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Abstract

Bayesian statistical methods often involve computationally intensive inference pro-

cedures. Sampling algorithms represent the current standard for fitting and test-

ing models. Such methods, while flexible, are computationally intensive and suffer

from long run times and high potential sampling error. New methods for fitting

non-parametric approximations offer a fast and accurate alternative. Essentially, a

multivariate Gaussian distribution is used to approximate the posterior of the model

parameters.

Cross-validation is a useful tool in model validation which is an important as-

pect of statistical inference. Sampling based methods require many re-runs and are

impractical for this task. A new method is developed in this thesis that performs

fast cross-validation using the Gaussian approximations.

Study of the palaeoclimate provides insight into long-term climate variability.

This represents the motivating problem for the work in this thesis. A probabilistic

forward model for vegetation given climate is fitted to modern training data using

Bayesian methods. The model is then inverted and inference on climate given fossil

pollen counts may be performed; this is referred to as the inverse model and cross-

validation is preferred in this context.

Highly multivariate models may sometimes be broken down into a sequence of

independent smaller problems, which may then be dealt with more easily in parallel.

Procedures for assessing the performance of this approach are developed for the

inverse problem via fast cross-validation.

Spatial models for counts data with an over-abundance of zeros are developed

and synergy with the Gaussian approximation method is demonstrated. Finally, the

novel inference methods and new counts models are applied to the palaeoclimate

training dataset and progress over the existing methods is demonstrated.
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Chapter 1

Introduction

Highly multivariate statistical problems may lead to slow inference procedures. One

example of such a problem involves palaeoclimate reconstruction from fossil pollen

data, which is an example of an inverse problem. Existing explorations of this chal-

lenging area of study often involve a trade off between model complexity and speed

of inference. Fast approximate Bayesian inference methods offer a solution. In addi-

tion, an extension of the methodology allows for model validation to be performed

quickly for the inverse problem. Conversely, the large scale of the palaeoclimate

project offers a real challenge to the emerging approximate inference engine.

The Royal Statistical Society read paper “Bayesian Palaeoclimate Reconstruc-

tion”, Haslett et al. (2006) presented work on high resolution pollen based recon-

struction of the palaeoclimate at a single location since the last ice-age. This paper

outlined the basic concepts involved in performing fully Bayesian inference on un-

known climates given modern and fossil pollen data and modern climatic data. The

work was a detailed “proof of concept”; extensions and improvements to the statis-

tical methodology were considered, both in the paper and in the subsequent printed

discussion.

The main crux of the methodology in that work was acknowledged to be compu-

tational; indeed the computational burden imposed compromises on the modelling.

The work presented herein represents extensions in the statistical methodology and

advances in the computations involved as developed by the author. These contribu-

tions are outlined in Section 1.4.
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1.1 Palaeoclimate Reconstruction Project

The Bayesian palaeoclimate reconstruction project is an ongoing initiative to build

upon existing classical approaches to the reconstruction of prehistoric climates, using

fossil pollen data. Specifically, the project seeks to handle all uncertainties quantita-

tively and coherently in a fully Bayesian framework and to combine different types

of information to reduce these uncertainties.

1.1.1 The RS10 Pollen Dataset

The primary dataset for the palaeoclimatology reconstruction project is the RS10

dataset of Allen et al. (2000). A collection of modern pollen surface sample counts

Y m � �ym
1

, . . . , ym
M�;M � 7742 are taken from the uppermost 5 to 10mm of lake bed

sediment at numerous locations in the northern hemisphere. Along with covariates

in the form of local contemporary climate measurements Lm, they comprise the

modern dataset. This is also referred to as the training data. Sample fossil pollen

counts Y f are extracted from cores taken from lake or mire sediment. Measures of

the prehistoric climate variables Lf at the time of deposition of these fossil pollen

spores are unknown; the central premise of palynological palaeoclimate reconstruc-

tion is that these climates may be inferred from the pollen data, albeit with some

uncertainty. Both the modern and fossil pollen data comprise counts of numerous

plant types (taxa; see below). There is therefore a vector of counts reported at each

sampling location. The length of this vector is equal to the number of distinguishable

pollen spore types.

1.1.2 Response Surfaces

Reconstruction of past climates involves using a multivariate regression type model

in which the proportion of the ith species in the training pollen data set ym
i is an

indirect observation of a latent “response” to the corresponding modern climate

variables Lm. This response is defined as the propensity to contribute pollen to the

dataset in the given climatic conditions and is modelled as a smooth function of

climate, fitted by reference to the pollen counts data. At the first stage, the training

data is used to calibrate the model for the response of vegetation to climate. At the
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second stage, the regression is “inverted” and applied to assemblages of fossil data,

which yields a quantitative reconstruction of climate. The two stages are referred

to as the forward and the inverse parts of the model respectively. This is known as

the response surface method.

Huntley (1993) argues that at least some species may have multiple optima and

hence the response function may be multimodal. Non-parametric modelling of the

response function is therefore advocated. This is due at least in part to the fact that

the pollen data is in fact sorted into plant “taxa” rather than individual species.

Each taxon consists of one or more species; sometimes an entire genus or even an

entire family comprising several plant species are categorized simply as a single

taxon. A given taxon may then contain multiple species that thrive and fail at

dissimilar climates. This is because the pollen data are categorized visually and

multiple related species frequently produce pollen spores that are indistinguishable

to the eye.

1.1.3 The Classical Approach

There is a considerable literature on palaeoclimate reconstruction from such paly-

nological data using the response surface methodology in the botany community

(see for example Bartlein et al. (1986), Huntley (1993) and Allen et al. (2000)).

These reconstructions use various estimation methods, essentially attributing to a

fossil pollen assemblage the modern climate that has the “closest” matching pollen

assemblage.

The main disadvantage of the classical methods is that there is no consistent way

to make statements of uncertainty in the reconstructions. There are other serious

issues; for example the RS10 (response surface 10) method of Allen et al. (2000) finds

the 10 climates that correspond to the fitted responses that are closest to the fossil

pollen assemblage. These climates are then averaged and the average is returned

as the estimated palaeo-climate. A crude measure of uncertainty is also reported

as the “average chord distance”; the average distance between the vector of fossil

pollen proportions and the vectors that are derived from the fitted response surfaces.

An immediate problem occurs as a result of this simplified analysis. For example,

tundra and steppe vegetation can produce very similar pollen assemblages, yet occur
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under very different climatic regimes. For a given fossil pollen assemblage, some of

the 10 closest modern day responses may be steppe and some tundra; the averaged

corresponding climates will lie in between in the climate space. This reconstructed

climate may be in a region of climate that does not produce pollen assemblages

anything like the fossil assemblage; it may even correspond to a climate that simply

does not occur.

1.1.4 The Bayesian Approach

Unlike the classical approach, the Bayesian paradigm deals with all sources of un-

certainty in a coherent manner. The unknown statistical parameters X are treated

as random variables and a likelihood function π�Y SX� is used to express the relative

probabilities of obtaining different values of this parameter when a particular dataset

Y has been observed. Prior probability densities π�X� are placed on the unknown

parameters to reflect any subjective beliefs held before observation of data. The

posterior density π�X SY � is delivered via Bayes theorem; it is a normalised product

of the prior and likelihood densities and reflects the updated beliefs in light of the

data.

π�X SY � � π�X�π�Y SX�
π�Y �� π�X�π�Y SX�� prior � likelihood (1.1)

Bayes theorem constructs the posterior density π�X SY � which is a summary of

all knowledge about the parameter X subsequent to observing Y . The posterior

distribution is a comprehensive inference statement about the model variables X.

Any summary of the posterior distribution is useful e.g. moments, quantiles, highest

posterior regions and credible intervals.

The Bayesian model presented in Haslett et al. (2006) is briefly described next.

The forward stage of the model infers the latent response of vegetation to climate

given the modern pollen counts and corresponding modern climate data. The inverse

stage then uses knowledge of the latent responses to infer climate from fossil counts

data.
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Forward Problem

In this stage of the inference, the modern training data of pollen counts and associ-

ated climatic data are used to inform probabilistic statements on the unobservable

response of vegetation to climate. The vectors of pollen counts at each location are

modelled as indirect observations of the unknown responses 1 to the climate at that

location. Building upon the notation already used in this section, the responses

are labeled X There is a vector of X responses at each point in the climate space,

one for each taxon. Each individual taxon then has a set of responses across the

climate space referred to as the taxon response surface; jointly over all taxa these

are denoted by X.

Bayes theorem is used as above to construct the posterior for the response sur-

faces given the modern data, �Y m,Lm�.
π�X SY m,Lm� � π�X�π�Y mSLm,X�

π�Y m� � π�X�π�Y mSLm,X�RX π�Y mSLm,X�π�X�dX
(1.2)

The integral in the denominator is typically not tractable analytically. In Haslett

et al. (2006) numerical integration was performed approximately using a Metropolis-

Hastings Markov Chain Monte Carlo algorithm.

Inverse Problem

The second stage of the Bayesian inference procedure is the calculation of posterior

probability distributions on the unknown palaeoclimates Lf , given the posterior for

the latent surfaces π�X SY m,Lm� (derived in the first stage of the model) and the

fossil pollen counts Y f . This is the inverse problem (also known as multivariate

non-linear calibration; ter Braak discussion of Haslett et al. (2006)).

Sampled responses X are passed to an MCMC algorithm for sampling from the

posterior for palaeoclimate Lf given fossil pollen Y f and the surfaces X.

1Response here refers to the unobservable response of vegetation to climate only; it is the
propensity to contribute pollen to the pollen assemblage. The pollen counts are then an indirect
observation of this response, perturbed by non-climatic environmental conditions and random
variation.
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π�Lf Sdata� � π�Lf SY m, Y f ,Lm�� S π�Lf ,X SY m, Y f ,Lm�dX� S π�Lf SX,Y m, Y f ,Lm�π�X SY m, Y f ,Lm�dX� S π�Lf SX,Y f�π�X SY m, Y f ,Lm�dX (1.3)

As the fossil pollen counts alone (without knowledge of the climate at which

they occurred) contribute little, or even no, information to the posterior for response

surfaces given data, π�X SY m,Lm,Lf� is approximately equal to π�X SY m,Lm�:S π�Lf SX,Y f�π�X SY m, Y f ,Lm�dX � S π�Lf SX,Y f�π�X SY m,Lm�dX (1.4)

The fully Bayesian approach is to solve the left-hand side of Equation (1.4); the

right-hand side is an approximation that is common to most inverse problems.

In fact, a positive feedback mechanism may occur if the fossil counts are left

in Equation (1.4); removing them may in fact lead to a more accurate fit. This

is referred to as “cutting feedback”; Rougier (2008) states that cutting feedback,

although technically a violation of coherence, may be presented in terms of best-

input. The model is trained using only the data about which the analyst is confident.

Essentially, fitting the responses using the modern training data, for which counts

and climates are available, and the fossil data, for which counts only are available,

may lead to unwanted positive feedback due to the fossil counts. The model training

will begin by placing fossil counts in a region of climate space; given this selected

region, the response surface appears to fit well. But the response surface was built

using those counts in that region. The initial choice has been strengthened, despite

the fact that is was an arbitrary choice. Training the model only on the modern

data, for which climate is known, is preferred for this reason.

Integration over the latent surfaces was via Monte Carlo integration in Haslett

et al. (2006): samples Xi, . . . ,Xn are drawn from the posterior using the first stage

(forward problem) and passed to the second stage (inverse problem):S π�Lf SX,Y f�π�X SY m,Lm�dX � nQ
i�1 π�Lf SXi, Y

f� (1.5)
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An alternative to MCMC for this task is proposed in this thesis. Namely, the

suite of approximation techniques referred to as INLA are applied and expanded

for this purpose. The implications of imposing any new modelling procedures and

algorithms on the forward stage are considered primarily in terms of the impact on

the inverse stage.

1.2 Computational Challenges

The most pressing challenges encountered in the Bayesian palaeoclimate project

to date involve the intensive computations necessary to carry out inference on the

parameters of interest. This is due mainly to an over-reliance on the computationally

intensive Markov Chain Monte Carlo algorithm. The large number of parameters

required in the complex modelling leads to serious concerns about the mixing the

algorithm achieves in the unknown parameter space. Linked to this is the problem

that convergence is far from assured, even after runs of the order of weeks (see

Haslett et al. (2006)). Additional detail in the model is prohibited due to memory

and computation concerns.

As discussed briefly in Section 1.1.1, the unobservable response surfaces must

be modelled non-parametrically. One way to achieve this is by discretising climate

space on a regular grid and modelling the response as a random variable at each

node. High resolution is desirable, requiring the use of a very fine discrete grid on the

climate variable space. This results in a very large number of latent variables. The

paper Haslett et al. (2006) dealt with a model including the order of 104 unknowns;

and this is for a inference performed on a greatly reduced dataset using a simplified

model.

1.3 Overview of Chapters

A brief outline of the research presented by chapter in this thesis follows.
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Chapter 2: Literature Review and Statistical Methodology

A brief review of the literature on palaeoclimate reconstruction is presented. Progress

towards the standard set by Haslett et al. (2006) is charted and Bayesian statistical

methods for inverse inference are summarised. The remaining weaknesses in the

current methodology are outlined and the techniques used to overcome these in this

thesis are introduced.

Chapter 3: Models with Known Parameters

In order to separate modelling issues from issues of inference in the forward problem,

this chapter focusses on models with known parameters. Various model choices and

the implications of these choices are presented. Some new statistical models are

detailed. The novel contributions of this chapter are the methods for determining the

decomposability of large, multivariate models into separate, independent modules

and the nested compositional model. Issues related to the decomposition of models

are introduced and discussed.

Chapter 4: INLA Inference and Cross-Validation

The single biggest reduction of the computations required for a full Bayesian in-

ference to be performed on the palaeoclimate dataset are due to the approxima-

tion techniques presented in this chapter. By approximating the posterior for the

unknown variables in the forward problem with a tractable multivariate density,

Markov Chain Monte Carlo may be avoided entirely. The posterior distribution for

the responses may be expressed analytically and thus issues regarding mixing and

convergence are avoided. The approximation error is typically lower than the Monte

Carlo error and the computations required are dramatically reduced. This allows for

the addition of extra detail to the model and dramatically increases the potential of

the application of the procedure to larger datasets, examples of which are explored.

There are many modelling choices made throughout the application in Chap-

ter 6. These choices must be supported and alternatives explored. Cross validation

is a useful tool in evaluating the fit of the Bayesian models to the data. This is

typically done by computationally intensive Markov Chain Monte Carlo; it requires

many repeated runs and, for large problems such as the palaeoclimate reconstruc-

8



tion project, this may become computationally overwhelming and is therefore not

considered. Approximation methods are once again discussed in this context along

with further application to the pollen / climate dataset.

Chapter 5: Inference Methodology

An investigation is carried out into the implications of decomposing the counts data

vectors and carrying out marginal inferences on each component of the vector se-

quentially. This is at best identical to a joint inference on all components at once and

at worst an approximation to it. The accuracy of the approximation is expressed

as a function of several impacting factors and the conditions for exact reproduc-

tion of the joint posterior from the marginal posteriors (perfect decomposition) are

described.

Details related to performing inference using the techniques already developed

in previous chapters are presented. This chapter serves as a platform towards the

application to real data in Chapter 6.

Chapter 6: Application: the Palaeoclimate Reconstruction Project

The motivating problem for the research conducted in this thesis is to improve and

advance the palaeoclimate reconstruction project. Therefore, a chapter is devoted

to applying the work developed in previous chapters to the RS10 pollen and climate

dataset. The various approximation algorithms allow for a richer modelling of the

forward problem (the response of vegetation to climate) than was previously possi-

ble. The modelling of zero-inflation represents a fundamental change in the model.

Practical issues regarding the application of the new model and use of the approxi-

mations are identified and discussed. Results are presented and compared with the

results derived from previous approaches. A fast cross-validation methodology for

the inverse problem is central to this chapter.

Chapter 7: Conclusions and Further Work

The results from the preceding chapters are summarised and discussed. An appraisal

of the work to date is conducted and outstanding issues and challenges are identified.

Solutions to these remaining challenges are suggested and alternative methodologies
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briefly outlined.
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1.4 Research Contributions

The following is a statement of the main contributions to the palaeoclimate recon-

struction project by the author as presented in this thesis:

1. Investigation is conducted into the accuracy lost in sequential modelling of

individual plant taxa responses to climate.

