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Abstract

“The fool who persists in his folly will become wise.” 

- William Blake

A vast array of scientific and engineering problems require the solution of linear systems 

o f  equations o f  the form A* x = y , where A is the coefficient matrix o f  the system and y  is 

a vector of unknowns and jc is a vector o f  scalar known values. In practice the matrix A  is 

large and sparse for real-world problems. A range of iterative methods is used depending 

on the nature of the problem to be solved and multiple solvers are normally included in 

commercial and public domain applications based on these methods. Most 

implementations o f  iterative methods [3] and the linear algebraic operations on which they 

are based have to date been software implementations commonly implemented in the form 

of FORTRAN or C/C++ libraries. All mathematical libraries in common use make usee of 

data-structures to store sparse matrices efficiently, and such methods can thus be regarded 

as a form o f  compression. General purpose computer architectures designed to provide a 

platform for the development and execution of applications perform very poorly on this 

class of operation often delivering only a few per cent of their peak processing capability 

to the user application. The design o f  such general-purpose machines is of necessity a 

compromise, and often the designer is faced with the problem that an improvement 

introduced to address performance issues for one application class has a detrimental effect 

on the performance of another. Like a balloon, which a child seeks to squeeze between his 

hands, the balloon when compressed in one direction, expands in the other 2 dimensions, 

conserving volume. In this thesis a variety of techniques for accelerating Sparse Matrix 

computations are proposed and evaluated experimentally. It will be shown that the 

performance o f  the kernel Sparse Matrix Vector Multiplication (SM VM ) operation which 

dominates the execution time of iterative methods can be improved systematically when 

compared to General Purpose Processors and very significantly when compared to Special 

Purpose Computers, using streaming matrix compression and decompression to boost the 

sustainable Floating-Point performance compared with other architectures. Finally the 

case for low-cost hardware acceleration to further boost SM VM  performance is outlined.



Contributions of this work

Sparse linear algebra and in particular Sparse Matrix Vector Multiplication (SM VM ) have 

been identified as one o f  the “7 Dwarves” [1][2] or unresolved key problems in the design 

of modern computer systems. In this thesis a variety of techniques for accelerating Sparse 

Matrix computations are proposed and evaluated experimentally. It will be shown that the 

performance of the kernel Sparse Matrix Vector Multiplication (SM VM ) operation, which 

dominates the execution time of iterative methods, can be improved dramatically compared 

to General Purpose Processors (GPP) and significantly when compared to Special Purpose 

Computers (SPC).

The specific improvements over the state-of-the-art proposed, which boost performance, 

proposed in this thesis are;

• A first Bitmap Block Compressed Sparse Row (BBCSR) sparse matrix storage 

method is proposed which eliminates the zero fill associated with the BCSR (Block 

Compressed Sparse Row) sparse matrix format

• Benchmarking on a 50 matrix set of large sparse matrices demonstrates a 

significant speed-up in 7/50 cases using the proposed BBCSR format, using a 

standard gcc compiler and Intel Xeon processor, when compared with CSR and 

BCSR formats

• A second sparse matrix format Scheduled Block Compressed Sparse Row (SBCSR) 

format is proposed which addresses the need to perform up to r*c bitmap 

comparisons (where r and c are respectively the number of rows and columns in the 

dense block sub-matrix) and branches performed to implement the BBCSR Sparse 

Matrix Vector Multiplication (SM V M )

Again the SBCSR method is benchmarked against BBCSR, BCSR and BCSR methods for 

the same 50-matrix set, using the same configuration of gcc compiler, RH EL and Xeon 

processor

• A generic hardware accelerator is described which allows the SBCSR method to be 

utilised without penalty when compared with BCSR SM VM



• Integer sparse matrices such as the DCT coefficient matrices used in video 

applications are easily supported

• Finally the proposed hardware also allows compressed sparse data-structures to be 

random-accessed in situ without prior decompression, offering a major advantage 

over the state o f  the art

The work described carried out by the author at TCD and latterly at Movidius Ltd. has 

resulted in the following patent applications, the first of  which has already been granted, 

and the remaining 3 o f  which are the subject of on-going patent applications;
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• M oloney D., “A circuit for compressing data and a processor employing sam e”, 
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The same work has also contributed so far to the following publications:
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1
Chapter 1

"Anyone who has never made a mistake has never tried anything new."

- Albert Einstein

1 Introduction
Many scientific and engineering problems require the solution o f  linear systems of 

equations of the form A * x  = y , where A  is the coefficient matrix o f  the system and x is a 

vector of unknowns and y is a vector o f  scalar known values. In practice the matrix A is 

large and sparse for real-world problems yet it must fit within the available system 

memory, hence efficient storage of the matrix data is a requirement to be able to solve 

problems o f  arbitrary size. Also when the matrix size is very large classical solution 

methods such as Gaussian Elimination are no longer efficient in terms o f  processing and 

memory requirements so iterative methods are typically applied to such problems. A  

range of iterative methods is used depending on the nature of the problem to be solved 

and multiple solvers are normally included in commercial and public domain applications 

based on these methods.

A major review o f  the key challenges in computing systems by Patterson et. al at UC 

Berkeley [IJ concluded that Sparse Matrix by Vector multiplication (SM VM ), was one o f

17



the key  challenges, or “ 7 d w a rv es” , w hose  resolution was likely to s ignificantly  advance 

p rogress in co m p u te r  a rch itectu re  developm ent.

M ost im p lem en ta t ions  o f  iterative m ethods [3] and the linear algebraic  operations on 

w hich  they are based  have to date been software im p lem enta tions  com m only  

im plem ented  in the fo rm  o f  F O R T R A N , C or C++ m athem atica l libraries. These 

libraries m ake  use o f  the IE E E -754  [4] compliant floating-point units (FPU ) included as 

part o f  high p er fo rm an ce  co m puting  system s, m icroprocessors and w orkstations. All 

m athem atica l  l ibraries in co m m o n  use m ake use o f  data-s tructures  to store sparse 

m atrices effic iently , and such  m ethods can thus be regarded as a form o f  com pression. 

Such libraries or associa ted  tools also contain additional algorithm s w hich  are used to 

pre-process  the m atrix  data  in order to ensure Sparse M atrix  V ector M ultiplication 

(S M V M ) m akes  the m ost efficient use possible o f  the available processing  and m em ory  

resources on a g iven p la tform . T he  techniques applied typically involve graph-based re 

o rdering  o f  the non-zero  e lem ents  and their associated indices in order to m axim ise 

spatial and tem poral locality w hich  in turn tends to m axim ise the am ount o f  processing 

w hich  can be ach ieved  for each read or write from or to system  m em ory. Increased 

spatial o r  tem poral locality tends to result in data required by the next step o f  the S M V M  

algorithm  be in g  read from  an internal register or cache, rather than from external 

m em ory , resu lt ing  in a lower access time and higher processing  speed.

T he  final so ftw are  optim isation , which  can be perform ed on a typical com puting  system, 

is to split a large sparse m atrix  and associa ted vectors for use in a m atrix-vector product 

into a series o f  sm aller  p rob lem s, w hich  can be run independently  on a num ber of parallel 

p rocessors. T he  partial results from the parallel processors can then be com bined  in a 

s im ple  post-p rocessing  step (such as addition  o f  the vector sub-segm ents)  to com plete  the 

Sparse  M atr ix -V ecto r  M ultiplica tion.

T he  focus o f  this w ork  is on  scientific and engineering applica tions prim arily  because  a 

large body  o f  test data is available for such problem s [6][11][12]. H ow ever, linear 

a lgebra is em erg in g  as enab ling  functionality  in a range o f  applica tions such as Spam - 

filtering [13] and face-recognition  [14] which are em bedded  into infrastructure produc ts  

today and m ay  well find their w ay into m ore deeply em bedded  and even m obile  devices  

in the future.

18



A ccord ing  to Kogge  [15] there are three app roaches  to pe r fo rm ing  Sparse  Matr ix-Vector  

Mul tip lica tion ( S M V M )  on p ro gr am mable  computers :

•  inner Product  w he re  the result vector y is co m pu ted  one inner-product  at a t ime, 

using aij and xj va lues  read f rom m e m o ry

•  Sub-matr ix  where  the matrix  A  is ti led up into su b-m at r i ces  w hich  are read a long

with equal ly  sized segmen ts  o f  the y and x vectors

• C o lu m n  Scal ing w he re  mul tiple entries in the result vec tor  y are read and updated

as each co lu m n  is scanned for aij va lues  and mul tip l ied  by a s ingle entry  f rom  the

x-vector xi

T he  inner product  method  is co m m o n ly  used and w orks  well  wi th the C om pressed  

Sparse  Row format  detai led  in sec tion 3.1. T h e  advantage  o f  the inner-product  met hod  is 

that y values  are held in a regis ter  rather than m e m o ry  resul t ing in fast access.  Ideally a 

sof tware  des igner  w ou ld  like to be able to p rod uc e an updated y value  each cyc le  as 

par tia l-products  are accumulated ,  however  the correct  previous  y-value  is not 

immedia te ly  available due  to the fact that the adde r  has mul t ip le  c lock-cyc les  o f  latency,  

resul t ing in a c i rcular d epe ndency  called a Read After  Wri te  ( R A W )  hazard.  Care  must  

be taken in seq uenci ng  opera t ions  to ensure  that  the hardw are  does  not detect  potent ial  

R A W  hazards  and stall the processor  in order  to e l iminate  the R A W  hazards .

T he  sub-matr ix  app ro ach is often  used for dense -matr ix  mul t ip l ica t ion as it is highly 

efficient  in terms o f  the am o u n t  o f  m em o ry  bandw id th  usage.  T he  method  is not 

compat ib le ,  h o w e v e r  wi th  the most  w idely  used Sparse  Matr ix  s torage  formats  

C om pre s sed  Sparse  R o w  ( C S R / C S R )  and C o m p res se d  Sparse  C o lu m n  ( C S C/C C S) .

A var ie ty  o f  o ther  formats  have  been deve lope d  over  the years  to bet ter  handle  certain 

var iants in terms o f  matrix s tructure ,  h ow ever  the formats in most  c o m m o n  use  are 

C S R / C S C  and their b locked var iants  B C S R / B C S C .  T he  b locked formats  are par t icularly 

useful  w he re  the un der ly ing  mat r ix  has  som e  s t ructure  that a l low it to be  par t i t ioned,  thus 

im pro v ing  local ity and hence  per formance.  H o w e v e r  b lock ing is com plex  and t ime- 

co n s u m in g  and m ay  d i s im prove  sys tem pe r fo rm ance  and pow er ,  key concerns  in an 

increasingly ene rg y -c onsc ious  world .
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1.1 Thesis Organisation
T he  background  to the broad  use o f  Sparse Matrix Vector M ultip lica tion  in a myriad o f  

applica tions from  des ign ing  aircraft to perform ing  a G oogle  search is expla ined  in 

C hap ter  2. Equally  it will be show n that S M V M  is the dom inan t  perfo rm ance  

determ inant in m an y  o f  these applications and the iterative m ethods upon  which  they 

depend.

A  key issue in the p er fo rm an ce  o f  these applications is the storage fo rm at used to 

represent the sparse  m atrix  and a range o f  existing  storage form ats a long  with the 

arithm etic  m ethods  (S M V M ) that operate  on them are surveyed  at length in C hapter  3 

and returned to aga in  in C hap ters  4, 5 and 6.

Users and deve lope rs  o f  these large-scale applications is system p erfo rm ance  and have 

that co m p u te r  sys tem s often  perfo rm  very poorly on this class o f  applications. T he 

def in ing  charac teris t ics  o f  m odern  processor architectures and their im p lem enta tions,  and 

m ore  im portan tly  the l im ita tions  that processor and hardw are  arch itectures  place on 

applica tions p e rfo rm ance  are su rveyed  in depth in chapter 4.

T he  available  so ftw are  techn iques for im proving the perform ance o f  S M V M  across the 

range o f  p rocesso r  arch itectures  is fully explored in Chapter 5 and the overhead  o f  many 

o f  these m ethods  is found to require tens to hundreds or even thousands o f  unoptim ized  

S M V M s in order to return an overall im provem ent in perform ance.

In partial an sw er  to som e o f  the perform ance limitations o f  exis t ing  blocked  sparse 

storage fo rm ats  tw o new  sparse-s torage formats are introduced in C hap ter 6. The 

form ats  are both  based on  trivial techniques first identified by R ichardson  [138] in 1992. 

T hese  m ethods  have rem ained  largely  ignored in the in tervening  period as the solution  

identified by  R ichardson  d id n ’t address  the fundamental under ly ing  prob lem  o f  l im ited  

m em ory  bandw id th ,  w hich  w as  highlighted by M cK ee [33] as the “ M em o ry  W a ll” . 

Essentially  the m ethod  outl ined  by R ichardson adds to the difficulties the p ro g ram m er 

and p rocessor designer face by  first fetching trivial data into the processor,  co n su m in g  

va luable  bandw id th ,  before dec id ing  that the data is not required and can be bypassed .  

Indeed hav ing  multip le  parallel floating-point and trivial p rocess ing  units m a k e s  the 

p rocessor larger, s low er and m ore  difficult to program , nega ting  m any  o f  the su p p o sed  

benefits  o f  trivial operand  processing.
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T he key insight explored  in this w ork  is that by d eco u p lin g  trivial operand  detection  (a 

trivial m ultip lication  involves m ultip lication by a trivial o perand  i.e. +1, -1 or 0) from 

processing, a com press ion  can be obtained. T h is  co m p ress io n  increases effective 

m em ory  bandw id th  be tw een  processor and the entire  m em o ry  h ierarchy, and separately  

trivial operand p rocess ing  can then be perfo rm ed  w ithou t  the necessity  for specia lised  

hardw are  in the p rocessor pipeline as proposed  by R ichardson . It is also show n that the 

overhead  o f  trivial operand  detection  and tagg ing  has neg lig ib le  cost w h ich  is dw arfed by 

the cost o f  assem bling  the data-s tructures  required for large sca le  num erical  applications, 

thus the benefits  o f  the proposed  accrue a lm ost entire ly  to the w h o le  application.

T he  perfo rm ance  o f  these m ethods is explored  in detail in term s first experim enta lly  

using  a suite o f  50  large sparse m atrices  as a b en ch m ark  suite  runn ing  on a typical 

eng ineering  w orksta tion  with  m odern  m ulticore  processor.  T u n in g  o f  the type proposed  

by V uduc is avoided  in order not to in troduce any bias at the expense  o f  increased ru n 

time for the benchm ark  suite and a s tandard  gcc C -co m p ile r  w ith  op tim isa tions  w as used 

in all experim ents .  T he  B itm ap Block C o m p ressed  S parse  R ow  (B B C S R ) format w as 

sh o w n  to perform  better  than Block C o m p ressed  S parse  R ow  (B C S R ) or C om pressed  

Sparse  Row (C S R ) reference m ethods  in 7 out o f  50  cases, per fo rm in g  on average 7 .85%  

better w hen  com pared  with  C SR , and 13.93% com pared  w ith  B C SR . T he  reasons for 

this increase in p erfo rm ance  are ana lysed  by ex am in in g  the a ssem bly  code  in detail as 

well as the p rocessor arch itecture  and cache hit-rates, as w ell as the effect o f  fill on 

B C S R  perform ance.

T he  observa tions  m ade  by ana lys ing  B B C S R  perfo rm ance  lead to the insight that 

additional overhead  in the form  o f  additional com parisons  could  be avo ided  if  a schedu le  

could  be genera ted  from  the non-zero  pattern. This  schedu le  w ou ld  only com pute  the 

required  non-triv ial par tia l-products ,  e l im ina ting  the co m p ar iso n  overhead  for trivial 

values  and greatly  s im p lify ing  the d ev e lo p m en t o f  S M V M  libraries. T h is  observa tion  

and the d iscovery  o f  an obscure  feature o f  the gcc  com pile r  enab led  the Schedu led  Block 

C o m p ressed  S parse  R ow  (S B C S R ) form at to be deve loped . T h is  form at w as  also duly 

b en ch m ark ed  and ana lysed  in both ro w -m ajo r  and co lu m n -m ajo r  schedu led  variants.

T he  row -m ajo r  S B C S R  fo rm at w as found  to be up to 60 %  faster than  B C S R  or C S R  in 2 

ou t o f  50  cases, and  the co lu m n -m ajo r  format w as found to be as fast in the case o f  the
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vibrobox and g y ro_m  m atrices ,  but also betw een 3 and 16% faster than the o th e r  formats 

in a further 4 out o f  50  cases.

In chapter  7 the sh o r tco m in g s  o f  the software B B C S R  and SB C S R  fo rm ats  were 

highlighted  and the case  for hardw are  acceleration  w as outlined. The im plem enta tion  

and functional m odel for the accelerator were described and the resultant hardw are  cost 

estimated.

Finally in C hap ter 8 the conc lus ions  for the w ork  as a w ho le  are drawn and d irections for 

future w ork  are explored.

1.2 Contributions
In this thesis a varie ty  o f  techn iques for accelerating  Sparse  Matrix com pu ta t ions  are 

proposed and evalua ted  experim entally . It will be show n that the perfo rm ance  o f  the 

kernel S parse  M atrix  V ecto r M ultip lica tion  (S M V M ) operation , which dom inates  the 

execution  tim e o f  iterative m ethods,  can be im proved dram atically  com pared  to General 

Purpose P rocessors  (G P P ) and significantly  when com pared  to Special Purpose 

C o m pute rs  (SPC).

T he  specific  im p ro v em en ts  over the state-of-the-art p roposed, which boost perform ance, 

proposed  in this thesis are:

•  A first B itm ap Block C om pressed  Sparse  R ow  (B B C S R ) sparse matrix storage 

m ethod  is p roposed  w hich  e lim inates the zero fill associated with  the BCSR 

(B lock  C om pressed  Sparse  R ow ) sparse matrix format

•  B en chm ark ing  on a 50  matrix set o f  large sparse matrices dem onstra tes  a 

s ignificant speed-up  in 7 /50  cases using  the p roposed  B B C SR  format, us ing  a 

s tandard  gcc com piler  and Intel X eon processor, w hen  com pared  with C S R  and 

B C S R  form ats

•  A  second  sparse m atrix  form at Schedu led  Block Com pressed  Sparse Row 

(S B C S R ) format is p roposed  which addresses  the need to perform  up to r*c 

b i tm ap  com parisons  (w here  r and c are respectively  the num ber o f  row s  and 

co lum ns in the dense b lock  sub-m atrix ) and branches perform ed to im plem ent the 

B B C S R  Sparse  M atrix  V ecto r M ultip lication  (S M V M )
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Again the SBCSR method is benchmarked against BBCSR, BCSR and BCSR methods 

for the same 50-matrix set, using the same configuration o f  gcc compiler, RH EL and 

Xeon processor

• A generic hardware accelerator is described which allows the SBCSR method to 

be utilised without penalty when compared with BC SR SM VM

• Integer sparse matrices such as the DCT coefficient matrices used in video 

applications are easily supported

• Finally the proposed hardware also allows compressed sparse data-structures to 

be random-accessed in situ without prior decompression, offering a major 

advantage over the state of the art

M'he work described carried out by the author at TCD and latterly at Movidius Ltd. has 

resulted in the following patent applications, the first of  which has already been granted, 

and the remaining 3 of which are the subject of on-going patent applications;

• Geraghty D., Moloney D., “ Data processing system and m ethod”, 

US2()()9()30960 (A l) ,  Priority Date 2()()5-05-13

• M oloney D., “A processor”, W 0 2 0 0 9 1 0 1 119 (A l )  - 2()09-()8-2(), Priority Date 

2008-02-11

•  M oloney D., “A processor exploiting trivial arithmetic operations” , 

E P 21376 I0  (A l)  - 2009-12-30, Priority Date 2007-03-15

•  M oloney D., “A circuit for compressing data and a processor employing same” , 

E P 2 137821 (A l)  - 2009-12-30, Priority Date 2007-03-15

The same w ork has also contributed so far to the following publications;

•  D. Moloney, D. Geraghty, C. M cSweeney and C. McElroy, “Streaming Sparse 

Matrix Com pression/Decom pression” , in Lecture Notes in Com puter Science 

2005 (H iPEAC Conference), Springer-Verlag, No. 3793, pp. 116-129

•  D. M oloney, C. M cSweeney, C. M cElroy and D. Geraghty, “Hardware 

accelerator for finite element iterative m ethods” , lEE Irish Signals and Systems 

Conference 2005, pp.330-337

• D. Gregg, C. McSweeney, C. McElroy, F. Connor, S. McGettrick, D. Moloney, 

and D. Geraghty, "FPGA Based Sparse Matrix Vector Multiplication using 

C om m odity  DRAM  Memory," in Field Programmable Logic and Applications, 

2007. FPL 2007. International Conference on, 2007, pp. 786-791
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2
Chapter 2

“ I ran into Isosceles. He had a great idea for a new triangle!”

- W oody Allen

2 Finite Element Method (FEM) Applications
A n overv iew  o f  Finite E lem ent (F E M ) A pplica tions and the numerical m ethods  that 

underp in  them  is presented  to set the Sparse M atrix-V ector M ultiplication (S M V M ) 

com puta tional kernel, w h ich  it is p roposed  to accelerate, in context. T here is a large body 

o f  publications from  a range o f  application  areas on FEM  and a large num ber o f  books 

such as the c lassic  text by Z ienk iew icz  [16] with som e available freely on  the web 

[17][18].

2.1 Introduction
T he  Finite E lem en t M ethod  (F E M ) is a num erical technique for finding approx im ate  

so lu tions to real-w orld  scien tif ic  and eng ineering  p rob lem s first proposed by C ouran t [19] 

in 1943, d raw ing  on the earlier w o rk  o f  Rayleigh, Ritz and G alerkin on Partial Differential 

Equations (PD E ), for structura l eng ineering  problem s. C lough [20] eventually  coined the 

term Finite E lem en t to describe  the m ethod  in I960 . FEM  analysis  was rap id ly  extended, 

and im proved  by m athem atic ians  and engineers  for use in aeronautics  [21], large  structural
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engineering and m ilitary projects. It required the use o f mainframe computers to perform 

even relatively limited analysis and in fact even mainframes were not optimised for this 

kind o f workload. Over sixty years later Finite Element Analysis is now available to 

individual scientists and engineers as a method o f solving real-world problems, using low- 

cost personal computers.

The finite-element method is used to solve a simplified mathematical model o f the actual 

physical problem under consideration. The method allows approximate solutions to such 

problems with bounded error to be computed by reducing a continuum with an infinite 

number o f degrees o f freedom to a set o f elements w ith a finite number o f degrees o f 

freedom; the effect is to reduce from a set o f equations w ith an infinite number o f 

unknowns to one with a finite number o f unknowns. Elastic, thermal, flu id -flow  and 

electrostatics problems, to name but a few, are representable in terms o f a set o f governing 

equations and associated boundary conditions as shown in Figure 2-1.

Governing „
Equation

Boundary «(«»)+ = o
Condition

Set o f 
Simultaneous

> Equations
[ k  ]{u } = {F }

X  t \
Property Behaviour Action

Figure 2-1 FE M  Governing Equations & Boundary Conditions (source: [22])

In the case o f each type o f problem the Property [K ] and the Action {F } elaborated by the 

Finite Element Method (FEM) allow the unknown Behaviour {u } to be solved for at each 

finite element in the structure. The unknown behaviour solved for in a variety o f systems 

is shown in Table 2-1.

Type of 
Problem

Property [K]
Behaviour

{u}
Action

{F}
Elastic stiffness d isp lacem en t force

Heat-f low conductiv ity tem pera tu re
heat

source

Fluid viscosity ve loc ity
body
force

Electrostatic
die lectr ic

perm itiv ity
e lectr ic

potentia l
charge

Table 2-1 Behaviours Solved for by FE M  in different problems (source: [16])
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2.1.1 Finite Element (FEM) Analysis

In general the finite e lem en t m ethod  consists  o f  3 fundam ental steps:

•  P re-processing

• A nalysis

•  Post-processing

T he  p re -p rocess ing  step  is the m ost tedious to perform  for the des igner  and  consists  o f  the 

reduction o f  a com plex  s tructure  into a collec tion  o f  basic  e lem ents  ( tr iang les  or other basic 

e lem ent shapes),  connected  by nodes. T w o  types o f  m esh can be used in Finite Element 

(F E M ) problem s, structured and unstructured. A s  can be seen in F igure 2-2  a structured 

m esh w hile  s im ple r  requires a m uch  finer grid to provide the sam e level o f  detail as an 

unstructured m esh. T h e  trade-o ff  is one o f  m ore  yet s im pler ca lcu la tions  for a structured 

m esh  as opposed  to few er, but m ore  com plex  ca lcu la tions  for an unstructured  mesh.

Figure 2-2 Structured Versus Unstructured Meshes (source: f22J)

A user-directed m esh genera to r p rogram  using  as input a d raw ing  p roduced  by a C om pute r 

A ided  D esign (C A D ) package  typ ically  perfo rm s this step. An ex am p le  o f  a finite-e lement 

m esh with triangular e lem ents  super im posed  on a d raw ing  o f  a truck axle is show n in 

F igure 2-3.

Figure 2-3 Triangular Finite Element Mesh Superimposed on Truck Axle
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In the Analysis step the dataset produced by the mesh generator is imported. The mesh 

elements are reconnected at the nodes, which provide the connectivity generated by the 

mesh generator that holds the collection of elements together, thus approximating the 

original structure. This process results in a set o f simultaneous algebraic equations, which 

can be solved by direct or iterative numerical methods. The set o f simultaneous equations 

is represented as a matrix problem as shown in Figure 2-4 where the matrix K is known as 

the global stiffness matrix, the vector u represents the unknowns and the vector /  

represents the known perturbation applied to the system being modelled.

Ik k
^ 2 1  ^ 2 2  ^ 2 3  ’ • ^ 2 n 11 j / 2

^ 3 1  ^ 3 2  ^ 3 3  • •  ^ 3h
< > =  «

/ 3

1

(N

1
Figure 2-4 Matrix Formulation of FEM Problem (source: [22])

The stiffness matrix K  is assembled using element stiffness matrices k  specific to the 

problem area (elasticity, electrostatics etc.) and the element and connectivity information 

from the finite element mesh. The nature of the FEM matrix assembly process allows the 

same Finite Element solver to be applied to determine the aerodynamic properties of an 

aerofoil (fluid dynamics) and the stresses and strains which occur in the same aerofoil 

(elasticity) using the same CAD model of the aerofoil and even the same mesh, by 

changing the element matrix type used during matrix assembly. In the final post

processing step the unknown behaviour u solved for by the FEM analysis is overlaid on top 

of the CAD drawing with coloured contours representing the field values.

2.1.2 Matrix Assembly
The Element-by Element (EBE) scheme was developed for heat conduction problems [6] 

and subsequently extended to structural and solid mechanics problems [7]. EBE has the 

benefit o f  avoiding matrix-assembly, however using these methods can result in up to 8 

times more FLOPS being required to solve the same system in 3D applications [23] when 

compared with solution methods using the assembled matrix they will be not be considered 

here.

In fact EBE is only of benefit where the number o f  iterations required to achieve 

convergence using the assembled matrix is low enough to undercut the matrix assembly
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t im e overhead  on  the m ethod  using  the assem bled  m atrix . T h e  s tiffness  matrix K 

generated  by the m atrix  assem bly  step in a Finite Elem ent A na lys is  is a lw ay s  sparse but 

the exact pattern  o f  non-zeroes  is dependent on the row and co lum n  addresses ,  which in 

turn depend  on  the n ode  num bering  em ployed. In the exam ple  gene ra ted  using [24] are 

show n  in F igure 2-5 in all three cases the sam e 3x3 m esh w as  used and on ly  the num bering 

o f  the nodes w as  varied.
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Figure 2-5 Finite Element Mesh Node Numbering (source: [24])

T he  effect o f  the node num bering  em ployed  in F igure 2-5 on the pattern  o f  non-zeroes in 

the stiffness m atrix  is show n in Figure 2-6; (a) results from  a node num bering ,  w hich  

p rogresses  a long  row s or co lum ns successively , the pattern in (b) results  from a spiral 

o rde ring  and (c) results from a random  ordering.

(a) (b) (c)

Figure 2-6 Effect o f Mesh Numbering Schemes on Stiffness Matrix (source: [24])

A typical ex am p le  o f  an assem bled finite e lem ent st iffness m atrix  is the b css tk32  matrix 

from the H a rw e ll-B o e in g  collection published  on M atr ixM arket  [11] w hich  w as  genera ted  

from the static  analysis  of an au tom obile  chassis. T he  plot in F igure 2-7 show s th e  sparsity
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pattern o f  the assembled stiffness matrix. The matrix is symmetric, its order is 44609, and 

however, it only contains 2 M non-zeroes m eaning that 99.95%  of  its elements are zero.

X 1 0 '

0.5

2.5

3.5

2.5 31.5 2 3.5 40 0.5 1
nz = 2014701

Figure 2-7 Sparse Stiffness Matrix Plot (bcsstk32) from FEM Analysis (source: [11]) 

2.2 Iterative Methods
if the stiffness matrix A is relatively small. Direct Methods can be applied independently 

of sparsity. However, if the matrix A is very large and sparse. Iterative Methods are more 

efficient. Direct Methods have been used historically and didactically but iterative 

methods are now the core of commercial solvers because of their superior computational 

efficiency. Iterative methods are so-called because an algorithm is applied to a linear 

system repeatedly until either the number of iterations exceeds a user-defined threshold or 

the solution converges to within the user-defined convergence constraint. Iterative
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methods are characterised by the fact that they only access the coefficient matrix A or its 

transpose A^  (equivalent to stiffness matrix K  i f  the source o f the system o f equations is a 

Finite Element Analysis) via a matrix-vector product y = A ■ x . This matrix-vector product 

is typically a Sparse M atrix-Vector Multiplication (SM VM ) where the matrix-vector 

multiplication algorithm takes advantage o f sparse matrix storage to reduce or eliminate 

entirely the number o f triv ia l multiplications by zero, which would otherwise occur.

Name Conv. Storage Matrix-Type SMVM

Conjugate Gradient CG
depends on 

matrix
matrix+6N

Symmetric Positive 
Definite

1

Conjugate Gradient on 

Normal Eqns

CGNE

CGNR
slow matrix+6N

Non-Symmetric & 

Non-singular
1

Generalised Minimal 
Residual

GMRES
depends on 

matrix
matrix+(i+5)*N Non-Symmetric 1

BiConjugate Gradient BiCG irregular matrix+10N
Non-Symmetric & 

Non-singular
1

Quasi-Mlnimal
Residual

QMR smooth matrix+16Nc
Non-Symmetric & 

Non-singular
1

Conjugate Gradient 
Squared

CGS irregular matrix+11N
Non-Symmetric & 

Non-singular
2

Bi-Conjugate Gradient 

Stabilised
BiCGSTAB smooth matrix+10N

Non-Symmetric & 

Non-singular
2

Chebyshev Iteration CHEB matrix+5N Positive Definite 1

Induced Dimension 

Reduction
D R

IDR(1) same as 

BiCGSTAB

Non-Symmetric & 

Non-singular
1

Table 2-2 Characteristics of Iterative Methods (source: [5])

The most commonly used iterative methods, their advantages and disadvantages, are 

described in detail by Dongarra et al in [5] and a summary o f the characteristics o f those 

methods is given in Table 2-2, where N is the order o f the matrix. The matrix dominates 

the storage requirements for all methods, although the term dependent on the matrix order 

n can be significant i f  GMRES or QMR are employed. The Sparse Matrix Vector 

M ultiplication (SM VM ) dominates the computational requirements. The higher 

computational cost o f a single iteration may be offset by the fact that some methods require
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few er i terations to converge, e.g. if B iC G S T A B  requires  less than ha lf  the itera tions o f  

B iCG  the overall  com puta tional cost o f  B iC G S T A B  w ill be lower for a g iven problem .

In addition  to these  m ethods IDR (Induced  D im en s io n  Reduction),  a fo rerunner  to 

B iC G S T A B , in troduced  by S onneveld  [6] is highly efficient in so lv ing  non-sym m etr ic  

system s. In fact ID R (s) with s> l  can be m uch  faster than B iC G S T A B  in m any  cases. 

G enerally  the n u m b er  o f  m atrix -vecto r produc ts  d ecreases  as s is increased  with ID R (4) 

and ID R (6) be ing  close  to the op tim al convergence  curve o f  full G M R E S  [9].

2.2.1 Conjugate Gradient Method
T he C on jugate  G rad ien t (C G ) m ethod  is one o f  the oldest and bes t-know n  iterative 

m ethods  and is co m m o n ly  used to solve positive defin ite  system s. T he  convergence  o f  C G  

is good in general and can even be super-linear (rate o f  convergence  increases from  

iteration to itera tion) depend ing  on the properties  o f  the m atrix  [5].

LI. Fori=l,2 ,. ..

L2. Solve M * / / optional pre-conditioner

L3. p,_, = / /D D O T ( l )

L4. It' 1=1 /?*" = // MEM COPY

L5. Else

L6. /? ,_ ,=  A - , / P , -2 / /D D IV (2 )

L7. = z*'”" + // DAXPY (3)

L8. endif

L9. q( i )  = yi * p { i )  H  SMVM (4)

LIO. a ,  =  / p''*' * c/*'* // DDIV, DDOT (5)

LI 1. +a^ * 11 DAXPY (6)

L12. -  a ,  * // DAXPY (7)

L13. check lor convergence; continue if necessary 

L14. end

Listing2-1 Conjugate Gradient (CG) Algorithm Pseudo-code (source: [5])

It can be seen  from  the p seudo-code  for the C onjugate  G radien t a lgorithm  (C G ) in 

Listing2-1 that it consis ts  o f  seven  m ajo r  operations, exc lud ing  the p re-conditioner.
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Iterative methods such as Conjugate Gradient (CG) use a range of matrix, vector and scalar 

operations (BLAS [25]); and a full range of operations with the exception of matrix 

transpose used in other iterative methods can be seen in Table 2-3 and is taken as being 

representative of all other iterative methods for the remainder of this text.

line BLAS Note
ADD
SUB

DIV MULT FLOPS Cycles

3 DDOT dot-product N N 2N N
6 DDIV division 1 1 1
7 DAXPY a*x+y N N 2N N

9 SMVM
sparse matrix 

vector 
product

N NZ N + NZ NZ

10
DDOT
DDIV

dot-product,
division

N 1 N 2 N +  1 N

11 DAXPY a*x-i-y N N 2N N

12 DAXPY a*x+y
N

(sub)
N 2N N

13
convergence

check
2N

total 6N 2 NZ + 5N N Z +  1 3N +  1 NZ 5N + 1

Table 2-3 Conjugate Gradient Matrix Operations (source: [5])

In Table 2-3 the symbol N denotes the matrix/vector order or number o f  rows or columns 

and NZ denotes the number of Non-Zero elements in the sparse matrix and the typical ratio 

of NZ to N for the large matrices considered in this work is on average greater than 20 

non-zero elements per matrix row/column. FPU utilisation is the measure of how long the 

FPU is waiting for data rather than performing useful work. Thus it can be seen that the 

execution time of the entire CG (Conjugate-Gradient) method is dominated by the SM VM  

operation (and a solve step, if it is included) for large systems. In fact the table does not 

take into account that the Floating-Point Operations Per Second (FLOPS) rate achieved for 

the Sparse Matrix-Vector Multiplication (SM VM ) depends heavily on access to external 

memory in a typical computer and hence the number of notional cycles and hence the real 

FLOPS rate may be heavily distorted by the overhead of accessing sparse matrix data. It is 

possible to transform the operations in the CG algorithm to run in parallel while 

maintaining the same behaviour [5] however this does not change and may even increase 

the number of operations or cycles depending on the target architecture.
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Studies o f  the per fo rm ance o f  Computat ional  Fluid D ynamics  ( C F D )  appl ica t ions  

conduc ted  by Ande rs on  in [26] and Smith  in [27] that  show  that a very low percentage 

(less than 5 % )  o f  the process ing  po wer  in m an y  c om pu te r  sys tem s is actually del ivered to 

the application.  Even vector supe rcompu te rs  perform poor ly  on large Finite Element  

appl ica tions  as s how n  by Tay lo r  in [23],

2.3 Summary
It has been seen that the dom inan t  e lement  o f  all i terative solvers  f rom the point  o f  v i ew  of  

execut ion t ime and F L O P S  per fo rmance  is the Sparse  Matr ix  by Vecto r  ( S M V M )  

opera tion,  w hich  used to solve a linear sys tem o f  equations ,  us ing a large sparse matrix and 

a dense  vector o f  k n o w n  initial (boundary)  condit ions.

F rom the per fo rm anc e  point  o f  v iew the execut ion t ime o f  an i terative metho d such as 

Conjuga te  Gradient  (C G )  is dominated  by the speed o f  the f loat ing-point  mul tipl icat ion 

and addi tion opera tors ,  as well  as the ove rhead  o f  address ing Sparse  Matr ix data.  The 

ov erhead  o f  ad d res s ing  Sparse  Matr ix  data can be reduced in som e  cases  by spl it t ing it into 

dense  sub-blocks  but  this may  in troduce som e zero  fill values  where  the b lock s tructure is 

not an exact  match for the under ly ing  sparse  non-zero  pattern.

Thi s  is par ticularly t rue on current genera l -purpose  computer s ,  w he re  the poor  per formance 

of  Sparse  Matr ix  by Vector  ( S M V M )  code leads to poor  overal l  per fo rm ance on Finite 

Element  (F E M )  and other  applica tions ,  which depend on S M V M  as their main  process ing 

step.
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3
Chapter 3

“The Matrix is a system, Neo. That system is our enemy. 

But when you're inside, you look around, what do you see?” 

- Morpheus: The Matrix

3 Sparse Matrix Storage Formats
A m atrix  can be described  as sparse  w hen  the num ber o f  non-zero  e lem ents  is very sm all  

com pared  to the m atrix  d im ension . A  typical sparse  matrix (b c s s tk l3  from M atr ix M ark e t  

[11] is a F lu id-flow  generalized  sym m etr ic  e igenva lue  matrix, contain ing  83883 no n -zero  

elem ents)  structure plot in F igure 3-1 show s that storing all entries including ze roes  can 

be highly  ineffic ient for such  m atrices. In such m atrices it is w orthw hile  s to r ing  only  

non-zero  data elem ents  for tw o reasons;

•  S to ring  sparse m atrices  in dense form at leads to unnecessary  m em ory  accesse s  

and trivial f loating-point operations. U s in g  sparse data-structures and m e th o d s  

elim inates  these trivial operations and m em ory  accesses, w hile  in c reas ing  

perform ance.

•  A dense  storage s tructure for a m atrix  requires N elem ents. S toring the m a tr ix  in 

sparse form at m in im ises  the m em ory  requ irem ents  for s torage o f  such  m atrices .
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Figure 3-1 Spy Plot ofbcsstkl3 Sparse Matrix (source: [11])

A  wide variety o f formats for the storage o f sparse matrices has been proposed. 

Typically such methods differ in terms o f the relative amount o f storage required, the 

amount o f indirect addressing required for operations such as Sparse Matrix-Vector 

Multiplications (SM VM ) and their suitability for execution on various kinds o f single 

and multi-processor systems. The choice o f storage method is o f particular importance 

for iterative methods used in the solution o f sparse linear systems and useful surveys o f 

the fu ll range o f storage formats as well as the iterative methods that operate on them can 

be found in [1] by Barrett et al and [28] by D u ff et al.

The most straightforward way o f storing a sparse matrix is in coordinate format, i.e. the 

non-zero value is stored along with its row and column coordinates. This results in a 

storage requirement o f 16 bytes per non-zero element (16 * NZ bytes), where row and 

column indices are represented by 32-bit (4-byte) integers, and the non-zero value is 

stored as a 64-bit (8-byte) IEEE-734 [4] double-precision floating-point number. A
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typical ex am p le  o f  a sm all sparse m atrix  stored in coordinate form at is show n in Figure 

3-2.

0 1 2  3 4
0 
1 
2
3
4

row 0 0 1 1 1 2 2 3 3 4 4

col 0 1 0 1 2 1 2 2 3 3 4

value 1 2 3 4 5 6 7 8 9 10 11

Figure 3-2 Matrix in Coordinate Format

M any o f  the w e ll-k n o w n  sparse representa tions such as Jagged Diagonal require the 

m atrix  sparsity  to conform  to a particular pattern in order to be efficient as indicated in 

[1] therefore the C om pressed  S parse  R ow  (C S R ) or C om pressed  C olum n Storage 

form ats (C C S),  or o ther form ats,  w hich  m ake no such assum ptions about matrix sparsity 

structure are the m ost general purpose form ats  and those which are in most com m on  use 

in softw are libraries.

3.1 Compressed Sparse Row/Column (CSR/CCS) Storage
C om pressed  row  and com pressed  co lum n storage form ats are the most general purpose 

form ats as they m ake  no assum ptions  about the matrix sparsity structure, yet are h ighly  

efficient as they do not store any  unnecessary  e lem ents.  C om pressed  Sparse Row (C S R ) 

stores the m atrix  non-zero  e lem en ts  con tiguously  in an array in m em ory , a long  with two 

arrays o f  row  and co lum n  indices related to those non-zero  entries. T he non-zero  entries 

are typ ically  represented as IEEE double-p rec is ion  (64-bit) floating-point num bers 

w hereas  the row  and co lum n indices are typ ically  represented as 32-bit integers. The 

non-zero  entries  are stored in the value  array  in the order they are traversed in a row -wise 

fashion. T h e  co lum n indices are stored in the col array in the sam e order, and the row 

array con tains  the starting indices o f  the row s  and the non-zero  entries are stored in the 

value  array. T he  advantage o f  the C SR  sch em e is that 2*N Z  + N + 1 e lem en ts  s torage 

are required , ra ther than the N elem ents  w h ich  w ould  be required to store the entire 

matrix  includ ing  zero entries, w here  N Z is the num ber o f  non-zero  matrix en tries  and N

1 2 0 0 0
3 4 5 0 0
0 6 7 0 0
0 0 8 9 0
0 0 0 10 11
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is the number of matrix rows (matrix order). The only disadvantage is that at least one 

index must be read from the row and/or column arrays in order to retrieve a non-zero 

entry and perform some operation upon it. The CSR format can support symmetric 

matrix storage where only the upper or lower triangular portion of the matrix above or 

below the matrix is stored reducing the storage requirement to approximately half of 

what would be required if the matrix were stored in non-symmetric format. The Matrix 

Market file format [11] is row-ordered and stores non-zeroes in coordinate format (row, 

column, value). It should be noted that Matrix Market files sometimes contain explicit 

zero values. A CSR representation of the sample matrix is shown in Figure 3-3.

0 1 2  3 4
..1-, -e>- :Q;

::4-; '■5- :P--
1'.7- v.o.-.
• 8J >̂ 0
..0. ■10 ■1-1

col|  0 1 0 1 2 1 2  2 3 3 4 |i

row| 1 3 6 8 10|12|

Valuel 1 2 3 4 5 1 6 1 7 8 9 10 11

Figure 3-3 M atrix in CSR Form at

The CCS representation of the same sample is shown in Figure 3-4.

