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Free Field Representation and Form
Factors of the Chiral Gross-Neveu Model

Stephen Britton

Abstract

The process of using the free field representation to construct form factors of
two dimensional integrable models is very promising. In this thesis, this procedure
is analysed and adapted for application to the chiral Gross-Neveu model. The
vertex operators and Zamolodchikov-Faddeev algebra for the particles are pre-
sented, with a similar structure producing a representation of the local operators
of the theory. Using these techniques, the form factors of the model are then con-
structed as traces over the space of Zamolodchikov-Faddeev operators, and given
in terms of an integral representation. In particular, the two-particle form factors
of the current operator are found, and shown to agree with previous results in the

literature.
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Summary

The study of form factors is interesting in itself, and because it can lead to
calculation of correlation functions. Form factors can be derived by studying the
axioms that were developed in the late 1980’s. However, the approach advocated
here has the advantage that the analytic properties do not need to be known and
can be derived from the results. The method is to develop a free field representation
of bosonic fields for the particles. More precisely, the particles are represented as
vertex operators which are written in terms of the bosonic fields, together with
lowering operators which act via an integral representation. This gives rise to a
representation of the Zamolodchikov-Faddeev algebra of the particles. In addition,
for the chiral Gross-Neveu model, which is the model we are primarily interested in
here. we can use a fusion procedure to find the free field representation of the bound
states of the theory. These bound states are also antiparticles and therefore the
full particle content of the theory is given in terms of the free field representation.

Furthermore, a related bosonic field allows the construction of representations
of local operators. These are constructed using similar methods to the bound
states. With the particles, bound states and local operators represented by these
bosonic fields, the process of calculating form factors reduces to calculating traces
of the operators subject to selection rules, which can also be derived from these
traces. The calculation of traces of several particles or operators can be reduced
to calculating all traces between two objects, which can be any combination of
particles, bound states or operators. Strictly speaking, what emerges from these

calculations aren’t form factors, but are generating functions for form factors. It
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requires an expansion to find the form factors of physical operators. In this way,
the form factors of the current operators are isolated. This is the key result as it

shows the validity of the free field representation presented here.
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Chapter 1

Introduction

Modern experimental particle physics consists heavily of measuring cross-sections
of particles in collisions and decay events. From these we can find information
about the scattering amplitudes. Such quantities must be predicted from theories
which allow either exact calculations or numerical simulation of the interactions.
However, if we wish to calculate objects which are not directly related to scat-
tering amplitudes, we need to begin with more general quantities, which we must
determine from new techniques. Generally speaking, when looking at physical ob-
servables, we want to consider correlation functions, which are vital objects for
any field theory. Therefore, an idealistic goal would be to develop methods to
determine the correlation functions for any quantum field theory. Of course, our
goal is not as ambitious as that, but the motivation is the same: namely, to un-
derstand how to isolate observable information from two-dimensional integrable
models. To this end, we will explore the use of the free field representation to
calculate form factors, which are building blocks for correlation functions. Form
factors themselves provide us with information about the scattering between in-
states and out-states. In fact, correlation functions can in theory be constructed
from a weighted sum of form factors. From this perspective, an understanding of
the form factors gives us an understanding of all the observables in the model.

To be more precise. in a quantum field theory, the matrix elements of local
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operators O between in- and out-states, (out|O(zx)|in), determine the field the-
ory correlation functions. In a two-dimensional relativistic theory, the crossing
invariance allows one to express a generic matrix element in terms of analytically
continued form factors which are matrix elements between the vacuum, |vac), and

in-states

Fy .o (01,...,00) = (vaclO(0)|ay, ..., an)™" , . (1.1)

aj...an

Here a; is a flavour index of the i-th particle, and «; is its usual rapidity variable
related to its energy and momentum by E; = m;cosha;, p; = m;sinha;. As
a result, because of the link between correlation functions and form factors, and
because of crossing symmetry, knowing how to find (1.1) is sufficient to find all

correlation functions of the theory. Recall that correlation functions are given by
Gl my, v o) = {O(@y) =+ O]} (1.2)

and so if we know the form factors, we can reconstruct the correlation functions

by inserting a complete set of states. This should look like

2_x{vac|O(x1)[92) (22O (z2)|vac)
[loall?

(O(21)O(x5)) = : (1.3)

where the objects (vac|O(z1)|¢y) and (¢|O(z2)|vac) are form factors defined by
(1.1). It is this that motivates our study of form factors.

In an integrable two-dimensional relativistic theory the form factors satisfy a
set of axioms [1]-[3], collected in section 1.3 below, whose solutions were found
and studied for some models, see e.g. [3]-[10] and references therein. Finding
a solution to the axioms is a complicated problem which requires understanding
and employing the form factors’ analytic properties. It was observed by Lukyanov
[11] (by generalising the ideas in [12]) that the problem of computing the form
factors can be reduced to the problem of constructing a free field representation
of the Zamolodchikov-Faddeev (ZF) algebra [13, 14] for the model under consid-

eration. The free field representation approach has been successfully applied to



several models [11], [15]-[24] including the SU(2) Thirring and sine-Gordon models
[11]. An advantage of this approach is that, in principle, the construction of form
factors does not require a complete understanding of their analytic properties.
This might be important for understanding analytic properties of form factors of
nonrelativistic models. In particular, an important model to keep in mind is the
AdS; x S® superstring sigma model in the light-cone gauge [25]. Even though it
is relatively straightforward to generalise most of the form factor axioms to this
case [26], finding a solution appears to be highly nontrivial; in particular, the an-
alytic properties of AdSs x S° form factors are not known. It is quite possible
that Lukyanov’s approach will appear to be more efficient in the AdSs x S° case.
Moreover, the analytic properties follow from the free field representation.

The goal of this thesis is to extend Lukyanov’s results for the SU(2) Thirring
model to a more general case of the SU(N) chiral Gross-Neveu (GN) model [27].
Previously, in [9] and [10] Bethe ansatz methods were used to find the minimal
solutions for the form factor axioms. The calculation of form factors for a given op-
erator then reduced to postulating a so-called “p-function” unique to the operator.
In this manner the form factors of the current operator and stress-energy tensor
were found. The results presented in this thesis use the free field representation
method for the Gross-Neveu model, and were previously published in [28]. The
discussion here includes some extra details and explanations. The model has a
very rich spectrum of particles. Its “elementary” particles transform in the rank-1
fundamental representation of SU(N), and they can form bound states transform-
ing in all the other fundamental representations of SU(N) [29]. Anti-particles of
rank-r are rank-(N-r) particles. In particular, anti-particles of elementary parti-
cles are at the same time their bound states [29]. The exact Gross-Neveu S-matrix
was found by combining the SU(N) invariance with the 1/N expansion [30]-[33].
The chiral Gross-Neveu model was extensively studied in the axiomatic approach

in [3, 8, 10] where form factors of several local operators were constructed. It is
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therefore useful for understanding how the free field approach works in the case
of models containing bound states and invariant under higher-rank symmetry al-
gebras. In this thesis we construct a free field representation of the Gross-Neveu
model Zamolodchikov-Faddeev algebra for elementary particles and their bound
states, and find a large class of operators generating form factors of local operators
through Lukyanov’s trace formula [11]. A free field representation for elementary
particles of the chiral Gross-Neveu model was also constructed in [34], and it agrees
with our findings up to some Klein factors necessary to satisfy the Zamolodchikov-
Faddeev algebra relations. We also reproduce the two particle form factors of the
current operator, which validates our main goal, which is to find the free field
representation of particles and local operators of the Gross-Neveu model.

The thesis is laid out as follows. In this chapter, we begin by recalling some
facts about two-dimensional integrable models in section 1.1. Following this, we
give an introduction to the Gross-Neveu model, particularly the properties of its
scattering matrix, in section 1.2. The chapter concludes with an overview of form
factors in section 1.3.

Chapter 2 begins with a discussion of the free field representation in section 2.1,
before applying it to the Gross-Neveu model in section 2.2. The general process of
the free field representation is explained in detail, and the process is made explicit
for the Gross-Neveu model by finding the relevant constants and functions. The
action of the lowering operators is discussed in detail in relation to constructing the
Zamolodchikov-Faddeev algebra, with attention paid to the integrals that appear.
The angular Hamiltonian is also found.

Chapter 3 is where we first consider the bound states of the Gross-Neveu model
in detail. Section 3.1 gives the details of the construction of the bound state
operators, although some calculations are relegated to the appendices for clarity.
Similarly, section 3.2 is where the local operators are constructed as fused operators

analogous to the bound states.



It is in chapter 4 that all the strands come together to calculate form factors.
Firstly, in section 4.1, the general approach for using the free field representation
to construct form factors is outlined, before a more detailed demonstration is given
in section 4.2 of how to perform the trace calculations. With this done, the form
factors for the current operator are found. This is the main result of the thesis,
which demonstrates the effectiveness of the methods.

After this, we turn to future developments in chapter 5. Firstly, we discuss
application of the free field representation to the Principal Chiral Field model in
section 5.1.1, before turning to the AdSs x S° superstring in section 5.1.2, before
closing with some final remarks.

In addition there are several appendices. The first, appendix A, gives proofs
that the form factors found in the text satisfy the form factor axioms. Next,
appendix B provides a complete listing of functions needed for the free field repre-
sentation of the Gross-Neveu model. Appendix C incorporates some calculations
deemed too lengthy for section 3.1, and likewise appendix D has similar calcula-
tions for section 3.2. In appendix E some examples of the use of the principal
value prescription as required in section 2.2 are given. Next, appendix F gives a
derivation of the formula for computing traces from the free field representation,
and appendix G describes the regularisation of the free field representation and
the derivation of the selection rules. The final appendix, H, gives some background

on the AdS; x S° superstring that is necessary for the discussion in section 5.1.2.

1.1 Two-dimensional integrable models

Before discussing the Gross-Neveu model and defining form factors, let us begin

by giving an overview of two dimensional integrable models.
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1.1.1 Two dimensional field theories

We will be considering 1+ 1 dimensional quantum field theories, so we recall some
of the important properties of these models. In particular, we are interested in a
special class of such models called integrable models. Examples of such models
include the Thirring model, the Sinh-Gordon model, the Gross-Neveu model, and
- at least as a conjecture - the AdS; x S° string world-sheet sigma model. In two
dimensions, integrability is often the result of having an infinite number of con-
served charges. However, Parke [35] showed that if in addition to the momentum

V2

, and the internal symmetry charges I;, (i.e. SU(N) symmetry for the chiral

Gross-Neveu model) we have two extra conserved charges, that this is sufficient to
ensure the absence of particle production and the factorisabilty of the S-matrix.
In addition, previous work by Shankar and Witten [36] showed that the existence
of a higher rank conserved charge gives rise to factorisation of the three-particle
S-matrix, and to the Yang-Baxter equation. As a result, integrability can be de-
duced from the existence of two extra higher rank conserved charges. The outline
of Parke’s argument [35] is as follows. Assume that we have a theory with two

extra charges Q" and Q~, which transform under the Lorentz group as
Gt-s AMOT. O =387, (1.4)

where AT are the Lorentz transformations written in light-cone coordinates, so

that if 2% = 2o £ z;, we have
= 5 Na™, (1.5)

It is necessary that m and n are odd and m > n > 1 to ensure that the charges

transform differently to each other. Parke then introduces the linear combination

Qo = (cos0)Q" /m — (sin0)Q~ /n, (1.6)



which he uses to explore the amplitude of scattering two in-states into N out-states.

This amplitude looks like

(@3, s On+2|S|d1, P2) (1.7)

where no assumption is made about the S-matrix, S, at this stage, other than
expecting the usual analyticity and continuity properties apply. Since @y is a

conserved charge, this must be equivalent to

(B3, , Dn+oleT290 S €290 gy, ¢y) (1.8)

for real a. By studying the overlap of the wave functions of the particle states,
Parke concluded that extra particles can only appear at isolated points in the
rapidity difference of the incoming particles. Such an S-matrix would not satisfy
the correct analyticity and continuity properties required of the S-matrix, and
hence particle production cannot exist. Moreover, the scattering amplitude must
show energy-momentum conservation, which requires there to be two particles in
the out-state, which must have the same momentum and mass as the particles in

the in-state. Parke wrote this in the somewhat symbolic notation

(p1,- - ,oN|S|g1, @2) o Sn26® (pr — 1)@ (p2 — q2) . (1.9)

While a similar argument to the above concludes that the three-particle S-matrix
does not allow particle production, the factorisation of the multi-particle S-matrix
is perhaps better understood by the argument of Shankar and Witten [36]. They
argued that a higher rank conserved charge Q™ of rank n acting on a state in the

manner
€@ p) = " |p) (1.10)

where p is the momentum, results in shifting particles in a collision relative to each
other by an amount dependent on the momentum. As a result, even if we have

an apparently simultaneous three-body collision, acting by this conserved charge
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on all the states (which obviously must leave the scattering amplitude unchanged)
changes the impact parameters and ensures that we can always view the three-
particle S-matrix as a product of three two-particle S-matrices. In fact, the same
logic gives rise to the Yang-Baxter equation, which will be discussed later in the
context of the Zamolodchikov-Faddeev algebra.

Therefore, integrability ensures that particle number is conserved and that
scattering is elastic. Furthermore, as a result of these conservation laws, scattering
of many particles is reduced to a series of two particle scattering events, since at
each stage in the process all the charges must be conserved. This is known as
Factorised Scattering. Clearly this greatly simplifies problems involving scattering,
since we only need to consider a two particle scattering matrix. Essentially, this
is a statement that since the model only has one space dimension, a faster moving
particle will catch a slower moving particle, and after scattering, the order of
rapidities will reverse.

In addition to these properties, we also discover that the creation and annihi-
lation operators of the asymptotic states have extra relations. Consider creation
operators A!(#) which create particles by acting on the vacuum, and annihilation

operators A'(6), for which
A'(@)|vac) = 0. (1.11)

With these operators, we can define two types of states, in-states and out-states

as follows

161,02, 0a)e™ = AL (8a)--- AL (@)|vac), 61 <6y <-- < by, i
; (1.12

161,82, 00 = AL (1) AL (B)vac), O <Oy <-- <b,.

These are the Zamolodchikov-Faddeev (ZF) creation and annihilation operators
and describe particles in the theory. These operators are intrinsically linked with

the two particle scattering matrix, and have to satisfy the quadratic Zamolodchikov-



Figure 1.1: Two orders of three particle scattering.

Faddeev algebra given by the relations

AL (61)AL(62) = AL (6)AL (61)S12 (6r2) (1.13)
AR () AR (B) = Spif(612)A™(62)A™ (6. (1.14)

AR (0)AL (6:) = AL (6:)S572(621)A™ (61) + 2761 6(61),  (1.15)

niks

in which we use the notation 6#;; = 6; — ;. From these, we can now infer the

Yang-Baxter equation. We may write it as

5b2b3(9, — 05)S513(9, — 65)55:%2 (6, — 6,)

c2C3 ci1as aiaz

(1.16)
= 501%2(8, — 6,)S% (6; — 65)S2% (62 — 63) .

cic2 aics azas
This is shown pictorially in Figure 1.1.1. In words, this equation tells us that the
intermediate steps in a series of scattering events are irrelevent to the final state
we observe. The product of the S-matrices of different orderings of scattering are
the same for a model with Factorised Scattering. As a result, the in- and out-
states contain all the necessary information to determine the overall S-matrix. In

addition to the Yang-Baxter equation, the S-matrix for relativistic two-dimensional

integrable models should have the following properties:
1. Unitarity

i) bibs (—0) = 01052 . (1.17)

ajaz a1 Yas
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2. Crossing symmetry

Stz (i1 — §) = Coy oS

ajaz dasz

(6)Cr (1.18)
where Cy is the charge conjugation matrix such that Cp,C% = &¢.

It should be mentioned that we always consider the rapidities to reside in the
physical strip, 0 < I'm 6 < 7, and that any values outside this strip are understood

by analytic continuation.

1.2 The Gross-Neveu model

The Gross-Neveu (GN) model is a theory containing N fermions with quartic
interactions in two dimensions, the study of which was led by [27]. A good review
is contained in [37], and this overview summarises much of what was said there.
In particular, we consider the chiral Gross-Neveu model, which has an SU(N)

invariant Lagrangian density given by

2

£ = P i + - (@) — D)) - (1.19)

The entities v; are the N complex Dirac fields. There is a global U(1) symmetry
given by ¥ — e, a global continuous chiral symmetry ¢¥» — €%, and an
SU(N) symmetry with Noether current given by _]Z = 7’153-7“1&1-. This model is
asymptotically free, displaying a negative 3 function, as was established in [27].
The model also displays an apparent contradiction: according to Coleman [38],
there can be no spontaneous symmetry breaking in two dimensions and hence no
Goldstone bosons; however, there exists a massless boson that generates dynamical
mass. This apparent contradiction was clarified by Witten [39]. There are two
parts to this. Firstly, from Coleman’s theorem it is clear that there can be no
massive chiral particles since the chiral symmetry would be broken, but Witten
showed that although the elementary fermion field, ¢, that appears in (1.19) has

a non-zero chirality, the physical fermion has zero chirality, and therefore can be
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massive. The second part to the theorem is that there should be no Goldstone
boson in two dimensions to produce this mass. Although there is indeed a massless
scalar, Witten argued that it is not in fact a Goldstone boson since it does not have
the required low-energy behavior that a Goldstone boson should have. Since there
is no chirality breaking Green’s functions (since, after all, the physical fermion has
zero chirality) a Goldstone boson is not necessary and cannot exist. That fact does
not preclude other massless scalars from existing however. It is such a massless
scalar that generates mass in the chiral Gross-Neveu model.

In order to find the 1/N expansion, it is necessary to rewrite the Lagrangian
(1.19) in a new form. The method followed here was originally constructed in [33]
and called the operator formulation in the treatment in [37]. The idea is to write
the original field in terms of new boson fields,

1
(@) = Ki ()" e

X © exp <q\/§ [«,5@(3:) - /j dylé(ro.yl)D : (1.20)

<sewp (=ivF oo + [ dylaéi(:&yl)b

where ¢; are SU(N ) valued fields that are pseudo-potentials of the SU(NV) currents

that satisfy the constraint

Zd)i(m) =0, (1.21)

and the field ¢ is the pseudo-potential of the conserved U(1) current. Finally, K;
are Klein factors to ensure the correct anti-commutation relations for the fermions.

However, these are not the physical particles, which are instead given by

b@) = Koo (7 [Pa+ [T aeean]) . o

and satisfy

’ 1 A %
T ~N ————€. - |y / oo o )
(N - 1)!6111"'7N711f’71 (‘T) ¢1N—-1(‘T) ’ (123)

as a result of (1.21). These fields have unusual commutation relations. They carry
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spin s = 3(1 — 1/N) and have commutation relations

1/11‘(93, t)zﬁl(yv t) = 627Tise(z—y),(/'}i(y, t)QZH(I t) ) (124)

and for the creation and annihilation operators
a'(p)a’(p') = ™ =al (p')al (p) . (1.25)

There is no known scattering theory for particles with these statistics, and therefore

new fields must be defined with Fermi statistics,

4i(2) = exp (ﬁ [PA() + Bl@)] ) wlo), (1.26)

where A(z) and B(x) are independent free massless fields. In terms of these new

fields, the Lagrangian (1.19) becomes

2

T th ] 1.5 11/ 1 ‘
L = pi"ou; o (i) — (diy b))_ﬁ(aﬂA)Q_

2 (6,B)°

DO |

(1.27)

B
- ——z, PO, A — ——=iy*0, B,
\/T ’7 ’7 / \/]_\/; 7 /

where a and 3 are unspecified coupling constants. The final step is to introduce
auxiliary fields o = ¥;¢; and © = ;4°1;, which will change the potential term
for ¢, via the relation (1.26), to

2 . 1 _
7 (@) = @) =~ (P + ) + Bilo +im’ . (128)

It is then possible to integrate over the fields ¢}, leading to the effective action

" a o, I}
—v°v*0,A — —~"0 B>

d’z(0® + 7?) — %/d% ((0,A)* + (0,B)?) .

Seff = —iNTrlog <z’7l‘aﬂ + o4 imyd +

2
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It is possible to find the propagators for the fields from this action [33],

_@COth% = %2 (1 - singhé))

Ax(p) =

N 6 — o ’
27i tanh &
Aalp) = —F =5
. (1.30)
1
A =—-———
A(p) Np2 1— %2 )
i1
A =—-——=—
5(p) Np?’
where 6 is the rapidity, and p?* = —4m?sinh? g. From these, the 1/N expansion

results for amplitudes can be compared to the S-matrix given below in section
1.2.1 to prove that it is indeed the correct S-matrix of the model.

