UTPCalc — A calculator for UTP Predicates

Andrew Butterfield *

Trinity College Dublin

Abstract. We present the development of the UTP-Calculator: a tool,
written in Haskell, that supports rapid prototyping of new theories in
the Unifying Theories of Programming paradigm, by supporting an easy
way to very quickly perform test calculations. The emphasis during the
calculator development was keeping it simple but effective, and relying
on the user to have the expertise to check its output. It is not intended to
supplant existing theorem prover or language transformation technology.
The tool is designed for someone who is both very familiar with UTP
theory construction, and familiar enough with Haskell to be able to write
pattern-matching code. In this paper we describe how this tool can be
used to assist in theory development, by describing the key components
of the calculator and how various aspects of such a theory might be
encoded. We finish with a discussion of our experience in using the tool.

1 Introduction

1.1 Motivation

The development of a Unifying Theory of Programming (UTP) can involve a
number of false starts, as alphabet variables are chosen and semantics and health-
iness conditions are defined. Typically, some calculations done just to check that
everything works reveal problems with the theory. So an iteration occurs by
revising the basic definitions, and attempting the calculations again.

We have recently started to explore using UTP to describe shared-variable
concurrency, by adapting the work of the UTP semantics for Unifying Theories
of Parallel Programming (UTPP) [20]. We have reworked it to use a system
for generating unique labels, in order to give a slight improvement to the com-
positionality of the semantics. This we call a Unifying Theory of Concurrent
Programming (UTCP)conf/tase/BMN16.

We illustrate the calculator here with, as a running example, the definition
of the UTP semantics of an atomic action. We assume basic atomic actions
A, B which modify the shared global state (program variables), represented by
observation variables s, s’. The concurrent flow of control is managed by using
labels associated with language constructs, which are added to and removed
from a global label-set as execution proceeds. We represent this label-set using
observations [s,ls’. Our main change to the original UTPP theory is to provide

* This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855
to Lero - the Irish Software Engineering Research Centre (www.lero.ie)

a mechanism to create unique labels, to be associated with both the beginning
and end of each language construct. This results in three static observables,
generator g, and begin and end labels in and out. So our UTCP theory is based
on a non-homogeneous relation with alphabet s, s, Is, Is’, g, in, and out. See
[6] for details.

Our running example is the need to calculate the outcome of sequentially
composing (;;) two basic atomic actions (A, B), that are lifted (A(.)) to the full
alphabet by adding control-flow, and are then run in order to see their dynamic
behavour:

run(A(A) ;; A(B))

We hope that the final result would be
(A; B)Als' ={t,}

We have the standard UTP sequential composition of A and B defined on s, s,
and an assertion that the termination label £, is the sole member of the final
label-set.

The theory with its somewhat unusual arrangement of observation variables
did not emerge as an immediate and obvious solution, but as a result of many
trial calculations. These trial calculations exposed two problems: one was the dif-
ficulty in reading very long complex set-based expressions in order to assess their
correctness. The second was the sheer length and drudgery of these calculations,
often involving many repetitions of very similar steps.

To be specific, the calculator described in this paper is intended to be used for
calculation, and not theorem proving. In particular, it is designed to help solve
the problem just described above. Both the starting predicate and the final
result have free variables and are not theorems. That means counter-example
generators like Nitpick or Alloy are not helpful.

If we consider the reasoning processes used in the development and deploy-
ment of a theory, we can see a spectrum ranging from informal, through to fully
mechanised: hand calculation; simulation; proof assistant; and automated the-
orem provers. The level of detail, complexity, and rigour rises as we proceed
along the spectrum. The calculator described here is designed to assist with the
exploratory hand-calculation phase early on, by making it easier to calculate,
and to manually check the outcomes. It is not intended to provide the sound-
ness guarantees that are quite rightly expected from the tools further along the
spectrum.

1.2 Structure of this paper

In Sect. [2] we discuss related work to justify our decision to develop the calcu-
lator. The key design decisions and tool architecture is then described in Sect.
Three key components of the system are the discussed: Dictionaries (Sect. ;
Expressions (Sect. [5]); and Predicates (Sect. [6]). In Sect. [7] we describe how to
encode laws and then conclude (Sect. [3)).

2 Related Work

There are lots of tools for assisting with the kinds of calculations we are trying to
perform, ranging from calculators [3], through rewrite/transformation systems
(CIP-S[II, Stratego[16], ASF+DSF[I5] Maude[7] HATS[I9]) to full-blown theo-
rem provers (Isabelle/HOL[12], CoQ[2], PVS[14]) including those that support
equational reasoning (Isabelle/ISARIIS]).

Most of the above have a considerable body of work behind, both in terms of
theory and tool development, and provide very comprehensive coverage of their
problem domain, be it rewriting, program transformation or theorem proving.
However many are tied to specific languages, or have limited ability to allow
the user to customise the target language. In particular, it is not clear in any of
them, how to achieve the ability to do rapid calculation with a high degree of
ease in proof-reading its output.

Within the UTP community, there has been considerable work using Proof-
Power-Z such as deep embedding into Z of an imperative language whose seman-
tics were given using UTP [13]and re-working the mechanisation of UTP in order
to better support the hierarchical nature of UTP theory building [21I]. There is
also work on embedding UTP into Isabelle/HOL[9]. This contains a considerable
amount of infrastructure to support UTP’s alphabetised predicates in a general
way, with UTP forming a third sub-syntax in addition to Isabelle/HOLSs inner
and outer syntaxes. It continues to undergo continuous improvement[g].

