Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in part, the material for valid purposes, providing the copyright owners are acknowledged using the normal conventions. Where specific permission to use material is required, this is identified and such permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising from use of the thesis for whatever reason. Information located in a thesis may be subject to specific use constraints, details of which may not be explicitly described. It is the responsibility of potential and actual users to be aware of such constraints and to abide by them. By making use of material from a digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from Trinity College Library is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for your research use or for educational purposes in electronic or print form providing the copyright owners are acknowledged using the normal conventions. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
Visualisation of abnormal morphological development and molecular mechanisms that give rise to tracheo-oesophageal malformations and other VACTERL anomalies in an Adriamycin treated Mouse Model

Piotr Hajduk, MD

A thesis submitted to the University of Dublin in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

January 2012

Supervisors
Dr. Paula Murphy
Prof. Prem Puri
Declaration

I declare that I am the sole author of the thesis and that the work presented in it, unless otherwise referenced, is entirely my own. I also declare that the work has not been submitted, in whole or in part, to any other university as an exercise for a degree or other qualification.

I agree that the library of Trinity College Dublin may lend and copy this thesis upon request.

Piotr Hajduk

July 2011
Summary

Oesophageal atresia/Tracheo-oesophageal fistula (OA/TOF) are relatively common malformations of the foregut in humans (Spitz, 2007). They require urgent corrective surgery after birth and have an impact on the future health of the individual (Tomaselli et al., 2003). These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known. However, a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the Adriamycin Mouse Model (AMM) underline its use to unravel early embryological events and provide insight into our understanding of the disturbances that lead to such abnormalities. The objective of this thesis was to explore the morphological and molecular alterations in the AMM using a combination of 3D imaging Optical Projection Tomography (OPT) and molecular probes. Additionally, this thesis aimed to address the hypothesis that anomalies observed in the AMM could be a result of fundamental defects in the notochord leading to abnormal delamination and ectopic placement of this potent signalling tissue during crucial stages of foregut development.

The development of the mouse foregut and its associated structures, including the notochord, were captured using the OPT. Foregut development was monitored between embryonic days (E) 9 and E12 using wholemount immunohistological staining with an endoderm marker (HNF3β) to visualize foregut and lung bud morphology in control and adriamycin treated embryos. These data provided a framework for further comparative analysis of morphology between control and adriamycin treated embryos and allowed the detailed description of the range of foregut malformations induced. Seven morphological alterations of the foregut, including OA and TOF, and abnormal notochord branching were noted, and the frequencies of occurrence were established. This analysis also revealed a close spatial relationship between notochord branch position and thickness and certain foregut malformations, indicating for the first time a causative link between abnormalities in these neighbouring tissues.

The expression of candidate regulatory genes Shh, Foxf1, Nkx2.1, Sox2, Tbx4, Fgf10, Noggin, BMB4, Wnt2 and Wnt7b were investigated by wholemount in situ hybridisation in
control and adriamycin treated mouse embryos. The molecules encoded by these genes are known to play vital roles in regulating foregut separation and lung branching morphogenesis (Morrisey and Hogan, 2010). Ectopic signalling from the displaced notochord branches in the AMM and was verified here to express Shh and Noggin, corresponded with abnormal dorsoventral (D/V) patterning of the foregut shown by altered Shh, Foxf1, Sox2 and Noggin gene expression across the foregut at the level of the branches. This correspondence between abnormal notochord delamination and gene expression supports the hypothesis that abnormal notochord signalling affected D/V patterning of the foregut and indicates that notochord abnormalities may have a causative effect on the foregut abnormalities seen in the AMM. Additionally, in terms of the origin of TOF in the AMM, this work confirmed previous findings that the fistula expressed the Nkx2.1 gene, which is well known as a respiratory marker. In addition, the detection of Wnt2 gene transcripts reinforces the hypothesis that the fistula is of respiratory origin and implicates Wnt signalling in this ectopic tissue.

Given the findings that foregut abnormalities show a close spatial relationship to ventrally displaced notochord branches in the AMM, I proposed that the notochord may be a primary target of adriamycin treatment with foregut abnormalities arising from abnormal signalling from the displaced notochord. To explore this hypothesis I examined the position and structure of the notochord at early stages following adriamycin treatment. It was observed that the application of adriamycin not only affected the position of the notochord, but that it also appeared to impact on the structure of the tissue as indicated by changes in the extracellular matrix (ECM) in treated embryos. The ECM was investigated by immunohistochemical techniques to visualise E-cadherin and laminin in control and treated embryos comparing the cellular organization and position of the notochord with respect to the foregut endoderm within a defined development period when delamination of the notochord normally occurs. The observed changes in notochordal properties supported the hypothesis that the notochord may be the primary target of disruption resulting in abnormal patterning of the foregut.

The work presented in this thesis provides new insights into the regulation of embryonic foregut development in the mouse as well as the effects of adriamycin treatment. The use of 3D imaging enabled direct comparison of gene expression and foregut
development both across developmental time and between control and treated embryos. This work demonstrates the integral role that the notochord plays in the development of the foregut.
Acknowledgements

Firstly, I would like to thank my supervisors Dr Paula Murphy and Prof. Prem Puri for all their support, expertise and patience over the course of the last three years. This has been a truly wonderful experience and I am indebted to both of them for giving me this opportunity to do laboratory based research towards my dream of becoming an academic paediatric surgeon. I would like to thank Paula for introducing me to the wonderful world of developmental biology and Prof Prem Puri to giving me the opportunity to present my work internationally in my field of interest of Paediatric Surgery. I would like to thank all the members of the Murphy and Puri groups past and present for all their help: Kristen, Suzanne, Karen, Audrey, Celine, Alison, Antonia, Hide, Takashi, Reshma and Anne-Marie.

I would like to thank the staff of the Department of Zoology and the National Children’s Research Centre. I particularly want to thank Prof. Celia Holland, Dr Colby Tanner, Dr Yvonne Williams, Dr Michael Wride, Allison Boyce, Vanessa Woods and Sylvia Harding for their help.

I would particularly like to thank my wonderful parents for their endless words of encouragement and support.

Finally I want to thank Iwona. You have given me so much support over the last years. Your belief in me kept me going. Thank you so much. I dedicate this thesis to our son Jan, the most wonderful person I have ever met.

This work was supported by the National Children’s Research Centre.
Publications and presentations resulting from this study

Hajduk P., Murphy P., Puri P., “Fgf10 gene expression is delayed in the embryonic lung mesenchyme in the adriamycin mouse model”, 1st Aesculap Prize, In *Proceeding of the 22nd*

Hajduk P., Murphy P., Puri P., “Mesenchymal expression of Tbx4 gene is not altered in adriamycin mouse” In Proceeding of the 56th annual international congress British Association of Paediatric Surgeons and European Paediatric Surgeons Association, Graz, Austria [Presented on June 18th 2009, Graz, Austria].

Contents

1 Introduction ... 1

1.1 Embryogenesis ... 4
 1.1.1 Early foregut development .. 4
 1.1.2 Foregut separation ... 6
 1.1.3 Lung branching morphogenesis 8
 1.1.4 Notochord development ... 9

1.2 The molecular basis of early foregut patterning 12
 1.2.1 Endoderm cell specification .. 12
 1.2.2 Tracheo-oesophageal patterning 14
 1.2.3 Activation of lung bud morphogenesis 25
 1.2.4 The molecular basis of lung branching morphogenesis 27

1.3 Etiology of OA/TOF in humans ... 31
 1.3.1 Environmental factors .. 31
 1.3.2 Genetic factors .. 32

1.4 Adriamycin rat/mouse models of OA/TOF 35

1.5 Objective of the thesis .. 41

2 Materials and Methods .. 44

2.1 Embryo collection and fixation ... 44

2.2 In situ Hybridisation ... 45
 2.2.1 Probe preparation ... 45
 2.2.2 Fixation and pre-treatment of the embryos 47
 2.2.3 Hybridisation, washing and detection of probe in whole mount preparations 49

2.3 Immunolocalisation .. 50
 2.3.1 Incubation with primary antibody 50
 2.3.2 Incubation with secondary antibody 51

2.4 Preparation and imaging of whole embryos using OPT 52
2.4.1 Analysis of 3D digital data ... 53
2.4.2 Analysis of gene expression patterns .. 53
2.5 Embryo collection, fixation and processing for cryosectioning 54
2.7.1 Cryostat sectioning ... 56
2.6 Immunohistochemistry .. 56
2.7 Imaging using Laser Scanning Confocal Microscopy 57
2.7.1 Image analysis .. 58
2.7.2 Overview of specimens investigated .. 58
2.7.3 Scoring criteria used in the investigation of notochord position 59
2.7.4 Scoring used in investigation of E-cadherin localisation 59
2.8 Statistical analysis .. 60

3 Abnormal notochord branching is associated with foregut abnormalities in an Adriamycin treated Mouse Model 61
3.1 Introduction .. 62
3.2 Results ... 66
 3.2.1 Delayed development in adriamycin treated embryos 66
 3.2.2 A spectrum of foregut abnormalities are caused by adriamycin treatment 67
 3.2.3 Abnormal notochord branching in adriamycin treated embryos is associated with the location and severity of foregut abnormalities 71
 3.2.4 Patterning of the foregut is disturbed at the site of abnormal notochord branches 74
 3.2.5 Tracheal separation and lung branching in adriamycin treated embryos 81
3.3 Discussion .. 84

4 Temporospatial gene expression analysis during the critical period of separation of the trachea and oesophagus in normal and adriamycin treated embryo 92
4.1 Introduction .. 93
4.2 Results ... 96
 4.2.1 Tbx4 gene expression in control embryos and the effect of adriamycin treatment on gene expression patterns .. 96
 4.2.2 Fgf10 expression in control embryos and the effect of adriamycin treatment on Fgf10 gene expression patterns .. 100
4.2.3 The effect of adriamycin treatment on noggin gene expression .. 103
 4.2.3.1 Noggin gene expression in control embryos .. 103
 4.2.3.2 Effect of adriamycin treatment on Noggin gene expression .. 104
4.2.4 The effect of adriamycin treatment on Bmp4 gene expression .. 108
 4.2.4.1 Bmp4 gene expression in control embryos ... 108
 4.2.4.2 Effect of adriamycin treatment on Bmp4 gene expression across the stages from E10-E12 ... 109
4.2.5 The effect of adriamycin treatment on Wnt2 gene expression 112
 4.2.5.1 Wnt2 gene expression in control embryos .. 112
 4.2.5.2 Effect of adriamycin treatment on Wnt2 gene expression .. 113
4.2.6 The effect of adriamycin treatment on Wnt7b gene expression 114
 4.2.6.1 Wnt7b gene expression in control embryos .. 114
 4.2.6.2 Effect of adriamycin treatment on Wnt7b gene expression 115
4.3 Discussion ... 116
 4.3.1 Overview of findings ... 117
 4.3.2 Expression of Fgf10 expression is delayed in the ventral mesoderm of the anterior foregut of treated embryos: implication for lung primordial outgrowth 118
 4.3.3 Ectopic Noggin gene expression in the notochord and posterior wall of the foregut in adriamycin treated embryos: implication for foregut separation ... 121
 4.3.4 Wnt signalling in Adriamycin Mouse Model ... 125

5 Notochord position and cellular organization in Adriamycin Mouse Model 129
5.1 Introduction .. 129
5.2 Results ... 133
 5.2.1 Notochord position .. 133
 5.2.2 Laminin localisation in control embryos .. 136
 5.2.3 Laminin localisation in adriamycin treated embryos ... 139
 5.2.4 E-cadherin localisation in control embryos .. 140
 5.2.5 E-cadherin localisation and position of the notochord in adriamycin treated embryos ... 142
5.3 Discussion ... 144

x
5.3.1 Overview of findings .. 144
5.3.2 Abnormal delamination of the notochord in adriamycin treated embryos:
implication for notochord structure ... 145
5.3.3 E-cadherin is abnormally expressed in the notochord of treated embryos:
implication for notochord structure and signalling 147
5.3.4 The possible impact of altered notochord architecture on the foregut
endoderm: possible role in endodermal anomalies 150

6 General Discussion and Future Directions 153
6.1 Summary of the findings and conclusions 153
6.2 Significance of the findings and future studies 157
 6.2.1 Impact of notochord on foregut patterning and development 158
 6.2.2 Adriamycin influences the physical characteristics of the notochord tissue:
 the significance of E-cadherin expression 160
 6.2.3 Identification of further molecular role players 163
6.3 Impact of our understanding of human OA/TOF; clinical implications 164

Bibliography ... 168
List of Figures

1.1 The normal anatomical relationship between the oesophagus and trachea and five anatomical variances seen in OA/TOF according to the Gross classification ...3
1.2 Formation of the gut tube .. 6
1.3 Foregut division forming the oesophagus and trachea in mouse embryos7
1.4 Early Nkx2.1 gene expression in the ventral foregut, in the region of the prospective thyroid and lungs ...15
1.5 Dorso-ventral patterning of the foregut during separation of the trachea from the oesophagus ...19
1.6 The role of Gli transcription factors in mammalian Shh signal transduction ..22
1.7 A/P patterning of the ventral foregut and precise specification of the future lung primordia through Nkx2.1 gene expression ..24
3.1 Theiler staging of adriamycin and control embryos revealed a significant delay in development following adriamycin treatment ...67
3.2 Morphological analysis of the spectrum of effects of adriamycin treatment on foregut and notochord development ...70
3.3 Association between notochord branching and foregut abnormalities in 6 Adriamycin treated embryos ...74
3.4 Shh gene expression in the branched notochord and disturbed Shh gene expression in the foregut following adriamycin treatment ...76
3.5 Expression of Foxf1 gene in adrimycin treated and control embryos ...78
3.6 Sox2 gene expression and Nkx2.1 gene expression in control and adriamycin treated embryos at embryonic days 10 and 11 ... 80

3.7 Abnormal trachea-oesophageal separation and lung morphogenesis in adriamycin treated embryos .. 83

3.8 Schematic representation summarising the observed effects of adriamycin treatment on dorso-ventral patterning of the foregut, specifically in the vicinity of a ventral notochord branch .. 84

4.1 The expression of the Tbx4 gene at E11 ... 97

4.2 Tbx4 gene expression in control and adriamycin treated mouse embryos at embryonic days E9 - E12 following whole mount in situ hybridization ... 99

4.3 Fgf10 gene expression in TS17 and TS18 control embryos .. 101

4.4 Fgf10 gene expression in TS18 adriamycin treated embryos .. 102

4.5 Fgf10 gene expression at E13 in the dissected embryonic trunk of control and adriamycin treated embryos ... 103

4.6 Noggin gene expression in control embryos .. 104

4.7 Noggin gene expression in virtual sections of control and adriamycin treated embryos at E10-E11 .. 106

4.8 Noggin gene expression in virtual sections of control and adriamycin-treated embryos at E12 .. 107

4.9 Bmp4 gene expression in control embryos .. 109

4.10 Bmp4 gene expression in virtual sections of control and adriamycin treated in E10 embryos ... 110

4.11 Bmp4 gene expression in virtual sections of control and adriamycin treated embryos
4.12 Bmp4 gene expression in virtual sections of control and adriamycin treated embryos at E10 and E11 .. 111

4.13 Wnt2 gene expression in the mesenchyme on the ventral aspect of the developing foregut and around the lung buds .. 114

4.14 Wnt7b gene expression in the developing foregut and lung in control and adriamycin treated embryos at E11 and E12 ... 116

4.15 Diagramatic summary of candidate gene expression analysis in control and adriamycin treated transverse sections of developing notochord and foregut during separation of the trachea from the oesophagus .. 128

5.1 Example of five different positions of the notochord in relation to the dorsal wall of the foregut and floor plate in progressively more advanced control embryos134

5.2 Graphical representation of recordings of notochord position along the dorsoventral axis in the thoracic region, comparing control and adriamycin treated embryos135

5.3 Laminin and Brachyury distribution in transverse sections through the thoracic region of control and Adriamycin treated embryos at progressively more advanced developmental stages ..138

5.4 Detection of E-cadherin and Brachyury in transverse sections through the thoracic region of control and Adriamycin treated embryos at progressively more advanced developmental stages ..141

5.5 Integrating observations on abnormal notochord position and relative intensity of abnormal E-cadherin detection in the notochord of adrimaycin treated embryos across stage groups ..144
List of Tables

1.1 Summary of gene inactivation studies affecting trachea-oesophageal development........25
2.1 Summary of cDNA clones used to generate RNA in situ probes.................................47
2.2 Length of time embryos were permeabilised in 10 μg/ml Proteinase K48
2.3 Summary of the antibody used in immunodetection ...51
2.4 Staging of control and adriamycin treated embryos into designated groups based on somite number ...55
2.5 Number of embryo specimens analysed for each of the sets of markers of the extracellular matrix according to stage group ...59
3.1 The spectrum of adriamycin induced abnormalities observed showing % incidence at each embryonic day ...71
3.2 Scoring of notochord branching and co-incidence of specific foregut abnormalities in 50 E10 and E11 adriamycin treated embryos ...73
3.3 Extent of foregut in which dorso-ventral localised expression of either Shh or Foxf1 gene was disturbed in individual Adriamycin treated embryos at either E10 or E1179
Nomenclature

AEG Anophthalmia, Oesophageal atresia, Genital anomalies
AMM Adriamycin Mouse Model
ARM Adriamycin Rat Model
BCIP 5-bromo-4chloro-3-indyl-phosphate
Bmp Bone morphogenetic protein (gene locus)
BMP Bone morphogenetic protein (protein product)
BMS Bristol Meyers Squibb
Ci Cubitus interruptus
CNS Central Nervous System
CHAPS 3-[(3-Cholamidopropyl) dimethylammonio] -2hydroxy-1-propanesulfonate
CHARGE Coloboma, Heart anomalies, Atresia chonae, Retarded growth, Genital and Ear anomalies
DES Diethylstilbestrol
Dig digoxigenin
DNA Deoxyribonucleic acid
E-cadherin Endothelial cadherin
ECM Extracellular matrix
EDTA Ethylenediamine tetraacetic acid
EMAP Edinburgh Mouse Atlas Project
ENU N-ethyl-N-nitrosurea
Fgf Fibroblast growth factor (gene locus)
FGF Fibroblast growth factor (protein product)
Fgfr FGF receptor
Foxf1 Forkhead box protein F1
Hesx1 Homeobox expressed in embryonic stem cells 1
Hh Hedgehog
Hip Hedgehog-interacting inhibitory protein
IFABP Intestinal fatty binding protein
Isll Insulin gene enhancer protein 1
LMP Low melting point
LTEC Total LaryngoTrache-oEsophageal Cleft
mRNA messenger Ribonucleic acid
NBT 4-nitro blue tetrazolium chloride
Nkx2.1 Neurokinin 2 homeobox 1
OA Oesophageal atresia
OPT Optical projection tomography
Otx1 orthodenticle homeobox 1
PBS Phosphate Buffered saline
Pdx1 Pancreatic and duodenal homeobox 1
PFA Paraformaldehyde
Pitx2 Pituitary homeobox 2
Raldh2 Retinaldehyde dehydrogenase 2
RA Retinoid acid
RAR Retinoid acid receptor
RNA Ribonucleic acid
RXR Retinoid X receptor
Shh Sonic hedgehog
SSC Saline-sodium citrate buffer
Tbx T-box transcription factor
TGF Transforming Growth Factor
TOF Tracheo-oesophageal fistula
TUNEL Terminal deoxynucleotidyl transferase dUDP nick and labeling
UV Ultraviolet
VACTERL Vertebral, Anorectal, Cardiac, Tracheoesophageal, Renal and Limb defects
VTK Visualisation Toolkit
Chapter 1

Introduction

Congenital malformations of the foregut are common birth defects in humans and represent a challenge to the paediatric surgeon both in terms of surgical repair and the management of long term morbidity (Holland et al., 2009; Tomaselli et al., 2003). Oesophageal atresia (OA) encompasses a group of congenital anomalies that involve interruption of the continuity of the oesophagus with or without a persistent communication with the trachea called tracheoesophageal fistula (TOF). The most common manifestation is known as OA with distal TOF. Affected babies have a cranial oesophagus that ends in a blind sac and a connection or fistula between the trachea and the stomach (Brunner and Bokhoven, 2005; Clark, 1999; Gross, 1953; Spitz, 2007). Less common related malformations such as isolated TOF are also described in recent reviews (Gross, 1953; Spitz, 2007). Different anatomical classifications of OA/TOF were proposed but the most frequently used, and of greatest practical value to the paediatric surgeon, are those proposed by Gross (Gross, 1953) based on the frequency of each anomaly (Figure 1.1). Associated anomalies occur in 50% of cases, the majority involving one or more of a set of associations known as VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal and limb defects) (Shaw-Smith, 2006). The continuity of the oesophagus and the pathological connection that persists between the digestive and respiratory tracts requires urgent
surgery and further long-term medical follow up due to late complications. These conditions were first described by Durston in 1670 (Myers, 1986), although at this time they were not treatable. The first attempts for surgical correction of the anomalies were undertaken by Charles Steel in 1888 (Myers, 1986; Zhou et al., 1999). The baby died after surgery, however this study gave an indication that the abnormality was potentially treatable. The first described successful operative treatment for isolated OA was performed by Donovan in 1935 (Myers, 1986). Since that time improvements in neonatal intensive care, anaesthesia and surgical techniques have brought a steady decline in overall mortality due to the primary foregut malformation. However mortality still remains high for babies with low birth weight and other associated major cardiac anomalies (Spitz, 2006). The etiology of these foregut malformations still remains largely unknown.

A good knowledge of the mechanisms underlying normal development of the foregut in mammalian embryos is essential to uncover the origin of OA/TOF. In normal development, the respiratory and digestive tubes are derived by division of a single foregut tube that is surrounded by splanchnic mesoderm (Cardoso and Lu, 2006). The first evidence of this in mice is the formation of lung primordia from the ventral foregut endoderm at embryonic day (E) 9.5 (Cardoso and Lu, 2006; Morrisey and Hogan, 2010). From E10.5 the laryngo-tracheal groove begins to separate the trachea ventrally and oesophagus dorsally (Morrisey and Hogan, 2010). Both tubes elongate, bronchial stalks extend to form the main bronchi and stereotypic branching and budding occurs as the bronchial and bronchiolar tubules form between approximately E11 and E16 (Maeda et al., 2007). In humans the process of foregut division starts from 28 days post fertilization (Carnegie stage 13). This is a complex process in which
tissues and organs undergo an intricate sequence of movements relative to each other, controlled by interaction through diffusible signalling molecules. While the normal mechanisms driving proper foregut development are still not clear, investigating abnormal foregut development is even more challenging.

A valuable animal model reproducing OA and TOF was developed in the rat (Diez-Pardo et al., 1996; Merei et al., 1999) following the discovery that treatment of pregnant females with the drug Adriamycin led to similar malformations (Thompson et al., 1978). However, given that the mouse is the developmental biologists mammal of choice, providing greater availability of molecular tools and techniques, and transferable knowledge from mutant mice, Adriamycin treated mouse models displaying OA/TOF were developed (Dawrant et al., 2007a; Ioannides et al., 2002). Also a number of mouse mutants replicate aspects of OA/TOF shown in the adriamycin model indicating that complex signalling events are involved in normal foregut development and disturbed in OA/TOF, lending some valuable information about the possible mechanisms that might be disturbed in these foregut anomalies.

Figure 1.1: The normal anatomical relationship between the oesophagus and trachea (normal) and five anatomical variances seen in OA/TOF according to the Gross classification (Gross, 1953) with the percentage of occurrence of each in newborn infants. Adapted from Gross, 1953.

In this chapter, I review the literature in order to outline current knowledge on early foregut and notochord embryogenesis (section 1.1), our understanding of the molecular basis of
normal foregut development and theories explaining tracheal separation and lung branching morphogenesis (section 1.2). I also outline the state of current knowledge regarding the possible aetiology of the OA/TOF malformations in humans (section 1.3) and I review current hypotheses relating to the molecular mechanisms leading to formation of OA/TOF in mammals based on observations from the adriamycin model, reproducing OA/TOF in rodents (section 1.4). Finally I set out the aims and objectives of this research in the context of current knowledge (section 1.5).

1.1 Embryogenesis

1.1.1 Early foregut development

During gastrulation, a layer of undifferentiated cells (the epiblast) forms three germ layers; the ectoderm, mesoderm and endoderm. Differentiation of the precursor endodermal and mesodermal cells occurs during cell migration through the primitive streak, a region in which several genes involved in cell fate specification are expressed (Wells and Melton, 1999). At E 7.5 in the mouse, the endoderm forms a one cell-layer thick sheath that underlies the mesoderm and ectoderm of the embryo, which is cup shaped. The most anterior endoderm that involutes from the most anterior part of the primitive streak (Lawson et al., 1986), forms the proximal foregut adjacent to the developing heart and organs such as the liver and ventral part of the pancreas. The mid region gives rise to distal foregut and midgut and contributes to formation of the stomach, pancreas, duodenum, and the part of the intestine. The most
posterior part of the endoderm forms the hindgut and contributes to the large intestine and colon (Lawson et al., 1991; Wells and Melton, 1999).

Through a series of morphogenetic processes within the next 24 hours (E7.5 - E8.5) the endoderm sheath folds into a tube (Figure 1.2). The anterior endoderm folds over posteriorly to form a diverticulum called the foregut pocket while the most posterior endoderm folds anteriorly to form the hindgut diverticulum. The posterior migration of the anterior foregut pocket and the anterior migration of the hindgut, in combination with ventral folding during the turning of the embryo on the anterior to posterior axis, closes the midgut and forms a primitive gut tube by E9 (Wells and Melton, 1999) (Figure 1.2). Initially the endoderm is in very close proximity to the notochordal plate but from about E9 the notochord delaminates from the endoderm in the mid regions of the embryo and by about E9.5 it is separated from the anterior foregut by mesenchyme, becoming more closely associated dorsally with the neural folds/neural tube (Jurand, 1974) where it is well known to contribute to dorso-ventral (DV) patterning of the developing Central Nervous System (CNS) and laterally to patterning of the somites. Signals from the notochord are also important in patterning the foregut and its associated mesenchyme ventrally (Cleaver and Krieg, 2001).
Figure 1.2: Formation of the gut tube. Endoderm at E7.5 covering the outside of the embryo (left diagram). Gut endoderm is yellow and visceral endoderm is green. Roman numbers I-IV represent regions of the endoderm at E7.5 that fate map to regions I-IV of the E8.5 gut tube (shown on the right) (Wells and Melton, 1999). The foregut tube forms as region I folds over region II and migrates in a posterior direction. The hindgut tube forms by folding of region IV and migration in the anterior direction (right diagram). The midregion forms a tube by ventral folding. AIP, anterior intestinal porta; CIP, posterior intestinal porta. Adapted from Wells and Melton, 1999.

1.1.2 Foregut separation

Both the respiratory and digestive anlagen arise from the foregut, the trachea forming ventrally and the oesophagus dorsally. The first morphological evidence of this is at E9.5 in mice (22 somite stage in mice, 28 days in human) with the appearance of two ventrolateral bulges which subsequently elongate to form the bronchi and lung buds, in conjunction with surrounding mesenchyme (Cardoso and Lu, 2006; Morrisey and Hogan, 2010) (Figure 1.3). The location of the lung primordia along the antero-posterior (A-P) axis of the foregut is determined by localized expression of the Nkx.2.1 gene in the ventral wall of the foregut endoderm (Morrisey and Hogan, 2010). Anterior to this, the single foregut diverticulum septates laterally by formation of a local constriction (folds or ridges) that moves towards the centre of the lumen and contacts in the midline to separate the trachea and oesophagus (Cardoso and Lu, 2006; Morrisey and Hogan, 2010; Qi and Beasley, 2000). There is some disagreement in the literature about how the process of septation progresses. Recent work
measuring the respective lengths of the undivided and divided regions of the foregut over time indicates that septation progresses anteriorly from an initial point (Ioannides et al., 2010). However, similar work from another group concluded that progressive separation is achieved through posterior elongation from the point of septation (Williams et al., 2003). It is possible that these two processes occur simultaneously and a combination of both are important during the process of separation (Morrisey and Hogan, 2010).

Figure 1.3: Foregut division forming the oesophagus and trachea in mouse embryos. At E9.5 lung primordia appear on the ventrolateral surface of the foregut. The point of foregut separation, marked by a star, moves anteriorly (progressive septation) while at the same time the oesophagus and tracheal tubes elongate. At E11.5 the lung buds undergo branching morphogenesis. Adapted from Morrisey and Hogan, 2010.

Although some progress has been made towards understanding foregut separation, there is still little known about the cellular mechanisms involved in dynamic coordinated changes to the shape and alignment of the cells in the foregut epithelium, at the level of tracheal separation. Formation of the lateral epithelial folds were investigated using scanning electron microscopy by Kluth et al. (Kluth et al., 1987) in chick embryos. Rapid endodermal cellproliferation was described at the region of separation of the primitive foregut into trachea and oesophagus. Qi
and Beasley (Qi and Beasley, 1998) described increased cell death at the site of foregut separation in rats at E12. This process was investigated in detail by another group (Orford et al., 2001) by comparing normal separation of the foregut in rats and adriamycin treated animals where separation was not seen. This group using the TUNEL technique for detection of cell death showed apoptosis in the lateral epithelial folds (the prospective site of tracheoeophageal separation) of the foregut in control animals and the absence of apoptosis in treated embryos displaying no separation. This suggested that programmed cell death contributes to the formation and morphogenesis of the middline fusion point. However this finding was refuted in a recent study by Ioannides et al, where the authors examined foregut separation in embryos at E10.5 and E11.5, comparing normal events with a mutant in which no apoptosis takes place (Apaf1/CED-4/ARK null) (Ioannides et al., 2010). Apoptosis was detected using an antibody for activated caspase-3 on transverse sections of the foregut. Results confirmed increased programmed cell death at the point of foregut separation at E11.5 but in Apaf1 null embryos, with dramatically reduced activation of caspase 3 and complete suppression of apoptosis, foregut separation occurred properly showing that programmed cell death is not essential for foregut separation.

1.1.3 Lung branching morphogenesis

Simultaneous with the process of tracheal separation, development of the lung primordia progresses with extension of the bronchial stalks and stereotypic branching and budding as the bronchial and bronchiolar tubules form between approximately E9.5 and E16.5 (Maeda et al., 2007; Morrisey and Hogan, 2010). The bronchial tree develops by branching of the airway
epithelium into the surrounding mesenchyme. Initially the primary lung buds grow ventrally and posteriorly, and initiate lateral branches at invariant positions at E10.5. In this way, five secondary buds are generated, four on the right side and one on the left side, leading to the formation of four right lobes and one left lobe of the mature lung in mice. In addition to lateral branching, dichotomous branching occurs at the tip of each duct. This leads to expansion of the lung epithelium. After the branching process is accomplished, from E16.5 - E17.5, terminal buds become narrower and then from E18.5 to postnatal day 5, they develop numerous small sacs that are the precursors of the alveoli (Morrisey and Hogan, 2010).

