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Abstract 

With changes in the global climate, the occurrence of severe weather events appears to be becoming 
ever more frequent. As a result of this, vital transport networks are becoming increasingly exposed to 
disruption or disablement due to weather related incidents. In order to adapt to these changing 
conditions it is important to gain an understanding of how weather currently impacts transport 
systems. This paper presents the results of a statistical analysis of the impact of weather conditions on 
the performance of metropolitan commuter rail based upon observations made on the Dublin Area 
Rapid Transit (DART) rail system. Utilising a dataset comprising daily performance observations for 
30 train services operating across the DART network, this research applies a number of multiple 
regression models to gain an understanding of the role of weather, temporal effects, and resulting 
interactions, on delays experienced by the network. While research in this area has traditional focused 
on the impact of single events, this study presents an examination of the role of multiple factors and 
their interactions. With regard to temporal effects, the largest delays are observed in the last third of 
the year, with peak delays occurring in November. Delays due to adverse weather conditions are 
observed, with rain being the primary factor related to poor performance. Interactions between 
different weather conditions, particularly wind and rain, as well as between weather conditions and 
the month in which a journey took place were also observed to be significant and resulting in delays 
to services.  

1. Introduction  

The global climate appears to be undergoing significant changes due to increased concentrations of 
greenhouse gases within the atmosphere. One result of this is changes in the frequency and severity of 
weather events (IPCC, 2014). Within an Irish context this is likely to lead to warmer winters and 
increased large scale precipitation events (EPA, 2016). Changing weather patterns mean that there is 
an increasing need to understand how weather events impact upon existing public transport systems.	
  
Increases in heavy precipitation (mainly rain) and the frequency of high winds would appear to be an 
area of significant concern for network operators, however very little academic research currently 
exists regarding the quantification of the effects of weather events can have upon the performance of 
metropolitan heavy rail systems. This research provides an examination of the role of a number of 
weather parameters on a metropolitan heavy rail line in the Greater Dublin Area (GDA) in eastern 
Ireland.	
   

2. Background  

2.1 Climate Change and Transport   

Within the scientific community there is a large degree of consensus that the global climate is 
undergoing a dramatic change (Bray, 2010). In terms of the impact on existing transport networks, the 
United Nations Intergovernmental Panel on Climate Change (IPCC) has stated that the resulting 
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alteration of the climate is “likely to affect all transport modes to varying degrees” (IPCC, 2014). 
While some of these changes may be considered positive, with potential increases in the use of open 
air modes such as cycling and walking due to the potential easing of harsh winter weather conditions 
in northern latitudes (Broker et al, 2013 and Wadud, 2014), it would appear that current transport 
infrastructure may be highly vulnerable to the consequences of altered weather patterns. According to 
the IPCC “The transport sector will be highly exposed to climate change and will require extensive 
adaptation of infrastructure, operations, and service provision” (IPCC, 2014). Events such as coastal 
flooding and storm surges associated with sea level rise are likely to threaten transport infrastructure 
in low lying maritime areas, while increased precipitation may increase congestion and the frequency 
of traffic incidents (Koetse and Rietveld, 2009).  Coastal areas (like the area in which the DART 
operates) have been highlighted as particuarly vulnerable to increases in sea level and extreme 
weather (Dawson et.al, 2016). 

While it appears likely that changes in climate and weather may result in significant impacts upon 
current transport systems, it is not yet clear which services will be adversely affected, and how severe 
such impacts will be. With limited funding often available to network owners and operators, it is 
important to understanding how vulnerable given systems are to allow for prioritisation in adaptive 
works. With this in mind it is important to gain a better understanding of how weather impacts upon 
specific transport networks, in order to make predictions with regard to how changes in the climate 
are likely to affect such networks in the future. 

2.2 Weather and Other Modes  

While some work has been undertaken to assess the role that weather events play in the operation of 
railway networks, the majority of the research regarding the role of weather upon transport services is 
within the road traffic sector (Mesbah et al, 2015). Early research in this field in the late 1990’s from 
Wales and England shows the strong relationships between extreme weather and the frequency of         
accidents (Edwards, 1996). Research examining the role of precipitation upon road networks, (Hooper 
et al, 2014) highlighted significant reductions in speed, and the potential knock on effects for journey 
times, as well associated economic costs, whereas Kwon et al (2011) has highlighted weather as one 
of the factors that leads to the decomposition of travel time reliability. Similar work by Theofilatos 
and Yannis (2014) has shown that precipitation can increase the likelihood of road traffic accidents, 
but that the role of other parameters such as wind speed, temperature, and visibility are not were not 
clear. However, in specific cities such as London, research using Automatic Number Plate 
Recognition techniques has been used to determine travel time increases associated with defined 
levels of both rain and snow, while also finding negligible impacts of temperature (Tsapalis, 2013). A 
number of studies have examined the role that winter weather can have on traffic collisions in both the 
United States and Canada (Andrey et al, 2013) (Black and Mote, 2015), but point out that it is hard to 
generalise these findings across cities. 

