells and Th1 cell differentiation(55). It
also modulates the function of all other immune cell
lineages (but only in the presence of other non-specific
immunostimulants)(56). Leptin is induced by inflammatory
cytokines such as IL-1, IL-6 and lipopolysaccharide(57). It
could be hypothesised that the relative lack of some subpo-
pulations of T cells (CD3+, CD4+CD45RO+, CD8+)(58)

could be related to the leptin resistant state prevalent in
obese subjects(59). Adiponectin is an abundant adipokine
secreted by adipocytes in VAT. Circulating levels are in-
versely associated with obesity(60) and decreased expres-
sion of adiponectin is closely correlated with insulin
resistance(61,62). Adiponectin inhibits macrophage phago-
cytosis and reduces macrophage production of pro-
inflammatory IL-6 and TNF-α and increases production
of anti-inflammatory IL-10 and IL-1R(63).

Innate and adaptive immunity in obesity and cancer

Obesity induces a state of pathological chronic inflam-
mation, marked by elevated levels of NEFA, abnormal
cytokine production and activation of inflammatory sig-
nalling pathways(64–68). The expanded vasculature and
increased blood supply that accompanies the expansion
of VAT in obesity, results in increased inflammatory
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immune cell infiltration, enhanced pro-inflammatory
cytokine release and ultimately local and systemic
tumourigenic inflammation(69,70). The alterations in im-
mune cell repertoires in the peripheral blood, VAT and
proximal tissues, in particular liver, continue to be inves-
tigated in an effort to elucidate the extent of immune dys-
regulation in obesity. Immunotherapeutic strategies to
reset the balance between pro- and anti-inflammatory
cells could also be crucial to restoring immune control,
attenuating obesity-associated inflammation and treat-
ing/preventing resultant disease. However the immune
dysregulation in obesity with underlying malignancy
could significantly negatively impact on anti-tumour im-
munity. In fact, ideal immunotherapeutic approaches in
obesity-associated cancer should attenuate chronic sys-
temic inflammation while simultaneously augmenting
specific immunity at the tumour site. Research is required
to fully characterise the immune cell repertoires in the per-
iphery, VAT and tumour of obesity-associated cancer
patients to distinguish between the subsets that drive
tumourigenic inflammation, those that control it and
those that are crucial for tumour eradication. For the pur-
pose of this review, wewill focus on the present knowledge
of conventional T lymphocytes, innate lymphocytes and
macrophages in obesity and cancer (Table 2).

Conventional T cells

CD4+ and CD8+ T cells comprise the antigen-specific ef-
fector arm of the adaptive immune response and elicit

their effector functions through cytokine production
and cytotoxic activity. In the CD4+ T cell compartment,
Th1 cells produce interferon (IFN)-γ, TNF-α and IL-2,
while T helper type 2 (Th2) cells express IL-4, IL-5 and
IL-13(91,92). Inflammatory T helper type 17 (Th17) cells
express IL-17 and IL-22 and regulatory T (Treg) cells ex-
press IL-10 and transforming growth factor β(93,94).
CD8+ T cells are the key cytotoxic T lymphocytes but
are also potent cytokine producers. Therefore in the con-
text of malignancy, tumour infiltration of the appropriate
CD4+ and CD8+ T cell milieu is crucial for tumour
eradication(95). In fact, the ratio of cytotoxic T lympho-
cytes to Treg cells can be predictive of outcome(96,97). In
obesity, our group and others have reported enrichments
of activated and effector pro-inflammatory CD4+ and
CD8+ T cells in VAT and have identified these cells as
key players in inflammatory macrophage recruitment
and inflammatory cytokine production, thus contribut-
ing to the initiation and maintenance of
obesity-associated inflammation(65,73,80). Furthermore,
we have previously reported significantly higher frequen-
cies of such IFN-γ-producing T cells in the VAT of
obesity-associated cancer patients, compared with non-
cancer control subjects(65). In recent unpublished studies,
we have also observed enrichments of TNF-α and
IL-17-producing T cells in the VAT, demonstrating that
more than one inflammatory T cell subset is contributing
to adipose tissue inflammation in obesity and
obesity-associated cancer. In contrast, while Treg cells
are enriched in lean VAT, their frequency is
significantly diminished in obese VAT(98). Therefore,

Table 2. Summary of immunological impact of obesity in human and potential therapeutic targets