0 1 2  3 4
n !
3 ■5 :Q
30/ ? ■a r G

8: (3
b i!i

row 0 1 0 1 2 1 2 3 3 4 4
i L

/
/

w

col 1 3 6 9 11 12|

Value 1 3 2 4 6 5 | 7 8 9 10 11

Figure 3-4 M atrix in C C S  Form at

The compressed column format is similar to CSR in that non-zeroes are stored in an array 

with two other arrays, which hold pointers to the beginning of matrix columns, and
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indices for non-zero  entries  w ith in  those co lum ns. N on-zero  entries  are s tored  in the 

order co lum ns o f  the m atrix  are traversed ra ther than by row  as in the case o f  C SR . The 

H arw ell-B oe ing  file fo rm at [29] s tores m atrices in C C S format and is a good  m atch for 

the F O R T R A N  p ro g ram m in g  language , w hich  stores m atrices in a co lu m n -w ise  order. 

A s the nu m b er  o f  non-zero  e lem en ts  per row  or per co lum n is typically  quite low 

(average 20 non-zeroes  per co lum n  in this w ork )  the overhead  o f  access ing  the 

supporting  row  and co lum n  m atrices  represents  a significant part o f  the cost o f  a m atrix- 

vec tor operation . In term s o f  p rocess ing  efficiency  although in w idesp read  use the 

C S R /C C S  form at could  be  im proved  in that it requires an indirect add ress ing  step for 

each scalar operation  in a m atrix -vec to r product or pre-conditioner so lve [ 1].

3.2 ICSR/ICCS Format
Increm ental C om pressed  Sparse  R ow  (IC S R ) and Incremental C om pressed  C o lu m n  

S torage ( IC C S ) are varian ts  o f  C om pressed  R o w /C o lum n  storage proposed  by K oster 

[30]. T he  proposed  format w orks  by o bserv ing  that in Sparse M atr ix -V ecto r  

M ultip lica tion  (S M V M ), the inner loop perfo rm s an indirect addressing  step for each 

iteration through  the m atrix  data-structure, and seeks to reduce the penalty  associa ted  

with it. In IC SR  non-zero  entries w ith in  a row  (i) are stored in order o f  increasing  

co lum n  index j so the location (i,j) o f  a non-zero  entry in the A matrix ajj can be s tored  as 

an offset to the previous index, and s im ilarly  for co lum n addresses. T he exam ple  m atrix  

is show n in IC C S2 form at be low  in F igure 3-5.

0 1 2 3 4
0 1 2 0 0 0
1 3 4 5 0 0
2 0 6 7 0 0
3 0 0 8 9 0
4 0 0 0 10 11

row 0 1 0 1 2 1 2 2 3 3 4
row inc 0 1 -1 1 1 -1 1 0 1 0 1

offset +5 +5
row inc' 0 1 4 1 1 4 1 0 1 0 1

col 0 0 1 1 1 2 2 2 3 3 4
col inc 0 0 1 0 0 1 0 0 1 0 1
col inc' 0 1 1 1 1

Value 1 2 3 4 5 6 7 8 9 10 11

Figure 3-5 Matrix in ICCS2 Format
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The format exploits the fact that column incremental addresses do not change very often 

to store the increment only when it is non-zero and adds an increment n to the row-index 

to signal the change in column index at that point, this has the effect o f  reducing the 

memory required to store the matrix in ICCS format. The amount of memory required to 

store a matrix in 1CCS2 format in the required 3 array structures for non-zeroes, column 

and row increments i ^ 2 *  nnz{A)  +nnec{  A ) +  \ . Where nnec(A) is the number of non

zero column increments. The effect o f  using incremental addressing is to reduce the 

number of assembly language instructions in the critical loop from 26 to 15 instructions 

resulting in a performance gain for the SM VM  operation o f  approximately 30%.

A second format called ICCSl is also proposed which reduces the number of arrays 

required to store the sparse matrix to two, one to hold the non-zero elements and the 

other to hold both row and column addresses. This second format however packs row 

and column addresses into 32-bit integers. Deleting empty rows and columns using two 

permutation matrices facilitates the packing. The deletions help to ensure column 

increments are minimised so that row-increments can occupy the remainder of the 32-bit 

integer with minimal probability of exceeding the 32-bit range. The ICCSl format thus 

requires 2 * n n z { A ) ^ \  words. In terms of the SM VM  operation additional overhead is 

added as the operand and result vectors must be reordered to compensate for the 

permutation of the source matrix. In practice the permutation is not required for iterative 

methods, as the non-singular matrices they generally require contain no empty columns.

3.3 SameType and StructType Formats
In the SameType format proposed in [31] the indices incur a performance penalty if they 

are not stored in the same format as the non-zeroes as they must be converted to the 

correct type before use by software. There is no added storage inefficiency in the case 

that the indices are 32-bit integers and non-zeroes are stored as 32-bit floats, however if 

non-zeroes must be stored as 64-bit doubles a 33% storage inefficiency results if indices 

are stored as doubles. If on the other hand indices are maintained as 32-bit quantities 

additional processing overhead is required to split 64-bit doubles into two 32-bit 

quantities, which are then appended, or pre-pended to the 32-bit indices. The second 

format proposed by Silva is called StructType and is essentially coordinate format where
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each {row, col, non-zero} triplet is stored as a s tructure e lem ent in an array o f  such 

structures w h ich  represent the A  matrix.

T he  advan tage  o f  S truc tT ype  over  S am eT ype form at is that no type convers ions  are 

required and storage is op tim al as the structure can use the appropria te  sub types  for each 

index and non-zero  data e lem ent albeit at an increased cost as both row  and co lum n 

elem ents  are stored for each non-zero . A ccord ing  to Silva co m b in in g  indices and non- 

zeroes into a single con tiguous  data-s tructure  reduces  cache m isses by im p ro v in g  spatial 

locality, and hence increases system  perform ance. One w ay  to get around  a lignm ent 

p rob lem s in troduced  by  the m iss-m atch  betw een  32-bit in tegers and 64-bit d o u b le 

precision num bers  w ould  be to store two 64-bit doubles  and tw o 32-bit doub les  in a 

s ingle s tructure , the only d isadvan tage  being  that the final in teger/doub le  pair m ight 

require p add ing  with zeroes in som e cases.

3.4 Hierarchical Sparse Matrix (HiSM) Format
In [32] V assiliad is  et al p roposed  a storage format w hich  reduces the storage required for 

row and co lum n  addresses  by  using  a h ierarchical s torage schem e. T h e  hierarchical 

s torage and an underly ing  8x8 vec tor m ach ine architecture saves address  overhead  by 

factoring  co m m o n  term s out o f  addresses,  reducing  them  to approx im ate ly  3-bits from an 

initial 32-bits. A m atrix  is converted  to H iSM  format by subdiv id ing  it into multip le  s*s 

sub-m atrices  w here  s is the d im ension  o f  sub-m atrix  which can be handled  by the 

associa ted  vec to r architecture. A  s im ple  exam ple  o f  the HiSM  format with s=4 is show n 

in F igure 3-6.

T he large source  m atrix  is tiled up into four 4x4  m atrices as it will not fit in a single 4 x 4  

m atrix  so one  level o f  hierarchy is required. T he  top data-structure con ta ins  po in ters  to 

the 4x4  sub-m atr ices  and a length (len) entry, w hich  tells the HiSM  hardw are  w hether  the 

sub-m atrix  is em pty  or not. Each one o f  the 3 sub-m atrices  which have n on-zero  lengths 

(sO, s2  and s3) are then represented  using 2-bit row and co lum n  addresses ,  and 

co rrespond ing  non-zero  value for each non-zero  entry  in the source m atrix . T h e  use o f  

s=4 reduces  addresses  to 2-bits  in this exam ple  how ever the value  proposed  by 

V assiliadis  in [32] for s is 64 resulting  in 3-bit address  references.
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2-bit address

fo 1 2  3^ 4 5 6 7
1 2 0 0 0 0 0 0
3 4 5 0 0 0 0 0
0 6 7 0 0 0 0 0
0 0 8 9 0 0 0 0
0 0 0 10 11 0 0 0
0 0 12 13 0 14 0 0
0 0 0 15 16 0 17 0
0 0 0 0 0 0 18 19

sO
s2 S3

adr 0,0 0,1 1.0 1,1
top ptr sO s i s2 S3

len 9 0 4 6

sO
adr 0,0 0,1 1,0 1,1 1,2 2,1 2,2 3,2 3,3
nz 1 2 3 4 5 6 7 8 9
adr 0,3 1,2 1,3 2,3

oc.
nz 10 12 13 15

s3
adr 0,0 1,1 2,0 2,2 3,2 3,3
nz 11 14 16 17 18 19

Figure 3-6 HiSM Format Storage Example

The main benefit o f the scheme is a reduction o f ahnost 28% in the overall storage 

requirement owing to the use o f two 3-bit references rather than 32-bit values as in CSR. 

One disadvantage w ith the format is that it requires square matrices for which the number 

o f rows/columns N is an integer multiple o f s for optimum efficiency. Additionally 

multiple levels o f hierarchical storage (L) and look-ups are required as the total number 

o f non-zeroes NZ grows as shown in Figure 3-7, however most problems should require 

at most 5 levels o f hierarchy in order to contain the complete matrix (64'”' = lOOOM non

zero sparse matrix entries).

nnz
<64̂

Figure 3-7 Levels of HiSM Storage Hierarchy Required

Typically however, as stated in [32], the HiSM format achieves between 72 and 76% of 

the CSR memory requirement for storage o f the same matrix. It is also claimed to 

increase simulated Sparse Matrix-Vector M ultiplication (SM VM ) performance by up to
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5.3 times when compared to CSR on a Generic Vector Processor (GVP). This is 

achieved using an architectural extension to GVP optimised for the HiSM format.

3.5 Summary
The sparse matrix storage formats surveyed have the characteristics shown in Table 3-1, 

where the A  matrix is sparse and o f  dimension n rows by m columns.

Format A ssum ptions Memory W ords Notes

Coordinate N one 3*nnz(A) entries stored as triplets

CRS N one 2*nnz(A)-i-m+l
non-zeroes stored row
wise

CCS None 2*nnz(A)+n-i-l
non-zeroes stored colum n
wise

IC C Sl
A ssum es colum n 
increment small

2*nnz(A )+l
Stores row and column 
increments in a single 
array

1CCS2 None 2*nnz(A)+nnec(A)
Only non-zero colum n 
increments nnec(A) are 
stored to reduce m em ory

Sam eType N one 3*nnz(A)
less efficient for doub le
precision non-zeroes

StructType None 2*(n+nnz(A))
Better performance than 
Sam eType at cost o f  
increased storage

Table 3-1 Features of a Selection of Sparse Matrix Storage Formats

A key issue for any Sparse Matrix storage format is to minimise the memory 

requirements and to increase the effective memory-bandwidth “seen” by the data-path, 

equally any format should seek to maximise data-locality whether that be in registers or 

cache in order to minimise the average access-time to frequently accessed data and hence 

maximise performance.
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4
Chapter 4

‘7  know nothing by experience, 

though I know som eth ing hy observation  ”

- Lord Goring: “A n idea l h u sban d” (O scar Wilde)

4 Hardware Support for SMVM
According to Kogge [15] tiiere are three approaches to performing Sparse Matrix-Vector

Multiplication (SM VM ) on programmable computers:

• inner Product where the result vector y is computed one inner-product at a time, 

using ajj and xj values read from memory

• Sub-matrix where the matrix A is tiled up into sub-matrices which are read along 

with equally sized segments of the y and x vectors

• Colum n Scaling where multiple entries in the result vector y are read and updated 

as each column is scanned for aij values and multiplied by a single entry from the 

A:-vectorx,

In the following sections a survey of hardware performance enhancement techniques

relevant to the proposed architecture is presented.

4.1 Hardware Performance Enhancement Techniques
There are two main methods of increasing single-core processor performance:
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•  R ais ing  the p ro cesso r  clocic-frequency through p ipelin ing and p rocess  scaling

• Increasing  the n u m b er  o f  executed Instructions Per C lock  (IPC )

T hese  two techn iques  are h ighly in terdependent and it is difficult if not im possib le  to 

increase IPC and p rocesso r  c lock  frequency sim ultaneously . A review  o f  the im portan t 

features in term s o f  p rocesso r  perform ance, w hich  are relevant to all architectures 

covered  in this w ork , is g iven  in the fo llow ing  sections.

O f  course m ultip le  p rocessors  can be em ployed  in parallel using one or bo th  techniques 

in order to ach ieve g rea te r  speed -ups  assum ing  enough  o f  the code can be restructured to 

take advan tage  o f  para lle lism  in a multicore processor,  and such m ulticore  processors  

will be dealt w ith  later in this section.

4.1.1 Processor Pipelining
A ccord ing  to H ennessy  in [34] p ipelin ing is an im plem entation  w hereby  m ultiple 

instructions are over lapped  in execution. T he reason for p ipelin ing is that the am oun t of 

w ork  w hich  can be ach ieved  in a single clock cycle is limited by the num ber o f  logic 

levels required  to im p lem en t a desired  logical function (w ork) and the p rocess ing  delay 

associa ted  w ith  each level o f  logic. T he circuit show n in Figure 4-1 , produces a 

com ple te  result y = a+ b*c  each c lock  cycle i.e. the circuit has a clock latency o f  1.

a+b*ca,b,c
a+b*c

clock

F igure 4-1 U n-p ipe lined  Circuit

In a p ipelined  approach  a large logic  function consis t ing  o f  m any logic levels w hich  

evalua tes  in a single  clock  cycle is partitioned into m ultiple groups, each  con ta in ing  

few er levels  o f  logic w h ich  can evalua te  in parallel in a single shorter clock  cycle. T h is  

d iv ide and conquer  approach  ensures  that the m ax im u m  operating  f requency  can be 

ach ieved  w ith  a g iven fabrication technology. T he  w eakness  o f  frequency sca ling  alone 

is that it does not take effects such as start-up delays and stalls into account and is thus a
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poor measure of processor performance. A pipelined version of the previous circuit is 

shown in Figure 4-2 and has a clock latency of two. In this example because the 

multiplier and adder have been separated into two pipeline stages the circuit can now run 

at a speed dictated by the propagation delay through the adder or the multiplier, 

whichever is slower, rather than the sum of the two delays. In practice in a real design 

every effort is made to balance the delays of all pipelining stages in order that the whole 

design is able to run at the maximum frequency possible rather than being limited 

arbitrarily by a single stage.

A .
clock

.A

b,c a+b*c

A
-C  *

A \  ̂r A

clock

Figure 4-2 Pipelined Circuit

A disadvantage of this configuration is that it takes two clock cycles for the result to 

appear at the circuit rather than one as in the non-pipelined case. This increased latency 

is important as the pipeline has first to be filled before starting to produce results, and 

also has to be refilled following a pipeline hazard or stall. The pipeline stall penalty eats 

into the raw performance gains achieved by pipelining:

Perform ance -  Cain  =

C P I  *  CInrk
iiiiinpelmed unpipelined

C l ’I * CInrk
‘ pipelined pipelined

Equation 4-1 Performance Im provem ent due to Pipelining

CPI (Clocks per Instruction) is the average number of clock-cycles taken for a given 

instruction to execute. Computer architects and processor designers often use a 

technology independent metric based on a fanout-of-4 inverter (F 0 4 ) ,  where an inverter 

drives 4 identical copies of itself, as a means of comparing processor implementations as 

shown in Figure 4-3.
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From the pure performance point of view it has been shown by Hrishikesh in [37] that 

there is an optimal amount of logic which can occur between two clocked registers 

yielding maximum  performance in terms of clock frequency, and that current commercial 

microprocessor design has almost reached this optimum point as shown in Figure 4-4.
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66 MHz
T3
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200 MHza  4 0 -

o 450 MHz

2 0 - I GHz
2 GHz

7.8 F04

Year 1 9 9 0  

Tech(nni) 1000
992
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350

998
250

2000
180

2002
130

Figure 4-4 Pipelining as a Function o f  F 0 4  Delay (source: [37])

In fact without the use of specialised structures and process technology F 0 4  will actually 

start to increase from 2010 onwards according to Tanabe [39] as can be seen in Figure 

4-5 unless improvements to structures and process technology are made at the transistor 

level.
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Figure 4-5 F 0 4  scaling (source: [39J)

In Figure 4-5 Tanabe simulates the behaviour of 3 different transistor structures under 

scaling to predict F 0 4  inverter circuit delay characteristics compared to the ITRS 

roadmap. The 3 devices are Single Gate (SG), Dual Gate (DG) and Trigate transistors 

which are being introduced to mitigate the Short Channel Effect (SCE) which is 

increasingly important as devices continue to scale below 65nm. These devices are 

compared to ITRS predictions of pure scaling of existing transistor structures. As can be 

seen the SG device only produces a delay improvement below 2nm body thickness. On 

the other hand the DG delay is superior at 5nm body thickness. This difference is mainly 

due to the controllability of short channel effect (SCE). Compared to the ITRS roadmap 

predictions for delay characteristics it was found that, at 65nm node only SG SOI 

structures and, at 45nm node, SG SOI + strained-Si channel device or TriGate device 

and, in 22nm node, TriGate + strained-Si channel device will meet the ITRS predictions. 

According to Sprangle [40] continuing to pipeline into the future will yield about 65% of 

the theoretical performance improvement predicted by scaling at a cost o f  increased 

cache bandwidth requirements. It is ultimately power, and the associated problem of 

cooling, which places a limit on the amount of pipelining which is employed in a given 

design. The other and highly important implication of pipelining is that it increases the 

number o f  clocked elements in the design and thus increases power:

P  = 2* f * C ,  *Vdd^

Equation 4-2 C M O S Dynam ic Power

ITRS
SG(Tsoi=2nm)
SG(T soi=2nm,Ge 10S) 
SG(Tsoi=5nm) 
DG(Tsoi=2nm) 
DG(Tsoi=5nm)
T riG ate(T  soi=5nm)

1 riGate,  GelO%

2010 2015 2020
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W h e re  /  is th e  f r e q u e n c y  o f  the  c lo c k  a p p l ie d  to the  p ipe line  s ta g e s ,  C/ is the load  

c a p a c i ta n c e  d r iv e n  b y  e a c h  p ip e l in e  s ta g e  and  Vdd is the p o w e r - s u p p ly  v o l ta g e .

W ith  the  t r a n s i t io n  to  e v e r  d e e p e r  p ro c e s s  g e o m e tr ie s  log ic  d e la y  ( F 0 4 )  has  b e c o m e  

in c re a s in g  less  im p o r ta n t  w ith  re sp e c t  to in te rco n n ec t  de lay  as a p r o p o r t io n  o f  overa l l  

d e lay ,  as s h o w n  b y  H o r o w i tz  [38]. T h is  m e a n s  that a n y  im p ro v e m e n ts  to  F 0 4  d e la y  d u e  

to  m o re  c o m p le x  and  e x p e n s iv e  p ro c e s s  te c h n o lo g y  will  at best c an ce l  o u t  the  e f fec ts  o f  

in c re a s in g  in te rc o n n e c t  de lay .
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Figure 4-6 Logic vs. Interconnect Delay Scaling (source: [38])

It can  be  c o n c lu d e d  tha t the  in c rea se  in F 0 4  d e lay  as w ell  as in te rc o n n e c t  de lay , a n d  the  

b u f fe r in g  to  c o m p e n s a te  fo r  v o l ta g e  d ro p s  ( I* R )  d ue  to in c re a s in g  w ir in g  r e s i s t iv i ty  

m e a n s  tha t  sm a l le r ,  s im p le r  m u l t ic o re  a r c h i te c tu re s  w ill  g u a ra n te e  b e t te r  p e r f o r m a n c e  as  

te c h n o lo g ie s  c o n t in u e  to  s ca le ,  w h i le  l im i t in g  p o w e r  d iss ip a t io n .
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4.1.2 Pipeline Hazards

A pipeline hazard is a condition which prevents the next instruction in a computer 

program from executing in its designated clock cycle. Reasons for a hazard and 

consequent stall could include a cache miss, or a data-dependency where two instructions 

operate on the same register and the earlier issue instruction has not yet written back the 

register contents due to the pipeline latency. Such a data-dependency can occur where 

two instructions which operate on the same data in a register, m emory or cache location 

are issued closer together in terms of their dispatch cycle than the pipeline is long in 

terms o f  stages, where each stage executes in a single cycle.

According to Hennessy [34] three types of pipeline hazard exist;

• Structural Hazards occur where resource limitations mean that not all 

combinations of instructions can be executed simultaneously in the pipeline.

• Data Hazards occur when an execution of an instruction depends on the results 

from a previous instruction in a way that is exposed by overlapping instructions 

in the pipeline.

• Control Hazards occur through the effects of pipelining instructions such as 

branches which modify the Program Counter (PC)

• Data hazards can be further subdivided [41] into the following sub-classes:

• Write After Write (W A W ) hazard where one part o f  the processor pipeline

incorrectly overwrites a location i resulting in an incorrect value being stored in i

• Read After Write (RAW ) hazards where a data dependency exists in a pipeline

such that an early stage attempts to read location i before it has been updated by a

later stage, resulting in the old value o f  i being used incorrectly

• Write After Read (W A R) hazards where a pipeline stage writes to i before the old 

value contained in i is read, resulting in the new value being read incorrectly

In a typical processor with an In-Order pipeline, dependencies in the linear execution 

pattern can result in hazards which make it necessary to stall the pipeline, allowing 

instructions issued before the stall to complete, and the stall to be cleared, before refilling 

the pipeline and allowing those instructions issued after the stalled instruction to 

complete. The Out-Of-Order ( 0 0 0 )  technique allows execution to proceed in cases 

where a normal in-order pipeline would stall by using multiple functional units which can 

execute in parallel. 0 0 0  execution circumvents some of the problems associated with
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In-Order pipelines by “ looking” at a large window o f  instructions to be executed which 

are present in a large instruction pre-fetch buffer and executing those without 

dependencies in parallel. 0 0 0  designs have largely fallen out of favour due to their 

high implementation and have been replaced by multiple in-order pipelines in Chip 

Multiprocessors which will be discussed in more detail in the following sections.

RAW data-hazards occur frequently in SM VM  codes. According to Taylor [23] over 20 

instructions, and possibly many more, would be required in the instruction pipeline in 

order to avoid stalls due to RAW  hazards in SM VM  applications. However in such 

applications there is very little in the way of data reuse, therefore in many cases the data 

associated with those later instructions might not be in the cache resulting in a cache- 

miss which would negate any performance gain due to out-of-order execution. For the 

purposes of this work we will limit ourselves to simple in-order pipelines as Out-of- 

Order techniques do little to improve Sparse Matrix Vector Multiplication where the 

main limitation is memory bandwidth and not stalls.

4.1.3 Floating-Point Unit (FPU)

Direct SM VM  operation on the CSR format entails that the solution-vector y is 

calculated one entry at a time, as a sum of the products of A-matrix entries and x-vector 

entries. The x-vector entries are obtained by indirect reference using the addresses stored 

as part o f the sparse matrix A as shown in Table 4-1.

^ 0 0
* X() -1-

^ 0 1
* -1-

^ 0 2
*

^ 2 -1-

^03
* X3 -1-

^04
* X 4

Yo ^00 ^01 ^02 ^03 ^04

Table 4-1 C SR  Sparse Matrix Vector Multiplication Order

As can be seen from Figure 4-7 one of the difficulties with the CSR format is the 

dependency on the previous y-register value which introduces a RAW  hazard if y is 

calculated incrementally using a single floating-point multiplier and adder pair.
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Figure 4-7 FP Adder Configuration (CSR)

One approach to resolving the dependency is to stall as each product reaches the floating

point adder input, however this approach results in low performance. Another approach 

is to allow multiple sums of products to be accumulated independently, one in each o f the 

pipeline stages in the floating-point adder, however this requires additional cycles at the 

end of a sequence o f computations to propagate out the results adding additional cycles 

of delay. At the end o f the last multiplication the sums of products must be merged into 

a single y-vector entry by re-circulation through the adder until the terms {W ,X,Y,Z} 

from each pipeline stage have been summed together to produce a single vector entry as 

shown in Table 4-2. The only disadvantage with this approach is the incremental delay 

required which adds to the start-up overhead for each matrix row. In general an n-stage 

floating-point adder pipeline w ill require approximately/! * (log^.(«)-i-1) cycles to merge

through its own pipeline (2 operand adder) where n is a power o f 2. This delay can be 

mitigated but not eliminated by overlapping the propagation delay with the next set of 

computations, and maintaining intermediate results in the pipeline adds to register 

pressure in the processor.
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The SPAR architecture is proposed by Taylor [23] as a solution to some of these 

problems and consists of two linear arrays, one o f non-zero values and the other of row 

or column addresses. Zero entries are selectively introduced into the value array to 

demarcate the end of columns in the row/column array. The SPAR representation of the 

sample matrix in Figure 3-2 is shown in Table 4-3.

0 1 2  3 4

0

1

2

3

4

col 0 yco l_ 1  y^ol_2 ^ ^ o l_ 3

row/col 0 1 1 0 1 2 2 1 2 3 3 3 4 4 4

value 1 3 0 2 4 6 0 5 7 8 0 9 10 0 11

Table 4-3 Matrix in SPAR Format

As a result the SPAR data-structure consists of one very long vector instruction meaning 

that the vector start-up overhead cost is only incurred once per sparse matrix-vector 

multiplication. This however comes at an increased cost in terms of the additional 

storage required to store N*64-bit double-precision zero entries, where N is the number 

of columns in the sparse matrix. The increase in storage requirements for a matrix

i 2 © 0

3 /b /5 /(b

h B, ■'g ■'(i)
0/ y 8/ 0

(P‘ 0 ib lh
column ends

pipe 0 pipe 1 pipe 2 pipe_3 delay O delay_1 delay_2
w X Y z

w X Y z
w X Y z

Y+Z w X Y Z
Y+Z w X Y

w+x Y+Z
W+X Y+Z

w+x Y+Z
w+x Y+Z

W+X Y+Z
W+X+Y+Z

W+X+Y+Z
W+X+Y+Z

W+X+Y+Z
W+X+Y+Z

Table 4-2 CSR FP Adder Pipeline Merge Operation
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containing 24 non-zero entries per column is 4 bytes per column (64-bit 0.0 value used to 

denote end of column instead of 32-bit integer) or approximately 2.7%.

In order to improve data-locality as in the StructType sparse matrix format detailed in 

Section 3.3 the Sparse Matrix is stored as an array of structures as shown in Listing4-1.

Struct spar_entry { 
double k; 
int r;

};

Listing4-1 SPAR Data-Structure

Corresponding to the SPAR data structure the code to implement an unsymmetric Sparse 

Matrix-Vector Multiplication is shown in Listing4-2.

while (I < A.max_entries) {
if (A.k[i]==0.0) i_col = A.r[i]; // 0.0 marks end of column 
else { 

i_row = A.r[i]; 
y[i_row] += A.k[i]* x[i_col];

}
i++;

}

Listing4-2 Unsymmetric SPAR SMVM Code

A block diagram of SPAR is shown in Figure 4-8, and one o f the main features is the 

inclusion o f an 8kB direct-mapped Y-cache, which was sufficient to achieve their target 

95% cache hit-rate for the suite of test-matrices. In the diagram two separate SDRAMs 

interfaces allow the vector data to be accessed via the R-AGU (address generation unit) 

and 64-bit double precision A-matrix data via the K-AGU. When a zero-value is found 

in the A-matrix data (value array) by the ZDL (zero delay line) block it generates a signal 

which is used to load the x-vector value into the p[i] register from the same SDRAM 

connected to the R-AGU. Storing the column and row addresses in the same array in 

SDRAM thus allows a reduction in the complexity of the SPAR hardware compared with 

a hardware CSR multiplier. The A-matrix values in a column are multiplied successively 

by the x-vector value stored in the p[i] register by a floating-point multiplier and each 

partial product is added as a contribution to the y-values stored in the cache block. In 

this case the cache used was a 8kB direct-mapped cache. Delays are included in the 

circuit in order to compensate for the delay through the floating-point adder so that the
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partial product from the m ultiplier is added to the correct y-value in the cache. The cache 

is a write-back cache meaning that 64-bit results from the cache are only written back to 

the third SDRAM when data is evicted from the cache owing to a cache miss or when the 

cache is exp lic itly  flushed from the cache at the end o f the SM VM  operation. 

Conserving SD RAM  bandwidth in this manner leads to higher performance and lower 

power as data is only written to or read from the external SDRAM when absolutely 

necessary.

SDRAM Port 

^32

R-AGU

SDRAM Port

r6 4

K-ACSU

P-AGU ZDL

' ^ 2

fpa_dly

write-address 

►

read-address

write-data

Cache
road-daa

SDRAM Port

Figure 4-8 SPAR Architecture (source: [231)

The authors found that for even moderately sized FEM matrices the FPU utilisation for 

the SPAR architecture is approximately 96% irrespective o f start-up delay, assuming that 

pipeline stalls can be eliminated, and that the effect o f the start-up delay on FPU 

utilisation is negligible for large sparse matrices.

The SPAR simulation model used by Taylor is ideal, however, in that there is an 

assumption that all stalls due to RAW  (read after write) hazards can be eliminated by 

reordering the non-zero entries in a software pre-processing step, prior to starting the
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S PA R  S parse  M atrix -V ecto r M ultip lica tion  (S M V M ) operation . H o w ev er  the authors do 

not describe  how  the e lim ination  o f  R A W  hazards can be guaran teed  or the 

com puta tional overhead  in pre-p rocessing  the sparse m atrix  to e l im ina te  hazards.

In practice a single  FPU even with  the en hancem en ts  p roposed  by  T ay lo r  still has 

d isadvan tages  in that instruction bandw id th  is high and the n u m b er  o f  floating-point 

operations that can be carried out per c lock-cycle  is low. A  better so lu tion  is to com pute  

the produc ts  correspond ing  to a partial row or co lum n from the S parse  M atrix  in a single 

cycle. C onside ring  a 4-e lem ent S ingle Instruction M ultip le  D ata (S IM D ) datapath 

capable o f  p rocess ing  a 4-entry  segm en t o f  a sparse row  or co lum n  the instruction 

bandw id th  is reduced by a factor o f  4 and the num ber o f  F L O P S  per cyc le is m ultiplied 

by 4 for the sam e clock frequency, thus tak ing  better advan tage  o f  p rocess-techno logy  in 

line with  M o o re ’s law.

4.1.4 Memory
A second  area o f  focus in this w ork  is that o f  ach iev ing  high per fo rm an ce  w here  external 

m em ory  bandw id th  is limited, it will be seen that this is especia lly  im portan t in the case 

o f  Sparse M atrix  V ector M ultip lica tion  (S M V M ). T he reason for this is that in m odern  

Very Large Scale o f  Integration (V L S I)  p rocessors  internal m em ory  and bus bandw id ths  

and p rocess ing  speed in F loating Point O pera tions  per Second  (M F L O P S )  are very high 

and have con tinued  to g row  as V L SI m an ufac tu ring  p rocesses  have im proved ,  how ever 

pin bandw id ths  required to interface to external m em ory  devices  have not kept pace with 

internal p rocessor bandw id ths  g iv in g  rise to a perfo rm ance  bott leneck . External 

m em ories  are preferred  over  internal m em ories  as they are low -cost co m m o d ity  products. 

T he cost per m egaby te  (M B ) o f  ex ternal D R A M  chips is at least one  o rder  o f  m agnitude 

cheaper  than to integrate the sam e D R A M  into a processor die, and in the case that 

S R A M  is in tegrated onto  the p rocesso r  the pena lty  is even w orse . A  second  reason for 

using external m em ories  is that they a llow  a m ach ine  to be easily  upgraded  to support 

p rob lem s o f  arbitrary size, w h ich  canno t  be handled  in internal m em ories .

M cK ee  co ined  the term  “ M em o ry  W a ll” [42] to describe the s ituation  w here  

im p ro v em en ts  in p rocessor speed w ill even tua lly  be m asked  out by s low er im provem en ts  

in co m m o d ity  D R A M  speed  and read/w rite  latency. P rocessor p erfo rm ance  has fo llow ed 

M o o re ’s law  because  it has h arnessed  im p ro v em en ts  in both  tech n o lo g y  and in 

architectura l design. O n  the o ther  hand m ost bandw idth  im p ro v em en ts  in D R A M
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technology were achieved by low-cost incremental improvements to existing DRAM 

architectures, relying mainly on process scaling for any improvements in speed, which 

also resulted in lower DRAM  latency as a by-product.

It is expected that computing systems performance will soon be dominated by memory at 

a 7% performance increase per year (as opposed to processor speeds which have been 

growing conservatively at 50% per annum), leading to an increasing disparity between 

memory and processor bandwidth as shown in Figure 4-9. As can be seen the use of

multiple processors exacerbates the problem as multiple processors contend for access to

a shared memory subsystem.

According to Jacob [44] hundreds of papers in recent years have looked at the problem in 

terms of what can be done on the CPU side to tolerate or reduce memory latency. 

Memory latency is the time, typically measured in clock cycles taken to access a

randomly addressed instruction or data in memory.

500000
S 'I 400000
ex*
0
^  300000

?̂ 200000
40
0)

1  100000

a:
0

Figure 4-9 D iverging Processor and M emory Speeds (source: [43])

Memory bandwidth on the other hand is the rate at which those words can be delivered to 

a waiting processor. In the case of large data-structures such as sparse-matrices the 

memory latency penalty is incurred once when accessing the beginning o f  the structure in 

memory, however thereafter data/instructions are delivered to the processor at a rate 

determined by the available memory bandwidth. For large sparse matrices the effect of 

limited memory bandwidth far outweighs the initial penalty due to the latency in 

addressing the start o f  the sparse matrix. Unfortunately most of the improvements in 

general purpose programmable computers address latency reduction and tolerance, rather
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than increasing memory bandwidth and hence do not directly address the requirements of 

this work.

The best predictor of sustained memory bandwidth in computer systems has been 

M cCalpin’s STR EA M  benchmark [45], which is based on the measured sustainable 

mem ory bandwidth available to ordinary user programs rather than on theoretical “peak 

bandwidth” . As reported in [33] STR EA M  benchmark results illustrate the imbalance 

between peak M FLO PS and sustainable bandwidth, with peak M FLOPS increasing at 

50%  versus the 35% per annum for sustainable bandwidth for the same architectures. 

Additional work by Asanovic [46] shows that the STREAM  benchmark [45] results often 

fall far short o f  the available pin-bandwidth, with some machines achieving 1/6 of the 

available pin-bandwidth in terms of STR EA M  benchmark performance. This indicates an 

architectural imbalance between the processor core design and the 1/0 subsystem which 

does not succeed in matching the processing bandwidth with the available I/O bandwidth. 

Oliker et al [48[ suggest that current processor architectures fail to offer a sustainable 

path for improvement as processor core speeds continue to outstrip reductions in memory 

subsystem latency, and that there is a critical need for future microprocessors to add 

architectural enhancem ents to address applications exhibiting significant levels of 

memory access irregularity.

4.1.5 Cache
Modern processors include at least some onboard memory as part o f  their hierarchical 

memory subsystem with the latency and speed o f  read/write operations increasing with 

the distance from the processor. Onboard memory is normally integrated in the form of 

instruction and/or data caches w hose function is to improve processor average 

performance. A cache is a local fast memory, which contains copies o f  frequently 

accessed data or instructions, and works by reducing the average access time the 

processor incurs when accessing m em ory as shown in Equation 4-3.

f^or.s,casc =  K .,crn a , ^ a y , =  h a ch e  *  *  m i s s r u t e

Equation 4-3 Memory Access-Time

Caches work by exploiting the temporal and spatial locality o f  addresses and their 

associated data or instructions:
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• Temporal locality is the likelihood that a recently referenced address w ill be 

referenced again in the near future

• Spatial locality is the likelihood that a close neighbour o f a recently referenced 

address w ill be referenced in the near future

The processor architecture is organized so that it looks in the fast local cache for 

data/instructions before looking in the next level o f the hierarchy and so on. If the 

desired data/instruction is found in the cache a cache “ h it”  is said to have occurred, 

otherwise a cache “ miss”  occurs. Temam and Jalby [48] divide cache misses in 3 

classes:

• Cross-interference (conflict) misses - line flushed by element from another array

• Self-interference (capacity) misses - line is flushed by another element o f the 

same array

• Intrinsic (compulsory) misses - line is loaded for the first time

The cache hit-rate depends both on its type, its size, the number o f cache-lines and the 

cache line-length.

read ad it

rd index

rdJag r_r_tag

Comparator

rd hit r val

rd index rd block valid DataN DataO

Table 4-4 Direct-Mapped Cache Block diagram (source: [50])
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Data and Instruction Caches of the type used in General Purpose Processors are typically 

characterized by 3 major parameters:

• Capacity

• Cache line-length

• Associativity

In general, caches consist of several sets, each of which consists of n ways, where n is 

called the cache associativity, and is usually 1, 2, 4, or 8. Caches are called direct 

mapped for n=l, set associative otherwise. It is also possible albeit expensive to 

implement a fully associative cache. A direct-mapped cache such as that shown in Table 

4-4 has an associativity of 1. An associativity of 1 means each address maps to one, and 

only one location in the cache. The benefit of a direct-mapped cache design is that it is 

very simple and can make use of conventional RAM as building-blocks resulting in a fast 

low-cost implementation.

The disadvantage of direct-mapped caches is that the fact that addresses map to only a 

single location can result in “thrashing” where program code operating within a restricted 

address range causes cache-lines which are required in the near future to be ejected from 

the cache leading to a high percentage of cache misses and reduced performance. Such 

thrashing behaviour is especially likely in the case of smaller caches as it is more likely 

in such cases that multiple addresses will alias to the same cache line. Set-associative 

caches alleviate the shortcomings of direct-mapped caches at the expense of additional 

area and complexity. Cache associativity increases cache performance by reducing the 

number of cache contlicts (“thrashing”) [51].

While associativity reduces the number of conflicts by allowing locations to map to 

multiple cache lines, it has the disadvantage of slowing down the cache because of its 

added complexity. On cache updates, the replacement strategy determines the way a new 

line is put into, evicting the previous contents of the line. Common replacement 

strategies are least recently used (LRU) and round robin.

Temam and Jalby [48] were the first to develop a detailed model of cache misses for 

Sparse Matrix Vector Codes. They concluded that cache line size has the greatest impact 

on cache misses, while associativity has the least. As part of his work Vuduc [52] 

extended the model proposed by Temam and Jalby, and concludes that it is important to
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have strictly increasing  line lengths through the m em ory  h ierarchy  to ach ieve  good 

perfo rm ance  using  his execu tion  model.

4.1.6 Pre-Fetching
A s outlined p rev iously  the m em o ry  wall is increasingly the obstacle  to ach iev ing  higher 

Instruction Level Para lle lism  (ILP) despite 0 0 0  and o ther techn iques  in tended  to mask 

increasing D R A M  access latencies. A ccord ing  to H ennessy  and Patterson  [34] 

instructions and /o r  data  can be pre-fetched by hardw are  either d irectly  into the cache or 

into an external buffer w h ich  can be accessed more quickly  than m ain  m em ory .  Pre

fe tch ing  relies on using  m em ory  bandw id th  w hich  w ould  o therw ise  rem ain  available but 

unused, as o therw ise  it could  actually  degrade perform ance by in terfe ring  w ith  dem and 

misses. B obba et. al s tate in [41] that as D R A M  access latencies co n tin u e  to increase 

even such techn iques  can no longer fully hide the effect o f  increasing latency. In such 

c ircum stances  data pre -fe tch ing  is a technique w hich  attem pts to m in im ise  cache  misses 

and hence the effect o f  increased latency on perform ance, by an tic ipa ting  future data 

accesses and m o v in g  required  data  closer in the cache h ierarchy to the processor.  

Generally  a good data-pre-fe tch  schem e should  have the fo llow ing  properties:

•  P re-fetches m ust be useful (pre-fe tched data must be used in the near future)

•  P re-fetches m ust be timely  (pre-fe tch  sh o u ld n ’t d isplace data requ ired  in the near 

future)

•  P re-fetches should  not lead to cache pollution i.e. d isp lacing  data  to be used in the 

near future with  pre-fetched data w hich  is not accessed

4.1.7 Data Compression
It has also been  seen that I/O pins are expensive  and scale at 1/5 o f  the rate that the 

u nder ly ing  sem iconduc to r  p rocess  techno logy  does. T hus  if anyth ing  can be done  to 

exploit  the properties  o f  the data set to increase the effective bandw idth  o f  the I/O pins 

used to transfer  the com pressed  data-set will increase the overall system  throughput as 

the p rocessor will not be as starved o f  data. R ely ing  on 1/0 bandw idth  alone to increase  

perfo rm ance  is at least 5 tim es m ore  costly  than im prov ing  FPU utilisation w hich  is 

cheap  as it is related to architecture and underly ing  process  technology  [53].

T he  potential for the com pression  o f  address in form ation  over I/O pins w a s  first 

h ighlighted  by H am m ers trom  and D avidson  [54]. This  w ork  w as extended by F arrens
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and  Park [55] w h o  show ed  that a s im ple  base-reg is ter  could  be used to hold the upper 

address-b its  w hile  less significant bits are transm itted  o v e r  a reduced  w id th  address bus 

can  cut address  bandw id th  betw een  a p rocessor and m em o ry  by up to 60%  w ithout 

significant loss in perform ance. H ow ever  a com plex  fully assoc ia tive  base-reg is ter  

cache  with LRU w as  required  for optim al perfo rm ance. E m p lo y in g  a m ore  practical set- 

assoc ia tive  or d irec t-m apped  cache  increased the n u m b er  o f  address  bits from  11 to 16- 

b its  which still saves 5 0 %  com pared  with  a full 32-bit bus with  little in the w ay o f  

p erfo rm ance  degradation . A  recent su rvey  paper  by Liu [56] co m p ares  the various 

address  com press ion  schem es in detail. A ddress  co m p ress io n  sch em es  can also reduce 

1 /0  pow er-d iss ipa tion  by from 13% [56] up to 84%  [57] for som e m edia  applica tions 

A  recent re ference to the explo ita tion  o f  en tropy  in floating-po in t num bers  w as  m ade by 

C itron  [58].

A na lys is  show ed  significant potential for com press ion  o f  addresses  a long  w ith  more 

limited potential for the com press ion  o f  in teger values  and floating-po in t exponents .  A n 

im plem enta tion  o f  a cache-based  com press ion  sch em e sh o w ed  that the hit rate for integer 

values  w as high at 99%  but that overall the co m p ac tio n  achieved  w as  dom inated  by 

f loating-point va lues  w hich  achieved  a m uch  lower hit rate o f  42% . C itron  concluded  

that the m ain  gain  w as ach ieved  by co m p ac tin g  addresses  from  64-bits  to 24-bits 

although 32-bit addresses  such as those used in this w ork  are m ore  appropria te  for this 

c lass o f  application .

Finally  a unifled approach  to com press  all levels o f  the m em o ry  h ierarchy  presented  by 

H allnor and Reinhard t in [59] and  derived  from IB M ’s M X T  sch em e  [60] is c la im ed to 

p rov ide  all o f  the advan tages  o f  the prev ious sch em es  w ithou t the expense  o f  

com press ion  and d ecom press ion  at each  stage. T h e  au thors  use a single com press ion  

algorithm  and b lock  size so that data can be transferred  be tw een  m ain  m em ory  and a 

com pressed  L3 cache. T hey  w ere  able to ach ieve a p e rfo rm ance  increase equivalen t to 

about 50%  o f  w ha t could  be ach ieved  by do u b lin g  the L3 cache  size to 2 M B  for approx. 