Like all high-quality state-of-the-art tools, CoQ, Isabelle/HOL, ProofPower-
Z and PVS all have in common that they work best when used in the manner
for which they were designed—in none of these cases does this manner match
the way we wish to work in UTP, as described in the introduction, without at
least a steep learning curve.

We briefly considered using the U-(TP)? theorem prover [45], which does
support both equational reasoning, plus a mode in which calculations can be
from a starting predicate, as we require. However, it would have required a lot of
setup effort, in particular to build the support theories about sets and labels and
generators. Also, it is currently not in an ideal state, due to difficulties installing
the relevant third-party software libraries on more recent versions of Haskell.

However, as part of other ongoing work, we had developed a parser and
some initial analysis tools in Haskell[TI], and this software contained abstract
syntax and support for general predicates. It became really obvious that this
could be quickly adapted, to mechanise the checking calculations, that were
being performed during each attempt. In particular, the key inspiration was the
observation, that the pattern of each calculation was very uniform and similar.
So a decision was taken to construct the calculator described in this paper. It
also had the advantage that it runs on standard Haskell, and hence it much
easier to future-proof.

3 Design & Architecture

3.1 Key Design Decisions

Taking into account the repetitive nature of the calculations, and the need for
shorthand notations we very rapidly converged on four initial design decisions:

1. All calculation objects are written directly in Haskell, to avoid having to
implement a parser.

2. The expression and predicate datatype declarations would be very simple,
with only equality being singled out.

3. Provide a good way to pretty-print long predicates that made it easy to see
their overall structure

4. Rely on a dictionary based system to make it easy to customise how specific
constructs were to be handled.

From our experience with the U-(TP)? theorem-prover we also decided the
following regarding the calculation steps that would be supported:

— We would not support full propositional calculus or theories of numbers or
sets. Instead we would support the use of hard-coded relevant laws, typically
derived from a handwritten proof.

— We would avoid, at all costs, any use of quantifiers or binding constructs.

— The calculator user interface would be very simple, supporting a few high
level commands such as “simplify” or “reduce”. In particular, no facility
would be provided for the user to identify the relevant sub-part of the current
goal to which any operation should be applied. Instead the tool would use a
systematic sweep through the predicate to find the first applicable calculation
step of the requested kind, and apply that. Our subsequent experience with
the calculator indicates that this was a good choice.

3.2 The Calculator REPL

The way the calculator is designed to be used is that a function implementing a
calculator Read-Execute-Print-Loop (REPL) is given a dictionary and starting
predicate as inputs. Calculator commands include an ability to undo previous
steps (’u’), request help (’?’), and to signal an exit from the calculator (’x’).
However, of most interest are the five calculation commands. The first is a global
simplify command (’s’), that scans the entire predicate from the bottom-up
looking for simplifiers for each composite and applying them. Simplifiers are
captured as eval or prsimp components in dictionary entries.

The other four commands work by searching top-down, left-to-right for the
first sub-component for which the relevant dictionary calculator function returns
a changed result. Here is where we have a reduced degree of control, which
simplifies the REPL dramatically, but has turns out to be effective in practice.

Here is a sample run obtained when calculating the effect of the run(A(A4);;

A(B)), from the introduction. For convenience we predefined the predicate
A(A);; A(B) in Haskell as

athenb = pseq [patm (PVar "A"),patm (PVar "B")]

Here PVar is a constructor of the predicate datatype Pred (See , while pseq
and patm are convenient functions we wrote to build instances of ;; and A(-)
respectively. We then invoked the calculator as follows, where dictUTCP is the
dictionary for this theory:

calcREPL dictUTCP (run athenb)

7

and proceed to interact (here the prompt “ ?,d,r,1,s,c,u,x :-” shows the
available commands)

run (ACA) ;; A(B))
?,d,r,l1,s,c,u,x :—- d
= "defn. of run.3"
(ACA) ;; A(B))[g::,1g,1g,1g:/g,in,1s,out]
; “ls(lg:) = (ACA) ;; A(B))I[g::,1g,1lg:/g,in,out]
,d,r,1,s,c,u,x :—- d
= "defn. of ;;"
(A(A)[g:1,1g/g,out] \/
A(B)[g:2,1g/g,in]) [g::,1g,1g,1lg:/g,in,1ls,out]

-~

; “1s(lg:) * (ACA) ;; A(B))[g::,1lg,1lg:/g,in,out]
?,d,r,l1,s,c,u,x :— s
= "simplify"

ACA)[g:::1,1g,1g,1g::/g,in,1ls,out] \/
AB)[g:::2,1g::,1g,1g:/g,in,1ls,out]
; “ls(lg:) *= (ACA) ;; A(B))I[g::,1g,1lg:/g,in,out]
.. 10 more steps
A /\ 1s’ = {1g::} ; B /\ 1s’ = {1g:}
?,d,r,l,s,c,u,x :—- r
= "ls’-cleanup"

(A ; B) /\ 1s’ = {1lg:}

Lines 2, 6, 11, and 18 show the user entering a single key command at the
prompt. Lines 3, 7, and 19 show a short string identifying the relevant definition
or law. Lines 1, 4-5, 8-10, 17 and 20 show various stages of the calculation.

3.3 Pretty-Printing

For the calculator output, it is very important that it be readable, as many of the
predicates get very large, particularly at intermediate points of the calculation.
For this reason, a lot of effort was put into the development of both good pretty-
printing, and ways to highlight old and new parts of predicates as changes are
made. The key principle was to ensure that whenever a predicate had to split
over multiple lines, that the breaks are always around the top-most operator or
composition symbol, with sub-components indented in, both after and before.
An example of such pretty-printing in action is

D(out)
\/ (“1s(out)
/\ (D(1g) \/ A(in,lg,a,in,1g,1g) \/ D(out) \/ A(lg,out,b,lg,out,out))
; W(D(1g) \/ A(in,lg,a,in,1g,1g) \/ D(out) \/ A(lg,out,b,lg,out,out)))

The top-level structure of this is D(out) V ((—ls(out) A...); W(...)) where the
precedence ordering from tightest to loosest is A, ;, V.