Cell type Subset Normal function Function in obesity
Immunotherapeutic
potential – reference

Macrophage M1 Pro-inflammatory Accumulate in VAT, drive adipose tissue
inflammation(31), important in insulin
resistance(71)

(72)

M2 Anti-inflammatory, immunoregulatory, tissue
surveillance and remodelling functions,
control insulin sensitivity

Diminished in VAT (M1 predominance)

CD4+ T TH1 Pro-inflammatory; anti-bacterial, anti-viral,
anti-tumour

Promote inflammation(65,73),
macrophage recruitment

(74,75)

TH2 Anti-parasitic function; antibody production,
eosinophil activation

Decreased in VAT(76)

TH17 Pro-inflammatory (neutrophils) Enriched in adipose tissue(77) (78)

Treg Immunoregulation Decreased in omentum, undifferentiated
phenotype(76)

(79)

CD8+ T Cytotoxicity – directly kill abnormal cells Promote inflammation(80), macrophage
recruitment

(81,82)

NK Cytotoxicity – kill abnormal cells Decreased in blood, impaired function(83) (84)

iNKT Cytotoxicity – kill abnormal cells Immunoregulatory role(83) (85)

γδ T cells Vδ1 Cytotoxicity – kill abnormal cells (86)

Vδ2 Cytotoxicity – kill abnormal cells, TH1-like
pro-inflammatory

Decreased in blood, impaired function(87) (88)

Vδ3 Cytotoxicity – kill abnormal cells, TH1 and TH17
cytokine profile

MAIT Pro-inflammatory, kill bacteria-infected cells,
IL-17 production

Decreased and dysregulated function
(IL-17)(89,90)

iNKT, invariant natural killer T cells; MAIT, mucosal associated invariant T cells; NK, natural killer; VAT, visceral adipose tissue.
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VAT in obesity is rich in pro-inflammatory cytokine-
producing effector T cells and a relative deficiency of Treg
cells(66,80,98). Such approaches to reset the balance between
regulatory and inflammatory T cell subsets may poten-
tially attenuate pathological inflammation in obesity.

Natural killer cells

Natural killer (NK) cells are MHC-unrestricted lympho-
cytes and comprise a major component of innate
lymphocytes in human blood and liver, comprising
10–15 and 30 % of total lymphocytes, respectively(99).
NK cells display powerful cytotoxic activities once acti-
vated, and are potent producers of pro-inflammatory
cytokines including IFN-γ and TNF-α which can con-
tribute to the modulation of adaptive immune responses
and direct anti-tumour effects(99–101). In the context of
inflammatory disease, NK cells have been implicated in
the pathogenesis of inflammatory bowel disease and
psoriasis(102,103). However as of yet, their role has not
been fully elucidated in the chronic inflammation that
is characteristic of obesity. Lynch et al. have reported
significant reductions of circulating NK cells in metabol-
ically unhealthy obese subjects, suggesting that a lack of
NK cells in the periphery is detrimental for metabolic
health(83). Lynch et al. also reported significant expan-
sions of circulating inhibitory-receptor bearing and
CD69+ NK cells in metabolically unhealthy obese indivi-
duals, compared with healthy controls, suggesting that
peripheral NK cells in metabolically unhealthy obese
patients were activated but unable to elicit effector func-
tions, making such individuals more susceptible to dis-
ease(83). Furthermore, circulating NK cells from obese
subjects were found to be less effective at killing tumour
cells than their counterparts in lean subjects, suggesting
that obese individuals have impaired defences against
malignancy(104). More recently, a study by O’ Rourke
et al. revealed expansions of the CD56BRIGHT (main
cytokine producing subset) of NK cells in obese VAT, in-
dicating that cytokine-producing fractions of NK
cells are more prevalent in obesity(105). Moreover, NK
cells were identified as key players in macrophage recruit-
ment to adipose tissue but did not affect overall secreted
inflammatory cytokine levels(106). In fact, the macro-
phage population recruited to the VAT by NK cells in
this study was not the macrophage subset implicated in
VAT inflammation and therefore, the role of NK cells
in adipose tissue inflammation was unclear. However,
new data gathered by Wensveen et al. demonstrates
that IFN-γ-producing NK cells are pivotal in M1 macro-
phage polarisation in the adipose tissue of obese mice
and subsequent insulin resistance, but similar results
have yet to be reported in human subjects(107).
Interestingly, this study was the first to report a direct
interaction between NK cells and adipocytes through
the mouse equivalent of NK receptor P46 (NKP46)
natural cytotoxicity receptor 1 (NCR1), and shows that
NK cells and adipocytes together drive inflammatory
macrophage recruitment and contributes to adipose tis-
sue inflammation in mice. With respect to therapeutic