2. Nested compositional counts models for the palaeoclimate dataset are intro-

duced. It is demonstrated that knowledge of the nesting structure is crucial

to performing accurate inferences.

3. A fast Bayesian inference procedure on the forward stage of the palaeoclimate

reconstruction model is demonstrated. This allows for far richer models to be

developed and, more importantly, validated.

4. A model for parsimonious modelling of zero-inflation of the counts data that

is compatible with the INLA methodology is presented.

5. A fast inverse cross-validation methodology using INLA is developed. This is

a novel extension to the technique and is demonstrated through application

to the pollen and climate dataset.
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Chapter 2

Literature Review and Statistical

Methodology

In order to set the context of the work in this thesis, a brief palaeoclimate reconstruc-

tion literature review is conducted in Section 2.1. Gaps in the existing methodology

are identified and solutions developed in this thesis are introduced.

The contributions are relevant to a wider statistical methodology beyond palaeo-

climate reconstruction; Section 2.2 discusses Bayesian methods that are relevant to

the methodology developed in this thesis. Section 2.4 introduces explicit modelling

of zero-inflated counts data. Section 2.5 defines inverse regression and demonstrates

the generic challenge of such problems with a simple example. Section 2.6 begins

the discussion of how models of this type are evaluated and compared, focusing on

inverse problems.

2.1 Palaeoclimate Reconstruction Literature Re-

view

Although the contributions made in this thesis to both statistical modelling and

inference are applicable to a variety of problems, it is most natural to set them in

the context of the motivating problem of statistical palaeoclimate reconstruction

using pollen data.

Throughout the later chapters, existing methodology is referenced as required.

Therefore, a brief and focussed review of the palaeoclimate literature only is con-
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ducted here in order to motivate and frame the work in this thesis.

Detailed reviews are already available; see ter Braak (1995) for a review of

non-Bayesian palaeoecology, Haslett et al. (2006) for a review of Bayesian and

non-Bayesian palaeoclimate reconstruction and Bhattacharya (2004) for details on

Bayesian inference in inverse problems with a focus on palaeoclimate reconstruc-

tion. It is not a worthwhile exercise to reproduce these in detail here; an overview,

drawing directly from these and other sources is sufficient. Details may be found in

the references.

The outline for the literature review is as follows:� Section 2.1.1 provides a brief review of non-Bayesian estimation methods in

the palaeoclimate literature. As per Haslett et al. (2006), these are referred

to as “classical”. This section is relies on reference to the existing reviews in

ter Braak (1995), Haslett et al. (2006), Bhattacharya (2004).� Section 2.1.2 deals mainly with the methodology of Haslett et al. (2006). Re-

lated Bayesian approaches are also discussed. Challenges and shortcomings in

these techniques are identified.

Unfortunately, the terminology used in palaeoclimate statistics has become some-

what confused. ter Braak (1995) categorises non-Bayesian approaches into two dis-

tinct paradigms, which he terms “classical” and “inverse”. The former refers to

regression of ecological data on climate. The latter is vice-versa; hence the label

inverse as cause and effect have been inverted. “Classical” reconstruction may be

thought of as building a forward (cause implies effect) model and subsequently in-

verting the model to find cause given effect. This use of “inverse” reconstruction

involves the simpler task of regression of cause (climate) on effect (ecology).

Haslett et al. (2006) and Bhattacharya (2004) do not consider the ter Braak

(1995) definition of “inverse” modelling and use the term “classical” to refer to all

non-Bayesian approaches. “Inverse” modelling in these works refers to the inversion

of a forward model, Bayesian or otherwise. “Forward” models are equivalent to

the models calibrated on the modern data in the “classical” approach of ter Braak

(1995).

This is the terminology adopted here; thus quotation marks for these definitions
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of “forward”, “inverse” and “classical” will be dropped from here on; the ter Braak

(1995) definition of “inverse” will be referred to as classical inverse.

2.1.1 Classical Approach

ter Braak (1995) notes that palaeoclimate reconstruction is a highly non-linear mul-

tivariate calibration problem. Although climate reconstruction from modern and

fossil pollen is taken as the only worked example, the author notes that the tech-

niques carry over immediately to calibration in other areas of palaeoecology.

He uses the interesting phrase

“the present day calibration is used to infer the past climate”

to broadly describe the way that all statistical climate reconstruction techniques

work. The contribution of this thesis mainly lies in the calibration of such data

(spatial, compositional, zero-inflated counts). The focus is in building and assessing

the models.

It is worth noting that although Krutchkoff (1967) claims the superiority of

this definition of the classical inverse method in predictive power, ter Braak (1995)

shows that this approach is only slightly better when samples are from a large

central part of the distribution of the training set. The inversion of the forward

model is considerably better at the extremes. The classical inverse method also

treats each climate variable separately and independently; a surprising and illogical

model. In the Bayesian context, it is more natural to build forward (cause implies

effect) models and invert using Bayes rule.

The classical palaeoclimate modelling approach may be split into three ap-

proaches:

1. Response surfaces; polynomials and non-parametric

2. Analogue method; k nearest neighbours

3. Least squares type methods in classical inverse sense

The second two are classical inverse methods and are not considered further (the

third method is a direct calibration of climate on pollen). The response surface

method is the closest in spirit to the approach introduced in the Bayesian sense by
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Haslett et al. (2006) and developed here. Response surface methods typically use

least squares based methods to regress pollen on climate; this relationship is then

inverted to produce inference on fossil climate given pollen. Bartlein et al. (1986)

used cubic polynomials in two climate dimensions fitted to observed percentages of

eight pollen types. The authors encountered two difficulties with their approach:

1. some pollen type exhibited multimodal responses

2. the polynomials lacked flexibility and behaved strangely at the edge of the

sample climate space.

Both of these problems were addressed through switching from fitting cubic

polynomial response functions to non-parametric responses. Prentice et al. (1991)

used local weighted averaging to fit smooth non-parametric surfaces to the data.

This technique has since been followed by Huntley (1993) and others and is the

closest non-Bayesian equivalent to the model of Haslett et al. (2006).

This method posed the question of what to do with the problem of multiple

modern analogues. In fact, this problem is common for inverse problems (see Sec-

tion 2.5.1). In the method of Allen et al. (2000), the locations in climate space of the

ten “nearest” response surface to the compositional fossil vector were averaged. This

was an attempt to provide a single location as the most likely reconstructed climate.

However, it can be a most unsatisfactory approach; in the simplest example, a plant

type that is abundant in the centre of climate space will send the signal “not close

to centre” when the fossil record has low pollen counts of this type. The ten nearest

response surface values will come from the edges of climate space. Averaging these

ten locations in climate space will then reconstruct the centre; i.e. the very place

that the signal most strongly rejects!

2.1.2 Bayesian Approach

A Bayesian approach offers a solution to the above problems. Uncertainty is handled

in a consistent manner and full posterior distributions on random variables of interest

may be summarised in any way desired. So, for the above example, the posterior

distribution would be multimodal with lowest probability assigned to the area in
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which the pollen type is scarce; an honest assessment of belief in light of the low

signal.

The Bayesian paradigm (Section 2.2) has been applied to palaeoclimate re-

construction; however, the literature is “very small and scattered” (Haslett et al.

(2006)). The first detailed Bayesian methodology comes from a series of papers by a

group in the University of Helsinki (Vasko et al. (2000), Toivonen et al. (2001) and

Korhola et al. (2002)). However, they work with a single climate variable and use

a unimodal response with a functional form, invoking Shelford’s law of tolerance,

which states that a species thrives best at a particular value of an environmental

variable (optimum) and cannot survive if this variable is too high or too low.

Such a response model is inappropriate for many applications of ecology model.

For example, Huntley (1993) shows that, for pollen data, multimodal responses in

several climate dimensions are common. This is a result of species indistinguishably;

most pollen spore types represent several species or even an entire genus.

More recent Bayesian work by Holden et al. (2008) also invoke Shelford’s law.

This allows them to avoid MCMC based inference. In that paper, zero-inflation of

the data is explicitly modelled; presence and abundance when presence are modelled

as functions of a single underlying spatial process. This model is related to the model

of Salter-Townshend and Haslett (2006).

Haslett et al. (2006)

Recognizing the issue with multimodal responses, Haslett et al. (2006) applied the

non-parametric response surfaces approach of Huntley (1993) in a Bayesian context.

A 50�50 regular grid was employed across a two dimensional climate space on which

modern pollen data were placed; a Gaussian Markov prior on the non-parametric

responses defined on this grid ensured the smoothness of the latent responses. This

created a model flexible enough to deal with any type of smooth response function.

Although only a subset of the data was examined (14 taxonomic groups were

selected by expert opinion from the total set of 48 taxa), the non-parametric ap-

proach led to around ten thousand latent random variables. As the posterior for

these parameters is only available up to a normalising constant, sampling algorithms

(Section 2.2.2) were employed to sample from the posterior. Empirical summary
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statistics were then used in lieu of theoretical ones.

Computation was found to be the main challenge of the methodology; this in

turn led to restrictions on both the complexity of the model and, more importantly,

in the validation procedures used to test and compare models. Due to these short-

comings, the paper was presented as a “rather detailed proof of concept” Haslett

et al. (2006). A section on issues deferred details some of the shortcomings and the

printed discussion with the paper addresses several others.

The work contained in this thesis seeks to address some of these difficulties.

Alternative inference techniques are employed, novel to the problem of palaeoclimate

reconstruction, in place of the computationally overwhelming sampling algorithms

used in Haslett et al. (2006). These techniques yield a normalised posterior on all

parameters in closed form; see Section 2.3 for an introduction and Section 4.1 for full

details. Assumptions made necessary by computational concerns may be relaxed,

leading to a richer model posterior and the availability of more rigorous testing.

The final paragraph of the rejoinder from the authors of Haslett et al. (2006) to

the contributed written discussion of the paper ended as follows:

“Zero inflation is a particular challenge . . . There may well be sampling

procedures for the [parameters] that are more efficient than simple ran-

dom sampling. In short, there remain many methodological challenges.”

In fact, while the authors acknowledge the need to treat the zero counts specially,

the model they employ is one for overdispersion only, once again sacrificing model

sophistication to computational efficiency.

The avoidance of intensive sampling algorithms allows for more sophisticated

models to be developed. In particular, this thesis presents a new model for spatial

zero-inflated counts data. The new model is flexible, yet simple. It offers a far more

satisfactory account for the extra zeros in the data, yet remains parsimonious.

Model validation did not play a big role in Haslett et al. (2006); leave-one-out

cross-validation was presented as a focussed evaluation of the model’s capability to

reconstruct climate. A counts vector plus climate space location pair is left out

of the modern dataset. The model is trained on the remaining data and the left-

out climate is reconstructed using the trained model and the left-out counts vector.

This is repeated for each data pairing and summaries of the ability of the model to
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“predict” the data give a measure of model fit.

However, this would require fitting the model several thousand times. With

running times of several weeks, after which the authors concede that “convergence

to the correct posterior is far from assured”, repeating the procedure even a dozen

times is undesirable to say the least. Therefore, the authors use an approximate

cross-validation shortcut; the model, as fit to the entire dataset is used as an ap-

proximation to the fit for each left-out point.

In contrast to this, constructing closed form posteriors, using new closed form

techniques requires only a few minutes of run time. The development of these

techniques is not a contribution in this thesis although application to the area of

palaeoclimate reconstruction is novel. Re-fitting the model for each left-out point

is now a realistic exercise. Another contribution in this thesis is to quickly correct

the entire fitted model to account for leaving out a datapoint, rather than re-fit the

model, thus achieving a fast inverse cross-validation.

2.2 Relevant Bayesian Methods

The Bayesian analyst is concerned with learning from a dataset about some unknown

parameters. In the Bayesian framework, these parameters are treated as random

variables and prior probability distributions are placed on these parameters. These

reflect the analyst’s beliefs before seeing the data; they can be subjective and in-

formed by personal and / or expert opinion, informed by previous analysis of other

datasets or totally uninformative, reflecting a complete ignorance or lack of belief.

The data are modelled using a likelihood function. This is a probability distribu-

tion for the data, given the parameters. Using Bayes rule (given in Equation (1.1)),

the prior and likelihood are multiplied to give an un-normalised posterior. This

posterior, once normalised, gives a probabilistic distribution on the updated beliefs

in light of the data. All useful summaries of knowledge subsequent to observation

of the data may be calculated directly from the posterior distribution.

One of the main advantages of using Bayesian methodology is that uncertainty

in the data and the parameters can be treated in a consistent way. Existing beliefs

can be built in to the priors so that the posterior reflects not only the information
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carried in the data but, for example, expert opinions too.

2.2.1 Bayesian Hierarchical Model

The general type of model considered in this thesis is a Bayesian hierarchical model

(see Bernardo and Smith (1994) chapter 4). Hierarchical models have two or more

levels of dependency. The hyperparameters θ specify the distribution of the latent

parameters X which in turn specify the parameters of the likelihood functions for

the data Y (this notation will remain consistent throughout). The hyperparameters

themselves may in turn be modelled as random variables with a hyperprior.

Y � π�Y SX�
X � π�X Sθ�
θ � π�θ� (2.1)

The level of data is called the first level, the parameters of the likelihood are

level two and so forth.

2.2.2 Markov Chain Monte Carlo

Normalisation of the posterior is one of the primary challenges to implementation

of the Bayesian method. In recent years, the use of Markov Chain Monte Carlo

(MCMC) methods has become almost ubiquitous in Bayesian statistical inference,

due largely to the availability of cheap and powerful computing resources (Gelfand

and Smith (1990)). One common algorithm for performing MCMC based inference

is the Metropolis-Hastings rejection sampling algorithm.

Iterative Metropolis-Hastings algorithms (introduced in Metropolis et al. (1953)

and generalised in Hastings (1970)) generate a Markov chain of samples from any

target probability distribution (such as the posterior in Equation (2.4)). The samples

of the Markov chain can then be used to form any desired summary of the target

distribution. The desired distribution only needs to be known up to a proportionality

constant and therefore the denominator in Equation (2.4) is not required.

A very simple summary is provided here; for details of the Metropolis-Hastings

and other MCMC algorithms, see Gilks et al. (1996). Suppose a target distribu-
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tion has density f�X�. Then, given a sample value of Xt, a proposed value X � is

generated from a pre-specified proposal density q�X �SXt� and then accepted with

probability α�Xt,X ��, given by

α�Xt,X
�� � min�1,

f�X �� q�XtSX ��
f�Xt� q�X �SXt�¡ (2.2)

If the proposed value is accepted, the next sampled value Xt�1 is set to X �. Oth-

erwise, Xt�1 is set to Xt. If a symmetric proposal distribution is used (for example

a random walk or an independence sampler), then the q terms in Equation (2.2)

cancel. Looping over this procedure n times produces a Markov chain of samples

X1, . . .Xn from f�X�, after convergence.

Constructing the algorithm is usually not difficult. Challenges are encountered

when attempting to construct an algorithm that will return enough independent

samples from the posterior to facilitate accurate inferences. MCMC methodology is

plagued by the following issues.

1. Mixing: Due to the frequently high dimensionality of the space of parameters

of interest a large number of independent samples is required to adequately

describe the posterior distribution. The variables are often strongly depen-

dent on each other and therefore sequential samples from the Markov chain

are highly correlated. One-at-a-time updates suffer from poor mixing due to

these correlations, unless an efficient multivariate proposal distribution can

be constructed to perform joint updates. Mixing refers to the ability of the

algorithm to explore the full support of the target distribution. Independence

samplers for high dimensional spaces will lead to high rejection rates in the

Metropolis-Hastings algorithm, greatly reducing the number of effective sam-

ples.

2. Convergence and burn-in: The Markov chain requires an initial set of values.

A set of burn-in iterations of the algorithm is necessary to ensure convergence

to the stationary distribution of the chain (the target distribution). This

burn-in period can be very long and for high dimensional parameter spaces,

convergence is difficult (if not impossible) to assure. Gilks et al. (1996) provides

details.
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In most practical problems a mixture of intuition, experience and ad hoc methods

are used to determine the length of an MCMC run required to generate a sufficient

sample from the posterior. This is particularly challenging for the forward stage

of the palaeoclimate reconstruction project due to the non-parametric modelling

approach which necessitates a very large number of highly correlated variables.