The fact that this model exhibits factorised scattering was first established by
Zamolodchikov and Zamolodchikov [13], and the S-matrix itself was developed in
[29]-[33]. In [30] the different classes of U(N) invariant factorised S-matrices are
given and the minimal solutions established. The chiral GN model is in class II of
this classification structure. Following from this, [31] compares the 1/N expansion
to the perturbation result and finds that the results match. In [29] and [33] the
scattering matrix involving antiparticles was established. In addition, it was noted
in [29] that bound states composed of fundamental particles transform in other
representations of SU(N). In fact, bound states are the same as antiparticles in
this model. More explicitly, rank-r antiparticles are rank-(N — r) particles (or
bound states). As a result, the antiparticle of a fundamental rank-1 particle is
a rank-(N — 1) particle (bound state). For N = 3, this means that the bound
states of two particles are the antiparticles corresponding to the fundamental par-
ticles. It was shown in [29] that the scattering between a bound state and particle
produces the same amplitudes as the scattering between the particle and its an-
tiparticle. This means that such an identification between the bound states and

antiparticles is natural. The scattering amplitudes for fundamental particles may



14 CHAPTER 1 INTRODUCTION

be summarised as follows

(Ad(62)Ac(61)|Aa(61)Ab(62)) = u1 (61 — 02)0ac0bd + u2(01 — 02)0addpe ,

(1.31)
(Aa(02)Ac(01)]Aa(61) Ap(02)) = t1(61 — 62)dacOba + t2(61 — 02)0abOca -
with the functions given by
Fie 4 b Pyl — = i
tl(e) — (f Q;rz) (? 1;/ 2;1'1) ’
Tz-m)TG-%+3m)
2mi
te(f) = ——X 7t1(6)
b (1.32)

An example of the application of this is to N = 3 with a three particle state
exhibiting a pole at 8; = 6, + % which leads to a bound state. The S-matrix is

considered in more detail in the following section.

1.2.1 The S-matrix of the chiral Gross-Neveu model

The spectrum of particles of the chiral SU(N) GN model consists of N elemen-
tary particles of mass m transforming in the rank-1 fundamental representation
of SU(N), and their r-particle bound states of mass m, = msin 57 /sin % trans-
forming in the rank r = 2,..., N — 1 fundamental representation of SU(N). A
rank-r particle with rapidity 6 is created by a ZF operator AJ}((G), and annihi-
lated by A (6) where K = (ki,...,k,) has integer-valued components ordered as

1<k <ky<---<k, <N. The creation and annihilation operators satisfy the

ZF algebra
Al (61) AL, (82) = AL, (62) AL (6:1)SHR2 (612) . (1.33)
AK(0)) A% (0,) = sﬁ;,’j;(em)AM(GQ)ANl(el), (1.34)

AR (0) AL (82) = AL, (62) SRR (621) AN (61) + 21671 6(612),  (1.35)
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where 6;; = 0; — 0; and SN‘N2(912) is the scattering matrix of particles of ranks r,
and ro with rapidities #; and #,. Since higher rank particles are bound states of
elementary particles, their S-matrices are obtained from the GN S-matrix for ele-
mentary particles by the fusion procedure. It is often convenient to use the matrix
form of the GN S-matrix. We introduce N-dimensional rows E* and columns F;
with all vanishing entries except the one in the i-th position which is equal to the
identity, and the matrix unities Eij = E;® E7 with the only non-vanishing element
on the intersection of the i-th column with the j-th row. Then the entries of the
GN S-matrix for elementary particles can be combined in the following N? x N2

matrix
SN (9) = SE(0) E' @ B’ . (1.36)

Explicitly the S-matrix of the chiral GN model for elementary particles is given by

BB )

SEN(9) = S(OIR(H),  S(B) = —= S 137
(6) = S(O)R(6) (6) T(—2)T (AL + ) (1.37)

where the scalar factor S(f) does not have any poles in the physical strip 0 <

Im(0) < 7 and for real € has the nice integral form

o gt sinh &=Lt
S(0) =exp| —21 —— N ¥sinft| . 1.38
(6) exp( : /0 t sinhn7t o ( )
It satisfies the crossing symmetry condition
27‘7 § — jpii=t
H S+ k) = (- VT ——A (1.39)
g =1 ”TT

and has the large 6 asymptotics S(+o0) = eF™ % The matrix and pole structure

of the GN S-matrix is given by the standard SU(N)-invariant R-matrix

1 — &= p
N

where I is the identity operator and P = E,' ® E,* is the permutation operator

which exchanges the flavour indices of the scattering particles. Introducing the
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projection operators
1 1
Pi=—(I1+P), P,=—-(I1-P),
SIL+P) S(I~P)

onto the symmetric and antisymmetric parts of the tensor product of two funda-

mental representations one gets

6+ 2
R(6) =IP’S+9_—£ - (1.41)
N

which exhibits the pole at § = 2—;\% in the antisymmetric part. This leads to the
existence of bound states composed of two, three, and up to N — 1 elementary
particles. The (N-1)-particle bound states are identified with anti-particles of
the elementary particles. In general a rank-r particle and a rank-(N-r) particle
created by A}{ and A;\—, form a particle-antiparticle pair if & is such that KUK =
P(1,2,..., N) where P is some permutation of 1,2,... N. In what follows, in such
a pair we refer to a bound state of smaller rank (that is 7 < N/2) as a particle.
If N is even, N = 2p, then a bound state with the label K = (ky,kq,...,kp) is
considered as a particle. The ZF operators can be normalised in such a way that

for a particle .A;( and antiparticle .ATL the charge conjugation matrix Cxp = €k

where exy, = €;, ;, is skew-symmetric, and ¢; _y = 1.

1.3 Form factors

Recalling from section 1.1, the definition of the in- and out-bases of asymptotic
states (1.12), we again write them, this time explicitly expressed in terms of the

ZF creation operators as follows

161,602, ,0n)se) i = Al (6n) -+ Al (@)vac), 6 << <6y,

.....

161,82, 0,027 o = AL (6) - Al (Ba)vac), 61 <l << By,

.....

They are related to each other by the scattering matrix. The vacuum state |vac)

is annihilated by A% (), and has the unit norm, (vac|vac) = 1.
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Form factors of a local operator O(z) are the matrix elements of O(0) between

n-particle in-states and the vacuum state

P w01, 5,00 = {vie O(O)Akﬂ(en) - -Akl(el)hm,c) . (1.42)

Being analytically continued to complex 6; the form factors satisfy a set of axioms.
We give here the axioms for form factors as appeared in [3], the first four of which
we present in a slightly generalised form similar to [26] to cover nonrelativistic
models possessing the crossing symmetry invariance. Firstly, from form factors of

type (1.42), we construct all matrix elements through the crossing symmetry’

g Brs -2 Bl OO, ., andir

(1.43)
= ghe . OPnem B i e N s 5 Dy B0 B0 i B S 800
where C% is the charge conjugation matrix.
Then, these form factors must satisfy the following axioms:
1. Permutation symmetry (Watson's theorem):
Fal‘..a +1a ...an(ab g, O, ﬂn) =
o (1.44)

— QCCi+1 (. . i . ;
— Sa;a]]H(O]-GJ+1)Fa1...c]cJ+1,...an(CYL o 19 O 0 1 il

Here Sg2¢*) (@, @j4+1) is the S-matrix, which for relativistic models depends

7 Aj+1

only on the difference o; — ;4.

[N

. Double-crossing or quasi-periodicity condition:

2m’Q(O,an)F

Fo,.a.(Q1,...Qn_1,0n +27i) =€ tnaroan_ (Qn. Q1 0p_1) . (1.45)

The quantity Q(O, a,) appears if the n-th particle A! has nontrivial statis-

tics with respect to operator O(zx).

3. Simple poles: The form factors have simple poles at the points a; = a; + i7.

'In a nonrelativistic model with the crossing symmetry invariance, e.g. the AdS; x
S° superstring, the rapidity variable a should be chosen so that the energy and momentum
of the corresponding particle are meromorphic functions on the rapidity plane, and the cross-
ing symmetry transformation is realised as in any relativistic theory as the shift of a by im:
a— o+,
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Due to the property (1.44) it is sufficient to consider only j = n, and i = n—1.

Then the form factors must have the expansion

. Fa/l...a:]fz(ab sy Cl477—2)
[/ Fal...an (ala cey On—1, an) = C'ana;l_1 :
O — O 1 — TL

X <5g;1 oy .5;%:: _ e2riQ(O.an»1)San—1a1(anal’ 01) o (1.46)

ciay

'3 !
tee Sg::;g::g (an-—la an——3)S;::?ZZ:§ (an—la an—2)> a3 0(1)

at a, — qu_1 +17.

. Bound state poles: Let particles Al with K € K be bound states of particles
Al and Al with I € Z and J € J. The rapidities a; and a; of A} and A,
are known functions f{ and f¥ of the rapidity ax of the bound states Al
and the scattering matrix S (ay,a5) of A} and Al with a; = fE&(ak) and
a5 = fK(ak + €) has a pole at € = 0. Then the form factors with A} and
Al as external particles are related to those with Al as external particles

through the small € expansion

€
FJIa;;...an (CYJ7 (85 £%(0'L TN an)

7
= - Z FﬁFKaS___an(a]\—.,ag....an) +0(1),
€ kex

(1.47)

where 'Y, are some constants determined by the consistency of (1.47) with
itself and the previous form factor axioms. The relations (1.47) can be in-
verted and used to express the form factors of bound states through the form

factors of the elementary particles.

For a relativistic theory ay = ax + iuy, ay = ax — iu_ (ux depend on the
indices I, J, K), the scattering matrix S (a) of A} and AB has a pole at

a = iuk,, and u. are found from the equations
uy +u_=ul,, mrsinug =mysinu_, (1.48)

where m; and m are masses of Al and A", and the mass of the bound state

Ak is equal to myx = mycosuy + mycosu_.
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The last two axioms are valid only for relativistic models and to stress this

we use the letter 8 for the rapidity variable.
5. Due to relativistic invariance, form factors should satisfy the equation
B an 05 6,0 4 Gy ooy U+ C) = exD{L8(0)) By, 5, (01 00}, (1.49)
where s(O) is the spin of the local operator O(z).

6. Form factors F,, 4, (f1.....6,) must be analytic in each variable #; — 6, in

the strip 0 < Im @ < 27 except for simple poles.

In appendix A, proofs that these axioms are satisfied by the trace formula used
to find form factors for the GN model are given. An important observation by
Lukyanov [11] reduces the problem of computing form factors to the problem of
finding a representation of a so-called eztended ZF algebra. It is generated by
vertex operators A;(f),? the angular Hamiltonian K, and the central elements €);

obeying the defining relations

Ap(61)As(0:) = AL(62)Ak(61)S15"(612) , (1.50)
Ar(0)A;(6,) = —eicl”m +0(1), 61— in, (1.51)

The relations (1.50) and (1.51) show that one can think of A;() and C17A;(8 +
ir), CCyx = &L as representing the ZF creation and annihilation operators,
respectively. For some models the relations (1.51) have to be modified by replacing
Cry with C;T where T is an auxiliary element satisfying I'? = id which either
commutes or anticommutes with A;. In particular this is the case for the SU(2p)
chiral GN model.

In addition to the relations above if the particles .AJ;( of the same mass with

K € K are bound states of particles A; and AB with I € 7 and J € J then the

2They should not be confused with the ZF creation and annihilation operators A;(()) and

AL(9).



20 CHAPTER 1 INTRODUCTION

vertex operators A; and A; must satisfy the following bootstrap conditions

Ap(0 + iu ) A (0 — iu_) = 9—1_—9 Y THAk(6)+O(1), & 6. (1.53)
KekK

Let us now assume that a representation of the extended ZF algebra is con-
structed and the vertex operators act in some space 74. According to Lukyanov a
local operator O of the model under consideration corresponds to a linear operator

A(O) acting in m4 which satisfies the following two conditions
e’KA(0)e K = e OVN(0), A(O)A[() = 20D A (6)A(O), (1.54)

where s(O) is the spin of the local operator O(x), and (O, ) appears if the
particle .AJ; has nontrivial statistics with respect to O(x). Then, the form factor
(1.42) is given by the formula

Trr, [e7®A(O) Ak, (05) - - - Ak, (61)]

e .01y - s06) = N Tr,, [e27K]

(1.55)

where the normalisation constant Ny depends only on the local operator O and has
to be fixed by other means. Assuming that (1.55) satisfies the necessary analyticity
properties, and that the trace exists, the form factor axioms then follow from
the cyclicity of the trace and the defining relations of the extended ZF algebra.
The existence of the trace can be substantiated on a case by case basis by direct

calculation.



Chapter 2

Free Field Realisation

2.1 Free field realisation of the extended ZF al-
gebra

Another important observation by [11] is that for many models the extended ZF
algebra can be realised in terms of free bosons. Let us sketch the idea of the
construction. One considers particles of the same mass belonging to a highest
weight irreducible representation of the symmetry algebra of the model under
study. Then the highest weight vertex operator A; satisfies the following simple

relation
441(01)141(92) = 8(912)441(92)141(91) . (21)

Here the scattering matrix S(€) of the two highest weight particles obeys S(0) =

—1, and admits the representation
Sy ===, (2.2)

where g(f) is an analytic function without zeroes and poles in the lower half plane

Im(f) < 0 except a simple zero at § = 0, and

aglng(G):O(%), f— oo, Im(f) <O0. (2.3)

21



22 CHAPTER 2 FREE FIELD REALISATION

ﬂ!\
=
dt

Figure 2.1: The integration contour Cj in the integral fCo o i E) Inf—i).

1

These properties of g(#) imply that for Im(€) < 0 it admits the following integral

4(6) = exp (— A %f(we-“’t) | (2.4

where f(t) asymptotes to 1 at large t. The function f(¢) does not have to vanish

representation

at t = 0, and the integrals of the form

/ dt F(t) (2.5)
0
will be always understood as [40]
- dt ‘ ‘
dt F(t) = — F(t) In(—t). (2.6)
Jo JSCh e

where the integration contour Cjy goes from 400 + i0 above the real axis, then
around zero, and finally below the real axis to +o00 — i0, see Figure 2.1. Let us
also mention that for real values of # the scattering matrix S(#) has the integral

representation
;e .
S(8) = exp (—22 / > f() sm(9t)> : (2.7)
0
Let us now introduce the bosonic operators satisfying the commutation relations
[a(t), a(t))] = tF($)5(t + 1), (2.8)

where a(t) and a(—t) for ¢t > 0 are the annihilation and creation operators, respec-

tively

a(t)|0y =0 fort>0. (2.9)
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We use the operators to define the following free bosonic field

60)=Q+ [ Sae, (2.10)

which satisfies the following relations

[6(61), (02)] = In S(021) . (6(61)0(62)) = —Ing(621). (2.11)

The operator @) is a zero mode coordinate operator which commutes with a(t). It
appears in an explicit ultraviolet regularisation of the free field [11]. In addition
a regularised free field also contains the zero mode momentum operator P which
annihilates the vacuum |0) and also commutes with a(t). In fact, as will be ex-
plained, P is an element of the Cartan subalgebra of the symmetry algebra of the
model. The regularised free fields for the GN model are discussed in appendix G.

The field ¢ is used to construct the basic vertex operator
V(8) =: ¢*® .| (2.12)
which satisfies the ZF algebra relation (2.1) and
V(61)V (02) = g(0a1) : V(61)V (62) : . (2.13)
The highest weight vertex operator A; is then realised as
A(0) = V(0), (2.14)

where w; is a “Klein” factor which commutes with V' (6) and might be necessary
to satisfy all the ZF algebra relations.

The remaining vertex operators are then obtained by acting on the high-
est weight vertex operator A; by the lowering symmetry operators (“screening
charges”) J, . The action of 7, on the vertex operators depends on the coprod-
uct of the symmetry algebra. In particular in the case of a quantum group with

the deformation parameter g the vertex operators are constructed as

A(0) =wV(B), Api(6) =T An(®) — qAx0) T, k=1,2,.... (2.15)
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A free field representation of J,~ is found by assuming the following ansatz’

T ~ / do : e (2.16)
c

where the commutation relations of the free fields ¢, with ¢ and themselves, and
the integration contours C' are determined by requiring that (2.15) satisfies the

extended ZF algebra. In the next section we discuss how this works for the chiral

GN model.

2.2 Free field representation of the GN model

ZF algebra

In this section, the work of [11] is extended to the GN model, as appeared in [28].
It appears that if one omits the Klein factors mentioned in the previous section
then Lukyanov’s procedure gives a free field representation for the ZF algebra of
a model with a twisted S-matrix. It is invariant under the s[(N) algebra with a
rather unusual coproduct, which however implies the action (2.15) with ¢ = —1 of

the sI(/N) lowering generators on the vertex operators.

2.2.1 Twisted GN S-matrix

There is a simple generalisation of the standard SU(N)-invariant R-matrix R(8).

One can check that the R-matrix of the form

oy — Zmip
B~ (2.17)
N

where ¥ is a diagonal matrix satisfies the Yang-Baxter Equation (YBE) and the

unitarity condition if and only if ¥ is given by

N
D — Z SijEij & E]J y  SijSji = 1V 2,] (218)

i,j=1

!This ansatz does not work if the symmetry algebra is the sum of two algebras.
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In particular the coefficients s;; satisfy the conditions s; = £1 for any i. The
physical unitary condition requires & to be unitary and therefore s;; = €'® where
¢;; are real and obey ¢;; + ¢;; = 0 mod 27.

One can use R to define the twisted GN S-matrix as S* = S(§)R*. It is
unclear if such a twisted S-matrix corresponds to any local field theory which
would be a multi-parameter deformation of the GN model. The ZF algebra with

the twisted GN S-matrix S* has the form

where A* is a row A¥ = AT E' with AF being the ZF vertex operators. The

relations can be written explicitly in components

AT (01) AT (82) = 5:S(612) AT (62) AT (61) . (2.20)
S 1) 4
AT (81) A% (8;) = S(612) | 22— AZ(85) AT (61) — —sr AT (62) AT (61)
612 — N 612 — N
(2215

Notice that only the transition amplitudes depend on the twist parameters s;;.
From eqs.(2.20, 2.21), one can see that if s;; = 1 and s;; = —1 for i # j, then for
each pair of indices 7, j the ZF relations are the same as for the SU(2) Thirring
model discussed by Lukyanov. It is therefore not surprising that a free field rep-
resentation for the ZF algebra of the GN model is related to the twisted S-matrix
with ¥ of the form
N N N
SV =N"Ey®Ei—Y Es®E;=2) E;®FE;—1. (2.22)
i=1 i3] i=1
To simplify the notations in what follows, we denote the twisted S-matrix sV

as SV, It is easy to check that S(-) satisfies the invariance conditions
STV A (I) = AT, (T) ST, (2.23)

where J, = Ej.,* are the sl(N) lowering generators in the rank-1 fundamental
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representation, A% (J) = PA_(J) P and
(-1) (=1)

AcyTz) =T; @1+1J; - 2(B* + Eyt* ™) © Ty, (2.24)

is the coproduct. It is defined in the same way on the raising generators, and it is
extended to the whole sl(N) algebra via the commutation relations.
Let us introduce the ZF vertex operators Z; satisfying the relations (2.20, 2.21)

with s; = 1 and s;; = —1 for i # j

Zi(61)Zi(02) = S(012)Zi(62) Zi(6h) , (2.25)
Zi(61)Z;(62) = S(612) ‘0—912752]‘(92)2:'(91) - T%%;Zi(HQ)ZJ(Ql) , (2.26)
i3 = “Ff i3 = 5

and assume that a free field representation for Z; and the lowering operators x; is
found. Then the coproduct (2.24) implies that all the other vertex operators are

obtained through the formulae
Zi+1(0) = x; Zi(0) + Z:i(0) xi - (2.27)

Then, one can construct operators AT satisfying the ZF algebra with S* and all

s;i = 1 through the formula
AT (9) = w; Zi(6), (2.28)
where the “Klein” factors w; commute with Z; and satisfy the following algebra
wiw; + Siwiw; =0, $# 7. (2.29)

In particular for the canonical (untwisted) S-matrix s;; = 1 and if one also imposes

2

extra conditions w; = n; where 7;; are equal to either 1 or —1 then it is just

the Clifford algebra. In the general case the relations (2.29) can be solved by

representing w; as zero mode “vertex” operators
w; =T, g, 5] = idij, (2.30)

where T'; satisfy the Clifford algebra I';T'; + I';I'; = 2n;; with 7;; = 7;:0;;. In what
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follows we find it convenient to choose 7; in such a way that ' = [''[y---I'y
satisfies the condition I' = 1 for odd N which can be achieved by choosing 7; = 1
fori=1,---N—1land 'y =T'ny_;---T';, while for even N the element I" satisfies
the condition I'? = 1.

