Characterization Against EGFR T790M in Cell and Xenograft Models

Background: The activation of epidermal growth factor receptor (EGFR) pathway via different mechanisms leads to drug-resistant mutations including gatekeeper T790M mutation (more than 25% of all breast cancer cases). Trastuzumab (T), a humanized monoclonal antibody, and lapatinib, a small molecule tyrosine kinase inhibitor are found effective NSCLC patients harboring activating mutations. Over time, most tumors develop resistance to EGFR inhibitor by the development of neoangiogenesis. Small molecule inhibitors of EGFR kinase, have been developed for cancer therapy, in order to target the mutant EGFR. TAS-2913 is a potent and unique kinase inhibitor that targets the mutant EGFR while sparing EGFR wild type signaling.

Methods: In vitro enzyme inhibition assay activity of TAS-2913 for EGFR and its mutants was determined by using TR-FRET assay. For growth inhibition assay, cells were treated with TAS-2913 for 3 days, and living cells were determined by using CellTiter Glo® which measures cellular ATP.

Antitumor activity of TAS-2913 as a single agent was assessed in NSCLC xenograft models harboring different EGFR status. To test whether TAS-2913 inhibits phosphorylation of EGFR with T790M mutation in tumor tissues, we examined pharmacodynamic analysis in H1975 (T790M/L858R), HCC827(del exon 19) and the gatekeeper mutation (T790M) while sparing EGFR wild type signaling.

Results: In biochemical assays, TAS-2913 inhibits EGFR mutants in sub-nano molar range with more than 10-fold selectivity compared with wild type EGFR. TAS-2913 caused significant tumor growth inhibition in the H1975 (T790M/L858R) xenograft model. Partial tumor regression was observed at over 100 mg/kg, whereas it did not cause body weight loss. TAS-2913 at doses of 100 mg/kg completely inhibited auto-phosphorylation of EGFR and it's down stream signal pathways in H1975 and HCC827 but not in NUGC3 xenograft models.

Conclusion: These results suggest that TAS-2913, a potent mutant-selective EGFR inhibitor, may represent a new therapeutic strategy in the treatment of NSCLC resistant to EGFR/TKI.

alteration of ErbB3 and to sensitize platinum-resistant cells to subsequent chemotherapy.

Materials and Methods: Cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian cancer cell lines were acquired from ATCC. Primary ascites cells were isolated from advanced stage ovarian cancer patients who had undergone prior therapy. Cells were propagated in vitro and cell viability assays were performed in the presence of platinum-based drugs, taxanes, or MM-121. Heregulin stimulation and inhibition of signaling by MM-121 were evaluated by quantitative western blotting and reverse phase protein arrays. Drug sensitivity and signaling were assessed for A2780 and A2780cis using subcutaneous xenografts. Basal heregulin levels were measured by ELISA and miRNA-based methods.

Results: Consistent with our hypothesis that platinum resistance can be mediated by ligand-driven ErbB3 signaling, basal heregulin levels were increased in A2780cis cells relative to A2780 cells, and growth of A2780cis (but not A2780) xenografts was sensitive to MM-121. Interestingly, patient-derived ascites cells exhibited differential sensitivity to paclitaxel and platinum-based drugs, and cells isolated from the same patient over the course of treatment provided evidence of acquired resistance. Ascites cells responded differently to heregulin stimulation and inhibition by MM-121, suggesting that only a subset of cells develop resistance through this mechanism. Resistance was also responsive to MM-121, and MM-121 sensitizes some of these cells to paclitaxel treatment.

Conclusion: Platinum resistance is associated with increased heregulin expression, which is responsive to heregulin-activated cell lines and primary ascites cells. MM-121 could potentially play a role in overcoming platinum resistance or in sensitizing cells to subsequent chemotherapy. As only a subset of cells developed resistance through this mechanism, resistance was also responsive to MM-121, and MM-121 sensitizes some of these cells to paclitaxel treatment.

Background: Heregulin positive breast cancer patients that initially respond frequently develop resistance. The aim of this study is to investigate miRNAs in cell line models of acquired trastuzumab and lapatinib resistance.

Methods: miRNA profiling was performed on SKBR3-L, SKBR3-L and SKBR3-L using Taqman Low Density Arrays (TLDA). Differentially regulated miRNAs were selected using >2-fold change and a P-value of <0.05. Individual quantitative RT-PCR (qRT-PCR) was performed to confirm alterations in miRNAs. Further validation was carried out on other models of acquired resistance, BT474-T, HCC-1954-L and EFM-192A-L compared to their parents. Functional studies were performed on SKBR3-L and SKBR3-L cells. Further validation of these targets in the other models of acquired resistance showed that showed miR-224 expression is lost in the BT474-Tr compared to the BT474 cells, however, is not significantly altered in the HCC-1954-L and follows the opposite trend in the EFM-192A-L. miR-224 is significantly altered in the HCC-1954-L and EFM-192A-L cells. MiR-9 is not significantly altered in the BT474-T cells. Transfection of SKBR3 cells with pre-miR-224 significantly decreases cell proliferation by 23.5% (P = 0.04).