2.2.3 Directed Acyclic Graphs

A directed acyclic graph, or DAG, is a powerful graphical tool for model building and

illustration. A graph with directed arcs and no directed cycles is used to represent

the model. The direction of the arcs gives the conditional dependencies.

Hierarchical models are most easily expressed using a DAG, where arrows be-

tween each variable denote dependence. If, for example, a variable a depends on

another variable b in a statistical model, then the DAG for this is simply a� b.

Throughout this thesis, the structure of all models considered have an overall

DAG corresponding to

θ �X � Y (2.3)

Each of the three levels may consist of multiple variables with extra dependency

structure, suppressed in this simplified graph.

Bayesian inference procedures, such as those listed below, allow for inference on

the distribution of the parameters given the data via Bayes rule:

π�X,θSY � � π�Y SX,θ�π�X,θ�RX,θ
π�Y SX,θ�π�X,θ�d�X,θ� (2.4)

Bayesian Networks are probabilistic DAGs whose nodes represent random vari-

ables. The directed arcs of the DAG denote the conditional dependencies of the

model represented. For example, Figure 2.1 shows a DAG for a hierarchical model;

2.2.4 Gaussian Markov Random Fields

It is common for the latent parameters to be modelled as a latent multivariate

Gaussian field, particularly in spatial statistics (Banerjee et al. (2003), Finkenstdt

et al. (2006)). This allows for a stochastic dependence between the latent parameters
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y1 y2 y3

x1 x2 x3

θ

Fig. 2.1: An example directed acyclic graph, or DAG. The entire hierar-

chical model is specified graphically; trivariate X depends on θ and each

element is linked with the one to the right so that the model of X is, e.g.

auto-regressive of order one, given θ. Data Y are observational modes

that depend exclusively on the latent parameters X.

X to be incorporated into the model. One or more of the set of hyperparameters

may be used to model the degree of covariance between these latent variables.

For a vector X defined in a discrete location space, a labeled graph G � �V, ω�
defines the Markov structure of X. V � �1, . . . , n� indexes the locations and ω is the

set of edges (dependency connections from one node to another) for each node of

the graph. There is no edge between nodes i and j iff xi Ù xj Sx��i,j�.
Definition 1 x � �x1, . . . , xn�T is a GMRF w.r.t. a labeled graph G � �V, ω� with

mean µ and precision matrix Q iff its density has the form

π�x� � �2π��n
2 SQS 12 exp��1

2
�x � µ�T Q�x � µ�� (2.5)

and

Qij x 0� �i, j� > ωfor all i x j (2.6)

Assigning a Markov structure to the latent field renders both the prior and

posterior for the latent parameters to be a Gaussian Markov Random Field (GMRF)

w.r.t. a graph G. The reason for using a Markov structure, as opposed to defining

a variogram in continuous space, is for computational savings associated with the

sparseness of the matrices required; see later in Section 4.1.
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If the precision (inverse covariance) matrix for the latent field is sparse, then fast

numerical algorithms may be employed; details of this are described in Section 4.1.

These Gaussian Markov random fields model the response surfaces of previous sec-

tions as stochastically smooth across the location space.

If each node of the graph has an edge to all other nodes then the graph is said to

be fully connected. Assigning a regular Markov structure to the graph breaks many

of the edges resulting in a sparse precision matrix.

Discrete and Finite Space

The use of Markov random fields requires the location space to be defined on a

discrete grid. Use of a fine grid blurs the distinction between discrete and continuous

space. The data for locations may then be shifted to the nearest gridpoint or left as

continuous and calculations at these locations may be evaluated cheaply as weighted

averages of the values at the surrounding gridpoint values.

Intrinsic GMRFs

Intrinsic GMRFs are defined by an improper log-density. No mean is specified and

the the precision matrix cannot therefore be inverted to give the covariance matrix.

Intrinsic GMRF priors are often used for the parameters describing the latent

surfaces. This allows for the specification of prior beliefs on the smoothness of the

surfaces without specifying a prior mean.

Following Rue and Held (2005):

Definition 2 Let Q be a symmetric, positive semi-definite matrix with rank n�k A
0, where k A 0 is the dimension of the null space of Q. x � �x1, . . . , xn�T is an

improper GMRF of rank n � k A 0 with parameters �µ,Q� if its improper density

is

π�x� � �2π�� �n�k�
2 �SQS�� 1

2 exp��1

2
xT Qx� (2.7)

where SQS� is the generalized determinant of Q (the product of the non-zero eigen-

values).

Intrinsic GMRFs are improper; the precision matrices are not of full rank and

cannot therefore be inverted to give a covariance matrix (see Rue and Held (2005)
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Chapter 3). In fact, the precision matrix for an intrinsic GMRF does not formally

exist, however following Rue and Held (2005) the n � n matrix Q with rank n � k

(and k A 0) is referred to as the precision matrix of the intrinsic GMRF.

An intrinsic GMRF of kth order is an improper GMRF of rank n � k, wherePj Qij � 0 for all i. Hence, the conditional mean of xi is the weighted mean of its

neighbours, but has no specified overall level.

Random Walk

A convenient prior on a vector X whose indices are one dimensional may be derived

from the random walk. For example, the first order random walk in one dimension is

constructed from independent increments of X, defined on n discrete points (nodes

on the graph G).

xi � xi�1
iid� N �0, κ�1� (2.8)

which implies that

xj � xi � N �0, �j � i�κ�1� (2.9)

for i � j. The full, joint density for X is then derived from its n � 1 increments

(π�x1Sx0�, . . . π�xnSxn�1� where π�xiSxi�1� � N �xi�1, κ�1) given by Equation (2.8) as

(again, following Rue and Held (2005))

π�X Sκ� � κ�n�1�~2exp��κ

2

n�1Q
i�1�Dxi�2�� κ�n�1�~2exp��κ

2

n�1Q
i�1�xi�1 � xi�2�� κ�n�1�~2exp��1

2
XT QX� (2.10)

where Q � κS, κ is a hyperparameter of the hierarchical model and S is the structure

matrix given by
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S �
���������������������

1 �1�1 2 �1�1 2 �1� � ��1 2 �1�1 2 �1�1 1

���������������������
(2.11)

Similar structure matrices may be constructed based on higher order random

walks in any dimension of space, subject to edge effects. The imposition of a spatial

structure models the latent surfaces as stochastically smooth using just a single

hyperparameter κ. This hyperparameter controls the degree of spatial smoothing.

Link Functions

The parameters of many likelihood functions, particularly for counts data, require

non-negative parameters. Link functions are therefore used to transform the unre-

stricted latent field variables into positive numbers.

For example, if the data are modelled as Poisson, then the rates (positive) may

be modelled as the exponents of multivariate Gaussian distributed random variables.

yi � Poisson�yi;λi�
λi � exp�xi�
X � GMRF �X;µX ,QX� (2.12)

In this example the hyperparameters θ are comprised of the means and precisions

of the latent field, µX and QX .

2.3 Integrated Nested Laplace Approximations

The Bayesian inference problem for models such as the one depicted graphically in

Figure 2.1 is to infer posterior (i.e. given the data) probability distributions for the

latent variables X and hyperparameters θ. i.e. to find
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π�X,θSY � � π�Y SX,θ�π�X,θ�RX,θ
π�Y SX,θ�π�X,θ�d�X,θ� (2.13)

which is more conveniently expressed as

π�X Sθ,Y �π�θSY � � π�Y SX,θ�π�X Sθ�π�θ�Rθ �RX π�Y SX,θ�π�X Sθ�dX� dθ
(2.14)

The most common approach is to use MCMC to sample from the posterior

for X and θ. This approach, while hugely popular, is not without its drawbacks

(Sections 2.1.2 and 2.2.2). New techniques introduced in Rue and Held (2005) and

developed further in Rue et al. (2008) offer a fast approximation called Integrated

Nested Laplace Approximations (INLA).

Starting with the identity

π�θSY � � π�X,θSY �
π�X Sθ,Y � (2.15)

Replacing the denominator with a normalised Gaussian approximation evaluated

at the mode (X��θ�) yields

π�θSY � � π�X,θSY �
π̃G�X Sθ,Y �RRRRRRRRRRRX�X��θ� (2.16)

This is known as the Laplace approximation for the hyperparameters. The Gaus-

sian approximation for the latent field posterior, π̃G�X Sθ,Y �, is demonstrated in

detail in Section 4.1.

The basic procedure for INLA type inference on Bayesian hierarchical models is

as follows:� The posterior for the hyperparameters is approximated using the Laplace ap-

proximate in Equation (2.16).� The posterior for the smooth latent field, given the data and hyperparameters,

is approximated by a GMRF at gridded / discrete values of the hyperparam-

eters.� The approximate marginal posterior for the latent field, given the data only is

found by summing over the discrete values of hyperparameters
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� If the marginal value for a particular latent parameter (location in the field)

is required to a greater degree of accuracy, a Laplace approximation is built

using a similar procedure to Equation (2.16).

Full details of how this is achieved and the relative strengths and weaknesses of

the method are examined in Section 4.1. It is sufficient here to note that implemen-

tation of these new methods is novel in the context of palaeoclimate research. They

allow for increased sophistication in the forward model and more rigorous sensitivity

analysis and model validation.

Contributions to the actual INLA methodology in this thesis consist of a method

for performing fast updates to the entire posterior to correct for leaving out data;

this has an immediate application in cross-validation in the inverse sense (see Sec-

tion 2.6.2). Local corrections are sufficient for cross-validation in the forward sense

as the location is known in this case.

2.4 Spatial Zero-Inflated Models

Many counts datasets include zero-inflation; there are an excessive number of zero

counts. Of particular interest is spatial data that exhibit such an overabundance of

zeros. If these zero counts are ignored then information is lost. If zeros are modelled

as arising in the same manner as the non-zero data, then statistical inference carried

out on the dataset will be biased by them.

There are several methods for modelling data with many of these extra zeros

that fall into three broad categories (see Ridout et al. (1998)):

1. Mixed Models

2. Hurdle models

3. Zero-modified distributions

The first technique, mixture models, accounts for zero-mean random effects. The

parameters of the likelihoods for the counts are mixed with a distribution centred

on zero. The resulting overdispersed likelihood will allow for some of the desired

additional probability on zero counts, however, the variance will be increased and
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additional probability will also be placed on other counts far from the expected

value.

Hurdle models (Mullahy (1986) a.k.a. two-part models Heilbron (1994)) provide

for a two part likelihood. The first defines the probability of observing a zero count

and the second part models only the positive counts. For example, if the positive

counts are modelled using the zero-truncated Poisson then the count y is distributed

as:

π�y� � ¢̈̈̈�̈̈̈¤ π0 y � 0�1�π0�e�λλy�1�e�λ�y!
y A 0

(2.17)

where π0 is the probability of observing a zero count.

Unfortunately, the mean of the zero-truncated distribution is dependent on the

form of the non-zeros probability. For example, if a Negative-Binomial distribution

with the same mean as the above Poisson was truncated at zero then the means

of the truncated distributions will differ. This inconsistency will compound any

modelling errors and lead to biases in the inferences (Ridout et al. (1998)).

Zero-modified distributions are very similar to hurdle models; the key difference

is that the zeros may still arise from the process that generates the positive counts

as well as from a zero-only process. For example, the zero-inflated Poisson is given

by

π�y� � ¢̈̈̈�̈̈̈¤ 1 � q � qe�λ y � 0

qe�λλy

y!
y A 0

(2.18)

where 1�q is the probability of observing an essential zero count; i.e. a count arising

from the process that generates only zero counts.

These are also referred to as structural zeros in the literature, with zeros arising

from the process that also generates the positive counts referred to as non-essential

zeros or sampling zeros.

This is equivalent to the Poisson hurdle model with π0 � 1 � q � qLikelihood�0�.
However, this relationship will of course vary with the choice of non-zero-inflated

distribution.
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The general form for a zero-modified counts distribution is

π�y� � ¢̈̈̈�̈̈̈¤ 1 � q � qL�0� y � 0

qL�y� y A 0
(2.19)

where L is the counts likelihood for the non-zero-inflated version of the distribution.

It is a mixture of the non-zero-inflated likelihood and a point mass at zero.

These latter are the most flexible class of distributions for modelling zero-inflated

counts data and they are the focus of the work presented here; this is because the

pollen data are most accurately described by the mixture of a point mass at zero

and a counts likelihood that may still return a zero. The term zero-inflated will be

reserved for this method of modelling extra zeros from here on.

2.4.1 Single Process Model for Zero-Inflation

A zero-inflated distribution of counts has an extra parameter over the non-zero-

inflated version. For spatial problems, modelled non-parametrically, this doubles

an already large number of parameters in the model. As computational overhead is

already one of the main challenges to Bayesian analysis of such models, it is desirable

to reduce the number of free parameters.

If the parameter governing the point mass at zero and a parameter of the not

strictly zero counts part (e.g. the mean) are related, then a more parsimonious

model may reduce the number of parameters in the spatial model by half.

In the context of hurdle models, Heilbron (1994) calls this a compatible model.

An analagous model for a zero-inflated Poisson is introduced by Lambert (1992),

wherein the log of the Poisson rate is modelled as

log�λ� � Bβ (2.20)

for some covariate matrix B. The probability of an essential zero and is given by

logit�1 � q� � �τBβ (2.21)

Lambert advocates such a model based on the absence of prior information about

the relationship between the two variables. Lambert proposes the use of such models

when the covariates affecting the two variables are the same.
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Salter-Townshend and Haslett (2006) showed that using such a functional link

in such models not only reduces the number of parameters by half, but that in

the context of spatial data analysis ignoring such relationships, if they exist, may

lead to a substantive loss in accuracy of inference. In that paper, the “probability

of potential presence” q is modelled as being equal to the Binomial parameter for

zero-inflated Binomially distributed counts.

Positive Power Link

A more flexible model may be readily achieved through the addition of a single extra

parameter α. A power law functional relationship such as

q � pα (2.22)

with α A 0 provides a simple and intuitive, yet flexible model. This is the zero-

inflation model that is used for the remainder of the thesis.

If dealing with rates λ rather than proportions, a relationship based on a trans-

formation of the rates to the �0,1� interval is required, such as q � � λ
1�λ

�α

This is related to Lambert (1992)’s model; solving for q in Equations (2.20)

and (2.21) gives

q � 1

1 � λ�k
(2.23)

Equation (2.22) is monotonic for positive α; an increase in p implies an increase

in q. This has the effect of limiting the model with the constraint that as the rate

or proportion increases, the probability of observing an extra zero decreases. This

flexible yet simple model is one of the lesser contributions of the work described in

this thesis. Of course, this model should only be applied to data which exhibit such

a relationship or when such a feature is desirable in the model. Justification for this

model for the motivating pollen and climate dataset is given in Chapter 6 and so

this is the model used in the rest of the thesis.
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2.5 Inverse Regression

As per Section 2.1, inverse regression may either mean regressing cause on effect

directly (referred to here as classical inverse methods) or regressing effect on cause

(the forward model) and then inverting the model to provide estimates of cause

given effect. The latter is the approach taken here; response surfaces are fitted

using modern data on climate and pollen assemblage pairs. This calibrated model

is then inverted to predict (or reconstruct) climate given an assemblage for which

there is no climatic data.

2.5.1 Non-parametric Response Surfaces

One important aspect of palaeoclimate reconstruction is the fitting and use of re-

sponse surfaces (Bartlein et al. (1986), Huntley (1993) and Allen et al. (2000)).

The essential issues in the Bayesian modelling of these are presented in terms of a

simple hierarchical model. The random variation in the observations (that is, the

likelihood) is Gaussian, and all precision parameters are taken to be known. For

illustration purposes a simple toy model is presented. Initially in this chapter a

univariate model is used, subsequently generalising to multivariate cases. In later

chapters, assumptions such as known precisions, are relaxed. The distinction be-

tween the forward and inverse stages (see Section 1.1) is stated and illustrated. The

procedure is critically analysed and an inverse performance metric is introduced.

The basic idea is presented in Figure 2.2. Pollen counts Ỹ � �ỹj; j � 1, . . . ,10� on

a single plant taxon are available at 10 regularly spaced points having known climates

L̃ � �l̃j�. A model is fitted to these training data, represented by the smooth red line

with associated uncertainty interval (dashed red line); this is the forward stage. It

models the response of a single taxon to changes in one-dimensional climate. Note

that response is measured indirectly; it is a latent variable. In the context of the

pollen data, response is the propensity to produce pollen, as a function of climate.