1/10 the area increase.

4.2 General Purpose Processors (GPP)
A cco rd in g  to H ennessy  [34] the limits on the increase in perfo rm ance ,  ach ievab le  by 

p ipe lin ing  a rch itec tu res  are that deep  p ipe lin ing  can lead to an eventua l increase in CPI 

because it increases  p ipeline dependenc ies  and assoc ia ted  penalties . A ddit ionally  Flynn
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points out that ensuring high IPC (Instructions Per Cycle) from an architecture relies on 

increased Instruction-Level Parallelism (ILP). Techniques used to increase IPC such as 

Out-of-Order execution dramatically increase the implementation cost of a processor by 

virtue of the additional hardware necessary to support multiple partially executed 

instructions active simultaneously inside the processor.

The Intel Pentium4 [61] is a good example of the compromises inherent in processor 

design For marketing reasons Intel decided to focus on processor clock speed targeting 

40% higher speed in the same process technology as the previous generation processor. 

This was achieved by increasing the pipeline depth from 3 stages in the Pentium II (P2), 

to 10 stages in the Pentium III (P3) to 20 stages in the Pentium 4 (P4) as shown in Figure 

4-10. Note that the CoreDuo has a pipeline depth similar to the Pentium III.

Although this approach extracts the maximum possible in terms of processor clock rate 

from a given process technology this increase in clock rate comes at a cost in terms of the 

increased miss penalty which can occur for instance when a branch miss prediction 

occurs and the complete pipeline has to be refilled incurring a miss penalty of up to 20 

cycles where the processor can do no useful work.

1 2 3 4 5
P refetch D ecode EX WB

1 2 3 4 5 6 7 8 9 10
Fetch D ecode Ren ROB Rd Rdy/Sch Disp EX
1 2 C

O 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P4 TC Nxt IP TC Fetch Drv Alloc Ren Q ueue S chedule Disp. RF EX Flags BrCk Drv

Figure 4-10 Increasing Pipeline Depth o f Intel Processors (source: [61])

The memory hierarchy o f  the Pentium4 is shown in Figure 4-11. The Pentium 4 

designers attempted to mitigate the miss penalty by increasing the size of the Branch 

Target Buffer by a factor o f  8 times to 4KB, however the average IPC was still reduced 

by approximately 20% eating into the 40% gain in terms of clock frequency with respect 

to the Pentium III as reported by Intel in [61], The other negative effect o f  increasing the 

processor clock frequency is that the LI cache, which has to run at the same speed as the 

processor pipeline had to be physically small in order to minimise parasitic capacitance 

and meet the target speed requirements.

Due to these design constraints, the 8KB LI cache of the Pentium4 can only hold 1024 

double-precision (64-bit) vector entries; therefore the Pentium4 will spend most o f  its
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time accessing the L2 cache. However, the 256KB L2 cache-size means that if we 

assume each double-precision vector entry to be muhiplied by the Sparse Matrix in 

CSR/CCS format consumes 64 bits, the Pentium4 L2 cache can hold 32k vector entries. 

Thus under best-case conditions problems, which do not fit entirely in the cache, i.e. 

sparse matrices beyond 32k entries on a side, perform poorly on the P4 architecture.

The trend in processor micro-architectures has changed in the past 5 years since the 

design of the Pentium4, due to the difficulties in scaling deep sub-micron technologies, 

and currently all o f  the leading microprocessor manufacturers have moved away from 

technology scaling as the primary means of increasing performance, and towards new 

multicore architectures as a means of sustaining performance increases through increased 

parallelism.
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Figure 4-11 Processor Cache Hierarchy and Bandwidths (source: [61])

4.3 Chip Multiprocessor (CMP)
Over the past 2 decades processor designs have achieved dramatic gains in terms of 

single-threaded performance using a variety o f  micro-architectural techniques including: 

superscalar issue, Out-Of-Order ( 0 0 0 )  issue, on-chip caches, deep pipelines and
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associa ted  b ranch  predic tors .  H ow ever  these im provem ents have co m e at the cost of 

ever-decreas ing  e ff ic iency  in te rm s o f  perform ance achieved per additional transistor. 

A ccord ing  to [81] p rocesso r  perfo rm ance  increases have slowed from  60 %  per year in 

the 1990s, to 4 0 % , a pe r fo rm an ce  increase o f  only 20%  from 2000  to 2004. Processor 

designers  rely on 2 fo rm s o f  paralle lism  in order to ach ieve high perform ance: 

instruction-level paralle lism  (ILP) and thread-level parallelism (TLP). Processors 

designed  to exp lo it  ILP have specia l hardw are  that allows them to dynam ica lly  identify 

independent instructions that can be issued, in parallel, in the sam e cycle , by m ain ta in ing  

a pool o f  instructions in a large associa tive w indow , along w ith  a register renam ing  

m echan ism  that e l im ina tes  any false dependence  between instructions.

The sho rtcom ings  o f  s im p ly  increasing  ILP and the case for a s ing le-ch ip  m ultiprocessor 

w ere  first h igh ligh ted  by  O luko tun  et al. [82], As indicated in [88] one o f  the m ajor 

issues with  M ulticore  architectures  is p rog ram m ing  them efficiently, m ore specifically  

enab ling  a s ing le  execu tab le  to be written for m achines which share an Instruction Set 

A rchitecture  (ISA). S im ilar  techn iques have also been proposed in [88 | to distribute 

po w er  d issipa tion  “ ho t-spo ts” over  a larger M ulticore  die, reducing  associa ted  cooling  

problem s.

A ssu m in g  that the p ro g ram m in g  issues can eventually  be resolved, the techniques 

proposed  for M ulticore  processors  are suitable for m ulti-tasking env ironm en ts  as they 

split p rogram  functionality  across m ultip le  cores and associa ted caches decoup ling  

processes  w h ich  w ould  o therw ise  tend to com pete  for resources such as the external 

m em ory  interface. U nfortunate ly  in S M V M  applications the m ain  limitation is the low 

ratio o f  ca lcu la tions  per w ord  fetched from  external m em ory  m ean ing  that apply ing  

M ulticore  processors  to such p rob lem s s im ply  m eans that m ore processors  will spend  

m ore  tim e w a it ing  for data to be fetched from external m em ory  o w in g  to the arbitration 

overhead  for m ultip le  cores shar ing  a single external m em ory  bus unless so m eth in g  can 

be done  to increase  the effective m em ory  pin bandw id th  available.

P rocessor designers  can explo it  T L P  by execu ting  different th reads in parallel,  and 

p rocessor architectures designed to exploit  T L P  often contain  features w h ich  also allow 

them  to take advan tage o f  ILP w ith in  a thread. M ulti-T hread ing  (M T ) is a techno logy  

w here  m ultip le  hardw are threads are in tegrated into the sam e p rocessor core. T yp ica lly  

such threads appear to the p ro g ram m er as logical p rocessors with an independen t
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Register-File (RF) for each thread, where all threads share the same execution engine and 

L1/L2 caches. Simultaneous Multi-Threading (SM T) is a variety o f  M T where multiple 

threads execute simultaneously on the same core.

LI Cache

L2 Cache Main Memory

Context2

Contextl Functional Units

Figure 4-12 SMT Processor

A Chip Multi-Processor (CM P) consists of multiple, fully-featured processor cores on the 

same processor die. A typical CM P shown in Figure 4-13 has separate LI caches for 

each core, with both cores sharing a second-level L2 cache and external memory 

interface. CM Ps generally have greatly reduced resource contention compared to SM Ts 

owing to the higher degree of resource duplication.

Context 1
Functional Units

Context 2
Functional Units

L I  Cache LI Cache

L2 Cache Main M emory

Figure 4-13 CMP Processor

Multi-threading may also be supported in CM Ps [83] but generally the cores used in 

CM Ps for desktop rather than server class computers, focus on simplicity, die-size and 

power consumption. However there are examples of Chip Multi-Threading (C M P/M T  or
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CMT), such as S un ’s Niagara processor [90], in which 32 simultaneous execution threads 

are supported using an 8-core CM P which supports 4 MT threads on each core.

Context 1

Context 2
Functional Units

LI Cache

Context 3

Context 4
Functional Units

LI Cache

L2 Cache Main Memory

Figure 4-14 CM T (CM P/M T) Processor

In some applications multiple instruction sets are supported in heterogeneous CMPs, 

however we will concentrate on general-purpose CMPs which can share the same 

processor instruction-set (for instance x86) across all cores.

The main driver o f  the elements shown in the table is power dissipation, which led to the 

abandonment of the 4GHz Pentium4 development at Intel and its replacement by a 

simpler dual-core CMP derived from Intel’s mobile Pentium-111 development [91]. 

W orkloads with high levels of TLP continue to present problems on such architectures as 

shown in [92] due to the limited size (64-entries) of the Pentium4 TLB resulting in poor 

coverage of the address-space. In general CM P/M T processors improve overall 

performance on certain applications by covering the latency of a stall on a given thread 

by allowing other pending threads to execute on the same pipeline, however this comes at 

the expense of increased resource contention [92], This problem can lead to dramatic 

falls in performance when the different threads have conflicting datasets resulting in 

cache thrashing [92]. The major issues with single-core designs and how they are 

addressed by CM P/M T designs are detailed in Table 4-5.
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Single-Core CMP/MT
Problem Solution Solution

Memory
Stall
Latency

when CPU stalls 100s of 
useful instruction cycles 
are wasted

can use large caches 
and ILP to cover latency 
but effectiveness is 
limited

Latency covered by TLP, 
When a thread stalls 
another takes over the MT 
cores pipeline

Branch
Prediction

branch miss-prediction 
causes v. long pipe to be 
flushed

there is a limit to the 
accuracy of branch 
predictions even if more 
HW used

Latency covered by TLP. 
When a thread stalls (miss- 
prediction) another takes 
over pipeline

Power
Dissipation

scaling performance using 
clock rate and ILP leads to 
V .  high power/heat 
dissipation

ultimately limits 
performance and 
reliability of CPU

yields better CPU 
power/performance and 
distributes hot spots better 
over die

Die Size
speed of light is 
fundamental limit on clock 
rate for single core

interconnect delays scale 
worse than gate delays 
so die size is a 
performance limit for 
large single cores

simpler CMP cores are 
smaller so performance can 
be increased compared to 
single complex core

Complexity
Very large and complex 
cores are difficult to debug 
and verify

larger and larger teams 
are required to verify and 
debug cores

using a single v. simplecore 
performance scales, not 
complexity

Table 4-5 Single-core versus C M P /M T  Performance

A good example o f a CMP is IB M ’s Cell processor [83], co-developed w ith Sony and 

Toshiba containing a PowerPC core along with 8 specialised SPUs (Synergistic 

Processing Units) shown in Figure 4-15. Other examples include Inte l’ s Larabee GPU 

[84] which is based on sim plified in-order x86 cores augmented w ith vector units and 

Inte l’s s e e  [85] which contains a cluster o f twenty-four dual-core x86 processors, giving 

a multicore cluster o f 48 cores on a single die. More recently low-power embedded 

CMPs which can rival the performance o f ASICs in terms o f performance/watt have 

begun to appear. A  good example o f this trend is the Stanford ELM  processor [86], 

which dissipates between 1.5 and 3x the power o f an ASIC implementation in the same 

process technology and clock rate. This efficiency is a factor o f 23x better than a RISC 

processor implemented in the same technology and is achieved by careful segmentation 

o f the register file hierarchy for data, and the introduction o f an Instruction Register File 

into which blocks o f instructions are loaded, rather than fetching a V L IW  instruction 

from cache on each 2()0MHz clock cycle.
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Figure 4-15 IBM Cell Processor (source: [83])

Interestingly it is pointed out in [83] that there are increasing opportunities for the 

inclusion of special-purpose accelerators in CMT/CMP designs as the increased 

performance (lOx) and power-efficiency of accelerators becomes very attractive when 

the cost of the accelerator hardware can be amortised over many concurrently executing 

threads. Examples of such accelerators presented in [83] are Network Offload Engines 

(NOE), Cryptographic Accelerators, OS accelerators and XML parsing and presumably a 

similar case could be made for the acceleration of SMVM for Web-search acceleration. 

Indeed heterogeneous processing appears to be the path of choice within the CMP 

community.

4.4 Stream Processors
Stream processors have emerged from commercial work on Graphics Processing Units 

(GPUs) over the past two decades as well as academic work such as the Imagine stream 

processor co-developed at Stanford University and MIT between 1996 and 2001 as 

described by Rixner in [62]. Over this period Graphics Processing Units (GPUs) have 

moved from being fixed-function and largely fixed-point arithmetic pipelines, to being 

highly programmable floating-point pipelines over the past 5 years as shown in Figure 

4-16. Data is input to a GPU pipeline in the form of quad-vectors {x , y , z , w)  which
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allow graphical rotations to be performed by matrix multiplication. In more recent GPUs 

programmability has been greatly extended.
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Figure 4-16 Fixed vs. Programmable GPU Pipelines (source: [80])

The programmable elements in GPU graphics pipelines consist o f multiple floating-point 

units under the control o f simple programs or shaders and the two major vendors o f 

GPUs have converged on IEEE single-precision (32-bit) floating-point format for their 

GPU pipelines although they do not implement the 1EEE754 standard exactly. A  typical 

example o f this is the IBM Cell processor [63] which only implements the truncation 

(round to zero) mode o f the IEEE standard. The choice o f this rounding mode leads to 

poor performance on non-graphics workloads like FFTW [64].

Comparisons [80] o f stream and vector computing models on these architectures show 

that, for some applications at least, the streaming model is superior to the vector model. 

According to the authors, scientific applications performance is better by 34% on 

streaming versus vector machines when cache is not used and 58% i f  cache is used, 

although the gains in media applications are much smaller. W hile streaming 

architectures offer very high performance, programmability and legacy code remain huge 

issues to be resolved before such architectures can replace clusters o f x86 processors. 

In itia lly , according to Ujaldon [66] using GPUs for general-purpose computations 

entailed disguising input data as vertex attributes, large data-structures as textures, 

instructions as kernels, and final results as portions o f video memory. Essentially the 

applications such as SM VM  had to be rewritten using APIs such as OpenGL [74] or 

DirectX [76] as graphics shaders. The academic community recognised the power o f the 

GPU hardware as well as the issue o f how to program it and responded with stream 

programming languages such as Brook [70] and Streamit [73]. Commercial stream
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programming languages and APIs were made available by PeakSlream, and RapidMind 

which was acquired by Intel and introduced as its own data-parallel program ming API 

called Ct [72] to address the software development challenge.

The most recent developments in terms of the programming model for streaming 

architectures are the proprietary Cuda [68] C-like language which supports Nvidia GPUs, 

A T I’s Brook port [69] and the cross-platform OpenCL [67] language which is supported 

by both ATI and Nvidia developed by Apple Corp. and now part of the Khronos [75] 

family of standards for mobile devices.

The advances on the software side have been matched by similar advances on the 

hardware side and the two most recent products from Nvidia called Tesla [77] and more 

recently Fermi [77] fully support double-precision floating-point and even go beyond 

double precision internally where a compound M AC (Multiply Accumulate) has been 

used to increase numerical precision on operations such as dot products. The Nvidia 

Fermi contains 512 cores and supports the new IEEE 754-2008 standard [78[ for 

floating-point arithmetic. Fermi contains 8 Streaming Multiprocessor (SM) blocks, each 

containing 32 cores as shown in Figure 4-18 .

The key reason for the interest in streaming architectures is the very high levels o f  

floating-point performance which can be achieved in comparison to microprocessors 

such as the Pentium4 as shown in Figure 4-17. This being said, the available mem ory 

bandwidth on GPUs continues to lag the amount of on-chip computational bandwidth.
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Figure 4-18 Nvidia Fermi Streaming M ultiprocessor (source: [77])

4.5 Summary
A lthough  G eneral Purpose Processors  such  as the Intel Pen tium 4  and A M D  O pteron  

dom inate  the w orks ta tion  and cluster co m p u tin g  m arkets  they perfo rm  poorly  on Finite- 

E lem en t and o ther Scientific  and N um erical p rob lem s due to their internal arch itectures 

and co m p ro m ises  m ade during  their design  a im ed  at add ress ing  a broad  range o f  

applica tions. O ne o f  the m ain  reasons for the lack o f  perfo rm ance  o f  genera l-purpose  

arch itectures  is that they rely on  the spatial and tem poral locality o f  their onboard  caches 

and reg isters  for high perfo rm ance, and if the data  set does not m ap  w ell to the generic
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onboard  cache the architecture as a w hole  perform s poorly. B enchm arks  such  as 

S T R E A M  [45] and S pecFP  [46] show  the perform ance o f  general purpose architectures 

is poor for S parse  M atr ix -V ec to r  M ultip lica tion  (S M V M ), and is not keeping  pace  with 

the speed o f  the p ro c es so r  core. A  prim ary  reason for this is a phenom enon  k now n  as the 

m em o ry  wall [33] and  is a com m on  issue for all architectures.

A no ther  co m m o n  p ro b lem  is that in order to clock the processor at the h ighest possible  

rate it is often  v e ry  deeply  pipelined. W hile  deep p ipelin ing increases the operating  

frequency  and h en ce  M F L O P S  in norm al conditions it also negatively  affects 

perfo rm ance  w h en  a  hazard occurs and the p ipeline has to be flushed and refilled. Again  

with  short row  or co lu m n  vectors as occur in S M V M  operations the probability  o f  stalls 

is increased lead ing  to reduced FPU  utilisation in such applications.

V ector-reg is te r  su p erco m p u te rs  such as the N E C  Earth C om pute r and C ray -X l  [93] solve 

som e o f  the issues assoc ia ted  with general purpose  architectures and continue to be the 

m ost pow erfu l m ach in es  in term s o f  FL O PS perform ance, and in term s o f  FPU 

utilisation, h ow ever  these m achines are well beyond  the budgets  o f  individual engineers  

and scientists. A lthough  vector m achines  perform  better than general purpose  processors  

they still suffer  from  perform ance limitations for short vectors. This is the case in 

S M V M  opera tions  w here  the start-up delay  degrades  the perform ance, as the delay  in 

filling the p ipeline  is o f  the sam e order as the num ber o f  vector elem ents to be processed  

(on the order o f  24  non-zeroes  per m atrix  row /colum n).

Chip-level so lu tions  for H igh-Perfo rm ance  C o m p u tin g  (H PC ) have continued to p rogress 

a long  2 parallel tracks. T he first is the con tinued  evolution o f  multicore p rocessors  in the 

form  o f  traditional C M P  (Chip M ulti-P rocessors)  based on existing architectures such as 

the x86 and S PA R C . G ood  exam ples  o f  this are In tel’s Larabee and SC C  as well as 

IB M ’s Cell p ro cesso r  w hich  is a hybrid  ra ther than hom ogeneous  CM P.

T h e  s tream ing  (G P U ) parad igm  has also been adopted by the designers o f  a n u m b er  o f  

specia lis t  arch itectures  aim ed at superco m p u tin g  including M errim ac  [94] and 

C learspeed  [95], and specialised G P U s such as N v id ia ’s Tesla  and Ferm i have  also 

em erged , w ith  double-precis ion  support, and general purpose program m abili ty  th rough 

C-like languages such as C U D A  and O penC L . This latter class o f  arch itecture  has 

already led to the availability  o f  desk top  supercom pute rs  capable o f  T eraf lops  

perfo rm ance  levels  [96] [97].
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5
Chapter 5

“/  love talking about nothing. It is the only thing I know  

anything a b o u t”

-Lord Goring: Ideal H u sban d” (O scar Wilde)

5 Software SMVM
Achieving high performance Sparse Matrix-Vector Multiplication (SM VM ) on 

modern microprocessors is a well-known problem. It has been widely reported that 

the raw performance of such microprocessors using un-optimised SM VM  codes is 

poor and usually achieves less than 10% of the peak performance of such processors 

[26]. A variety of techniques have been proposed to deal with this problem and 

achieve a higher percentage of a processors FLOPS capability given that 

computational requirements in application areas such as Finite Element Analysis 

(FEA/FEM ) and Latent Semantic Indexing/Analysis (LSI/LSA) used in data-mining 

and search-engines such as Google continue to outpace the rate at which new 

generations of processor can be deployed. The techniques which have been proposed 

to achieve optimal performance on uniprocessor nodes are matrix-reordering and 

automatic matrix library tuning. The former is used to improve locality in terms of 

the vector result from an SM VM  operation, whereas the latter is used to transform the
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source-matrix storage format and the SM VM  code which operates on that format to 

the underlying processor architecture in such a way as to obtain optimal performance 

for that architecture. Matrix reordering is dealt with in section 5.5 along with analysis 

of the results presented in relevant publications and of the microprocessors used 

where necessary to illustrate the shortcomings of these techniques. Parallel 

computing has traditionally been the preserve of large organisations such as 

government research institutes, weather forecasters, the defence industry, aircraft and 

motor manufacturers and Universities, where scientists and engineers wait dutifully in 

line for access to such machines. Due to trends in microprocessor design which have 

emerged in the last few years, individual engineers and scientists are beginning to 

have access to personal computers based on Chip Multi-Processor (CM P) technology 

where multiple identical processors are integrated onto a single processor die along 

with cache memory and bus interface logic. The issue of how such processors are 

designed and are programmed and how SM V M  problems and matrices can be

optimally partitioned to run efficiently on such processors is dealt with in the

following sections.

5.1 Sparse Matrix Vector Multiplication (SMVM)
A brief introduction to the problem of Sparse Matrix Vector Multiplication (SM VM ) 

and the limitations imposed by processor architectures on SM VM  performance 

follows. The rationale and means o f  storing and processing sparse matrices are 

discussed at length in Chapter 3 in particular Compressed Sparse Row (CSR) format 

is discussed in section 3.1.

5.1.1 SMVM Algorithm
A sparse matrix A stored in CSR format can be multiplied by a dense vector x  to 

generate a dense result vector y  by the code shown in Listing 5-1.

L I. for (i=0; i<n; i++) // process all rows

L2. for ( j=ptr[i]; j<ptr[i+ l] ;  j++) // row dot-product

L3.y[i] = y[i] + val[j] * x[col[j]]; // multiply-accumulate

Listing 5 - lC S R  SM V M  code
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In the SM V M  code the first loop is executed n times, where n is the matrix dimension 

or number of matrix rows, so the ptr  array is accessed 2n times as is the result vector 

y .  The inner loop (dot-product for each row) is executed nz  times where nz  is the 

number o f  non-zeroes in the sparse matrix, meaning that the val array is accessed nz 

times as are col and x  (indirectly). The total number of array references is therefore 

3nz  + 4n o f  which nz  accesses are indirect accesses to the x  vector. The total number 

o f  floating-point operations is nz multiplies and the same num ber o f  additions, or 2nz 

in total. In terms of integer operations the outer loop performs n additions and n 

comparisons and the inner loop performs nz+n additions, and nz  comparisons. The 

integer operations can typically be ignored as they are performed by dedicated 

looping and indexing hardware present in modern microprocessors.

5.1.2 Memory Bandwidth
An important factor in the performance o f  SM VM  codes is the balance between 

program m emory bandwidth requirements and computational requirements. As 

reported by Gropp [26] the sustainable memory bandwidth in SM VM  dominated 

codes does not match the computational requirements m aking the peak FLOPS 

performance numbers quoted by microprocessor vendors meaningless for this class of 

application. In fact the authors report that M cCalp in’s STREAM  benchmark [45] is a 

much better predictor of SM VM  and application performance for this class of 

problem.

By way o f  example the data transfer requirements in bytes of the SM V M  code 

presented in Listing 5-1 are as follows assuming 4-byte (32-bit) addresses and 8-byte 

floating-point numbers and a square matrix, where n is the matrix order (#rows or 

columns) and nz is the number o f  non-zero elements to be stored explicitly in the 

sparse data-structure;

B y te s _ transferred = \ 2 *  n + 20* nz

Equation 5-1 Data Transfer

The amount of data that needs to be transferred for each FLOP is:

B ytes_ transferred  _  6 * n + \0 *  nz 

FLO PS ~ nz

Equation 5-2 Data Bandwidth Requirement
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This means that the m axim um  possible SM VM  FLOPS performance for a processor is 

given by;

B W
=

6 *  —  

nz
10

Equation 5-3 SM VM  U pper FLOPS bound

M is the FLOPS rate and B W  is the peak memory bandwidth and as can be seen it

is heavily dependent on how sparse the matrix is nz jn . This number however 

represents an upper bound on performance and in practice implementation details 

such as the cache architecture tend to reduce the actual SMVM performance achieved.

5.1.3 Cache Memory
In order to provide an optimal match for workload characteristics processors may opt 

for a range of cache designs from simple and fast direct mapped caches to highly 

flexible and expensive fully associative caches. Most modern microprocessors 

integrate set-associative caches, which fall in the middle ground between low-cost 

Direct-Mapped and high performance fully-associative caches, in order to provide 

high performance across a broad range of workloads.

A block can be placed in different positions in caches of the same size but with 

different levels o f  associativity as shown in Figure 5-L

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(a) fully-associative (b) set-associative (c) direct-mapped

Figure 5-1 B lock-Placem ent vs. C ache-Type (source: [34])



If the data can only be placed in one position in the cache it is said to be Direct- 

M apped as in Figure 5-1 (c) and the mapping is of the form;

(Block-Address) M OD (Number of blocks in cache)

Equation 5-4 Block Placement

If the block can be placed anywhere in the cache it is said to be fully-associative as 

shown in Figure 5-1 (a). Otherwise if the block can be placed at a restricted number 

o f  locations in the cache it is said to be set-associative where a set is a group of blocks 

in the cache. A  block is first mapped onto a set within the cache by bit selection and 

then the block is placed within that set. In the 2-way set associative cache in Figure  

5-1 (b)) 1 bit could choose between the 2 sets. A Direct-mapped cache is actually a 

set-associative cache with a set size of one and a fully associative cache is set 

associative cache where all words are stored in the same set.

5.1.4 Blocking
According to Hennessy and Patterson [34] blocking is the best known cache aware 

optimisation. Cache blocking works by reducing the number of cache misses by 

increasing temporal locality. Instead of operating on entire rows and/or columns of an 

array blocked algorithms operate on sub-matrices or blocks, the goal being to 

maximise the number o f  time sub-matrix data is reused before being replaced. By 

reducing the block size further to the point where it can be held in processor registers 

the number of program loads and stores can be minimised further increasing program 

execution speed. This optimisation also increases program speed in another way as 

registers can be accessed for reading and writing within the current processor cycle 

whereas most LI caches typically require at least 2 cycles to access for reading and 

writing. W here associative caches are used, choosing a block size smaller than the 

available capacity can reduce conflict misses since blocking reduces the amount of 

active data in the cache at any given time.

5.1.5 Execution Models & Cache Behaviour on SMVM Codes
In reference to the cache behaviour associated with Listing 5-1 the accesses to y  and 

p tr  have perfect spatial and temporal locality and the code can be modified to hold 

these values in registers for the duration o f  the inner loop iterations thus eliminating 

unnecessary memory references. The val array holding the A matrix non-zero values, 

along with the p tr  array which holds the references to the beginning of each row (in
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the col array) each have no temporal locality but perfect spatial locality. As each 

element of each array is only used once cache misses due directly to these arrays are 

all intrinsic, however they may cause conflict (cross-interference) misses on other 

arrays whose elements they may cause to be evicted from the cache.

Tem am  and Jalby [48] were the first to develop a detailed model of cache misses for 

Sparse Matrix Vector Multiplication given the assumptions that the target machine 

had a single level o f  cache hierarchy, and that the square banded matrices were stored 

in CSR format and had a random distribution of non-zeroes in the band. In their 

work they showed how cache misses vary with matrix structure (dimension, density, 

and bandwidth) and cache parameters (line size, associativity, and capacity and their 

model includes approximations of conflict misses, particularly self-interference 

misses. They concluded that cache line size has the greatest impact on cache misses, 

while associativity has the least impact. They also showed that self-interference 

misses can be minimized by reducing the matrix bandwidth (can be achieved by 

matrix re-ordering as shown in section 5.2) and maximizing cache capacity.

As will be seen later Vuduc [52] extended the model proposed by Tem am  and Jalby 

[48], and he points out that while it is common practice in processor designs to match 

cache line-lengths across different levels of the hierarchy this leads to poor 

performance on SM VM  codes using his execution model for processor behaviour. He 

concludes that it is important to have strictly increasing line lengths through the 

memory hierarchy to achieve good performance using his execution model. He also 

points out that his model could still be improved to model conflict misses and matrix- 

dependent spatial locality more accurately, as well as processor instruction issue 

limitations.

5.2 IVIanual Performance Tuning
A variety of software techniques have been proposed to improve the performance on 

Sparse Matrix-Vector Multiplication (SM VM ) on conventional General Purpose 

Processors (GPPs). According to Toledo [101] the four main performance 

bottlenecks in software implementations of SM VM  are:

• Large number of cache misses due to poor data locality

• Tendency o f  multiple functional units to miss on the same cache-line

• Poor data locality (reuse) causes Floating-Point Units to be under utilised
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• Array reference translation from integer to byte offset (extra integer 

operations)

Three techniques are outlined by Toledo [101] to improve the performance of SM VM  

codes on modern microprocessors by addressing one or more of these bottlenecks 

depending on vv'hether the techniques are combined or used individually.

5.2.1 Reducing Cache Misses by Reordering
The first technique used by Toledo [H)l ]  is matrix reordering which is used to 

minimise the number of cache misses as accesses to the dense x vector and potential 

for data reuse depend on the sparsity structure of the A matrix. The bandwidth b o f  a 

sparse matrix is the maximum distance between two elements in any row of the 

matrix. Reordering reduces the matrix bandwidth by permuting matrix rows and 

columns and their associated non-zero entries. Often, the elements in a sparse matrix 

can be reordered so that the bandwidth of the new matrix is smaller than the 

m aximum  possible bandwidth. Obviously in order to permute (reorder) the rows and 

columns o f  the matrix A  without altering the system o f  equations the indices o f  the 

unknowns in x  and the RHS vectors must undergo the same permutations as the A  

matrix. This problem is known to be NP complete [ 102] so that brute-force methods 

requiring very long run times have to be used to produce an optimal solution, or else 

heuristic short-cuts are used in order to achieve acceptable results in reasonable time. 

Cuthill-M cKee [102] and Reverse Cuthill-McKee (RCM ) [104] are examples of such 

heuristics. Reducing the bandwidth of a matrix for instance reduces the time taken to
3 2perform Gaussian Elimination on a linear system from 0 ( n  ) to ( )(nh ) where n is the 

order o f  an n*n  matrix. The benefits of reordering are large if  n >> h. Reordering in 

the context o f  Toledo’s work is performed so that the spatial locality o f  the x  vector is 

maximised, thus maximising data-reuse and minimising cache misses and the number 

of associated low-bandwidth accesses to external memory.

5.2.2 Pre-Fetching
As outlined previously the memory wall is increasingly the obstacle to achieving 

higher Instruction Level Parallelism (ILP) despite 0 0 0  (Out-of-Order) and other 

techniques intended to mask increasing DRAM  access latencies. Bobba [41] states 

that as DRAM  access latencies continue increasing, even such techniques can no 

longer fully hide the effect o f increasing latency. In such circumstances data pre-
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fetching is a technique which attempts to minimise cache misses and hence the effect 

of increased latency on performance, by anticipating future data accesses and moving 

required data closer in the cache hierarchy to the processor. According to Bobba et 

al. [41] a good data-pre-fetch scheme should have the following properties:

• Pre-fetches must be useful i.e. the pre-fetched data must be 

used by the processor in the near future

• Pre-fetches should be timely i.e. data should not be fetched

too early lest it displace data which is required in the near 

future

• Pre-fetches should not lead to cache pollution i.e. displacing

data to be used in the near future with pre-fetched data

which is not accessed

According to Hennessy and Patterson [34] instructions and/or data can be pre-fetched 

by hardware either directly into the cache or into an external buffer which can be 

accessed more quickly than main memory. Pre-fetching relies on using memory 

bandwidth which would otherwise remain available but unused, as otherwise it could 

actually degrade performance by interfering with demand misses.

An example o f  such degradation occurs where hardware pre-fetch engines require a 

long stream o f  contiguous accesses in order to detect a viable pre-fetch stream [23]. 

While other architectures do not fare as badly performance still degrades significantly 

where large numbers o f  contiguous addresses are not present, as is the case of SM VM  

where large matrices have on the order of 20 non-zero entries per column [231, far 

fewer than the 128 or more contiguous addresses typically required for efficient 

hardware pre-fetching.

According to Toledo [101] pre-fetching works very well in the case of dense matrix- 

vector multiplication as the ratio of floating-point to load instructions is high (value 

reuse per load is high), however in SM VM  this ratio is less than one and the 

bandwidth required to load data from memory is the performance bottleneck. Rather 

than using pre-fetching to hide memory latency Toledo advocates fetching both 

matrix data and column indices before they are to be used to minimise loss of memory 

bandwidth due to stalls.

According to Mowry [51] since prefetching hides rather than reduces latency, so if a 

program is already memory-bandwidth limited, it is impossible for prefetching to
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increase performance. Locality optimizations such as cache blocking, however, 

actually decrease the number of accesses to main memory, thereby reducing both 

latency and required bandwidth. Therefore, the best approach for coping with memory 

latency is to first reduce it as much as possible, and then hide whatever latency 

remains. W eidendorfer and Trinitis [105] suggest a technique called Interleaved 

Block Pre-fetching to deal with this situation. The technique transforms a large block 

o f  data which does not fit into the cache into a succession o f  smaller blocks which do 

fit. The data in the smaller block is processed multiple times with only the first 

iteration subject to the external memory bandwidth limitation. Further iterations 

access the data in the cache, allowing the next data prefetch to be overlapped with 

execution o f  the current loop. Unfortunately this technique does not appear to be 

suitable for the vast bulk of SM VM  arithmetic operations as data reuse is limited to 

the X and y vectors (y = A.x) unless the matrix is symmetric.

Compilers can override this behaviour by inserting explicit pre-fetch directives; 

however generally there is insufficient information at compile time to make this 

choice. The technique increases instruction bandwidth, which can exceed the benefits 

o f  data pre-fetching if care is not taken.

5.2.3 Register Blocking
Toledo reduces the number of loads required from external memory to internal 

registers or cache by restructuring the matrix, splitting it into multiple smaller 

matrices which have a denser, more regular structure. Such a locally dense but 

globally sparse structure is a feature of some application areas such as Finite element 

Analysis o f  engineering problems. The conversion o f  the source matrix in

Compressed Sparse Row (CSR) format into the modified format was performed in a 

greedy (choosing locally optimal results in the hope o f  global optimality) fashion, by 

scanning the source matrix in pairs of rows and looking for locally dense 2x2 and 1x2 

blocks and was optimal for 1x2 blocks. The effect of blocking was to reduce the 

number of loads with respect to unblocked.

5.2.4 Toledo’s Results
T oledo’s techniques in conjunction with optimal reordering boosted SM VM  

performance on 9 Boeing matrices by about 2.5x, but the 4 NasGraph matrices used 

had less than 20 non-zeroes per column and were actually slowed down by reordering
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by betw een  10 and 2 0 % , and also achieved little im provem ent benefit  from  p re 

fe tch ing  and none at all from  blocking . T he cost o f the b lock ing  sch em e w as 

equivalen t to 4-15  unb locked  S M V M s using the original matrix; how ever  3 o f  the 13 

m atrices (23% ) required  the equivalen t o f  100 S M V M s to perform  b lock ing  due to the 

overhead  o f  pag ing  and m em o ry  m anagem en t in RCM . In su m m ary  T o ledo  states 

that if  the m atrix  is used  m ore than 75 times b locking p roduces a reduction  in 

execution  time.

Despite  cla im s o f  low overhead  (1-3 S M V M  operations) for re-ordering  presented  in 

[101] our experience using  M atlab  show s that these overheads are in practice an order 

o f  m agnitude  or m ore  larger than those presented  by T oledo  w hen  a database  o f  very 

large m atrices is used as o pposed  to the 13 m atrices  used by T o ledo  in his work. 

A ccord ing  to T o ledo  a fr inge benefit  o f  R C M  reordering reported by D u ff  and 

M eurant in [100] is that w hen  a C on jugate  G radien t (CG) iterative so lver uses an 

incom plete  C hoelsky  p re -cond itioner the o rdering  o f  the m atrix  affects the 

convergence  rate. U sing  R C M  in this context reduces the num ber o f  cache misses, 

enables  b lock ing  and accelera tes  convergence. T h is  if found to be true on further 

investigation m ight offset som e o f  (he overheads  seen in our work.

Finally T o ledo  suggests  that these techniques are best com bined  to produce optimal 

results h ow ever  he suggest no approach  for how this should  be done either 

au tom atically  or  by a p rog ram m er.  T he issue o f  apply ing  such techniques using  an 

au tom ated  approach  to ach ieve optim al perform ance for a g iven p rocessor 

architecture w ithou t detailed know ledge  o f  its internal s tructure has been the subject 

o f  research at U C  B erkeley  [137] and w hich  will be presented in the next section.

5.3 Automatic Performance Tuning
A difficulty  w ith  softw are perfo rm ance  enhancem en t techniques used by T o led o  and 

o thers  is that it is difficult to generalise  these techn iques to the point that they can be 

reliably incorporated  into com pilers  to p roduce  both efficient and operationally  

correct code accord ing  to Y otov  [106] and D em m el [107], resulting  in great effort and 

expense  to design, m aintain  and port tuned libraries to keep pace with technological 

evolution. Furtherm ore  com pilers  cannot be relied upon to do the op tim isation w ork  

as the choice  o f  algorithm  m ay  depend  on the input data as show n by T oledo  [101]. 

D em m el identifies the 3 m ost im portan t considera tions in the design o f  a num erical 

softw are  library as:
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• Portability

• Performance

• Scalability

In recent years in order to address this challenge both model-based and experiment- 

based matrix kernel generators such as ATLAS [108], PhiPAC [109], Sparsity [110] 

and OSKl [111] make extensive use of these techniques to transform code in order to 

extract m axim um  performance from a given machine architecture.

The focus o f  V uduc’s work [52] is on register-blocking and to a lesser extent on 

multiplication by multiple vectors, and is supported by the development o f  models of 

the processor and its cache and memory sub-systems used to estimate the performance 

of register-blocked code on a particular matrix.

5.3.1 Register Blocking Revisited

Vuduc extends the work carried out by Im and Yellick on Sparsity [110] at UC

Berkeley to search the solution space varying the number o f  rows and columns in the

register blocked SM VM  independently rather than together. Both Sparsity and OSKI

rely on transforming the matrix from CSR to BCSR (Block Compressed Sparse Row)

in order to reduce the overhead of addressing sparse matrix entries. An example of a

matrix stored in 2x3 BCSR format is shown in Figure 5-2.

_ 0 .......... 2 .......... 4 .........
0  ;3flO 3 o i 0  ; 0  3 o4 0  ;

;3io 1̂1 0 ; 0 0 a,5|
2 * 0  0 ^22; 0 0 ^251

! 0  0  8 3 2 ; ̂ 33 ^34 ^ 3 5 1

row

col

Figure 5-2 2x3 BC SR  Sparse M atrix Storage Form at

As can be seen the data-structure has 3 elements; an array of row pointers terminated 

by the num ber o f  dense r*c sub-matrices, an array of column indices and an array of 

non-zero values (plus zero fill if required).
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void  aparae_nvni_bcsr_2x3( in t  M, in t  n,
co n st  double* Aval, const in t*  Aind. const int*  Aptr, 
co n st  double* x. double* y )

in t  I ;
forC 1 = 0 ;  I < M; I++. y += 2 ) {  / /  loop over block rows 

r e g i s t e r  double yO = y[0] , y l  = y [ l ]  ; 
in t  j j ;

/ /  loop over non-zero blocks
f o r (  j j  = A ptr[I]; j j  < Aptr[I + l ] ;  jj++. Aval += 6 ) { 

in t  j = A ind[jj];
r e g i s t e r  double xO = x [ j ] ,  x l  = x[j  + l ] ,  x2 = x [j+ 2 ];

yO += Aval[0]*x0; y l  += Aval[3]*x0; 
yO += A v a l[ l ]* x l ;  y l  += A val[4]*xl;  
yO += Aval[2]*x2; y l  += Aval[B]*x2;

}
y[0] = yO; y [ l ]  = y l;

>
}

Listing 5-2 C code for 2x3 SM VM  using BCSR format (source: [112])

It can also be seen in this example that the dense sub-matrices contain a considerable 

number of zeroes required as fill-in (12/24 or 50% fill). The advantage is that if the 

underlying data maps well to the dense block size and does not contain a lot of fill 

less indirect addressing overhead is required as shown in Listing 5-2, thus speeding 

up the SM VM  operation.

If the data does not map well to the chosen block structure many floating-point 

calculations will be trivial as they multiply the zero fill entries rather than carrying out 

useful calculations. For this reason a search is required on a sample of the input 

matrix in order to choOvSe the best BCSR sub-block dimensions which minimise fill 

and maximise FLOPS performance. Using the same source matrix as an example it 

can be seen that a 2x2 blocking scheme results in less fill as shown in Figure 5-3.
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Figure 5-3 O ptim ised liC S k  2x2 Blocking

As can be seen the 2x2 sub-block storage format results in fewer fill-ins (4/16 or 

25%) than the 2x3 case resulting in an increase in FLOPS performance. The SM VM  

code corresponding to the 2x2 BCSR matrix sub-block format is shown in L isting 

5-3.

void Envm_2x2( int ben, const ia t  *b_row_start,
const int ♦b_col_idx, const double ♦b_value, 
const double *x,  double *y )

int i ,  j j ;

/♦ loop over block ro>i£ ♦/
1 for(  i - 0; i < bn; i-i-+, y +- 2 ) i
2 r e g is te r  double dO - y[0] ;
3 r e g is te r  double dl - y [ l ] ;
4 for( j j  -  b_row_ sta r t  [i] : jj < b_rov_£tart [ii-l] ;

jj-M-, b_col_idx-M-, b_value +- 2*2 ) -[
5 dO 1-- b_value [0] + x [b_col_idx [ 0 ] t 0 ] ;
6 d l 1-- b_value [2] + x [b_col_idx [ 0 ] t 0 ] ;
7 dO r -  b_value[i] ♦ x [b_col_idx [ 0 ] t i ] ;
8 d l t -  b_value[3] + x [b_col_idx [ 0 ] t i ] ;

}
9 yCO] - dO;

10 y [ i ]  -  dl;
>

>

Listing 5-3 BCSR 2x2 SM VM  code (source: [112])
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5.3.2 Automatic S M V M  Performance Tuning
The approach used by Vuduc in OSKI f i l l ]  builds on the Sparsity system for 

generating highly-tuned implementations o f the SM VM  kernel. OSKI given a matrix, 

kernel, and machine selects a fast SM VM  implementation using a two step procedure:

• identify and generate a space o f reasonable implementations

• search this space for the fastest one using a combination o f heuristic models 

and actual experiments (i.e., running and tim ing the code)

The cost o f using OSKI to tune a library breaks down into two cost elements:

• A  static once-off element to characterise the underlying 

machine which is amortised over many uses o f the library on 

the specified machine/library

• A  run-time search to characterise each individual matrix w ith a 

view to choosing the optimum r*c block size

A block diagram o f how the OSKI library tuning system works is shown in Figure 

5-4.