Thus it is sufficient to find a free field representation for Z; only. In what
follows, we will be interested only in the untwisted case and we will denote the
corresponding vertex operators as A; without any superscript.

To conclude this discussion let us also mention that introducing the twist

"
Fio=) e ™E;®E;, Fu=PFpP, (2.31)
i,j=1
where the parameters 7;; satisfy the conditions 7;; — 7;; = ¢;; mod 2w, and P is
the permutation operator which appears in the definition of the R-matrix. (1.40).

One can easily check that R* is a twisted R-matrix
R* = Fy RF; . (2.32)

Since the untwisted R-matrix satisfies the invariance conditions Jio R = R Joq,

therefore the twisted R-matrix should satisfy the invariance conditions also
AF(J)R* = R* Ap(J), (2.33)
where J are sl(N) generators, A (J) = P Ag(J) P and
Ar(J) = Fia (3, + J2) F1y (2.34)
is the twisted coproduct.? The entities J; and J, are given by
h=LE®I J=LIxE. (2.35)

Examples of such generators J are E;,; * which are the s[(N) lowering operators.

There is however no twist which would lead to the coproduct (2.24).

2Strictly speaking one should consider gl(N) (or u(N) if F is unitary) because for generic F
the coproduct of J which is from s[(NV) is not in the tensor product of two universal enveloping
s[(N) algebras.
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2.2.2 Free fields

According to the discussion in subsection 2.1, to construct a free field represen-
tation for the vertex operators Z, of the elementary particles of the twisted ZF
algebra (2.25, 2.26) one needs a bosonic operator ag(t) for the highest weight vertex
operator Z;, and N-1 bosonic operators ai(t) for the lowering operators y, . For
any p the operators a,(t) and a,(—t) for ¢ > 0 are the annihilation and creation
operators, respectively: a,(t)|0) = 0 for ¢ > 0. Since (N-1)-particle bound states
are antiparticles of the elementary particles, only N-1 bosonic operators may be
independent.

The commutation relations of the operators a, can be written in the uniform

form
[a.(t); 0.0 = Ef @0 +T); =015, =1, (2.36)

where f,,, must satisfy the relations f,,(—t) = f,.(t). In addition we also impose
the conditions f,,(t) = f..(t) which were satisfied in the N = 2 case, and appear
to hold for general N too. We also introduce the zero mode operators ), and P,
such that P,|0) = 0. Their commutation relations are listed in appendix G but
will not be important in this section.

We then define the free fields

(b#(e) = Q” + /oo ﬂ a“(t)ei9t7 (237)

—00

which satisfy the following relations

[¢u(91), ¢u(92)] = In Sﬂu(92 e 91) )

<(bu(61)¢l/(92>> =—In g;u/(92 s 91) .

(2.38)

Here the S-matrices S, and Green’s functions g,, are related to f,, as follows

Su(0) = exp (2 [~ L fut0sinon) )

Gu(8) = exp (_ /0 * gitf Mt)e_m) | (2.39)
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and they are related to each other as

S, () = g;(—(_g(;) (2.40)

The fields ¢, are used to construct the basic vertex operators
Vi) = a2l o, (2.41)

which obey the following relations

V#(Gl)VV(QZ) = guu(921) : Vu(el)VV(QZ) B

Vi(01)Vi(62) = Sy (612)V2(62) V(1)

(2.42)

The free field realisation of the ZF algebra with the twisted S-matrix S(=V is

constructed as follows

Zi(8) = pVol8), p=eNer'sm N
_ e’)/
Xk = ﬂx/daVk(a), Py =2 (2.43)
C 714

Zk+1(9) — )\/; Zk(9)+2k(9)}<;, k=1,....N=1,

Here 7 is Euler’s constant and the normalisation constants for Z; and x, have been
chosen for future convenience. Then the integration contour C' in y, depends
on operators located to the right or to the left of x, and is specified for any
operator y which involves integration as follows [11]. One first brings the product
of all vertex operators in a monomial containing y to the normal form which is
considered as a regular operator. This produces a product of various Green’s
functions which may have poles. Then the contour C' runs from Rea = —oo to
Rea = 400 and it lies above all poles due to operators to the right of y but
below all poles due to operators to the left of y. Note that if one then acts
by the resulting monomial operator on other operators the contour C' should be
additionally deformed according to the procedure described. As an example, let

us consider the monomial V(1) x; Vo(0r1)Va(fr2) and assume for definiteness
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. in i\ C
Op1+ = 0R2+V

T
i =

a

Figure 2.2: The integration contour C' in the monomial Vy(6r) x7 Vo(6r,1)V2(6r2)-

that g1 < 0 < Ogo. One gets

Vo(Or) X1 Vo(Or1)Va(br2) = cda :Vo(OL)Vi(a)Vo(Or,1)Va(bry2) :

xgo1(a — 01)g10(0r1 — @)g12(0r2 — @)

X goo(@r1 — 01)g02(0r2 — 0r)902(0r2 — OR1) - (2.44)

As will be shown below the Green’s functions which depend on a are equal to

=

1€
gor(a) = gio(a) = gr2(a) = — i
a + N
and therefore the poles are at
% i i
a=0,——, a=0p1+—, a=0rs+ —.
L= R1T & R2T %

i

Thus the integration contour C runs above g |+ ’—A’} and Opo+ % but below 0 — %7,

see Figure 2.2.

Matrix elements of the ZF operators are therefore given by multiple integrals.
One sometimes needs to compute integrals of functions which behave as 1/a for

large ao. We use the principal value prescription for the integral

e 1
/ dz =ir, Im(a)>0. (2.45)

os =@

In particular, we require for 5 > 0, 8 € R the integrals below:

= 1
toh Qi o
& (2.46)

- 1
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We give examples of the use of these integrals and further explanation in ap-
pendix E.
To find the ZF operators A, of the GN model, we must now incorporate the

“Klein” factors. We modify (2.43) to get

Ap(0) = TwZi(8), T =Tenly'xi
Ap1(0) = T A(0) - A@) T, k=1,...,N-1, (2.47)
where 7, are the sI(N) algebra lowering generators.

Let us now sketch how the commutation relations between a, can be found.

From the discussion in subsection 2.1 and eq.(1.38) we conclude that

1 (N=1)mt i 1
Slnh — N Tl (N—=1)(v+log(27)) r —7r — = 4+ ]_
Joolt) = —; 7 ivt e, goolf)=e L (2F = ) (2.48)
sinn 7 i (%)

where v is Euler’s constant. Then the commutation relations between ay and a,

can be easily guessed by generalising the N = 2 relations from [11]

|t 7:6_7
for(t) = -7 . 901(9)2—9+i_ﬂ:
B (2.49)
ful)=1+e7, gu(6) = —€>0 (9 N "@1) |

It is straightforward to check that Z; and Z; indeed obey the ZF algebra relations
(2.25, 2.26). To find the remaining commutation relations one notices that since

X; basically are s[(IV) algebra generators they should have the following properties
Xk Xm = XmXi i |[k—m|#1, (2.50)
and
Xi Zm(0) = Z(0)x;, unless m=k or m=k+1. (2.51)
In addition, for m = k + 1 one should find
X;:Zk+1(9) = —Zk+1(9)X1;~ (2.52)

This indeed can be checked for £k = 1 by using the go; and g;; functions. To
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this end one should use (2.43) for Z, and take the integration contours in y; to
the real line. Then the integrand in the double integral can be symmetrised in
the integration variables and gives 0, and the integrands in the single integrals
appearing due to the poles in gg; sum up to 0 as well. Eq.(2.52) can in fact be
used to find gq;.

It is then easy to check that the commutativity of Z; with x; guarantees
that Z; and Zj satisfy the ZF algebra relation (2.26). The relations (2.50, 2.51)
show that only adjacent operators can have nontrivial commutation relations, and
therefore only the functions g,, and g, ,+1 = gu+1,, are nontrivial. Thus, using the
integration contour prescription and the relations (2.42) one can represent Zx.; in

the following (slightly symbolic) form

k
Zia®) = p [ do-- [ dar TLag 5005 = 050) < Vo) Vilen) - o) -
- (2.53)

where ag = 0 and

g5-1;(@) = px(gi-15() + gj-1,5(—0)) . 254

The integration contour C; runs below the poles of g;_; ;(a; — 1) and above
the poles of g;_1 ;(vj—1 — ;). Strictly speaking (2.53) is a sum of 2* integrals with
contours specified by the product of g;_; ; functions in each integrand. Only Z, is

i

_#@W and the poles of g5, at a1 = 0 — 5

given exactly by (2.53) with g§, (a) =
and a; =6 + % lying above and below C1, respectively.

To find the function g;5 (and therefore fi5) one can use the requirement of the
commutativity of Zs with x; which also implies that Z, and Zj satisfy the ZF
algebra relation (2.26). Then one gets

X1 Z3(0) = P/ dal/ d52/ dbr 951 (51 — 0)g12(B2 — b1)
T & (2.55)
X go1(0 — a1)g12(B2 — a1)gu1(Br — a1) : Vo(0)Vi(ar)Vi(B1)Va(Be) -,
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Z3(0)x1 = P/a day /CB dB, /Cf’ dBr 901 (81 — 6) 912 (B2 — B1) .

X go1(a1 — 0)gi2(a1 — B2)gu1(ca — Br) = Vo(B)Vi(an)Vi(B1)Va(Be) : -
If the integration contours C® and C?, and C’QB were the same in all the integrals
(recall that both (2.55) and (2.56) are sums of 4 integrals), e.g. they all would
coincide with the real line, then one could symmetrise the integrands with respect
to ay and ;. Then assuming that g;o has only one pole (as it is for go;) and
imposing the requirement that the symmetrised integrands in (2.55) and (2.56) are
equal to each other, one immediately finds that g;» = go;. Making the integration
contours coincide with the real line produces extra terms due to the poles of
the go1’s, and one has to check that these extra terms cancel out as well. One
can do this, and a lengthy computation indeed shows that if g2 = go1, then
X1 Z3(0) = Z3(6)x7. The function gos is found by imposing the ZF algebra relation
(2.25) on Z3 and appears to be equal to g;;. The same considerations are used to

determine the remaining functions, and one finally reaches the natural conclusion

figr1(t) = fa(t), 955+1(0) = g1 (8),  fi;(t) = fu(t), g55(0) = g11(0). (2.57)

The functions f,,, g, and S, are listed explicitly in appendix B. Thus all the
functions g;_, ; are given by

1/N

9;-1,]‘(01) =

and the integration contour C; in (2.53) runs below the pole of g;_1 j(o; — a;j_1)

i

% and above the pole of g;_; ;(a;_1 — a;) at a; = a;_1 + %

at a; = aj —

The free field representation for the ZF algebra with the twisted S-matrix S(-1)
first appeared in [34] where it was obtained by taking a proper limit of the free
boson realisation of the type-I vertex operators of the A%)_l spin chain constructed
in [41]. However it is claimed in [34] that it is a representation of the ZF algebra

with the canonical S-matrix which disagrees with our consideration. It is noticed

in [34] that the commutation relations for the operators a; can be written in the
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nice form

sinh &2 ..

[ai(t), a;(t")] = t—.—hTf\;e—‘N”o(H ), 4.j=1,2...,N—1, (2.59)
sSinn <=
N

where A;; = 262']' = 51_1,]‘ = 5i+1.j is the Cartan matrix of type AN—1~ Then, the

operator aq is expressed as the following linear combination of ay

N-1 ooy (N—K)mt
t) =— —— _a,(t). 2.60
ao(t) = = ) ——=—Lr—ax(t) (2.60)
k=1
Finally, another linear combination of a;
N—1 e kmt
sinh =%
t)=— 2y (t), 2.61
on(t) = = 3 E ol (261)
is used in [34] to construct the vertex operator Vy () =: e~ : for the bound

state Z15. ny_1 which is the antiparticle of Zy. Vertex operators for bound states

will be discussed in more detail in section 3.1.

2.2.3 The angular Hamiltonian

The next step in constructing a free field representation is to find the angular
Hamiltonian. The most general Hamiltonian we might expect would be of the

form

N-1

K=i /oo dt Y hij(t)ai(—t)a;(t) (2.62)
J0

ij=1
where the (anti-)hermiticity condition for K requires the functions h;; to obey
hij = hj;, and we assume that h;; are even fuctions of t: h;;(—t) = h;;(t). We wish
to satisfy the relations (1.52)

d

—521(6) =~ [K, Z;(6)] . (2.63)

where we set (); = 0 because as we will see in a moment they do vanish for the

representation we consider. Computing the derivative of (2.53) with respect to 6
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it is straightforward to show that

k
d
d92k+1(0) = P/Ck dOfk"'/C1 day 1:[93 1;(% — @5-1)

xi(ai> Volag)Vi(on) - -~ Vilaw) : . (2.64)

J=

We can see this by looking at some examples. Firstly, we consider the simplest
case, Z1(#). We first note that to take derivatives of the vertex operators, we have

for example

d d =t

SVo(6) = = expi / 2 aolt)e™

=i /:: dt ao(t)e' <exp /_Z dt ag(t)e Zat) (2.65)

= /00 dt ag(t)e®Vy(9) .

oo

Applying this to Z;(0), we find

d d
—7 =
5 21(0) =50 : Vo(6)

:ztp/ dt ag(t)e™ Z,(0) (2.66)

N1 5 N—9q
o0 sinh =<7t .
y 3 ay(t) e T e
N Zp/_oodt = Lo sinh 7t " 2:(6),

Next we must consider the cperator Z,(3). First, we take the derivative

d
= 72(6) =

ip /_ h dt ao(t)e® Z,(6) (2.67)

o i d
+ zp/ da (—ggl(a - 9)> :Vo(0)Vi(a) : .
c ae
The first term acts in the same way as Z;, but now there is an additional term
that arises from differentiating g, (o — 6). It may be observed that

d s d s
@le(a — ) = _Egbl(a =g, (2.68)
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and therefore we may rearrange the second term as follows:

el

(@=6)) : Ta(O)Vi(e):
= (gm 0) T

——ip / da = (ghy (o = 6) : Vo(6)Vi(a) - ) (2.60)
. 5 d
+ip [ dagila -6 (Va(@Vila) )
C (0%
= Zp / dt ai (t)Zz(g)eiat .
where we note that we expect the total derivative term to vanish. Hence we may

write

oo

C%ZQ(Q) :ip/ dt ag(t)Z2(0)e mt—l-zp/ dt a; (t) Zo(6)e™ , (2.70)

o ] —00

which more correctly, should be written

d .
©2:0) =ip / dags, (- 6)
N . (2.71)
v L)ee / I aot)e® + ay(t)et
=== = X = ;.)€ ) 5
df Pl B LoRe
Since in general we have
d S & S
%—kgkk+l(o"k+l —ag) = —mgkkﬂ(akﬂ —ax), (2.72)
it is clear that this derivation can be extended to Z. 1, giving (2.64).
Thus it is sufficient to find K such that
d
(K, V,( )]——@VM(H), Be=0.1.. .., 5. (2.73)
Using the same reasoning as for Zj., we get
d = ! !
- @VM(H) = —1 / dt e : a,(t)e’® . (2.74)
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and since
] dt’ 1\ ,i6t’
(K, ipu(6)] = [ / dt thy ai(—t)a;(t), z/ % u(t)ea ]
1,j=1 20
oo o0 dt/ N=1 ,
i [Caf T 2 0 =), 0,
oo o0 dt/ N=1
=Z/0 dt/_@?szlhu( )( tfiu(— t)o(— t+t)aj(t)
+ thiu(B)O(E + ¢)a(—t) ) e (2.75)
- N-1
Ak, d/ hz / ] / 6t
2/0 t ; S fin()az (e
0 N-1
=i [ dt Y bt -tatt)e
=00 i,j=1
= —j /oo dt’ i hij(t) fin () az ()™
|
we find

(K, V,.(0)] =: [K, id,(6)]e"® := —i /_OO dt € fu(t)ha;(t)a;(t)e® ;.

(2.76)
Thus h;; can be found from the equations
— , smh
; Jor(t)ha; (1) = th o Z fir () hij () : (2.77)
Solving these equations one gets
ol e g hu(t) = hig(t), i<, (2.78)

2 t .

sinh 57 sinh 7t
It is worth mentioning that the matrix h, with the entries h;;, is inverse to the
matrix f, with the entries f;;, which will be important in computing the form

factors.
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Chapter 3

Composite Operators

3.1 Bound states

Let us recall that a rank-r particle created by a ZF operator A}(@). K = (Biys .« ykp),
1<k <ky<---<k.<N,isabound state of elementary particles AI.J. Thus
the vertex operators Ax can be obtained from the vertex operators Ay, by using
the fusion procedure. We first construct the vertex operators Zx for the bound
states of the twisted S-matrix S(~Y which will be normalised so that they satisfy

the relations

ZKwh+naZJm::—;§?b+cxn. g 0. (3.1)

The vertex operator Ag of a rank-r particle is then given by
Ak =TkZg, Tk =TTk Tk, (3.2)

and the formula (3.1) for Ak takes the form

ilexr
g -0

Aw(8 +im)AL(6) = — +0(1), 6 -0, (3.3)

where I' = I'1)T'y - --T'y. Since IiI'; + ;I = 2m;; with 0 = 055 then for odd
N one can choose the first N —17n;'stobe 1, and 'y = 'y_1I'ny_2---T'; so that

2, =ny = (—1)"%". Then T = 1 and the relation (3.3) takes the usual form. On

39
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the other hand if N is even then I' is not proportional to the identity matrix but
one can choose 7y so that it obeys I'> = 1. To satisfy the form factor axioms one
then should insert under the trace in the form factor formula (1.55) the projection

operator 3(1+T).

3.1.1 Fused vertex operators

It is clear from the ZF algebra (or the S-matrix) that if i # j then Z; and Z; can

form a two-particle bound state because

%S(%) 2mi
ZZ'(81>Z]'(02) = —m (Zl(BQ)ZJ(el) + ZJ(92)21(91>) = SRR 912 — N
18— N .
(3.4)
Let us introduce the following fused vertex operators of rank-r
2k (0) = ) lirn_}0 (Tej41,4) Ly (9;)Zk2 (9;) o Ly, (9;) .
T =2 (3.5)

9; =0+ Z.Ur,2j+1 + €,
where all indices k, are different (if two indices coincide the fused operator van-
ishes), uy = Tk, e = 0 and all €;z = €; — € do not vanish until one takes the

limits. The fused operators satisfy the following relation
Zklmkr(ﬁ) = ll_I;I(lJ 1€ Zkl...kp(g + ’Z'ur_p)kaHka(e — iup + E) : (36)

where p is any integer between 1 and r.

By using the fused vertex operators we can write

1

271
b2 — ¥

Zi(gl)Zj(gg) = Zl](é’) s I 0]' — 0+ iU3_2j : (37)

Note that Z;; = Z;; because the twisted S-matrix has a pole in the symmetric
channel, and moreover the associativity of the ZF algebra implies that a general
rank-r fused operator (3.5) is also symmetric under the exchange of its indices.