Within the active transport sector research undertaken by Flynn et al (2011) found that bicycle 
commuting is significantly impacted by weather conditions with the absence of rain related to 
increased observed levels and the presence of snow leading to significant decreases. Similarly work 
undertaken in Toronto Canada has demonstrated the impact of weather conditions such as wind, rain, 
and low temperatures on non-motorised modes (Saneinejad et al, 2012).  

 

2.3 Weather and the Rail Sector    

While there is a large body of research assessing the impact of weather events on road networks, 
relatively little research has been carried out to date in terms of their impact upon main line rail 
services. Research into the likely effects of climate change on rail networks has highlighted potential 
delays resulting from extreme weather events (Koetse and Rietveld, 2009) due to factors such as very 
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high wind speeds and flooding events, which can lead to network or line segment closures. These 
weather based delays can also lead to the loss of economic efficiency as a knock-on effect (Rosetti, 
2002). An examination of the role of precipitation upon performance of Melbourne tram system by 
Mesbah et al (2015) showed that rainfall can produce detectable changes and delays to service levels. 
Similarly, research undertaken in the Netherlands has highlighted how weather events can result in 
direct effects upon train performance in terms of delays, as well as indirect effects as a consequence 
of impacts upon necessary infrastructure (Xia et al, 2013). When assessing how the 2010 winter 
weather affected rail freight operations in Norway, Sweden, Switzerland and Poland, Ludvigsen and 
Klæboe (2014) found that rail operators were totally unprepared to deal with the powerful and 
cascading effects of three weather elements. Specifically, these elements were long spells of low 
temperatures, heavy snowfalls, and strong winds. However, during this study it was difficult to 
establish clear causal relationships between the bad weather and occurrences of freight train delays 
and/or bad weather-induced technical problems affecting delay duration. 

Within the rail industry, the United Kingdom rail infrastructure owner and operator Network Rail 
identifies a number of sources of delay arising from weather events and categorises these into summer 
events, such as lightning strikes, rails buckling due to heat, and flooding, as well as winter delays 
arising from fog, snow and ice, high winds, and cold related rail fractures (Network Rail, 2015). 
Similar research examining the UK railway network has defined a number of thresholds for variables 
such as high and low temperatures, snow depths, and wind speed that can adversely impact 
operations, while less obvious phenomena such as humidity leading to engine malfunctions can also 
occur (Thornes and Davis, 2002). 

 

2.4 Research Objectives 

While some research has been carried out regarding the role of precipitation upon the performance of 
existing rail systems, it is clear that there is still a considerable gap in the literature regarding the role 
of other weather phenomena. This is especially true in terms of quantifying impacts weather events on 
services. Previous studies have tended to focus on the impact of individual conditions and events. 
More research is required with regard to combined effects and interactions between different weather 
phenomena, such as high winds and rain. Furthermore there are other factors that impact the 
performance of rail services and there is a need to better understand their interactions with weather 
conditions. In this paper, we attempt to address the following research objectives: 

• Assess the underlying temporal trends that impact the DART service. 
• Examine the role of weather in terms of its impact on service performance. 
• Examine interactions between different weather events and temporal effects, in terms of their 

ability to produce delays across the network. 

3 Description of the DART line 

The DART is an electrified heavy rail service operating on the eastern seaboard of Dublin. The DART 
is Ireland’s busiest heavy rail line, accounting for 56% of total annual patronage on Irish railways, and 
the line contains seven of the ten busiest stations on the entire network (NTA, 2013). The DART 
operates two separate services: one from Malahide in the north to Greystones in the south, and one 
from Bray (one stop north of Greystones) to Howth in the north east. The Malahide-Greystones 
service operates 48 times per day on a normal weekday, while the Bray-Howth service operates 78 
times per day. However, the majority of services share the same portion of the network, with only 7 of 
the stops served by the DART not comprising part of both services. For the purposes of this analysis it 
was decided to only examine the Bray to Howth Junction section of the line as the stations along this 
section are covered by both services. In the year under examination (2013) the DART had a daily 
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average ridership of 55,921 passengers, which was down very significantly from 83,618 in 2007 
(NTA, 2013). This decrease in ridership is likely to be a result of the contraction of the Irish economy 
which began with the 2008 financial crisis and has seen a general reduction in commuter numbers 
throughout the GDA.  

In terms of potential vulnerability of the service to weather events, the DART’s proximity to the coast 
of Dublin Bay leave it quite exposed to both coastal flooding and high winds, which may result from 
storms in the Irish Sea. As it is a metropolitan rail service, its passenger demand profile is closely 
linked to commuter trends, with spikes in demand occurring in the morning between 7am and 9am 
and again in the evening around 5pm. More detailed passenger data was not available to the research 
team for the purposes of this analysis.   