A new count ỹnew is introduced and inferences are made on the associated un-

observed climate lnew; this is the inverse stage. The figure presents two examples

of ỹnew. The model adopted is such that for one of these the inference on lnew is

represented by a unimodal density and for the other the density is bimodal. This
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potential mutlimodality is a consequence of the non-monotonic shape of the response

surface.

The forward fitting stage is a form of non-parametric regression, in which the only

requirement is that the response surface is smooth. A Bayesian approach involving a

Gaussian process prior is implemented. In Section 2.5.2 a simple example is used to

present the details. These are trivial if, as assumed there, the variance parameters

are known and the likelihoods are Gaussian. The inverse stage, even for this toy

model, is not trivial. Nevertheless, for this model, with known parameters, it is

simple to compute.

This is formalised as follows, for each new count, where the Gaussian random

function X�L� models the response surface:

π�lnewSỸ , L̃, ỹnew� � S π�lnew,X SỸ , ỹnew, L̃�dX� S π�lnewSX, Ỹ , ỹnew, L̃�π�X SỸ , ỹnew, L̃�dX� S π�lnewSX, ỹnew�π�X SỸ , ỹnew, L̃�dX� S π�lnewSX, ỹnew�π�X SỸ , L̃�dX� S π�ỹnewSX, lnew�π�lnew�π�X SỸ , L̃�dX (2.24)

There are a number of interesting features of such a problem, many of which are

not immediately obvious. These are most usefully demonstrated via investigation of

an example toy problem, which is simple yet similar in spirit to the palaeoclimate

reconstruction problem. This also serves to introduce some modelling choices which

are retained throughout much of this thesis.

2.5.2 Toy Problem Example

Counts data Ỹ are available at Nd locations L̃. The response X � X�L� is unob-

served and treated here as a random function, defined on a fine regular grid �L� of

100 points across the location space. The interest here is its conditional distribution

given the training data. The Bayesian formulation of the problem is then

π�X SỸ , L̃� � Kπ�Ỹ SX, L̃�π�X� � K
10M
j�1 π�ỹj SX�l̃j��π�X� (2.25)
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Fig. 2.2: The basic concepts of the response surface methodology are

illustrated. The top plot shows the counts data and results of the forward

stage of the inference. The posterior mean and 95% highest posterior

bounds are plotted against climate / location. The lower plot shows the

posterior densities for climate given two new counts (inverse stage) and

the forward stage results.
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where X is the latent response and K is the normalising constant. The data are

conditionally independent, given the latent surface. In such Bayesian approaches K

is source of much technical difficulty, even when π�X� is Gaussian. However when

the likelihood is also Gaussian, as here, K is available analytically. For this example,

the surface X�l� is the likelihood mean at l > L and σ2

Y is the variance. The prior

π�X� and the likelihood π�Ỹ SX, L̃� are thus conjugate, leading to a Gaussian poste-

rior, provided the prior and likelihood precision matrices, QX and QY respectively,

are known.

Across all gridpoints �L� in the location space, the likelihood contributes

π�Y SX�� exp��1

2
�X � Y �T QY �X � Y �� (2.26)

where

Y �L� � ¢̈̈̈�̈̈̈¤ Ỹ L � L̃

0 L x L̃
(2.27)

and the likelihood precision matrix QY is diagonal and of dimension NL�NL, where

NL is the number of gridpoints. The diagonal entries are:

QY �j, j� � ¢̈̈̈�̈̈̈¤ 1

σ2

Y

Lj > L̃j

0 Lj ¶ L̃j

(2.28)

The prior on X is an intrinsic Gaussian Markov random field (GMRF), given by

π�X�� exp��1

2
�X�T QX�X�� (2.29)

with the precision matrix QX given by

QX � κ

���������������������
1 �1�1 2 �1�1 2 �1� � ��1 2 �1�1 2 �1�1 1

���������������������
(2.30)
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The model has two scalar parameters; the positive scalar prior precision param-

eter κ and the likelihood variance σ2

Y . The higher the κ value used, the greater

the smoothness of the latent surface X�L�. The decision to model the surface on

a regular grid rather than specifying a continuous model defined at the datapoints

is due to the desirable properties of GMRFs as discussed in Section 4.1 and is not

discussed here.

The Markov property is inherited by the posterior which is a multivariate Gaus-

sian with mean and precision matrix given by

µ � �QX �QY ��1QY Y

Q � QX �QY (2.31)

Using this analytical form for the posterior of the latent surface given the data,

the inverse stage posterior of Equation (2.24) may be computed numerically. The

locations are discrete so the posterior for unknown location given a new count is

defined only on a finite number of possible gridpoints. The posterior is therefore

a probability mass function and normalisation is provided by rescaling the unnor-

malised product of the prior and likelihood functions such that the total is unity.

A uniform prior 1

NL
is imposed here and the likelihood of the new count ỹnew at

any given location L is N�X�L�, σ2

Y �. The integral over the unidimensional latent

surface is performed analytically. Sample calculations are provided in Table 2.1 for

a given ỹnew.

Table 2.1: Sample calculations from the inverse stage of the toy prob-

lem given a new count of 340 and the forward stage results shown in

Figure 2.2.

location 28 29 30 31 32 33 34 35 36 37

prior 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

likelihood 3.58e�9 3.95e�4 9.70e�3 3.22e�2 4.55e�2 3.90e�2 2.28e�2 9.32e�3 2.55e�3 4.16e�4

product 3.58e�11 3.54e�6 9.70e�5 3.22e�4 4.55e�4 3.90e�4 2.28e�4 9.32e�5 2.46e�5 4.21e�6

posterior 2.20e�8 2.18e�3 5.96e�2 1.98e�1 2.80e�1 2.40e�1 1.40e�1 5.73e�2 1.51e�2 2.59e�3

The model parameters κ and σ2

Y effect the forward and therefore the inverse

stage results. Inferences on the same dataset as in Figure 2.2, but using different
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values of κ and σ2

Y are presented in Figure 2.3.

Impact of Model Parameters

Figure 2.3 illustrates the effect of varying the model parameters κ and σ2

Y . Compar-

isons with the parameters used and results obtained for Figure 2.2 are made here.

In Figure 2.3(a), κ is an order of magnitude larger. This induces a greater degree

of smoothness in the latent surface and tightens the bounds of the 95% highest

posterior density (HPD) region of the forward stage.

In Figure 2.3(b) κ is an order of magnitude smaller. The surface parameters

linearly interpolate the data and uncertainty is high away from the datapoints.

This leads to a highly multimodal posterior for the inverse stage. As κ goes to

zero (no smoothing), the forward stage posterior tends toward the likelihood. The

forward model then informs only at the datapoints and the inverse stage will yield

a uniform mass function for new counts not close to training data counts. For new

counts close to one or more training counts, the inverse stage posterior will be spiked

at the associated training data locations.

In Figure 2.3(c) σ2

Y is an order of magnitude larger. The likelihood density has

a larger spread, as does the forward stage posterior. The prior on X begins to

dominate the posterior for X. The inverse stage posterior then has a larger variance

and the amplitude of the minor mode associated with y2 grows relative to the major

mode. As σ2

Y increases, the inverse stage posterior flattens out.

In Figure 2.3(d) σ2

Y is an order of magnitude smaller. As there is more data on

the major mode of the posterior for location given y2, this serves to increase that

mode; consequently, the minor mode is reduced. As σ2

Y decreases, the forward stage

posterior becomes dominated by the likelihood at the datapoints. Away from the

datapoints, the prior dominates. Inferences on new counts that are close to training

data counts will have inverse stage posteriors with sharp peaks at the associated

training data locations, L̃.
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Fig. 2.3: Results for inference using the same model and data as in Fig-

ure 2.2 but with one of either either κ or σ2

Y changed. Compared with

the values used in constructing Figure 2.2:

(a) κ is an order of magnitude larger. This induces a greater degree of

smoothness in the latent surface.

(b) κ is an order of magnitude smaller. The surface parameters linearly

interpolate the data and uncertainty is high away from the datapoints in

the forward stage.

(c) σ2

Y is an order of magnitude larger. The likelihood density has a larger

spread, as does the forward stage posterior.

(d) σ2

Y is an order of magnitude smaller.
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2.6 Model Validation

MCMC is the dominant technique for Bayesian inference; as discussed in Sec-

tion 2.2.2, the main crux of this methodology is computation. Cross-validation

is a common technique for assessing the model fit to data. This requires re-fitting

the same model for many subsets of the dataset in order to form reference distribu-

tions for the left out points. Model evaluation by cross-validation is very unsuited

to the brute force approach of simply conducting many MCMC re-runs.

Model evaluation techniques in Bayesian problems are a well documented re-

search area. However, Bhattacharya (2004) observes that “there seems to be no

literature in this context [model assessment in inverse problems]”. As stated previ-

ously, inverse problems refers to studies in which the forward model (cause implies

effect; input drives output) is inverted, with the objective of predicting (or recon-

structing) input given output.

2.6.1 Inverse Predictive Power

Ultimately, the objective of the investigation is to make accurate inferences on unob-

served climates given fossil counts. Therefore, the performance metrics introduced

below focus on the inverse stage of the problem. Pairs of ‘new’ data �ỹnew, l̃new� are

generated and the ability of the model to predict l̃new given �Ỹ , L̃� pairs and ỹnew

is evaluated. The predictive distribution here is simply the posterior for the inverse

stage, π�lnew � l̃newSỸ , L̃, ỹnew� � π�lnewSdata�. The performance is summarised by a

statistic on a function of the inverse stage posterior π�lnewSỸ , L̃, ỹnew� and the ‘un-

observed’ location l̃new. As the posterior for location is often multimodal and seldom

symmetric, simple statistics such as the distance between the modal prediction and

l̃new will be insufficient.

For ease of notation, π�lnewSdata� is denoted π�L�. The desirable properties of

the performance metric D � D�π�L�, l̃new� are listed here.� Tends to zero for perfect prediction:

lim�π�l̃new��1� D � 0� Non-negativity: D C 0 for all cases.
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One such metric is the expectation of the square of the difference between the

new location l̃new and the predicted location under the posterior for the inverse stage

given the new count ỹnew. For a location space discretised into NL gridpoints, this

is readily computed as

D�π�L�, l̃new� � E�SSlnew � l̃newSS2� � NLQ
j�1π�lj�SSlj � l̃newSS2 (2.32)

where SSlnew� l̃newSS is the distance between lnew and l̃new. D is then the mean-squared

error of prediction.

If the location space is rescaled to lie between 0 and 1 then this metric will lie

between between 0 and 1 (or 0 and
»�2� for 2-dimensional location space).

g�l� � �l �min�L��~�max�L� �min�L�� (2.33)

D�π�L�, l̃new� � E��g�lnew� � g�l̃new��2� � NLQ
j�1π�lj��g�lj� � g�l̃new��2 (2.34)

This metric will tend to unity as the predictive probability mass function tends

to unity at the greatest distance in the location space from l̃new and will tend to

zero as the predictive probability mass function tends to unity exactly at l̃new.

2.6.2 Cross-Validation

Measurement of predictive performance is closely related to cross-validation of the

model using the training dataset. In leave one-out-cross-validation, the ability of

the model to predict each l̃i (rather than a new point), given the remainder of the

training data �Ỹ ,�l̃jxi; j � 1, . . . ,Nd�� is assessed. This step is repeated for each

datum and a discrepancy measure summarises the validity of the initial analysis.

This is in fact cross-validation for the inverse problem, which is discussed in detail

in Section 4.2.

Cross-Validation in Bayesian Inverse Regression

One method for speeding up the brute force approach of repeated MCMC samplers

is the use of importance sampling. The “saturated posterior” refers to the model
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trained on all of the modern data. As leaving out a single point will only have a

small effect on this distribution, the proposal density for a new MCMC run uses the

saturated posterior as an importance sampler. The importance weights are easily

calculable for the forward problem as they are proportional to the correct posterior

to saturated posterior ratio. This ratio, having the same prior and likelihood terms,

is expressible as the inverse of univariate likelihood of the left out datum, given the

sample parameters (see, for example, Gelfand (1996)).

Cross-validation in the inverse sense is a more difficult challenge. The importance

weights now typically involve an intractable integration (see Section 4.2 for details).

In the inverse case, a prior for the input must also be constructed. This complicates

the analysis.

Being the first attempt to address the issue of cross-validation in inverse prob-

lems and its applications to model assessment, Bhattacharya and Haslett (2008)

provides an important benchmark. In that work, the authors use importance re-

sampling (advocating without replacement) to approximate the posterior distribu-

tion of the parameters and a pre-chosen datum given the data minus the left-out

datum. The importance weights are quick to compute and proposal densities are

constructed to maximize the efficiency of the predictive distribution MCMC sam-

pler. This technique is referred to as Importance Re-sampling MCMC (IRMCMC)

for (leave-one-out) cross-validation in inverse problems. The difference between this

resampling approach and the forward problem importance sampling is that for the

first MCMC run, a selected datapoint is left out and regarded as a random variable.

The integrations in the calculation of the importance weights for the resampling

stage are no longer intractable. This observation is the key to the procedure (see

Section 4.2.2).

An efficient sampling algorithm is thus constructed for the cross-validation. How-

ever, multiple sampling runs are still required. Bhattacharya and Haslett (2008)

presents an example where brute force MCMC re-runs for each of 62 data sam-

ple sites takes 16 hours. IRMCMC achieves comparable, if not better, results in

less than 40 minutes. For the example in Haslett et al. (2006), brute-force MCMC

replications would take many years.

A new method for cross-validation in the inverse sense is presented and developed
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in Section 4.2. Essentially, fast alterations are made to the saturated posterior for

the forward model to correct for left out data. As the locations (inputs) are already

made to lie on a finite grid, the marginal likelihood may be computed for all possible

values of the left out point; thus MCMC is entirely avoided.

In Chapter 6 it is demonstrated that cross-validation in the inverse sense for

this same problem is thereby reduced to less than 1 hour using the techniques

presented in this thesis that synergize with the INLA method. In fact, that run-

time is for a superset of the data with a more sophisticated hierarchical model and

formal estimation of several hyperparameters that were necessarily preset ad-hoc in

previous MCMC / IRMCMC attempts.

2.7 Conclusions

Palaeoclimate reconstruction is an example of an inverse problem. Existing attempts

to infer climates from ecological data involve a trade off between model complexity

and speed of inference. The Bayesian framework is preferred due to its ability to

honestly model uncertainty by treating unknown parameters as random variables.

This is particularly important when inverting forward models to obtain the inverse

posteriors.

Sampling based methods, such as MCMC, are the standard methodology in

Bayesian inference. Non-parametric models, with high numbers of random variables,

may be poorly suited to these computationally intensive methods. Inference is

labourious and this negatively impacts the level of complexity of the models. Fast,

approximate methods for performing Bayesian inference allows the development of

more sophisticated models for the palaeoclimate reconstruction problem. These

include, for example, zero-inflated models.

Model comparison and validation, requiring many similar versions of the same

models, is an important aspect of any statistical study. Validation of inverse prob-

lems occupies only a limited literature. MCMC type inference is unsuitable to this

challenge. Existing approximate inference techniques must be extended to meet

this challenge. Conversely, the palaeoclimate problem presents an interesting and

challenging test of the approximate inference methodology.
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2.7.1 Advances in this Thesis

Since the “proof of concept” paper Haslett et al. (2006), the work contained in this

thesis to modelling the RS10 dataset may be summarised as follows:

1. Explicit modelling of the zero-inflation in the pollen counts data (Sections 2.4

and 6.3).

2. Estimation of model hyperparameters: i.e. smoothness of the latent responses

across climate, degree of overdispersion and zero-inflation power (using Sec-

tion 4.1.3).

3. Fast inversion of the forward model (due to the discrete / finite climate space).

4. Fast cross-validation in the inverse sense using the extension to INLA in Sec-

tion 4.2.3.

