
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

#

Acceleration of
Engineering & Scientific

Applications using
Trivial Operand

0 : Processing

ff Mi:

A d iC *

W ^ '
T ■

J

w' ' l'\

David M. Molonei

 ̂ Trinity College Dublin, March 12 2(

: ' W Department pf Mechanical and Manufacturing

r ^ Trinity C oll^g | Dublin

^ ...

i : •
;•#

i . - ■•

" r - ■

j^rtoilTYC^LEG^

2 4 2 g i i

^ L I B R a\ R Y D U BLi N ^

Dedicated to Agnieszka, Paolo & Sean

^a^(o

Acceleration of Engineering & Scientific
Applications using Trivial Operand

Processing

A thesis subm itted to the U niversity ol' Dublin

for the degree o f D octor o f P h ilo sop h y

David M. Moloney

Trinity College Dublin, March 12"’ 2010

Department o f Mechanical and Manufacturing Engineering

Trinity College Dublin

Abstract

“The fool who persists in his folly will become wise.”

- William Blake

A vast array of scientific and engineering problems require the solution of linear systems

o f equations o f the form A* x = y , where A is the coefficient matrix o f the system and y is

a vector of unknowns and jc is a vector o f scalar known values. In practice the matrix A is

large and sparse for real-world problems. A range of iterative methods is used depending

on the nature of the problem to be solved and multiple solvers are normally included in

commercial and public domain applications based on these methods. Most

implementations o f iterative methods [3] and the linear algebraic operations on which they

are based have to date been software implementations commonly implemented in the form

of FORTRAN or C/C++ libraries. All mathematical libraries in common use make usee of

data-structures to store sparse matrices efficiently, and such methods can thus be regarded

as a form o f compression. General purpose computer architectures designed to provide a

platform for the development and execution of applications perform very poorly on this

class of operation often delivering only a few per cent of their peak processing capability

to the user application. The design o f such general-purpose machines is of necessity a

compromise, and often the designer is faced with the problem that an improvement

introduced to address performance issues for one application class has a detrimental effect

on the performance of another. Like a balloon, which a child seeks to squeeze between his

hands, the balloon when compressed in one direction, expands in the other 2 dimensions,

conserving volume. In this thesis a variety of techniques for accelerating Sparse Matrix

computations are proposed and evaluated experimentally. It will be shown that the

performance o f the kernel Sparse Matrix Vector Multiplication (SM VM) operation which

dominates the execution time of iterative methods can be improved systematically when

compared to General Purpose Processors and very significantly when compared to Special

Purpose Computers, using streaming matrix compression and decompression to boost the

sustainable Floating-Point performance compared with other architectures. Finally the

case for low-cost hardware acceleration to further boost SM VM performance is outlined.

Contributions of this work

Sparse linear algebra and in particular Sparse Matrix Vector Multiplication (SM VM) have

been identified as one o f the “7 Dwarves” [1][2] or unresolved key problems in the design

of modern computer systems. In this thesis a variety of techniques for accelerating Sparse

Matrix computations are proposed and evaluated experimentally. It will be shown that the

performance of the kernel Sparse Matrix Vector Multiplication (SM VM) operation, which

dominates the execution time of iterative methods, can be improved dramatically compared

to General Purpose Processors (GPP) and significantly when compared to Special Purpose

Computers (SPC).

The specific improvements over the state-of-the-art proposed, which boost performance,

proposed in this thesis are;

• A first Bitmap Block Compressed Sparse Row (BBCSR) sparse matrix storage

method is proposed which eliminates the zero fill associated with the BCSR (Block

Compressed Sparse Row) sparse matrix format

• Benchmarking on a 50 matrix set of large sparse matrices demonstrates a

significant speed-up in 7/50 cases using the proposed BBCSR format, using a

standard gcc compiler and Intel Xeon processor, when compared with CSR and

BCSR formats

• A second sparse matrix format Scheduled Block Compressed Sparse Row (SBCSR)

format is proposed which addresses the need to perform up to r*c bitmap

comparisons (where r and c are respectively the number of rows and columns in the

dense block sub-matrix) and branches performed to implement the BBCSR Sparse

Matrix Vector Multiplication (SM V M)

Again the SBCSR method is benchmarked against BBCSR, BCSR and BCSR methods for

the same 50-matrix set, using the same configuration of gcc compiler, RH EL and Xeon

processor

• A generic hardware accelerator is described which allows the SBCSR method to be

utilised without penalty when compared with BCSR SM VM

• Integer sparse matrices such as the DCT coefficient matrices used in video

applications are easily supported

• Finally the proposed hardware also allows compressed sparse data-structures to be

random-accessed in situ without prior decompression, offering a major advantage

over the state o f the art

The work described carried out by the author at TCD and latterly at Movidius Ltd. has

resulted in the following patent applications, the first of which has already been granted,

and the remaining 3 o f which are the subject of on-going patent applications;

• Geraghty D., Moloney D., “Data processing system and m ethod”,

US2009030960 (A l) , Priority Date 2005-05-13

• M oloney D., “A processor”, W 0 2 0 0 9 101119 (A l) - 2009-08-20, Priority Date

2008-02-11

• Moloney D., “A processor exploiting trivial arithmetic operations”,

EP2137610 (A l) - 2009-12-30, Priority Date 2007-03-15

• M oloney D., “A circuit for compressing data and a processor employing sam e”,

EP213782I (A l) - 2009-12-30, Priority Date 2007-03-15

The same work has also contributed so far to the following publications:

• D. Moloney, D. Geraghty, C. M cSweeney and C. McEIroy, “Streaming Sparse

Matrix Compression/Decompression” , in Lecture Notes in Computer Science 2005

(H iPEAC Conference), Springer-Verlag, No. 3793, pp. 116-129

• D. Moloney, C. McSweeney, C. McElroy and D. Geraghty, “Hardware accelerator

for Unite element iterative methods” , lEE Irish Signals and Systems Conference

2005, pp .330-337

• D. Gregg, C. McSweeney, C. McElroy, F. Connor, S. McGettrick, D. Moloney, and

D. Geraghty, "FPGA Based Sparse Matrix Vector Multiplication using Com m odity

DRAM Memory," in Field Programmable Logic and Applications, 20(J7. FPL

2007. International Conference on, 2007, pp. 786-791

Declaration

I hereby declare that this thesis has not been submit t ed as an exerc ise for a degree at this or

any other Univers ity and that it is ent irely my o w n w o rk and has not been taken from the

w o rk o f others save and to the extent that such w o rk has been cited and ackno wledg ed

wi th in the text o f my work.

1 agree that the Library m ay lend or copy this thesis upon request.

Signed,

David Moloney

March 12‘̂ 2010

Acknowledgements

The author gra teful ly ac k n o w le d g es the assis tance and guidance o f his supervisor Mr

D ermot Ge ragh ty o f the D epar t m en t o f Mechanical and Manufac tu r in g Engineer ing, TCD.

He also ackno wledges the suggest ions and gu idance o f Dr David G re gg o f the Department

o f C om pute r Science , T C D .

T he author thanks Enterpr ise- Ire land w hose generous funding under the Research

Innovation Fund RIF 20 0 2 /4 6 6 wi thout wh ich he wou ld have been unable to start his

research.

T h e generous donat ions o f over €10,000 worth o f eq uipmen t by M r Ger ry Maguire

(former ly o f Par thus-Ceva pic. n ow with At lant ic Br idge Ventures) , Mr John Bourke and

M r Martin Farnan at Ceva pic. we re most helpful to the research group, and ult imately to

this work.

T he later research work on b i tmap S M V M , from Octobe r 2005 onw ards , which genera ted

the most interest ing results, w as conducted by the author at Movid ius Ltd.

T h e author acknow led ges the assis tance of M r Ivan Griffin, Mr Daire M cN am ara and Mr

Alan Donne l ly former ly o f Front ier -Sil icon (I reland) Ltd. and the late Mr Martin Mel lody

o f Movidius Ltd. in the form o f d iscuss ions on tools and methodolog ies , and Bob Tait,

w h o s e advice on the nuances o f M S W o rd was invaluable.

Special Thanks

Si r ingrazia il Dr Marco Scappecia per interventi di Radiologia e R i suonanza a cura di

F iammet ta . Inoltre si r ingrazia Dr Mauriz io Salvat i , Dr Cr is t ian B ro g n a e I’equipe di

neu roch iru rgi a a! Policlinico U mber to 1 di R o m a per la loro sens ibi l i ta ’ e c ap ac i t a ’ tecnica

nei due interventi chi rurgici di Fia mmet ta per t um ore ce lebra le pr imar io di t ipo G B M .

Si r ingrazia inoltre il Prof. de Paola, Dr di Pa lm a per il corso post -opera t ivo di radio e

c l iemioterapia a l l ’ospedale Fatebene Fratelli di R om a , ed il Professor Franca dell r iparto

onco log ico del Policl in ico Umber to Pr imo di R o m a per la cura di F iammet ta .

Ringrazio tant iss imo Dr Glor ia Trocchi la sorella di F iam met t a per essere stata p i u ’ di una

sorella, anche per me e di aver dato sem pre tutto per seguire Fia mmet ta dal punto di vista

medico, nav igando il s i s tema sani tario Italiana con grand e abi l i ta ’.

In oltre r ingrazio il padre di Fiammet ta , A ugus to e sua sorella Giul ia Trocchi per I’aiuto

cos tante durante la mal lat ia di F iam met t a e dopo.

1 also wish to T h an k Dr. Liam Gro gan and his onco logy team including Dr Con Murphy ,

Dr Lizzy Smyth and Nurses Car la and Aine for level o f compass ion and f lexibi li ty and the

super la t ive level o f care and the great sensi t ivi ty sh o w n both to F ia m met t a and m y se l f

du r ing the m a n y mon ths w e w e re w e ek ly visi tors to St. C l a r e ’s day-uni t at B eau m o n t

Hospi tal .

1 w ou ld like to thank all o f the s taf f o f St. Francis Hospice in Raheny, especia l ly Nurse

Margare t , for thei r care and suppor t g iven d u r i ng the last we eks o f F i a m m e t t a ’s life.

1 thank all o f my family and f riends both in Ireland and Italy and my col leagues includ ing

S e a n Mitchell at M ovid ius Ltd. for their o n g o in g suppor t and under s tand ing in w h a t were

the most difficult years o f m y life.

In Memoriam

Fiammetta Trocchi (1959-2007)

“I wanted you to see what real courage is, instead o f getting the idea that

courage is a man with a gun in his hand. It's when you know you're

licked before you begin but you begin anyway and you see it through no

matter what.”

- H arper Lee, To Kill a M ockingbird, I960

Martin Mellody (1975-2009)

“The light that burns twice as bright burns half as long ...

and you have burned so very, very brightly Q”

- Dr Eldon Tyrell, Bladerunner, 1982

Acronyms

SM VM Sparse Matrix Vector Multiplication

SoC System on Chip

FM A Fused Multiply Add

EB E Element-by Element

R A W Read After Write hazard

C S R Compressed Sparse Row

CSC Compressed Sparse Column

B C SR Block Compressed Sparse Row

B C SC Block Compressed Sparse Column

B B C SR Bitmap Block Compressed Sparse Row

B B CSC Bitmap Block Com pressed Sparse Column

S B C SR Scheduled Block Compressed Sparse Row

SB C SC Scheduled Block Compressed Sparse Column

F P Floating Point

FPU Floating Point Unit

(IP P General Purpose Processor

GPU Graphics Processing Unit

C M P Chip Multi-Processor

F E M Finite Element Method

PD E Partial Differential Equations

C F l) Computational Fluid Dynamics

F P G A Field Programmable Gate Array

CAD Computer Aided Design

C G Conjugate Gradient

C G N E /C G N R Conjugate Gradient on Normal Equations

G M R Generalised Minimal Residual

B iC G Bi-Conjugate Gradient

Q M R Quasi-Minimal Residual

C G S Conjugate Gradient Squared

B iC G S T A B Bi-Conjugate Gradient Stabilised

C H E B Chebyshev Iteration

ID R Induced Dimension Reduction

DDOT D ouble precis ion D O T product

DDIV D ouble precis ion D iv is io n

DAXPY D ouble precis ion A lpha .X Plus Y

FLOPS Floating Point O perations Per Second

IEEE Institute o f E lectrical and E lectronics Engineers

IEEE-754 IE E E 7 54 F loa ting-Poin t A rithm etic S tandard

NZ N on-Z ero

ICSR Increm ental C om pressed Sparse Row

ICCS Increm ental C om pressed C o lum n Storage

HiSM H ierarch ical S parse M atrix

IPC Instruc tions Per C lock

CPI C locks Per Instruction

F 04 Fanout O f 4

WAW W rite A fter W rite hazard

WAR W rite A fter Read hazard

PC P rogram C ounter

0 0 0 O u t-O f-O rder execution

SIMD Single Instruction M ultip le Data

VLSI V ery L arge Scale Integration

DRAM D ynam ic R andom A ccess M em ory

LRU Least R ecently Used

ILP Instruction Level Paralle lism

TLP T hread Level Paralle lism

RF Register File

MT M ulti-T hread ing

SMT S im ultaneous M ulti-T hread ing

I/O Input O utput

ISA Instruction Set A rchitecture

CMT C hip M ult i-T hread ing

TLB Transla tion L ookaside Buffer

DP D ouble P recision floating point

SP Single Precision floating point

NOE N etw ork Offload Engine

XML e x te n s ib le M arkup Language

OS O pera ting System

A PI Application Programming Interface

M A C Multiply A ccum ula te

FE A Finite Element Analysis

LSI Latent Semantic Indexing

LSA Latent Semantic Analysis

R C M Reverse Cuthill-McKee

H P C High Performance Computing

U B C SR Unaligned Block Compressed Sparse Row

M I L Matrix Template Library

LU Lower/Upper Decomposition

C F Cholesky Factorisation

CPU Central Processing Unit

Z Z C S R Zig-Zag Compressed Sparse Row storage format

Z Z IC S R Zig-Zag Incremental Compressed Sparse Row storage format

Z Z B C S R Zig-Zag Block Compressed Sparse Row storage format

SB C S R _C Scheduled Block Compressed Sparse Row (column ordered)

M PSoC Multi-Processor System On Chip

S D IM M Synchronous Dynamic Random Access Memory

L U T Look-Up Table

M UX Multiplexer

FA Full-Adder

H B C S R Hybrid Block Compressed sparse Row

Contents

1 INTRODUCTION... 17
1.1 Thesis O rg an isa tio n ..20
1.2 C o n tr ib u tio n s ... 22

2 FINITE ELEMENT METHOD (FEM) APPLICATIONS... 24
2.1 In tro d u ctio n ...24

2.1.1 Finite Element (FEM) A nalysis... 26
2.1.2 Matrix Assem bly... 27

2.2 Itera tive M ethods.. 29
2.2.1 Conjugate Gradient M ethod..31

2.3 S u m m a ry ... 33

3 SPARSE MATRIX STORAGE FORMATS... 34
3.1 C om pressed Sparse Row/Colum n (CSR/CCS) S to rag e ...36
3.2 IC SR /IC C S F o rm a t... 38
3.3 Sam eType and S tructT ype F o rm a ts .. 39
3.4 H ierarchical Sparse M atrix (HiSM) F o rm a t.. 40
3.5 S u m m a ry ... 42

4 HARDWARE SUPPORT FOR SMVM..43
4.1 H ardw are Perform ance Enhancem ent T ech n iq u es ..43

4.1.1 Processor Pipelining... 44
4.1.2 Pipeline H azards... 49
4.1.3 Floating-Point Unit (F P U)..50
4.1.4 M em ory... 55
4.1.5 Cache.. 57
4.1.6 Pre-Fetching... 60
4.1.7 Data Com pression...60

4.2 G eneral Purpose Processors (G PP).. 61
4.3 C hip M ultiprocessor (C M P)... 63
4.4 S tream Processors...68
4.5 S u m m a ry ... 71

5 SOFTWARE SMVM... 73
5.1 Sparse M atrix V ector M ultiplication (SM V M)...74

5.1.1 SMVM A lgorithm ...74
5.1.2 Memory B andw idth... 75
5.1.3 Cache M em ory... 76
5.1.4 B locking.. 77
5.1.5 Execution Models & Cache Behaviour on SMVM C odes..77

5.2 M anual Perform ance T u n in g ... 78
5.2.1 Reducing Cache Misses by Reordering... 79
5.2.2 Pre-Fetching... 79
5.2.3 Register Blocking.. 81
5.2.4 Toledo’s Results.. 81

5.3 A utom atic Perform ance T un ing .. 82
5.3.1 Register Blocking Revisited..83

5.3.2 Automatic SMVM Performance Tuning... 86
5.3.3 Vuduc’s Results.. 86

5.4 F u r th e r O ptim isations...92
5.4.1 Cache Blocking... 93
5.4.2 TLB Blocking... 94
5.4.3 Copy Optimization..95
5.4.4 Recursive Blocking...95
5.4.5 Block Data Layout..96

5.5 RCM R eo rd e r in g .. 98
5.6 Exploiting P ara lle lism ...100

5.6.1 O penM P.. 100
5.7 M atrix Partitioning ...102
5.8 Cache Oblivious SMVM Parti tion ing ..103
5.9 S u m m a ry ... 104

6 SOFTWARE SMVIVl REVISITED..109
6.1 Trivial A rithm etic ...110
6.2 Com puting with b itm aps.. I l l

6.2.1 Reference BCSR SM V M .. 112
6.2.2 Bitmap Block Compressed Sparse Row Format (BBCSR).................................. 114
6.2.3 Experimental Setup... 118
6.2.4 Comparative BBCSR SMVM Performance...121
6.2.5 Factors Iniluencing BBCSR SMVM Execution..127

6.3 BBCSR Optim isation... 132
6.4 Scheduled Bitmap S M V M ...132

6.4.1 Scheduled Block Compressed Sparse Row Format (SBCSR)............................. 133
6.4.2 SBCSR Schedule Generation... 137
6.4.3 SBCSR Schedule Optimisation..138
6.4.4 SBCSR SMVM Performance... 140

6.5 S u m m a r y ... 143

7 HARDWARE SUPPORT FOR BITMAP SMVM.. 145
7.1 O bservations on Software S M V M ..146
7.2 The A rgum en t for H ardw are A cceleration ...148
7.3 P r io r A r t .. 149
7.4 Proposed S olu tion ...150
7.5 Basic Compression M e th o d .. 151
7.6 Conventional Sparse M atrix-Vector M ultiplication.. 152
7.7 Com pressed Sparse M atrix-Vector M ultip lica tion ... 154
7.8 A ccelerator O verview ..156
7.9 Functional Model of A ccelerator... 157
7.10 A ccelerator H ardw are Im p lem en ta tion ...159

7.10.1 Software Interface...162
7.10.2 Bitmap Scheduler..164
7.10.3 Control Logic...169
7.10.4 Memory Interface..171
7.10.5 SMVM using Bitmap Schedule.. 171
7.10.6 Hardware Requirements...173

7.11 S u m m a ry ...173

8 C O N C L U SIO N S ... 174
8.1 Thesis C ontributions.. 176
8.2 Scope for Further W ork.. 177

8.2.1 Hardware Coprocessor Implementation..177
8.2.2 Bitmap Hardware Integration in Existing Processor...178
8.2.3 SM VM T u n in g ... 178
8.2.4 Hybrid Sparse Matrix Storage F o rm a ts ..179
8.2.5 Extended Scope for Trivial Operand Processing...180
8.2.6 Quantifying Power dissipation.. 181
8.2.7 Scalability...181
8.2.8 Lookahead Bitmap S chedu ling ... 181
8.2.9 Further Experimental SM VM Benchm arking...182
8.2.10 SM VM Benchmark su ites ...183
8.2.11 Other Uses for B itm aps... 183

PARTING T H O U G H T ... 186

BIBLIOGRAPHY 187

1
Chapter 1

"Anyone who has never made a mistake has never tried anything new."

- Albert Einstein

1 Introduction
Many scientific and engineering problems require the solution o f linear systems of

equations of the form A * x = y , where A is the coefficient matrix o f the system and x is a

vector of unknowns and y is a vector o f scalar known values. In practice the matrix A is

large and sparse for real-world problems yet it must fit within the available system

memory, hence efficient storage of the matrix data is a requirement to be able to solve

problems o f arbitrary size. Also when the matrix size is very large classical solution

methods such as Gaussian Elimination are no longer efficient in terms o f processing and

memory requirements so iterative methods are typically applied to such problems. A

range of iterative methods is used depending on the nature of the problem to be solved

and multiple solvers are normally included in commercial and public domain applications

based on these methods.

A major review o f the key challenges in computing systems by Patterson et. al at UC

Berkeley [IJ concluded that Sparse Matrix by Vector multiplication (SM VM), was one o f

17

the key challenges, or “ 7 d w a rv es” , w hose resolution was likely to s ignificantly advance

p rogress in co m p u te r a rch itectu re developm ent.

M ost im p lem en ta t ions o f iterative m ethods [3] and the linear algebraic operations on

w hich they are based have to date been software im p lem enta tions com m only

im plem ented in the fo rm o f F O R T R A N , C or C++ m athem atica l libraries. These

libraries m ake use o f the IE E E -754 [4] compliant floating-point units (FPU) included as

part o f high p er fo rm an ce co m puting system s, m icroprocessors and w orkstations. All

m athem atica l l ibraries in co m m o n use m ake use o f data-s tructures to store sparse

m atrices effic iently , and such m ethods can thus be regarded as a form o f com pression.

Such libraries or associa ted tools also contain additional algorithm s w hich are used to

pre-process the m atrix data in order to ensure Sparse M atrix V ector M ultiplication

(S M V M) m akes the m ost efficient use possible o f the available processing and m em ory

resources on a g iven p la tform . T he techniques applied typically involve graph-based re

o rdering o f the non-zero e lem ents and their associated indices in order to m axim ise

spatial and tem poral locality w hich in turn tends to m axim ise the am ount o f processing

w hich can be ach ieved for each read or write from or to system m em ory. Increased

spatial o r tem poral locality tends to result in data required by the next step o f the S M V M

algorithm be in g read from an internal register or cache, rather than from external

m em ory , resu lt ing in a lower access time and higher processing speed.

T he final so ftw are optim isation , which can be perform ed on a typical com puting system,

is to split a large sparse m atrix and associa ted vectors for use in a m atrix-vector product

into a series o f sm aller p rob lem s, w hich can be run independently on a num ber of parallel

p rocessors. T he partial results from the parallel processors can then be com bined in a

s im ple post-p rocessing step (such as addition o f the vector sub-segm ents) to com plete the

Sparse M atr ix -V ecto r M ultiplica tion.

T he focus o f this w ork is on scientific and engineering applica tions prim arily because a

large body o f test data is available for such problem s [6][11][12]. H ow ever, linear

a lgebra is em erg in g as enab ling functionality in a range o f applica tions such as Spam -

filtering [13] and face-recognition [14] which are em bedded into infrastructure produc ts

today and m ay well find their w ay into m ore deeply em bedded and even m obile devices

in the future.

18

A ccord ing to Kogge [15] there are three app roaches to pe r fo rm ing Sparse Matr ix-Vector

Mul tip lica tion (S M V M) on p ro gr am mable computers :

• inner Product w he re the result vector y is co m pu ted one inner-product at a t ime,

using aij and xj va lues read f rom m e m o ry

• Sub-matr ix where the matrix A is ti led up into su b-m at r i ces w hich are read a long

with equal ly sized segmen ts o f the y and x vectors

• C o lu m n Scal ing w he re mul tiple entries in the result vec tor y are read and updated

as each co lu m n is scanned for aij va lues and mul tip l ied by a s ingle entry f rom the

x-vector xi

T he inner product method is co m m o n ly used and w orks well wi th the C om pressed

Sparse Row format detai led in sec tion 3.1. T h e advantage o f the inner-product met hod is

that y values are held in a regis ter rather than m e m o ry resul t ing in fast access. Ideally a

sof tware des igner w ou ld like to be able to p rod uc e an updated y value each cyc le as

par tia l-products are accumulated , however the correct previous y-value is not

immedia te ly available due to the fact that the adde r has mul t ip le c lock-cyc les o f latency,

resul t ing in a c i rcular d epe ndency called a Read After Wri te (R A W) hazard. Care must

be taken in seq uenci ng opera t ions to ensure that the hardw are does not detect potent ial

R A W hazards and stall the processor in order to e l iminate the R A W hazards .

T he sub-matr ix app ro ach is often used for dense -matr ix mul t ip l ica t ion as it is highly

efficient in terms o f the am o u n t o f m em o ry bandw id th usage. T he method is not

compat ib le , h o w e v e r wi th the most w idely used Sparse Matr ix s torage formats

C om pre s sed Sparse R o w (C S R / C S R) and C o m p res se d Sparse C o lu m n (C S C/C C S) .

A var ie ty o f o ther formats have been deve lope d over the years to bet ter handle certain

var iants in terms o f matrix s tructure , h ow ever the formats in most c o m m o n use are

C S R / C S C and their b locked var iants B C S R / B C S C . T he b locked formats are par t icularly

useful w he re the un der ly ing mat r ix has som e s t ructure that a l low it to be par t i t ioned, thus

im pro v ing local ity and hence per formance. H o w e v e r b lock ing is com plex and t ime-

co n s u m in g and m ay d i s im prove sys tem pe r fo rm ance and pow er , key concerns in an

increasingly ene rg y -c onsc ious world .

19

1.1 Thesis Organisation
T he background to the broad use o f Sparse Matrix Vector M ultip lica tion in a myriad o f

applica tions from des ign ing aircraft to perform ing a G oogle search is expla ined in

C hap ter 2. Equally it will be show n that S M V M is the dom inan t perfo rm ance

determ inant in m an y o f these applications and the iterative m ethods upon which they

depend.

A key issue in the p er fo rm an ce o f these applications is the storage fo rm at used to

represent the sparse m atrix and a range o f existing storage form ats a long with the

arithm etic m ethods (S M V M) that operate on them are surveyed at length in C hapter 3

and returned to aga in in C hap ters 4, 5 and 6.

Users and deve lope rs o f these large-scale applications is system p erfo rm ance and have

that co m p u te r sys tem s often perfo rm very poorly on this class o f applications. T he

def in ing charac teris t ics o f m odern processor architectures and their im p lem enta tions, and

m ore im portan tly the l im ita tions that processor and hardw are arch itectures place on

applica tions p e rfo rm ance are su rveyed in depth in chapter 4.

T he available so ftw are techn iques for im proving the perform ance o f S M V M across the

range o f p rocesso r arch itectures is fully explored in Chapter 5 and the overhead o f many

o f these m ethods is found to require tens to hundreds or even thousands o f unoptim ized

S M V M s in order to return an overall im provem ent in perform ance.

In partial an sw er to som e o f the perform ance limitations o f exis t ing blocked sparse

storage fo rm ats tw o new sparse-s torage formats are introduced in C hap ter 6. The

form ats are both based on trivial techniques first identified by R ichardson [138] in 1992.

T hese m ethods have rem ained largely ignored in the in tervening period as the solution

identified by R ichardson d id n ’t address the fundamental under ly ing prob lem o f l im ited

m em ory bandw id th , w hich w as highlighted by M cK ee [33] as the “ M em o ry W a ll” .

Essentially the m ethod outl ined by R ichardson adds to the difficulties the p ro g ram m er

and p rocessor designer face by first fetching trivial data into the processor, co n su m in g

va luable bandw id th , before dec id ing that the data is not required and can be bypassed .

Indeed hav ing multip le parallel floating-point and trivial p rocess ing units m a k e s the

p rocessor larger, s low er and m ore difficult to program , nega ting m any o f the su p p o sed

benefits o f trivial operand processing.

20

T he key insight explored in this w ork is that by d eco u p lin g trivial operand detection (a

trivial m ultip lication involves m ultip lication by a trivial o perand i.e. +1, -1 or 0) from

processing, a com press ion can be obtained. T h is co m p ress io n increases effective

m em ory bandw id th be tw een processor and the entire m em o ry h ierarchy, and separately

trivial operand p rocess ing can then be perfo rm ed w ithou t the necessity for specia lised

hardw are in the p rocessor pipeline as proposed by R ichardson . It is also show n that the

overhead o f trivial operand detection and tagg ing has neg lig ib le cost w h ich is dw arfed by

the cost o f assem bling the data-s tructures required for large sca le num erical applications,

thus the benefits o f the proposed accrue a lm ost entire ly to the w h o le application.

T he perfo rm ance o f these m ethods is explored in detail in term s first experim enta lly

using a suite o f 50 large sparse m atrices as a b en ch m ark suite runn ing on a typical

eng ineering w orksta tion with m odern m ulticore processor. T u n in g o f the type proposed

by V uduc is avoided in order not to in troduce any bias at the expense o f increased ru n

time for the benchm ark suite and a s tandard gcc C -co m p ile r w ith op tim isa tions w as used

in all experim ents . T he B itm ap Block C o m p ressed S parse R ow (B B C S R) format w as

sh o w n to perform better than Block C o m p ressed S parse R ow (B C S R) or C om pressed

Sparse Row (C S R) reference m ethods in 7 out o f 50 cases, per fo rm in g on average 7 .85%

better w hen com pared with C SR , and 13.93% com pared w ith B C SR . T he reasons for

this increase in p erfo rm ance are ana lysed by ex am in in g the a ssem bly code in detail as

well as the p rocessor arch itecture and cache hit-rates, as w ell as the effect o f fill on

B C S R perform ance.

T he observa tions m ade by ana lys ing B B C S R perfo rm ance lead to the insight that

additional overhead in the form o f additional com parisons could be avo ided if a schedu le

could be genera ted from the non-zero pattern. This schedu le w ou ld only com pute the

required non-triv ial par tia l-products , e l im ina ting the co m p ar iso n overhead for trivial

values and greatly s im p lify ing the d ev e lo p m en t o f S M V M libraries. T h is observa tion

and the d iscovery o f an obscure feature o f the gcc com pile r enab led the Schedu led Block

C o m p ressed S parse R ow (S B C S R) form at to be deve loped . T h is form at w as also duly

b en ch m ark ed and ana lysed in both ro w -m ajo r and co lu m n -m ajo r schedu led variants.

T he row -m ajo r S B C S R fo rm at w as found to be up to 60 % faster than B C S R or C S R in 2

ou t o f 50 cases, and the co lu m n -m ajo r format w as found to be as fast in the case o f the

21

vibrobox and g y ro_m m atrices , but also betw een 3 and 16% faster than the o th e r formats

in a further 4 out o f 50 cases.

In chapter 7 the sh o r tco m in g s o f the software B B C S R and SB C S R fo rm ats were

highlighted and the case for hardw are acceleration w as outlined. The im plem enta tion

and functional m odel for the accelerator were described and the resultant hardw are cost

estimated.

Finally in C hap ter 8 the conc lus ions for the w ork as a w ho le are drawn and d irections for

future w ork are explored.

1.2 Contributions
In this thesis a varie ty o f techn iques for accelerating Sparse Matrix com pu ta t ions are

proposed and evalua ted experim entally . It will be show n that the perfo rm ance o f the

kernel S parse M atrix V ecto r M ultip lica tion (S M V M) operation , which dom inates the

execution tim e o f iterative m ethods, can be im proved dram atically com pared to General

Purpose P rocessors (G P P) and significantly when com pared to Special Purpose

C o m pute rs (SPC).

T he specific im p ro v em en ts over the state-of-the-art p roposed, which boost perform ance,

proposed in this thesis are:

• A first B itm ap Block C om pressed Sparse R ow (B B C S R) sparse matrix storage

m ethod is p roposed w hich e lim inates the zero fill associated with the BCSR

(B lock C om pressed Sparse R ow) sparse matrix format

• B en chm ark ing on a 50 matrix set o f large sparse matrices dem onstra tes a

s ignificant speed-up in 7 /50 cases using the p roposed B B C SR format, us ing a

s tandard gcc com piler and Intel X eon processor, w hen com pared with C S R and

B C S R form ats

• A second sparse m atrix form at Schedu led Block Com pressed Sparse Row

(S B C S R) format is p roposed which addresses the need to perform up to r*c

b i tm ap com parisons (w here r and c are respectively the num ber o f row s and

co lum ns in the dense b lock sub-m atrix) and branches perform ed to im plem ent the

B B C S R Sparse M atrix V ecto r M ultip lication (S M V M)

22

Again the SBCSR method is benchmarked against BBCSR, BCSR and BCSR methods

for the same 50-matrix set, using the same configuration o f gcc compiler, RH EL and

Xeon processor

• A generic hardware accelerator is described which allows the SBCSR method to

be utilised without penalty when compared with BC SR SM VM

• Integer sparse matrices such as the DCT coefficient matrices used in video

applications are easily supported

• Finally the proposed hardware also allows compressed sparse data-structures to

be random-accessed in situ without prior decompression, offering a major

advantage over the state of the art

M'he work described carried out by the author at TCD and latterly at Movidius Ltd. has

resulted in the following patent applications, the first of which has already been granted,

and the remaining 3 of which are the subject of on-going patent applications;

• Geraghty D., Moloney D., “ Data processing system and m ethod”,

US2()()9()30960 (A l) , Priority Date 2()()5-05-13

• M oloney D., “A processor”, W 0 2 0 0 9 1 0 1 119 (A l) - 2()09-()8-2(), Priority Date

2008-02-11

• M oloney D., “A processor exploiting trivial arithmetic operations” ,

E P 21376 I0 (A l) - 2009-12-30, Priority Date 2007-03-15

• M oloney D., “A circuit for compressing data and a processor employing same” ,

E P 2 137821 (A l) - 2009-12-30, Priority Date 2007-03-15

The same w ork has also contributed so far to the following publications;

• D. Moloney, D. Geraghty, C. M cSweeney and C. McElroy, “Streaming Sparse

Matrix Com pression/Decom pression” , in Lecture Notes in Com puter Science

2005 (H iPEAC Conference), Springer-Verlag, No. 3793, pp. 116-129

• D. M oloney, C. M cSweeney, C. M cElroy and D. Geraghty, “Hardware

accelerator for finite element iterative m ethods” , lEE Irish Signals and Systems

Conference 2005, pp.330-337

• D. Gregg, C. McSweeney, C. McElroy, F. Connor, S. McGettrick, D. Moloney,

and D. Geraghty, "FPGA Based Sparse Matrix Vector Multiplication using

C om m odity DRAM Memory," in Field Programmable Logic and Applications,

2007. FPL 2007. International Conference on, 2007, pp. 786-791

23

2
Chapter 2

“ I ran into Isosceles. He had a great idea for a new triangle!”

- W oody Allen

2 Finite Element Method (FEM) Applications
A n overv iew o f Finite E lem ent (F E M) A pplica tions and the numerical m ethods that

underp in them is presented to set the Sparse M atrix-V ector M ultiplication (S M V M)

com puta tional kernel, w h ich it is p roposed to accelerate, in context. T here is a large body

o f publications from a range o f application areas on FEM and a large num ber o f books

such as the c lassic text by Z ienk iew icz [16] with som e available freely on the web

[17][18].

2.1 Introduction
T he Finite E lem en t M ethod (F E M) is a num erical technique for finding approx im ate

so lu tions to real-w orld scien tif ic and eng ineering p rob lem s first proposed by C ouran t [19]

in 1943, d raw ing on the earlier w o rk o f Rayleigh, Ritz and G alerkin on Partial Differential

Equations (PD E), for structura l eng ineering problem s. C lough [20] eventually coined the

term Finite E lem en t to describe the m ethod in I960 . FEM analysis was rap id ly extended,

and im proved by m athem atic ians and engineers for use in aeronautics [21], large structural

24

engineering and m ilitary projects. It required the use o f mainframe computers to perform

even relatively limited analysis and in fact even mainframes were not optimised for this

kind o f workload. Over sixty years later Finite Element Analysis is now available to

individual scientists and engineers as a method o f solving real-world problems, using low-

cost personal computers.

The finite-element method is used to solve a simplified mathematical model o f the actual

physical problem under consideration. The method allows approximate solutions to such

problems with bounded error to be computed by reducing a continuum with an infinite

number o f degrees o f freedom to a set o f elements w ith a finite number o f degrees o f

freedom; the effect is to reduce from a set o f equations w ith an infinite number o f

unknowns to one with a finite number o f unknowns. Elastic, thermal, flu id -flow and

electrostatics problems, to name but a few, are representable in terms o f a set o f governing

equations and associated boundary conditions as shown in Figure 2-1.

Governing „
Equation

Boundary «(«»)+ = o
Condition

Set o f
Simultaneous

> Equations
[k]{u } = {F }

X t \
Property Behaviour Action

Figure 2-1 FE M Governing Equations & Boundary Conditions (source: [22])

In the case o f each type o f problem the Property [K] and the Action {F } elaborated by the

Finite Element Method (FEM) allow the unknown Behaviour {u } to be solved for at each

finite element in the structure. The unknown behaviour solved for in a variety o f systems

is shown in Table 2-1.

Type of
Problem

Property [K]
Behaviour

{u}
Action

{F}
Elastic stiffness d isp lacem en t force

Heat-f low conductiv ity tem pera tu re
heat

source

Fluid viscosity ve loc ity
body
force

Electrostatic
die lectr ic

perm itiv ity
e lectr ic

potentia l
charge

Table 2-1 Behaviours Solved for by FE M in different problems (source: [16])

25

2.1.1 Finite Element (FEM) Analysis

In general the finite e lem en t m ethod consists o f 3 fundam ental steps:

• P re-processing

• A nalysis

• Post-processing

T he p re -p rocess ing step is the m ost tedious to perform for the des igner and consists o f the

reduction o f a com plex s tructure into a collec tion o f basic e lem ents (tr iang les or other basic

e lem ent shapes), connected by nodes. T w o types o f m esh can be used in Finite Element

(F E M) problem s, structured and unstructured. A s can be seen in F igure 2-2 a structured

m esh w hile s im ple r requires a m uch finer grid to provide the sam e level o f detail as an

unstructured m esh. T h e trade-o ff is one o f m ore yet s im pler ca lcu la tions for a structured

m esh as opposed to few er, but m ore com plex ca lcu la tions for an unstructured mesh.

Figure 2-2 Structured Versus Unstructured Meshes (source: f22J)

A user-directed m esh genera to r p rogram using as input a d raw ing p roduced by a C om pute r

A ided D esign (C A D) package typ ically perfo rm s this step. An ex am p le o f a finite-e lement

m esh with triangular e lem ents super im posed on a d raw ing o f a truck axle is show n in

F igure 2-3.

Figure 2-3 Triangular Finite Element Mesh Superimposed on Truck Axle

26

In the Analysis step the dataset produced by the mesh generator is imported. The mesh

elements are reconnected at the nodes, which provide the connectivity generated by the

mesh generator that holds the collection of elements together, thus approximating the

original structure. This process results in a set o f simultaneous algebraic equations, which

can be solved by direct or iterative numerical methods. The set o f simultaneous equations

is represented as a matrix problem as shown in Figure 2-4 where the matrix K is known as

the global stiffness matrix, the vector u represents the unknowns and the vector /

represents the known perturbation applied to the system being modelled.

Ik k
^ 2 1 ^ 2 2 ^ 2 3 ’ • ^ 2 n 11 j / 2

^ 3 1 ^ 3 2 ^ 3 3 • • ^ 3h
< > = «

/ 3

1

(N

1
Figure 2-4 Matrix Formulation of FEM Problem (source: [22])

The stiffness matrix K is assembled using element stiffness matrices k specific to the

problem area (elasticity, electrostatics etc.) and the element and connectivity information

from the finite element mesh. The nature of the FEM matrix assembly process allows the

same Finite Element solver to be applied to determine the aerodynamic properties of an

aerofoil (fluid dynamics) and the stresses and strains which occur in the same aerofoil

(elasticity) using the same CAD model of the aerofoil and even the same mesh, by

changing the element matrix type used during matrix assembly. In the final post

processing step the unknown behaviour u solved for by the FEM analysis is overlaid on top

of the CAD drawing with coloured contours representing the field values.

2.1.2 Matrix Assembly
The Element-by Element (EBE) scheme was developed for heat conduction problems [6]

and subsequently extended to structural and solid mechanics problems [7]. EBE has the

benefit o f avoiding matrix-assembly, however using these methods can result in up to 8

times more FLOPS being required to solve the same system in 3D applications [23] when

compared with solution methods using the assembled matrix they will be not be considered

here.

In fact EBE is only of benefit where the number o f iterations required to achieve

convergence using the assembled matrix is low enough to undercut the matrix assembly

27

t im e overhead on the m ethod using the assem bled m atrix . T h e s tiffness matrix K

generated by the m atrix assem bly step in a Finite Elem ent A na lys is is a lw ay s sparse but

the exact pattern o f non-zeroes is dependent on the row and co lum n addresses , which in

turn depend on the n ode num bering em ployed. In the exam ple gene ra ted using [24] are

show n in F igure 2-5 in all three cases the sam e 3x3 m esh w as used and on ly the num bering

o f the nodes w as varied.

3- - - - - - - - - - 1

7

»- - - - - - - - - - 1

8

5- - - - - - - - - - 1 3

9

V 1

i
j 1

5

1 T

f,

r " “. 1

1

•

1

2

'- - - - - - - - - - - - '

3

1- - - - - - - - - - - - i.

3----------- 1------------(t------------ ;

1 1 tJ 1 T........ . t

2 1 5“ 1

>------------------1

1 *,

1------------ >

2---------------1

7

3---------------1

8

5--------------

9

9 1

4 5 6

1 '

-----------------1

1

^ ;

J 1 1

----------------- 1̂

(a) (b) (c)

Figure 2-5 Finite Element Mesh Node Numbering (source: [24])

T he effect o f the node num bering em ployed in F igure 2-5 on the pattern o f non-zeroes in

the stiffness m atrix is show n in Figure 2-6; (a) results from a node num bering , w hich

p rogresses a long row s or co lum ns successively , the pattern in (b) results from a spiral

o rde ring and (c) results from a random ordering.

(a) (b) (c)

Figure 2-6 Effect o f Mesh Numbering Schemes on Stiffness Matrix (source: [24])

A typical ex am p le o f an assem bled finite e lem ent st iffness m atrix is the b css tk32 matrix

from the H a rw e ll-B o e in g collection published on M atr ixM arket [11] w hich w as genera ted

from the static analysis of an au tom obile chassis. T he plot in F igure 2-7 show s th e sparsity

28

pattern o f the assembled stiffness matrix. The matrix is symmetric, its order is 44609, and

however, it only contains 2 M non-zeroes m eaning that 99.95% of its elements are zero.

X 1 0 '

0.5

2.5

3.5

2.5 31.5 2 3.5 40 0.5 1
nz = 2014701

Figure 2-7 Sparse Stiffness Matrix Plot (bcsstk32) from FEM Analysis (source: [11])

2.2 Iterative Methods
if the stiffness matrix A is relatively small. Direct Methods can be applied independently

of sparsity. However, if the matrix A is very large and sparse. Iterative Methods are more

efficient. Direct Methods have been used historically and didactically but iterative

methods are now the core of commercial solvers because of their superior computational

efficiency. Iterative methods are so-called because an algorithm is applied to a linear

system repeatedly until either the number of iterations exceeds a user-defined threshold or

the solution converges to within the user-defined convergence constraint. Iterative

29

methods are characterised by the fact that they only access the coefficient matrix A or its

transpose A^ (equivalent to stiffness matrix K i f the source o f the system o f equations is a

Finite Element Analysis) via a matrix-vector product y = A ■ x . This matrix-vector product

is typically a Sparse M atrix-Vector Multiplication (SM VM) where the matrix-vector

multiplication algorithm takes advantage o f sparse matrix storage to reduce or eliminate

entirely the number o f triv ia l multiplications by zero, which would otherwise occur.

Name Conv. Storage Matrix-Type SMVM

Conjugate Gradient CG
depends on

matrix
matrix+6N

Symmetric Positive
Definite

1

Conjugate Gradient on

Normal Eqns

CGNE

CGNR
slow matrix+6N

Non-Symmetric &

Non-singular
1

Generalised Minimal
Residual

GMRES
depends on

matrix
matrix+(i+5)*N Non-Symmetric 1

BiConjugate Gradient BiCG irregular matrix+10N
Non-Symmetric &

Non-singular
1

Quasi-Mlnimal
Residual

QMR smooth matrix+16Nc
Non-Symmetric &

Non-singular
1

Conjugate Gradient
Squared

CGS irregular matrix+11N
Non-Symmetric &

Non-singular
2

Bi-Conjugate Gradient

Stabilised
BiCGSTAB smooth matrix+10N

Non-Symmetric &

Non-singular
2

Chebyshev Iteration CHEB matrix+5N Positive Definite 1

Induced Dimension

Reduction
D R

IDR(1) same as

BiCGSTAB

Non-Symmetric &

Non-singular
1

Table 2-2 Characteristics of Iterative Methods (source: [5])

The most commonly used iterative methods, their advantages and disadvantages, are

described in detail by Dongarra et al in [5] and a summary o f the characteristics o f those

methods is given in Table 2-2, where N is the order o f the matrix. The matrix dominates

the storage requirements for all methods, although the term dependent on the matrix order

n can be significant i f GMRES or QMR are employed. The Sparse Matrix Vector

M ultiplication (SM VM) dominates the computational requirements. The higher

computational cost o f a single iteration may be offset by the fact that some methods require

30

few er i terations to converge, e.g. if B iC G S T A B requires less than ha lf the itera tions o f

B iCG the overall com puta tional cost o f B iC G S T A B w ill be lower for a g iven problem .

In addition to these m ethods IDR (Induced D im en s io n Reduction), a fo rerunner to

B iC G S T A B , in troduced by S onneveld [6] is highly efficient in so lv ing non-sym m etr ic

system s. In fact ID R (s) with s> l can be m uch faster than B iC G S T A B in m any cases.

G enerally the n u m b er o f m atrix -vecto r produc ts d ecreases as s is increased with ID R (4)

and ID R (6) be ing close to the op tim al convergence curve o f full G M R E S [9].

2.2.1 Conjugate Gradient Method
T he C on jugate G rad ien t (C G) m ethod is one o f the oldest and bes t-know n iterative

m ethods and is co m m o n ly used to solve positive defin ite system s. T he convergence o f C G

is good in general and can even be super-linear (rate o f convergence increases from

iteration to itera tion) depend ing on the properties o f the m atrix [5].

LI. Fori=l,2 ,. ..

L2. Solve M * / / optional pre-conditioner

L3. p,_, = / /D D O T (l)

L4. It' 1=1 /?*" = // MEM COPY

L5. Else

L6. /? ,_ ,= A - , / P , -2 / /D D IV (2)

L7. = z*'”" + // DAXPY (3)

L8. endif

L9. q(i) = yi * p { i) H SMVM (4)

LIO. a , = / p''*' * c/*'* // DDIV, DDOT (5)

LI 1. +a^ * 11 DAXPY (6)

L12. - a , * // DAXPY (7)

L13. check lor convergence; continue if necessary

L14. end

Listing2-1 Conjugate Gradient (CG) Algorithm Pseudo-code (source: [5])

It can be seen from the p seudo-code for the C onjugate G radien t a lgorithm (C G) in

Listing2-1 that it consis ts o f seven m ajo r operations, exc lud ing the p re-conditioner.