	
  

3.1 Weather and the DART 

Due to the exposed nature of the large sections of the line, DART services have a history of 
experiencing severe delays and disruptions due to extreme weather events. Within the last ten years 
numerous closures and delays along the DART line have been experienced, such as flooding arising 
from heavy rainfall, high winds causing trees to fall onto overhead lines, and disruptions due to heavy 
snowfalls. Flooding events leading to the closure of the DART line appear to relatively common, in 
particular in vicinity of Dalkey station in the southern half of the line. This has caused repeated line 
closures on the Bray- Dún Laoghaire section (Irish Times, 2014). Flooding events have also occurred 
at Bayside station on the Northern portion of the line (Journal, 2011), while serious damage caused by 
the flooding of the Dodder river in 2011 lead to the curtailment of services between Grand Canal 
Dock and Sydney Parade stations for a period of two weeks in October/November 2011 (Journal, 
2011). As the DART draws its power from overhead lines and has significant vegetation along 
portions of the line, trees falling as a result of high winds are a significant problem. Such events have 
resulted the suspension of services between the Dalkey and Dún Laoghaire stations (Irish Times, 
2011) in 2011, at Landsdowne Road Station in 2013 (Irish Examiner, 2013),  and on the Northern 
Section of the line in 2015. Heavy snowfall also has the ability to cause significant delays as seen in 
December 2010 (Herald.ie, 2010). While these events demonstrated that the DART line is vulnerable 
to disablement due to extreme weather events, they do not provide much in terms of contextual 
information regarding the impact of weather events on services which remain in operation but are still 
adversely affected.  

3.2 Seasonal Factors and Leaves on the Tracks 

One particular seasonal issue that tends to cause significant delays on the DART line is the presence 
of leaves on the tracks. This is caused by the shedding of deciduous trees along the track in the 
autumn and early winter. When such leaves fall on the rails, the rolling action of the train passing over 
them compacts them into ‘mulch’, which greatly reduces the coefficient of friction between the rail 
and wheels of the rolling stock. The consequence of this is a reduction in the possible safe 
acceleration rate of the carriages and also an extension in braking distances required by the trains. 
This in turn leads to a delay in scheduled services as trains have to operate below normal speeds. This 
problem is of significant magnitude that Irish Rail has invested in 86 traction gel applicators to help 
ease this problem and it provides regular updates to its users concerning this problem during the 
relevant season. See Irish Rail (2015) for more detailed information on this specific problem.   

While it is clear that DART services have a vulnerability to weather events, very little research 
currently exists regarding the specific effect of different weather parameters, in terms of the 
magnitude of their impact upon delays for service users. This research utilises both weather 
observations and DART performance records to produce a better understanding of the impact of the 
various weather conditions experienced by the service.  
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4 Descriptive Statistics  

The principal dataset considered for analysis was a record of the arrival and departure times of DART 
services, and their corresponding published schedules, from 2013. The first step, in terms of initial 
analysis of the dataset was the identification of underlying temporal trends. For the purposes of this 
analysis it was decided not to include observations for weekends or public holidays. No significant 
differences were noted in travel times between the different weekdays, however temporal trends were 
identified during the day (in terms of hours) and over the course of the year (in terms of months). Also 
weekends and public holidays display very different operating schedules and travel behaviors. 
Analysis of the data showed that the longest journey times occurred in the morning peak period and 
again over a longer period in the late afternoon/early evening. This finding would appear to agree with 
intuition, as these time periods represent peak periods of commuter activity, and therefore, trains are 
likely to be delayed as more passengers attempt to board. While the dataset does not contain 
observations for journeys before 7am and after 6pm, it is expected that journey times in these periods 
would be lower than those seen at  peak times. With regard to the differences between journey times 
throughout the year, the median journey time remains quite consistent for the first nine months of the 
year but increases in October, reaching a peak in November before falling off again. One possible 
explanation for this may be the presence of leaves on the track as alluded to previously. 

The second dataset used for the purposes of this research, was the weather data collected from the 
Irish Meteorological service Met Éireann (Met Éireann, 2015). For this study the weather data 
collected from the Dublin Airport weather station for the 2013 calendar year is used as it is the closet 
station to the line. This dataset contained hourly records for occurrences such as wind and gust speed 
(km/hr), temperature (degrees C), snowfall and rainfall (mm), and visibility (m). As well as providing 
this information, Met Éireann also provides a number of criteria for their colour coded weather 
warnings (Met Éireann, 2015). Based upon these criteria, it was possible for the research team to 
define a good weather or “Green” condition within the dataset. This refers to a time period where 
none of the weather warnings are in place, and this condition is defined by the thresholds outlined in 
Table 1.  

Table 1: Green Condition Criteria  

Weather Event Threshold 

Wind speed < 80 km/hr 

Rain after 24 hours < 30 mm 

Rain after 12 hours < 25 mm 

Rain after 6 hours < 20 mm 

Temperature < 27C 

Temperature > 2C 

Visibility > 1000m 

	
  

5 Methodology 

5.1 Data Filtering  

The DART performance data was initially supplied by Irish Rail and was then filtered to remove 
observations that did not meet relevant criteria from the dataset. For the purposes of this research the 
term “journey time” was defined as the time that the train arrives at the last station considered for 
analysis minus the time it departed the first station considered. This does not consider whether or not 
the train was late into service, and therefore only the impact of weather conditions on trains already in 
operation is considered. The initial dataset was filtered to allow for the removal of known outliers 
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arising from such sources as public holidays, major sporting events at Dublin’s Aviva Stadium 
(football and rugby stadium with a capacity of 52,000), and non-weather related disruptions, such as 
traffic bridge strikes and level crossing failures that were reported in the media. To allow for more 
comparable analysis, all observations occurring on Saturdays and Sundays were also removed from 
the dataset. 