1.1.4 Notochord development

The notochord is an axial structure of mesodermal origin that arises during gastrulation, directly from the cells of the primary organiser. The presence of the notochord during development defines members of the Chordate phylum and is a common characteristic of all vertebrate embryos (Jurand, 1974). During development of vertebrates it is present only in early stages of embryonic life although in some lower chordates the notochord persists throughout life and acts as a structural support for the entire organism (Jurand, 1974).

As described in section 1.1.1, in the mouse embryo at E7.5 the future anterior foregut endoderm consists of epithelial cells blanketing the ectoderm and mesoderm (Wells and Melton, 1999). The formation of the notochord is first detected at E8, at the cranial end of the primitive streak. These early chordomesoderm cells are embedded in the endoderm sheath although they are more columnar than the endoderm cells (Jurand, 1974). From E9.5 the two
distinct cell types start to separate and the notochord delaminates in the dorsal direction. The notochord becomes a slender flattened rod adhering dorsally to the endoderm and lying ventral to the neural tube. The notochord detaches from the foregut endoderm first at the level of the cardiac primordium and then gradually progresses in anterior and posterior directions. At E11 the entire central portion of the notochord contacts with the ventral surface of the neural tube and only the most cranial and caudal ends are still attached to the endoderm (Jurand, 1974). By E12 mesenchymal cells have penetrated between the notochord and neural tube and the notochord becomes a uniform cylindrical rod surrounded by mesenchyme extending from Rathke's pouch to the end of the tail. From E13 the mesenchyme lateral to the notochord, which is segmented into the somites, undergoes cartilage condensation forming the pre vertebrae (Jurand, 1974). Then the notochord fragments and becomes ossified in specific regions forming the vertebral bodies and contributes to the centre of the intervertebral discs in a structure called the nucleus pulposis (Linsenmayer et al., 1986; Smits and Lefebvre, 2003).

The fundamental roles of the notochord are to provide the cranio-caudal orientation of the embryonic axis and act as a primary organizer for adjacent embryonic organs (Cleaver and Krieg, 2001). The rigidity of the notochord maintains alignment of embryonic tissues during development and allows axis elongation (Adams et al., 1990). As well as a structural function, many studies have shown the importance of the notochord in patterning of surrounding ectoderm and mesodermal tissues. Perhaps the best characterised is the role of the notochord in patterning of the neural tube. In chick embryos, grafting of the notochord next to the lateral part of the neural tube results in the appearance of floor plate-cells, characteristic of the ventral neural tube, in the adjacent neural epithelium, indicating that the notochord induces formation
of the floor plate (van Straaten et al., 1985a; van Straaten et al., 1988; van Straaten et al., 1985b). In addition, in chick embryos in which the notochord was extirpated in ovo, the spinal cord appeared reduced in size and lacked a floor plate (van Straaten, 1991). The notochord also patterns the somites, for example in zebrafish mutants nil and flh, which both lack a notochord, somites are fused with disruption of the characteristic chevron formation and the lack of muscle pioneer cells (Halpern et al., 1993). In the chick embryo, removal of the notochord results in the failure of sclerotome formation and enlargement of the dermamyotome (Goulding et al., 1994). These mutants also show the importance of the notochord for formation of the dorsal aorta (Fouquet et al., 1997). There is also evidence that the notochord is involved in assignment of left-right asymmetry. For example in Xenopus embryos, when the notochord is experimentally ablated by UV irradiation or surgically removed, nodal, which is normally expressed on the right side of the lateral plate mesoderm, is expressed bilaterally leading to cardiac reversal (Danos and Yost, 1995; Lohr et al., 1997). Similar results were seen in mouse embryos when the node was surgically ablated and the notochord failed to form or was disrupted (Davidson et al., 1999). The notochord appears to act as a barrier to diffusion of molecules localized to one side. As a result the Pitx2 gene, encoding a regulatory transcription factor in the laterality pathway, was no longer restricted to the left side but was found on both sides of the body or was completely absent from the lateral plate mesoderm (Davidson et al., 1999).

In terms of patterning of the endoderm by the notochord there is less evidence in the literature, although these structures are in very close contact during development. In chick embryos removal of the notochord just prior to the time when pancreas fate is specified prevents
expression of *Isl1* and *Pdx1* genes, which are crucial for pancreas development (Kim *et al.*, 1997). *In vitro* growth of isolated endoderm from the dorsal pancreatic anlage with adjacent notochord shows that the notochord can induce expression of early pancreas genes (Kim *et al.*, 1997). Moreover grafting of the notochord in chick embryo repress *Shh* expression in the foregut endoderm and removal of the notochord results in ectopic *Shh* expression in the pancreatic anlage and inhibits pancreatic endodermal differentiation (Hebrok *et al.*, 1998). These experiments demonstrate that notochord signals are necessary for dorsal pancreas development and show the important role of the notochord in patterning of the endoderm.

1.2 The molecular basis of early foregut patterning

1.2.1 Endoderm cell specification

Mesoderm and endoderm cells both arise from the epiblast and then migrate (involute) through the primitive streak (Lawson *et al.*, 1991). It is not clear if cell fate is determinated prior or during the migration through the primitive streak. Several soluble factors including members of the fibroblast growth factor (*FGF*), transforming growth factor (*TGFβ*) and *Wnt* families, as well as the morphogen retinoic acid are expressed in the region of the primitive streak and are widely known to influence cell fate and may act to induce mesoderm and endoderm, although a direct role of specific molecules in endoderm differentiation in not known (Wells and Melton, 1999).
At the end of gastrulation gut endoderm is a sheet of approximately 500 cells that extends from the anterior headfold to the primitive streak. Fate-mapping experiments suggest that endoderm cells have A-P identity by this stage (Lawson et al., 1986). The headfold is adjacent to mesendoderm cells that involute and migrate anteriorly, while the cells forming posterior endoderm leave the primitive streak later in gastrulation (Lawson and Pedersen, 1987). Regional expression of certain genes indicate anterior–posterior specification of the endoderm at a very early stage. For example expression of Cerberus (Bouwmeester et al., 1996), Otx1 (Rhinn et al., 1998) and Hesx1 (Thomas and Beddington, 1996) is restricted to the anterior endoderm and the Intestinal Fatty Acid Binding Protein gene (IFABP) (Green et al., 1992) and Cdx2 (Beck et al., 1995) to the posterior endoderm. As the endoderm tube forms, cells condense into the epithelium and start de novo expression of several genes including Pdx1, NeuroD and Somatostatin, and mark specific regions of endoderm which will give rise to stomach, pancreas, and duodenum (Wells and Melton, 2000). Somatostatin expression extends to the more posterior gut tube, the future small intestine. IFABP expression is strong in the posterior region, the future hindgut (Wells and Melton, 2000). Furthermore endoderm coculture experiments with mesoderm/ectoderm show that the endoderm receives inductive signals from mesoderm and ectoderm for expression of these genes, that the A-P nature of the endoderm is not irreversibly determined by E7.5 and can be altered by changing the spatial source of the signal (Wells and Melton, 2000). The same study showed that notochord cocultured with E7.5 endoderm does not induce Pdx1, Somatostatin, NeuroD and IFAB expression and therefore it is possible that early signals from mesoderm/ectoderm make the endoderm competent to respond to subsequent notochord and mesenchyme signals (Wells and Melton, 2000). This signalling between germ layers is mediated by soluble factors. For example FGF4, which is
expressed by the primitive streak at the posterior part of the embryo induces NeuroD and Somatostatin expression in the endoderm in a concentration-dependent manner. Higher concentrations of FGF4 promote expression of Somatostatin in the posterior endoderm while lower expression of FGF4 promotes expression of NeuroD in more anterior endoderm, further away from the source of FGF4 (Wells and Melton, 2000).

1.2.2 Tracheo-oesophageal patterning

A key step in division of the respiratory and digestive tracts is patterning of the foregut tube into ventral (respiratory) and dorsal (digestive) territories and a large number of regulatory molecules, working within several pathways, have now been implicated in this process. From lineage tracing studies in mice we know that cells that give rise to the distal regions of the respiratory tract (distal airway epithelium) and proximal regions (trachea, proximal airway) have different origins (Perl et al., 2002).

The mechanisms leading to specification of the respiratory progenitors in vertebrates are starting to be elucidated. Initial specification of the foregut endoderm cells into the respiratory system starts before the lung primordium can be identified; by E9 the ventral foregut in the thoracic region is characterized by localized Nkx.2.1 gene expression (Desai et al., 2004; Morrisey and Hogan, 2010). The specific expression of Nkx.2.1 expression by respiratory progenitors has been described across multiple species including Xenopus (Small et al., 2000), chick (Sakiyama et al., 2003), rat (Lazzaro et al., 1991), mouse (Kimura et al., 1996) and human (Hösgör et al., 2002). Nkx.2.1 is also known as thyroid transcription factor 1 and is first
expressed by thyroid progenitors in the foregut endoderm more anterior to the lung primordium from E8.5 in mice (Desai et al., 2004). Moreover it is expressed in the lung buds, hypothalamic area of the diencephalon, and infundibulum of the developing brain in rats (Lazzaro et al., 1991). Analysis of Nkx2.1 knockout mice revealed that Nkx2.1 is essential for the embryonic differentiation of the thyroid, the lung, and the ventral areas of the forebrain and the pituitary (Kimura et al., 1996). Null mutations in Nkx2.1 result in failure of separation of the trachea and oesophagus with a single lumen of the foregut composed of both tracheal and oesophageal components (Kimura et al., 1999).

Expression of Nkx2.1 in the ventral foregut endoderm was shown to be dependent on the concentration of FGF signals from the adjacent cardiac mesoderm (Serls et al., 2005). FGF2 from the cardiac mesoderm co-cultured with ventral foregut endoderm promoted expression of Nkx2.1 (Serls et al., 2005) and it could be inhibited by blocking the FGFR4 endoderm receptor (Serls et al., 2005). However in vivo, mice lacking FGF2 and FGF4 are viable and have no major abnormalities suggesting functional redundancy in FGF signalling (Figure 1.4).

![Figure 1.4: Early Nkx2.1 expression in the ventral foregut, in the region of the prospective thyroid and lungs, responds to FGF signalling from the adjacent heart mesoderm. Model proposed by Serls et al. (2005) where foregut endoderm (Fg) is specified by FGF signalling from adjacent cardiac mesoderm (Ht). Distinct territories of liver (Li), lung (Lu) and thyroid (Th) are indicated. Adapted from Cardoso and Lu, 2006.](image-url)
Retinoic acid (RA) is a metabolite of vitamin A (retinol) that mediates the requirements of vitamin A for growth and development. Fetuses from rat dams reared on a vitamin A deficient diet exhibit severe congenital malformations including lung agensis and undivided foregut (Dickman et al., 1997; Wilson et al., 1953). *Nkx2.1* is markedly reduced in the presumptive respiratory region of the foregut in these embryos at E13 (Desai et al., 2004). There are two families of retinoic acid nuclear receptors (*RARs* and *RXRs*) that act as transcriptional transducers of the retinoid signals during pregnancy. There are three *RAR* encoding genes (*RAR α, β* and *γ*) each producing a number of isoforms. The majority of knockout out mice for different combinations of genes encoding subtypes of retinoic receptors, display similar abnormal morphology of the trachea and oesophagus to vitamin A deficient pups (Luo et al., 1996; Mendelsohn et al., 1994). In particular, *RAR* double mutant fetuses, *RARα(−/−), RARβ2(−/−)*, have been described to have an absence of an oesophagotracheal septum (Mendelsohn et al., 1994). Endogenous RA synthesis and utilization throughout the foregut including the presumptive lung field begins at E8 in mice (Malpel et al., 2000; Rossant et al., 1991). Foregut explants from E8.5 mice cultured with pan-retinoic acid receptor (pan-RAR) antagonist BMS493 (Bristol Meyers Squibb), show no lung bud formation after 3 days of incubation. *Nkx2.1* expression was significantly reduced in the presumptive respiratory field of the ventral foregut endoderm (Desai et al., 2004). Genetic deletion of retionaldehyde dehydrogenase 2 (*Raldh2*), an enzyme essential for RA synthesis in mouse embryos, also leads to absence of lung buds and significantly reduced *Nkx2.1* expression in the endoderm of the prospective lung region in E9 embryos (Desai et al., 2006). Microarray analysis on RNA isolated from the foregut of BMS493 treated and *Raldh2*−/−mutant mice revealed a striking over expression of *Tgfb* signalling pathway-related genes and abnormal hyperactivity of the
Tgfβ pathway in developing foregut (Chen et al., 2007). Tgfβ protein applied directly to foreguts, blocked induction of lung bud formation and reduced expression of Nkx2.1 in foregut endoderm (Chen et al., 2007). These results suggest that endogenous RA signalling maintains an early program of differentiation in the lung endodermal progenitor cells including expression of Nkx2.1 and is necessary to initiate bud morphogenesis in the lung field, acting at least in part by opposing Tgfβ signalling.

Wnt2 and Wnt2b are expressed in the mesoderm surrounding the ventral aspect of the foregut endoderm from E9 in mice (Goss et al., 2009). Wnt2/2b double knock-out mutants display complete lung agenesis without foregut separation (Goss et al., 2009). Nkx2.1 expression is absent in such embryos in the anterior foregut endoderm at the level of lung primordial at E9.5. B-catenin is an intracellular protein required to transmit a canonical Wnt signal and when this gene was conditionally deleted in cells of the anterior foregut that normally express Shh (Ctnnb1^{floxflox}:Shh-cre), the Wnt2/2b double knockout phenotype was replicated, lacking lung specification and tracheal budding and demonstrating that Wnt2/Wnt2b acts in the β-catenin dependent canonical Wnt pathway, which is required to specify lung endoderm progenitors (Goss et al., 2009). This conditional inactivation of β-catenin inhibits foregut separation (Goss et al., 2009; Harris-Johnson et al., 2009) and investigation of undivided foreguts showed that E10.5 mutant embryos lose Nkx2.1 expression and expand Sox2 gene expression, which is normally restricted to the ventral endoderm of the foregut in this region (Harris-Johnson et al., 2009).
There is strong evidence that a balance between the respiratory (trachea/lung) and digestive (oesophagus/stomach) progenitors is maintained through D/V regulation of expression of \textit{Nkx2.1} and \textit{Sox2} genes. \textit{Sox2} is a member of a family of evolutionary conserved transcription factors containing an Sry-related HMG box. From E9.5, \textit{Sox2} gene expression is localized in all endoderm cells of the undivided foregut. Protein levels are higher dorsally, in the future oesophagus, and lower ventrally, in the future trachea (Que \textit{et al.}, 2007). The high expression of \textit{Sox2} in dorsal foregut is reciprocal to that of \textit{Nkx2.1} ventrally (Que \textit{et al.}, 2007). Hypomorphic \textit{Sox2}^{\text{EGFP/COND}} mutant mice display an undivided foregut with ectopic \textit{Nkx2.1} expression and reduced \textit{Sox2} in the dorsal foregut endoderm (Que \textit{et al.}, 2007). Upregulation of the \textit{Sox2} gene was seen in the undivided foregut endoderm of \textit{Nkx2.1} null mutant mice (Que \textit{et al.}, 2007). Explants of foregut from normal E10 embryos treated by addition of \textit{Fgf10}, blocked separation of the oesophagus and trachea, implicating FGF signalling in dorso-ventral patterning. In addition \textit{Sox2} gene expression is significantly reduced in the endoderm of these explants and the \textit{Nkx2.1} gene is upregulated leading to the conclusion that \textit{FGF10} signalling from the ventral mesoderm regulates the reciprocal expression patterns of these two genes (Que \textit{et al.}, 2007) (Figure 1.5).
Figure 1.5: Dorso-ventral patterning of the foregut during separation of the trachea from the oesophagus. Ventral expression of Nkx2.1, regulated through signaling from the ventral mesoderm (Wnt2/2b, Fgf10, and Bmp) determines the future trachea. Higher Sox2 expression in the dorsal foregut endoderm establishes the future oesophagus. D/V patterning of the foregut is modified through Noggin secretion from the notochord, most probably by inhibiting the action of Bmps in the dorsal foregut endoderm. Shh from the notochord and ventral foregut endoderm induces mesodermal Bmp expression. Experimental evidence reviewed in section 1.2.2. Adapted from Morrissey and Hogan, 2010.

Tbx4 is a member of the T-box transcription factor gene family. It is expressed in the ventral mesoderm surrounding the lung primordia in chicks and has also been reported in early mouse lung development (Chapman et al., 1996; Sakiyama et al., 2003). In normal development Fgf10 and Tbx4 are co-expressed in the visceral mesoderm of the lung primordia, coinciding with endodermal Nkx2.1 expression in the ventral foregut (Sakiyama et al., 2003). Ectopic Tbx4 expression produced by in ovo electroporation in the prospective oesophagus-respiratory mesoderm region in chick embryos induced ectopic lung bud formation in the foregut, by activating the expression Nkx2.1 in the corresponding ventral endoderm and Fgf10 in the visceral mesoderm indicating that Tbx4 facilitates the necessary signalling cascades (Sakiyama et al., 2003). Ectopic Fgf10 expression introduced into the visceral mesoderm alone induced ectopic budding of the foregut and caused ectopic mesodermal Tbx4 expression around anterior foregut. These findings indicate the presence of a feedback loop between Tbx4 and Fgf10 (Sakiyama et al., 2003). Misexpression of Tbx4 or Fgf10 in the visceral mesoderm
posterior to lung primordia, result in posterior expansion of Nkx2.1 gene expression (Sakiyama et al., 2003). In addition, some of these embryos result in failure of separation of the trachea from the oesophagus (Sakiyama et al., 2003). This suggests that a Tbx4-Fgf10 system acts as a signaling component of the inductive interactions specific to lung primordium mesoderm and that altered boundaries of expression can affect tracheo-oesophageal separation. In chick, interference (inactivation) of Tbx4 function in the visceral mesoderm repressed Fgf10 expression in corresponding mesoderm and led to failure of lung bud formation (Sakiyama et al., 2003). However in mice inactivation of the Tbx4 gene does not prevent lung bud formation (Naiche and Papaioannou, 2003). Overlapping expression of Tbx2, Tbx3, Tbx4 and Tbx5 during foregut development suggests possible functional redundancy of these genes during lung morphogenesis in mice (Chapman et al., 1996); multiple Tbx genes are also present in humans.

Sonic hedgehog (Shh) is a secreted glycoprotein morphogen that is fundamental to a large spectrum of developmental processes in both vertebrates and invertebrates (Hooper and Scott, 2005). Most of the components of Hedgehog (Hh) signal transduction were first revealed by genetic studies in Drosophila embryos (Nusslein-Volhard and Wieschaus, 1980). Two transmembrane proteins Patched (Ptch) and Smoothened (Smo) function as the Hh binding receptor complex (Alcedo and Noll, 1997; Chen and Struhl, 1996; Stone et al., 1996). Ptch has been shown to bind both Hh and Smo (Marigo et al., 1996; Stone et al., 1996). In the absence of Ptch, Smo constitutively activates the Hh signaling pathway (Alcedo et al., 1996). In the absence of Hh signal, Ptch will inhibit the activity of Smo (Denef et al., 2000). Downstream of Smo is a multi-protein complex known as the Hedgehog signaling complex which compromise
the zinc-finger-containing transcription factor Cubitus interruptus (Ci) necessary to activate
Hh targets (Alexandre et al., 1996; Dominguez et al., 1996). In mammals there are three
Hedgehog genes, Sonic, Indian and Desert Hedgehog, two Ptc h genes (Ptch1 and Ptch2) and
three Ci homologues; Gli1, Gli2 and Gli3. Gli1 posssesses only an activator function, whereas
Gli2 and Gli3 are bi-functional, acting as both activators and repressors of transcription. In the
absence of a Hh signal, Gli2 and Gli3 exhibit a repressor function while in response to Hh
signal they are converted into activators (Dai et al., 1999; Ruiz i Altaba, 1999; Sasaki et al.,
1997; Sasaki et al., 1999; Wang et al., 2000) (Figure 1.6).

During foregut development Shh gene expression is spatially restricted to the ventral aspect of
the foregut endoderm from E9 (Litingtung et al., 1998; Sato et al., 2008). Shh signaling acts as
a positive regulator of Ptc h expression in the lung mesenchyme (Bellusci et al., 1997a). Shh-
null mutants (Shh−/−) are highly malformed (Chiang et al., 1996; Litingtung et al., 1998).
Development of the lung buds is delayed for at least half a day, appearing by E10.5 and the
trachea fails to separate from the oesophagus (Litingtung et al., 1998). Shh−/− mutant lung are
hypoplastic and in the older stages (E17.5) the trachea and oesophagus are connected to the
stomach as a common tube (Litingtung et al., 1998). Ptc h and Gli3 expression is
downregulated and Gli1 expression is undetectable in the mesenchyme adjacent to the lung
buds at E11.5 (Litingtung et al., 1998). Nkx2.1 expression in the mutant embryos at E10.5 is
well defined and restricted to the ventral endoderm of the foregut, resembling that of wild type
embryos (Ioannides et al., 2010). Shh−/− mutants have overlapping phenotypes with Gli2
knockout (Gli2−/−) mice and Gli2−/−, Gli3−/− double mutants. Gli2−/− mutants have foregut
defects with tracheal and oesophageal stenosis, as well as hypoplasia of the lungs (Motoyama
et al., 1998). Consistent with the notion that Gli2^{−/−} mutant lungs have reduced response to the Shh signal, the expression of Ptch and Gli1 is diminished. Double mutant embryos lacking both copies of Gli2 and one copy of the Gli3 gene, Gli2^{−/−}, Gli3^{+/−}, have an undivided foregut connected to the stomach, with a single undivided hypoplastic lung (Motoyama et al., 1998). Mutants lacking both copies of Gli2 and Gli3 have even more severe defects lacking a trachea, oesophagus and lungs following degeneration of the undivided foregut during development (Motoyama et al., 1998). Similar abnormalities seen in the Shh and Gli mutant mice including hypoplastic lungs and lobulation defects, oesophageal and tracheal stenosis, or oesophageal atresia and tracheo-oesophageal fistula have been reported in heterozygous Foxfl^{+/−} mutant mice (Mahlapuu et al., 2001). The Shh target gene Ptch shows an expression pattern complementary to Foxfl in the mesenchyme surrounding the distal epithelium of the lung buds (Bellusci et al., 1997a; Mahlapuu et al., 2001). Foxfl expression can be activated by ectopic Shh secretion in in vitro cultered lung mesenchyme and Foxfl expression is absent in the mesenchyme surrounding the trachea and lung buds in Shh^{−/−} mutants (Mahlapuu et al., 2001). Therefore Shh, Gli and Foxfl are likely to be part of the same pathway and Foxfl a downstream target of Shh.

Figure 1.6: The role of Gli transcription factors in mammalian Shh signal transduction. In the absence of a Shh signal (left) the transcription factors Gli2 and Gli3 act as negative regulators of pathway target genes. When a Shh signal is received (right) Gli2 and Gli3 together with Gli1 act as transcription activators.
The canonical BMP signalling pathway is activated by secreted ligands (e.g. Bmp4) interacting with a complex of type I and type II transmembrane receptors. This initiates signal transduction by phosphorylation of intracellular proteins called Smads; Smad 1/5/8, which interact with a co-Smad (Smad4) to regulate downstream target genes (Miyazono et al.). The role of BMP signalling is still unclear in the initial specification of foregut primordia. Although Bmps are expressed in the ventral foregut mesoderm and endoderm (Li et al., 2008b; Weaver et al., 2000) and Bmp4 knockout mice display tracheal agenesis, Nkx2.1 gene expression domain appeared to be normal in the foregut of knockout embryos. Therefore, Bmp4 is not required for the initial specification of the respiratory bud; rather, it plays a vital role in tracheal outgrowth and elongation which was severely impaired in Bmp4 knockout mice (Li et al., 2008b). Bmp4 may be also involved in development of the dorsal foregut, its separation and elongation. BMP signalling is modulated by extracellular antagonists, including noggin, chordin and follistatin that interfere with effective binding to its receptors (Massague et al., 2005). The Noggin gene is expressed in mice from E7.5 along the entire length of the notochord, the floor plate of the neural tube and in a single cell layer of the dorsal foregut endoderm (McMahon et al., 1998; Que et al., 2006). It was suggested from the observation made in Noggin knockout mice, which display lack of separation of the foregut, that the noggin gene expressed from the notochord may protect dorsal foregut endoderm by inhibiting action of Bmp4 in promoting intercellular adhesion (Que et al., 2006). This is proposed to allow the cells from the dorsal foregut to reorganise, detach from the future trachea and elongate properly. Mesodermal expression of Bmp4 is induced by Shh from the endoderm through mesodermal transcription factors Foxf1, Gli1 and Gli3 (Weaver et al., 2003). It was also shown that Shh up-regulates noggin expression in the mesoderm (Weaver et al., 2003)
and Foxf1, Gli2 and Gli3 knockout mice display overlapping phenotypes and display lack of foregut separation (Litingtung et al., 1998; Mahlapuu et al., 2001; Motoyama et al., 1998) therefore interaction between Bmp4/noggin and Shh pathways is critically important for tracheoesophageal separation.

The signalling pathways and transcription factor interactions implicated in tracheoesophageal patterning reviewed in this section are summarized in Figure 1.7. The genes suggested to be involved in abnormal trachea-oesophageal separation are summarised in Table 1.1.

Figure 1.7: A/P patterning of the ventral foregut and precise specification of the future lung primordia through Nkx2.1 gene expression (ventral view). Shh in the endoderm regulates Bmp4 in the mesoderm through Foxf1, Gli1 and Gli3. Expression of Fgf10 in the mesoderm drives outgrowth of the lung buds and is modified by RA and Tgfβ pathways. In chicks Fgf10 is a downstream target of the Tbx4 transcription factor. The evidence for these molecular interactions is given in the text. Adapted from Morrisey and Hogan, 2010.
Table 1.1: Summary of gene inactivation studies affecting tracheo-oesophageal development.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mutant phenotype</th>
<th>Human homologue</th>
<th>Human locus</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shh<sup>-/-</sup></td>
<td>OA; TOF; lungs form rudimentary sacs</td>
<td>SHH</td>
<td>7q36</td>
<td>Litingtung et al., 1998</td>
</tr>
<tr>
<td>Rara<sup>-/-</sup>; Rarb<sup>-/-</sup> or Rara<sup>1</sup>-<sup>-/-</sup>; Rarb<sup>-/-</sup></td>
<td>TOF; lung hypoplasia or agenesis</td>
<td>RARα, RARβ</td>
<td>RARα:17q21.1 RARβ:3p24</td>
<td>Mendelsohn et al., 1994; Luo et al., 1996</td>
</tr>
<tr>
<td>Gli2<sup>-/-</sup>; Gli3<sup>-/-</sup></td>
<td>OA; TOF; severe lung phenotype No formation of the oesophagus, trachea and lungs</td>
<td>GLI2, GLI3</td>
<td>GLI2: 2q14; GLI3: 7p13</td>
<td>Motoyama et al., 1998</td>
</tr>
<tr>
<td>Foxf1<sup>-/-</sup></td>
<td>Lethal before embryonic day 10; extra-embryonic defects OA; TOF; lung immaturity/hypoplasia; lobulation defect</td>
<td>FOXF1</td>
<td>16q24.1</td>
<td>Mahlapuu et al., 2001</td>
</tr>
<tr>
<td>Ttf1<sup>-/-</sup></td>
<td>TOF; rudimentary peripheral lung primordial</td>
<td>TTF1</td>
<td>14q13</td>
<td>Kimura et al., 1999</td>
</tr>
<tr>
<td>Hypomorphic Sox2<sup>Egrf<sub>COND</sub></sup> mutant</td>
<td>OA; TOF; lung branching defect</td>
<td>SOX2</td>
<td>3q26.2-q27</td>
<td>Que et al., 2007</td>
</tr>
<tr>
<td>Noggin<sup>-/-</sup></td>
<td>Abnormal tracheo-oesophageal septation; hypoplastic lungs</td>
<td>NOG</td>
<td>17q22</td>
<td>Que et al., 2006</td>
</tr>
<tr>
<td>Pcsk5 C470R mutant<sup>a</sup></td>
<td>Partially or completely blocked oesophageal lumen; disruption of oesophageal musculature</td>
<td>PCSK5</td>
<td>9q21.3</td>
<td>Szumska et al., 2008</td>
</tr>
<tr>
<td>Hoxc4<sup>-/-</sup></td>
<td>Abnormal tracheo-oesophageal septation; hypoplastic lungs</td>
<td>HOXC4</td>
<td>12q13.3</td>
<td>(Boulet and Capecechi, 1996)</td>
</tr>
<tr>
<td>Tbx4 misexpression</td>
<td>TEF</td>
<td>TBX4</td>
<td>17q21-q22</td>
<td>Sakiyama et al., 2003</td>
</tr>
</tbody>
</table>

^aEthynitrosourea (ENU)-induced mouse mutation
Adapted from de Jong et al., 2010.

1.2.3 Activation of lung bud morphogenesis

Once the respiratory field is established in the ventral foregut endoderm, outgrowth and extension of the lung primordia into surrounding mesenchyme starts from E9.5. Studies in
different species including chick and mouse have shown that this process is entirely dependent on the localized expression of \textit{Fgf10} in the mesenchyme overlying the tips of the primary lung buds and expression of the receptor \textit{Fgfr2b} in the endoderm of the foregut (De Moerlooze \textit{et al.}, 200; Sakiyama \textit{et al.}, 2003; Sekine \textit{et al.}, 1999). \textit{Fgf10} activates \textit{Fgfr2b} signalling in a subset of \textit{Nkx2.1} expressing endodermal cells, triggering an \textit{Fgf}-mediated program of proliferation and migration. In mutants lacking \textit{Fgf10}, the trachea separates although no lung bud extension occurs indicating that the lung progenitor cells require \textit{Fgf10} for survival (Minoo \textit{et al.}, 1999; Sekine \textit{et al.}, 1999). It was shown that \textit{Fgf9}, which is also expressed in the mesenchyme of the lung, induces expansion of the lung mesenchyme in culture and triggers \textit{Fgf10} expression most probably through upregulation of \textit{Thx4} and \textit{Thx5}, so \textit{Fgf10} expression appears to be regulated by \textit{Fgf9} signalling (del Moral \textit{et al.}, 2006).

Expression of \textit{Fgf10} is reduced in \textit{Wnt2/Wnt2b} double knock-out mutants, suggesting that it acts downstream of canonical \textit{Wnt} signalling in the anterior foregut (Goss \textit{et al.}, 2009). However, when \textit{β-catenin} is conditionally inactivated in the ventral foregut endoderm, \textit{Fgf10} and \textit{Fgfr2b} expression is unaltered suggesting that \textit{β-catenin} is not required for \textit{Fgf10/Fgfr2b} expression during lung initiation (Harris-Johnson \textit{et al.}, 2009).