Library Install-Time (offline) Application Run-Time

Workload 
Matrix from programBenchmark

Historymonitoring

^eneraie3^
code 

variants

1. Evaluate 
Models

Benchmark Heunstic
models

2. Select 
Data Struct. 

& Code

To user: 
Matrix handle  
for kernel 
calls

Figure 5-4 OSKI Library Performance Tuning (source: [111])

5.3.3 Vuduc’s Results
By way o f example o f the BCSR format the FEM Matrix raefsky3, from the 

University o f Florida Sparse M atrix collection is 0.33% sparse (1.5M non-zeroes) and 

consists entirely o f uniform ly aligned, dense 8x8 sub-blocks.
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Figure 5-5 raefsky3 spy plot (and detailed section)

This matrix (Figure 5-5) should be a good target for SM VM  implementations to fu lly  

unroll the multiplication by each block, exposing instruction-level parallelism (ILP) 

and opportunities for register level reuse. The OSKI tuning algorithm searched a 

space o f sixteen possible r*c block organisations (1-4 rows * 1-4 columns) around the 

presumed 8*8 optimum, and surprisingly even on this well-behaved example 

performance is not well correlated w ith block size (r*c), and varies across platforms 

as shown in Table 5-2.

Platform Year
Peak

MFLOPS
Best

MFLOPS
% peak 

MFLOPS
Best 

org. r*c
Ultra 2i 1998 667 63 9.4% 8x8
Pentium Ill-M 1999 800 120 15.0% 2x8
Power 3 1998 1500 196 13.1% 4x4
Itanium 2001 3200 229 7.2% 4x1
Power 4 2001 5200 703 13.5% 4x1
Itanium 2 2002 3600 1120 31.1% 4x2
Average 14.9%

Malna. raetsl.y3 |1 7S, 1 7S|

isliiiiiiiiiisiiisi
ttm u m tn n u m tn t

jtimnHmSmmtt!
au in m u u tn m m i

ttnotim tH sttm ttt

Table 5-1 Peak performance (% ) of raefsky3 matrix S M V M  (source: [52])



Rather than perform an exhaustive search for the best SMVM execution-time both 

Sparsity and OSKI allow a user-defined portion o f the source matrix to be used to 

derive a blocking scheme. This sub-optimal sampling is combined with performance 

estimation heuristic models to come up with a set o f register blocking codes, with 

varying r*c, to run and search for the optimum performance.

speed-up
# name Itanium2 Itaniumi Pentium-Ill Pentium-Ill M

1 dense2000 4.12 1.60 2.46 1.91
2 raefsky3 4.07 1.61 2.38 1.70
5 venkatOI 4.03 1.59 2.24 1.66
3 olafu 3.44 1.49 2.15 1.53
4 bcsstk35 3.25 1.51 2.15 1.74
8 nasasrb 3.15 1.48 2.05 1.53

12 raefsky4 2.80 1.26 1.60 1.22
10 ct20stif 2.79 1.21 1.53 1.26
6 cryst02 2.74 1.58 2.30 1.65
7 cryst03 2.73 1.57 2.30 1.66

13 0 X 1 1 2.70 1.24 1.48 1.19
9 3dtube 2.69 1.55 2.23 1.65

11 bai 2.57 1.10 1.51 1.27
17 rim 1.97 1.05 1.23 1.00
36 sh yy ie i 1.97 1.02 1.04 1.00
21 goodwin 1.97 1.12 1.24 1.00
20 IhrlO 1.96 1.31 1.00
27 pwt 1.94 1.06 1.06 1.00
15 vavasis3 1.88 1.30 1.46 1.23
26 onetone2 1.72 1.04 1.00
25 finan512 1.62 1.02 1.03 1.00
24 coater2 1.55 1.06 1.00
28 vibrobox 1.41 1.09 1.03 1.00
40 guptal 1.18 1.01 1.00 1.00
41 Ipcreb 1.05 1.06 1.00
42 Ipcred 1.00 1.06 1.00
44 Ipnug20 1.00 1.21 1.03 1.00

average speed-up 2.35 1.30 1.56 1.27

Table 5-2 Version2 Heuristic Speed-up by architecture (source: [52])

The main difference between the register blocking heuristics used by Im in Sparsity 

and that proposed by Vuduc is that the original scheme proposed by Im assumes 

square r*c  BCSR blocks while Vuduc’s scheme allows rectangular blocks. The result 

is that Vuduc’s scheme has a larger 2-dimensional space o f possible solutions to
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search rather than a one-dimensional space as in the case o f the original heuristic. The 

proposed techniques are claimed to achieve 31% o f peak and 4x speedups over CSR 

for a benchmark set of 44 matrices. However, the four processor architectures are 

benchmarked using a sub-set o f only 27 o f the in itia l 44 as shown in Table 5-2.

For these 27 matrices, the computationally more expensive version2 heuristic 

produces a speed-up on the ltanium2 architecture which is up to 2x the speed-up 

produced using the version 1 heuristic, while closely matching what is achieved using 

a fu lly  exhaustive search which is computationally very expensive.

Vuduc presents data in [52] in which BCSR reduces the execution time o f SM VM  to

2/3 that o f CSR (1.5x speedup) but at a cost o f requiring storage o f 50% additional

explicit zero entries. As can be seen the speed-up on the ltanium2 architecture is

inversely correlated with the amount o f sub-matrix f il l as shown in

Figure 5-6. The reason for this is obvious in that zero f i l l  consumes FLOPS and

memory bandwidth but does no useful work and hence does not speed up the

calculations.
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In the results presented by Vuduc the Itanium2 distorts the performance gain which is 

averaged across all architectures and matrices in the 27 matrix benchmark as shown in 

Table 5-3. Firstly the benefits o f the version2 heuristic in terms of speed-up only 

apply to the Itanium2 architecture whose peak performance increases by 38% and 

average performance increases by 27% using the proposed heuristic as opposed to the 

versionl heuristic from Sparsity/Im [112], The speed-up due to the version2 heuristic 

is only between 3 and 10% in the case o f the other architectures. The average speed

up for the Itanium2 is 2.35x and not 4.07x, and the average speed-up for all matrices 

and architectures using the version2 heuristic is 1.59x.

Pentium-!!! Pentium-!!! IVI Itanium 1 Itanium 2 group
average

speed
up

% o f
exhi.

speed
up

% o f
exh.

speed
up

% of
exh.

speed
up

% o f
exh.

ai/g. exh. 1.51 100% 1.22 100% 1.32 100% 2.37 100% 1.61
avg. v2 heur. 1.50 99% 1.21 99% 1.30 99% 2.35 99% 1.59
avg. v1 heur. 1.47 97% 1.20 98% 1.19 90% 1.73 73% 1.40
peak exh. 2.38 100% 1.79 100% 1.61 100% 4.08 100% 2.46
peak \j 2 heur. 2.38 100% 1.74 97% 1.61 100% 4.07 100% 2.45
peak v1 heur 2.30 97% 1.74 97% 1.51 94% 2.52 62% 2.02

Table 5-3 Average versus Peak Performance by Architecture

Based on Vuduc’s data the number o f SM VM  iterations to achieve an overall 20% 

speed-up for an iterative method using the proposed tuning algorithm depends on the 

matrix and the acceleration achieved however using the same model as before the 

speed-up could require an average o f 67 iterations to achieve a 20% overall speed-up 

(y0 = l/1 .2 ) as shown in Table 5-4, wherea is the speed-up achieved in terms of 

SM VM  time alone, and (3 is the overall speed-up required including tuning overhead. 

As can be seen the more speed-up achieved by tuning, the fewer SMVMs need to be 

evaluated in an iterative algorithm in order to achieve an overall speedup. Converting 

a matrix from CSR to BCSR format costs 5 to 40 unblocked SMVMs, therefore the 

upper bound on the overhead o f using OSKI tuning is the equivalent o f over 40 

SM VM  operations where translation o f the matrix into BCSR format confers an 

advantage, and a baseline o f 1-11 unblocked SMVMs even in cases where trans

coding offers no advantage thus decelerating performance in non-FEM applications.
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matrix
tuning

overhead
# Accelerated SMVMs to gain 20% from tuning

a=1.5 a=2.0 a=2.5 a=3.0 a=3.5 a=4.0
2 22 132 66 51 44 41 38
3 22 132 66 51 44 41 38
4 36 216 108 84 72 66 62
5 18 108 54 42 36 33 31
6 40 240 120 93 80 74 69
7 40 240 120 93 80 74 69
8 38 228 114 88 76 70 66
9 40 240 120 93 80 74 69
10 38 228 114 88 76 70 66
11 18 108 54 42 36 33 31
12 23 138 69 54 46 42 40
13 24 144 72 56 48 44 42
15 21 126 63 49 42 39 36
17 27 162 81 63 54 50 47
21 26 156 78 60 52 48 45
average # SMVMs 173 86 67 57 53 49

Table 5-4 # tuned SM VM s required to achieve overall 20% speed-up

This means that any iterative method using OSKI or a sim ilar methodology would 

have to complete at least 40 SM VM  operations before beginning to see any advantage 

from matrix kernel tuning in worst-case conditions. This would suggest that kernel 

tuning is not much o f an improvement over RCM which was described in section 5.2. 

The other disadvantage o f this methodology is that the user must call the “ tune”  

routine exp lic itly  however the tuning result can be saved to be used on future runs 

with a sim ilar matrix. It is clearly indicated in [107] by Demmel et al that the 

overhead o f searching can be much longer than traditional code compile times and 

that the overheads must be justified by actual application behaviour, which can be 

d ifficu lt to predict based on knowledge of the source-code alone.

Vuduc observes that there is a performance gap between matrices consisting prim arily 

o f dense blocks o f a single size, uniform ly aligned, and matrices whose structure 

consists o f multiple block sizes w ith irregular alignment. For such matrices he 

recommends splitting the Sparse Matrix A  into the sum A  = A l + ■ • • + As, where 

each A i may be stored w ith a different block size, and storing each A i in a unaligned 

block compressed sparse row (UBCSR) [113] format that relaxes both row and 

column alignments o f BCSR, at the cost o f indirection to x and y instead o f just x as
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in B C S R  and CSR. T h e  m ain  d isadvan tage  with this technique is that it further 

expands  the search range  and hence the size o f  the overhead in term s o f  tun ing  that 

m ust be am ortised  before  a benefit  due to tun ing  can be reahsed.

G enera l ly  m u ch  o f  the p erfo rm ance  advan tage  in V u d u c ’s experim ents  seems 

attributable to the features  o f  the ltan ium 2 ra ther than anyth ing  the tun ing  is 

achieving. T h o se  features  include:

•  Large (m u lt i-M egaby te )  L3 cache

•  2 F loa ting-poin t M ultip ly  A C u m u la tes  (F M A C s)  per cycle

•  128-bit w ide external m em o ry  bus

Strangely  no results for p erfo rm ance  tun ing  on the Pentium 4 are presented despite  the 

fact that it w as  ava ilab le  during  the period  the w ork  w as conducted.

This  analysis  o f  V u d u c ’s results  including  their specif ic suitability  for the I tanium 2 

com pared  w ith  o ther p rocessors  is confirm ed by Buttari et al [114],

Fu rtherm ore  Y otov et al. cast doub t on the utility o f  search to determ ine m achine 

param eters  in [106] and suggest that a static m ach ine  model can produce results on a 

par w ith  search techniques, w ith  the exception  o f  the l tanium 2 that is. Certain ly  if 

Y otov  et al. are correct near op tim al Register B locking  could be achieved at a fraction 

o f  the com puta tional cost o f  search ing  m ak ing  reg is ter-blocking useful even where  

the num ber o f  S M V M  opera tions  is very  low.

In su m m ary  the approach  o f  sea rch ing  for a so lu tion  in the m anner proposed  by 

V u d u c  only  m akes sense  if:

•  T he  user is know ledgeab le  enough  to use the tool

• T he  user is using  a co m p u tin g  p latform  that is a good match for the tool

•  T he  m atrix  has underly ing  structure w hich  can be tuned for

On the last point it is im portan t to note that because  o f  the use o f  a perfo rm ance

heuristic  a fixed penalty  o f  1-11 S M V M  operations is incurred where  the m ethod  is 

used irrespective o f  w he the r  the C SR  to B C S R  conversion  is perform ed in the end 

lead ing  to degradation  in perfo rm ance  for n on -F E M  m atrix  applications.

5.4 Further Optimisations
A  num ber o f  further op tim isations occur  in the literature and can be applied  either 

m anually  or autom atically . T hese  op tim isa tions  include:

•  C ache  B locking

•  T L B  Blocking
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•  C o p y  O p t i m i s a t i o n

•  R e c u r s i v e  B lo c k in g

•  B l o c k  D a t a - L a y o u t

5.4.1 Cache Blocking
C a c h e  b l o c k i n g  i m p r o v e s  local i ty o f  a c c e s s e s  to the  v e c to r s  x a n d  y b y  d y n a m i c a l l y  

i n s p e c t i n g  the  m a t r i x  da ta  s t r uc tu re  and  c h a n g i n g  it in to  a s e q u e n c e  o f  sp a r s e  s u b 

m a t r ic e s  so tha t  the po r t i o n s  o f  the  v ec to r s  x a nd  y for  e a c h  s u b - m a t r i x  fit in the  

cac h e .  C a c h e - b l o c k i n g  is es pe c i a l ly  usefu l  w h e n  the s o u r c e  v e c t o r  x is v e r y  la rge .  In 

thi s  ca se  a s e a r c h  is p e r f o r m e d  to spl i t  the  sp a r s e  m a t r ix  in to  2 '^ * 2 ' b l o c k s  so  as to 

m a x i m i z e  S M V M  p e r f o r m a n c e .  T h e  f u n d a m e n t a l  t r a d e - o f f  tha t  n e e d s  to be  m a d e  is 

w h e t h e r  the  b en ef i t s  o f  the  ad d e d  loca l i ty  o u t w e i g h  the  cos t s  a ss o c i a t e d  w i t h  the  

a d d e d  a c c e s s e s  to the  da ta  s t ruc tures .

A s  w i th  the  reg i s te r  b l o c k i n g  the i s sue  is to h o w  to a u t o m a t e  the  p r o c e s s  o f  s e a r c h i n g

and  c a c h e  b lo c k in g .  T o  this  e nd  the  w o r k  o f  V u d u c  u s i n g  a u t o m a t i c a l l y  tu n e d

re g i s t e r - b l o c k i n g  ke rn e l s  to i m p r o v e  S M V M  p e r f o r m a n c e  has  b e e n  e x t e n d e d  by  

Nis h t a la  et al [115]  to c o n s id e r  the  p r o b l e m  o f  c a c h e  b l o c k i n g  o f  S M V M  o p e r a t i o n s  

w h i c h  is k n o w n  to be im por ta n t  for  s o m e  m a t r ix  and  m a c h i n e  c o m b i n a t i o n s .

T h e  m a i n  d i f f e r e n c e  b e t w e e n  c a c h e  b l o c k i n g  a n d  reg i s te r  b l o c k i n g  is that  reg is te r  

b l o c k i n g  m o d i f i e s  the  sp a rs e  m a t r i x  d a ta  s t ru c tu re  ( t r a n s f o r m i n g  f r o m  C S R  to B C S R  

s t o ra g e  f o r m a t )  in o r d e r  to d e c r e a s e  the  ov e ra l l  m e m o r y  t ra f f ic  w h e r e a s  c a c h e  

b l o c k i n g  r e o r d e r s  m e m o r y  acc e s s e s  to i n c re ase  t e m p o r a l  loca l i ty  in a m a n n e r  s im i la r  

to tha t  a c h i e v e d  by  R C M  re o rd e r in g .  T h e  d a t a - s t r u c tu r e  is a v ar ia n t  o f  B C S R  w i t h  an 

o p t i m i s a t i o n  to  a v o id  i t e ra t ing  o v e r  r o w s  w h i c h  do  not  c o n t a i n  n o n z e r o  e le m e n ts .  

Pr ior  w o r k  o n  p e r f o r m a n c e  m o d e l l i n g  o f  c a c h e - b l o c k i n g  a s s u m e d  tha t  the  m a t r i c e s  

w e r e  sm a l l  e n o u g h  so that  x and  y fit in the c a c h e  w h i c h  is ra re ly  the case .  T o  a d d r e s s  

this,  the  a u t h o r s  a d d e d  a T L B  bu f fe r ,  ig n o red  b y  p r e v i o u s  m o d e l s ,  to the m o d e l  u sed  

by  V u d u c  [52]  to pr ed ic t  o p t i m u m  b l o c k  s izes .  N is h ta la  c o n c l u d e s  [116J b y  s a y i n g  

that  c a c h e  b l o c k i n g  a p p e a r s  to be  m o s t  e f f ec t i v e  w h e n  all o f  the  f o l l o w i n g  a re  true;

•  v e c t o r  X d o e s  not  fit in c a c h e

•  v e c to r  y fits in c a c h e

•  n o n  z e r o s  are d i s t r i bu t ed  t h r o u g h o u t  the  m a t r ix  and  not  in b a n d s

•  n o n  z e r o  de n s i ty  is su f f ic ien t ly  h igh
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He also suggests  a dens ity  o f  less than 1 0 (above  this threshold reg is ter-b locking is 

better) and m ore  than 10'*' ( less than this threshold cache-b lock ing  provides no speed 

up) for cache-b lock ing  to be useful. He also found that cache b lock ing  does not help 

w ith  band  m atrices  no m atte r  how  large x and y are since the matrix structure already 

lends itself  to the op tim al access pattern. U nfortunate ly  unlike the w ork  o f  V uduc  no 

ind ication  is g iven as to the search  overhead  required  to perform cache-blocking. 

N ish ta la ’s m ost  useful con tribu tions  are the sugges tions  for processor architects that:

•  T L B  m isses  reduced  by cache b lock ing  can also be avoided by creating  large 

page sizes

• separate  m em o ry  busses  to the x vec tor and A matrix w ould  im prove 

perfo rm ance  as on ly  x accesses are im proved  by cach ing  due to reduced 

conflic t m isses

H ow ever ,  the prob lem  o f  dec id ing  w hen  to apply cache-b locking , i.e. w hen  it is likely 

to pay o f f  is still open  acco rd ing  to N ishtala  [116].

5.4.2 TLB Blocking
A c o m p u te r ’s m em o ry  is typ ically  laid out in b locks o f  fixed size, called pages, a 

subset o f  w hich ,  called the w o rk in g  set o f  64 -128  translations, resides in the 

T ransla tion  Look-aside  Buffer (TLB ). T he  T L B  is a small associative cache that 

s tores the m ost recently  used v irtual-physical page translations corresponding  to 

m em o ry  accesses. Each T L B  entry  points  to a page w hich  is typically betw een 6 and 

6 4 k B  in size (controlled  by the opera t ing  system ). A  T L B  cache miss causes a T L B  

entry  to be replaced with an en try  from  the page-tab le  in m em ory . A dditionally  if 

data  is spread too w idely  over  the virtual address  space it can result in an access to the 

page-tab le  in m ain  m em ory  even though the required  data is actually  in the cache 

(L1/L2). Z h an g  and Z h an g  [117] present a varie ty  o f  T L B  blocking  and padd ing  

s trategies to be used d epend ing  on w he the r  the T L B  is fu lly-associa tive as in the case 

o f  the Sun  UltraSparc-II o r  se t-associa tive  as in the case o f  the Pentium-11 processor. 

In the case o f  se t-associative padd ing  causes  b lock row s to be m apped to different 

T L B  cache-lines, thus p reven ting  conflict m isses caused  because  m ultiple pages m ap 

to the sam e entry  in the T L B . In the case o f  a fu lly-assoc ia tive  T L B  the au thors 

reported  that the b lock size selected had to be less than or equal to the num ber o f  T L B  

entries o therw ise  array accesses  w ould  cause T L B  th rash ing  reducing  perform ance.

94



5.4.3 Copy Optimization
In teresting ly  som e o f  the scientific  libraries w h ich  library tu n in g  w as  m ean t to m ake 

o bso le te  have incorporated  internal code genera tion  m ak in g  use o f  the tem plate  

p ro g ram m in g  paradigm  available in the C + +  language . T h e  M T L  library [118] for 

instance uses tem plate  p ro g ram m ing  techn iques  to a llow  reg is ter b lock ing  and cache- 

m iss reduction  code to be au tom atically  inferred by a C ++  co m p ile r  at com pile  time. 

A n o th er  techn ique  im plem ented  in MTL. is copy  op tim isa t ion  w h ich  w as  explored  

ex tens ive ly  by Lam et al [119], T he objective o f  this op tim isa t ion  is that neither set- 

assoc ia tiv ity  nor m ultip le-w ord  cache lines e lim inate  the large variance in the 

p er fo rm an ce  o f  b locked  algorithm s. A  technique called copy  o p tim isa t io n  is used to 

copy  non-con tiguous  data into con tiguous  cache locations in such a w ay  as to 

e lim ina te  self-in terference. This  is ach ieved  by m ap p in g  each w ord  w ith in  a b lock  to 

its ow n  location m aking  se lf- in terference im possib le .  A c co rd in g  to Lam  et al 

ap p ly ing  this technique, w hile  not a lw ays possib le ,  a l low s cache  m isses  to be bounded  

to w ith in  a factor o f  2 from the ideal. C o p y in g  is to be avoided  if the reuse factor is 

low w hich  w ould  seem to rule it out from the poin t-of-v iew  o f  S M V M  operations, the 

portion  o f  the variable array to be used shifts o v er  tim e or a large fraction o f  the data 

fits into the cache; in any o f  these cases the cost o f  co p y in g  m ay o u tw eigh  the 

benefits. Furtherm ore  copy ing  allow s at least ha lf  o f  the cache  to be used in each 

b locked  loop nest m aking  the penalty  due to cache  m isa l ignm en t neglig ible . F inally  in 

cases w h ere  the cache is se t-associa tive  co p y in g  e lim ina tes  not ju s t  self- in terference 

but also  cross- in terference (conflic t)  misses. A  detailed  cos t/benefit  analysis  o f  

co p y in g  is presented  by T em a m  et al in [120], and in [120] they report a 98 %  

reduction  in T L B  misses due to copy ing  in m atr ix -m atr ix  m ultip lica tion  on the A lp h a  

processor.

5.4.4 Recursive Blocking
As w as  seen  prev iously  register, cache and T L B  b lock ing  require  a detailed  

know ledge  o f  the under ly ing  m ach ine arch itecture , and typ ically  d ifferent b lock ing  

param eters  for each level in the storage hierarchy , in o rd e r  to ach ieve high 

perfo rm ance .  R ecursive b lock ing  [122] ex tracts  im proved  p er fo rm an ce  from  the 

m em o ry  h ierarchy  by repeated ly  par ti t ion ing  the prob lem  into sm alle r  and sm alle r  

sub -p rob lem s, so that data co r respond ing  to d iffe ren t levels o f  the recursion tree fits 

into d ifferent levels o f  the m em ory  hierarchy. T h is  style o f  b lock ing  im proves
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tem pora l locality  and provides efficient cache and T L B  blocking, w hile register 

b lock ing  is used w ith in  sub-b locks.

Recent w ork  by W ise  et al [123][124] show s that M orton ordering o f  m atrices offers a 

v iable  alternative to traditional row  and co lum n-m ajo r  ordering. W hile  this 

organisa tion  is intuitive it does not take into accoun t the fact that op tim ised codes no 

longer operate  over  row s and co lu m n s  but ra ther over sub-blocks extracted from the 

m atrix  using  register and cache-b locking . T he  underly ing  row or co lum n-m ajor 

s torage m eans  that any given sub-m atrix  will contain  several disjoint portions from 

row s or co lum ns w hich  reside over several pages o f  m em ory, as referenced e lem ents 

in the less favourab le  direction  (ro w /co lu m n ) tend to becom e farther aw ay in m em ory  

[126], T h is  in turn leads to inefficient use o f  the m em ory  hierarchy and perform ance 

w h ich  falls a long  w ay  short o f  the peak  that hardw are  will support. An array in 

M orton  order is decom posed  as a 2 ‘̂ -ary tree w hose  sub-trees have contiguous 

addresses  in m em ory .  This  im proved  locality m in im izes  page and cache misses, and 

thus perfo rm ance. This  o rdering  is used in con junction  with Ahnentafel (compact 

b inary  tree s to rage in level-by-level o rder) indexing  on a block basis, with traditional 

C artesian  index ing  w ith in  blocks.

O ne  d isadvan tage  o f  M orton -o rdering  is an expansion  in terms o f  address space, 

h ow ever  in contrast to o ther m ethods  this extra data is stored in virtual m em ory  tables 

ra ther than in cache. This  expansion  is a result o f  the A hnentafel quad-tree 

o rgan isa tion  w here  2 additional address-b its  are used to distinguish betw een addresses 

in each o f  the 4  quad-tree  branches {00, 01, 10, and 11}. W ise et al report a dram atic  

reduction  in T L B  as well as L I and L2 cache m isses  using M orton ordering, and more 

im portan tly  perfo rm ance  is a lm ost flat as a function  o f  problem  size and type m ean ing  

that expensive  searches on per m atrix  basis  as advocated  by Im [112] and V uduc [52] 

are not required to obtain high p erfo rm ance  across  a large range o f  data sets and 

p rob lem  sizes. O ther recursive orderings are eva lua ted  ex tensively  in [126] in the 

con tex t o f  m atrix  m ultip lication , and advocates  a m odified  and coarser-grained q u ad 

tree layout in o rder  to im prove perfo rm ance  over  that ob tained by W ise  et al.

5.4.5 Block Data Layout
Prasanna et al. [127] contend  that m ost o f  the focus to date on bridg ing  the gap 

be tw een  m em o ry  latency and p rocessor speed  has been expended  on control 

t ransfo rm ations  w hich  change  the loop iteration o rder and hence the data access-
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pattern. A s  an alternative they p ropose  a b locked  data layout as o pposed  to the 

conven tiona l row and co lum n-m ajo r  layouts show n  in F igure 5-7. In a row -m ajor 

layout o f  a large sparse matrix due to large stride (d is tance) be tw een  successive 

co lu m n s  in a row can cause cache conflic ts, and additionally  if  every  row  in a matrix 

is larger than the m achines page size, co lum n  accesses  can cause T L B  thrashing, 

further deg rad in g  perform ance. In b lock  data- layou ts  these p rob lem s  are overcom e 

by sp li tt ing  large m atrices into sm aller  B*B m atrices  in w h ich  all sub-m atr ices  are 

m apped  onto  contiguous m em ory  locations in ro w -m ajo r  (or co lu m n -m ajo r  layout if 

required) as show n in Figure 5-7(c). T he  only  m ajor assu m p tio n s  m ade  are that the 

cache  is d irec t-m apped  and the T L B  is fully se t-associa tive  and a Least R ecen tly  Used 

(L R U ) rep lacem ent policy is em ployed .

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

0 8 16 24 32 40 48 56
1 9 17 25 33 41 49 57
2 10 18 26 34 42 50 58
3 11 19 27 35 43 51 59
4 12 20 28 36 44 52 60
5 13 21 29 37 45 53 61
6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63

0 1 4 5 8 9 12 13
2 3 6 7 10 11 14 15
16 17 20 21 24 25 28 29
18 19 22 23 26 27 30 31
32 33 36 37 40 41 44 45
34 35 38 39 42 43 46 47
48 49 52 53 56 57 60 61
50 51 54 55 58 59 62 63

(a) row-major (b) col-m ajor (c) 2x2  block layout

Figure 5-7 Different Data Layouts

A cco rd in g  to the authors b lock data- layout w hen  assoc ia ted  w ith  tiling, w h ere  b lock 

and tile s izes are the sam e, offers im proved T L B  perfo rm ance  w h en  co m p ared  with  

alternatives  such  as copy ing  (section  5 .4 .3) and padding . T h ey  go on to apply the 

sam e techn iques  to LU D ecom posit ion  and C ho lesky  Factorisa tion  (CF), po in ting  out 

that the overhead  o f  copy ing  (section  5 .4 .3) cancels  out any  gains  in these 

applications. T he  num ber o f  T L B  m isses using  a b lock  data layout coup led  with  

tiling is 9 1 -9 6 %  less than that w ith  a canon ical  ( ro w /co lu m n -m ajo r)  layout w hen  

using  either a generic  access pattern or real app lica tions  such  as LU or CF. T hey  

report that these results hold for a w ide range o f  m ach ines  and prob lem  sizes. A  

further var ian t in term s o f  b lock-layou t is z igzag  row -m ajo r  or co lu m n -m a jo r  o rdering  

w hich  is detailed  in section 5.8.
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5.5 RCM Reordering
The results o f  a M atlab  elaboration  using  40 large sym m etr ic  m atrices are show n in 

Table  5-5. It can be seen that R everse  C uth il l -M cK ee (R C M ) re-ordering [104] 

show s that the run- tim e for Sparse  M atr ix -V ecto r  M ultip lica tions (S M V M ) can 

indeed be reduced. T o led o  [101] cla im s R C M  equates to only a few S M V M  

operations and c la im s exce llen t results across a range o f  m atrices. H ow ever it can 

also be seen in T ab le  5-5 that the actual re -o rdering  is com putationally  expensive 

often  equa ting  to tens o f  S M V M  operations. A s a result such re-orderings are only  o f  

interest for iterative a lgo ri thm s w here  a large n u m b er  o f  iterations are required to 

ach ieve any per fo rm an ce  increase using  re-ordering.

A s can be  seen from  T ab le  5-5 tens o f  i terations are required to justify  the cost o f  

R C M  but the benefits  o f  R C M  scale re latively linearly in term s o f  the percentage 

iterations required  beyond  the breakeven  point necessary  to achieve a target 

perfo rm ance  increase  o f  20% .

A likely exp lana tion  for this im provem en t in perfo rm ance  is that re-ordering produces 

longer runs o f  con tiguous  addresses ,  w hich  in turn a llow s the hardw are  pre-fetch logic 

in the Pen tium 4  to w ork  m ore  efficiently . It w as  found that the benefits o f  reordering  

in sm alle r  m atrices  (less than 100k non-zeroes) w ere  less obv ious  as the m atrices are 

m ore  likely to fit in the internal cache o f  the Pentium  4 com plete ly , reducing the m iss 

rate, hence a larger n u m b er  o f  iterations is required to see a benefit from reordering, 

and hence they are not included in the table. T h ese  sam e benefits  should accrue to all 

architectures, w hich  m ak e  use o f  caches, a lthough the exact breakeven  points etc. will 

depend  on the spec ifics o f  a par ticu lar cache im plem entation .
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matrix name
non

zeroes
t^smvm t_rcm t_smvm' N_rc

# SMVMs to 
break even 
with RCM

target 
reduction 
in exec 

time

# SMVMs to 
get +20% 
perf. using 

RCM

% extra 
SMVM 

iterations for 
20% perf. 

(RCM)

obstclae 197608 0.008709 2.456 0.00072 3415.3 307.3 0.2 393.0 27.88%

torsion 1 197608 0.008739 2.448 0.00052 4681.2 298.0 0.2 378.5 27.02%

jnlbrngl 199200 0.016291 2.455 0.00055 4472.2 156.0 0.2 196.7 26.10%

minsurfo 203622 0.008999 3.446 0.00054 6358.5 407.5 0.2 517.7 27.04%

bcsstk28 219024 0.011171 0.345 0.00010 3413.7 31.1 0.2 39.0 25.29%

bcsstk25 252241 0.011557 1.314 0.00022 6001.5 115.9 0.2 145.6 25.61%

bcsstk16 290378 0.014074 0.363 0.00011 3273.4 26.0 0.2 32.6 25.25%

vibrobox 301700 0.014509 0.915 0.00017 5445.4 63.8 0.2 80.0 25.37%

crystm02 322905 0.017727 0.935 0.00018 5108.1 53.3 0.2 66.8 25.33%

gyro_m 340431 0.016434 1 416 0.00055 2588.2 89.1 0.2 112.4 26.09%

cvxbqpl 349968 0.089424 3.358 0.00064 5222.0 37.8 0.2 47.4 25.23%

bcsstkSB 355460 0.015299 0.573 0.00012 4856,4 37.7 0.2 47.3 25.24%

bcsstk17 428650 0.019049 0.757 0.00016 4670,4 40.1 0.2 50.2 25.27%

wathenlOO 471601 0.023111 2.547 0.00053 4823,1 112.8 0,2 141.8 25.73%

gridgena 512084 0.025928 3.060 0.00073 4180,0 121.4 0.2 152.9 25.91%

wathen120 565761 0.02459 2.321 0.00073 3170,8 97.3 0,2 122.5 25.97%

crystmOS 583770 0.028275 1.623 0.00034 4731,4 58.1 0,2 72.8 25.38%

finan512 596992 0.030109 4.656 0.00135 3438,5 161.9 0.2 204.8 26.49%

Pres_Pcisson 715804 0.031677 1.085 0.00023 4736,0 34.5 0.2 43.2 25.23%

gyro_k 1021159 0.052122 1.341 0.00024 5543.3 25.9 0.2 32.4 25,15%

bcsstk36 1143140 0.049583 1.653 0.00031 5315.7 33.6 0.2 42.0 25.20%

bcsstk35 1450163 0.067312 2.174 0,00044 4997.7 32.5 0.2 40.7 25.20%

qaSfm 1660579 0,124468 4.395 0,00121 3640,9 35.7 0.2 44.7 25.31%

qaSfk 1660579 0.076426 4,380 0.00125 3495,6 58.3 0.2 73.1 25.52%

oilpan 2148558 0.151974 4.976 0.00140 3554,3 33.0 0.2 41.4 25.29%

vanbody 2329056 0.10066 3,415 0.00062 5472,4 34,1 0.2 42.7 25.20%

ct20stif 2600295 0.114401 3,790 0.00067 5690.4 33,3 0.2 41.7 25.18%

ndSk 3279690 0.145184 1,324 0.00013 10027.0 9.1 0.2 11.4 25.03%

t3dh_e 4352105 0.191977 5,790 0.00149 3878.0 30.4 0.2 38.1 25.25%

nd6k 6897316 0.293898 2,761 0.00024 11409.6 9.4 0.2 11.8 25.03%

bmw7st_1 7318399 0.403275 10,929 0.00243 4504.8 27.3 0.2 34.1 25.19%

hood 9895422 0.450926 18,407 0.00389 4733.1 41.2 0.2 51.6 25.27%

crankseg_1 10614210 0.457083 5,950 0.00069 8573.2 13.0 0.2 16.3 25.05%

bmwcra_1 10641602 0.493584 13,599 0.00270 5038.4 27.7 0.2 34.7 25.17%

pwtk 11524432 0.53264 16,751 0.00382 4382.7 31.7 0.2 39.7 25.23%

crankseg_2 14148858 0.607738 7,677 0.00081 9512.9 12.6 0.2 15.8 25.04%

nd12k 14220946 0.633305 5,696 0.00048 11767,9 9.0 0.2 11.3 25.02%

af_shell4 17562051 1.072393 45.274 0.01101 4112,5 42.7 0.2 53.5 25.32%

af_shell8 17579155 1.141235 43.379 0.00917 4731.0 38.3 0.2 48.0 25.25%

af_shell7 17579155 1.237358 45.226 0.01415 3196.0 37.0 0.2 46.4 25.36%

Table 5-5 Effect of RCM Reordering on SMVM Performance!

1 t_sm vm  time to perform S M V M  without reordering 
t sm v m ’ time to perform S M V M  with reordering
t_rcm time to perform RCM reordering
N_rc t_rcm /t_sm vm ’ (# sm vm  iterations to justify cost o f  RCM)
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5.6 Exploiting Parallelism
Scientific  and eng inee ring  applica tions such as S M V M  are not necessarily  either 

w ritten  in such  a w a y  as to take  advan tage  o f  parallelism. Even “em barrassing ly  

para lle l” app lica tions  such  as 3D graphics  [92] may be unable to take advantage o f  all 

o f  the ava ilab le  para lle lism  o w in g  to how the problem  m aps to the underly ing  

hardw are . Specifically  w ith  respect to S M V M  kernels a num ber o f  approaches allow 

inherent para lle lism  to be exploited:

•  C ode  parti t ion ing  through the res tructuring o f  S M V M  kernels using parallel 

p ro g ram m in g  construc ts  such as those em bodied  in O penM P

• Sparse  M atrix  (data) par ti t ion ing  using graph-based  techniques into sub 

m atrices w hich  can be m ultip lied  separately on different cores

Sparse  M atrix  parti t ion ing  is by defin ition  data-dependent and must be perfo rm ed  on 

a m atrix -by-m atr ix  basis w hereas  t ransfo rm ing  S M V M  kernels to exploit parallelism  

using  O p e n M P  is generic  and applicab le  to all matrices.

5.6.1 OpenMP
T he  O p en M P  A PI (application  p rogram  interface) [128] was introduced in 1997 in an 

effort to s tandard ise  p ro g ram m in g  m odels  for shared m em ory  system s, and is used to 

explicitly  direct m ulti th readed , shared m em ory  parallelism . The API consists  o f  3 

com ponen ts ;

• C om pile r  Directives,

•  R untim e Library Routine

•  E n v ironm en t V ariables

O p e n M P  supports  the C, C+-i- and F O R T R A N  p ro g ram m ing  languages as well as a 

range o f  opera t in g  sys tem s and all O p e n M P  program s begin as a single sequential 

p rocess  or M aster  T hread  as depicted  in Figure 5-8.

M aster  thread Fork

. Inin
T eam  o f  
Parallel threads Program  Execution

Figure 5-8 OpenM P Program Execution
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The user also specifies necessary synchronization like locks, barriers, etc to ensure 

correct execution o f the parallel region. At runtime, threads are forked for the parallel 

region and are typically executed in different processors sharing the same memory 

and address space. Statements enclosed by the parallel region construct are executed 

in parallel. A  Join occurs at the end o f parallel constructs, where the threads 

synchronize and terminate after completing the statements in the parallel construct. 

The structure o f a typical OpenMP program is shown in Listing 5-4.

#include <omp.h> 

main () {

int va rl, var2, var3;

Serial code

#pragma omp parallel private(varl, var2) shared(var3) {

Parallel section executed by all threads

A ll threads jo in  master thread and disband

}

Resume serial code

}

Listing 5-4 Structure of Typical OpenMP Program

Relatively little  exists in terms o f published results for the performance o f CMP and 

SMT systems using OpenMP. According to [129] Integrating both CMP and SMT 

into one processor means that threads interact in a more complex manner which is not 

addressed by the current version o f OpenMP, especially for systems composed o f 

multiple CMPs.

This view is shared by Curtis-Maury et al. [92] who evaluated the performance o f 

OpenMP applications from the NAS Parallel Benchmarks suite on a real SM T system 

versus a simulated CMP system with similar hardware. They found that SMTs suffer 

from resource contention, whereas CMPs are more efficient (and cost effective) due 

to greater resource duplication. In terms o f application performance 30% o f the test- 

cases showed a marked reduction in performance when a second thread per processor 

was enabled in SMTs. On the CMP-based multiprocessor the activation o f the second
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core a lw ays resulted in perfo rm ance  im provem ents .  H ow ever in a m ajority  o f  cases 

(8 /14) p lacing  the required  num ber o f  threads on as few processors  as possible 

resulted  in h igher p er fo rm an ce  than sp read ing  them across all o f  the available 

p rocessors.  T hey  conc luded  that ex is t ing  O p e n M P  code scales better on C M P s  than 

S M T s,  and that to m ax im ize  the effic iency o f  O p e n M P  on SM T s, new capabilities  are 

required by the run tim e env ironm en t and/or the p rog ram m ing  interface.

Pack irisam y and B ara thva jasankar  in [130] suggest that g iven the similarity  with 

clusters, O p e n M P  can be ex tended  to take advan tage  o f  the potential for both f ine

gra ined  and thread-level para lle lism  in C M Ps. T he  authors propose a technique for 

m ulti-co re  env ironm en ts ,  w h ere  say the ou ter loop is parallelized betw een processors  

and the inner loop is para lle lized  for the p rocess ing  e lem ents inside each processor. 

U sing  O p en M P , K otakem ori  et al. [131] have benchm arked  the perfo rm ance  o f  7 

sparse storage formats, as well as convers ions  be tw een  these sam e formats using  a 16- 

node  Itan ium 2 based system  capable  o f  support ing  up to 32 sim ultaneously  execu ting  

threads. T he  perfo rm ance  figures ob ta ined  confirm  V u d u c ’s assertion [52] that B CSR  

is the op tim al sparse m atrix  storage form at for the Itanium2, offering a significant 

perfo rm ance  advan tage o f  be tw een  1.13 and 2.59x over C SR  (average 1.8x) 

dep end ing  on the source  m atrix  used, even w hen  a single thread is used. In m ost 

cases  the speedup  achieved by additional threads is linear up to 32 threads w hereupon  

the speedup  achieved by dou b lin g  the num ber o f  processors falls sharply due  to 

resource-sharing  w hen  2 threads run on each p rocessor node. In all but one case 

(m atrix  f  w h ich  is a diagonal m atrix) B SR  offers the highest perform ance. A s with 

V u d u c ’s w o rk  the overhead  in converting  be tw een  C SR  and B C SR  format is n o n 

trivial and m eans  to lOs to lOOs o f  S M V M  opera tions  w ould  have to be perfo rm ed  in 

order to m ake  the convers ion  w orthw hile  in term s o f  overall run-time.

5.7 M atrix Partitioning
Parti t ion ing  and load ba lanc ing  are im portan t issues in parallel scientific co m p u tin g  

us ing  m ultip rocessors  or C M P s,  the goal being  to d istribute the w orkload  am o n g  the 

ava ilab le  processors  in a w ay  that m in im ises  com m unica t ion  cost and m ax im ises  

perfo rm ance. T he m ost co m m o n  approach  to d is tributing a Sparse M atrix  

m ultip lica tion  across m ultip le  processors  is to d iv ide  the m atrix  by rows or co lu m n s  

so as to approx im ate ly  d iv ide  the w ork load  for instance w here  a C SR  S M V M  is 

d is tribu ted  by row s as the com piler  splits the ou ter loop across the ava ilab le
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processors. A more generic approach is to use graph partitioning to perform load 

balancing. In this case data are represented as vertices in a graph, and edges represent 

dependencies between data. Graph partitioning attempts to minimize the number of 

cross-edges in the graph between processors, as each such edge results in 

communication between processors.

According to Bisseling and Vastenhouw [132] the distribution of a Sparse Matrix 

multiplication and associated matrix and vectors data and results consists o f  four 

phases. A good distribution scheme should achieve the following objectives:

• Spread the matrix non-zeros evenly across the processors

• Minimize communication volume, i.e. total # data words communicated

• Spread communication (sending and receiving) evenly over the processors

• Partition matrix in both dimensions, e.g., by splitting it into rectangular blocks 

Mondriaan [132] differs from the majority of partitioners now in use which perform a 

1-D partitioning in that it partitions in 2 dimensions. According to the authors Finite- 

Element matrices are unlikely to benefit greatly from the two-dimensional partitioning 

approach taken in Mondriaan. The reason for this is that the square non-symmetric 

matrices required by iterative algorithms such as G M RES, QM R, BiCG, and Bi- 

CG STA B impose an additional constraint on the input and output vector distribution 

which makes it more difficult to balance the communication, and may even lead to an 

increase in communication volume. In fact the original application of Mondriaan in 

fact is the design of a parallel web-search engine based on latent semantic indexing. 