The next step was to remove unknown outliers in line with common approaches within the literature 
(Mesbah, 2015). The aim of removing these unknown outliers is to take into consideration (a) other 
events affecting the demand not included previously, such as strikes in other public transportation 
modes; (b) non-specified maintenance or repair activities; and (c) the fact that very good weather 
conditions might related to an increment of the users travelling in a more relax manner (implying 
larger delays). This filter was only applied to observations in the data set that met Green Condition 
criteria, that is outliers that were not linked to incidents of bad weather. The reason for this is that it 
was desired to keep outliers that may be associated with extreme weather events as they related to the 
research objectives of the study. With a remaining sample size after initial filtering of approximately 
6,000 observations plotted on a normal distribution, it is possible to argue that points furthest in tails 
of normal distribution that circa 1/6,000 (= 0.00015) could be viewed as outliers. First the mean and 
standard deviation of journey times was calculated. Points more than 3.29 standard deviations from 
mean were deleted (this corresponds to probabilities of 0.9995 and 0.0005). The mean and standard 
deviation were then recalculated and the process repeated. Having done this three times, all (Green 
Condition) data points fulfilled this criterion, removing 91 outliers from the dataset.  

Once these filters had been applied the rail data set was considered to be in its final form. The overall 
effect of the removal of unwanted observations is a decrease in the total number of observations from 
8,811 to 6,345, resulting in a slightly increased mean journey time of 60.56 minutes in comparison to 
60.18, and a reduced standard deviation of 3.17 minutes in comparison to 3.81 minutes.  

5.2 Regression Models 

At first, a simple multiple linear regression model was fitted to the data. In this model, it is assumed 
that the effect of the explanatory variables on journey time will occur independently. This model is 
described in Equation 1.   

𝑌! = 𝛽!         +    𝛽!!
!!! 𝑋!" +   𝜀!           (1) 

Where: Yi is the dependent variable, β0 is the intercept, βp is the coefficient for the independent 
variable p, Xip is the observed value, and εi is the error term.  

5.3 Akaike’s Information Criterion 

For the purposes of the estimation of the models, Akaike’s information criterion (AIC) (Akaike, 1973) 
was used to decide which variables to include and exclude. This approach rewards increased goodness 
of fit, given by the likelihood function, and penalizes the number of estimated parameters, avoiding 
the overfitting problem. The two main limitations of the AIC concern small sample sizes and complex 
collections of models and are not applicable to this situation. 

Once the descriptive analysis of the two datasets had been undertaken, the next step was to attempt to 
model the impact of weather events upon the journey times of services along the DART line. This was 
done via a multiple linear regression analysis.  

5.4	
  Modelling Steps  
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For the purposes of this analysis initial regression models were constructed and then additional 
variables added to increase the complexity and performance of the models. This involved first 
creating models based upon the DART schedule and the the unique Train_ID, and then adding 
weather and temporal variables. The Train_ID variable is a unique identifier for a given scheduled 
service and is likely to capture information such as passenger demand. The first of these weather 
models only considered whether or not the Green Condition defined previously was true or not, with 
the dummy variable taking a value of 1 when good weather was present and 0 when it was absent. 
The next model considered the impact of the various weather terms as independent variables, while 
the last model assessed the interaction of weather terms with each other and also temporal terms. 

5.5 Model 1: Schedule and Train_ID models  

The first two models developed were designed to create a base model. In the first model the published 
train schedules was the only independent variable, whereas in the second base model the Train_ID 
was used. The details of these models can be seen in Table 2. The results in Section 6 indicate that the 
published schedule does a very poor job explaining the observations within the data set and that the 
Train_ID, and the latent information contained within that variable, provides a better explanation of 
the variation. This model is labelled Model 1. 

Table 2: Initial Models 

Variable Examined Description Variable Type 

Schedule  The published schedule for the service  Categorical 

Train_ID The unique ID of the train.  Categorical 

5.6 Model 2: Green Condition Model  

The next step was to create a model, which in addition to the Train_ID and the schedule also 
considered the weather conditions present during the trip. The first and simplest of these models 
simply considered whether or not the Green condition defined in Section 4 had been breached during 
the duration of the journey. If it had not been breached it could be considered that trip took place 
during good weather conditions. Table 3 outlines the variables that were included in this model. This 
model was labeled Model 2. 

Table 3. Weather Effects Model (2) Variables 

Variable Examined Description Variable Type 

Schedule  The published schedule for the service  Categorical 

Train_ID The unique ID of the train.  Categorical 

Green Indicator variable for whether green conditions existed Categorical 

5.7 Model 3: Specific Weather and Temporal Variables Model   

Model 3 expanded upon weather conditions examined in Model 2, however, rather than simply 
considering the whether or not the Green condition had been breached, this model assessed the role 
that the various weather conditions, for which there was data available, had in terms of producing 
delays to the service. This model also examined the role of temporal effects, specifically in the form 
of a Month variable relating to the calendar month in which the journey took place. The variables 
considered are outlined in Table 4 and this model is labeled Model 3.   