Conclusions: This is the first report of the involvement of miRNAs in acquired resistance with lapatinib IC50 values greater than 1 μM. MicroRNA profiling showed that SKBR3 cells undergo apoptosis in response to lapatinib whilst the SKBR3-L cells do not. While no significant difference in apoptosis induction was observed when the cells
Poster Session – Drug Resistance and Modifiers

Wednesday 7 November 2012

were treated with a chemotherapy agent to activate the intrinsic pathway of apoptosis, the SKBR3-L cells displayed significantly increased sensitivity to activation of the extrinsic pathway of apoptosis using either TRAIL (12.5 ng/ml p = 0.008) or TNFa. 12.5 ng/ml p = 0.008. The EFM192A-L cells also displayed enhanced sensitivity to TRAIL, whereas the HCC1954-L cells did not. Using microarray analysis, we identified alterations in expression of members of the BCL2 family. We observed increased expression of MCL-1 and BID, and decreased expression of BAX in the SKBR3-L cells. We also examined expression of transcription factors which regulate expression of BCL2 genes and TRAIL receptors. FOXO3a levels were increased in the SKBR3-L cells whereas c-JUN was reduced in the SKBR3-L cells. FOXO3a is regulated by Akt and we found that the increased sensitivity to TRAIL in the SKBR3-L and EFM192A-L cells was associated with decreased p-Akt. In addition to the enhanced sensitivity to TRAIL, the three resistant cell lines also showed increased sensitivity to the BCL2 inhibitor obatoclax. 

Conclusions: Acquired lapatinib resistance results in in alterations of specific OCT2 inhibitors (rapamycin, NH125 and okadaic acid). Levels of p-eEF2 A.Sparreboom1. HCC1954-L cells which are resistant to lapatinib (IC50 2.67 and (iv) PP2A inhibition restores p-eEF2 in SKBR3-L cells. In addition, that: (i) lapatinib increases the levels of p-eEF2 in SKBR3-par cells only; a phosphoprotein which was significantly lower in the SKBR3-L cells enriched samples identified eukaryotic elongation factor 2 (eEF2) as 0.01 in SKBR3 cells) and proteomic analysis of phospho-

POSTER

145

PP2A – a Novel Target for the Treatment of Lapatinib-resistant Breast Cancer

M.S. McDermott1, B.C. Browne1, N.A. O’Brien2, D.J. Slamon3, M. Henry1, P. Meleady1, M. Clynes1, P. Dowling1, J. Crown3, N. O’Donovan1. 1National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland; 2David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA; 3Dept of Medical Oncology, St. Vincent’s University Hospital, Dublin, Ireland

Background: Mechanisms of acquired lapatinib resistance are poorly understood. We developed two novel cell line models of acquired lapatinib resistance and used proteomic profiling to identify proteins and pathways associated with resistance.

Methods: SKBR3 and HCC1954 cells were conditioned with 0.25 and 1 μM lapatinib respectively for 6 months, resulting in lapatinib-resistant SKBR3-L and HCC1954-L cells. The phospho-proteome of lapatinib-sensitive and resistant SKBR3 cells was compared. Immunoblotting was performed for phospho- and total eEF2, eEF2k, S6k and mTOR. Analysis of mTOR, eEF2k and PP2A regulated expression of eEF2 was performed using specific inhibitors (rapamycin, 12.5 ng/ml okadaic acid). Levels of p-eEF2 were determined following 24 hours lapatinib treatment in a panel of 15 HER2+ve cell lines. 

Results: SKBR3-L cells are resistant to lapatinib (IC50 of 6.5±0.4 μM versus 0.1±0.01 in SKBR3 cells) and proteomic analysis of phospho-enriched samples identified eukaryotic elongation factor 2 (eEF2) as a phosphoprotein which was significantly lower in the SKBR3-L cells compared to SKBR3 cells. Examining p-eEF2 in SKBR3-L cells revealed that: (i) lapatinib increases the levels of p-eEF2 in SKBR3-par cells only; (ii) SKBR3-L cells do not display increased phosphorylation of mTOR or S6k, nor increased sensitivity to mTOR inhibition; (iii) SKBR3-L cells are significantly more sensitive than SKBR3 cells to PP2A inhibition (p = 0.007) and (iv) PP2A inhibition restores p-eEF2 in SKBR3-L cells. Additionally, HCC1954-L cells which are resistant to lapatinib (IC50 2.67±0.08 μM versus 0.42±0.02 μM in HCC1954-par cells) also display reduced levels of p-eEF2 compared to parental cells, are more sensitive to PP2A inhibition and display increased p-eEF2 in response to PP2A inhibition. Using a panel of HER2+breast cancer cell lines (10 lapatinib-sensitive, 5 innate lapatinib-resistant) we also found that, following lapatinib treatment, there was a greater increase in p-eEF2 in lapatinib-sensitive compared to lapatinib-resistant cell lines (p = 0.01).

Conclusion: Increased sensitivity to okadaic acid, in two novel models of lapatinib resistance, suggests PP2A may be a rational target for the treatment of lapatinib-resistant breast cancer. In addition, a significant correlation between lapatinib sensitivity and increased p-eEF2 and suggests that p-eEF2 may be a potential pharmacodynamic biomarker of lapatinib response.