The pretty printing support can be found in PrettyPrint.1lhs, which was writ-
ten from scratch, but inspired by writings of Hughes[I0] and Wadler[I7] on the
subject. In addition to the layout management aspects of pretty-printing as just
illustrated above, there is also a need for a support for shorthand notations. We
illustrate this in Sect [l

Display Convention In the rest of this paper, code that is part of the under-
lying calculator infrastructure is shown as a simple verbatim display, thus:

underlying UTPCalc code

while code supplied by the user to set it up for a particular theory under inves-
tigation is shown enclosed in horizontal lines:

user -supplied theory customisation code

4 Dictionaries

The approach taken is to provide a dictionary that maps names to entries that
supply extra information. The names can be those of expression or predicate
composites, or correspond to variables, and a few other features of note. All
of the main calculator functions are driven by this dictionary, and the correct
definition of dictionary entries is the primary way for users to set up calculations.
The dictionary datatype (Dict s), parameterised with a generic type s, is critical
to the functioning of the calculator.

type Dict s = M.Map String (Entry s)
-- M is the renamed import of Data.Map

It is the basic way in which the user of calculator describes the alphabet, defini-
tions and laws associated with their theory.

The dictionary uses the Haskell String datatype for keys, and contains four
different kinds of entries: alphabets, expressions, predicates and laws.

data Entry s = AlfEntry .. | ExprEntry .. | PredEntry .. | LawEntry ..

For simplicity, there is only one namespace involved, and some names are
reserved for special purposes. These are listed in Fig. [I] There are ten names that
describe different (overlapping) parts of the theory alphabet (Fig. [I)). While is is
possible to define these individually, this can be quite error-prone, so a function
is provided to construct all these entries from three basic pieces of information:

Alf Obs Obs’ Mdl Mdl’ Scr Scr’ Dyn Dyn’ Stc laws
Fig. 1. Reserved Dictionary Names

data Expr s
=S8t s | BBool | Z Int | Var String
| App String [Expr s] | Sub (Expr s) (Substn s) | Undef
deriving (Eq, Ord, Show)

type Substn s = [(String,Expr s)]

Fig. 2. Expression and Substitution Datatypes (CalcTypes.lhs)

program variable names (‘script’, Scr); auxiliary variable names (‘model’,Md1),
e.g. variables like [s that don’t represent variable values, but instead some other
observable program property of interest); and static parameter variable names
(Stc).

stdAlfDictGen :: [String] -> [String] -> [String] -> Dict s

All lists contain undashed names, with dashes added when required by the func-
tion. So, the alphabet entries for the UTCP theory are defined as follows:

dictAlpha = stdAlfDictGen ["s"] ["1s"] ["g","in","out"]

All of these entries will be of kind A1fEntry, i.e, just lists of the relevant vari-
ables.

AlfEntry { avars :: [Stringl}

There are two important utility functions, one that builds dictionaries from
lists of string/entry pairs, and another that merges two dictionaries, resolving
conflicts by merging entries if possible, otherwise favouring the second dictionary:

makeDict :: [(String, Entry s)] -> Dict s
dictMrg :: Dict s -> Dict s -> Dict s

5 Expressions

In Fig. [2] we show the Haskell declarations of the datatypes used to represent
expressions and substitution. Both types are parameterised on a generic state
type s, which allows us to be able to reason independently of any particular
notion of state. We provide booleans (B), integers (Z), values of the generic
state type (St), named function application (App). We also have substitution
(Sub), which pairs an expression with a substitution (Substn), which is a list
of variable/expression pairs. The deriving clause for Expr enables the Haskell
default notions of equality, ordering and display for the type.

5.1 Set Expressions

We shall explore the use of the Expr datatype by indicating how the notions
of sets and some basic operators could be defined with the calculator. We shall
represent sets as instances of App with the name “set”, and the subset relation
as an App with name “subset”, so the set {1,2} and predicate S C T would be
represented by App "set" [Z 1,Z 2], and App "subset" [Var "S",Var "T"]
respectively. In practice, we would define constructor functions to build these:

set es = App "set" es
subset sl s2 = App "subset" [sl,s2]

There is a standard interface for defining expression simplifiers: define a function
with the following type:

Dict s -> [Expr s] -> (String, Expr s)

The first argument, of type Dict, is the dictionary currently in use. The second
argument is the list of sub-expressiosn of the App construct for which the simpli-
fier is intended. The result is a pair consisting of a string and an expression. If
the simplification succeeds, then the string is non-empty and gives some indica-
tion for the user of what was simplified. In this case the expression component is
the simplified result. If the simplification has no effect, then the string is empty,
and the expression returned is not defined.

The following code defines a simplifier for subset, which expects it to have
precisely two set components:

evalSubset d [App "set" s1,App "set" s2] = dosubset d sl s2
evalSubset _ _ = none -- predefined shorthand for ("",Undef)

The two underscores in the second line are pattern matching wildcards, so this
catches all other possibilities. It makes use of the following helper, which gets
the two lists of expressions associated with each set:

dosubset d esl es2 -- 45 esl a subset of es2 ?
| null (esl1 \\ es2) = ("subset", B True)
| all (isGround d) ((es1l \\ es2) ++ es2)
= ("subset", B False)
| otherwise = none

If the result of removing es2 from es1 is null it then returns true. If not, then
if all elements remaining are “ground”, i.e., contain no variables, returns false.
Otherwise, we cannot infer anything, so return none.