Zoltan is a hypergraph partitioner similar to Mondriaan. W hen compared to the other 

partitioners detailed here Zoltan [134] is run as a parallel task rather than sequentially 

on a single CPU. One o f  the challenges in the design of a good parallel partitioner is 

load-balancing within the partitioner itself! The speedup achieved by using 64 CPUs 

to perform the partitioning ranges from 0-25 times faster than using a single CPU.

The published results in terms of run-times for Zoltan clearly show the advantage of 

parallelising of the partitioning task. However, partitioning leads to overheads o f  

hundreds or thousands of un-partitioned CSR SM V M s which must be amortised 

before any benefit will arise from the use of Sparse Matrix partitioning.

5.8 Cache Oblivious SMVM Partitioning
In [135] Yzelman and Bisseling introduce a cache-oblivious method for sparse 

m atrix-vector multiplication based on the hypergraph-based sparse matrix

103



partitioning methods used in Mondriaan [132]. In their scheme partitioning is 

performed such as to induce cache-friendly behaviour during sparse matrix-vector 

multiplication. The authors also presented new variants o f the CSR and ICSR where 

the zigzag format refers to the alternation o f column elements from row to row, thus 

maximizing the likelihood of cache hits from row to row of the sparse matrix as the 

SM VM  computation progresses.

The column-ordering in zigzag versus normal CSR format are shown in Figure 5-9. 

Experimental results demonstrate a saving in computation time up to 50% in one case. 

However that the method performs best on sparse matrices with relatively low 

numbers o f non-zeroes per row or column and which are not already ordered 

favourably. They also note that as cache size increases the benefits o f the reordering 

scheme decrease as might be expected. The ICSR format was also found to be 

noticeably faster than CSR on the architectures targeted, however overall the 

overhead o f the proposed reordering and partitioning scheme ranges from hundreds to 

over one hundred thousand unoptimized SM VM  products depending on the matrix 

used and the number o f experimental reorderings performed. It is worth noting that 

the zigzag orderings proposed by the authors could also be applied to BCSR and other 

related sparse storage formats.
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I I j"T™_L_j l_ _L _L J  I
I [j] : : [ : i: ] : :L :[ j]
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I  I - - H -------------------------- 1
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CRS ZZCRS (zigzag)

Figure 5-9 ZZCSR C o lum n-O rdering

5.9 Summary
According to Gropp et al [26] applications which are dominated by sections of 

bandwidth-lim ited code such as SM VM  are doomed to achieve an ever decreasing 

fraction o f peak performance due to the widening processor-memory performance gap
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or “M em ory  W all” . In brief, mem ory bandwidth presents an upper bound on the 

performance of such applications which compilers cannot improve requiring a new 

approach on the part of application developers to circumvent the bottleneck. One 

possibility suggested by Gropp et al is that SM V M  operations using multiple rather 

than a single vector might be used by transforming the application code, thus 

improving overall performance. This optimization has been thoroughly investigated 

by both Im [112] and Vuduc [52] and has been shown to offer significant speed-ups, 

where applicable.

Within these bounds code and data can be tuned either manually or automatically to 

extract as much performance as possible from the processor hopefully getting close to 

the bandwidth bound. The tuning algorithms proposed to date target only SM VM  

performance and not pin bandwidth or power consumption which is regarded by the 

author as a severe limitation in an energy-conscious world where the electricity 

consumed by server farms is o f  real business concern in the siting and running of 

server farms by corporations such as Google [136].

As previously seen, caches, and local registers can be used to improve the 

performance of SM VM  codes by improving average access times. Blocking and 

other transformations can be used to improve temporal and spatial locality allowing 

the highest performance possible to be achieved for a given processor architecture, 

although as will be seen later these transformations do impose a significant start-up 

cost which must be amortised by performing multiple SM V M  operations on the same 

transformed data. There is also evidence to suggest that where multiple levels of 

cache are used cache-line lengths should increase rather than all having the same 

length for optimal performance.

An “elephant in the room ” with regard to all o f  the SM VM  published work is that the 

overhead in converting between CSR and BCSR format is non-trivial and means up to 

10s to 100s of SM VM  operations would have to be performed in order to make the 

conversion worthwhile in terms of overall run-time.

The important contributions by other researchers are noted in the following sections: 

Prefetching

• According to Mowry [51] and Lam et al [119] locality optimizations 

(blocking) reduce  latency, unlike prefetching which tolerate  latency
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• Locality optimizations reduce memory bandwidth requirements but are limited 

in their applicability because any associated code-transformations must be 

legal, while prefetching is not subject to these constraints and is more broadly 

applicable

Register-Blocking

• Register-Blocking improves performance through register reuse and lowering 

the indexing overhead at the expense of data-dependent zero-fill

•  A matrix density 10'' is required in the sparse source matrix to gain any 

benefit from register blocking (Nishtala et al [115])

• 10s to 100s of equivalent unoptimized SM V M s must be amortised to make the 

search and blocking effort worthwhile

Cache-Blocking

• Cache-blocking improves performance by improving temporal locality of 

source vector accesses, only makes sense when the source vector x  doesn ’t fit 

in cache

• The technique is of use in a restricted class of sparse matrices [115] which are 

less dense (lO'"’) than those for which register-blocking is appropriate (10

Cache-Implementation

•  Multi-word cache lines reduce the number of cache misses but increase the 

amount o f  memory traffic.

• Set-associativity improves the average cache miss-rate but does not address 

wide variations in miss-rate between problem sizes.

TLB-Blocking

• Small TLBs such as that used in the Pentium4 Xeon can result in poor 

performance as TLB misses cause valid data in the cache to be evicted

• Padding can improve TLB performance preventing conflict misses caused 

because multiple pages map to the same entry in direct-mapped TLBs

•  In the case o f  fully-associative TLB the block size should be less than or equal 

to the number o f  TLB entries in order to avoid TLB thrashing

Copying

• copy optimisation is used to copy non-contiguous data into contiguous cache 

locations in such a way as to eliminate self-interference and can significantly
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decrease  the num ber o f  T L B  misses, but on ly  if the reuse factor is not low, as 

in the case o f  S M V M

R ecursive  B locking

• Im proves tem poral locality and prov ides  efficient cache and T L B  blocking , 

w hile  register b lock ing  is used w ithin  sub-b locks.

•  Perfo rm ance  is a lm ost flat as a function o f  prob lem  size and type e l im ina ting  

the need for searches to ob ta in  good per fo rm an ce  h ow ever  per fo rm an ce  still 

falls short o f  hand-coded  vendor libraries

C o m b in in g  techniques

• A cco rd in g  to Im [112] there is no benefit  to co m b in in g  register and cache- 

b lock ing

• T em a m  et al [120] conc lude  that the o rder  in w h ich  b lock ing  transfo rm ations  

should  be applied  is bo ttom -up , i.e. T L B  b lock ing  should  follow  cache 

b locking , w hich  should  follow reg is te r-b lock ing  and show  the interaction  

be tw een  the techniques s tep-by-step  (in 10 d iscre te  com bina tions)  for m atrix  

m ultip lication

•  Lam et al [119] recom m end  co m b in in g  cache-b lock ing  with  co p y in g  w here  

possib le  as it achieves the lowest level o f  cache m isses  and consis ten t 

im provem en t independent o f  the data set

•  P rasanna  et al. report [127] that a co m bina tion  o f  B lock  D ata L ayout and 

T iling  s ignificantly  im proves perfo rm ance  o f  both caches and T L B  for a large 

range o f  m ach ines  and p rob lem  sizes and is preferable  to p add ing  and copy 

op tim isa tion

Search

•  Y otov  et al. [106] cast doubt on the generali ty  o f  the w o rk  perfo rm ed  by 

V uduc suggest ing  that the I tan ium 2 benefits  d isp roportionate ly  from  the 

p roposed  technique. T h ey  suggest that for a range o f  o ther p rocessors  a 

s im p le  m athem atica l m odel will suffice po tentially  m ak in g  reg is ter b lock ing  

attractive even w here  the n u m b er  o f  S M V M  iterations is very  low

R CM  R eordering

•  E xper im enta lly  it w as found that the overhead  o f  R C M  reordering  num bers  

10s to 100s o f  equivalen t un-reordered  S M V M s, thus lim iting  the utility o f
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RCM to iterative algorithms where a large number o f iterations are required to 

achieve any performance increase using re-ordering 

OpenMP

• Given the sim ilarity between clusters and CMPs it is suggested that OpenMP 

can be extended as shown by Packirisamy and Barathvajasankar in [130] to 

take advantage o f the potential for both fine-grained and thread-level 

parallelism in CMPs. The authors propose a technique for multi-core 

environments, where the outer loop is parallelized between processors and the 

inner loop is parallelized for the processing elements inside each processor to 

optimise performance

Sparse M atrix Partitioning

• Experimentally is was found that partitioning using Mondriaan incurs 

overheads equivalent to lOOs to 1000s o f optimised CSR SMVMs o f the un

partitioned source-matrix

• An interesting by-product o f the work by Bisseling et al [135] is that i f  the 

rows in the matrix are scanned alternately from left to right ant then right to 

left, performance can be improved. The ZZCSR and ZZICSR formats 

proposed by the authors could be extended to blocked formats such as BCSR,

: to create zigzag formats such as ZZBCSR

I
I
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6
Chapter 6

"A designer knows he has achieved perfection not when there is 
nothing left to add, but when there is nothing left to take aw ay."

- Antoine de Saint-Exupery

6 Software SMVM Revisited
As was seen in chapter 5 the state of the art methods for computing Sparse Matrix 

Vector Products (SM V M ) have improved little over the past few decades and 

performance improvements have been driven largely by advances in processor and 

semiconductor process technology. The focus has been rather on tuning existing 

methods such as the work by Im [137] and Vuduc [52] on tuning BCSR where the 

sparse matrix has some underlying structure, often in the case of non-structured 

matrices such as the Google-Matrix, BCSR and related methods offer no 

improvement and may in fact disimprove results if applied to such matrices. In 

general SM V M  has had little if any influence on the design o f  mainstream 

microprocessors as outlined in chapter 4 despite the obvious problems in terms of 

scaling I/O bandwidth performance, particularly where Chip Multi-Processors 

(CM Ps) exacerbate problems by contending for increasingly scarce I/O bandwidth. A 

key observation in the work of Vuduc et al is [137] [52] that a sizeable number o f  the 

entries in typical blocked sparse-matrices consist of zero fill. These values even if 

they do not contribute to the result of  an SM V M  are nonetheless fetched as 64-bit
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double-precision values from memory and multiplied with all o f the attendant 

problems in terms o f power-dissipation and system throughput. An obvious 

improvement to BCSR and other blocked SM VM  schemes would be to find some 

way o f avoiding trivia l operations due to zero-fill, whether storing or loading these 

values to memory, moving them via shared busses or indeed performing arithmetic 

operations using these zero f ill- in  values.

6.1 Trivial Arithmetic
According to Richardson [138] and L ilja  [139] a significant number o f trivia l 

computations are performed during the execution o f processor benchmarks and other 

numerically intensive applications. By trivial computations Richardson intended 

those that can be simplified or where the result is zero, one, or equal to one o f the 

input operands. It was shown that for certain programs studied, up to 67% of 

operations were trivial and fast detection and evaluation o f these trivial operations 

using dedicated hardware in the pipeline yielded significant speedup. However, to 

date, work on the exploitation o f trivia l operands appears to be focused on 

dynamically occurring trivial operands in the pipeline rather than static trivial 

operands occurring in the input data and no published work appears to detail the 

exploitation o f trivia l operands in Sparse Matrix compression.

Operation Normal Bypassable

Add X+Y X=0
Y=0

SiiDtract X-Y Y=0
X=Y

Multiply X*Y

1 
1

Divide X/Y X = {0,Y-Yf 
Y=1

Absolute
Value

X=0
X={posltlve}

Square
Root (X)°^ X=0,1

Table 6-1 IEEE Arithmetic trivial operation table

Furthermore as the detection of, and bypass of, dynamically occurring trivia l operands 

as proposed by Richardson introduces problems o f its own (e.g. Pipeline bubbles due
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to the  d i f f e r e n c e  in F P U  la tency  b e t w e e n  tr ivial  a n d  non- t r iv ia !  p a th s )  s u c h  fe a tures  

h a v e ,  to da te ,  no t  a p p e a r e d  in c o m m e r c i a l  a r ch i te c tu re s .  It ha s  b e e n  s h o w n  [139]  that  

a p p r o x i m a t e l y  3 0 %  o f  all a r i t h m e t i c  i n s t ru c t io n s  ( w h e n  a v e r a g e d  o v e r  a la rg e  n u m b e r  

o f  in te ge r  a n d  f l o a t i n g - p o in t  b e n c h m a r k s ) ,  a c c o u n t i n g  for  12 %  o f  all d y n a m i c  

i n s t ruc t i ons ,  a re  t r iv ia l  c o m p u t a t i o n s .  T h e s e  tr ivial  o p e r a t i o n s  o c c u r  d e s p i t e  the use  o f  

c o m p i l e r  o p t i m i s a t i o n  t e c h n iq u e s ,  a n d  a re  n o t  h e a v i l y  d e p e n d e n t  on  the  p r o g r a m ’s 

sp e c i f ic  in pu t  va lu e s .  O n e  o f  the r e a s o n s  for  th i s  is that  t r ivial  v a lu e s  a re  c re a te d  

d y n a m i c a l l y  d u r i n g  p r o g r a m  e x e c u t i o n  by  m a t h e m a t i c a l  o p e r a t i o n s  e .g.  c a n c e l l a t i o n  

i  -  i  =  0 a n d  by  m u l t i p l i c a t i o n  b y  zero .  F r o m  T a b l e  6-1 d e r iv e d  f r o m  [139]  it c an  be  

se e n  that  o n l y  a f e w  o f  the p r o p o s e d  tr ivial  o p e r a t i o n s  s u g g e s t e d  a re  r e le v a n t  to 

i te ra t ive  m e t h o d s  a n d  m a t r i x / v e c t o r  o p e ra t i o n s .

T h i s  a u t h o r  n o t e s  that  a l t h o u g h  not  m e n t i o n e d  by  R i c h a r d s o n  or  Li l ja  it is po ss ib le  

that  t r ivial  m u l t i p l i c a t i o n  co u ld  be e x t e n d e d  to the  g en e ra l  ca se  o f  m u l t i p l i c a t i o n  by  

p o w e r s  o f  2 r e s u l t i n g  in a s m a l l  uni t  w h i c h  a d d s  e x p o n e n t s  a nd  le ave s  the  m a n t i s s a  o f  

the m u l t i p l i c a n d  u n m o d i f i e d  in a m a n n e r  s i m i l a r  to tha t  p r o p o s e d  in [139] .

6.2 Computing with bitmaps
T h e  m a i n  i s s ue  w i t h  the  m e t h o d  p r o p o s e d  by  R i c h a r d s o n  is that  t r iv ia l i ty  is 

d e t e r m i n e d  b y  f l o a t i n g - p o in t  c o m p a r a t o r s  w h i c h  in tu rn  c h o o s e  to c o m p u t e  th e  tr ivial  

resu lt s  e i th er  u s i n g  a c o m p l e t e  f l o a t i n g - p o in t  uni t  o r  a l te rn a t e ly  a lo w e r - l a t e n c y  and  

l o w e r - c o m p l e x i t y  un i t  in the  ca se  o n e  or  b o th  o f  the  in p u ts  a re  trivial .

W h i l e  o f f e r i n g  s o m e  p r o m i s e ,  in the  f o r m  o f  r e d u c e d  la te n c y  a n d  p o te n t ia l l y  h i g h e r  

th r o u g h p u t ,  th i s  a p p r o a c h  has  se ve ra l  d i s a d v a n t a g e s :

•  P r o g r a m s  m u s t  t ak e  a c c o u n t  o f  v a r ia b l e  la te nc y

•  A d d i t i o n a l  h a r d w a r e  i n c l u d i n g  c o m p a r a t o r s ,  m u l t i p l e x e r s  a n d  spec i a l  F P  uni t s

•  M e m o r y  b a n d w i d t h  and  s to r a g e  r e q u i r e m e n t s  a re  not  r e d u c e d  as z e r o e s  ( tr ivial  

v a lu e s )  a re  s to r e d  as  full  p r e c i s io n  f l o a t i n g - p o in t  n u m b e r s  be fo re  b e i n g  f e tc h e d  

a nd  a c t e d  u p o n  by  the  p r o c e s s o r

A  m u c h  b e t t e r  a p p r o a c h  w o u l d  be  to p e r f o r m  the  f lo a t in g -p o in t  (o r  in teg er )  

c o m p a r i s o n s  o f f - l in e ,  a n d  s tore  th e se  d e c i s i o n s  a l o n g  w i t h  the  da ta  in s u c h  a w a y  tha t  

on ly  n on- t r iv ia l  c o m p u t a t i o n s  are a c tu a l ly  c a r r i e d  ou t  on  fu l l -pr ec is io n  da ta.  T h i s  

a p p r o a c h  h a s  th e  a d v a n t a g e s  that:

•  M i n i m a l  a d d i t i o n a l  h a r d w a r e  is r e q u i r e d  (1 -b i t  m u l t ip l ie r  is an  A N D  ga te )

•  S t o r a g e  a n d  b u s  b a n d w i d t h  r e q u i r e m e n t s  a re  m i n i m i s e d

1 1 1



•  Latency remains constant

•  Power is minimised

6.2.1 Reference BCSR SMVM
The BCSR data-structure consists o f  3 arrays as shown in Figure 6-1. The row 

(row_start) array holds the row entries containing non-zero tiles, a second col 

(col_idx) array containing the column addresses o f  the non-zero tiles and a val (value) 

array containing the actual non-zero entries (with fill) for all o f  the non-zeroes in the 

Sparse Matrix, arranged in tile-by-tile order.

 2 ^ ........4 ....... ^
0 :^oo ®oi 0 ■ 0 3o4 0 I

; 3 i o  ^11 0  ; 0  0  ^15 ;

2 I 0 0 322' 0 0 2̂5*
; 0  0  8 3 2 1 3 3 3  8 3 4  8 3 5 ;

row

col

Figure 6-1 2x3 BCSR Sparse Matrix Storage Format

A generic BCSR Sparse Matrix Vector Product (Multiplication) code which operates 

on the BCSR data-structure is shown in Listing 6 -L

L I .  v o i d  b c s r _ s m v m ( i n t  bm, i n t  r ,  i n t  c ,  i n t  * r o w _ s t a r t ,  
i n t  * c o l _ i d x ,  d o u b l e  * v a l u e ,  d o u b l e  * s r c ,  d o u b l e  
* d e s t )  {

L2 .  i n t  i ,  j ,  i i ,  j j ;

L3 .  f o r  ( i = 0 ;  i<bm ;  i+-i-, d e s t + = r )  {
L4 . f o r  ( j = r o w _ s t a r t [ i ] ;  j < r o w _ s t a r t [ i + 1 ] ;  j + + ,

c o l_ i d x - t - + ,  v a l u e + = r * c )  {
L 5 . f o r  ( i i = 0 ;  i i < r ;  i i  + +) {
L 6 .  f o r  ( j j = 0 ;  j j < c ;  j j + + )  {
L 7 . d e s t [ i i ]  += v a l u e [ i i * c  + j j ]  *

s r c [ ( * c o l _ i d x ) + j j ] ;
L 8 . }
L9 .  }
L I O . }
L l l . }
L 12 .  } / /  b c s r _ s m v m ( )

Listing 6-1 G ener ic  B C S R  S M V M  C-code

While having the benefit of  being easy to understand and generic (can handle 

arbitrary sized r*c BCSR tiles) this C code results in a highly inefficient
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im p lem en ta t io n  in term s o f  perfo rm ance  as m any  address  ca lcu la tions  have to be 

p e r fo rm ed  for each r*c produc ts  necessary  to com ple te  the S M V M  operation.

In prac tice  a library o f  C -functions is written , one for each  o f  the r*c tile sizes 

requ ired  by the library designer. Each o f  these C -func tions  is e ither w ritten  by hand 

or g en e ra ted  by another program  and each m ust be ex tens ive ly  verif ied  to ensure 

correc t operation . For re ference purposes  the code  for a 4 x4  B C S R  S parse  M atrix  

V ecto r M ultip lica tion  (S M V M ) is show n in L ist ing  6-2. A s can be seen  the matrix 

v ec to r  code is op tim ised  for p erfo rm ance  by unro ll ing  w h ich  rem oves  loop 

ca lcu la t ions  and assign ing  values w h ich  are frequently  reused  to variab les  w hich  the 

C co m p ile r  will assign to registers. Both techn iques  are c o m m o n ly  used in op tim ised  

S M V M  codes.

LI. void bcsr_smvm4x4(int bm, int *row_start, int
*col_idx, double *value, double *src, double *dest)
{

L2 . int i , j / r=4, c=4 ;
L3 . Type yO, yl, y2 , y3 , x O , xl, x 2 , x3;

L4 . for ( i == 0; i<bm; i++ , dest+=4) { // r
L5 . yO = dest[0 ] ;
L6 . yl = dest[1];
L7 . y2 = dest[2];
L8 . y3 = dest[3];
L9 . for ( j =row_start(i] ; j<row_start[i+1];

col_ idx++, value+=16){ // r*c
LIO . xO = src[(*col_ idx) ]; // unrolled

loop
Lll . xl = src[(*col_ idx ) + 1];
L12 . x2 = src[(*col_ idx ) + 2];
L13 . x3 = src[(*col_ idx ) + 3 ];
L14 . yO += value [ 0 ] ★ x O ; / /  row 0
L15 . yO += value [ 1 ] ★ xl ;
L16 . yO += value [ 2 ] ★ x2 ;
L17 . yO += value [ 3 ] ★ x3 ;
L18 . yl + = value [ 4 ] ★ x O ; I I  row 1
L19 . yl += value [ 5 ] ★ xl ;
L20 . yl += value [ 6 ] ★ x2 ;
L21 . yl + = value [ 7 ] ★ x3 ;
L22 . y2 += value [ 8 ] ★ xO; // row 2
L23 . y2 += value [ 9 ] ★ xl ;
L24 . y2 += value [ 10 ] ★ x2;
L25 . y2 += value [ 11 ] ★ x3 ;
L26 . y3 += value [ 12 ] ★ xO; // row 3
L27 . y3 += value [ 13 ] ★ xl;
L28 . y3 += value [ 14 ] ★ x2 ;
L29 . y3 += value [ 15 ] ★ x3 ;
L30 . }
L31 . dest [0] = yO;
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L 3 2 . d e s t [1] = y l ;
L33. d e s t [2] = y 2 ;
L34 . d e s t [3] = y 3 ;
L 3 5 . }
L36. } // bcsr_smvm4x4 ( )

Listing 6-2 4x4 BCSR SMVM

T h e  fo llow ing  gcc co m m an d  line op tions can be used to produce annotated assem bly  

language output:

gcc  -c -g -W a,-ah l= tes t_ j tsm vm .asm  tes t_ j tsm vm .cpp

U sing  this co m m an d ,  the x86  assem bly  language  corresponding  to the fo llow ing  line 

o f  C-code , has been  produced  as show n in L isting  6-3. 

yO += value[()]*x();

65:test_jtsmvm.cpp **** yO += value[ 0] * xO;
606 .stabn 68,0,65,LM40-__ Z16bcsr smvm4x4_iPiS PdSO SO
607 LM4 0 :
608 02ce 8B4514 movl 20(%ebp), %eax
609 02dl DDOO fldl (%eax)
610 02d3 DC4DC8 fmull -56(%ebp)
611 02d6 DD45E8 fldl -24(%ebp)
612 02d9 DECl faddp %st, %st(1)
613 02db DD5DE8 f s t p l -24(%ebp)

Listing 6-3 4x4 BCSR SMVM x86 Assembler

A s can be seen one  line o f  C -code  is translated  by the C-com piler  into a total o f  six 

x 86  instructions on lines 608-613  in the listing but contain ing  no branches or other 

control flow instructions. O bviously  if  the A m atrix  entry (value[()]) is zero then the 

six instructions have been  executed  needlessly ,  lead ing  to unnecessary  consum ption  

o f  bandw id th  and power.

6.2.2 Bitmap Block Compressed Sparse Row Format (BBCSR)
T h e  B B C S R  data-s tructure  consists  o f  4 arrays as show n in Figure 6-2. T he B B C S R  

structure au g m en ts  the 3 B C S R  arrays (row _start ,  col_idx and value) w ith  a 

b i tm ap_ idx  array con ta in ing  a b itm ap, each entry  (bit) o f  which denotes w he ther  a 

non-zero  va lue  is p resent at that position  in the tile o r  not. T he value array conten ts  

d iffer from  those  in a B C S R  data-structure in that on ly  the actual non-zero  entries are 

s tored w ithou t  any zero-fill (unless the 1-bit entries in the b itm ap are counted) for all 

o f  the non-zeroes  in the Sparse M atrix , arranged in tile-by-tile order.
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0 2 4
3oo 3qi 0 0 3 q4 0
3lO 3ii 0 0 0 3 i 5

0 0 ^22 0 0 325

0 0 ^32 ^33 334 335

row_start

c o ljd x

value : aoo 3 q1 3 i O 3 l1 3Q4 3 i 5 I ^22 ^32 ^ 2 5  ^ 3 3  ^ 3 4  8 3 5  I

Figure 6-2 2x3 BBCSR Sparse M atrix Storage Format

The bitmap entries shown in Figure 6-2 are hexadecimal values, for instance the first 

entry 36 (hex) corresponds to the binary bitmap (00)11 0110. The C-code for a 

generic BBCSR SM VM  which operates on the BBCSR data-structure is shown in 

Listing 6-4. One o f the main differences w ith respect to the BCSR SM VM  is evident 

on LIO o f the code where a bitmap bit corresponding to a sub-tile entry is tested to see 

i f  a non-zero entry is present in the value array. The floating-point multiplication and 

addition and associated array look-ups and address arithmetic on L12-14 are only 

performed i f  the bitmap bit indicates a non-zero is present.

From this analysis it is obvious that i f  the dense sub-tile o f the Sparse M atrix contains 

zero f i l l  a long sequence o f instructions including floating-point instructions w ith long 

latency w ill be replaced by a simple integer operation to test an array bit and skip 

these costly operations in the case o f a zero f i l l  entry. The converse is also true in that 

i f  the tile contains little  or no f i l l  additional bit-test instructions w ill be added as 

overhead to the required sequences o f instructions for the evaluation o f tile non-zero 

entries. Apart from the number o f zero f i l l  values there are also the effects o f the 

higher instruction count on the cache hierarchy to be considered making a static 

analysis o f the code o f little  quantitative use.

LI. void bbcsr_smvm(int bm, int r, int c, int *row_start, int 
*col_idx, int *bitmap_idx, double *value, double *src, 
double *dest) {

L 2 . int i, j, ii, jj, i_, _nz, bitmap, nz;
L3. int test bit;
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L4. for (i=0; i<bm; i++, dest+=r) {
L5 . for (j=row_start[i ]; j<row_start[i+1]; j++,

bitmap_idx++, col_idx++, value+=nz) {
L6. bitmap = *bitmap_idx & OxOOOOFFFF;
L7. nz = *bitmap_idx>>16 & OxOOOOFFFF;
L 8. _n z = 0;
L9. for (i_=0; i_<(r*c) && _nz<nz; i_++) {
LIO. test_bit = bitmaps(1<<((r*c)-i_-1)) ;
Lll. if (test_bit) {
L12. ii = (i_ & OxOOOOOOOC) »  2 ;
L13. jj = i_ & 0x00000003
L14. dest[ii]+=value[_nz++]*src[(*col_idx) + j j];
L15. }
L16. }
L17. }
L18. }

L19. } // bbcsr_smvm()

Listing 6-4 Generic B B C SR  SM VM  Code

Similar to BCSR the BBCSR SM VM  code can be unrolled for performance reasons 

as shown in Listing 6-5. The BBCSR data-structure contains 4 arrays, three of which 

are the same as BCSR (row_start, col_idx and value), augmented by an array of 

bitmaps describing the pattern of non-zeroes within an r*c BBCSR tile.

Ll. void bbcsr_smvm4x4_ur3(int bm, int r, int c, int
*row_start, int *col_idx, int *bitmap_idx, double *value, 
double *src, double *dest) {

L2 . int i, j, _nz, bitmap, nz;
L3 . double yO, yl, y2, y3, xO, xl, x2 , x3 ;

L4 . for (i=0; i<bm; i++, dest+=r) {
L5 . yO = dest[0];
L6 . yl = dest[1];
L7 . y2 = dest[2 ] ;
L8 . y3 = dest[3 ] ;
L9 . for (j =row_start[i ]; j<row_start[i+1]; j++ /

bitmap__idx++, col idx++, value+=nz) {
LIO . bitmap = *bitmap idx & OxOOOOFFFF;
Lll. nz = *bitmap_idx>>16 & OxOOOOFFFF;
L12 . _n z = 0;
L13 . xO = src[(*col idx) ];
L14 . xl = src[(*col_idx) + 1];
L15 . x2 = src[(*col_idx) + 2];
L16 . x3 = src[(*col_idx) + 3];
L17 . if (bitmaps32768 ) yO+= value[ _nz++] * xO;
L18 . if (bitmaps 16384 ) yO+= value[ nz + + ] * xl;
L19 . if (bitmaps 8192) yO+= value[ nz + + ] * x2;
L20 . if (bitmaps 4096) yO+= value[ _nz++] * x3;
L21 . if (bitmaps 2048) yl+= value[ nz++ ] oX

L22 . if (bitmaps 1024) yl+= value[ nz++ ] * xl;
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L23 . if (bitmaps. 512 ) yl+= value[ nz++ ] * x2
L24 . if (bitmaps 256 ) yl+= value[_nz++] * x3
L25 . if (bitmaps 128 ) y2+= value[ nz++ ] * xO
L26 . if (bitmaps 64 ) y2+= value[ nz++ ] •k xl
L27 . if (bitmaps 32 ) y2 + = value[ nz++ ] •k x2
L28 . if (bitmaps 16) y2+= value[ nz++ ] ★ x3
L29 . if (bitmaps 8 ) y3+= value[ nz++ ] * xO
L30 . if (bitmaps 4) y3 + = value[ nz++ ] •k xl
L31 . if (bitmaps 2) y3+= value[_nz++] ■k x2
L32 . if (bitmaps 1) y3 + = value[ nz++ ] •k x3
L33 . }
L34 . dest [0 ] = yO;
L35 . dest [1] = yl;
L36 . dest [2] = y2;
L37 . dest [3] = y3;
L38 . }
L39 . } // bbcsr smvm4x4__ur3 ( )

L ist ing  6-5 U nrolled  B U C S R  4 x4  S M V M  C od e

A 1-bit in a b i tmap  indicates that the co r re spond ing  value in the value  ar ray is n o n 

zero,  and a O-bit in the b i tmap indicates  that no value  is s tored in the value  array.  

Each non-zero  is therefore  represented by 65-bi ts  be tween the value  and the b i tmap  

arrays.  T he  ar ray  o f  b i tmaps  called b i tmap_idx is an ar ray o f  32-bi t  integers,  wi th  the 

lower 16-bits represent ing the non-zero  pat tern in B B C S R  tile up to a 4 x4  and the 

upper  16-bits represent ing the non-zero  count  for the sam e tile.

T he  x86  as sembler  co rrespo nd ing to one  line o f  C -c ode  :

i f  ( b i t m a p & 3 2 7  6 8 ) yO + -  v a l u e [ _ n z + + ]  * x O ;  

is sh o w n  in L ist ing  6-6.

115:test_jtsmvm.cpp **** if (bitmap&327 68) yO +=
value[_nz++] * xO;
967 .stabn 68,0,115,LM77-

Z17bbcsr smvm4x4 ur3iiiPiS S PdSO SO
968 LM77 :
969 05a0 8B45F0 movl -16(%ebp), %eax
970 05a3 C1E80F shrl $15, %eax
971 05a6 83E001 andl $1, %eax
972 05a9 84C0 testb %al, %al
973 05ab 7420 je L36
974 05ad 8B45F4 movl -12(%ebp), %eax
975 05b0 8D14C500 leal 0( , %eax,8), %edx
975 000000
976 05b7 8B4520 movl 32(%ebp), %eax
977 05ba DD0402 fldl (%edx,%eax)
978 05bd DC4DC0 fmull -64(%ebp)
979 05c0 DD45E0 fldl -32(%ebp)
980 05c3 DECl f addp %st, %st(1 )
981 05c5 8D45F4 leal -12(%ebp), %eax
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982 05c8 FFOO
983 05ca DD5DE0
984

incl (%eax) 
f stpl -32 ( %ebp )

L36 :

Listing 6-6 BBC SR  x86 Assem bler

Note also that the BBCSR data-structure could be optimised by packing the bitmap as 

a 64 bit entry into the existing value array, removing the overhead required to address 

the bitmap_idx array. This optimisation would also allow larger bitmaps supporting 

tiles up to 8x8 in size rather than the current 32-bit entries in the bitmap_idx array.

6.2.3 Experimental Setup
The following section describes the benchmark sparse matrix suite, target machine 

parameters and C compiler used for SM VM  performance measurements.

The target machine used for all experiments was based on an Intel CoreDuo E6600 

processor [141] running at 2.4GHz as shown in Figure 6-3. This is a modern 

multicore CPU present in workstations and servers typically used for large scale 

engineering simulations and Computer Aided Design (CAD).

2.4GHz Core 2.4GHz Core

coreO Corel

32kB L1 
l-cache 
8-way

32kB L1 
D-cache 
8-way

32kB L1 
l-cache 
8-way 

▲

32KBL1
D-cache
8-way

4MB L2 Uruied Cache (16-way 3A)

1066MHz FSB 

Figure 6-3 Intel C oreDuo E6600

W hen run on the target machine to gauge off-chip bandwidth from the processor, the 

Stream [45] benchmark (with parameters NTIM Es=250 & 16Mbyte array-size), 

predicts a system performance o f  around 120MFLOPS as shown in Table 6-2.
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Function Rate
(MB/S)

Bytes/iter MFLOPS
Avg
time

Min
time

Max
time

Copy 2496.7 16 156.0 0.013 0.013 0.0247
Scale 2429.9 16 151.9 0.0133 0.013 0.0222
Add 2842.8 24 118.4 0.0171 0.017 0.0286
Triad 2896.6 24 120.7 0.0167 0.017 0.0229

Table 6-2 CoreDuo Target System Stream [45] Benchmark Performance

The benchmark matrix suite o f 50 large matrices is drawn from the UF Sparse Matrix 

and M atrix Market collections as shown in Table 6-3. The matrix suite spans 

application areas from mechanical engineering structural problems and Finite- 

Element, to DN A electrophoresis, Computational Fluid Dynamics, Latent Semantic 

Analysis (web search other than Google search which is based on PageRank and other 

proprietary techniques), optimisation, materials science and graph theory. In terms of 

comparison w ith other works 11 o f the 50 chosen matrices also appear in the suite o f 

matrices used by Goumas et al [142]. S im ilarly to the work o f Goumas the C- 

compiler used is gcc v4.1.2 running under Red Hat Enterprise Edition (RHEL) Linux 

w ith the -0 3  command-line options for the most aggressive level o f optimisation. 

Finally rather than using an approximation o f the optimal tile size for the BCSR and 

BBCSR blocked SM VM  each tiling  was performed and the complete SM VM  product 

was calculated for the whole matrix.

To give an idea o f complexity the 50 sparse matrices contain a total o f 120M non- 

zeroes, and understandably the runtime for the entire sparse matrix suite is very long. 

In particular as in the case o f these experiments no search o f the kind proposed by 

Vuduc is carried out. In fact, as was pointed out previously the overhead o f reading in 

matrices and converting them from coordinate to CSR or blocked formats takes 10s to 

lOOs o f equivalent SM VM  operations i f  search is not used to sample part o f the 

matrix. In this work the run time is further compounded by the fact that each o f the 

conversions and SM VM  operations is performed for each o f 16 possible block-sizes 

from 1x1 to 4x4.
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name M N nz Application cb b lx l 1x1 1x2 1x3 0
mOI aLshell8 504855 504855 9046865 structural m26 3dtube 45330 45330 1629474 CFD
m02 cage13 445315 445315 7479343 DNA m27 ct20stif 52329 52329 1375396 structural
m03 nd12k 36000 36000 7128473 2/3D m28 raetsky4 19779 19779 1328611 structural
m04 crankseg_2 63838 63838 7106348 structural m29 vanbody 47072 47072 1191985 structural
m05 pwtk 217918 217918 5926171 structural mSO guptal 31802 31802 1098006 optimization
m06 hood 220542 220542 5494489 structural m31 fidapOII 16614 16614 1091362 CFD
m07 bmwcra_1 148770 148770 5396386 structural m32 bcsstk32 44609 44609 1029655 structural
m08 crankseg_1 52804 52804 5333507 structural m33 turon_m 189924 189924 912345 2D/3D
m09 SHIPSEC5 179860 179860 5146478 structural m34 qaSfk 66127 66127 863353 FE matrix
m10 M_T1 97578 97578 4925574 structural m35 bcsstk35 30237 30237 740200 structural
m11 SHIP_003 121728 121728 4103881 structural m36 fidapml 1 22294 22294 623554 CFD
m12 SHIPSEC1 140874 140874 3977139 structural m37 msc10848 10848 10848 620313 structural
m13 bmw7st_1 141347 141347 3740507 structural m38 nsc23052 23052 23052 588933 structural
m14 nd6k 18000 18000 3457658 2/3D m39 bcsstk37 25503 25503 583240 structural
m15 SHIPSEC8 114919 114919 3384159 structural m40 bcsstk36 23052 23052 583096 CFD
m16 s3dkq4m2 90449 90449 2455670 structural m41 ca g e ll 39082 39082 559722 DNA electrophoresis
m17 THREAD 29736 29736 2249892 m42 e40r0100 17281 17281 553956 driven cavity
m18 t3dh_e 79171 79171 2215638 moel reduction m43 crystk02 13965 13965 491274 materials
m19 18Jbdlinux 112757 20167 2157675 LSA m44 af23560 23560 23560 484256 CFD
m20 gupta2 62064 62064 2155175 optimization m45 wathen120 36441 36441 301101 Random 2/3D
m21 cage12 130228 130228 2032536 DNA m46 gridgena 48962 48962 280523 optimization
m22 s3dkt3m2 90449 90449 1921955 structural m47 fidap019 12005 12005 259863 FEM
m23 smt 25710 25710 1889447 structural m48 wathenWO 30401 30401 251001 Random 2/3D
m24 oilpan 73752 73752 1835470 structural m49 g y ro jn 17361 17361 178896 model reduction
m25 nd3k 9000 9000 1644345 ND set m50 vibrobox 12328 12328 177578 vibroacoustic

Table 6-3 Benchmark M atrix Suite
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6.2.4 Comparative BBCSR SMVM Performance
All t im ings  in this w ork  rely on cycle.h  w h ich  is a p la tfo rm -independen t  m echan ism  

for m easu r in g  elapsed p rocessor cyc les  be tw een  2 events from  the F F T W  package  

[143]. U nfortunate ly  as cycle.h returns only  the num ber o f  cycles and not e lapsed  

tim e it is not possible  to accurate ly  correlate  the num ber o f  cycles w ith  e lapsed  tim e 

and  hence p roduce  a M F L O P S  figure for the target m ach ine  for all o f  the m atrices  in 

the tes t-suite  to com pare  with the triad M F L O P S  and bandw id th  f igures p red ic ted  by  

S tream  [45]. H ow ever, a cyc le-count is a m ore  realistic m easure  o f  re la tive  S M V M  

time, as on ly  the num ber o f  cycles co n su m ed  by the S M V M  m ethod is tabulated , and 

not those co n su m ed  by the opera ting  system  etc.

T h e  results show n  in T ab le  6-4 w ere  tabulated  by p erfo rm ing  33 S M V M  calcu la tions  

for each  sparse  matrix o f  the 50 m atrix  ben ch m ark  suite. T h is  figure o f  33 S M V M s 

consis ts  o f  16 B B C S R  tilings (1x1 to 4x4), 16 B C S R  tilings and a reference C S R  

S M V M . A shell script ran each o f  the S M V M s serially  and all results  w ere  tabulated  

in an Excel sp readsheet for analysis  and com parison .  T h is  contrasts  w ith  the w ork  o f  

V uduc  et al w h o  sam pled  a sm alle r  section o f  the sparse m atrix  and inferred a C PU  

run tim e using  a param eterised  m ach ine m odel in order to save tim e in the search  for 

op tim al tile size for a g iven m atrix , it w as  felt that op tim al tilings requ ir ing  the 

p rocess ing  o f  the entire matrix ra ther than ju s t  a subset w ould  isolate the op tim al 

S M V M  m eth o d  from the tuning effect in V u d u c ’s approach.