31

Iterative methods such as Conjugate Gradient (CG) use a range of matrix, vector and scalar

operations (BLAS [25]); and a full range of operations with the exception of matrix

transpose used in other iterative methods can be seen in Table 2-3 and is taken as being

representative of all other iterative methods for the remainder of this text.

line BLAS Note
ADD
SUB

DIV MULT FLOPS Cycles

3 DDOT dot-product N N 2N N
6 DDIV division 1 1 1
7 DAXPY a*x+y N N 2N N

9 SMVM
sparse matrix

vector
product

N NZ N + NZ NZ

10
DDOT
DDIV

dot-product,
division

N 1 N 2 N + 1 N

11 DAXPY a*x-i-y N N 2N N

12 DAXPY a*x+y
N

(sub)
N 2N N

13
convergence

check
2N

total 6N 2 NZ + 5N N Z + 1 3N + 1 NZ 5N + 1

Table 2-3 Conjugate Gradient Matrix Operations (source: [5])

In Table 2-3 the symbol N denotes the matrix/vector order or number o f rows or columns

and NZ denotes the number of Non-Zero elements in the sparse matrix and the typical ratio

of NZ to N for the large matrices considered in this work is on average greater than 20

non-zero elements per matrix row/column. FPU utilisation is the measure of how long the

FPU is waiting for data rather than performing useful work. Thus it can be seen that the

execution time of the entire CG (Conjugate-Gradient) method is dominated by the SM VM

operation (and a solve step, if it is included) for large systems. In fact the table does not

take into account that the Floating-Point Operations Per Second (FLOPS) rate achieved for

the Sparse Matrix-Vector Multiplication (SM VM) depends heavily on access to external

memory in a typical computer and hence the number of notional cycles and hence the real

FLOPS rate may be heavily distorted by the overhead of accessing sparse matrix data. It is

possible to transform the operations in the CG algorithm to run in parallel while

maintaining the same behaviour [5] however this does not change and may even increase

the number of operations or cycles depending on the target architecture.

32

Studies o f the per fo rm ance o f Computat ional Fluid D ynamics (C F D) appl ica t ions

conduc ted by Ande rs on in [26] and Smith in [27] that show that a very low percentage

(less than 5 %) o f the process ing po wer in m an y c om pu te r sys tem s is actually del ivered to

the application. Even vector supe rcompu te rs perform poor ly on large Finite Element

appl ica tions as s how n by Tay lo r in [23],

2.3 Summary
It has been seen that the dom inan t e lement o f all i terative solvers f rom the point o f v i ew of

execut ion t ime and F L O P S per fo rmance is the Sparse Matr ix by Vecto r (S M V M)

opera tion, w hich used to solve a linear sys tem o f equations , us ing a large sparse matrix and

a dense vector o f k n o w n initial (boundary) condit ions.

F rom the per fo rm anc e point o f v iew the execut ion t ime o f an i terative metho d such as

Conjuga te Gradient (C G) is dominated by the speed o f the f loat ing-point mul tipl icat ion

and addi tion opera tors , as well as the ove rhead o f address ing Sparse Matr ix data. The

ov erhead o f ad d res s ing Sparse Matr ix data can be reduced in som e cases by spl it t ing it into

dense sub-blocks but this may in troduce som e zero fill values where the b lock s tructure is

not an exact match for the under ly ing sparse non-zero pattern.

Thi s is par ticularly t rue on current genera l -purpose computer s , w he re the poor per formance

of Sparse Matr ix by Vector (S M V M) code leads to poor overal l per fo rm ance on Finite

Element (F E M) and other applica tions , which depend on S M V M as their main process ing

step.

33

3
Chapter 3

“The Matrix is a system, Neo. That system is our enemy.

But when you're inside, you look around, what do you see?”

- Morpheus: The Matrix

3 Sparse Matrix Storage Formats
A m atrix can be described as sparse w hen the num ber o f non-zero e lem ents is very sm all

com pared to the m atrix d im ension . A typical sparse matrix (b c s s tk l3 from M atr ix M ark e t

[11] is a F lu id-flow generalized sym m etr ic e igenva lue matrix, contain ing 83883 no n -zero

elem ents) structure plot in F igure 3-1 show s that storing all entries including ze roes can

be highly ineffic ient for such m atrices. In such m atrices it is w orthw hile s to r ing only

non-zero data elem ents for tw o reasons;

• S to ring sparse m atrices in dense form at leads to unnecessary m em ory accesse s

and trivial f loating-point operations. U s in g sparse data-structures and m e th o d s

elim inates these trivial operations and m em ory accesses, w hile in c reas ing

perform ance.

• A dense storage s tructure for a m atrix requires N elem ents. S toring the m a tr ix in

sparse form at m in im ises the m em ory requ irem ents for s torage o f such m atrices .

34

0

200
•r

400

600

800

1000

1200

1400

Qz1600

<t t

1800 m.

2000
400 600 800 1000 1200 1400 1600 1800 20000 200

nz = 83883

Figure 3-1 Spy Plot ofbcsstkl3 Sparse Matrix (source: [11])

A wide variety o f formats for the storage o f sparse matrices has been proposed.

Typically such methods differ in terms o f the relative amount o f storage required, the

amount o f indirect addressing required for operations such as Sparse Matrix-Vector

Multiplications (SM VM) and their suitability for execution on various kinds o f single

and multi-processor systems. The choice o f storage method is o f particular importance

for iterative methods used in the solution o f sparse linear systems and useful surveys o f

the fu ll range o f storage formats as well as the iterative methods that operate on them can

be found in [1] by Barrett et al and [28] by D u ff et al.

The most straightforward way o f storing a sparse matrix is in coordinate format, i.e. the

non-zero value is stored along with its row and column coordinates. This results in a

storage requirement o f 16 bytes per non-zero element (16 * NZ bytes), where row and

column indices are represented by 32-bit (4-byte) integers, and the non-zero value is

stored as a 64-bit (8-byte) IEEE-734 [4] double-precision floating-point number. A

35

typical ex am p le o f a sm all sparse m atrix stored in coordinate form at is show n in Figure

3-2.

0 1 2 3 4
0
1
2
3
4

row 0 0 1 1 1 2 2 3 3 4 4

col 0 1 0 1 2 1 2 2 3 3 4

value 1 2 3 4 5 6 7 8 9 10 11

Figure 3-2 Matrix in Coordinate Format

M any o f the w e ll-k n o w n sparse representa tions such as Jagged Diagonal require the

m atrix sparsity to conform to a particular pattern in order to be efficient as indicated in

[1] therefore the C om pressed S parse R ow (C S R) or C om pressed C olum n Storage

form ats (C C S), or o ther form ats, w hich m ake no such assum ptions about matrix sparsity

structure are the m ost general purpose form ats and those which are in most com m on use

in softw are libraries.

3.1 Compressed Sparse Row/Column (CSR/CCS) Storage
C om pressed row and com pressed co lum n storage form ats are the most general purpose

form ats as they m ake no assum ptions about the matrix sparsity structure, yet are h ighly

efficient as they do not store any unnecessary e lem ents. C om pressed Sparse Row (C S R)

stores the m atrix non-zero e lem en ts con tiguously in an array in m em ory , a long with two

arrays o f row and co lum n indices related to those non-zero entries. T he non-zero entries

are typ ically represented as IEEE double-p rec is ion (64-bit) floating-point num bers

w hereas the row and co lum n indices are typ ically represented as 32-bit integers. The

non-zero entries are stored in the value array in the order they are traversed in a row -wise

fashion. T h e co lum n indices are stored in the col array in the sam e order, and the row

array con tains the starting indices o f the row s and the non-zero entries are stored in the

value array. T he advantage o f the C SR sch em e is that 2*N Z + N + 1 e lem en ts s torage

are required , ra ther than the N elem ents w h ich w ould be required to store the entire

matrix includ ing zero entries, w here N Z is the num ber o f non-zero matrix en tries and N

1 2 0 0 0
3 4 5 0 0
0 6 7 0 0
0 0 8 9 0
0 0 0 10 11

36

is the number of matrix rows (matrix order). The only disadvantage is that at least one

index must be read from the row and/or column arrays in order to retrieve a non-zero

entry and perform some operation upon it. The CSR format can support symmetric

matrix storage where only the upper or lower triangular portion of the matrix above or

below the matrix is stored reducing the storage requirement to approximately half of

what would be required if the matrix were stored in non-symmetric format. The Matrix

Market file format [11] is row-ordered and stores non-zeroes in coordinate format (row,

column, value). It should be noted that Matrix Market files sometimes contain explicit

zero values. A CSR representation of the sample matrix is shown in Figure 3-3.

0 1 2 3 4
..1-, -e>- :Q;

::4-; '■5- :P--
1'.7- v.o.-.
• 8J >̂ 0
..0. ■10 ■1-1

col| 0 1 0 1 2 1 2 2 3 3 4 |i

row| 1 3 6 8 10|12|

Valuel 1 2 3 4 5 1 6 1 7 8 9 10 11

Figure 3-3 M atrix in CSR Form at

The CCS representation of the same sample is shown in Figure 3-4.

0 1 2 3 4
n !
3 ■5 :Q
30/ ? ■a r G

8: (3
b i!i

row 0 1 0 1 2 1 2 3 3 4 4
i L

/
/

w

col 1 3 6 9 11 12|

Value 1 3 2 4 6 5 | 7 8 9 10 11

Figure 3-4 M atrix in C C S Form at

The compressed column format is similar to CSR in that non-zeroes are stored in an array

with two other arrays, which hold pointers to the beginning of matrix columns, and

37

indices for non-zero entries w ith in those co lum ns. N on-zero entries are s tored in the

order co lum ns o f the m atrix are traversed ra ther than by row as in the case o f C SR . The

H arw ell-B oe ing file fo rm at [29] s tores m atrices in C C S format and is a good m atch for

the F O R T R A N p ro g ram m in g language , w hich stores m atrices in a co lu m n -w ise order.

A s the nu m b er o f non-zero e lem en ts per row or per co lum n is typically quite low

(average 20 non-zeroes per co lum n in this w ork) the overhead o f access ing the

supporting row and co lum n m atrices represents a significant part o f the cost o f a m atrix-

vec tor operation . In term s o f p rocess ing efficiency although in w idesp read use the

C S R /C C S form at could be im proved in that it requires an indirect add ress ing step for

each scalar operation in a m atrix -vec to r product or pre-conditioner so lve [1].

3.2 ICSR/ICCS Format
Increm ental C om pressed Sparse R ow (IC S R) and Incremental C om pressed C o lu m n

S torage (IC C S) are varian ts o f C om pressed R o w /C o lum n storage proposed by K oster

[30]. T he proposed format w orks by o bserv ing that in Sparse M atr ix -V ecto r

M ultip lica tion (S M V M), the inner loop perfo rm s an indirect addressing step for each

iteration through the m atrix data-structure, and seeks to reduce the penalty associa ted

with it. In IC SR non-zero entries w ith in a row (i) are stored in order o f increasing

co lum n index j so the location (i,j) o f a non-zero entry in the A matrix ajj can be s tored as

an offset to the previous index, and s im ilarly for co lum n addresses. T he exam ple m atrix

is show n in IC C S2 form at be low in F igure 3-5.

0 1 2 3 4
0 1 2 0 0 0
1 3 4 5 0 0
2 0 6 7 0 0
3 0 0 8 9 0
4 0 0 0 10 11

row 0 1 0 1 2 1 2 2 3 3 4
row inc 0 1 -1 1 1 -1 1 0 1 0 1

offset +5 +5
row inc' 0 1 4 1 1 4 1 0 1 0 1

col 0 0 1 1 1 2 2 2 3 3 4
col inc 0 0 1 0 0 1 0 0 1 0 1
col inc' 0 1 1 1 1

Value 1 2 3 4 5 6 7 8 9 10 11

Figure 3-5 Matrix in ICCS2 Format

38

The format exploits the fact that column incremental addresses do not change very often

to store the increment only when it is non-zero and adds an increment n to the row-index

to signal the change in column index at that point, this has the effect o f reducing the

memory required to store the matrix in ICCS format. The amount of memory required to

store a matrix in 1CCS2 format in the required 3 array structures for non-zeroes, column

and row increments i ^ 2 * nnz{A) +nnec{ A) + \ . Where nnec(A) is the number of non

zero column increments. The effect o f using incremental addressing is to reduce the

number of assembly language instructions in the critical loop from 26 to 15 instructions

resulting in a performance gain for the SM VM operation o f approximately 30%.

A second format called ICCSl is also proposed which reduces the number of arrays

required to store the sparse matrix to two, one to hold the non-zero elements and the

other to hold both row and column addresses. This second format however packs row

and column addresses into 32-bit integers. Deleting empty rows and columns using two

permutation matrices facilitates the packing. The deletions help to ensure column

increments are minimised so that row-increments can occupy the remainder of the 32-bit

integer with minimal probability of exceeding the 32-bit range. The ICCSl format thus

requires 2 * n n z { A) ^ \ words. In terms of the SM VM operation additional overhead is

added as the operand and result vectors must be reordered to compensate for the

permutation of the source matrix. In practice the permutation is not required for iterative

methods, as the non-singular matrices they generally require contain no empty columns.

3.3 SameType and StructType Formats
In the SameType format proposed in [31] the indices incur a performance penalty if they

are not stored in the same format as the non-zeroes as they must be converted to the

correct type before use by software. There is no added storage inefficiency in the case

that the indices are 32-bit integers and non-zeroes are stored as 32-bit floats, however if

non-zeroes must be stored as 64-bit doubles a 33% storage inefficiency results if indices

are stored as doubles. If on the other hand indices are maintained as 32-bit quantities

additional processing overhead is required to split 64-bit doubles into two 32-bit

quantities, which are then appended, or pre-pended to the 32-bit indices. The second

format proposed by Silva is called StructType and is essentially coordinate format where

39

each {row, col, non-zero} triplet is stored as a s tructure e lem ent in an array o f such

structures w h ich represent the A matrix.

T he advan tage o f S truc tT ype over S am eT ype form at is that no type convers ions are

required and storage is op tim al as the structure can use the appropria te sub types for each

index and non-zero data e lem ent albeit at an increased cost as both row and co lum n

elem ents are stored for each non-zero . A ccord ing to Silva co m b in in g indices and non-

zeroes into a single con tiguous data-s tructure reduces cache m isses by im p ro v in g spatial

locality, and hence increases system perform ance. One w ay to get around a lignm ent

p rob lem s in troduced by the m iss-m atch betw een 32-bit in tegers and 64-bit d o u b le

precision num bers w ould be to store two 64-bit doubles and tw o 32-bit doub les in a

s ingle s tructure , the only d isadvan tage being that the final in teger/doub le pair m ight

require p add ing with zeroes in som e cases.

3.4 Hierarchical Sparse Matrix (HiSM) Format
In [32] V assiliad is et al p roposed a storage format w hich reduces the storage required for

row and co lum n addresses by using a h ierarchical s torage schem e. T h e hierarchical

s torage and an underly ing 8x8 vec tor m ach ine architecture saves address overhead by

factoring co m m o n term s out o f addresses, reducing them to approx im ate ly 3-bits from an

initial 32-bits. A m atrix is converted to H iSM format by subdiv id ing it into multip le s*s

sub-m atrices w here s is the d im ension o f sub-m atrix which can be handled by the

associa ted vec to r architecture. A s im ple exam ple o f the HiSM format with s=4 is show n

in F igure 3-6.

T he large source m atrix is tiled up into four 4x4 m atrices as it will not fit in a single 4 x 4

m atrix so one level o f hierarchy is required. T he top data-structure con ta ins po in ters to

the 4x4 sub-m atr ices and a length (len) entry, w hich tells the HiSM hardw are w hether the

sub-m atrix is em pty or not. Each one o f the 3 sub-m atrices which have n on-zero lengths

(sO, s2 and s3) are then represented using 2-bit row and co lum n addresses , and

co rrespond ing non-zero value for each non-zero entry in the source m atrix . T h e use o f

s=4 reduces addresses to 2-bits in this exam ple how ever the value proposed by

V assiliadis in [32] for s is 64 resulting in 3-bit address references.

40

2-bit address

fo 1 2 3^ 4 5 6 7
1 2 0 0 0 0 0 0
3 4 5 0 0 0 0 0
0 6 7 0 0 0 0 0
0 0 8 9 0 0 0 0
0 0 0 10 11 0 0 0
0 0 12 13 0 14 0 0
0 0 0 15 16 0 17 0
0 0 0 0 0 0 18 19

sO
s2 S3

adr 0,0 0,1 1.0 1,1
top ptr sO s i s2 S3

len 9 0 4 6

sO
adr 0,0 0,1 1,0 1,1 1,2 2,1 2,2 3,2 3,3
nz 1 2 3 4 5 6 7 8 9
adr 0,3 1,2 1,3 2,3

oc.
nz 10 12 13 15

s3
adr 0,0 1,1 2,0 2,2 3,2 3,3
nz 11 14 16 17 18 19

Figure 3-6 HiSM Format Storage Example

The main benefit o f the scheme is a reduction o f ahnost 28% in the overall storage

requirement owing to the use o f two 3-bit references rather than 32-bit values as in CSR.

One disadvantage w ith the format is that it requires square matrices for which the number

o f rows/columns N is an integer multiple o f s for optimum efficiency. Additionally

multiple levels o f hierarchical storage (L) and look-ups are required as the total number

o f non-zeroes NZ grows as shown in Figure 3-7, however most problems should require

at most 5 levels o f hierarchy in order to contain the complete matrix (64'”' = lOOOM non

zero sparse matrix entries).

nnz
<64̂

Figure 3-7 Levels of HiSM Storage Hierarchy Required

Typically however, as stated in [32], the HiSM format achieves between 72 and 76% of

the CSR memory requirement for storage o f the same matrix. It is also claimed to

increase simulated Sparse Matrix-Vector M ultiplication (SM VM) performance by up to

41

5.3 times when compared to CSR on a Generic Vector Processor (GVP). This is

achieved using an architectural extension to GVP optimised for the HiSM format.

3.5 Summary
The sparse matrix storage formats surveyed have the characteristics shown in Table 3-1,

where the A matrix is sparse and o f dimension n rows by m columns.

Format A ssum ptions Memory W ords Notes

Coordinate N one 3*nnz(A) entries stored as triplets

CRS N one 2*nnz(A)-i-m+l
non-zeroes stored row
wise

CCS None 2*nnz(A)+n-i-l
non-zeroes stored colum n
wise

IC C Sl
A ssum es colum n
increment small

2*nnz(A)+l
Stores row and column
increments in a single
array

1CCS2 None 2*nnz(A)+nnec(A)
Only non-zero colum n
increments nnec(A) are
stored to reduce m em ory

Sam eType N one 3*nnz(A)
less efficient for doub le
precision non-zeroes

StructType None 2*(n+nnz(A))
Better performance than
Sam eType at cost o f
increased storage

Table 3-1 Features of a Selection of Sparse Matrix Storage Formats

A key issue for any Sparse Matrix storage format is to minimise the memory

requirements and to increase the effective memory-bandwidth “seen” by the data-path,

equally any format should seek to maximise data-locality whether that be in registers or

cache in order to minimise the average access-time to frequently accessed data and hence

maximise performance.

42

4
Chapter 4

‘7 know nothing by experience,

though I know som eth ing hy observation ”

- Lord Goring: “A n idea l h u sban d” (O scar Wilde)

4 Hardware Support for SMVM
According to Kogge [15] tiiere are three approaches to performing Sparse Matrix-Vector

Multiplication (SM VM) on programmable computers:

• inner Product where the result vector y is computed one inner-product at a time,

using ajj and xj values read from memory

• Sub-matrix where the matrix A is tiled up into sub-matrices which are read along

with equally sized segments of the y and x vectors

• Colum n Scaling where multiple entries in the result vector y are read and updated

as each column is scanned for aij values and multiplied by a single entry from the

A:-vectorx,

In the following sections a survey of hardware performance enhancement techniques

relevant to the proposed architecture is presented.

4.1 Hardware Performance Enhancement Techniques
There are two main methods of increasing single-core processor performance:

43

• R ais ing the p ro cesso r clocic-frequency through p ipelin ing and p rocess scaling

• Increasing the n u m b er o f executed Instructions Per C lock (IPC)

T hese two techn iques are h ighly in terdependent and it is difficult if not im possib le to

increase IPC and p rocesso r c lock frequency sim ultaneously . A review o f the im portan t

features in term s o f p rocesso r perform ance, w hich are relevant to all architectures

covered in this w ork , is g iven in the fo llow ing sections.

O f course m ultip le p rocessors can be em ployed in parallel using one or bo th techniques

in order to ach ieve g rea te r speed -ups assum ing enough o f the code can be restructured to

take advan tage o f para lle lism in a multicore processor, and such m ulticore processors

will be dealt w ith later in this section.

4.1.1 Processor Pipelining
A ccord ing to H ennessy in [34] p ipelin ing is an im plem entation w hereby m ultiple

instructions are over lapped in execution. T he reason for p ipelin ing is that the am oun t of

w ork w hich can be ach ieved in a single clock cycle is limited by the num ber o f logic

levels required to im p lem en t a desired logical function (w ork) and the p rocess ing delay

associa ted w ith each level o f logic. T he circuit show n in Figure 4-1 , produces a

com ple te result y = a+ b*c each c lock cycle i.e. the circuit has a clock latency o f 1.

a+b*ca,b,c
a+b*c

clock

F igure 4-1 U n-p ipe lined Circuit

In a p ipelined approach a large logic function consis t ing o f m any logic levels w hich

evalua tes in a single clock cycle is partitioned into m ultiple groups, each con ta in ing

few er levels o f logic w h ich can evalua te in parallel in a single shorter clock cycle. T h is

d iv ide and conquer approach ensures that the m ax im u m operating f requency can be

ach ieved w ith a g iven fabrication technology. T he w eakness o f frequency sca ling alone

is that it does not take effects such as start-up delays and stalls into account and is thus a

44

poor measure of processor performance. A pipelined version of the previous circuit is

shown in Figure 4-2 and has a clock latency of two. In this example because the

multiplier and adder have been separated into two pipeline stages the circuit can now run

at a speed dictated by the propagation delay through the adder or the multiplier,

whichever is slower, rather than the sum of the two delays. In practice in a real design

every effort is made to balance the delays of all pipelining stages in order that the whole

design is able to run at the maximum frequency possible rather than being limited

arbitrarily by a single stage.

A .
clock

.A

b,c a+b*c

A
-C *

A \ ̂r A

clock

Figure 4-2 Pipelined Circuit

A disadvantage of this configuration is that it takes two clock cycles for the result to

appear at the circuit rather than one as in the non-pipelined case. This increased latency

is important as the pipeline has first to be filled before starting to produce results, and

also has to be refilled following a pipeline hazard or stall. The pipeline stall penalty eats

into the raw performance gains achieved by pipelining:

Perform ance - Cain =

C P I * CInrk
iiiiinpelmed unpipelined

C l ’I * CInrk
‘ pipelined pipelined

Equation 4-1 Performance Im provem ent due to Pipelining

CPI (Clocks per Instruction) is the average number of clock-cycles taken for a given

instruction to execute. Computer architects and processor designers often use a

technology independent metric based on a fanout-of-4 inverter (F 0 4) , where an inverter

drives 4 identical copies of itself, as a means of comparing processor implementations as

shown in Figure 4-3.

45

Slow'cr

In (General:
SmaUergaies
are slairer

In General:
Longer wires
are slmver

- <] ----

/

\

< -

In General:
more loadf = slower gates

F 0 4

F 0 4 Metric:
Gate delay through
inverter w ith 4 loads
on o u ^ u t
(Ean Q u to f 4)

Figure 4-3 F anoiit-of 4 (F 0 4) (source: [36])

From the pure performance point of view it has been shown by Hrishikesh in [37] that

there is an optimal amount of logic which can occur between two clocked registers

yielding maximum performance in terms of clock frequency, and that current commercial

microprocessor design has almost reached this optimum point as shown in Figure 4-4.

33 MHz

8 0 -

TT
6 0 -

66 MHz
T3
O 00 MHz

200 MHza 4 0 -

o 450 MHz

2 0 - I GHz
2 GHz

7.8 F04

Year 1 9 9 0

Tech(nni) 1000
992
800

994
600

996
350

998
250

2000
180

2002
130

Figure 4-4 Pipelining as a Function o f F 0 4 Delay (source: [37])

In fact without the use of specialised structures and process technology F 0 4 will actually

start to increase from 2010 onwards according to Tanabe [39] as can be seen in Figure

4-5 unless improvements to structures and process technology are made at the transistor

level.

46

3.5 I—

W o
Q . O

 ̂ 2.5 —
< u

Q 2
i .
<D
t! 1.5 -
0)>

1 -

O 0.5
L l.

0 —

2005

Figure 4-5 F 0 4 scaling (source: [39J)

In Figure 4-5 Tanabe simulates the behaviour of 3 different transistor structures under

scaling to predict F 0 4 inverter circuit delay characteristics compared to the ITRS

roadmap. The 3 devices are Single Gate (SG), Dual Gate (DG) and Trigate transistors

which are being introduced to mitigate the Short Channel Effect (SCE) which is

increasingly important as devices continue to scale below 65nm. These devices are

compared to ITRS predictions of pure scaling of existing transistor structures. As can be

seen the SG device only produces a delay improvement below 2nm body thickness. On

the other hand the DG delay is superior at 5nm body thickness. This difference is mainly

due to the controllability of short channel effect (SCE). Compared to the ITRS roadmap

predictions for delay characteristics it was found that, at 65nm node only SG SOI

structures and, at 45nm node, SG SOI + strained-Si channel device or TriGate device

and, in 22nm node, TriGate + strained-Si channel device will meet the ITRS predictions.

According to Sprangle [40] continuing to pipeline into the future will yield about 65% of

the theoretical performance improvement predicted by scaling at a cost o f increased

cache bandwidth requirements. It is ultimately power, and the associated problem of

cooling, which places a limit on the amount of pipelining which is employed in a given

design. The other and highly important implication of pipelining is that it increases the

number o f clocked elements in the design and thus increases power:

P = 2* f * C , *Vdd^

Equation 4-2 C M O S Dynam ic Power

ITRS
SG(Tsoi=2nm)
SG(T soi=2nm,Ge 10S)
SG(Tsoi=5nm)
DG(Tsoi=2nm)
DG(Tsoi=5nm)
T riG ate(T soi=5nm)

1 riGate, GelO%

2010 2015 2020

47

W h e re / is th e f r e q u e n c y o f the c lo c k a p p l ie d to the p ipe line s ta g e s , C/ is the load

c a p a c i ta n c e d r iv e n b y e a c h p ip e l in e s ta g e and Vdd is the p o w e r - s u p p ly v o l ta g e .

W ith the t r a n s i t io n to e v e r d e e p e r p ro c e s s g e o m e tr ie s log ic d e la y (F 0 4) has b e c o m e

in c re a s in g less im p o r ta n t w ith re sp e c t to in te rco n n ec t de lay as a p r o p o r t io n o f overa l l

d e lay , as s h o w n b y H o r o w i tz [38]. T h is m e a n s that a n y im p ro v e m e n ts to F 0 4 d e la y d u e

to m o re c o m p le x and e x p e n s iv e p ro c e s s te c h n o lo g y will at best c an ce l o u t the e f fec ts o f

in c re a s in g in te rc o n n e c t de lay .

Delay
(P*)

45

40

35

30

25

20
Gate Wt Cu
S Low V15

10
Gate

5

0
650 500 350 250 180 130 100

Generation (nm)

Figure 4-6 Logic vs. Interconnect Delay Scaling (source: [38])

It can be c o n c lu d e d tha t the in c rea se in F 0 4 d e lay as w ell as in te rc o n n e c t de lay , a n d the

b u f fe r in g to c o m p e n s a te fo r v o l ta g e d ro p s (I* R) d ue to in c re a s in g w ir in g r e s i s t iv i ty

m e a n s tha t sm a l le r , s im p le r m u l t ic o re a r c h i te c tu re s w ill g u a ra n te e b e t te r p e r f o r m a n c e as

te c h n o lo g ie s c o n t in u e to s ca le , w h i le l im i t in g p o w e r d iss ip a t io n .

48

4.1.2 Pipeline Hazards

A pipeline hazard is a condition which prevents the next instruction in a computer

program from executing in its designated clock cycle. Reasons for a hazard and

consequent stall could include a cache miss, or a data-dependency where two instructions

operate on the same register and the earlier issue instruction has not yet written back the

register contents due to the pipeline latency. Such a data-dependency can occur where

two instructions which operate on the same data in a register, m emory or cache location

are issued closer together in terms of their dispatch cycle than the pipeline is long in

terms o f stages, where each stage executes in a single cycle.

According to Hennessy [34] three types of pipeline hazard exist;

• Structural Hazards occur where resource limitations mean that not all

combinations of instructions can be executed simultaneously in the pipeline.

• Data Hazards occur when an execution of an instruction depends on the results

from a previous instruction in a way that is exposed by overlapping instructions

in the pipeline.

• Control Hazards occur through the effects of pipelining instructions such as

branches which modify the Program Counter (PC)

• Data hazards can be further subdivided [41] into the following sub-classes:

• Write After Write (W A W) hazard where one part o f the processor pipeline

incorrectly overwrites a location i resulting in an incorrect value being stored in i

• Read After Write (RAW) hazards where a data dependency exists in a pipeline

such that an early stage attempts to read location i before it has been updated by a

later stage, resulting in the old value o f i being used incorrectly

• Write After Read (W A R) hazards where a pipeline stage writes to i before the old

value contained in i is read, resulting in the new value being read incorrectly

In a typical processor with an In-Order pipeline, dependencies in the linear execution

pattern can result in hazards which make it necessary to stall the pipeline, allowing

instructions issued before the stall to complete, and the stall to be cleared, before refilling

the pipeline and allowing those instructions issued after the stalled instruction to

complete. The Out-Of-Order (0 0 0) technique allows execution to proceed in cases

where a normal in-order pipeline would stall by using multiple functional units which can

execute in parallel. 0 0 0 execution circumvents some of the problems associated with

49

In-Order pipelines by “ looking” at a large window o f instructions to be executed which

are present in a large instruction pre-fetch buffer and executing those without

dependencies in parallel. 0 0 0 designs have largely fallen out of favour due to their

high implementation and have been replaced by multiple in-order pipelines in Chip

Multiprocessors which will be discussed in more detail in the following sections.

RAW data-hazards occur frequently in SM VM codes. According to Taylor [23] over 20

instructions, and possibly many more, would be required in the instruction pipeline in

order to avoid stalls due to RAW hazards in SM VM applications. However in such

applications there is very little in the way of data reuse, therefore in many cases the data

associated with those later instructions might not be in the cache resulting in a cache-

miss which would negate any performance gain due to out-of-order execution. For the

purposes of this work we will limit ourselves to simple in-order pipelines as Out-of-

Order techniques do little to improve Sparse Matrix Vector Multiplication where the

main limitation is memory bandwidth and not stalls.

4.1.3 Floating-Point Unit (FPU)

Direct SM VM operation on the CSR format entails that the solution-vector y is

calculated one entry at a time, as a sum of the products of A-matrix entries and x-vector

entries. The x-vector entries are obtained by indirect reference using the addresses stored

as part o f the sparse matrix A as shown in Table 4-1.

^ 0 0
* X() -1-

^ 0 1
* -1-

^ 0 2
*

^ 2 -1-

^03
* X3 -1-

^04
* X 4

Yo ^00 ^01 ^02 ^03 ^04

Table 4-1 C SR Sparse Matrix Vector Multiplication Order

As can be seen from Figure 4-7 one of the difficulties with the CSR format is the

dependency on the previous y-register value which introduces a RAW hazard if y is

calculated incrementally using a single floating-point multiplier and adder pair.

50

fp merge

A.X
-► yi

pipe_0 pipe_1 pipe_2 pipe_4 r > delay_0 delay_1 delay_2

1 1
floating-point adder delay (cycles)^

Figure 4-7 FP Adder Configuration (CSR)

One approach to resolving the dependency is to stall as each product reaches the floating

point adder input, however this approach results in low performance. Another approach

is to allow multiple sums of products to be accumulated independently, one in each o f the

pipeline stages in the floating-point adder, however this requires additional cycles at the

end of a sequence o f computations to propagate out the results adding additional cycles

of delay. At the end o f the last multiplication the sums of products must be merged into

a single y-vector entry by re-circulation through the adder until the terms {W ,X,Y,Z}

from each pipeline stage have been summed together to produce a single vector entry as

shown in Table 4-2. The only disadvantage with this approach is the incremental delay

required which adds to the start-up overhead for each matrix row. In general an n-stage

floating-point adder pipeline w ill require approximately/! * (log^.(«)-i-1) cycles to merge

through its own pipeline (2 operand adder) where n is a power o f 2. This delay can be

mitigated but not eliminated by overlapping the propagation delay with the next set of

computations, and maintaining intermediate results in the pipeline adds to register

pressure in the processor.

51

cycle

1
2
3
4
5
6
7
8
9
10
11
12

The SPAR architecture is proposed by Taylor [23] as a solution to some of these

problems and consists of two linear arrays, one o f non-zero values and the other of row

or column addresses. Zero entries are selectively introduced into the value array to

demarcate the end of columns in the row/column array. The SPAR representation of the

sample matrix in Figure 3-2 is shown in Table 4-3.

0 1 2 3 4

0

1

2

3

4

col 0 yco l_ 1 y^ol_2 ^ ^ o l_ 3

row/col 0 1 1 0 1 2 2 1 2 3 3 3 4 4 4

value 1 3 0 2 4 6 0 5 7 8 0 9 10 0 11

Table 4-3 Matrix in SPAR Format

As a result the SPAR data-structure consists of one very long vector instruction meaning

that the vector start-up overhead cost is only incurred once per sparse matrix-vector

multiplication. This however comes at an increased cost in terms of the additional

storage required to store N*64-bit double-precision zero entries, where N is the number

of columns in the sparse matrix. The increase in storage requirements for a matrix

i 2 © 0

3 /b /5 /(b

h B, ■'g ■'(i)
0/ y 8/ 0

(P‘ 0 ib lh
column ends

pipe 0 pipe 1 pipe 2 pipe_3 delay O delay_1 delay_2
w X Y z

w X Y z
w X Y z

Y+Z w X Y Z
Y+Z w X Y

w+x Y+Z
W+X Y+Z

w+x Y+Z
w+x Y+Z

W+X Y+Z
W+X+Y+Z

W+X+Y+Z
W+X+Y+Z

W+X+Y+Z
W+X+Y+Z

Table 4-2 CSR FP Adder Pipeline Merge Operation

52

containing 24 non-zero entries per column is 4 bytes per column (64-bit 0.0 value used to

denote end of column instead of 32-bit integer) or approximately 2.7%.

In order to improve data-locality as in the StructType sparse matrix format detailed in

Section 3.3 the Sparse Matrix is stored as an array of structures as shown in Listing4-1.

Struct spar_entry {
double k;
int r;

};

Listing4-1 SPAR Data-Structure

Corresponding to the SPAR data structure the code to implement an unsymmetric Sparse

Matrix-Vector Multiplication is shown in Listing4-2.

while (I < A.max_entries) {
if (A.k[i]==0.0) i_col = A.r[i]; // 0.0 marks end of column
else {

i_row = A.r[i];
y[i_row] += A.k[i]* x[i_col];

}
i++;

}

Listing4-2 Unsymmetric SPAR SMVM Code

A block diagram of SPAR is shown in Figure 4-8, and one o f the main features is the

inclusion o f an 8kB direct-mapped Y-cache, which was sufficient to achieve their target

95% cache hit-rate for the suite of test-matrices. In the diagram two separate SDRAMs

interfaces allow the vector data to be accessed via the R-AGU (address generation unit)

and 64-bit double precision A-matrix data via the K-AGU. When a zero-value is found

in the A-matrix data (value array) by the ZDL (zero delay line) block it generates a signal

which is used to load the x-vector value into the p[i] register from the same SDRAM

connected to the R-AGU. Storing the column and row addresses in the same array in

SDRAM thus allows a reduction in the complexity of the SPAR hardware compared with

a hardware CSR multiplier. The A-matrix values in a column are multiplied successively

by the x-vector value stored in the p[i] register by a floating-point multiplier and each

partial product is added as a contribution to the y-values stored in the cache block. In

this case the cache used was a 8kB direct-mapped cache. Delays are included in the

circuit in order to compensate for the delay through the floating-point adder so that the

53

partial product from the m ultiplier is added to the correct y-value in the cache. The cache

is a write-back cache meaning that 64-bit results from the cache are only written back to

the third SDRAM when data is evicted from the cache owing to a cache miss or when the

cache is exp lic itly flushed from the cache at the end o f the SM VM operation.

Conserving SD RAM bandwidth in this manner leads to higher performance and lower

power as data is only written to or read from the external SDRAM when absolutely

necessary.

SDRAM Port

^32

R-AGU

SDRAM Port

r6 4

K-ACSU

P-AGU ZDL

' ^ 2

fpa_dly

write-address

►

read-address

write-data

Cache
road-daa

SDRAM Port

Figure 4-8 SPAR Architecture (source: [231)

The authors found that for even moderately sized FEM matrices the FPU utilisation for

the SPAR architecture is approximately 96% irrespective o f start-up delay, assuming that

pipeline stalls can be eliminated, and that the effect o f the start-up delay on FPU

utilisation is negligible for large sparse matrices.

The SPAR simulation model used by Taylor is ideal, however, in that there is an

assumption that all stalls due to RAW (read after write) hazards can be eliminated by

reordering the non-zero entries in a software pre-processing step, prior to starting the

54

S PA R S parse M atrix -V ecto r M ultip lica tion (S M V M) operation . H o w ev er the authors do

not describe how the e lim ination o f R A W hazards can be guaran teed or the

com puta tional overhead in pre-p rocessing the sparse m atrix to e l im ina te hazards.

In practice a single FPU even with the en hancem en ts p roposed by T ay lo r still has

d isadvan tages in that instruction bandw id th is high and the n u m b er o f floating-point

operations that can be carried out per c lock-cycle is low. A better so lu tion is to com pute

the produc ts correspond ing to a partial row or co lum n from the S parse M atrix in a single

cycle. C onside ring a 4-e lem ent S ingle Instruction M ultip le D ata (S IM D) datapath

capable o f p rocess ing a 4-entry segm en t o f a sparse row or co lum n the instruction

bandw id th is reduced by a factor o f 4 and the num ber o f F L O P S per cyc le is m ultiplied

by 4 for the sam e clock frequency, thus tak ing better advan tage o f p rocess-techno logy in

line with M o o re ’s law.

4.1.4 Memory
A second area o f focus in this w ork is that o f ach iev ing high per fo rm an ce w here external

m em ory bandw id th is limited, it will be seen that this is especia lly im portan t in the case

o f Sparse M atrix V ector M ultip lica tion (S M V M). T he reason for this is that in m odern

Very Large Scale o f Integration (V L S I) p rocessors internal m em ory and bus bandw id ths

and p rocess ing speed in F loating Point O pera tions per Second (M F L O P S) are very high

and have con tinued to g row as V L SI m an ufac tu ring p rocesses have im proved , how ever

pin bandw id ths required to interface to external m em ory devices have not kept pace with

internal p rocessor bandw id ths g iv in g rise to a perfo rm ance bott leneck . External

m em ories are preferred over internal m em ories as they are low -cost co m m o d ity products.

T he cost per m egaby te (M B) o f ex ternal D R A M chips is at least one o rder o f m agnitude

cheaper than to integrate the sam e D R A M into a processor die, and in the case that

S R A M is in tegrated onto the p rocesso r the pena lty is even w orse . A second reason for

using external m em ories is that they a llow a m ach ine to be easily upgraded to support

p rob lem s o f arbitrary size, w h ich canno t be handled in internal m em ories .

M cK ee co ined the term “ M em o ry W a ll” [42] to describe the s ituation w here

im p ro v em en ts in p rocessor speed w ill even tua lly be m asked out by s low er im provem en ts

in co m m o d ity D R A M speed and read/w rite latency. P rocessor p erfo rm ance has fo llow ed

M o o re ’s law because it has h arnessed im p ro v em en ts in both tech n o lo g y and in

architectura l design. O n the o ther hand m ost bandw idth im p ro v em en ts in D R A M

55

technology were achieved by low-cost incremental improvements to existing DRAM

architectures, relying mainly on process scaling for any improvements in speed, which

also resulted in lower DRAM latency as a by-product.

It is expected that computing systems performance will soon be dominated by memory at

a 7% performance increase per year (as opposed to processor speeds which have been

growing conservatively at 50% per annum), leading to an increasing disparity between

memory and processor bandwidth as shown in Figure 4-9. As can be seen the use of

multiple processors exacerbates the problem as multiple processors contend for access to

a shared memory subsystem.

According to Jacob [44] hundreds of papers in recent years have looked at the problem in

terms of what can be done on the CPU side to tolerate or reduce memory latency.

Memory latency is the time, typically measured in clock cycles taken to access a

randomly addressed instruction or data in memory.

500000
S 'I 400000
ex*
0
^ 300000

?̂ 200000
40
0)

1 100000

a:
0

Figure 4-9 D iverging Processor and M emory Speeds (source: [43])

Memory bandwidth on the other hand is the rate at which those words can be delivered to

a waiting processor. In the case of large data-structures such as sparse-matrices the

memory latency penalty is incurred once when accessing the beginning o f the structure in

memory, however thereafter data/instructions are delivered to the processor at a rate

determined by the available memory bandwidth. For large sparse matrices the effect of

limited memory bandwidth far outweighs the initial penalty due to the latency in

addressing the start o f the sparse matrix. Unfortunately most of the improvements in

general purpose programmable computers address latency reduction and tolerance, rather

— White 8 Threads
— White 1 Thread
—- Snow 8 Threads
— Snow 1 Thread

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Year

56

than increasing memory bandwidth and hence do not directly address the requirements of

this work.

The best predictor of sustained memory bandwidth in computer systems has been

M cCalpin’s STR EA M benchmark [45], which is based on the measured sustainable

mem ory bandwidth available to ordinary user programs rather than on theoretical “peak

bandwidth” . As reported in [33] STR EA M benchmark results illustrate the imbalance

between peak M FLO PS and sustainable bandwidth, with peak M FLOPS increasing at

50% versus the 35% per annum for sustainable bandwidth for the same architectures.

Additional work by Asanovic [46] shows that the STREAM benchmark [45] results often

fall far short o f the available pin-bandwidth, with some machines achieving 1/6 of the

available pin-bandwidth in terms of STR EA M benchmark performance. This indicates an

architectural imbalance between the processor core design and the 1/0 subsystem which

does not succeed in matching the processing bandwidth with the available I/O bandwidth.

Oliker et al [48[suggest that current processor architectures fail to offer a sustainable

path for improvement as processor core speeds continue to outstrip reductions in memory

subsystem latency, and that there is a critical need for future microprocessors to add

architectural enhancem ents to address applications exhibiting significant levels of

memory access irregularity.

4.1.5 Cache
Modern processors include at least some onboard memory as part o f their hierarchical

memory subsystem with the latency and speed o f read/write operations increasing with

the distance from the processor. Onboard memory is normally integrated in the form of

instruction and/or data caches w hose function is to improve processor average

performance. A cache is a local fast memory, which contains copies o f frequently

accessed data or instructions, and works by reducing the average access time the

processor incurs when accessing m em ory as shown in Equation 4-3.

f^or.s,casc = K .,crn a , ^ a y , = h a ch e * * m i s s r u t e

Equation 4-3 Memory Access-Time

Caches work by exploiting the temporal and spatial locality o f addresses and their

associated data or instructions:

57

• Temporal locality is the likelihood that a recently referenced address w ill be

referenced again in the near future

• Spatial locality is the likelihood that a close neighbour o f a recently referenced

address w ill be referenced in the near future

The processor architecture is organized so that it looks in the fast local cache for

data/instructions before looking in the next level o f the hierarchy and so on. If the

desired data/instruction is found in the cache a cache “ h it” is said to have occurred,

otherwise a cache “ miss” occurs. Temam and Jalby [48] divide cache misses in 3

classes:

• Cross-interference (conflict) misses - line flushed by element from another array

• Self-interference (capacity) misses - line is flushed by another element o f the

same array

• Intrinsic (compulsory) misses - line is loaded for the first time

The cache hit-rate depends both on its type, its size, the number o f cache-lines and the

cache line-length.

read ad it

rd index

rdJag r_r_tag

Comparator

rd hit r val

rd index rd block valid DataN DataO

Table 4-4 Direct-Mapped Cache Block diagram (source: [50])

58

Data and Instruction Caches of the type used in General Purpose Processors are typically

characterized by 3 major parameters:

• Capacity

• Cache line-length

• Associativity

In general, caches consist of several sets, each of which consists of n ways, where n is

called the cache associativity, and is usually 1, 2, 4, or 8. Caches are called direct

mapped for n=l, set associative otherwise. It is also possible albeit expensive to

implement a fully associative cache. A direct-mapped cache such as that shown in Table

4-4 has an associativity of 1. An associativity of 1 means each address maps to one, and

only one location in the cache. The benefit of a direct-mapped cache design is that it is

very simple and can make use of conventional RAM as building-blocks resulting in a fast

low-cost implementation.

The disadvantage of direct-mapped caches is that the fact that addresses map to only a

single location can result in “thrashing” where program code operating within a restricted

address range causes cache-lines which are required in the near future to be ejected from

the cache leading to a high percentage of cache misses and reduced performance. Such

thrashing behaviour is especially likely in the case of smaller caches as it is more likely

in such cases that multiple addresses will alias to the same cache line. Set-associative

caches alleviate the shortcomings of direct-mapped caches at the expense of additional

area and complexity. Cache associativity increases cache performance by reducing the

number of cache contlicts (“thrashing”) [51].

While associativity reduces the number of conflicts by allowing locations to map to

multiple cache lines, it has the disadvantage of slowing down the cache because of its

added complexity. On cache updates, the replacement strategy determines the way a new

line is put into, evicting the previous contents of the line. Common replacement

strategies are least recently used (LRU) and round robin.

Temam and Jalby [48] were the first to develop a detailed model of cache misses for

Sparse Matrix Vector Codes. They concluded that cache line size has the greatest impact

on cache misses, while associativity has the least. As part of his work Vuduc [52]

extended the model proposed by Temam and Jalby, and concludes that it is important to

59

have strictly increasing line lengths through the m em ory h ierarchy to ach ieve good

perfo rm ance using his execu tion model.

4.1.6 Pre-Fetching
A s outlined p rev iously the m em o ry wall is increasingly the obstacle to ach iev ing higher

Instruction Level Para lle lism (ILP) despite 0 0 0 and o ther techn iques in tended to mask

increasing D R A M access latencies. A ccord ing to H ennessy and Patterson [34]

instructions and /o r data can be pre-fetched by hardw are either d irectly into the cache or

into an external buffer w h ich can be accessed more quickly than m ain m em ory . Pre

fe tch ing relies on using m em ory bandw id th w hich w ould o therw ise rem ain available but

unused, as o therw ise it could actually degrade perform ance by in terfe ring w ith dem and

misses. B obba et. al s tate in [41] that as D R A M access latencies co n tin u e to increase

even such techn iques can no longer fully hide the effect o f increasing latency. In such

c ircum stances data pre -fe tch ing is a technique w hich attem pts to m in im ise cache misses

and hence the effect o f increased latency on perform ance, by an tic ipa ting future data

accesses and m o v in g required data closer in the cache h ierarchy to the processor.

Generally a good data-pre-fe tch schem e should have the fo llow ing properties:

• P re-fetches m ust be useful (pre-fe tched data must be used in the near future)

• P re-fetches m ust be timely (pre-fe tch sh o u ld n ’t d isplace data requ ired in the near

future)

• P re-fetches should not lead to cache pollution i.e. d isp lacing data to be used in the

near future with pre-fetched data w hich is not accessed

4.1.7 Data Compression
It has also been seen that I/O pins are expensive and scale at 1/5 o f the rate that the

u nder ly ing sem iconduc to r p rocess techno logy does. T hus if anyth ing can be done to

exploit the properties o f the data set to increase the effective bandw idth o f the I/O pins

used to transfer the com pressed data-set will increase the overall system throughput as

the p rocessor will not be as starved o f data. R ely ing on 1/0 bandw idth alone to increase

perfo rm ance is at least 5 tim es m ore costly than im prov ing FPU utilisation w hich is

cheap as it is related to architecture and underly ing process technology [53].