5. Use of summary statistics for model comparison and validation for the inverse

problem as introduced in Section 2.6.1 and Section 3.1.
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Chapter 3

Models with Known Parameters

This chapter deals with modelling issues as distinct from any challenges relating

to statistical inference of latent fields and hyperparameters. In this chapter, model

parameters are taken to be known and inference details for the forward problem are

suppressed, to be dealt with in later chapters. Specifically, the forward stage of the

model is taken to have all known parameters; inference on the inverse stage is used

to assess different forward models.

The novel contributions contained in this chapter relate to model choice. Specif-

ically, the following questions are addressed: Under what circumstances a large,

multivariate model, such as those required for the motivating palaeoclimate prob-

lem, may be broken down to produce a series of independent, smaller and more

manageable inferential tasks? How might one proceed with such a decomposition?

How might the validity or accuracy of the decomposition assessed? Finally, when a

model may not be decomposed directly, are there augmentations to the data that

might facilitate decomposition?

When dealing with highly multivariate datasets, such as the RS10 pollen and cli-

mate dataset, several modelling choices present themselves. These consist of choices

for modelling the latent parameters of the hierarchical model, the hyperparameters

and the choice of likelihood model for the data given the parameters. It is neces-

sary to make clear the motivations and justifications for each of these choices. This

requires the use of “model fit” techniques. Cross validation is the tool selected in

this work, the details of which are presented in Section 4.2.

Section 3.1 introduces the type of inverse problem investigated in this thesis for
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a single spatial process generating counts across locations.

Section 3.2 sets out the motivation for decomposing large, joint models into

independent modules. A definition of decomposable models is given and conditions

under which models may and may not be exactly disjoint-decomposed are presented.

Finally, sources of interaction preventing decomposition are discussed.

A fully-Gaussian case in Section 3.3 allows for the introduction of several key

modelling issues in a Normal context. The tractability and familiarity of the mul-

tivariate normal model are used to present modelling issues that apply in a wider

context of multivariate modelling. Specifically, non-decomposable models are devel-

oped in the context of the multivariate normal model.

Departures from normality in Section 3.4 introduce additional issues related to

counts data. Novel models for such data are also introduced in this latter section in

the form of specialised likelihood functions, such as zero-inflated data models.

Section 3.5 deals with the constrained space associated with compositional data

analysis. Some pitfalls of analysis on this space are described. Finally, novel models

for specifying complex yet decomposable models for compositional data are pre-

sented.

Finally, conclusions are made from the work detailed in the preceding sections.

These conclusions are carried forward into the later chapters.

3.1 The Univariate Problem

Returning to the toy problem described in Section 2.5.2, a univariate process varies

smoothly across a location space. That section demonstrated the effect of differing

model hyperparameters on the inverse problem. The inverse predictive distributions

were found to be multimodal due to the shape of the response surface. The shape

of the response surface also influences the degree of accuracy to which the inverse

problem (prediction of location given count) may be solved.

To recap, the goal is to infer unknown location l given training counts Ỹ with

training locations L̃ and a new count ynew.

As per Equation (2.24),

π�lnewSỸ , L̃, ỹnew� � S π�ỹnewSX, lnew�π�lnew�π�X SỸ , L̃�dX (3.1)
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A flat prior is used for π�lnew�. The posterior for location l is therefore pro-

portional to the likelihood for count y at that location. The first task is to find

π�X SỸ , L̃�, the details of which are suppressed in this chapter.

In the following examples, the toy data comprises a single smooth response sur-

face which generates univariate counts data. There is a single count at each of 10

sampling locations.

Easy and Difficult Inverse Prediction Conditions

The immediate objective here is to identify the conditions for which inference in

the inverse stage of the model is difficult. From the discussion above, the factors

which influence the ability of the model to accurately predict climate given a new

count and training data are the shape of the underlying surface and the prior and

likelihood precision parameters (κ and 1~σ2

Y ).

The performance of the inference will also be greatly effected by the new data

presented to the model. Recall, for example, the multimodal posterior arising from

the inverse stage inference given a new count of y2 � 252 in Figure 2.2: the inverse

inference is placing large probability mass in another location; this must be classed

as a poor inference and will occur (to varying degrees; see Figure 2.3) for any model

parameters as it is due to the non-monotonic shape of the response function.

Conversely, given a new count of ỹnew � 450, the model will always place a

unimodal inverse stage posterior on the very left of the location space; this is in

fact the only area from which such a high count can have been generated, given

the underlying surface. It is contrasting situations such as these that is the interest

here; cross-validation and model fit are discussed in later chapters.

It is useful here to explore some interesting and challenging features of the inverse

problem. The impact that the shape of the underlying latent response curve has

on the posterior for location given count is demonstrated. Three examples are are

presented in each of sections 3.1.1 and 3.1.2. Although both sections necessarily use

examples given a new count, with unobserved location, Section 3.1.1 is new count

value specific whereas Section 3.1.2 uses example response curves that will generate

similar challenges regardless of the value of the new count.
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3.1.1 Given New Counts Data

Loosely speaking, conditions may be subdivided into 3 categories; easy, medium and

hard. These are due to encountering degrees of strongly informative data, weakly

informative / uninformative data and misleading data respectively. These three

categories are illustrated with examples in Figure 3.1 for fixed values of the model

parameters, κ and σ2

Y .

The easy case refers to a problem that, due to the shape of the response function,

delivers a tight, unimodal posterior distribution for the location (climate) given a

count. The medium case delivers a diffuse posterior as the fitted response function

carries little informtation on location given count. Finally, the hard case delivers a

multimodal location posterior with the true location not necessarily located under

the major mode. The posterior distribution for location may in fact place much

probabilty mass far from the correct location, resulting in misleading predictions.

Figure 3.1(c) shows an important result; the performance statistic D (see Equa-

tion (2.32)) is not simply an indicator of the strength of the signal provided for the

inverse stage but also of the uniqueness. Figure 3.1(c) carries a strong signal at the

correct location, however the inverse stage posterior places higher mass at another,

distant, location; this results in a poor performance rating.

3.1.2 Given Training Data Only

This is closer in spirit to cross-validation than the previous section. The goal here

is to categorize training datasets based on the ability of the fitted model to predict

locations given arbitrary new counts. Again, the categories are described as easy,

medium and hard. Figure 3.2 depicts an example of each case.

3.1.3 Percentage Outside Highest Predictive Distribution

Region

Another cross-validation statistic that will be used throughout this thesis is the

number of training data that fall outside the 95% highest posterior predictive distri-

bution. The predictive distribution here is the leave-one-out cross-validation poste-

rior predictive distribution for the location given all other locations and the counts
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(c) Hard Case

Fig. 3.1: Forward and inverse stage posteriors for 3 markedly different

datasets. The ability of the model fitted to the training data to predict

the new location given the new count, ỹnew, is severely effected by the

training dataset. The new data generated for inference in the inverse

stage of the problem is generated from the likelihood given a draw from

the posterior for the forward stage. For comparison, values of ỹnew, l̃new

and D�π�L�, l̃new� are provided in a table.

(a) ỹnew � 410 l̃new � 50 D � 9.30e � 5

(b) ỹnew � 310 l̃new � 50 D � 0.079

(c) ỹnew � 210 l̃new � 10 D � 0.516
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(c) Hard Case

Fig. 3.2: Forward and inverse stage posteriors for 3 markedly different

datasets. The ability of the model fitted to the training data to predict

the new location given any new count, ỹnew, is severely effected by the

training dataset. The new data generated for inference in the inverse

stage of the problem is generated from the likelihood given a draw from

the posterior for the forward stage. For comparison, example values of

ỹnew, l̃new and D�π�L�, l̃new� are listed.

(a) ỹnew � 300 l̃new � 50 D � 0.001

(b) ỹnew � 310 l̃new � 43 D � 0.086

(c) ỹnew � 300 l̃new � 47 D � 0.076

These results are largely independent of the new data �ỹnew, l̃new� supplied

to the inverse stage, with the exception that in (b) locations closer to

the centre will yield lower D values as the posterior, although vague, will

be centred in the correct area. Additionally, (c) depends on whether the

new count ỹnew corresponds with 2 or 3 possible locations. For �ỹnew, l̃new� ��390,35�, D is 0.155.
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data.

Definition 3 ∆ is the % of data lying outside the 95% highest posterior density

region of their inverse predictive density

If the model fits the data, then the expected value of ∆ is 5%. This does not

depend on the accuracy of the inverse predictions delivered. When the location

space lies on a discrete grid it is not always possible to define a 95% HPD region.

For a discretized space, the method for defining the 95% HPD regions is as follows:

1. The HPD region is initialized to contain none of the locations.

2. The discrete location of highest probability mass is selected and added to the

HPD region.

3. If the total mass of the HPD region is less than 95%, the location of next

highest probability mass is selected and added to the HPD region.

4. Repeat step 3 until the total probability mass of the HPD region is greater

than or equal to 95%.

This means that the HPD region contains 95% or more of the total probability

mass. Therefore, the expected value of ∆ is B 5%.

The concern in this thesis is the case of more than one response surface, each of

which generates its own counts data. The simplest approach to the inverse problem is

to perform inference on each set of counts separately for both the forward and inverse

stage of the problem. The inverse predictive distribution given all components is

then the product of all inverse predictive distributions for each of the components

of the counts assemblage. Such a model, expressible as non-overlapping separable

parts, is discussed in the next section.

3.2 Disjoint-Decomposable Models

Complex, highly multivariate datasets that require multivariate models pose several

challenges of computation and model choice (see also Section 5.1). One approach

in dealing with these challenges is to disjoint-decompose the problem into disjoint,
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independent modules. Each module requires a model to be fitted to a separate

subset of the overall dataset and inference may be carried out separately on each

subset, i.e. independently from the other subsets.

Definition 4 Multivariate models which may be expressed exactly as the product of

disjoint parts are said to be disjoint-decomposable.

This is closely related to independence; a probability model that factorises into

a number of (potentially multivariate) independent distributions, with no terms

appearing in more than one distribution is disjoint-decomposable. There is no in-

teraction between the margins of such models. However, many models that do not

factorise in such a manner may be approximately disjoint-decomposable. This may

allow for a far simpler inferential approach to be taken, with a post-hoc correction

for the decomposition.

The difference between disjoint-decomposable and independence is subtle, but

relevant in this work. If a model is comprised of independent modules then it

is disjoint-decomposable. However, some models that are not expressible as the

product of independent parts may decompose in practice.

The simplest example of this is with regard to compositional data. If counts

proportions data Y with sum n are modelled with a Multinomial distribution then

it is immediately clear that the data are dependent. However, the data may be

modelled as independent Poisson counts and the product of the marginal likelihoods

then gives an approximation to the true, joint likelihood. The approximation error

can be corrected by dividing by the probability that the total count is n. This

probability is available trivially as a Poisson count.

If inference on the parameters P of the Multinomial are modelled with a Dirichlet

prior then the posterior is Dirichlet. Decomposing the model into independent

Poisson likelihoods with independent Gamma priors yields a product of Gammas as

the decomposed-model posterior. To correct the approximation error this product

is then divided by the posterior distribution on the sum.

So, given a counts vector Y , constrained to sum to n with a Dirichlet prior with

parameters α and a Multinomial likelihood, the Dirichlet posterior may be written

as a product of Gammas, scaled by a Gamma distribution on the sum:
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Dirichlet�P � � LN
i Gamma�PiSαi,PN

j αj�
Gamma�1SPN

j αj,PN
j αj� (3.2)

Multinomial�Y SP,n� � LN
i Poisson�YiSPin�
Poisson�nSn� (3.3)

Dirichlet�P SY � � LN
i Gamma�PiSαi � Yi,PN

j αj � Yj�
Gamma�1SPN

j αj � Yj,PN
j αj � Yj� (3.4)

If the model does not disjoint-decompose then the model corresponding to a

decomposable version approximates the joint model. Inference on such a model will

approximate joint inference on the non-decomposable model. This is dealt with in

Chapter 5. The accuracy of the approximation of the decomposable model to a

non-decomposable version depends on the level of interaction between the modules.

Simple performance checks such as the one described in Section 3.2.2 may be used

to determine the legitimacy of decomposing the model.

If the model does not decompose into univariate marginals, decomposition into

smaller, more manageable multivariate marginals may still render the inference to

be far simpler.

3.2.1 The Marginals Model

A simple and intuitive decomposition of the pollen dataset is by taxon (plant type).

Under this model, each taxon response is modelled as conditionally independent,

given the climate. The problem described in Section 3.1 is for a single response

surface. The predictive distribution for climate is computed given the count for this

single taxon. Repeating the inference procedure separately for each taxon marginally

and taking the product of the climate predictive distributions yields a predictive

probability distribution over all taxa, given the vector of taxa counts. A simple

graph of such models is shown in Figure 3.3.

The marginal inference on each taxon, independently of the others, allows for

many conveniences for the computational inference (discussed in Chapter 5) and in

model design. As there are only a handful of hyperparameters associated with mod-

elling each taxon and a single latent surface, both the model and the inference are

simple. Interaction between taxa is not allowed in the marginal model so modelling

interactions do not have to be considered.
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Fig. 3.3: A decomposable model. The data Yi are (potentially multi-

variate) dependent on parameters Xi (also potentially multivariate). The

graph has no connections between modules 1,2 and 3; therefore the entire

likelihood is expressible as the product of these three parts.

The following section describes a method for testing the validity of the condi-

tional independence assumption that is required to disjoint-decompose the model.

3.2.2 Non-Disjoint-Decomposable Models

If marginals / decomposable models are used erroneously, errors are incurred. The

error increases with the number of dependent parts that are modelled independently.

Figure 3.4 demonstrates how, for toy data, a cross-validation error statistic in-

creases with each additional component modelled. Each entry in a vector of obser-

vations occurring at multiple locations in a uni-dimensional space is modelled as an

indirect observation of a latent parameter. These latent parameters vary smoothly

across the location space and are modelled as GMRFs, independent of the other

latent surfaces.

The data are generated from a latent field composed of 15 identical smooth

surfaces defined on a regular grid of the location space. These surfaces are not

independent given the locations, however they are modelled as such in order to

facilitate decomposition of the problem. This induces the errors, manifested in the

plot as an increase in the percentage of points falling outside their corresponding

leave-one-out predictive distribution’s 95% highest posterior density estimate with

each surface added. This is the cross-validation ∆ statistic introduced in Section 3.1

and has an expected value of less than or equal to 5%.

Such dependence can occur as a result of direct interaction or through the joint

dependence on unobserved covariates. If the model needs to incorporate dependency
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Fig. 3.4: A plot of the percentage of locations lying outside their corre-

sponding leave-one-out cross-validation predictive distributions 95% HPD

region. Interaction in this case is with inter-surface correlation parame-

ters equal to one (fully correlated), representing the most extreme level

of interaction.

A single smooth surface is used T times to generate random counts data

at each of 100 discrete locations. These T counts at each location are

then treated as independent information; the error rate associated with

this mis-specification grows linearly with T which is on the horizontal

axis. The graph is obtained by simulating counts data 10 times for each

value of T on the horizontal axis. The line denotes the mean across these

10 replications.

The shape of the response surface dictates the slope of the line. If the

responses are all linear then the error rate on the y-axis will not increase

so the line is horizontal. Furthermore, if the correlation parameter is

zero, no error is incurred and the line is again horizontal.
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Fig. 3.5: Two non-decomposable models. The data Yi are (potentially

multivariate) dependent on parameters Xi (also potentially multivariate).

Graph (a) has connections between modules 1,2 and 3 at the level of the

parameters; this is expressed as non-zero interaction terms in the joint

prior precision matrix. Graph (b) has connections between modules 1,2

and 3 at the level of the data; this is expressed as non-zero interaction

terms in the joint likelihood precision matrix. Where to place these

terms depends on the source of interaction in the model. In either case,

the posterior for the parameters X will have non-zero interaction terms

across the modules and hence cannot be disjoint-decomposed.

between these multiple surfaces, an overall covariance model must be set up. This

is most readily discussed in the Gaussian context of the following section.

These interactions may be modelled as either non-zero precision terms in the

multivariate prior or in the likelihood. Figure 3.5 shows graphs for these two models.

3.2.3 Sources of Interaction

If a joint model is not decomposable, there must be non-zero off diagonal terms

in either the prior or the likelihood precision matrix corresponding to inter-taxa

dependence. It is the source of interaction that determines where these non-zero

terms should occur. For multivariate Bayesian hierarchical models, such as the

motivating palaeoclimate reconstruction problem, the following potential sources
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of interaction across plant taxa are identified. Each source may prevent model

decomposition.