Foregut explants from E8.5 mice cultured with the pan-\textit{RAR} antagonist \textit{BMS493}, show absence of \textit{Fgf10} expression in the mesoderm, near where the lung buds are expected to form, while endodermal \textit{Fgfr2b} expression is not affected (Desai \textit{et al.}, 2004). \textit{Fgf10} mesodermal gene expression is also significantly reduced in vivo, in vitamin A deficient rat embryos (Desai \textit{et al.}, 2004). As previously mentioned, inhibition of \textit{RA} signaling in \textit{BMS493} treated
and Raldh2-/- mutant mice leads to hyperactivation of Tgfβ signalling. Tgfβ protein applied directly to foregut explants result in marked downregulation of Fgf10 providing additional support for a critical role of RA in the regulation of Fgf10 expression during initial lung bud outgrowth (Chen et al., 2007).

Shh is part of an epithelial network of regulators that restrict expression of Fgf10 in the mesenchyme around the lung bud (Bellusci et al., 1997b; Lebeche et al., 1999). Downregulation of Fgf10 was seen in the study in which Shh was upregulated in mice lung explants cultured with trans-retinoic acid or in the presence of recombinant Shh (Bellusci et al., 1997b; Lebeche et al., 1999). The widespread upregulation of Fgf10 expression in the lung mesenchyme seen in Shh-/- mutants strongly suggests that the level of FGF10 expression is negatively regulated by Shh expression (Litingtung et al., 1998; Pepicelli et al., 1998).

1.2.4 The molecular basis of lung branching morphogenesis

Ultimately the basic pattern of the respiratory tree has to be established. In mice this consists of four lobes on the right and one on the left. This process is driven by localized expression of Fgf10 in distal mesoderm acting through Fgfr2b in the endoderm (De Moerlooze et al., 200; Morrisey and Hogan, 2010). The D/V and A/P position of localized Fgf10 expression is probably genetically determinate through local patterning genes acting in each segment (Ackerman et al., 2005; Ackerman et al., 2007; Morrisey and Hogan, 2010). Localized sources of Fgf10 at the tip of the lung bud mesoderm become critical components of distal organizers and signalling centers. Fgf10 expression is modified through several groups of
evolutionary conserved signalling pathways including Bmps/Tgfβ, Wnts, Shh, Notch and RA (Cardoso and Lu, 2006; Tsao et al., 2008), which coordinate reciprocal interaction between the epithelium and mesoderm and drive repetitive cycles of bud elongation, cessation of outgrowth, expansion of the tip and bifurcation (Metzger et al., 2008).

Two important features of the distal signaling network are crucial to drive lung branching morphogenesis. First it involves multiple antagonists and complex feedback loops that limit or refine the range, magnitude and duration of mitogenic and morphogenetic signals. It can be illustrated by the mechanisms that control the Shh pathway or Fgf10-Fgfr2 expression respectively. Epithelial Shh signalling regulates mesenchymal Fgfl0 expression during branching morphogenesis (Bellusci et al., 1997b; Lebeche et al., 1999). It was proposed that Fgf10 expression is inhibited by a Shh signal within the interbud region. In the tip of the lung buds, although epithelial Shh expression is high, Fgf10 expression is maintained and drives budding. This is possibly by inhibiting Shh signalling through sequestration of the Shh protein by increased levels of Pichl and Hipl (Chuang et al., 2003). Both Pichl and Hipl are membrane-bound proteins that directly bind Shh, can transduce the Shh signal but not on their own and are positively regulated by Shh. Spry2 gene expression was detected by whole-mount in situ hybridization in the epithelium of the actively growing tips of lung buds from E10.5 (Mailleux et al., 2001). In cultured lungs, FGF10-coated beads strongly induced Spry2 expression in adjacent lung epithelium and caused decreased epithelial proliferation and branching morphogenesis (Mailleux et al., 2001). Spry2 inhibits Fgf10-Fgfr2 signalling in distal respiratory epithelial cell culture and reducing Spry2 activity in lung culture results in increased branching (Tefft et al., 2002; Tefft et al., 1999). These two examples were proposed
as part of the mechanism controlling the size of the lung bud and branching morphogenesis itself. Second is that different signalling pathways cross-regulate one other. Shh stimulates Wnt2 and Bmp4 in the mesenchyme (Pepicelli et al., 1998), Wnt7b/beta-catenin signaling promotes the expression of Bmp4 and Fgfr2 in the epithelium (Rajagopal et al., 2008; Shu et al., 2005) and Fgf9 promotes the expression of Fgf10 in the distal mesoderm (del Moral et al., 2006).

The roles of BMP and Wnt signalling during lung branching morphogenesis are still unclear. At E10.5 in mice, when the cranial bud first appears near the tip of the right primary bud, Bmp4 expression is low and Fgf10 is expressed in the mesenchyme around the tip. As the cranial bud extends, driven by high mesenchymal Fgf10 expression, Bmp4 expression is upregulated in the endoderm. During dichotomous branching Bmp4 declines in the region between the two new buds but is maintained in their tips. Similar patterns of restriction of Bmp4 expression is seen during further branching morphogenesis (Weaver et al., 2000). The precise role of Bmp4 in the developing lung in vivo remains unclear. In situ hybridisation analysis in mesenchyme-free lung epithelial cultures shows that recombinant Fgf10 induces budding and Bmp4 expression, while recombinant Bmp4 inhibits Fgf10-mediated budding in these cultures (Lebeche et al., 1999; Weaver et al., 2000). Other authors show that when recombinant Bmp4 is administered to intact lung explants in which both epithelium and mesenchyme are present, branching is enhanced (Bragg et al., 2001). Therefore it was proposed that when Bmp4 signalling is activated in the epithelium (autocrine fashion), proliferation is inhibited. In intact lungs with the presence of mesenchyme, Bmp4 from the epithelium may activate Bmp signalling in adjacent mesenchyme (paracrine fashion) and then
induce a currently unknown distal mesenchyme signal that enhances proliferation of distal epithelial buds (Bragg et al., 2001).

Several Wnt ligands, frizzled receptors and components of the Wnt canonical pathway, including β-catenin, are present in the developing lung (Warburton et al., 2005). In the early mouse lung at E12.5, Wnt7b is expressed in the lung epithelium with a more intense expression distally and Wnt2 is highly expressed in the distal mesenchyme (De Langhe et al., 2005; Warburton et al., 2005). Inactivation of Wnt7b in mice resulted in perinatal death due to respiratory failure and lung hypoplasia (Shu et al., 2002). Activation of canonical Wnt signalling can be monitored by detection of nuclear translocated of β-catenin and activation of the transcription of Wnt target genes (Nelson and Nusse, 2004). Nuclear-localized of β-catenin is increased in the distal lung epithelium, the sites that are actively branching (Okubo and Hogan, 2004). Disruption of the canonical Wnt pathway by targeted deletion of β-catenin, or by targeted expression of the Wnt inhibitor dickkopf 1 in vivo prevents distal lungs from forming by affecting branching morphogenesis (De Langhe et al., 2005; Mucenski et al., 2003). Contrary to these findings, two other studies showed increased branching morphogenesis as a consequence of disrupted Wnt signaling. Wnt5a, a noncanonical Wnt which is able to inhibit canonical Wnt signalling (Topol et al., 2003; Westfall et al., 2003), is expressed at low levels in lung mesenchyme and epithelium at E12.5 and is highest around the trachea and pharynx. Mice that lack the Wnt5a gene revealed increased branching morphogenesis (Li et al., 2002). Similar results were reported after lung explants were treated with morpholino oligonucleotides against β-catenin (Dean et al., 2005). In both studies Fgf10 expression was locally increased in the lungs.
1.3 Etiology of OA/TOF in humans

OA/TOF are common malformations of the foregut in humans affecting 1:3500 live births (Depaepe, 1993) (Figure 1.1). In approximately 50% of the cases (syndromic oesophageal atresia), there are other associated anomalies, with cardiac anomalies being the most common (Shaw-Smith, 2009). The best known association of anomalies is VACTERL (Vertebral, Anal, Cardiac, Tracheo-Oesophageal, Renal, Limb) found in around 10% - 30% of the infants with OA/TOF (Chittmittrapap et al., 1989; de Jong et al., 2010; Quan and Smith, 1973; Temtamy and Miller, 1974). In the other 50% of cases OA/TOF occurs in isolation (non-syndromic oesophageal atresia) (Robert et al., 1993). OA/TOF is thought to be a multifactorial complex disease and various isolated reports indicate environmental and/or genetic factors in the aetiology of the malformation, although in the majority of cases, the etiology of the malformations remains unknown.

1.3.1 Environmental factors

Several environmental factors have been suggested as risk factors for development of tracheoesophageal anomalies and a number of examples are given below. It was suggested from several studies that maternal exposure to methimazole, medication used as a treatment of hyperthyroidism, given during the first trimester, may cause OA with TOF (Clementi et al., 1999; Di Gianantonio et al., 2001). A retrospective study which was based on a questionnaire sent to mothers of children with OA/TOF who were members of the Dutch parents association of children with OA/TOF, showed increased prevalence of OA/TOF in babies born after
maternal \textit{in utero} exposure to diethylstilbestrol (DES), a synthetic estrogen used for the prevention of miscarriage between 1938 and 1975 (Felix \textit{et al.}, 2007a). The authors hypothesised that exposure to DES might cause genetic or epigenetic (imprinting) changes in primordial oocytes of female embryos in utero, with effects which were not seen until the birth of the offspring of these exposed embryos, 2 generations later. Exposure to progestagen and oestrogen (exogenous sex hormones) during the first trimester of pregnancy were also reported to be associated with increased risk of OA/TOF in new born babies (Goujard and Rumeau-Rouquette, 1977; Nora \textit{et al.}, 1976). Periconceptional exposure to maternal alcohol consumption and smoking was reported to cause increased risk of OA/TOF in newborns (Wong-Gibbons \textit{et al.}, 2008). It was suggested from a study carried out in Finland that microbial infection may be an aetiological factor for oesophageal atresia (Kyyrönens and Hemmink, 1988). However, while a number of environmental insults have been connected with a predisposition to OA/TOF, no consistent predominant teratogen has been identified and supported in multiple studies.

1.3.2 Genetic factors

The association of OA/TOF with a number of human syndromes indicates genetic mechanisms lying behind the pathogenesis of foregut malformations or at least predisposing the occurrence. OA/TOF is found in around 0.5% - 1% of children with trisomy 21 (Dawn syndrome) and up to 25% of children with trisomy 18 (Edwards syndrome). Foregut malformation was also reported in several other structural chromosomal abnormalities (Felix \textit{et al.}, 2007b). Mutation and deletion of the MYCN gene on chromosome 2p24.1 was shown to cause Feingold
syndrome where 30 – 40% of the patients have OA/TOF (van Bokhoven et al., 2005). It is the most common cause of familial syndromic gastrointestinal atresia. The MYCN gene is a direct target of the SHH pathway (Kenney et al., 2003), however, the literature only reports one patient with OA/TOF having a deletion encompassing one copy of the SHH gene (Speleman et al., 1992).

About 10% of patients with CHARGE (coloboma, heart anomalies, choanal atresia, growth and/or mental retardation, genital and ear anomalies) syndrome display OA/TOF. It is associated with mutation of the CHD7 gene on chromosome 8q12 which is important for early embryonic development, affecting epigenetic regulation by chromatin organization and euchromatic gene expression (Vissers et al., 2004).

Deletions and mutation of the SOX2 gene are causative for the AEG (anophtalmia/optic nerve hypoplasia, oesophageal atresia, and/or genital anomalies) syndrome that includes oesophageal atresia (Williamson et al., 2006) and this corresponds with studies from mutant mice that provide evidence of the importance of the Sox2 gene during early foregut development (Que et al., 2009).

Mutations of GLI3 cause Pallister-Hall syndrome (Johnston et al., 2005) which includes bifid epiglottis, hypothalamic hamartoblastoma, postaxial polydactyly, anal atresia and laryngeal cleft. Although OA/TOF are only occasionally part of the syndrome, severe foregut anomalies reported in Gli2/Gli3 knockout mice imply an important role for these genes in foregut development (Motoyama et al., 1998). OA/TOF as also reported as part of Opitz G syndrome,
associated with mental retardation and agenesis of the corpus callosum and mutation of the
MID1 gene (De Falco *et al.*, 2003). This gene is involved in the establishment of the right-left
axis during chick development and has been shown to be positively regulated by *Bmp4* and
negatively regulated by *Shh* during this process (Granata and Quaderi, 2003).

Gastrointestinal malformation including duodenal atresia, anorectal malformation and
OA/TOF were found in 14% of patients with Fanconi Anemia due to mutation in *FANCA*,
FANCB, *FANCC*, *FANCD1*, *FANCD2* and *FANCG* genes causing the disease (Auerbach,
2009).

Deletions of several chromosomal loci were also reported in some cases of OA/TOF (Digilio
et al., 1999; Felix *et al.*, 2007b; Puusepp *et al.*, 2009; Stankiewicz *et al.*, 2009; Walsh *et al.*,
2001). Some of the deleted loci include important genes that cause the pathogenesis of
OA/TOF like phenotypes in mutant mice. The 17q21.3-q24.2 region includes the *Noggin* gene
(*NOG*), known to cause OA/TOF when inactivated in mice (Felix *et al.*, 2007b; Que *et al.*,
2006), the *TBX4* gene involved in proper foregut formation in chick (Felix *et al.*, 2007b;
Sakiyama *et al.*, 2003) and the *RARα* gene known from mutant mice to be involved in foregut
development (Mendelsohn *et al.*, 1994). The 16q24.1 locus includes the *FOXF1* gene and
haploinsufficiency of the *Foxf1* in mouse embryos leads to OA/TOF (Mahlapuu *et al.*, 2001;
Stankiewicz *et al.*, 2009).

Use of the mutagen ENU (N-ethyl-N-nitrosurea) to delete exon 1 of the Proprotein convertase
subtilisin/kexin type 5 (*Pcsk5*) gene in mouse was recently reported to recapitulate many
aspects of VACTERL association malformations (Szumska et al., 2008). All of the mutant mice had abnormal tracheoesophageal separation and resulted in abnormal expression of several Hox genes. In human patients the PCSK5 mutation was found in association with VACTERL (Szumska et al., 2008).

OA/TOF may occur as an isolated anomaly, it may be part of a complex of congenital defects or it may develop within the context of a known syndrome or association defects. Genetic factors are most likely to play a role in the etiology of OA/TOF in the last two groups (Felix et al., 2007b). While a number of genetic lesions have been associated with individual incidences of human OA/TOF, no common genetic basis has been found indicating that the condition may result from altering any of several complex pathways at multiple points.

1.4 Adriamycin rat/mouse models of OA/TOF

In 1978 Adriamycin, a chemotherapy agent, was found through teratogenic studies to cause birth defects in rats that resemble the VACTERL anomalies, along with other gastrointestinal atresias (Thompson et al., 1978). Adriamycin is an antibiotic of the anthracycline group commonly used for treatment of cancers such as lymphomas, leukemias, neuroblastoma and breast cancer. It enters the nucleus, intercalates into DNA (causes DNA adducts) and causes protein associated single and double strand DNA breaks (Cullinane et al., 1994). It was suggested that the major mechanism of adriamycin involves formation of interstrand cross-links with DNA, interfering with DNA replication and transcription, through inhibiting nucleic
acid synthesis (Cullinane et al., 2000; Meriwether and Bachur, 1972). The direct action of adriamycin in causing the defects were not known, however, the potential of this teratogen to create a reproducible model in which to study the pathogenesis of these birth defects was realised in 1996 (Diez-Pardo et al., 1996). The first step in creating the model was to optimise the dose of adriamycin, and the time frame for exposure to yield reproducible malformations, i.e. to produce a response curve between adriamycin dosage and birth defects (Orford and Cass, 1999; Qi et al., 1996). Given that the mouse is the developmental biologist’s mammal of choice, providing greater availability of molecular tools and techniques, and transferable knowledge from mutant mice, adriamycin treated mouse models displaying OA/TOF were developed and was first described by Ioannides et al (Ioannides et al., 2002) by administering a dose of 4mg/kg of Adriamycin to pregnant mice on days E7.5 and 8.5. This gave rise to a tracheo-oesophageal malformation in 47% of the fetuses. The tracheo-oesophageal malformation was a complete laryngotracheo-oesophageal cleft and the occurrence of oesophageal atresia was found to be rare. There was no description of the occurrence of any of the other VACTERL defects. Initial experience of the treatment regime described by Ioannides et al (Ioannides et al., 2002) in the host group, gave rise to a very low rate of anomalies, with no tracheo-oesophageal malformations. Using the original protocol for the Adriamycin Mouse Model (AMM) as guidance, a dose response analysis of the teratogenicity of adriamycin in the mouse was carried out (Dawrant et al., 2007a). This established that administering a dose of 6mg/kg of adriamycin on days E7 and 8 produces reproducible abnormalities similar to those described in the Adriamycin Rat Model (ARM) (Dawrant et al., 2007a). On average, 43% of fetuses per litter had 3 or more VACTERL anomalies (including tracheo-oesophageal malformation in 29% of fetuses per litter) examined at E18. Adriamycin
was found to produce a spectrum of tracheo-oesophageal malformations: upper pouch oesophageal atresia, upper pouch oesophageal atresia with partial cleft larynx, complete laryngotracheo-oesophageal cleft, and tracheal agenesis. All of the fetuses with a tracheo-oesophageal malformation had a tracheo-oesophageal fistula. The spectrum of tracheo-oesophageal malformations produced in AMM were close to that seen in human (Dawrant et al., 2007a). A histological study of the critical period of organogenesis of the tracheo-oesophageal malformations from day 9-13 was also carried out, confirming that many of the observations made in the ARM apply to the mouse (Dawrant et al., 2007a). Similarity of the foregut malformations produced in AMM to that seen in human and easily reproducible method for range of congenital foregut anomalies provided great opportunity for further studying the embryology and molecular biology using this model. While certain knock-out mouse models show some of the anomalies see in OA/TOF, no single model reproduces the spectrum of OA/TOF malformations.

Initial studies on the development of OA/TOF in both the rat and mouse models focused on the mechanisms whereby the oesophagus becomes atretic. It was shown, in transverse histological sections through the foregut, that the fistula between the respiratory tract and the stomach was respiratory in origin, lined with ciliated respiratory epithelium emerging from the bifurcation of the trachea or from one of the main bronchii (Crisera et al., 1999; Merei et al., 1997) and the cells expressed the respiratory marker Nkx2.1 (Crisera et al., 2000a). The origin of the fistula was further elucidated in another study which confirmed neural and neuropeptide abnormalities in the distal oesophagus of adriamycin treated rats (Cheng et al., 1997; Qi et al., 1997). This could explain the oesophageal dysmotility found in some human patients after
surgery (Crisera et al., 1999; Crisera et al., 2000a; Possogel et al., 1998). Although Nkx2.1 positive, the fistula did not develop branches but was connected to the stomach (Crisera et al., 2000a). This was addressed in another study where the Fgf signalling pathway was explored in the context of epithelial-mesenchymal signalling involved in the formation of TOF (Crisera et al., 2000b). These authors found that respiratory epithelium and mesenchyme around the lung buds and fistula in adriamycin exposed embryos had a different capability to respond to signalling molecules Fgf10 and Fgf7. The lung and fistula epithelium of the adrimaycin treated embryos cultured in the presence of Fgf10 or Fgf7 did not branch. Both Fgf10 and Fgf7 exclusively bind and signal through Fgfr-IIIib in the epithelium, therefore the authors suggested that absence or mutation of Fgfr-IIIib may affect branching morphogenesis in adriamycin treated embryos. Moreover normal lung epithelium didn’t branch when cultured with the mesenchyme surrounding the fistula from the adriamycin exposed embryo suggesting that it must either actively inhibit branching or it may lack a critical branching morphogen (Crisera et al., 2000b).

Recently it was found that a fistula arising from the dorsal part of the foregut is negative for Nkx2.1 and a gradual extension of Nkx2.1 expression into the fistula was suggested as a secondary and adaptive event converting the initially Nkx2.1 negative trifurcation branch at E11.5 into the positive Nkx2.1 fistula from E13.5 (Ioannides et al., 2010).

One of the earliest and most striking features of the rodent models is the abnormality seen to occur in one of the early embryonic structures, the notochord. Many groups, including the present work, have reported that in the adriamycin model the notochord develops abnormal branches
extending toward the foregut, speculated to be a result of delayed separation from the endoderm (Gillick et al., 2002; Gillick et al., 2003; Williams et al., 2001). Abnormal notochord branching was found in the AMM from day 9.5/10 (Dawrant et al., 2007b). However abnormal notochord branches were not always found in embryos of later gestational age. On day 9.5 when the first evidence of failure of notochordal separation from the foregut was seen in histological sections, there was no indication of whether the foregut is going to maldevelop (Dawrant et al., 2007b). In later stage embryos when there was evidence of abnormal tracheo-oesophageal development, the notochord and foregut have moved away from each other craniocaudally and dorsoventrally and the notochord was also undergoing a process of resorption (Possoegel et al., 1999). Therefore, it remained unclear whether the notochord and foregut abnormalities have a cause and effect relationship or merely reflect two expressions of a profound disturbance of embryonic para-axial organisation (Possoegel et al., 1999).

It was suggested before that the ventrally displaced notochord may be a source of ectopic Shh signalling and may have an effect on the distribution of Shh around the foregut endoderm (Orford et al., 2001). Using whole mount in situ hybridization the host group showed the distribution of Shh transcripts to be restricted to the ventral endoderm of the laryngotracheal groove and lung primordia from E9 (Sato et al., 2008). Orford et al. reported uniform distribution of Shh transcripts around foregut endoderm in ARM embryos at the level of tracheal separation (Orford et al., 2001). The loss of a normal ventral-to-dorsal shift in foregut endoderm expression of Shh was also reported in adriamycin exposed embryos by other groups (Arsic et al., 2004; Ioannides et al., 2003), although some of the treated embryos preserved the ventral pattern of Shh distribution (Arsic et al., 2004). Despite Shh disruption, the patched receptor (Ptch) gene
expression pattern was not altered in the neural tube and mesenchyme surrounding the foregut (Orford et al., 2001). Using immunoblotting and the ELISA quantification method, Arsic et al. reported initial high levels of Shh protein in the foregut endoderm of normal rat embryos which decreased with time as the embryos approach term (Arsić et al., 2003). In the embryos exposed to Adriamycin, Shh protein level remained low from the early stage (E10) and did not change with time in comparison to control embryos. Authors suggested that Adriamycin may affect the expression of this protein during early foregut development. The fistula tract extracted from the ARM and human neonates with OA/TOF showed reduced levels of mRNA for Gli2, which is a direct target gene of the Shh pathway, implicating the Shh pathway in the development of OA/TOF malformations (Spilje et al., 2003a; Spilje et al., 2003b).

Molecular aspects of foregut separation were also investigated in AMM. It was found that failure of foregut septation is not associated with generalised loss of dorso-ventral gene expression patterning in the foregut (Iоannides et al., 2010). Both Nkx2.1 and Sox2 genes showed appropriate patterning in Adriamycin-induced OA/TOF malformed embryos suggesting that the balance between respiratory and gastrointestinal specification in the foregut is intact even though these two elements failed to separate (Iоannides et al., 2002; Iоannides et al., 2010).

The foregut defects in AMM were compared with the phenotypes of knock out mice for Shh and Nkx2.1 that exhibit foregut malformations resembling human OA/TOF (Iоannides et al., 2010). Interestingly the morphological and molecular features of abnormal foregut development were similar.
While analysis of abnormalities in the adriamycin treated mouse model has provided some insight into the etiology of OA/TOF, study to date has been limited either to describing abnormal morphology of the embryo in sections from a relatively small number of specimens, or single marker/candidate gene expression. Therefore, mechanisms that can lead to such malformations in the model are only partially described.

1.5 Objectives of the thesis

Investigating the process of faulty foregut development and separation of the trachea from the oesophagus in AMM leading to formation of OA/TOF is important in order to elucidate the normal mechanisms that are impacted, which in turn could reveal the developmental processes disturbed in cases of human OA/TOF. The objective of this thesis was to explore the morphological and molecular alterations in the AMM using a combination of 3D imaging OPT and molecular probes. Additionally, this thesis aimed to address the hypothesis that anomalies observed in the AMM could be a result of fundamental defects in the notochord leading to abnormal delamination and ectopic placement of this potent signalling tissue during crucial stages of foregut development. The work presented in this thesis set out to further our understanding of the basis of the lesions that occur in an important mouse model of OA/TOF congenital abnormalities. The specific objectives of this thesis can be divided into three broad sets of aims:
To visualise and describe early foregut development and foregut malformations seen in AMM using Optical Projection Tomography, a 3D imaging technique designed for embryonic specimens. This work tests the hypothesis that there is a causative link between notochord and foregut malformations seen in the AMM. This was designed to provide a detailed 3D dataset of abnormal morphogenesis and tissue differentiation in this model of tracheo-oesophageal malformations. The 3D approach using OPT gives more complete analysis of each individual embryo than was previously possible (Chapter 3) allowing a more comprehensive overview of the variety of malformations and any associations between different abnormalities.

To investigate the temperospatial expression of key candidate genes implicated in tracheo-oesophageal development in detail using OPT during the critical period of separation of the trachea and oesophagus in normal and treated embryos and to relate any changes in gene expression patterns found to the abnormal morphology and developmental events observed in this model. This work tests the hypothesis that specific regulatory genes are impacted in the AMM. Candidate genes were selected based on reported observations made in mutant mice where inactivation or activation of the candidate genes result in lack of separation of the foregut. The possible involvement of candidate regulatory genes in the abnormalities of the foregut was explored by comparing expression patterns in control and adriamycin treated embryos. Prior to this study, no detailed 3D analysis and comparison of expression of these genes was carried out in the mouse model (Chapter 3 and 4).
• To investigate the structure of the notochord as a possible primary target of Adriamycin treatment. This was designed to address the hypothesis that anomalies observed in AMM could be the result of defects in cellular organization of the notochord as an important organizing tissue. This work therefore focused on the early stages following treatment, examining the cellular architecture and position of the notochord with respect to the foregut endoderm in normal and adriamycin treated mouse embryos. The early events in notochord delamination in control and treated embryos were examined using confocal microscopy and specific markers of ECM to explore the cause of the abnormal positioning and branching seen previously in the AMM (Chapter 5).
Chapter 2

Materials and Methods

2.1 Embryo collection and fixation

Male and female CBA/Ca mice (Harlan UK, Bicester, England), housed in the Biomedical Facility UCD, were accurately time-mated over a four-hour period starting at 8am. Finding a vaginal plug at the end of this mating period was taken to be the start of gestation and was designated the start of day 0. Pregnant dams received two intraperitoneal injections, 24 hours apart, on days 7 and 8 of gestation at 10am. The Adriamycin treated dams received a dose of 6mg/kg of Adriamycin (Doxorubicin, EBEWE Pharma GmbH, Nfg.KG, A-4866 Unterach, Austria) in 0.9% Sodium Chloride. The control dams received an equivalent volume of 0.9% Sodium Chloride. The Adriamycin was prepared to a concentration of 0.3mg/ml just before the first injection and was stored in the dark at 2-8°C until the second injection was given. This means that there was a standard weight determined volume for the intraperitoneal injection given to the mice at 0.02ml/g. The dams were then humanely killed by swift cervical dislocation at 11am on embryonic days (E) 9 through 13. The uteri were dissected from the
mice, placed in ice cold PBS, and brought on ice to the Developmental Laboratory in Trinity College, where the embryos were removed from the uteri using RNase-free equipment, fixed in 4% paraformaldehyde in PBS overnight and dehydrated through a graded series of methanol/PBT (0.1% Triton X100 in PBS; 25%, 50%, 75% methanol; 1x10 minute) washes, followed by 2 x 10 minutes in 100% methanol and stored according to embryonic day in separate tubes at -20°C until needed.

All experiments were carried out in compliance with current European Union regulations for animal investigation (ED86/609/EC), with prior ethical approval under licence no. B100/4106 from the Department of Health, Ireland.

2.2 *In Situ* Hybridisation

2.2.1 Probe preparation

Plasmids carrying cDNA clones of candidate genes were obtained from a variety of sources (Table 2.1). To amplify and purify the plasmids, chemically competent *E. coli* (XL2-Blue, Ultracompetent Cells, Stratagene) were transformed by the standard heat-shock method (as recommended) and grown on Luria Bertoni (LB) agar plates (1% Tryptone, 0.5% Yeast Extract, 1% NaCl, 1.5% Agar, in dH₂O) supplemented with 100μg/ml ampicillan (Sigma-Aldrich, Germany). Details of the cDNA clones used to generate RNA probes are summarized in Table 2.1.
Plasmid DNA was extracted and purified from *E. coli* cultures expanded in LB broth (1% Tryptone, 0.5% Yeast Extract, 1% NaCl, in dH₂O) using a Maxiprep kit (Qiagen, UK). Plasmid DNA was sequenced to verify identity of the cDNA insert using vector primer sites flanking the insert. Sequences were analysed using tools provided by the National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov). Plasmid DNA was linearised with appropriate restriction enzymes to produce template for in vitro transcription. Antisense and sense digoxigenin (dig)–labelled RNA probes were generated, according to vector and insert orientation in each case, from 1 μg linearised plasmid DNA using T7, T3 or SP6 promoter sites, as appropriate in each case (all reaction components from Roche, Germany) in a 20μl reaction volume at 37°C for 2 hours. RNA production and integrity was checked by running 1μl of the transcription reaction on a 1% agarose gel. In the case of sufficient RNA production, DNA template was degraded by incubation with 1μl RNase free DNase (Roche, Germany) for fifteen minutes at 37°C. The *in vitro* transcribed RNA was purified on G25 columns (Amersham biosciences, USA) as per manufacturer’s instructions, quantified by spectrophotometry absorbance at 260nm (Eppendorf Biophometer) and stored at -20°C in an equal volume of hybridization mix. Hybridisation buffer contained 2% blocking reagent (Roche, Germany), 50% formamide, 5 X saline-sodium citrate buffer (SCC), 0.5% 3-[(3-Cholamidopropyl) dimethylammonio] -2-hydroxy-1-propanesulfonate (CHAPS), 500ug/ml Heparin, 1 μg/ml Yeast RNA, 0.1% Tween 20 and 5mM ethylenediamine tetraacetic acid (EDTA).
Table 2.1: Summary of cDNA clones used to generate RNA in situ probes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Extent of Probe on Genbank Sequence</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shh</td>
<td>Nucleotide 452 to 1097 on NM_009170.3</td>
<td>Prof. L. Lundh</td>
</tr>
<tr>
<td>Foxfl</td>
<td>Nucleotide 342 to 742 on NM_010426.1</td>
<td>Prof. L. Lundh</td>
</tr>
<tr>
<td>Nkx2.1</td>
<td>Nucleotide 65 to 563 on NM_009385.3</td>
<td>Dr L. Magno</td>
</tr>
<tr>
<td>Sox2</td>
<td>Nucleotide 31 to 778 on NM_011443.3</td>
<td>Prof. R. Lovell-Badge</td>
</tr>
<tr>
<td>Noggin</td>
<td>Nucleotides 291 to 1285 on NM_008711.2</td>
<td>Dr Richard Harland</td>
</tr>
<tr>
<td>BMP4</td>
<td>Nucleotides 6 to 1811 on NM_007554.2</td>
<td>Prof. Si Jen Lee</td>
</tr>
<tr>
<td>Wnt2</td>
<td>Nucleotides 35 to 1510 on NM_023653.4</td>
<td>Dr P. Murphy</td>
</tr>
<tr>
<td>Wnt5a</td>
<td>Nucleotides 576 to 2714 on NM_009524.2</td>
<td>Dr P. Murphy</td>
</tr>
<tr>
<td>Wnt7</td>
<td>Nucleotide 93 to 1581 on NM_009528.2</td>
<td>Dr P. Murphy</td>
</tr>
<tr>
<td>Tbx4</td>
<td>Nucleotide 526 to 1821 on NM_172798.1</td>
<td>Dr S. Bellusci</td>
</tr>
<tr>
<td>Fgf10</td>
<td>Nucleotide 686 to 1315 on NM_008002.4</td>
<td>Dr R. Kelly</td>
</tr>
<tr>
<td>RARα</td>
<td>Nucleotide 22 to 1160 on NM_001177303.1</td>
<td>Dr P. Dolle</td>
</tr>
<tr>
<td>RARβ</td>
<td>Nucleotide 63 to 1150 on NM_011243.1</td>
<td>Dr P. Dolle</td>
</tr>
<tr>
<td>Fgfr2b</td>
<td>Nucleotides 1816 to 1966 on NM_201601.2</td>
<td>Dr R. Kelly</td>
</tr>
<tr>
<td>Gli1</td>
<td>Nucleotides 967 to 2673 on NM_010296.2</td>
<td>Dr A. L. Joyner</td>
</tr>
<tr>
<td>Gli2</td>
<td>Nucleotides 1114 to 1943 on NM_001081125.1</td>
<td>Dr A.L. Joyner</td>
</tr>
<tr>
<td>Gli3</td>
<td>Nucleotides 384 to 2616 on NM_008130.2</td>
<td>Dr A.L. Joyner</td>
</tr>
</tbody>
</table>

2.2.2 Fixation and pre-treatment of embryos

For testing probes and preliminary analysis of expression patterns in the foregut and lung bud regions, whole mouse embryos (fixed and stored as per Section 2.1) at E10, E11, E12 and E13 were used. All embryos for wholemount *in situ* hybridisation (normal, control, adriamycin
treated) were processed as follows. Embryos were rehydrated through a graded series of methanol/PBT solutions (75%, 50%, 25% methanol; 1x10 minutes) at 4°C and subsequently washed 2x10 minutes in PBT. Embryos were then selected under an Olympus SZK-ILLD200 light microscope in ice cold PBT and dissected from any remaining membranes with RNase-free forceps. Specimens were then pierced through the eye and hindbrain with an RNase free needle to prevent the trapping of the probe in the brain vesicles. Embryos from E12 were dissected to include only the trunk region from the first branchial arch to the base of the liver to ensure penetration of RNA probes and antibodies. Embryos were then permeabilised by treatment with 10µg/ml proteinase K (Roche) in PBT, placed horizontally in 30ml tubes at room temperature with the mixture and spaced so as to ensure even digestion of the tissues.