T he potential for the com pression o f address in form ation over I/O pins w a s first

h ighlighted by H am m ers trom and D avidson [54]. This w ork w as extended by F arrens

60

and Park [55] w h o show ed that a s im ple base-reg is ter could be used to hold the upper

address-b its w hile less significant bits are transm itted o v e r a reduced w id th address bus

can cut address bandw id th betw een a p rocessor and m em o ry by up to 60% w ithout

significant loss in perform ance. H ow ever a com plex fully assoc ia tive base-reg is ter

cache with LRU w as required for optim al perfo rm ance. E m p lo y in g a m ore practical set-

assoc ia tive or d irec t-m apped cache increased the n u m b er o f address bits from 11 to 16-

b its which still saves 5 0 % com pared with a full 32-bit bus with little in the w ay o f

p erfo rm ance degradation . A recent su rvey paper by Liu [56] co m p ares the various

address com press ion schem es in detail. A ddress co m p ress io n sch em es can also reduce

1 /0 pow er-d iss ipa tion by from 13% [56] up to 84% [57] for som e m edia applica tions

A recent re ference to the explo ita tion o f en tropy in floating-po in t num bers w as m ade by

C itron [58].

A na lys is show ed significant potential for com press ion o f addresses a long w ith more

limited potential for the com press ion o f in teger values and floating-po in t exponents . A n

im plem enta tion o f a cache-based com press ion sch em e sh o w ed that the hit rate for integer

values w as high at 99% but that overall the co m p ac tio n achieved w as dom inated by

f loating-point va lues w hich achieved a m uch lower hit rate o f 42% . C itron concluded

that the m ain gain w as ach ieved by co m p ac tin g addresses from 64-bits to 24-bits

although 32-bit addresses such as those used in this w ork are m ore appropria te for this

c lass o f application .

Finally a unifled approach to com press all levels o f the m em o ry h ierarchy presented by

H allnor and Reinhard t in [59] and derived from IB M ’s M X T sch em e [60] is c la im ed to

p rov ide all o f the advan tages o f the prev ious sch em es w ithou t the expense o f

com press ion and d ecom press ion at each stage. T h e au thors use a single com press ion

algorithm and b lock size so that data can be transferred be tw een m ain m em ory and a

com pressed L3 cache. T hey w ere able to ach ieve a p e rfo rm ance increase equivalen t to

about 50% o f w ha t could be ach ieved by do u b lin g the L3 cache size to 2 M B for approx.

1/10 the area increase.

4.2 General Purpose Processors (GPP)
A cco rd in g to H ennessy [34] the limits on the increase in perfo rm ance , ach ievab le by

p ipe lin ing a rch itec tu res are that deep p ipe lin ing can lead to an eventua l increase in CPI

because it increases p ipeline dependenc ies and assoc ia ted penalties . A ddit ionally Flynn

61

points out that ensuring high IPC (Instructions Per Cycle) from an architecture relies on

increased Instruction-Level Parallelism (ILP). Techniques used to increase IPC such as

Out-of-Order execution dramatically increase the implementation cost of a processor by

virtue of the additional hardware necessary to support multiple partially executed

instructions active simultaneously inside the processor.

The Intel Pentium4 [61] is a good example of the compromises inherent in processor

design For marketing reasons Intel decided to focus on processor clock speed targeting

40% higher speed in the same process technology as the previous generation processor.

This was achieved by increasing the pipeline depth from 3 stages in the Pentium II (P2),

to 10 stages in the Pentium III (P3) to 20 stages in the Pentium 4 (P4) as shown in Figure

4-10. Note that the CoreDuo has a pipeline depth similar to the Pentium III.

Although this approach extracts the maximum possible in terms of processor clock rate

from a given process technology this increase in clock rate comes at a cost in terms of the

increased miss penalty which can occur for instance when a branch miss prediction

occurs and the complete pipeline has to be refilled incurring a miss penalty of up to 20

cycles where the processor can do no useful work.

1 2 3 4 5
P refetch D ecode EX WB

1 2 3 4 5 6 7 8 9 10
Fetch D ecode Ren ROB Rd Rdy/Sch Disp EX
1 2 C

O 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P4 TC Nxt IP TC Fetch Drv Alloc Ren Q ueue S chedule Disp. RF EX Flags BrCk Drv

Figure 4-10 Increasing Pipeline Depth o f Intel Processors (source: [61])

The memory hierarchy o f the Pentium4 is shown in Figure 4-11. The Pentium 4

designers attempted to mitigate the miss penalty by increasing the size of the Branch

Target Buffer by a factor o f 8 times to 4KB, however the average IPC was still reduced

by approximately 20% eating into the 40% gain in terms of clock frequency with respect

to the Pentium III as reported by Intel in [61], The other negative effect o f increasing the

processor clock frequency is that the LI cache, which has to run at the same speed as the

processor pipeline had to be physically small in order to minimise parasitic capacitance

and meet the target speed requirements.

Due to these design constraints, the 8KB LI cache of the Pentium4 can only hold 1024

double-precision (64-bit) vector entries; therefore the Pentium4 will spend most o f its

62

time accessing the L2 cache. However, the 256KB L2 cache-size means that if we

assume each double-precision vector entry to be muhiplied by the Sparse Matrix in

CSR/CCS format consumes 64 bits, the Pentium4 L2 cache can hold 32k vector entries.

Thus under best-case conditions problems, which do not fit entirely in the cache, i.e.

sparse matrices beyond 32k entries on a side, perform poorly on the P4 architecture.

The trend in processor micro-architectures has changed in the past 5 years since the

design of the Pentium4, due to the difficulties in scaling deep sub-micron technologies,

and currently all o f the leading microprocessor manufacturers have moved away from

technology scaling as the primary means of increasing performance, and towards new

multicore architectures as a means of sustaining performance increases through increased

parallelism.

External DDR SDRAM

64

P4 Processor
Core

Memory Controller

 ?-------
128

256KB 8-way L2 C ache
 1 -------------

256

8KB 4-w ay LI D ata-C ache

FPU/Int
M ove/StoreRegfileLoad

MHz Bytes M B/sec
333 8 2664

MHz Bytes M B/sec
3000 16 4 8 0 0 0

MHz Bytes M B/sec
3000 32 9 6 0 0 0

- ̂ i i ‘ 1 i MHz Bytes M B/sec
64, 6 4 , 64

C
O

__^ ■ 3000 32 9 6 0 0 0

r ' r r

Figure 4-11 Processor Cache Hierarchy and Bandwidths (source: [61])

4.3 Chip Multiprocessor (CMP)
Over the past 2 decades processor designs have achieved dramatic gains in terms of

single-threaded performance using a variety o f micro-architectural techniques including:

superscalar issue, Out-Of-Order (0 0 0) issue, on-chip caches, deep pipelines and

63

associa ted b ranch predic tors . H ow ever these im provem ents have co m e at the cost of

ever-decreas ing e ff ic iency in te rm s o f perform ance achieved per additional transistor.

A ccord ing to [81] p rocesso r perfo rm ance increases have slowed from 60 % per year in

the 1990s, to 4 0 % , a pe r fo rm an ce increase o f only 20% from 2000 to 2004. Processor

designers rely on 2 fo rm s o f paralle lism in order to ach ieve high perform ance:

instruction-level paralle lism (ILP) and thread-level parallelism (TLP). Processors

designed to exp lo it ILP have specia l hardw are that allows them to dynam ica lly identify

independent instructions that can be issued, in parallel, in the sam e cycle , by m ain ta in ing

a pool o f instructions in a large associa tive w indow , along w ith a register renam ing

m echan ism that e l im ina tes any false dependence between instructions.

The sho rtcom ings o f s im p ly increasing ILP and the case for a s ing le-ch ip m ultiprocessor

w ere first h igh ligh ted by O luko tun et al. [82], As indicated in [88] one o f the m ajor

issues with M ulticore architectures is p rog ram m ing them efficiently, m ore specifically

enab ling a s ing le execu tab le to be written for m achines which share an Instruction Set

A rchitecture (ISA). S im ilar techn iques have also been proposed in [88 | to distribute

po w er d issipa tion “ ho t-spo ts” over a larger M ulticore die, reducing associa ted cooling

problem s.

A ssu m in g that the p ro g ram m in g issues can eventually be resolved, the techniques

proposed for M ulticore processors are suitable for m ulti-tasking env ironm en ts as they

split p rogram functionality across m ultip le cores and associa ted caches decoup ling

processes w h ich w ould o therw ise tend to com pete for resources such as the external

m em ory interface. U nfortunate ly in S M V M applications the m ain limitation is the low

ratio o f ca lcu la tions per w ord fetched from external m em ory m ean ing that apply ing

M ulticore processors to such p rob lem s s im ply m eans that m ore processors will spend

m ore tim e w a it ing for data to be fetched from external m em ory o w in g to the arbitration

overhead for m ultip le cores shar ing a single external m em ory bus unless so m eth in g can

be done to increase the effective m em ory pin bandw id th available.

P rocessor designers can explo it T L P by execu ting different th reads in parallel, and

p rocessor architectures designed to exploit T L P often contain features w h ich also allow

them to take advan tage o f ILP w ith in a thread. M ulti-T hread ing (M T) is a techno logy

w here m ultip le hardw are threads are in tegrated into the sam e p rocessor core. T yp ica lly

such threads appear to the p ro g ram m er as logical p rocessors with an independen t

64

Register-File (RF) for each thread, where all threads share the same execution engine and

L1/L2 caches. Simultaneous Multi-Threading (SM T) is a variety o f M T where multiple

threads execute simultaneously on the same core.

LI Cache

L2 Cache Main Memory

Context2

Contextl Functional Units

Figure 4-12 SMT Processor

A Chip Multi-Processor (CM P) consists of multiple, fully-featured processor cores on the

same processor die. A typical CM P shown in Figure 4-13 has separate LI caches for

each core, with both cores sharing a second-level L2 cache and external memory

interface. CM Ps generally have greatly reduced resource contention compared to SM Ts

owing to the higher degree of resource duplication.

Context 1
Functional Units

Context 2
Functional Units

L I Cache LI Cache

L2 Cache Main M emory

Figure 4-13 CMP Processor

Multi-threading may also be supported in CM Ps [83] but generally the cores used in

CM Ps for desktop rather than server class computers, focus on simplicity, die-size and

power consumption. However there are examples of Chip Multi-Threading (C M P/M T or

65

CMT), such as S un ’s Niagara processor [90], in which 32 simultaneous execution threads

are supported using an 8-core CM P which supports 4 MT threads on each core.

Context 1

Context 2
Functional Units

LI Cache

Context 3

Context 4
Functional Units

LI Cache

L2 Cache Main Memory

Figure 4-14 CM T (CM P/M T) Processor

In some applications multiple instruction sets are supported in heterogeneous CMPs,

however we will concentrate on general-purpose CMPs which can share the same

processor instruction-set (for instance x86) across all cores.

The main driver o f the elements shown in the table is power dissipation, which led to the

abandonment of the 4GHz Pentium4 development at Intel and its replacement by a

simpler dual-core CMP derived from Intel’s mobile Pentium-111 development [91].

W orkloads with high levels of TLP continue to present problems on such architectures as

shown in [92] due to the limited size (64-entries) of the Pentium4 TLB resulting in poor

coverage of the address-space. In general CM P/M T processors improve overall

performance on certain applications by covering the latency of a stall on a given thread

by allowing other pending threads to execute on the same pipeline, however this comes at

the expense of increased resource contention [92], This problem can lead to dramatic

falls in performance when the different threads have conflicting datasets resulting in

cache thrashing [92]. The major issues with single-core designs and how they are

addressed by CM P/M T designs are detailed in Table 4-5.

66

Single-Core CMP/MT
Problem Solution Solution

Memory
Stall
Latency

when CPU stalls 100s of
useful instruction cycles
are wasted

can use large caches
and ILP to cover latency
but effectiveness is
limited

Latency covered by TLP,
When a thread stalls
another takes over the MT
cores pipeline

Branch
Prediction

branch miss-prediction
causes v. long pipe to be
flushed

there is a limit to the
accuracy of branch
predictions even if more
HW used

Latency covered by TLP.
When a thread stalls (miss-
prediction) another takes
over pipeline

Power
Dissipation

scaling performance using
clock rate and ILP leads to
V . high power/heat
dissipation

ultimately limits
performance and
reliability of CPU

yields better CPU
power/performance and
distributes hot spots better
over die

Die Size
speed of light is
fundamental limit on clock
rate for single core

interconnect delays scale
worse than gate delays
so die size is a
performance limit for
large single cores

simpler CMP cores are
smaller so performance can
be increased compared to
single complex core

Complexity
Very large and complex
cores are difficult to debug
and verify

larger and larger teams
are required to verify and
debug cores

using a single v. simplecore
performance scales, not
complexity

Table 4-5 Single-core versus C M P /M T Performance

A good example o f a CMP is IB M ’s Cell processor [83], co-developed w ith Sony and

Toshiba containing a PowerPC core along with 8 specialised SPUs (Synergistic

Processing Units) shown in Figure 4-15. Other examples include Inte l’ s Larabee GPU

[84] which is based on sim plified in-order x86 cores augmented w ith vector units and

Inte l’s s e e [85] which contains a cluster o f twenty-four dual-core x86 processors, giving

a multicore cluster o f 48 cores on a single die. More recently low-power embedded

CMPs which can rival the performance o f ASICs in terms o f performance/watt have

begun to appear. A good example o f this trend is the Stanford ELM processor [86],

which dissipates between 1.5 and 3x the power o f an ASIC implementation in the same

process technology and clock rate. This efficiency is a factor o f 23x better than a RISC

processor implemented in the same technology and is achieved by careful segmentation

o f the register file hierarchy for data, and the introduction o f an Instruction Register File

into which blocks o f instructions are loaded, rather than fetching a V L IW instruction

from cache on each 2()0MHz clock cycle.

67

SPU SPU SPU SPU SPU SPU SPU SPU

TTTTTTTT
BKJi'
o m

BHJT
DWV

BUT
DMA

mx
Oktfi.

e w
OMA

W JI
DMA

SAW
om

BUI
OMA

rTTTTTTl
Coherent On-CMp Bus 96B/cyde

Power
Archtecture MeiiL In lA B

Contr. Contr.

rn
Figure 4-15 IBM Cell Processor (source: [83])

Interestingly it is pointed out in [83] that there are increasing opportunities for the

inclusion of special-purpose accelerators in CMT/CMP designs as the increased

performance (lOx) and power-efficiency of accelerators becomes very attractive when

the cost of the accelerator hardware can be amortised over many concurrently executing

threads. Examples of such accelerators presented in [83] are Network Offload Engines

(NOE), Cryptographic Accelerators, OS accelerators and XML parsing and presumably a

similar case could be made for the acceleration of SMVM for Web-search acceleration.

Indeed heterogeneous processing appears to be the path of choice within the CMP

community.

4.4 Stream Processors
Stream processors have emerged from commercial work on Graphics Processing Units

(GPUs) over the past two decades as well as academic work such as the Imagine stream

processor co-developed at Stanford University and MIT between 1996 and 2001 as

described by Rixner in [62]. Over this period Graphics Processing Units (GPUs) have

moved from being fixed-function and largely fixed-point arithmetic pipelines, to being

highly programmable floating-point pipelines over the past 5 years as shown in Figure

4-16. Data is input to a GPU pipeline in the form of quad-vectors {x , y , z , w) which

68

allow graphical rotations to be performed by matrix multiplication. In more recent GPUs

programmability has been greatly extended.

fixe d pipeline
programmable

pipeline

Generate Geometry

Transform Geometry

u Clip to Viewport

tg

Generate Geometry

Perform Lighting

Vertex A

Transform Geometry

Apply Textures

Clip to Viewport

Rasterise Geometry

Draw Pixels

Perform Lighting

AHri? Textures f

Rasterise Geometry

Programs 7

Pixel
Programs

Draw Pixels

Figure 4-16 Fixed vs. Programmable GPU Pipelines (source: [80])

The programmable elements in GPU graphics pipelines consist o f multiple floating-point

units under the control o f simple programs or shaders and the two major vendors o f

GPUs have converged on IEEE single-precision (32-bit) floating-point format for their

GPU pipelines although they do not implement the 1EEE754 standard exactly. A typical

example o f this is the IBM Cell processor [63] which only implements the truncation

(round to zero) mode o f the IEEE standard. The choice o f this rounding mode leads to

poor performance on non-graphics workloads like FFTW [64].

Comparisons [80] o f stream and vector computing models on these architectures show

that, for some applications at least, the streaming model is superior to the vector model.

According to the authors, scientific applications performance is better by 34% on

streaming versus vector machines when cache is not used and 58% i f cache is used,

although the gains in media applications are much smaller. W hile streaming

architectures offer very high performance, programmability and legacy code remain huge

issues to be resolved before such architectures can replace clusters o f x86 processors.

In itia lly , according to Ujaldon [66] using GPUs for general-purpose computations

entailed disguising input data as vertex attributes, large data-structures as textures,

instructions as kernels, and final results as portions o f video memory. Essentially the

applications such as SM VM had to be rewritten using APIs such as OpenGL [74] or

DirectX [76] as graphics shaders. The academic community recognised the power o f the

GPU hardware as well as the issue o f how to program it and responded with stream

programming languages such as Brook [70] and Streamit [73]. Commercial stream

69

programming languages and APIs were made available by PeakSlream, and RapidMind

which was acquired by Intel and introduced as its own data-parallel program ming API

called Ct [72] to address the software development challenge.

The most recent developments in terms of the programming model for streaming

architectures are the proprietary Cuda [68] C-like language which supports Nvidia GPUs,

A T I’s Brook port [69] and the cross-platform OpenCL [67] language which is supported

by both ATI and Nvidia developed by Apple Corp. and now part of the Khronos [75]

family of standards for mobile devices.

The advances on the software side have been matched by similar advances on the

hardware side and the two most recent products from Nvidia called Tesla [77] and more

recently Fermi [77] fully support double-precision floating-point and even go beyond

double precision internally where a compound M AC (Multiply Accumulate) has been

used to increase numerical precision on operations such as dot products. The Nvidia

Fermi contains 512 cores and supports the new IEEE 754-2008 standard [78[for

floating-point arithmetic. Fermi contains 8 Streaming Multiprocessor (SM) blocks, each

containing 32 cores as shown in Figure 4-18 .

The key reason for the interest in streaming architectures is the very high levels o f

floating-point performance which can be achieved in comparison to microprocessors

such as the Pentium4 as shown in Figure 4-17. This being said, the available mem ory

bandwidth on GPUs continues to lag the amount of on-chip computational bandwidth.

I.il genemtion 2nd genemtion ird g n e r a tm ith gerwnHoii 5th genfration

-W
£

30

? 2()

i n-

GPU /

•Tfi/

-f C f

I

t I ^ I ■ I < i ^ !i , | 5 |
1 I I ? I s I - I ^ I

1 T. t r— - ' J r -

/
/f.l5

/ ;

" t —̂ r -••-r-

. ,C P U

yMKI

-■ x7f)()

- x(if)0 S

- xr)(KI f

x4(KI 5

X:}()() ^
'■ t.

-r-f ><2(X) 2V
xl()() >

199(i 1997 1998 1999 '2000 2f«n 2(^2 2flft3 2(K)4 2na') 20(r) 2007

Figure 4-17 GPU Perform ance Trend (source: [65])

0

70

in sW rar

Warp Scheduler Warp Scheduter

Dispaltoh Unit Dispatch Unit

Register Fite (32,7®8 * 32-fcii5

Cars",

CDire !

■ I f.Cof’e!

TV.

' Core ' I '-
1 C ore 1

tZ:<3re 1 C ore

Cor’̂ I feofe

i ;CQre :
fe.l .

■ ...p

■&are

C<5re.
..........

C ore :

j^-a

'W rs .,

^ ^ o re •
V i-J . 1

‘E(3re

LO fST

L W S T

LD fST

LfVST

LOr*T

LCVST

LOfST

LD /ST

LCVM

L D /5T

LO fST

L D » T

LEV5T

LO fST

LarsT

Ji: .j l l I J i . l - ■■. 'Ll 'ifl- ?'-i L
Network

64 KB Shared Memory / LI Cactie

SFU

SFU

SFU

SFU

ID

Figure 4-18 Nvidia Fermi Streaming M ultiprocessor (source: [77])

4.5 Summary
A lthough G eneral Purpose Processors such as the Intel Pen tium 4 and A M D O pteron

dom inate the w orks ta tion and cluster co m p u tin g m arkets they perfo rm poorly on Finite-

E lem en t and o ther Scientific and N um erical p rob lem s due to their internal arch itectures

and co m p ro m ises m ade during their design a im ed at add ress ing a broad range o f

applica tions. O ne o f the m ain reasons for the lack o f perfo rm ance o f genera l-purpose

arch itectures is that they rely on the spatial and tem poral locality o f their onboard caches

and reg isters for high perfo rm ance, and if the data set does not m ap w ell to the generic

71

onboard cache the architecture as a w hole perform s poorly. B enchm arks such as

S T R E A M [45] and S pecFP [46] show the perform ance o f general purpose architectures

is poor for S parse M atr ix -V ec to r M ultip lica tion (S M V M), and is not keeping pace with

the speed o f the p ro c es so r core. A prim ary reason for this is a phenom enon k now n as the

m em o ry wall [33] and is a com m on issue for all architectures.

A no ther co m m o n p ro b lem is that in order to clock the processor at the h ighest possible

rate it is often v e ry deeply pipelined. W hile deep p ipelin ing increases the operating

frequency and h en ce M F L O P S in norm al conditions it also negatively affects

perfo rm ance w h en a hazard occurs and the p ipeline has to be flushed and refilled. Again

with short row or co lu m n vectors as occur in S M V M operations the probability o f stalls

is increased lead ing to reduced FPU utilisation in such applications.

V ector-reg is te r su p erco m p u te rs such as the N E C Earth C om pute r and C ray -X l [93] solve

som e o f the issues assoc ia ted with general purpose architectures and continue to be the

m ost pow erfu l m ach in es in term s o f FL O PS perform ance, and in term s o f FPU

utilisation, h ow ever these m achines are well beyond the budgets o f individual engineers

and scientists. A lthough vector m achines perform better than general purpose processors

they still suffer from perform ance limitations for short vectors. This is the case in

S M V M opera tions w here the start-up delay degrades the perform ance, as the delay in

filling the p ipeline is o f the sam e order as the num ber o f vector elem ents to be processed

(on the order o f 24 non-zeroes per m atrix row /colum n).

Chip-level so lu tions for H igh-Perfo rm ance C o m p u tin g (H PC) have continued to p rogress

a long 2 parallel tracks. T he first is the con tinued evolution o f multicore p rocessors in the

form o f traditional C M P (Chip M ulti-P rocessors) based on existing architectures such as

the x86 and S PA R C . G ood exam ples o f this are In tel’s Larabee and SC C as well as

IB M ’s Cell p ro cesso r w hich is a hybrid ra ther than hom ogeneous CM P.

T h e s tream ing (G P U) parad igm has also been adopted by the designers o f a n u m b er o f

specia lis t arch itectures aim ed at superco m p u tin g including M errim ac [94] and

C learspeed [95], and specialised G P U s such as N v id ia ’s Tesla and Ferm i have also

em erged , w ith double-precis ion support, and general purpose program m abili ty th rough

C-like languages such as C U D A and O penC L . This latter class o f arch itecture has

already led to the availability o f desk top supercom pute rs capable o f T eraf lops

perfo rm ance levels [96] [97].

72

5
Chapter 5

“/ love talking about nothing. It is the only thing I know

anything a b o u t”

-Lord Goring: Ideal H u sban d” (O scar Wilde)

5 Software SMVM
Achieving high performance Sparse Matrix-Vector Multiplication (SM VM) on

modern microprocessors is a well-known problem. It has been widely reported that

the raw performance of such microprocessors using un-optimised SM VM codes is

poor and usually achieves less than 10% of the peak performance of such processors

[26]. A variety of techniques have been proposed to deal with this problem and

achieve a higher percentage of a processors FLOPS capability given that

computational requirements in application areas such as Finite Element Analysis

(FEA/FEM) and Latent Semantic Indexing/Analysis (LSI/LSA) used in data-mining

and search-engines such as Google continue to outpace the rate at which new

generations of processor can be deployed. The techniques which have been proposed

to achieve optimal performance on uniprocessor nodes are matrix-reordering and

automatic matrix library tuning. The former is used to improve locality in terms of

the vector result from an SM VM operation, whereas the latter is used to transform the

73

source-matrix storage format and the SM VM code which operates on that format to

the underlying processor architecture in such a way as to obtain optimal performance

for that architecture. Matrix reordering is dealt with in section 5.5 along with analysis

of the results presented in relevant publications and of the microprocessors used

where necessary to illustrate the shortcomings of these techniques. Parallel

computing has traditionally been the preserve of large organisations such as

government research institutes, weather forecasters, the defence industry, aircraft and

motor manufacturers and Universities, where scientists and engineers wait dutifully in

line for access to such machines. Due to trends in microprocessor design which have

emerged in the last few years, individual engineers and scientists are beginning to

have access to personal computers based on Chip Multi-Processor (CM P) technology

where multiple identical processors are integrated onto a single processor die along

with cache memory and bus interface logic. The issue of how such processors are

designed and are programmed and how SM V M problems and matrices can be

optimally partitioned to run efficiently on such processors is dealt with in the

following sections.

5.1 Sparse Matrix Vector Multiplication (SMVM)
A brief introduction to the problem of Sparse Matrix Vector Multiplication (SM VM)

and the limitations imposed by processor architectures on SM VM performance

follows. The rationale and means o f storing and processing sparse matrices are

discussed at length in Chapter 3 in particular Compressed Sparse Row (CSR) format

is discussed in section 3.1.

5.1.1 SMVM Algorithm
A sparse matrix A stored in CSR format can be multiplied by a dense vector x to

generate a dense result vector y by the code shown in Listing 5-1.

L I. for (i=0; i<n; i++) // process all rows

L2. for (j=ptr[i]; j<ptr[i+ l] ; j++) // row dot-product

L3.y[i] = y[i] + val[j] * x[col[j]]; // multiply-accumulate

Listing 5 - lC S R SM V M code

74

In the SM V M code the first loop is executed n times, where n is the matrix dimension

or number of matrix rows, so the ptr array is accessed 2n times as is the result vector

y . The inner loop (dot-product for each row) is executed nz times where nz is the

number o f non-zeroes in the sparse matrix, meaning that the val array is accessed nz

times as are col and x (indirectly). The total number of array references is therefore

3nz + 4n o f which nz accesses are indirect accesses to the x vector. The total number

o f floating-point operations is nz multiplies and the same num ber o f additions, or 2nz

in total. In terms of integer operations the outer loop performs n additions and n

comparisons and the inner loop performs nz+n additions, and nz comparisons. The

integer operations can typically be ignored as they are performed by dedicated

looping and indexing hardware present in modern microprocessors.

5.1.2 Memory Bandwidth
An important factor in the performance o f SM VM codes is the balance between

program m emory bandwidth requirements and computational requirements. As

reported by Gropp [26] the sustainable memory bandwidth in SM VM dominated

codes does not match the computational requirements m aking the peak FLOPS

performance numbers quoted by microprocessor vendors meaningless for this class of

application. In fact the authors report that M cCalp in’s STREAM benchmark [45] is a

much better predictor of SM VM and application performance for this class of

problem.

By way o f example the data transfer requirements in bytes of the SM V M code

presented in Listing 5-1 are as follows assuming 4-byte (32-bit) addresses and 8-byte

floating-point numbers and a square matrix, where n is the matrix order (#rows or

columns) and nz is the number o f non-zero elements to be stored explicitly in the

sparse data-structure;

B y te s _ transferred = \ 2 * n + 20* nz

Equation 5-1 Data Transfer

The amount of data that needs to be transferred for each FLOP is:

B ytes_ transferred _ 6 * n + \0 * nz

FLO PS ~ nz

Equation 5-2 Data Bandwidth Requirement

75

This means that the m axim um possible SM VM FLOPS performance for a processor is

given by;

B W
=

6 * —

nz
10

Equation 5-3 SM VM U pper FLOPS bound

M is the FLOPS rate and B W is the peak memory bandwidth and as can be seen it

is heavily dependent on how sparse the matrix is nz jn . This number however

represents an upper bound on performance and in practice implementation details

such as the cache architecture tend to reduce the actual SMVM performance achieved.

5.1.3 Cache Memory
In order to provide an optimal match for workload characteristics processors may opt

for a range of cache designs from simple and fast direct mapped caches to highly

flexible and expensive fully associative caches. Most modern microprocessors

integrate set-associative caches, which fall in the middle ground between low-cost

Direct-Mapped and high performance fully-associative caches, in order to provide

high performance across a broad range of workloads.

A block can be placed in different positions in caches of the same size but with

different levels o f associativity as shown in Figure 5-L

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(a) fully-associative (b) set-associative (c) direct-mapped

Figure 5-1 B lock-Placem ent vs. C ache-Type (source: [34])

If the data can only be placed in one position in the cache it is said to be Direct-

M apped as in Figure 5-1 (c) and the mapping is of the form;

(Block-Address) M OD (Number of blocks in cache)

Equation 5-4 Block Placement

If the block can be placed anywhere in the cache it is said to be fully-associative as

shown in Figure 5-1 (a). Otherwise if the block can be placed at a restricted number

o f locations in the cache it is said to be set-associative where a set is a group of blocks

in the cache. A block is first mapped onto a set within the cache by bit selection and

then the block is placed within that set. In the 2-way set associative cache in Figure

5-1 (b)) 1 bit could choose between the 2 sets. A Direct-mapped cache is actually a

set-associative cache with a set size of one and a fully associative cache is set

associative cache where all words are stored in the same set.

5.1.4 Blocking
According to Hennessy and Patterson [34] blocking is the best known cache aware

optimisation. Cache blocking works by reducing the number of cache misses by

increasing temporal locality. Instead of operating on entire rows and/or columns of an

array blocked algorithms operate on sub-matrices or blocks, the goal being to

maximise the number o f time sub-matrix data is reused before being replaced. By

reducing the block size further to the point where it can be held in processor registers

the number of program loads and stores can be minimised further increasing program

execution speed. This optimisation also increases program speed in another way as

registers can be accessed for reading and writing within the current processor cycle

whereas most LI caches typically require at least 2 cycles to access for reading and

writing. W here associative caches are used, choosing a block size smaller than the

available capacity can reduce conflict misses since blocking reduces the amount of

active data in the cache at any given time.

5.1.5 Execution Models & Cache Behaviour on SMVM Codes
In reference to the cache behaviour associated with Listing 5-1 the accesses to y and

p tr have perfect spatial and temporal locality and the code can be modified to hold

these values in registers for the duration o f the inner loop iterations thus eliminating

unnecessary memory references. The val array holding the A matrix non-zero values,

along with the p tr array which holds the references to the beginning of each row (in

77

the col array) each have no temporal locality but perfect spatial locality. As each

element of each array is only used once cache misses due directly to these arrays are

all intrinsic, however they may cause conflict (cross-interference) misses on other

arrays whose elements they may cause to be evicted from the cache.

Tem am and Jalby [48] were the first to develop a detailed model of cache misses for

Sparse Matrix Vector Multiplication given the assumptions that the target machine

had a single level o f cache hierarchy, and that the square banded matrices were stored

in CSR format and had a random distribution of non-zeroes in the band. In their

work they showed how cache misses vary with matrix structure (dimension, density,

and bandwidth) and cache parameters (line size, associativity, and capacity and their

model includes approximations of conflict misses, particularly self-interference

misses. They concluded that cache line size has the greatest impact on cache misses,

while associativity has the least impact. They also showed that self-interference

misses can be minimized by reducing the matrix bandwidth (can be achieved by

matrix re-ordering as shown in section 5.2) and maximizing cache capacity.

As will be seen later Vuduc [52] extended the model proposed by Tem am and Jalby

[48], and he points out that while it is common practice in processor designs to match

cache line-lengths across different levels of the hierarchy this leads to poor

performance on SM VM codes using his execution model for processor behaviour. He

concludes that it is important to have strictly increasing line lengths through the

memory hierarchy to achieve good performance using his execution model. He also

points out that his model could still be improved to model conflict misses and matrix-

dependent spatial locality more accurately, as well as processor instruction issue

limitations.

5.2 IVIanual Performance Tuning
A variety of software techniques have been proposed to improve the performance on

Sparse Matrix-Vector Multiplication (SM VM) on conventional General Purpose

Processors (GPPs). According to Toledo [101] the four main performance

bottlenecks in software implementations of SM VM are:

• Large number of cache misses due to poor data locality

• Tendency o f multiple functional units to miss on the same cache-line

• Poor data locality (reuse) causes Floating-Point Units to be under utilised

78

• Array reference translation from integer to byte offset (extra integer

operations)

Three techniques are outlined by Toledo [101] to improve the performance of SM VM

codes on modern microprocessors by addressing one or more of these bottlenecks

depending on vv'hether the techniques are combined or used individually.

5.2.1 Reducing Cache Misses by Reordering
The first technique used by Toledo [H)l] is matrix reordering which is used to

minimise the number of cache misses as accesses to the dense x vector and potential

for data reuse depend on the sparsity structure of the A matrix. The bandwidth b o f a

sparse matrix is the maximum distance between two elements in any row of the

matrix. Reordering reduces the matrix bandwidth by permuting matrix rows and

columns and their associated non-zero entries. Often, the elements in a sparse matrix

can be reordered so that the bandwidth of the new matrix is smaller than the

m aximum possible bandwidth. Obviously in order to permute (reorder) the rows and

columns o f the matrix A without altering the system o f equations the indices o f the

unknowns in x and the RHS vectors must undergo the same permutations as the A

matrix. This problem is known to be NP complete [102] so that brute-force methods

requiring very long run times have to be used to produce an optimal solution, or else

heuristic short-cuts are used in order to achieve acceptable results in reasonable time.

Cuthill-M cKee [102] and Reverse Cuthill-McKee (RCM) [104] are examples of such

heuristics. Reducing the bandwidth of a matrix for instance reduces the time taken to
3 2perform Gaussian Elimination on a linear system from 0 (n) to ()(nh) where n is the

order o f an n*n matrix. The benefits of reordering are large if n >> h. Reordering in

the context o f Toledo’s work is performed so that the spatial locality o f the x vector is

maximised, thus maximising data-reuse and minimising cache misses and the number

of associated low-bandwidth accesses to external memory.

5.2.2 Pre-Fetching
As outlined previously the memory wall is increasingly the obstacle to achieving

higher Instruction Level Parallelism (ILP) despite 0 0 0 (Out-of-Order) and other

techniques intended to mask increasing DRAM access latencies. Bobba [41] states

that as DRAM access latencies continue increasing, even such techniques can no

longer fully hide the effect o f increasing latency. In such circumstances data pre-

79

fetching is a technique which attempts to minimise cache misses and hence the effect

of increased latency on performance, by anticipating future data accesses and moving

required data closer in the cache hierarchy to the processor. According to Bobba et

al. [41] a good data-pre-fetch scheme should have the following properties:

• Pre-fetches must be useful i.e. the pre-fetched data must be

used by the processor in the near future

• Pre-fetches should be timely i.e. data should not be fetched

too early lest it displace data which is required in the near

future

• Pre-fetches should not lead to cache pollution i.e. displacing

data to be used in the near future with pre-fetched data

which is not accessed

According to Hennessy and Patterson [34] instructions and/or data can be pre-fetched

by hardware either directly into the cache or into an external buffer which can be

accessed more quickly than main memory. Pre-fetching relies on using memory

bandwidth which would otherwise remain available but unused, as otherwise it could

actually degrade performance by interfering with demand misses.

An example o f such degradation occurs where hardware pre-fetch engines require a

long stream o f contiguous accesses in order to detect a viable pre-fetch stream [23].

While other architectures do not fare as badly performance still degrades significantly

where large numbers o f contiguous addresses are not present, as is the case of SM VM

where large matrices have on the order of 20 non-zero entries per column [231, far

fewer than the 128 or more contiguous addresses typically required for efficient

hardware pre-fetching.

According to Toledo [101] pre-fetching works very well in the case of dense matrix-

vector multiplication as the ratio of floating-point to load instructions is high (value

reuse per load is high), however in SM VM this ratio is less than one and the

bandwidth required to load data from memory is the performance bottleneck. Rather

than using pre-fetching to hide memory latency Toledo advocates fetching both

matrix data and column indices before they are to be used to minimise loss of memory

bandwidth due to stalls.

According to Mowry [51] since prefetching hides rather than reduces latency, so if a

program is already memory-bandwidth limited, it is impossible for prefetching to

80

increase performance. Locality optimizations such as cache blocking, however,

actually decrease the number of accesses to main memory, thereby reducing both

latency and required bandwidth. Therefore, the best approach for coping with memory

latency is to first reduce it as much as possible, and then hide whatever latency

remains. W eidendorfer and Trinitis [105] suggest a technique called Interleaved

Block Pre-fetching to deal with this situation. The technique transforms a large block

o f data which does not fit into the cache into a succession o f smaller blocks which do

fit. The data in the smaller block is processed multiple times with only the first

iteration subject to the external memory bandwidth limitation. Further iterations

access the data in the cache, allowing the next data prefetch to be overlapped with

execution o f the current loop. Unfortunately this technique does not appear to be

suitable for the vast bulk of SM VM arithmetic operations as data reuse is limited to

the X and y vectors (y = A.x) unless the matrix is symmetric.

Compilers can override this behaviour by inserting explicit pre-fetch directives;

however generally there is insufficient information at compile time to make this

choice. The technique increases instruction bandwidth, which can exceed the benefits

o f data pre-fetching if care is not taken.

5.2.3 Register Blocking
Toledo reduces the number of loads required from external memory to internal

registers or cache by restructuring the matrix, splitting it into multiple smaller

matrices which have a denser, more regular structure. Such a locally dense but

globally sparse structure is a feature of some application areas such as Finite element

Analysis o f engineering problems. The conversion o f the source matrix in

Compressed Sparse Row (CSR) format into the modified format was performed in a

greedy (choosing locally optimal results in the hope o f global optimality) fashion, by

scanning the source matrix in pairs of rows and looking for locally dense 2x2 and 1x2

blocks and was optimal for 1x2 blocks. The effect of blocking was to reduce the

number of loads with respect to unblocked.

5.2.4 Toledo’s Results
T oledo’s techniques in conjunction with optimal reordering boosted SM VM

performance on 9 Boeing matrices by about 2.5x, but the 4 NasGraph matrices used

had less than 20 non-zeroes per column and were actually slowed down by reordering

81

by betw een 10 and 2 0 % , and also achieved little im provem ent benefit from p re

fe tch ing and none at all from blocking . T he cost o f the b lock ing sch em e w as

equivalen t to 4-15 unb locked S M V M s using the original matrix; how ever 3 o f the 13

m atrices (23%) required the equivalen t o f 100 S M V M s to perform b lock ing due to the

overhead o f pag ing and m em o ry m anagem en t in RCM . In su m m ary T o ledo states

that if the m atrix is used m ore than 75 times b locking p roduces a reduction in

execution time.

Despite cla im s o f low overhead (1-3 S M V M operations) for re-ordering presented in

[101] our experience using M atlab show s that these overheads are in practice an order

o f m agnitude or m ore larger than those presented by T oledo w hen a database o f very

large m atrices is used as o pposed to the 13 m atrices used by T o ledo in his work.

A ccord ing to T o ledo a fr inge benefit o f R C M reordering reported by D u ff and

M eurant in [100] is that w hen a C on jugate G radien t (CG) iterative so lver uses an

incom plete C hoelsky p re -cond itioner the o rdering o f the m atrix affects the

convergence rate. U sing R C M in this context reduces the num ber o f cache misses,

enables b lock ing and accelera tes convergence. T h is if found to be true on further

investigation m ight offset som e o f (he overheads seen in our work.

Finally T o ledo suggests that these techniques are best com bined to produce optimal

results h ow ever he suggest no approach for how this should be done either

au tom atically or by a p rog ram m er. T he issue o f apply ing such techniques using an

au tom ated approach to ach ieve optim al perform ance for a g iven p rocessor

architecture w ithou t detailed know ledge o f its internal s tructure has been the subject

o f research at U C B erkeley [137] and w hich will be presented in the next section.

5.3 Automatic Performance Tuning
A difficulty w ith softw are perfo rm ance enhancem en t techniques used by T o led o and

o thers is that it is difficult to generalise these techn iques to the point that they can be

reliably incorporated into com pilers to p roduce both efficient and operationally

correct code accord ing to Y otov [106] and D em m el [107], resulting in great effort and

expense to design, m aintain and port tuned libraries to keep pace with technological

evolution. Furtherm ore com pilers cannot be relied upon to do the op tim isation w ork

as the choice o f algorithm m ay depend on the input data as show n by T oledo [101].

D em m el identifies the 3 m ost im portan t considera tions in the design o f a num erical

softw are library as:

82

• Portability

• Performance

• Scalability

In recent years in order to address this challenge both model-based and experiment-

based matrix kernel generators such as ATLAS [108], PhiPAC [109], Sparsity [110]

and OSKl [111] make extensive use of these techniques to transform code in order to

extract m axim um performance from a given machine architecture.

The focus o f V uduc’s work [52] is on register-blocking and to a lesser extent on

multiplication by multiple vectors, and is supported by the development o f models of

the processor and its cache and memory sub-systems used to estimate the performance

of register-blocked code on a particular matrix.

5.3.1 Register Blocking Revisited

Vuduc extends the work carried out by Im and Yellick on Sparsity [110] at UC

Berkeley to search the solution space varying the number o f rows and columns in the

register blocked SM VM independently rather than together. Both Sparsity and OSKI

rely on transforming the matrix from CSR to BCSR (Block Compressed Sparse Row)

in order to reduce the overhead of addressing sparse matrix entries. An example of a

matrix stored in 2x3 BCSR format is shown in Figure 5-2.

_ 0 2 4
0 ;3flO 3 o i 0 ; 0 3 o4 0 ;

;3io 1̂1 0 ; 0 0 a,5|
2 * 0 0 ^22; 0 0 ^251

! 0 0 8 3 2 ; ̂ 33 ^34 ^ 3 5 1

row

col

Figure 5-2 2x3 BC SR Sparse M atrix Storage Form at

As can be seen the data-structure has 3 elements; an array of row pointers terminated

by the num ber o f dense r*c sub-matrices, an array of column indices and an array of

non-zero values (plus zero fill if required).

83

void aparae_nvni_bcsr_2x3(in t M, in t n,
co n st double* Aval, const in t* Aind. const int* Aptr,
co n st double* x. double* y)

in t I ;
forC 1 = 0 ; I < M; I++. y += 2) { / / loop over block rows

r e g i s t e r double yO = y[0] , y l = y [l] ;
in t j j ;

/ / loop over non-zero blocks
f o r (j j = A ptr[I]; j j < Aptr[I + l] ; jj++. Aval += 6) {

in t j = A ind[jj];
r e g i s t e r double xO = x [j] , x l = x[j + l] , x2 = x [j+ 2];

yO += Aval[0]*x0; y l += Aval[3]*x0;
yO += A v a l[l]* x l ; y l += A val[4]*xl;
yO += Aval[2]*x2; y l += Aval[B]*x2;

}
y[0] = yO; y [l] = y l;

>
}

Listing 5-2 C code for 2x3 SM VM using BCSR format (source: [112])

It can also be seen in this example that the dense sub-matrices contain a considerable

number of zeroes required as fill-in (12/24 or 50% fill). The advantage is that if the

underlying data maps well to the dense block size and does not contain a lot of fill

less indirect addressing overhead is required as shown in Listing 5-2, thus speeding

up the SM VM operation.

If the data does not map well to the chosen block structure many floating-point

calculations will be trivial as they multiply the zero fill entries rather than carrying out

useful calculations. For this reason a search is required on a sample of the input

matrix in order to choOvSe the best BCSR sub-block dimensions which minimise fill

and maximise FLOPS performance. Using the same source matrix as an example it

can be seen that a 2x2 blocking scheme results in less fill as shown in Figure 5-3.

84

0 2 4
3qi 0 0 3q4 0

|9iq 3l1 0 0 0 3 i5

0 ^22 0 0 ^25

| o. 0 ^32 ^33 ^34 CI35

row

col idx

val

Figure 5-3 O ptim ised liC S k 2x2 Blocking

As can be seen the 2x2 sub-block storage format results in fewer fill-ins (4/16 or

25%) than the 2x3 case resulting in an increase in FLOPS performance. The SM VM

code corresponding to the 2x2 BCSR matrix sub-block format is shown in L isting

5-3.

void Envm_2x2(int ben, const ia t *b_row_start,
const int ♦b_col_idx, const double ♦b_value,
const double *x, double *y)

int i , j j ;

/♦ loop over block ro>i£ ♦/
1 for(i - 0; i < bn; i-i-+, y +- 2) i
2 r e g is te r double dO - y[0] ;
3 r e g is te r double dl - y [l] ;
4 for(j j - b_row_ sta r t [i] : jj < b_rov_£tart [ii-l] ;

jj-M-, b_col_idx-M-, b_value +- 2*2) -[
5 dO 1-- b_value [0] + x [b_col_idx [0] t 0] ;
6 d l 1-- b_value [2] + x [b_col_idx [0] t 0] ;
7 dO r - b_value[i] ♦ x [b_col_idx [0] t i] ;
8 d l t - b_value[3] + x [b_col_idx [0] t i] ;

}
9 yCO] - dO;

10 y [i] - dl;
>

>

Listing 5-3 BCSR 2x2 SM VM code (source: [112])

85

5.3.2 Automatic S M V M Performance Tuning
The approach used by Vuduc in OSKI f i l l] builds on the Sparsity system for

generating highly-tuned implementations o f the SM VM kernel. OSKI given a matrix,

kernel, and machine selects a fast SM VM implementation using a two step procedure:

• identify and generate a space o f reasonable implementations

• search this space for the fastest one using a combination o f heuristic models

and actual experiments (i.e., running and tim ing the code)

The cost o f using OSKI to tune a library breaks down into two cost elements:

• A static once-off element to characterise the underlying

machine which is amortised over many uses o f the library on

the specified machine/library

• A run-time search to characterise each individual matrix w ith a

view to choosing the optimum r*c block size

A block diagram o f how the OSKI library tuning system works is shown in Figure

5-4.

Library Install-Time (offline) Application Run-Time

Workload
Matrix from programBenchmark

Historymonitoring

^eneraie3^
code

variants

1. Evaluate
Models

Benchmark Heunstic
models

2. Select
Data Struct.

& Code

To user:
Matrix handle
for kernel
calls

Figure 5-4 OSKI Library Performance Tuning (source: [111])

5.3.3 Vuduc’s Results
By way o f example o f the BCSR format the FEM Matrix raefsky3, from the

University o f Florida Sparse M atrix collection is 0.33% sparse (1.5M non-zeroes) and

consists entirely o f uniform ly aligned, dense 8x8 sub-blocks.

86

^ 1 n"* M a trix : ra e fs k y 3 [2 1 2 0 0 x 2 1 2 0 0)
0]

0.2

0.4

0,6

0,8

o

1 .2

14

1.6

1 8

2

0 0.2 0 4 0 .6 0 .8 1 1 .2 1 4 1 .6 1 8 2 " "■" ™

c o lu m n ^ , 0 *

Figure 5-5 raefsky3 spy plot (and detailed section)

This matrix (Figure 5-5) should be a good target for SM VM implementations to fu lly

unroll the multiplication by each block, exposing instruction-level parallelism (ILP)

and opportunities for register level reuse. The OSKI tuning algorithm searched a

space o f sixteen possible r*c block organisations (1-4 rows * 1-4 columns) around the

presumed 8*8 optimum, and surprisingly even on this well-behaved example

performance is not well correlated w ith block size (r*c), and varies across platforms

as shown in Table 5-2.