It is clear that a two-particle bound state ZF vertex operator is given by
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where AN, is a normalisation constant. The mass of the two-particle bound state
is equal to ms = msinuy/sinu; where m is the mass of elementary particles. It is
not difficult to see that Z; and Zj; with all indices different can also form a bound
state which is a three-particle bound state of the mass m3 = msinug/sinu;, and

the corresponding ZF vertex operator can be defined as

Zijk(0) = N3 Zij1(6) (3.9)
= Ng hr% 1€ ZZ(Q -+ iug)ij(H — z'u1 1= E)
e—

= N3 llr:% 1€ ZU(Q + iul)Zk(O = 7:112 =t E) 5

This procedure can be repeated and one introduces the ZF vertex operator for a

r-particle bound state of mass m, = msinu,/sinu; by the formula
Zip i 0) = N By 2.(9) (3.10)

Since Z, k. is symmetric under the exchange of the indices we can use the canon-
ical ordering k; < ko < --- < k, which also shows that the bound states of the
twisted model are indeed in one-to-one correspondence with the bound states of
the chiral GN model. The normalisation constants N, have to be chosen so that
the bound state ZF vertex operators satisfy the relations (3.1)

i

Zx(0' +im) Z5(0) = No Ny Zx (0 + im) 2%(6) = ]

+0(1), -8,
(3.11)

where K = (ki,...,k,) is a bound state index, and K UK = (1.2,...,N) (after

reordering the indices). It is not difficult to see that N, Ny_, is independent of

K because according to (3.6),

h};% 1€ 21((9 + ZW)Zf(g + 6) = ZlgmN(e i iuk) = Vy = NTNN_T = e

where one has to show that Vy is indeed a constant. The computation of Vy is
outlined in appendix C where it is shown that with our choice of p and p, it is

equal to —1, and therefore in what follows we choose N, =1 for any r.
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3.1.2 Highest weight bound state vertex operators

As was discussed in section 2.2, all vertex operators Zj. for elementary particles can
be obtained from the highest weight vertex operator Z; by acting on it with the
lowering symmetry operators x, . It appears that the same is true for the bound
state vertex operators. Any rank-r vertex operator is generated from the highest

weight vertex operator Z5 ,. Indeed, one has (dropping ie and 6 for clarity)

Dgiptl = D1 p1Zpy1 = L1901 (X:Zr + ZTX:)

= X;Zl..‘r—IZ'r 1= Zl...r—IZTX; = X:er ~+ ZITX; . (313>
It is clear then that Z; ,_y; 41 for j > r is given by

Zy.r-15+1(0) = X;Zl.‘.r—l,j(e) 7 Z14..r—1,j(9)xj_ 3 (3.14)

as desired. To obtain Z; ,_o,,4+1 We act on Z;_,_1,+1 by x,_;. Having found
Z\..r—2,rr+1 We then construct all Z; _,_2,;+1, and then Z; ,_5,41 42, and so on.

The simplest case is provided by rank-(N-1) vertex operators. They are ob-
tained from Zy = Zo.n_1 which is the antiparticle of Zy. Acting on Zy with
Xn_; one creates Zn-1= 7. n—on which is the antiparticle of Zy_;. Then, act-
ing on Zy_; with X v_o One creates Zn—2 = Zy._n—3.n—1.n Which is the antiparticle

of Zn_s, and so on

Zk(e) = X;?k-FI(Q) Al —Z—k+1(6)X; ’ = IV =t Bges ) L (315>

The resulting formula agrees with the one in [34].
The highest weight vertex operators Zi5_, can be simplified to an explicit form
which contains no integrals at all. The derivation is presented in appendix C and

here we just state the result

r—1 r

Z12.2(0) = CnaVi(0), Vin(@) =: [ T V&(6 + ittrss—njr) : . (3.16)

k=0 j=k+1
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Here the normalisation constant C'y, is given by

1

r

Ony = N T SF N=2% (271) 2% = e (3.17)
SNy
Jg=1 N
and the fused vertex operator V() can be written in the usual form
Viry(8) = : €% . (3.18)

where we define new “fused” fields

r—1 2
o dt ;
) =:3 > o0+ ithrpom) : :/ gtf%)(l‘)em, (3.19)

k=0 j=k+1 -
with “fused” creation operators given by

r—1

h =kt
am(®) =3 e Ll (3.20)

sinh %
k=0

Notice that Vi) = Vy and Vi y_1) = Vi as follows from (2.60, 2.61). The require-
(1) ( )

ment that the fused vertex operator Z;s n is the constant Cx y = Vy = —1, or
equivalently V(ny = 1, leads to the relation (2.60) between ay and aj which can be
imposed because it is consistent with the commutation relations (2.36) between

a,. For the highest weight vertex operator Zy the formula also simplifies

Zn(0) =Cnn-1Vn(8), (3.21)
where
=1 1 7 ]\7 —1
Cnnoy = —€V 3> N3 (—27)~VNT <—N ) . (3.22)

This concludes the construction of the free field representation of the extended
ZF algebra, and now we turn to the determination of operators A representing

local operators of the chiral GN model.
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3.2 Local operators

In this section we construct a large set of operators which commute with the ZF
vertex operators, and can be used to generate form factors of local operators of the
chiral GN model. The consideration generalises the one in [11] where the N = 2

case was discussed in detail.

3.2.1 Primed ZF operators

We follow [11] and introduce auxiliary operators a;“ QL related to a,, @, by

_ 7t

a,(t)=—-e ~au(t), Q,=-Q,. (3.23)

m

The commutation relations of the operators a:l have the form

(@,(8), a(¢)] = tf1, (8t + ), [a,(D).an(t)] = tf,, (O3t +¢),  (3.24)
where f}, and f;, satisfy the same symmetry relations as f,,(t), and are listed

explicitly in appendix B. We also define the free fields
L0 = T e =il Ly oy M 3.25
GO =Qu+ [ ZSa®e", u=01...N, (3.25)
which satisfy the following relations

(0,(61)0,(02)) = —Ing,, (62 — 61)

(3.26)
(0u(61)8,,(02)) = (6,(61)0,(62)) = —Ing,, (02 — 61),
where the functions can be found in appendix B.2.
The fields ¢, are used to construct the primed vertex operators
1RY —. LidL(6) .
V) = gl (3.27)
and the primed Zj
/ /Y7t / MG | il ,
Z0)=pVi0), ¢ =5 NF, xt=py [ daVi(a),
= (3.28)

Zy(0) = Z,(0) i +xi Zx(0), k=1,...,.N-1,
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where the integration contour C' in yj is determined in the same way as for x; .

Then one gets the following representation

Z]/H_I(H):p,/ dak---/ don
Ck Cl

k (3.29)
x [T g5 (05 = agm) Vo (O)Vi(an) - Vi(ow) -
j=1
where oy = 6 and
s ()_ (// " ))_ l/N - N—l
Gi—15 Q) = Px gj—l,j(a) + gj—l,j(_a = m7 J=0,1,..., .
(3.30)
The integration contour C; runs above the pole of g7_; ;(j_1—a;) at a; = a;_1— %
and below the pole of gf_, ;(a;—a;_1) at a; = a1+ % because g;+1(0) = _;‘e‘l; X
’ ‘ ’ -~
Thus for § € R all the contours coincide with the real line.
The primed operators A} of the GN model are then constructed as
A0) = T.'Z(0), T =TDilihiXi »
waild) = AT -T A48, k=1,....N-1, (8.81)
where 7,7 are the sI(N) algebra raising generators.
Similar to the y, operators, x; satisfy the following properties
XixXm =Xmxe i |k—m|#£1, (3.32)
and
Xt Z,(0) = Z (0)xi unless m=k or m=k+1. (3.33)
Then, for m = k + 1 one finds
X:Zl/¢+1(6) = _ZI,H—I(H)X;:‘ (3.34)

because in the primed case the integration contour in y; runs between the poles,
and the integrand can therefore be symmetrised in the integration variables to

give the result. In addition to these properties there are a number of similar
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mixed relations between primed and unprimed operators. The obvious relations

are

XhXpii = KX 1 XX = =XEaXe s
XiXm = XmXi . i |k—m|>1,
X2 Zm(0) = Zn(0)Xs »  XiZm(8) = Zp(0)xy if m <k,

\EZu(0) = ~ZO)Xi . Xi Zh(6) = ~ZL(O)x; - (3.35)
Then one can show that
i o] = 5 (3.36)

This relation only holds for arbitrary matrix elements of Z;’s and Z;’s but not in
the operator form which is reflected in ~. This is the most important relation,

and together with
[Pufy] =2, [PuZ]=~2,, (3.37)
it can be used to prove that

Xt Zier1 (6) + Zin(OE = Zu(8) . X Zbss (6) + Zinn (O = Zu(6),  (3.38)

Xi Zm(0) = Zn(O)Xi s Xi Z(6) = Z0,(0)x, i m>k+1.

In order to avoid interrupting the discussion here, the proofs of these relations
are postponed until section 3.2.2. A straightforward computation then shows that

the primed ZF operators satisfy the following relations

Z{(61)Z!(62) = S"(612) Z;(02) Z/(61) , (3.39)
/ 912 / / 2 / /
Z(61)Z;(62) = S"(612) _mzjw?)zi(el) + blziv_—g%izi(ez)zj(@l)

(3.40)
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where

F( _%)P(%%_{_-JIV) (3'41)

SO =0/ = rE T8
27 N 27

S"(6) has a pole at § = 27i/N, and a zero at § = —27i/N which cancels the pole

in the brackets of (3.40). Let us introduce the following notation
ol =g+ T 3.42
z (3.42)

Since the ZF relations are regular at 6,5 = —%, the operator product
Z{(O[_])ZJ’-(O[H) is regular too. On the other hand since S”(f) has a pole at § =

27i/N the product Z;-'(H"H])ZJ'-(G[‘}) would have a pole at 6 = @ for any i, j unless
Zy(oNZi(6) = Z(017) Z{(6™) for ¢ ~ 6, (3.43)

because then the expression in the brackets in (3.40) would have a zero at 62 =

27i/N which cancels the pole. To prove this we first notice that
Z(ONz/6H)y =0 for ¢ ~6 (3.44)
because S”(f) has a zero at # = —27i/N. Then
ZU6) 2L, (01 = 2401t Zi6M) = ZL,, (0) Zi(61), (3.45)

and

ZU(67) 2}, »(6™)

= Z{(()[—]) [X;FIZ;H(()[H) e Z;+1(9[+])X;f+l} = Z1{+2(g[—])21{(9[+}) :
because Z! commutes with X?+2- The same proof works for j — 7 > 2.
Writing

R | - 2T
5— + regular, =—
0— = ]

)
(%)

S"(6) = (3.46)

1
N
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we can now find

Z(0")Zi(6)) = —R" 9,Z(6171) Z;(6™) = R" Z{(6)9, Z{(6™)) ,
N
2m1

Zi(0") Z;(61) + Z;(6™) Zi(6)) = —R" = Z;(617)) Z;(6™)
Z£(9[+])Z;(9[']) _ ZJ’,(QH‘])Z{(@[—]) (3.47)
= R"(0oZ/(07)Z}(0™)) — 8 Z;(61)) Z{(61))
= R"(Z;(67)89 Z;(61)) — Z(617)89 Z;(6™)) .
Eqs.(3.43, 3.44) show that a natural analogue of the fused vertex operators

Zy, ..k, in the primed case is

Zi0)= lim Z(69)Z;,(05) - Zi, (65), 65=0—iv, i +e5, (348)

Eip1, i
where the regularisation parameters €; are such that ¢, = 0 and the differences
€jx = €; — €} are non-zero until one takes the limits. The result of this is that the
differences of the rapidities in the normal-ordered product are shifted by €;,1; and
so any poles or zeroes that might appear will be shifted away from these values
until the limits are taken. The evaluation of these poles and zeroes is carried
out in appendix D, where equation (D.3.1) should be interpreted in the same way
as equation (3.48) is here. The primed fused operators are symmetric under the

exchange of their indices (if two indices coincide it vanishes) and satisfy the relation
Ziy. i, (0) = 11_{% leq.“k,,(e - iur—p)lecpH...k,v(g +ilp +€), (3.49)

where p is any integer between 1 and r. Just as it was for Z, j,, any primed fused
operator can be obtained from the lowest weight fused operators Zj, , by acting
on them with the symmetry generators xj .

It is shown in appendix D that the lowest weight primed operators Zj, . can

be also reduced to the following explicit form

r—1

Ziy 0 =Dn, V0, Vi@ =T T[] W0 istrsr—njr) s (3.50)

k=0 j=k+1
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where the normalisation constant Dy, is given by

r—1
Lm,=e—m%FﬁN#cmyﬁﬁ”IIF(L-%), (3.51)
m=1
and the fused primed vertex operator V() = : e?n® . ig given by
/ *dt i6t / —zitl
Py (0) = o am(t)e”,  apy(t) = —e N ap(t). (3.52)

Due to the relation (2.60) between ag and aj, and our choice of p’ and p,, the

fused primed operator Zj,  is just the constant Dy n equal to 1
2.n=Dnn=1. (3.53)

For the rank-(N-1) lowest weight vertex operator, the formula also simplifies to

— 4

Zn=Zj n(0) = DN-N—lv(lN-l)(e) = Dy n-1Vi () . (3.54)
where
¥y(N-=-1) _ _ 1 N-1
e 28 N7 (2m)'® .
Dyn-1 = : (27) (3.55)
T (%)

3.2.2 Proof of relations in previous section

First we check the conjecture [)(,j, XH ~ F). We consider inserting the commu-

tator in the matrix element,

(Ae(0)] [xF X7 ] [Ak(62))

Np;/fﬁ/_wmhmw—aﬂ%qu—thw—aﬁﬂﬂv—m)
8 g

X ik (Y = 8)Gkks1(B = 6)Grr41(B — ) (3.56)

- pi /+ d5/ dYGe—1(0 — 1) gr—1k (Y — 1) g1 (6 — 02) g (Y — 2)
65 Cy

X Grx (0 — V) Gik+1(8 — 8) k1 (B — ),
noting that an insertion of P will leave the matrix element unchanged. Here we
note that a; and as are the integration variables in V;_; and Vj respectively and

that 3 is the integration variable in Vj.;. First, we take the integral in 4. In
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s

the first term we have the poles at § — ~ + % and at 6 — ap — %, and in the

s

second term we have poles at § — v — % and at 6 — ap — 5. The contributions
from the poles in ay cancel. In the remaining terms, we shift the § contour so
that it follows the v contour, which leaves a double integral and the two residue
contributions from shifting the & contour. Then, we integrate with respect to
v. The double integral is zero because the integrand vanishes. The contribution
from the single integral is cancelled by the contribution from the double pole at
O —v— %, Y= a; — ’Nr The only remaining contribution is from the double pole

at 0 = v+ %, v — 6+ % which gives 1. Therefore we have
(A1) X X ] |Ar(82)) = (Ak(61) Ar(82)) = (Ak(61)| Pel Ax(62)) (3.57)
and therefore
bt xi] = P (3.58)
Next, we see that
[P Zs| = 25, [P} =—2Z, (3.59)

follows from the regularized forms of the fields given in Appendix G. The next

equations to check are
X 2k (6) + Zisar (00X = Zu(0) . i Zia(6) + Zis O)xc = Z4(6).  (3.60)
For the first of these, we have

Xy Zerr + ZrniXy = XE X5 Zr + X5 ZeXy + Xz ZeXE + Zexp X3
= Xi Xk Zk — ZkXid X — Xi X Zr + ZuXi X7
e B
=g 7Xk Zk—Zk )\kv)\k
36.12] 2~ 2 i ) i
= Pka = kak
= [ka Zk]

’_‘:‘Zk.
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Similarly, by exchanging y;} and y; and replacing Z; by Z] we can see that

Xk Zrs1 + Zii1Xx = Zp,. The final relations to check are
Xi Zm(0) = Zn(O)X s Xi Zm(0) = Z,(0)x; if m>k+1. (3.62)

Again, we can check one and the other will follow by exchanging x; and x; and
replacing Z by Z;. We have
Xt Zm = % (mXimm1 Xirr (X1 Zrts + ZiaiXia) + )
(X;LXT_H,‘I Y K (XIJ:XI:HZ’CH + X;ZkHXI;H) g )
e (X;Xr_n~1 X2 (_XI:HX:ZHI + (Zk . ZkHX:) Xl:—i—l) e )

B e X1;+2( — Xl (Zk cn Zk+1Xi:)

(- Zeoxd) xmns) + ) (3.63)
=~ (X X1 Xierz (X1 Zes1Xd = Zet1Xd Xewn) + )

= (XmXm—1 *** Xisz (1 Zia1 Xl + ZraiXpr X)) +++)

= (XXt " ** Xz (Wiesa Dot + Bt ) + -~ ) 25

12

ZmX{
as expected.

3.2.3 A and T operators

To discuss the operators A which are used to generate form factors of local op-
erators we need the following algebra of the ZF vertex operators and the primed

operators
Zi(01)Z}(62) = —(—1)% 5" (612) Z}(62) Zi(61) , (3.64)

where
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Obviously, S'(0) has a pole at § = —wi/N, and a zero at § = 7i/N. In addition,

for any 6, S'(#) satisfies the following important relation

ﬁS'(0+2k%) — =1y (3.66)
k=1

The commutation relations (3.43), (3.44) and (3.64) take a simpler form if one

introduces the primed operators for the GN model
AL0) =T7'Z;(0), Ak.x(0)=Ty -T'Z; ;. (6). (3.67)
Then the relations above take the form

Aj(61) AL (0 = — A (617]) A1) (3.68)

A,(gl)A;(HQ) = Sl(elg)A}(gg)‘Ai(91> . (369)

Let us introduce the following operators

N
AL .in (8) = T'A5 (8pr)) - - Ay (6pv)) = T' | | A% (6p@) - (3.70)
a=1
where P is any permutation of 1,2,... N, IV =Ty ---T1, and 0 = 0 — iun_ox41.

Then taking into account (3.66), one concludes that these operators commute with

A; for both N odd and even

Ai(6)AT

Ji...JN

(62) = AL . (62)Ai(61). (3.71)

It is worth mentioning that the indices j, are arbitrary and some of them may
coincide. However, it should be stated that these operators do not satisfy the first
equation of (1.54). The physical operators will appear in the form factors in a

series expansion, see section 4.3. If the permutation P is trivial, P = id then

A

Ji--JN

(0) = €51 - (3.72)

The simplest nontrivial class of the operators Azmj is obtained for a cyclic per-

N

mutation Py = (N — A +1,..., N,1,...,N — X) and Py = Py = id. Taking into
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account (3.48) and (3.67) one finds

P
A (0) = A’

J1eda

(9 + z'uN_,\)A 6 — z'u,\) s (373)

/
jA+1~--jN(

It is clear that the operators A;i___ are not linearly independent. If for a generic

JIN
set of indices ji,...,jny in a permutation P = (py,...,Px—1,Pk,---,Pn) One has

|pk — pr—1| > 2 for some k then by using the ZF algebra for the primed operators

/
Jk—1

4

one can exchange the positions of the operators A iy

and A} and express A

as a linear combination of Aﬁ’_“j with P’ = (p1, ..., Pk, Pk—1,- - -, Pn). This allows

N

one to choose a convenient basis of the operators Aﬁij. In a given permutation
P one first moves N to the left either to the first position or to N — 1. Then
one moves N — 1, N to the left either to the first position or to N — 2. Finally
one gets the permutation P’ = (N — A\ +1,..., N,Pn_»,) where Py_,, is a

permutation of 1,..., N — ). Repeating the procedure one eventually gets the

following permutation

PX:({]V—)\l—+‘1,...,JV},{AT_/\1—)‘2+1~"'7]\T_)‘1}*

rel (3.74)
...,{1,....N—Z)\b})’
b=1

which consists of r length A\p sequences of consecutive integers. The corresponding

operators A are then given by

ATX . (0)=T'4,

J1-.JN J1--Jxg

(61) A

A +1--JA1 429

AT

IN=Ap+1--IN

8] (3.75)

— N T P, 3
where 6, = 0 + UN _Ae—25k1 a and Y ;_; A\; = N. These operators are obviously

/

antisymmetric under the exchange of indices in each of the vertex operators A7, .

In addition if one considers a linear combination of Aﬁ_“jN which is anti-
symmetric under the exchange of the indices ji, jrs1,.--,Jk+n for some k and
n then in the permutation P one can always reorder pg,Pri1,---.,Prin SO that

Pk < Pk+1 < +.. < Pr4n. As a result if in the operator (3.75) the right boundary
of the sequence ); and the left boundary of the sequence A;;; lie between the

positions k£ and k + n then these sequences can be united into one sequence of
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length Ay + A3. In what follows we will always consider operators (3.75).

The operators Azij and their products form an overcomplete basis of an

algebra of operators commuting with A; and can be used to generate form factors
of many local operators of the chiral GN model. The local operators however

would have the trivial index 22(O, I) equal to 0.