5.2 Rendering Expressions

The UTCP theory definitions and calculations involve a lot of reasoning about
sets, leading to quite complicated expressions. To avoid complex set expressions
that are hard to parse visually, a number of simplifying notations are desirable,

so that a singleton set {x} is rendered as and the very common idiom S C Is is
rendered as [s(5), so that for example, Is(in) is short for {in} C Is. This shrinks
the expressions to a much more readable form, mainly by reducing the number
of infix operators and set brackets.

When rendering expressions, if an App construct is found, then its name
is looked up in the dictionary. If an ExprEntry is not found, then the de-
fault rendering is used, in which App "f" [el,e2,..,en] is converted into
f(el,e2,..,en). Otherwise, a function of typeDict s -> [Expr s] -> String,
in that entry, is used to render the construct.

As far as expressions are concerned, they become strings, and so are viewed as
atomic by the predicate pretty-printer (see Sect. @ So, we could show singleton
sets without enclosing braces by defining:

showSet d [elm] = edshow d elm -- drop {,} from singleton
showSet d elms = "{" ++ dlshow d "," elms ++ "}"

Here edshow (expression-dict-show) displays its elm argument, while dlshow
(dictionary-list-show) displays the expressions in elms separated by the ","
string. Similar tricks are used to code a very compact rendering of a mecha-
nism that involves unique label generator expressions that involve very deep
nesting, such as:

ma(new(m (new(ma(split(mi (new(g))))))))

This can be displayed as 1g:2:, using a very compact shorthand described in
[6] which we do not explain here.

5.3 Expression Equality

In contrast to the way that the subset predicate is captured as an expression
above, the notion of expression equality is hardwired in, as part of the predicate
abstract syntax (see Sect. @ The simplifier will look at the two expression
arguments of that construct, and if they are both instances of App with the
same name, will do a dictionary lookup, to see if there is an entry, from which
an equality checking function can be obtained (isEqual component). This has
the following signature:

Dict s -> [Expr s] -> [Expr s] -> Maybe Bool
The Maybe type constructor is standard Haskell, defined as
data Maybe t = Nothing | Just t

It converts a type t into one which is now “optional”, or equivalently has a
undefined value added.

The equality testing function takes a dictionary and the two expression lists
from the two App instances and either returns Nothing, if it cannot establish the
truth or falsity of the equality, or Just the appropriate result. Suitable code for
"set" is the following

eqSet d esl es2
= let nsl = nub $ sort $ esl ; ns2 = nub $ sort $ es2
in if all (isGround d) (nsl++ns2)
then Just (nsl==ns2) else Nothing

The standard function nub removes duplicates, which we do after we sort. If
both lists are ground we just do an equality comparison and return Just it.
Otherwise, we return Nothing.

5.4 The Expression Entry

The dictionary entry for expressions has the following form:

ExprEntry
{ ecansub :: [String]
, eprint :: Dict s -> [Expr s] -> String
, eval :: Dict s -> [Expr s] -> (String, Expr s)
, isEqual :: Dict s -> [Expr s] -> [Expr s] -> Maybe Bool}

One big win in using a functional language like Haskell, in which functions
are first class data values, is that we can easily define datatypes that contain
function-valued components. We make full use of this in three of the entry kinds,
for expressions, predicates and laws.

The eprint, eval and isEqual components correspond to the various ex-
amples we have seen above. The ecansub component indicates those variables
occurring in the App expression list for which it is safe to replace in substitutions.

To understand the need for ecansub, consider the following shorthand defi-
nition for an expression:

D(L)=LCls

in a context where we know that L is a set expression defined only over variables
g, in and out. The variable ls is not free in the lhs, but does occur in the rhs. A
substitution of the form [E/ls] say, would leave the lhs unchanged, but alter the
rhs to L C E. For this reason the entry for D would need to disallow substitution
for ls. The ecansub entry lists the variables for which substitution is safe with
the expression as-is. With the definition above, the value of this entry should
be ["g","in","out"]. If we want to state that any substitution is safe, then
we use the “wildcard” form: ["*"]. We choose to list the substitutable variables
rather than those that are non-substitutable, because the former is always easy
to determine, whereas the latter can be very open ended.

Given all of the above, we can define dictionary entries for set and subset as

setUTCPDict = makeDict
[("set",(ExprEntry ["*"] showSet evalSet eqSet))
, ("subset",(ExprEntry ["*"] showSubSet evalSubset noEq)) 1]

Here noEq is an equality test function that always returns Nothing.

data Pred s = T | F | PVar String | Equal (Expr s) (Expr s) | Atm (Expr s)

|
| Comp String [Pred s] | PSub (Pred s) (Substn s)
Fig. 3. Predicate Datatype (CalcTypes.1lhs)

6 Predicates

In Fig. [3] we show the Haskell declarations of the datatypes to represent predi-
cates.

Similar to expressions we have basic values such as true (T) and false (F),
with predicate-valued variables (PVar), and composite predicates (Comp) which
are the predicate equivalent of App (see Sect. . We also have two ways to
turn expressions into predicates. One (Atm) lifts an expression, which should be
boolean-valued into an (atomic) predicate, while the other is an explicit repre-
sentation (Equal) for expression equality. We can also substitute over predicates
(PSub).

In many ways, we define our predicates of interest in much the same was as
done for expressions. Basic logic features such as negation, conjunction, etc., are
not built in, but have to be implemented using Comp. A collection of these are
pre-defined as part of the calculator, in the Haskell module StdPredicates.