avenues, NKP46 might be a potential target to attenuate
NK cell and adipocyte-mediated inflammation. Since
mouse and human NK cells are characterised differently,
it is first important to fully investigate the NK repertoires
in human blood and VAT, elucidate their interactions
with adipocytes, their cytokine profiles and subsequent
contribution to inflammatory cell recruitment and adi-
pose tissue inflammation. Furthermore, the investigation
of the NK cell milieu in blood, VAT and tumour of
patients with obesity-associated malignancy is warranted
to completely understand the changes that NK cells
undergo in human obesity and how this impacts anti-
tumour immunity and patient outcomes.

Invariant natural killer T cells

Invariant NKT (iNKT) cells are a subset of MHC-
unrestricted innate lymphocytes that respond rapidly, eli-
cit potent IFN-γ production and cytotoxic activity and
modulate adaptive immune responses, thus making
them key players in anti-tumour immunity. They express
a restricted T cell receptor repertoire consisting of a
Vα14Jα18 α-chain in mice and a Vα24Jα18 α-chain in
human subjects, paired with a limited number of
β-chains(108). Such cells also express a number of cell-
surface markers typically expressed on NK cells, hence
the name NKT cell, and recognise lipid antigen presented
by the MHC-like glycoprotein, CD1d(108–111). The most
potent activator of iNKT cells isolated to date is the
marine sponge-derived glycolipid α-galactosylceramide
(α-GalCer), which has been shown to induce anti-tumour
cytotoxic activity and cytokine production in mice lead-
ing to the inhibition of tumour growth(112). However,
α-GalCer has proven much less effective in human
subjects due to the lower abundance of iNKT cells in
human subjects compared with mice(113). VAT is the
only human tissue reported to have a high proportion of
iNKT cells, averaging 10 % in healthy subjects(83).
However, in the setting of obesity the frequencies of
iNKT cells are diminished and this depletion is reversed
following weight loss(114). VAT iNKT cells preferentially
secrete higher levels of IL-10, comparedwith the Th1 cyto-
kine profile they exhibit in other tissues, suggesting that
iNKT cells in adipose tissue predominantly serve an im-
mune regulatory role(114). Furthermore, the adoptive
transfer of iNKT cells into obese mice can induce weight
loss and improve insulin sensitivity, implying that iNKT
cells are pivotal for metabolic health and protective
against insulin resistance. This may suggest that metabol-
ically unhealthy individualsmight benefit from iNKT cell-
based therapies and that IL-10-producingVAT iNKTcells
may prove useful in the attenuation of obesity-associated
inflammation. However, iNKT cell therapeutic potential
in obesity-associated cancer has yet to be uncovered.

Gamma/delta T cells

Human γδ T cells are another type of innate or uncon-
ventional T cell subset, typically comprising 1–5 % of
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circulating adult T cells, and are also found within the
gut(115), skin(116), lung(117) and uterus (118). In human sub-
jects there are three main γδ T cell types, defined by their
T cell receptor delta chain (called Vδ1, Vδ2 or Vδ3,
respectively), which can be paired with various gamma
chains(119). γδ T cells respond rapidly to infection or
stress signals and display anti-viral, anti-bacterial, anti-
parasitic and anti-tumour functions, and a strong Th1
predominance(120). The main subset of circulating human
γδ T cells (Vγ9Vδ2 T cells) recognises pyrophosphate
antigens derived from bacterial or endogenous sources.
The precise antigens recognised and modes of antigen
recognition for other γδ T cell subsets are presently unclear
but it is known that MHC-mediated antigen presentation
is not required(121,122). In mouse models, γδ T cells produce
copious amounts of IL-17(123), and comprise the predomin-
ant T cell subset found in tissues(124), whereas this is not
the case in human subjects. Furthermore, the predominant
γδ T cell subset in human blood, the Vγ9Vδ2 T cell sub-
set, is only found in human subjects and other higher pri-
mates. All three γδT cell subsets in the human demonstrate
potent and specific anti-tumour cytotoxicity against a
range of different tumour types(119,125,126) and as a result,
their use as immunotherapeutic agents is presently under
investigation(88). Meta-analysis of clinical trial data shows
limited successwithpresent immunotherapeuticapproaches
used to date however, most of which involve adoptive
transfer of Vγ9Vδ2 T cells. It is hoped that an improved
understanding of γδ T cell biology and subset differences
will improve future immunotherapeutic strategies.