Covariates

Additional, covariate information Z is sometimes available for large, multivariate

datasets. For example, in the RS10 pollen and climate dataset, altitude, longitude

and latitude are available. If, given climate, the propensity to produce pollen is

thought to depend on one or more of these covariates then the response surfaces will

not be independent.

A common approach to including this in the modelling is to model the counts

data as dependent on the response surface values plus the covariate data times a

vector of unknown regression parameters β.

yi � π�yiSxi � zT
i β� (3.5)

If the data are conditionally independent given locations (climates) and covari-

ates, then they should not be modelled as conditionally independent given the loca-

tions only. In this case, the interaction occurs indirectly through the covariates.

Competition

Interaction at the data level may occur as a result of direct competition. Interactions

of this type are independent of the underlying response and should therefore be

modelled in the likelihood precision matrix. An example in terms of the motivating

pollen dataset would be competition for resources between plant types.

Constraints

The data collection mechanism may produce non-zero correlation between otherwise

independent components of the data. For example, if the data were collected until a

preset total were reached, then this would not only set an upper limit on the counts

data; a negative correlation between the entries of the data vector would also be

produced, due to the sum-to-total constraint.

Since the information carried by the data now resides in the relative proportions,

rather than absolute values, the model should be for these proportions. Therefore,
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a sum-to-unity constraint must apply to the latent parameters. For example, if the

data likelihood model were Multinomial, then an appropriate distribution on the

parameters of the Multinomial would be defined on the simplex (Section 3.5.1).

However, an important observation that was was missed in Haslett et al. (2006)

is that such models may still be disjoint-decomposed, provided the data are in fact

conditionally independent given the constraint. This is discussed in some detail in

Section 3.5.7.

3.3 Multivariate Normal Model

If the data are modelled as Gaussian given Gaussian latent parameters then inversion

of the model may be done analytically. Although the data of the motivating problem

are integers (counts data) and thus are not suitably modelled as Gaussian, the

familiar Gaussian framework does allow for some of the modelling nuances dealt

with in this chapter to be introduced in an easily demonstrated context.

Furthermore, the inference procedure introduced in Section 4.1 is directly mo-

tivated by and related to the Gaussian model. Therefore, lessons learned from the

multivariate normal model can be readily applied to a more general context of in-

ference.

Constructing non-decomposable probability models requires explicit modelling

of the covariance between interacting modules. Again, the familiar Gaussian context

is useful to illustrate some important aspects of such models.

3.3.1 General Case Normal Models

There are various models for multiple response surfaces that do not disjoint-decompose

as the product of their marginals. These involve models for which there are various

forms of interaction, either between the counts data, given the responses, or between

the responses themselves, given the locations. This is manifested in the model as

non-decomposable multivariate joint likelihoods or non-decomposable multivariate

joint priors, respectively.

It is very important to again note that even if such interactions exist, but are not

built into the joint model, then the model will still disjoint-decompose. Inference
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will be identical, albeit flawed, for the joint model and the product of the by-taxon

marginals.

If interaction (dependence) is to be modelled, it arises in the Gaussian context

either in the latent parameters precision matrix or in the likelihood precision matrix.

In either case, the relevant precision matrix will have non-zero entries for between

components (taxa) interactions. Note that in all cases considered, there are non-

diagonal terms in the prior precision matrix for each taxon. These are intra-taxon

terms and are a result of the prior belief on the smoothness across location space

of the latent responses. Thus, for a model with multiple non-interacting / indepen-

dent taxa, the overall precision matrix is block-diagonal. Each block is then the

(independent) taxon-specific precision matrix.

This is best illustrated by means of a very simple example. Suppose there are

two counts Y at each of two locations in a 1D location space L � �l1, l2�. This gives a

total of four counts Y � �y1
1
, y2

1
, y1

2
, y2

2
�, where the subscript indexes the components

of the counts vector and the superscript indexes the location. i.e. y
j
i is the count

for the ith component at the jth location.

The model requires four latent variables X � �x1
1
, x2

1
, x1

2
, x2

2
�, using the same

indexing as for the data. The fully Gaussian hierarchical model is then specified

entirely by the following multivariate normal distributions:

Y � MV N�Y ;X,ΣY �
X � MV N�X;µX ,ΣX� (3.6)

where the hyperparameters θ are the prior mean vector µX and the prior covariance

matrix ΣX . In fact, it is more convenient to work with precision matrices rather than

covariance matrices with precision QX � Σ�1

X the inverse of the covariance matrix

(see Section 2.2.4). Similarly, QY � Σ�1

Y , when ΣY exists.

Specification of the full, joint model now involves specifying the hyperparameters�µX ,QX� and the likelihood precision matrix QY .

The posterior distribution for X is also multivariate normal with mean and

precision matrix given by

µ � �QX �QY ��1�QXµX �QY µY � (3.7)

Q � QX �QY (3.8)
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If either QX or QY have non-zero terms for precision�x1, x2� or precision�y1, y2�
respectively, then the posterior precision matrix Q will also carry these non-zero

terms. Therefore, the posterior will not disjoint-decompose exactly and the product

of posterior marginals will not equal the full joint posterior.

It is worth reiterating at this point that if both the prior and likelihood disjoint-

decompose, then so does the posterior. This is easily seen in the context of the

multivariate normal as if both terms on the right hand side of Equation (3.8) do

not contain non-zero terms preventing decomposition, then their sum, giving the

posterior precision matrix, will also not contain such terms. Hence, the product of

(perhaps multivariate) marginals will yield exactly the joint posterior and the model

thus disjoint-decomposes.

If a model with inter-surface interactions is required then there are four options.

Specification is through one of:

1. known terms in the prior

2. known terms in the likelihood

3. unknown parameters in the prior

4. unknown parameters in the likelihood

The first two options are closely related in the context of multivariate normal

models for both the prior and the likelihood. Which of these two to incorporate

depend on the model and are problem specific. The source of interaction informs

the choice of modelling interaction in the prior or in the likelihood. The last two

options involve inference issues and are dealt with in Chapter 5.

Prior Precision Matrix

The precision, or “degree of mutual agreement”, of x
j1
i1

and x
j2
i2

is

prec�xj1
i1

, x
j2
i2
� � qX

i2,j2
i1,j1

(3.9)

As this is a four dimensional indexing, it is necessary to construct a system for

indexing across both surfaces / counts and the location space using a single index

to yield a two dimensional precision matrix. The convention adopted here is that
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the subscript i and superscript j pairing becomes single index �i � 1�NL � j, where

NL is the total number of discrete points in the location space. Note that there is

one surface per taxon for the pollen data example.

The overall precision matrix covering all possible (process, location) pairings for

the latent parameters X is then:

QX � ����������
qX

1,1
1,1 qX

1,2
1,1 qX

2,1
1,1 qX

2,2
1,1

qX
1,1
1,2 qX

1,2
1,2 qX

2,1
1,2 qX

2,2
1,2

qX
1,1
2,1 qX

1,2
2,1 qX

2,1
2,1 qX

2,2
2,1

qX
1,1
2,2 qX

1,2
2,2 qX

2,1
2,2 qX

2,2
2,2

���������� (3.10)

Rows of QX denote the precisions for individual surfaces across locations and

columns denote inter-surface precisions at a point in the location space. If the latent

surfaces are modelled as conditionally independent, given location, then qX
i2,j2
i1,j1

� 0

for i1 x i2, regardless of j1 and j2.

qi1�i2 are intra-surface parameters and may be reduced to a single hyperparameter

via imposition of a regular structure as shown in Section 2.2.4.

Interaction between surfaces is modelled as being a local effect in the location

space. i.e. precision, for a common location, between two surfaces is the same across

the locations space. Interaction between surfaces at non-equal locations is modelled

as zero. Consideration of whether the joint model disjoint-decomposes exactly now

amounts to checking whether the posterior precision matrix is block-diagonal. (Diag-

onal implies total independence; block diagonality is a consequence of the conditional

independence across taxa, but not across climate; see Section 3.2.1.)

Likelihood Precision Matrix

The data are typically modelled in Bayesian hierarchical models as being condition-

ally independent, given the level two parameters. This implies diagonal precision

and covariance matrices QY and ΣY . If interaction between components is at the

data level, then this is no longer the case.

However, for the model with multivariate normal likelihood with multivariate

normal prior, the multivariate normal posterior will have the exact same precision

matrix whether the interactions are placed in the likelihood precision matrix or the

prior precision matrix as it is simply a sum of the two. The posterior mean will be
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slightly different; however it is simple to show that for any choice of inter-surface

precision parameters in the likelihood, there exists a set of inter-surface parameters

for the prior precision matrix that yield the same posterior mean.

In the following the notation is that the model with interactions in the likelihood

precision matrix is given the superscript A and the model with the interactions in

the prior takes the superscript B. If the prior is zero-mean and the posterior means

under each model are taken to be equal:�QA
X �QA

Y ��1QA
Y Y � �QB

X �QB
Y ��1QB

Y Y�QB
X �QB

Y ��QA
X �QA

Y ��1QA
Y Y � QB

Y Y

QB
X�QA

X �QA
Y ��1QA

Y Y �QB
Y �QA

X �QA
Y ��1QA

Y Y � QB
Y Y

QB
X�QA

X �QA
Y ��1QA

Y Y � QB
Y Y �QB

Y �QA
X �QA

Y ��1QA
Y Y

One solution to which equation is

QB
X�QA

X �QA
Y ��1QA

Y � QB
Y �QB

Y �QA
X �QA

Y ��1QA
Y

QB
X � �QB

Y �QB
Y �QA

X �QA
Y ��1QA

Y ��QA
Y ��1�QA

X �QA
Y �

The above demonstrates the similarity between modelling interaction at the prior

and at the likelihood precision matrices.

3.3.2 Sensitivity to Dependence

Errors are incurred if a decomposable model is applied to data that have arisen from

a model that does not disjoint-decompose. In the context of this section (Normal

models with known parameters), this arises as setting the multivariate likelihood

precision matrix terms that relate to between-module interactions to zero. If Q is

the true, joint precision matrix, then Q̃ is the disjoint-decomposed model precision

matrix with all interaction terms set to zero. If the model disjoint-decomposes,

these two matrices will be identical. If not, the disjoint-decomposed model will be

an approximation to the true model. The accuracy of this approximation will of

course depend on the level of interaction between the modules that are treated as

independent in the disjoint-decomposed model. A toy model demonstrates this as

follows:
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suppose “counts” data are generated a multivariate normal distribution with mean

µ and precision matrix Q

Y � MV N�µ,Q� (3.11)

where the length of µ is the product of the number of discrete locations NL and the

number of surfaces NT . These surfaces vary smoothly across locations so that given

a new vector of counts, the model may be inverted and the location associated with

these counts predicted. In this example, NT � 2 and NL � 10.

Using the same indexing system in Equation (3.10) to index over components

and locations, the full precision matrix for two components in two locations will be

decomposable as the product of marginals iff q
i2,j2
i1,j1

� 0 for all i1 x i2. This equates to

whether Q is in fact block-diagonal, with the number of blocks equal to the length

of the data vector at each location NT and the length of the side of each square

block equal to the number of discrete locations NL.

Provided interactions between counts are consistent throughout the location

space, symmetric, and that there is no interaction between data at disparate lo-

cations, then there are �NT

2
� interaction terms. Thus, for two such surfaces, there is

a single parameter ρ governing interactions.

Intuitively, the closer this parameter is to zero, the closer Q is to being block-

diagonal and thus the closer the joint model is to being decomposable. Replications

of the above toy model, for varying values of ρ, the scalar interaction parameter,

show this relationship empirically; see Figure 3.6. For each replication, two new

randomly generated smooth response surfaces are generated; thus the results in the

figure are generalised across all shapes of response surface. The counts data at

location j come from random draw of a bivariate-Normal distribution with mean

equal to the two responses at that point and precision matrix given by

Qj � ��� q ρq

ρq q

��� (3.12)

It can be seen from Figure 3.6 that the greater the absolute value of the interac-

tion parameters ρ, the more points fall outside their 95% HPD region for the inverse

predictive distribution. The mean of the percentage outside the 95% HPD region is

less than 5% at ρ � 0 due to the use of discrete HPD regions. Only regions of 95%
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or more may be specified so that the percentage outside is expected to be 5% or

less. Section 5.3.1 discusses this in more detail.

3.4 Counts Data

Non-Gaussian likelihood models are introduced and examined in this section. This

leads to posteriors that are typically not available in closed form. The main concern

is with multivariate counts data; treated as conditionally independently using models

such as the Poisson and various related distributions or with multivariate counts

likelihoods for the case of vectors of constrained counts data. Section 4.1 will show

how closed forms for the posterior will be achieved for these non-Gaussian likelihoods

and Gaussian priors.

3.4.1 Poisson Model

For all models that disjoint-decompose, each element of a constrained counts vector

is modelled independently of the rest. In the simplest case for counts data, the

counts are modelled as being Poisson distributed, with the rate parameter derived

as a deterministic function of the underlying latent surface. Thus, for the hierarchical

model, with log-link for the rate parameter and a GMRF prior

yi � Poisson�yi;λi�
λi � exp�xi�
X � GMRF �X;µX ,QX� (3.13)

However, richer likelihood models are often required. Among these are models for

data that are overdispersed and data that are zero-inflated.

3.4.2 Scaled Poisson

If the “effort” spent on counting the data varies across the sampling space, then this

will effect the expected and observed counts. A more general form of the Poisson

distribution with an additional “effort” parameter allows direct modelling of this

effect. For example, if the time t spent collecting counts data Y were to vary, then

62



−0.5 0.0 0.5

0
5

10
15

20
25

30

ρ

%
 o

ut
si

de
 9

5%
 H

P
D

 r
eg

io
n

Fig. 3.6: Replications of a multivariate normal model. Two response

functions vary smoothly across a discrete space; a location is drawn at

random and two “counts” are generated from a bivariate-Normal dis-

tribution with mean equal to the responses at that point and precision

matrix given by Equation (3.12). The larger the absolute value of the

interaction parameter ρ, the greater the error in the approximate decom-

position of the joint model.

The above result is taken across a range of randomly generated response

surfaces; thus it is generalised w.r.t. the shape of the response. Figure 3.4

suggests an error rate of about 12% for two surfaces with a correlation of

ρ � 1; however, this is for a particular response surface only.
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the scaled Poisson distribution for those counts, with rate λ would be

y � �λt�ye�λt

y!
(3.14)

For the motivating pollen dataset, the time or effort spent in counting the data

is unknown; what is available is the total count across all plant taxa. This can be

used as an observed surrogate, or proxy, for the effort / time spent collecting the

counts for each taxon. In fact, this total count imposes a constraint in the form of a

strict upper limit on the count for each individual taxon. Counts thus constrained

are typically modelled using the Binomial distribution, or a related distribution.

3.4.3 Overdispersion

Of particular interest here is data for which there is overdispersion; i.e. the single rate

parameter of the Poisson distribution is insufficient as the variance is greater than

the mean of the data, given the parameters. Zero-mean, normally distributed non-

spatial random effects may be added to the parameters, resulting in overdispersion

with respect to the spatial component of the latent surface.

The data are then indirect observations of a latent variable with two distinct

parts; a spatially structured part X and a random effects part ǫ.

ǫi � N �0, σǫ�
δi � xi � ǫi� δi � N �xi, σǫ�

The data then depend on this new parameter δi

yiSδi � π�yiSδi�� yi � S
ǫi

π�yiSδi�π�δiSxi, σǫ�dǫi (3.15)

This results in double the number of latent random variables in the model and at

least one extra hyperparameter (the variance of the random effects), which is an un-

desirable situation. An alternative is to introduce random effects that are modelled

using a distribution that is conjugate to the likelihood. The random effects may

then be analytically integrate out, leaving a reparameterised, closed form likelihood

that has a variance that is larger than the mean.
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For example, the data Y is Poisson given the rates λ; the rates are a mixture of

a spatially smooth part X, modelled as a GMRF, and a non-spatial random effect

δ. If this zero-mean random effect component is such that the product of the spatial

part and the random effect is Gamma distributed, with mean equal to the spatial

part, then the hierarchical model is:

yi � Poisson�yi;λi�
λi � Gamma�λi; δ, �1 � pi�~pi�
pi � δ

δ � exi

X � GMRF �X;µX ,QX� (3.16)

This simplifies by integrating out the λis (suppressing the indices i):

π�ySx� � S ª
0

Poisson�y;λ�Gamma�λ; δ, �1 � p�~p�dλ� S ª
0

λy

y!
e�λλδ�1

exp��λp
1�p

�
Γ�δ��1�p

p
�δ

dλ� 1

y!Γ�δ�pδ 1�1 � p�δ S ª
0

λδ�y�1exp� �λ

1 � p
�dλ� 1

y!Γ�δ�pδ 1�1 � p�δ
�1 � p�δ�yΓ�δ � y�� Γ�δ � y�

y!Γ�δ� pδ�1 � p�y (3.17)

which is the Negative-Binomial distribution.