Platform Year
Peak

MFLOPS
Best

MFLOPS
% peak

MFLOPS
Best

org. r*c
Ultra 2i 1998 667 63 9.4% 8x8
Pentium Ill-M 1999 800 120 15.0% 2x8
Power 3 1998 1500 196 13.1% 4x4
Itanium 2001 3200 229 7.2% 4x1
Power 4 2001 5200 703 13.5% 4x1
Itanium 2 2002 3600 1120 31.1% 4x2
Average 14.9%

Malna. raetsl.y3 |1 7S, 1 7S|

isliiiiiiiiiisiiisi
ttm u m tn n u m tn t

jtimnHmSmmtt!
au in m u u tn m m i

ttnotim tH sttm ttt

Table 5-1 Peak performance (%) of raefsky3 matrix S M V M (source: [52])

Rather than perform an exhaustive search for the best SMVM execution-time both

Sparsity and OSKI allow a user-defined portion o f the source matrix to be used to

derive a blocking scheme. This sub-optimal sampling is combined with performance

estimation heuristic models to come up with a set o f register blocking codes, with

varying r*c, to run and search for the optimum performance.

speed-up
name Itanium2 Itaniumi Pentium-Ill Pentium-Ill M

1 dense2000 4.12 1.60 2.46 1.91
2 raefsky3 4.07 1.61 2.38 1.70
5 venkatOI 4.03 1.59 2.24 1.66
3 olafu 3.44 1.49 2.15 1.53
4 bcsstk35 3.25 1.51 2.15 1.74
8 nasasrb 3.15 1.48 2.05 1.53

12 raefsky4 2.80 1.26 1.60 1.22
10 ct20stif 2.79 1.21 1.53 1.26
6 cryst02 2.74 1.58 2.30 1.65
7 cryst03 2.73 1.57 2.30 1.66

13 0 X 1 1 2.70 1.24 1.48 1.19
9 3dtube 2.69 1.55 2.23 1.65

11 bai 2.57 1.10 1.51 1.27
17 rim 1.97 1.05 1.23 1.00
36 sh yy ie i 1.97 1.02 1.04 1.00
21 goodwin 1.97 1.12 1.24 1.00
20 IhrlO 1.96 1.31 1.00
27 pwt 1.94 1.06 1.06 1.00
15 vavasis3 1.88 1.30 1.46 1.23
26 onetone2 1.72 1.04 1.00
25 finan512 1.62 1.02 1.03 1.00
24 coater2 1.55 1.06 1.00
28 vibrobox 1.41 1.09 1.03 1.00
40 guptal 1.18 1.01 1.00 1.00
41 Ipcreb 1.05 1.06 1.00
42 Ipcred 1.00 1.06 1.00
44 Ipnug20 1.00 1.21 1.03 1.00

average speed-up 2.35 1.30 1.56 1.27

Table 5-2 Version2 Heuristic Speed-up by architecture (source: [52])

The main difference between the register blocking heuristics used by Im in Sparsity

and that proposed by Vuduc is that the original scheme proposed by Im assumes

square r*c BCSR blocks while Vuduc’s scheme allows rectangular blocks. The result

is that Vuduc’s scheme has a larger 2-dimensional space o f possible solutions to

88

search rather than a one-dimensional space as in the case o f the original heuristic. The

proposed techniques are claimed to achieve 31% o f peak and 4x speedups over CSR

for a benchmark set of 44 matrices. However, the four processor architectures are

benchmarked using a sub-set o f only 27 o f the in itia l 44 as shown in Table 5-2.

For these 27 matrices, the computationally more expensive version2 heuristic

produces a speed-up on the ltanium2 architecture which is up to 2x the speed-up

produced using the version 1 heuristic, while closely matching what is achieved using

a fu lly exhaustive search which is computationally very expensive.

Vuduc presents data in [52] in which BCSR reduces the execution time o f SM VM to

2/3 that o f CSR (1.5x speedup) but at a cost o f requiring storage o f 50% additional

explicit zero entries. As can be seen the speed-up on the ltanium2 architecture is

inversely correlated with the amount o f sub-matrix f il l as shown in

Figure 5-6. The reason for this is obvious in that zero f i l l consumes FLOPS and

memory bandwidth but does no useful work and hence does not speed up the

calculations.

Q.□
■TJ0>(U
Q.
(0
<N
E3
Cra

3.50

4.0
ver 2 Speed-up

- 3.00ver2 Fill-in
3.5

3.0 2.50

5

0

1.50
5

0 1.00

CM

E
3
'E

o cr> zj
o
C\J o
<D CD 05C V-QT3

CM CO -Q CDO O O

O O

(/) -§
03 B
if) " O
03 COc

(O
q3
03

COw
CO
05>
05>

O c
~ B

COo

OO CM
1 - CD

■oOoO)

Q.
o

■ >

T- T- ^ "O OCD 03 (D <D C\J
0 .0 0 ° ’ D Q. Q. ^
O)-------

>.>.

matrix-name

Figure 5-6 ltanium2 Ver2 Heuristic Speed-up vs Fill-in (source: [52])

89

In the results presented by Vuduc the Itanium2 distorts the performance gain which is

averaged across all architectures and matrices in the 27 matrix benchmark as shown in

Table 5-3. Firstly the benefits o f the version2 heuristic in terms of speed-up only

apply to the Itanium2 architecture whose peak performance increases by 38% and

average performance increases by 27% using the proposed heuristic as opposed to the

versionl heuristic from Sparsity/Im [112], The speed-up due to the version2 heuristic

is only between 3 and 10% in the case o f the other architectures. The average speed

up for the Itanium2 is 2.35x and not 4.07x, and the average speed-up for all matrices

and architectures using the version2 heuristic is 1.59x.

Pentium-!!! Pentium-!!! IVI Itanium 1 Itanium 2 group
average

speed
up

% o f
exhi.

speed
up

% o f
exh.

speed
up

% of
exh.

speed
up

% o f
exh.

ai/g. exh. 1.51 100% 1.22 100% 1.32 100% 2.37 100% 1.61
avg. v2 heur. 1.50 99% 1.21 99% 1.30 99% 2.35 99% 1.59
avg. v1 heur. 1.47 97% 1.20 98% 1.19 90% 1.73 73% 1.40
peak exh. 2.38 100% 1.79 100% 1.61 100% 4.08 100% 2.46
peak \j 2 heur. 2.38 100% 1.74 97% 1.61 100% 4.07 100% 2.45
peak v1 heur 2.30 97% 1.74 97% 1.51 94% 2.52 62% 2.02

Table 5-3 Average versus Peak Performance by Architecture

Based on Vuduc’s data the number o f SM VM iterations to achieve an overall 20%

speed-up for an iterative method using the proposed tuning algorithm depends on the

matrix and the acceleration achieved however using the same model as before the

speed-up could require an average o f 67 iterations to achieve a 20% overall speed-up

(y0 = l/1 .2) as shown in Table 5-4, wherea is the speed-up achieved in terms of

SM VM time alone, and (3 is the overall speed-up required including tuning overhead.

As can be seen the more speed-up achieved by tuning, the fewer SMVMs need to be

evaluated in an iterative algorithm in order to achieve an overall speedup. Converting

a matrix from CSR to BCSR format costs 5 to 40 unblocked SMVMs, therefore the

upper bound on the overhead o f using OSKI tuning is the equivalent o f over 40

SM VM operations where translation o f the matrix into BCSR format confers an

advantage, and a baseline o f 1-11 unblocked SMVMs even in cases where trans

coding offers no advantage thus decelerating performance in non-FEM applications.

90

matrix
tuning

overhead
Accelerated SMVMs to gain 20% from tuning

a=1.5 a=2.0 a=2.5 a=3.0 a=3.5 a=4.0
2 22 132 66 51 44 41 38
3 22 132 66 51 44 41 38
4 36 216 108 84 72 66 62
5 18 108 54 42 36 33 31
6 40 240 120 93 80 74 69
7 40 240 120 93 80 74 69
8 38 228 114 88 76 70 66
9 40 240 120 93 80 74 69
10 38 228 114 88 76 70 66
11 18 108 54 42 36 33 31
12 23 138 69 54 46 42 40
13 24 144 72 56 48 44 42
15 21 126 63 49 42 39 36
17 27 162 81 63 54 50 47
21 26 156 78 60 52 48 45
average # SMVMs 173 86 67 57 53 49

Table 5-4 # tuned SM VM s required to achieve overall 20% speed-up

This means that any iterative method using OSKI or a sim ilar methodology would

have to complete at least 40 SM VM operations before beginning to see any advantage

from matrix kernel tuning in worst-case conditions. This would suggest that kernel

tuning is not much o f an improvement over RCM which was described in section 5.2.

The other disadvantage o f this methodology is that the user must call the “ tune”

routine exp lic itly however the tuning result can be saved to be used on future runs

with a sim ilar matrix. It is clearly indicated in [107] by Demmel et al that the

overhead o f searching can be much longer than traditional code compile times and

that the overheads must be justified by actual application behaviour, which can be

d ifficu lt to predict based on knowledge of the source-code alone.

Vuduc observes that there is a performance gap between matrices consisting prim arily

o f dense blocks o f a single size, uniform ly aligned, and matrices whose structure

consists o f multiple block sizes w ith irregular alignment. For such matrices he

recommends splitting the Sparse Matrix A into the sum A = A l + ■ • • + As, where

each A i may be stored w ith a different block size, and storing each A i in a unaligned

block compressed sparse row (UBCSR) [113] format that relaxes both row and

column alignments o f BCSR, at the cost o f indirection to x and y instead o f just x as

91

in B C S R and CSR. T h e m ain d isadvan tage with this technique is that it further

expands the search range and hence the size o f the overhead in term s o f tun ing that

m ust be am ortised before a benefit due to tun ing can be reahsed.

G enera l ly m u ch o f the p erfo rm ance advan tage in V u d u c ’s experim ents seems

attributable to the features o f the ltan ium 2 ra ther than anyth ing the tun ing is

achieving. T h o se features include:

• Large (m u lt i-M egaby te) L3 cache

• 2 F loa ting-poin t M ultip ly A C u m u la tes (F M A C s) per cycle

• 128-bit w ide external m em o ry bus

Strangely no results for p erfo rm ance tun ing on the Pentium 4 are presented despite the

fact that it w as ava ilab le during the period the w ork w as conducted.

This analysis o f V u d u c ’s results including their specif ic suitability for the I tanium 2

com pared w ith o ther p rocessors is confirm ed by Buttari et al [114],

Fu rtherm ore Y otov et al. cast doub t on the utility o f search to determ ine m achine

param eters in [106] and suggest that a static m ach ine model can produce results on a

par w ith search techniques, w ith the exception o f the l tanium 2 that is. Certain ly if

Y otov et al. are correct near op tim al Register B locking could be achieved at a fraction

o f the com puta tional cost o f search ing m ak ing reg is ter-blocking useful even where

the num ber o f S M V M opera tions is very low.

In su m m ary the approach o f sea rch ing for a so lu tion in the m anner proposed by

V u d u c only m akes sense if:

• T he user is know ledgeab le enough to use the tool

• T he user is using a co m p u tin g p latform that is a good match for the tool

• T he m atrix has underly ing structure w hich can be tuned for

On the last point it is im portan t to note that because o f the use o f a perfo rm ance

heuristic a fixed penalty o f 1-11 S M V M operations is incurred where the m ethod is

used irrespective o f w he the r the C SR to B C S R conversion is perform ed in the end

lead ing to degradation in perfo rm ance for n on -F E M m atrix applications.

5.4 Further Optimisations
A num ber o f further op tim isations occur in the literature and can be applied either

m anually or autom atically . T hese op tim isa tions include:

• C ache B locking

• T L B Blocking

92

• C o p y O p t i m i s a t i o n

• R e c u r s i v e B lo c k in g

• B l o c k D a t a - L a y o u t

5.4.1 Cache Blocking
C a c h e b l o c k i n g i m p r o v e s local i ty o f a c c e s s e s to the v e c to r s x a n d y b y d y n a m i c a l l y

i n s p e c t i n g the m a t r i x da ta s t r uc tu re and c h a n g i n g it in to a s e q u e n c e o f sp a r s e s u b

m a t r ic e s so tha t the po r t i o n s o f the v ec to r s x a nd y for e a c h s u b - m a t r i x fit in the

cac h e . C a c h e - b l o c k i n g is es pe c i a l ly usefu l w h e n the s o u r c e v e c t o r x is v e r y la rge . In

thi s ca se a s e a r c h is p e r f o r m e d to spl i t the sp a r s e m a t r ix in to 2 '^ * 2 ' b l o c k s so as to

m a x i m i z e S M V M p e r f o r m a n c e . T h e f u n d a m e n t a l t r a d e - o f f tha t n e e d s to be m a d e is

w h e t h e r the b en ef i t s o f the ad d e d loca l i ty o u t w e i g h the cos t s a ss o c i a t e d w i t h the

a d d e d a c c e s s e s to the da ta s t ruc tures .

A s w i th the reg i s te r b l o c k i n g the i s sue is to h o w to a u t o m a t e the p r o c e s s o f s e a r c h i n g

and c a c h e b lo c k in g . T o this e nd the w o r k o f V u d u c u s i n g a u t o m a t i c a l l y tu n e d

re g i s t e r - b l o c k i n g ke rn e l s to i m p r o v e S M V M p e r f o r m a n c e has b e e n e x t e n d e d by

Nis h t a la et al [115] to c o n s id e r the p r o b l e m o f c a c h e b l o c k i n g o f S M V M o p e r a t i o n s

w h i c h is k n o w n to be im por ta n t for s o m e m a t r ix and m a c h i n e c o m b i n a t i o n s .

T h e m a i n d i f f e r e n c e b e t w e e n c a c h e b l o c k i n g a n d reg i s te r b l o c k i n g is that reg is te r

b l o c k i n g m o d i f i e s the sp a rs e m a t r i x d a ta s t ru c tu re (t r a n s f o r m i n g f r o m C S R to B C S R

s t o ra g e f o r m a t) in o r d e r to d e c r e a s e the ov e ra l l m e m o r y t ra f f ic w h e r e a s c a c h e

b l o c k i n g r e o r d e r s m e m o r y acc e s s e s to i n c re ase t e m p o r a l loca l i ty in a m a n n e r s im i la r

to tha t a c h i e v e d by R C M re o rd e r in g . T h e d a t a - s t r u c tu r e is a v ar ia n t o f B C S R w i t h an

o p t i m i s a t i o n to a v o id i t e ra t ing o v e r r o w s w h i c h do not c o n t a i n n o n z e r o e le m e n ts .

Pr ior w o r k o n p e r f o r m a n c e m o d e l l i n g o f c a c h e - b l o c k i n g a s s u m e d tha t the m a t r i c e s

w e r e sm a l l e n o u g h so that x and y fit in the c a c h e w h i c h is ra re ly the case . T o a d d r e s s

this, the a u t h o r s a d d e d a T L B bu f fe r , ig n o red b y p r e v i o u s m o d e l s , to the m o d e l u sed

by V u d u c [52] to pr ed ic t o p t i m u m b l o c k s izes . N is h ta la c o n c l u d e s [116J b y s a y i n g

that c a c h e b l o c k i n g a p p e a r s to be m o s t e f f ec t i v e w h e n all o f the f o l l o w i n g a re true;

• v e c t o r X d o e s not fit in c a c h e

• v e c to r y fits in c a c h e

• n o n z e r o s are d i s t r i bu t ed t h r o u g h o u t the m a t r ix and not in b a n d s

• n o n z e r o de n s i ty is su f f ic ien t ly h igh

93

He also suggests a dens ity o f less than 1 0 (above this threshold reg is ter-b locking is

better) and m ore than 10'*' (less than this threshold cache-b lock ing provides no speed

up) for cache-b lock ing to be useful. He also found that cache b lock ing does not help

w ith band m atrices no m atte r how large x and y are since the matrix structure already

lends itself to the op tim al access pattern. U nfortunate ly unlike the w ork o f V uduc no

ind ication is g iven as to the search overhead required to perform cache-blocking.

N ish ta la ’s m ost useful con tribu tions are the sugges tions for processor architects that:

• T L B m isses reduced by cache b lock ing can also be avoided by creating large

page sizes

• separate m em o ry busses to the x vec tor and A matrix w ould im prove

perfo rm ance as on ly x accesses are im proved by cach ing due to reduced

conflic t m isses

H ow ever , the prob lem o f dec id ing w hen to apply cache-b locking , i.e. w hen it is likely

to pay o f f is still open acco rd ing to N ishtala [116].

5.4.2 TLB Blocking
A c o m p u te r ’s m em o ry is typ ically laid out in b locks o f fixed size, called pages, a

subset o f w hich , called the w o rk in g set o f 64 -128 translations, resides in the

T ransla tion Look-aside Buffer (TLB). T he T L B is a small associative cache that

s tores the m ost recently used v irtual-physical page translations corresponding to

m em o ry accesses. Each T L B entry points to a page w hich is typically betw een 6 and

6 4 k B in size (controlled by the opera t ing system). A T L B cache miss causes a T L B

entry to be replaced with an en try from the page-tab le in m em ory . A dditionally if

data is spread too w idely over the virtual address space it can result in an access to the

page-tab le in m ain m em ory even though the required data is actually in the cache

(L1/L2). Z h an g and Z h an g [117] present a varie ty o f T L B blocking and padd ing

s trategies to be used d epend ing on w he the r the T L B is fu lly-associa tive as in the case

o f the Sun UltraSparc-II o r se t-associa tive as in the case o f the Pentium-11 processor.

In the case o f se t-associative padd ing causes b lock row s to be m apped to different

T L B cache-lines, thus p reven ting conflict m isses caused because m ultiple pages m ap

to the sam e entry in the T L B . In the case o f a fu lly-assoc ia tive T L B the au thors

reported that the b lock size selected had to be less than or equal to the num ber o f T L B

entries o therw ise array accesses w ould cause T L B th rash ing reducing perform ance.

94

5.4.3 Copy Optimization
In teresting ly som e o f the scientific libraries w h ich library tu n in g w as m ean t to m ake

o bso le te have incorporated internal code genera tion m ak in g use o f the tem plate

p ro g ram m in g paradigm available in the C + + language . T h e M T L library [118] for

instance uses tem plate p ro g ram m ing techn iques to a llow reg is ter b lock ing and cache-

m iss reduction code to be au tom atically inferred by a C ++ co m p ile r at com pile time.

A n o th er techn ique im plem ented in MTL. is copy op tim isa t ion w h ich w as explored

ex tens ive ly by Lam et al [119], T he objective o f this op tim isa t ion is that neither set-

assoc ia tiv ity nor m ultip le-w ord cache lines e lim inate the large variance in the

p er fo rm an ce o f b locked algorithm s. A technique called copy o p tim isa t io n is used to

copy non-con tiguous data into con tiguous cache locations in such a w ay as to

e lim ina te self-in terference. This is ach ieved by m ap p in g each w ord w ith in a b lock to

its ow n location m aking se lf- in terference im possib le . A c co rd in g to Lam et al

ap p ly ing this technique, w hile not a lw ays possib le , a l low s cache m isses to be bounded

to w ith in a factor o f 2 from the ideal. C o p y in g is to be avoided if the reuse factor is

low w hich w ould seem to rule it out from the poin t-of-v iew o f S M V M operations, the

portion o f the variable array to be used shifts o v er tim e or a large fraction o f the data

fits into the cache; in any o f these cases the cost o f co p y in g m ay o u tw eigh the

benefits. Furtherm ore copy ing allow s at least ha lf o f the cache to be used in each

b locked loop nest m aking the penalty due to cache m isa l ignm en t neglig ible . F inally in

cases w h ere the cache is se t-associa tive co p y in g e lim ina tes not ju s t self- in terference

but also cross- in terference (conflic t) misses. A detailed cos t/benefit analysis o f

co p y in g is presented by T em a m et al in [120], and in [120] they report a 98 %

reduction in T L B misses due to copy ing in m atr ix -m atr ix m ultip lica tion on the A lp h a

processor.

5.4.4 Recursive Blocking
As w as seen prev iously register, cache and T L B b lock ing require a detailed

know ledge o f the under ly ing m ach ine arch itecture , and typ ically d ifferent b lock ing

param eters for each level in the storage hierarchy , in o rd e r to ach ieve high

perfo rm ance . R ecursive b lock ing [122] ex tracts im proved p er fo rm an ce from the

m em o ry h ierarchy by repeated ly par ti t ion ing the prob lem into sm alle r and sm alle r

sub -p rob lem s, so that data co r respond ing to d iffe ren t levels o f the recursion tree fits

into d ifferent levels o f the m em ory hierarchy. T h is style o f b lock ing im proves

95

tem pora l locality and provides efficient cache and T L B blocking, w hile register

b lock ing is used w ith in sub-b locks.

Recent w ork by W ise et al [123][124] show s that M orton ordering o f m atrices offers a

v iable alternative to traditional row and co lum n-m ajo r ordering. W hile this

organisa tion is intuitive it does not take into accoun t the fact that op tim ised codes no

longer operate over row s and co lu m n s but ra ther over sub-blocks extracted from the

m atrix using register and cache-b locking . T he underly ing row or co lum n-m ajor

s torage m eans that any given sub-m atrix will contain several disjoint portions from

row s or co lum ns w hich reside over several pages o f m em ory, as referenced e lem ents

in the less favourab le direction (ro w /co lu m n) tend to becom e farther aw ay in m em ory

[126], T h is in turn leads to inefficient use o f the m em ory hierarchy and perform ance

w h ich falls a long w ay short o f the peak that hardw are will support. An array in

M orton order is decom posed as a 2 ‘̂ -ary tree w hose sub-trees have contiguous

addresses in m em ory . This im proved locality m in im izes page and cache misses, and

thus perfo rm ance. This o rdering is used in con junction with Ahnentafel (compact

b inary tree s to rage in level-by-level o rder) indexing on a block basis, with traditional

C artesian index ing w ith in blocks.

O ne d isadvan tage o f M orton -o rdering is an expansion in terms o f address space,

h ow ever in contrast to o ther m ethods this extra data is stored in virtual m em ory tables

ra ther than in cache. This expansion is a result o f the A hnentafel quad-tree

o rgan isa tion w here 2 additional address-b its are used to distinguish betw een addresses

in each o f the 4 quad-tree branches {00, 01, 10, and 11}. W ise et al report a dram atic

reduction in T L B as well as L I and L2 cache m isses using M orton ordering, and more

im portan tly perfo rm ance is a lm ost flat as a function o f problem size and type m ean ing

that expensive searches on per m atrix basis as advocated by Im [112] and V uduc [52]

are not required to obtain high p erfo rm ance across a large range o f data sets and

p rob lem sizes. O ther recursive orderings are eva lua ted ex tensively in [126] in the

con tex t o f m atrix m ultip lication , and advocates a m odified and coarser-grained q u ad

tree layout in o rder to im prove perfo rm ance over that ob tained by W ise et al.

5.4.5 Block Data Layout
Prasanna et al. [127] contend that m ost o f the focus to date on bridg ing the gap

be tw een m em o ry latency and p rocessor speed has been expended on control

t ransfo rm ations w hich change the loop iteration o rder and hence the data access-

96

pattern. A s an alternative they p ropose a b locked data layout as o pposed to the

conven tiona l row and co lum n-m ajo r layouts show n in F igure 5-7. In a row -m ajor

layout o f a large sparse matrix due to large stride (d is tance) be tw een successive

co lu m n s in a row can cause cache conflic ts, and additionally if every row in a matrix

is larger than the m achines page size, co lum n accesses can cause T L B thrashing,

further deg rad in g perform ance. In b lock data- layou ts these p rob lem s are overcom e

by sp li tt ing large m atrices into sm aller B*B m atrices in w h ich all sub-m atr ices are

m apped onto contiguous m em ory locations in ro w -m ajo r (or co lu m n -m ajo r layout if

required) as show n in Figure 5-7(c). T he only m ajor assu m p tio n s m ade are that the

cache is d irec t-m apped and the T L B is fully se t-associa tive and a Least R ecen tly Used

(L R U) rep lacem ent policy is em ployed .

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

0 8 16 24 32 40 48 56
1 9 17 25 33 41 49 57
2 10 18 26 34 42 50 58
3 11 19 27 35 43 51 59
4 12 20 28 36 44 52 60
5 13 21 29 37 45 53 61
6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63

0 1 4 5 8 9 12 13
2 3 6 7 10 11 14 15
16 17 20 21 24 25 28 29
18 19 22 23 26 27 30 31
32 33 36 37 40 41 44 45
34 35 38 39 42 43 46 47
48 49 52 53 56 57 60 61
50 51 54 55 58 59 62 63

(a) row-major (b) col-m ajor (c) 2x2 block layout

Figure 5-7 Different Data Layouts

A cco rd in g to the authors b lock data- layout w hen assoc ia ted w ith tiling, w h ere b lock

and tile s izes are the sam e, offers im proved T L B perfo rm ance w h en co m p ared with

alternatives such as copy ing (section 5 .4 .3) and padding . T h ey go on to apply the

sam e techn iques to LU D ecom posit ion and C ho lesky Factorisa tion (CF), po in ting out

that the overhead o f copy ing (section 5 .4 .3) cancels out any gains in these

applications. T he num ber o f T L B m isses using a b lock data layout coup led with

tiling is 9 1 -9 6 % less than that w ith a canon ical (ro w /co lu m n -m ajo r) layout w hen

using either a generic access pattern or real app lica tions such as LU or CF. T hey

report that these results hold for a w ide range o f m ach ines and prob lem sizes. A

further var ian t in term s o f b lock-layou t is z igzag row -m ajo r or co lu m n -m a jo r o rdering

w hich is detailed in section 5.8.

97

5.5 RCM Reordering
The results o f a M atlab elaboration using 40 large sym m etr ic m atrices are show n in

Table 5-5. It can be seen that R everse C uth il l -M cK ee (R C M) re-ordering [104]

show s that the run- tim e for Sparse M atr ix -V ecto r M ultip lica tions (S M V M) can

indeed be reduced. T o led o [101] cla im s R C M equates to only a few S M V M

operations and c la im s exce llen t results across a range o f m atrices. H ow ever it can

also be seen in T ab le 5-5 that the actual re -o rdering is com putationally expensive

often equa ting to tens o f S M V M operations. A s a result such re-orderings are only o f

interest for iterative a lgo ri thm s w here a large n u m b er o f iterations are required to

ach ieve any per fo rm an ce increase using re-ordering.

A s can be seen from T ab le 5-5 tens o f i terations are required to justify the cost o f

R C M but the benefits o f R C M scale re latively linearly in term s o f the percentage

iterations required beyond the breakeven point necessary to achieve a target

perfo rm ance increase o f 20% .

A likely exp lana tion for this im provem en t in perfo rm ance is that re-ordering produces

longer runs o f con tiguous addresses , w hich in turn a llow s the hardw are pre-fetch logic

in the Pen tium 4 to w ork m ore efficiently . It w as found that the benefits o f reordering

in sm alle r m atrices (less than 100k non-zeroes) w ere less obv ious as the m atrices are

m ore likely to fit in the internal cache o f the Pentium 4 com plete ly , reducing the m iss

rate, hence a larger n u m b er o f iterations is required to see a benefit from reordering,

and hence they are not included in the table. T h ese sam e benefits should accrue to all

architectures, w hich m ak e use o f caches, a lthough the exact breakeven points etc. will

depend on the spec ifics o f a par ticu lar cache im plem entation .

98

matrix name
non

zeroes
t^smvm t_rcm t_smvm' N_rc

SMVMs to
break even
with RCM

target
reduction
in exec

time

SMVMs to
get +20%
perf. using

RCM

% extra
SMVM

iterations for
20% perf.

(RCM)

obstclae 197608 0.008709 2.456 0.00072 3415.3 307.3 0.2 393.0 27.88%

torsion 1 197608 0.008739 2.448 0.00052 4681.2 298.0 0.2 378.5 27.02%

jnlbrngl 199200 0.016291 2.455 0.00055 4472.2 156.0 0.2 196.7 26.10%

minsurfo 203622 0.008999 3.446 0.00054 6358.5 407.5 0.2 517.7 27.04%

bcsstk28 219024 0.011171 0.345 0.00010 3413.7 31.1 0.2 39.0 25.29%

bcsstk25 252241 0.011557 1.314 0.00022 6001.5 115.9 0.2 145.6 25.61%

bcsstk16 290378 0.014074 0.363 0.00011 3273.4 26.0 0.2 32.6 25.25%

vibrobox 301700 0.014509 0.915 0.00017 5445.4 63.8 0.2 80.0 25.37%

crystm02 322905 0.017727 0.935 0.00018 5108.1 53.3 0.2 66.8 25.33%

gyro_m 340431 0.016434 1 416 0.00055 2588.2 89.1 0.2 112.4 26.09%

cvxbqpl 349968 0.089424 3.358 0.00064 5222.0 37.8 0.2 47.4 25.23%

bcsstkSB 355460 0.015299 0.573 0.00012 4856,4 37.7 0.2 47.3 25.24%

bcsstk17 428650 0.019049 0.757 0.00016 4670,4 40.1 0.2 50.2 25.27%

wathenlOO 471601 0.023111 2.547 0.00053 4823,1 112.8 0,2 141.8 25.73%

gridgena 512084 0.025928 3.060 0.00073 4180,0 121.4 0.2 152.9 25.91%

wathen120 565761 0.02459 2.321 0.00073 3170,8 97.3 0,2 122.5 25.97%

crystmOS 583770 0.028275 1.623 0.00034 4731,4 58.1 0,2 72.8 25.38%

finan512 596992 0.030109 4.656 0.00135 3438,5 161.9 0.2 204.8 26.49%

Pres_Pcisson 715804 0.031677 1.085 0.00023 4736,0 34.5 0.2 43.2 25.23%

gyro_k 1021159 0.052122 1.341 0.00024 5543.3 25.9 0.2 32.4 25,15%

bcsstk36 1143140 0.049583 1.653 0.00031 5315.7 33.6 0.2 42.0 25.20%

bcsstk35 1450163 0.067312 2.174 0,00044 4997.7 32.5 0.2 40.7 25.20%

qaSfm 1660579 0,124468 4.395 0,00121 3640,9 35.7 0.2 44.7 25.31%

qaSfk 1660579 0.076426 4,380 0.00125 3495,6 58.3 0.2 73.1 25.52%

oilpan 2148558 0.151974 4.976 0.00140 3554,3 33.0 0.2 41.4 25.29%

vanbody 2329056 0.10066 3,415 0.00062 5472,4 34,1 0.2 42.7 25.20%

ct20stif 2600295 0.114401 3,790 0.00067 5690.4 33,3 0.2 41.7 25.18%

ndSk 3279690 0.145184 1,324 0.00013 10027.0 9.1 0.2 11.4 25.03%

t3dh_e 4352105 0.191977 5,790 0.00149 3878.0 30.4 0.2 38.1 25.25%

nd6k 6897316 0.293898 2,761 0.00024 11409.6 9.4 0.2 11.8 25.03%

bmw7st_1 7318399 0.403275 10,929 0.00243 4504.8 27.3 0.2 34.1 25.19%

hood 9895422 0.450926 18,407 0.00389 4733.1 41.2 0.2 51.6 25.27%

crankseg_1 10614210 0.457083 5,950 0.00069 8573.2 13.0 0.2 16.3 25.05%

bmwcra_1 10641602 0.493584 13,599 0.00270 5038.4 27.7 0.2 34.7 25.17%

pwtk 11524432 0.53264 16,751 0.00382 4382.7 31.7 0.2 39.7 25.23%

crankseg_2 14148858 0.607738 7,677 0.00081 9512.9 12.6 0.2 15.8 25.04%

nd12k 14220946 0.633305 5,696 0.00048 11767,9 9.0 0.2 11.3 25.02%

af_shell4 17562051 1.072393 45.274 0.01101 4112,5 42.7 0.2 53.5 25.32%

af_shell8 17579155 1.141235 43.379 0.00917 4731.0 38.3 0.2 48.0 25.25%

af_shell7 17579155 1.237358 45.226 0.01415 3196.0 37.0 0.2 46.4 25.36%

Table 5-5 Effect of RCM Reordering on SMVM Performance!

1 t_sm vm time to perform S M V M without reordering
t sm v m ’ time to perform S M V M with reordering
t_rcm time to perform RCM reordering
N_rc t_rcm /t_sm vm ’ (# sm vm iterations to justify cost o f RCM)

99

5.6 Exploiting Parallelism
Scientific and eng inee ring applica tions such as S M V M are not necessarily either

w ritten in such a w a y as to take advan tage o f parallelism. Even “em barrassing ly

para lle l” app lica tions such as 3D graphics [92] may be unable to take advantage o f all

o f the ava ilab le para lle lism o w in g to how the problem m aps to the underly ing

hardw are . Specifically w ith respect to S M V M kernels a num ber o f approaches allow

inherent para lle lism to be exploited:

• C ode parti t ion ing through the res tructuring o f S M V M kernels using parallel

p ro g ram m in g construc ts such as those em bodied in O penM P

• Sparse M atrix (data) par ti t ion ing using graph-based techniques into sub

m atrices w hich can be m ultip lied separately on different cores

Sparse M atrix parti t ion ing is by defin ition data-dependent and must be perfo rm ed on

a m atrix -by-m atr ix basis w hereas t ransfo rm ing S M V M kernels to exploit parallelism

using O p e n M P is generic and applicab le to all matrices.

5.6.1 OpenMP
T he O p en M P A PI (application p rogram interface) [128] was introduced in 1997 in an

effort to s tandard ise p ro g ram m in g m odels for shared m em ory system s, and is used to

explicitly direct m ulti th readed , shared m em ory parallelism . The API consists o f 3

com ponen ts ;

• C om pile r Directives,

• R untim e Library Routine

• E n v ironm en t V ariables

O p e n M P supports the C, C+-i- and F O R T R A N p ro g ram m ing languages as well as a

range o f opera t in g sys tem s and all O p e n M P program s begin as a single sequential

p rocess or M aster T hread as depicted in Figure 5-8.

M aster thread Fork

. Inin
T eam o f
Parallel threads Program Execution

Figure 5-8 OpenM P Program Execution

100

The user also specifies necessary synchronization like locks, barriers, etc to ensure

correct execution o f the parallel region. At runtime, threads are forked for the parallel

region and are typically executed in different processors sharing the same memory

and address space. Statements enclosed by the parallel region construct are executed

in parallel. A Join occurs at the end o f parallel constructs, where the threads

synchronize and terminate after completing the statements in the parallel construct.

The structure o f a typical OpenMP program is shown in Listing 5-4.

#include <omp.h>

main () {

int va rl, var2, var3;

Serial code

#pragma omp parallel private(varl, var2) shared(var3) {

Parallel section executed by all threads

A ll threads jo in master thread and disband

}

Resume serial code

}

Listing 5-4 Structure of Typical OpenMP Program

Relatively little exists in terms o f published results for the performance o f CMP and

SMT systems using OpenMP. According to [129] Integrating both CMP and SMT

into one processor means that threads interact in a more complex manner which is not

addressed by the current version o f OpenMP, especially for systems composed o f

multiple CMPs.

This view is shared by Curtis-Maury et al. [92] who evaluated the performance o f

OpenMP applications from the NAS Parallel Benchmarks suite on a real SM T system

versus a simulated CMP system with similar hardware. They found that SMTs suffer

from resource contention, whereas CMPs are more efficient (and cost effective) due

to greater resource duplication. In terms o f application performance 30% o f the test-

cases showed a marked reduction in performance when a second thread per processor

was enabled in SMTs. On the CMP-based multiprocessor the activation o f the second

101

core a lw ays resulted in perfo rm ance im provem ents . H ow ever in a m ajority o f cases

(8 /14) p lacing the required num ber o f threads on as few processors as possible

resulted in h igher p er fo rm an ce than sp read ing them across all o f the available

p rocessors. T hey conc luded that ex is t ing O p e n M P code scales better on C M P s than

S M T s, and that to m ax im ize the effic iency o f O p e n M P on SM T s, new capabilities are

required by the run tim e env ironm en t and/or the p rog ram m ing interface.

Pack irisam y and B ara thva jasankar in [130] suggest that g iven the similarity with

clusters, O p e n M P can be ex tended to take advan tage o f the potential for both f ine

gra ined and thread-level para lle lism in C M Ps. T he authors propose a technique for

m ulti-co re env ironm en ts , w h ere say the ou ter loop is parallelized betw een processors

and the inner loop is para lle lized for the p rocess ing e lem ents inside each processor.

U sing O p en M P , K otakem ori et al. [131] have benchm arked the perfo rm ance o f 7

sparse storage formats, as well as convers ions be tw een these sam e formats using a 16-

node Itan ium 2 based system capable o f support ing up to 32 sim ultaneously execu ting

threads. T he perfo rm ance figures ob ta ined confirm V u d u c ’s assertion [52] that B CSR

is the op tim al sparse m atrix storage form at for the Itanium2, offering a significant

perfo rm ance advan tage o f be tw een 1.13 and 2.59x over C SR (average 1.8x)

dep end ing on the source m atrix used, even w hen a single thread is used. In m ost

cases the speedup achieved by additional threads is linear up to 32 threads w hereupon

the speedup achieved by dou b lin g the num ber o f processors falls sharply due to

resource-sharing w hen 2 threads run on each p rocessor node. In all but one case

(m atrix f w h ich is a diagonal m atrix) B SR offers the highest perform ance. A s with

V u d u c ’s w o rk the overhead in converting be tw een C SR and B C SR format is n o n

trivial and m eans to lOs to lOOs o f S M V M opera tions w ould have to be perfo rm ed in

order to m ake the convers ion w orthw hile in term s o f overall run-time.

5.7 M atrix Partitioning
Parti t ion ing and load ba lanc ing are im portan t issues in parallel scientific co m p u tin g

us ing m ultip rocessors or C M P s, the goal being to d istribute the w orkload am o n g the

ava ilab le processors in a w ay that m in im ises com m unica t ion cost and m ax im ises

perfo rm ance. T he m ost co m m o n approach to d is tributing a Sparse M atrix

m ultip lica tion across m ultip le processors is to d iv ide the m atrix by rows or co lu m n s

so as to approx im ate ly d iv ide the w ork load for instance w here a C SR S M V M is

d is tribu ted by row s as the com piler splits the ou ter loop across the ava ilab le

102

processors. A more generic approach is to use graph partitioning to perform load

balancing. In this case data are represented as vertices in a graph, and edges represent

dependencies between data. Graph partitioning attempts to minimize the number of

cross-edges in the graph between processors, as each such edge results in

communication between processors.

According to Bisseling and Vastenhouw [132] the distribution of a Sparse Matrix

multiplication and associated matrix and vectors data and results consists o f four

phases. A good distribution scheme should achieve the following objectives:

• Spread the matrix non-zeros evenly across the processors

• Minimize communication volume, i.e. total # data words communicated

• Spread communication (sending and receiving) evenly over the processors

• Partition matrix in both dimensions, e.g., by splitting it into rectangular blocks

Mondriaan [132] differs from the majority of partitioners now in use which perform a

1-D partitioning in that it partitions in 2 dimensions. According to the authors Finite-

Element matrices are unlikely to benefit greatly from the two-dimensional partitioning

approach taken in Mondriaan. The reason for this is that the square non-symmetric

matrices required by iterative algorithms such as G M RES, QM R, BiCG, and Bi-

CG STA B impose an additional constraint on the input and output vector distribution

which makes it more difficult to balance the communication, and may even lead to an

increase in communication volume. In fact the original application of Mondriaan in

fact is the design of a parallel web-search engine based on latent semantic indexing.

Zoltan is a hypergraph partitioner similar to Mondriaan. W hen compared to the other

partitioners detailed here Zoltan [134] is run as a parallel task rather than sequentially

on a single CPU. One o f the challenges in the design of a good parallel partitioner is

load-balancing within the partitioner itself! The speedup achieved by using 64 CPUs

to perform the partitioning ranges from 0-25 times faster than using a single CPU.

The published results in terms of run-times for Zoltan clearly show the advantage of

parallelising of the partitioning task. However, partitioning leads to overheads o f

hundreds or thousands of un-partitioned CSR SM V M s which must be amortised

before any benefit will arise from the use of Sparse Matrix partitioning.

5.8 Cache Oblivious SMVM Partitioning
In [135] Yzelman and Bisseling introduce a cache-oblivious method for sparse

m atrix-vector multiplication based on the hypergraph-based sparse matrix

103

partitioning methods used in Mondriaan [132]. In their scheme partitioning is

performed such as to induce cache-friendly behaviour during sparse matrix-vector

multiplication. The authors also presented new variants o f the CSR and ICSR where

the zigzag format refers to the alternation o f column elements from row to row, thus

maximizing the likelihood of cache hits from row to row of the sparse matrix as the

SM VM computation progresses.

The column-ordering in zigzag versus normal CSR format are shown in Figure 5-9.

Experimental results demonstrate a saving in computation time up to 50% in one case.

However that the method performs best on sparse matrices with relatively low

numbers o f non-zeroes per row or column and which are not already ordered

favourably. They also note that as cache size increases the benefits o f the reordering

scheme decrease as might be expected. The ICSR format was also found to be

noticeably faster than CSR on the architectures targeted, however overall the

overhead o f the proposed reordering and partitioning scheme ranges from hundreds to

over one hundred thousand unoptimized SM VM products depending on the matrix

used and the number o f experimental reorderings performed. It is worth noting that

the zigzag orderings proposed by the authors could also be applied to BCSR and other

related sparse storage formats.

I I \ ~ ~ r ~ i — r“ ” r ~ T — i
I I j"T™_L_j l_ _L _L J I
I [j] : : [: i:] : :L :[j]
I I 1 1 I I I___ I I . I
I k - - I - - I - - -I— I - - I - _ j— i-i
I I , I I I— 1 1 1 ^ I
I I - - H -------------------------- 1
I I M -------1— I-----1 I I I I
I I—i“-r-i—r--r-r-|-i
I I _i"t t I t » I ̂I
(r i l — I— T “ i — I— T - - \
I L _ _ i ____ I____ J___ I ___ I____ J___ I

CRS ZZCRS (zigzag)

Figure 5-9 ZZCSR C o lum n-O rdering

5.9 Summary
According to Gropp et al [26] applications which are dominated by sections of

bandwidth-lim ited code such as SM VM are doomed to achieve an ever decreasing

fraction o f peak performance due to the widening processor-memory performance gap

104

or “M em ory W all” . In brief, mem ory bandwidth presents an upper bound on the

performance of such applications which compilers cannot improve requiring a new

approach on the part of application developers to circumvent the bottleneck. One

possibility suggested by Gropp et al is that SM V M operations using multiple rather

than a single vector might be used by transforming the application code, thus

improving overall performance. This optimization has been thoroughly investigated

by both Im [112] and Vuduc [52] and has been shown to offer significant speed-ups,

where applicable.

Within these bounds code and data can be tuned either manually or automatically to

extract as much performance as possible from the processor hopefully getting close to

the bandwidth bound. The tuning algorithms proposed to date target only SM VM

performance and not pin bandwidth or power consumption which is regarded by the

author as a severe limitation in an energy-conscious world where the electricity

consumed by server farms is o f real business concern in the siting and running of

server farms by corporations such as Google [136].

As previously seen, caches, and local registers can be used to improve the

performance of SM VM codes by improving average access times. Blocking and

other transformations can be used to improve temporal and spatial locality allowing

the highest performance possible to be achieved for a given processor architecture,

although as will be seen later these transformations do impose a significant start-up

cost which must be amortised by performing multiple SM V M operations on the same

transformed data. There is also evidence to suggest that where multiple levels of

cache are used cache-line lengths should increase rather than all having the same

length for optimal performance.

An “elephant in the room ” with regard to all o f the SM VM published work is that the

overhead in converting between CSR and BCSR format is non-trivial and means up to

10s to 100s of SM VM operations would have to be performed in order to make the

conversion worthwhile in terms of overall run-time.

The important contributions by other researchers are noted in the following sections:

Prefetching

• According to Mowry [51] and Lam et al [119] locality optimizations

(blocking) reduce latency, unlike prefetching which tolerate latency

105

• Locality optimizations reduce memory bandwidth requirements but are limited

in their applicability because any associated code-transformations must be

legal, while prefetching is not subject to these constraints and is more broadly

applicable

Register-Blocking

• Register-Blocking improves performance through register reuse and lowering

the indexing overhead at the expense of data-dependent zero-fill

• A matrix density 10'' is required in the sparse source matrix to gain any

benefit from register blocking (Nishtala et al [115])

• 10s to 100s of equivalent unoptimized SM V M s must be amortised to make the

search and blocking effort worthwhile

Cache-Blocking

• Cache-blocking improves performance by improving temporal locality of

source vector accesses, only makes sense when the source vector x doesn ’t fit

in cache

• The technique is of use in a restricted class of sparse matrices [115] which are

less dense (lO'"’) than those for which register-blocking is appropriate (10

Cache-Implementation

• Multi-word cache lines reduce the number of cache misses but increase the

amount o f memory traffic.

• Set-associativity improves the average cache miss-rate but does not address

wide variations in miss-rate between problem sizes.

TLB-Blocking

• Small TLBs such as that used in the Pentium4 Xeon can result in poor

performance as TLB misses cause valid data in the cache to be evicted

• Padding can improve TLB performance preventing conflict misses caused

because multiple pages map to the same entry in direct-mapped TLBs

• In the case o f fully-associative TLB the block size should be less than or equal

to the number o f TLB entries in order to avoid TLB thrashing

Copying

• copy optimisation is used to copy non-contiguous data into contiguous cache

locations in such a way as to eliminate self-interference and can significantly

106

decrease the num ber o f T L B misses, but on ly if the reuse factor is not low, as

in the case o f S M V M

R ecursive B locking

• Im proves tem poral locality and prov ides efficient cache and T L B blocking ,

w hile register b lock ing is used w ithin sub-b locks.

• Perfo rm ance is a lm ost flat as a function o f prob lem size and type e l im ina ting

the need for searches to ob ta in good per fo rm an ce h ow ever per fo rm an ce still

falls short o f hand-coded vendor libraries

C o m b in in g techniques

• A cco rd in g to Im [112] there is no benefit to co m b in in g register and cache-

b lock ing

• T em a m et al [120] conc lude that the o rder in w h ich b lock ing transfo rm ations

should be applied is bo ttom -up , i.e. T L B b lock ing should follow cache

b locking , w hich should follow reg is te r-b lock ing and show the interaction

be tw een the techniques s tep-by-step (in 10 d iscre te com bina tions) for m atrix

m ultip lication

• Lam et al [119] recom m end co m b in in g cache-b lock ing with co p y in g w here

possib le as it achieves the lowest level o f cache m isses and consis ten t

im provem en t independent o f the data set

• P rasanna et al. report [127] that a co m bina tion o f B lock D ata L ayout and

T iling s ignificantly im proves perfo rm ance o f both caches and T L B for a large

range o f m ach ines and p rob lem sizes and is preferable to p add ing and copy

op tim isa tion

Search

• Y otov et al. [106] cast doubt on the generali ty o f the w o rk perfo rm ed by

V uduc suggest ing that the I tan ium 2 benefits d isp roportionate ly from the

p roposed technique. T h ey suggest that for a range o f o ther p rocessors a

s im p le m athem atica l m odel will suffice po tentially m ak in g reg is ter b lock ing

attractive even w here the n u m b er o f S M V M iterations is very low

R CM R eordering

• E xper im enta lly it w as found that the overhead o f R C M reordering num bers

10s to 100s o f equivalen t un-reordered S M V M s, thus lim iting the utility o f

107

RCM to iterative algorithms where a large number o f iterations are required to

achieve any performance increase using re-ordering

OpenMP

• Given the sim ilarity between clusters and CMPs it is suggested that OpenMP

can be extended as shown by Packirisamy and Barathvajasankar in [130] to

take advantage o f the potential for both fine-grained and thread-level

parallelism in CMPs. The authors propose a technique for multi-core

environments, where the outer loop is parallelized between processors and the

inner loop is parallelized for the processing elements inside each processor to

optimise performance

Sparse M atrix Partitioning

• Experimentally is was found that partitioning using Mondriaan incurs

overheads equivalent to lOOs to 1000s o f optimised CSR SMVMs o f the un

partitioned source-matrix

• An interesting by-product o f the work by Bisseling et al [135] is that i f the

rows in the matrix are scanned alternately from left to right ant then right to

left, performance can be improved. The ZZCSR and ZZICSR formats

proposed by the authors could be extended to blocked formats such as BCSR,

: to create zigzag formats such as ZZBCSR

I
I

108

6
Chapter 6

"A designer knows he has achieved perfection not when there is
nothing left to add, but when there is nothing left to take aw ay."