Table 4. Specific Weather Effects Model (3) Variables 

Variable Examined Description Variable Type 

Schedule  The published schedule for the service  Categorical 
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Train_ID The unique ID of the train.  Categorical 

Month The month of year in which the trip takes place Categorical  

Rain  The amount of rain (mm) that fell in the previous hour Continuous  

Rain_6 The amount of rain (mm) that fell in the previous six hours Continuous  

Rain_12 The amount of rain (mm) that fell in the previous twelve hours Continuous  

Rain_24 The amount of rain (mm) that fell in the previous twenty four hours Continuous  

Wind_Speed The average  hourly wind speed  in kilometres per hour  Continuous  

Temp The average hourly temperature in degrees C Continuous 

Visibility The visibility in metres  Continuous 

5.8 Model 4: Interactions Model   

The final regression model (Model 4) that was created considered impact of interactions between 
different weather terms, and between weather terms and temporal terms. Specifically, we were 
interested in whether the combination of heavy wind and rain had the potential to cause longer delays, 
particularly in the autumnal months, where wet leaves on the track were known to be an issue. As 
there were a large number of possible interaction terms for this model, AIC was used to determine 
which were to be kept in the model. Variables and interaction terms that did not improve the criterion 
were dropped from the model in a stepwise procedure. The retained model terms are outlined in Table 
5. 

Table 5. Interactions Model (4) Variables 

Variable Examined Description Variable Type 

Schedule  The published schedule for the service  Categorical 

Train_ID The unique ID of the train.  Categorical 

Month The month of year in which the trip takes place Categorical  

Rain  The amount of rain (mm) that fell in the previous hour Continuous  

Rain_6 The amount of rain (mm) that fell in the previous six hours Continuous  

Rain_12 The amount of rain (mm) that fell in the previous twelve hours Continuous  

Rain_24 The amount of rain (mm) that fell in the previous twenty four hours Continuous  

Wind_Speed The average  hourly wind speed  in kilometres per hour Continuous  

Month.Wind_Speed The interaction between wind speed and a given month  Interaction 

Month.Rain  The interaction between rain in the previous hour and a given month Interaction 

Month.Rain_12 The interaction between rain in the previous twelve hours and a given month Interaction 

Month.Rain_24 The interaction between rain in the previous twenty four hours and a given month Interaction 

Wind_Speed.Rain_24 The interaction between wind speed and the rain in the previous twenty four hours  Interaction 

Month.Wind_Speed.Rain_24 The interaction between the month, wind speed and rain in the previous twenty four 
hours 

Interaction 

 

6 Results  

This section presents the results of the regression modelling process. In the case of each of the models 
the journey time is the dependent variable.  

Model 1 

The first model assessed the role that the published service scheduled and the unique train identifiers 
played in terms of predicting the observed trip lengths. Table 6 outlines the performance of the model 
if first Schedule and then Train_ID are used as the predictor variable. These results clearly indicate 
that the Train_ID variable provides more information than the scheduled times, which have poor 
predictive performance. This finding may be considered to be quite unexpected as it appears to 
indicate that the published schedules in fact bare little or no relation to the real world observations. 
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This is very much in contrast to other studies (Mesbah et al, 2015) where such timetables provide the 
greatest amount of explanatory power. As this result was so surprising it was re-checked, however it 
does appear to reflect underlying issues with timetable accuracy.   

Table 6.R2 Values  

Model R2 Value (Adjusted) 

Schedule  0.05 

Train_ID 0.17 

	
  

Model 2 

In addition to the train’s ID and schedule, Model 2 also considered the impact of weather, in terms of 
whether or not the green condition was breached. Table 7 displays the ANOVA values associated 
with this analysis.  

 

 

 

 

Table 7. Model 2 ANOVA  

Coefficient DF SSE MSE F value P Value 

Schedule 1 10.94 10.95 1.38 0.24 

Train_ID 29 10994.54 379.12 47.77  < 10-5 

Green 1 181.80 181.80 22.90 < 10-5 

Residuals 6306 50051.28 7.94   

 
The estimates for the terms examined in Model 2 are outlined in Table 8 and demonstrate that journey 
time can vary considerably with regard to the specific service that is running. With regard to weather 
impacts, when the Green condition is observed to be true, that is there is good weather present, 
journey times are on average 0.7 of a minute or 42 seconds faster than when this condition is not met. 
This can be considered to be a significant delay.  

Table 8. Model 2 Estimates   

Coefficient Estimate P value Coefficient Estimate P value 

(Intercept)** 46.78 0.00005 Train 18 0.51 0.07 
Train 1* 0.70 0.01198 Train 19 0.18 0.523 
Train 2 -0.04 0.91 Train 20** 1.22 0.00945 
Train 3 -0.46 0.10 Train 21** 1.26 0.00733 
Train 4 0.10 0.75 Train 22** -2.06 < 10-5 
Train 5 0.05 0.85 Train 23 -0.02 0.97 
Train 6** 2.54 < 10-5 Train 24** -1.92 < 10-5 
Train 7** 1.57 0.00349 Train 25 -1.85 0.27 
Train 8** 1.28 < 10-5 Train 26* 0.66 0.01716 
Train 9** -1.01 0.00030 Train 27 2.64 0.35 
Train 10** -2.02 < 10-5 Train 28 -0.02 0.97 
Train 11 0.46 0.10 Train 29 0.94 0.20 
Train 12 -0.22 0.44 Train 30 1.39 0.62 
Train 13 -0.18 0.53    
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Train 14** -1.17 0.00009 Green -0.70 < 10-5 
Train 15** -2.56 0.00050 Schedule 0.24 0.21 
Train 16** -2.18 < 10-5    
Train 17** 46.78 0.00005    
Residual standard error: 2.82 on 6306 degrees of freedom. 
Multiple R-squared  0.18. 
Adjusted R-squared: 0.18. 
F-statistic: 45.47 on 31 and 6306 degrees of freedom. 