The length of digestion time depended on the age of the embryos (Table 2.2). Embryos were then refixed in 0.2% glutaraldehyde/4% PFA over 20 minutes and washed 3 times quickly in PBT at room temperature. Embryos were subsequently equilibrated with hybridisation buffer and then prehybridised with hybridisation buffer at 65°C overnight.

Table 2.2: Length of time embryos were permeabilised in 10µg/ml Proteinase K

<table>
<thead>
<tr>
<th>Embryo age: Embryonic day (E)</th>
<th>Time required for permeabilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E9</td>
<td>10 minutes</td>
</tr>
<tr>
<td>E10</td>
<td>15 minutes</td>
</tr>
<tr>
<td>E11</td>
<td>60 minutes</td>
</tr>
<tr>
<td>E12</td>
<td>90 minutes</td>
</tr>
<tr>
<td>E13</td>
<td>120 minutes</td>
</tr>
</tbody>
</table>
2.2.3 Hybridisation, washing and detection of probe in whole mount preparations

The appropriate amounts of antisense and sense RNA probes were denatured at 80°C for 3 minutes and then diluted to a final concentration of 1μg/ml probe in hybridisation buffer. Embryos were incubated at 65°C in prewarmed hybridisation buffer containing 1μg/ml digoxigenin-labeled riboprobes overnight. After hybridization the unhybridised probe was removed and stored at -20°C for reuse up to 3 times. Embryos underwent post-hybridization washes at 65°C, 1x5 minutes in posthybridisation wash solution (PWS) (50% formamide / 5 x SSC (Saline Sodium Citrate, Sigma-Aldrich) / 0.5% CHAPS (Sigma-Aldrich)), then three serial 30 minutes washes in decreasing concentrations of formamide, SSC and CHAPS (75% PWS/ 25% 2xSSC / 0.1 % CHAPS, 50% PWS/50% 2xSSC / 0.1 % CHAPS, 25% PWS/75% 2xSSC / 0.1 % CHAPS), culminating in 2x30 minutes wash in 2x SSC / 0.1% CHAPS and 2x30 minutes in 0.2x SSC / 0.1% CHAPS and 2x10 minutes in TNT (100 mM Tris, pH 7.5, 150 mM NaCl, 0.1% Triton X-100) at RT. After washing, the embryos were blocked in 10% goat serum overnight at 4°C followed by incubation with 1/3000 dilution of anti-digoxigenin Fab fragments conjugated with alkaline phosphatase (# 11 093 274 910, Roche, Germany) overnight at 4°C on a Stuart Scientific SSM4 mini see-saw rocker. The embryos were than washed 2 x 5 minutes and 4 x 1 hour in TNT with rocking at room temperature, then continued washing in TNT overnight at 4°C with rocking to remove unbound antibody. Following this the embryos were transferred to glass jars and washed 3 x 15 minutes in NMT (0.1M Tris ph9.5 / 0.1M NaCl / 0.05M MgCl₂). The chromogenic reaction was carried out in NMT containing 450μg/ml 4-nitro blue tetrazolium chloride (NBT; Roche Germany) and 175μg/ml 5-bromo-4-chloro-3-indolyl-phosphate (BCIP, Roche Germany) developed in the
dark at room temperature with rocking. The staining was monitored and once a strong signal had been produced (1-6 hours) the reaction was stopped by washing several times in PBT. The embryos were then fixed overnight in 4% PFA at 4°C. The stained embryos were examined and photographed under a microscope (Olympus SZX12 with attached camera) using normal light.

2.3 Immunolocalisation

Immunolocalisation of the endoderm marker HNF3β was used together with in situ hybridisation to visualize the notochord and foregut clearly, so that differences in morphology of the adriamycin treated embryos as well as the differences in gene expression could be analysed.

2.3.1 Incubation with Primary Antibody

Embryos were prepared for in situ hybridization, as per section 2.1 and the protocol for in situ hybridization was unchanged from section 2.2 until the incubation with 1/3000 dilution of anti-digoxigenin Fab fragments conjuncted with alkaline phosphatase (Roche, Germany). When double staining was performed, HNF3β primary antibody (07-633 Upstate Cell Signaling Solution, Lake Placid, NY) was diluted 1/500 in 10% goat serum in TNT and exposed to the embryos together with anti-DIG for at least 4 days at 4°C with rocking. Embryos then were washed six times in TNT at room temperature while on a Stuart Scientific GYRO-ROCKER®.
STR9 with 30 minute intervals between them, so as to remove any unbound antibody and then kept in TNT at 4°C overnight on the mini see-saw rocker.

2.3.2 Incubation with Secondary Antibody

The next morning, the embryos were incubated with Cy3 conjugated Goat anti-rabbit IgG (111-165-144 Jackson Immuno Research) at 1/200 dilution in 10% goat serum in TNT overnight at 4°C. The specimens were then washed four times at room temperature in TNT on the rocker with 30 minute intervals, so as to remove any unbound secondary antibody. The subsequent NMT washes and NBT/BCIP staining protocol was unchanged from section 2.2.3. The stained embryos were then fixed overnight in 4% PFA/ PBS at 4°C, rinsed in PBS, examined under a microscope (Olympus SZX12 with attached camera) using normal and UV light and photographed. The primary and secondary antibodies used for immunohistochemistry throughout the thesis are summarized in Table 2.3.

Table 2.3: Summary of antibodies used in immunodetection

<table>
<thead>
<tr>
<th>Antibody name</th>
<th>Supplier</th>
<th>Cat #</th>
<th>Dilution</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNF3β rabbit polyclonal IgG</td>
<td>Upstate Cell Signaling</td>
<td>07-633</td>
<td>1:500</td>
<td>wholemount</td>
</tr>
<tr>
<td>Brochury goat polyclonal IgG</td>
<td>R&D Systems</td>
<td>AF2085</td>
<td>1:200</td>
<td>section</td>
</tr>
<tr>
<td>E-catherin rat monoclonal IgG</td>
<td>Invitrogen</td>
<td>13-1900</td>
<td>1:200</td>
<td>section</td>
</tr>
<tr>
<td>Laminin rabbit polyclonal IgG</td>
<td>Sigma-Aldrich</td>
<td>L9393</td>
<td>1:50</td>
<td>section</td>
</tr>
<tr>
<td>Alexa Fluor 594 donkey anti-rat IgG</td>
<td>Invitrogen</td>
<td>A21209</td>
<td>1:200</td>
<td>section</td>
</tr>
<tr>
<td>Alexa Fluor 594 donkey anti-rabbit IgG</td>
<td>Invitrogen</td>
<td>A21207</td>
<td>1:200</td>
<td>section</td>
</tr>
<tr>
<td>Alexa Fluor 488 donkey anti-goat IgG</td>
<td>Invitrogen</td>
<td>A11055</td>
<td>1:200</td>
<td>section</td>
</tr>
<tr>
<td>Cy3 goat anti-rabbit IgG</td>
<td>Jackson ImmunoResearch</td>
<td>111-165-144</td>
<td>1:200</td>
<td>wholemount</td>
</tr>
<tr>
<td>DAPI</td>
<td>Invitrogen</td>
<td>P36931</td>
<td></td>
<td>section</td>
</tr>
</tbody>
</table>
2.4 Preparation and imaging of whole embryos using OPT

In situ hybridized and/or HNF3β immunostained embryos were rinsed briefly in water, and embedded in 1% low melting point agarose (Sigma-Aldrich, Germany) in dH2O. Once set, the block of agarose was cut in the desired orientation for scanning and affixed to a metal mount. Specimens were then dehydrated overnight in 100% methanol, and cleared in BA:BB (1:2 benzyl alcohol : benzyl benzoate) for at least 5 hours. OPT works by measuring the amount of light transmitted (visible) or emitted (fluorescent) by an object when light is shone upon it (Sharpe, 2003; Sharpe et al., 2002). Specimens were scanned in a prototype OPT scanner built at the MRC Human Genetics Unit, Western General Hospital, Edinburgh, installed at Trinity College Dublin. Embryo blocks were inserted into the scanner and rotated through 360° and a series of 400 images were taken at different angles through a full rotation. At least two scans were performed for each specimen using UV light together with either a TXR filter (560/40nm excitation, 610LP nm emission), or GFP1 filter (425/60nm excitation, 480 nm emission) and, for colorimetric staining, the data were imaged using visible light together with a 700nm filter for very intense staining. Autofluorescence from the tissue was captured to reconstruct embryo morphology. The raw data consisting of 400 images from each of the scans were loaded onto a Linux workstation and reconstructed using a set of programs provided by the Edinburgh Mouse Atlas Project (EMAP) (http://www.emouseatlas.org/emap/home.html). These programs used a back propagation algorithm to integrate the images and produce a 3D voxel based representation of the specimen. This reconstruction could then be visualised as a 3D volume representation, a surface representation or as a number of virtual sections through any orientation using custom made software, MAPaint and MA3Dview provided by EMAP.
2.4.1 Analysis of 3D digital data

Surface rendering of the 3D data was carried out using a suite of Visualization Toolkit (VTK) scripts and software. This recreated the surface of the embryos, so that morphological characteristics such as the shape of the branchial arches or limbs could be used to attribute each embryo to a Theiler Stage (Theiler, 1989) to compare development rate in control and treated embryos and for more accurate comparisons. Staging allowed comparison of stage-matched embryos, in addition to embryos collected on the same embryonic day. Staging for each embryos was given by two independent investigators to avoid bias. 3D reconstructions of control and treated embryos following HNF3 β immunolocalisation and OPT scanning were analysed either by viewing 3D representations of HNF3 β stained tissue domains (using visualisation tool kit (vtk) software), or by virtually cutting sections through the 3D reconstructions to view the internal morphology of the developing tissues and staining patterns. Virtual sections through the 3D reconstructions in the appropriate planes which captured the morphological characteristics of the embryos and gene expression were selected and scored and/or measured. These sections from two different channels (Texas Red and Visible) were then merged with the IPLab software, in order to see the relationship between the expression patterns and the morphology.

2.4.2 Analysis of gene expression patterns

At least 5 and up to 8 specimens per stage per gene from each of control and adriamycin treated groups were assayed and all were subsequently analysed by OPT. Each embryo was
scanned using OPT to obtain 3D representations of the gene expression pattern and foregut morphology of the whole specimen. At least two scans were performed for each specimen using UV light with the TXR filter (560/40nm excitation, 610 nm emission) to visualise fluorescent staining (either autofluorescence from the tissue to view general morphology or immunofluorescence when embryos were stained for HNF3β localization) and visible light for colourometric staining. These two scans, recorded on different channels, were reconstructed on a LINUX workstation using programmes provided by the EMAP. The 3D reconstructions were analysed in terms of gene expression pattern and morphology viewing virtual sections through any orientation using custom made software (MAPaint, MA3Dview). The morphology of the embryo were identified using images from the Atlas of Mouse Development (Kaufman, 1992). Gene expression patterns were compared visually between control and adriamycin treated groups, separately for each embryonic day from E9 to E13. Expression of Fgf10 was investigated from E10 to E13. All other genes were investigated from E10 to E12. The most representative sections were then edited as a .tif file for both channels and were merged using IPLAB software, to visualise gene expression together with morphological insight from the HNF3β marker.

2.5 Embryo collection, fixation and processing for cryosectioning

Male and female CBA/Ca mice (Harlan UK, Bicester, England) were mated and treated as per section 2.1. The dams were then humanely killed by swift cervical dislocation at embryonic days 9 or 10 at four hours intervals from 7am to produce embryos at a range of developmental
stages at each embryonic day. The uteri were dissected from the mice, placed in ice cold PBS and removed from the uteri, fixed in 4% paraformaldehyde in PBS for an hour and washed 2x5 minutes in PBS. Embryos were then transferred to a petri dish containing PBS and were observed under an Olympus SZX-ILLD200 stereo microscope at room temperature. The somites of each individual control and adriamycin treated embryo were counted and individual specimens were designated to 'stage groups' based on somite number (6-9, 14-18, 20-22, 24-28 somites) (Table 2.4) to facilitate comparison between control and adriamycin-treated embryos during precisely defined developmental periods. In total 46 treated embryos and 30 control embryos were analysed. Control embryos were collected from 12 independent litters and treated embryos form 16 independent litters. The embryos were then embedded in 1.5% agarose (Sigma-Aldrich, Germany), 30% sucrose solution in PBS, oriented appropriately and the solidified blocks trimmed with a straightedge blade so that when mounted in the cryostat, transverse sections could be cut. The blocks were then placed in 50ml tubes filled with 30% sucrose solution in PBS and left to equilibrate at 4°C overnight. On the next morning the agarose blocks were placed on metal foil on a dry ice bath (dry ice in ethanol) for slow freezing, wrapped and transferred to 50ml tubes according to number of somites and stored at -20°C until needed.

Table 2.4: Staging of control and adriamycin treated embryos into designated groups based on somite number.

<table>
<thead>
<tr>
<th>Group</th>
<th>Somite Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6-9</td>
</tr>
<tr>
<td>2</td>
<td>14-18</td>
</tr>
<tr>
<td>3</td>
<td>20-22</td>
</tr>
<tr>
<td>4</td>
<td>24-28</td>
</tr>
</tbody>
</table>
2.5.1 Cryostat Sectioning

Each embryo block was mounted using OCT freezing compound (Tissue-Tek® 4583 O.C.T™ Compound) on the chuck of the cryostat (Bright OTF, 5015) to obtain transverse sections from anterior to posterior. Serial 30μm sections of embryos were trimmed through the craniofacial region, monitored under a Olympus SZX-ILLD200 stereo microscope and discarded. The appropriate planes through the embryo were identified using images from the Atlas of Mouse Development (Kaufman, 1992). Once the anterior foregut endoderm had been reached, adjacent serial sections were cut and collected on three different slides (section 1 on slide 1, section 2 on slide 2 etc.) designated for visualising different sets of markers; E-cadherin & Brachyury, Laminin & Brachyury and F-actin & Brachyury. Once sections reached the hepatic process the sectioning procedure was ceased. Slides were stored at -20°C to preserve the tissue and to prevent thawing of sections until ready for immunohistochemistry.

2.6 Immunohistochemistry

Tissue sections were removed from the freezer and left to thaw at room temperature to ensure adhesion of the tissue to the slides. Sections underwent three one-hour washes in PBS with 0.5% Triton X-100 (Sigma-Aldrich) and 0.1% Tween 20 (Sigma-Aldrich) (PBTT), rocking on a Stuart Scientific GYRO-ROCKER STR9 at room temperature in a slide box wrapped in tinfoil. Sections were blocked in blocking solution contained 10% normal sheep serum in PBTT for one hour at room temperature in a humid chamber (each slide flooded with solution
(approx. 100μl), supported on struts in a closed box containing moist tissues). Slides were then flooded with the appropriate combination of primary antibodies according to the markers being assayed in each case (Table 2.3) in blocking solution (5% sheep serum in PBTT) and left overnight at 4°C in the humid chamber. The combinations of antibodies used were E-cadherin (Invitrogen 13-1900) and Brachyury (Santa Cruz, SC 17743), a marker of notochord cells (Wilkinson et al., 1990) and Laminin (Sigma-Aldrich, L9393) and Brachyury. The antibodies used for immunohistochemistry throughout the thesis are detailed in Table 2.3. Following incubation in primary antibody, three one-hour washes in PBTT were carried out, followed by another one hour wash in 10% serum in blocking solution at room temperature. The secondary antibodies Alexa Fluor 594 donkey anti-rat (Invitrogen, A21209) for E-cadherin detection, Alexa Fluor 594 donkey anti-rabbit (Invitrogen, A21207) for Laminin detection, and Alexa Fluor 488 donkey anti-goat (Invitrogen, A11055) for Brachyury detection were applied in a 1/200 dilution overnight in a humid chamber in 5% serum in PBTT. Sections then underwent three one-hour washes in PBTT at room temperature. They were then mounted under cover slips with ProLong® Gold Anti-Fade Reagent containing DAPI counterstain (Invitrogen, P-36931) and left to dry in a dark cupboard for 48 hours.

2.7 Imaging using Laser Scanning Confocal Microscopy

Once the mounted slides were dry, they were kept covered in a plastic slide box (Fisherbrand, FB70883) and were brought to the Zen Zeiss LSM 700 confocal microscope in The National Children’s Research Centre, Our Lady’s Children's Hospital, Dublin. Each slide was scanned
using the Zen 2009 Light Edition™ software. Selective sections were scanned using the 40x lens (400x magnification) to capture the foregut, the notochord and the neural tube, and the 60x lens (600x magnification) was used to capture the notochord alone. Images were then saved as .lsm files on an external hard drive to be further edited and analysed.

2.7.1 Image analysis

Images collected from all groups of control and treated embryos were opened using Zen 2009 Light Edition™ software and edited. Sections where a Z-stack had been collected were analysed and the best single-plane image was chosen. Brightness and contrast were adjusted to produce the clearest picture without distorting antibody detection. Images were saved as single-plane files in .tif format to be used with other editing software.

2.7.2 Overview of specimens investigated

Within each detection group, images were grouped based on somite number (Table 2.5). Control and adriamycin treated specimens were analysed and details were noted with regards to notochord position and shape and antibody localisation. Different scoring criteria were devised to record features of the notochord.
Table 2.5 Number of embryo specimens analysed for each of the sets of markers of the extra-cellular matrix, according to stage group (number of somites).

<table>
<thead>
<tr>
<th>Group</th>
<th>Laminin & Brachyury</th>
<th>E-cadherin & Brachyury</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-9 Somites</td>
<td>4 Control</td>
<td>4 Control</td>
</tr>
<tr>
<td></td>
<td>5 Adriamycin-treated</td>
<td>7 Adriamycin-treated</td>
</tr>
<tr>
<td>14-18 Somites</td>
<td>3 Control</td>
<td>3 Control</td>
</tr>
<tr>
<td></td>
<td>5 Adriamycin-treated</td>
<td>7 Adriamycin-treated</td>
</tr>
<tr>
<td>20-22 Somites</td>
<td>4 Control</td>
<td>5 Control</td>
</tr>
<tr>
<td></td>
<td>7 Adriamycin-treated</td>
<td>4 Adriamycin-treated</td>
</tr>
<tr>
<td>24-28 Somites</td>
<td>4 Control</td>
<td>3 Control</td>
</tr>
<tr>
<td></td>
<td>6 Adriamycin-treated</td>
<td>5 Adriamycin-treated</td>
</tr>
</tbody>
</table>

2.7.3 Scoring criteria used in the investigation of notochord position

The position of the notochord with respect to the foregut and the neural tube was recorded in transverse sections of each control specimen across all stage groups. Notochord position was subdivided into five categories according to D/V position: (vc) ventral, contacting the dorsal foregut endoderm, (v) ventral, close to foregut endoderm, (m) middle between foregut and neural tube, (d) dorsal, close to the floor plate and (dc) dorsal, contacting the floor plate (section 5.2.1, Figure 5.1). Scoring the position of the notochord for each embryos was given by two independent investigators to avoid bias.

2.7.4 Scoring criteria used in the investigation of E-cadherin localisation

Inter-cellular detection of E-cadherin within the notochord was arbitrarily scored for intensity by eye ranging from 0-3 stars (*). A score of 0 indicates no E-cadherin detection, 1 indicates a low level of detection (*), 2 indicates moderate (**) while 3 indicates heavy (***) detection between the cells of the notochord (examples are shown in section 5.2.4, Figure 5.4 e-h).
Scoring for intensity of detection of E-cadherin for ech embryos was given by two independent investigators to avoid bias.

2.8 Statistical analysis

Statistical analysis of quantitative data in Chapter 3 were performed using the Mantel-Haenszel X-squared test which is designed to test the association between two dichotomous variables where one variable is outcome (delay vs not in development) and other variable is animal treatment (control vs adriamycin treatment). Statistical evaluation of the quantitative data (notochord position and E-cadherin expression) in Chapter 5 were performed using Chi squared analysis.

Both analyses were preformed using free software R v2.10.0.
Chapter 3

Abnormal notochord branching is associated with foregut abnormalities in an Adriamycin treated Mouse Model

The data presented in this chapter were published in PLoS ONE (Hajduk et al., 2011).
3.1 Introduction

Congenital malformations of the foregut are common in humans and represent a challenge to the paediatric surgeon both in terms of surgical repair and the management of long term morbidity (Tomaselli et al., 2003). Oesophageal atresia (OA) encompasses a group of congenital anomalies where the oesophagus does not connect with the stomach. The most common form of the condition is OA with distal tracheo-oesophageal fistula (TOF) where affected newborn babies have an oesophagus that ends blindly and an abnormal communication, or fistula, between the trachea and the stomach (Brunner and Bokhoven, 2005; Clark, 1999; Gross, 1953; Spitz, 2007). It is one of the most life-threatening anomalies in the newborn baby. The incidence of OA with or without a fistula is reported to be 1 in 2500 to 1 in 4500 newborns (Gross, 1953; Spitz, 2007). Although a number of theories have been proposed to explain the occurrence of the malformations (Kluth, 2003; Merei and Hutson, 2002), little is known about the etiology of these defects. The high incidence of associated anomalies in OA points to a very early disturbance of the developing embryo.

The precise steps in normal development of the foregut that are disturbed in OA/TOF are unknown but some new insights are emerging from the study of animal models. The foregut develops from the embryonic endoderm that involutes early from the most anterior part of the primitive streak initially forming a sheath of cells lying ventral to the mesoderm and ectoderm germ layers (Lawson et al., 1986). The anterior endoderm folds over posteriorly to form a diverticulum called the foregut pocket that pushes under the headfold while more posterior regions of the gut primordium fold laterally, as the mouse embryo turns (Wells and Melton,
Initially the endoderm is in very close proximity to the notochordal plate but from about E9 the notochord delaminates from the endoderm in the mid regions of the embryo and by about E9.5 it is separated from the anterior foregut by mesenchyme, becoming more closely associated dorsally with the neural folds/neural tube (Jurand, 1974) where it is well known to contribute to dorso-ventral (DV) patterning of the developing Central Nervous System (CNS) and laterally to patterning of the somites. Signals from the notochord are also important in patterning the foregut and its associated mesenchyme ventrally (Cleaver and Krieg, 2001).

Both the respiratory and digestive anlagen arise from the foregut; the trachea forming ventrally and the oesophagus dorsally. The first morphological evidence of this is at E9.5 with the appearance of two ventrolateral bulges which subsequently elongate to form the bronchi and lung buds in conjunction with surrounding mesenchyme (Cardoso and Lu, 2006; Morrisey and Hogan, 2010). Anterior to this, the single foregut diverticulum septates laterally to separate the trachea and oesophagus (Cardoso and Lu, 2006; Morrisey and Hogan, 2010; Qi and Beasley, 2000). There is some disagreement in the literature about how the process of septation progresses. Recent work measuring the respective lengths of the undivided and divided regions of the foregut overtime indicates that septation progresses anteriorly from an initial point (Ioannides et al., 2010). Although similar work from another group concluded that progressive separation is achieved through posterior elongation from the point of septation (Williams et al., 2003), it is clear that separation is presaged and accompanied by differentiation of foregut cells distinguishing dorsal (e.g. Sox2 expressing) and ventral (e.g. Nkx2.1 expressing) aspects that will form digestive and respiratory tissues respectively.
Development of the lung primordia progresses with extension of the bronchial stalks and stereotypic branching and budding as the bronchial and bronchiolar tubules form between approximately E11 and E16 (Maeda et al., 2007).

A valuable animal model of OA and TOF was established in mice (reviewed in section 1.4). Adriamycin treatment of pregnant female mice was found to produce a spectrum of tracheoesophageal and notochord malformations in embryos (reviewed in section 1.4). The model has been used to facilitate research toward understanding the developmental pathogenesis of OA/TOF (Dawrant et al., 2007a; Dawrant et al., 2007b; Gillick et al., 2008; Hajduk et al., 2010a; Ioannides et al., 2002; Ioannides et al., 2003; Ioannides et al., 2010; Que et al., 2006).

A number of mouse mutants replicate aspects of OA/TOF shown in the adriamycin model indicating that complex signaling events are involved in normal foregut development and disturbed in OA/TOF. Sonic hedgehog (Shh) signalling is implicated since Shh null mutants display OA/TOF with an increase in apoptosis in the lung mesenchyme (Litingtung et al., 1998). Inactivation of the Noggin gene (Nog^{−/−}) implicates BMP signalling since Nog null embryos replicate notochord branching defects and OA/TOF with associated effects on lung branching morphogenesis (Que et al., 2006; Weaver et al., 2003). The morphological similarity of foregut abnormalities seen on the one hand in a number of mutants with different genetic lesions and on the other produced by adriamycin treatment, indicate that common processes are being disturbed. The adriamycin mouse model, therefore may allow us to understand the mechanisms disturbed during the pathogenesis of OA/TOF.
While analysis of abnormalities in the adriamycin treated mouse model has provided some insight into the pathogenesis of OA/TOF, studies to date have been limited to partial viewing of the overall effects largely through histological sections. There is also variability in the effects that could not be fully captured. The aim of this study was to carry out a more comprehensive analysis of whole embryos using molecular markers and 3D imaging to describe the spectrum of morphological abnormalities produced by Adriamycin treatment. I used 3 dimensional (3D) imaging of whole embryos in a systematic analysis of 78 adriamycin treated and 71 control embryos across embryonic days 10 to 12 for morphological defects. OPT is a rapid technique for 3D imaging of whole biological tissue specimens recording morphology while also allowing visualization of the tissue distribution of RNA, protein or histological stains in developing organs (Alanentalo et al., 2007; Roddy et al., 2009; Sharpe et al., 2002; Summerhurst et al., 2008). In this way I use OPT together with an endoderm marker (HNF3β) to visualize foregut and lung bud morphology at critical periods of development in control and adriamycin treated embryos. I also reveal defects at a molecular level using selected markers.

In addition to revealing delayed development in treated litters, this work shows the full spectrum of abnormalities and their frequency of occurrence. The abnormalities induced correlate with the spectrum of clinical presentations in newborns with OA/TOF. In addition this work reveals a close association between abnormal notochord branching seen in the mouse model and certain foregut malformations indicating a causative link between abnormalities in these neighbouring tissues. I propose that disturbances to notochord
delamination and resulting abnormal notochordal signalling may be the mechanistic basis of certain foregut abnormalities.

3.2 Results

3.2.1 Delayed development in adriamycin treated embryos

A total of 149 embryos divided by embryonic day (E10-E12) of collection and adriamycin treated or control groups were analyzed in detail from 3D digital recordings which provide a permanent record of the morphological features in 3D that could be reanalyzed and compared from multiple perspectives. Figure 3.1B shows the external morphological features that can be viewed from a surface representation of a typical digital recording. Each embryo was staged using Theiler criteria (Theiler, 1989) from Theiler stage (TS) 14 to TS20. The appearance and shape of branchial arches, forebrain vesicles and anterior and posterior footplates were key morphological criteria used here. Examining the range of stages at each embryonic day for control embryos, it was found that the predominant stage at E10 was TS16, at E11 was TS18 and at E12 was TS20. At E10, 5% of control embryos were staged below TS16 (TS15) compared to 25% adriamycin treated embryos. At E11, 31% of control embryos were staged below TS18 (TS17) in comparison to 42% in the adriamycin treated group. At E12, 25% of control embryos were staged below TS20 (TS19) compared to 75% in the adriamycin treated group. Statistical analysis using the Mantel-Haenszel X-squared test showed a significant delay (p-value<0.01) in development of the treated embryos in comparison to controls across
all investigated stages (Figure 3.1).

Figure 3.1: Theiler staging of adriamycin (a) and control (c) embryos revealed a significant delay in development following adriamycin treatment. (A) External view of an E11 control embryo. (B) Surface rendered view of the OPT 3D reconstruction of the same embryo showing morphological features used for staging purposes, staged as TS18. Scale bar as indicated. (C) Graphical representation of staging analysis across days E10 to E12 (n=44; n=72; n=26 respectively) the percentage of embryos collected on each day of development that fall into the predominant stage (E10, TS16; E11, TS18; E12, TS20) is represented in blue bars; orange bars represent the percentage of embryos delayed by 1 stage. Mantel-Haenszel X-squared tests show significant differences in the proportions of delayed embryos in treated groups versus control groups (pvalue<0.01) on each day E10, E11 and E12.