There are a few ways in which the treatment of predicates differ from expres-
sions:

— The simplifier and some of the infrastructure for handling laws treats PVar in
a special way. It is possible to associate an A1fEntry in the dictionary with
a PVar, so defining its alphabet. This can be useful when reasoning about
atomic state-change actions which only depend on s and s’. Such entries will
be looked up when certain side-conditions are being checked.

— We distinguish between having a definition/expansion associated with a
Comp, and having a way to simplify one.

— Rendering predicates involves the pretty printer so the interface is more
complex. We explain this below.

6.1 Coding Atomic Semantics

Formally, using our shorthand notations, we define atomic behaviour as in UTCP
as:
A(A) =1s(in) NANIS =1s© (in, out)

where A and A(_) are as in the introduction, and S © (T,V) is notation from
[20] that stands for (S\T)UV.

Coding a Definition We want to define a composite, called ”A” (representing
A). We define a function that takes a single predicate argument and applies A
to it

patm pr = Comp "A" [pr] -- we assume pr has only s, s’ free

We can now code up its definition, which takes a dictionary, and a list of its sub-
components and returns a string/predicate pair, interpreted in the same manner
as the string/expression pair returned by the expression simplifier.

One way to code this is as follows. First define our variables and expressions,
because these get used in a variety of places.

ls = Var "1ls" ; 1ls’ = Var "1ls’"
inp = Var "in" -- ’4n’ <s a Haskell keyword
out = Var "out"

lsinout = App "sswap" [ls,inp,out]

Here, "sswap" is our name for ©, and note that Haskell identifiers can contain
the prime (’) character. We then define our atomic predicates (Is(in) and ls’ =
ls © (in, out))

lsin = Atm $ App "subset" [inp,1ls]
ls’eqlsinout = Equal 1s’ lsinout

Finally we can define A(a) as their conjunction, where mkAnd is a smart con-
structor for Comp "And", defined in StdPredicates.lhs.

defnAtomic d [a] = Just ("A",mkAnd [lsin,a,ls’eqlsinout], True)

Coding for Pretty Printing For rendering Comp predicates, we are going
to generate an instance of the pretty-printer type PP, using a dictionary and
list of sub-predicates, with two additonal arguments: one of type SubCompPrint
which is a function to render sub-components, and one of type Int which gives
a precedence level. The type signature is

SubCompPrint s -> Dict s -> Int -> [Pred s] -> PP
The function type is
type SubCompPrint s = 1Int -> Int -> Pred s -> PP

It takes two integer arguments to begin. The first is the precedence level to be
used to render the sub-component, while the secound should denote the position
of the sub-component in the sub-component list, counting from 1. The third
argument is the sub-predicate to be printed. To render our atomic construct we
can define the pretty-printer as follws:

ppPAtm sCP d p [pr]
= pplist [ppa "A" , ppbracket "(" (sCP 0 1 pr) ")"]

The functions pplist, ppa and ppbracket build instances of PP respectively,
that represent lists of PP, atomic strings, and an occurence of PP surrounded by
the designated brackets. Note that the SubCompPrint argument (sCP) is applied

to pr, with the precedence set to zero as it is bracketed, and the sub-component
number set to one as pr is the first (and only) sub-component. We will show
how the pretty-printing for sequential composition (;;) in UTCP is defined, to
illustrate the support for infix notation.

ppPSeq sCP d p [pri,pr2]
= paren p precPSeq
$ ppopen (pad ";;") [sCP precPSeq 1 pril
, sCP precPSeq 2 pr2]

Here pad puts spaces around its argument, and so its user here is equivalent to
ppa " ;; ", while ppopen uses its first argument as a separator between all the
elements of its second list argument. The paren function takes two precedence
values, and a PP value, and puts parentheses around it if the first precedence
number is greater than the second. The variable precPSeq is the precedence level
of sequential composition, here defined to be tighter than disjunction, but looser
than conjunction, as defined in module StdPrecedences. Note once more, the
use of sCP, and how the 2nd integer argument corresponds to the position of the
sub-predicate involved.

The Predicate Entry
The dictionary entry for predicates has the following form:

PredEntry
{ pcansub :: [String]
, pprint :: SubCompPrint s -> Dict s -> Int -> [Pred s] -> PP
, alfa :: [String], pdefn :: Rewrite s, prsimp :: Rewrite s}
type Rewrite s = Dict s -> [Pred s] -> RWResult s
type RWResult s = Maybe (String, Pred s, Bool)

Fields pcansub and prsimp are the predicate analoges of ecansub and eval in
the expression entry. Here pprint plays the same role as eprint, but is oriented
towards pretty printing. The alfa component allows an specific alphabet to be
associated with a composite —if empty then the dictionary alphabet entries
apply.

The pdefn component, of the same type as prsimp, is used when the user
invokes the Definition Expansion command from the REPL. The calculator
searches top-down, left-right for the first Comp whose pdefn function returns
a changed outcome.

A RWResult can be Nothing, in which case this definition expansion or sim-
plifier was unable to make any changes. If it was able to change its target then it
returns Just (reason,newPred,isTopLevel). The string reason is used to dis-
play the justification for the calculation step to the user. The isTopLevel flag
is a hint to the change highlighting facilities of the pretty-printer infrastructure.

The dictionary entry for our atomic semantics is then:

patmEntry=("A" ,PredEntry [] ppPAtm [] defnAtomic (pNoChg "A"))

The function pNoChg creates a simplifer that returns Nothing.

7 Laws

In addition to the global simplifier and definition expansion facility, we have three
broad classes of laws that can be invoked from the REPL: Reduce; Conditional
Reduce; and Loop Unroll.