R ead ing  the table from left to right the first co lu m n  is the m atrix  nam e, fo llow ed  by  

the nu m b er  o f  rows (M ), num ber o f  co lum ns (N ) and the num ber o f  explic it  non- 

zeroes in the matrix (nz). In som e cases nz m ay differ from the figure in the 

M atr ix M ark e t  format file as such files often  conta in  at least som e explicit  zeroes. T he  

next co lu m n  details the fastest S M V M  m ethod  o f  the particu lar m atrix  under 

consideration . In order to give m ore  insight into  the re lative m erits  o f  each o f  the 

techn iques  and yet m ake the table readable a subset o f  the 33 S M V M  results  is show n  

and subd iv ided  into 3 groups. T he  first g roup  is the re lative ranking  for the B B C S R , 

B C S R  and C S R  S M V M  techniques (1 is fastest and 3 is slowest). T h e  next is the 

sub -b lock  tiling  (row s x co lum ns)  assoc ia ted  w ith  the fastest B B C S R  and B C S R  

S M V M s. F inally  the last g roup  sh o w s  the n u m b er  o f  cycles m easured  using  cycle .h  

for the fastest B B C S R  tiling, the fastest B C S R  tiling fo llow ed by the C S R  S M V M  

cycle-count.
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name M N nz
fastest
SMVM

Method tSMVM rank Block Tile Size tSMVM (sec)
BBCSR BCSR CSR BBCSR BCSR BCSR CSR

af_shell8 504855 504855 9046865 BCSR 2 3 3x2,3x3 2x2 132.00 156.47

cage13 445315 445315 7479343 CSR 2 1 2x1 2x1 112.80 90.78

nd12k 36000 36000 7128473 BCSR 2 3 3x2,3x3 3x3 87.23 117.94

crankseg_2 63838 63838 7106348 BCSR 3 2 2x3 2x1 97.45 116.83

pwtk 217918 217918 5926171 BCSR 2 3 3x2,3x3 1x3 81.18 99.18

hood 220542 220542 5494489 BCSR 2 3 4x1 2x1 81.85 100.97

bmwcra_1 148770 148770 5396386 BCSR 2 3 3x2,3x3 3x3 63.50 92.77

crankseg_1 52804 52804 5333507 BCSR 3 2 4x1 2x1 71.84 86.70

SHIPSEC5 179860 179860 5146478 BCSR 2 3 2x1 2x1 49.29 85.04

M_T1 97578 97578 4925574 BCSR 2 3 3x2,3x3 3x3 43.90 115.89

S H IP J 0 3 121728 121728 4103881 BCSR 2 3 3x2,3x3 2x1 32.06 96.27

SHIPSEC1 140874 140874 3977139 BCSR 2 3 3x2,3x3 1x2 30.80 93.72

bmw7st_1 141347 141347 3740507 BCSR 2 3 4x2 2x2 56.18 65.57

nd6k 18000 18000 3457658 BCSR 2 3 3x2,3x3 3x3 42.44 57.64

SHIPSEC8 114919 114919 3384159 BCSR 2 3 3x2,3x3 1x2 27.56 79.23

s3dkp4m2 90449 90449 2455670 BCSR 2 3 2x3 2x2 34.05 41.87

THREAD 29736 29736 2249892 BCSR 2 3 3x2,3x3 3x3 19.42 52.11

t3dh_e 79171 79171 2215638 CSR 3 2 1 2x1 2x1 44.50 39.81

18_tbdlinux 112757 20167 2157675 CSR 2 3 1 2x1 1x2 28.14 23.69

gupta2 62064 62064 2155175 CSR 3 2 1 2x1 2x1 43.08 37.69

cage12 130228 130228 2032536 CSR 2 3 1 2x1 2x1 29.68 23.55

s3dkt3m2 90449 90449 1921955 BCSR 2 1 3 2x4 2x2 28.45 33.14

smt 25710 25710 1889447 BCSR 3 1 2 4x1 1x2 29.08 32.51
oilpan 73752 73752 1835470 BCSR 2 1 3 4x1 2x1 20.62 31.27

nd3k 9000 9000 1644345 BCSR 2 1 3 3x2,3x3 3x3 19.91 26.50

3dtube 45330 45330 1629474 BCSR 2 1 3 3x2,3x3 3x3 18.87 36.07

ct20stif 52329 52329 1375396 BCSR 2 1 3 4x1 1x2 20.08 24.37

raefsky4 19779 19779 1328611 BCSR 2 1 3 3x2,3x3 1x2 10.59 12.09

vanbody 47072 47072 1191985 BCSR 3 1 2 4x1 2x1 18.32 21.00

gup ta l 31802 31802 1098006 CSR 3 2 1 2x1 2x1 21.23 18.52

fidapOH 16614 16614 1091362 BCSR 3 1 2 2x3 2x1 9.13 10.45

bcsstk32 44609 44609 1029655 BCSR 3 1 2 4x1 3x1 16.13 17.80

turon_m 189924 189924 912345 CSR 2 3 1 2x1 1x2 26.63 21.95

qaSfk 66127 66127 863353 CSR 3 2 1 3x2,3x3 2x1 17.13 16.22

bcsstk35 30237 30237 740200 BCSR 2 1 3 3x2,3x3 3x3 9.57 12.57

fid a p m ll 22294 22294 623554 CSR 2 3 1 2x1 2x1 8.42 6.38

msc10848 10848 10848 620313 BCSR 2 1 3 3x2,3x3 3x3 7.11 10.61

msc23052 23052 23052 588933 BCSR 2 1 3 4x2 1x2 8.83 10.30

bcsstk37 25503 25503 583240 BCSR 2 1 3 4x2 1x2 8.94 10.19

bcsstk36 23052 23052 583096 BCSR 2 1 3 4x2 1x3 9.10 10.60

c a g e l1 39082 39082 559722 CSR 2 3 1 2x1 1x2 8.40 6.13

e40r0100 17281 17281 553956 BCSR 2 1 3 4x2 1x2 5.39 5.69

crystk02 13965 13965 491274 BCSR 2 1 3 3x2,3x3 3x3 5.89 8.57

af23560 23560 23560 484256 BBCSR 1 2 3 4x4 2x2 4.65 4.89
wathen120 36441 36441 301101 BBCSR 1 2 3 3x2,3x3 2x1 6.19 6.49
gridgena 48962 48962 280523 BBCSR 1 2 3 2x4 2x2 6.12 6.14
ridap019 12005 12005 259863 BBCSR 1 2 3 4x4 2x2 2.51 2.57
wathenlOO 30401 30401 251001 BBCSR 1 2 3 2x3 2x1 5.41 5.45
g y ro jn 17361 17361 178896 BBCSR 1 3 2 3x2,3x3 2x1 4.01 2.82
vibrobox 12328 12328 177578 BBCSR 3 2 2x1 2x1 3.08 2.76

Table 6-4 tSM VM  BBCSR vs BCSR vs CSR
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As can be seen from the results in Table 6-4 no one SM VM  method is optimal for all 

sparse matrices and there is considerable variability in the SM V M  run-time depending 

on the tile size selected as well as whether the SM V M  is computed using CSR, BCSR 

or BBCSR representations.

This being said the proposed BBCSR scheme is faster than both CSR and BCSR 

schemes in 7 out of the 50 cases, specifically the matrices af23560, w athenI20 , 

gridgena, fidap019, wathenlOO, gyro_m and vibrobox. The af23560 matrix is from a 

CFD (Computational Fluid Dynamics) problem, the wathenlOO and w athen l20  

matrices are randomly generated 2/3D problems, vibrobox is a vibro-acoustics matrix, 

gyro_m is from a model reduction problem, gridgena from an optimisation problem 

and fidap019 from an FHM (Finite Element Method) application.

Of the remaining 43 cases from the 50 matrix set CSR is the fastest method in 10 o f  

them specifically, cage l3 ,  t3dh_e, tbdlinux, gupta2, cage l2 ,  gup ta l ,  turon_m, qaSfk, 

f id a p m ll  and c a g e l l .  In 6 out of these 10 cases (cage l3 , 18_tbdlinux, cage l2 ,  

turon_m, fidapml 1 and cagel 1) BBCSR outperforms BCSR by on average 7.3%, and 

in the remaining 4 cases underperforms BCSR by on average 4.2%.

In the remaining 33 cases BCSR is the fastest method and in all but 5 cases 

(crankseg_2, crankseg_l, smt, vanbody, f idapO ll and bcsstk32) BBCSR outperforms 

CSR in second place by on average %.

As can be seen from Figure 6-4 BCSR is heavily influenced by BCSR tiling, and for 

the 50-matrix set 1x2 (row x column) or 2x1 tilings result in the best run-times in 60% 

of cases (30/50).
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Figure 6-4 Influence of tiling on BCSR SMVM
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In the case o f  B B C S R  tiling still has a s ign ificant effect on S M V M  execu tion-tim e , 

h o w ev er  the tile s izes are radically  d ifferent as sh o w n  in F igure 6-5, in fact as can be 

seen from  the figure in m any cases  there are equ iva len t run-tim es for m ultip le  

B B C S R  tilings for exam ple  3x2  and 2x3. In this respect B B C S R  differs  from  B C S R  

w here  a single tiling produces the fastest S M V M  run-tim e in all cases.
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6.2.5 Factors Influencing BBCSR SMVM Execution
Exam ining the cases where the BBCSR scheme is fastest an approximate calculation 

o f  12 Bytes per non-zero (an 8-byte double plus a 4-byte address) in terms of the size 

of the BBCSR data-structure would place each o f  the 7 matrices around the 4M Byte 

L2 cache-size in terms of memory footprint, assuming the processor is not running 

other significantly-sized workloads at the same time.

Following this it was felt that further investigation might help to explain the 

mechanism behind the superior BBCSR performance in these cases. Fortunately the 

Valgrind tool [144] provides the necessary infrastructure (cachegrind) to simulate 

existing x86 binaries on a parameteriseable cache model containing II, D1 and L2 

caches without modification.

Each of the CSR, BCSR and BBCSR binaries were run for the 7 matrix subset using 

the following command-line parameters using Valgrind v3.2.1:

valgrind --tool=cachegrind --11=32768,8,64 -- 
01=32768,8,64 --L2=4194304,16,64 --log-file- 
exact ly=af 2 3 5 6 0 . csr ./test_csr.exe af23560.mtx

The results from the valgrind cache simulations are shown in Table 6-5. As can be 

seen from the 3'^̂ , 4 ‘*' and 5 ‘̂  columns of the table the numbers o f  LI instruction-cache 

misses are all very low and approximately equal for each of the matrices at around 2k 

misses. Almost all of  these 2k misses also generated misses on the shared L2 cache. 

Bearing in mind that these misses are totals for the whole x86 binary and not just the 

SM VM  portion of it and the programs also contain large amounts of code to read 

MatrixMarket [11] format matrices and convert them to C SR /BCSR/BBC SR data- 

structures, the numbers of instruction cache misses are exceedingly low suggesting 

that the 32kB LI instruction cache is a very good match for the tight inner SM VM  

code loops. It can be reasonably concluded that differing code sizes and behaviour 

for the 3 SM V M  methods does not explain the difference in SM V M  execution-time. 

The more likely explanation is therefore that differences in data-cache behaviour have 

a stronger correlation with SM VM  execution time. The relationships between the 

various SM VM  methods execution-times and cache misses are shown in 

Table 6-6.
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Matrix SMVM 1 refs 11 misses L2i misses D refs D1 misses L2Drd L2 refs L2 misses

af23560

csr 2170740462 1726 1713 1012177973 3845023 870091 3846749 871804

bcsr 28010482583 1803 1786 5185794505 281969372 990892 281971175 992678

bbcsr 11915749464 1895 1881 3069084495 142836563 835303 142838458 837184

wathen120

csr 1735300057 1728 1715 873946727 4175429 1238335 4177157 1240050
bcsr 88096133251 1811 1794 15495854531 669090537 1416946 669092348 1418740

bbcsr 30331932249 1895 1880 6864102720 336580354 1230888 336582249 1232768

gridgena
csr 1665176525 1977 1730 818346838 3639304 935614 3641281 937344
bcsr 113171441970 2055 1804 18809915076 1203244465 1093032 1203246520 1094836
bbcsr 35392121249 1723 1475 7982189185 465581822 766145 465583545 767620

fidap019
csr 1154944991 1737 1711 524598402 1781335 335706 1783072 337417
bcsr 7874150652 1806 1775 1611679623 74188753 414556 74190559 416331
bbcsr 3704258484 1888 1865 1064017197 37968266 345980 37970154 347845

wathenlOO
csr 1441603423 1732 1719 725251385 3442421 842790 3444153 844509
bcsr 61552896232 1809 1792 10903764948 466297433 991428 466299242 993220
bbcsr 19658944340 1899 1884 4588618374 234919937 835799 234921836 837683

gyro_m
csr 1118556980 1752 1738 557112078 3085171 719589 3086923 721327
bcsr 20743208258 1817 1800 3882885493 154547239 885846 154549056 887646
bbcsr 7647972089 1893 1878 1927632363 78774189 744370 78776082 746248

vibrobox
csr 1062760100 2061 1735 556448212 3393039 1021139 3395100 1022874
bcsr 10969571775 2125 1795 2237223890 79902247 1165486 79904372 1167281
bbcsr 5808930629 2200 1873 1555102732 41669687 1054027 41671887 1055900

Table 6-5 BBCSR fastest subset Cachegrind Simulation results
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Matrix SMVM D1 misses rank L2 misses AL2 % rank tSMVM Asmvm % rank

af23560

csr 3845023 1 871804 4.14% 2 4894344 21.24% 3

bcsr 281969372 3 992678 18.57% 3 4648653 15.15% 2

bbcsr 142836563 2 837184 0.00% 1 4036905 0.00% 1

wathen120

csr 4175429 1 1240050 0.59% 2 6493068 7.12% 3

bcsr 669090537 3 1418740 15.09% 3 6186879 2.06% 2

bbcsr 336580354 2 1232768 0.00% 1 6061752 0.00% 1

gridgena

csr 3639304 1 937344 22.11% 2 6144336 3.28% 3

bcsr 1203244465 3 1094836 42.63% 3 6121368 2.89% 2

bbcsr 465581822 2 767620 0.00% 1 5949387 0.00% 1

fidap019

csr 1781335 1 337417 0.00% 1 2566593 9.28% 3

bcsr 74188753 3 416331 23.39% 3 2514564 7.07% 2

bbcsr 37968266 2 347845 3.09% 2 2348604 0.00% 1

wathenlOO

csr 3442421 1 844509 0.81% 2 5446944 4.76% 3

bcsr 466297433 3 993220 18.57% 3 5407488 4.00% 2

bbcsr 234919937 2 837683 0.00% 1 5199462 0.00% 1

gyro_m

csr 3085171 1 721327 0.00% 1 2820854 7.57% 2

bcsr 154547239 3 887646 23.06% 3 4013139 53.03% 3

bbcsr 78774189 2 746248 3.45% 2 2622463 0.00% 1

vibrobox

csr 3393039 1 1022874 0.00% 2 2764686 1.77% 2

bcsr 79902247 3 1167281 14.12% 3 3077805 13.29% 3

bbcsr 41669687 2 1055900 3.23% 1 2716727 0.00% 1

Matrix SMVM D1 misses rank L2 misses AL2 % rank tSMVM Asmvm % rank

Average

csr 3.95% 7.86%

bcsr 22.20% 13.93%

bbcsr 1.40% 0.00%

Table 6-6 tS M V M  vs. Cache Misses

As can be seen from Table 6-6 CSR always generates the lowest number o f L I data- 

cache misses, followed by BBCSR and then BCSR. Typically BBCSR SM VM  

generates 50% or less D1 misses than BCSR for the 7 matrices in the table. The 

reason for this is most likely to be that BBCSR skips actual calculations based on 

some values based in bitwise comparisons as it was designed to do.

Looking at the number o f L2 data-misses in the case o f the af23580, wathenl20, 

gridgena, wathenlOO and vibrobox matrices BBCSR generates the fewest misses, 

followed by CSR and then BBCSR. In the case o f the remaining fidap019 and 

gyro_m matrices CSR generates the fewest misses, followed by BBCSR and then 

BCSR. In all cases BCSR generates the highest number o f L2 data-misses.

In terms of correlation between SM VM  execution time and L2 cache the correlation is 

strong with the lowest number o f L2 cache misses corresponding to the fastest tsMVM 

for all matrices w ith the exception o f fidap019 and gyro_m. In these two cases CSR
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actually has the lowest number of L2 cache misses but this does not correspond to the 

minimum SM VM  execution time. This being said the L2 cache miss rate is strongly 

correlated to the SM VM  execution time, with BBCSR minimising both in 5/7 cases.

In summary for the 7 cases where BBCSR minimises SM VM  execution time it does 

so by an average of 7.85% compared with CSR, and 13.93% compared with BCSR. 

For the same 7 matrices the deviation of the L2 cache miss rate for BBCSR deviates 

by 1.4% from the minimum, CSR by 3.95% and BCSR by 22.2% from the minimum 

L2 miss rate for a particular matrix from the 7 matrix subset.

Some additional light is shed on the reason for poor BCSR performance by the data 

shown in Table 6-7. The table shows the minimum zero fill for BCSR tiled matrices 

across the range 1x2 to 4x4. It can be seen that for the relevant examples the fill rate 

is 50% on average meaning that large numbers of trivial data are being fetched 

needlessly, leading to lower than expected SM VM  execution times. The 

corresponding BBCSR fill rates are very low as a single bit in a 32-bit integer is 

effectively used to code for a 64-bit, double-precision zero fill data-value.

It is probable that a method of determining if BBCSR storage will be advantageous 

during the sampling o f  matrix data in the tiling process used in packages such as 

OSKI [111] The performance overhead of such a modification would be negligible as 

the same arithmetic operations have to be performed for both tiling methods and only 

the final decision making to model the expected performance of each method and 

choose the best performer need be modified.
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filename # tilings min%

af_shell8 1 1x2 9%

cage13 2 1x2,2x1 90%

nd12k 2 1x3,3x1 12%

crankseg_2 2 1x2,2x1 13%

pwtk 1 1x3 12%

hood 2 1x2,2x1 13%

bmwcra_1 3 1x3,3x1,3x3 0%

crankseg_1 2 1x2,2x1 13%

SHIPSEC5 2 1x2,2x1 53%

M_T1 2 1x3 0%

SHIP_003 2 1x2,2x1 58%

SHIPSEC1 2 1x2,2x1 51%

bmw7st_1 1 1x2 11%

nd6k 2 1x2,2x1 12%

SHIPSEC8 2 1x2,2x1 46%

s3dkq4m2 1 1x2 13%

THREAD 2 1x3 1%

t3dh ,e 1 1x2 48%

IS Jbd linux 1 1x2 74%

gupta2 2 1x2,2x1 55%

cage12 2 1x2,2x1 88%

s3dkt3m2 1 1x2 9%

smt 2 1x2,2x1 16%

oilpan 2 1x2,2x1 32%

nd3k 2 1x2,2x1 11%

3dtube 2 1x3 1%

ct20stif 1 1x2 11%

raefsky4 2 1x2,2x1 13%

vanbody 2 1x2,2x1 12%

guptal 2 1x2,2x1 56%

fidapOl 1 2 1x2,2x1 15%

bcsstk32 1 1x2 14%

turon_m 2 1x2,2x1 67%

qa8fk 1 1x2 34%

bcsstk35 1 1x2 3%

fidapm11 2 1x2,2x1 78%

msc 10848 3 1x3 0%

msc23052 2 1x2,2x1 13%

bcsstk37 1 1x2 11%

bcsstk36 2 1x2,2x1 8%

c a g e l1 2 1x2,2x1 78%

e40r0100 2 1x2,2x1 20%

crystk02 3 1x3 0%

af23560 1 1x2,2x1 30%

wathen120 1 1x2 28%

gridgena 3 1x2,2x1 33%

fidap019 2 1x2,2x1 36%

wathenlOO 1 1x2 28%

gyro_m 1 1x2 100%

vibrobox 2 1x2,2x1 89%

Table 6-7 Minimum BCSR M inim um  Fill%  vs. Tiling
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6.3 BBCSR Optimisation
A n o th er  factor in fluenc ing  the execu tion -t im e o f  B B C S R  S M V M  codes is the 

d istr ibu tion  o f  non-zeroes  in a tile. Specifically , on exam ina tion  o f  lines L I 7-32  of 

L isting 6-5 it can be seen that each line o f  the S M V M  product will execute subject to 

the b itm ap  be ing  tested re turn ing  a one, i.e. the b i tm ap  bit w as set to one deno ting  a 

non-zero  entry is present at that point in the bitmap. A s can be seen all b i tm ap  bits 

are tested regard less  o f  the num ber o f  zeroes  m ean in g  that there is a fixed overhead. 

T h e  p erfo rm ance  o f  the S M V M  code could be im proved  by testing the num ber o f  

non-zeroes  tested (_nz) against the k now n  nu m b er  o f  non-zero  bit in the b itm ap  

lead ing  to an early  exit from  the S M V M  product code. T he  disadvantage o f  this 

techn ique  how ever  is that it m ay  not produce a speed-up  as it adds additional 

com parisons  to the code and in any case the tile m ight contain  a non-zero  in the lower 

righ t-hand  side o f  the tile, m ean in g  that all o f  the tests for b itm ap  bits and non-zero  

coun t are incurred  for all 16 e lem ents  o f  the 4 x4  tile.

A no ther  possib le  optim isation  w ould  be to reorder the sequence  o f  code for the 

b i tm ap  com parisons  so that the test for non-zero  count exits  as early as possible. 

Indeed g iven that the b itm ap  itself holds the key to w hich  com par isons  are required  it 

is possib le  to e lim inate  the com parisons  a ltogether by gene ra t ing  a tile S M V M  code 

tailored to each individual b itm ap. T he  d isadvan tage  o f  this approach  is how ever  that 

a function-call  (the b itm ap itself  w ould  be used to look-up  a pointer to a specialised 

S M V M  function from a table) is required  for each  tile S M V M  w hich  adds overhead  

and second ly  in the case o f  a 4 x4  tile size there are 2*^ possib le  b itm ap values, and 

hence up to 6 5k  S M V M  codes w hich  w ould  have to be written or generated  

au tom atica lly  and then verified for correctness.

T h is  approach  w as  felt to be possib le  but im practical and unlikely  to lead to a 

sys tem atic  advan tage  in term s o f  B B C S R  so a new  approach  w as adopted w hich  

e lim ina ted  com parisons  and term inated  early  but w ithout the need for per-b itm ap  

S M V M  codes and function-call tables.

6.4 Scheduled Bitmap SMVM
T h e  d isadvan tage  with  the B B C S R  code is that d epend ing  on the pattern o f  non- 

zeroes  in the r*c sized tile the execution  time can vary  w idely . If all o f  the non-zeros  

could  be g rouped  together by sorting  the execution  time w ould  be m inim ised but this
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w ould  require  the w rit ing  o f  2 ’ ’̂ different o rderings  o f  the S M V M  code for the 4 x4  

tile-size alone leading to an exp losion  in the am o u n t  o f  code  to be w ritten  or 

gene ra ted  and subsequen tly  verified for correc tness .  On top o f  this the con ten ts  o f  

each tile w ou ld  have to be sorted lead ing  to a s ign ifican t overhead  in se tt ing  up the 

sparse  data-s tructures .  Furtherm ore an additional o verhead  w ou ld  be incurred  in that 

the b i tm ap  w ould  have to be used as a po in ter  to a table o f  functions con ta in ing  the 

correc t vers ion  o f  the 4x4  S M V M  to be run for a par ticu lar non-zero  reordering. T h is  

lack o f  locality  w ould  lead to reduced  instruction-cache p erfo rm ance  w h ich  w ould  

m ost likely ou tw eigh  the benefits  o f  any increase  in S M V M  speed.

A better a lternative w ould  be to vary the schedu le  th rough  the 16 lines o f  the m atrix- 

vec to r produc t depend ing  on the b itm ap. T h is  w ou ld  involve first gene ra t ing  a 

schedu le  from  the b itm ap  and then ex ecu tin g  that schedule .  N orm ally  this w ould  

require a ssem bly  language cod ing  o f  the entire S M V M  code as A N S I C /C + +  does  not 

support ju m p s  (goto) to labels. H ow ever  such a feature w as  recently  in troduced  in 

gcc [145] enab ling  a ju m p -tab le  with variable  schedu le  o rder  to be im p lem en ted  in C- 

code. T h is  approach  is applied  to efficient interpreters  by Ertl and G reg g  in [146].

6.4.1 Scheduled Block Compressed Sparse Row Format (SBCSR)
T he  S B C S R  data-structure consists  o f  4 arrays as show n  in F igure 6-2. T he  S B C S R  

structure au g m en ts  the 3 B C SR  arrays (row _start ,  c o M d x  and value) w ith  schedu le  

array con ta in ing  the schedu le  o f  non-zero  opera tions  to be perfo rm ed . A s  in the 

B B C S R  case the value array con tains  only  non-zero  entries w ithou t  any zero-fill.  

S chedu les  for m atrices are construc ted  as follows:

• T he  m atrix  is tiled into four 2x3 sub-m atrices

• T h e  sub-m atrices  are p rocessed  left to right across  the row s in successive  rows

• For each  row the data-s tructure  row _sta rt  array  is popu la ted  with  a row  entry

if the row  conta ins  at least one sub-m atrix  w ith  non-zero  entries

For each  2x3 sub-m atrix

• T he  c o M d x  array is popu la ted  w ith  the co lum n  coord ina te  o f  the upper left- 

hand side o f  the sub-m atrix

• T he  value  array is filled w ith  the non-zero  values, s can n in g  the sub-m atr ix  row  

by row  and each co lum n  w ith in  a row from  left to right

• For each  non-zero  in the value array the e lem ent n u m b er  o f  the non-zero  is

inserted into the schedule , a l low ing  non-zeroes  to be sk ipped  by the schedu le r
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row_start 

col idx

value

schedule

In the specific example shown in Figure 6-6 (a) the row_start array contains both row 

indices 0 and 2 as both rows contain non-zero sub-matrices. The coM dx  array 

contains the four starting column references [0,3,0,3] for each of the 4 sub-matrices. 

The value array contains the aoo, ao i.am and  an  non-zero entries from the first 2x3 

matrix;, ao4 and ais from the second; a2 2  and a3 2  from the third; and finally a2 5 , a^3 , a .34 

and a .35 from the fourth sub-matrix. Correspondingly the schedule array contains 0 ' \  

1 ®', 3'̂ ‘* and 4"' references corresponding to the non-zero positions in the first sub

matrix and so on as shown in Figure 6-6 (b).

The code in Listing 6-7 shows the SBCSR SM VM  for a 4x4 tile size. In order to 

implement the desired functionality in the SBCSR format each line of the SM VM  

product is labelled (as shown in L21), each preceded by a jum p (goto) a label (as 

shown in L20). As the schedules are relatively short 8 -bit chars can be used for the 

schedule array, thus improving storage efficiency. A final label to terminate the jum p 

sequence is included on L52 and a complete jump-table containing the addresses of 

all 17 labels is constructed by the compiler as shown in L4 of Listing 6-7.

Ll. void sbcsr_smvm4x4 (int bm, int r, int c,
unsigned char ^schedule, int *row_start, int 
*col_idx, int *bitmap_idx, Type *value, Type *src, 
Type *dest) {

L 2 . int i, j, _nz, bitmap, nz;
L 3 . Type yO, yl, y 2 , y3, xO, xl, x 2 , x3;

^00 801 0 0 304 0

810 a n 0 0 0 a i 5

0 0 822 0 0 825

0 0 832 833 834 835

(a)

2x3 sub-matrix 
schedule
o '  i 2 ]

3 4 5 I

 (b)........

0  2 4/-►

0 3 0 3

r

0CO00CO

a i o 3 l 1 0̂4 315:322 3 3 2 : 8 2 5  8 3 3  8 3 4  8 3 5

J3_ _ 4 _ 5_J

Figure 6-6 2x3 SBCSR Sparse Matrix Storage Format
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L4 . static void *jt[] = {&&j0,&&j1,&&j2,&&j3,&&j4 ,

&&jl4,&&jl5,&&terminate};

L5
L6
L7
L8
L9

for (i ==0; i<bm
yO = dest [0]
yl = dest [;i]
y2 = dest [2]
y3 = dest [3]

i++, dest+=r)

LIO . for (j==row start[i]; j<row St
bitmap idx++, col idx++, value+=nz) "{

Lll . bitmap = *bitmap idx &
L12 , nz = *bitmap_idx>>16 &
L13 . nz = 0;
L14 . xO = src[(*col_idx) ]
L15 . xl = src[(*col idx) + 1]
L16 . x2 = src[(*col idx) + 2]
L17 . x3 = src[(*col_idx) + 3]
L18 . goto *jt[*schedule++];
L19 . jO : yO+= value[ nz++] xO
L20 . goto *jt[*schedule++];
L21 . jl : yO+= value[ nz++] ★ xl
L22 . goto * jt[*schedule++];
L23 . j2: yO+= value[ nz++] * x2
L24 . goto *jt[*schedule++];
L25 . j3 : yO+= value[ nz++] ★ x3
L26 . goto * j t [*schedule++];
L27 . j4: yl+= value[ nz++] ★ xO
L28 . goto * jt[*schedule++];
L29 . j5 : yl+= value[_nz++] ★ xl
L30 . goto *jt[*schedule++];
L31 . j6 : yl+= value[ nz++] x2
L32 . goto * jt[*schedule++];
L33 . jV: yl+= value[ nz++] ■k x3
L34 . goto * jt[*schedule++];
L35 . j8: y2+= value[ nz++] •k xO
L36. goto *jt[*schedule++];
L37 . j9 : y2+= value[ nz++] ★ xl
L38 . goto *jt[*schedule++];
L39. jlO: y2+= value[ nz++] ★ x2
L40 . goto *jt[*schedule++];
L41 . jll; y2+= value[ nz++] x3
L42 . goto *jt[*schedule++];
L43 . jl2: y3+= value[ nz++] * xO
L44 . goto *jt[*schedule++];
L45 . j 13 : y3+= value[_nz++] •k xl
L46 . goto * jt [*schedule++];
L47 . jl4 : y3+= value[ nz++] * x2
L48. goto * jt [*schedule++];
L49 . j 15 : y3+= value[ nz++] * x3
L50 . terminate:;

j++/

OxOOOOFFFF;
OxOOOOFFFF
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L51 . }
L52 . dest[0] = yO;
L53 . dest[1] = yi;
L54 . dest[2 ] = y2;
L55 . dest[3] = y3;
L56 . }
L57 . } // sbcsr_ smvm4x4()

Listing 6-7 SBCSR 4x4 SMVM C-Code

The x86 assembler corresponding to two lines o f  C-code from the SBCSR SM VM  for 
a 4x4 tile size:

goto * jt [ *schedule-i-+] ;
jO: yO += value[_nz++] * xO;

is shown in Listing 6-8:

17 6 : test_j tsmvm. cpp **** goto * jt [ *schedule4-+] ; jO:
yO += value [_nz-i--t-] * xO; // row 0
1462 .stabn 68, 0, 176,LM114-

Z16bbcsr smvm4x4 jtiiiPhPiSO_SO_PdSl_Sl_
1463 LM114:
1464 09b0 8B4514 movl 2 0(%ebp), %eax
1465 09b3 0FB610 movzbl (%eax), %edx
1466 09b6 8D4514 leal 2 0(%ebp), %eax
1467 09b9 FFOO incl (%eax)
1468 09bb 8B149500 movl

_ZZl6bbcsr_smvm4x4 _jtiiiPhPiSO_SO_PdSl_Sl_
,4), %edx
1468 000000
1469 09c2 8955A4 movl %edx, -92(%ebp)
1470 L76 :
1471 09c5 FF65A4 jmp *-92(%ebp)
1472 L53 ;
1473 09c8 8B45F4 movl -12(%ebp), %eax
1474 09cb 8D14C500 leal 0(,%eax,8), %edx
1474 000000
1475 09d2 8B4524 movl 36(%ebp), %eax
1476 09d5 DD0402 f Idl (%edx,%eax)
1477 09d8 DC4DC0 fmull -64(%ebp)
1478 09db DD45E0 f Idl -32(%ebp)
1479 09de DECl f addp %st, %st{1)
1480 09e0 8D45F4 leal -12(%ebp), %eax
1481 09e3 FFOO incl (%eax)
1482 09e5 DD5DE0 f stpl -32(%ebp)

Listing 6-8 x86 Assembler for SBCSR SMVM 4x4
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6.4.2 SBCSR Schedule Generation
A s can be seen from the prev ious section L 1 8-L 50  will be executed  diffe ren tly  on  a 

tile-by-tile  basis, depend ing  on how the schedu le  for the tile has been generated . 

G en era t in g  a schedule  for a tile consists  o f  2 steps:

• schedu le  pruning

• schedu le  op tim isation  (optional)

In the schedu le  prun ing  phase non-zeros  lead ing  to trivial operations are p runed  from  

a full tile schedule  in order to create  a pruned  schedu le  which  co m p u tes  on ly  those 

p roduc ts  co r respond ing  to tile non-zeroes.  In the op tional schedu le  op tim isa t ion  

phase  p runed  schedule  is reordered to deal w ith da ta-dependenc ies  such  as R A W  and 

m ax im ise  perform ance. It should  be noted that w hereas  schedu le  p run ing  has no 

collateral effects, schedule  op tim isa tion  leads to additional overhead  in term s o f  

reo rdering  the tile non-zero  values to reflect the op tim ised  schedule.

A schedule  can be generated  d irectly  by ex am in in g  the tile non-zero  d is tribution or 

alternately  the b itm ap  as show n in Listing 6-9.

LI. void sbcsr_smvm4x4 (int bm, int r, int c,
unsigned char *schedule, int *row_start, int 
*col_idx, int *bitmap_idx, Type *value, Type *src, 
Type *dest) {

L2 . void bm2sch(uns igned int bitmap / unsigned int
*sc, int r, int c) {

L3 . unsigned nz = 0 » *P/ mask;
L4 . if (bitmap & 32768 sc [nz++] = 15 // row 0
L5 . if (bitmap & 16384 sc [nz++] = 14
L6 . if (bitmap & 8192 sc [nz++] = 13
L7 . if (bitmap & 4096 sc [nz++] = 12
L8 . if (bitmap & 2048 sc [nz++] = 11 // row 1
L9 . if (bitmap & 1024 sc [nz++] = 10
LIO . if (bitmap & 512 sc [nz++] = 9
Lll . if (bitmap & 256 sc [nz++] = 8
L12 . if (bitmap & 128 sc [nz++] = 7 // row 2
L13 . if (bitmap & 64 sc [nz++] = 6
L14 . if (bitmap & 32 sc [nz++] = 5
L15 . if (bitmap & 16 sc [nz++] = 4
L16 . if (bitmap & 8 sc [nz++] = 3 // row 3
L17 . if (bitmap & 4 sc [ nz-l-+ ] = 2
L18 . if (bitmap & 2 sc [nz++] = 1
L19 . if (bitmap & 1 sc [ nz+-l- ] = 0
L20 . sc[nz++] = r *c ; // terminate
L21 . }// bm2sch()
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Listing 6-9 x86 Bitmap Schedule Generator

The code shown in the scheduler only implements the first phase o f the 2 phases 

outlined earlier and the correspondence between the schedule and the non-zero 

distribution for a sample 4x4 tile is shown in Figure 6-7.

rO 
r1 
r2 
r3

schedule 
executed

skipped 27 35 43
37 45

47

Figure 6-7 Bitmap Schedule Generation Example

As can be seen the generated schedule simply skips the non-zero elements o f the 

product and thus would skip L27, L35, L37, L43, L45 and L47 o f the SBCSR SM VM  

code in Listing 6-7.

6.4.3 SBCSR Schedule Optimisation
The optimisation o f the SBCSR schedule depends heavily on the underlying processor 

data-path. As was pointed out in chapter 4 a key property o f a typical processor 

datapath which leads to performance degradation for the execution o f SM VM  codes is 

the RAW  hazard associated with the floating-point adder which sums partial-products 

from a matrix-row.

The standard method for implementing Out-Of-Order ( 0 0 0 )  processing is 

Tomasulo’s algorithm [147], Examples o f more modern implementations o f 

Tomasulo-like algorithms for hardware implementation in microprocessors are those 

by Sassone [148] and Farrell [149], In an 0 0 0  processor hardware w ill eliminate, or 

at least mitigate these hazards by interleaving calculations from multiple rows in order 

to ensure the floating-point adder does not stall as processing continues along multiple 

rows in parallel. The lim itation o f course is the length o f the reorder buffer that the 

processor can examine w ith a view to reordering dependencies. As mentioned 

previously 0 0 0  processors have fallen out o f favour due to the complexity o f the
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resulting hardware and diminishing returns in terms of speedup using the 0 0 0  

hardware, especially given the move to multicore processors has led to a drive for 

more, simpler processor cores to hit performance requirements for new products.

xO X1 x2 x3
★ ★ * *

cO c1 C2 c3

rO ^00 ^02 ^03 yO = XO*3go + X l*3 g i + X 2*3 q2 + x 3 *3

r1 ^11 y1 = xO*9-io + x1*3 ii + x2*3-|2 x3 *3

r2 322 y2 = xO*32o t  X 1*321 x2*322 x 3 *3

r3 933 y3 = xO*33o + X 1*331 ^2*332 + x3 *3

origin3l 1 2 3 4 6 11 16

reordered 1 5 2 11 3 16 4

Figure 6-8 SBCSR Column Reordering

As the scheduling for the SBCSR method can be performed statically as part of the 

matrix format conversion process there is no dependency on the underlying hardware 

and hence any scheduling algorithm can be used. The simplest approach to 

minimising RAW hazards is to reorder the SBCSR tiles into column order in a 

manner similar to that used in SPAR [23]. An example of an SBCSR tile, original 

and reordered schedule are shown in Figure 6-8. As can be seen the column 

reordering inserts products from other columns to minimise the effects o f RAW 

hazards by removing dependencies linked to the calculation of yO.

In practice the precise scheduling algorithm to be used w ill depend on the latencies of 

the floating-point adder as well as how many parallel adders the processor contains. 

The code to perform column-oriented reordering and non-zero pruning is shown in 

Listing 6-10, this reordering is preceded by reading-out the tile non-zeroes column

wise into the value array. Note: re-orderings o f arbitrary sophistication are possible.

LI. void bm2sch_c(unsigned int bitmap, unsigned int
*sc, int r, int c) {

L 2 . unsigned nz = 0, unsigned int *p, mask;
L 3 . if (bitmap & 32768 ) sc[nz++] = 15; // row 0
L 4 . if (bitmap & 2048 ) sc[nz++] = 11; // row 1
L 5 . if (bitmap & 128) s c [ n z + + ]  = 7; // row 2
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L6 . if (bitmap & 8) sc nz++ ] = 3 // row 3
L7 . if (bitmap & 16384) sc nz++ ] = 14 // row 0

00 if (bitmap & 1024 ) sc nz++ ] = 10 // row 1
L9 . if (bitmap & 64 ) sc n z + + ] = 6 // row 2
LIO . if (bitmap & 4 ) sc nz++ ] = 2 // row 3
Lll . if (bitmap & 8192 ) sc nz++ ] = 13 // row 0
L12 . if (bitmap & 512 ) sc nz++ ] = 9 // row 1
L13 . if (bitmap & 32 ) sc nz++ ] = 5 // row 2
L14 . if (bitmap & 2 ) sc nz++ ] = 1 // row 3
L15 . if (bitmap & 4096 ) sc nz+-i- ] 12 // row 0
L16 . if (bitmap & 256 ) sc nz++ ] = 8 // row 1
L17 . if (bitmap & 16) sc nz++ ] = 4 // row 2
L18 . if (bitmap & 1) sc nz++ ] = 0 // row 3
L19 . sc nz++ ] =r *c // end
L20. } // bm2sch_c()

Listing 6-10 Column Oriented Pruner & Scheduler 

6.4.4 SBCSR SMVM Performance
T he  perfo rm ance  o f  S B C S R  relative to the o ther techniques is show n in Table  6-9. 

A s can be seen from  the table S B C S R  only  offers an advan tage in the case o f  2 o f  the 

m atrices  out o f  the 50  m atrix  set. Specifically  in the case o f  the v ibrobox and gyro_m  

m atrices S B C S R  is 5 7 .5%  and 60 .6%  faster than its nearest rival BBCSR.

T h is  is m ost likely due to the nature o f  the sparsity  pattern in the non-zero  b locks 

w h ich  in the case o f  B B C S R  co n su m es  m any cyc les  scann ing  the b itm ap bit-by-bit,  

w hereas  the schedu le  in S B C S R  allow s the m ultip lication to exit early by ju m p in g  to 

the term inate: label on L 50  o f  the listing, once all o f  the essential m ultip lications 

(non-zeroes) have been com pleted . In the o ther  48 cases S B C S R  is significantly  

w orse  than all o f  the o ther m ethods  o w in g  to the large overhead  in term s o f  

instructions o f  im p lem en ting  the proposed  schem e.

A s can be seen  the co lu m n  oriented  tile reordering  m akes  for a s ignificant 

im p rovem en t in the case o f  the m atrix  set selected  add ing  6 additional m atrices to the 

v ib robox  and gyro_m  m atrices  for w h ich  the S B C S R  form at w as  fastest o f  all the 

S M V M  m eth o d s  evaluated . T he  gains in perfo rm ance  are m odest ranging  from  3.84 

to 16.23% , but are nevertheless  s ignificant. It is possible  to order the S B C S R  code 

first by row s and then by co lu m n s  or the converse . This  m ay im prove the schedu le  

execu tion  in som e cases by  rem o v in g  or m in im is ing  data-dependencies .  T he 

S B C S R _ C  variant o f  the form at orders  by co lu m n s  first fo llow ed by rows, d ep en d in g  

on the b i tm ap  non-zero  entries. T he  execu tion  tim es for the S B C S R _ C  variant are 

show n  in T ab le  6-8. A s can be seen the co lum n oriented  tile reordering  m akes fo r a
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significant improvement in the case o f the matrix set selected adding 6 additional 

matrices to the vibrobox and gyro_m matrices for which the SBCSR format was 

fastest o f all the SM VM  methods evaluated. The gains in performance are modest 

ranging from 3.84 to 16.23%, but are nevertheless significant.

matrix SBCSRC % min tSBCSRC tBBCSR tBCSR tCSR

vibrobox -56.93% 1169991 2716727 3077805 2764686
gyro_m -60.63% 1032544 2622463 4013139 2820854
wathenWO -16.23% 4355811 5199462 5407488 5446944
ca g e 1 1 -11.69% 5411304 7992450 8403597 6127776
turon_m -6.55% 20510775 25533711 26630127 21948984
3dtube -3.84% 18144360 20071683 18869562 36070227
bcsstk32 -4.15% 15465231 18762489 16134930 17797104
vanbody -16.03% 15380298 21025314 18316431 21004245

Table 6-8 SBCSR_C SMVM Execution Times

As can be seen the column oriented tile reordering makes for a significant 

improvement in the case o f the matrix set selected adding 6 additional matrices to the 

vibrobox and gyro_m matrices for which the SBCSR format was fastest o f all the 

SM VM  methods evaluated. The gains in performance are modest ranging from 3.84 

to 16.23%, but are nevertheless significant.
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name #1
SBCSR %min

tSMVIVI (us)

tSBCSR tBBCSR tBCSR ICSR
v ib ro b o x S B C S R ■57.54% 1153521 271 6 7 2 7 3077805 2 7 6 4 6 8 6
g y ro _ m S B C S R -60.57% 1033983 2622 4 6 3 4 0 1 3 1 3 9 2 8 2 0 8 5 4
w a th e n i 00 B B C SR 58.72% 8252451 5199 4 6 2 5407488 5446 9 4 4

fidapOIQ B B C SR 88.72% 4432311 2348604 2514564 2566 5 9 3
gridgena B B C SR 70.37% 10135782 5949 3 8 7 6121368 6 1 4 4 3 3 6
w a th e n i 20 B B C SR 60.44% 9725445 6061752 6186879 6493 0 6 8
a/23560 B B C SR 33.38% 5384610 4036 9 0 5 4648653 4894 3 4 4
crystk02 B C S R 72.31% 10155969 6530301 5893974 8567973

e40r0100 B C S R 75.95% 9485541 5478273 5390892 5694435
cage11 C SR 259 .74% 2 20 4 3 8 1 7 7992450 8403597 6127776
bcsstk36 B C S R 55.90% 14190093 9950949 9102132 10595205
bcsstk37 B C S R 71.08% 15302556 9894474 8944515 10191267

msc23052 B C S R 94.43% 17177535 10120770 8834742 10298376

msc10848 B C S R 84.75% 13131270 7906545 7107579 10608309
fidapm11 C SR 223.09% 2 0 623824 7831233 8421228 6383268

bcsstk35 B C S R 61.88% 15500259 10377585 9574920 12571740
qaSfk C SR 125.20% 3 6 524232 17419968 17133606 16218360
turon_m C SR 220.80% 70412022 25533711 26630127 21948984

bcsstk32 B C S R 80.35% 2 9 099016 18762489 16134930 17797104

fidapOII B C S R 71.88% 15691698 10481778 9129447 10446453
guptal C SR 329 .72% 79598124 21733227 21227724 18523107

vanbody B C S R 86.53% 3 4 164918 21025314 18316431 21004245
raefsky4 B C S R 74.20% 18444420 11086551 10587942 12087468

ct20stif B C S R 94.69% 3 9 089808 24283386 20078325 24369651

3dtube B C S R 86.78% 35 2 4 4 6 3 0 20071683 18869562 36070227

nd3k B C S R 86.50% 3 7 123848 25648092 19905615 26500023
oilpan B C S R 78.50% 3 6 806445 20718324 20619486 31272381

smt B C S R 115.53% 6 2 678610 34052247 29081187 32514264

s3dkt3m2 B C S R 71.89% 48 9 0 2 1 5 7 28907757 28448892 33137343
c ag e12 C SR 238.84% 79789050 26838306 29675160 23548014

gupta2 C SR 302 .43% 151680645 44443008 43083603 37690929
18_tbdlinux C SR 556.21% 155477232 27062721 28142433 23693229

t3dh_e C SR 280 .86% 151635015 48766536 44502642 39813813
THREAD B C S R 80.87% 3 5 133183 21132468 19424835 52106409
s3dkq4m2 B C S R 6 8 1 5 % 5 7 249162 34648911 34045659 41870007

SHIPSEC8 B C S R 136.98% 6 5 315583 29733813 27561240 79225065
nd6k B C S R 87.23% 79460154 55056816 42440310 57644208

bmw7st_1 B C S R 78.38% 100219338 63143208 56183454 65568159

SHIPSEC1 B C S R 109.18% 6 4 431495 32684904 30802077 93720321

SHIP_003 B C S R 109.36% 67113801 33443694 32056434 96271227

M_T1 B C S R 76.86% 77642190 47295747 43899444 115887132

SHIPSEC5 B C S R 180.34% 138183939 52999650 49291101 85037760

crankseg_1 B C S R 122.70% 159994710 88609779 71844768 86701950

bmwcra_1 B C S R 78.66% 113444352 74747205 63497493 92765313

hood B C S R 79.20% 146667483 92423358 81847575 100973970
pwtk B C S R 68.36% 136682784 82593486 81182988 99184896

crankseg_2 B C S R 116.80% 2 1 1 270122 117895122 97449201 116827506

nd12k B C S R 89.92% 165674853 115644636 87233697 117935532

cage13 C SR 250.33% 318039381 100447812 112801320 90784071

af_shell8 B C S R 70.33% 2 2 4 840646 140009796 132003729 156470292

Table 6-9 SBCSR SMVM Relative Performance
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6.5 Summary
In this section two completely new methods of blocked sparse matrix storage were 

proposed to address the issue o f  zero-fill which occurs frequently when blocking is 

applied to sparse-matrices with underlying structure in application areas such as Finite 

Element Method and Computational Fluid Dynamics comm only used to solve 

mechanical and aeronautical engineering problems.