3.2.2 A spectrum of foregut abnormalities are caused by adriamycin treatment

To assess the spectrum of effects on foregut development in adriamycin treated embryos 78 adriamycin treated embryos and 71 control embryos from E10 to E12 were immunostained to localize the endoderm and notochord marker HNF3β and OPT scanned. HNF3β is a forkhead
domain transcription factor specifically expressed in floor plate, notochord and endoderm tissue including the foregut and lung buds, frequently used as an endoderm marker (Sharpe et al., 2002). Figure 3.2A shows an example of HNF3β labelled tissues in a control embryo, viewed following whole mount detection and OPT scanning. The 3D digital recordings of each embryo were analysed to assess the morphology of the foregut.

Eight morphological alterations were noted in adriamycin treated embryos: (1) abnormal branching of the notochord, (2) atresia of the foregut (complete discontinuity), (3) foregut stenosis (narrowing of the lumen), (4) oesophageal atresia (OA) with upper pouch, showing a blind dorsal pouch of the anterior foregut, (5) total laryngotracheoesophageal cleft (LTEC), characterized by the absence of a septum dividing the trachea and oesophagus, (6) tracheal atresia, characterized by a blind ventral pouch of anterior foregut, (7) stomach agenesis, (8) fistula from carina or bronchi, where there is a narrow connection between the respiratory tract and the stomach. Table 3.1 summarises the percentage incidence of each of the abnormalities above, across the days of collection. The number of embryos showing multiple malformations was not recorded. Figure 3.2 shows examples of each abnormality.

In the control groups there were no anomalies found. Most adriamycin treated embryos showed some abnormalities with only 2 embryos across stages appearing normal in all respects scored. Abnormal position (ventral displacement) and notochord branching was seen in almost all treated embryos; in 18/19 at E10. At E10 in adriamycin treated embryos, the full spectrum of foregut malformations was recorded. Foregut stenosis and LTEC were the most frequently recorded abnormalities, found in 33% and 27% respectively. Fistula was found only
in 7% of the embryos.

At E11 the incidence of LTEC (45%), tracheal atresia (24%) and fistula (63%), become more frequent with a striking increase in the incidence of fistula. Foregut stenosis was recorded only in 9% of cases. At E12 I noted an increased incidence of OA with posterior pouch (60%) and stomach agenesis (18%). The incidence of lower fistula was still high (55%). Foregut atresia, LTEC and tracheal atresia were recorded less frequently. The reduced incidence of the very severe anomaly of complete foregut atresia may be related to an increase in embryo reabsorption noted at this stage (not shown). The decrease in LTEC may indicate that separation of the oesophagus and trachea occurs later in some adriamycin treated embryos.
Figure 3.2: Morphological analysis of the spectrum of effects of adriamycin treatment on foregut and notochord development. (A) External views from different angles of a 3D reconstruction of a control embryo showing HNF3β labelled endoderm, notochord and floor plate (in white). (B-H) Virtual sections through 3D reconstructions of adriamycin treated embryos immunostained for HNF3β showing examples of the morphological abnormalities observed. Abnormal notochord branching (red stars) and foregut abnormalities (green arrows) are indicated. (1) abnormal notochord delamination (B, C, D, E; red stars), (2) foregut atresia (C), (3) foregut stenosis (D), (4) OA with upper pouch (E), (5) LTEC (F), (6) tracheal atresia (G), (8) fistula from the right bronchii (H). Absence of stomach (7) can’t be shown. The images underneath are transverse sections in the planes indicated. lb; lung bud, fp; floor plate, nc; notochord, hg; hindgut, tr; trachea, st; stomach.
3.2.3 Abnormal notochord branching in Adriamycin treated embryos is associated with the location and severity of foregut abnormalities

Abnormal notochord branching was the most frequently recorded anomaly across the stages and was most prominent at E10 (94%) and E11 (87%) respectively. In normal development, by E12 the notochord is no longer visible perhaps explaining the lower incidence of the abnormality recorded in older embryos. In addition to abnormal branches extending ventrally, the entire structure was frequently ventrally displaced with respect to the floorplate of the neural tube (Figure 3.2 B). Notochord branching in Adriamycin treated embryos was scored according to number, thickness and positioning of the branches at E10 and E11, as well
association with foregut malformations (Table 3.2). The anterior-posterior (AP) level of the branching and the number of branches could be accurately scored from virtual sections cut through multiple planes in the computer reconstructed specimens. Figure 3.3 shows examples of sections through the reconstructions showing the position and extent of the branching. To further demonstrate that the HNF3 β positive abnormal branches seen to extend ventrally from the notochord are notochord in character, they were shown to express the gene encoding Sonic hedgehog (Shh), an important signaling molecule produced by the notochord (Figure 3.3 D) (Echelard et al., 1993). Notochord branching was subdivided into three categories according to AP position of occurrence: (1) anterior, at the level of pharynx (Fig 3.3 A), (2) more posterior, at the level of the site of tracheal separation (Fig 3.3 B) and (3) posterior, between the site of tracheal separation and the stomach (Fig 3.3 C). Each embryo was also scored for the appearance of foregut abnormalities to reveal any association between notochord branching and specific foregut abnormalities (Table 3.2). Posterior localised (level 3) thick branching of the notochord, attached to the dorsal wall of the foregut was found more often associated with foregut atresia (2) and foregut stenosis (3) (Fig 3.3 D, E). More posterior branching of the notochord (level 2+3) was found to be associated with OA with upper pouch (4) and stomach agenesis (7). LTEC (5), tracheal atresia (6) and fistula (8) were associated with notochord branching at all levels. Fistula (8) is an interesting case since the abnormality is necessarily localised posteriorly, at the level of the stomach, but its occurrence is associated with branching at all levels (Table 3.2).
Table 3.2: Scoring of notochord branching and co-incidence of specific foregut abnormalities 2-8 (as per table 3.1, represented by different colours) in 50 E10 and E11 adriamycin treated embryos. For position 1= anterior to the pharynx; 2= level of the trachea; 3= between trachea separation and stomach. Number of stars represents the relative thickness of branch, Y= y shaped double branch of notochord.

<table>
<thead>
<tr>
<th>Position and thickness of notochord branching</th>
<th>Morphological abnormalities (as per table 3.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td></td>
</tr>
<tr>
<td>1**</td>
<td></td>
</tr>
<tr>
<td>1**</td>
<td></td>
</tr>
<tr>
<td>1**</td>
<td></td>
</tr>
<tr>
<td>1**</td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td></td>
</tr>
<tr>
<td>2**</td>
<td></td>
</tr>
<tr>
<td>2**</td>
<td></td>
</tr>
<tr>
<td>3**</td>
<td></td>
</tr>
<tr>
<td>1* 2* 3*</td>
<td></td>
</tr>
<tr>
<td>2* 3* Y</td>
<td></td>
</tr>
<tr>
<td>1* 2* Y</td>
<td></td>
</tr>
</tbody>
</table>

73
Figure 3.3: Association between notochord branching (red stars) and foregut abnormalities in 6 Adriamycin treated embryos (A-F); A-C and E,F show immunolocalisation of HNF3β. D shows Shh gene expression following whole mount in situ hybridisation. Virtual sagittal sections of OPT reconstructions (A-C) demonstrate the different A-P levels of the abnormal branching notochord noted in table 3.2; anterior to pharynx (A), at the level of the trachea (B), between the site of tracheal separation and the stomach (C). (D) shows Shh expression in an abnormally delaminated and branched notochord (red star). (E) shows a surface rendered reconstruction of HNF3β immunolocalisation illustrating association between an abnormal, thick branch of the notochord (red star) and foregut atresia. (F) illustrates association between an association between an abnormal, thick branched notochord in a posterior location (red star) attached to the dorsal wall of the foregut and foregut stenosis. fp; floor plate, nc; notochord.

3.2.4 Patterning of the foregut is disturbed at the site of abnormal notochord branches

Shh expression in the foregut normally shifts from being expressed in the ventral endoderm of the prospective trachea prior to separation at E10.5 to being dorsally restricted to the separated
oesophagus at E11.5 (Ioannides et al., 2003). A number of adriamycin treated embryos showed a lack of dorso-ventral restriction of Shh expression at the site of an unseparated foregut at E11.5, indicating a disturbance of normal D/V patterning (Ioannides et al., 2003). We investigated if Shh expression in the foregut is specifically disturbed in the vicinity of ectopic notochord branches (Figure 3.4). At E11 ectopic Shh expression was seen through abnormal notochord branches of various length and thickness (Figure 3.4 A, B, C). In addition, there was an abnormal dorsal shift of the expression in the foregut specifically at the point where a thick ventral notochord branch was positioned adjacent to the foregut (Figure 3.4 Cb, Cc). Where there was limited ventral extension of the branch (Figure 3.4 A) or the branch was light (Figure 3.4 B), Shh was normally restricted to the ventral endoderm as expected at this stage.
We furthermore investigated expression of the *Foxf1* gene, which encodes a forkhead or winged helix transcription factor and is expressed during organogenesis in the mesenchyme adjacent to the endodermal epithelia of the gastrointestinal tract (Mahlapuu et al., 1998; Peterson, 1997). Haploinsufficiency of *Foxf1* leads to a phenotype similar to *Shh* null mutant mice including hypoplastic lungs and lobulation defects, oesophageal and tracheal stenosis, or
oesophageal atresia and trache-oesophageal fistula (Litingtung et al., 1998; Mahlapuu et al., 2001). We therefore examined the expression of Foxf1 in adriamycin treated and control embryos and found that mesodermal expression of the gene around the foregut of treated embryos showed less of a ventral bias and was more symmetrically distributed around the foregut, specifically in the vicinity of abnormal notochord branches (Figure 3.5). To further investigate the coincidence of ectopic notochord branches and abnormal dorso-ventral expression of Shh and Foxf1 in and around foregut endoderm, we measured the extent of foregut affected anterior and posterior to the notochord branch by counting the number of consecutive transverse virtual sections affected in a sample of treated embryos at E10 and E11 (Table 3.3). Although there was much variability in the extent of the effect, the pattern in general corroborated the example shown in Figure 3.4, where thick multiple branches (** and ***) were associated with the most affected specimens (up to 490μm) whereas single, fine branches (*) were associated with limited or no disturbance (e.g. 0, 30, 150 μm).
Figure 3.5: Expression of Foxf1 in adriamycin treated and control embryos show abnormal expression in the foregut associated mesenchyme in the vicinity of ectopic notochord branches. Control (A-F) and adriamycin treated embryos (G-L) represented by virtual, sagittal (A,D,H,K), coronal (B,E,I,L) and transverse (C,F,G,J) sections of OPT reconstructions following whole mount in situ hybridisation with Foxf1 antisense probe show expression in the floor plate, notochord, foregut endoderm and associated mesenchyme. Blue dotted lines indicate the planes of coronal and transverse sections. Red arrow heads on transverse sections of control embryos at E9 and E11 (C, F) indicate the ventral bias in distribution of Foxf1 transcripts in the foregut mesenchyme. Note the absence of this pattern in treated embryos (G, J). fp; floor plate, nc; notochord, fg; foregut, lb; lung bud.
Table 3.3: Extent of foregut (μm) in which dorso-ventral localised expression of either Shh or Foxf1 was disturbed in individual Adriamycin treated embryos at either E10 or E11. The right hand column shows the anterior/posterior position and relative thickness and proximity of the notochord branches (as indicated in Table 3.2).

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Gene expression analysed</th>
<th>Extent of disturbed expression pattern</th>
<th>Relative heaviness/proximity of notochord branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>E10 2018</td>
<td>Shh</td>
<td>260 μm</td>
<td>2***Y</td>
</tr>
<tr>
<td>E10 2019</td>
<td>Shh</td>
<td>100 μm</td>
<td>2***Y</td>
</tr>
<tr>
<td>E10 2020</td>
<td>Shh</td>
<td>230 μm</td>
<td>2**, 3**</td>
</tr>
<tr>
<td>E10 2054</td>
<td>Shh</td>
<td>160 μm</td>
<td>1*, 3*</td>
</tr>
<tr>
<td>E10 1817</td>
<td>Shh</td>
<td>490 μm</td>
<td>3***Y</td>
</tr>
<tr>
<td>E11 1785</td>
<td>Shh</td>
<td>180 μm</td>
<td>1**, 2**</td>
</tr>
<tr>
<td>E11 1787</td>
<td>Shh</td>
<td>30 μm</td>
<td>2*</td>
</tr>
<tr>
<td>E11 2025</td>
<td>Shh</td>
<td>312 μm</td>
<td>2***</td>
</tr>
<tr>
<td>E11 2058</td>
<td>Shh</td>
<td>112 μm</td>
<td>2***</td>
</tr>
<tr>
<td>E11 361</td>
<td>Shh</td>
<td>221 μm</td>
<td>2**</td>
</tr>
<tr>
<td>E11 362</td>
<td>Shh</td>
<td>0</td>
<td>1*</td>
</tr>
<tr>
<td>E10 1828</td>
<td>Foxf1</td>
<td>390 μm</td>
<td>2**Y</td>
</tr>
<tr>
<td>E10 2041</td>
<td>Foxf1</td>
<td>130 μm</td>
<td>3**</td>
</tr>
<tr>
<td>E10 2036</td>
<td>Foxf1</td>
<td>250 μm</td>
<td>2***Y</td>
</tr>
<tr>
<td>E10 2040</td>
<td>Foxf1</td>
<td>250 μm</td>
<td>3***Y</td>
</tr>
<tr>
<td>E10 2039</td>
<td>Foxf1</td>
<td>460 μm</td>
<td>2***, 3**</td>
</tr>
<tr>
<td>E11 2046</td>
<td>Foxf1</td>
<td>53 μm</td>
<td>1**, 2**, 3*</td>
</tr>
<tr>
<td>E11 2045</td>
<td>Foxf1</td>
<td>350 μm</td>
<td>3***</td>
</tr>
<tr>
<td>E11 2047</td>
<td>Foxf1</td>
<td>420 μm</td>
<td>1*, 2**, 2**</td>
</tr>
<tr>
<td>E11 1789</td>
<td>Foxf1</td>
<td>150 μm</td>
<td>2*</td>
</tr>
<tr>
<td>E11 1790</td>
<td>Foxf1</td>
<td>300 μm</td>
<td>2**</td>
</tr>
<tr>
<td>E11 1791</td>
<td>Foxf1</td>
<td>255 μm</td>
<td>2**Y</td>
</tr>
</tbody>
</table>

Dorsoventral patterning of the foregut is also reflected in dorsal expression of Sox2 and ventral expression of Nkx2.1 and in Nkx2.1 null embryos Sox2 expression spreads ventrally accompanied by failure of trachea-oesophageal separation (Ioannides et al., 2010; Minoo et al., 1999; Que et al., 2007). We therefore examined Sox2 and Nkx2.1 gene expression in adriamycin and control embryos and found that while Nkx2.1 expression was normally confined to the ventral domain, dorsal Sox2 expression was absent in the vicinity of an ectopic
notochord branch (Figure 3.6). Moreover Nkx2.1 gene expression was seen in the endoderm of the lung buds in both control and treated groups and was expanded into the endoderm of the fistula of adriamycin treated embryos from E11 (Figure 3.6 F).

Figure 3.6: Sox2 expression (A, C and D, shown in yellow) and Nkx2.1 expression (B, E and F, in red) in control (A, B) and adriamycin treated (C, D, E and F) embryos at embryonic days 10 and 11 as indicated. Sox2 expression in the dorsal foregut is lost at the site of abnormal notochord branches while Nkx2.1 expression remains localized to the ventral foregut. Nkx2.1 expression is seen in the endoderm of the lung buds and expanded into the endoderm of the fistula in terated embryos (F). Sagittal sections are shown on the left of A, C, D and F with transverse sections on the right in A and F (in planes indicated), and in B and E. Higher magnification views at a notochord branch are bounded in red in C and D. Transverse section in the planes indicated as a and b at and below the site of a notochord branch are shown bounded in blue and yellow respectively. nc; notochord, fg; foregut, lb; lung bud.
3.2.5 Tracheal separation and lung branching in adriamycin treated embryos

Normal lung development could be followed in control embryos using OPT imagining and the endoderm marker HNF3β (Figure 3.7). The lung bud primordia start forming at TS15 (Figure 3.7 A) with very specific triangular widening of the foregut (Fig 3.7 F). From TS16-TS17 the oesophagus starts to separate from the trachea (Figures 3.7 B, C, G). Further elongation of the trachea and lung bud branching morphogenesis were recorded from TS18 up to TS20 (Fig 3.7 D, E, H). This normal progression is consistent with previous findings (Maeda et al., 2007; Metzger et al., 2008). Each adriamycin treated embryo was also staged according to external morphological criteria (Theiler, 1989) and the extent of tracheal separation and lung bud branching assessed through viewing virtual sagittal, coronal and transverse sections. In adriamycin treated embryos, otherwise morphologically staged at TS15 and TS16, lung primordia were not present in 33% (4 out of 12) or present as only an oval widening of the foregut in 73% (8 out of 12) (Fig 3.7 I) of specimens. In treated embryos staged as TS17 only 20% (3 out of 15) of the embryos presented with separation of the trachea from the oesophagus and lung bud division, 53% (8 out of 15) of the embryos presented without tracheal separation but with appearance of lung buds and 27% (4 out of 15) of the embryos presented with only oval widening of the foregut.

In treated embryos staged as TS18 0 out of 22 embryos had normal trache-oesophageal separation, 18% (4 out of 22) of the embryos had lung bud division and 82% (18 out of 22) oval or transverse widening of the foregut. In treated embryos staged as TS19 14% (1 out of 7) of the embryos had normal trache-oesophageal separation and lung bud division, 29% (2 out
of 7) of the embryos presented with lung bud division and 57% (4 out of 7) of the embryos showed only triangular widening of the foregut.

In treated embryos staged as TS20, 20% (1 out of 5) of the embryos presented with separation of the trachea from the foregut and division of the lung bud, 60% (3 out of 5) of the embryos had lung bud division but no tracheal separation and 20% presented with only oval widening of the foregut.

From the above it is clear that only a minority of adriamycin treated specimens, even at TS20, show separation of the trachea and oesophagus. Even when separation was noted, the distance between the dorsal wall of the trachea and the ventral wall of the foregut was reduced and lung buds separated more posteriorly in comparison to control embryos (Fig 3.7 J).
Figure 3.7: Abnormal trachea-oesophageal separation and lung morphogenesis in adriamycin treated embryos. A-E: normal trachea-oesophageal separation and lung bud branching morphogenesis from TS15- TS20 revealed through 3D surface representation of HNF3β immunolocalisation. C shows surface representation of the HNF3β positive domain (in yellow) in the context of the whole embryo (blue, transparent). Sections through 3D reconstructions in sagittal (main images), coronal (to the right) and transverse (below) orientations of control (F-H) and adriamycin treated (I-J) embryos. The position of coronal and transverse sections are indicated with red lines. At TS15 ventrolateral bulges on the foregut indicate the first appearance of the lung buds (A and F). At TS16 and TS17 the lung buds elongate (B, C). From TS17 separation of the trachea begins with extended separation at subsequent stages (C, D, E and G, H). Branching morphogenesis of the lung buds is extensive at TS20 (E and H). Scale bars as indicated. Examples of adriamycin treated embryos (I-J), at TS16 show abnormal oval widening of the foregut instead of lung primordia (I). The site of lung bud separation from the foregut is more posterior in comparison to control embryos (I). Abnormal tracheal separation, where the trachea remains close to the ventral wall of the foregut (J). fp floor plate, lb lung bud, fg foregut, tr trachea, st stomach, pa pancreas. Scale bars as indicated.
Figure 3.8: Schematic representation summarising the observed effects of adriamycin treatment on dorso-ventral patterning of the foregut, specifically in the vicinity of a ventral notochord branch. A and B summarise the observed expression of Shh, Foxf1, Sox2 and Nkx2.1 in control and treated E10 embryos respectively. The upper drawings represent lateral views of the notochord and adjacent foregut; the lower drawings represent transverse sections in the plane indicated above. In the vicinity of a Shh expressing notochord branch, Sox2 expression is lost in the dorsal foregut, Shh expression is abnormally expressed dorsally and the normal ventral polarisation of Foxf1 expression in the adjacent mesenchyme is lost.

3.3 Discussion

Here I show systematic detailed morphological analysis of a substantial number of mouse embryos exposed to adriamycin in utero, an established model of foregut congenital abnormalities termed OA/TOF. We reveal delayed development and a full spectrum of abnormalities and their frequency in adriamycin treated embryos. A very frequent abnormality noted was ventral displacement and branching of the notochord in 94% of E10 and 87% of
E11 embryos. The whole 3D embryo imaging approach allowed an association to be revealed between the position and severity of notochord branching and particular foregut abnormalities suggesting a mechanistic link between the effects on the notochord and the foregut. This is further emphasised by the observations of altered dorso-ventral patterning of the foregut, in terms of localized Shh, Foxf1 and Sox2 gene expression, specifically in the vicinity of a notochord branch (summarized in Figure 3.8).

Like all embryonic events, foregut and lung development involve complex changes in the shape and structure of tissues over short periods of time. It is therefore important to view and analyse normal and altered events in three dimensions. Although previous studies have used 3D reconstructions from serial embryo sections (Sasaki et al., 2001; Williams et al., 2001; Williams et al., 2003), OPT scanning offers several unique advantages over section reconstructions and permitted a more complete analysis of a relatively large number of specimens in this study. First, because OPT scanning involves direct 3D image capture, the approach does not suffer from the difficulties of loss of tissue and distortion suffered in section reconstruction methods (Sharpe et al., 2002). Second, OPT scanning is relatively rapid and significantly less time consuming that sectioning specimens, permitting a relatively large number of specimens to be analysed. Third, because OPT allows capture of colourimetric and fluorescent stains (Sharpe, 2003; Sharpe et al., 2002), molecular markers can be used to visualize specific cells and tissues, as well as gene expression patterns; this was used to advantage here visualizing the endoderm and notochord marker HNF3β. In the approach used here, a permanent 3D computational representation of each treated and control embryo is recorded and can be analysed repeatedly from multiple perspectives. For example, using
MAPaint, software, developed by the Edinburgh Mouse Atlas Project (EMAP; http://genex.hgu.mrc.ac.uk), the 3D computer specimens can be digitally sectioned in any arbitrary plane of orientation and position, with multiple planes viewed simultaneously. We created 3D digital records of 149 control and adriamycin treated embryos across early stages of development from E10 to E12. The combined use of the HNF3β tissue marker and full 3D imaging, allowed a more comprehensive analysis of the full spectrum of abnormalities found in adriamycin exposed embryos.

Despite the increased comprehensivity of analysis, not all scanned embryos were fully interpretable. In some specimens the HNF3β marker signal was not strong and was obscured in particular locations meaning not all embryos were scorable for all abnormalities. This is possibly due to incomplete penetration of the antibody or other staining components in some cases. When an embryo was not scorable for a particular abnormality, it was not included in the analysis (Table 3.1).

It was shown that the dose and timing of exposure of embryos to Adriamycin is critical in producing foregut malformations (Dawrant et al., 2007c). The exact preparation of adriamycin, dose and treatment regime used here was that previously shown to have the strongest effect in the Dawrant et al study (2007c). While the overall effects on the foregut are broadly consistent between studies some differences are likely to be due to differences in the treatment regime. Ioannides et al. reported high incidence (60%) of LTEC at E12.5 with a dose of 4mg/kg of adriamycin, administered at E7.5 and E8.5 (Ioannides et al., 2002). In contrast, in this work where a higher dose was given earlier (6mg/kg at E7 and E8) the incidence of
LTEC at E12 was 18% and the incidence of OA was 60%. The very high incidence of OA with upper pouch seen here in comparison to 15.6% in embryos at E18 seen in an earlier study with the same treatment regime (Dawrant et al., 2007a) may be explained by the fact that the most severely affected embryos may not survive past E12.

To assess if Adriamycin exposure has an effect on the rate of development, embryos were staged according to Theiler morphological criteria and the range of stages at each embryonic day of development were compared between control and Adriamycin treated groups. This showed a significant delay in development in treated groups across all days of development with a steady increase in the extent of delay over time. It is recognised that there can be a 6 to 12 hour difference in embryonic development between embryos within the same litter (Kaufman, 1999) so it is important to compare across a large number of embryos in control and treated groups. The method used here, where a predominant stage was identified for control embryos on each embryonic day and the proportion of embryos at a less advanced stage noted, allowed the increasing delay in treated embryos to be revealed in a robust manner. Because the criteria used to stage the embryos spanned multiple developing systems including facial, brain and limb features, we conclude that this level of Adriamycin exposure delays development processes in general. In addition, 3D imaging showed the normal progression of lung development over a series of Theiler developmental stages and a marked specific delay in lung progression in treated embryos relative to overall development judged by other morphological criteria was observed. The observation that in 20% of treated embryos staged at TS20, the trachea and oesophagus had separated whereas at TS18 no separation was observed (an event observed at TS17 in control embryos) indicates that in some treated embryos there
may be some recovery in the effects on lung development, however the effects are very severe and the system is unlikely to fully recover.

The notochord is a key embryonic structure common to all members of the phylum Chordata. In higher vertebrates it exists only transiently but has a potent influence as a source of inductive signals patterning adjacent tissues including the neural tube dorsally, the somites laterally and the gut endoderm ventrally (Cleaver and Krieg, 2001; Dodd et al., 1998; Halpern et al., 1993; Kim et al., 1997; Placzek, 1995; Stemple, 2005). The cells of the notochord derive from the node during gastrulation and initially form a notochordal plate embedded in the dorsal gut endoderm (Cleaver and Krieg, 2001; Jurand, 1974). The notochord cells reorganize into a rod-shaped structure that detaches from the endoderm, becomes separated from it by intervening mesenchyme, and comes to lie in closer association with the neural tube dorsally (Cleaver and Krieg, 2001; Jurand, 1974). The mechanisms regulating this dorsal delamination of notochord cells in a timely manner are not known. The existence of abnormal ventral 'branches' extending from the notochord has previously been noted in adriamycin exposed rat and mouse embryos (Dawrant et al., 2007b; Mortell et al., 2005; Orford et al., 2001; Possoegel et al., 1999; Williams et al., 2001) indicating that the delamination process does not proceed correctly. Here we observe two clear sets of defects during development of treated embryos (delamination of the notochord and abnormal foregut development) and although these may be caused independently, the close physical association between abnormalities of the notochord and the foregut suggests a causative link whereby abnormal delamination of the notochord leading to ventrally displaced notochord tissue may disturb foregut development, either through mechanical disturbance or by producing aberrant signals
misdirecting the patterning of the foregut. In support of this idea there are a number of compelling observations in the literature illustrating notochord defects and problems with development of endodermal tissues; for example the \textit{Noggin} knock-out mouse which exhibits features similar to adriamycin treated embryos including abnormal branching of the notochord and also OA/TOF defects of the foregut (Cleaver and Krieg, 2001; Li \textit{et al.}, 2007; Que \textit{et al.}, 2006). These observations suggest that the timing and position of notochord signalling must be closely regulated for correct development of the gut tube.

In terms of molecular players important in signaling from the notochord to the foregut, gene inactivation studies show that \textit{Shh} is essential for normal patterning of the foregut possibly through \textit{Foxf1} activation (Litingtung \textit{et al.}, 1998; Mahlapuu \textit{et al.}, 2001). We showed that the branched notochord expresses \textit{Shh} at a high level and therefore branching of the notochord would lead to closer and increased signaling of \textit{Shh} to the foregut. In the adjacent foregut we observed lack of \textit{Sox2} expression in the dorsal endoderm, abnormal dorsal expression of \textit{Shh} in the endoderm and absence of the normal ventral bias in the foregut mesenchyme expression of \textit{Foxf1} at this level (Figure 3.8). In the case of \textit{noggin} knock-out mice, also showing abnormal notochord branches, the \textit{Foxf1} expression domain was expanded dorsally around the foregut compared with wild type embryos. Although the patterning defects in these two cases are not identical, both are consistent with the idea that abnormal signalling from ventrally displaced notochord alters patterning of the adjacent foregut. It is not surprising that the defects are different in these cases as although both involve ectopic notochord tissue close to the foregut, in the case of the \textit{noggin} knock-out this tissue cannot express noggin and the signalling characteristics may therefore differ. In both cases the correct distinction between
dorsal and ventral endoderm is lost which may be important for the correct process of separation of dorsal digestive tract and ventral respiratory tract and may lead to the foregut abnormalities of OA/TOF observed in both.

It is intriguing that haploinsufficiency of Bmp4, presumably lowering the level of Bmp4 produced, can rescue notochord branching and the OA/TOF phenotype in Nog null mutants (Que et al., 2006), supporting the suggested idea that the precise level of BMP signalling normally regulated by Noggin, is crucial for correct morphogenesis of the notochord and foregut patterning. In adriamycin treated embryos Bmp4 signalling activity might be disturbed as a consequence of ectopic Shh expression through the notochord branches (Litingtung et al. 1998). This might also lead to reduced expression of Fgfs in the mesoderm (Stottmann et al. 2001; Weaver et al., 2000) supported by our previous observation of delayed of mesodermal Fgf10 expression in the adriamycin model (Hajduk et al. 2010) and delayed outgrowth of the primary lung buds from the foregut observed here. The disturbed expression of Sox2 in the dorsal foregut endoderm in the region of a notochord branch is interesting in light of recent observations that Sox2 repression in the ventral foregut promotes respiratory identity (Domyar et al., 2011). It is clear however that a complex balance in inter-regulated signalling pathways is involved in normal development since truncation of the trachea and lung maturation is also affected in mutants with disrupted Wnt signalling pathways (Li et al., 2002; Li et al., 2008a).