* Significant at Alpha =0.05, ** Significant at Alpha=0.01  

Model 3 

The third model under consideration assessed the role of both individual weather events as well as the 
impact of temporal variables in terms of the calendar months of the year in which the journey 
occurred. Table 9 outlines the ANOVA values associated with this model. This model examined 
variables such as wind speed, visibility, temperature, and rain fall over one, six, twelve, and twenty 
four hours respectively. 

 

 

 

Table 9. Model 3 ANOVA 

Coefficient DF SSE MSE F value P Value 

Train_ID 29 10994.54 379.12 51.15 < 10-5 
Schedule 1 10.95 10.95 1.48 0.22 
Month 11 3524.70 320.42 43.23 < 10-5 
Rain 1 73.57 73.57 9.93 0.00163 
Rain.6 1 0.01 0.01 0 0.97 
Rain.12 1 2.21 2.21 0.30 0.589 
Rain.24 1 14.75 14.75 1.99 0.16 
Wind.Speed 1 0.78 0.78 0.11 0.75 
Temperature 1 3.09 3.09 0.42 0.52 
Visibility 1 1.44 1.44 0.19 0.66 
Residuals 6289 46612.54 7.41   

 

The variable estimates associated with Model 3 are presented in Table 10. The month variables are 
expressed in minutes and take January as the reference variable. Therefore negative coefficient 
estimates indicate that a journey taken in a given month is likely to be shorter than one taken in 
January and a positive coefficient indicates that it will be longer. The results indicate that all months 
with the exception of July can be considered to significant, with lower journey times than January 
being observed in all months except October, November, and December. The most significant delays 
can be seen to occur in November. With regard to the weather variables under examination, only rain 
that fell with an hour before a given journey was found to be statistically significant and a cause of 
delays.  

Table 10. Model 3 Estimates   

Coefficient Estimate P value Coefficient Estimate P value 

(Intercept) 43.60  Train 26 2.36 0.39 
   Train 27 -0.10 0.79 
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Train 1** 0.70 0.00952 Train 28 0.71 0.32 
Train 2 -0.06 0.88 Train 29 0.07 0.98 
Train 3* -0.55 0.04615    
Train 4 0.07 0.82 Schedule 0.29 0.13 
Train 5 -0.05 0.84    
Train 6** 2.45 < 10-5 Month_Feb** -0.60 0.00039 
Train 7** 1.44 0.00602 Month_Mar** -0.70 0.00005 
Train 8** 1.22 < 10-5 Month_Apr** -0.80 < 10-5 
Train 9** -1.12 0.00004 Month_May** -0.79 0.00002 
Train 10** -2.14 < 10-5 Month_Jun** -0.79 0.00032 
Train 11 0.35 0.20 Month_Jul -0.42 0.08 
Train 12 -0.31 0.25 Month_Aug** -0.73 0.00157 
Train 13 -0.27 0.31 Month_Sep* -0.40 0.04936 
Train 14** -1.15 0.00008 Month_Oct 0.35 0.07 
Train 15** -2.77 0.00012 Month_Nov** 1.54 < 10-5 
Train 16** -2.24 < 10-5 Month_Dec** 0.95 < 10-5 
Train 17 0.47 0.08    
Train 18 0.15 0.57 Rain** 0.30 0.00910 
Train 19** 1.29 0.00478 Rain.6 0.01 0.82 
Train 20* 1.16 0.01139 Rain.12 0.02 0.59 
Train 21** -2.12 < 10-5 Rain.24 -0.02 0.15 
Train 22 -0.22 0.68 Wind.Speed 0 0.70 
Train 23** -1.96 < 10-5 Temp -0.01 0.54 
Train 24 -2.61 0.11 Visibility 0 0.66 
Train 25* 0.62 0.02136    
Residual standard error: 2.72 on 6289 degrees of freedom. 
Multiple R-squared  0.24. 
Adjusted R-squared:  0.23. 
F-statistic: 41.11, on 48 and 6289 degrees of freedom. 

* Significant at Alpha =0.05, ** Significant at Alpha=0.01  

Model 4 

The final model created as part of this analysis concerned the interactions between the various 
weather events and temporal factors under consideration. As the examination of interaction terms was 
likely to produce a very large range of variables that could make the model unwieldy, the AIC was 
used for this model to determine which variables should be retained. Table 11 outlines the variables 
that were included in this analysis.  Variables included in this model that are not considered in the 
previous models were: the interaction between the month and wind speed, the interaction between the 
month and the level of rain in the previous one, twelve, and twenty four hours respectively, the 
interaction between the wind speed and the rain in the previous twenty four hours, and the interaction 
between the month, the wind speed, and the rain in the previous twenty hour hours. 