Another set of interesting operators is

/

T 2
_€a1a2...aNA/ (9_%)89‘4/

R ]V' (1 o Ar41...QN

T, (6) 6+Z), r=1,...,N—1. (3.76)

2

Taking into account the identity (3.66), and the relations (3.69) and (3.72), one

finds
[T:.(8). Ai(B)] = O log s (60 — B) Ai(B), (3.77)
where
4 T - 1
ss@)=15(-0—iugjy1 — =) = , , — . (3.78)
]I_Il o 2 ]r:[1 S (9 + Zu,»_2j+1 -+ 7)

The functions s, are not real unless r = N/2. It might be convenient to take the

following linear combinations of T

T+(9) = Tr(e) + TN-T(H) ) T_(e) = Z(Tr(g) o TN—T(Q)) ) (379)

r

which lead to real functions s*

L B0 4 i g ~ im
s7(0) = (=)™ ,( Bl i ;) , (3.80)
o S (9 =i Wy_9j41 =+ 7)
57(0) = §(~)V : (3.81)

o1 S (0 + it gjpr + F) S (6 + i gji1 — F)
The meaning of the operators T, was discussed in [11]. They are generating func-

tions for the integrals of motion. To describe these, let us focus on one of these

functions, which we will denote I(«). Then, for integrals of motion with spin s,
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I, such that

Ii|lvac) =0,
n (3.82)
Is|Ag, (61) - - - Aq, (0r)) = V(S) Z exp(sbk)|Aq, (61) - - - Aa, (6n))
k=1
with 7(®) constants, the generating function is given by

o) = Z I;exp(—sa), exp(a)— oo,

i (3.83)
Ha)= Z I_sexp(sa), exp(a)—0.

s>0

This gives rise to the requirement (3.77) for 7, and in general for any I(«), which

we now write as
[](a), ‘41-(9)] = Oglog s(a — 0) A;(6) . (3.84)

Futhermore, if for some local operators A(O) we consider its commutator with the

integrals of motions,
O(z,s) = [O(), ] (3.85)

the result, O(z, s), is also a local operator. Due to this, the form factors for the

operator O(z, s) may be found from the form factors of O(r) as

FO@s) (g, ...9,) = z Oa log s(a — Ox)FO@) (01, 0,). (3.86)

al, - ,an
k=1

D

..ix and T, form

Let us finally mention that as in the NV = 2 case the operators A

a quadratic algebra.
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Chapter 4

Form Factors of the Gross-Neveu

Model

4.1 A General Approach to Form Factors

Following [11], we expect that, up to an overall normalisation constant, form fac-

tors of a local operator should be generated by the following functions

AR (N - | R

_ Tre, B+ D) RAV(G;, -, 8) Ar, (6) -+~ Arsy (61)] il
TI',TA [5(1+F}€2MK] .
Here AY(6;,....6;) are linear combinations of the products of k operators AT (¢)
with j = {j1...jn} transforming in an irreducible representation V of su(N)
AV(B o B =) 07 5 ATH(GR)--- AT, (4.2)

and A,y (6;) is a rank-r; bound state vertex operator. These functions are therefore
combinations of traces of the form

Ty, [%(I—FF)P%M(H] ) 1‘4/(9;(1 )(HJ 1oy 44 )]
Try, [2(1 + I)e2miK] ’

(4.3)

where Z] ym; =M = kN and Z] ym; =M = 3" r; are the total numbers

of A} and A; operators. Such a trace does not vanish only if m; and m/ satisfy

57



58 CHAPTER 4 FORM FACTORS OF THE GROSS-NEVEU MODEL

the following selection rules
m;—m; =71, M—M =rN for some integer r. (4.4)

This formula shows that if A transforms in the fundamental representation of
su(N), then A’ transforms in the antifundamental representation, and the form
factor vanishes unless a decomposition of the product of all A and A’ into irre-
ducible representations of su(N) contains a singlet, which is a natural requirement.
Since Ay = I'xZy, one can also see from (4.4) that up to a sign (4.3) is equal to

A [ QHK(HJ 3 e 1Z/ >(H7 a2 Z )]

i [62” Kl (43)

The selection rules (4.4) just follow from the requirement that the product of all
Z and Z' does not depend on the zero mode operators @),,. A careful derivation of
(4.4) would employ an explicit ultraviolet regularisation of the free fields similar to
the one used in [11]. This is done in appendix G where the rules (4.4) are derived.

It is thus clear that the functions (4.1) are combinations of multiple integrals

with integrands of the form

Ry (@ 0plBy, - By) = (Vi () -+ Vi (00)Vi, (Bg) -+ Vi (B))), (4.6)

where the sets {a},...,a,} and {61, ..., 5,} contain ¢ - and 6, -related rapidities
respectively, and for any operator W acting in 7, we define

() = TT[[VT 1 @)

It is shown in section 4.2 that for any operator W which is the product of free field

exponents
W = Un(0,)---Ur(61), U;(0) =: 9@ .= i ) ¢is](0) (4.8)
one obtains ((W)) by applying Wick’s theorem

({(Un(6n) - - H CU H GU v, (0 g;), (4.9)

i>k
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where

Cu, = ((U;(6)))) = exp (- ({67 (0)¢] (0)))) , (4.10)

Gu,u, (0 — 0;) = exp (= ((¢;(6;)0x(6k)))) - (4.11)

The constants Cy,, Cy,, and the functions G, = Gy,v,, o = Gv,v, and =
GV,QV.,’ are computed in section 4.2.
The integration contours in (4.1) are chosen in the same way as for the vacuum

expectation values
(O[AY (8, - - - ,61) A, (6n) - - - Argy (61)]0) (4.12)

that is the integration contour C' in in runs from Rea = —oo0 to Rea = 400
and it lies above all poles of gi,-functions due to operators to the right of xf but
below all poles due to operators to the left of )\f. Gyy-functions however have
more poles, and in addition to this rule one also requires that the contour C is in

the simply-connected region which contains all the poles of gx, but no other poles

of ka.

4.2 Traces of vertex operators

4.2.1 General formula

We want to compute traces of products of vertex operators defined as
V(0) =: exp(id(6)) :, (4.13)
where ¢(f) is a linear combination of the independent oscillators a;(t)

¢(9):/_OO @ci(t) ai(t)eif’f:/ooodtd,-(t) a,-,(t)+/ooodt al(®)Bi(t),  (4.14)

o it

with the coefficients given by

a;(t) = %ci(t)eim, Bi(t) = —=ci(—t)e™™®  al(t) = a;(—1). (4.15)
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It is sufficient to understand how to compute

P |
Trr (exp(2miK)V(0) . K =i /0 dt " hy(t)al(t)ay(t) . (4.16)

ij=1
where F is the Fock space where a;(t) act. It is not difficult to show that if one

has one set of oscillators a, a such that
[a.a'l]=1, K=iha'a, V() = exp(i¢):, ¢=aa+ap, (4.17)

then the trace of the normal-ordered exponential of ¢ is given by

TiK 3 1 dﬁ
Trp e2™X : exp(i¢) : = T o2k oXP <1 ~ ezﬂh) : (4.18)

Proof of this is given in appendix F. We want to generalise the formula to the
case of several coupled oscillators, and we can drop the t-dependence because the

commutation relations are ultra-local in t. So we consider
(@i, a;] = fi, K=ihy aja]- , V(0) =:exp(i¢):, d=a&;a;+a]B;, (4.19)

where f;; = f;; and h;; = hy;, that is the matrices f and h are hermitian. Since f

is hermitian it can be diagonalised with a unitary matrix U
va(]Jr = D2, D,‘]‘ = dj(sjj g dj >0, (420)

with the oscillators transforming into a new basis b = Ua. b' = a'U!. The new

oscillators satisfy the relations
[b:;,b]) = d?6;;, K =ibl(URUY);;b;, ¢ = (Ui b+ bl(UB);. (4.21)

We then rescale b; to get the canonical commutation relations for another set of

oscillators

7 1

bi = diCi 3 bJr = diCJ~r 5 [Ci, C;] = 51'j 5 (422)
which now results in an altered form of the hamiltonian and fields

K =icl(DUN'D)ijc;, ¢ = (aU'D);c;+ c/(DUB);. (4.23)
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The matrix DUAUTD is obviously hermitian and can be diagonalised with a uni-

tary matrix W
DURU'D = WIQW, Qi = ¢idi;, (4.24)
and introducing the new oscillators A = We, A = ¢'WT one gets
(A, Al =06, K=iqAlA;, ¢=(aU'DW'); A; + A{(WDUB);, (4.25)

and therefore in the same way as we found (4.18), we can now write

T 2miK | SN 1 d;ﬁf 4.26
I'rp € 5 eXp(l¢) L= H 1____9T7Tq1 exp m y ( . )
where the new coefficients are

& = (aU'DW");, B = (WDURB);. (4.27)

Formula (4.26) can be brought to the form

1 1 1
2miK | (4 e e .
Trr e : exp(ig) : = det(1 = o277} exp (OzZ (fl — e2vrhf> ‘ﬂ]> . (4.28)

There is also a useful identity

1 1
fl _ e2nhf 1_627rfhf'

Fortunately, thanks to (2.77), fh = t, where we take into account that the ac-
tual commutation relations are [a;(t), a}(t’)] = tf;;6(t —t'). Thus introducing the

integral over t one gets

Trr (exp(2miK)V (0)) . &t tfi;(t) Bi(t)
Trr (exp(2miK)) =l (/0 d 1 — eg2nt ) : (4.30)

This formula agrees with the prescription in [18]. To show this let’s consider the

case of two vertex operators,

Trr (exp(2miK) Vi Vs) | (4.31)



62 CHAPTER 4 FORM FACTORS OF THE GROSS-NEVEU MODEL

where the vertex operators are given by

Vi =: exp(idy) :, <;’>k=/0oo dtal® (t) ai(t)+/ooodt ad@®sP ). (432

Normal-ordering these two vertex operators will give us

ViVa = g12: Vilh:, g12 = exp (— / dta; () ¢ (1) 6§2’(t>> . (433)
0
and the trace will become
Trp (exp(2miK)ViV3)
ety @ tfa0 oYy Y
ai(t) tfi;(t) B
— exp ( | (-aﬁ%) () B () + )) ,
A =
where the new coefficients are now given by
s=a"+a?, Bit)=8"+p7. (4.35)
We can write this as
Trr (exp(2miK)V1V5)
= ] . 4.36
Trr (exp(27iK)) RISRE ( )
with the constants given by
211 /k
Cp = Trr (exp(2miK) Vi) (4.37)

Trr (exp(27iK))

and the remaining function as

00 ~(1) - (2) ~(2) o) (1)
s exp (_ / dt (ai (£)t£4(8) B (1) & () fs(t) By <t>>> , g

= e—27rt i €Q7rt

We can look at skipping the intermediate steps of this process by introducing the

traces of the oscillators
, tiall) .
(fas(yont)) = <2500 4 1), (4.39)

which give us the following traces for vertex operators

((@1@2» = — log G12 ‘ (4.40)
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4.2.2 Traces of single V’s

To compute the traces of V,, and V/i we note that the coefficients in the expansion

of the fields are

s 10t . ,—10t

au(t) = a,(t) = e Bu(t) = B,(t) = ot (4.41)
and therefore from (4.30) one gets
_ Tre (exp(2miK)V,(8) ® dt fult)
Cu= Trr (exp(2miK)) e (/0 e 62"t> ’ (4.42)

and a similar formula for V' with the obvious replacement f — f'.
Computing the integrals, using here and below the integrals given in section

B.2.1 of appendix B, one gets the following constants

log C; = —logl' (1 - l) = o <~}; = 1) o log](\?ﬂ') y

N ,
1 4.43
(771 (2r) ¥ (443)
=
(%)
for the vertex operators V; and for both 1, and Vx we get
3 1 Y(N —1)?
1 =] r=1—— —
Hpth =l 5N T3NZT 2N?
1-N 1
S gl (2 —~ 7\7> (4.44)
1 1 1
(-2)
+(—2—]\E+7\—7—1>10g(2ﬂ')+1]) (2_ﬁ> §
where 1(=? (2) is a polygamma function, given by
WD (2) = / dtlogl (t) . (4.45)
0

Similarly, the primed vertex operators can be inserted in (4.30). For V] we find

’Y(—%—l) o)~ 1/N
CJ/‘ =2 N(+17r) ,
[

(4.46)
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and likewise for V{ or V}; we get the constant

3,
log G = —7(N 1)— ! +< ! +1>10g(27r)—

2N? 2N? 2=~ 2 2N

(-2 1Y  log(T(1+5))
(0 (1+ )t o : (4.47)

4.2.3 Traces of V,V, and functions G,

To compute the traces of two vertex operators, we use (4.36) and (4.38) which

takes the form

G (B2 = B1) = exp (= ((8u(B81)6u(B2)))) - (4.48)

This can be written in a convenient integral form

Cdt fu(t) :
(B) = _ [T = | t) , 4.4
G (B) = exp ( /0 T o op O (B + im) (4.49)
Written in this form, it becomes apparent that these functions satisfy the relations
i G ]/(—8)
G v B—2nt) =G v '"‘H 3 S v IH =t 3 4.50
M (/ ) H ( ) H ( ) G#y(ﬁ) ( )

which are necessary to satisfy the form factor axioms. This is explained in appendix

A.

Computing the functions, and in each case extracting a constant, we get the

following representations

® dtsinh X=lrt o t ift
Goo(B) = Coo exp ( 7 2/ TWRW sinh? (% = %) ) :
0 Sin n
; % dtsinh ¥=lat Tt ift
R (2/ e sl e B e
0

. ® diginh £=tqt . 7t  ift
Giol®) = Clpesp (-2 [~ T e % s (T - 210,

o t sinh?mt
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with the constants that appear given by

dt sinh X171t ..
G = exp ([ HEDIET )
Jo

t sinh®7t
N—-1_5 N—l_l l_l
o 9°NT "1z NZ r 3 1\¥ e(N_1)1(VN+-y—1)+2w(_z)(%__117)
A3 2 N ’

, ( /°° dt sinh 2=t )
= ex ——e
e 5 smh2 7t

l-%
3 (N—l sec LN)> o 72D (3 ) 426D (3)

*° dt sinh N "
e
t sinh®#t

2
12 .
N s =
7'7\;17 Tif‘-H]:1 (—; 1 > efl(N—Nzl‘)il‘QU/‘( D(i+d) .

Oy ==8Xp (
0

1 1
= A32n2 N7

mL.

These constants correspond to a special point of the functions, where the cos term
vanishes in (4.49) at 8 = —im. In other words, Cypy = Goo(—im), etc. The integral

representations are well-defined for

Go(f): —-2r<Im(B8)<0 and N>1,
/ . T ™ -
oolB) : N 27 < Im(B) < N and N >1, (4.53)
7 : 27 2m
200 : N~ 27 < Im(p) < N and N >1.
Note that Goo(8) = Gyn(B), Gyo(B) = Gyn(B), and Gy (8) = Gy n(B). Similarly,

one can get the following representations

¢ Jt sinh & o [Tt 1Bt
G =Cone (—2/ — Neﬁs'nh2<———)>,
ov(B) cilaes o tsinh®7t : 2 2

’ , © dt sinh & nt it _
ON(ﬁ) = CON exXp <2/ 75inh2 zf SlIlh2 (‘? — —-2—)> R (404)
0 :

© gt sinh &, £ 151
on(B) = gNexp<—2/ s.m N % ginh? <%_E§_>>
0

t sinh? 7t
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with the constants given by

Con = ex (— / — N eﬁ>
oN B o t sinh?nt

—2/N
= (2m)FHID (Nz; 1) ooy (X5

%0 4t ginh I
CON e arlg ( T sinh? rt>

1 YN . 1 - 1
-(r (1 v T (g e,
( / dt Slnh ut _,,_t>
o P 0 Kl smh2 7t

_2/N
e (1e ) SRR,
d

5

(4.55)

Again, we see that Cony = Gon(—i7), etc. The integral representations are well-

defined for
2 27
Gon(B) : N”—?wdm(@) <W—A—T,
n(B): =31+ 7 <Im(B) <7 — % and N>1, (4.56)
Gony(B): —=3r<Im(B)<m and N >1.

The remaining functions can be computed exactly. The first set of these is

i 4% HeF 1 %2 sinh ( )

Gj;i(B) = - .
F(E— 3+ 0T &%)
1
Gj;(8) = , 4.57
55) = 3 cos () = cosh(8) (4.57)
G (8) = Z'Ze %(gﬂ) ¥ sinh (£)
< T R A R
where the integral representations are well-defined for
27 27
Gj;(8) : o 2m < Im(B) < T and N > 2,
G (B) : T _or< Im(B) < LBl B I, (4.58)

i N N

Gi;(B): —2mr<Im(B) <0 and N >0.
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Finally, we have
a8 1 i1
Gn(@) =R (- L - Lanr(2- 1),
G’ j+1(B) = 2isinh (g) ; (4.59)

1 ; 1 81
G". _eWamnt-r (-8 i [
NH(ﬁ) "N (2m)w < 27r+2N+1 27r+2N )

where the integral representations are well-defined for

Gji+1(8) : % — 27 <Im(B) < —% and N >1,

G)1(B): —2m<Im(B)<0 and N >0, (4.60)
1" ™ T
Gj7j+1(%9) : T 2n < Im(B) < N and N > 0.

From these explicit expressions, we can see that the functions satisfy the following
identities

Goo(B — iu1)Gon (B + tun—_1) = Gml(ﬂ) = Goo(B + 1u1)Gon (8 — tun—1), (4.61)

1
Go1(B8+uy_2)’

Goo(ﬁ + iuN_l)GON(B = iul) = (462)

1

Corlf—om )’ (4.63)

Goo( — iun-1)Gon (B + 1uy) =

and G’ and G” functions obey the same identities too.

4.2.4 Traces of V; ,V; s and functions G,

To compute the traces involving fused operators, we use (4.36) and (4.38) which

takes the form

Gi.r1..5(B2 — B1) = exp ( - <<¢1...r(51)¢1‘..s(ﬂ2)>>) ) (4-64)

and therefore we can write them in the convenient form

*“d T I . =
G1.r1..5(8) = exp ( - /0 —;flsﬁﬂ_it) cos (B + im) t) : (4.65)
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Unlike in the previous section, we do not extract the constant and leave the integral

representation in its original form. The trace over two fused operators results in

mt(N—s)

® d¢ sinh T ginh "2,
Gi.r1..5(8) =exp (—/ WA NN R cos(5+z‘7r)t> :
0

t  sinh® rtsinh ”ﬁt

wt(N—s)

* dt sinh Z sinh ™~
Gl.ra.s(B) =exp (/ ol N__ cos(8 + iﬂ)t) )
0

t  sinh®rtsinh %t

(4.66)

wt(N—s)

Gl.r1.s(B) =exp (‘/ il M N__e~w coS(ﬁ-i—i?r)t) )
0

t  sinh® rtsinh th
for s>r.

The ranges for which these integral representation are well-defined is as follows

(N >1):
Gr.r1.8(8): —2w— @Z < Im(B) < (r _\75)77 ’
@ (T - S)W T (T‘ — S)?T
i b): —2m— - - 4.67
Gl...r;l...s(ﬁ) . 2r N N < Im(/ﬁ’) < N w7 ( )
4 27 (T - S>7T ; 2T (T‘ — 5)7r
Gl...r:l...s(ﬁ) : — 27 — 7 == ;7\7 < Inl(ﬁ) < N‘ 7\7

Note that these formulae include the cases r = 1 and s = 1, which gives the highest

weight particle of rank 1. Some particular cases of interest are

© gt sinh =2
Go..s(8) = exp (-/ —— cos(fB +im)t | ,
0

t  sinh®7t

% d sinh THZ=2) ,
6;1_“5(ﬁ) = exp (/ —t_sul—hz;i— COS(B + ZT(')t y (468)
0
oo dt Slnh Wt(N—S) - .
g;l...s(ﬁ) = exp <_/ TSITQJ;te N COS(B =+ Z7T)t )
0

for » = 1 which gives the elementary particle with index 0 and

* gt sih 3 o,
G1.mn(B) = exp (—/ dfsm—]veW cos(f5 + i7r)t> '
0

t sinh? 7t

oo inh ™
L (B = exp ( / Lamen cos([)’—+—i7r)f> : (4.69)
’ o T sinh”7t

= dt i h 7T_t7‘ nt
1.rn(B) = exp <—/ Me_ﬁ cos(B + z'7r)t> :
0

t sinh? 7t
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for s = N — 1 which gives the the fused rank N — 1 particle, which takes index N.

For the remaining traces of fused particles with V;, we find

Gra.-(B) = exp (/Ooo . e™ cos(8 + i7r)t> :

't sinh 7t
; *dt 1 )
@) =exp (= [ F o cos(+me) (4.70)
. *dt 1 it _
r1..+(B) = exp (/0 ~ smhatt cos(8 + zw)t) .