A representative matrix suite with large matrices which cannot reside entirely in the 

internal caches of the processor was chosen and the performance o f  the methods was 

evaluated on a recent commercial engineering workstation containing an Intel 

CoreDuo processor. All 16 tile sizes from 1x1 to 4x4 were evaluated exhaustively for 

each sparse matrix and the SM VM  execution-time measured using the cycle counter 

from TTFW . No attempt was made to use tuning to speed up the tile selection 

process along the lines proposed by Vuduc and used in OSKI so the results are 

independent of any bias that might have been introduced by the tuning method. 

BBCSR was shown to offer the fastest SM VM  execution time it in 7 out of 50 cases 

when compared against CSR and BCSR and does so by an average of 7.85% 

compared with CSR, and 13.93% compared with BCSR. For the same 7 matrices the 

deviation of the L2 cache miss rate for BBCSR deviates by 1.4% from the minimum, 

CSR by 3.95% and BCSR by 22.2% from the minimum L2 miss rate for a particular 

matrix from the 7 matrix subset. The relationship between the amount of zero fill and 

higher performance by BBCSR was also clearly highlighted, as were the reasons for 

relatively poorer BBCSR performance in the remaining 43 cases.

It was also shown that BBCSR SM V M  code can be specialised on a per-bitmap basis, 

eliminating all bitmap comparison overhead, however this is at the cost o f  a function- 

call per non-zero tile and considerable effort in creating and generating the 65k 

possible SM V M  codes to cover all permutations of a 4x4 tile bitmap.

Based on the shortcomings of the BBCSR method an alternate possibility based on 

bitmap scheduling was identified and the Scheduled Block Compressed Sparse Row 

storage scheme and relative SM VM  was proposed. The code to generate schedules 

for the SBCSR SM VM  was also discussed as was the possibility of combining 

pruning of zero-dependent partial-products and reordering those products so as to 

minimise dependencies and hence increase throughput by eliminating stalls due to
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RAW-hazards. Considerable further work could be done on tuning SBCSR schedules 

for each bitmap pattern for all target processor architectures.

The implementation in the SBCSR SM VM  C code was enabled by the use o f  a non

standard feature of the gcc compiler. Code analysis showed that the generated code 

contained many additional assembly language instructions with respect to BBCSR; 

however despite low expectations the SBCSR method actually outperformed BBCSR, 

BCSR and CSR in the cases of the vibrobox and gyro_m matrices. This was 

counterbalanced by significantly poorer performance for SBCSR for the remainder of 

the matrix suite. An interesting area for further work would be to combine BBCSR 

and SBCSR together with BCSR formats into a single data-structure with a single 

hybrid software SM VM  method. In the proposed method and data-structure 

individual tiles would be stored as BBCSR or SBCSR tiles where BCSR fill is high 

and as native BCSR where the fill is low. The author believes such a hybrid format 

could offer optimal performance for a wide range of matrices and local fill patterns 

could be tuned for on a tile-by-tile basis rather than averaged basis used by Vuduc.

The main reason for the poor performance of SBCSR in all but 2 out of 50 cases is 

that the x86 pipeline and hardware are ill-suited to the kind of code used in SBCSR 

leading to poor performance. It was also shown that reordering tiles in column-order 

as part o f  the scheduling process improves the SBCSR performance significantly 

m aking it the fastest method in 8 of 50 cases, compared with the 2 cases in which the 

row-oriented tile format SBCSR is fastest.

The introduction of bitmap and scheduling hardware would doubtless drastically 

improve performance as all of  the bitmap-testing, address-generation and scheduling 

could be performed in parallel with the floating-point operations making the 

execution-time for a dense tile the same as BCSR. Such a hardware-enhanced 

processor would have all o f  the advantages of SBCSR and BBCSR in terms power, 

storage and bandwidth efficiency and none o f  the disadvantages. A further advantage 

would be a reduction in terms of the number o f  instruction fetches and associated 1- 

cache misses as a single hardware function-call with a bitmap parameter would 

replace a long sequence of instructions. And finally the use o f  accumulators to store y 

values as they are accumulated and x values to hold the input vector while A  matrix 

values are streamed directly to functional units without first being loaded into 

registers and then retrieved would greatly reduce register pressure inside the processor 

as well as latency and power dissipation associated with register file access.
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7
Chapter 7

“Pray be as trivial as you can ”

- Mabel Chiltern: “An ideal husband” (Oscar Wilde)

1 Hardware Support for Bitmap SMVM
As seen prev iously  in C hapter  4 m em o ry  and I/O bandw id th  are fundam enta l  l im ita tions  on 

the design o f  com pu te r  system s as no m atter w ha t  m em ory  techno logy  is used to support  

com putation . Independently  o f  w ha t technology  is used to connect that m em o ry  to the 

processor, a par ticu lar im plem enta tion  o f  a m em ory  subsys tem  using  those techno log ies  has 

an upper limit on how m uch  inform ation  can be transferred  be tw een  p rocesso r  and m em o ry  in 

a g iven time, this is the available m em ory  bandw id th  and the lim itation o f  com pu te  p o w e r  by 

available m e m o ry  bandw id th  is often  referred  to as the “ m em o ry -w a l l” [42],

Instruction
M em ory

D ata
M em ory

Processor

Figure 7-1 Processor-Memory System

Indeed in the case o f  m ulticore p rocessors  or M P S o C s  (M ulti  P rocessor Sys tem  on  C hip) 

conten tion  be tw een  m ultip le  processors  for shared resources  lowers the ach ievab le  lim it in 

term s o f  m em o ry  subsystem  bandw id th . A s can be seen  these m atrices  are quite  sparse , 

con ta in ing  zeroes  w hich  require m em o ry  bandw id th  to load/store w h ile  not con tr ibu ting  to the
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result o f  the ca lcu la t ions  perfo rm ed  using  the w h o le  m atrix , i.e. they are trivial values from  

the point o f  v iew  o f  arithm etic .

7.1 Observations on Software SMVM
S M V M  p erfo rm ance  depends  on the interplay  o f  m any  system  param eters  including:

•  Externa l M em o ry  B andw idth  and fill d em an d s  due to the sparse m atrix  A

•  D ata cache  m isses  due to locality  issues to do with  the x and y vectors

•  P rocessor reg is te r  spillage to the tile size, in term ediate  variables and control code

•  Lx)ad/Store and  R egister file overheads

•  R A W  hazards  due to dependencies  in m atrix  vec tor product from co lum n  to co lum n

•  Branch pena lties  due to control code

•  Instruction  cache  m isses due to the chosen  tile-size for register b locking

All o f  these issues co m b in ed  m ean that there is no single  tile size which is optimal for each 

p rocessor; even  those  sharing  the sam e instruction-set, as d ifferent m odels  o f  processor often 

have d iffe ren t-s ized  caches, d iffe rences  in cache-h ie rarchy  (w hether  an L3 cache is included 

for instance) and the w id th  and clock frequency  o f  the external m em ory  bus.

A s w as seen in ch ap te r  6 one o f  the b ig  issues with  B C SR  is the am ount o f  instruction code 

required  as all loops are fully unrolled  and m any  instructions are required to set up and hold 

variab les  required  in the unro lling  process. T h is  problem  w as  further exaspera ted  by the 

additional b i tm ap  tes ting  and schedu ling  code in B B C S R  and SB C S R  respectively  w hich  

genera tes  further instructions. T he num ber o f  instructions per S M V M  partia l-product for 

each  o f  the 3 m ethods  is show n in Listing 7-1. In the 3 cases the core ar ithm etic  operations 

c o m m o n  to all S M V M  m ethods  are h ighligh ted , w hereas  the overhead  instructions to 

cond itionally  execu te  those core instructions d ep en d in g  either on the b itm ap  or schedu le  are 

not. As can be seen there are 6 core a r ithm etic  instructions co m m o n  to all 3 m ethods, while 

B B C S R  and S B C S R  have  9 and 11 additional overhead  instructions respectively.

It has been  seen that in both B B C S R  and S B C S R  cases m uch o f  the gain in data-path  

p erfo rm ance  o w in g  to trivial operand  (fill) e l im ination  w hich  itself is data-dependen t is offset 

by o ther factors  to do w ith  the increased code size o f  the proposed  m ethods, including:

•  Increased reg is ter  pressure  and spillage due to loop unrolling

•  Increased instruction code bandw id th  requ irem ents

•  Increased Instruc tion-cache  m isses due to the large size o f  unrolled code

•  O v erh ead s  assoc ia ted  with  b itm ap or schedu le  processing

•  B ranch  penalt ies
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C-Code

Assembler

# Instructions

BCSR BBCSR SBCSR

yO += value[0] * xO;
if (bitmap&32768) yO += 
value[_nz++] * xO;

goto *jt[*schedule++]; 
jO: yO += value[_nz++] * xO;
movi 20(%ebp), %eax
movzbl (%eax), %edx
leal 20(%ebp), %eax
incl (%eax)
movi _bbcsr_sm vm 4x4jt(,% edx,4), %edx

movI -16(%ebp), %eax movi %edx, -92(%ebp)
shrl $15, %eax L76:
andl $1, %eax jmp *-92(%ebp)
testb %al, %al L53:
je L36 movi -12(%ebp), %eax
movi -12(%ebp), %eax leal 0(,%eax,8), %edx
leal 0(,%eax,8), %edx 000000

movi 20(%ebp), %eax movi 32(%ebp), %eax movi 36(%ebp), %eax
fidl (%eax) fid! (%edx,%eax) fid! (%edx,%eax)
fmull ■56(%ebp) fmull -64(%ebp) fmull -64(%ebp)
fidl -24f/oebp) fid! ■32(%ebp) fidl ■32(%ebp)
faddp %st, %st{1) faddp %st, %st(1) faddp %st, %st(1)

leal -12(%ebp), %eax leal -12(%ebp), %eax
incl (%eax) incl (%eax)

fstpl -24{%ebp) fstpJ
L36:

^32f/o“ebp) fstpl ~32{%ebp)

6 15 17

Listing 7-1 Register-Blocked SM VM  Relative Code Sizes
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7.2 The Argument for Hardware Acceleration
Given the class o f  applications being considered are based largely on Sparse Matrix Vector 

Multiplication and the software methods outlined in Chapter 6 which allow sparsity to be 

addressed in a platform independent way in software, it makes sense to attempt to extend the 

performance of software by providing hardware support to accelerate data compression and 

decompression as well as computation using compressed sparse data-structures.

Given these requirements the author proposes that in order to maximise the benefits of 

register-blocking a hardware accelerator is necessary rather than relying entirely on software 

for SM V M  performance in future processor architectures.

The introduction o f  bitmap and scheduling hardware would doubtless drastically improve 

performance as all o f  the bitmap-testing, address-generation and scheduling could be 

performed in parallel with the floating-point operations making the execution-time for a dense 

tile the same as BCSR. Such a hardware-enhanced processor would have all o f  the 

advantages o f  both SBCSR and BBCSR in terms power, storage and bandwidth efficiency 

and none of the disadvantages of either method. A further advantage would be a reduction in 

terms of the number of instruction fetches and associated I-cache misses as a single hardware 

function-call with a bitmap parameter would replace a long sequence o f  instructions. And 

finally the use of accumulators to store y values as they are accumulated and x values to hold 

the input vector while A matrix values are streamed directly to functional units without first 

being loaded into registers and then retrieved would greatly reduce register pressure inside the 

processor as well as latency and power dissipation associated with register file access.

The accelerator seeks to increase the effective memory bandwidth for sparse data-structures 

and minimise the limitation o f  the “m em ory-w all” on computation by storing data in a 

compressed format, and providing a means o f  compression and decompression which is 

suitable for block-structured data used in many applications such as computer graphics, rigid- 

body dynamics, finite-element analysis and other scientific and engineering applications, 

which operate on large data sets which must be stored in memory.

In order to mitigate the effect o f  the “m em ory-w all” the processor pipeline is also modified in 

such a way as to take advantage o f  compression, increasing the processing rate beyond what 

can be achieved by operating on compressed data alone. A typical example of the desirability 

o f  compression is the use o f  matrix representations and linear algebra operators to simulate 

reality on a 2-dimensional screen in computer graphics and related applications. In 3D 

graphics for instance, operations on a source data matrix often consist o f rotations and other 

transformations, and often sequences of them, of the type shown in Figure 7-2.
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Figure 7-2 Transformation Matrices used in 3D Graphics

7.3 Prior Art
A review o f  mem ory compression and decompression approaches was provided in section 

4.1.7. A key problem for programmers using compressed mem ory sub-systems is that data 

has to be decompressed before it can be operated upon as shown in Figure 7-3.

This usually involves reading the compressed data from one part o f  memory decompressing it 

and storing the decompressed data in another uncompressed portion of mem ory or to internal 

processor registers, in both cases valuable additional bandwidth and m emory resources are 

consumed and the compression/decompression logic is typically an adjunct to cache mem ory 

in practical implementations. This solution has the disadvantage that additional memory 

bandwidth is required to read compressed data, store it in uncompressed form, and read it 

back into the processor to be operated upon. Additional memory capacity is also required to 

hold the uncompressed data and the decompression process will increase pressure on the 

processors register-files. In such schemes the utility of compression depends entirely on data- 

reuse amortising the costs of compression/decompression, relegating such schemes to 

situations where reuse is high. As has been pointed out previously, reuse in the case of
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S M V M  is neglig ib le  and limited to the x and y vec tors  only , w hile  the A matrix values are 

used only  once, un less  m ultip le  iterations o f  the S M V M  operation  are perform ed.

Register
Files

wmm wmm h h i  ■  ■ ^

Processor

1

Instruction Program
u aia -ra in Decoder Memory

Processor

Compressed 
Data Memory

Uncompressed 
Data Buffer

Figure 7-3 Conventional Compressed Processor-Memory System

C learly  this is a sub-optim al so lu tion  w hich  exp la ins  w hy  such com pressed  m em ory  

subsystem s have rem ained an academ ic  curiosity  ra ther than en ter ing  the industry 

m ainstream . A  further issue with  current com pressed  m em o ry  system s is the inability to 

random ly  access com pressed  or hybrid data-s tructures  w hile  com pressed  in m em ory. 

R andom  access in such system s norm ally  m ean s  uncom press ing  the data to an area o f  

m em ory  or registers  in order to perform  random  access w hich  is obviously  inefficient from a 

m em ory , po w er  and processor th roughpu t po int-of-view .

7.4 Proposed Solution
T he  p roposed  hardw are  accelerator is show n in F igure 7-4 and allows an appropriately  

m odified  p rocessor to operate  directly  on com pressed  data in m em ory  w ithout the 

requ irem ent for decom pression ,  thus e l im ina ting  the requirem ent for an additional 

u ncom pressed  data  buffer and additional p rocessor and m em ory  bandw idth  required to handle 

d ecom press ion  o f  com pressed  data into a buffer  area for further processing.
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Figure 7-4 Proposed Compressed Processor-Meniory System

T he  accelera to r a llow s com pressed  and hybrid  co m p ressed /u n co m p ressed  structures  o f  

arbitrary  size and com plexity ,  consis t ing  o f  arbitrary data, inc lu d in g  the fo llow ing:

• doub le/s ing le /16-b it  p recision floating-point m atrices ,  vec to rs  and scalars

• s igned /uns igned  integer m atrices, vec tors  and scalars

• s igned /uns igned  charac ters  (8-bit num bers) m atrices,  vec tors  and scalars

• address-poin ters

In the preferred em b o d im en t o f  the proposed  invention  the co m p ress io n  and decom press ion  

logic is further h idden w ith in  the processor,  freeing  the so ftw are  p ro g ram m er from the low- 

level m echan ics  o f  reading  or w rit ing  to the com pressed  m em o ry  subsystem . T he  proposed  

m ethod  is not limited as in prev ious cases to a particular level in the m em o ry  hierarchy , ex 

be tw een  L2 and L3 cache, but is fully transparen t to all levels  o f  the h iera rchy  m ax im is in g  

flexibility and applicability  to a w ide  range o f  app lica tions  and da ta-reuse  frequencies.

7.5 Basic Compression Method
As w as  seen in C hapter  6 and described  in [52] R eg is te r-b lock ing  is a useful techn ique  for 

accelera ting  m atrix  algebra (particu larly  F in ite-E lem ent) ,  h o w ev er  it has the d isadvan tage  in 

that for m any m atrices (ex. G oogle) zero  fill has to be added  d ec rea s in g  effec tive  F L O P S , and 

increasing  m em o ry  bandw id th  requ irem ents ,  bo th  o f  w h ich  are  co m m o d itie s  w h ich  are 

limited by current techno logy  in m odern  co m p u tin g  system s.

In fact the g row ing  gap betw een p rocess ing  capab ilit ies  and  m em o ry  ban d w id th  w h ich  are 

increasing  at highly d isparate  rates o f  50 %  and 7%  per an n u m  respectively  is often  referred to 

as the “ M em o ry  W all” . T here  have been m an y  cla im s o f  “ b reak in g ” the m em o ry  w all and 

they usually  consist o f  using a cache to reduce the probabili ty  o f  hav ing  to go off-ch ip , and/or
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using multi-threading so that the latency and penalties associated with going off-chip can be 

mitigated. These approaches merely hide the problem o f limited external memory bandwidth 

rather than solving it and for this reason it is not uncommon to see large engineering 

applications pulling down processor performance to 10% or less o f the manufacturers quoted 

peak performance specification [26],

The proposed solution generally is to use a bitmap to code for zero and non-zero entries in 

dense sub-matrix in the manner shown in Figure 7-5. In the example shown a compression o f 

37.5% is achieved. The proposed solution has the advantage that each zero entry in the 

matrix to be stored is represented by a 1-bit rather than a 32-bit single-precision, 64-bit 

double-precision, etc. number. Overall compression achieved as long as 1 or more entries 

per dense-matrix are zero in a 32-bit memory system storing a sparse matrix with 32-bit 

single-precision entries. A  similar argument holds for a 64-bit or other basic storage unit, 

whether integer or floating-point.

4x4 matrix data 

0 1 2  3
1.0 2.0 3.0 4.0
0.0 6.0 0.0 0.0
0.0 0.0 0.0 12.0
13.0 14.0 0.0 16.0

IEEE
prec.

storage
bits

original data 
with fill

32 128
32 128
32 128
32 128

total 512

1 1 1 1
0 1 0 0
0 0 0 1
1 1 0 1

16 bits stored as 32-b it entry

compressed  
with bitmap

32 128
32 32
32 32
32 96

total 320

compression 37.5%

uncomp.
memory

comp, memory

1.0
2.0
3.0
4.0
0.0
6.0
0.0
0.0
0.0
0.0
0.0
12.0
13.0
14.0 
0.0
16.0

1.0
2.0
3.0
4.0
6.0
12.0
13.0
14.0
16.0

1111010000011101

16x32 10x32

Figure 7-5 Bitmap Compression Principle 

7.6 Conventional Sparse Matrix-Vector Multiplication
One o f the key uses o f sparse data-structures in computer science and engineering 

applications is the storage o f sparse matrices and the key application o f sparse matrices is in 

the solution o f systems o f simultaneous equations by either direct or iterative methods. The 

core operation at the heart o f these direct and iterative methods is the multiplication o f a 

sparse matrix by a dense vector to produce a dense result vector.
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T h e  ca lcu la t ion  is o f  the form  y = A x ,  w here  A  is a sparse  m atrix  and y and x are dense  

vec to rs  as sh o w n  in Equation  7-1.

■()■ ■{)() 01 02 03^ “o

1 10 11 12 13 1
=

2 20 21 22 23 2

3 30 31 32 33 _3

Equation 7-1 Sparse M atrix-Vector Multiplication

T h e  detailed  ca lcu la tions for a 4 x4  sparse m atr ix -vec to r  m ultip lica tion  perfo rm ed  row -w ise  

are show n  in Equation  7-2.

* X, +

y ,  = « , „  + « , ,  + « , 2  * ^ 2  + a , 3  * ^ 3

^ 2  =  +  ‘̂ 2 \ * +  ^ 2 2  * -*̂ 2 +  <^23 * ^ 7,

=  a 3 ||  *  X || - I -  ^31 * X , +  « 3 2  * ^ 2  -I- « 3 3  * X 3

Equation 7-2 4x4 Sparse Matrix Vector Multiplication

In a row -based  form ulation  the e lem ents  in the y result vec tor are co m p u ted  one row at a time 

from a row  o f  the A matrix m ultip lied  by the x vector. In general the form o f  the 

m ultip lication  and sum m ation  is show n  in Equation 7-3.

y[row] = u\row,colO]* x[co/0] + a[row,col\\*  x[cw/l] + a\row,cul7\ *x[c6>/2] + a\row,col3\ * x[col3]

Equation 7-3 Vector Com putation (y)

T he steps involved  in dense  m atrix -vec to r ca lcu la tions  are:
•  p re-load x vec tor into registers  w ith in  the p rocesso r  (reused  for all y entries)

•  initialise y vector

• read A  m atrix  e lem en t-by -e lem en t or ro w -b y -ro w  into registers w ith in  the p rocessor 
d ep en d in g  on the w id th  o f  the data-bus

•  m ultip ly  a[row, col] by x[col] and sum  with  y[row]

• repeat until all row s/co lum ns have been p rocessed

In the case o f  a sparse m atrix  m any o f  the A .x term s in E quation  7-3 will obv iously  be ze ro  as

m any o f  the co lum ns w ithin  a row  o f  the sparse A  m atrix  will be zero. C onven tiona l

im plem en ta t ions  o f  sparse m atrix -vec to r m ultip liers  have no m eans o f  kno w in g  and /o r 

avo id ing  trivial m ultip lica tions w here  an e lem ent o f  the A  m atrix  is sparse, re su lt ing  in 

re latively longer run-tim es and pow er-d iss ipa t ion  for the overall  m atr ix -vec to r  m ultip lica tion .
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7.7 Compressed Sparse Matrix-Vector Multiplication
I f  the Sparse M atrix has been compressed using the bitmap compression method outlined in 

section 7.5 the bitmap designates which matrix elements are zero allowing trivial 

multiplications to be eliminated and summations o f y vector elements from constituent 

partial-products to be simplified. As the bitmap entries are 1-bit, the m ultiplication operation 

reduces to a logical A N D  or an i f  statement in C.

=  few ,),, *  *  jc „ +  *  X , +  fe rn ,12 *  *  X2 +  *  a ,,, *  x ,

y, = + fern,,, * a,, * x, + * <2 , 2  * Xj + * <2 , 3  * X3

y>2 =  bm̂ ^̂  *  f l 2o *  -^o +  *  ^21 *  ^1 +  bm̂ f̂  *  0 ^2  *  X2 +  *  «23 *  ^3

^ 3  =  fe rn ,2 *  f l j , ,  *  x „  +  b m ^ j  *  <23, *  X , +  b m ^ ^  *  <232 *  X2 +  b n i^ ^  *  *  X3

bm„ G {0,1}

Equation 7-4 Compressed Matrix-Vector Multiplication

Based on the bitmap compression the sparse matrix-vector multiplication can be decomposed 

into the fo llow ing steps:

• pre-load x vector into registers w ith in the processor (reused for all y entries)

• initialise y vector and read in bitmap into internal register

•  Expand bitmap into uncompressed schedule for SM VM  and store in register

• Compress schedule to perform only multiplications corresponding bitmap non-zeroes

• M ultip ly a[row, col] by x[col] and sum with y[row] according to compressed schedule

• Repeat until all rows/columns have been processed

The transformation matrices used in 3D graphics and game physics (rigid-body dynamics) 

applications shown in Figure 7-2 are a good example. The 32-bit bitmaps corresponding to 

the 8  matrices are shown in detail in Table 7-1.

matrix upper 16 bits are unused 0x000 nz comp %
scaling 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 4 68.8%
translation 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 7 50.0%
x-ax is  rot. 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 6 56.3%
y-ax is  rot. 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 6 56.3%
z -axis rot. 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 6 56.3%
xy shear 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 6 56.3%
X2 shear 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 6 56.3%
yz shear 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 6 56.3%

Table 7-1 Compression Bitmaps of Graphics Transformation Matrices

As can be seen Table 7-1 3D graphics transformation matrices contain a large percentage o f 

triv ia l (zero values) allow ing over 50% data-compression to be achieved.
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matrix unoptimized schedule unoptimized scheduie (non-zeroes)
optimized schedule (non- 

zeroes)

scaling 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
#nz 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
translation 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1
#nz 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
x-axis rot. 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1
#nz 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
y-axis rot. 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1
#nz 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
z-axis rot. 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1
#nz 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
xy shear 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1
#nz 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
xz shear 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1
#nz 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
yz shear 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1
#nz 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1
row 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
co l 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

2
-

2 2 2
0 1 1 2 2
3 1 3 2 3

0 2
0 0
0 1

2
0
0

2 2
0 0
0 1

T
0
0

2
1 1
0 1

2
1 1
0 1

2
1 1
1 2

2 2
2 2
1 2

2
2
2

1
2
2

~ T
2
2

2 2
2 2
1 2

2 2 2 2 1 1
0 0 1 1 2 3
0 2 1 2 2 3

0 2 2 2 2 2 1
0 0 1 1 2 2 3
0 3 1 3 2 3 3

1 2 2 2 2 1
0 1 1 2 2 3
0 0 1 0 2 3

2 2 1 2 2 1
0 0 1 2 2 3
0 1 1 1 2 3

0 2 2 2 1 1
0 0 1 1 2 3
0 1 0 1 2 3

0 2 1 2 2 1
0 0 1 2 2 3
0 2 1 0 2 3

0 2 2 2 2 1
0 1 1 2 2 3
0 1 2 1 2 3

1 1 1 1
0 1 2 3
0 1 2 3

Memory access cycles 
32-bit 
64-bit 
128-bit

•1 2 "3  1 4 ’ r i  6 “ r | “ 8“ 1 9 10| 11 13 ■TTI 15 32-bit 1 2 3 1 4 5 i 6 7 1
r " 2

3. ^ . 4 5 6 7 ^ 8 com press entries with non-zero  b itm aps 64-bit 1 2 3 4
2 3“ -------- 4 128-bit 1 2

'igure 7-6 3D  G raphics S M V M  Scheduling Exam ples
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7.8 Accelerator Overview
T h e  goal is to im p lem en t a s tream ing  S M V M  coprocessor  w hich  can be in tegrated  into a 

p rocessor-based  system  as either a coprocessor  or built into an existing  processor p ipeline  as a 

spec ia lised  com plex  instruction  or tightly coup led  coprocessor.  In o rder  to m ax im ise  

effic iency  the A -m atr ix  will be  acco m m o d ated  in either a very large on-chip  m em o ry  or m ore 

likely in external co m m o d ity  S D R A M  allow ing  the solution to scale to arbitrary sized- 

prob lem s. T he m ain  goal o f  bu ild ing  a co p rocesso r  is to m ax im ise  bandw id th  efficiency, 

p ow er and latency.

T h is  is ach ieved  by bu ild ing  an accelera tor w ith  the fo llow ing  attributes:

•  H ardw are  b i tm ap  co m p ress io n  o f  the A -m atr ix ,  and possib ly  the x and y-vectors 

m ax im ises  bus, m em o ry  controller and I/O bandw id th  and is fully transparent to the 

m em ory  h ierarchy  un like  current schem es

• Single instruction  for entire m atrix  or tile S M V M  product evaluation reduces I-cache 

bandw id th  and m isses,  represents  an en o rm o u s  sav ing  in both I-R A M /cache 

bandw id th  and p ow er com pared  with curren t architectures

•  S ingle instruction is expanded  into a schedu le  o f  sub-instructions by the onboard

schedu le r and controller ,  e lim ina ting  all fill and associa ted instructions to calculate 

fill-related products  that are required  in conventional processors

•  G ro u p in g  o f  produc ts  across m ultip le-row s o f  the A -m atr ix  w here  the sparsity  pattern 

allow s m eans few er register-file  reads and few er cycles as com ponen ts  from  up to N 

tile row s can be d ispatched  in parallel to an N -w ide S IM D  FPU rather than perfo rm ing  

N separate  M A C  (M ult ip ly  A ccu m u la te )  operations because the vec to r register-file 

does not a llow  independen t access to vec to r e lem ents

•  S tream in g  A -m atr ix  access m eans the A -m atr ix  values go  directly  to be m ultip lied  by

the appropria te  x -vec to r  entries w ithou t first hav ing  to be  written to a vec to r register

file, resu lting  in a large sav ing  in pow er and latency com pared  w ith  conven tiona l 

p rocessors

In the fo l lo w in g  sections a 4 -w ay  S IM D  FPU  is considered  but this is easily m odified  to allow 

1, 2, 4, 8 etc. FPU s to be  used in parallel,  d epend ing  on the perfo rm ance  target for the 

accelerator.  S im ilarly  in the fo l low ing  exam ples  a 128-bit S IM D  FPU com pris ing  o f  4  IEEE 

sing le-p rec is ion  M A C  units  is considered  but this is readily changed  to handle any f loa ting

point fo rm at includ ing  doub le  and ex tended  precision, o r  equally  for that m atter to include 

sparse  m atrices  and vec tors  com prised  o f  integers o f  arbitrary precision.
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7.9 Functional Model of Accelerator
T h e  proposed  hardw are  accelera to r has a hardw are  function-call  style in terface w here  a single 

m atr ix -vec to r  m ultip ly  instruction  is passed in a long  w ith  po in ters  to the A  m atrix ,  x and y 

vectors ,  tile row and  co lum n  d im ensions  and a b i tm ap  represen ting  the sparsity  pattern. 

E ffectively  a single instruction  is issues to the acce lera to r w h ich  is exp an d ed  into a long  

sequence  o f  instructions d ep end ing  on the b itm ap  pattern.

T h e  tile -e lem ent o rde ring  and the Sparse  M atrix  va lue  array o rde ring  are assum ed  to have 

been chosen  ahead o f  tim e by the softw are  app lica tions  p ro g ram m er in a w ay  consis ten t w ith  

the hardw are  in terface and also in order to m ax im ise  overall  sy s tem -perfo rm ance .  For 

instance the layout o f  the data-s tructures  by the so ftw are  p ro g ram m er could  also include 

scann ing  the tiles in a m atrix  row  (g roup  o f  row s) a lternately  from  left to right and right to left 

in z igzag  o rder to m in im ise  cache m isses associa ted  with  the x -vec to r at the end  o f  row s  thus 

ex tend ing  the w ork  o f  Y zelm an  and B isse ling  [135]. T he  hardw are  acce lera to r offers  the 

so ftw are  p ro g ram m er to con tinue  to m ake  all o f  these system -level trade-offs  w ithou t  any loss 

o f  llexibility.

In the case o f  the fo l low ing  abstract m odel o f  the hardw are  acce lera to r it is a ssum ed  for 

s im plicity  that the tile e lem ents  are arranged  in co lu m n -w ise  o rder  in o rder  to m in im ise  

dependencies  and hence R A W  hazards. S im plified  C -code  for the bas ic  b lo ck -sm v m  is 

show n in L isting  7-2, w h ere  b m p  is the sparsity  b itm ap , r and c are the tile d im en s io n s ,  y and 

x are the ou tput and input vectors respectively  and the array a, is a linear array  o f  A  m atrix  

values.

LI. void bsmvm(int bmp,int r,int c,double
*y,double *a,double *x) {

L2 . struct element sch[16];
L 3 . unsigned nz = 0;
L 4 . unsigned i=0;
L 5 . double *y_reg;
L 6 . double *x_reg;
L 7 . double *a_reg;

L8 . // generate schedule containing row/column addrs
L9 . // for all bitmap non-zeroes in parallel
LIO . //
Lll . if (bmp&0x8000) {sch[nz].r=0 ; sch[n z ].c=0; nz-l--l-; }
L12 . if (bmpSt0x4 000 ) {sch[n z ].r=l ; sch[n z ].c=0; nz+4-; }
L13 . if (bmp&0x2000) {sch[n z ].r=2 ; sch[n z ].c=0; nz++;}
L14 . if (bmp&OxlOOO) {sch[n z ].r=3 ; sch[n z ].c=0; nz++;}
L15 . //
L16 . if (bmp&0x0800) {sch[n z ].r=0 ; sch[n z ].c=l; nz-l--l-; }
L17 . if (bmp&0x04 0 0 ) {sch[n z ].r=l ; sch[n z ].c=l; nz-l--i-; }
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L18 . if (bmp&0x0200) {sch[n z ]. r=2 ; sch[n z ].c=l; nz++;
L19 . if (bmp&OxOlOO) {sch[n z ]. r=3 ; sch[n z ].c=l; nz++;
L20 . //
L 2 1 . if (bmp&OxOOBO) {sch[n z ]. r=0; sch[n z ]. c = 2 ; nz++;
L22 . if (bmp&0x0040) {sch[n z ]. r=l; sch[n z ]. c = 2 ; nz++;
L23 . if (bmp&0x0 02 0 ) {sch[n z ]. r=2 ; sch[n z ]. c = 2 ; nz++ ;
L24 . if (bmp&OxOOlO) {sch[n z ]. r=3 ; sch[n z ]. c=2 ; nz++ ;
L25 . //
L26 . if (bmp&0x00 08) {sch[n z ]. r=0 ; sch[n z ]. c=3 ; nz++;
L27 . if (bmp&0x0004) {sch[n z ].r=l; sch[n z ]. c = 3 ; nz++ ;
L28 . if (bmp&0x0 002) {sch[n z ]. r=2 ; sch[n z ]. c = 3 ; nz++;
L29 . if (bmp&OxOOO1) {sch[n z ]. r=3 ; sch[n z ]. c = 3 ; nz++ ;
L30 . //
L31 . // perform schedule of MACs using single FPU
L32 . y_reg = y;
L33 . X reg = x;
L34 . a_reg = a;
L35 . while (i<nz) { // process one non-zero at a time
L36 . y_ reg[sch[i ].r ] += a[i] * X reg[sch[i ] -c] ;
L37 . i++;
L38. }
L39 . // assign output of smvm operation
L40 , y = y_reg;
L41 . } / / bsmvm()

Listing 7-2 C-Code Hardware Block SMVM

It should be noted that while column-major ordering is assumed in the above code it is trivial, 

either in hardware or in software, to swap row and column addresses in the schedule to 

accommodate a row-major format for the basic tile. Similarly it is simple to perform loop- 

unrolling in a manner similar to that used for the BCSR code in section 6.2.1 for a 4-way  

SIMD floating-point MAC as shown in Listing 7-3.

L l . while (i<nz) { // schedule MACs using 4x SIMD FPU 
L 2 . y_reg[sch[i ].r] += a[i ] * x_reg[sch[i ].c ];
L 3 . y_reg[sch[i+1].r ] += a[i+l] * x_reg[sch[i+1].c ];
L 4 . y_reg[sch[i+2].r ] += a[i+2] * x_reg[sch[i+2].c ];
L 5 . y_reg[sch[i+3].r ] += a[i+3] * x_reg[sch[i+3].c ];
L 6 , i+=4; // advance by 4 non-zeroes
L 7 . }

Listing 7-3 SIMD HW Block SMVM C-Code (bsmvmX4)

Here the 4 new values of the elements of the y-register are calculated in parallel using fixed 

offsets to look-up the row and column addresses of scheduled calculations 4 at a time (in one 

cycle) rather than one at a time as in the previous example. In practice the adders implicit in 

the code above will not be required as the pointer to the schedule array can be advanced 4- 

elements at a time rather than as shown above (for simplicity).

158



7.10 Accelerator Hardware Implementation
The accelerator consists o f the fo llow ing major functional blocks:

• Software interface

• Bitmap scheduler

• SM VM  SIMD Datapath

• Control Logic

• Memory interface

in the fo llow ing sections the design o f the elements o f the hardware accelerator w ill be 

explained in detail. A  top-level block-diagram o f the accelerator is shown in Figure 7-7.

BM int
Arows int
Acols int
Anz int
Brows int
Beds int
RSTaddr address
ClXaddr address
VALaddr address
BIXaddr address addr rd wr d out d in

Software interface Memory Interface
r n n tr n iconiroi

a X
y jn

i
y__out

f 1r 1

control control

Bitmap Scheduler SMD  Datapath

schedule

control-signals

Controller

SMVM Accelerator

-^d o n e

Figure 7-7 Sparse SM VM  Hardware Accelerator Block Diagram

A system block-diagram showing how the accelerator is interfaced as a coprocessor to a host 

processor, caches, peripherals, memory controller and external SDRAM  memory is shown in 

Figure 7-8.
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Figure 7-8 Hardware SM VM  Coprocessor

The typical data layout for this kind o f coprocessor w ill be to keep the values which exhibit 

most locality in the on-board caches while the A-matrix value array (and possibly the bitmap 

array) w ill typically be held in external SDRAM as it has no reuse unless the matrix is 

symmetric or i f  a matrix-matrix product is being computed.

A  simplified but complete functional C-model for the accelerator is shown in Listing 7-4 and 

as can be seen replaces lines L17-L32 in Listing 6-5 w ith a single hardware function call 

(bsmvmX4 outlined in Listing 7-2 and Listing 7-3) which removes all o f the conditional code 

which was shown to slow down bitmap SM VM  execution. The main loop in the code 

processes the sparse matrix tile-by-tile until the entire y-vector result has been computed. 

This loop is the main outer element o f the control logic. The inner loop then scans through 

the tiles in a row o f matrix blocks, loading the bitmap for the tile, the segment o f the x-vector 

and then generating the schedule from the bitmap, loading the A  values and performing the
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sm vm  multiplication for the tile according to the generated schedule. Additional logic is also  

required to generate the control signals necessary to load and store data held in caches or 

SD R A M .

LI. void load_y(double *y, double *dest) {
L2 . y[0] = dest[0];
L3 . y [1] = dest[1];
L4 . y [2] = dest[2];
L5 . y [3] = dest[3 ] ;
L6 . } // load_y()

L7 . void store_y(double *y, double *dest) {
L8 . dest[0 ] = y [0];
L9 . dest[1 ] = y [1];
LIO. dest[2 ] = y[2];
LI 1. dest[3] = y [3];
L12. } // store_y()

L13. void load_x(double *x, double *src, int *col_idx) {
L14. x[0] = src[(*col_idx) ];
L15. x[l] = src[(*col_idx) + 1];
L16. x[2] = src[(*col_idx) + 2];
L17. x[3] = src[(*col_idx) + 3];
L18 . } // load_x()

LI9. void load_bmp(int bitmap, int *bitmap_idx) {
L20. bitmap = *bitmap_idx & OxOOOOFFFF;
L21. } // load_bmp()

L22. void hw_smvm4x4 (int bm, int r, int c, int *row_start,
int *col_idx, int *bitmap_idx, double *value, double *src,
double *dest) {

L23. int i, j, bitmap=0, nz=0;
L2 4. double y[4], x[4];

L2 5. for (i=0; i<bm; i++, dest+=r) {
L2 6. load_y(y ,dest); // load y-vector segment
L2 7. for (j=row_start[i ]; j<row_start[i + 1 ]; j++,

bitmap_idx++, col_idx++, value+=nz) {
L2 8. load_bmp(bitmap,bitmap_idx); // load bitmap
L29. load_x(X ,src,col_idx); // load x-vec segment
L30. // load A matrix values & do 4x4 bitmap smvm
L31. bsmvmX4(bitmap,r ,c ,y ,value, x ) ;
L32 . }
L3 3. load_y(y ,dest); // store back
L 3 4 . }
L35. } // hw_smvm4x4()

Listing 7-4 H W  Accelerator (Abstract C-Model)
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In the case where the accelerator functionality is integrated into the processor pipeline rather 

than as a standalone accelerator only the bsm vm X 4 functionality would be built into the 

hardware. In this way the inner and outer loops could be implemented in software for

flexibility and the existing memory interface contained in the processor could be reused, thus

m aximising flexibility while reducing the amount o f  hardware required.

7.10.1 Software Interface
As can be seen in Figure 7-7 the software interface allows the following parameters for the 

matrix-vector product to be loaded into the accelerator:

• BM is the number of bitmap-blocked tiles in the A-matrix

• Arows the number o f  rows in the A-matrix

• Acols the number of columns in the A-matrix

• Anz the number of non-zero entries in the A-matrix

• Brows -  number of rows in a block tile

• Bcols- number o f  columns in a block tile

• VALaddr -  base address of the (A-matrix) value array

•  RSTaddr -  base address of the row-start array

• C lXaddr -  base address of the col_idx array

• BIXaddr -  base-address of the bitmap array

The data-structure that the accelerator accesses in memory is of the form shown in Figure 7-9. 

The figure is purely illustrative and the data-structures are fully independent and can occur in 

any order or position within the accelerator memory map.

These values are written into internal accelerator registers via a memory-mapped interface 

attached to the host processor memory bus, and as soon as they have been loaded computation 

can be enabled by writing the start code to the hardware-accelerator command register. The 

register map for the software interface including command register is shown in Table 7-2.

As can be seen the command register allows the accelerated smvm to be started, smvm 

calculations to be paused, a paused smvm to be resumed or the accelerator to be stopped and 

all registers reset. All registers are reset with the exception of the NZ-count which shows the 

number of A-matrix non-zeroes processed to date by the accelerator in the current smvm, and 

the cycle-count which shows the number of elapsed cycles in the current smvm operation.
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Figure 7-9 HW Accelerator Data-Structure

If required additional registers could easily  be added to a llow  the p ro g ram m er d ebug  S M V M  

codes by in terrogating  the conten ts  o f  the X and Y vec to r segm en t and o ther registers  internal 

to the accelerator.