This counts distribution carries just a single extra parameter (δ) over the simple

Poisson model. δ controls the degree of overdispersion.

3.4.4 Sensitivity to Zero-Inflated Likelihood

If a non-zero inflated likelihood is used for data that are zero-inflated, then inference

on the parameters of that likelihood will be erroneous. Specifically, the extra zeros

will reduce the unobserved mean parameter of the likelihood and will increase the

variance. In the context of this Chapter (models with known parameters), the

inverse predictive distributions will misplace probability mass if inversion is done

using the wrong (i.e. non-zero-inflated) likelihood function.

This will occur in a predictable manner; the non-zero-inflated model will place

inverse predictive probability mass for zero counts exclusively at the regions for
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which the response function is lowest. Non-zero counts will be treated the same as

for an equivalent zero-inflated likelihood and will therefore be correct. The degree of

zero-inflation will thus govern the degree of the error of the non-zero-inflated model

when applied to zero-inflated data to generate inverse predictive distributions.

A toy problem example is once again employed to illustrate this point. A smooth

surface p in a uni-dimensional discrete space gives the (known) parameters for a

zero-inflated Binomial likelihood:

π�y� � ¢̈̈̈�̈̈̈¤ 1 � q � qBin�0;p,n� y � 0

qBin�y;p,n� y A 0
(3.18)

where q � pα, α � 0.3

and n � 1000 is the total count.

Results for the inverse predictive distribution given known, deterministic forward

models are shown in Figure 3.7. The result of applying a non-zero-inflated model

to zero-inflated data is clearly demonstrated; under the non-zero-inflated model, all

zero-counts are inferred to arise exclusively at the lowest points of the response curve.

This is because the non-zero-inflated model will generate most zeros in this are of

the locations space. While the zero-inflated model still necessarily reconstructs the

same location of least response as being most probable, the curve is not nearly so

peaked. This, being the model from which data was simulated, gives the correct

predictive distribution.

3.5 Compositional Data

If a vector p � �p1, . . . , pN� has all non-negative elements representing proportions

of a whole then the vector is constrained to sum to unity

p1 � . . . � pN � 1 (3.19)

Such vectors of proportions are compositional data and are frequently and erro-

neously modelled using techniques developed for unconstrained spaces (Aitchison

(1986); Aitchison and Egozcue (2005)).

Due to the constraint, the data have one less degree of freedom than the length

of the compositional vector. The full vector may be completely specified using the
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(c) Count = 0 predictive distribution; non zero-

inflated model

Fig. 3.7: The result of performing inverse predictions using a non-zero-

inflated likelihood model for zero inflated counts data: Given a zero

count, inverting the zero-inflated model (from which the data were gen-

erated, Figure (a), thus the correct model; Equation (3.18)) gives the

correct inverse predictive distribution, Figure (b). The non-zero-inflated

Binomial likelihood model cannot account for extra zero-counts, thus is

places all the inverse predictive probability mass at the region of lowest

response, Figure (c). Note the change of scale in the y-axes.
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Fig. 3.8: A proportions vector of length 3, under the sum to unity con-

straint is represented on a 2D simplex space, represented on a ternary

diagram. An example vector with values for the proportions vector

p � �0.1,0.3,0.6� is shown. Any value of the compositional vector p of

length N may uniquely determined by an N � 1 vector and the sum-to-

one constraint on p.

components of any N�1 subvector (the left out value being determined as one minus

the sum of the subcomposition). Any such subvector completely specifies the full

composition.

3.5.1 The Simplex Space

The set of all possible vectors for a given length of composition is referred to as

the simplex space. The simplex space for a compositional vector of length N with

unit-sum constraint is then N � 1 dimensional.

There are two contrasting approaches to modelling compositional data in a co-

herent manner that do not fall into the trap of using traditional, unconstrained

multivariate statistics:

1. Model the data on a simplex space using new, emerging techniques developed

specifically for use on compositional datasets.
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2. Use traditional multivariate statistics on some transformation of the data to

the real space and project results back to the constrained simplex space.

These two competing approaches require different models to be developed. The

latter typically uses multivariate normal distributions and established Gaussian the-

ory; this leaves choice of transformation and subvector as the main decisions to be

made in the modelling sense. The former requires alternative distributions, defined

directly on the simplex space.

Although progress has been made on statistics defined on the simplex space, the

availability of a rich and established theory of multivariate analysis makes the use

of the transformation technique the more appealing option. This is the approach

advocated by Aitchison (1986) and is more widely adopted. In fact, distributions

defined on the simplex space tend to have strong implied independence structures.

3.5.2 Dirichlet Distribution

The majority of distributions defined on the simplex sample space are of the Dirich-

let class. Despite the sum-to-one constraint, this class has an inflexible covariance

structure making it unsuitable for many applications. The Dirichlet is the multi-

variate generalisation of the Beta distribution with probability density given by

π�pSη� � Γ�PN
i�1�ηiLN

i�1�ηi� NM
i�1 p

ηi�1

i (3.20)

Although all N elements of the compositional vector p appear in the density cal-

culation, the distribution itself is defined on the N � 1 dimensional simplex as pi is

uniquely determined by p�i. η are the parameters of the Dirichlet distribution.

The covariance between two components of a Dirichlet distributed compositional

vector is

cov�pi, pj� � � ηiηj�Pk ηk�2�Pk ηk � 1� (3.21)

for i x j. Thus, for modelling positive covariances between components, the Dirich-

let distribution is entirely unsuitable. The covariance structure in the Dirichlet is

entirely due to the sum-to-one constraint; this is why the Dirichlet is said to have

a strong implied independence structure. Given the constraint, the components are

necessarily modelled as conditionally independent.
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A Dirichlet with parameter vector η may be expressed as a product of Gamma

distributions, with shape parameters η and rate parameters all equal to Pi ηi, con-

ditioned on the sum = 1 following a Gamma distribution with shape and rate both

equal to Pi ηi.

π�P ;η� � LNT

i�1 Gamma�pi;ηi,Pk ηk�
Gamma�1;Pk ηk,Pk ηk� (3.22)

If sampling from the Dirichlet is required, this can be achieved by sampling from

the Gamma marginals and then rescaling such that the sum is one. In fact, this is

the usual algorithm for sampling from a Dirichlet distribution.

3.5.3 Generalized Dirichlet Distribution

The Generalized Dirichlet distribution (Connor and Mosimann (1969)) has a more

general covariance structure, achieved by doubling the number of parameters. If the

number of components is N , then a Generalized Dirichlet (GD) distribution has two

sets of parameters, each of length N :

GD�P ;a, b� � �N�1M
i�1 B�ai, bi��1	 pbN�1�1

N

N�1M
i�1 <����>pai�1

i � NQ
j�1pj�bi�1��ai�bi�=AAAA? (3.23)

In the Generalized Dirichlet distribution, one of the components is always negatively

correlated with the rest. The other components may be positively or negatively

correlated with each other (Wong (1998)). Labelling the component that is strictly

negatively correlated with the rest as p1, if i, j A 1 then cov�pi, pj� may be positive

or negative. However, for any index greater than the lower of i, j, the sign of the

correlation will stay the same. i.e. :

i A j A 1

cov�xi, xj� � �ve� cov�xk, xj� � �ve �k A j (3.24)

This also applies to negative correlations so that the covariance structure for the

Generalized Dirichlet distribution is in fact quite limited (see Section 3.5.6).

3.5.4 Logistic-Normal Class of Distributions

One class of distributions on the N dimensional simplex that have a richer covariance

structure than those provided by the Dirichlet class of distributions is defined by
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distributions in an unconstrained multivariate space (e.g. RN ) with transformation

to the simplex space.

This is the approach advocated and developed by Aitchison (1986). The propor-

tions are transformed to the real space through the use of a transformation function.

Standard multivariate analysis is carried out on these transformed variables (typ-

ically using multivariate Gaussian distributions) and the results are transformed

back to the simplex space using the inverse of the original transforming function.

If N dimensional multivariate normally distributed real random vectors are trans-

formed to the simplex space in N dimensions using the one-to-one inverse centered

logratio transform:

pi � exiPN
j�1 exj

; i � 1, . . . N (3.25)

then the compositional vectors on the simplex are said to have a centered Logistic-

Normal distribution (Aitchison (1986), Aitchison and Egozcue (2005)). The trans-

formation from the simplex space to the real space is the centered logratio transform

is given by

xi � log�pi� � PN
j�1 log�pj�

N
(3.26)

the second term being there to centre the real vector around zero. There are other,

closely related transformations that give rise to similar distributions (such as the ad-

ditive Logistic-Normal). The general term for such distributions is Logistic-Normal

and the centered Logistic-Normal is the distribution used in this thesis.

The advantage of transforming to the real space is that standard multivariate

statistical procedures and models based on the multivariate normal distribution are

made available. This allows for rich, well developed models to be used for the

real-space X parameters, before simply transforming back to the simplex space.

Arbitrarily rich covariance structures may be built for the compositional vector

through specification of multivariate normal distributions on the real space. The

entire battery of existing techniques for the Normal distribution may be employed.

Chapter 6 of Aitchison (1986), shows that for any Dirichlet distribution with pa-

rameters δ large enough that probability mass is highest at the centre of the simplex

then there is a very close Logistic-Normal distribution with diagonal covariance /

precision matrix.
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The approach broadly used in this thesis is to define normal priors on an uncon-

strained space with transformation to the simplex. The motivation for this is not

in fact in the conveniences arising in the Normality assumptions across the com-

position, but because modelling latent surfaces as Gaussian and Markov across the

location space allows for the use of the specialist multivariate inference techniques

introduced in Section 2.2 and detailed in Chapter 4.1.

Extra unknown parameters could be introduced to model the inter-dependence,

but this is an inference question and is therefore dealt with in Chapter 4.1.

Interest in this thesis is in models with some inter-process covariances that do

not require either of the following:

1. Prior knowledge of inter-component covariance / precision terms

2. Complicated, highly parameterised models for such covariances

3.5.5 Multivariate, Constrained Likelihood Functions

Although the Multinomial is a multivariate likelihood, with known covariances be-

tween components, it can be expressed as a product of independent Poisson distri-

butions, with parameters equal to n�P , conditioned on the sum being equal to the

total count n. This sum (Pi yi � n) itself follows a Poisson distribution with rate

parameter n.

π�Y ;n,P � � LNT

i�1 Poisson�yi;λi�
Poisson�n;n� (3.27)

with λi � n � pi and Poisson�yi;λi� � λ
yi
i

e�λ

yi!

Thus, if a model using a decomposable likelihood function (such as the Multino-

mial) and a prior with conditional independence (such as the Dirichlet or indeed an

Aitchison type prior with no inter-component covariance terms) is employed, then

the posterior has conditionally independent components.

For the multivariate normal model, the prior and likelihood precision matrices

in this case will be block-diagonal with no inter-component entries being non-zero.

Thus, the posterior precision matrix, which is the sum of the prior and likelihood

precision matrices, is also block-diagonal. The joint model, which is multivariate

normal is therefore equal to a product of smaller multivariate normals, each describ-
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ing a separate component of the composition. Thus, the model disjoint-decomposes

exactly.

For constrained, multivariate counts data, the simplest example is of a Dirichlet

prior with a Multinomial likelihood. Due to conjugacy, the posterior for the latent

parameters is also Dirichlet. Inference on these parameters may therefore be carried

out on each component separately and the joint distribution may be constructed

from the marginals post-hoc by conditioning on the sum.

Compound-Multinomial Likelihood

In the paper Haslett et al. (2006), the Multinomial was mixed with a Dirichlet dis-

tribution and a compound-Multinomial (or Dirichlet-Multinomial) distribution was

formed for the likelihood. Although overdispersed with respect to the Multinomial,

this distribution still enforces the conditional independence assumption.

π�Y SP, δ,n� � n!Γ�δ�
Γ�n � δ� NM

i�1 �Γ�yi � δpi�
Γ�δpi�yi!

� (3.28)

where n is the total count, δ is a scalar overdispersion parameter, N is the number

of components of the composition, Y are the counts and P are the parameters of

the Multinomial.

The derivation of this likelihood is as follows, starting with the mixing of a

Multinomial with a Dirichlet with parameters δP :

π�Y Sδ,P,n� � S
φ
π�Y Sφ,n�π�φSP, δ�dφ� S

φ

n!LN
i�1 yi!

NM
i�1 φyi

i

Γ�δ�LN
i�1 Γ�δpi� NM

i�1 φδpi�1

i dφ� n!LN
i�1 yi!

Γ�δ�LN
i�1 Γ�δpi� Sφ

NM
i�1 φ

δpi�yi�1

i dφ (3.29)

The term inside the integral is an un-normalised Dirichlet distribution on φ with

parameters δP�Y . Substituting the inverse normalising constant times this Dirichlet

for this term and taking the normalising constant outside the integral gives

π�Y SP, δ,n� � n!Γ�δ�
Γ�n � δ� NM

i�1 �Γ�yi � δpi�
Γ�δpi�yi!

�S
φ
Dirichlet�φ; δP � Y �dφ (3.30)

The integral is over a valid probability distribution and is therefore equal to one,

yielding Equation (3.28).
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3.5.6 Nested Compositional Models

Section 3.5.2 shows how common Dirichlet class distributions on the simplex have

a strong implied conditional independence structure. Section 3.5.5 shows how mul-

tivariate, constrained likelihood functions such as the Multinomial may be disjoint-

decomposed. The Generalized Dirichlet described in Section 3.5.3 allows for the

breaking of this independence structure. However, it has double the number of pa-

rameters and still only allows for positive correlation between one component with

all the others.

Aitchison type models, using a transformation from unconstrained, multivari-

ate normally distributed, vectors in the unconstrained space to the simplex space

provide an extremely rich class of model. However, they require either a prior

knowledge of all interaction parameters or a specification through a large array of

hyperparameters.

The former is unsuited to the pollen dataset; there is no such prior knowledge

and interactions between components of the data vectors (whether through actual

interaction or due to joint dependence on unobserved covariates) should be modelled

in the likelihood.

The latter leads to problems of inference; specifically, the inference method of

Section 4.1 requires a low number of hyperparameters and the conditional indepen-

dence of the data, given the parameters (latent random variables).

Nested models provide an interesting alternative; these are models in which there

is more than one “level”. 1 This is graphically illustrated in Figure 3.9. Each level

itself comprises a composition; each component of the composition may then be split

into another composition on another level. The structure of the nesting refers to the

number of levels and the splitting of each component into sub-compositions at each

level.

A big advantage of such models is that they are still independent (given the

constraint) at each level, provided the nesting structure is known. Unconditionally,

the lowest level may exhibit a richer correlation structure than is possible with a

Dirichlet model.

1This use of the term nest and nested should not be confused with the nested in Integrated
Nested Laplace Approximation as the two are unrelated.
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ABC

A CB

A A A B C C1 2 3 1 2

Fig. 3.9: A two level nesting structure. At the top level is ABC; the first

level splits this into A, B and C components. The second level splits A

into 3 components, A1, A2 and A3. The second level also splits C into C1

and C2, but B is not subdivided. There are thus 3 components at level 1

and a total of 6 at level 2. If the nesting structure was not known, then

the vector �A1,A2,A3,B,C1,C2� would be modelled directly as components

of ABC.