Remarkably, we find a relationship with the functions G j;+1:

Gr;l.“r(ﬁ) = Gr.r+l(6) s
G;lr(ﬁ) == G:',r%—l(ﬁ) ) (471)

G:'/;l...r(ﬁ) = G:"I,r+l(.ﬁ) ;
4.3 Form factors of the current operators

It is clear from the SU(2) result [11] that a linear combination of the operators

Aﬁhmw (a) should generate form factors of the current operators J:=*. The su(N)
symmetry obviously tells us that it should be proportional to a linear combination

Of Ejl'--jN—lkAp

iv.ijn_, (@) where one inserts the index ¢ in the sequence j;...jn-1 at

some position A. According to the discussion in section 3.2 there are three relevant
types of permutations, and therefore three types of operators to be considered. The

first type is

F/ Eu 5
Ji-JN-ak Al (a+iuy_y)A

AP,\Z" - L
{0 = I — e

a—dy), (A7)

/
jAij—l(

where Py=(N-X+1,...,N,1,.... N—XA)and A=1,...,N —1. Then

I’ Evegn—ik / .
A’ (Q/+ZUN~)\+1)A

APO) = iV = e

a—iuy_q), (4.73)

Vi
J'A~--j1~*—1i(

where Py_1=(N—-X+2,...,N,1,.... N=X+1)and A =2,.... N. Finally

A Fréy s
AP’\_“Z(OZ) _ J1--jN-1k A (CY £ iuN-A+1)

X A:(a + ’iU]\r_g)\_l)_A

Vi .
daodn—a (O =)
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where Py_11=(N—-X+2,.... NN—-X+1,1,.... N—X)and A=2,...,N—1.
Strictly speaking one should consider only the traceless parts of the operators.

We propose that form factors of the current operators Jkii are generated either

by
AP (@) = TR Chednak gt 4 gy 1) A (a — iuy) (4.75)
k - (]\r . 1)! { N—1)291 fniea 1/ g
or by
APN—li = F/ Ejl---.jN-lk 4/ . 4/ . 4 76
(@) = W jl...jN_l(a + duy ) Aj(o — dun—1) - (4.76)

All operators of these types can be obtained from the relevant highest weight

operators
AP k(@) = ') (a + iun—1) A}y (o = iw) e
= Dyn1I"Al(a+ iuy_1)Ay(a — i),
and
APN () = T AL v (0 + i) Af (o — dun 1)
(4.78)

= Dy n1"Ay(a + i) Al (o — iuy_y),

by acting on them with the lowering 7, operators.
Computing the simplest nontrivial form factors generated by these operators

one finds

FP(albr,62) = ((AP}(a) An(82)A41(61))) (4.79)
= (-1)" 'Dyn-1Cnp
X (Vo + un—1) V(e — iur) Viv(62) Vo (61)))
= (-1)"'Dyn-1Cnn-1C,CyCoCn
X Gon (—im)Gon (61 — 62)
X Goo(1 — a — iun_1)Gon (61 — o + uy)

X GE)O(QQ —a+ iul)GloN((92 - — iu]\,r_l) :
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Taking into account the identities (4.61-4.63) and (4.59), one obtains

Gon (01 — 0s)
"1 4 sinh 3(61 —a —iuy_y)sinh $(6 — a) ’

FP(alby,0:) = (-1)N (4.80)

where
N}'l = DN’N_lcN’N_1C(I)CJ/VC()CNG8N(—iﬁ) 8 (481)

According to [11] form factors are generated by expanding F7* in powers of e=®

FPr(al6r,02) =D e F7(6y,60),

s=1

- (4.82)
FP albh,62) = Y e FT(61,62).

s=—00
This expansion is necessary, because as mentioned in section 3.2.3, the operator
representations that give rise to the generating functions (4.79) produce represen-
tations of operators that do not satisfy the first equation in (1.54). However, each
individual term in the expansion satisfies the condition due the fact that (2.63) can
be extended to primed fields and hence to the operators constructed from these

—S8x

fields, and also the fact that the expansion contains exponential terms e *® rather
than the sinh functions that appear in (4.80). As a result, the operator for a given
spin s, which comes from the expansion (4.82) satisfies the condition. Then the
form factors of the components Jﬁl of the current operators are proportional to

F7 (8,.65), respectively. Explicitly one finds

in(N=2) 61469

FLi(01,02) = (~)V Npe"2v e 2 Gon(bh — ), s==1, (4.83)

which up to a constant is the same as in [3, 10].

On the other hand the operator AP~¥-1} (a) leads to

FPN-1(a|6;,0;) = ((APV-11(a) An(62)A1(6,))) (4.84)
Gon (01 — 62)
714 sinh 5(01 — o+ iuy_y) sinh 5 (6 — @) ’
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and its expansion in powers of e*® produces

in(N—2) 6

FPN-1(6,,60,) = NflesTesJ%& Gon (01 — 62), s= =1, (4.85)

which up to a constant agrees with (4.83). It is thus reasonable to expect that
both APt} and AP¥-1}; generate form factors of the current operators Jx!. This
is the key result for this thesis and [28], since the agreement with the findings
of the authors of [3, 10] confirms that the free field representation produces the
correct form factors. The constant that appears is the result of a combination
of normal-ordering, traces over single vertex operators, and a contribution from
taking the trace of the two vertex operators that appear in A”'} (a). However,
this is not guaranteed to be the correct normalisation for the form factor since the
form factor axioms provide no way to determine this. Other methods are necessary
to calculate the normalisation.

Let us also mention that the SU(N) symmetry of the model allows one to
express the traces of any operator A1 (a) (or AP¥-1i(a)) in terms of those of the
highest weight operator A”'} (a). In particular one gets the following formula for

the functions generating the particle-antiparticle form factors
((API;.C(OA) Al(92>A](01)>> = c)}jékl Fpl (al@l. 92) s (486)

The SU(N) symmetry of the traces of operators AY(6,...,6;) with the ZF op-
erators follows from the fact that the identities (3.38) also hold under the traces
of products of these operators. Indeed, concentrating for definiteness on the first

identity in (3.38), one can see that it is sufficient to show that under the trace

[[X;-—H ) X;+1] ) VJ(Q)] ~ V;(6). (4.87)

The relevant part in the trace comes from

J+2 ™ J+2 nu—0u;

(@ (TII1VvE) (I1 T1 Vo). s9

pu=j k=1 p=j k=1

where we assume without loss of generality that V;(6) is located to the right of all
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the other V’s. Then, replacing it with the left hand side of (4.87), one gets that

the following identity should hold

L+l-=1, (4.89)
where
Iy = / daZ,, (4.90)
Ct
with
Ii = :i:piC’lC'Ri
/ 7.
(G].7+1(9 :F Z\I)G%]'*'l(e i a)
; T
G7J+1( o N 0)Gjj+1(a — 9))
Jj+2 nu (491)
x [11IG (e g o=l ]
pu=j k=1
JH+2 nu—0y;
g H H G, J*l(O == Ou.k)Gu,jH(ﬂ - ep..k) 3
u=j k=1
and
2 / / s
Ry =F2miRes Gy ja(a —a )la/:ai% = SnZ (4.92)
N

The constants Cy and C] are given by (4.43) and (4.46). The integration contour

C runs above 6+ 3 T and below Bk while C_ runs below 6 — 7 and 0, — %

]\ )
It is not difficult to check that all the poles of the integrand Z, lie below C., while
all the poles in Z_ lie above C_. Moreover, if n/, and n,, satisfy the selection rules,

then one finds that at large

. - F +Im(a) >0, a— oo, (4.93)

omia’

and therefore the principal value prescription gives

L = (4.94)

1
9 )

as required. This completes the proof of the SU(N) symmetry of the traces of
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operators AY(6;,....,67).



Chapter 5

Looking Ahead

One of the issues not addressed by the previous considerations is how to use the free
field representation on a model that has an algebra structure that is the direct sum
of two Lie algebras. The only previously known bosonisation for such a situation is
for the two-parameter family of integrable models [18]. Unfortunately, this is very
model specific and so would have to be redesigned in order to apply to another
model. Below, we outline some of the issues that these models give rise to, with
the examples of the Principal Chiral Field (PCF) model and AdSs x S° superstring

sigma model.

5.1 Models with underlying direct sum Lie alge-
bra structure

Before discussing the problems encountered in these models, first let us give the

S-matrices of the models.

5.1.1 Principal Chiral Field Model

The S-matrix of the SU(N) Principal Chiral Field model is given by
R(0 R(0
bl = 5o(8) (6)

211 2mi ?
0—% 0-%

(5.1)

Sl?(g) = XCDD(H) ’ 50(9)

75
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F(ﬁ)F(i - ﬁ) sinh (Q+i—’r)
50(9) = 27; - 27; ) Xcpp (8) = _——lh]—\/— (52)
=) T+ 2 : ;

where the standard SU(N) R-matrix is R(f) = 6 — %P and P is the permutation

operator which exchanges the spins of the scattering particles. The details of the
S-matrix properties and structure can be found in [13], [30], and [42]. Note that
in the case N = 2, the scalar CDD factor is simply —1. As a result, the SU(2)

case has the S-matrix,

Sua6) = ~So(0) 7 @ Sulb) 5y = ~SHO ®SFO), (59
_ M@ TG-%) i
POTTEgT RS e

The PCF S-matrix contains two copies of the GN S-matrix in a tensor product,
with the addition of a CDD factor. We also note that the CDD factor may also

be written as

_ssh(8+8) TEPTO-3-2)
XCDD_Sinh(g—%)_F(g_%)r1+%_%). 5

5.1.2 AdS; x S° superstring

The AdS; x S° superstring sigma model is conjectured to be integrable. As a result
it is valid to attempt to treat it in the same manner as the GN model and the
PCF model. The most striking difference is that there is no Lorentz invariance,
and hence some approaches would need to be generalised. This should not, how-
ever, prove too much of a problem as there is the concept of generalised rapidities,
see [25] for details, through which all formulae should be expressible. Also, [26]
has some generalisations for form factors in terms of these generalised rapidities.
For more details of the model, see [25]. In addition, some basic information to
complement what appears here is presented in appendix H. Below, the generalised
rapidity variables are represented by z;. The most convenient sector of the the-

ory to cousider is the su(2) sector, although ultimately all sectors will need to
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considered. The S-matrix of the su(2) sector is given by
o 1 U — Ug — %

5(21’22) = +

B £\2 2
Ty T o(T7,Ty) Ul—uz+g

(5.6)

where o (25, 75) is the dressing phase and the spectral parameters u;, are expressed
in terms of xf as follows

1 1 1 1 1 1

+ —~ + =
uw==(zf+=+z +—_)=a: i e i e e (BT
2(k T]-: k -Tk k = g k ) g

with the z parameters defined by

i - 1 1 21
m—:e’p, m++———m_——=——z, (5.8)
T ot T g

where g is the string tension and p is the momentum of the particle state. We also

use the notation

=17 (%), T, =1 (z). (5.9)

-

In terms of the u-parameters the last term in (5.6) is the same as the S-matrix of
the Heisenberg spin chain. It exhibits a pole at u; — us = —% which corresponds

to a bound state of two fundamental particles from the su(2) sector.

5.1.3 A naive approach

When considering the PCF model, having noted that it contains two copies of the
GN model, we might be tempted to try to build up the free field representation by
writing two free field representations of the GN model, and then find a separate

free field representation for the CDD factor to build up the algebra in the manner
Zic;(0) = Z{(0)Z](6)Vepn(6) - (5.10)

While this can be done in such a way as to satisfy the Zamolodchikov-Faddeev
algebra relations for the highest weight state, this approach will not ultimately be

successful. As was mentioned in section 2.1 in a footnote to equation (2.16), the
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ansatz for the lowering operators defined in (2.16) used for the two GN copies will
not work. It might similarly be tempting in the AdSs; x S® case to try to break
up the S-matrix and apply the free field representation procedure to each part to
make things easier, but this is unlikely to work. Despite this, it is relatively easy
to guess a form of the function ggo that would at least allow the highest weight
Zamolodchikov-Faddeev algebra to be satisfied. For the PCF model. we could
supplement the two GN model copies of goo with
27

.(]CDD(G) = i i
Flete Lig= o)

= 2cosh (g) , (5.11)

which would seem to work until we try to find the lowering operators. Simliarly,
for the AdS5 x S® model, we could try to find the g-function for the entire S-matrix

(5.6) in one go and arrive at

which has the nice properties:

e If z; = 2o = z then u; = uy and g(z,2) = 0. In other words it has a simple

zero at zo — z; = 0 or us — uy = 0.

e It has no zeroes or poles for Im(u; — uy) < 0 except the zero mentioned

above.

However, as for the PCF case, when we consider the lowering operators, we run

into difficulties.

5.1.4 The problems

As mentioned in the previous section, satisfying the Zamolodchikov-Faddeev al-
gebra is relatively easy, even in the case of a model for the direct sum of two Lie

algebras. The much more difficult problem is satisfying the residue condition

CaB

i Z4(02)Zp(61) = ot i

(5.13)



i

This will only be satisfied with an appropriate choice of lowering operators, which
is why the previous comments on the lowering operators are important. If we
consider for a moment the PCF model, we realise that the two copies of the GN
model can both be solved in such a way as to provide a residue condition consistent
with (5.13) for each. However, attempting to remove one of these poles via the
CDD factor will not work, because the conditions on the g-function would not
allow a zero in the upper half plane if we wish to remain consistent with the
requirements of section 2.1. Therefore, in order to make progress here, or indeed
in the AdS; x S® case, we would need to treat the entire S-matrix in one go, rather
than try to build it up from smaller blocks. This is obviously a very challenging
problem to address, and is worthy of further investigation. Hopefully, if the correct
free field representation can be found, the process of finding the form factors should

follow the one given here in a straightforward manner.

5.2 Conclusion

The goal was to develop the free field representation of the chiral SU(N) Gross-
Neveu model. This was done by constructing vertex operators of the fundamental
particles and bound states. These vertex operators contain up to N — 1 integrals
that result from the action of the lowering operators on the highest weight operator.
Despite these integrals, it can be shown that the Zamolodchikov-Faddeev algebra
relations are satisfied and hence these operators are Zamolodchikov-Faddeev op-
erators. Although applied here to the Gross-Neveu model, the general approach
advocated in section 2.1 should provide an outline of how to proceed for other
models. It should be applicable to any two dimensional integrable model invariant
under a simple Lie algebra. The application of this general method in section 2.2
to the Gross-Neveu model shows explicitly how this method works.

Using similar methods, we also constructed a large class of operators, A, com-

muting with the Zamolodchikov-Faddeev operators. These are constructed from a
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related set of vertex operators. The representations of the particles, bound states
and operators are then used to construct generating functions of the form factors
of local operators through the trace formula. In particular, we proposed two op-
erators A which generate the form factors of the current operator. This matched
previous results [9] and [10], where the off-shell Bethe ansatz approach was used
instead. This of course provides support for the success of the free field repre-
sentation found. Finding the correct operator representation that will give rise to
generating functions that contain form factors of the stress-energy tensor remains
an open problem. It would also be interesting to try to establish how the free field
approach is related to the off-shell Bethe ansatz approach. It is not unreasonable
to suspect that there may be a deep connection between the two. Obviously, the
resulting form factors are the same (as they must be), so there should be some
way to understand the correlation between the methods.

In light of the free field approach that was advocated here, and as expanded
upon earlier, further areas of interest might include finding the free field repre-
sentation of the SU(N) Principal Chiral Field model, see section 5.1, which is
closely related to the Gross-Neveu model, and also applying the approach to the
AdS; x S superstring sigma model in the light-cone gauge. For the Principal
Chiral Field model, the main complication is that the model is invariant under the
direct sum of two Lie algebras and the ansatz (2.16) for the lowering symmetry
operators used in the thesis should be modified: a problem that is not immediately
obvious how to resolve. This is an area that might be very fruitful to explore, since
understanding how to deal with this algebra structure would greatly increase the
applicability of the free field representation. As is the case for the Gross-Neveu
model, we would like to be able to identify the form factors of the current operator
and the stress-energy tensor for the Principal Chiral Field model.

Finally, as also mentioned in section 5.1, similar methods should allow the free

field Zamolodchikov-Faddeev algebra representation of the AdSs x S° superstring
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sigma model in the light-cone gauge to be developed. In this case, we would want
to identify the operators A corresponding to the target space fields. As mentioned
earlier, finding form factors for this model is complicated by the fact that their
analytic properties are not known. Since the free field realisation does not require
a full understanding of these properties, it is hoped that this approach may be

able to shed some light on these form factors and their properties.
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Appendix A

Proof of the form factor axioms

Here we give outlines of proofs that the traces in the main text satisfy the form
factor axioms given in section 1.3. Axiom 6 is an immediate consequence of the
functions that we find when computing the traces in section 4.2. Since these
functions are analytic except for simple poles, the axiom follows. The remaining

axioms are discussed in more detail.

A.1 Axiom 1: Watson’s theorem

This axiom, (1.44), can be proven directly from the Zamolodchikov-Faddeev alge-
bra since the S-matrix terms are scalar and will not be affected by the action of

the trace. It is also possible to check that

B0 =830 = %OZE(TTO;)‘ (A.1.1)

which directly checks that for the highest weight states Watson’s theorem is sat-
isfied. Numerical checks can also be carried out for other states that incorporate
lowering operators. Note that unlike the case for Green’s functions, we cannot
perform these integrations analytically using the principal value prescription, so

numerical methods are the only way to perform these checks.

83
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A.2 Axiom 2: Double crossing

This axiom, (1.45), follows easily from the properties of the traces in section 4.2
and from knowledge of the mutual locality index, Q(O, ). We can show it directly

from the trace formula,

Fal,---,an(elw Fi: 7071 i 271—1)
= Trx, ["A(0) Za, (60 + 2mi) -+ Z0, (61)]
= 2" UONTy, ™K Z, (8, + 2m0)A(O) -+ - Zoy (61)]
(A2.1)
= 2Oy (7, (0,) K A(0) Zay_, (Bner) ++ Zar (61)]
- ezma(o,\y)TrWZ [eQwiKA(O)Zan_l(gn_l) com B (91)Zan(9n)]

27O,V
=€ ( )Fan.a1,~~.an_1(6n7917'.' 7071—1)7

using (1.54), the fact! that Z;(8 + ¢) = e ¥ Z;(§)e¢¥, and the cyclicity of the
trace. Alternatively, we can look at the properties of the functions G, .
For the identity operator, this is Q(O,¥) = 0, in which case, all we need to

consider is the fact that
Gulo—2mi) = Gu(—a), (A.2.2)

which ensures that for the identity operator axiom 2 holds, since the change from
a to —a changes the order of the rapidites (and hence particles) in the form factor.
It should be noted that although the form factors of the identity operator should
be zero (which indeed can be checked to be true), it is nonetheless useful to check
the axioms in this case since it is relatively simple to do so. The interpretation of
this is that if we were to insert an operator into the form factor, we would expect
the axioms to be satisfied, and therefore the part of the form factor that only
depends on the particles should satisfy the axioms in the absence of the operator.
It should also be noted that we can always insert the identity operator in any form

factor, and we therefore need to be sure that such an insertion will not break any

IThis can be shown by integrating (1.52) over ¢ around a fixed value of 6.
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of the axioms.

For the current operators, we would expect that Q(O, V) = 1/2, see [11].
Then, considering (4.83), we see that the rapidity appears in both Goy and in
exp (sgiig—el). Since Gy satisfies (A.2.2), the exponential term is the only remain-
ing term which might be affected. Looking at what we have in this case, we only

have two particles, so the axiom should appear as
Fo0,(01,05 — 2mi) = €™ F,, 4,(02,0)) = —Fy, 4,(02,6,). (A.2.3)

The exponential term in the form factor for the left hand side gives

61 + 0y — 2mi 01+ 6
exp (s—l——é—m> = exp(sim) exp (s - _g 2) : (A.2.4)

and for the right hand side is still

exp (sel s 82) ; {A.2.5)

2

The only difference is the factor exp(sim) = —1 since s = £1, which is precisely

what is required. Therefore this axiom also holds for the current operator.