The way the latter three laws are applied is somewhat different to the be-
haviour of either the simplifier or definition expansion. Instead the reserved
dictionary key "laws" is used to lookup a special dictionary entry

LawEntry { reduce :: [RWFun s]
, creduce :: [CRWFun s], unroll :: [String -> RWFun s] }
7.1 Reduce

The reduce entry is a list of RWFun, which are defined as follows:
type RWFun s = Dict s -> Pred s -> Pred s -> RWResult s

The first predicate argument is used to supply an invariant assertion for those
reduction rules that require one. It is a recent new feature of the calculator, not
required for this UTCP theory, and its use is beyond the scope of this paper.

When asked to do a reduce, the calculator then does a top-down, left-to-
right search, where at each point it tries all the laws in its reduce list, in order,
with the current composite being passed in as the second predicate argument.
It terminates at the point of first success (a non-Nothing outcome). A reduce
law is an equation of the form P = (), where we search for instances of P
and replace them with the corresponding instance of (). The idea is that we
pattern-match on predicate syntax with the second predicate argument, to see
if a law is applicable (we have its lefthand-side), and if so, we then build an
appropriate instance of the righthand-side. The plan is that we gather all these
pattern/outcome pairs in one function definition, which will try them in order.
This is in direct correspondence with Haskell pattern-matching. So for UTCP
we have a function called reduceUTCP, structured as follows:

reduceUTCP d inv (...1st law pattern...) = lst-outcome
reduceUTCP d inv (...2nd law pattern...) = 2nd-outcome

reduceUTCP _ _

_ = Nothing -- catch-all at end, no change

A simple example of such a pattern is the following encoding of II; P = P :

reduceUTCP d inv (Comp "Seq" [(Comp "Skip" []1), prl)
= Just (";-lunit", pr, True)

The pattern matches a composite called “Seq”, with a argument list containing
two predicates. The first predicate pattern matches a “Skip” composite with
no further sub-arguments. The second argument pattern matches an arbitrary
predicate (P in the law above). The righthand-side constructs a RWResult return
value, with the string being a justification note that says a reduction-step using
a law called “-lunit” was applied, and noting that the top-level composite (the
“Seq”) was modified.

7.2 Conditional Reduce

A CRWResult is a RWResult that has been adapted, so that instead of returning
one result if successful, it returns a list of possible results, each paired with a
side-condition predicate.

type CRWResult s = Maybe (String, [(Pred s, Pred s, Bool)])
type CRWFun s = Dict s -> Pred s -> CRWResult s

A conditional reduce law is an equation as per reduce, but with conditional
outcomes, e.g. P = @1 < C > Q2. Matching an instance of P will return a
list of two pairs, the first being (C,@Q1), the second (—C,Q2). No attempt is
made to evaluate C, but instead the REPL asks the user to choose. This is a
key design decision for the calculator. A general purpose predicate evaluator
requires implementing lots of theories about numbers, sets, lists, and whatever
else might be present. Given the scope and purpose of this calculator is is much
more effective to let the user choose.

For an example, here is one pattern of the conditional reduce function for
UTCP. Given x a list of unique variables, and e a list of the same length of
expressions, with « C {s,ls} we have:

dle/z] = (cx P)le/a] = Ple/a];c+ P
~ce/a] = (c* P)le/a] = Ille/a]

creduceUTCP d (PSub w@(Comp "Iter" [c,pl) sub)
| isCondition c && beforeSub d sub

= Just("loop-substn", [ctrue,cfalse])
where
csub = PSub c¢ sub
ctrue = (csub, mkSeq (PSub p sub) w, diff)

cfalse = (mkNot csub, PSub mkSkip sub, diff)

Here mkSeq, mkNot and mkSkip build sequential composition, negations and stan-
dard UTP skip (II) respectively.

7.3 Loop Unroll

Iteration is typically defined in UTP as the least fixed point w.r.t to the refine-
ment ordering that also involves sequential composition, which itself is defined
using existential quantification, and II.

cxP=pylLe(P;L)y<dc> II
P;Q = 38,18 ® Plsm, 18m /8, IS'] A Q[Sm, Sm /s, 18]
II=s =sNls'=1s
We do not want to explicitly handle quantifiers, or fixed-points. Instead we

prefer to use the loop unrolling law, as this is much more useful for the kinds of
calculations we encounter.

cxP=(P;cxP)ce> Il

Even more useful are ones that split the conditional and unroll a number of
times (; binds tighter than V but looser than A):

cxP==cANIIVcAP;cxP
“cANIINVecAP;cANIIVcAP;cxP

The loop unroll functions are like those for reduce but have an extra string ar-
gument: unroll :: [String -> RWFun s]. When the user enters a command
of the form "1lsss", the loop unroll facility is activated, and the string "sss"
is passed as the first argument to the functions above. It is up to the user to
decide how to interpret these strings—but the most useful is to treat them as
specifying the number of unrollings to do. We won’t give an example here of the
use of unrolling.

7.4 Bringing it all together

We make these two reduction functions “known” to the calculator by adding
them into a dictionary.

lawsUTCPDict
= makeDict [("laws", LawEntry [reduceUTCP] [creduceUTCP] [])]

We then can take a number of partial dictionaries and use various dictionary
functions, defined in CalcPredicates, to merge them together.

dictUTCP = foldll dictMrg [alfUTCPDict, ..., lawsUTCPDict]

The main method of working with dictionaries is to construct small ones focussed
on some specific area of interest. These can then be combined in different ways
to provide a number of complete dictionaries that can vary in the order in which
things are tried.