- Antoine de Saint-Exupery

6 Software SMVM Revisited
As was seen in chapter 5 the state of the art methods for computing Sparse Matrix

Vector Products (SM V M) have improved little over the past few decades and

performance improvements have been driven largely by advances in processor and

semiconductor process technology. The focus has been rather on tuning existing

methods such as the work by Im [137] and Vuduc [52] on tuning BCSR where the

sparse matrix has some underlying structure, often in the case of non-structured

matrices such as the Google-Matrix, BCSR and related methods offer no

improvement and may in fact disimprove results if applied to such matrices. In

general SM V M has had little if any influence on the design o f mainstream

microprocessors as outlined in chapter 4 despite the obvious problems in terms of

scaling I/O bandwidth performance, particularly where Chip Multi-Processors

(CM Ps) exacerbate problems by contending for increasingly scarce I/O bandwidth. A

key observation in the work of Vuduc et al is [137] [52] that a sizeable number o f the

entries in typical blocked sparse-matrices consist of zero fill. These values even if

they do not contribute to the result of an SM V M are nonetheless fetched as 64-bit

109

double-precision values from memory and multiplied with all o f the attendant

problems in terms o f power-dissipation and system throughput. An obvious

improvement to BCSR and other blocked SM VM schemes would be to find some

way o f avoiding trivia l operations due to zero-fill, whether storing or loading these

values to memory, moving them via shared busses or indeed performing arithmetic

operations using these zero f ill- in values.

6.1 Trivial Arithmetic
According to Richardson [138] and L ilja [139] a significant number o f trivia l

computations are performed during the execution o f processor benchmarks and other

numerically intensive applications. By trivial computations Richardson intended

those that can be simplified or where the result is zero, one, or equal to one o f the

input operands. It was shown that for certain programs studied, up to 67% of

operations were trivial and fast detection and evaluation o f these trivial operations

using dedicated hardware in the pipeline yielded significant speedup. However, to

date, work on the exploitation o f trivia l operands appears to be focused on

dynamically occurring trivial operands in the pipeline rather than static trivial

operands occurring in the input data and no published work appears to detail the

exploitation o f trivia l operands in Sparse Matrix compression.

Operation Normal Bypassable

Add X+Y X=0
Y=0

SiiDtract X-Y Y=0
X=Y

Multiply X*Y

1
1

Divide X/Y X = {0,Y-Yf
Y=1

Absolute
Value

X=0
X={posltlve}

Square
Root (X)°^ X=0,1

Table 6-1 IEEE Arithmetic trivial operation table

Furthermore as the detection of, and bypass of, dynamically occurring trivia l operands

as proposed by Richardson introduces problems o f its own (e.g. Pipeline bubbles due

110

to the d i f f e r e n c e in F P U la tency b e t w e e n tr ivial a n d non- t r iv ia ! p a th s) s u c h fe a tures

h a v e , to da te , no t a p p e a r e d in c o m m e r c i a l a r ch i te c tu re s . It ha s b e e n s h o w n [139] that

a p p r o x i m a t e l y 3 0 % o f all a r i t h m e t i c i n s t ru c t io n s (w h e n a v e r a g e d o v e r a la rg e n u m b e r

o f in te ge r a n d f l o a t i n g - p o in t b e n c h m a r k s) , a c c o u n t i n g for 12 % o f all d y n a m i c

i n s t ruc t i ons , a re t r iv ia l c o m p u t a t i o n s . T h e s e tr ivial o p e r a t i o n s o c c u r d e s p i t e the use o f

c o m p i l e r o p t i m i s a t i o n t e c h n iq u e s , a n d a re n o t h e a v i l y d e p e n d e n t on the p r o g r a m ’s

sp e c i f ic in pu t va lu e s . O n e o f the r e a s o n s for th i s is that t r ivial v a lu e s a re c re a te d

d y n a m i c a l l y d u r i n g p r o g r a m e x e c u t i o n by m a t h e m a t i c a l o p e r a t i o n s e .g. c a n c e l l a t i o n

i - i = 0 a n d by m u l t i p l i c a t i o n b y zero . F r o m T a b l e 6-1 d e r iv e d f r o m [139] it c an be

se e n that o n l y a f e w o f the p r o p o s e d tr ivial o p e r a t i o n s s u g g e s t e d a re r e le v a n t to

i te ra t ive m e t h o d s a n d m a t r i x / v e c t o r o p e ra t i o n s .

T h i s a u t h o r n o t e s that a l t h o u g h not m e n t i o n e d by R i c h a r d s o n or Li l ja it is po ss ib le

that t r ivial m u l t i p l i c a t i o n co u ld be e x t e n d e d to the g en e ra l ca se o f m u l t i p l i c a t i o n by

p o w e r s o f 2 r e s u l t i n g in a s m a l l uni t w h i c h a d d s e x p o n e n t s a nd le ave s the m a n t i s s a o f

the m u l t i p l i c a n d u n m o d i f i e d in a m a n n e r s i m i l a r to tha t p r o p o s e d in [139] .

6.2 Computing with bitmaps
T h e m a i n i s s ue w i t h the m e t h o d p r o p o s e d by R i c h a r d s o n is that t r iv ia l i ty is

d e t e r m i n e d b y f l o a t i n g - p o in t c o m p a r a t o r s w h i c h in tu rn c h o o s e to c o m p u t e th e tr ivial

resu lt s e i th er u s i n g a c o m p l e t e f l o a t i n g - p o in t uni t o r a l te rn a t e ly a lo w e r - l a t e n c y and

l o w e r - c o m p l e x i t y un i t in the ca se o n e or b o th o f the in p u ts a re trivial .

W h i l e o f f e r i n g s o m e p r o m i s e , in the f o r m o f r e d u c e d la te n c y a n d p o te n t ia l l y h i g h e r

th r o u g h p u t , th i s a p p r o a c h has se ve ra l d i s a d v a n t a g e s :

• P r o g r a m s m u s t t ak e a c c o u n t o f v a r ia b l e la te nc y

• A d d i t i o n a l h a r d w a r e i n c l u d i n g c o m p a r a t o r s , m u l t i p l e x e r s a n d spec i a l F P uni t s

• M e m o r y b a n d w i d t h and s to r a g e r e q u i r e m e n t s a re not r e d u c e d as z e r o e s (tr ivial

v a lu e s) a re s to r e d as full p r e c i s io n f l o a t i n g - p o in t n u m b e r s be fo re b e i n g f e tc h e d

a nd a c t e d u p o n by the p r o c e s s o r

A m u c h b e t t e r a p p r o a c h w o u l d be to p e r f o r m the f lo a t in g -p o in t (o r in teg er)

c o m p a r i s o n s o f f - l in e , a n d s tore th e se d e c i s i o n s a l o n g w i t h the da ta in s u c h a w a y tha t

on ly n on- t r iv ia l c o m p u t a t i o n s are a c tu a l ly c a r r i e d ou t on fu l l -pr ec is io n da ta. T h i s

a p p r o a c h h a s th e a d v a n t a g e s that:

• M i n i m a l a d d i t i o n a l h a r d w a r e is r e q u i r e d (1 -b i t m u l t ip l ie r is an A N D ga te)

• S t o r a g e a n d b u s b a n d w i d t h r e q u i r e m e n t s a re m i n i m i s e d

1 1 1

• Latency remains constant

• Power is minimised

6.2.1 Reference BCSR SMVM
The BCSR data-structure consists o f 3 arrays as shown in Figure 6-1. The row

(row_start) array holds the row entries containing non-zero tiles, a second col

(col_idx) array containing the column addresses o f the non-zero tiles and a val (value)

array containing the actual non-zero entries (with fill) for all o f the non-zeroes in the

Sparse Matrix, arranged in tile-by-tile order.

 2 ^4 ^
0 :^oo ®oi 0 ■ 0 3o4 0 I

; 3 i o ^11 0 ; 0 0 ^15 ;

2 I 0 0 322' 0 0 2̂5*
; 0 0 8 3 2 1 3 3 3 8 3 4 8 3 5 ;

row

col

Figure 6-1 2x3 BCSR Sparse Matrix Storage Format

A generic BCSR Sparse Matrix Vector Product (Multiplication) code which operates

on the BCSR data-structure is shown in Listing 6 -L

L I . v o i d b c s r _ s m v m (i n t bm, i n t r , i n t c , i n t * r o w _ s t a r t ,
i n t * c o l _ i d x , d o u b l e * v a l u e , d o u b l e * s r c , d o u b l e
* d e s t) {

L2 . i n t i , j , i i , j j ;

L3 . f o r (i = 0 ; i<bm ; i+-i-, d e s t + = r) {
L4 . f o r (j = r o w _ s t a r t [i] ; j < r o w _ s t a r t [i + 1] ; j + + ,

c o l_ i d x - t - + , v a l u e + = r * c) {
L 5 . f o r (i i = 0 ; i i < r ; i i + +) {
L 6 . f o r (j j = 0 ; j j < c ; j j + +) {
L 7 . d e s t [i i] += v a l u e [i i * c + j j] *

s r c [(* c o l _ i d x) + j j] ;
L 8 . }
L9 . }
L I O . }
L l l . }
L 12 . } / / b c s r _ s m v m ()

Listing 6-1 G ener ic B C S R S M V M C-code

While having the benefit of being easy to understand and generic (can handle

arbitrary sized r*c BCSR tiles) this C code results in a highly inefficient

112

im p lem en ta t io n in term s o f perfo rm ance as m any address ca lcu la tions have to be

p e r fo rm ed for each r*c produc ts necessary to com ple te the S M V M operation.

In prac tice a library o f C -functions is written , one for each o f the r*c tile sizes

requ ired by the library designer. Each o f these C -func tions is e ither w ritten by hand

or g en e ra ted by another program and each m ust be ex tens ive ly verif ied to ensure

correc t operation . For re ference purposes the code for a 4 x4 B C S R S parse M atrix

V ecto r M ultip lica tion (S M V M) is show n in L ist ing 6-2. A s can be seen the matrix

v ec to r code is op tim ised for p erfo rm ance by unro ll ing w h ich rem oves loop

ca lcu la t ions and assign ing values w h ich are frequently reused to variab les w hich the

C co m p ile r will assign to registers. Both techn iques are c o m m o n ly used in op tim ised

S M V M codes.

LI. void bcsr_smvm4x4(int bm, int *row_start, int
*col_idx, double *value, double *src, double *dest)
{

L2 . int i , j / r=4, c=4 ;
L3 . Type yO, yl, y2 , y3 , x O , xl, x 2 , x3;

L4 . for (i == 0; i<bm; i++ , dest+=4) { // r
L5 . yO = dest[0] ;
L6 . yl = dest[1];
L7 . y2 = dest[2];
L8 . y3 = dest[3];
L9 . for (j =row_start(i] ; j<row_start[i+1];

col_ idx++, value+=16){ // r*c
LIO . xO = src[(*col_ idx)]; // unrolled

loop
Lll . xl = src[(*col_ idx) + 1];
L12 . x2 = src[(*col_ idx) + 2];
L13 . x3 = src[(*col_ idx) + 3];
L14 . yO += value [0] ★ x O ; / / row 0
L15 . yO += value [1] ★ xl ;
L16 . yO += value [2] ★ x2 ;
L17 . yO += value [3] ★ x3 ;
L18 . yl + = value [4] ★ x O ; I I row 1
L19 . yl += value [5] ★ xl ;
L20 . yl += value [6] ★ x2 ;
L21 . yl + = value [7] ★ x3 ;
L22 . y2 += value [8] ★ xO; // row 2
L23 . y2 += value [9] ★ xl ;
L24 . y2 += value [10] ★ x2;
L25 . y2 += value [11] ★ x3 ;
L26 . y3 += value [12] ★ xO; // row 3
L27 . y3 += value [13] ★ xl;
L28 . y3 += value [14] ★ x2 ;
L29 . y3 += value [15] ★ x3 ;
L30 . }
L31 . dest [0] = yO;

113

L 3 2 . d e s t [1] = y l ;
L33. d e s t [2] = y 2 ;
L34 . d e s t [3] = y 3 ;
L 3 5 . }
L36. } // bcsr_smvm4x4 ()

Listing 6-2 4x4 BCSR SMVM

T h e fo llow ing gcc co m m an d line op tions can be used to produce annotated assem bly

language output:

gcc -c -g -W a,-ah l= tes t_ j tsm vm .asm tes t_ j tsm vm .cpp

U sing this co m m an d , the x86 assem bly language corresponding to the fo llow ing line

o f C-code , has been produced as show n in L isting 6-3.

yO += value[()]*x();

65:test_jtsmvm.cpp **** yO += value[0] * xO;
606 .stabn 68,0,65,LM40-__ Z16bcsr smvm4x4_iPiS PdSO SO
607 LM4 0 :
608 02ce 8B4514 movl 20(%ebp), %eax
609 02dl DDOO fldl (%eax)
610 02d3 DC4DC8 fmull -56(%ebp)
611 02d6 DD45E8 fldl -24(%ebp)
612 02d9 DECl faddp %st, %st(1)
613 02db DD5DE8 f s t p l -24(%ebp)

Listing 6-3 4x4 BCSR SMVM x86 Assembler

A s can be seen one line o f C -code is translated by the C-com piler into a total o f six

x 86 instructions on lines 608-613 in the listing but contain ing no branches or other

control flow instructions. O bviously if the A m atrix entry (value[()]) is zero then the

six instructions have been executed needlessly , lead ing to unnecessary consum ption

o f bandw id th and power.

6.2.2 Bitmap Block Compressed Sparse Row Format (BBCSR)
T h e B B C S R data-s tructure consists o f 4 arrays as show n in Figure 6-2. T he B B C S R

structure au g m en ts the 3 B C S R arrays (row _start , col_idx and value) w ith a

b i tm ap_ idx array con ta in ing a b itm ap, each entry (bit) o f which denotes w he ther a

non-zero va lue is p resent at that position in the tile o r not. T he value array conten ts

d iffer from those in a B C S R data-structure in that on ly the actual non-zero entries are

s tored w ithou t any zero-fill (unless the 1-bit entries in the b itm ap are counted) for all

o f the non-zeroes in the Sparse M atrix , arranged in tile-by-tile order.

114

0 2 4
3oo 3qi 0 0 3 q4 0
3lO 3ii 0 0 0 3 i 5

0 0 ^22 0 0 325

0 0 ^32 ^33 334 335

row_start

c o ljd x

value : aoo 3 q1 3 i O 3 l1 3Q4 3 i 5 I ^22 ^32 ^ 2 5 ^ 3 3 ^ 3 4 8 3 5 I

Figure 6-2 2x3 BBCSR Sparse M atrix Storage Format

The bitmap entries shown in Figure 6-2 are hexadecimal values, for instance the first

entry 36 (hex) corresponds to the binary bitmap (00)11 0110. The C-code for a

generic BBCSR SM VM which operates on the BBCSR data-structure is shown in

Listing 6-4. One o f the main differences w ith respect to the BCSR SM VM is evident

on LIO o f the code where a bitmap bit corresponding to a sub-tile entry is tested to see

i f a non-zero entry is present in the value array. The floating-point multiplication and

addition and associated array look-ups and address arithmetic on L12-14 are only

performed i f the bitmap bit indicates a non-zero is present.

From this analysis it is obvious that i f the dense sub-tile o f the Sparse M atrix contains

zero f i l l a long sequence o f instructions including floating-point instructions w ith long

latency w ill be replaced by a simple integer operation to test an array bit and skip

these costly operations in the case o f a zero f i l l entry. The converse is also true in that

i f the tile contains little or no f i l l additional bit-test instructions w ill be added as

overhead to the required sequences o f instructions for the evaluation o f tile non-zero

entries. Apart from the number o f zero f i l l values there are also the effects o f the

higher instruction count on the cache hierarchy to be considered making a static

analysis o f the code o f little quantitative use.

LI. void bbcsr_smvm(int bm, int r, int c, int *row_start, int
*col_idx, int *bitmap_idx, double *value, double *src,
double *dest) {

L 2 . int i, j, ii, jj, i_, _nz, bitmap, nz;
L3. int test bit;

115

L4. for (i=0; i<bm; i++, dest+=r) {
L5 . for (j=row_start[i]; j<row_start[i+1]; j++,

bitmap_idx++, col_idx++, value+=nz) {
L6. bitmap = *bitmap_idx & OxOOOOFFFF;
L7. nz = *bitmap_idx>>16 & OxOOOOFFFF;
L 8. _n z = 0;
L9. for (i_=0; i_<(r*c) && _nz<nz; i_++) {
LIO. test_bit = bitmaps(1<<((r*c)-i_-1)) ;
Lll. if (test_bit) {
L12. ii = (i_ & OxOOOOOOOC) » 2 ;
L13. jj = i_ & 0x00000003
L14. dest[ii]+=value[_nz++]*src[(*col_idx) + j j];
L15. }
L16. }
L17. }
L18. }

L19. } // bbcsr_smvm()

Listing 6-4 Generic B B C SR SM VM Code

Similar to BCSR the BBCSR SM VM code can be unrolled for performance reasons

as shown in Listing 6-5. The BBCSR data-structure contains 4 arrays, three of which

are the same as BCSR (row_start, col_idx and value), augmented by an array of

bitmaps describing the pattern of non-zeroes within an r*c BBCSR tile.

Ll. void bbcsr_smvm4x4_ur3(int bm, int r, int c, int
*row_start, int *col_idx, int *bitmap_idx, double *value,
double *src, double *dest) {

L2 . int i, j, _nz, bitmap, nz;
L3 . double yO, yl, y2, y3, xO, xl, x2 , x3 ;

L4 . for (i=0; i<bm; i++, dest+=r) {
L5 . yO = dest[0];
L6 . yl = dest[1];
L7 . y2 = dest[2] ;
L8 . y3 = dest[3] ;
L9 . for (j =row_start[i]; j<row_start[i+1]; j++ /

bitmap__idx++, col idx++, value+=nz) {
LIO . bitmap = *bitmap idx & OxOOOOFFFF;
Lll. nz = *bitmap_idx>>16 & OxOOOOFFFF;
L12 . _n z = 0;
L13 . xO = src[(*col idx)];
L14 . xl = src[(*col_idx) + 1];
L15 . x2 = src[(*col_idx) + 2];
L16 . x3 = src[(*col_idx) + 3];
L17 . if (bitmaps32768) yO+= value[_nz++] * xO;
L18 . if (bitmaps 16384) yO+= value[nz + +] * xl;
L19 . if (bitmaps 8192) yO+= value[nz + +] * x2;
L20 . if (bitmaps 4096) yO+= value[_nz++] * x3;
L21 . if (bitmaps 2048) yl+= value[nz++] oX

L22 . if (bitmaps 1024) yl+= value[nz++] * xl;

1 1 6

L23 . if (bitmaps. 512) yl+= value[nz++] * x2
L24 . if (bitmaps 256) yl+= value[_nz++] * x3
L25 . if (bitmaps 128) y2+= value[nz++] * xO
L26 . if (bitmaps 64) y2+= value[nz++] •k xl
L27 . if (bitmaps 32) y2 + = value[nz++] •k x2
L28 . if (bitmaps 16) y2+= value[nz++] ★ x3
L29 . if (bitmaps 8) y3+= value[nz++] * xO
L30 . if (bitmaps 4) y3 + = value[nz++] •k xl
L31 . if (bitmaps 2) y3+= value[_nz++] ■k x2
L32 . if (bitmaps 1) y3 + = value[nz++] •k x3
L33 . }
L34 . dest [0] = yO;
L35 . dest [1] = yl;
L36 . dest [2] = y2;
L37 . dest [3] = y3;
L38 . }
L39 . } // bbcsr smvm4x4__ur3 ()

L ist ing 6-5 U nrolled B U C S R 4 x4 S M V M C od e

A 1-bit in a b i tmap indicates that the co r re spond ing value in the value ar ray is n o n

zero, and a O-bit in the b i tmap indicates that no value is s tored in the value array.

Each non-zero is therefore represented by 65-bi ts be tween the value and the b i tmap

arrays. T he ar ray o f b i tmaps called b i tmap_idx is an ar ray o f 32-bi t integers, wi th the

lower 16-bits represent ing the non-zero pat tern in B B C S R tile up to a 4 x4 and the

upper 16-bits represent ing the non-zero count for the sam e tile.

T he x86 as sembler co rrespo nd ing to one line o f C -c ode :

i f (b i t m a p & 3 2 7 6 8) yO + - v a l u e [_ n z + +] * x O ;

is sh o w n in L ist ing 6-6.

115:test_jtsmvm.cpp **** if (bitmap&327 68) yO +=
value[_nz++] * xO;
967 .stabn 68,0,115,LM77-

Z17bbcsr smvm4x4 ur3iiiPiS S PdSO SO
968 LM77 :
969 05a0 8B45F0 movl -16(%ebp), %eax
970 05a3 C1E80F shrl $15, %eax
971 05a6 83E001 andl $1, %eax
972 05a9 84C0 testb %al, %al
973 05ab 7420 je L36
974 05ad 8B45F4 movl -12(%ebp), %eax
975 05b0 8D14C500 leal 0(, %eax,8), %edx
975 000000
976 05b7 8B4520 movl 32(%ebp), %eax
977 05ba DD0402 fldl (%edx,%eax)
978 05bd DC4DC0 fmull -64(%ebp)
979 05c0 DD45E0 fldl -32(%ebp)
980 05c3 DECl f addp %st, %st(1)
981 05c5 8D45F4 leal -12(%ebp), %eax

1 17

982 05c8 FFOO
983 05ca DD5DE0
984

incl (%eax)
f stpl -32 (%ebp)

L36 :

Listing 6-6 BBC SR x86 Assem bler

Note also that the BBCSR data-structure could be optimised by packing the bitmap as

a 64 bit entry into the existing value array, removing the overhead required to address

the bitmap_idx array. This optimisation would also allow larger bitmaps supporting

tiles up to 8x8 in size rather than the current 32-bit entries in the bitmap_idx array.

6.2.3 Experimental Setup
The following section describes the benchmark sparse matrix suite, target machine

parameters and C compiler used for SM VM performance measurements.

The target machine used for all experiments was based on an Intel CoreDuo E6600

processor [141] running at 2.4GHz as shown in Figure 6-3. This is a modern

multicore CPU present in workstations and servers typically used for large scale

engineering simulations and Computer Aided Design (CAD).

2.4GHz Core 2.4GHz Core

coreO Corel

32kB L1
l-cache
8-way

32kB L1
D-cache
8-way

32kB L1
l-cache
8-way

▲

32KBL1
D-cache
8-way

4MB L2 Uruied Cache (16-way 3A)

1066MHz FSB

Figure 6-3 Intel C oreDuo E6600

W hen run on the target machine to gauge off-chip bandwidth from the processor, the

Stream [45] benchmark (with parameters NTIM Es=250 & 16Mbyte array-size),

predicts a system performance o f around 120MFLOPS as shown in Table 6-2.

118

Function Rate
(MB/S)

Bytes/iter MFLOPS
Avg
time

Min
time

Max
time

Copy 2496.7 16 156.0 0.013 0.013 0.0247
Scale 2429.9 16 151.9 0.0133 0.013 0.0222
Add 2842.8 24 118.4 0.0171 0.017 0.0286
Triad 2896.6 24 120.7 0.0167 0.017 0.0229

Table 6-2 CoreDuo Target System Stream [45] Benchmark Performance

The benchmark matrix suite o f 50 large matrices is drawn from the UF Sparse Matrix

and M atrix Market collections as shown in Table 6-3. The matrix suite spans

application areas from mechanical engineering structural problems and Finite-

Element, to DN A electrophoresis, Computational Fluid Dynamics, Latent Semantic

Analysis (web search other than Google search which is based on PageRank and other

proprietary techniques), optimisation, materials science and graph theory. In terms of

comparison w ith other works 11 o f the 50 chosen matrices also appear in the suite o f

matrices used by Goumas et al [142]. S im ilarly to the work o f Goumas the C-

compiler used is gcc v4.1.2 running under Red Hat Enterprise Edition (RHEL) Linux

w ith the -0 3 command-line options for the most aggressive level o f optimisation.

Finally rather than using an approximation o f the optimal tile size for the BCSR and

BBCSR blocked SM VM each tiling was performed and the complete SM VM product

was calculated for the whole matrix.

To give an idea o f complexity the 50 sparse matrices contain a total o f 120M non-

zeroes, and understandably the runtime for the entire sparse matrix suite is very long.

In particular as in the case o f these experiments no search o f the kind proposed by

Vuduc is carried out. In fact, as was pointed out previously the overhead o f reading in

matrices and converting them from coordinate to CSR or blocked formats takes 10s to

lOOs o f equivalent SM VM operations i f search is not used to sample part o f the

matrix. In this work the run time is further compounded by the fact that each o f the

conversions and SM VM operations is performed for each o f 16 possible block-sizes

from 1x1 to 4x4.

119

name M N nz Application cb b lx l 1x1 1x2 1x3 0
mOI aLshell8 504855 504855 9046865 structural m26 3dtube 45330 45330 1629474 CFD
m02 cage13 445315 445315 7479343 DNA m27 ct20stif 52329 52329 1375396 structural
m03 nd12k 36000 36000 7128473 2/3D m28 raetsky4 19779 19779 1328611 structural
m04 crankseg_2 63838 63838 7106348 structural m29 vanbody 47072 47072 1191985 structural
m05 pwtk 217918 217918 5926171 structural mSO guptal 31802 31802 1098006 optimization
m06 hood 220542 220542 5494489 structural m31 fidapOII 16614 16614 1091362 CFD
m07 bmwcra_1 148770 148770 5396386 structural m32 bcsstk32 44609 44609 1029655 structural
m08 crankseg_1 52804 52804 5333507 structural m33 turon_m 189924 189924 912345 2D/3D
m09 SHIPSEC5 179860 179860 5146478 structural m34 qaSfk 66127 66127 863353 FE matrix
m10 M_T1 97578 97578 4925574 structural m35 bcsstk35 30237 30237 740200 structural
m11 SHIP_003 121728 121728 4103881 structural m36 fidapml 1 22294 22294 623554 CFD
m12 SHIPSEC1 140874 140874 3977139 structural m37 msc10848 10848 10848 620313 structural
m13 bmw7st_1 141347 141347 3740507 structural m38 nsc23052 23052 23052 588933 structural
m14 nd6k 18000 18000 3457658 2/3D m39 bcsstk37 25503 25503 583240 structural
m15 SHIPSEC8 114919 114919 3384159 structural m40 bcsstk36 23052 23052 583096 CFD
m16 s3dkq4m2 90449 90449 2455670 structural m41 ca g e ll 39082 39082 559722 DNA electrophoresis
m17 THREAD 29736 29736 2249892 m42 e40r0100 17281 17281 553956 driven cavity
m18 t3dh_e 79171 79171 2215638 moel reduction m43 crystk02 13965 13965 491274 materials
m19 18Jbdlinux 112757 20167 2157675 LSA m44 af23560 23560 23560 484256 CFD
m20 gupta2 62064 62064 2155175 optimization m45 wathen120 36441 36441 301101 Random 2/3D
m21 cage12 130228 130228 2032536 DNA m46 gridgena 48962 48962 280523 optimization
m22 s3dkt3m2 90449 90449 1921955 structural m47 fidap019 12005 12005 259863 FEM
m23 smt 25710 25710 1889447 structural m48 wathenWO 30401 30401 251001 Random 2/3D
m24 oilpan 73752 73752 1835470 structural m49 g y ro jn 17361 17361 178896 model reduction
m25 nd3k 9000 9000 1644345 ND set m50 vibrobox 12328 12328 177578 vibroacoustic

Table 6-3 Benchmark M atrix Suite

120

6.2.4 Comparative BBCSR SMVM Performance
All t im ings in this w ork rely on cycle.h w h ich is a p la tfo rm -independen t m echan ism

for m easu r in g elapsed p rocessor cyc les be tw een 2 events from the F F T W package

[143]. U nfortunate ly as cycle.h returns only the num ber o f cycles and not e lapsed

tim e it is not possible to accurate ly correlate the num ber o f cycles w ith e lapsed tim e

and hence p roduce a M F L O P S figure for the target m ach ine for all o f the m atrices in

the tes t-suite to com pare with the triad M F L O P S and bandw id th f igures p red ic ted by

S tream [45]. H ow ever, a cyc le-count is a m ore realistic m easure o f re la tive S M V M

time, as on ly the num ber o f cycles co n su m ed by the S M V M m ethod is tabulated , and

not those co n su m ed by the opera ting system etc.

T h e results show n in T ab le 6-4 w ere tabulated by p erfo rm ing 33 S M V M calcu la tions

for each sparse matrix o f the 50 m atrix ben ch m ark suite. T h is figure o f 33 S M V M s

consis ts o f 16 B B C S R tilings (1x1 to 4x4), 16 B C S R tilings and a reference C S R

S M V M . A shell script ran each o f the S M V M s serially and all results w ere tabulated

in an Excel sp readsheet for analysis and com parison . T h is contrasts w ith the w ork o f

V uduc et al w h o sam pled a sm alle r section o f the sparse m atrix and inferred a C PU

run tim e using a param eterised m ach ine m odel in order to save tim e in the search for

op tim al tile size for a g iven m atrix , it w as felt that op tim al tilings requ ir ing the

p rocess ing o f the entire matrix ra ther than ju s t a subset w ould isolate the op tim al

S M V M m eth o d from the tuning effect in V u d u c ’s approach.

R ead ing the table from left to right the first co lu m n is the m atrix nam e, fo llow ed by

the nu m b er o f rows (M), num ber o f co lum ns (N) and the num ber o f explic it non-

zeroes in the matrix (nz). In som e cases nz m ay differ from the figure in the

M atr ix M ark e t format file as such files often conta in at least som e explicit zeroes. T he

next co lu m n details the fastest S M V M m ethod o f the particu lar m atrix under

consideration . In order to give m ore insight into the re lative m erits o f each o f the

techn iques and yet m ake the table readable a subset o f the 33 S M V M results is show n

and subd iv ided into 3 groups. T he first g roup is the re lative ranking for the B B C S R ,

B C S R and C S R S M V M techniques (1 is fastest and 3 is slowest). T h e next is the

sub -b lock tiling (row s x co lum ns) assoc ia ted w ith the fastest B B C S R and B C S R

S M V M s. F inally the last g roup sh o w s the n u m b er o f cycles m easured using cycle .h

for the fastest B B C S R tiling, the fastest B C S R tiling fo llow ed by the C S R S M V M

cycle-count.

121

name M N nz
fastest
SMVM

Method tSMVM rank Block Tile Size tSMVM (sec)
BBCSR BCSR CSR BBCSR BCSR BCSR CSR

af_shell8 504855 504855 9046865 BCSR 2 3 3x2,3x3 2x2 132.00 156.47

cage13 445315 445315 7479343 CSR 2 1 2x1 2x1 112.80 90.78

nd12k 36000 36000 7128473 BCSR 2 3 3x2,3x3 3x3 87.23 117.94

crankseg_2 63838 63838 7106348 BCSR 3 2 2x3 2x1 97.45 116.83

pwtk 217918 217918 5926171 BCSR 2 3 3x2,3x3 1x3 81.18 99.18

hood 220542 220542 5494489 BCSR 2 3 4x1 2x1 81.85 100.97

bmwcra_1 148770 148770 5396386 BCSR 2 3 3x2,3x3 3x3 63.50 92.77

crankseg_1 52804 52804 5333507 BCSR 3 2 4x1 2x1 71.84 86.70

SHIPSEC5 179860 179860 5146478 BCSR 2 3 2x1 2x1 49.29 85.04

M_T1 97578 97578 4925574 BCSR 2 3 3x2,3x3 3x3 43.90 115.89

S H IP J 0 3 121728 121728 4103881 BCSR 2 3 3x2,3x3 2x1 32.06 96.27

SHIPSEC1 140874 140874 3977139 BCSR 2 3 3x2,3x3 1x2 30.80 93.72

bmw7st_1 141347 141347 3740507 BCSR 2 3 4x2 2x2 56.18 65.57

nd6k 18000 18000 3457658 BCSR 2 3 3x2,3x3 3x3 42.44 57.64

SHIPSEC8 114919 114919 3384159 BCSR 2 3 3x2,3x3 1x2 27.56 79.23

s3dkp4m2 90449 90449 2455670 BCSR 2 3 2x3 2x2 34.05 41.87

THREAD 29736 29736 2249892 BCSR 2 3 3x2,3x3 3x3 19.42 52.11

t3dh_e 79171 79171 2215638 CSR 3 2 1 2x1 2x1 44.50 39.81

18_tbdlinux 112757 20167 2157675 CSR 2 3 1 2x1 1x2 28.14 23.69

gupta2 62064 62064 2155175 CSR 3 2 1 2x1 2x1 43.08 37.69

cage12 130228 130228 2032536 CSR 2 3 1 2x1 2x1 29.68 23.55

s3dkt3m2 90449 90449 1921955 BCSR 2 1 3 2x4 2x2 28.45 33.14

smt 25710 25710 1889447 BCSR 3 1 2 4x1 1x2 29.08 32.51
oilpan 73752 73752 1835470 BCSR 2 1 3 4x1 2x1 20.62 31.27

nd3k 9000 9000 1644345 BCSR 2 1 3 3x2,3x3 3x3 19.91 26.50

3dtube 45330 45330 1629474 BCSR 2 1 3 3x2,3x3 3x3 18.87 36.07

ct20stif 52329 52329 1375396 BCSR 2 1 3 4x1 1x2 20.08 24.37

raefsky4 19779 19779 1328611 BCSR 2 1 3 3x2,3x3 1x2 10.59 12.09

vanbody 47072 47072 1191985 BCSR 3 1 2 4x1 2x1 18.32 21.00

gup ta l 31802 31802 1098006 CSR 3 2 1 2x1 2x1 21.23 18.52

fidapOH 16614 16614 1091362 BCSR 3 1 2 2x3 2x1 9.13 10.45

bcsstk32 44609 44609 1029655 BCSR 3 1 2 4x1 3x1 16.13 17.80

turon_m 189924 189924 912345 CSR 2 3 1 2x1 1x2 26.63 21.95

qaSfk 66127 66127 863353 CSR 3 2 1 3x2,3x3 2x1 17.13 16.22

bcsstk35 30237 30237 740200 BCSR 2 1 3 3x2,3x3 3x3 9.57 12.57

fid a p m ll 22294 22294 623554 CSR 2 3 1 2x1 2x1 8.42 6.38

msc10848 10848 10848 620313 BCSR 2 1 3 3x2,3x3 3x3 7.11 10.61

msc23052 23052 23052 588933 BCSR 2 1 3 4x2 1x2 8.83 10.30

bcsstk37 25503 25503 583240 BCSR 2 1 3 4x2 1x2 8.94 10.19

bcsstk36 23052 23052 583096 BCSR 2 1 3 4x2 1x3 9.10 10.60

c a g e l1 39082 39082 559722 CSR 2 3 1 2x1 1x2 8.40 6.13

e40r0100 17281 17281 553956 BCSR 2 1 3 4x2 1x2 5.39 5.69

crystk02 13965 13965 491274 BCSR 2 1 3 3x2,3x3 3x3 5.89 8.57

af23560 23560 23560 484256 BBCSR 1 2 3 4x4 2x2 4.65 4.89
wathen120 36441 36441 301101 BBCSR 1 2 3 3x2,3x3 2x1 6.19 6.49
gridgena 48962 48962 280523 BBCSR 1 2 3 2x4 2x2 6.12 6.14
ridap019 12005 12005 259863 BBCSR 1 2 3 4x4 2x2 2.51 2.57
wathenlOO 30401 30401 251001 BBCSR 1 2 3 2x3 2x1 5.41 5.45
g y ro jn 17361 17361 178896 BBCSR 1 3 2 3x2,3x3 2x1 4.01 2.82
vibrobox 12328 12328 177578 BBCSR 3 2 2x1 2x1 3.08 2.76

Table 6-4 tSM VM BBCSR vs BCSR vs CSR

122

As can be seen from the results in Table 6-4 no one SM VM method is optimal for all

sparse matrices and there is considerable variability in the SM V M run-time depending

on the tile size selected as well as whether the SM V M is computed using CSR, BCSR

or BBCSR representations.

This being said the proposed BBCSR scheme is faster than both CSR and BCSR

schemes in 7 out of the 50 cases, specifically the matrices af23560, w athenI20 ,

gridgena, fidap019, wathenlOO, gyro_m and vibrobox. The af23560 matrix is from a

CFD (Computational Fluid Dynamics) problem, the wathenlOO and w athen l20

matrices are randomly generated 2/3D problems, vibrobox is a vibro-acoustics matrix,

gyro_m is from a model reduction problem, gridgena from an optimisation problem

and fidap019 from an FHM (Finite Element Method) application.

Of the remaining 43 cases from the 50 matrix set CSR is the fastest method in 10 o f

them specifically, cage l3 , t3dh_e, tbdlinux, gupta2, cage l2 , gup ta l , turon_m, qaSfk,

f id a p m ll and c a g e l l . In 6 out of these 10 cases (cage l3 , 18_tbdlinux, cage l2 ,

turon_m, fidapml 1 and cagel 1) BBCSR outperforms BCSR by on average 7.3%, and

in the remaining 4 cases underperforms BCSR by on average 4.2%.

In the remaining 33 cases BCSR is the fastest method and in all but 5 cases

(crankseg_2, crankseg_l, smt, vanbody, f idapO ll and bcsstk32) BBCSR outperforms

CSR in second place by on average %.

As can be seen from Figure 6-4 BCSR is heavily influenced by BCSR tiling, and for

the 50-matrix set 1x2 (row x column) or 2x1 tilings result in the best run-times in 60%

of cases (30/50).

123

m a tr ices with
optimal (r,c) BCSR

tiling

tile row s (r)

r1
■ r2
□

C
O

□ r4

Figure 6-4 Influence of tiling on BCSR SMVM

124

In the case o f B B C S R tiling still has a s ign ificant effect on S M V M execu tion-tim e ,

h o w ev er the tile s izes are radically d ifferent as sh o w n in F igure 6-5, in fact as can be

seen from the figure in m any cases there are equ iva len t run-tim es for m ultip le

B B C S R tilings for exam ple 3x2 and 2x3. In this respect B B C S R differs from B C S R

w here a single tiling produces the fastest S M V M run-tim e in all cases.

125

12
matrices with

optimal (r,c) BBCSR 10
tiling

r2 tile rows (r)

tile cols (c)

Figure 6-5 Influence of tiling on BBCSR S M V M

ca r1
■

C\J

□

CO

□
1 r4

126

6.2.5 Factors Influencing BBCSR SMVM Execution
Exam ining the cases where the BBCSR scheme is fastest an approximate calculation

o f 12 Bytes per non-zero (an 8-byte double plus a 4-byte address) in terms of the size

of the BBCSR data-structure would place each o f the 7 matrices around the 4M Byte

L2 cache-size in terms of memory footprint, assuming the processor is not running

other significantly-sized workloads at the same time.

Following this it was felt that further investigation might help to explain the

mechanism behind the superior BBCSR performance in these cases. Fortunately the

Valgrind tool [144] provides the necessary infrastructure (cachegrind) to simulate

existing x86 binaries on a parameteriseable cache model containing II, D1 and L2

caches without modification.

Each of the CSR, BCSR and BBCSR binaries were run for the 7 matrix subset using

the following command-line parameters using Valgrind v3.2.1:

valgrind --tool=cachegrind --11=32768,8,64 --
01=32768,8,64 --L2=4194304,16,64 --log-file-
exact ly=af 2 3 5 6 0 . csr ./test_csr.exe af23560.mtx

The results from the valgrind cache simulations are shown in Table 6-5. As can be

seen from the 3'^̂ , 4 ‘*' and 5 ‘̂ columns of the table the numbers o f LI instruction-cache

misses are all very low and approximately equal for each of the matrices at around 2k

misses. Almost all of these 2k misses also generated misses on the shared L2 cache.

Bearing in mind that these misses are totals for the whole x86 binary and not just the

SM VM portion of it and the programs also contain large amounts of code to read

MatrixMarket [11] format matrices and convert them to C SR /BCSR/BBC SR data-

structures, the numbers of instruction cache misses are exceedingly low suggesting

that the 32kB LI instruction cache is a very good match for the tight inner SM VM

code loops. It can be reasonably concluded that differing code sizes and behaviour

for the 3 SM V M methods does not explain the difference in SM V M execution-time.

The more likely explanation is therefore that differences in data-cache behaviour have

a stronger correlation with SM VM execution time. The relationships between the

various SM VM methods execution-times and cache misses are shown in

Table 6-6.

127

Matrix SMVM 1 refs 11 misses L2i misses D refs D1 misses L2Drd L2 refs L2 misses

af23560

csr 2170740462 1726 1713 1012177973 3845023 870091 3846749 871804

bcsr 28010482583 1803 1786 5185794505 281969372 990892 281971175 992678

bbcsr 11915749464 1895 1881 3069084495 142836563 835303 142838458 837184

wathen120

csr 1735300057 1728 1715 873946727 4175429 1238335 4177157 1240050
bcsr 88096133251 1811 1794 15495854531 669090537 1416946 669092348 1418740

bbcsr 30331932249 1895 1880 6864102720 336580354 1230888 336582249 1232768

gridgena
csr 1665176525 1977 1730 818346838 3639304 935614 3641281 937344
bcsr 113171441970 2055 1804 18809915076 1203244465 1093032 1203246520 1094836
bbcsr 35392121249 1723 1475 7982189185 465581822 766145 465583545 767620

fidap019
csr 1154944991 1737 1711 524598402 1781335 335706 1783072 337417
bcsr 7874150652 1806 1775 1611679623 74188753 414556 74190559 416331
bbcsr 3704258484 1888 1865 1064017197 37968266 345980 37970154 347845

wathenlOO
csr 1441603423 1732 1719 725251385 3442421 842790 3444153 844509
bcsr 61552896232 1809 1792 10903764948 466297433 991428 466299242 993220
bbcsr 19658944340 1899 1884 4588618374 234919937 835799 234921836 837683

gyro_m
csr 1118556980 1752 1738 557112078 3085171 719589 3086923 721327
bcsr 20743208258 1817 1800 3882885493 154547239 885846 154549056 887646
bbcsr 7647972089 1893 1878 1927632363 78774189 744370 78776082 746248

vibrobox
csr 1062760100 2061 1735 556448212 3393039 1021139 3395100 1022874
bcsr 10969571775 2125 1795 2237223890 79902247 1165486 79904372 1167281
bbcsr 5808930629 2200 1873 1555102732 41669687 1054027 41671887 1055900

Table 6-5 BBCSR fastest subset Cachegrind Simulation results

128

Matrix SMVM D1 misses rank L2 misses AL2 % rank tSMVM Asmvm % rank

af23560

csr 3845023 1 871804 4.14% 2 4894344 21.24% 3

bcsr 281969372 3 992678 18.57% 3 4648653 15.15% 2

bbcsr 142836563 2 837184 0.00% 1 4036905 0.00% 1

wathen120

csr 4175429 1 1240050 0.59% 2 6493068 7.12% 3

bcsr 669090537 3 1418740 15.09% 3 6186879 2.06% 2

bbcsr 336580354 2 1232768 0.00% 1 6061752 0.00% 1

gridgena

csr 3639304 1 937344 22.11% 2 6144336 3.28% 3

bcsr 1203244465 3 1094836 42.63% 3 6121368 2.89% 2

bbcsr 465581822 2 767620 0.00% 1 5949387 0.00% 1

fidap019

csr 1781335 1 337417 0.00% 1 2566593 9.28% 3

bcsr 74188753 3 416331 23.39% 3 2514564 7.07% 2

bbcsr 37968266 2 347845 3.09% 2 2348604 0.00% 1

wathenlOO

csr 3442421 1 844509 0.81% 2 5446944 4.76% 3

bcsr 466297433 3 993220 18.57% 3 5407488 4.00% 2

bbcsr 234919937 2 837683 0.00% 1 5199462 0.00% 1

gyro_m

csr 3085171 1 721327 0.00% 1 2820854 7.57% 2

bcsr 154547239 3 887646 23.06% 3 4013139 53.03% 3

bbcsr 78774189 2 746248 3.45% 2 2622463 0.00% 1

vibrobox

csr 3393039 1 1022874 0.00% 2 2764686 1.77% 2

bcsr 79902247 3 1167281 14.12% 3 3077805 13.29% 3

bbcsr 41669687 2 1055900 3.23% 1 2716727 0.00% 1

Matrix SMVM D1 misses rank L2 misses AL2 % rank tSMVM Asmvm % rank

Average

csr 3.95% 7.86%

bcsr 22.20% 13.93%

bbcsr 1.40% 0.00%

Table 6-6 tS M V M vs. Cache Misses

As can be seen from Table 6-6 CSR always generates the lowest number o f L I data-

cache misses, followed by BBCSR and then BCSR. Typically BBCSR SM VM

generates 50% or less D1 misses than BCSR for the 7 matrices in the table. The

reason for this is most likely to be that BBCSR skips actual calculations based on

some values based in bitwise comparisons as it was designed to do.

Looking at the number o f L2 data-misses in the case o f the af23580, wathenl20,

gridgena, wathenlOO and vibrobox matrices BBCSR generates the fewest misses,

followed by CSR and then BBCSR. In the case o f the remaining fidap019 and

gyro_m matrices CSR generates the fewest misses, followed by BBCSR and then

BCSR. In all cases BCSR generates the highest number o f L2 data-misses.

In terms of correlation between SM VM execution time and L2 cache the correlation is

strong with the lowest number o f L2 cache misses corresponding to the fastest tsMVM

for all matrices w ith the exception o f fidap019 and gyro_m. In these two cases CSR

129

actually has the lowest number of L2 cache misses but this does not correspond to the

minimum SM VM execution time. This being said the L2 cache miss rate is strongly

correlated to the SM VM execution time, with BBCSR minimising both in 5/7 cases.

In summary for the 7 cases where BBCSR minimises SM VM execution time it does

so by an average of 7.85% compared with CSR, and 13.93% compared with BCSR.

For the same 7 matrices the deviation of the L2 cache miss rate for BBCSR deviates

by 1.4% from the minimum, CSR by 3.95% and BCSR by 22.2% from the minimum

L2 miss rate for a particular matrix from the 7 matrix subset.

Some additional light is shed on the reason for poor BCSR performance by the data

shown in Table 6-7. The table shows the minimum zero fill for BCSR tiled matrices

across the range 1x2 to 4x4. It can be seen that for the relevant examples the fill rate

is 50% on average meaning that large numbers of trivial data are being fetched

needlessly, leading to lower than expected SM VM execution times. The

corresponding BBCSR fill rates are very low as a single bit in a 32-bit integer is

effectively used to code for a 64-bit, double-precision zero fill data-value.

It is probable that a method of determining if BBCSR storage will be advantageous

during the sampling o f matrix data in the tiling process used in packages such as

OSKI [111] The performance overhead of such a modification would be negligible as

the same arithmetic operations have to be performed for both tiling methods and only

the final decision making to model the expected performance of each method and

choose the best performer need be modified.