Table 11. Model 4 ANOVA 

Coefficient DF SSE MSE F value P Value 

Train_ID 29 10994.54 379.12 52.06 < 10-5 
Schedule 1 10.95 10.95 1.505 0.22 
Month 11 3524.70 320.43 44.00 < 10-5 
Wind_Speed 1 2.09 2.09 0.29 0.59 
Rain 1 72.23 72.23 9.92 0.00164 
Rain12 1 2.03 2.032 0.28 0.60 
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Rain24 1 14.88 14.88 2.04 0.15 
Month_Wind_Speed 11 185.12 16.83 2.31 0.00800 
Month_Rain 11 311.15 28.29 3.88 < 10-5 
Month_Rain12 11 263.51 23.96 3.29 0.00016 
Month_Rain24 11 176.13 16.01 2.20 0.01210 
Wind_Speed_Rain24 1 2.46 2.46 0.34 0.56 
Month_Wind_Speed_Rain24 11 263.94 23.99 3.29 0.00016 
Residuals 6236 45414.86 7.28   

	
  

As the interactions model contained significantly more variables than the previous models (over 100), 
Table 12 only displays the interaction terms and those terms that have not appeared in previous 
models. It is clear that there are a number of significant interactions such as the wind speed in 
November, the twelve hour rain fall November, the twenty four rainfall in a number of months, and 
interactions between wind speed, twenty four hour rainfall, and the month in which the journey 
occurred. It is interesting to note that a number of these interactions produce negative estimates 
suggesting that increased rainfall in certain months may be associated with reduced journey times.  

 

 

 

Table 12. Model 4 Estimates   

Coefficient Estimate P value Coefficient 
Estima

te P value 
Feb_Wind.Speed 0.01 0.71 Aug_Rain12 0.16 0.37 

Mar_Wind.Speed 0.01 0.51 Sep_Rain12 0.07 0.68 

Apr_Wind.Speed 0.01 0.71 Oct_Rain12 -0.01 0.95 

May_Wind.Speed 0 0.94 Nov_Rain12** -0.58 0.001941 

Jun_Wind.Speed -0.01 0.63 Dec_Rain12 -0.18 0.20 

July_Wind.Speed 0 0.84 Feb_Rain24** -0.94 0.00037 

Aug_Wind.Speed 0.02 0.22 Mar_Rain24 -0.93 0.00009 

Sep_Wind.Speed 0.01 0.70 Apr_Rain24 -0.56 0.05 

Oct_Wind.Speed 0.02 0.47 May_Rain24 -0.54 0.07 

Nov_Wind.Speed** 0.08 0.00022 Jun_Rain24** -0.66 0.00166 

Dec_Wind.Speed -0.02 0.38 Jul_Rain24 -0.75 0.00003 

Feb_Rain -0.89 0.14 Aug_Rain24** -0.83 0.00583 

Mar_Rain -0.63 0.16 Sep_Rain24** -1.48 0.00021 

Apr_Rain -0.91 0.08 Oct_Rain24** -0.65 0.00023 

May_Rain** 1.69 0.00253 Nov_Rain24* 0.86 0.03649 

Jun_Rain -0.37 0.54 Dec_Rain24** -0.97 0.00024 

Jul_Rain -0.55 0.11 Wind.Speed_Rain24* -0.02 0.01501 

Aug_Rain -0.55 0.16 Feb_Wind.Speed_Rain24* 0.03 0.01551 

Sep_Rain -0.43 0.47 Mar_Wind.Speed_Rain24** 0.03 0.00219 

Oct_Rain 0.05 0.88 Apr_Wind.Speed_Rain24 0.01 0.34 

Nov_Rain* 2.44 0.01 May_Wind.Speed_Rain24 0.02 0.17 

Dec_Rain -0.64 0.10 Jun_Wind.Speed_Rain24 0.02 0.10 

Feb_Rain12 0 0.98 Jul_Wind.Speed_Rain24* 0.02 0.012 

Mar_Rain12 -0.05 0.75 Aug_Wind.Speed_Rain24 0.02 0.09 

Apr_Rain12 0.14 0.40 Sep_Wind.Speed_Rain24** 0.06 0.00553 
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May_Rain12 0.15 0.29 Oct_Wind.Speed_Rain24* 0.02 0.02527 

Jun_Rain12 0.12 0.36 Nov_Wind.Speed_Rain24** -0.06 0.00262 

Jul_Rain12 0.12 0.31 Dec_Wind.Speed_Rain24* 0.02 0.01458 

Residual standard error: 2.70 on 6236 degrees of freedom. 

Multiple R-squared  0.26 

Adjusted R-squared:  0.25 

F-statistic: 21.51 

* Significant at Alpha =0.05, ** Significant at Alpha=0.01  

7 Discussion  

This research set out to examine the role that weather events can play in producing delays along the 
DART network. Specifically this research was focused around three question research objectives, 
namely, to assess the underlying temporal trends that impact the DART service, to examine the role of 
weather on service performance, and to examine interactions between different weather events and 
temporal effects in terms of their ability to produce delays. 