8 Conclusions

We have presented a description of a calculator written in Haskell, that allows
the encoding of an UTP theory under development, in order to be able to rapidly
perform test calculations in order to check that predictions of the theory match
expectations. The tool was not designed to be a complete and sound theory
development system, but instead to act as a rapid-prototype tool to help smoke
out problems with a developing theory. This approach relies on the developer to
be checking and scrutinising everything.

8.1 Costs vs. Benefits

As far as the development of the UTCP theory is concerned, and the ongoing
work to develop a fully composition UTP theory of shared-state concurrency that

does not require run, the costs of developing and customising the calculator have
been rewarded by the benefits we encountered. We note a few observations based
on our experience using the calculator.

The “first-come, first-served” approach used by the calculator is surprisingly
effective. We support a system of equational reasoning were reductions and defi-
nitions replace predicates with ones that are equal. In effect this means that the
order in which most of these steps take place is immaterial. Some care needs to
be taken when several rules apply to one construct, but this an be manage by
re-arranging the order in which various patters and their side-conditions can be
checked.

The main idea in using the calculator is to find a suitable collection of pat-
terns, in the right order, to be most effective in performing calculations. The
best way to determine this is to start with none, run the calculator and when
it stalls (no change is happening for any command), see what law would help
make progress, and encode it. This leads to an unexpected side-effect of this
calculator, in that we learnt what laws we needed, rather than what we thought
we would need.

Effective use of the calculator results in an inexorable push towards algebras.
By this we do not mean the Kleene algebras, or similar, that might characterise
the language being formalised. Rather we mean that the most effective use of
the calculator results when we define predicate functions that encapsulate some
simple behaviour, and demonstrate, by proofs done without the calculator, some
laws they obey, particularly with respect to sequential composition. In fact,
one of the ‘algebras’ under development for the fully compositional theory, is
so effective, that many of the test calculations can actually be done manually.
However some, most notably involving parallel composition, still require the
calculator to be feasible.

8.2 Correctness

An issue that can be raised, given the customisation and lack of soundness
guarantees, is how well has the calculator been tested? The answer is basically
that the process of using it ensures that the whole system is comprehensively
tested. This is because calculations fail repeatedly. Such failures lead to a post-
mortem to identify the reason. Early in the calculator development, the reason
would be traced to a bug in the calculator infrastructure. The next phase has
failures that can be attributed to bugs in the encoding of laws in Haskell, or poor
ordering in the dictionary. What makes the above tolerable is that the time taken
to identify and fix each code problem is relatively short, often a matter of five to
ten minutes. The final phase is where calculation failures arise because of errors
in the proposed theory—this is the real payback, as this is the intended purpose
of the tool. The outcome of all of this iterative development is a high degree
of confidence in the end result. In the author’s experience, the cost of all the
above failures is considerably outweighed by the cost of trying to do the check
calculations manually.

There are no guarantees of soundness. But working on a theory by hand
faces exactly the same issues — a proof or calculation by hand always raises
the issue of the correctness of a law, or the validity of a “proof-step” that is
really a number of simpler steps all rolled into one. In either case, by hand or by
calculator, the theory developer has a responsibility to carefully check every line.
This is one reason why so much effort was put into pretty-printing and marking.
The calculator’s real benefit, and main design purpose, is the ease with which it
can produce a calculation and transcript.

In effect, this UTP Calculator is a tool that assists with the validation of
UTP semantic definitions, and is designed for use by someone with expertise in
UTP theory building, and a good working knowledge of Haskell.

8.3 Future Work

We plan a formal release of this calculator as a Haskell package. A key part of this
would be comprehensive user documentation of the key parts of the calculator
API, the standard built-in dictionaries, as well as a complete worked example of
a theory encoding. There are many enhancements that are also being considered,
that include better transcript rendering options (e.g. TEX) or ways to customise
the REPL (e.g. always do a simplify step after any other REPL command). Also
of interest would be finding a way of connecting the calculator to either the
U-(TP)? theorem-prover[4] or the Isabelle/UPT encoding[9] in order to be able
to validate the dictionary entries.
All the code described here is available online at

https://bitbucket.org/andrewbutterfield/utp-calculator.git as Liter-
ate Haskell Script files (.1hs) in the src sub-directory.

References

1. Bauer, F.L., Ehler, H., Horsch, A., Mdller, B., Partsch, H., Paukner, O., Pepper,
P.: The Munich Project CIP, Volume II: The Program Transformation System
CIP-S, Lecture Notes in Computer Science, vol. 292. Springer (1987), http://dx.
doi.org/10.1007/3-540-18779-0

2. Bertot, Y., Castéran, P.P.: Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Texts in theoretical computer
science, Springer Verlag (2004)

3. Bird, R.: Thinking Functionally with Haskell. Cambridge Univ. Press (Dec 2014)

4. Butterfield, A.: Saoithin: A theorem prover for UTP. In: Unifying Theories of Pro-
gramming - Third International Symposium, UTP 2010, Shanghai, China, Novem-
ber 15-16, 2010. Proceedings. pp. 137-156 (2010), http://dx.doi.org/10.1007/
978-3-642-16690-7_6

5. Butterfield, A.: The logic of U -(TP)2. In: Unifying Theories of Program-
ming, 4th International Symposium, UTP 2012, Paris, France, August 27-28,
2012, Revised Selected Papers. pp. 124-143 (2012), http://dx.doi.org/10.1007/
978-3-642-35705-3_6

https://bitbucket.org/andrewbutterfield/utp-calculator.git
http://dx.doi.org/10.1007/3-540-18779-0
http://dx.doi.org/10.1007/3-540-18779-0
http://dx.doi.org/10.1007/978-3-642-16690-7_6
http://dx.doi.org/10.1007/978-3-642-16690-7_6
http://dx.doi.org/10.1007/978-3-642-35705-3_6
http://dx.doi.org/10.1007/978-3-642-35705-3_6