Address Name Type b[31:4] b3 b2 b1 bO
0x0000 com m and Read/W rite reserved stop resum e pause start
0x0001 BM Read/W rite 32-bit integer
0x0002 Arows Read/W rite 32-bit integer
0x0003 Acols Read/W rite 32-bit integer
0x0004 Anz Read/W rite 32-bit integer
0x0005 Brows Read/W rite 32-bit integer
0x0006 Bools Read/W rite 32-bit integer
0x0007 RSTaddr Read/W rite 32-bit ad d ress
0x0008 ClXaddr ReadA/Vrite 32-bit ad d ress
0x0009 BIXaddr Read/W rite 32-bit ad d ress
OxOOOA VALaddr ReadAA/rite 32-bit ad d ress
OxOOOB NZcount Read Only 32-bit counter
OxOOOC CYCcount Read Only 32-bit counter

Table 7-2 HW Accelerator Control Registers
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7.10.2 Bitmap Scheduler
The bitmap scheduler generates a list o f non-zero partial-products to be evaluated along with 

their relative column and row addresses along w ith a non-zero count to be used by the 

controller block. In this section the proposed scheduler hardware implements the 

functionality o f lines L l l  to L29 o f Listing 7-2. The scheduler implementation and the list it 

produces is independent o f whether a single FPU or SIM D FPU is used to evaluate and sum 

the SM VM  partial-products. The bitmap schedule is compressed according to the bitmap as 

shown in Table 7-3. The rescheduling shown is achieved by controlling a bank o f 

multiplexers and a re-scheduler o f arbitrary complexity can be constructed using multiple bit- 

slices and multiplexers. In general using the proposed method a re-scheduler o f arbitrary 

complexity can be constructed from an array o f (N +N)/2, 4-bit by two-input multiplexers 

where N is the number o f bitmap bits and corresponding slots to be scheduled. A  complete 

64-bit scheduler capable o f scheduling 16 partial-product multiplications and four 4-input 

additions to sum the partial-products is shown in Figure 7-11.

bitmap
bit

note schedule

0 unused slot (contains 0)
advance schedule of all slots one 
slot to the right of current position

1
required slot (contains 

non-zero)
do not advance schedule of slots to 

right of current position

Table 7-3 Bit-slice of Bitmap Scheduler

As can be seen in the diagram the re-scheduler consists o f 120 by 4-bit, 2:1 multiplexers with 

associated Lx)ok-Up Tables (LUTs). The majority o f the logic however is comprised by the 

four hundred and eighty 2:1 multiplexers. I f  the re-scheduler is included as part o f a 

programmable processor pipeline it can also function as a general purpose 64-bit shifter (in 

steps o f 4 bits or multiples o f 4 bits) i f  an additional 2:1 multiplexer is included at the input to 

select between LU T outputs and an input register or bus.

The C-code for the population-counter is shown in Listing 7-5.

LI . int popcount(int bmp) {
L2 . int nzc = 0;

L3 . // count # non-zeroes in bitmap
L4 . if (bmp&0x8000) nzc++;
L5 . if (bmp&0x4000) nzc++;
L6 . if (bmp&0x2 0 00) nzc+-i-;
L7 . if (bmp&OxlOOO) nzc++;

00 if (bmp&0x0800) nzc++;
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L9. if (bmp&0x0400) nzc++
LIO . if (bmp&0x0200) nzc++
Lll . if (bmp&OxOlOO) nzc++
L12 . if (bmp&0x0 08 0 ) nzc++
L13 . if (bmp&0x0 040) nzc++
L14 . if (bmp&0x0 02 0 ) nzc++
L15 . if (bmp&OxOO10) nzc++
L16 . if (bmp&OxOOOB) nzc++
L17 . if {bmp&0x0004) nzc++
L18 . if (bmp&0x0002) nzc++
L19 . if (bmp&OxOO 01) nzc++
L20 . return(nzc);

L21. } / / popcountQ

Listing 7-5 Population-Counter C-code

The final element of the scheduler is an iteration-counter which determines the num ber o f  

arithmetic iterations necessary to perform the SM V M  calculations using an N-element wide 

SIMD FPU. The C-code for the iteration-counter is shown in Listing 7-6.

LI. int itercount ( int nzc) ■{
L2 . int iter;
L3 . int round;

L 4 . // calculate # SIMD cycles to perform SMVM on tile
L 5 . // divide nzc by 4 as SIMD does 4 MACs/cycle
L 6 . // round up if 2 Isbs of NZ count are 11/10/01
L7. //
L 8 . round = (nzc&2 | nzc&l) ? 1 : 0;
L 9 . iter = (nzc/4) + round;

LIO. return(iter) ;
Ll l .  } / / itercount()

Listing 7-6 Iteration-Counter C-Code

The block-diagram for the population and iteration counters, as well as the truth-table for the 

full adder is shown in Figure 7-12. The population/iteration counter consists o f  a tree o f  full- 

adders which computes the sum of the non-zero bitmap bits and returns it as a 5-bit binary 

number (required precision to represent 16 bitmap bits).

In general a modified structure can be constructed to incorporate the scheduler functionality 

within a general-purpose 64-bit shifter. The resultant shifter can function in one of 4 possible 

modes:

• Bitmap scheduler mode where LUT outputs are grouped according to the input bitmap 

to compose a minimum length multiplication/addition schedule (only non-zeroes)
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•  Shifter m o d e  w here  the 64-bit  input is sh ifted left accord ing  to the b itm ap  applied

•  64-bit r ight sh ifter by using  an input and output s tage to reverse bit o rder before 

perfo rm ing  a left shift

•  G rouper/ex trac to r m ode w here  the bytes from  the 64-bit input are g rouped  together 

acco rd ing  to the b i tm ap  bits applied  (in m ultip les  o f  4-bits)

T he  g rouper  m o d e  could be useful in ex tracting  bytes  quickly  from a com plex  data-structure. 

A n o th er  e lem ent o f  the schedu le r  is a popu lat ion -coun ter  w h ich  counts the num ber o f  ones  in 

the b itm ap. T h e  schedu le r  w orks  by only  se lec ting  row /co lum n address pairs, for w h ich  there 

is a co rrespond ing  non-zero  b itm ap  entry, and com pac ting  them  together into a single 

schedu le  o f  opera tions  for w h ich  no trivial opera tions  need be executed in order to com pute  

the m atr ix -vec to r  product. T he schedu le r  is com posed  o f  by te-w ide 2; 1 m uxes. For s im plicity  

a 1-bit w ide  2:1 m ux  is show n in F igure 7-10.

EN A B z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

B

EN

Figure 7-10 M ultiplexer (2:1) Truth-Table and Logic Diagram

If a b itm ap  en try  is non-zero  the m ultip lexer ou tput is the local row/col address pair. If on the 

o ther hand the b itm ap  entry  is zero, the local row/col pair can be skipped and the row/col pair 

to the right o f  the current pair is selected as the m ultip lexer output. This  selection procedure  

is con tinued  from  right to left for the 16 b itm ap  entries and correspond ing  row/col pairs. T he 

result at the end o f  the selection  procedure  is that only  those row/col pairs correspond ing  to 

b i tm ap  non-zeroes  are g rouped  and concatenated  by row, and then by  co lum n from left to 

right, e l im ina ting  any trivial operations. T he  logic  is repetitive and contains m ain ly  local 

w iring , w ith  the exception  o f  the b itm ap  entries used to control each line o f  selection 

m ultip lexers.  This  regularity  as well as the use o f  s im ple  com ponen ts  results in a fast and 

area efficient design.

T he  hardw are  required  for the entire scheduler  consists  o f  approxim ate ly  1440 gates to 

im plem ent the schedu le r  from  480  2;1 m ultip lexers  and to im plem ent the population/iteration 

coun ter requires  19 FA  (Fu ll-A dder)  cells and one O R  gate so a total o f  around 115 gates. 

T he total hardw are  requirem ent for the scheduler is therefore around 1.6k gates.
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Figure 7-11 Bitmap Scheduler Implementation (64-bit = 16 x 4-bit)

muxes total (N*N+N)/2

2 3 3

3 6 6

4 10 10

5 15 15

6 21 21

7 28 28

8 36 36

9 45 45

10 55 55

11 66 66

12 78 78

13 91 91

14 105 105

15 120 120
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7.10.3 Control Logic
The control-logic for the accelerator applies all of  the relevant control signals along with 

column and row addresses from the bitmap generated schedule to the internal blocks in order 

to ensure the correct products are calculated, summed and stored back to the correct y- 

registers. In the control logic signals are generated to;

• Lx)ad y-vector entries into internal registers corresponding to each row o f  tiles across 

the A-matrix (load_y control signal)

Lxiad bitmap for tile into register (load_bmp)

Generate schedule from tile bitmap

Load x-vector entries into internal registers corresponding to each A-matrix tile 

(load_x)

Stream (Read) A entries from memory (load_a)

Select the correct x vector entries to be multiplied by each A-matrix entry 

Evaluate each A.x partial product in sequence (amultx)

Select the correct y value to be updated by adding the A.x partial-product in the FP 

adder

Update the correct y-vector registers

Write y-vector register contents back to memory at the end o f  an A-matrix row 

The example matrix and data-structure are shown in Figure 7-13 and the corresponding 

control signals are shown in Figure 7-14.

cO c l  c 2  c 3  c4  c 5  c 6  c7

3 q2

3 l l 3 i 5
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330 332 337

341 345 347
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ro w _ s ta r t

c o i j d x

v a lu e

b m p j d x

0  4 4/-►

0 4 0 4z
3ao 3 tl 3 q2 332 3 i 5 326 837 870 341 302 845 375 3 s6 347

0 x 1 4 9 0  ' 0 x 0 2 4 8  1“  MUO 0x0941

A row s 8

A co ls 8

A nz 14

B row s 4

B co ls 4

R S T a d d r OxFOOOOOOO

C lX a d d r OxEOOOOOOO

V A L addr OxDOOOOOOO

B IX addr OxCOOOOOOO

Figure 7-13 Example Matrix & Data-Structures
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T he segm en t o f  the t im ing  d iagram  show n assum es  a 4 x4  bloctc tile and single FP m ultip lie r  

and FP adder, each with single c lock-cycle  latency, ra ther than a S IM D  unit for s im plic ity  and 

the period  for w h ich  the contro l-s ignals  are sh o w n  correspond to the first 2 tiles and re lative 

b itm aps. N ote  that the t im ing-d iagram  is s im plif ied  and does not include the datapath source  

and destination  m ultip lexer contro l-s ignals  derived  from  the schedule.

T he  y-reg is te r is initially loaded w ith  4 values that hold for the first 2 matrix tiles. O nce these 

values have been  loaded the b i tm ap  co rrespond ing  to the first m atrix  tile is fetched, and a 

schedule  is generated . N ext the first 4 x-reg is te r  values  are loaded in the next 4 clock-cycles.  

Fo llow ing  this, the first 4 non-zero  A -m atr ix  values are fetched from the value array  in 

m em ory  and m ultip lied  by the x-reg is te r entries  to p roduce  4 partial products. These  partial- 

products  are then sum m ed  with  the 4 y-vector entries stored  in the y-register over 4 cycles. 

N ext the second tile and assoc ia ted  b itm ap  are processed  updating  the y-register va lues  to 

com ple te  the m atrix -vec to r product. Finally the y-vector values correspond ing  to the first row  

o f  A -m atr ix  tiles are written back to m em ory  from  the y-register and the com putation  o f  the 

sm v m  product correspond ing  to the next row o f  A -m atr ix  tiles can be com puted.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28clock LnjirmjinnjTTirLrumj^^
y_addr | 0 | 1 | 2 | 3 |__________________________________________________________ | 0 | 1 | 2 | 3l

load_y J  ______________________________________________________________________

store_y ________________________________________________________________________| |

x_addr ________________| 0 | 1 | 2 | 31_________________ | 4 | 5 | 6 | 7~__________________________

load_x ________________ _________________  __________________________

bx_addr______________ 0_________________________ 1_________________________ 2_______________

load_bmp _____________    | ______________

gen_sch ____________________ |  | _____________________________  ______________

v_addr ___________________________ | 0 | 1 | 2 | 3]_________________ | 4 | 5 | 6 _________________

load_val ___________________________  _________________  _________________

mul_ax ______________________________  _________________  ______________

add_y _________________________________  _________________  ___________

utilisation I 0 I 1 I 2 I 3 I 0 I 0 I 1 I 2 I 3 I 0 I 1 I 2 I 3 I 1 I | 4 | 5 | 6 | 7 | 4 | 5 | 6 | 2 | | 0 | l | 2 | 3

F ig u r e  7 -14  C o n t ro l  L o g ic  T im in g - d ia g r a m
T he con tro l- log ic  also contains logic to detect da ta-dependencies  w hich  can lead to R A W

hazards and to stall the datapath  until these dependenc ies  have been resolved. Equally  the
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co n tro l- log ic  can halt (pause) the operation  o f  the accelera tor to w ait for data from  an external 

bus, d a ta -cach e  or indeed external S D R A M .

All con tro l-s igna ls  generated  by the con tro l-log ic  are designed  to p ipeline and to overlap  

o pera tions  w hich  can be carried out s im u ltaneously  w h ere  possib le ,  resulting in a high bus 

b an d w id th  utilisation o f  26/28 cycles or 93 %  w hich  is good. Realistically  the bus utilisation 

w hich  can be ach ieved  will be lower than this once the long  latencies o f  h igh-frequency  

f ioating-poin t units used in typical p rocessor cores, are considered ,  and care w ill need to be 

taken in des ign ing  the p ipelin ing  schem e in o rder to m ax im ise  bus utilisation.

7.10.4 Memory Interface
T he m em o ry  in terface is controlled  by the con tro l- log ic  and increm ents  the 4 address  pointers  

and genera tes  m em o ry  read and write  s ignals  in o rder to ensure  all data  required  by the 

accelera tor arrives in a timely m anner from the appropria te  addresses  in m em o ry  or cache 

external to the accelera to r and that the results genera ted  by the accelera tor are w rit ten  back  to 

the correct addresses  in m em ory  or cache ex ternal to the accelerator.

7.10.5 SMVM using Bitmap Schedule
T he non-zero  e lem en ts  o f  A are m ultip lied  by the co r resp o n d in g  e lem en ts  o f  x w h ich  are 

looked up from a register using  the co lu m n  reference from  the co r respond ing  schedu le  entry. 

T he  e lem en ts  o f  A  are read from m em ory  d irectly  and m ultip lied  as they en ter  the processor. 

T here  is no requ irem ent to s tore the e lem en ts  o f  the A  sparse  m atrix  in the case  o f  Sparse 

Matrix by vec to r m ultip lication  as the en tries  in A  are on ly  used once.

Not s toring  the e lem en ts  o f  A  in a register-file  has several advan tages  co m p ared  w ith  the 

state-of-the-art:

• P o w er  and time (latency) associa ted  w ith  a w rite  o f  a row  o f  the A  m atrix  to the 

register-file  is saved

•  P o w er  and tim e (latency) associa ted  w ith  a read o f  a row  o f  the A  m atrix  from  the 

register-file  is saved

•  R egis ter-pressure  associa ted  with  tem porary  storage o f  A  m atrix  en tries  in the 

register-file  is avoided

S toring the x-vecto r in a tem porary  reg is ter ra ther than a m ulti-ported  register file has the 

advan tage that the relatively h igher pow er assoc ia ted  with  a read o f  the x vec to r for each  row 

o f  the A  m atrix  to be m ultiplied is saved as a s im ple  tem pora ry  register can be used to hold 

the entries o f  x.
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The hardware required to perform the multiplication of the non-zero entries in A  by the 

appropriate elements of the vector x stored in a local register is shown in Figure 7-15. In the 

figure A-dly denotes a delay to match the delay in clock-cycles through the floating-point 

adder, and M-dly denotes a delay to match that through the floating-point multiplier. These 

delays are required in order to line up the times at which the multiplexer selection signals 

arrive with the data arriving at the floating-point adder and multiplier.
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Figure 7-15 Bitmap Controlled SM VM  Datapath (128-bit SIMD)
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7.10.6 Hardware Requirements
The breakdown in terms o f hardware gate complexity for the fu ll hardware accelerator 

using a 128-bit SMID FPU consisting o f four 1EEE754 compliant FP adders and four 

multipliers is detailed in Table 7-4.

Block Gates % total
Software Interface 2688 3.35%
Scheduler 1600 1.99%
Control-Logic 3072 3.82%
Memory Interface 1200 1.49%
Datapath 71792 89.35%
Total 80352 100.00%

Table 7-4 H W  Accelerator Gate-Count

The gate counts for the adders and multipliers are taken from a commercial data-sheet 

[ 150]. As can be seen the gate-count for the scheduler and all o f the other logic accounts 

for around 10% o f the total accelerator gate-count. This means that the 8.5k gates 

required for the accelerator logic outside the FPU accounts for only 12% additional logic 

when compared with what would be required to implement a SIMD FPU o f the type 

implemented commonly in GPUs or the Intel SSE2 instruction-set [151].

7.11 Summary
In this section a hardware implementation for an accelerator to support bitmap blocked 

SM VM  was outlined in detail, including functional description, logic implementation and 

gate-counts. As was demonstrated the overhead o f implementing the proposed hardware 

is around 12% when compared w ith the S IM D FPU hardware already included in many 

x86 compatible processors. It was also shown that the impact can be further mitigated by 

incorporating the scheduling logic into the shifter unit already present in many 

commercial processors. Furthermore the possibility o f just implementing the hardware 

matrix-vector multiply in an existing processor pipeline would leverage the existing 

memory interface, registers and allow the control logic to be implemented in software 

thus further reducing the hardware overhead while maximising flex ib ility .
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8
Chapter 8

“Imagination is the beginning o f  creation.

You imagine what you desire, 

you will what you imagine and at last you create what you  will. ”

-  George Bernard Shaw

8 Conclusions
The reader has been guided through the world of complex applications [156] which depend on 

the solution o f  complex systems of equations represented by matrices for their answers. 

These applications are as diverse as can be imagined ranging from the design o f  aircraft, 

bridges and other structures to performing a Google search. In fact a key property of these 

problems in general and Google search, and o f  the latter in particular is the fact that the 

systems of equations and by extension the matrices that represent them contain far more zero 

coefficients than non-zeroes, i.e. they are sparse. In the case of Google the Google-Matrix 

has some 3 Billion entries on a side with an average of 6-7 non-zeroes per row/column.

Users and developers of large-scale applications based on sparse-matrices using SM VM  as a 

principal kernel have found that the performance of computer systems is often extremely 

poor, often achieving less than 10% of  manufacturers stated performance on this class of 

applications [26]. Unfortunately processor architectures and software methods which depend 

on them have advanced relatively little over recent decades and the major techniques have 

been in use for over 20 years with only iterative refinements, and often “ the cure is worse than
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the disease” with m any apparent methods for speeding up calculations only offering a return 

if used for the equivalent of 10s or lOOs of unoptimized SM V M  operations.

Previous work by Vuduc [52] and others on Sparse Matrix-Vector Multiplication using the 

Block Com pressed Sparse Row (BCSR) format has shown that many large matrices contain 

large amounts of zero-fill when tiled into locally dense tiles leading to lower than predicted 

performance and higher than predicted power dissipation due to the bandwidth necessary to 

fetch and process zeros in what the method assumes to be a dense sub-matrix (tile).

In partial answer to come of the performance limitations o f  existing blocked sparse storage 

formats two new sparse-storage formats are introduced in Chapter 6. The formats are both 

based on trivial techniques first identified by Richardson [138] in 1992. These methods have 

remained largely ignored in the intervening period as the solution identified by Richardson 

d idn’t address the fundamental underlymg problem o f  limited m em ory bandwidth, which was 

highlighted by M cKee [33] as the “M em ory W all” . Essentially the method and hardware 

implementation outlined by Richardson adds to the difficulties the program mer and processor 

designer face by first fetching trivial data into the processor, consuming valuable bandwidth, 

before deciding that the data is not required and can by bypassed. Indeed having multiple 

parallel lloating-poinl and trivial processing units makes the processor larger, slower and 

more difficult to program, negating many of the supposed benefits o f trivial operand 

processing.

The key insight in this work is that by decoupling trivial operand detection from processing, a 

compression can be obtained. This compression increases effective memory bandwidth, and 

separately trivial operand processing can then be performed without the necessity for 

specialised hardware in the processor pipeline as proposed by Richardson [138]. It is also 

shown that the overhead of trivial operand detection and tagging has negligible cost which is 

dwarfed by the cost of assembling the data-structures required for large scale numerical 

applications, thus the benefits of the proposed accrue almost entirely to the whole application. 

The performance o f  these methods is explored in detail in terms first experimentally using a 

suite o f  50 large sparse matrices as a benchmark suite running on a typical engineering 

workstation with modern multicore processor, and the Bitmap Block Compressed Sparse Row 

(BBCSR) format was shown to perform better than BCSR or CSR reference methods in 7 out 

of 50 cases. Observing the shortcomings o f  BBCSR led to the development o f  the Scheduled 

Bitmap Block Compressed Sparse Row (SBCSR) format. This format was also duly 

benchmarked and analysed in both row-major and colum n-major scheduled variants.
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The row-major SCBRS format was found to be faster than BCSR or CSR in 2 out o f  50 cases, 

and the column-major format was found to be faster than either BCSR or CSR formats in 7 

out o f  50 cases. Finally the shortcomings of the software BBCSR and SBCSR formats were 

highlighted and the case for hardware acceleration was outlined. The implementation and 

functional model for the accelerator were described and the resultant hardware cost estimated.

8.1 Thesis Contributions
In this thesis a variety of techniques for accelerating Sparse Matrix computations are 

proposed and evaluated experimentally. It will be shown that the performance o f  the kernel 

Sparse Matrix Vector Multiplication (SM V M ) operation, which dominates the execution time 

of iterative methods, can be improved dramatically compared to General Purpose Processors 

(GPP) and significantly when compared to Special Purpose Computers (SPC).

The specific improvements over the state-of-the-art proposed, which boost performance, 

proposed in this thesis are;

• A first Bitmap Block Compressed Sparse Row (BBCSR) sparse matrix storage 

method is proposed which eliminates the zero fill associated with the BCSR (Block 

Compressed Sparse Row) sparse matrix format

• Benchmarking on a 50 matrix set o f  large sparse matrices demonstrates a significant 

speed-up in 7/50 cases using the proposed BBCSR format, using a standard gcc 

compiler and Intel Xeon processor, when compared with CSR and BCSR formats

• A second sparse matrix format Scheduled Block Compressed Sparse Row (SBCSR) 

format is proposed which addresses the need to perform up to r*c bitmap comparisons 

(where r and c are respectively the number of rows and columns in the dense block 

sub-matrix) and branches performed to implement the BBCSR Sparse Matrix Vector 

Multiplication (SM VM )

• Again the SBCSR method is benchmarked against BBCSR, BCSR and BCSR 

methods for the same 50-matrix set, using the same configuration of gcc compiler, 

RH EL and Xeon processor

• A generic hardware accelerator is described which allows the SBCSR method to be 

utilised without penalty when compared with BCSR SM VM

• Integer sparse matrices such as the DCT coefficient matrices used in video 

applications are easily supported
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• Finally the proposed hardware also allows compressed sparse data-structures to be 

random-accessed in situ without prior decompression, offering a major advantage over 

the state of the art

The work described carried out by the author at TC D  and latterly at Movidius Ltd. has 

resulted in the following patent applications, the first o f  which has already been granted, and 

the remaining 3 of which are the subject o f  ongoing patent applications:

• Geraghty D., Moloney D., “Data processing system and m ethod”, 

US2009()3()960 (A l) ,  Priority Date 2005-05-13

• Moloney D., “A processor”, W 0 2 0 0 9 1 0 1 119 ( A l )  - 2009-08-20, Priority Date 2008-

02-n

• Moloney D., “A processor exploiting trivial arithmetic operations” , EP2137610 (A l )  - 

2009-12-30, Priority Date 2007-03-15

• Moloney D., “A circuit for compressing data and a processor employing sam e”, 

EP2137821 (A l )  - 2009-12-30, Priority Date 2007-03-15

The same work has also contributed so far to the following publications:

• D. Moloney, D. Geraghty, C. M cSweeney and C. McElroy, “Streaming Sparse Matrix 

Com pression/Decom pression”, in Lecture Notes in Computer Science 2005 (HiPEAC 

Conference), Springer-Verlag, No. 3793, pp. 116-129

• D. Moloney, C. McSweeney, C. M cElroy and D. Geraghty, “Hardware accelerator for 

finite element iterative m ethods” , lEE Irish Signals and Systems Conference 2005, 

pp.330-337

• D. Gregg, C. M cSweeney, C. McElroy, F. Connor, S. McGettrick, D. Moloney, and D. 

Geraghty, "FPGA Based Sparse Matrix Vector Multiplication using Com m odity 

DRAM Memory," in Field Programmable Logic and Applications, 2007. FPL 2007. 

International Conference on, 2007, pp. 786-791.

8.2 Scope for Further W ork
In the following sections a number o f  areas requiring further investigation following on from 

this w ork  are outlined along with possible approaches where known.

8.2.1 Hardware Coprocessor Implementation
The hardware accelerator proposed in chapter 7 could be implemented on FPGA [152] and 

interfaced to external SDRAM  in order to gauge the real speed-up that can be achieved by 

implementing the support for bitmap SM VM  processing in hardware. In order to allow this to 

be achieved the C-code already outlined would have to be translated into a hardware
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description language (HDL) such as Verilog [153], simulated and verified and then mapped to 

the target FPG A device, making judicious use of available components such as floating-point 

units and SD RA M  controllers where available in order to minimise the effort and time 

involved.

8.2.2 Bitmap Hardware Integration in Existing Processor
As was indicated in section 7.11 the hardware accelerator proposed could be implemented as 

part o f a processor pipeline in order to reduce the overhead. For instance in the x86 processor 

instruction set architecture (ISA) complex instructions are already translated into a series of 

simpler uOPs (micro-operations) as detailed in [152]. Thus the accelerator functionality 

could be implemented within the ptlsim simulator [155] as part o f  the x86 processor pipeline. 

This would allow the performance benefits o f  the SBCSR technique to be measured over a 

large number of existing applications. Furthermore the same instrumented version of ptlsim 

could also be enhanced to recognise sequences o f  binary code which could benefit from the 

proposed technique using dynamic binary instrumentation. The latter approach would allow 

existing x86 binaries to be evaluated for potential performance benefits.

8.2.3 SIVIVM Tuning
The BBCSR and SBCSR sparse storage formats described in Chapter 6 can be advantageous 

but are obviously not optimal in terms of performance for all matrices, i.e. their usefulness 

depends on the non-zero pattern in the underlying sparse matrix. The experiments conducted 

in the same chapter focussed on exploring a large range of possible tilings exhaustively in 

order to make a fair comparison between CSR, BCSR and the proposed methods. In practice 

this exhaustive approach is wasteful of compute resources and time. A better approach would 

be to expand on the approach used by Vuduc [52] where the amount of fill in the sparse 

matrix in target sparse storage formats such as CSR and BCSR is estimated by sampling a 

portion of the sparse matrix rather than the whole, to include the proposed storage schemes. 

According to Vuduc tilings yielded by the sampling approach yields results that are on 

average within 10% of the fastest matrix vector multiplication times obtained by exhaustive 

search. This being said even using the sampling approach is grossly inefficient with 20-40 

SM V M  times being expended to estimate fill meaning that the payback for tiled schemes is 

most likely to occur where the same matrix is used to compute a number o f  SM V M  products 

greater than the time taken to estimate fill.
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8.2.4 Hybrid Sparse Matrix Storage Formats
An interesting area for further work would be to combine BBCSR and SBCSR together with 

BCSR formats into a single data-structure with a single hybrid software SMVM method. In 

the proposed method and data-structure individual tiles would be stored as BBCSR or SBCSR 

tiles where BCSR fill is high and as native BCSR where the fill is low. The author believes 

such a hybrid format could offer optimal performance for a wide range of matrices and local 

fill patterns could be tuned for on a tile-by-tile basis rather than averaged basis used by 

Vuduc.

For example the code shown in Listing 8-1 shows how a Hybrid BCSR (HBCSR) could 

accommodate dense blocks where the BCSR format is an exact match for the underlying tile, 

i.e. contains no zero fill, while blocks containing fill could be multiplied using a bitmap as in 

BBCSR. Alternately a schedule could be generated and the blocks containing fill could be 

multiplied according to the schedule generated from the non-zero tile elements or the bitmap.

L I .  v o i d  h b c s r_ s m v m 4 x 4 ( i n t  bm, i n t  r ,  i n t  c ,  i n t  * r o w _ s t a r t ,  i n t  
* c o l _ i d x ,  Type * v a l u e ,  Type * s r c ,  Type * d e s t )  {

L 2 . i n t  i ,  j ,  _ n z ,  b i t m a p ,  n z ;
L3 . Type yO, y l ,  y 2 , y 3 , xO, x l ,  x 2 , x 3 ;
L4 . l o n g  lo n g  t a g ;  / /  6 4 - b i t  i n t e g e r
L5 .
L 6 . f o r  ( i  = 0; i<bm; i+ + ,  d e s t + = r )  { / /  b l o c k -
L7 . yO = d e s t [ 0 ] ;
L8. y l = d e s t [ l ] ;
L9 . y2 = d e s t [ 2 ] ;
LIO . y3 = d e s t [ 3 ] ;
L l l .  f o r  ( j = r o w _ s t a r t [ i ] ;  j < r o w _ s t a r t [ i + 1 ] ;  j+ + ,  c o l _ i d x + + ,

v a l u e + = n z )  {
L12.  / /  f i r s t  e n t r y  i n  v a l u e [ ]  r e l a t e d  t o  b l o c k  i s  a t a g
L13 . _n  z = 0;
L14.  t a g  = memcpy(v a l u e , & t a g , 8 ) ;  / /  copy  t o  6 4 - b i t  i n t
L15.  v a l u e + + ;  / /  a d v a n c e  p o i n t e r  t o  s k i p  b i t m a p  e n t r y
L16 . xO = src [ ( *col i d x ) ]
L17 . xl = src [(*col _idx) -1- L]
L18 . x2 = src [(*col i d x ) + 2]
L19 . x3 = src [(*col idx) + 3]
L20 . if (tag= = 0.0) { / / 0 . 0 means bio
L 2 1 . yO += value[ 0 ] * xO / / row 0
L22 . yO += value[ 1 ] * xl
L23 . yO += value [ 2 ] * x2
L24 . yO += v alue [ 3 ] * x3
L25 . yl += v alue [ 4 ] * xO / / row 1
L26 . yl += v alue[ 5 ] * xl
L27 . yl += v alue[ 6 ] * x2
L28 . yl += v alue[ 7 ] * x3
L29 . y2 += v alue[ 8 ] * xO // row 2
L30 . y2 += value[ 9 ] * xl
L31 . y2 += value[10 ] * x2
L32 . y2 += value[11 ] * x3
L33 . y3 += value[12 ] * xO // row 3
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L34. y3 += value[13] * xl;
L35. y3 += value[14] * x2;
L36. y3 += value[15] * x3;
L37. nz=16; // advance value pointer by r*c
L38. }
L39. else { // block contains fill so bitmap SMVM
L40. bitmap = tag & OxOOOOOOOOOOOOFFFF; // 4x4 bitmap
L41. nz = ta g » 1 6  & OxOOOOOOOOOOOOFFFF; // NZ for 4x4
L42. if (bitmap & 32768) yO += value[_nz++] * xO; //row 0
L43. if (bitmap & 16384) yO += value[_nz++] * xl;
L44. if (bitmap & 8192) yO += value[_nz++] * x2;
L45. if (bitmap & 4096) yO += value[_nz++] * x3;
L46. if (bitmap & 2048) yl += value[_nz++] * xO; //row 1
L47. if (bitmap & 1024) yl += value[_nz++] * xl;
L48. if (bitmap & 512) yl += value[_nz++] * x 2 ;
L49. if (bitmap & 256) yl += value[_nz++] * x3;
L50. if (bitmap & 128) y2 += value[_nz++] * xO; //row 2
L51. if (bitmap & 64) y2 += value[_nz++] * xl;
L52. if (bitmap & 32) y2 += value[_nz++] * x2;
L53. if (bitmap & 16) y2 += value[_nz++] * x3;
L54. if (bitmap & 8) y3 += value[_nz++] * x O ; //row 3
L55. if (bitmap & 4) y3 += value[_nz++] * xl;
L56. if (bitmap & 2) y3 += value[_nz++] * x2;
L57. if (bitmap & 1) y3 += value[_nz++] * x 3 ;
L58. }
L59. }
L60 . dest[0] = yO;
L61. dest[1] = y 1;
L62 . dest [ 2 ] = y2;
L63 . dest[3] = y3;
L64. }
L65. }//hbcsr_smvm4x4()

Listing 8-1 HBCSR 4x4 SMVM C-Code

In SB C SR  and hybrid formats containing SB C SR  tiles considerable further work could be 

done on tuning SBC SR  schedules, for each possible bitmap pattern, on each o f  the target 

processor architectures. Additionally the author believes there is considerable merit in 

exploring zigzag variants o f  BBC SR , SB C SR  and hybrid formats, along the lines proposed in 

[135]. The bitmap SM V M  formats could also be useful for managing variable block sizes and 

unaligned B C SR  (U B C SR ) [52] in a general hybrid format.

8.2.5 Extended Scope for Trivial Operand Processing
This author notes that although not mentioned by Richardson or Lilja it is possible that trivial 

multiplication could be extended to the general case o f  multiplication by powers o f  2 resulting 

in a small unit which adds exponents and leaves the mantissa o f  the multiplicand unmodified  

in a manner similar to that proposed in [139]. It would be interesting to profile matrices to 

see what proportion o f  the data falls into this category and to see how different floating-point 

units with differing latencies can be accommodated as part o f  the bitmap scheduling process.
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8.2.6 Quantifying Power dissipation
A lth o u g h  the suspicion is that B B C S R  and S B C S R  fo rm ats  reduce pow er-d iss ipa t ion  because  

th ey  e lim ina te  both the need less  fe tch ing  o f  zero-fill values  from  m em o ry  as well as trivial 

o p e ra t io n s  utilising them , no expe rim en ta l  ev idence  has been  gathered  in this w ork  to p rove  it. 

It w o u ld  therefore be in teresting  to investigate  the pow er-d iss ipa t ion  o f  the p roposed  m eth o d s  

on  pow er-d iss ipa tion  and corre la te  this in form ation  w ith  fill o r som e o ther m etric  so a tun ing  

m e th o d  a long  the lines o f  that p roposed  by V u d u c  can tune  for low est pow er, o r  pow er-  

p e r fo rm an ce  rather than ju s t  pe rfo rm ance  as at present.

8.2.7 Scalability
A  key issue with en g in ee r in g  p rob lem s is that they scale  to m eet and exceed  the ava ilab le  

co m p u tin g  resources. T h is  sca ling  has im plica tions for bo th  the num erical  precis ion  required  

and  the address-space  necessary  to access  the data. In the fo rm er case w h ile  doub le-p rec is ion  

is the s tandard  for num erica l  co m pu ta t ions  today, 80-bit  ex tended  precis ion  is a lready  in 

c o m m o n  use and supported  by a varie ty  o f  co m p u tin g  p la tfo rm s includ ing  the x86  (Intel and 

A M D ) ISA. In fact the recently  ratified IE E E 754-2008  s tandard  [78] for floating-po in t 

ar ithm etic  provides for b inary  and dec im al 128-bit form ats ,  and 256-b it a r ithm etic  is used  in 

physics  and com puta tional chem is try  app lica tions [157]. Indeed a recent review  by Bailey 

[158] identifies a range o f  num erical applica tions requ ir ing  128-bit or h igher precis ion . 

B itm ap  com press ion  w ou ld  achieve 1:128 or better for zero-fill in these applica tions. 

S im ilarly  w hile  32-b it  is the curren t s tandard  for addresses,  investigation  into 64-b it S M V M  

has already  begun  [142]. It w ould  be in teresting  to investigate  the benefits  o f  b i tm ap  

com press ion  for these applications.

8.2.8 Lookahead Bitmap Scheduling
A further re f inem ent o f  the schedu le r  w ou ld  be to perfo rm  look-ahead  in order to reso lve 

dependencies .  In princip le  if a schedu le  can be generated  in one  c lock-cycle  and the resu ltan t 

S M V M  takes N Z  cycles, the schedu le r can look ahead  at the next N b itm aps  to eva lua te  

w he the r  data  dep en d en c ies  and assoc ia ted  R A W  hazards  can be elim inated .

A s can be seen in the fo l low ing  ex am p le  show n  in F igure 8-1 if sch ed u lin g  is p e r fo rm ed  

independen tly  on a b i tm ap  at a time, dependencies  and assoc ia ted  R A W  hazards  o ccu r  in 

assoc ia tion  with  the su m m atio n  o f  y[ l ]  as each  e lem ent o f  row  1 in the tile is non-zero . If this 

schedu le  w ere  p rocessed  a stall w ou ld  occur in associa tion w ith  each  addition  o f  the partia l 

p roduc ts  to y [ l ] .  T he  so lu tion  depic ted  in the sam e figure is to com pu te  the schedu les  fo r  2 

b i tm aps  w ith in  the sam e m atrix  row  dependen tly ,  look ing  ahead  to see w hich  slots in the
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second bitmap schedule can be interleaved w ith those from the first bitmap schedule in order 

to remove dependencies. This Lookahead scheduling can be extended to further bitmaps on 

the same basis as shown in order to accommodate floating-point adders w ith  progressively 

higher latencies which cause proportionately higher stall penalties i f  not resolved.

bitmapi bitmap2
OxOFOO 0x5448

0 0 0 0 0 0 1 0 1
1 1 1 1 1 0 1 0 0
2 0 0 0 0 0 1 0 0
3 0 0 0 0 1 0 0 0

0 1 2 3

ind ependent schedu Inc

sch (bnni) col 0 1 2 3
row 1 1 1 1

sch (bm2) col 0 1 1 1 3
row 3 0 1 2 0

lookahead sched uling

sch (bm1) col 0 1 2 3
row 1 1 1 1

sch (bm2)
col 0 1 1 3 1
row 3 0 2 0 1

Figure 8-1 Lookahead Bitmap Scheduling

The only disadvantages w ith extended bitmap scheduling are;

• Initial start-up latency o f N cycles where N stages o f Lookahead are used in bitmap 

scheduling

• Additional complexity in terms o f registers to hold partial products whose addition to 

the y-value is deferred because a RAW  hazard would otherwise arise.

8.2.9 Further Experimental SM VM  Benchmarking
It would make sense to extend this work to benchmark the proposed sparse matrix formats 

and SM VM  methods across multiple processor architectures and variants o f the same CPU 

containing different numbers o f cores, FSB speeds, cache sizes etc. Furthermore on multicore 

processors it would potentially increase performance i f  decompression code were run as a 

thread on a separate core in a CMP. Thus one core would decode bitmaps and prepare 

schedules which the other core would elaborate. It would also be interesting to investigate the 

u tility  o f bitmaps for other linear-algebra operations such as matrix-matrix products.
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8.2.10SM VM  Benchmark suites
The lack of availability of libraries and lack o f  standard benchmark suites of sparse matrices 

means that researchers in the field are forced in the first case to recreate the results o f  others, 

and in the second can “cherry-pick” results to prove their point. The field in general would 

benefit from a repository for SM VM  codes and standardised test-suites. Test-suites can be 

drawn from repositories such as MatrixMarket [11], UF Sparse Matrix Collection [6] or 

Parasol [12], Reliance on these matrices alone as “canned problem s” is felt to be insufficient 

by the author in that they may not contain sufficient data to gather statistically useful results. 

Furthermore reading in very large sparse matrices in text format and converting them to tiled 

data-structures is very time-consuming and can take tens to hundreds o f  times longer than 

SM VM  products.

A more useful approach would be to synthesise sparse data-structures algorithmically which 

have the desired statistical properties in terms of:

• number of non-zeroes per row/column

• particular block-structure or tile size

• particular non-zero density or pattern within blocks/tiles

Such a library would allow whole populations of matrices with particular properties to be 

created and evaluated algorithmically in a platform independent and reproducible manner 

allowing Sparse Matrix storage schemes and associated Sparse Matrix vector multiplication to 

be more thoroughly explored than with a fixed Sparse Matrix suite. A useful feature in such a 

library would be to extract algorithmic descriptions o f  sparse matrices from existing 

repositories such as MatrixMarket allowing them to be described in a concise manner, and 

used as a basis for the generation of new matrices with similar properties.

8.2.11 Other Uses for Bitmaps
An interesting extension of the work presented here is that the bitmap hardware can easily be 

extended to allow random access to compressed structures or hybrid structures in memory, 

without first having to decompress them. A representative hybrid data-structure is shown in 

Figure 8-2 and consists of a 3D scaling matrix which is around 50% sparse along with three 

dense 4-element vectors, a pointer to the next structure in m emory and a 32-bit bitmap 

associated with that next structure element. As can be seen in Figure 8-3, random access to 

any 4-element compressed or uncompressed element of the hybrid data-structure in mem ory 

can be readily achieved by employing a chain of simple adders and some additional logic to 

mask out the relevant sections. Assum ing that each sub-element in a 4-element sub-structure
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is the same length the bitmap bits can be summed directly to form an offset which is added to 

the base address o f the hybrid data-structure, thus forming the address o f the required sub

element o f the structure. The proposed scheme is fu lly  transparent to the memory hierarchy 

o f the processor advancing beyond the compression schemes surveyed in Chapter 4.

64-bit RAM wordbitmap description data address

base+0sysx

base+2

base+4

0.0

0.0

base+6

base+80.0

base+10 

base+120.0

base+14 

base+16

0.0
4x4 scaling m atrix

.addr. bmp0.0

0.0

sz

0.0

0.0

0.0

0.0

>---4-element vector

20

4-e lement vector
22

23

24

25
4-e lement vector

26

27

addr28 pointer to next str.

next str. Bitmap bmp29

30

Figure 8-2 Random Access to Sparse Data-Striictures
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Parting Thought

The work described here is the resuh of 6 years of on and off effort, much of which was not 

reported here as it was not considered (by the author) to merit inclusion. It has been a voyage of 

personal and scientific discovery with many roads taken and subsequently back-tracked when a 

new approach was required and brings to mind “The Road not Taken” by the American poet 

Robert Frost from his “M ountain Interval” collection in 1916.

Two roads diverged in a yellow wood,

And sorry I could not travel both 

And be one traveller, long I stood 

And looked down one as far as I could 

To where it bent in the undergrowth;

Then took the other, as just as fair 

And having perhaps the better claim.

Because it was grassy and wanted wear;

Though as for that, the passing there 

Had worn them really about the same,

And both that morning equally lay 

In leaves no step had trodden black.

Oh, I kept the first for another day!

Yet knowing how way leads on to way,

I doubted if I should ever come back.

I shall be telling this with a sigh 

Somewhere ages and ages hence: 

two roads diverged in a wood, and I —

I took the one less travelled by,

And that has made all the difference.
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