Scheduled Journey Times 

One of the most striking results to emerge from this analysis is the apparent lack of relationship 
between the schedule of journey times published by the DART operator and the journey times 
observed within the dataset. This is a very significant finding as published schedules tend to provide a 
large amount of exploratory information, in terms of the dependent variable.   

Temporal Trends  

An examination of temporal trends highlighted two distinct underlying factors: the time of day, and 
the calendar month in which the journey took place. With regard to the effect of a given month, it was 
apparent that greater delays occur within the winter months, with especially large delays being 
experienced in November. 

Weather  

The impact of weather events was analyzed in two distinct ways. Model 2 assessed the impact of the 
good weather indicator titled the Green Condition being breached, and found a significant effect, with 
estimated average delays of 0.7 minutes or 42 seconds. Model 3 assessed the impact of individual 
weather events, and found that only rain within the hour previous to a journey had a significant effect, 
in this case contributing to delays.  

Interactions 

The final area under examination was the impact of interactions between temporal terms and weather 
events, and varying types of weather event. We detected a number of double interactions between rain 
at varying levels and month, especially for November, and a triple interaction between wind speed, 
rain over the previous 24 hours, and month.  

In particular, heavy rain in the past hour caused longer delays in May and November in comparison 
with January. A majority of months, with the exception of November, were less badly affected by 
heavy rain over a 24 hour period in comparison with January, but were more badly affected by high 
winds and heavy rain together in comparison to January. 

Controlling for these interactions, differences between months are much less pronounced. This 
suggests that rain levels and wind per month may partially explain why these differences occur, and 
may be reflecting issues such as leaves being blown onto the tracks and lowering operating speeds. 
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8 Study Limitations  

While this research was fortunate enough to have access to two large data sets in the forms of the 
DART performance data and the annual weather data, there were a number of factors that limited its 
ability to provide a totally comprehensive analysis of the factors impacting the performance of the 
service. Specifically data was not available regarding daily passenger numbers and the increases in 
boarding times that are likely to be associated with more users. In addition information was not 
available regarding any delays that may have been experienced by the DART due to issues related to 
other services sharing which also share sections of the network in central Dublin, though the influence 
of the demand on the daily delay is partially represented by the Train_ID variable. While the models 
produced provided an interesting insight into the role of weather in terms of producing delays, there is 
still a large amount of unaccounted for variance. Table 13 displays the R2 values associated with the 
models. While these can be considered poor, this is in the main due to the lack of explanatory power 
present within the schedule, which should greatly contribute to these values (Mesbah et al, 2015).  

Table 13. Model Comparisons  

Model R2 Value (Adjusted) 

Model 1 0.17 
Model 2 0.18 

Model 3 0.23 

Model 4 0.25 

 

An added difficulty is the complex nature of weather, with specific weather instances regularly co-
occurring. This can lead to collinearity between explanatory variables, and care must be taken when 
assessing our results. For example, some of the coefficient estimates for parameters relating to the 
month of November are difficult to interpret, and may be due to the fact that the data is only partly 
explained by a simple linear model. While we attempted to control for this by, for example, reducing 
the correlation between cumulative rainfall for different numbers of hours, this is impossible to 
remove from the dataset entirely. Despite this, there is still ample evidence of the effect that weather 
events can have on rail journeys.  

9 Conclusions  

Changes in the global climate are likely to lead to new challenges in terms of managing and operating 
existing transport infrastructure. As weather conditions become less predictable it is important to gain 
an understanding how such events currently impact transport services to enable informed future 
planning. While a large body of work has been undertaken within the road transport sector with regard 
to the impact of weather on journey times, relatively little work has been done within the rail sector, 
specifically with regard to commuter heavy rail. This research utilized data collected from the DART 
service in Dublin to assess how such conditions can result in delays on a metropolitan rail service. 
The results of this analysis demonstrate that bad weather can have a significant and negative impact 
on journey times, with rain being the principal cause of observed delays. It is also clear from this 
analysis that there are a number of significant interactions between weather conditions, such as wind 
speed and rainfall in a given preceding period. There are also significant interaction effects between 
the various weather conditions, weather interactions, and temporal factors such as the calendar months 
in which they occur. It is theorised that one of the observed effects may be linked to operational issues 
relating to the compaction of deciduous leaves during the late autumn and early winter, however this 
needs more research, and is likely to be specific to the DART line, rather than generalizable. While 
weather events did create detectable delays within the service, there appear to be a number of other 
issues, specifically the apparent lack of relationship between the published DART schedules and the 
observed journey time contained within the dataset. This research sought to expand the literature 
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relating to the impact of weather events, and specifically interactions and temporal effects, by 
applying it to a large amount of observations recorded for a suburban service. However, it must be 
noted that the DART line operates along the coast of Dublin Bay, and is therefore very exposed to 
high winds and maritime conditions for large stretches. This would suggest that while the authors 
believe that this research yields valuable insights, there is a need for further research be undertaken 
examining services operating in different geographic locations and in different climates. 
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