Implication of Nkx2.1 gene expression in the endoderm of the fistula of treated embryos will be further discussed in Chapter 4 together with Wnt2 and Wnt7b gene expression (section 4.3.5).
Conclusions

Although the accumulated observations presented here suggest a causative relationship between abnormal notochord branches and foregut abnormalities, this remains an open question. The mechanistic basis of abnormal notochord branching is still not known but the current findings add to the body of data in this area that allow possible mechanisms to be explored (Qi and Beasley, 1999; Williams et al., 2001). Any model must take account of the various data on implication of molecular players and the association seen here between specific location and thickness of notochord branches associated with foregut atresia and foregut stenosis. Mechanical disruption of normal foregut development cannot be ruled out and the altered dorso-ventral patterning observed suggests a fundamental signalling defect. This systematic approach, combining a morphological marker and 3D imaging improves our insight into the developmental sequence leading to such foregut abnormalities and affords the opportunity to study them with high precision. The observations confirm previous findings on morphological abnormalities in the adriamycin rat and mouse model and open new question for further directions of molecular study which may bring us closer to understanding the pathogenesis of OA/TOF in humans.
Chapter 4

Temporospatial gene expression analysis during the critical period of separation of the trachea and oesophagus in normal and adriamycin treated embryos

Some of the data presented in this chapter were published in Pediatric Surgery International (Hajduk et al., 2010a; b).
4.1 Introduction

Experimental embryology and molecular biology studies have revealed that there are spatially and temporally co-ordinated signalling systems, mediated by transcription factors and secreted proteins, that control the proper stereotypic morphological patterning and differentiation of foregut development. The separation of the foregut into the trachea and oesophagus is controlled by several signalling molecules expressed either in the mesoderm around the anterior foregut at the level of the forming lung primordia, or in the notochord, which lies dorsal to the foregut. These molecules act on the foregut endoderm and pattern endoderm across its D/V plane (reviewed in section 1.2.2). Abnormal signalling during this critical period of foregut development may lead to faulty separation of the foregut and, in consequence, abnormal foregut morphology. Detailed study of the development of the tracheo-oesophageal malformations produced in the AMM described in chapter 3 have provided insights into the faulty morphological events that occur in this model. In chapter 3 the distribution of a number of gene transcripts were analysed showing abnormal dorsal expression of the Shh gene in the foregut endoderm at the level of abnormal notochord branches together with downregulation of its downstream target gene Foxf1 gene in the ventral mesoderm of the lung primordia. Normal dorsoventral patterning of the foregut was reflected in ventral expression of Nkx2.1 and dorsal expression of Sox2 in control embryos. In treated embryos, while Nkx2.1 expression was normally confined to the ventral domain, Sox2 gene expression was not detectable across the foregut endoderm at the level of notochord branches. Although Nkx2.1 gene transcripts were not detectably altered in their distribution and continued to be restricted to the ventral endoderm of the foregut, analysis revealed expression of the gene in the endoderm of the fistula.
The aim of this chapter is present comprehensive analysis of the AMM at the molecular level, examining the expression of a number of candidate genes implicated in normal foregut patterning (section 1.2.2). The focus is on expression around the foregut within a defined development period in which separation of the foregut becomes clearly defined (E9 to E12). The use of the 3D imaging technique OPT (Sharpe et al., 2002) facilitated this work in allowing capture of the distribution of tissue specific markers and gene expression patterns, either colourometrically or fluorescently visualized, within a 3D morphological context. OPT has been routinely used for 3D recording and representation of gene expression patterns between E9.5 up to E11.5 in mouse embryos for investigation of facial development (Vendrell et al., 2009), neural tube (Miller-Delaney et al., 2011), otic vesicle (Lioubinski et al., 2006), limb (Summerhurst et al., 2008) or lung and foregut development (Sato et al., 2008). In addition OPT was used to record gene expression patterns during brain development in human embryos (Kerwin et al., 2004; Kerwin et al., 2010; Sarma et al., 2005). Once captured, data can be viewed and analysed in several different ways including virtual sections through the specimen in any orientation to view the precise distribution of the molecules or in 3D reconstructions as volume (where you can see through the specimen) or surface representations (Summerhurst et al., 2008).

The candidate genes analysed for comparative expression (adriamycin versus control treatment) in this chapter are involved in three different sets of developmentally vital signalling pathways. Both Fgf10 and Tbx4 genes are co-expressed in the visceral mesoderm of the lung primordia at the same antero-posterior level where endodermal Nkx2.1 expression is restricted to the ventral foregut (Sakiyama et al., 2003). Fibroblast Growth Factor signalling
has been implicated in normal patterning of the foregut and in development of the lung primordia. Misexpression of *Tbx4* or *Fgf10* in the visceral mesoderm posterior to lung primordia, result in posterior expansion of the *Nkx2.1* gene expression in the anterior foregut and failure of separation of the trachea from the oesophagus (Sakiyama et al., 2003). This suggests that a *Tbx4-Fgf10* system acts as a signaling component of the inductive interactions specific to lung primordium mesoderm and that altered boundaries of expression can affect tracheo-oesophageal separation (section 1.2.2). Here expression of both *Fgf10* and *Tbx4* genes is compared in control and treated embryos.

Bmp4 is expressed in the ventral foregut mesoderm and endoderm (Li et al., 2008b; Weaver et al., 2000) and its signalling is modulated by extracellular antagonists, including noggin (Massague et al., 2005). The BMP pathway is known to be important in foregut development through the evidence from *Bmp4* knockout embryos that show tracheal agenesis (Li et al., 2008b). The *Noggin* gene encodes a BMP signalling antagonist that can modulate the pathway. *Noggin* knockout mutants show foregut and notochord malformations similar to those seen in AMM (section 1.2.2) further implicating the BMP pathway. Here expression of *Bmp4* and *Noggin* genes are compared in control and treated embryos.

Wnt2 and *Wnt2b* are expressed in the mesoderm surrounding the ventral aspect of the foregut endoderm from E9 in mice (Goss et al., 2009). The Wnt signalling pathway is important for foregut and lung development (Goss et al., 2009; Warburton et al., 2005). *Wnt2/2b* double knock-out mutants result in absence of *Nkx2.1* expression in the anterior foregut endoderm at the level of lung primordia and display complete lung agenesis without foregut separation.
(Goss et al., 2009). Wnt7b is expressed in the lung epithelium with a more intense expression distally (De Langhe et al., 2005; Warburton et al., 2005). Inactivation of Wnt7b in mice resulted in perinatal death due to respiratory failure and lung hypoplasia (Shu et al., 2002) (section 1.2.4). Here expression of Wnt2 and Wnt7b genes is compared in control and treated embryos.

4.2 Results

4.2.1 Tbx4 gene expression in control embryos and the effect of adriamycin treatment on gene expression patterns

The Tbx4 antisense probe was first tested on normal embryos and found to give a clear and specific pattern of expression in the mesenchyme around the site of the lung buds, trachea, in a specific patch in the forelimb and extensively in the hindlimb (Figure 4.1). Figure 4.4 illustrates the 3D nature of the data generated through in situ hybridization and OPT scanning to visualize features of the Tbx4 expression domain in detail.
Figure 4.1: The expression of the *Tbx4* gene at E11. Photomicrograph of a lateral view of a whole mount *Tbx4* in situ hybridised specimen (A). The 3D nature of the data analysed in this study is shown in a still shot taken from a 3D reconstruction of the externally visible pattern of *Tbx4* expression following the merging of two OPT scans where the tissue (pseudocoloured in green) and the gene expression (pseudocoloured in red) were captured separately (B). The pattern of *Tbx4* expression around the trachea and lung buds is shown in more detail in this surface rendered image (C). fg; foregut, fl; forelimb, hl; hindlimb, tr; trachea, lb; lung bud.

Analysis of 3D computer reconstructed specimens of control and treated embryos across ages E9-E12 following OPT allowed the *Tbx4* gene expression patterns to be viewed in 2D virtual sections throughout the developing tissue (Figure 4.2). The intensity of staining and the spatial territory within which the *Tbx4* gene was expressed with respect to the forming foregut was compared visually between control and adriamycin treated groups at each time point of collection. In E9 adriamycin treated and control embryos *Tbx4* was expressed in the mesenchyme around the site of the lung buds (Figure 4.2 A-B, I-J). Any apparent difference in *Tbx4* expression pattern viewed on coronal sections (Figure 4.2 B, J) are due to relatively more advanced lung development in control embryos as previously noted (section 3.3.1). At E10 *Tbx4* expression was clearly detected in the mesenchyme around the trachea (Figure 4.2 C) and in the mesenchyme around the lung bud (Figure 4.2 D). At this stage *Tbx4* expression
persisted in the lung bud region mesenchyme in treated embryos (Figure 4.2 K, L) even in cases where lung bud formation is lacking (not shown). At E11, virtual sections through the embryos showed \(Tbx4 \) expression in the mesenchyme around the trachea in both control and treated embryos (Figure 4.2 E, M) and around the lung bud (Figure 4.2 F, N) without obvious changes in the spatial distribution or level of gene expression. At E12, embryos had enlarged considerably and the complexity of tissue increased. To ensure penetration of the RNA probe, the embryos were dissected to include only the trunk region from the first branchial arch to the base of the liver. Following OPT scanning and computer reconstruction, \(Tbx4 \) gene expression was detected in the mesenchyme around the lung bud in control embryos (Figure 4.2 G-H) and treated embryos (Figure 4.2 O-P) without any difference in spatio-temporal expression between control and adriamycin treated embryos.

Although the adriamycin treated embryos showed a variety of the expected foregut abnormalities including complete laryngotracheo-oesophageal cleft (in 6 of 22 embryos), OA (in 6 of 22 embryos) and TOF (in 5 of 22 embryos), there were no differences in \(Tbx4 \) gene expression pattern in the adriamycin treated groups, irrespective of the severity of the morphological abnormalities. Comparisons in this case are made according to embryonic day rather than Theiler stage because the progression of overall expression was so similar between control and treated embryos despite morphological differences, so staging differences were not an issue in interpreting the results.
Figure 4.2: *Tbx4* gene expression in control (A-H) and adriamycin treated (I-P) mouse embryos at embryonic days E9 - E12 following whole mount in situ hybridization. Mesenchymal *Tbx4* gene expression is revealed on virtual sections taken through the 3D data in different sagittal (left of each panel) and coronal (right of each panel) planes, section planes indicated by orange lines. Red arrows indicate *Tbx4* expression around the site of the lung buds (A-P). White arrows indicate *Tbx4* gene expression around tracheal mesenchyme (C, E, M, O). E-F, M-N represents virtual sections taken through the 3D data following the merging of two OPT scans where the tissue (pseudocolorued in green) and the *Tbx4* gene expression (pseudocolorued in red) were captured separately. tr; trachea.
4.2.2 *Fgf10* gene expression in control embryos and the effect of adriamycin treatment on gene expression patterns

At developmental stages TS15 and TS16, *Fgf10* gene expression was not detected in the mesenchyme around the foregut in any of the embryos either from control or adriamycin treated groups. At TS17 *Fgf10* gene expression was clearly visualized in the distal mesenchyme around the tip of the two main bronchi in the control group (Figure 4.3 A - C) but no *Fgf10* gene expression was observed in treated embryos at these stages (not shown). As development proceeded, lung buds emerged laterally from the main bronchi and elongated from TS18 stage. Analysis of computer reconstructed specimens following OPT reconstructions of control embryos at TS18 revealed *Fgf10* gene expression in the mesenchyme around the tip of the developing buds in all of the specimens (Figure 4.3 D - F) as well as previously reported expression in other embryonic sites including forelimb, hindlimb, inner ear, forebrain and pharyngeal arches. In adriamycin treated embryos at TS18, *Fgf10* gene expression was detected around the foregut at the level of a transverse widening, indicating the site of lung bud development, which was clearly delayed, in 67% (4 out of 6) of the embryos (Figure 4.4 A - C). Two of the specimens had normal separation of trachea from the foregut and two had complete laryngo-oesophageal cleft. In 33% (2 out of 6) of the treated embryos at this stage (TS18) expression was not detected at all, lung buds were not seen and foregut instead formed an oval shape widening (Figure 4.4 D - F). Both these embryos demonstrated tracheal atresia (Figure 4.4 D). Other sites of the *Fgf10* gene expression were normal in comparison to control.
Figure 4.3: Fgf10 expression in TS17 (A - C) and TS18 (D - F) control embryos. Virtual sections taken through 3D data in different planes are shown. A and D show sagittal sections; B, C, E and F show sections in the planes indicated by yellow lines in A and D, following the merging of two OPT scans where the tissue (pseudocolored in green) and the gene expression (pseudocolored in red) were captured separately. Blue arrows indicate Fgf10 gene expression around the tip of the lung buds. Expression of Fgf10 is also visible in forebrain (infundibular recess (A) and optic stalk (D)), inner ear (D), first pharyngeal arch (E) and hindlimb (B). lb; lung buds, fg; foregut. Scale bar as indicated.
Figure 4.4: Fgf10 expression in TS18 adriamycin treated embryos. Virtual sections taken through 3D data in different planes are shown. A and D show sagittal sections; B, C, E and F show sections in the planes indicated by yellow lines in A and D, following the merging of two OPT scans captured separately. The red signal represents Fgf10 gene expression with blue arrows indicating expression around the widened foregut (A – C). The specimen in D-F captures oval shape widening of the foregut without adjacent Fgf10 expression. This specimen has a blind-ended trachea shown in the red frame (D). Expression of Fgf10 is also visible in forebrain (D, F), eye on B. Green signal represents autofluorescence from the tissue, which highlights the overall anatomy of the embryo. fg; foregut, tr; trachea. Scale bar as indicated.

From TS19-TS21 lung buds normally begin to branch and the complexity of the bronchial tree increases in control specimens (Chapter 3, Figure 3.8). Expression of Fgf10 was detected along edges of the distal mesenchyme of all lobes and from TS20 strong Fgf10 expression was detected in the mesenchyme and endoderm of the buds in both control and adriamycin treated groups (Figure 4.5 A – D). Although the expression level and spatial territory of gene expression appeared similar in both groups, pulmonary branching morphogenesis was delayed
in the adriamycin treated group in comparison to controls, confirming my earlier findings (section 3.2.1).

![Figure 4.5: Fgf10 expression at E13 in the dissected embryonic trunk of control (A, B) and adriamycin treated embryos (C, D). Blue arrows indicate Fgf10 gene expression (in red) around the tip of the lung buds and in the mesenchyme between the buds. Strong Fgf10 expression is also seen in the endoderm of the buds. Yellow lines correspond with the plane of transverse virtual sections (B and D). Scale bars as indicated.]

4.2.3 The effect of adriamycin treatment on Noggin gene expression

4.2.3.1 Noggin gene expression in control embryos

Throughout the ages of embryos analyzed, Noggin expression was visible externally at the dorsal border of the somites (Figure 4.6 A,B), optic vesicles (Figure 4.6 B) and 3rd pharyngeal pouch (Figure 4.6 C,F). In section, strong Noggin expression was detected in the notochord, the dorsal and ventral midline of the neural tube (Figure 4.6 D, E). At E12, as the notochord
had almost disappeared, expression remained in the dorsal and ventral midline of the neural tube and 3rd pharyngeal pouch (Figure 4.6 F) and appeared in the interdigital region of the forelimb (Figure 4.6 C).

Figure 4.6: Noggin gene expression in control embryos. A and B show photomicrographs of whole embryos or embryo trunk (C) at E10, E11 and E12 respectively. D, E and F show virtual sections through the embryos with Noggin expression pseudocoloured in red, with arrows indicating Noggin gene expression in areas of interest. sm; somites, idr; interdigital region, nc; notochord, dm; dorsal midline of the foregut, vm; ventral midline of the foregut, ov; optic vesicle, pp; 3rd pharyngeal pouch. Scale bars as indicated.

4.2.3.2 Effect of adriamycin treatment on Noggin gene expression

At E10 and E11, Noggin gene expression was seen in the notochord, the dorsal and ventral midline of the neural tube throughout both control and adriamycin treated embryos (Figure
In treated embryos, Noggin expression was also seen in abnormal/ectopic branches of the notochord, with particularly strong expression in the tips of the branches in 12 out of 15 embryos (Figure 4.7 B, D). Five of these embryos exhibited total laryngotrache-oesophageal cleft (LTEC) and two exhibited foregut stenosis. Strong Noggin gene expression was also detected as a broad domain in the dorsal foregut endoderm close to and below the notochord branches in adriamycin treated embryos (6 out of 12) (Figure 4.7 D), whereas only very fine expression was detected in the foregut of control embryos (Figure 4.7 A). Also, in two of the treated embryos with no detected notochord branching, strong Noggin expression was seen in distinct patches in the dorsal endoderm of the posterior foregut (Figure 4.7 E). One of these embryos exhibited LTEC and in the second the trachea is positioned abnormally close to the ventral wall of the foregut. Only one of the treated embryos analysed (n=15) had normal morphology without notochord branching and normal Noggin gene expression.
Figure 4.7: Noggin gene expression (pseudocoloured in red) in virtual sections of control (A, C) and adriamycin treated (B, D, E) embryos at E10-E11. The regions framed in red are enlarged on the right of each image. Yellow lines correspond with the plane of transverse virtual sections (a and d). Control embryos show Noggin expression in the normal notochord (A, C). Adriamycin treated embryos show increased Noggin expression in the tips of the notochord branches (B) and increased expression in the dorsal foregut endoderm in the proximity of the notochord branches (D). E; Adriamycin treated embryo at E11 without detectable notochord branches, but abnormal expression in dorsal foregut endoderm. nc; notochord, fg; foregut, dm; dorsal midline of the neural tube; vm; ventral midline of the neural tube. Scale bar as indicated.
By E12, the notochord has usually fully disappeared, and accordingly expression in this region had disappeared in both adriamycin-treated and control embryos. The expression in the ventral midline of the neural tube remained in both treated and control embryos. No differences in expression patterns were seen between treated and control embryos at this age (Figure 4.8). Four of the treated embryos present with fistula and one with oesophageal atresia with upper pouch.

Figure 4.8: Noggin gene expression (pseudocoloured in red) in virtual sections of control (A) and adriamycin-treated (B, C) embryos at E12. The regions framed in red are enlarged on the right of each image. All embryos show expression in the ventral midline of the neural tube but no detectable expression in the notochord which would normally have regressed at this stage. C shows an adriamycin treated embryo with a visibly branched notochord still visible but showing no noggin expression. nt; notochord, vm; ventral midline of the neural tube. Scale bar as indicated.
4.2.4 The effect of adriamycin treatment on \textit{Bmp4} gene expression

4.2.4.1 \textit{Bmp4} expression in control embryos

At E10, \textit{Bmp4} was seen to be expressed in several sites. In the dorsal region, strongest staining was observed in the dorsolateral half of the somites, in what appeared to be a gradient of expression fading out towards the dorsal border of the somites (Figure 4.9 A). In the limb, another apparent gradient of expression was seen, with the strongest staining in the apical ectodermal ridge, fading through the limb mesenchyme toward proximal (Figure 4.9 A). Further expression was also seen at the distal edges of the branchial arches and in the ectoderm of the ventral body wall.

In embryo sections, expression was seen in the ventral mesoderm surrounding the lung primordia (Figure 4.10 A) and mesoderm around the tips of the lung buds (Figure 4.11 A). At E11 the expression pattern was very similar to E10, with extended expression seen at somite boundaries (Figure 4.9 B). In section, similar expression in the mesoderm around the lung buds was seen (Figure 4.11 C), as well as in the developing stomach (not shown). At E12, the boundary of expression in the limb became more defined to the limb mesenchyme close to the apical ectodermal ridge, whereas the expression in the somite region split into two distinct bands, one in the dorsal somite region (Figure 4.9 C) and the other close to the dorsal midline of the embryo (not shown). In section, expression was observed in only two of the five control embryos analyzed, probably due to poor probe penetration in the first in situ hybridisation. In the embryos that did show expression in section, \textit{Bmp4} was expressed in the mesoderm around
the tips of the lung buds, which by then had started to branch (Figure 4.12 A). Expression in the stomach was also detected in these two embryos.

![Image](image_url)

Figure 4.9: Bmp4 gene expression in control embryos. A and B show photomicrographs of whole embryos or embryo trunk (C) at E10, E11 and E12 respectively. Arrows indicating Bmp4 expression in areas of interest. sm; somites, aer; apical ectodermal ridge. Scale bars as indicated.

4.2.4.2 Effect of adriamycin treatment on Bmp4 expression from E10-E12

At E10, Bmp4 was expressed in the ventral mesoderm around the lung primordia (Figure 4.10 A and B) and in the mesoderm around the lung buds (Figure 4.11 A nd B) in both control and adriamycin treated groups. When comparing the expression patterns of embryos at the same embryonic day, no difference was seen between adriamycin treated and control embryos, although typical morphological alterations, including notochord branching (5 out of 6) and foregut stenosis (1 out of 6), were recorded.
Figure 4.10: Bmp4 gene expression (pseudocoloured in blue and highlighted by arrow heads) in virtual sections of control (A) and adriamycin treated (B) in E10 embryos. Images on the right show the boxed area enlarged (above) and transverse sections in the plane indicated (a; below). Both, control and treated embryos show Bmp4 gene expression restricted to the ventral mesoderm surrounding lung primordia (arrow heads). fg: foregut. Scale bar as indicated.

At E11, both adriamycin treated and control embryos expressed Bmp4 in the tips of the lung buds (Figure 4.11 C and D), and no expression was ever recorded around the foregut. Adriamycin treated embryos were again delayed and typical morphological abnormalities were recorded including notochord branching (4 out of 6), LTEC (4 out of 6), foregut stenosis (1 out of 6), but no difference in expression pattern between adriamycin treated and control embryos was seen.
Figure 4.11: *Bmp4* gene expression (pseudocoloured in blue) in virtual sections of control (A, C) and adriamycin treated (B, D) embryos at E10 and E11. The regions framed in red are enlarged on the right of each image. Control and treated embryos show expression restricted to the mesoderm of the developing lung buds with no differences in distribution of the transcript. lb; lung buds, fg; foregut. Scale bar as indicated.

At E12, both treated and control embryos showed *Bmp4* gene expression in the lung bud mesoderm (Figure 4.12 A and B) and stomach (not shown), with no difference in expression pattern noted between them. One out of five treated embryos showed oesophageal atresia with upper pouch.
Figure 4.12: *Bmp4* gene expression (pseudocoloured in blue and highlighted by arrow heads) in virtual sections of control (A) and adriamycin treated (B) embryos at E12 showing *Bmp4* expression pseudocoloured in blue. The regions framed in red are enlarged on the right of each image. Strong *Bmp4* expression is seen in the mesoderm of the lung buds in both groups (arrow heads). Scale bar as indicated.

4.2.5 The effect of adriamycin treatment on *Wnt2* gene expression

4.2.5.1 *Wnt2* gene expression in control embryos

In embryo section, *Wnt2* gene expression was seen in the ventral mesoderm surrounding lung primordia from E10 (Figure 4.13 A). As development progresses, at E11, *Wnt2* expression was recorded in the lateral mesoderm surrounding newly formed lung buds (Figure 4.13 B). Very strong *Wnt2* gene expression was recorded from E12 in the mesoderm of the lung buds, which show advanced branching morphogenesis at this stage (Figure 4.13 C).
4.2.5.2 Effect of adriamycin treatment on \textit{Wnt2} gene expression

\textit{Wnt2} gene expression in adriamycin treated embryos was seen in the ventral mesoderm around the lung primordium from E10 (Figure 4.13 D). Spatial distribution of the gene transcripts was not altered in comparison to control embryos although notochord branching was recorded in all of the analysed specimens (5 out of 5). At E11 lung buds did not separate from the foregut in most of the treated embryos (4 out of 5) however \textit{Wnt2} gene expression was restricted to the ventro-lateral mesoderm of the foregut in the region where lung buds would normally emerge (Figure 4.13 E). Even in two of the five embryos exhibiting LTEC and foregut stenosis, \textit{Wnt2} gene expression was not altered. At E12 lung buds underwent branching morphogenesis in all investigated embryos (5 out of 5). \textit{Wnt2} gene expression was very strong and gene transcript restricted to the mesoderm surrounding lung buds in all of the embryos with no differences in comparison to the control group (Figure 4.13 F). Three out of five embryos exhibited fistula from the carina or bronchii into the stomach and in all of these specimens \textit{Wnt2} was expressed in the mesoderm surrounding the fistula and anterior part of the stomach (Figure 4.13 F).
Figure 4.13: \textit{Wnt2} gene expression in the mesenchyme on the ventral aspect of the developing foregut and around the lung buds. Virtual sections of control (A-C) and adriamycin treated (D-F) embryos at E10 to E12, with \textit{Wnt2} expression pseudocoloured in red. Sagittal sections of the control and adriamycin treated embryos with enlargement of the expression in the mesoderm around the foregut and lung buds in transverse sections in the planes indicated (a) in orange (A, B, D, E). C and F additionally show enlargement of the region of interest in red frame. In F, \textit{Wnt2} expression around an abnormal fistula is indicated. fg; foregut, lb; lung bud. Scale bars as indicated.

4.2.6 The effect of adriamycin treatment on \textit{Wnt7b} gene expression

4.2.6.1 \textit{Wnt7b} gene expression in control embryos

Endodermal expression of the \textit{Wnt7b} gene was evident in the ventral foregut and at the tip of the lung primordia from E10 in virtual sections of embryo reconstructions (data not shown).
From E11 strong expression was recorded in the endoderm of the trachea and tip of the lung buds (Figure 4.14 A). As branching morphogenesis progresses $Wnt7b$ transcripts were seen very clearly in the trachea and lung bud endoderm (Figure 4.14 B).

4.2.6.2 Effect of adriamycin treatment on $Wnt7b$ gene expression

$Wnt7b$ gene expression in adriamycin treated embryos was seen in the ventral endoderm of the lung primordium from E10 in all of the adriamycin treated embryos (data not shown). In this group of treated embryos none had foregut anomalies at this stage although 3 out of 5 had abnormal notochord branches. Spatial distribution of the $Wnt7b$ gene transcripts was not altered in comparison to control. At E11, $Wnt7b$ gene expression was restricted to the trachea and lung bud endoderm (Figure 4.14 C). The pattern of gene expression was not altered in the embryos that exhibit foregut abnormalities (3 out of 5) at this stage, or notochord branching (3 out of 5). The $Wnt7b$ gene expression pattern was not altered in any of the treated embryos analysed (5 out of 5) in comparison to control specimens. At E12 lung buds underwent branching morphogenesis in all investigated embryos (5 out of 5). $Wnt7b$ gene expression was very strong and gene transcripts were restricted to the tracheal and lung bud endoderm in all of the embryos (6 out of 6) with no differences in comparison to the control group (Figure 4.14 D). Four out of six embryos exhibited fistula from the carina or bronchii into the stomach and in all of these specimens $Wnt7b$ gene was expressed in the endoderm of the anterior foregut and lung buds but not in the fistula.
Figure 4.14: Wnt7b gene expression in the developing foregut and lung in control (A, B) and adriamycin treated embryos (C, D) at E11 and E12; gene expression is pseudocoloured in purple. Virtual sagittal sections taken through the 3D reconstructions show Wnt7b gene expression in the tracheal endoderm (A, C) and enlargements of the gene expression in the endoderm of the developing lung buds. Orange frames show coronal sections in the plane indicated by the orange line a (A, C). B and D show similar coronal virtual sections through the specimens at E12 with enlargements of the region shown in the red frames. tr; trachea, lb; lung bud. Scale bars as indicated.

4.3 Discussion

This chapter aimed to use OPT technology to reveal the expression patterns of candidate genes implicated in foregut development as a preliminary way of identifying which genes may be affected when the congenital abnormalities OA and TOF are induced by adriamycin treatment.
Making use of the 3D nature of OPT generated data, comparisons of expression patterns in treated and control embryos, combined with an analysis if morphological defects, was facilitated.

4.3.1 Overview of findings

The Noggin gene was found to be expressed in the same territory in control and adriamycin treated embryos. Additionally, in adriamycin treated embryos Noggin was expressed throughout the notochord with particularly strong expression in the tips of the notochord branches at E10 and E11. Moreover in some of the treated embryos Noggin gene transcripts were recorded in an extensive layer of the dorsal endoderm of the foregut, more extensive than in control embryos in the same region. Abnormal accumulation of Noggin gene transcripts in the tip of the notochord branch or the dorsal wall of the foregut was associated with a wide spectrum of foregut abnormalities.

Expression of the Fgf10 gene in both control and adriamycin treated embryos was found to be restricted to the distal mesenchyme of the bronchii. Although there was no differences in spatial distribution of the transcripts between the groups, delayed gene expression was seen in treated embryos. In some of the treated embryos, lack of Fgf10 gene expression at TS18 was associated with tracheal atresia. Tbx4 gene expression was restricted to the ventral mesoderm of the foregut from very early stages of development and as lung development progressed in later stages gene expression was restricted to the mesoderm surrounding trachea and lung
buds. There was no differences in temporo-spatial distribution of Tbx4 transcript between the control and treated groups across the investigated stages.

Bmp4 gene expression was seen in ventral mesoderm around the lung primordia and strong Bmp4 gene expression was recorded around the mesoderm of the lung buds from E10 in both groups. There was no differences in temporo-spatial distribution of the transcripts across all stages in control and adriamycin treated groups.

Wnt2 and Wnt7b gene expression in this study was seen in the ventral foregut mesoderm (Wnt2) and endoderm (Wnt7) around the lung primordia and lung buds. No differences were observed in the expression of either genes in these sites in control and treated embryo groups and across all stages. However, in all of the treated embryos at E12 presented with a fistula Wnt2 gene expression was seen in the mesoderm around the fistula and proximal part of the stomach. Wnt7b was not expressed in the fistula.

4.3.2 Expression of the Fg10 gene is delayed in the ventral mesoderm of the anterior foregut of treated embryos: implications for outgrowth of lung primordia.

Once the respiratory field is established in the ventral foregut endoderm, accompanied by localized Nkx.2.1 gene expression (Desai et al., 2004; Morrisey and Hogan, 2010), outgrowth and extension of the lung primordia into surrounding mesenchyme is entirely dependent on the localized expression of Fgf10 in the mesenchyme overlying the tips of the primary lung buds and expression of the receptor Fgfr2b in the endoderm of the foregut (De Moerlooze et al., 200; Sakiyama et al., 2003; Sekine et al., 1999). In Chapter 3 I showed that Nkx2.1 gene
expression was normally confined to the ventral domain of the foregut endoderm in adriamycin treated embryos, similar to control (Figure 3.6, summarised in Figure 4.15). Here I showed that mesenchymal Fgf10 gene expression, was detected from TS17 in control embryos and restricted to the distal mesenchyme of the two main-stem bronchi. Expression of the Fgf10 gene in adriamycin treated embryos was delayed and first detected at TS18 at approximately the same level and spatial territory, as in control embryos detected as early as TS17. However, Fgf10 gene expression was detected in only two-thirds of the embryos at TS18 indicating that expression is just commencing at this stage. Our detailed 3D morphological study of the AMM presented in chapter 3 showed that lung bud formation and separation from the foregut is delayed in treated embryos in comparison to controls. This delay in Fgf10 gene expression and in outgrowth of lung primordia in the AMM indicates that failure to express Fgf10 in the ventral mesenchyme at earlier stages may at least contribute to delayed lung development.

A striking finding in this study was the lack of Fgf10 gene expression in treated embryos which exhibited tracheal atresia (TA). This is reminiscent of the phenotype seen previously in mutants lacking Fgf10, where the trachea separates from the foregut although no bud extension occurs (Minoo et al., 1999; Sekine et al., 1999) suggesting that the same mechanism may be involved in the etiology of this malformation in AMM.

Fgf10 expression may be inhibited by ectopic Shh signaling through the abnormal branch of the notochord, as described in chapter 3. It was previously reported that Shh is part of an epithelial network of regulators that restricts expression of Fgf10 in the mesenchyme around
the lung bud (Bellusci et al., 1997b; Lebeche et al., 1999). Although here Shh is
downregulated in the ventral endoderm of the foregut (Chapter 3, Fig 3.4 Cb; summarised in
Figure 4.15) in some of the adriamycin treated embryos, it is therefore unlikely that it is the
cause of the delay in Fgf10 expression. Alternatively, it is possible that adriamycin treatment
affects the expression of other signalling molecules, not investigated in this work, involved in
regulation of Fgf10 expression, for example Retinoic Acid and Tgff (Chen et al., 2007).