A.3 Axiom 3: The residue condition

Axiom 3, which is the residue condition is given in (1.46). We recall from section

1.3 and from [11] the expression of form factors in terms of the trace,
Fay.on (81, - 100) = Ttx, [eFA(0)Z,,(6,) - - Zay (81)] - (A3.1)

It is convenient to use matrix notations as in [25]. Multiplying (A.3.1) by the row

En @ E*...Q E% one gets

Fio.n(01,...,00) = Trr, [€¥"FA(0)Z,(8,) - - - Z1(61)] (A.3.2)
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where Z = Z;F' is a row, and the subscript shows the location of Z in the tensor

product E @ E® ... ® E%. The ZF algebra in terms of Z takes the form

Z]ZQ = ZQZlSlZ . (A33)
Since Z; satisfy
7 ZCZJ " .
Zi(0)Z;0) = ———F+——+0(1), 0 —=0+ir, (A.3.4)
0 —60—irm
which can be written as
Zl (0 )Zz(e) = —m . (C12 = CiJ‘E & B (A35)

one expects to find a pole in (A.3.2) at, e.g., 0, = 0,1 + im, that is

FlZ...n(el- #erm sy en)
_ R]Q...n—l.n(gls iowi » agn——2~ 9n—1)

911 = 971_1 — T

(A.3.6)
+O(1). 97, —>9n_]+i7\'~

where Rys n_1n(01,...,0,-1) is the residue of Fy_ (61, ..., 6,) at 0, = 6,_, +ir.
Taking Z, 1 and bringing it in front of Z,, one gets

]Flg_'_n<01, 5% Hn)

= 2O, [ KAN(0)Zyo1(On1 + 271) Zn () Lz - - Z1]

(A.3.7)
X Sg-118y-12 S ans
o= ezﬂg(o'q’)FIQ...n,nfl(elw % e ,911- Hn—l e 27‘—i)S71—1.IS71—1.2 e SnAl.n—Z #
Then for 8, ~ 6,_; + im one gets
]FIQ n(gl ----- en) ( )
A.3.8
i /R n,n— 97~-'a9n—79n
= _627”9(0"1) L 1( : : 2 )Sn—l,lsn—1,2 g Sn—l,n—Q c
0, — Op_1 —im
Thus the residues must satisfy the equation
1R12.,.n—1,n(915 "o omiy 071—2» gn—l) (A 3 9)

= —€2WiQ(O'W)R12...n,n—1(01, Ok agn—2a en)Sn—l.ISn—l.Q T Sn—l,'n—Q .
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A solution to this equation can be written in the form

RlZ...nvl,n (917 o 7971,—27 en—l)
(A.3.10)
= IF‘12...71(91, sy 9n—2) (Cn,n—l i 6271’19(0'\1,)((:71_1,715”_1’1 % Sn—l,n—2) 5
if Q(O, V) satisfies e™O¥) = 1 and r is a constant. Let’s show that (A.3.10)

solves (A.3.9). We have

RIZ...n,n—1<91, RO 977.—2, 971)

(A.3.11)
= TF12...n(91-, ceey 9n-—2) (Cn—l,n = 6271’29(0.\11)(Cn,n—lSn,l S Sn,n—2) v
We need to show that
Cn,n—~15n,1 ik Sn,n—‘ZSn—l,lSn—l,Z e Sn—l,n—? = (Cn,n—l . (A312)
This is indeed the case because the crossing equation implies
Cn,n—-lsn,a(iﬂ' = H)Sn—l,a(_g) = (Cn,n—l
(A.3.13)

s Cn,n—lsn.a(”‘— - 9) = Cn.n—-lsn—l,a (9) s

for any a.

A.4 Axiom 4: Bound state residue

Axiom 4 ensures that the bound state form factors are constructed from the fun-
damental particle form factors, (1.47). The process of checking this is very similar
to the process for calculating the bound states given in appendix C. Here we give
an example of the calculation that shows the pole appearing. To simplify matters,
consider a three particle form factor of the unit operator (we won’t worry about

selection rules here since the axioms should apply anyway) of the form
F191(61,62,63), (A.4.1)
with 6 = 0 — 11\—’: +€ 60y =0+ % The integral contains the terms

000(01 = 02)001 (61 = CY)GSI (O/ = 02)G01 (Q = (93) . (A42)
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with a pinched pole at @ = 6, — %= = 6; + *Z. Expanding this around e = 0 gives
the contribution

ie_%(Zﬂ)l_%F (1 — %)2 2mi
Goi | —==
€ N

> Go1(0 — 65) . (A.4.3)
In addition, we also have the contribution from

Goo(01 — 63)Goo(62 — 03) = Goo <9 — 65 — z_7r> Goo (9 — B3+ E)

N N
A44
_ Gousl6—09) -
Gjj1(6 — 63)
which follows from the integral representation
i %8
0 — 03— — f— 63+ —
Goo( 3 N>Goo( 3+N>
> dt sinh %m‘,e% i
— — —_— f—03+ —+im |t
exp < ./o ; Sl o f2 (cos ( 3 N + zr)
+ cos (9—93— %—Fiw) t>>
) (A.4.5)

© dtsinh X=2rte ¥
= g% - ————cos (0 — O3+ im)t
e ( /0 t  sinh7t? ( ’ ¢

nt

sinh 7t

cos (6 — 65 + im) t)

! GO;lQ(e i 03)
Gjj+1(0 —63)’

and we recall the formula (4.70) and we also note that the integral representation

of G;+1(0) is given by

Gl & /oo dt e 6+ in)t (A.4.6)
M p o ¢t sinhwt
As a result, we arrive at
2 _ a2
121(01,62,63) = EFU Fla2)1(0,63), (A.4.7)

where the constant is

4 1) f
ity = —e—%(Qﬂ)l_%F (1 = ——> Goo <—@> . (A.4.8)
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and we note that the bracketed indices (12) denote the bound state. The form

factor of the bound state with the particle for the unit operator is
F(12)1(9., 93) —— Go;lg(e i 93) . (A49)

This example shows how the residue condition is satisfied for this simple case. In
general, it should be noted that the fact the the functions G, contain the same

bound state creating poles as g, ensures that this axiom is satisfied.

A.5 Axiom 5: Relativistic invariance

Axiom 5, (1.49), says that form factors are invariant under a relativistic shift.
Since the S-matrix and the functions G, () depend on rapidity differences, if
the same shift, ¢, is applied to all rapidities, there is clearly no effect on these
functions. For functions G;4; which will contain at most one of these rapidities,
the shift has the effect of shifting the position of the poles, but does not change the
relative positions of poles in different rapidity variables. Therefore, the integration
contour is equivalent and the result is the same. The other contribution is from
the operator. For the identity operator, the spin is zero, and no more work is
needed. For the current operators, we can have spin of s = +1, and the form
factors are given in (4.83). Notice that the only rapidity dependence other than
in Goy appears in the exponential exp (sglgi). Under the shift 6, — 6; + (,

0y — 65 + (, this gives the extra contribution

exp <s(01 9 ; (62 + O) = exp(s () exp <391 ;“ 02) . (A5.1)

The extra term exp(s() is exactly the exponential term that appears in (1.49).
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Appendix B

Various functions

B.1 f4p-functions

Since fap. fig and f/yg satisfy the relations f4g(t) = fpa(t) = fpa(—t) where f4p

is any of the three functions and the indices A, B are either u,v = 0,..., N or

(r), (s)

and fys) withr <sand? >0

oA (Nt
sinh {Y=nt

(1)..., (NN —1), we list only nonvanishing functions f,, with g < v, fi,

fOO(t)sz.N(t)z—.—jv—e_g f]](t>—1+e% ]:17 .,N—‘].,
sinh 7t
(B.1.1)
xt . sinh & .
fijs1®)=—ev, j=0,1,....N—1, fon(t)= Sinh;\tw (B.1.2)
Slnhm 7t mt
t) = - (t) = —b,;eN, j=1....N—-1 B.1.3
f(r)O( ) T eN ; f(r)](t) Or]eN J 17 ) s ( )
sinh T ginh TN=8)

A () = - . —ew B.14
fre(®) sinh 7t sinh ”ﬁt ' ( )
_2mt ’ _mt _
f;’b(z‘,) =& N fult), [lt)=—e"F fult). (B.1.5)

91
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B.2 g,- and S, -functions

Since f,,(t) = fu(t) the functions g, and S, satisfy the same relations g,,(6) =

Guu(0), Suw(0) = S,,(0), and we again list only nontrivial (not equal to 1) functions

(N—=1)(y+log(27)) F % = + 1
goo(0) = gnn(0) = ¥ (2r (ﬁ) ) (B.2.1)
27
9
9:;(8) = —28 <6+%> R L L (B.2.2)
1Y
a1(0) = — = G=01......N=1, B.2:3
95.j+1(0) b+ ) ( )
y+log(2m)
e~ [ (Le— + l)
6 : x__2/ B.2.4
gon () F(%~%\,+%) ( )
& (1’0;) & (N;l _ 6 ‘
Soo(8) = Syn(0) = S(0) = C il 2 B.2.5)
g2 )
0+
S;i+1(0) r j=0,1,...,N—-1, (B.2.7)
sl ol B2
F(_ﬁ_}_l)r ﬁ_L+l)
Son(0) = —O - N . B.2.8
S =y e
The same is true for g,
(N—1)(v-+log(2m) — / 4g
v 7 & N I (% + ].)
9oo(0) = gun(0) = p ) (B.2.9)
T (5 +%)
2T
7 o 2 =
g”(e)——e’YG(H——j\—]—> ) j—].,...,N_]., (B.Q.].O)
i
glia(8) = —97—"—; el . B =i, (B.2.11)
- N
~y+log(2m) i 1 1
" N (E+5y+3)
79 = 7 l 3 B212
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e VenFIr (§ (2 + 4))
1(0) = ghn(6) = Els % B.2.13
gOO() gNN() F(%-—#—}-l) ( )
) (B.2.14)
g,;(0) = ——— —, j=1,...,N-1, 2.14
» (0-%) (0+%)
g;]+1(9) = Z‘e‘ye, ] =O, 1’....,N‘_‘ ].7 (B.2.15)
, e~ (2m)UNT (1 (2= 1 41
gon(0) = N (21( i b L) (B.2.16)
GEF+x+1)
B.2.1 Regularised integrals
Let us introduce the following functions
%2 2 o
Fy(z,a) = —2——7—’y<—2——z> + (2 = 1)logl'(2 — 2)
B
+ —p(2-2) - ‘5 - ;) loga, (B.2.17)
Fi(z,a) = Fy(z+1,a) — Fx(z,a)
| 1 a
= —(z— 5) + logl'(1 — z) — zloga + 3 log (%) : (B.2.18)
where (=% (2) is given by
(72 (2) =/ dtlogl (t) . (B.2.19)
0

The following integrals are useful in computing G, functions and can be expressed

in terms of Fi(z,a)

o0 dt eum.f _ ezat
0
o It ezat
—t_ eat 1 = Fl(z.’a) . (B221)
0 e

> dt
/ ?ez’ = Fi(z24+1,1) = Fi(2,1) = —y — log(-=2) . (B.2.22)
0
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Appendix C

Bound state vertex operators

In this appendix we derive the expressions for the highest weight bound state vertex
operators Zj2_, and the normalisation constants N, and Cy,. For convenience

we will perform the computations for the fused vertex operators Zi, ..

C.1 Rank-2 fused vertex operators Zy,

Consider first 2, (0) =€, (91)Zb (92), a < b, in the limit € — 0 where 6, = 9+%

and Oy =0 — 5 +e=0; — 2”' + € and 6 is arbitrary. We have

Zab((g) = 1€ Za (Ql)Zb(QQ

=z‘ep2/ daa—l"'/ da1/ dﬁb—r“/ dp;
Coa o Cf_l Cf

a—1 b—1
X m—1,m(Qm,m— .

[T g5-1m(om. agg, i Brnet) o1
. Hg]] g]] 1(/8_] 1= j)gj,j+1(5j+1 == O{j)

a—1

b—1
H m a’m HVTL /371 <
n=0

where ap = 0, fo = 07 and a;; = o5 — a5, Bi; = Bi — B;. Since g;;(—27i/N) =0
for 7 > 1 and we have a factor of €, naively (C.1.1) vanishes in the limit € — 0.

The only way this would not happen is if in the limit ¢ — 0 two poles of gg x+1-

95
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functions pinch one of the integration contours in (C.1.1). Let us recall that the

integration contour Cy runs above the pole of g5, _; ,.(Qmm-1) at am = a1 + 57,

and below the pole of g;,_; ,,(Qmm-1) at o, = Q1 — % and above the pole of

Frnin—11Om—1— 0 ) 8t Oy, == [‘}m_l—i-%. Then the integration contour C2 runs above
the pole of g7, 1 ,,(Bmm-1) 8t Bm = Bm-1+ i,\—r‘,, below the pole of g5, ,,(Bmm—1)
iT

at Bm = Bm—1 — %, and below the pole of grm_1.m(Bm — am-1) at Bm = am-1 — 5.

Thus for the contour C{" one gets the poles

s e 7
below Ci] = 91 -+ N’ Res 98,1(011‘0) = —2—7TReS 90.1(010,1) = 57? X
=6+ =0-5+e, Resg(fo—a)=ie”, (C12)
& i . e" 1
above CT' :a1 = 601 — N Res go1(c10) = o Hes goa(a10) = 5

T

and one sees that the poles at #; — 57 and 6, — % + € do pinch the integration

contour Cf in the limit € — 0. Then for the contour Clﬁ one gets the poles at

B g T o T
below Cl B —92+y—91—ﬁ+€.
R e’ i
Res 90.1(51,0) = —Res g1(Bo1) = —,
27 27 C.1.3
B 1T 5 e’ ( o )
above CY :8; = 6, — N’ R9590,1(51,0) = EResgo,l(ﬁl —0,) = o’
i -
pr=06, — N Res go1 (1 — bh) = —ie™”,

i

= and & — % + € again pinch the integration contour Cf.

and the poles at 6; —
Since one of the poles is below and the other is above the integration contour, only
the contribution from one of them should be taken into account. We will always
choose the one which is the pole of g;,_;,, to get rid of one of these functions in
(C.1.1). If a > 1, b > 1 then two integration contours are pinched at the same

time and one has to sum the contributions coming from each of the contours.

Let us now consider a = 1 and compute the integral over #;. If a = 1 then
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there are no integrals over a; and we get
Zlb(e) = 1€ Zl (91)Zb(02)
= ifpg/ dfp—1-- / dB1goo(621)g01 (81 — 61)g5,(Br.0)
Cyy cy

5l b—1 C.1.4)
X Hgi-—l,n(ﬁn,n—l) : %(91) H Vn(ﬂn) : (

n=0
— p2C]1V_2 LB dﬁb—l .../CB

b—1 2

b—1 b—1
dﬂZ H g:rsz—l.n (ﬁn,n 1 % 91 H Vn
si=2 n=0

where we take into account that i€ go o (621)g0.1(621 + %) = {2n) e“%/l“ (%) and

B = 05+ E =6;—% =0in (C.1.4) in the limit ¢ — 0, and introduce the constant
1 =) 1 s . s =
Crs = (QW)NTQ—W—l = hm/ df31 i€ go.o(021)90.1 (81 — 61)g6.1(Bro), (C.1.5)
I'(y) «0Jc

with the integration contour specified above.

In particular for the highest weight fused operator one gets

. i T, .
Z12(6) = Oz : Vol(# + 1)Vo(8 — TIVA(B) = CvaVia)(6) (C.1.6)
2 Y2 N F 2m) T
where Cya = p2C}, = (~1)F 2T

C.2 Rank-3 fused vertex operators Zj,,

Let us now consider Za. (0) = i€; 5€ 2 (91)Z2 (GQ)ZC (93) for 2 < cwith 6; = 9+2f%.,
Oy =60+ ¢, 03 =0 — 2” + ¢, and take the limit ¢; — 0 after using (C.1.6) for

ie1Z1(61) 2y (62)

Z15c(0) = i€ Z15(51) Z(65)

c—1

= pSC]l\Y.Q/ d7c—1 : / dﬂ)l L€ ng 1.7 P)/T"‘ 1)
@7 c?

=1 r=1

X goo(031)900(F32)gor1 (v1 — 01)gor (11 — 62) (C.9.13

X go1(03 — Br)g11(m — B1)gor (2 — 1)
c—1

X Vo(61)Vo(62)Vi(B) T Vo () :.

r=0
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where 3; = 05 + % =60+ % We want to integrate over v; and the relevant terms
in the integrand are
i€ go1(701) 900 (631) 900 (032) go1 (71 — 01)go1 (M1 — 62)go1 (03 — B1)g11 (1 — Br)
4im 2T 3im

= 900(—W)goo(—W)gm(“ﬁ)g&(%l) (C.2.2)

X go1(711 — 01)go1 (M1 — 62)g11 (11 — B) -
The integral over 7, is taken in the same way as the one over (3; in the previous

subsection, and we get that the expression above becomes

AYe
Chagia(—=7 +6). (C2.3)
where we introduce the constant
43 i
C}v.s = Cll\’.2g0.0(__ﬁ‘)gl.0(_7v_)2
. . 4 3 um
= ll_f}% e dm 1€ go,o(— N )91.0(*7\[—‘)90,0(—“]7) (C.2.4)

X go1 (1 — 01)90,1(70,1)go,1 (1 — b2) .
and use that the pole is located at v, = 03 + % =0y — % + €. Since gl’l(—%) =0
we have to take the integral over v, to get a finite result in the limit ¢ — 0. The

relevant terms in the integrand now are

2r
N

/

911\~

+ €)g12(Mn.2)912(72 — B1) (C.2.5)

and the poles are at Yo =11 £ 2 =60, — T + e+ = and 7, = By — & = 6,. Thus

the contour is pinched at v, = 6,, and we get the extra factor

2mel 2w .
CJ2V,3 = N 11_{% 2 dvs 91,1(_‘]—\/-‘ + 6)91,2(71.2)91,2(’72 =il (C.2.6)
where one uses that gu(—%i,—” + €)g12(€e — l—N’i) = %’1 Thus one gets
c—1
Z12e(6) = POk ChaCho [ dreseo [ an[gtoasrams)
g c -
el MU (C.2.7)

x 2 Vo(61)Vo(02)Vo(Ba) Vi (B1) [T Ve () <,

r=1
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where v, = 63 + % =0 - iﬁ”, Yo = 03 = 6. In particular for the highest weight

fused operator one gets

Z123(0)
um 2 T LT
=Cngs: Vo(6+ W)VO(H)VE)(G - W)VI(Q + N)‘/l(g - N)Vz(@) : (C.2.8)
= Cn3sV(3)(0),
where Cn 3 = p3C}\,_2C}v73C§,A3 — (—1)%(337(?&-3)N—%~(2W)2—%;

C.3 Rank-k fused highest weight vertex operator

AN

This pattern continues for the rank-k fused highest weight vertex operator Z;

which contains no integrals at all. So, we consider

Zlg_._k(e) = lim i€1 L 'iEk_l 21 (81)22(62) s s Zk<6k> 5 (C?)l)

€a—0

i )
9]‘ 9+N(k—2]+1)+63,

and we should find that it is equal to

k51 ,
Z12.k(0) = Cnp H H Vo, (65 + %—aj) :

j=1la;=0

. . (C.3.2)
i
= CN.k " H H ‘/.,(9]4- NT) e
r=0 j=r+1
Note that the Vj_; operator only enters as Vi_1(6).
To find Cxx we use induction. Introducing the notation
O =6, + (C.3.3)

N
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we have (ag = Ory1 = O — 2%)

219, kx+1(0)

k
= 1€ ,OCN,k/ day - - / doy H Im-1,m(Qmm-1)
k 1

m=1

X H H gr.r-—l(a/r——l - 9.£‘+T]>gr.r((yr - 9£+ ]>QT r+l(o/r—+—1 6[+T])

r=0 j=r+1
k-1 k k

5% H H VT(HJHT]) H Vol ) ¢ -
r=0 j=r+1 m=0

To integrate over a; it is better to rearrange

k

H H Grir—1(0r—1 = HJHT])Q”(O(T - 9]['+r])gr.r+1(a'r+1 - 9]['+r])

r=0 j*r+1

27 27 3 21
_Hgoo (- k=j+1) Hgm =i+ 2))g00( — 57)

5 H Hgm lm m_e[ m— 1)] H Grmon(Cm — elm]>

m=1j=m j=m+1

H gm-}—l.m(am - 6]['+(m+1)]) :

Thus the integrand for a is

2w

2 3 21
j=1900(—‘— = -1 Hglo ” —J+2))goo(—%)

. (C.3.6)