130

filename # tilings min%

af_shell8 1 1x2 9%

cage13 2 1x2,2x1 90%

nd12k 2 1x3,3x1 12%

crankseg_2 2 1x2,2x1 13%

pwtk 1 1x3 12%

hood 2 1x2,2x1 13%

bmwcra_1 3 1x3,3x1,3x3 0%

crankseg_1 2 1x2,2x1 13%

SHIPSEC5 2 1x2,2x1 53%

M_T1 2 1x3 0%

SHIP_003 2 1x2,2x1 58%

SHIPSEC1 2 1x2,2x1 51%

bmw7st_1 1 1x2 11%

nd6k 2 1x2,2x1 12%

SHIPSEC8 2 1x2,2x1 46%

s3dkq4m2 1 1x2 13%

THREAD 2 1x3 1%

t3dh ,e 1 1x2 48%

IS Jbd linux 1 1x2 74%

gupta2 2 1x2,2x1 55%

cage12 2 1x2,2x1 88%

s3dkt3m2 1 1x2 9%

smt 2 1x2,2x1 16%

oilpan 2 1x2,2x1 32%

nd3k 2 1x2,2x1 11%

3dtube 2 1x3 1%

ct20stif 1 1x2 11%

raefsky4 2 1x2,2x1 13%

vanbody 2 1x2,2x1 12%

guptal 2 1x2,2x1 56%

fidapOl 1 2 1x2,2x1 15%

bcsstk32 1 1x2 14%

turon_m 2 1x2,2x1 67%

qa8fk 1 1x2 34%

bcsstk35 1 1x2 3%

fidapm11 2 1x2,2x1 78%

msc 10848 3 1x3 0%

msc23052 2 1x2,2x1 13%

bcsstk37 1 1x2 11%

bcsstk36 2 1x2,2x1 8%

c a g e l1 2 1x2,2x1 78%

e40r0100 2 1x2,2x1 20%

crystk02 3 1x3 0%

af23560 1 1x2,2x1 30%

wathen120 1 1x2 28%

gridgena 3 1x2,2x1 33%

fidap019 2 1x2,2x1 36%

wathenlOO 1 1x2 28%

gyro_m 1 1x2 100%

vibrobox 2 1x2,2x1 89%

Table 6-7 Minimum BCSR M inim um Fill% vs. Tiling

131

6.3 BBCSR Optimisation
A n o th er factor in fluenc ing the execu tion -t im e o f B B C S R S M V M codes is the

d istr ibu tion o f non-zeroes in a tile. Specifically , on exam ina tion o f lines L I 7-32 of

L isting 6-5 it can be seen that each line o f the S M V M product will execute subject to

the b itm ap be ing tested re turn ing a one, i.e. the b i tm ap bit w as set to one deno ting a

non-zero entry is present at that point in the bitmap. A s can be seen all b i tm ap bits

are tested regard less o f the num ber o f zeroes m ean in g that there is a fixed overhead.

T h e p erfo rm ance o f the S M V M code could be im proved by testing the num ber o f

non-zeroes tested (_nz) against the k now n nu m b er o f non-zero bit in the b itm ap

lead ing to an early exit from the S M V M product code. T he disadvantage o f this

techn ique how ever is that it m ay not produce a speed-up as it adds additional

com parisons to the code and in any case the tile m ight contain a non-zero in the lower

righ t-hand side o f the tile, m ean in g that all o f the tests for b itm ap bits and non-zero

coun t are incurred for all 16 e lem ents o f the 4 x4 tile.

A no ther possib le optim isation w ould be to reorder the sequence o f code for the

b i tm ap com parisons so that the test for non-zero count exits as early as possible.

Indeed g iven that the b itm ap itself holds the key to w hich com par isons are required it

is possib le to e lim inate the com parisons a ltogether by gene ra t ing a tile S M V M code

tailored to each individual b itm ap. T he d isadvan tage o f this approach is how ever that

a function-call (the b itm ap itself w ould be used to look-up a pointer to a specialised

S M V M function from a table) is required for each tile S M V M w hich adds overhead

and second ly in the case o f a 4 x4 tile size there are 2*^ possib le b itm ap values, and

hence up to 6 5k S M V M codes w hich w ould have to be written or generated

au tom atica lly and then verified for correctness.

T h is approach w as felt to be possib le but im practical and unlikely to lead to a

sys tem atic advan tage in term s o f B B C S R so a new approach w as adopted w hich

e lim ina ted com parisons and term inated early but w ithout the need for per-b itm ap

S M V M codes and function-call tables.

6.4 Scheduled Bitmap SMVM
T h e d isadvan tage with the B B C S R code is that d epend ing on the pattern o f non-

zeroes in the r*c sized tile the execution time can vary w idely . If all o f the non-zeros

could be g rouped together by sorting the execution time w ould be m inim ised but this

132

w ould require the w rit ing o f 2 ’ ’̂ different o rderings o f the S M V M code for the 4 x4

tile-size alone leading to an exp losion in the am o u n t o f code to be w ritten or

gene ra ted and subsequen tly verified for correc tness . On top o f this the con ten ts o f

each tile w ou ld have to be sorted lead ing to a s ign ifican t overhead in se tt ing up the

sparse data-s tructures . Furtherm ore an additional o verhead w ou ld be incurred in that

the b i tm ap w ould have to be used as a po in ter to a table o f functions con ta in ing the

correc t vers ion o f the 4x4 S M V M to be run for a par ticu lar non-zero reordering. T h is

lack o f locality w ould lead to reduced instruction-cache p erfo rm ance w h ich w ould

m ost likely ou tw eigh the benefits o f any increase in S M V M speed.

A better a lternative w ould be to vary the schedu le th rough the 16 lines o f the m atrix-

vec to r produc t depend ing on the b itm ap. T h is w ou ld involve first gene ra t ing a

schedu le from the b itm ap and then ex ecu tin g that schedule . N orm ally this w ould

require a ssem bly language cod ing o f the entire S M V M code as A N S I C /C + + does not

support ju m p s (goto) to labels. H ow ever such a feature w as recently in troduced in

gcc [145] enab ling a ju m p -tab le with variable schedu le o rder to be im p lem en ted in C-

code. T h is approach is applied to efficient interpreters by Ertl and G reg g in [146].

6.4.1 Scheduled Block Compressed Sparse Row Format (SBCSR)
T he S B C S R data-structure consists o f 4 arrays as show n in F igure 6-2. T he S B C S R

structure au g m en ts the 3 B C SR arrays (row _start , c o M d x and value) w ith schedu le

array con ta in ing the schedu le o f non-zero opera tions to be perfo rm ed . A s in the

B B C S R case the value array con tains only non-zero entries w ithou t any zero-fill.

S chedu les for m atrices are construc ted as follows:

• T he m atrix is tiled into four 2x3 sub-m atrices

• T h e sub-m atrices are p rocessed left to right across the row s in successive rows

• For each row the data-s tructure row _sta rt array is popu la ted with a row entry

if the row conta ins at least one sub-m atrix w ith non-zero entries

For each 2x3 sub-m atrix

• T he c o M d x array is popu la ted w ith the co lum n coord ina te o f the upper left-

hand side o f the sub-m atrix

• T he value array is filled w ith the non-zero values, s can n in g the sub-m atr ix row

by row and each co lum n w ith in a row from left to right

• For each non-zero in the value array the e lem ent n u m b er o f the non-zero is

inserted into the schedule , a l low ing non-zeroes to be sk ipped by the schedu le r

133

0

2

row_start

col idx

value

schedule

In the specific example shown in Figure 6-6 (a) the row_start array contains both row

indices 0 and 2 as both rows contain non-zero sub-matrices. The coM dx array

contains the four starting column references [0,3,0,3] for each of the 4 sub-matrices.

The value array contains the aoo, ao i.am and an non-zero entries from the first 2x3

matrix;, ao4 and ais from the second; a2 2 and a3 2 from the third; and finally a2 5 , a^3 , a .34

and a .35 from the fourth sub-matrix. Correspondingly the schedule array contains 0 ' \

1 ®', 3'̂ ‘* and 4"' references corresponding to the non-zero positions in the first sub

matrix and so on as shown in Figure 6-6 (b).

The code in Listing 6-7 shows the SBCSR SM VM for a 4x4 tile size. In order to

implement the desired functionality in the SBCSR format each line of the SM VM

product is labelled (as shown in L21), each preceded by a jum p (goto) a label (as

shown in L20). As the schedules are relatively short 8 -bit chars can be used for the

schedule array, thus improving storage efficiency. A final label to terminate the jum p

sequence is included on L52 and a complete jump-table containing the addresses of

all 17 labels is constructed by the compiler as shown in L4 of Listing 6-7.

Ll. void sbcsr_smvm4x4 (int bm, int r, int c,
unsigned char ^schedule, int *row_start, int
*col_idx, int *bitmap_idx, Type *value, Type *src,
Type *dest) {

L 2 . int i, j, _nz, bitmap, nz;
L 3 . Type yO, yl, y 2 , y3, xO, xl, x 2 , x3;

^00 801 0 0 304 0

810 a n 0 0 0 a i 5

0 0 822 0 0 825

0 0 832 833 834 835

(a)

2x3 sub-matrix
schedule
o ' i 2]

3 4 5 I

 (b)........

0 2 4/-►

0 3 0 3

r

0CO00CO

a i o 3 l 1 0̂4 315:322 3 3 2 : 8 2 5 8 3 3 8 3 4 8 3 5

J3_ _ 4 _ 5_J

Figure 6-6 2x3 SBCSR Sparse Matrix Storage Format

134

L4 . static void *jt[] = {&&j0,&&j1,&&j2,&&j3,&&j4 ,

&&jl4,&&jl5,&&terminate};

L5
L6
L7
L8
L9

for (i ==0; i<bm
yO = dest [0]
yl = dest [;i]
y2 = dest [2]
y3 = dest [3]

i++, dest+=r)

LIO . for (j==row start[i]; j<row St
bitmap idx++, col idx++, value+=nz) "{

Lll . bitmap = *bitmap idx &
L12 , nz = *bitmap_idx>>16 &
L13 . nz = 0;
L14 . xO = src[(*col_idx)]
L15 . xl = src[(*col idx) + 1]
L16 . x2 = src[(*col idx) + 2]
L17 . x3 = src[(*col_idx) + 3]
L18 . goto *jt[*schedule++];
L19 . jO : yO+= value[nz++] xO
L20 . goto *jt[*schedule++];
L21 . jl : yO+= value[nz++] ★ xl
L22 . goto * jt[*schedule++];
L23 . j2: yO+= value[nz++] * x2
L24 . goto *jt[*schedule++];
L25 . j3 : yO+= value[nz++] ★ x3
L26 . goto * j t [*schedule++];
L27 . j4: yl+= value[nz++] ★ xO
L28 . goto * jt[*schedule++];
L29 . j5 : yl+= value[_nz++] ★ xl
L30 . goto *jt[*schedule++];
L31 . j6 : yl+= value[nz++] x2
L32 . goto * jt[*schedule++];
L33 . jV: yl+= value[nz++] ■k x3
L34 . goto * jt[*schedule++];
L35 . j8: y2+= value[nz++] •k xO
L36. goto *jt[*schedule++];
L37 . j9 : y2+= value[nz++] ★ xl
L38 . goto *jt[*schedule++];
L39. jlO: y2+= value[nz++] ★ x2
L40 . goto *jt[*schedule++];
L41 . jll; y2+= value[nz++] x3
L42 . goto *jt[*schedule++];
L43 . jl2: y3+= value[nz++] * xO
L44 . goto *jt[*schedule++];
L45 . j 13 : y3+= value[_nz++] •k xl
L46 . goto * jt [*schedule++];
L47 . jl4 : y3+= value[nz++] * x2
L48. goto * jt [*schedule++];
L49 . j 15 : y3+= value[nz++] * x3
L50 . terminate:;

j++/

OxOOOOFFFF;
OxOOOOFFFF

135

L51 . }
L52 . dest[0] = yO;
L53 . dest[1] = yi;
L54 . dest[2] = y2;
L55 . dest[3] = y3;
L56 . }
L57 . } // sbcsr_ smvm4x4()

Listing 6-7 SBCSR 4x4 SMVM C-Code

The x86 assembler corresponding to two lines o f C-code from the SBCSR SM VM for
a 4x4 tile size:

goto * jt [*schedule-i-+] ;
jO: yO += value[_nz++] * xO;

is shown in Listing 6-8:

17 6 : test_j tsmvm. cpp **** goto * jt [*schedule4-+] ; jO:
yO += value [_nz-i--t-] * xO; // row 0
1462 .stabn 68, 0, 176,LM114-

Z16bbcsr smvm4x4 jtiiiPhPiSO_SO_PdSl_Sl_
1463 LM114:
1464 09b0 8B4514 movl 2 0(%ebp), %eax
1465 09b3 0FB610 movzbl (%eax), %edx
1466 09b6 8D4514 leal 2 0(%ebp), %eax
1467 09b9 FFOO incl (%eax)
1468 09bb 8B149500 movl

_ZZl6bbcsr_smvm4x4 _jtiiiPhPiSO_SO_PdSl_Sl_
,4), %edx
1468 000000
1469 09c2 8955A4 movl %edx, -92(%ebp)
1470 L76 :
1471 09c5 FF65A4 jmp *-92(%ebp)
1472 L53 ;
1473 09c8 8B45F4 movl -12(%ebp), %eax
1474 09cb 8D14C500 leal 0(,%eax,8), %edx
1474 000000
1475 09d2 8B4524 movl 36(%ebp), %eax
1476 09d5 DD0402 f Idl (%edx,%eax)
1477 09d8 DC4DC0 fmull -64(%ebp)
1478 09db DD45E0 f Idl -32(%ebp)
1479 09de DECl f addp %st, %st{1)
1480 09e0 8D45F4 leal -12(%ebp), %eax
1481 09e3 FFOO incl (%eax)
1482 09e5 DD5DE0 f stpl -32(%ebp)

Listing 6-8 x86 Assembler for SBCSR SMVM 4x4

136

6.4.2 SBCSR Schedule Generation
A s can be seen from the prev ious section L 1 8-L 50 will be executed diffe ren tly on a

tile-by-tile basis, depend ing on how the schedu le for the tile has been generated .

G en era t in g a schedule for a tile consists o f 2 steps:

• schedu le pruning

• schedu le op tim isation (optional)

In the schedu le prun ing phase non-zeros lead ing to trivial operations are p runed from

a full tile schedule in order to create a pruned schedu le which co m p u tes on ly those

p roduc ts co r respond ing to tile non-zeroes. In the op tional schedu le op tim isa t ion

phase p runed schedule is reordered to deal w ith da ta-dependenc ies such as R A W and

m ax im ise perform ance. It should be noted that w hereas schedu le p run ing has no

collateral effects, schedule op tim isa tion leads to additional overhead in term s o f

reo rdering the tile non-zero values to reflect the op tim ised schedule.

A schedule can be generated d irectly by ex am in in g the tile non-zero d is tribution or

alternately the b itm ap as show n in Listing 6-9.

LI. void sbcsr_smvm4x4 (int bm, int r, int c,
unsigned char *schedule, int *row_start, int
*col_idx, int *bitmap_idx, Type *value, Type *src,
Type *dest) {

L2 . void bm2sch(uns igned int bitmap / unsigned int
*sc, int r, int c) {

L3 . unsigned nz = 0 » *P/ mask;
L4 . if (bitmap & 32768 sc [nz++] = 15 // row 0
L5 . if (bitmap & 16384 sc [nz++] = 14
L6 . if (bitmap & 8192 sc [nz++] = 13
L7 . if (bitmap & 4096 sc [nz++] = 12
L8 . if (bitmap & 2048 sc [nz++] = 11 // row 1
L9 . if (bitmap & 1024 sc [nz++] = 10
LIO . if (bitmap & 512 sc [nz++] = 9
Lll . if (bitmap & 256 sc [nz++] = 8
L12 . if (bitmap & 128 sc [nz++] = 7 // row 2
L13 . if (bitmap & 64 sc [nz++] = 6
L14 . if (bitmap & 32 sc [nz++] = 5
L15 . if (bitmap & 16 sc [nz++] = 4
L16 . if (bitmap & 8 sc [nz++] = 3 // row 3
L17 . if (bitmap & 4 sc [nz-l-+] = 2
L18 . if (bitmap & 2 sc [nz++] = 1
L19 . if (bitmap & 1 sc [nz+-l-] = 0
L20 . sc[nz++] = r *c ; // terminate
L21 . }// bm2sch()

137

Listing 6-9 x86 Bitmap Schedule Generator

The code shown in the scheduler only implements the first phase o f the 2 phases

outlined earlier and the correspondence between the schedule and the non-zero

distribution for a sample 4x4 tile is shown in Figure 6-7.

rO
r1
r2
r3

schedule
executed

skipped 27 35 43
37 45

47

Figure 6-7 Bitmap Schedule Generation Example

As can be seen the generated schedule simply skips the non-zero elements o f the

product and thus would skip L27, L35, L37, L43, L45 and L47 o f the SBCSR SM VM

code in Listing 6-7.

6.4.3 SBCSR Schedule Optimisation
The optimisation o f the SBCSR schedule depends heavily on the underlying processor

data-path. As was pointed out in chapter 4 a key property o f a typical processor

datapath which leads to performance degradation for the execution o f SM VM codes is

the RAW hazard associated with the floating-point adder which sums partial-products

from a matrix-row.

The standard method for implementing Out-Of-Order (0 0 0) processing is

Tomasulo’s algorithm [147], Examples o f more modern implementations o f

Tomasulo-like algorithms for hardware implementation in microprocessors are those

by Sassone [148] and Farrell [149], In an 0 0 0 processor hardware w ill eliminate, or

at least mitigate these hazards by interleaving calculations from multiple rows in order

to ensure the floating-point adder does not stall as processing continues along multiple

rows in parallel. The lim itation o f course is the length o f the reorder buffer that the

processor can examine w ith a view to reordering dependencies. As mentioned

previously 0 0 0 processors have fallen out o f favour due to the complexity o f the

138

cO Cl c2 c3
1.0 1.0 1.0 1.0

1.0 1.0 1.0
1.0 1.0

1.0

0 1 2 3 5
CD 7 10 11 15 16

19 21 23 25 29 31 33 39 41 49

resulting hardware and diminishing returns in terms of speedup using the 0 0 0

hardware, especially given the move to multicore processors has led to a drive for

more, simpler processor cores to hit performance requirements for new products.

xO X1 x2 x3
★ ★ * *

cO c1 C2 c3

rO ^00 ^02 ^03 yO = XO*3go + X l*3 g i + X 2*3 q2 + x 3 *3

r1 ^11 y1 = xO*9-io + x1*3 ii + x2*3-|2 x3 *3

r2 322 y2 = xO*32o t X 1*321 x2*322 x 3 *3

r3 933 y3 = xO*33o + X 1*331 ^2*332 + x3 *3

origin3l 1 2 3 4 6 11 16

reordered 1 5 2 11 3 16 4

Figure 6-8 SBCSR Column Reordering

As the scheduling for the SBCSR method can be performed statically as part of the

matrix format conversion process there is no dependency on the underlying hardware

and hence any scheduling algorithm can be used. The simplest approach to

minimising RAW hazards is to reorder the SBCSR tiles into column order in a

manner similar to that used in SPAR [23]. An example of an SBCSR tile, original

and reordered schedule are shown in Figure 6-8. As can be seen the column

reordering inserts products from other columns to minimise the effects o f RAW

hazards by removing dependencies linked to the calculation of yO.

In practice the precise scheduling algorithm to be used w ill depend on the latencies of

the floating-point adder as well as how many parallel adders the processor contains.

The code to perform column-oriented reordering and non-zero pruning is shown in

Listing 6-10, this reordering is preceded by reading-out the tile non-zeroes column

wise into the value array. Note: re-orderings o f arbitrary sophistication are possible.

LI. void bm2sch_c(unsigned int bitmap, unsigned int
*sc, int r, int c) {

L 2 . unsigned nz = 0, unsigned int *p, mask;
L 3 . if (bitmap & 32768) sc[nz++] = 15; // row 0
L 4 . if (bitmap & 2048) sc[nz++] = 11; // row 1
L 5 . if (bitmap & 128) s c [n z + +] = 7; // row 2

139

L6 . if (bitmap & 8) sc nz++] = 3 // row 3
L7 . if (bitmap & 16384) sc nz++] = 14 // row 0

00 if (bitmap & 1024) sc nz++] = 10 // row 1
L9 . if (bitmap & 64) sc n z + +] = 6 // row 2
LIO . if (bitmap & 4) sc nz++] = 2 // row 3
Lll . if (bitmap & 8192) sc nz++] = 13 // row 0
L12 . if (bitmap & 512) sc nz++] = 9 // row 1
L13 . if (bitmap & 32) sc nz++] = 5 // row 2
L14 . if (bitmap & 2) sc nz++] = 1 // row 3
L15 . if (bitmap & 4096) sc nz+-i-] 12 // row 0
L16 . if (bitmap & 256) sc nz++] = 8 // row 1
L17 . if (bitmap & 16) sc nz++] = 4 // row 2
L18 . if (bitmap & 1) sc nz++] = 0 // row 3
L19 . sc nz++] =r *c // end
L20. } // bm2sch_c()

Listing 6-10 Column Oriented Pruner & Scheduler

6.4.4 SBCSR SMVM Performance
T he perfo rm ance o f S B C S R relative to the o ther techniques is show n in Table 6-9.

A s can be seen from the table S B C S R only offers an advan tage in the case o f 2 o f the

m atrices out o f the 50 m atrix set. Specifically in the case o f the v ibrobox and gyro_m

m atrices S B C S R is 5 7 .5% and 60 .6% faster than its nearest rival BBCSR.

T h is is m ost likely due to the nature o f the sparsity pattern in the non-zero b locks

w h ich in the case o f B B C S R co n su m es m any cyc les scann ing the b itm ap bit-by-bit,

w hereas the schedu le in S B C S R allow s the m ultip lication to exit early by ju m p in g to

the term inate: label on L 50 o f the listing, once all o f the essential m ultip lications

(non-zeroes) have been com pleted . In the o ther 48 cases S B C S R is significantly

w orse than all o f the o ther m ethods o w in g to the large overhead in term s o f

instructions o f im p lem en ting the proposed schem e.

A s can be seen the co lu m n oriented tile reordering m akes for a s ignificant

im p rovem en t in the case o f the m atrix set selected add ing 6 additional m atrices to the

v ib robox and gyro_m m atrices for w h ich the S B C S R form at w as fastest o f all the

S M V M m eth o d s evaluated . T he gains in perfo rm ance are m odest ranging from 3.84

to 16.23% , but are nevertheless s ignificant. It is possible to order the S B C S R code

first by row s and then by co lu m n s or the converse . This m ay im prove the schedu le

execu tion in som e cases by rem o v in g or m in im is ing data-dependencies . T he

S B C S R _ C variant o f the form at orders by co lu m n s first fo llow ed by rows, d ep en d in g

on the b i tm ap non-zero entries. T he execu tion tim es for the S B C S R _ C variant are

show n in T ab le 6-8. A s can be seen the co lum n oriented tile reordering m akes fo r a

140

significant improvement in the case o f the matrix set selected adding 6 additional

matrices to the vibrobox and gyro_m matrices for which the SBCSR format was

fastest o f all the SM VM methods evaluated. The gains in performance are modest

ranging from 3.84 to 16.23%, but are nevertheless significant.

matrix SBCSRC % min tSBCSRC tBBCSR tBCSR tCSR

vibrobox -56.93% 1169991 2716727 3077805 2764686
gyro_m -60.63% 1032544 2622463 4013139 2820854
wathenWO -16.23% 4355811 5199462 5407488 5446944
ca g e 1 1 -11.69% 5411304 7992450 8403597 6127776
turon_m -6.55% 20510775 25533711 26630127 21948984
3dtube -3.84% 18144360 20071683 18869562 36070227
bcsstk32 -4.15% 15465231 18762489 16134930 17797104
vanbody -16.03% 15380298 21025314 18316431 21004245

Table 6-8 SBCSR_C SMVM Execution Times

As can be seen the column oriented tile reordering makes for a significant

improvement in the case o f the matrix set selected adding 6 additional matrices to the

vibrobox and gyro_m matrices for which the SBCSR format was fastest o f all the

SM VM methods evaluated. The gains in performance are modest ranging from 3.84

to 16.23%, but are nevertheless significant.

141

name #1
SBCSR %min

tSMVIVI (us)

tSBCSR tBBCSR tBCSR ICSR
v ib ro b o x S B C S R ■57.54% 1153521 271 6 7 2 7 3077805 2 7 6 4 6 8 6
g y ro _ m S B C S R -60.57% 1033983 2622 4 6 3 4 0 1 3 1 3 9 2 8 2 0 8 5 4
w a th e n i 00 B B C SR 58.72% 8252451 5199 4 6 2 5407488 5446 9 4 4

fidapOIQ B B C SR 88.72% 4432311 2348604 2514564 2566 5 9 3
gridgena B B C SR 70.37% 10135782 5949 3 8 7 6121368 6 1 4 4 3 3 6
w a th e n i 20 B B C SR 60.44% 9725445 6061752 6186879 6493 0 6 8
a/23560 B B C SR 33.38% 5384610 4036 9 0 5 4648653 4894 3 4 4
crystk02 B C S R 72.31% 10155969 6530301 5893974 8567973

e40r0100 B C S R 75.95% 9485541 5478273 5390892 5694435
cage11 C SR 259 .74% 2 20 4 3 8 1 7 7992450 8403597 6127776
bcsstk36 B C S R 55.90% 14190093 9950949 9102132 10595205
bcsstk37 B C S R 71.08% 15302556 9894474 8944515 10191267

msc23052 B C S R 94.43% 17177535 10120770 8834742 10298376

msc10848 B C S R 84.75% 13131270 7906545 7107579 10608309
fidapm11 C SR 223.09% 2 0 623824 7831233 8421228 6383268

bcsstk35 B C S R 61.88% 15500259 10377585 9574920 12571740
qaSfk C SR 125.20% 3 6 524232 17419968 17133606 16218360
turon_m C SR 220.80% 70412022 25533711 26630127 21948984

bcsstk32 B C S R 80.35% 2 9 099016 18762489 16134930 17797104

fidapOII B C S R 71.88% 15691698 10481778 9129447 10446453
guptal C SR 329 .72% 79598124 21733227 21227724 18523107

vanbody B C S R 86.53% 3 4 164918 21025314 18316431 21004245
raefsky4 B C S R 74.20% 18444420 11086551 10587942 12087468

ct20stif B C S R 94.69% 3 9 089808 24283386 20078325 24369651

3dtube B C S R 86.78% 35 2 4 4 6 3 0 20071683 18869562 36070227

nd3k B C S R 86.50% 3 7 123848 25648092 19905615 26500023
oilpan B C S R 78.50% 3 6 806445 20718324 20619486 31272381

smt B C S R 115.53% 6 2 678610 34052247 29081187 32514264

s3dkt3m2 B C S R 71.89% 48 9 0 2 1 5 7 28907757 28448892 33137343
c ag e12 C SR 238.84% 79789050 26838306 29675160 23548014

gupta2 C SR 302 .43% 151680645 44443008 43083603 37690929
18_tbdlinux C SR 556.21% 155477232 27062721 28142433 23693229

t3dh_e C SR 280 .86% 151635015 48766536 44502642 39813813
THREAD B C S R 80.87% 3 5 133183 21132468 19424835 52106409
s3dkq4m2 B C S R 6 8 1 5 % 5 7 249162 34648911 34045659 41870007

SHIPSEC8 B C S R 136.98% 6 5 315583 29733813 27561240 79225065
nd6k B C S R 87.23% 79460154 55056816 42440310 57644208

bmw7st_1 B C S R 78.38% 100219338 63143208 56183454 65568159

SHIPSEC1 B C S R 109.18% 6 4 431495 32684904 30802077 93720321

SHIP_003 B C S R 109.36% 67113801 33443694 32056434 96271227

M_T1 B C S R 76.86% 77642190 47295747 43899444 115887132

SHIPSEC5 B C S R 180.34% 138183939 52999650 49291101 85037760

crankseg_1 B C S R 122.70% 159994710 88609779 71844768 86701950

bmwcra_1 B C S R 78.66% 113444352 74747205 63497493 92765313

hood B C S R 79.20% 146667483 92423358 81847575 100973970
pwtk B C S R 68.36% 136682784 82593486 81182988 99184896

crankseg_2 B C S R 116.80% 2 1 1 270122 117895122 97449201 116827506

nd12k B C S R 89.92% 165674853 115644636 87233697 117935532

cage13 C SR 250.33% 318039381 100447812 112801320 90784071

af_shell8 B C S R 70.33% 2 2 4 840646 140009796 132003729 156470292

Table 6-9 SBCSR SMVM Relative Performance

142

6.5 Summary
In this section two completely new methods of blocked sparse matrix storage were

proposed to address the issue o f zero-fill which occurs frequently when blocking is

applied to sparse-matrices with underlying structure in application areas such as Finite

Element Method and Computational Fluid Dynamics comm only used to solve

mechanical and aeronautical engineering problems.

A representative matrix suite with large matrices which cannot reside entirely in the

internal caches of the processor was chosen and the performance o f the methods was

evaluated on a recent commercial engineering workstation containing an Intel

CoreDuo processor. All 16 tile sizes from 1x1 to 4x4 were evaluated exhaustively for

each sparse matrix and the SM VM execution-time measured using the cycle counter

from TTFW . No attempt was made to use tuning to speed up the tile selection

process along the lines proposed by Vuduc and used in OSKI so the results are

independent of any bias that might have been introduced by the tuning method.

BBCSR was shown to offer the fastest SM VM execution time it in 7 out of 50 cases

when compared against CSR and BCSR and does so by an average of 7.85%

compared with CSR, and 13.93% compared with BCSR. For the same 7 matrices the

deviation of the L2 cache miss rate for BBCSR deviates by 1.4% from the minimum,

CSR by 3.95% and BCSR by 22.2% from the minimum L2 miss rate for a particular

matrix from the 7 matrix subset. The relationship between the amount of zero fill and

higher performance by BBCSR was also clearly highlighted, as were the reasons for

relatively poorer BBCSR performance in the remaining 43 cases.

It was also shown that BBCSR SM V M code can be specialised on a per-bitmap basis,

eliminating all bitmap comparison overhead, however this is at the cost o f a function-

call per non-zero tile and considerable effort in creating and generating the 65k

possible SM V M codes to cover all permutations of a 4x4 tile bitmap.

Based on the shortcomings of the BBCSR method an alternate possibility based on

bitmap scheduling was identified and the Scheduled Block Compressed Sparse Row

storage scheme and relative SM VM was proposed. The code to generate schedules

for the SBCSR SM VM was also discussed as was the possibility of combining

pruning of zero-dependent partial-products and reordering those products so as to

minimise dependencies and hence increase throughput by eliminating stalls due to

143

RAW-hazards. Considerable further work could be done on tuning SBCSR schedules

for each bitmap pattern for all target processor architectures.

The implementation in the SBCSR SM VM C code was enabled by the use o f a non

standard feature of the gcc compiler. Code analysis showed that the generated code

contained many additional assembly language instructions with respect to BBCSR;

however despite low expectations the SBCSR method actually outperformed BBCSR,

BCSR and CSR in the cases of the vibrobox and gyro_m matrices. This was

counterbalanced by significantly poorer performance for SBCSR for the remainder of

the matrix suite. An interesting area for further work would be to combine BBCSR

and SBCSR together with BCSR formats into a single data-structure with a single

hybrid software SM VM method. In the proposed method and data-structure

individual tiles would be stored as BBCSR or SBCSR tiles where BCSR fill is high

and as native BCSR where the fill is low. The author believes such a hybrid format

could offer optimal performance for a wide range of matrices and local fill patterns

could be tuned for on a tile-by-tile basis rather than averaged basis used by Vuduc.

The main reason for the poor performance of SBCSR in all but 2 out of 50 cases is

that the x86 pipeline and hardware are ill-suited to the kind of code used in SBCSR

leading to poor performance. It was also shown that reordering tiles in column-order

as part o f the scheduling process improves the SBCSR performance significantly

m aking it the fastest method in 8 of 50 cases, compared with the 2 cases in which the

row-oriented tile format SBCSR is fastest.

The introduction of bitmap and scheduling hardware would doubtless drastically

improve performance as all of the bitmap-testing, address-generation and scheduling

could be performed in parallel with the floating-point operations making the

execution-time for a dense tile the same as BCSR. Such a hardware-enhanced

processor would have all o f the advantages of SBCSR and BBCSR in terms power,

storage and bandwidth efficiency and none o f the disadvantages. A further advantage

would be a reduction in terms of the number o f instruction fetches and associated 1-

cache misses as a single hardware function-call with a bitmap parameter would

replace a long sequence of instructions. And finally the use o f accumulators to store y

values as they are accumulated and x values to hold the input vector while A matrix

values are streamed directly to functional units without first being loaded into

registers and then retrieved would greatly reduce register pressure inside the processor

as well as latency and power dissipation associated with register file access.

144

7
Chapter 7

“Pray be as trivial as you can ”

- Mabel Chiltern: “An ideal husband” (Oscar Wilde)

1 Hardware Support for Bitmap SMVM
As seen prev iously in C hapter 4 m em o ry and I/O bandw id th are fundam enta l l im ita tions on

the design o f com pu te r system s as no m atter w ha t m em ory techno logy is used to support

com putation . Independently o f w ha t technology is used to connect that m em o ry to the

processor, a par ticu lar im plem enta tion o f a m em ory subsys tem using those techno log ies has

an upper limit on how m uch inform ation can be transferred be tw een p rocesso r and m em o ry in

a g iven time, this is the available m em ory bandw id th and the lim itation o f com pu te p o w e r by

available m e m o ry bandw id th is often referred to as the “ m em o ry -w a l l” [42],

Instruction
M em ory

D ata
M em ory

Processor

Figure 7-1 Processor-Memory System

Indeed in the case o f m ulticore p rocessors or M P S o C s (M ulti P rocessor Sys tem on C hip)

conten tion be tw een m ultip le processors for shared resources lowers the ach ievab le lim it in

term s o f m em o ry subsystem bandw id th . A s can be seen these m atrices are quite sparse ,

con ta in ing zeroes w hich require m em o ry bandw id th to load/store w h ile not con tr ibu ting to the

145

result o f the ca lcu la t ions perfo rm ed using the w h o le m atrix , i.e. they are trivial values from

the point o f v iew o f arithm etic .

7.1 Observations on Software SMVM
S M V M p erfo rm ance depends on the interplay o f m any system param eters including:

• Externa l M em o ry B andw idth and fill d em an d s due to the sparse m atrix A

• D ata cache m isses due to locality issues to do with the x and y vectors

• P rocessor reg is te r spillage to the tile size, in term ediate variables and control code

• Lx)ad/Store and R egister file overheads

• R A W hazards due to dependencies in m atrix vec tor product from co lum n to co lum n

• Branch pena lties due to control code

• Instruction cache m isses due to the chosen tile-size for register b locking

All o f these issues co m b in ed m ean that there is no single tile size which is optimal for each

p rocessor; even those sharing the sam e instruction-set, as d ifferent m odels o f processor often

have d iffe ren t-s ized caches, d iffe rences in cache-h ie rarchy (w hether an L3 cache is included

for instance) and the w id th and clock frequency o f the external m em ory bus.

A s w as seen in ch ap te r 6 one o f the b ig issues with B C SR is the am ount o f instruction code

required as all loops are fully unrolled and m any instructions are required to set up and hold

variab les required in the unro lling process. T h is problem w as further exaspera ted by the

additional b i tm ap tes ting and schedu ling code in B B C S R and SB C S R respectively w hich

genera tes further instructions. T he num ber o f instructions per S M V M partia l-product for

each o f the 3 m ethods is show n in Listing 7-1. In the 3 cases the core ar ithm etic operations

c o m m o n to all S M V M m ethods are h ighligh ted , w hereas the overhead instructions to

cond itionally execu te those core instructions d ep en d in g either on the b itm ap or schedu le are

not. As can be seen there are 6 core a r ithm etic instructions co m m o n to all 3 m ethods, while

B B C S R and S B C S R have 9 and 11 additional overhead instructions respectively.

It has been seen that in both B B C S R and S B C S R cases m uch o f the gain in data-path

p erfo rm ance o w in g to trivial operand (fill) e l im ination w hich itself is data-dependen t is offset

by o ther factors to do w ith the increased code size o f the proposed m ethods, including:

• Increased reg is ter pressure and spillage due to loop unrolling

• Increased instruction code bandw id th requ irem ents

• Increased Instruc tion-cache m isses due to the large size o f unrolled code

• O v erh ead s assoc ia ted with b itm ap or schedu le processing

• B ranch penalt ies

146

C-Code

Assembler

Instructions

BCSR BBCSR SBCSR

yO += value[0] * xO;
if (bitmap&32768) yO +=
value[_nz++] * xO;

goto *jt[*schedule++];
jO: yO += value[_nz++] * xO;
movi 20(%ebp), %eax
movzbl (%eax), %edx
leal 20(%ebp), %eax
incl (%eax)
movi _bbcsr_sm vm 4x4jt(,% edx,4), %edx

movI -16(%ebp), %eax movi %edx, -92(%ebp)
shrl $15, %eax L76:
andl $1, %eax jmp *-92(%ebp)
testb %al, %al L53:
je L36 movi -12(%ebp), %eax
movi -12(%ebp), %eax leal 0(,%eax,8), %edx
leal 0(,%eax,8), %edx 000000

movi 20(%ebp), %eax movi 32(%ebp), %eax movi 36(%ebp), %eax
fidl (%eax) fid! (%edx,%eax) fid! (%edx,%eax)
fmull ■56(%ebp) fmull -64(%ebp) fmull -64(%ebp)
fidl -24f/oebp) fid! ■32(%ebp) fidl ■32(%ebp)
faddp %st, %st{1) faddp %st, %st(1) faddp %st, %st(1)

leal -12(%ebp), %eax leal -12(%ebp), %eax
incl (%eax) incl (%eax)

fstpl -24{%ebp) fstpJ
L36:

^32f/o“ebp) fstpl ~32{%ebp)

6 15 17

Listing 7-1 Register-Blocked SM VM Relative Code Sizes

147

7.2 The Argument for Hardware Acceleration
Given the class o f applications being considered are based largely on Sparse Matrix Vector

Multiplication and the software methods outlined in Chapter 6 which allow sparsity to be

addressed in a platform independent way in software, it makes sense to attempt to extend the

performance of software by providing hardware support to accelerate data compression and

decompression as well as computation using compressed sparse data-structures.

Given these requirements the author proposes that in order to maximise the benefits of

register-blocking a hardware accelerator is necessary rather than relying entirely on software

for SM V M performance in future processor architectures.

The introduction o f bitmap and scheduling hardware would doubtless drastically improve

performance as all o f the bitmap-testing, address-generation and scheduling could be

performed in parallel with the floating-point operations making the execution-time for a dense

tile the same as BCSR. Such a hardware-enhanced processor would have all o f the

advantages o f both SBCSR and BBCSR in terms power, storage and bandwidth efficiency

and none of the disadvantages of either method. A further advantage would be a reduction in

terms of the number of instruction fetches and associated I-cache misses as a single hardware

function-call with a bitmap parameter would replace a long sequence o f instructions. And

finally the use of accumulators to store y values as they are accumulated and x values to hold

the input vector while A matrix values are streamed directly to functional units without first

being loaded into registers and then retrieved would greatly reduce register pressure inside the

processor as well as latency and power dissipation associated with register file access.

The accelerator seeks to increase the effective memory bandwidth for sparse data-structures

and minimise the limitation o f the “m em ory-w all” on computation by storing data in a

compressed format, and providing a means o f compression and decompression which is

suitable for block-structured data used in many applications such as computer graphics, rigid-

body dynamics, finite-element analysis and other scientific and engineering applications,

which operate on large data sets which must be stored in memory.

In order to mitigate the effect o f the “m em ory-w all” the processor pipeline is also modified in

such a way as to take advantage o f compression, increasing the processing rate beyond what

can be achieved by operating on compressed data alone. A typical example of the desirability

o f compression is the use o f matrix representations and linear algebra operators to simulate

reality on a 2-dimensional screen in computer graphics and related applications. In 3D

graphics for instance, operations on a source data matrix often consist o f rotations and other

transformations, and often sequences of them, of the type shown in Figure 7-2.

148

S{Sr . Sy . S ;)

0 0 1)

0
■'*»

0 0

0 0 0
0 0 1) 1

.scaling i i iut r ix

T (d , . d „ , d z) =

1 0 0 dj.

0 1 I) <iy

{) 0 1 (/;

0 0 0 1

trauislutioii iiiatrix

RAO) -

1 0 0 0

U cusf l — s i i i 0 I)

0 siiiW c o s ^ 0

0 0 0 1

r-ax is io(al,ioii matrix

R.,{0) -

cos 0 0 sill 0 0

0 1 0 0
- s i i i (^ 0 r-()si9 0

0 0 0 1

i/-!ixis rotation m atrix

nz(o) =
cosO — sinf, ̂ 0 (I

slii^ confl 0 0

0 0 1 0

0 n 0 1

j-axis rotation m atrix

I 0 0

0 1 s-/i„ 0
0 0 1 0

0 0 0 I

x y tih('ar matrix

1 .sh, 0 0
1 0 0

1 [)

I I I) 1

x z blit’ar m atrix

I 0 0 0

•S'/ll, 1 0 0

■S/ (; (I 1 0

0 I I I) I

y z shear m atrix

Figure 7-2 Transformation Matrices used in 3D Graphics

7.3 Prior Art
A review o f mem ory compression and decompression approaches was provided in section

4.1.7. A key problem for programmers using compressed mem ory sub-systems is that data

has to be decompressed before it can be operated upon as shown in Figure 7-3.

This usually involves reading the compressed data from one part o f memory decompressing it

and storing the decompressed data in another uncompressed portion of mem ory or to internal

processor registers, in both cases valuable additional bandwidth and m emory resources are

consumed and the compression/decompression logic is typically an adjunct to cache mem ory

in practical implementations. This solution has the disadvantage that additional memory

bandwidth is required to read compressed data, store it in uncompressed form, and read it

back into the processor to be operated upon. Additional memory capacity is also required to

hold the uncompressed data and the decompression process will increase pressure on the

processors register-files. In such schemes the utility of compression depends entirely on data-

reuse amortising the costs of compression/decompression, relegating such schemes to

situations where reuse is high. As has been pointed out previously, reuse in the case of

149

S M V M is neglig ib le and limited to the x and y vec tors only , w hile the A matrix values are

used only once, un less m ultip le iterations o f the S M V M operation are perform ed.

Register
Files

wmm wmm h h i ■ ■ ^

Processor

1

Instruction Program
u aia -ra in Decoder Memory

Processor

Compressed
Data Memory

Uncompressed
Data Buffer

Figure 7-3 Conventional Compressed Processor-Memory System

C learly this is a sub-optim al so lu tion w hich exp la ins w hy such com pressed m em ory

subsystem s have rem ained an academ ic curiosity ra ther than en ter ing the industry

m ainstream . A further issue with current com pressed m em o ry system s is the inability to

random ly access com pressed or hybrid data-s tructures w hile com pressed in m em ory.

R andom access in such system s norm ally m ean s uncom press ing the data to an area o f

m em ory or registers in order to perform random access w hich is obviously inefficient from a

m em ory , po w er and processor th roughpu t po int-of-view .

7.4 Proposed Solution
T he p roposed hardw are accelerator is show n in F igure 7-4 and allows an appropriately

m odified p rocessor to operate directly on com pressed data in m em ory w ithout the

requ irem ent for decom pression , thus e l im ina ting the requirem ent for an additional

u ncom pressed data buffer and additional p rocessor and m em ory bandw idth required to handle

d ecom press ion o f com pressed data into a buffer area for further processing.

150

Register
Files

Com pression
Logic

St

Decompression
Logic

 T--------

)re
►

load

Processor

1 1

Instruction Program
MemoryData-Path Decoder

Processor

Com pressed
Data Memory

Hierarchy

Figure 7-4 Proposed Compressed Processor-Meniory System

T he accelera to r a llow s com pressed and hybrid co m p ressed /u n co m p ressed structures o f

arbitrary size and com plexity , consis t ing o f arbitrary data, inc lu d in g the fo llow ing:

• doub le/s ing le /16-b it p recision floating-point m atrices , vec to rs and scalars

• s igned /uns igned integer m atrices, vec tors and scalars

• s igned /uns igned charac ters (8-bit num bers) m atrices, vec tors and scalars

• address-poin ters

In the preferred em b o d im en t o f the proposed invention the co m p ress io n and decom press ion

logic is further h idden w ith in the processor, freeing the so ftw are p ro g ram m er from the low-

level m echan ics o f reading or w rit ing to the com pressed m em o ry subsystem . T he proposed

m ethod is not limited as in prev ious cases to a particular level in the m em o ry hierarchy , ex

be tw een L2 and L3 cache, but is fully transparen t to all levels o f the h iera rchy m ax im is in g

flexibility and applicability to a w ide range o f app lica tions and da ta-reuse frequencies.

7.5 Basic Compression Method
As w as seen in C hapter 6 and described in [52] R eg is te r-b lock ing is a useful techn ique for

accelera ting m atrix algebra (particu larly F in ite-E lem ent) , h o w ev er it has the d isadvan tage in

that for m any m atrices (ex. G oogle) zero fill has to be added d ec rea s in g effec tive F L O P S , and

increasing m em o ry bandw id th requ irem ents , bo th o f w h ich are co m m o d itie s w h ich are

limited by current techno logy in m odern co m p u tin g system s.

In fact the g row ing gap betw een p rocess ing capab ilit ies and m em o ry ban d w id th w h ich are

increasing at highly d isparate rates o f 50 % and 7% per an n u m respectively is often referred to

as the “ M em o ry W all” . T here have been m an y cla im s o f “ b reak in g ” the m em o ry w all and

they usually consist o f using a cache to reduce the probabili ty o f hav ing to go off-ch ip , and/or

151

using multi-threading so that the latency and penalties associated with going off-chip can be

mitigated. These approaches merely hide the problem o f limited external memory bandwidth

rather than solving it and for this reason it is not uncommon to see large engineering

applications pulling down processor performance to 10% or less o f the manufacturers quoted

peak performance specification [26],

The proposed solution generally is to use a bitmap to code for zero and non-zero entries in

dense sub-matrix in the manner shown in Figure 7-5. In the example shown a compression o f

37.5% is achieved. The proposed solution has the advantage that each zero entry in the

matrix to be stored is represented by a 1-bit rather than a 32-bit single-precision, 64-bit

double-precision, etc. number. Overall compression achieved as long as 1 or more entries

per dense-matrix are zero in a 32-bit memory system storing a sparse matrix with 32-bit

single-precision entries. A similar argument holds for a 64-bit or other basic storage unit,

whether integer or floating-point.

4x4 matrix data

0 1 2 3
1.0 2.0 3.0 4.0
0.0 6.0 0.0 0.0
0.0 0.0 0.0 12.0
13.0 14.0 0.0 16.0

IEEE
prec.

storage
bits

original data
with fill

32 128
32 128
32 128
32 128

total 512

1 1 1 1
0 1 0 0
0 0 0 1
1 1 0 1

16 bits stored as 32-b it entry

compressed
with bitmap

32 128
32 32
32 32
32 96

total 320

compression 37.5%

uncomp.
memory

comp, memory

1.0
2.0
3.0
4.0
0.0
6.0
0.0
0.0
0.0
0.0
0.0
12.0
13.0
14.0
0.0
16.0

1.0
2.0
3.0
4.0
6.0
12.0
13.0
14.0
16.0

1111010000011101

16x32 10x32

Figure 7-5 Bitmap Compression Principle

7.6 Conventional Sparse Matrix-Vector Multiplication
One o f the key uses o f sparse data-structures in computer science and engineering

applications is the storage o f sparse matrices and the key application o f sparse matrices is in

the solution o f systems o f simultaneous equations by either direct or iterative methods. The

core operation at the heart o f these direct and iterative methods is the multiplication o f a

sparse matrix by a dense vector to produce a dense result vector.