In obese individuals, there is an inverse correlation be-
tween the frequency of circulating γδT cells and increasing
BMI(87), with obese individuals having, on average, more
than four times fewer circulating Vγ9Vδ2 T cells than
non-obese donors. Remaining γδ T cells have a skewed
maturation phenotype similar to that observed in aged
populations, a blunted IFN-γ response and reduced IL-2
receptor α chain expression. Constanzo and colleagues
reported that this dysregulation could be overcome by
stimulation of cells with pyrophosphate antigens and add-
ition of IL-2(87). IL-2 acts as a growth factor for γδ T cells,
suggesting that cellular dysfunction in obesity may be via
growth factor deprivation rather than cell incapacitation.
In mouse models of obesity, γδ T cells are shown to
promote insulin resistance and inflammation via recruit-
ment of macrophages to adipose tissue(127), though
whether this also applies in human subjects remains to be
investigated. The role of γδTcells in the underlying inflam-
mation and anti-tumour responses in the setting of
obesity-associated cancer has yet to be elucidated. Our
group are currently investigating the distribution and func-
tional phenotype of γδT cell subsets in the periphery, VAT
and tumour of obesity-associated cancer patients in order
to identify their usefulness in the prophylaxis and treat-
ment of such malignancies.

Mucosal associated invariant T cells

Mucosal associated invariant T (MAIT) cells are a popu-
lation of invariant T cells comprising 1–5 % of T cells in

human blood, and are defined by expression of an invari-
ant Vα7·2-Jα33 chain and high levels of the NK cell
marker CD161(128). MAIT cells are enriched in human
adipose tissue and in mucosal and inflamed tissues,
where they recognise vitamin B2 metabolites produced
by bacteria and yeasts(129). MAIT cells thus recognise
and kill bacteria-infected cells(130). While MAIT cells
have been described in breast cancer and are reportedly
resistant to chemotherapy treatment(129), their role in
cancer is as yet unknown. MAIT cell frequency is dra-
matically decreased in the blood and adipose tissues of
patients with T2DM and/or severe obesity compared
with control donors, and this depletion is associated
with diabetic status(89,90). Moreover, in both patient
groups, circulating MAIT cells display an activated
phenotype that is associated with elevated Th1 and
Th17 cytokine production. In obese patients, MAIT
cells are more abundant in adipose tissue than in blood
and exhibit a striking IL-17 profile, a cytokine implicated
in insulin resistance. Similar results were also observed in
an obese paediatric cohort(89). MAIT cell frequencies in-
crease while their cytokine production decreases in obese
patients after bariatric surgery, in line with improvements
in metabolic parameters. These studies reveal profound
abnormalities in MAIT cells in patients harbouring
metabolic disorders, suggesting their potential role in
these pathologies, yet future work remains to determine
the role for MAIT cells in obesity-associated cancers.

Macrophages

While macrophages play a crucial role in innate immun-
ity, their polarisation to an M1 phenotype positions them
as key drivers of pathological inflammation, while a
dominant M2 phenotype can facilitate their immune sup-
pressive role in the tumour microenvironment(131,132).
M1, or classically-activated macrophages, are regarded
as the more inflammatory subset, while M2 macrophages
are considered anti-inflammatory and immunoregula-
tory. Macrophages recruited to the tumour microenvir-
onment can maintain an M1 phenotype and elicit
potent IFN-γ, TNF-α, IL-12 and chemokine production,
promote T cell activation and mediate anti-tumour
activity(133). However, upon recruitment to the tumour
microenvironment, macrophages are often polarised to-
ward an M2 phenotype and become tumour-associated
macrophages which produce immunomodulatory and
pro-angiogenic factors including IL-10, TGF-β, vascular
endothelial growth factor and matrix metallopeptidase
9(133). In the obese setting, several studies have implicated
M1 macrophages as drivers of adipose tissue inflamma-
tion, with T cells and NK cells contributing to their re-
cruitment and polarisation(31,80,107,134). In fact, M1
macrophages are believed to be the main producers of
IL-1β and TNF in obesity and key players in insulin re-
sistance(135). Furthermore, while the chemokine system
plays a central role in macrophage recruitment to adipose
tissue and the development of insulin resistance, the in-
hibition of one chemokine alone is not enough to block
macrophage accumulation in murine models of