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Butterfield, A., Mjeda, A., Noll, J.: UTP Semantics for Shared-State, Concurrent,
Context-Sensitive Process Models. In: Bonsangue, M., Deng, Y. (eds.) TASE 2016
10th International Symposium on Theoretical Aspects of Software Engineering.
pp- 93-100. IEEE (Jul 2016)

Clavel, M., Durén, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.L.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) Rewriting Techniques and
Applications, 14th International Conference, RTA 2003, Valencia, Spain, June 9-
11, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2706, pp. 76-87.
Springer (2003), http://dx.doi.org/10.1007/3-540-44881-0_7

Foster, S., Woodcock, J.: Mechanised theory engineering in isabelle. In: Irlbeck,
M., Peled, D.A., Pretschner, A. (eds.) Dependable Software Systems Engineering,
NATO Science for Peace and Security Series, D: Information and Communication
Security, vol. 40, pp. 246-287. 10S Press (2015), http://dx.doi.org/10.3233/
978-1-61499-495-4-246

Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: A mechanised theory engineer-
ing framework. In: Naumann, D. (ed.) Unifying Theories of Programming - 5th
International Symposium, UTP 2014, Singapore, May 13, 2014, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 8963, pp. 21-41. Springer (2014),
http://dx.doi.org/10.1007/978-3-319-14806-9_2

Hughes, J.: The design of a pretty-printing library. In: Jeuring, J., Meijer, E. (eds.)
Advanced Functional Programming, LNCS, vol. 925. Springer Verlag (1995), http:
//www.cs.chalmers.se/~rjmh/Papers/pretty.ps

Marlow, S. (ed.): Haskell 2010 Language Report. Haskell Community (2010),
https://www.haskell.org/definition/haskel12010.pdf

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002), http://link.springer.
de/link/service/series/0558/tocs/t2283.htm

Nuka, G., Woodcock, J.: Mechanising a unifying theory. In: Dunne, S., Stoddart,
B. (eds.) Unifying Theories of Programming, First International Symposium, UTP
2006. LNCS, vol. 4010, pp. 217-235. Springer (2006), http://dx.doi.org/10.
1007/11768173_13

Shankar, N.: PVS: Combining specification, proof checking, and model checking.
In: Srivas, M.K., Camilleri, A.J. (eds.) Formal Methods in Computer-Aided De-
sign, First International Conference, FMCAD ’96. LNCS, vol. 1166, pp. 257-264.
Springer (1996)

Van Den Brand, M.G.J., Heering, J., Klint, P., Olivier, P.A.: Compiling language
definitions: the ASF+SDF compiler. ACM Transactions on Programming Lan-
guages and Systems 24(4), 334-368 (Jul 2002)

Visser, E.: Stratego: A language for program transformation based on rewriting
strategies. In: Middeldorp, A. (ed.) Rewriting Techniques and Applications, 12th
International Conference, RTA 2001, Utrecht, The Netherlands, May 22-24, 2001,
Proceedings. Lecture Notes in Computer Science, vol. 2051, pp. 357-362. Springer
(2001), http://dx.doi.org/10.1007/3-540-45127-7_27

Wadler, P.: A prettier printer. In: Gibbons, J., de Moor, O. (eds.) The Fun of
Programming (Cornerstones of Computing), chap. 11, pp. 223-244. Palgrave -
Macmillan (Mar 2003)

Wenzel, M.: The Isabelle/Isar Reference Manual (June 2010), http://www.cl.cam.
ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf

Winter, V.L., Beranek, J.: Program transformation using HATS 1.84. In: Lammel,
R., Saraiva, J., Visser, J. (eds.) GTTSE. Lecture Notes in Computer Science, vol.
4143, pp. 378-396. Springer (2005), http://dx.doi.org/10.1007/11877028_15

http://dx.doi.org/10.1007/3-540-44881-0_7
http://dx.doi.org/10.3233/978-1-61499-495-4-246
http://dx.doi.org/10.3233/978-1-61499-495-4-246
http://dx.doi.org/10.1007/978-3-319-14806-9_2
http://www.cs.chalmers.se/~rjmh/Papers/pretty.ps
http://www.cs.chalmers.se/~rjmh/Papers/pretty.ps
https://www.haskell.org/definition/haskell2010.pdf
http://link.springer.de/link/service/series/0558/tocs/t2283.htm
http://link.springer.de/link/service/series/0558/tocs/t2283.htm
http://dx.doi.org/10.1007/11768173_13
http://dx.doi.org/10.1007/11768173_13
http://dx.doi.org/10.1007/3-540-45127-7_27
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf
http://dx.doi.org/10.1007/11877028_15

20. Woodcock, J., Hughes, A.P.: Unifying theories of parallel programming. In: George,

21.

C., Miao, H. (eds.) Formal Methods and Software Engineering, 4th International
Conference on Formal Engineering Methods, ICFEM 2002 Shanghai, China, Oc-
tober 21-25, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2495, pp.
24-37. Springer (2002), http://dx.doi.org/10.1007/3-540-36103-0_5

Zeyda, F., Cavalcanti, A.: Mechanical reasoning about families of UTP theories.
Electr. Notes Theor. Comput. Sci 240, 239-257 (2009), http://dx.doi.org/10.
1016/j.entcs.2009.05.055

http://dx.doi.org/10.1007/3-540-36103-0_5
http://dx.doi.org/10.1016/j.entcs.2009.05.055
http://dx.doi.org/10.1016/j.entcs.2009.05.055

	UTPCalc — A calculator for UTP Predicates