152

T h e ca lcu la t ion is o f the form y = A x , w here A is a sparse m atrix and y and x are dense

vec to rs as sh o w n in Equation 7-1.

■()■ ■{)() 01 02 03^ “o

1 10 11 12 13 1
=

2 20 21 22 23 2

3 30 31 32 33 _3

Equation 7-1 Sparse M atrix-Vector Multiplication

T h e detailed ca lcu la tions for a 4 x4 sparse m atr ix -vec to r m ultip lica tion perfo rm ed row -w ise

are show n in Equation 7-2.

* X, +

y , = « , „ + « , , + « , 2 * ^ 2 + a , 3 * ^ 3

^ 2 = + ‘̂ 2 \ * + ^ 2 2 * -*̂ 2 + <^23 * ^ 7,

= a 3 || * X || - I - ^31 * X , + « 3 2 * ^ 2 -I- « 3 3 * X 3

Equation 7-2 4x4 Sparse Matrix Vector Multiplication

In a row -based form ulation the e lem ents in the y result vec tor are co m p u ted one row at a time

from a row o f the A matrix m ultip lied by the x vector. In general the form o f the

m ultip lication and sum m ation is show n in Equation 7-3.

y[row] = u\row,colO]* x[co/0] + a[row,col* x[cw/l] + a\row,cul7\ *x[c6>/2] + a\row,col3\ * x[col3]

Equation 7-3 Vector Com putation (y)

T he steps involved in dense m atrix -vec to r ca lcu la tions are:
• p re-load x vec tor into registers w ith in the p rocesso r (reused for all y entries)

• initialise y vector

• read A m atrix e lem en t-by -e lem en t or ro w -b y -ro w into registers w ith in the p rocessor
d ep en d in g on the w id th o f the data-bus

• m ultip ly a[row, col] by x[col] and sum with y[row]

• repeat until all row s/co lum ns have been p rocessed

In the case o f a sparse m atrix m any o f the A .x term s in E quation 7-3 will obv iously be ze ro as

m any o f the co lum ns w ithin a row o f the sparse A m atrix will be zero. C onven tiona l

im plem en ta t ions o f sparse m atrix -vec to r m ultip liers have no m eans o f kno w in g and /o r

avo id ing trivial m ultip lica tions w here an e lem ent o f the A m atrix is sparse, re su lt ing in

re latively longer run-tim es and pow er-d iss ipa t ion for the overall m atr ix -vec to r m ultip lica tion .

153

7.7 Compressed Sparse Matrix-Vector Multiplication
I f the Sparse M atrix has been compressed using the bitmap compression method outlined in

section 7.5 the bitmap designates which matrix elements are zero allowing trivial

multiplications to be eliminated and summations o f y vector elements from constituent

partial-products to be simplified. As the bitmap entries are 1-bit, the m ultiplication operation

reduces to a logical A N D or an i f statement in C.

= few ,),, * * jc „ + * X , + fe rn ,12 * * X2 + * a ,,, * x ,

y, = + fern,,, * a,, * x, + * <2 , 2 * Xj + * <2 , 3 * X3

y>2 = bm̂ ^̂ * f l 2o * -^o + * ^21 * ^1 + bm̂ f̂ * 0 ^2 * X2 + * «23 * ^3

^ 3 = fe rn ,2 * f l j , , * x „ + b m ^ j * <23, * X , + b m ^ ^ * <232 * X2 + b n i^ ^ * * X3

bm„ G {0,1}

Equation 7-4 Compressed Matrix-Vector Multiplication

Based on the bitmap compression the sparse matrix-vector multiplication can be decomposed

into the fo llow ing steps:

• pre-load x vector into registers w ith in the processor (reused for all y entries)

• initialise y vector and read in bitmap into internal register

• Expand bitmap into uncompressed schedule for SM VM and store in register

• Compress schedule to perform only multiplications corresponding bitmap non-zeroes

• M ultip ly a[row, col] by x[col] and sum with y[row] according to compressed schedule

• Repeat until all rows/columns have been processed

The transformation matrices used in 3D graphics and game physics (rigid-body dynamics)

applications shown in Figure 7-2 are a good example. The 32-bit bitmaps corresponding to

the 8 matrices are shown in detail in Table 7-1.

matrix upper 16 bits are unused 0x000 nz comp %
scaling 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 4 68.8%
translation 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 7 50.0%
x-ax is rot. 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 6 56.3%
y-ax is rot. 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 6 56.3%
z -axis rot. 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 6 56.3%
xy shear 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 6 56.3%
X2 shear 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 6 56.3%
yz shear 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 6 56.3%

Table 7-1 Compression Bitmaps of Graphics Transformation Matrices

As can be seen Table 7-1 3D graphics transformation matrices contain a large percentage o f

triv ia l (zero values) allow ing over 50% data-compression to be achieved.

154

matrix unoptimized schedule unoptimized scheduie (non-zeroes)
optimized schedule (non-

zeroes)

scaling 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
#nz 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
translation 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1
#nz 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
x-axis rot. 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1
#nz 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
y-axis rot. 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1
#nz 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
z-axis rot. 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1
#nz 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
xy shear 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1
#nz 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
xz shear 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1
#nz 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
yz shear 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1
#nz 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

2
-

2 2 2
0 1 1 2 2
3 1 3 2 3

0 2
0 0
0 1

2
0
0

2 2
0 0
0 1

T
0
0

2
1 1
0 1

2
1 1
0 1

2
1 1
1 2

2 2
2 2
1 2

2
2
2

1
2
2

~ T
2
2

2 2
2 2
1 2

2 2 2 2 1 1
0 0 1 1 2 3
0 2 1 2 2 3

0 2 2 2 2 2 1
0 0 1 1 2 2 3
0 3 1 3 2 3 3

1 2 2 2 2 1
0 1 1 2 2 3
0 0 1 0 2 3

2 2 1 2 2 1
0 0 1 2 2 3
0 1 1 1 2 3

0 2 2 2 1 1
0 0 1 1 2 3
0 1 0 1 2 3

0 2 1 2 2 1
0 0 1 2 2 3
0 2 1 0 2 3

0 2 2 2 2 1
0 1 1 2 2 3
0 1 2 1 2 3

1 1 1 1
0 1 2 3
0 1 2 3

Memory access cycles
32-bit
64-bit
128-bit

•1 2 "3 1 4 ’ r i 6 “ r | “ 8“ 1 9 10| 11 13 ■TTI 15 32-bit 1 2 3 1 4 5 i 6 7 1
r " 2

3. ^ . 4 5 6 7 ^ 8 com press entries with non-zero b itm aps 64-bit 1 2 3 4
2 3“ -------- 4 128-bit 1 2

'igure 7-6 3D G raphics S M V M Scheduling Exam ples

155

7.8 Accelerator Overview
T h e goal is to im p lem en t a s tream ing S M V M coprocessor w hich can be in tegrated into a

p rocessor-based system as either a coprocessor or built into an existing processor p ipeline as a

spec ia lised com plex instruction or tightly coup led coprocessor. In o rder to m ax im ise

effic iency the A -m atr ix will be acco m m o d ated in either a very large on-chip m em o ry or m ore

likely in external co m m o d ity S D R A M allow ing the solution to scale to arbitrary sized-

prob lem s. T he m ain goal o f bu ild ing a co p rocesso r is to m ax im ise bandw id th efficiency,

p ow er and latency.

T h is is ach ieved by bu ild ing an accelera tor w ith the fo llow ing attributes:

• H ardw are b i tm ap co m p ress io n o f the A -m atr ix , and possib ly the x and y-vectors

m ax im ises bus, m em o ry controller and I/O bandw id th and is fully transparent to the

m em ory h ierarchy un like current schem es

• Single instruction for entire m atrix or tile S M V M product evaluation reduces I-cache

bandw id th and m isses, represents an en o rm o u s sav ing in both I-R A M /cache

bandw id th and p ow er com pared with curren t architectures

• S ingle instruction is expanded into a schedu le o f sub-instructions by the onboard

schedu le r and controller , e lim ina ting all fill and associa ted instructions to calculate

fill-related products that are required in conventional processors

• G ro u p in g o f produc ts across m ultip le-row s o f the A -m atr ix w here the sparsity pattern

allow s m eans few er register-file reads and few er cycles as com ponen ts from up to N

tile row s can be d ispatched in parallel to an N -w ide S IM D FPU rather than perfo rm ing

N separate M A C (M ult ip ly A ccu m u la te) operations because the vec to r register-file

does not a llow independen t access to vec to r e lem ents

• S tream in g A -m atr ix access m eans the A -m atr ix values go directly to be m ultip lied by

the appropria te x -vec to r entries w ithou t first hav ing to be written to a vec to r register

file, resu lting in a large sav ing in pow er and latency com pared w ith conven tiona l

p rocessors

In the fo l lo w in g sections a 4 -w ay S IM D FPU is considered but this is easily m odified to allow

1, 2, 4, 8 etc. FPU s to be used in parallel, d epend ing on the perfo rm ance target for the

accelerator. S im ilarly in the fo l low ing exam ples a 128-bit S IM D FPU com pris ing o f 4 IEEE

sing le-p rec is ion M A C units is considered but this is readily changed to handle any f loa ting

point fo rm at includ ing doub le and ex tended precision, o r equally for that m atter to include

sparse m atrices and vec tors com prised o f integers o f arbitrary precision.

156

7.9 Functional Model of Accelerator
T h e proposed hardw are accelera to r has a hardw are function-call style in terface w here a single

m atr ix -vec to r m ultip ly instruction is passed in a long w ith po in ters to the A m atrix , x and y

vectors , tile row and co lum n d im ensions and a b i tm ap represen ting the sparsity pattern.

E ffectively a single instruction is issues to the acce lera to r w h ich is exp an d ed into a long

sequence o f instructions d ep end ing on the b itm ap pattern.

T h e tile -e lem ent o rde ring and the Sparse M atrix va lue array o rde ring are assum ed to have

been chosen ahead o f tim e by the softw are app lica tions p ro g ram m er in a w ay consis ten t w ith

the hardw are in terface and also in order to m ax im ise overall sy s tem -perfo rm ance . For

instance the layout o f the data-s tructures by the so ftw are p ro g ram m er could also include

scann ing the tiles in a m atrix row (g roup o f row s) a lternately from left to right and right to left

in z igzag o rder to m in im ise cache m isses associa ted with the x -vec to r at the end o f row s thus

ex tend ing the w ork o f Y zelm an and B isse ling [135]. T he hardw are acce lera to r offers the

so ftw are p ro g ram m er to con tinue to m ake all o f these system -level trade-offs w ithou t any loss

o f llexibility.

In the case o f the fo l low ing abstract m odel o f the hardw are acce lera to r it is a ssum ed for

s im plicity that the tile e lem ents are arranged in co lu m n -w ise o rder in o rder to m in im ise

dependencies and hence R A W hazards. S im plified C -code for the bas ic b lo ck -sm v m is

show n in L isting 7-2, w h ere b m p is the sparsity b itm ap , r and c are the tile d im en s io n s , y and

x are the ou tput and input vectors respectively and the array a, is a linear array o f A m atrix

values.

LI. void bsmvm(int bmp,int r,int c,double
*y,double *a,double *x) {

L2 . struct element sch[16];
L 3 . unsigned nz = 0;
L 4 . unsigned i=0;
L 5 . double *y_reg;
L 6 . double *x_reg;
L 7 . double *a_reg;

L8 . // generate schedule containing row/column addrs
L9 . // for all bitmap non-zeroes in parallel
LIO . //
Lll . if (bmp&0x8000) {sch[nz].r=0 ; sch[n z].c=0; nz-l--l-; }
L12 . if (bmpSt0x4 000) {sch[n z].r=l ; sch[n z].c=0; nz+4-; }
L13 . if (bmp&0x2000) {sch[n z].r=2 ; sch[n z].c=0; nz++;}
L14 . if (bmp&OxlOOO) {sch[n z].r=3 ; sch[n z].c=0; nz++;}
L15 . //
L16 . if (bmp&0x0800) {sch[n z].r=0 ; sch[n z].c=l; nz-l--l-; }
L17 . if (bmp&0x04 0 0) {sch[n z].r=l ; sch[n z].c=l; nz-l--i-; }

157

L18 . if (bmp&0x0200) {sch[n z]. r=2 ; sch[n z].c=l; nz++;
L19 . if (bmp&OxOlOO) {sch[n z]. r=3 ; sch[n z].c=l; nz++;
L20 . //
L 2 1 . if (bmp&OxOOBO) {sch[n z]. r=0; sch[n z]. c = 2 ; nz++;
L22 . if (bmp&0x0040) {sch[n z]. r=l; sch[n z]. c = 2 ; nz++;
L23 . if (bmp&0x0 02 0) {sch[n z]. r=2 ; sch[n z]. c = 2 ; nz++ ;
L24 . if (bmp&OxOOlO) {sch[n z]. r=3 ; sch[n z]. c=2 ; nz++ ;
L25 . //
L26 . if (bmp&0x00 08) {sch[n z]. r=0 ; sch[n z]. c=3 ; nz++;
L27 . if (bmp&0x0004) {sch[n z].r=l; sch[n z]. c = 3 ; nz++ ;
L28 . if (bmp&0x0 002) {sch[n z]. r=2 ; sch[n z]. c = 3 ; nz++;
L29 . if (bmp&OxOOO1) {sch[n z]. r=3 ; sch[n z]. c = 3 ; nz++ ;
L30 . //
L31 . // perform schedule of MACs using single FPU
L32 . y_reg = y;
L33 . X reg = x;
L34 . a_reg = a;
L35 . while (i<nz) { // process one non-zero at a time
L36 . y_ reg[sch[i].r] += a[i] * X reg[sch[i] -c] ;
L37 . i++;
L38. }
L39 . // assign output of smvm operation
L40 , y = y_reg;
L41 . } / / bsmvm()

Listing 7-2 C-Code Hardware Block SMVM

It should be noted that while column-major ordering is assumed in the above code it is trivial,

either in hardware or in software, to swap row and column addresses in the schedule to

accommodate a row-major format for the basic tile. Similarly it is simple to perform loop-

unrolling in a manner similar to that used for the BCSR code in section 6.2.1 for a 4-way

SIMD floating-point MAC as shown in Listing 7-3.

L l . while (i<nz) { // schedule MACs using 4x SIMD FPU
L 2 . y_reg[sch[i].r] += a[i] * x_reg[sch[i].c];
L 3 . y_reg[sch[i+1].r] += a[i+l] * x_reg[sch[i+1].c];
L 4 . y_reg[sch[i+2].r] += a[i+2] * x_reg[sch[i+2].c];
L 5 . y_reg[sch[i+3].r] += a[i+3] * x_reg[sch[i+3].c];
L 6 , i+=4; // advance by 4 non-zeroes
L 7 . }

Listing 7-3 SIMD HW Block SMVM C-Code (bsmvmX4)

Here the 4 new values of the elements of the y-register are calculated in parallel using fixed

offsets to look-up the row and column addresses of scheduled calculations 4 at a time (in one

cycle) rather than one at a time as in the previous example. In practice the adders implicit in

the code above will not be required as the pointer to the schedule array can be advanced 4-

elements at a time rather than as shown above (for simplicity).

158

7.10 Accelerator Hardware Implementation
The accelerator consists o f the fo llow ing major functional blocks:

• Software interface

• Bitmap scheduler

• SM VM SIMD Datapath

• Control Logic

• Memory interface

in the fo llow ing sections the design o f the elements o f the hardware accelerator w ill be

explained in detail. A top-level block-diagram o f the accelerator is shown in Figure 7-7.

BM int
Arows int
Acols int
Anz int
Brows int
Beds int
RSTaddr address
ClXaddr address
VALaddr address
BIXaddr address addr rd wr d out d in

Software interface Memory Interface
r n n tr n iconiroi

a X
y jn

i
y__out

f 1r 1

control control

Bitmap Scheduler SMD Datapath

schedule

control-signals

Controller

SMVM Accelerator

-^d o n e

Figure 7-7 Sparse SM VM Hardware Accelerator Block Diagram

A system block-diagram showing how the accelerator is interfaced as a coprocessor to a host

processor, caches, peripherals, memory controller and external SDRAM memory is shown in

Figure 7-8.

159

value

coIJdx
row_start
bitmap_^dx

External
■̂ DRAM

Host
Processor

l-Cache

— I-----------

r
D-Cache

SDRAM
Controller

processor bus

Software Interface
control ^

•

control

Bitmap Scheduler

Memory Interface
control

a X y j n '
i

y_out
1 r ’

control

SIMD Datapath

schedule

control-sicjnals

Controller

SMVM Accelerator

Figure 7-8 Hardware SM VM Coprocessor

The typical data layout for this kind o f coprocessor w ill be to keep the values which exhibit

most locality in the on-board caches while the A-matrix value array (and possibly the bitmap

array) w ill typically be held in external SDRAM as it has no reuse unless the matrix is

symmetric or i f a matrix-matrix product is being computed.

A simplified but complete functional C-model for the accelerator is shown in Listing 7-4 and

as can be seen replaces lines L17-L32 in Listing 6-5 w ith a single hardware function call

(bsmvmX4 outlined in Listing 7-2 and Listing 7-3) which removes all o f the conditional code

which was shown to slow down bitmap SM VM execution. The main loop in the code

processes the sparse matrix tile-by-tile until the entire y-vector result has been computed.

This loop is the main outer element o f the control logic. The inner loop then scans through

the tiles in a row o f matrix blocks, loading the bitmap for the tile, the segment o f the x-vector

and then generating the schedule from the bitmap, loading the A values and performing the

160

sm vm multiplication for the tile according to the generated schedule. Additional logic is also

required to generate the control signals necessary to load and store data held in caches or

SD R A M .

LI. void load_y(double *y, double *dest) {
L2 . y[0] = dest[0];
L3 . y [1] = dest[1];
L4 . y [2] = dest[2];
L5 . y [3] = dest[3] ;
L6 . } // load_y()

L7 . void store_y(double *y, double *dest) {
L8 . dest[0] = y [0];
L9 . dest[1] = y [1];
LIO. dest[2] = y[2];
LI 1. dest[3] = y [3];
L12. } // store_y()

L13. void load_x(double *x, double *src, int *col_idx) {
L14. x[0] = src[(*col_idx)];
L15. x[l] = src[(*col_idx) + 1];
L16. x[2] = src[(*col_idx) + 2];
L17. x[3] = src[(*col_idx) + 3];
L18 . } // load_x()

LI9. void load_bmp(int bitmap, int *bitmap_idx) {
L20. bitmap = *bitmap_idx & OxOOOOFFFF;
L21. } // load_bmp()

L22. void hw_smvm4x4 (int bm, int r, int c, int *row_start,
int *col_idx, int *bitmap_idx, double *value, double *src,
double *dest) {

L23. int i, j, bitmap=0, nz=0;
L2 4. double y[4], x[4];

L2 5. for (i=0; i<bm; i++, dest+=r) {
L2 6. load_y(y ,dest); // load y-vector segment
L2 7. for (j=row_start[i]; j<row_start[i + 1]; j++,

bitmap_idx++, col_idx++, value+=nz) {
L2 8. load_bmp(bitmap,bitmap_idx); // load bitmap
L29. load_x(X ,src,col_idx); // load x-vec segment
L30. // load A matrix values & do 4x4 bitmap smvm
L31. bsmvmX4(bitmap,r ,c ,y ,value, x) ;
L32 . }
L3 3. load_y(y ,dest); // store back
L 3 4 . }
L35. } // hw_smvm4x4()

Listing 7-4 H W Accelerator (Abstract C-Model)

161

In the case where the accelerator functionality is integrated into the processor pipeline rather

than as a standalone accelerator only the bsm vm X 4 functionality would be built into the

hardware. In this way the inner and outer loops could be implemented in software for

flexibility and the existing memory interface contained in the processor could be reused, thus

m aximising flexibility while reducing the amount o f hardware required.

7.10.1 Software Interface
As can be seen in Figure 7-7 the software interface allows the following parameters for the

matrix-vector product to be loaded into the accelerator:

• BM is the number of bitmap-blocked tiles in the A-matrix

• Arows the number o f rows in the A-matrix

• Acols the number of columns in the A-matrix

• Anz the number of non-zero entries in the A-matrix

• Brows - number of rows in a block tile

• Bcols- number o f columns in a block tile

• VALaddr - base address of the (A-matrix) value array

• RSTaddr - base address of the row-start array

• C lXaddr - base address of the col_idx array

• BIXaddr - base-address of the bitmap array

The data-structure that the accelerator accesses in memory is of the form shown in Figure 7-9.

The figure is purely illustrative and the data-structures are fully independent and can occur in

any order or position within the accelerator memory map.

These values are written into internal accelerator registers via a memory-mapped interface

attached to the host processor memory bus, and as soon as they have been loaded computation

can be enabled by writing the start code to the hardware-accelerator command register. The

register map for the software interface including command register is shown in Table 7-2.

As can be seen the command register allows the accelerated smvm to be started, smvm

calculations to be paused, a paused smvm to be resumed or the accelerator to be stopped and

all registers reset. All registers are reset with the exception of the NZ-count which shows the

number of A-matrix non-zeroes processed to date by the accelerator in the current smvm, and

the cycle-count which shows the number of elapsed cycles in the current smvm operation.

162

memory
0 2 4

ooCO

^01 0 0 3 q4 0

3lO ^11 0 0 0 3 i 5

0 0 &22 0 0 ^25

0 0 ^32 ^33 ^34 ^35

row s ta r t
V A Laddr

col idx

v a lu e

b i tm a p jd x
V A L addr + A nz

Figure 7-9 HW Accelerator Data-Structure

If required additional registers could easily be added to a llow the p ro g ram m er d ebug S M V M

codes by in terrogating the conten ts o f the X and Y vec to r segm en t and o ther registers internal

to the accelerator.

Address Name Type b[31:4] b3 b2 b1 bO
0x0000 com m and Read/W rite reserved stop resum e pause start
0x0001 BM Read/W rite 32-bit integer
0x0002 Arows Read/W rite 32-bit integer
0x0003 Acols Read/W rite 32-bit integer
0x0004 Anz Read/W rite 32-bit integer
0x0005 Brows Read/W rite 32-bit integer
0x0006 Bools Read/W rite 32-bit integer
0x0007 RSTaddr Read/W rite 32-bit ad d ress
0x0008 ClXaddr ReadA/Vrite 32-bit ad d ress
0x0009 BIXaddr Read/W rite 32-bit ad d ress
OxOOOA VALaddr ReadAA/rite 32-bit ad d ress
OxOOOB NZcount Read Only 32-bit counter
OxOOOC CYCcount Read Only 32-bit counter

Table 7-2 HW Accelerator Control Registers

163

7.10.2 Bitmap Scheduler
The bitmap scheduler generates a list o f non-zero partial-products to be evaluated along with

their relative column and row addresses along w ith a non-zero count to be used by the

controller block. In this section the proposed scheduler hardware implements the

functionality o f lines L l l to L29 o f Listing 7-2. The scheduler implementation and the list it

produces is independent o f whether a single FPU or SIM D FPU is used to evaluate and sum

the SM VM partial-products. The bitmap schedule is compressed according to the bitmap as

shown in Table 7-3. The rescheduling shown is achieved by controlling a bank o f

multiplexers and a re-scheduler o f arbitrary complexity can be constructed using multiple bit-

slices and multiplexers. In general using the proposed method a re-scheduler o f arbitrary

complexity can be constructed from an array o f (N +N)/2, 4-bit by two-input multiplexers

where N is the number o f bitmap bits and corresponding slots to be scheduled. A complete

64-bit scheduler capable o f scheduling 16 partial-product multiplications and four 4-input

additions to sum the partial-products is shown in Figure 7-11.

bitmap
bit

note schedule

0 unused slot (contains 0)
advance schedule of all slots one
slot to the right of current position

1
required slot (contains

non-zero)
do not advance schedule of slots to

right of current position

Table 7-3 Bit-slice of Bitmap Scheduler

As can be seen in the diagram the re-scheduler consists o f 120 by 4-bit, 2:1 multiplexers with

associated Lx)ok-Up Tables (LUTs). The majority o f the logic however is comprised by the

four hundred and eighty 2:1 multiplexers. I f the re-scheduler is included as part o f a

programmable processor pipeline it can also function as a general purpose 64-bit shifter (in

steps o f 4 bits or multiples o f 4 bits) i f an additional 2:1 multiplexer is included at the input to

select between LU T outputs and an input register or bus.

The C-code for the population-counter is shown in Listing 7-5.

LI . int popcount(int bmp) {
L2 . int nzc = 0;

L3 . // count # non-zeroes in bitmap
L4 . if (bmp&0x8000) nzc++;
L5 . if (bmp&0x4000) nzc++;
L6 . if (bmp&0x2 0 00) nzc+-i-;
L7 . if (bmp&OxlOOO) nzc++;

00 if (bmp&0x0800) nzc++;

164

L9. if (bmp&0x0400) nzc++
LIO . if (bmp&0x0200) nzc++
Lll . if (bmp&OxOlOO) nzc++
L12 . if (bmp&0x0 08 0) nzc++
L13 . if (bmp&0x0 040) nzc++
L14 . if (bmp&0x0 02 0) nzc++
L15 . if (bmp&OxOO10) nzc++
L16 . if (bmp&OxOOOB) nzc++
L17 . if {bmp&0x0004) nzc++
L18 . if (bmp&0x0002) nzc++
L19 . if (bmp&OxOO 01) nzc++
L20 . return(nzc);

L21. } / / popcountQ

Listing 7-5 Population-Counter C-code

The final element of the scheduler is an iteration-counter which determines the num ber o f

arithmetic iterations necessary to perform the SM V M calculations using an N-element wide

SIMD FPU. The C-code for the iteration-counter is shown in Listing 7-6.

LI. int itercount (int nzc) ■{
L2 . int iter;
L3 . int round;

L 4 . // calculate # SIMD cycles to perform SMVM on tile
L 5 . // divide nzc by 4 as SIMD does 4 MACs/cycle
L 6 . // round up if 2 Isbs of NZ count are 11/10/01
L7. //
L 8 . round = (nzc&2 | nzc&l) ? 1 : 0;
L 9 . iter = (nzc/4) + round;

LIO. return(iter) ;
Ll l . } / / itercount()

Listing 7-6 Iteration-Counter C-Code

The block-diagram for the population and iteration counters, as well as the truth-table for the

full adder is shown in Figure 7-12. The population/iteration counter consists o f a tree o f full-

adders which computes the sum of the non-zero bitmap bits and returns it as a 5-bit binary

number (required precision to represent 16 bitmap bits).

In general a modified structure can be constructed to incorporate the scheduler functionality

within a general-purpose 64-bit shifter. The resultant shifter can function in one of 4 possible

modes:

• Bitmap scheduler mode where LUT outputs are grouped according to the input bitmap

to compose a minimum length multiplication/addition schedule (only non-zeroes)

165

• Shifter m o d e w here the 64-bit input is sh ifted left accord ing to the b itm ap applied

• 64-bit r ight sh ifter by using an input and output s tage to reverse bit o rder before

perfo rm ing a left shift

• G rouper/ex trac to r m ode w here the bytes from the 64-bit input are g rouped together

acco rd ing to the b i tm ap bits applied (in m ultip les o f 4-bits)

T he g rouper m o d e could be useful in ex tracting bytes quickly from a com plex data-structure.

A n o th er e lem ent o f the schedu le r is a popu lat ion -coun ter w h ich counts the num ber o f ones in

the b itm ap. T h e schedu le r w orks by only se lec ting row /co lum n address pairs, for w h ich there

is a co rrespond ing non-zero b itm ap entry, and com pac ting them together into a single

schedu le o f opera tions for w h ich no trivial opera tions need be executed in order to com pute

the m atr ix -vec to r product. T he schedu le r is com posed o f by te-w ide 2; 1 m uxes. For s im plicity

a 1-bit w ide 2:1 m ux is show n in F igure 7-10.

EN A B z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

B

EN

Figure 7-10 M ultiplexer (2:1) Truth-Table and Logic Diagram

If a b itm ap en try is non-zero the m ultip lexer ou tput is the local row/col address pair. If on the

o ther hand the b itm ap entry is zero, the local row/col pair can be skipped and the row/col pair

to the right o f the current pair is selected as the m ultip lexer output. This selection procedure

is con tinued from right to left for the 16 b itm ap entries and correspond ing row/col pairs. T he

result at the end o f the selection procedure is that only those row/col pairs correspond ing to

b i tm ap non-zeroes are g rouped and concatenated by row, and then by co lum n from left to

right, e l im ina ting any trivial operations. T he logic is repetitive and contains m ain ly local

w iring , w ith the exception o f the b itm ap entries used to control each line o f selection

m ultip lexers. This regularity as well as the use o f s im ple com ponen ts results in a fast and

area efficient design.

T he hardw are required for the entire scheduler consists o f approxim ate ly 1440 gates to

im plem ent the schedu le r from 480 2;1 m ultip lexers and to im plem ent the population/iteration

coun ter requires 19 FA (Fu ll-A dder) cells and one O R gate so a total o f around 115 gates.

T he total hardw are requirem ent for the scheduler is therefore around 1.6k gates.

166

row
col

bml

bm2

bm3

bm4

bm5

bm6

bm7

bm8

bm9

bm10

bm11

bm12

bm13

bml 4

10 00
10 10

10
10 10

00 10
01
00

GO 00
10

00
01

00
00

0 /

0 / \ 1 6 7 V

\ 1 o / \ i 0 / \ i oV

\ 1 0 / \ 1 0 / \ 1 0 / \ 1 6 /

■\ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 /

0 / \ 1, 0 / \ 1 0 1 0 / \ 1 0 / \ 1 0 7

^ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 o V

\ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 6 / \ 1 0 / \ 1 0 / \ 1 6 /

o / \ i , o / \ i , 0 / \ i , o / \ i , o / \ i 6 / \ i o / \ i o / \ i 0 /

0 / \ 1, 0 / \ 1, 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 6 / \ 1 0 / \ 1 0 / \ 1 6 /

\ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 6 / \ 1 0 / \ 1 0 / \ 1 0 /

0 / \ 1 0 / \ 1 0 / \ 1, 0 / \ 1. 0 / \ 1, 0 / \ 1, 0 / \ 1 0 / \ 1 0 1 0 / \ 1 0 / \ 1 6 /

0 / \ 1 0 1 0 / \ 1 0 / \ 1 0 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1. 6 1 0 \ 6 / \ \ ° /

\ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 0 / \ 1 6 / \ 1 0 / \ 1 0 / \ 1 6 /

bm15
r r r

o / \ i o / \ i o / \ i o / \ i o / \ i o / \ i o / \ i o / \ i o / \ i o / \ i o / \ i 6 / \ i o / \ i o / \ i o /
\'A - j '4 - j '4 • j '4 'j '4 - j '4 '['4 - j '4 - j '4 -|"4 - | ' ‘t

sch15 sch14 sch13 sch12 s c h ll sch10 sch9 sch8 sch7 sch6 sch5 sch4 sch3 sch2 sch1 schO

Figure 7-11 Bitmap Scheduler Implementation (64-bit = 16 x 4-bit)

muxes total (N*N+N)/2

2 3 3

3 6 6

4 10 10

5 15 15

6 21 21

7 28 28

8 36 36

9 45 45

10 55 55

11 66 66

12 78 78

13 91 91

14 105 105

15 120 120

167

b s bg b io b i i b i2 b i3 b i4

| l |1 |1 1 1 1 1
a b Cj

F A
Co Sn

a b Cj
F A

Cq Sq

2 I 2
a b Ci

F A
Co s„

FA truth-table
a b C| Co So
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

a b Ci
F A

Co So

o 1
a b Cj

F A
Cq S q

16 [16
a b Ci

F A
Co S(

” [32 8

b i5
1

bo bi b2 bs b ̂ bs bg b?

a b Ci
F A

Cn So

a b Ci
F A

Co Sq

a b c,
F A

Co So

2 f~2
a b Ci

F A
Cq So

] 2 I 2 I 2

u 1
a b Ci

F A
Cq S|

J 2

1 1

a b c. a b c,
F A F A

Co S o Co S q

~2] 2[~2
a b Ci

F A
Co So

~4] 4
a b c,

F A
C q S q

a b c,
F A

Co S o

8
a b Ci

F A
Co So
16

_8 [F
a b C|

F A
Co Sc

8

a b Ci
F A

Co So

J 8

iter[2 :0] nzc[4 :0]

Figure 7-12 Population & Iteration Counter Logic

168

7.10.3 Control Logic
The control-logic for the accelerator applies all of the relevant control signals along with

column and row addresses from the bitmap generated schedule to the internal blocks in order

to ensure the correct products are calculated, summed and stored back to the correct y-

registers. In the control logic signals are generated to;

• Lx)ad y-vector entries into internal registers corresponding to each row o f tiles across

the A-matrix (load_y control signal)

Lxiad bitmap for tile into register (load_bmp)

Generate schedule from tile bitmap

Load x-vector entries into internal registers corresponding to each A-matrix tile

(load_x)

Stream (Read) A entries from memory (load_a)

Select the correct x vector entries to be multiplied by each A-matrix entry

Evaluate each A.x partial product in sequence (amultx)

Select the correct y value to be updated by adding the A.x partial-product in the FP

adder

Update the correct y-vector registers

Write y-vector register contents back to memory at the end o f an A-matrix row

The example matrix and data-structure are shown in Figure 7-13 and the corresponding

control signals are shown in Figure 7-14.

cO c l c 2 c 3 c4 c 5 c 6 c7

3 q2

3 l l 3 i 5

326

330 332 337

341 345 347

3 s6

362

3?0 375

ro w _ s ta r t

c o i j d x

v a lu e

b m p j d x

0 4 4/-►

0 4 0 4z
3ao 3 tl 3 q2 332 3 i 5 326 837 870 341 302 845 375 3 s6 347

0 x 1 4 9 0 ' 0 x 0 2 4 8 1“ MUO 0x0941

A row s 8

A co ls 8

A nz 14

B row s 4

B co ls 4

R S T a d d r OxFOOOOOOO

C lX a d d r OxEOOOOOOO

V A L addr OxDOOOOOOO

B IX addr OxCOOOOOOO

Figure 7-13 Example Matrix & Data-Structures

169

T he segm en t o f the t im ing d iagram show n assum es a 4 x4 bloctc tile and single FP m ultip lie r

and FP adder, each with single c lock-cycle latency, ra ther than a S IM D unit for s im plic ity and

the period for w h ich the contro l-s ignals are sh o w n correspond to the first 2 tiles and re lative

b itm aps. N ote that the t im ing-d iagram is s im plif ied and does not include the datapath source

and destination m ultip lexer contro l-s ignals derived from the schedule.

T he y-reg is te r is initially loaded w ith 4 values that hold for the first 2 matrix tiles. O nce these

values have been loaded the b i tm ap co rrespond ing to the first m atrix tile is fetched, and a

schedule is generated . N ext the first 4 x-reg is te r values are loaded in the next 4 clock-cycles.

Fo llow ing this, the first 4 non-zero A -m atr ix values are fetched from the value array in

m em ory and m ultip lied by the x-reg is te r entries to p roduce 4 partial products. These partial-

products are then sum m ed with the 4 y-vector entries stored in the y-register over 4 cycles.

N ext the second tile and assoc ia ted b itm ap are processed updating the y-register va lues to

com ple te the m atrix -vec to r product. Finally the y-vector values correspond ing to the first row

o f A -m atr ix tiles are written back to m em ory from the y-register and the com putation o f the

sm v m product correspond ing to the next row o f A -m atr ix tiles can be com puted.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28clock LnjirmjinnjTTirLrumj^^
y_addr | 0 | 1 | 2 | 3 |__ | 0 | 1 | 2 | 3l

load_y J __

store_y __| |

x_addr ________________| 0 | 1 | 2 | 31_________________ | 4 | 5 | 6 | 7~__________________________

load_x ________________ _________________ __________________________

bx_addr______________ 0_________________________ 1_________________________ 2_______________

load_bmp _____________ | ______________

gen_sch ____________________ | | _____________________________ ______________

v_addr ___________________________ | 0 | 1 | 2 | 3]_________________ | 4 | 5 | 6 _________________

load_val ___________________________ _________________ _________________

mul_ax ______________________________ _________________ ______________

add_y _________________________________ _________________ ___________

utilisation I 0 I 1 I 2 I 3 I 0 I 0 I 1 I 2 I 3 I 0 I 1 I 2 I 3 I 1 I | 4 | 5 | 6 | 7 | 4 | 5 | 6 | 2 | | 0 | l | 2 | 3

F ig u r e 7 -14 C o n t ro l L o g ic T im in g - d ia g r a m
T he con tro l- log ic also contains logic to detect da ta-dependencies w hich can lead to R A W

hazards and to stall the datapath until these dependenc ies have been resolved. Equally the

170

co n tro l- log ic can halt (pause) the operation o f the accelera tor to w ait for data from an external

bus, d a ta -cach e or indeed external S D R A M .

All con tro l-s igna ls generated by the con tro l-log ic are designed to p ipeline and to overlap

o pera tions w hich can be carried out s im u ltaneously w h ere possib le , resulting in a high bus

b an d w id th utilisation o f 26/28 cycles or 93 % w hich is good. Realistically the bus utilisation

w hich can be ach ieved will be lower than this once the long latencies o f h igh-frequency

f ioating-poin t units used in typical p rocessor cores, are considered , and care w ill need to be

taken in des ign ing the p ipelin ing schem e in o rder to m ax im ise bus utilisation.

7.10.4 Memory Interface
T he m em o ry in terface is controlled by the con tro l- log ic and increm ents the 4 address pointers

and genera tes m em o ry read and write s ignals in o rder to ensure all data required by the

accelera tor arrives in a timely m anner from the appropria te addresses in m em o ry or cache

external to the accelera to r and that the results genera ted by the accelera tor are w rit ten back to

the correct addresses in m em ory or cache ex ternal to the accelerator.

7.10.5 SMVM using Bitmap Schedule
T he non-zero e lem en ts o f A are m ultip lied by the co r resp o n d in g e lem en ts o f x w h ich are

looked up from a register using the co lu m n reference from the co r respond ing schedu le entry.

T he e lem en ts o f A are read from m em ory d irectly and m ultip lied as they en ter the processor.

T here is no requ irem ent to s tore the e lem en ts o f the A sparse m atrix in the case o f Sparse

Matrix by vec to r m ultip lication as the en tries in A are on ly used once.

Not s toring the e lem en ts o f A in a register-file has several advan tages co m p ared w ith the

state-of-the-art:

• P o w er and time (latency) associa ted w ith a w rite o f a row o f the A m atrix to the

register-file is saved

• P o w er and tim e (latency) associa ted w ith a read o f a row o f the A m atrix from the

register-file is saved

• R egis ter-pressure associa ted with tem porary storage o f A m atrix en tries in the

register-file is avoided

S toring the x-vecto r in a tem porary reg is ter ra ther than a m ulti-ported register file has the

advan tage that the relatively h igher pow er assoc ia ted with a read o f the x vec to r for each row

o f the A m atrix to be m ultiplied is saved as a s im ple tem pora ry register can be used to hold

the entries o f x.

171

The hardware required to perform the multiplication of the non-zero entries in A by the

appropriate elements of the vector x stored in a local register is shown in Figure 7-15. In the

figure A-dly denotes a delay to match the delay in clock-cycles through the floating-point

adder, and M-dly denotes a delay to match that through the floating-point multiplier. These

delays are required in order to line up the times at which the multiplexer selection signals

arrive with the data arriving at the floating-point adder and multiplier.

01

ys 5 g ̂ \ t f t t
(N

e
o > -hCM

r) CSI ^ C

e

X

CM ____

e
X PM

Figure 7-15 Bitmap Controlled SM VM Datapath (128-bit SIMD)

172

7.10.6 Hardware Requirements
The breakdown in terms o f hardware gate complexity for the fu ll hardware accelerator

using a 128-bit SMID FPU consisting o f four 1EEE754 compliant FP adders and four

multipliers is detailed in Table 7-4.

Block Gates % total
Software Interface 2688 3.35%
Scheduler 1600 1.99%
Control-Logic 3072 3.82%
Memory Interface 1200 1.49%
Datapath 71792 89.35%
Total 80352 100.00%

Table 7-4 H W Accelerator Gate-Count

The gate counts for the adders and multipliers are taken from a commercial data-sheet

[150]. As can be seen the gate-count for the scheduler and all o f the other logic accounts

for around 10% o f the total accelerator gate-count. This means that the 8.5k gates

required for the accelerator logic outside the FPU accounts for only 12% additional logic

when compared with what would be required to implement a SIMD FPU o f the type

implemented commonly in GPUs or the Intel SSE2 instruction-set [151].

7.11 Summary
In this section a hardware implementation for an accelerator to support bitmap blocked

SM VM was outlined in detail, including functional description, logic implementation and

gate-counts. As was demonstrated the overhead o f implementing the proposed hardware

is around 12% when compared w ith the S IM D FPU hardware already included in many

x86 compatible processors. It was also shown that the impact can be further mitigated by

incorporating the scheduling logic into the shifter unit already present in many

commercial processors. Furthermore the possibility o f just implementing the hardware

matrix-vector multiply in an existing processor pipeline would leverage the existing

memory interface, registers and allow the control logic to be implemented in software

thus further reducing the hardware overhead while maximising flex ib ility .

173

8
Chapter 8

“Imagination is the beginning o f creation.

You imagine what you desire,

you will what you imagine and at last you create what you will. ”

- George Bernard Shaw

8 Conclusions
The reader has been guided through the world of complex applications [156] which depend on

the solution o f complex systems of equations represented by matrices for their answers.

These applications are as diverse as can be imagined ranging from the design o f aircraft,

bridges and other structures to performing a Google search. In fact a key property of these

problems in general and Google search, and o f the latter in particular is the fact that the

systems of equations and by extension the matrices that represent them contain far more zero

coefficients than non-zeroes, i.e. they are sparse. In the case of Google the Google-Matrix

has some 3 Billion entries on a side with an average of 6-7 non-zeroes per row/column.

Users and developers of large-scale applications based on sparse-matrices using SM VM as a

principal kernel have found that the performance of computer systems is often extremely

poor, often achieving less than 10% of manufacturers stated performance on this class of

applications [26]. Unfortunately processor architectures and software methods which depend

on them have advanced relatively little over recent decades and the major techniques have

been in use for over 20 years with only iterative refinements, and often “ the cure is worse than

174

the disease” with m any apparent methods for speeding up calculations only offering a return

if used for the equivalent of 10s or lOOs of unoptimized SM V M operations.

Previous work by Vuduc [52] and others on Sparse Matrix-Vector Multiplication using the

Block Com pressed Sparse Row (BCSR) format has shown that many large matrices contain

large amounts of zero-fill when tiled into locally dense tiles leading to lower than predicted

performance and higher than predicted power dissipation due to the bandwidth necessary to

fetch and process zeros in what the method assumes to be a dense sub-matrix (tile).

In partial answer to come of the performance limitations o f existing blocked sparse storage

formats two new sparse-storage formats are introduced in Chapter 6. The formats are both

based on trivial techniques first identified by Richardson [138] in 1992. These methods have

remained largely ignored in the intervening period as the solution identified by Richardson

d idn’t address the fundamental underlymg problem o f limited m em ory bandwidth, which was

highlighted by M cKee [33] as the “M em ory W all” . Essentially the method and hardware

implementation outlined by Richardson adds to the difficulties the program mer and processor

designer face by first fetching trivial data into the processor, consuming valuable bandwidth,

before deciding that the data is not required and can by bypassed. Indeed having multiple

parallel lloating-poinl and trivial processing units makes the processor larger, slower and

more difficult to program, negating many of the supposed benefits o f trivial operand

processing.

The key insight in this work is that by decoupling trivial operand detection from processing, a

compression can be obtained. This compression increases effective memory bandwidth, and

separately trivial operand processing can then be performed without the necessity for

specialised hardware in the processor pipeline as proposed by Richardson [138]. It is also

shown that the overhead of trivial operand detection and tagging has negligible cost which is

dwarfed by the cost of assembling the data-structures required for large scale numerical

applications, thus the benefits of the proposed accrue almost entirely to the whole application.

The performance o f these methods is explored in detail in terms first experimentally using a

suite o f 50 large sparse matrices as a benchmark suite running on a typical engineering

workstation with modern multicore processor, and the Bitmap Block Compressed Sparse Row

(BBCSR) format was shown to perform better than BCSR or CSR reference methods in 7 out

of 50 cases. Observing the shortcomings o f BBCSR led to the development o f the Scheduled

Bitmap Block Compressed Sparse Row (SBCSR) format. This format was also duly

benchmarked and analysed in both row-major and colum n-major scheduled variants.

175

The row-major SCBRS format was found to be faster than BCSR or CSR in 2 out o f 50 cases,

and the column-major format was found to be faster than either BCSR or CSR formats in 7

out o f 50 cases. Finally the shortcomings of the software BBCSR and SBCSR formats were

highlighted and the case for hardware acceleration was outlined. The implementation and

functional model for the accelerator were described and the resultant hardware cost estimated.

8.1 Thesis Contributions
In this thesis a variety of techniques for accelerating Sparse Matrix computations are

proposed and evaluated experimentally. It will be shown that the performance o f the kernel

Sparse Matrix Vector Multiplication (SM V M) operation, which dominates the execution time

of iterative methods, can be improved dramatically compared to General Purpose Processors

(GPP) and significantly when compared to Special Purpose Computers (SPC).

The specific improvements over the state-of-the-art proposed, which boost performance,

proposed in this thesis are;

• A first Bitmap Block Compressed Sparse Row (BBCSR) sparse matrix storage

method is proposed which eliminates the zero fill associated with the BCSR (Block

Compressed Sparse Row) sparse matrix format

• Benchmarking on a 50 matrix set o f large sparse matrices demonstrates a significant

speed-up in 7/50 cases using the proposed BBCSR format, using a standard gcc

compiler and Intel Xeon processor, when compared with CSR and BCSR formats

• A second sparse matrix format Scheduled Block Compressed Sparse Row (SBCSR)

format is proposed which addresses the need to perform up to r*c bitmap comparisons

(where r and c are respectively the number of rows and columns in the dense block

sub-matrix) and branches performed to implement the BBCSR Sparse Matrix Vector

Multiplication (SM VM)

• Again the SBCSR method is benchmarked against BBCSR, BCSR and BCSR

methods for the same 50-matrix set, using the same configuration of gcc compiler,

RH EL and Xeon processor

• A generic hardware accelerator is described which allows the SBCSR method to be

utilised without penalty when compared with BCSR SM VM

• Integer sparse matrices such as the DCT coefficient matrices used in video

applications are easily supported

176

• Finally the proposed hardware also allows compressed sparse data-structures to be

random-accessed in situ without prior decompression, offering a major advantage over

the state of the art

The work described carried out by the author at TC D and latterly at Movidius Ltd. has

resulted in the following patent applications, the first o f which has already been granted, and

the remaining 3 of which are the subject o f ongoing patent applications:

• Geraghty D., Moloney D., “Data processing system and m ethod”,

US2009()3()960 (A l) , Priority Date 2005-05-13

• Moloney D., “A processor”, W 0 2 0 0 9 1 0 1 119 (A l) - 2009-08-20, Priority Date 2008-

02-n

• Moloney D., “A processor exploiting trivial arithmetic operations” , EP2137610 (A l) -

2009-12-30, Priority Date 2007-03-15

• Moloney D., “A circuit for compressing data and a processor employing sam e”,

EP2137821 (A l) - 2009-12-30, Priority Date 2007-03-15

The same work has also contributed so far to the following publications:

• D. Moloney, D. Geraghty, C. M cSweeney and C. McElroy, “Streaming Sparse Matrix

Com pression/Decom pression”, in Lecture Notes in Computer Science 2005 (HiPEAC

Conference), Springer-Verlag, No. 3793, pp. 116-129

• D. Moloney, C. McSweeney, C. M cElroy and D. Geraghty, “Hardware accelerator for

finite element iterative m ethods” , lEE Irish Signals and Systems Conference 2005,

pp.330-337

• D. Gregg, C. M cSweeney, C. McElroy, F. Connor, S. McGettrick, D. Moloney, and D.