M. J. Conroy et al.130

https://doi.org/10.1017/S0029665115004176
Downloaded from https:/www.cambridge.org/core. IP address: 178.167.254.89, on 19 Jan 2017 at 16:16:08, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0029665115004176
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

obesity(136,137). Therefore, future studies might investigate
the inhibition of more than one chemokine pathway to
block M1 macrophage accumulation in obese VAT and
alleviate chronic inflammation. Blocking chemokine-
guided recruitment of macrophages to tumour might at-
tenuate tumour-associated macrophage-mediated im-
mune suppression and angiogenesis in cancer and prove
useful in cancer immunotherapy. However, it is now
understood that tumour-associated macrophage pheno-
type and function is critically influenced by the tumour
microenvironment and therefore exploiting such environ-
mental cues might be a preferable therapeutic
approach(138).

Immunometabolism in obesity and cancer

In recent years, research has revealed how immune cell
metabolism supports and controls immune function,
and has led to a focus on exploiting immunometabolism
to treat inflammation and cancer. In brief, more acti-
vated and rapidly dividing immune cells rely on glycoly-
sis to maintain their biomass and energy levels, while
more quiescent and regulatory immune cells mainly util-
ise oxidative phosphorylation (OxPhos)(139). Depending
on the stage of their development, T cell subsets possess
strikingly different metabolic profiles which reflect their
energetic and biosynthetic requirements, which in turn
support their function(140,141). Naive T cells are usually
metabolically quiescent and use OxPhos as the main
means of generating ATP, while rapidly proliferating ef-
fector CD4+ Th1, Th2 and Th17 cells and CD8+ cyto-
toxic T cells utilise significantly elevated levels of
glycolysis to meet their energy requirements(140–146).
Following resolution of the immune response, the
remaining pool of memory T cells mainly utilise
OxPhos and lipid oxidation to meet their lower turn-
over rates and to support their longevity, as do Treg
cells(147,148). Manipulation of such cellular metabolic
pathwaysmight represent a novelmeans of therapeutically
skewing immune responses. Since our group and others
have shown that pro-inflammatory Th1 cells are key
players in obesity-associated inflammation while Treg
cells are depleted, a targeted therapy to alter T cell meta-
bolic profile and attenuate T cell-mediated inflammation
in the VAT may present favourable outcomes in obesity
and obesity-associated cancer(66,80,149,150). Similarly,
inflammatory M1 macrophages, other key players in adi-
pose tissue inflammation, and antibody-secreting B cells
also rely on glycolytic processes to fuel their inflammatory
functionswhileM2macrophages use fatty acids to support
OxPhos(134,151,152).

Exploitation of immune cell metabolism might be
utilised as a prophylactic to prevent obesity-associated
disease or to treat obesity-associated cancer. For in-
stance, inhibition of both the mammalian target of
rapamycin and mitogen-activated protein kinase (extra-
cellular signal-regulated kinase) pathways using rapamy-
cin and the mitogen-activated protein kinase inhibitor
PD325901 robustly blocked effector CD4+ T cell prolif-
eration and decreased disease severity in a mouse

model of arthritis(153). Since our group have found
pro-inflammatory effector T cells to be enriched in the
inflamed omentum in obesity, extracellular signal-regu-
lated kinase and mammalian target of rapamycin
inhibitors might elicit a similar anti-inflammatory
effect in obesity(66). Others have found that beauvericin-
mediated inhibition of T cell activation and pro-
inflammatory cytokine production in an animal model
of colitis was achieved by targeting P13 K and AKT
and resulted in reduced weight loss, diarrhoea and mor-
tality(154). More recently, inhibition of AKT in expanded
tumour-infiltrating lymphocytes resulted in increased
rates of OxPhos and fatty acid oxidation(155). This led
to enhanced in vivo persistence of such memory T cells
and augmented anti-tumour immunity following adop-
tive transfer(156). Therefore, AKT inhibition might serve
to dampen pro-inflammatory effector T cells in the
VAT and simultaneously promote tumour-specific mem-
ory T cell responses at the tumour site, thus possibly
offering a novel immuno-metabolomic therapeutic ap-
proach for chronically inflamed obesity-associated can-
cer patients. However, there is first an urgent need to
perform focussed studies to elucidate the metabolic
profiles of pro- and anti-inflammatory immune cells in
the VAT and tumour of such patients.