The presence of a positive feedback loop between regulation of Tbx4 and Fgf10 expression
was shown in chick during lung primordia formation (Sakiyama et al., 2003). Ectopic Fgf10
expression introduced into the visceral mesoderm alone induced ectopic budding of the
foregut and caused ectopic mesodermal Tbx4 expression around the anterior foregut.
Inactivation of Tbx4 function in the visceral mesoderm repressed Fgf10 expression in
corresponding mesoderm and led to failure of lung bud formation (Sakiyama et al., 2003). In
the present work Tbx4 expression was detected adjacent to the foregut at an equivalent
antero/posterior position and at approximately the same level in control and adriamycin treated
embryos. This indicates that the morphological abnormalities seen in AMM are not
accompanied by obvious changes in the spatial distribution or level of gene expression of Tbx4
suggesting that Tbx4 regulation is not altered in this model. This implies that the
morphological abnormalities in AMM can occur in the presence of Tbx4 transcripts. It also
suggests that factors other than Fgf10 positively regulate Tbx4.
4.3.3 Ectopic Noggin gene expression in the notochord and posterior wall of the foregut in adriamycin treated embryos: implications for foregut separation.

In chapter 3, analysis of ectopic notochord branches in AMM showed a possible relationship between position and thickness of ectopic notochord and severity of foregut abnormalities. From these observations it was proposed that abnormal notochord branching causes the disturbance of normal development of the foregut. Here all of the treated embryos analysed with abnormal notochord branches at E10 and E11, showed Noggin expression throughout the notochord with particularly strong expression in the tips of the notochord branches. It was shown that in cultured explants of mouse lungs, increasing concentrations of Shh results in an increase in Noggin gene expression (Weaver et al., 2003). Therefore, in the presence of abnormally close notochord in AMM with strong Shh gene expression, as shown in Chapter 3 (Figure 3.4; summarised in Figure 4.15), Noggin gene expression might be upregulated. Shh however, is expressed very strongly through the entire notochord and abnormal branches. In contrast Noggin gene expression accumulated particularly in the tips of the notochord branches (Figure 4.7 B).

6 of the embryos at E11 also showed Noggin gene expression in a more extensive territory of cells of the dorsal foregut endoderm at the level of the branch or below. In control embryos, expression in the foregut was limited to a more restricted layer of cells of the dorsal foregut wall, consistent with previous reports (Que et al., 2006). This implies that abnormally high levels of Noggin secreted from the ventrally displaced notochord in treated embryos may lead to altered gene expression in the dorsal endoderm of the foregut. However, this hypothesis is
in conflict with the observation that in two of the treated embryos with no detected notochord branching, strong Noggin expression was seen in distinct patches in the dorsal endoderm of the posterior foregut. An alternative hypothesis for the perturbed expression pattern of Noggin seen in the adriamycin model is that some of the cells that were meant to “become” notochord cells were “left behind” in the foregut endoderm when the chordomesoderm separated from it. Further evidence for such a hypothesis comes from the study of noggin knockout mice (Que et al., 2006) where similar morphological abnormalities of the notochord and foregut were observed. These authors observed cells positive for the notochord marker Brachyury embedded within the dorsal foregut in \(\text{Nog}^{-/-}\) mutant embryos. This is unlikely here following observation that Brachyury positive cells were not found embedded in dorsal wall of the foregut in AMM, shown further in Chapter 6.

It was hypothesised that elevated BMP signalling in the notochord and dorsal foregut endoderm due to the lack of the Noggin gene product in \(\text{Nog}^{-/-}\) mutant embryos might promote intracellular adhesion and result in prolonged attachment of the notochord and faulty foregut separation (Li et al., 2007; Que et al., 2006). It was found that the notochord branching defect, together with foregut malformations could be rescued by reducing the gene dose of Bmp4 by 50%. Therefore in this study, Bmp4 was selected as a potential candidate due to its influence in the Noggin knockout mouse (Que et al., 2006). However, in this project, no difference in the expression patterns of Bmp4 was found between adriamycin treated embryos and controls. There are many possible explanations for these findings. First of all, it is important to note that the action of BMP4 is inhibited by Noggin by not permitting BMPs to bind to their receptors (Gilbert, 2006). Therefore, just because Bmp4 is being expressed, this does not mean that it is
having the effects that it is supposed to in the areas of interest. Also, despite their antagonistic relationship, the two genes do not directly affect the transcription of each other, and thus an upregulation of one is not necessarily followed by a downregulation of the other.

To further test our postulation that BMP/Noggin pathway is deregulated and may be causative of associated foregut abnormalities, investigation of the localisation of phosphorylated SMAD 1/5/8 (pSMAD 1/5/8), which accumulates only when the pathway is activated, would be beneficial for further study. Increased BMP signalling revealed by increased phosphorylated Smad1 antibody staining was found in Nog	extsuperscript{-/-} mutant notochords at E8.5, with subsequent reduction in the level by E9, consistent with loss of Noggin function and agreement with the critical role of BMP antagonism during notochord detachment.

Que et al (2006) proposed that the lack of separation of the oesophagus and trachea seen in the Nog	extsuperscript{-/-} mutants was caused by a lack of expression of Noggin in the dorsal foregut. Li et al (2007) also created Noggin knock out embryos and suggested that delayed and improper notochord delamination resulted from lack of Noggin gene expression in the notochord. In contrast all of the treated embryos in our series with abnormal notochord branches expressed the Noggin gene in the tip of the branches and 50% (6 ot of 12) expressed the Noggin gene in an extended territory of cells of the dorsal foregut endoderm. All of them exibited foregut abnormalities. These observations strongly suggest that Noggin has an effect on foregut morphology during development and leads to the conclusion that foregut malformations might be triggered by an imbalance of Noggin with respect to other signalling molecules.
In terms of the possible effect of Noggin on foregut patterning, explant studies in chick have demonstrated that signals from Hensen's node, or its derivatives including the notochord, specify ingressing endoderm cells as foregut, inducing Sox2 expression during gastrulation (Matsushita et al., 2008). Moreover Noggin or Chordin, factors known to be secreted from Hensen's node and its derivatives induced endodermal Sox2 expression in early chick embryos after 24-36 hours incubation (Matsushita et al., 2008). Sox2, initially expressed throughout the entire foregut, is down-regulated in the respiratory domain by E9.0 in mice (Sherwood et al., 2009), coincident with up-regulation of Nkx2.1 in this domain. Here increased Noggin gene expression in the tip of the branches was associated with loss of Sox2 gene expression across the foregut endoderm at the level of the branch at E10 and E11 as described in Chapter 3 (Figure 3.6, summarised in Figure 4.16). Loss of Sox2 gene expression was not associated with the dorsal expansion of Nkx2.1 expression. Additionally in Noggin mutants, the spatial expression pattern of Nkx2.1 was restricted to the central endoderm of the foregut (Que et al., 2006). This suggests that the Noggin gene is not involved in D/V patterning of the foregut in AMM.

Conditional inactivation of Bmp4 in the foregut endoderm and surrounding mesenchyme results in tracheal atresia and lung hypoplasia (Li et al., 2008b). Analysis of these mutants showed that ventral endodermal Nkx2.1 expression is preserved at E9.5 - E10.5, before foregut separation, although at E12.5 an undivided single foregut tube is Nkx2.1 negative. This led to the conclusion that Bmp4 is not required for the initial respiratory specification of the foregut (Li et al., 2008b). Recent published studies showed that conditional inactivation of Bmpr1a and Bmpr1b, two principal Bmp receptors results in an undivided single foregut tube
in mouse mutants (Domyan et al., 2011). Analysis of these mutants showed that ventral endodermal Nkx2.1 expression is preserved at 19 somites (E9.25) although by 24 somites (E9.5) downregulation of Nkx2.1 expression was observed together with ventral expansion of Sox2 expression (Domyan et al., 2011). Further experiments showed that BmprIa represses the Sox2 promoter in vitro (Domyan et al., 2011). Because Nkx2.1 and Sox2 antagonise each other’s expression (Que et al., 2007) this led to the conclusion that BmprIa and b may promote respiratory identity in an instructive fashion by inducing Nkx2.1, thereby repressing Sox2. Alternatively, it could promote respiratory fate in permissive fashion by repressing Sox2, thereby allowing expression of Nkx2.1 and tracheal formation (Domyan et al., 2011). An analysis of the expression pattern of the Bmp receptors could thus be an interesting candidates for future study.

Assuming that Bmp signalling is inhibited in AMM by Noggin expression through the notochord branches, Sox2 should be positively regulated in the dorsal foregut endoderm of the treated embryos, not absent as I showed. However, in the developing mouse lens placode and taste papillae, Bmp signalling promotes Sox2 expression (Beites et al., 2009; Furuta and Hogan, 1998; Rajagopal et al., 2009). These findings indicate that the effects of BMP on Sox2 transcription are influenced by the specific developmental context, which is far different from normal in AMM (Figure 4.15).

4.3.4 Wnt signalling in the Adriamycin Mouse Model

The Wnt signalling pathway is known to be important for early tissue morphogenesis. Multiple
roles for β-catenin in cell proliferation and differentiation have been reported in the endodermal components of multiple tissues, including the liver pancreas, and lung (Apte et al., 2007; Dessimoz et al., 2005; Mucenski et al., 2003; Shu et al., 2005). The role for Wnt signalling in the development of the foregut has not been extensively studied or demonstrated as of yet. Due to their relationship with other signaling pathways and its critical role in the lung development, Wnt signalling might play an important role in the foregut separation (Goss et al., 2009; Harris-Johnson et al., 2009). For example Wnt2/2b double knock-out mutants revealed loss of the $Nkx2.1$ expression in the ventral foregut endoderm at E9.5 associated with complete lung agensis in later stages, at E11.5 (Goss et al., 2009). Inactivation of β-catenin in ventral foregut endoderm at E10.5 results in absence of both trachea and lung (Harris-Johnson et al., 2009). Specific loss of respiratory primordium is associated with lack of $Nkx2.1$ expression in ventral foregut endoderm in these mutants.

Wnt2 gene expression in this study was seen in the ventral foregut mesoderm around the lung primordia in E10 and E11 embryos and there was no difference in gene expression in both control and treated groups of the embryos, even if foregut anomalies occurred. In all of the embryos presented with fistula in the later stage at E12, Wnt2 gene expression was seen in the mesenchyme surrounding the lung buds and additionally in the mesoderm around the fistula and proximal part of the stomach. The potent role for Wnt/β-catenin signalling in specifying lung endoderm progenitors suggested that activation of this pathway might dominantly expand lung endoderm progenitor identity outside the normal region in the foregut (Goss et al., 2009; Harris-Johnson et al., 2009). Activation of Wnt/β-catenin signalling reprograms posterior regions of the foregut endoderm to a lung endoderm progenitor fate (Goss et al., 2009; Harris-
Johnson et al., 2009). Nkx2.1 gene expression, the earliest respiratory marker that labels tracheal endoderm, was expanded into the anterior stomach. These mutants moreover displayed defects in tracheal-esophageal separation similar to that seen in AMM with a common undivided foregut tube connected with the stomach. It was shown in ARM, in histological transverse sections through the foregut, that the fistula between the respiratory tract and the stomach was respiratory in origin, lined with ciliated respiratory epithelium emerging from the bifurcation of the trachea or from one of the main bronchii (Crisera et al., 1999; Merei et al., 1997). Investigation of the fistula in the adriamycin model shows that it is positive for Nkx2.1 (Crisera et al., 2000a; Ioannides et al., 2010). Our study confirms expression of the Nkx2.1 gene in endoderm of the fistula and proximal stomach from E11 (Chapter 3, Figure 3.6 F). Taken together these findings strongly suggest that the activation of Wnt/β-catenin through Wnt2 expression in the mesoderm leads to formation of the Nkx2.1 positive fistula in AMM.

Wnt7b, on the other hand, was considered as a candidate gene due to its relationship with Nkx2.1 expression. It has been shown that Wnt7b promoter activity is regulated by Nkx2.1 (Minoo et al., 1995). In this study Wnt7b expression was not altered in adriamycin treated groups and Nkx2.1 gene expression was confined to the ventral endoderm of the foregut without differences between the groups. This indicates that the morphological abnormalities seen in AMM are not accompanied by obvious changes in the spatial distribution or level of Wnt7b gene expression.
Figure 4.15: Diagramatic summary of candidate genes expression analysis in control (A) and Adriamycin treated (B) transverse sections of developing notochord and foregut during separation of the trachea from the oesophagus at E10; summary of data presented in chapters 3 and 4. Ventral expression of Nkx2.1 (blue), regulated through signaling from the ventral mesoderm (Bmp, Fgf10, Tbx4, Foxf1 and Wnt2,) determines the future trachea in control embryos (A). Higher Sox2 expression (orange) in the dorsal foregut endoderm establishes the future oesophagus (A). Adriamycin treatment does not affect Nkx2.1 expression in the ventral foregut endoderm although Sox2 expression is repressed at the level of adjacent notochord branches (B). Abnormal notochord branches of the notochord are source of ectopic Noggin and Shh secretion and Noggin gene expression in the dorsal foregut endoderm is upregulated (B). Shh expression is shifted dorsally across the foregut endoderm and its downstream target Foxf1 gene is downregulated in the ventral mesoderm of the foregut at the level of notochord branch (B).
Chapter 5

Notochord Position and Cellular organisation in the Adriamycin Mouse Model

5.1 Introduction

The notochord is a relatively simple yet essential structure in vertebrate embryogenesis, playing an active role in cellular and tissue differentiation during crucial periods of morphogenesis. In addition to having a structural role defining the anterioposterior (A/P) axis of the embryo, it also has a well-established role in secreting signalling molecules that pattern the neural tube dorsally, the somites laterally and the foregut endoderm ventrally (reviewed in section 1.1.4). The cells that give rise to the notochord arise from the primary body organizer, the node, during gastrulation and initially form a midline structure called the prechordal plate that is located within the foregut endoderm (Jurand, 1974). Normal delamination of the notochord results in a rod like structure, detached from the endoderm and displaced dorsally toward the neural tube, by E10 in the mouse embryo (Jurand, 1974). It was originally reported by Qi and Beasley in the adriamycin rat model that the notochord can remain tethered to the
foregut in some embryos until E13 (Qi and Beasley, 1999). Branching and increased dorsoventral diameter of the notochord was also reported (Gillick et al., 2003; Orford et al., 2001; Possoegel et al., 1999; Qi and Beasley, 1999; Williams et al., 2001). Other studies corroborated notochord branching in the mouse (Dawrant et al., 2007b). The drug has also been suggested to have a potent hypertrophic effect on the notochord with highest influence shortly after adriamycin exposure (Mortell et al., 2005). In the current work, presented in chapter 3, disturbances of whole embryos from E9 to E12 were visualized using the HNF3β marker and showed that ventral displacement and branching of the notochord were the most common defects induced by adriamycin exposure, occurring in 98% of E10 embryos. The work also showed a striking associated between the position of notochord branches and foregut malformations ranging from foregut stenosis to full atresia, and furthermore the severity of the foregut malformations corresponded to the number and heaviness of the notochord branches. Additionally, in chapters 3 and 4 I showed that abnormal branches of the notochord express the potent signalling molecule Shh and the BMP antagonist Noggin. Considering these results, I hypothesised that abnormal signalling from the notochord may be a primary cause of OA/TOF foregut anomalies seen in the AMM. In the work presented in this chapter I examine the effects of adriamycin on the delamination process and the cellular architecture of the early notochord as a primary disturbance in this model of congenital malformations. Extracellular matrix markers were visualised using confocal microscopy to assess cellular architecture.

The extracellular matrix (ECM) is an important aspect of the cellular environment. Composed of glycoproteins, proteoglycans and glycosaminoglycans, it provides mechanical support to
cells in the form of basement membranes or cell-to-cell adhesion, and contributes to important cellular events including differentiation, proliferation, survival, growth, polarity, migration, and chemotaxis of cells during development (Hynes, 2009). Many secreted proteins can contribute to the ECM in different cellular contexts; the particular combination of proteins endowing tissue specific characteristics. Both, laminin and E-cadherin are part of the ECM. Laminin is a major constituent of basement membranes, which separate parenchymal cells from connective tissue. It plays important roles in tissue morphogenesis and homeostasis by regulating tissue architecture, cell adhesion, migration and matrix-mediated signaling (Hamill et al., 2009). For instance, mice in which the α5 laminin subunit was inactivated present with a variety of developmental defects, including syndactyly and aberrant lung septation, whereas mice that lack the β2 laminin subunit suffer kidney failure owing to defective glomerular filtration (Miner and Yurchenco, 2004). The cadherin-superfamily of proteins is made up of calcium-dependent cell-to-cell adhesion molecules, where E-cadherin is the member specifically expressed in epithelial tissues of the developing ectoderm and foregut endoderm during early mouse embryogenesis (Nose and Takeichi, 1986; Takeichi, 1977). Cellular adhesion is a crucial aspect of cellular interaction processes involved in constructing differentiated and organised tissues in a multi-cellular organism. Any disruption to adhesion may alter cellular responses and tissue architecture. Due to their key roles in cell-adhesion and tissue morphology, cadherins are considered important regulators of morphogenesis (Takeichi, 1991). The importance of E-cadherin in early morphogenetic events was highlighted by the inactivation of the gene encoding it during mouse development, resulting in prenatal lethality at the time of implantation and the inability to form the trophoectoderm epithelium in preimplantation embryos (Larue et al., 1994).
Confocal laser scanning microscopy is a technique that produces high contrast images by scanning through different thin focal planes of a tissue section. The laser is scanned across the specimen, which excites specific fluorophores that have been used to label specific proteins, usually conjugated to secondary antibodies or RNA transcripts. These fluorophores fluoresce and emit light at a specific wavelength that is directed through a spatial pinhole construction (Semwogerere and Weeks, 2005). Due to this pinhole, the light passing through is restricted to a specific focal plane of the specimen, excluding most light that is not within that focal plane (Semwogerere and Weeks, 2005). This results in out-of-focus light being eliminated and the light detected creates a high-resolution image. Scanning at multiple focal planes thus allows the reconstruction of multiple horizontal focal planes, which can then be assembled to build a three-dimensional (3D) reconstruction of the section (Z-stack) that can then be digitally sectioned vertically. Confocal microscopes possess several advantages over conventional microscopy. First, confocal microscopy produces images of improved resolution, up to 1.4 times greater than standard microscopy, by eliminating out-of-focus light. Confocal microscopes also have a higher level of sensitivity compared to conventional microscopes, due to highly sensitive light detectors. Another key advantage of confocal microscopy is the ability to produce 3-dimensional reconstructions of thicker sections of the specimen, reducing the amount of analysis required and potential distortion (Semwogerere and Weeks, 2005).

The work presented in this chapter aimed to address the hypothesis that anomalies observed in the AMM could be a result of fundamental defects in cellular-architecture within the
notochord leading to abnormal delamination and ectopic placement of this potent signaling tissue during crucial stages of development. Confocal microscopy was used to investigate adriamycin exposed and control embryos at the cellular level, comparing the cellular organization and position of the notochord with respect to the foregut endoderm within a defined development period from E9 to E10, when delamination of the notochord normally occurs. The study employed immunohistochemical techniques to visualise markers of the extracellular matrix (namely E-cadherin and Laminin), in transverse sections. The overall aim was to reveal any early changes in notochordal tissue that might lead to ventrally displaced and ectopic notochord as a primary defect in this congenital model.

5.2 Results

5.2.1 Notochord position

The position of the notochord with respect to the foregut endoderm and the neural tube was assessed in all specimens assayed for E-cadherin or laminin expression. All control embryos (8 out of 8) within the group 6-9 somites showed a notochord with close contact with the foregut endoderm (position vc) (Figure 5.1 A). In the group 14-18 somites, 33% (2 out of 6) of embryos showed a notochord position with contact with the foregut endoderm and 67% (4 out of 6) of embryos showed a notochord position progressing towards the neural tube with mesenchymal cells intervening between the cells of the notochord and foregut, however there was no contact of the notochord with the cells of the floor plate (position d) (Figure 5.1 B). Among control embryos studied in the group 20-22 somites, 11% (1 out of 9) showed
notochord position in the middle between dorsal foregut endoderm and floorplate (position m) (Figure 5.1 C). In 22% (2 out of 9) of the embryos, the notochord had progressed towards the neural tube (position d) (Figure 5.1 D) and in 67% (6 out of 9) of the embryos the notochord was positioned adjacent to the floorplate with close contact with the cells of the floorplate (position dc) (Figure 5.1 E). In control embryos with 24-28 somites, the notochord approached the neural tube either without contact with the floorplate (71%, 5 out of 7) or with close contact with cells of the floorplate (29%, 2 out of 7). The overall progression of the notochord away from the foregut endoderm and toward the neural tube as embryos mature is shown diagrammatically in Figure 5.2A.

![Figure 5.1: Example of five different positions (scored vc, v, m, d, dc, as described (section 2.7.3) of the notochord in relation to the dorsal wall of the foregut and floor plate in progressively more advanced control embryos; A; 8 somites, B; 14 somites, D; 21 somites E; 24 somites. Notochord cells are Brachyury positive (green). E-cadherin stained cells are seen in the foregut endoderm (red). Counterstaining with DAPI is shown in blue. fp; floor plate, fg; foregut. Scale bars as indicated.](image-url)
Figure 5.2: Graphical representation of recordings of notochord position along the dorsoventral axis in the thoracic region, comparing control (A) and adriamycin treated embryos (B). The specimens were divided into groups according to somite number (y axis). The number of embryos per group are indicated (each rectangle represents a specimen). Notochord position is scored as vc (ventral with foregut contact), v (ventral), m (mid), d (dorsal), or dc (dorsal with contact with the floorplate). Statistical analysis showed a strongly significant difference in ventral (vc, v, m) versus dorsal (d, dc) position between control and adriamycin treated groups (Chi-Square = 14.9, df=1, p>0.0001).

Comparing notochord position in adriamycin treated embryos across all stages shows that the notochord is ventrally displaced (Figure 5.2B). The notochord has a ventral position (vc, v or m) in 80% of adriamycin treated individuals (n=46 from 16 independent litters) and in 36% of control specimens (n=30 from 12 independent litters) (Chi-Square = 14.9, df=1, p>0.0001). Focusing on later stages only (20-28 somites), 1/16 (6%) control specimens and 18/23 (78%) adriamycin treated embryos show a ventrally located notochord. Looking at the dynamics across the stages, normal progressive delamination seen in control specimens is disturbed. In specimens with 6-9 somites, close contact with the foregut endoderm (position vc) was seen in all specimens investigated (12 out of 12) and was the same as in the control group in the earliest stage category. In the adriamycin treated group with 14-18 somites, 45% (5 out of 11) of specimens had a notochord in ventral position close to the foregut (vc or v) in contrast to
33% of control specimens. In two embryos (18%) the notochord was seen midway between the dorsal wall of the foregut and the floor plate (position m). Only in four embryos (36%) the notochord was approaching the neural tube with no direct contact to floor plate cells (position d) compared to 67% of control specimens. In treated embryos with 20-22 somites 33% of the specimens (4 out of 12) still showed a notochord position in contact with the foregut endoderm, compared to 0 embryos in the control group. 8% (1 out of 12) showed a ventral position (v), 42% (5 out of 12) had a mid position (m), 17% (2 out of 12) were seen in a dorsal position (d) and none had reached contact with the floorplate of the neural tube compared to 67% of control embryos. Comparing notochord position in adriamycin treated embryos in the oldest stage category (24-28 somites) shows that while 27% (3 out of 11) had achieved a dorsal notochord position adjacent to the neural tube (d or dc), compared to 100% of control specimens, 36% (4 out of 11) still showed a ventral position close to the foregut (vc or v) and 36% (4 out of 11) had a mid position (m) (Figure 5.2B). Notochord position close to the foregut was recorded in some treated embryos in all stage categories showing that the normal progression of notochord delamination in control embryos (Figure 5.2A) is not seen in treated embryos (Figure 5.2B).

5.2.2 Laminin localisation in control embryos

In all specimens across the stage groups, laminin was clearly detected as expected in the basal laminae of the neural tube, notochord and foregut. In control embryos within the stage group 6-9 somites, laminin localisation around the notochord showed a common basal lamina shared with the foregut endoderm (Figure 5.3 A). In 2 out of 4 (50%) control samples laminin
surrounding the notochord was complete on the ventral side, separating notochord cells from foregut cells, while in the other two embryos (50%) enclosure of the notochord by its own basal lamina was incomplete showing no localization of laminin at the ventral side of the notochordal cells (Figure 5.3 A). Within the stage group 14-18 somites, the notochord was displaced dorsally away from the foregut (Figure 5.3 B) as previously described and all three control specimens (100%) showed continuous laminin detection surrounding the notochord with two specimens showing streaks of laminin detection in a pattern extending from the basal lamina of the notochord to that of the dorsal foregut endoderm (Figure 5.3 B). This is consistent with the previously described process of notochord delamination in mouse embryos (Jurand, 1974). Again, in the stage group 20-22 somites there was continuous laminin detection surrounding each notochord in each specimen (4 out of 4) but at this stage no streaks of laminin were recorded extending from the foregut endoderm to the basal lamina of the notochord (Figure 5.3 C). All of the embryos (4 out of 4) in the final group of 24-28 somites showed complete laminin localisation around the notochord (Figure 5.3 D) while one embryo showed remnants of a streak of laminin extending from the foregut endoderm to the basal lamina of the notochord.
Figure 5.3: Laminin (red) and Brachyury (green) distribution in transverse sections through the thoracic region of control (A-D) and Adriamycin treated (E-H) embryos at progressively more advanced developmental stages. Each image shows a specimen with the number of somites indicated, representative of a stage group analysed: 6-9, 14-18, 20-22 and 24-28 somites. Image A shows notochord cells incorporated in the foregut endoderm (arrow heads) with a basal lamina shared with the dorsal wall of the foregut. As delamination progresses the notochord is separated from the endoderm but streaks of laminin were detected, extending from the foregut endoderm to the basal lamina of the notochord (B). At later stages the notochord is completely surrounded by its own basal lamina as it progresses away from the foregut endoderm (C, D). By contrast, in adriamycin treated embryos, E shows incomplete notochord delamination from the dorsal wall of the foregut (arrow heads). F-H show abnormally shaped notochords, elongated along the D/V axis still in contact with the foregut endoderm even at the latest stages. F and H show incomplete basal lamina ventrally (arrow heads). Counterstaining with DAPI is shown in blue. *fp*; floor plate, *nc*; notochord. Scale bars as indicated.
5.2.3 Laminin localisation in adriamycin treated embryos

In adriamycin treated embryos of the earliest stage group, 6-9 somites, 80% (4 out of 5) of treated embryos showed incomplete laminin detection on the ventral side of the notochord indicating the lack of a basal lamina separating notochord cells from the foregut (Figure 5.3 E). Complete enclosure of the notochord by its own basal lamina was seen in one embryo (20%), compared to 50% of control embryos at this stage. Five adriamycin treated embryos were studied in the stage group 14-18 somites. 60% (3 out of 5) showed complete Laminin detection surrounding the notochord as well as a streak of laminin extending from the notochord to the foregut basal lamina. Two embryos (40%) showed incomplete laminin surrounding an abnormally shaped notochord, elongated in the dorsal to ventral aspect (Figure 5.3 F). In contrast, notochords in all control embryos had developed a complete basal lamina of their own by this stage, had delaminated away from the endoderm and had a normal rod shape in cross section. Seven adriamycin treated embryos in the stage group 20-22 somites were investigated and showed that all (100%) had complete laminin expression surrounding the notochord although streaks of laminin extending from the notochord to the foregut basal lamina were still evident in 86% (6 out of 7) of embryos. One embryo showed a complete basal lamina surrounding the notochord although the notochord was abnormally elongated and remained in contact with the basal lamina of the dorsal foregut endoderm (Figure 5.3 G). Within the group 24-28 somites, 83% (5 out of 6) of treated embryos showed complete basal lamina surrounding the notochord. One embryo examined shared its basal lamina with dorsal foregut and laminin detection was incomplete on the ventral side of an elongated notochord (Figure 5.3 H). General observation of notochord shape shows that, in adriamycin treated
specimens the notochord is less rod shaped and more elongated along the D/V axis, most commonly showing contact with cells of the foregut endoderm in comparison to control specimens.

5.2.4 E-cadherin localisation in control embryos

Transverse sections of control embryos showed clear E-cadherin detection between foregut endoderm cells (Figure 5.4 A-D) as well as expression in the most ventral part of the neural tube, particularly on the ventricular aspect of the floor plate, in all stage groups. All control samples showed absence of E-cadherin immunodetection between the cells of the notochord (Figure 5.4 A-D) and the normal delamination of the notochord away from the foregut across the stages analysed.
Figure 5.4: Detection of E-cadherin (red) and Brachyury (green) in transverse sections through the thoracic region of control (A-D) and Adriamycin treated (E-H) embryos at progressively more advanced developmental stages. Each image shows a specimen with the number of somites indicated, representative of a stage group analysed; 6-9, 14-18, 20-22 and 24-28 somites. In both groups E-cadherin immunodetection is seen between the cells of the foregut (A-H). In control embryos no immunodetection of E-cadherin is seen in between notochord cells (in green) across all the stages (A-D). By contrast in adriamycin treated embryos, E-Cadherin immunodetection is seen in between notochord cells in three younger groups (E-G). No immunodetection is seen in oldest group of treated embryos although significant change in notochord shape was recorded (H). Images e – h shows examples of E-cadherin immunodetection scoring system range from zero to three stars. Counterstaining with DAPI is shown in blue. fp; floor plate. fg; foregut, nc; notochord. Scale bars as indicated.
5.2.5 E-cadherin localisation and position of the notochord in adriamycin treated embryos

As in control embryos, E-cadherin was detected between the foregut cells and in the ventral aspect of the neural tube across all somite groups in adrimaycin treated embryos (Figure 5.4E-H). However in addition, in treated embryos E-cadherin expression is altered with 60.2% (14/23) of treated specimens showing ectopic expression between cells of the notochord (Chi-Square= 14.5, df=1, p>0.0001). This effect is even more striking at early stages (6-18 somites) when 92% (12/13) of treated embryos show ectopic localization in the notochord compared to 0/6 for control. At later stages (20-28 somites) only 2/10 treated embryos showed abnormal expression between cells of the notochord compared with 0/7 for controls and in the majority of specimens E-cadherin was no longer detected between the cells of the notochord (Figure 5.4H). Assigning arbitrary scores to the intensity of expression also showed most severe effects at earlier stages. In the stage group of 6-9 somites, 6/7 (86%) embryos showed E-cadherin detection between the cells of the notochord and of those, 50% (3/6) received a relative intensity score of 3 (Figure 5.4 e), 33% (2 out of 6) a score of 2 and 17% (1 out of 6) a score of 1. In the stage group 14-18 somites, all (6 out of 6) embryos showed E-cadherin localisation between the cells of the notochord with 50% (3 out of 6) embryos receiving a relative intensity score of 2 (Figure 5.4 f) and 50% (3 out of 6) a score of 1. In the stage group 20-22 somites, 40% (2 out of 5) of adriamycin treated embryos showed clear E-cadherin expression between notochord cells with one specimen receiving a score of 2 and one receiving a score of 1 (Figure 5.4 g). Within the final stage group of 24-28 somites, all five specimens of adriamycin treated embryos examined showed no E-cadherin between the cells
of the notochord even in cases where the notochord shape and position were clearly abnormal (i.e. elongated along the D/V axis and abnormally close to the foregut) (Figure 5.4 h).