Geraghty, "FPGA Based Sparse Matrix Vector Multiplication using Com m odity

DRAM Memory," in Field Programmable Logic and Applications, 2007. FPL 2007.

International Conference on, 2007, pp. 786-791.

8.2 Scope for Further W ork
In the following sections a number o f areas requiring further investigation following on from

this w ork are outlined along with possible approaches where known.

8.2.1 Hardware Coprocessor Implementation
The hardware accelerator proposed in chapter 7 could be implemented on FPGA [152] and

interfaced to external SDRAM in order to gauge the real speed-up that can be achieved by

implementing the support for bitmap SM VM processing in hardware. In order to allow this to

be achieved the C-code already outlined would have to be translated into a hardware

177

description language (HDL) such as Verilog [153], simulated and verified and then mapped to

the target FPG A device, making judicious use of available components such as floating-point

units and SD RA M controllers where available in order to minimise the effort and time

involved.

8.2.2 Bitmap Hardware Integration in Existing Processor
As was indicated in section 7.11 the hardware accelerator proposed could be implemented as

part o f a processor pipeline in order to reduce the overhead. For instance in the x86 processor

instruction set architecture (ISA) complex instructions are already translated into a series of

simpler uOPs (micro-operations) as detailed in [152]. Thus the accelerator functionality

could be implemented within the ptlsim simulator [155] as part o f the x86 processor pipeline.

This would allow the performance benefits o f the SBCSR technique to be measured over a

large number of existing applications. Furthermore the same instrumented version of ptlsim

could also be enhanced to recognise sequences o f binary code which could benefit from the

proposed technique using dynamic binary instrumentation. The latter approach would allow

existing x86 binaries to be evaluated for potential performance benefits.

8.2.3 SIVIVM Tuning
The BBCSR and SBCSR sparse storage formats described in Chapter 6 can be advantageous

but are obviously not optimal in terms of performance for all matrices, i.e. their usefulness

depends on the non-zero pattern in the underlying sparse matrix. The experiments conducted

in the same chapter focussed on exploring a large range of possible tilings exhaustively in

order to make a fair comparison between CSR, BCSR and the proposed methods. In practice

this exhaustive approach is wasteful of compute resources and time. A better approach would

be to expand on the approach used by Vuduc [52] where the amount of fill in the sparse

matrix in target sparse storage formats such as CSR and BCSR is estimated by sampling a

portion of the sparse matrix rather than the whole, to include the proposed storage schemes.

According to Vuduc tilings yielded by the sampling approach yields results that are on

average within 10% of the fastest matrix vector multiplication times obtained by exhaustive

search. This being said even using the sampling approach is grossly inefficient with 20-40

SM V M times being expended to estimate fill meaning that the payback for tiled schemes is

most likely to occur where the same matrix is used to compute a number o f SM V M products

greater than the time taken to estimate fill.

178

8.2.4 Hybrid Sparse Matrix Storage Formats
An interesting area for further work would be to combine BBCSR and SBCSR together with

BCSR formats into a single data-structure with a single hybrid software SMVM method. In

the proposed method and data-structure individual tiles would be stored as BBCSR or SBCSR

tiles where BCSR fill is high and as native BCSR where the fill is low. The author believes

such a hybrid format could offer optimal performance for a wide range of matrices and local

fill patterns could be tuned for on a tile-by-tile basis rather than averaged basis used by

Vuduc.

For example the code shown in Listing 8-1 shows how a Hybrid BCSR (HBCSR) could

accommodate dense blocks where the BCSR format is an exact match for the underlying tile,

i.e. contains no zero fill, while blocks containing fill could be multiplied using a bitmap as in

BBCSR. Alternately a schedule could be generated and the blocks containing fill could be

multiplied according to the schedule generated from the non-zero tile elements or the bitmap.

L I . v o i d h b c s r_ s m v m 4 x 4 (i n t bm, i n t r , i n t c , i n t * r o w _ s t a r t , i n t
* c o l _ i d x , Type * v a l u e , Type * s r c , Type * d e s t) {

L 2 . i n t i , j , _ n z , b i t m a p , n z ;
L3 . Type yO, y l , y 2 , y 3 , xO, x l , x 2 , x 3 ;
L4 . l o n g lo n g t a g ; / / 6 4 - b i t i n t e g e r
L5 .
L 6 . f o r (i = 0; i<bm; i+ + , d e s t + = r) { / / b l o c k -
L7 . yO = d e s t [0] ;
L8. y l = d e s t [l] ;
L9 . y2 = d e s t [2] ;
LIO . y3 = d e s t [3] ;
L l l . f o r (j = r o w _ s t a r t [i] ; j < r o w _ s t a r t [i + 1] ; j+ + , c o l _ i d x + + ,

v a l u e + = n z) {
L12. / / f i r s t e n t r y i n v a l u e [] r e l a t e d t o b l o c k i s a t a g
L13 . _n z = 0;
L14. t a g = memcpy(v a l u e , & t a g , 8) ; / / copy t o 6 4 - b i t i n t
L15. v a l u e + + ; / / a d v a n c e p o i n t e r t o s k i p b i t m a p e n t r y
L16 . xO = src [(*col i d x)]
L17 . xl = src [(*col _idx) -1- L]
L18 . x2 = src [(*col i d x) + 2]
L19 . x3 = src [(*col idx) + 3]
L20 . if (tag= = 0.0) { / / 0 . 0 means bio
L 2 1 . yO += value[0] * xO / / row 0
L22 . yO += value[1] * xl
L23 . yO += value [2] * x2
L24 . yO += v alue [3] * x3
L25 . yl += v alue [4] * xO / / row 1
L26 . yl += v alue[5] * xl
L27 . yl += v alue[6] * x2
L28 . yl += v alue[7] * x3
L29 . y2 += v alue[8] * xO // row 2
L30 . y2 += value[9] * xl
L31 . y2 += value[10] * x2
L32 . y2 += value[11] * x3
L33 . y3 += value[12] * xO // row 3

179

I

L34. y3 += value[13] * xl;
L35. y3 += value[14] * x2;
L36. y3 += value[15] * x3;
L37. nz=16; // advance value pointer by r*c
L38. }
L39. else { // block contains fill so bitmap SMVM
L40. bitmap = tag & OxOOOOOOOOOOOOFFFF; // 4x4 bitmap
L41. nz = ta g » 1 6 & OxOOOOOOOOOOOOFFFF; // NZ for 4x4
L42. if (bitmap & 32768) yO += value[_nz++] * xO; //row 0
L43. if (bitmap & 16384) yO += value[_nz++] * xl;
L44. if (bitmap & 8192) yO += value[_nz++] * x2;
L45. if (bitmap & 4096) yO += value[_nz++] * x3;
L46. if (bitmap & 2048) yl += value[_nz++] * xO; //row 1
L47. if (bitmap & 1024) yl += value[_nz++] * xl;
L48. if (bitmap & 512) yl += value[_nz++] * x 2 ;
L49. if (bitmap & 256) yl += value[_nz++] * x3;
L50. if (bitmap & 128) y2 += value[_nz++] * xO; //row 2
L51. if (bitmap & 64) y2 += value[_nz++] * xl;
L52. if (bitmap & 32) y2 += value[_nz++] * x2;
L53. if (bitmap & 16) y2 += value[_nz++] * x3;
L54. if (bitmap & 8) y3 += value[_nz++] * x O ; //row 3
L55. if (bitmap & 4) y3 += value[_nz++] * xl;
L56. if (bitmap & 2) y3 += value[_nz++] * x2;
L57. if (bitmap & 1) y3 += value[_nz++] * x 3 ;
L58. }
L59. }
L60 . dest[0] = yO;
L61. dest[1] = y 1;
L62 . dest [2] = y2;
L63 . dest[3] = y3;
L64. }
L65. }//hbcsr_smvm4x4()

Listing 8-1 HBCSR 4x4 SMVM C-Code

In SB C SR and hybrid formats containing SB C SR tiles considerable further work could be

done on tuning SBC SR schedules, for each possible bitmap pattern, on each o f the target

processor architectures. Additionally the author believes there is considerable merit in

exploring zigzag variants o f BBC SR , SB C SR and hybrid formats, along the lines proposed in

[135]. The bitmap SM V M formats could also be useful for managing variable block sizes and

unaligned B C SR (U B C SR) [52] in a general hybrid format.

8.2.5 Extended Scope for Trivial Operand Processing
This author notes that although not mentioned by Richardson or Lilja it is possible that trivial

multiplication could be extended to the general case o f multiplication by powers o f 2 resulting

in a small unit which adds exponents and leaves the mantissa o f the multiplicand unmodified

in a manner similar to that proposed in [139]. It would be interesting to profile matrices to

see what proportion o f the data falls into this category and to see how different floating-point

units with differing latencies can be accommodated as part o f the bitmap scheduling process.

180

8.2.6 Quantifying Power dissipation
A lth o u g h the suspicion is that B B C S R and S B C S R fo rm ats reduce pow er-d iss ipa t ion because

th ey e lim ina te both the need less fe tch ing o f zero-fill values from m em o ry as well as trivial

o p e ra t io n s utilising them , no expe rim en ta l ev idence has been gathered in this w ork to p rove it.

It w o u ld therefore be in teresting to investigate the pow er-d iss ipa t ion o f the p roposed m eth o d s

on pow er-d iss ipa tion and corre la te this in form ation w ith fill o r som e o ther m etric so a tun ing

m e th o d a long the lines o f that p roposed by V u d u c can tune for low est pow er, o r pow er-

p e r fo rm an ce rather than ju s t pe rfo rm ance as at present.

8.2.7 Scalability
A key issue with en g in ee r in g p rob lem s is that they scale to m eet and exceed the ava ilab le

co m p u tin g resources. T h is sca ling has im plica tions for bo th the num erical precis ion required

and the address-space necessary to access the data. In the fo rm er case w h ile doub le-p rec is ion

is the s tandard for num erica l co m pu ta t ions today, 80-bit ex tended precis ion is a lready in

c o m m o n use and supported by a varie ty o f co m p u tin g p la tfo rm s includ ing the x86 (Intel and

A M D) ISA. In fact the recently ratified IE E E 754-2008 s tandard [78] for floating-po in t

ar ithm etic provides for b inary and dec im al 128-bit form ats , and 256-b it a r ithm etic is used in

physics and com puta tional chem is try app lica tions [157]. Indeed a recent review by Bailey

[158] identifies a range o f num erical applica tions requ ir ing 128-bit or h igher precis ion .

B itm ap com press ion w ou ld achieve 1:128 or better for zero-fill in these applica tions.

S im ilarly w hile 32-b it is the curren t s tandard for addresses, investigation into 64-b it S M V M

has already begun [142]. It w ould be in teresting to investigate the benefits o f b i tm ap

com press ion for these applications.

8.2.8 Lookahead Bitmap Scheduling
A further re f inem ent o f the schedu le r w ou ld be to perfo rm look-ahead in order to reso lve

dependencies . In princip le if a schedu le can be generated in one c lock-cycle and the resu ltan t

S M V M takes N Z cycles, the schedu le r can look ahead at the next N b itm aps to eva lua te

w he the r data dep en d en c ies and assoc ia ted R A W hazards can be elim inated .

A s can be seen in the fo l low ing ex am p le show n in F igure 8-1 if sch ed u lin g is p e r fo rm ed

independen tly on a b i tm ap at a time, dependencies and assoc ia ted R A W hazards o ccu r in

assoc ia tion with the su m m atio n o f y[l] as each e lem ent o f row 1 in the tile is non-zero . If this

schedu le w ere p rocessed a stall w ou ld occur in associa tion w ith each addition o f the partia l

p roduc ts to y [l] . T he so lu tion depic ted in the sam e figure is to com pu te the schedu les fo r 2

b i tm aps w ith in the sam e m atrix row dependen tly , look ing ahead to see w hich slots in the

181

second bitmap schedule can be interleaved w ith those from the first bitmap schedule in order

to remove dependencies. This Lookahead scheduling can be extended to further bitmaps on

the same basis as shown in order to accommodate floating-point adders w ith progressively

higher latencies which cause proportionately higher stall penalties i f not resolved.

bitmapi bitmap2
OxOFOO 0x5448

0 0 0 0 0 0 1 0 1
1 1 1 1 1 0 1 0 0
2 0 0 0 0 0 1 0 0
3 0 0 0 0 1 0 0 0

0 1 2 3

ind ependent schedu Inc

sch (bnni) col 0 1 2 3
row 1 1 1 1

sch (bm2) col 0 1 1 1 3
row 3 0 1 2 0

lookahead sched uling

sch (bm1) col 0 1 2 3
row 1 1 1 1

sch (bm2)
col 0 1 1 3 1
row 3 0 2 0 1

Figure 8-1 Lookahead Bitmap Scheduling

The only disadvantages w ith extended bitmap scheduling are;

• Initial start-up latency o f N cycles where N stages o f Lookahead are used in bitmap

scheduling

• Additional complexity in terms o f registers to hold partial products whose addition to

the y-value is deferred because a RAW hazard would otherwise arise.

8.2.9 Further Experimental SM VM Benchmarking
It would make sense to extend this work to benchmark the proposed sparse matrix formats

and SM VM methods across multiple processor architectures and variants o f the same CPU

containing different numbers o f cores, FSB speeds, cache sizes etc. Furthermore on multicore

processors it would potentially increase performance i f decompression code were run as a

thread on a separate core in a CMP. Thus one core would decode bitmaps and prepare

schedules which the other core would elaborate. It would also be interesting to investigate the

u tility o f bitmaps for other linear-algebra operations such as matrix-matrix products.

182

8.2.10SM VM Benchmark suites
The lack of availability of libraries and lack o f standard benchmark suites of sparse matrices

means that researchers in the field are forced in the first case to recreate the results o f others,

and in the second can “cherry-pick” results to prove their point. The field in general would

benefit from a repository for SM VM codes and standardised test-suites. Test-suites can be

drawn from repositories such as MatrixMarket [11], UF Sparse Matrix Collection [6] or

Parasol [12], Reliance on these matrices alone as “canned problem s” is felt to be insufficient

by the author in that they may not contain sufficient data to gather statistically useful results.

Furthermore reading in very large sparse matrices in text format and converting them to tiled

data-structures is very time-consuming and can take tens to hundreds o f times longer than

SM VM products.

A more useful approach would be to synthesise sparse data-structures algorithmically which

have the desired statistical properties in terms of:

• number of non-zeroes per row/column

• particular block-structure or tile size

• particular non-zero density or pattern within blocks/tiles

Such a library would allow whole populations of matrices with particular properties to be

created and evaluated algorithmically in a platform independent and reproducible manner

allowing Sparse Matrix storage schemes and associated Sparse Matrix vector multiplication to

be more thoroughly explored than with a fixed Sparse Matrix suite. A useful feature in such a

library would be to extract algorithmic descriptions o f sparse matrices from existing

repositories such as MatrixMarket allowing them to be described in a concise manner, and

used as a basis for the generation of new matrices with similar properties.

8.2.11 Other Uses for Bitmaps
An interesting extension of the work presented here is that the bitmap hardware can easily be

extended to allow random access to compressed structures or hybrid structures in memory,

without first having to decompress them. A representative hybrid data-structure is shown in

Figure 8-2 and consists of a 3D scaling matrix which is around 50% sparse along with three

dense 4-element vectors, a pointer to the next structure in m emory and a 32-bit bitmap

associated with that next structure element. As can be seen in Figure 8-3, random access to

any 4-element compressed or uncompressed element of the hybrid data-structure in mem ory

can be readily achieved by employing a chain of simple adders and some additional logic to

mask out the relevant sections. Assum ing that each sub-element in a 4-element sub-structure

183

is the same length the bitmap bits can be summed directly to form an offset which is added to

the base address o f the hybrid data-structure, thus forming the address o f the required sub

element o f the structure. The proposed scheme is fu lly transparent to the memory hierarchy

o f the processor advancing beyond the compression schemes surveyed in Chapter 4.

64-bit RAM wordbitmap description data address

base+0sysx

base+2

base+4

0.0

0.0

base+6

base+80.0

base+10

base+120.0

base+14

base+16

0.0
4x4 scaling m atrix

.addr. bmp0.0

0.0

sz

0.0

0.0

0.0

0.0

>---4-element vector

20

4-e lement vector
22

23

24

25
4-e lement vector

26

27

addr28 pointer to next str.

next str. Bitmap bmp29

30

Figure 8-2 Random Access to Sparse Data-Striictures

184

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IRF I bm7 bm6 bm5 bm4

u

- 3

r

(J

bm3 bm2 bml bmO

' 4

U U U U U U u

' 3

u

f[7]

rN
M

u

u

f 6]

' 3 ' 3

'U

U

' 6

f 5]

f4

' 3

f3

U

u

' 6

f[4] f[3]

f2
TJ

u

u

u

b
u

fO

f[2] f[1] f[0] / f[7:01

word cn,

^ addr[7:0]

32

U
base addr

I32

0 0 0
0 0 0

0 0
1 0 0

1 0 0
2 0 0

1 0 0
3 0 0

1 0 0 0
4 0 0

1 0 0 0
5 0 0

1 1 0 0
6 0 0

1 1 0 0
7 0 0

1 0 0 0 0 0

0
4
4
4
a
4

12
4

16
4

20
4

24
4

28
4

32

addr gen

,-1 '1
▼ ▼

addr RAM wr r a m rd bru_hold

Figure 8-3 Random-Access Bitmap Addressing

pw_config

instr_f[7:0]

185

Parting Thought

The work described here is the resuh of 6 years of on and off effort, much of which was not

reported here as it was not considered (by the author) to merit inclusion. It has been a voyage of

personal and scientific discovery with many roads taken and subsequently back-tracked when a

new approach was required and brings to mind “The Road not Taken” by the American poet

Robert Frost from his “M ountain Interval” collection in 1916.

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveller, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair

And having perhaps the better claim.

Because it was grassy and wanted wear;

Though as for that, the passing there

Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the first for another day!

Yet knowing how way leads on to way,

I doubted if I should ever come back.

I shall be telling this with a sigh

Somewhere ages and ages hence:

two roads diverged in a wood, and I —

I took the one less travelled by,

And that has made all the difference.

186

Bibliography

[1] K. Asanovic, R. Bodik, B. C. Calanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D.

A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams and K. A. Yelick, "The

Landscape of Parallel Computing Research: A View from Berkeley", EECS

Department, UC Berkeley, Technical Report No. UCB/EECS-2006-183, 2006

[2] J. Shalf, “The new landscape o f parallel computer architecture” , Journal of

Physics: Conference Series, 2007, Vol. 78, pp. 1-15

[3] Y. Saad, “ Iterative Methods for Sparse Linear Systems - Second Edition” , SIAM,

2003, ISBN 0-89871-534-2

[4] IEEE Standards Board, “ IEEE Standard for Binary Floating-Point Arithm etic” ,

Technical Report ANSI/IEEE Std. 754-1985, IEEE, New York, 1985

[5] R. Barrett , M. Berry , T. F. Chan , J. Demmel , J. Donato , J. Dongarra , V.

E i jk h o u t , R. Pozo , C. Romine and H. Van der Vorst, “Templates for the Solution

of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM,

1994, Philadelphia, PA

[6] T.J.R Hughes, 1. Levit and .1. Winget, “Element-by-Element Implicit Algorithms

for Heat Conduction” , Journal o f the Engineering Mechanics Division, ASCE, 109

(1983), pp.576-585

|7] T.J.R Hughes, I. Levit and J. Winget, “An Element-by-Element Solution

Algorithm for Problems o f Structural and Solid M echanics” , Com puter M ethods in

Applied Mechanics and Engineering, 36 (1983), pp.241-254

[8J P. Wesseling and P. Sonneveld, “Numerical Experiments with a Multiple Grid and

a Preconditioned Lanczos Type M ethod”, Lecture Notes in M athematics 771,

Springer-Verlag, Berlin, Heidelberg, New York, pp. 543-562 , 1980.

[9] http://www2.cs.cas.cz/harrachov/slides/Gijzen.pdf (accessed 08/04/2010)

[10] http://www.cise.ufl.edu/research/sparse/ (accessed 08/04/2010)

[11] http://math.nist.gov/MatrixMarket/ (accessed 08/04/2010)

[12] http://www.parallab.uib.no/projects/parasol/data/ (accessed 08/04/2010)

[13] Kevin R. Gee, “ Using latent semantic indexing to filter spam ”, SAC '03:

Proceedings of the 2003 ACM symposium on Applied computing, pp.460-464

187

[14] N. Muller, L. Magaia, B. M. Herbst, “Singular Value Decomposition, Eigenfaces,

and 3D Reconstructions” , SIAM Review, Vol. 46, No. 3, pp. 518-545

[15] P. Kogge, “The Architecture o f Pipelined Computers”, McGraw-Hill, ISBN-0-07-

035237-2, 1981

[16] O. C. Zienkiewicz and R L. Taylor, “The finite element method. Vol. I. Basic

formulations and linear problem s”, London: McGraw-Hill, 1989.

[17] L. Oliker, X. Li, P. Husbands, R. Biswas, “Effects o f Ordering Strategies and

Programming Paradigms on Sparse Matrix Computations” , SIAM Review, Vol. 44,

No. 3, pp.373-393

[18] G.P. Nikishkov, “ Introduction to the Finite Element M ethod”, Lecture Notes,

University o f Aizu, Aizu-W akamatsu 965-8580, Japan http://web-ext.u-

aizu.ac.jp/~niki/feminstr/feminstr.html (accessed 08/04/2010)

[19] R. Courant, "Variational methods for the solution of problems of equilibrium and

vibrations," Bull. Amer. Math. Soc., 49 (1943), pp. 1-23.

[20] R.W. Clough, “The finite element method in plane stress analysis” . Proceedings o f

the Second ASCE Conference on Electronic Computation, 1960

[21] F.T. Johnson, E.N. Tinoco and N.J. Yu, “Thirty Years o f Development and

Application of CFD at Boeing Commercial Airplanes, Seattle” , A lA A paper

2003-3439, 2003, pp. 1-24

[22] http://web.mit.edu/course/l 6/16.810/w w w /l 6.810_L4_CAE.pdf (accessed

08/04/2010)

[23] Taylor V.E.; Ranade A.; Messerschmitt D.G, “SPAR: a new architecture for large

finite element computations” , IEEE Trans, on Computers, Vol. 44, No. 4, April

1995, pp.531-545

[24] http://web-ext.u-aizu.ac.ip/~niki/iavaappl/iassem/iassem.html (accessed

08/04/2010)

[25] http://www.netlib.org/blas/ (accessed 08/04/2010)

[26] W. Anderson, W. Gropp, D. Kaushik, D. Keyes & B. Smith, “Achieving high

sustained performance in an unstructured mesh CFD application”. Conference on

High Performance Networking and Computing, Portland, Oregon, USA, 1999,

pp.1-11

188

[27] W.D. Smith and A.R. Schnore. “Towards an RCC-Based Accelerator for

Computational Fluid Dynamics A pplica tions”, Proceedings o f the International

Conference on Engineering of Reconfigurable Systems and Algorithms, June 23 -

26, 2003, Las Vegas, Nevada, USA, pp.222-234

[28] 1. S. Duff, A. M. Erisman and J. K. Reid, “ Direct Methods for Sparse M atrices” ,

Oxford University Press, London, 1986

[29] I. Duff, R. Grimes, J. Lewis, “ Sparse Matrix Test Problems”, ACM Transactions

on Mathematical Software, Volume 15, March 1989, pp .1-14

[30] J. Koster, “Parallel templates for numerical linear algebra, a high-performance

computation library” , MSc. Thesis, Dept, o f Mathematics, Utrecht University, July

2002

[31] M. Silva, R. Wait, “Sparse matrix storage revisited” . In Proceedings of the 2nd

Conference on Computing Frontiers (Ischia, Italy, May 04 - 06, 2005.), CF '05.

ACM Press, New York, NY, pp.230-235

[32] P.T. Stathis, S. Vassiliadis, S. D. Cotofana, “A Hierarchical Sparse Matrix Storage

Format for Vector Processors” , Proceedings o f IPDPS 2003, pp. 61a, Nice, France,

April 2003

[33] McKee, S. A., “ Reflections on the mem ory wall” . In Proceedings o f the 1st

Conference on Computing Frontiers (Ischia, Italy, April 14 - 16, 2004). C F '04.

ACM Press, New York, NY, pp. 162-168

[34] J. Hennessy, D. Patterson, “Com puter Architecture A Quantative Approach, 4 ‘̂

Edition” , M organ-Kaufmann, ISBN 978-0123704900, September 27, 2006

[35] Goddeke, D. and Strzodka, R. and Turek, S., “Accelerating Double Precision FEM

Simulations with G PU s”, Proceedings of ASIM 2005 - 18th Symposium on

Simulation Technique, Erlangen, Germany, 2005, pp .139-144

[36] h ttp ://ww w.realworldtech.com /page.cfm ?ArticleID=RW T081502231107& p=l

(accessed 08/04/2010)

[37] Hrishikesh, M. S., Burger, D., Jouppi, N. P., Keckler, S. W., Farkas, K. I., and

Shivakumar, P. 2002. “The optimal logic depth per pipeline stage is 6 to 8 F 0 4

inverter delays” . Proceedings o f the 29th Annual international Symposium on

Computer Architecture (Anchorage, Alaska, May 25 - 29, 2002), pp. 14-24

189

[38] M.A. Horowitz, R.Ho, K.W. Mai, "The Future of Wires", Proceedings of the IEEE,

2001, pp. 490-504

[39] R. Tanabe, Y. Ashizawa, H. Oka, "CMOS Scaling Analysis Based on ITRS

Roadmap by Three-Dimensional Mixed-Mode Device Simulation", Proc. of

SISPAD2004, pp.303-306

[40] Sprangle, E. and Carmean, “Increasing processor performance by implementing

deeper pipelines”, Proceedings of the 29th Annual international Symposium on

Computer Architecture 2002, pp.25-34.

[41] J. Bobba, M. Moravan and U. Saeed, “TAP: Taxonomy for Adaptive Pre-fetching”,

University of Wisconsin, Madison http://pages.cs.wisc.edu/~moravan/tap.pdf

(accessed 08/04/2010)

[42] W ulf W., and McKee S., “Hitting the memory wall: Implications o f the obvious”,

Computer Architecture News, 23(1), pp.20-24, 1994

[43] https://computation.llnl.gOv/casc/sc2001_niers/MemW all/MemW all01.html

(accessed 08/04/2010)

[44] B. Jacob, “A case for studying DRAM issues at the system level”, IEEE

Micro, Vol. 23 , No. 4, July-Aug. 2003, pp.44-56

[45] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current High

Performance Computers” , Technical Committee on Computer Architecture

(TCCA) Newsletter, IEEE Computer Society, December 1995

[46] J. L. Henning, “SPEC CPU2000: Measuring CPU Performance in the New

Millennium”, Computer, v.33 n.7, July 2000, pp.28-35

[47] K. Asanovic, ''Vector M icroprocessors”, PhD Thesis, UC Berkeley, 1987

[48] G. Griem, L. Oliker, J. Shalf, and K. Yelick, “Identifying Performance Bottlenecks

on Modern Microarchitectures using an Adaptable Probe”, IPDPS'04 - Workshop

14 , pp. 255-263

[49] O. Temam and W. Jalby. “Characterizing the behaviour o f sparse algorithms on

caches”. Proceedings o f Supercomputing '92, 1992, pp.578-587

[50] J. Feldman, C. Retter, “Computer Architecture: A Designer’s Text Based on a

Generic RISC”, McGraw-Hill, ISBN 0-07-113318-6, 1994

190

[51] Todd C. Mowry, "Tolerating Latency Through Software-Controlled Data

Prefetching", Ph.D. thesis, Stanford University, Computer Systems Laboratory,

March 1994

[52] R. Vuduc, “Automatic performance tuning o f sparse matrix kernels”, PhD thesis,

UC Berkeley, California, USA, December 2003

[53] Allan, A.; Edenfeld, D.; Joyner, W.H., Jr.; Kahng, A.B.; Rodgers, M.; Zorian, Y.;

“2001 technology roadmap for semiconductors”, IEEE Computer, Volume

35, Issue I, Jan. 2002, pp.42-53

[54] Hammerstrom, D. W. and Davidson, E. S. 1977. “ Information content o f CPU

memory referencing behaviour” . In Proceedings o f the 4th Annual Symposium on

Computer Architecture (March 23 - 25, 1977). ISCA 77. ACM Press, New York,

NY, pp. 184-192

[551 Park, A. and Farrens, “Address compression through base register caching”. In

Proceedings of the 23rd Annual Workshop and Symposium on Microprogramming

and Microarchitecture (Orlando, Florida, United States, November 27 - 29, 1990).

International Symposium on Microarchitecture. IEEE Computer Society Press, Los

Alamitos, CA, pp .193-199

[56] J. Liu, K. Sundaresan, N. R. Mahapatra. "Dynamic Address Compression

Schemes: A Performance, Energy, and Cost Study", 2004 IEEE International

Conference on Computer Design (ICCD'04), 2004, pp. 458-463

[57] Suresh, D. C., Agrawal, B., Yang, J., and Najjar, W. 2005. “A tunable bus encoder

for off-chip data buses” . In Proceedings o f the 2005 international Symposium on

Low Power Electronics and Design (San Diego, CA, USA, August 08 - 10, 2005).

ISLPED '05. ACM Press, New York, NY, pp.319-322

[58] D. Citron. "Exploiting Low Entropy to Reduce Wire Delay.", Computer

Architecture Letters, Volume 3, Jan. 2004, pp.l

[59] E. G. Hallnor and S. K. Reinhardt, “A Unified Compressed Memory Hierarchy”,

Proc. l l “' International Symposium on High Performance Computer Architecture,

HPCA-11, 2005, pp.201-212

[60] B. Abali, H. Franke, S. Xiaowei et. al, “Performance o f Hardware Compressed

Main Memory”, Proc. 7"’ Int’l Symposium On High Performance Computer

Architecture, 2001, pp.73-81

191

[61] “D esktop Perform ance and O ptim ization for Intel® Pentium ® 4 Processor” , Intel

Corporation, O rder num ber; 249438-01, Feb 2001

[62] S. R ixner, “Stream Processor A rchitecture”, K luwer Academ ic Publishers, 2002

[63] B. Flachs, S. A sano, S.H. Dhong, P. Hofstee, G. G ervais, R. Kim, T. Le, P. Liu, J.

Leenstra, J. Liberty, B. M ichael, H. Oh, S. M. M ueller, O. Takahashi, A.

H atakeyam a, Y. W atanabe, N. Yano, "A Stream ing Processing Unit for a CELL

Processor", ISSCC 2005, pp. 134-135

[64] http://w w w .fftw .org/cell/ (accessed 13 April 2010)

[65] http://w w w .jatit.org/volum es/research-papers/V ol7N o2/6V ol7N o2.pdf (accessed

08/04/2010)

[66] M anuel U jaldon, Joel H. Saltz, "Exploiting parallelism on irregular applications

using the GPU", Proceedings o f the 2005 International Parallel Com puting

Conference (TARCO'05), 2005, pp.639-646

[67] http://w w w .khronos.org/opencl/ (accessed 08/04/2010)

[68] http://w w w .nvidia.com /obiect/cuda_hom e_new .htm l (accessed 08/04/2010)

[69] h ttp ://w w w .am d.com /us/products/technologies/stream -technologv/Pages/strean-

technologv.aspx (accessed 23 April 2010)

[70] http://graphics.stanford.edu/projects/brookgpu/ (accessed 08/04/2010)

[71] w w w .stanford .edu/class/ee380/A bstracts/070926-PeakS tream .pdf (accessed 23

April 2010)

[72] h ttp://softw are.intel.com /en-us/data-parallel/ (accessed 23 April 2010)

[73] http://groups.csail.m it.edu/cag/stream it/ (accessed 08/04/2010)

[74] http://w w w .opengl.org (accessed 08/04/2010)

[75] http://w w w .khronos.org/ (accessed 23 April 2010)

[76] http://m sdn.m icrosoft.com /en-us/directx/default.aspx (accessed 08/04/2010)

[77] http://w w w .nvidia.com /object/personal_supercom puting.htm l (accessed 23 Ap-il

2010)

[78] IEEE, “754-2008 IEEE Standard for Floating-Point A rithm etic”, Aug. 29 2008,

ISBN 978-0-7381-5753-5

[79] h ttp ://w w w .nvidia.com /content/PD F/ferm i_w hite_papers/N V ID IA _Ferm i_C onput

e_A rchitecture_W hitepaper.pdf (accessed 23 April 2010)

192

[80] N. Jayasena, W. .1. Dally, “Streams and Vectors: A M em ory System Perspective” ,

Proc. M SP-6 W orkshop on Media and Streaming Processors and DSPs, 2004

[81] D. Geer, “Chip Makers Tum to Multicore Processors” , IEEE Com puter Magazine,

May 2005, pp. 11-13

[82] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, K. Chung, “The Case for a

Single-Chip Multiprocessor” , Proc. 7"̂ Int. Symposium on Architectural Support

for Programming Languages and Operating Systems (ASPLOS VII), 1996, pp.2-11

[83] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. W atanabe, T. Yamazaki,

“Synergistic processing in Cell's multicore architecture” , IEEE Micro, M arch 2006,

pp. 10-24

[84] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,

A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan and P.

Hanrahan, “ Larrabee; A Many-Core x86 Architecture for Visual Com puting” ,

ACM Trans. On Graphics, Vol.25, No. 3, Aug. 2008, pp.2-15

[85] http://techresearch.intel.com/articles/Tera-Scale/1826.htm (accessed 23 April

2010)

[86] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting, V. Parikh, J.

Park, D. Sheffield, "Efficient Embedded Computing", IEEE Computer, July 2008,

pp.27-33

[87] L. Spracklen & S. G. Abraham, “Chip Multithreading: Opportunities and

Challenges”, Proceedings o f the 11"' International Symposium on High

Performance Computer Architecture (H P C A -1 1), 2005, pp.248-252

[88] S. Heo, K. Barr, and K. Asanovic, “Reducing power density through activity

migration”. Proceedings o f the International Symposium on Low Power

Electronics and Design, 2003, pp.217-222

[89] P. M ichaud, “Exploiting the Cache Capacity o f a Single-Chip Multi-Core

Processor with Execution Migration” , H P C A -10,Proceedings, 2004, pp. 186-195

[90] P. Kongetira, K. Aingaran, K. Olukotun, “Niagara: a 32-way Multithreaded

SPARC processor”, IEEE Micro, Mar-Apr 2005, pp.21-29

[91] S. Gochman et al., “ Intel Pentium-M Processor: Microarchitecture and

Performance”, Intel Technology Journal, Vol. 7, No. 2, 2003, pp.22-36

193

[92] M. Curtis-Maury, X. Ding, C. D. Antonopoulos, D. S. Nikolopoulos , “An

Evaluation of OpenMP on Current and Emerging Multithreaded/Multicore

Processors”, Proceedings o f IWOMP05, pp. 133-144

[93] Oliker, L.; Canning, A.; Carter, J.; Shalf, J.; Ethier, S.; “Scientific Computations on

Modern Parallel Vector Systems” , Proceedings SC2004, 2004, pp.10-20

[94] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte, J.H. Ahn, N. Jayasena,

U. J. Kapasi, A. Das, J. Gummaraju, I. Buck, "Merrimac: Supercomputing with

Streams", SC2003, November 2003, Phoenix, Arizona, pp.35-43

[95] http://www.clearspeed.com (accessed 08/04/2010')

[96] http://www.wired.eom/gadgetlab/2009/08/personal-supercomputers/ (accessed 23

April 2010)

[97] http://www.geeks.CO.uk/11345-universitv-of-antwerp-crams-12-teraflop-speeds-

into-a-desktop (accessed 23 April 2010)

[98] P. M aciol and K. Banas, “Testing Tesla Architecture for Scientific Computing: the

Performance o f Matrix-Vector Product", Proceedings o f the International M ulticonfcrcncc

on Computer S cience and Information T ech n o logy 2008 , pp. 2 8 5 -2 9 1

[99] J. Demmel, “The Future o f Numerical Linear Algebra”, BeBOP Group, UC

Berkeley http://www.cs.berkelev.edu/~demmel/Utah_Apr05.ppt (accessed

08/04/2010)

[100] I. S. Duff and G. Meurant, "The Effect of Ordering on Preconditioned Conjugate

Gradient," 5 /729 , 1989, pp.635-657

[101] Toledo S., "Improving the memory-system performance of Sparse Matrix vector

multiplication", IBM Jnl. of Research and Development, Vol.41, no.6, pp. 711-725

[102] Garey, M.R.; Johnson, D.S. (1979). Computers and Intractability: A Guide to the

Theory o f NP-Completeness. New York: W.H. Freeman. ISBN 0-7167-1045-5

[103] E. Cuthill and J. McKee. “Reducing the bandwidth o f sparse symmetric matrices”.

In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969

[104] W.-H. Liu and A. H. Sherman, “Comparative analysis o f the Cuthill-McKee and

the reverse Cuthill-McKee ordering algorithms for sparse matrices”, SIAM Journal

on Numerical Analysis, 13(2): 198-213, April 1976

194

[105] J. Weidendorfer and C. Trinitis, “Cache Optimizations for Iterative Numerical

Codes Aware o f Hardware Prefetching”, volume 3732 of Lecture Notes in

Computer Science. Springer, 2006, pp. 921-927

[106] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali and P. Stodghill, “ Is

Search Really Necessary to Generate High-Performance BLAS?”, Proceedings of

the IEEE, Vol. 93, No. 2, Feb 2005, pp. 358- 386

[107] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R. C.

Whaley, K. Yelick, “Self Adapting Linear Algebra Algorithms and Software”,

Proceedings of the IEEE, Vol. 93, No. 2, Feb. 2005, pp. 293-312

[108] http://netlib.org/atlas (accessed 08/04/2010)

[109] http://www.icsi.berkelev.edu/~bilmes/phipac/ (accessed 08/04/2010)

[110] http://www.cs.berkelev.edu/~yelick/sparsitv/ (accessed 08/04/2010)

[111] http://bebop.cs.berkelev.edu/oski (accessed 08/04/2010)

[112] E.-J. Im, “Optimizing the Performance of Sparse Matrix-Vector Multiplication”,

Ph.D. thesis, University of California, May 2000 (accessed 08/04/2010)

[113] R. W. Vuduc and H-J. Moon, “Fast sparse matrix-vector multiplication by

exploiting variable block structure”, Proc. International Conference on High-

Performance Computing and Communications (HPCC), Sep 2005, pp.807-816

[114] A. Buttari, V. Eijkhout, J. Langou and S. Filippone, “Performance Optimization

and Modelling o f Blocked Sparse Kernels” , ICL, Department of Computer

Science, University of Tennessee, Report No. ICL-UT-04-05, 2004

[115] R. Nishtala, R. Vuduc, J. Demmel, K. Yelick, “When Cache Blocking Sparse

Matrix Vector Multiply Works and Why”, Applicable Algebra in Engineering,

Communication, and Computing: Special Issue on Computational Linear Algebra

and Sparse Matrix Computations, 2005, pp. 297-311

[116] R. Nishtala, R. W. Vuduc, J. W. Demmel and K. A. Yelick, “Performance

Modelling and Analysis of Cache Blocking in Sparse Matrix Vector Multiply”,

EECS Department, University of California, Berkeley, Technical Report No.

UCB/CSD-04-1335, 2004

[117] Z. Zhang and X. Zhang, “Fast Bit-Reversals on Uniprocessors and Shared-Memory

Multiprocessors”, 5MM./. Sci. Comput. 22, 6 (Jun. 2000), pp. 2113-2134

195

[118] J. Siek & A. Lumsdaine, “The Matrix Template Library: Generic Components for

High-Performance Scientific Com puting”, IEEE Journal o f Computing in Science

& Engineering, Nov.-Dec. 1999, pp.70-78

[119] M. S. Lam, E. E. Rothberg and M. E. Wolf, “The Cache Performance and

Optimizations o f Blocked Algorithms”, ASPLOS-IV, Palo Alto, CA, Apr. 1991

[120] O. Temam, E. Granston, and W. .lalby, “To copy or not to copy: A compile-time

technique for assessing when data copying should be used to eliminate cache

conflicts” , In Proceedings o f Supercomputing '93, Portland, OR, N ovem ber 1993,

pp. 4 1 0 - 4 1 9

[121] D. Parello, O. Temam, and J.-M. Verdun, “On increasing architecture awareness in

program optimizations to bridge the gap between peak and sustained processor

performance: matrix-multiply revisited”, Proc. SC2002, pp. 1-11

[122] E. Elmroth, F. Gustavson, I. .lonsson, and B. Kagstrom, “Recursive Blocked

Algorithms and Hybrid Data Structures for Dense Matrix Library Software”, SIAM

Review, Vol. 46, No. 1, 2004, pp. 3-45

[123] S. T. Gabriel, and D. S. Wise, “The Opie Compiler: from Row-major Source to

Morton-ordered Matrices” , Proc. 3rd W orkshop on Memory Performance Issues

(WM PI-2004), New York: ACM Press, 2004 June, pp. 136-144

[124] D. S. Wise, C. L. Citro, J. J. Hursey, F. Liu, and M. A. Rainey, “A Paradigm for

Parallel Matrix Algorithms: Scalable Cholesky” , Proc. Euro-Par'05, Lecture Notes

in Computer Science 3648, Berlin: Springer, August 2005, pp.687-698

[125] David S. Wise, “Ahnentafel indexing into Morton-ordered arrays, or matrix

locality for free” , Euro-Par 2000 - Parallel Processing, 2000, pp.774-784

[126] S. Chatterjee, A. R. Lebeck, Praveen K. Patnala, M. Thottethodi, “Recursive Array

Layouts and Fast Parallel Matrix Multiplication” , IEEE Transactions on Parallel

and Distributed Systems (IEEE TPDS), 2002, pp. 1105 - 1123

[127] N. Park, B. Hong and V. K. Prasanna, “Analysis o f M emory Hierarchy and Block

Layout” , Proc. O f the Intl. Conf. on Parallel Processing ICPP’02, 2002, pp.35-44

[128] OpenM P Application Program Interface, Version 2.5, public draft, Novem ber 2004

[129] C. Liao, Z. Liu, L. Huang, and B. Chapman, “Evaluating OpenM P on Chip

MuItiThreading Platforms” , First International Workshop on OpenM P, IW OM P

2005. Eugene, Oregon USA. June 1-4, 2005 LNCS 4315, 2008, pp. 178-190

196

[130] V. Packirisamy, H. Barathvajasankar, “ OpenMP in Multicore Architectures”

http://www-users.cs.urnn.edu/~harish/reports/openMP.pdf (accessed 08/04/2010)

[131] H. Kotakemori, H. Hasegawa, T. Kajiyama, A. Nukada, R. Suda and A. Nishida,

“ Perfonnance Evaluation o f Parallel Sparse M atrix-Vector Products on SGI

A Itix3700” http://www.nic.uoregon.edu/iwomp2005/Papers/f27.pdf (accessed

08/04/2010)

[132] R. H. Bisseling and B. Vastenhouw, "A Two-Dimensional Data Distribution

Method for Parallel Sparse M atrix-Vector M ultip lica tion” , SIAM REVIEW , Vol.

47, No. 1,2005, pp. 67-95

[1331 S. Riyavong, “ Experiments on Sparse M atrix Partitioning” , CERFACS W orking

Note WN/PA/03/32, CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse Cedex,

France

[134] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek,

“ Parallel Hypergraph Partitioning for Scientific Computing” ,

http://www.math.uu.nl/people/bisseling/lPDPS06.pdf (accessed 08/04/2010)

[135[A. N. Yzelman and Rob H. Bisseling, “ Cache-oblivious sparse matrix-vector

multiplication by using sparse matrix partitioning methods” , S IAM Journal on

Scientific Computing, 31, No. 4 (2009), pp. 3128-3154

[136] http://www.spectrum.ieee.org/energv/environment/the-greening-of-googIe

(accessed 08/04/2010)

[137[E.-J. Im, K. A. Yelick, R. Vuduc, “ SPARSITY: An Optimisation Framework for

Sparse M atrix Kernels” , International Journal o f High Performance Computing

Applications, 18 (1), February 2004, pp. 135-158

[138] S. E. Richardson, "Exploiting Triv ia l and Redundant Computation", l l ‘*' IEEE

Symposium on Computer Arithmetic, June 29 - July 2, 1993, Windsor, Ontario, pp.

220-227

[139] J.J. Y i and D.J. Lilja, "Improving Processor Performance by S im plify ing and

Bypassing Triv ia l Computations", International Conference on Computer Design,

September 2002, pp.462-465

[140] Acken, K.P.; Irw in, M.J.; Owens, R.M.; Garga, A .K., “ Architectural optimisations

for a floating point multiply-accumulate unit in a graphics pipeline” . Proceedings

o f ASAP 96 Conference, Aug. 1996, pp.65 - 71

197

[141] http://w w w .intel.com /products/processor/core2duo/specifications.htm (accessed

08/04/2010)

[142] Georgios I. Goum as, K ornilios Kourtis, Nikos A nastopoulos, Vasileios

Karakasis, Nectarios Koziris: “U nderstanding the Perform ance o f Sparse Matrix-

Vector M ultiplication” . PDP 2008: pp.283-292

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

http://w w w .fftw .org/ (accessed 08/04/2010)

N. N ethercote, “D ynam ic B inary A nalysis and Instrum entation” , PhD Dissertation,

University o f Cam bridge, N ovem ber 2004

http://gcc.gnu.org/onlinedocs/gcc/Labels-as-V alues.htm l (accessed 08/04/2010)

M. A. Ertl and D. Gregg, “The structure and perform ance o f efficient interpreters” ,

in Journal o f Instruction-Level Parallelism , vol. 5, N ovem ber 2003

Tom asulo R.M ., “An Efficient Algorithm for Exploiting M ultiple Arithm etic

U nits” , IBM Journal o f Research and D evelopm ent, 11(1), January 1967, pp.25-33

Sassone P.G., Rupley J., Brekelbaum E., Loh G. H., Black B., “ M atrix Scheduler

Reloaded”, 34th International Sym posium on Com puter Architecture (ISCA 2007),

June 9-13, 2007, San Diego, California, USA 2007, pp.335-346

J. Farrell, T. Fischer, “ Issue logic for a 600-M hz out-of-order execution

m icroprocessor”, IEEE JSSC , Vol. 33, No. 5, May 1998, pp.702-712

http ://w w w .asics.w s/doc/efpu_brief.pdf (accessed 08/04/2010)

http://dow nload.intel.com /technologv/architecture/new -instructions-paper.pdf

(accessed 08/04/2010)

http://w w w .xilinx.com (accessed 08/04/2010)

Thom as D., M oorby P., "The V erilog Hardware D escription Language", Kluwer

A cadem ic Publishers, N orw ell, MA. ISBN 0-7923-8166-1

G w ennap L., "In tel’s P6 Uses D ecoupled Superscalar Design", M icroprocessor

Report., 16 February 1995, pp.9-15

M att T. Yourst, “PTLsim: A Cycle A ccurate Full System x86-64

M icroarchitectural S im ulator” , Proc. ISPASS 2007, April 25-27, 2007, pp.23-34

http://w w w .research.att.com /~vifanhu/G A LLER Y /G R A PH S/indexA ll.htm l

(accessed 08/04/2010)

Yozo Hida, X iaoye S. Li and David H. Bailey, "A lgorithm s for Q uad-D ouble

Precision Floating Point A rithm etic," IEEE ARITH15, 2001, p p .155-162

198

[158] D. Bailey, "High-Precision Arithmetic in Scientific Computation", Computing in

Science and Engineering, May-Jun, 2005, pp.54-61

199

[i
jIl'itM c