Future prospects for obesity-associated cancer:
prevention v. treatment

It is estimated that one in every four cancer cases
is preventable by implementing lifestyle changes.
Furthermore, studies such as the Women’s Intervention
Nutrition Study have shown that reduction of fat in the
diet of women with breast cancer and associated weight
loss reduced the relative risk of cancer recurrence by
24 %(157). Prevention and management of obesity is
therefore a major therapeutic goal. Intervention before
the pathological inflammatory cascade ensues and im-
mune system becomes excessively dysregulated is the
ideal prophylactic approach. However, there have al-
ready been multiple government campaigns, legislation
amendments and educational reforms to promote health-
ier lifestyle but with escalating obesity rates, a more
aggressive approach is certainly needed. Griggs & Sabel
argue for the benefits of aggressive promotion of life-
style changes by physicians as part of the cancer
patient treatment plan(158). However, obesity is a com-
plex variable, and BMI is not always a reliable measure
of metabolic health. Schmitz et al. suggest that further
clarification of the biological-social-environmental feed-
back loop is required in order to elucidate the combined
and independent contributions of race, ethnicity, co-
morbidities and obesity on cancer survival and adverse
treatment effects(159).

This review highlights the critical importance of
understanding the obesity–immunity–cancer axis and
the fact that obesity driven immunological dysregulation
should no longer be ignored when developing immu-
notherapeutic strategies. Immunotherapies such as pem-
brolizumab (Merck), nivolumab and ipilimumab
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(Bristol Meyer Squibb) have recently gained Food and
Drug Administration approval and are so far, proving ef-
fective for a number of different cancers (www.clinical
trials.gov). However, their suitability has not been thor-
oughly scrutinised under the pre-existing inflammatory
condition of obesity. The challenge of using checkpoint
inhibitors in obesity-associated cancer is to alleviate im-
mune suppression and augment anti-tumour responses
without inducing excessive pro-tumourigenic inflamma-
tory cytokine production by T cells, which have already
been shown to drive adipose tissue inflammation in obes-
ity(65,80). In the context of chronic obesity-associated
inflammation, there is cause for concern with such im-
munotherapies, since blocking programmed death-ligand
1 has previously been shown to enhance monocyte func-
tion by decreasing IL-10 and enhancing inflammatory
cytokine production(160). Furthermore, aged obese mice
were observed to have the most extreme pathological
responses to anti-CD40 and IL-2 therapy, causing cyto-
kine storms, organ pathology and eventual death(161).
Therefore, the use of such elegant immunotherapeutic
approaches might be theoretically desirable for
obesity-associated malignancy but first, their potential
to exacerbate inflammation in obesity must be fully
investigated. In the context of obesity-associated cancer,
targeting the correct tissue rather than a systemic immu-
notherapeutic approach is also of paramount import-
ance, when aiming to enhance anti-tumour immunity
without contributing to adipose tissue and systemic
inflammation. For instance, augmenting anti-tumour im-
munity without exacerbating inflammation might be
achieved through the adoptive transfer of T or NK
cells, already primed with a chemotactic signal toward
the tumour site and not the adipose tissue, as demon-
strated by Wennerberg et al.(162). Similarly, approaches
might combine adoptive transfer with chemokine treat-
ments to enhance anti-inflammatory cell migration to
the VAT and attenuate pathological inflammation. For
instance, M2 macrophages, Treg cell and iNKT cell num-
bers might be replenished in the obese VAT to restore im-
mune balance and prevent progression to
inflammation-driven disease. Already, adoptive transfer
of iNKT cells has been shown to reduce weight loss
and improve insulin sensitivity(114). Furthermore, the
Th2 proportion of CD4+ T cells adoptively transferred
into mouse models of obesity has also been shown to re-
verse weight gain and insulin resistance(163). However the
specific chemokine pathways guiding the key T, NK and
iNKT cells to the tumour and to inflamed tissue sites
must first be elucidated before such combination im-
munotherapies can be considered.