146

Identification of Tyrosine Kinase Inhibitors as Modulators of OCT2 Function

J.A. Sprowl1, W. Lin1, G. Du1, R.A. Ness1, S.D. Baker1, T. Chen2, A. Sparreboom1. 1St. Jude Children’s Research Hospital, Pharmaceutical Sciences, Memphis TN, USA; 2St. Jude Children’s Research Hospital, Chemical Biology and Therapeutics, Memphis TN, USA

Background: Recent studies have highlighted the importance of OCT2-mediated transport of various substrates, including oxaplatin, metformin, and ifosfamide, as a key mechanism of drug elimination and an initiating event in organ-specific side effects. We hypothesized that identification of specific OCT2 inhibitors could be achieved in children affected with this transporter while maintaining antitumor efficacy.

Materials and Methods: A high-throughput screen for OCT2 inhibitors was performed using the SUCR1 bioactive compound library, consisting of FDA-approved drugs and other chemicals with known biological activity. The test compounds (28 μM) were assessed initially for their ability to inhibit OCT2-mediated transport of 5.6 μM ASP (4-[4-(dimethylamino)styryl]-N-methylpyridinium-iodide) using transfected HEK293 cells on an integrated screening system including an automated fluorescence plate reader. All compounds with more than 90% inhibitory activity were further examined in a dose-response analysis in transfected HEK293 and HeLa cells. In addition, select chemicals were tested for their ability to inhibit TEA ([3H]-tetraethylammonium) and oxaplatin (2 μM) transport by OCT2 and the orthologue mouse transporter, mOCT2 in transfected HEK293 cells. Imipramine (140 μM) was used as a positive control inhibitor.

Results: Among 8086 bioactive compounds tested, 934 molecules (11%) decreased OCT2-mediated transport of ASP, including vanetanib, dasatinib, and crizotinib (IC50<0.020 μM). Additionally, all TKIs that are currently FDA-approved decreased OCT2-mediated uptake of TEA by >80% (P < 0.0001). Dasatinib also completely blocked uptake of oxaplatin in HEK293 cells transfected with OCT2 or mOCT2 (P < 0.0001; IC50<0.1 μM) by a non-competitive inhibitory mechanism. 

Conclusions: These findings indicate that multiple, chemically unrelated TKIs, including dasatinib, can potentially inhibit OCT2 transport at achievable concentrations. We are currently exploring the in vivo potential of dasatinib as a modulator of chemotherapy toxicities associated with OCT2 transport.

147

Targeting Mechanism of Cell Fusion as a Novel Approach to Abrogate Multi-Drug Resistance of Metastatic Colon Cancer

D_Cavallaro1, S. Capaccio2, V. Carloni1. 1University of Florence, Florence, Italy; 2University of Florence, Florence, Italy

We recently discovered a mechanism by which metastatic colon cancer cells become resistant to different cytotoxic agents such as 5-fluorouracil, oxaplatin, irinotecan, in vitro and in vivo. The mechanism is based on cell-to-cell fusion. Fusion between tumor cells with distinct phenotypes can generate cells with new properties at a rate exceeding that achievable by random mutagenesis thereby allowing a better adaptation to survive to the therapeutic treatments. Along this line, we identified that in the context of fusogenic cancer cells, the tetraspanin CD81/CD9 multi-protein complexes may initiate a combination of events that lead to local disruption of interactions between plasma membrane and cortical actin and the consequent plasma membrane fusion. Our data unveiled a key role of GTP-binding protein alpha13 and RhoA activated by the tetraspanin multi-protein complexes in cell fusion events. Therefore, we aim to antagonize cell-to-cell fusion synthesizing peptides targeting Gapalpha13 and RhoA functions. 

Several peptides were assessed and one was found to antagonize cancer cell fusion in a syngeneic model of colon cancer. These findings could have clinical implications with respect to therapy setting and highlight the importance of identifying and using drugs targeting cell fusion in combination to conventional therapy as a new approach to abrogate multi-drug resistance in metastatic cancer.

148

Establishment of PI3K Inhibitor-resistant Cancer Cell Lines and the Therapeutic Strategies for Overcoming the Acquired Resistance

S. Isoyama1, S. Dan1, Y. Nishimura1, G. Kajiwara1, N. Nakamura1, T. Irimura2, T. Yamori1. 1Japanese Foundation for Cancer Research Cancer Chemotherapy Center, Division of Molecular Pharmacology, Tokyo, Japan; 2University of Tokyo Graduate School of Pharmaceutical Sciences, Laboratory of Cancer Biology and Molecular Immunology, Tokyo, Japan

Background: Acquired resistance is a major obstacle for conventional cancer chemotherapy, and also for some of the targeted therapies approved to date. Long-term administration of protein tyrosine kinase inhibitors (TKIs), such as gefitinib and imatinib, gives rise to resistant cancer cells carrying a drug-resistant gatekeeper mutation in the kinase domain of the respective target genes, EGFR and BCR-ABL. As for the