X go1(a10) H901(C¥1 =) Hg“(al - 9}+1]) ngl(al — 93['+2]) )
J=1 Jj=2

=3

We see that the two poles which pinch the contour are at ay = 6xy1 + % =

Or — ’ﬁ” +e= HL_H +eand a; = 9,[;1] giving the following contribution

N

Crps1911( — N +e€). {037
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where
=1 . k ;
0 A% 3
1 o : .
Crnp1 = Cha Egoo( = W‘(’» =3 & 1))]1:[2901( = —]\7“(’» o b 5))
k—1 k—1
29 1 2
x [[on(-5Fk—i+ ) [[on(-= (k-5 +1)
e N 2 o N
- 2 3
X H901(_W(k el (C.3.8)
j=3
s 2 : 2ir T 3
{ {
=Chaogo( — T(ZA" —1)) ]112900( — W” gmn( = 7\/—(27 -1))
i 21
% [Toul-=r3)-
j=2
Then the integrand for as is
k k
gf2(021) Hg12((}’2 — 8][+1]) H Qg — 9[ H (]32 Yy = 9[+ (C39)
=2 j=3
We see that the two poles which pinch the contour are at ap, = a; + ’A—’r = 8&121] =
Or + € and g = 0 giving the following contribution
23T 23T
CJQ\'.kH 92.2( = + f) o CJQ\'.k—i—l 911( o 7\7 + 6) ’ (C‘3'10)
where
. 2 = 2
Cris1 = Ciis Hglz ~ (k—j+§))Hg2z(*7\,‘(k—j+1))
91=2 7=3
9z7r 3
x H932 —g+ 00 (C.3.11)
pe 2
—CN3g01(——2k 3)) Hgm ]—1)) Hgll(—wjf
j=2

The integral over a,, for m < k—1 is computed in the same way with the pole

at am = Q-1 + iz 9,[:11 - 9[+ ™2 4 ¢ and gives
= um
CRrng1a( = 57+, (C.3.12)
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where
= 217r 217‘
CRis1 = Chis Hgm ’\7 —]+ H ginl— =ik =g+ 1}]
j=m Jj=m+1
. 2im 3
Bl R
X -1712901( N( ] 2))
= . (C.3.13)
i e ' 2
=Crsgn(— 7V—(2k —2m+1 H gor ( (27— 1))
] ke
k—m :
2im
X | (111(*W])
3=2
Form =k —1 and m = k we get
k—1 3um k 2
Chpys = CN3901( - ——) v CNps1=Chs-
N
Thus, the result is
k .
Cni+1 = pCnk H C okt - (C.3.14)
j=1
Computing the product one finds
k
; k- k 1 =
[[Chssr=2re ¥ (2m) ¥ —. (C.3.15)
1 T (%)
The relation above can be easily solved giving the final result
" k(k+1) k 1
Chwpga = g8 (2r)" (e‘%(%)‘W) I e
e (C.3.16)
k41 (k+1)(N—k—1) kg k(2N —k—1) 1
=(=1)F e~ = NI (21)" H :
T (&)
By using the identity
N-1 ,
—1
At VN(@2r)~ 7, (C.3.17)
g=1 (V)



Appendix D

Primed fused operators

In this appendix we derive the expressions for the highest weight fused primed
vertex operators Zj, ,. The derivation almost repeats the one for the highest
weight bound state vertex operators Zy5_, considered in appendix C. It is therefore

unnecessary to repeat the details and only an outline is given.

D.1 Rank-2 fused primed vertex operator 7],

Consider first Z/, () = Z.,(61)Z;(62), a < b, in the limit € — 0 where 6; = — &
and 6, = 0 + % +e=0, + 2—]:”- + € and # is arbitrarv. We notice that the rapidities

here are shifted in the opposite direction when compared to those in appendix C.

/!

- Therefore we will see

In addition, all Green’s functions will be of the type g
900 (B + ¢€) instead of go (-3 + €), etc. The other major difference is that we
don’t have an initial factor of 7e, but instead we have that gfj, (2) = 0. Other
than these differences, the derivation is essentially identical.

With this in mind, let us now calculate the fused primed vertex operator Z, ().

Since a = 1 there are no integrals over a;, and computing the integral over /3; one

103
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gets
Z3,(9)
b—1 b— (D.1.1)
~Dhy [ dBiae [ ) CAMCRRAC H (Bu)
g Cl?—l Cz n=0
where we take into account that gj (621)gf (621 — =) = e~ ¥ (27) "V T (27) and
f1 =10 — % =60+ % in (D.1.1) in the limit ¢ — 0, and introduce the constant
1 7 N -1 . 17 1" s
Dy, = (2m)~Fe~#T (——N——) ~ tim [ a8, g5(0or) g2 (51 — 811355 (Br)
4 €—¥ C
(D.1.2)

with the integration contour specified in the usual way.
In particular for the highest weight fused primed operator one gets

Z/(

T
/'/

/ ! Z
Z15(0) = Dng = Vo(0 — N

TIVI6) = DraViy(6),  (D13)

where Dy o = p?D}, = W%N%(Qﬁ)_%l“ (ﬂ]\’,—l)

D.2 Rank-3 fused primed vertex operators 71,

Let us now consider Z{QC(G) =% (01)Z§ (92)2;(93), 2 et =0—F 9” L0y = 0+€q,
03 = 0 + 2T + ¢, take the limit ¢; — 0 and use (D.1.3) for Z; (OI)Z’ (62). The

relevant poles are at 3; = 0y — % =0-%. =05 =0+3 ” + € and

Yo = 1+ % = #,, which can be used to reduce the expression to

e—1

Z{2c(9) = pl3D11v,2D11v,3D12v,3/C dYe—1 - / dvys Hg:f1,r(’)'r.r—1)
Y cy -
! by I (D.2.1)
x Vg (61)Vy(82) V3 (83)V/ (B HV’ )
with the new constants defined as
4im i
Djlva DNzg — )910( 7\7)
3im Vixis ,
~tiny | (oGP T+ g =) (D22)

X 9018(701)96'1(71 —0,),
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and

. / 2w g "
=lim [ dyeoii(5F +€912M)gia(2 = Br) . (D.2.3)
C

In particular for the highest weight fused primed operator one gets

; ; 2w, ; 20T ., v
Z193(0) = Dngz:V5(8— W)Vb(g)vb(@ 5 7\7)‘/1(9 - N)Vl (6 + N)Vzl(g) 1
= Dus:Viy(6). (D.2.4)

3y(N-3)

where D]\ 3 = psD]lVQD}\ SDNS =€ 2N NZN (271') S/NF (_NW-_Q) r (ﬂ]\;l)

D.3 Rank-k fused highest weight primed vertex
operator Z| ,

This pattern continues for the rank-£ fused highest weight primed vertex operator

Z1. . which contains no integrals at all. So, considering
Ziaal0) = I Z(0)Z4(0) A (60). GERY

0; = 9-]—\[—(k—2j+1)+tfj,

one should find that it is equal to

kE 3-1 k
Z32.4(0) = p* Dy : H H = Dy H H V! (6; — —r
j=1r;=0 r=0j=r+1
(D.3.2)
To find Dy one can use induction. The results are the following:
im 20 20T
P
Dll\l,k+1 ED]lV,Q 9o (7\/:(21; o 1)) HQSO(W])
] e I
B m ke )i (D.3.3)
. e
< [T ot (25 =) T] o2 (54)
: N , N
j=2 j=2
and
for L i 2T

2 — 2 1
Dy = Puso\
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The general case is

T 2 '
DR =Dy 93.1(N(2k —2m+ 1)) 901 ( 2] — 1)) H g4 N ]

For m =k — 1 and m = k we get

i
k-1 _ 2 n k N2
DN,k-+—1 = DN,3 90,1( N ) , DNgs1 = DN,3~

Thus, the result is

k
— 4l J
Dnjg+1=p Dy H Dy i1
Jj=1

Computing the product one finds

_x_ (N—-k
HDA iy = €N (27)"NT <T> .

The relation above can be easily solved giving the final result

k<k+1

Brge = p'k+1( ) Hr( '

_A(k+1)(k=N+1) k+1 k+1)
= e 2N N2~v Hr(l__)

m=1

By using the identity

)

(D.3.4)

(D.3.5)

(D.3.6)

(D.3.7)



Appendix E

Principal value prescription

examples

We now consider examples of using the principal value prescription in calculating
Operator Product Expansions of two separate particle operators, which here we
denote Z;(3). The first of these is the type that appears in the Operator Product
Expansion

Z1(B1) Z2(Ba) = — p*pye 27 g(B2 — 1)

: Vo(B1)Vo(Ba) Vi (eu) - (E.0.1)
dov , ! .
S ETETE G B AT

which contains the most straightforward of the integrals. A useful thing to note is

that integrands of this type decompose as follows

1 L 11
etalcth b—am+a a—bE+h’
I =i . L (E.0.2)
(z+a)(z+b)(xz+¢) (b—a)(c—a)(z+a)
1 1 1 1 | 1

- - ,

(@=b)(c—-b)(z+b) (a—c)(b—c)(z+c)
and so on. Then, after deforming the contour, we see that the various integrands
in (E.0.2) decompose into a linear combination of these integrals with coeflicients

that mirror the residues that we produce when we deform the contours. To see
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this, consider

1 1
B sy sy e Rl Py 5T P
1 1
e e G et @ BE-a L
Res;——c ! = L

(z+a)(z+b(z+c) (a—c)c—D)’
which exactly match the coefficients in the relevant decomposition in (E.0.2). In

general then, we have

1 1 i
™ = R i E.04
[ @+ Z}m S I @ + @) (E0-4)

Therefore, when the integrand is of this form, the residues alone will give the
correct result up to a constant which must be calculated by performing the inte-
grals. Futhermore, it can also be checked that for each integrand that appears in
Operator Product Expansions of vertex operators, such a decomposition can be
made. The full result comes from adding the contribution from the residues (due
to shifting the contour of integration to the real line) to the contribution from the
integration along the real line using principle values.

A slightly more complicated example is

Z1(81)Za(Ba) = ip*pe g8 — B) /C da /C dax

% %(51)‘/0([7’2)‘/1(01)‘/2 02
(a1—52+%) (52—011+ﬁ)( 1—51
1
@+ %) (1 -+ %)

sy (E.0.5)

X

where the oy integrand decomposes easily via the first equality in (E.0.2) to give

< »=£.<a ! o~ ! .\),(E.O.6)

@@ +5) (m-0+5) 2i\a - mi5 @ oth
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which may also be written as

1
(2 —a1+ %) (a1 — a2 + %)
——1 Res ; 1 E.0.7
BTET T o & ey y s - SR G Ll
1 1
Res

a2—>a1+1N—’f (CVQ — O %) (Clq — Q9 + %) '

@y — Qs + Zﬁﬂ
After this decomposition, we may use (2.46) to integrate over a, along the real
axis to get

ﬁ((—737r) — (im)) = =N, (E.0.8)

21

while the contour deformation that took us to the real axis will give the extra

contribution
- 1
QWZ(ReS‘“_"”_% (2—01+F) (—02+5)
1
— R in 4 ' ) ot
€S0y a1 +3F (02 — g + %) (o — s + %) B

Overall therefore, the as integration simply gives a value of —N + 2N = N, and
the remaining integrand over «a; is the same as in Z1(1)Z2(f2). In fact, it is easy
to see that the integrand in the product Z;()Z;(52) for j —i > 1 can always be

easily reduced in this fashion to the integrand in Z;(51)Z;i+1(52).
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Appendix F

Derivation of trace formula

In this appendix we prove formula (4.18) which shows how the free field repre-
sentation can be converted into traces over the space of Zamolodchikov-Faddeev

states. We begin with the trace of an operator
Trr K0, (F.0.1)
where here the operator is a general vertex operator
O =: gidatiba’ . (F.0.2)

For simplicity, we consider a and a' to be canonical creation and annihilation

operators,
[a, aq = Opntn 0 » (F.0.3)

Generalising to many non-canonical oscillators is performed in the main text. With

these oscillators, we now have the Hamiltonian

K =iha'a. (F.0.4)
The first step is to insert in (F.0.1) a complete set of states,
(ah™0),  anl0) =0, (F.0.5)

lwn> = |

=~

1]
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which will give us a new expression for the trace

Trr €750 =) (4™ Ol¢n), (F.0.6)

from which we can extract the Hamiltonian term to give,
Trp €50 = " ™2™ (4, |O|thn) - (F.0.7)
n
Since the operator is normal-ordered, we can immediately apply the useful formula

. (i@)* n!
e (a)jo) =) ( :,) \/ 0 _' pilvns) (F.0.8)
k=0 o

which allows us to write (F.0.6) as

oo n o //B k ! e
2 ((1?!)2) (n . e e
n=0 k=0

We can simplify these summations by noticing that we can exchange the order of

the sums if they become

DI I (F.0.10)
n=0 k=0 k=0 n=k
Moreover, the sum over n now becomes
- ’I’L' —2mwhn N n+ k ! —27h(n
Z(n——k)'e orh :Z( - )e 2mh(n+k)
< ! = ™ (F.0.11)
1 -
= Ek!e_%h(k—l) (1-— e'z’rh) ’ (coth(wh) — 1).
We now must replace this in (F.0.9), and perform the summation over k,
o = k 1 N
Z e “klem2mhlk=1) (1 — ¢727h) 5 (coth(mh) — 1)
(kY2 2
k=0
o (caserite) |
o B 2mh ~ : _
= Z o e 2(coth(rh) 1) (F.0.12)
k=0
EE =
1 — e—27h i
o 1 B zeh
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as required. Hence, we have

Trp 2"KO = Wt <1—d’3—> . (F.0.13)

1 eZrh 8
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Appendix G

Regularised free fields: selection

rules

We assume that @ff)(Q) are defined on the finite interval

= irRe s (G.0.1)
€ €
and satisfy the commutation relations
[64)(81), &1 (62)] = 1n S5)(82 — 1), (G.02)
where S,(,,?(H) goes to S, (#) as € — 0 for finite § and
1 T
Taking into account the formulae from appendix B.2 one finds that
¢ (0) = Qu — €0P, + ¢\ (6), (G.0.4)

where qﬁff'osc)(é) is periodic on [—Z, Z], and the zero modes F,, ), commute with

cb,(f'osc)(@) and satisfy the algebra

[P0, @Q)) =i, [Qu.Q))=[P..P)=0, pv=01..N, (G0.5)



116 APPENDIX G. REGULARISED FREE FIELDS: SELECTION RULES

where a;; = 20;; — 6;_1; — 0iy1; is the Cartan matrix of type An_; for i,j =
1,2,...,N -1, and Qo, Fy. @n, Py are expressed in terms of Q;, P; as

N-1 N-1

N-—k N-k
=— , Py=-— P,
Qo kz::l N Qk 0 ; N k (GOG)
N-1 o N-1 o
QN=—§NQI¢- PA'=—§7\7‘Pka

and therefore agy = ayy = X2 = s, ag = an-1.v = —1, and all the remaining

]\7
au, = 0.
The oscillatory part can be expanded in a Fourier series

sc 1 ]
@l(f-& )(6) = Z %au(em) exp(imeb) , (G.0.7)
m#0

where a,(em) satisfy the following commutation relations
[a'#(em)' a,,(fn)] - m'flll/(ﬁm)5m+n.0 3 Z*J = ]-', 21 e 49 7‘7\7 = 1 ) (GO8)

where f,, (em) are given in appendix B. In the limit ¢ — 0 with em =t and en =t/
kept fixed, d,,41.0/€ goes to 6(t + t') and one recovers the previous formulae.

The primed fields are defined in the same way

6. (0) = —Q, + OP, + ¢, () . (G.0.9)

w m

Notice that since
[Pj Xk ] = =@y > [Py Xi] = azxy (G.0.10)

X5 is a lowering operator and x; is a raising operator.
Thus one can use the formulae from the main text and use the zero modes only
to get NV —1 selection rules from the requirement that no dependence of @; should

appear in the trace formula. Assuming that we have the trace of the form

/

Tt,, ve(]ﬁlf[vl;( ;,k))(ﬁﬁvﬂ(am)) , (G.0.11)



one gets
N — N-j, ,_ e
Tno n; N ng+n; =0, j=1,
or equivalently
(N —j)(no —mg) — N(n; —n;) =0, j=1,
For N = 2 one gets
no —ng — 2(n; —my) =0,

which agrees with [11].

If one considers Z;1Z; - - -

Mo =N,
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Zx one finds that for this operator

LN -1, (G.0.12)
SN =1 (G.0.13)
(G.0.14)
(G.0.15)

which implies that there is no ); in this operator because from (G.0.12) one gets

n

i = N—N_ino In fact from (G.0.12) one sees that for the identity operator no must

be an integer multiple of N. For an arbitrary operator ng — ny must be an integer

multiple of N.

The selection rules take a simpler form if one uses Z; and ZJ'- operators. Then

assuming that we have the trace of the form

N ™ N m;
Tt,, ezmh’(HHZ )(HHZ s ) . (G.0.16)
j=la= j=la=1
one gets
N N
iy = Z mg, n, = Z my, pw=0,....,N—-1 (G.0.17)
k=p+1 k=p+1

Thus the selection rules (G.0.12) take the form

J
! .7 !
;(mk —mp) = (M~ M), M= ka, M = ka . (G.0.18)

where M and M’ are the total numbers of Z and Z’ operators. The selection rules
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(G.0.18) then immediately imply

M-M), j=1,....N-1, (G.0.19)

1
m; — m; = N(

and therefore
m;—m; =k, M — M =kN for some integer k. (G.0.20)

This formula shows that if Z transforms in the fundamental irrep of su(/N) then
Z' transforms in the antifundamental irrep (and it would be more appropriate to
use upper indices for Z’), and the form factor does not vanish only if the product

of all Z and Z' is a singlet of su(N) which is a natural requirement.



Appendix H

AdS; x S° Superstring Sigma
Model

The material given here is not supposed to be a comprehensive overview. It is
merely an outline of some of the details mentioned in section 5.1.2 that are relevant
to constructing a free field representation. For a much fuller account, see [25]. The
first thing to recall is that the AdS; x S® superstring has a 1+1 dimensional world-
sheet, on which a two dimensional sigma model is described. There are two copies
of a centrally extended psu(2|2) symmetry, although for the purposes of finding
the free field representation, looking at the su(2) sector would be the best way to

start. A result of this psu(2|2) symmetry is that there is a useful parameterisation

g » i 1 21
— =€, BT b = = (H.0.1)
T BF r™ g

where g is the string tension and p is the momentum of the particle state. Although
there is no conclusive proof, it is generally assumed that this sigma model is inte-
grable, and as a result we have the Yang-Baxter equation and the Zamolodchikov-
Faddeev algebra, which obviously are vital for the free field representation to be

successful. The elementary particles have the dispersion relation

€(p) = 1/1+44° sin? g . (H.0.2)
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and there are also bound states to be considered, which are constructed from a
fusion procedure.

One of the main difficulties that this model poses compared to the GN model
is that it does not possess Lorentz symmetry. Therefore, the idea of having an S-
matrix which depends on the difference of the rapidites of the interacting particles
is lost. Instead a more general idea is required. As a replacement, there is the
concept of generalised rapidity, z, which resides on an elliptic curve, which is in
fact a torus. In terms of these generalised rapidities, the su(2) sector S-matrix is

conjectured to be

o 1 WUy (H.0.3)
~ il + _E\o , ) s\
zy x5 o(xi,25)% ug — ug +

5(21722) =

where a(xit, x5 ) is the dressing phase and the spectral parameters uy, are expressed

in terms of Iki as follows

1 1 1 1 ; 1 7
uk=—<z;§+—++z;+—_> :r,j+—+—i:.r,j+—_+—. (H.0.4)
2 T, zy T, g T, ¢
It should also be noted that the notation
v =zt (), ;=1 (2), (H.0.5)

has been used in the above equations. This S-matrix transforms under both copies
of the symmetry algebra. Since a torus has two periodic directions, we have two
periods, 2w; and 2ws, which together take the place of 277 as the period for the
rapidity variable. Of course, the interest in these periods is to define the crossing
symmetry. In the relativistic case, we would have (1.18), but here we have the

more general crossing equations

S(z1, 22) S(z1 + we, z) = f(aF,zF)?,
(H.0.6)

S(z1, ) S(2z1, 22 — we) = f(zE, z3)?,
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where the function f(z5,r3) is defined by

(a7 - 27)(1- =)
flar,or) = — x;)(l 5 Ilfz.;) ; (H.0.7)

with the S-matrix the same as in (H.0.3).
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