It is now evident that several critical factors must be
taken into consideration when developing successful
immunotherapeutic approaches. Firstly, evaluation of
the immunological environment must be considered.
Overwhelming data shows a dearth of innate lympho-
cytes or their inactivation and general dysregulation in
obesity (e.g. γδ T cells and MAIT cells are reduced
with increasing BMI)(87,89,90). It may be useful to evalu-
ate the level of immune involvement in the tumour
microenvironment, and evaluate the degree of immune

cell dysregulation prior to devising a patient treatment
plan. Indeed, evaluation of immunological parameters
is presently in development as a prognostic aid, and
shows superior predictive ability compared with trad-
itional histopathological staging methods in colorectal
cancer(164–166). Galon et al. show that evaluation of the
type, density and location of immune cell infiltration
into tumours can allow prediction of patient survival(165).
A greater understanding of the underlying biology be-
hind immunotherapy is also urgently required.
Checkpoint inhibitors such as ipilimumab and tremeli-
mumab have been hailed as breakthrough drugs, but
show no benefit in the majority of patients and there is
a paucity of published data in the obesity-associated can-
cer space(167). Recent work shows there may be a genetic
basis for clinical responses in a cohort of melanoma
patients(167). Improved understanding of the immuno-
logical landscape in obesity and cancer will undoubtedly
allow development of further breakthroughs, for example
combination immunotherapy approaches may be advan-
tageous, combining selective cytokine or chemokine re-
plenishment or depletion strategies with checkpoint
inhibitors, adoptive transfer and traditional chemora-
diotherapy strategies or hormone therapies for maximum
effect. Some success has already been reported when
anti-PD-1 (programmed cell death protein 1) and
anti-CTLA4 (cytotoxic T lymphocytes antigen-4) therap-
ies are administered together(168). Replenishment of
growth factors that are lacking in obesity may be a useful
addition to existing immunotherapeutic strategies, such
as reconstituting IL-2 levels in order to boost γδ T cell
responses. Simultaneous neutralisation of certain
pro-inflammatory cytokines (e.g. IL-17, IL-1, IL-6)
may be also be warranted in obese patients to fully over-
come immunological dysregulation. Optimal dosing and
timing strategies will also require further consideration,
particularly in regard to treating patients with elevated
BMI(169).

In conclusion, global health is now plagued by path-
ologies that have arisen from an obesity epidemic that
shows little sign of abating. This review has focused on
the potential role of a dysregulated immune system in a
growing number of obesity-associated cancers. With a
new generation of immunotherapies which includes the
checkpoint inhibitors nivolumab and ipilimumab antici-
pated to change the face of cancer treatment and improve
survival for a number of cancer types, it is important that
the chronic inflammation underpinning obesity-asso-
ciated cancer is better understood. Over the past 10
years, there has been an increase in studies in human sub-
jects investigating the phenotypes and functions of im-
mune cells in adipose tissue, together with their role in
obesity-associated disease, including cancer, however at
this time there is scant understanding of how this knowl-
edge can be used to therapeutic advantage with targeted
approaches. Accordingly, further research investigating
the immune compartments and chemokine and cytokine
networks underpinning inflammation-driven obesity-
related malignancy in human subjects is of immediate
relevance and importance. Also, in the wake of multiple
campaigns which have failed to halt growing obesity
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rates, more hard-line approaches are urgently required to
promote lifestyle change and nutritional education.
Childhood obesity must be tackled to prevent a further
upsurge in obesity-associated cancer incidence among fu-
ture generations. In addition to laboratory-based re-
search, a joint effort between clinicians, research
scientists, dietitians and governing bodies is needed to
focus on the preventability of obesity through diet and
lifestyle. Exploring these avenues will allow a multi-
pronged approach to combating this burgeoning health
crisis.

Conclusion

While there is a plethora of research implicating a dysre-
gulated immune system in obesity-associated inflamma-
tion and related pathologies, further work is urgently
required to identify novel approaches to prevent and
treat obesity-associated diseases such as cancer.
Evidence suggests that a combination of both
immunotherapy- and lifestyle-based approaches may re-
duce incidence and improve outcomes for obesity-
associated malignancy.
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