The observations with respect to notochord position and abnormal E-cadherin expression in notochord cells in treated embryos across developmental stages are combined and presented graphically in Figure 5.5. This shows a number of interesting features of the findings. 1) the most intense E-cadherin localisation in the notochord is seen in the earliest stages with just one specimen in the stage group up to 22 somites receiving a score of 2 for intensity. 2) The most intense abnormal E-cadherin notochord expression is also seen in locations closest to the endoderm (vc or v). 3) As also clear from Figure 5.2, treated embryos at the latest stages examined still show a variety of positions from the most ventral to the most dorsal, however independent of position, none of these specimens show E-cadherin expression between notochord cells. Therefore there is correspondence between the intensity of expression and notochord position but only at early stages and this abnormal expression is lost at the latest stages (Figure 5.5).
5.3 Discussion

5.3.1 Overview of findings

This chapter aimed to explore a possible link between abnormal notochord development seen in the adriamycin mouse model and its architecture during development. The results indicate that three distinct alterations occur with respect to notochord structure following treatment with adriamycin compared to control specimens at equivalent stages of development. Firstly, analysis of notochord position revealed abnormal delamination of the notochord from the foregut endoderm (Chi-Square = 14.9, df=1, p>0.0001, for ventral displacement). Secondly,
the shape of the notochord was altered from the normal rod shape which is circular in transverse cross section, becoming elongated along the dorso-ventral axis with the ventral extremity remaining in contact with the foregut. Thirdly, abnormal cellular structure within the notochord of treated embryos was revealed by ectopic expression of the extracellular matrix protein E-cadherin, normally restricted to the epithelial cells of the endoderm and floorplate (Chi-Square= 14.5, df=1, p>0.0001). These cellular and tissue structure changes point to the embryological basis for hypertrophic and branched notochords previously described in the adriamycin mouse model at later stages.

5.3.2 Abnormal delamination of the notochord in adriamycin treated embryos: implications for notochord structure

In control specimens, notochord positioning was consistent with expected dorsal progression of notochord cells with respect to the foregut, or delamination, over the period studied (Jurand, 1974; Que et al., 2006). At early stages the notochord cells were embedded within the endoderm, although most were separated by a continuous dorsal lamina. At progressively later stages the notochord was displaced dorsally with mesenchyme cells between the notochord and foregut, although initially, a strip of continuous laminin staining extended between the basal laminae of the notochord and gut endoderm. At the latest stages the notochord was positioned at a distance from the endoderm and completely separated from it, surrounded by an independent basal lamina. In adriamycin treated embryos, abnormal notochord position was seen in transverse section across all stages, indicating disturbed delamination. At the earliest stages, the notochord was embedded in the foregut endoderm similar to control specimens,
although not always separated dorsally by a basal lamina. The major difference was that close association with the endoderm was maintained in some specimens through all somite stages in treated embryos. This proximity was seen even in the oldest group of 24-28 somite embryos, in contrast to control embryos where the notochord had detached from the foregut by the 18 somite stage. In specimens that showed such prolonged attachment to the foregut endoderm, a misshapen notochord, elongated along the dorso-ventral axis was recorded in several cases.

Notochord development involves gross morphological changes that provide the notochord with its mechanical strength, including acquisition of large central vacuoles and formation of a notochordal basement membrane. It is suggested that internal turgor pressure generated by inflated vacuoles and resisted by the notochordal basement membrane produces the stiffness of the notochord, important for elongation and resistance to kinking (Adams et al., 1990). If the basal lamina around the notochord is incomplete, as seen in this work, this may lead to loss of the turgor and to the abnormal delamination and branching of the notochord observed. Secondly, loss of turgor of the notochord would affect the shape of the notochord (Adams et al., 1990) and in fact notochord shape was affected with many specimens showing elongation along the dorso-ventral axis so that the tissue was more elliptical than round in cross section, as was also noted previously in adriamycin exposed rat embryos (Possoegel et al., 1999). The lack of a restraining basal lamina might also explain the increased volume of notochord tissue reported previously in the rat model (Mortell et al., 2005).

The transition from the chordomesoderm of the prechordal plate to the notochord also involves changes in gene expression and the correct formation of the basal lamina has been
implicated in this process. In zebrafish mutants grumpy and sleepy, where laminin 1 protein is lost due to the disruption of the zygotic supply of β1 or γ1 chains, the basement membrane around the notochord fails to form and notochord cells do not become properly vacuolated. The mutant notochord cells also continue to express genes typical of the chordomesoderm that would normally be extinguished, such as echidna hedgehog (Coutinho et al., 2004; Parsons et al., 2002). Although in this work I did not investigate markers for notochord maturation, it is possible that the process of notochord maturation is disturbed due to delayed enclosure by its own basement membrane.

5.3.3 E-cadherin is abnormally expressed in the notochord of treated embryos: implications for notochord structure and signalling

Examining cellular characteristics within the notochord revealed that the extra cellular matrix cell adhesion molecule E-cadherin, not normally expressed in the notochord at any stage of development investigated, is detected between notochord cells in adriamycin treated embryos. E-cadherin detection was most prevalent in the notochord of treated embryos aged E9 that had developed between 6-9 somites. Lower levels of E-cadherin were still seen in treated embryos that had developed up to 22 somites, however no E-cadherin was detected in the notochord of embryos with more than 24 somites. This indicates an alteration in the character of notochord cells. A previous study of forced E-cadherin expression in the mouse intestinal epithelium unveiled a number of effects on the tissue (Hermiston et al., 1996). The increased level of the adhesion molecule caused delayed migration of cells up the villus and increased adhesion of villus epithelial cells in the intestine. This supports the idea that due to the adhesive nature of
E-cadherin, increased levels would increase cell to cell attachment, thus having an effect on tissue architecture. The observed abnormal distribution of E-cadherin therefore indicates that intercellular adhesion within cells of the notochord and possibly also between notochord cells and foregut cells have increased, perhaps contributing to impaired delamination.

While the results showed no E-cadherin expression in the notochord of treated embryos with over 24 somites, attachment to the foregut endoderm was noted in two out of five of the adriamycin treated embryos at this stage. It is suggested that sustained E-cadherin expression may not be necessary for the prolonged notochord abnormality; expression at earlier stages may have a long-term influence on cell behaviour. The precise profile of cadherin molecules expressed in a tissue is reflective of normal tissue differentiation, for example through a process known as ‘cadherin switching’, E-cadherin is downregulated and the expression of other cadherins (mainly N-cadherin) is upregulated in different tissues at later stages of vertebrate development (Inuzuka et al., 1991; Kikuchi et al., 2009; Oda et al., 1998; Sakamoto et al., 2008). This dynamic regulation of cadherins during morphogenesis is thought to influence cell sorting and cell movement behaviours.

It also must be noted that E-cadherin forms an important functional complex with the protein β-catenin of the multi-gene family of catenin proteins (Aberle et al., 1996; Kemler, 1993). The intra-cellular domain of E-cadherin binds directly to β-catenin, which in turn binds to another catenin protein, α-catenin, connecting the actin cytoskeleton to the adherens junction. While β-catenin plays the role of the main binding partner of E-cadherin, uncomplexed β-catenin proteins are involved in the evolutionary conserved canonical Wnt pathway, which plays a
major role in organising the body plan of animals via cell-to-cell communications (Gilbert et al., 2010; Willert et al., 2003). A recent study highlighted that Wnt signalling is required for notochord progenitor cells to sustain their fate and is also needed for the posterior extension of the notochord during mouse embryogenesis (Ukita et al., 2009). By ablating β-catenin, it was shown that the notochord precursor cells lost expression of notochord specific genes yet maintained the expression of genes normally expressed in both the notochord and endoderm (Ukita et al., 2009). Additionally, E-cadherin, usually only present in the endoderm, was detected in the notochord. It was suggested that the cadherin-mediated cell adhesion complex was maintained in the β-catenin ablated embryos by the recruitment of the β-catenin cousin molecule plankoglobin and/or β-catenin residuals (Ukita et al., 2009). This poses an interesting situation where intracellular changes occur to accommodate disruptions of normal developmental processes. Previous studies in Drosophila and Xenopus embryos suggested that over expression of cadherins led to a reduction in β-catenin levels available for signalling to the nucleus due to an increase in their recruitment in cadherin-catenin complexes at the cell membrane (Heasman et al., 1994; Sanson et al., 1996). A contrasting study however in mammalian cells showed that an increase in Wnt-1 signalling consequently increased levels of β-catenin, which led to the stabilization of cadherin-catenin complexes at the cellular membrane, stabilizing cell adhesion (Hinck et al., 1994). Although in chapter 4, Wnt2 and Wnt7b gene expression was described in adriamycin treated embryos and no alteration in gene expression was found around the foregut or notochord, it may be useful additionally to investigate β-catenin protein in both the foregut endoderm and notochord cells of the adriamycin mouse model to delineate any changes in nuclear localisation compared to that in
the mouse during normal development and in conjunction with abnormal E-cadherin detection.
No reliable what target genes are known for this system.

5.3.4 The possible impact of altered notochord architecture on the foregut endoderm: possible role in endodermal anomalies

The detection of laminin and the visualisation of the basal lamina highlight abnormal delamination of the notochord in treated embryos where the notochord continues to share a basal lamina with the foregut endoderm, failing to detach, for much longer periods. A shared basal lamina between the two structures was even found in the oldest group investigated; 24-28 somites. Moreover in one embryo from this group the basal lamina was found to be incomplete. The observed change in shape of the notochord and notochord branching indicate altered mechanical properties of the tissue. Abnormal E-cadherin expression, associated with increased cell adhesion, supports the idea of altered physical properties as well as reflecting altered molecular regulation. The reduced distance between notochord cells and those of the developing endoderm, together with altered mechanical and molecular characteristics in adriamycin treated embryos might impact normal development of the foregut in two major ways: 1) an abnormal mechanical influence might be exerted on the foregut endoderm or 2) the normal diffusion of signaling molecules from the notochord might be disturbed. An association between abnormal notochord position and heaviness, and certain foregut malformations was described in chapter 3. Evidence of altered signaling through notochord branches was described in chapter 3 and chapter 4. This chapter precisely shows how and
when the delamination abnormality progresses and shows a structural difference in notochord cells.

The basal lamina can act as a physical barrier for signaling molecules. It was discussed in chapter 3 that proximity of the notochord may increase its signaling and lead to foregut abnormalities. Here we show that enclosure of the notochord by its own basal lamina is delayed or, in some treated embryos, basal lamina is incomplete, even in later stages of development. The lack of a physical barrier may increase and/or prolong signaling from the notochord into surrounding tissue in addition to the abnormally close position of the notochord in relation to the foregut. In addition the link between E-cadherin levels and β-catenin opens the possibility of altered Wnt signalling. It is possible that the severity of foregut malformations might depend on how severely the basal lamina is affected although the present work does not provide this evidence since laminin detection was not combined with whole embryo imaging where foregut abnormalities in a number of specimens could be assessed.

Conclusions

The importance of the axial structure of the notochord in vertebrate development has been delineated in many embryological studies. Its rigidity and axial determination properties along with its crucial signalling purpose in many stages of morphogenesis highlight that any alteration to its normal formation and function could lead to drastic effects on the developing organism. This study focused on the architecture of the notochord itself with emphasis on proteins of the extracellular matrix. The results show that changes in notochordal properties

151
are evident in the AMM that in turn may influence notochord delamination and signalling mechanisms from the notochord to the foregut endoderm, consistent with the hypothesis that the notochord may be the primary target of disruption and therefore may result in abnormal patterning of the foregut. This will be further explored in chapter 6. Between these results and previous studies, the abnormal development of the notochord and its possible influence on foregut malformations such as OA and TOF is reinforced.
Chapter 6

General Discussion and Future Directions

6.1 Summary of the findings and conclusions

The work presented in this thesis addresses how administration of adriamycin to developing mouse embryos impacts morphogenesis of the foregut and notochord and has shown that notochord abnormalities occur early and are closely associated with the position and extent of foregut patterning defects. By addressing the 3 objectives outlined in section 1.5 the following conclusions were drawn:
Morphological analysis of foregut development in control and adriamycin treated embryos.

1. Full 3D imaging and analysis of 149 individual control and treated embryos revealed a spectrum of 8 defects, together with their frequency. The most common defect was ventral displacement and branching of the notochord, observed in 98% of embryos at E10. This study revealed a number of features of the adriamycin mouse model not previously reported (Chapter 3).

2. Morphological analysis of the adriamycin treated embryos revealed a close spatial correspondence between the site of notochord branching and defects of the foregut. More severe foregut abnormalities including foregut atresia and foregut stenosis were associated with more posterior and thicker branches of the notochord. This spatial association indicated for the first time a causative link between abnormalities in these neighbouring tissues (Chapter 3).

3. Altered patterning along the DV axis of the foregut was observed adjacent to abnormal notochord branches. The whole 3D embryo imaging approach revealed altered distribution of transcripts of the patterning genes Shh, Foxf1 and Sox2. Treated embryos not only showed ectopic expression of Shh throughout notochord branches but also a dorsal shift in expression in the adjacent foregut endoderm. Mesenchymal Foxf1 gene expression was downregulated in the corresponding ventral foregut mesoderm and the normal dorsal restriction of Sox2 gene expression was lost in the foregut endoderm in the region of notochord branches. The severity of these altered patterning effects corresponded with the proximity of the notochord branches. This implicates the notochord as a primary site of disturbance in such abnormalities and
underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities (Chapter 3).

Candidate gene analysis in the AMM.

4. Gene expression analysis revealed disturbance of \(BMP \) signalling pathway components. The 3D analysis of expression of the *Noggin* gene, a modulator of \(BMP \) signalling, in control and treated embryos revealed not only ectopic expression throughout the notochord branch but more remarkably, strong *Noggin* expression at the distal tip of the notochord branches and in an expanded domain within the dorsal foregut endoderm. Although there were no differences in temporo-spatial distribution of Bmp4 transcripts across all stages in control and adriamycin treated groups, abnormal Noggin localisation suggests disturbances of this important signaling pathway. These disturbances to \(BMP \) pathway components observed in the mouse model might be causative of the foregut abnormalities (Chapter 4).

5. There were no differences in spatial distribution of the *Fgf10* and *Tbx4* transcripts between the control and adriamycin treated groups however delayed *Fgf10* gene expression was seen in treated embryos. Comparison of stage matched embryos revealed a lack of *Fgf10* gene expression at TS18 in some of the treated embryos, associated with tracheal atresia. This delay in *Fgf10* gene expression and in outgrowth of lung primordia in the AMM indicates that failure to express *Fgf10* in the ventral mesenchyme at earlier stages may at least contribute to delayed lung development. The morphological abnormalities seen in AMM are not accompanied by obvious changes in the spatial distribution or level of gene expression of *Tbx4* suggesting that *Tbx4*
regulation is not altered in this model. This implies that the morphological abnormalities in AMM can occur in the presence of Tbx4 transcripts (Chapter 4).

6. Examining the abnormal fistula seen in 63% of adriamycin treated embryos at E11 (chapter 3), this work confirmed previous findings that the fistula expresses the respiratory marker Nkx2.1 from an early stage of development. Moreover, Wnt signaling pathway gene expression was found for the first time in the fistula. Mesoderm around the fistula was found to express Wnt2, a gene known as a marker of respiratory cell progenitors, reinforcing the hypothesis of a respiratory origin and character for the fistula (Chapter 3 and 4).

Analysis of notochord structure and delamination in the AMM

7. Changes in the position and shape of the notochord were seen from as early as the 8 somite stage in adriamycin treated embryos. Abnormal delamination was shown by the position of the notochord which remained close to the foregut even in 28 somite embryos, a stage at which the notochord had fully delaminated and was positioned close to the neural tube in 100% of control embryos. Notochord shape was also altered in adriamycin treated specimens where the normal rod shape was lost and appeared more elongated along the D/V axis. Often the dorsoventrally stretched notochord remained in contact with cells of the foregut endoderm as late as 28 somites (Chapter 5).

8. Application of adriamycin not only affected morphology of the foregut and notochord, it also appeared to impact the physical structure of the tissue, as indicated by changes in the ECM of the notochord in treated embryos. The abnormal expression of E-
cadherin, typical of epithelial tissue and known to increase cell to cell adhesion in
tissues, would change notochord properties in a manner that may influence notochord
delamination. The knock on effect of delayed delamination of a potent signaling tissue
may be responsible for abnormal signaling from the notochord to the foregut
endoderm. This is the basis of my proposal that the impact on the notochord may be
one of the primary effects of disruption, leading secondarily to abnormal patterning of
the foregut and the foregut malformations (Chapter 5).

6.2 Significance of the findings and future studies

The work presented in this thesis provides new insight into the regulation of embryonic
foregut development in the mouse and the effects of adriamycin treatment in the Adriamycin
Mouse Model of congenital foregut malformations. The use of 3D imaging enabled direct
comparison of gene expression and foregut development both across developmental time and
between control and treated embryos. This work demonstrates the integral role that the
notochord plays in the development of the foregut. While this thesis indicates a causative role
for notochord in the etiology of foregut malformations in the AMM, it is clear that we need to
know more about the role of notochord signalling in foregut development and how this might
be deregulated in foregut malformations.
6.2.1 Impact of the notochord on foregut patterning and development

D/V patterning of the foregut is critical for establishing the identity of emerging territories in the foregut and further foregut separation into the trachea and oesophagus. This process appears to be regulated, at least in part, by signalling from the notochord as indicated previously by observation made in Noggin knockout mice, where the notochord is disturbed and the foregut displays a lack of D/V separation (Que et al., 2006). This is reinforced here through altered expression of patterning genes in the foregut in the vicinity of misplaced notochord tissue, further associated with abnormal foregut separation in the AMM. Although abnormal notochord signalling is not the only possible mechanism through which the process of D/V foregut identity might be modified following Adriamycin treatment, and a direct impact on the foregut is also a possibility (Morrisey and Hogan, 2010), the impact of the notochord on the foregut is worthy of further exploration. The nature of the relationship between notochord signalling and foregut patterning would be further informed by a study exploring the influence of notochord transplants on foregut development. Given the position of the foregut deep within the embryo this would be best approached in explant culture. Explant cultures have been widely used to recapitulate development of particular organ systems in a controllable manner. This approach was used in the classical experiments demonstrating the patterning influence of the notochord on the neural tube (van Straaten et al., 1988; van Straaten et al., 1985b). Brigid Hogan's lab is using explant culture of the foregut to monitor separation of the trachea and oesophagus (Que et al., 2007; oral presentation at the International Society of Developmental Biology meeting, Edinburgh, 2009). I propose that 3D explant cultures (for example, embedded in collagen matrix (Murphy et al. 1996)) could be used to compare
patterning and separation of the foregut examining morphology and expression of D/V patterning genes using 3D imaging. Explant co-cultures could be constructed where the notochord is 1) included in its normal position, 2) removed or 3) added in an abnormal position and/or at a different distance from the foregut. This would demonstrate the effects of decreased, increased or misplaced notochord signalling on foregut patterning.

The work presented here also leads to the more specific proposal that at least one aspect of the signal deregulation eminating from the adriamycin treated notochord is an impact on BMP signalling (Section 6.1 conclusion 4). This hypothesis, as well as effects on other interrelated signalling pathways, could be explored by altering the expression of components of these pathways in embryos in vivo. Using transgenic mouse models is one possibility but this could also be achieved in the chick model, perhaps more conveniently. The release of the first draft sequence of the chicken genome in March 2004 (Wallis et al., 2004), together with the development of associated molecular and electronic resources, has dramatically increased the potential of the chick as a subject for molecular developmental research (Stern, 2005). The chick is now not only a great system for physical manipulation and observation of the embryo but also offers the possibility of gene manipulation that is more rapid and direct than the mouse. One of the most powerful new techniques to be developed is in ovo electroporation, which allows targeted introduction and expression of genes within specific structures or cell groups in the living chick embryo (Bron et al., 2004; Nakamura et al., 2004). Using in ovo electroporation in chick would allow examination of the effect of abnormal exposure of the developing foregut to specific molecules. The prime transgenic alterations to test in this way would be over expression/ectopic expression of Noggin and knockdown of specific BMPs and
other components of the pathway. The resulting embryos could be then analysed with a view
to revealing changes in foregut morphology and patterning using our established methodology
(OPT) and markers (e.g. HNF3beta, Sox2, Nkx2.1).

6.2.2 Adriamycin influences the physical characteristics of the notochord tissue: the
significance of altered E-cadherin expression.

In this work I showed that changes in notochordal properties are evident in the AMM that in
turn may influence notochord delamination and signalling mechanisms from the notochord to
the foregut endoderm (Chapter 5). E-cadherin, not normally expressed in the notochord at any
stage of development is detected between notochord cells in adriamycin treated embryos. It is
also known that Adriamycin can induce E-cadherin-mediated cell-cell adhesion by increasing
expression of E-cadherin and beta-catenin in the breast cancer cell line YMB-S (Yang et al.,
1999). This strongly supports the conclusion that the notochord may be the primary target of
disruption in AMM resulting in abnormal patterning of the foregut. One possible way to
further explore the effect of aberrant E-cadherin on notochord cells would involve over
expression of E-cadherin in the notochord and to look at the effect on its delamination and
gene expression. This could be achieved by ectopic expression of the E-cadherin gene using
previously described in ovo electroporation in chick, followed by in situ hybridization to
analyse the expression of candidate genes (e.g. Shh, Foxf1, Sox2, Noggin).

Several lines of evidence implicate cadherins in different developmental processes. In most
cases, the effects of cadherin perturbation can be interpreted in the light of their roles in cell
adhesion, cell sorting, and cell migration. It was however found that cadherins are more directly involved in the differentiation of certain types of tissues by influencing specific gene activity, important in regulating spatial patterning in mouse embryos (Larue et al., 1994). It was shown for example that the presence of E-cadherin can negatively regulate Brachyury expression in an embryonal stem cell line (Larue et al., 1994). Notochord development is governed by a set of transcription factors including Foxa2, Brachyury, and Noto (Ang and Rossant, 1994; Ben Abdelkhalek et al., 2004; Herrmann and Kispert, 1994). By ablating β-catenin, it was shown that the notochord precursor cells lost expression of notochord specific genes Noto and Brachyury (Ukita et al., 2009). Additionally, E-cadherin, usually only present in the endoderm, was detected in the notochord. Towards this end, further exploration of the impact of the E-cadherin on notochord development is required. I have examined Brachyury expression in adriamycin treated embryos and it is expressed throughout the displaced notochord tissue but in situ hybridisation could be used to analyse the expression of the other notochord specific genes, Foxa2 and Noto. This could be followed by investigation of β-catenin protein in the foregut endoderm and notochord cells in control and adriamycin treated groups to delineate any changes in expression or nuclear localisation, comparing it with E-cadherin detection.

One of the fundamental processes involved in both differentiation and organization is establishment of cell polarity. Epithelial cells show the classic example of cell polarity, with various molecules sorting to distinct apical and basolateral membrane domains (Tepass et al., 2000). The crucial role of classic cadherins and their associated catenins in epithelial differentiation has been well documented, and these protein complexes seem to be broadly
important for forming and maintaining epithelial tissues (Tepass et al., 2000). For example cadherins seem to be directly involved in maintaining cell polarity by directing the localization of the sec6/8 complex, which specifies vesicle targeting to the lateral membrane. This recruitment, and the continuous polarized delivery of specific molecular components to the lateral membrane, establishes and maintains the lateral membrane domain of epithelial cells and contributes to epithelial apical/basal polarity (Grindstaff et al., 1998).

The initial generation of cell asymmetry may either be cell autonomous, resulting, for example, from the unequal distribution of cytoplasmic contents, or alternatively it may result from intracellular interactions. In this thesis I suggested that abnormal distribution of E-cadherin might indicate that intercellular adhesion within cells of the notochord and possibly also between notochord cells and foregut cells have increased, perhaps contributing to impaired delamination. E-cadherins are characterized by long extracellular and the cytoplasmic domains. The extracellular domain of E-cadherin establishes interactions between neighboring cells and cytoplasmic tail associates with an array of intracellular proteins (Gumbiner et al., 1988). These proteins link cell–cell adhesion to the actin–myosin network, vesicle transport, and cell polarity machinery. The best studied of these links is the binding of the cytoplasmic tail of E-cadherin to the Armadillo repeat in the \(\beta\)-catenin protein, which in turn binds \(\alpha\)-catenin, which interacts with actin and several actin-binding proteins (Bershadsky, 2004; Yonemura et al., 2010). Through the action of these intracellular binding partners, E-cadherin contacts modulate actin filament organization at the underlying cortex (Baum and Perrimon, 2001; Drees et al., 2005; Perez-Moreno et al., 2003). Therefore, in order to understand the contribution of cytoskeletal components in abnormal delamination of the
notochord in AMM, more ultrastructural analysis of the notochord and cytoskeleton markers is required. Electron microscopy could be then used to investigate in control and adriamycin treated embryos within notochord and endodermal cells intracellular localization and organisation of β-catenin, α-catenin and F-actin.

6.2.3 Identification of further molecular role players

In this thesis I showed evidence that the $BMP/Noggin$ pathway is deregulated in adriamycin treated embryos and I suggested that this might contribute to the foregut abnormalities observed (Chapter 4). I argue here that further work should focus on this pathway to work out which other components of the pathway are affected and to pin down how this could lead to the observed foregut malformations. Very little is known about BMP targets in general and particularly in the foregut, so adding to our knowledge of this signalling pathway would be very valuable in itself but work on this pathway in the AMM model would also provide extra candidate genes to investigate and build a more complete picture of the processes that are affected. This could be approached in two ways. In silico, where it would be possible to carry out computational analysis of all microarray data in the Gene Expression Omnibus database where the BMP pathway has been altered to select candidate genes that are a) misregulated in these experiments and b) also expressed in the gut (using gene expression databases such as MGI (web site) and EMAGE (web site). In situ hybridisation could then be used to confirm the localisation of the expression in the normal gut, adding to our knowledge of the normal developing gut, and to assay any alterations in expression in the AMM. In addition, an experimental approach to identify candidate genes could be undertaken, for example using an
endodermal cell line (Adamson et al., 1985) or primary cells plated from the embryonic foregut, exposed to recombinant BMP protein or Noggin or Control and then carry out a microarray analysis (or whole transcriptome sequencing) to establish which genes are up or down regulated as a result of activation or blocking of the BMP pathway. The most consistent and promising candidates indicated in this way could then be tested in the cell culture system to see if the response to BMP signalling is direct or indirect by addition of cyclohexamide to block protein production- if up or down regulation still occurs in the presence of cyclohexamide the response must be direct. Any targets identified in this way could then be analysed in the AMM for alterations in expression.

6.3 Impact on our understanding of human OA/TOF; clinical implications

In recent years the accumulation of data arising from knock out mouse studies on abnormal signalling pathology, together with work on the AMM, is gradually building up a picture of key events that might lead to foregut malformations, however we appear to have only scratched the surface in terms of understanding the etiology of human OA/TOF. It is likely that the enormous advances in our understanding of the human genome will allow us to make best use in future of the information generated from the study of mouse genetics. For example array based technologies have been successful in delineation of the role of the 16q24.1 locus in the etiology of severe developmental malformations including OA/TOF (Stankiewicz et al., 2009). Two genes, FOXI1 and FOXC2, of the four genes in the region 16q24.1 have been reasonably well studied both in humans and the mouse therefore a comparison of the
phenotypes due to *FOXfI* and *FOXc2* mutations in humans, and to *FoxfI* and *Foxc2* inactivation in mouse was possible (Shaw-Smith, 2009). The identification of genes associated with oesophageal atresia shown in this work offers the prospect of improvements in genetic counselling for this disorder. For example the sequencing of genes in the cohort of patients, looking for mutations in candidate genes *SHH, FOXfI, FGF10, NOG* and *SOX2* could be carried out on a large scale on whole-genome amplified DNA, as has recently been described for the whole X chromosome (Tarpey et al., 2009). The goal of these studies would be to complete the ‘cytogenetic map’ for oesophageal atresia and tracheo-oesophageal fistula. Genes and/or proteins identified to play a role in etiology of OA/TOF could be then used as a marker for prenatal genetic testing. DNA chips could be used for high-risk pregnancies, such as those with familial history of congenital anomalies and those selected on the basis of prenatal ultrasound examination. This could provide important information about short and long term prognosis, thereby aiding in parental counseling and preparation of medical care. However, in this thesis I showed that multiple parts of the system can be disturbed leading to OA/TOF in mouse embryos. Therefore most probably it would be difficult to identify one factor responsible for the malformations in human. If so prenatal diagnosis would be challenging and also difficult to foresee how a prenatal therapy could be envisaged in the short term. However, more knowledge about the steps involved and how they can be disrupted will lead to new insights, perhaps on alternative types of treatment, or perhaps protection against notochord disorders.

The databases that store information on all patients with congenital anomalies, including OA/TOF, are pivotal in research of the etiology of these malformations. In Europe, a number
of birth defects registries have joined forces in EUROCAT, the European network of population-based registers for epidemiological surveillance of congenital anomalies (http://www.eurocat-network.eu/). The registries provide valuable information on trends in frequency of occurrence of birth defects and patterns of anomalies seen to facilitate early warning of teratogenic exposures. This international collaboration is especially valuable for rare exposure or rare anomalies, making it possible to combine data and draw more firm conclusions faster. The pooling of the data enables research questions to be answered on a large scale, making results more stable. A similar idea, expanding the data by collection of DNA from biological samples (blood, buccal swabs, urine, etc) from the children with OA/TOF and possibly their parents, could provide a DNA bank combined with detailed patient characteristics. This offers the big advantage for further genetic and epidemiological study of these foregut malformations. For example, studies on gene-environment interactions may lead to more targeted prevention strategies for groups or even individuals who are at higher risk because of the genotype. With better etiological knowledge we could recommend preventive measures, such as the advice to use folic acid in the periconceptional period as a means to lower the risk of neural tube defects in offspring.

In summary the research presented in this thesis has provided the following new insights in to our understanding of the origin of OA/TOF foregut malformations: 1) The notochord is a vulnerable tissue that may be the site of primary developmental disturbances leading to OA/TOF; 2) Developmental processes involved in foregut separation could be disturbed at multiple levels. This is supported both by human studies searching for a genetic basis to
OA/TOF and animal model studies, such as presented here; 3) Future studies should be directed at investigating the BMP signalling pathway.
Bibliography

Adamson ED, Strickland S, Tu M, Kahan B. 1985. A teratocarcinoma-derived endoderm stem cell line (1H5) that can differentiate into extra-embryonic endoderm cell types. Differentiation 29(1):68-76.

172