Nested Multinomials

In Figure 3.9, for a Multinomial nesting, the total count is A �B � C; level 1 is a

Multinomial of length 3 with components �A,B,C� and parameters �PA, PB, PC�,
with PA �PB �PC � 1. A is further split into 3 components on level 2 and these are

also Multinomial with total count A and parameters �PA1
, PA2

, PA3
�. C is Binomial

(Multinomial of length 2) at the second level, with total count C and parameter(s)

PC1
(PC2

� 1�PC1
). It is easy to show that the lowest level is then also Multinomial,

with parameters �PAPA1
, PAPA2

, PAPA3
, PB, PCPC1

, PCPC2
� and total count A�B �

C.

These two models then yield the same joint likelihood; i.e. a nested Multinomial

is equivalent to a Multinomial on just the lowest level of each nest. Thus, knowl-

edge of an existing nesting structure does not change the likelihood, if all nests are

modelled as Multinomial.

Nested Dirichlets

For a nested Dirichlet model, the lowest level is not expressible as a Dirichlet. Iso-

probability contours are a useful tool in illustrating the types of correlation structure

achievable through various distributions. On the simplex, they demonstrate that,

regardless of the parameters, the Dirichlet has strictly convex contours, due to the

75



ABCD

A B C D

BCD

CD

Fig. 3.10: A three level nesting structure. At the top level is ABCD; the

first level splits this into A and BCD. The second level splits BCD into

two components, B and CD. The third level then splits CD into C and

D.

implied independence structure (Wong (1998)). The nested Dirichlet, however, can

give rise to concave contours, showing positive correlations between components.

In the case of building priors for compositions, Wong (1998) shows that the

Generalized Dirichlet allows for a more general covariance structure. Examination

of the algorithm used to generate samples from the Generalized Dirichlet reveals an

interesting result; the Generalized Dirichlet may be thought of as a series of two

component nests. Indeed, Tian et al. (2003) touch on this briefly, noting that the

nested Dirichlet is a special case of the Generalized Dirichlet.

However, this is strictly for the case of a nesting structure composed of nests

of size 2 only; i.e. nested Betas (see Figure 3.10). This is most clearly seen by

examination of the sampling algorithm for the Generalized Dirichlet (as per Wong

(1998)):

p1 � rbeta�a1, b1�
sum � p1

for j � 2, . . . ,N�
pj � rbeta�aj , bj��1 � sum�

sum � sum � pj� (3.31)

Thus Wong (1998) shows how constructing a prior, given knowledge of this nest-

ing structure with binary splitting, gives rise to a Generalized Dirichlet for the lowest
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A B C

ABC

BC

Fig. 3.11: The simplest non-trivial nesting structure. At the top level is

ABC; the first level splits this into A and BC. The second level splits BC

into two components, B and C.

level with the b parameters weighted by the number of splits to each component.

A more general nesting structure, such as that shown in Figure 3.9 cannot be

written as a Generalized Dirichlet; however, it can be written as simply the product

of the Dirichlet distributions at each nest. Thus constructing a prior with knowledge

of the nesting structure is straightforward. A rich covariance structure for the lowest

level is obtained, with the covariances entirely dictated by the nesting structure.

The comparison between the prior for the nested model and the equivalent non-

nested model is pleasantly straightforward. For the simplest case, shown in Fig-

ure 3.11, the nested model has Dirichlet prior for the first level:

π�pA, pBC�� pδ�1

A p2δ�1

BC (3.32)

the prior being centred on �1~3,2~3�, since knowledge of the nesting structure dic-

tates that BC must ultimately become two parts. The prior precision is dictated

by the single δ parameter.

Similarly, the second level has Dirichlet prior:

π�pB, pC�� p2δ�1

B p2δ�1

C (3.33)

The product of Equations (3.32) and (3.33) gives the nested model prior.

The model without knowledge of the nesting structure has prior equal to

π�pA, pB, pC�� p2δ�1

A p2δ�1

B p2δ�1

C (3.34)

Therefore the ratio of nested model to non-nested model is proportional to
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nested prior � non-nested prior � �pB � pC�2δ�1

pδ
A

(3.35)

The interpretation of this simple ratio is that the nested model has a more

flattened out probability distribution on the simplex. Greater variability has been

achieved by recognizing that ABC does not split directly into three components,

but undergoes two binary splits. More generally, the ratio will be proportional

to a fraction with numerator equal to the product of intermediate priors. The

denominator is a correction term for the weightings given to each component of an

asymmetric split.

In fact this is problem specific, as some models will be constructed giving equal

a-priori probability to A and BC in the above example. In this case, the result is

the same but with no term below the line in Equation (3.35).

For unbiased priors (no knowledge of the nesting structure), this results in asym-

metric priors on the simplex that are nonetheless centred about the middle of the

simplex (see Figure 3.12). In this case, the isoprobability contours are a-priori con-

vex. However, the posterior may be part concave, unlike the restrictive Dirichlet

posterior obtained from a Dirichlet prior and Multinomial likelihood.

Nested Dirichlet-Multinomials

In the case of a Dirichlet prior and Multinomial likelihood for each nest, the com-

parison between the posterior for the nested model and the equivalent non-nested

model is similar to the Dirichlet prior case of the previous subsection. The posterior

is Dirichlet (due to conjugacy between the Dirichlet priors and Multinomial likeli-

hoods at each nest). Therefore, the ratio between the nested model posterior and

the non-nested posterior is similar to Equation (3.35) and is given by:

nested posterior � non-nested posterior � �pB � pC�yB�yC�2δ�1

pδ
A

(3.36)

where yi is the count associated with component i.

Nested Compound-Multinomials

For an overdispersed compound-Multinomial model for the counts, the algebra is not

as neat for the ratio of nested to non-nested models. The posterior for a Dirichlet
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P[1]=1

P[1]=0

P[2]=1

P[2]=0

P[3]=0

P[3]=1 Dirichlet
Nested Dirichlet

Fig. 3.12: Dirichlet and Nested Dirichlet priors as per Wong (1998), with

the nesting structure shown in Figure 3.11. In fact, Wong (1998) demon-

strates this for Generalized Dirichlets, which in his context of construct-

ing priors is equivalent to nested Dirichlets. For the nested model, the

first split has prior B�4,8� and the second is B�8,8�. This is equivalent to

a Generalized Dirichlet�a, b� with a � �4,8� and b � �8,8�. The non-nested

model simply has Dirichlet�8,8,8�.
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P[1]=1

P[1]=0

P[2]=1

P[2]=0

P[3]=0

P[3]=1 Dirichlet
Nested Dirichlet

Fig. 3.13: Dirichlet and Nested Dirichlet posteriors, with the nesting

structure shown in Figure 3.11. Three counts, all equal to 5 are observed;

priors are as per Figure 3.12 are assigned and isoprobability contours for

the resultant posteriors, nested and non-nested are plotted.
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prior and a Multinomial likelihood provide a guideline; the overdispersed compound-

Multinomial model for the counts is equivalent to an integral over auxiliary com-

positional parameters and is therefore an average of such models. The following

section shows empirical results for the comparison between nested and non-nested

compound-Multinomials in terms of the inverse predictive power when the data are

indeed generated from a nested compound-Multinomial likelihood.

Sensitivity to Nesting Structures

A simple toy problem using data simulated from a known model illustrates the im-

pact of a nesting structure. At regular locations in a 15 � 15 grid, 3 counts are

distributed according to a Multinomial distribution of length 3. The 3 parame-

ters of this distribution arise from a Dirichlet mixture of length 3 of a transforma-

tion to the simplex space of stochastically smooth fields X (i.e. the likelihood is

compound-Multinomial). Each of these 3 counts is subdivided into 3 more counts;

again according to a compound-Multinomial distribution.

Therefore, at each location in the 2 �D regular lattice:�YA, YB, YC� � Multinomial�1000,�PA, PB, PC���YA1
, YA2

, YA3
� � Multinomial�YA,�PA1

, PA2
, PA3

���YB1
, YB2

, YB3
� � Multinomial�YB ,�PB1

, PB2
, PB3

���YC1
, YC2

, YC3
� � Multinomial�YC ,�PC1

, PC2
, PC3

�� (3.37)

with all P parameter vectors being Dirichlet mixtures of corresponding composi-

tional vectors φ.

P � Dirichlet�δφ� (3.38)

where δ is a scalar controlling the degree of overdispersion.

The vectors φ vary smoothly across the location space and the sum-to-unity

constraint applies everywhere and at both levels.

The Dirichlet mixtures are proportional to L3

i�1 pδi�1

i where δi � δφi. The Multi-

nomial part is proportional to L3

i�1 p
yi

i . The compound-Multinomial is the product

of these two and is therefore proportional to L3

i�1 p
δi�yi

i .
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Fig. 3.14: Replications using known parameters P . The overdispersion

parameter is set to 103 for all components at both levels of the nesting

structure. The high degree of overdispersion results in a clear difference

between the joint likelihood terms for the nested model and the lowest-

level only model.

The full, joint density of the compositional vector at each level is proportional

to the product of the 3 lower level compound-Multinomials times the compound-

Multinomial for the first level. The non-nested model differs only due to the

overdispersion (the likelihood for a nested Multinomial is itself a Multinomial; Sec-

tion 3.5.6).

Comparison of Figures 3.14 and 3.15 show this result. In both cases, a look at the

number of cases generated from the nested model that fall outside the correspond-

ing 95% HPD region for the inverse predictive distribution under the non-nested

model is greater than it should be. However, the error is less for a larger overdis-

persion parameter, corresponding to a lower extra, non-spatial variability. i.e. more

overdispersion leads to higher incurred error when nesting is ignored.
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Fig. 3.15: Replications using known parameters P . The overdispersion

parameter is set to 105 for all components at both levels of the nesting

structure. Note that this represents less overdispersion than Figure 3.14.

The low degree of overdispersion results in a small difference between

the joint likelihood terms for the nested model and the lowest-level only

model.
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3.5.7 Disjoint-Decomposing Compositional Models

Inference using large, compositional models may be difficult or even impossible due

to computation and memory constraints, or compatibility issues with inference tech-

niques (see Chapter 4). In these circumstances, approximating the joint model with

a decomposable model might provide more accurate results than attempting to use

the non-decomposable model.

Although compositional models may appear to be inherently non-decomposable,

they do disjoint-decompose provided the modules they are to be disjoint-decomposed

into are conditionally independent, given the constraint. For example, given a Multi-

nomial likelihood and a Dirichlet prior, the Dirichlet posterior may be expressed as

a product of independent Gamma distributions divided by a Gamma distribution

on the sum. Inference for the forward stage of the model may then take place in the

unconstrained space with response surfaces fitted to the counts individually. The

joint model is then constructed by conditioning on the probability of the sum being

equal to unity. The distribution on the sum is a single, straightforward calculation.

An important detail to note here is that the joint problem has been disjoint-

decomposed into the product of the unconstrained marginals. The product of the

constrained marginals (Betas for the Dirichlet and Binomials for the Multinomial)

do not give the correct joint model.

For the inverse predictive stage, given the fitted forward model, the inference

cannot be disjoint-decomposed. However, this is typically a far smaller calculation

and so can be done using the non-disjoint-decomposed joint model. Inversion of the

model amounts to integrating out the latent parameters of the model at each point

in the location space to yield the marginal likelihoods at each point.

If the forward stage yields closed form posteriors (as is always the case in this

thesis; see Section 4.1), then simple Monte-Carlo integration for the multidimen-

sional integral required for the sum delivers the required distribution. If the forward

stage posteriors can only be sampled from (e.g. via MCMC), then MCMC may be

used again for the inverse predictive distributions.

Two other options for decomposing joint compositional models are briefly dis-

cussed here. Both involve re-expressing the joint model as a product of independent

parts; the inverse predictive distribution stage will also disjoint-decompose in these
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cases, leading to a further gain in efficiency.

Product of Conditionals

For any joint probability distribution, the following identity holds:

π�A,B,C� � π�A�π�BSA�π�C SA,B� (3.39)

which is a product of univariate distributions.

So, for example, a Multinomial likelihood of length N may be expressed exactly

as a product of Binomials:

π�Y ;P,n� � π�Y1;n, p1�π�y2;n�y1,
p2

1 � p1

� . . . π�yi;n�i�1Q
j�1 yj,

pi

1 �Pi�1

j�1 pj

� . . . π�yN ;yN ,1�
(3.40)

the final term being equal to one.

This chain decomposition model may always be used to write the joint model

as a product of independent parts and thus disjoint-decompose it exactly. How-

ever, it requires knowledge of the conditional distributions in advance; interactions

cannot be learned about during the inference procedure as hyperparameters that

are unknown cannot appear in more than one module if inference on them is to be

parallel.

Furthermore, when dealing with zero-inflated likelihoods, the zero-modification

of the unconstrained marginals has a clear interpretation that is consistent with

the theory presented in Section 2.4; Equation (3.40) does not have this appealing

characteristic as clearly the modules conditioned on more terms will have decreasing

zero-inflation.

3.6 Conclusions

A summary of the main points in this chapter is presented. Forward inference has

been suppressed in order to focus on modelling issues in isolation. Some sensitiv-

ity to model analysis has been done using inference of the inverse problem, given

known forward models. Aspects of the models introduced in this chapter are used

throughout the later parts of the thesis.
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3.6.1 Disjoint-Decomposition of Models

Multivariate models are said to disjoint-decompose exactly into a product of inde-

pendent modules if there’s no interaction terms between modules. Inverse inference

may still need to be done using the joint model; for example if there is a sum-to-one

constraint. Since the forward model is typically far larger in scale, this is not an

issue.

Disjoint-decomposing by (multivariate) marginals is one example: Multiple smooth

latent surfaces give rise to multiple types of count; the modules may each account for

a single surface. This decomposition will be exact provided the joint model is that

the surfaces are conditionally independent given the locations and that the counts

are conditionally independent given the surfaces.

In order for a posterior distribution to disjoint-decompose exactly, both the prior

and the likelihood should disjoint-decompose. When a joint model does not disjoint-

decompose exactly, there might exist an approximation to the joint model that

does disjoint-decompose. In this case, the model is said to approximately disjoint-

decompose.

A goodness-of-fit measure ∆ is used to determine the appropriateness of the

disjoint-decomposable model or the quality of the approximation of using such a

model when there exists non-zero inter-dependence across multiple spatially smooth

surfaces.

3.6.2 Zero-Inflated Models

If the data are zero-inflated, then an appropriate model for zero-inflation must be

used. As noted in Section 2.4, mixing the non-zero-inflated likelihood with a point

mass at zero gives a flexible model. The size of the mass placed at zero doubles

the number of parameters, unless the zero-inflation and the count when present

are controlled by the same spatial process in which case a single additional scalar

hyperparameter may be all that is required.

Section 3.4.4 used a simple toy example to demonstrate the implications on the

inverse inference of using a non-zero-inflated likelihood when the counts are in fact

zero-inflated. In this case, inverse inference will be erroneous.
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3.6.3 Nested Constrained Models

The Dirichlet-Multinomial type model disjoint-decomposes (given the distribution

on the sum); however, the covariance structure is extremely limited. Richer covari-

ance structures are only possible if interactions are either known or inferred so that

the logistic-Normal class may be used with off-diagonal terms to model the covari-

ance. This requires either prior knowledge of interaction or else a large number of

additional parameters on which inference must be performed (detailed in Chapter 5).

Known nesting structures provide one alternative. They break the problem into

separate modules but allow for a rich covariance structure nonetheless; and this

without any additional parameters. The central concept of the nested compositional

counts model is that counts yA and yB may not be conditionally independent given

responses xA and xB; however, they may be independent given the sum yA �yB and

the responses xA~�xA � xB�, xB~�xA � xB�.
The inverse predictive distribution parts still needs joint modelling but the for-

ward part, which is the more labourious, does not. Knowledge of the nesting struc-

ture must be known a-priori; this is the only requirement. Sequential inference of

the forward models may be performed.

If there is a nesting structure, then inference on the inverse problem will be

erroneous if the nesting is ignored. The degree to which the nested and non-nested

versions of the model differ is affected by how overdispersed the counts data are.
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Chapter 4

INLA Inference and

Cross-Validation

This chapter deals with inference and model validation for conditionally indepen-

dent counts. i.e. it assumes a disjoint-decomposable joint model and inference on

the forward model may be performed sequentially for each component of vector as-

semblages (counts). Issues relating to the disjoint-decomposition of the joint model

are dealt with later in Chapter 5.

The inference procedure developed by Rue et al. (2008) is introduced; although

this thesis does not contribute substantially to the methodology of this new inference

technique, the application to palaeoclimate reconstruction is novel and represents

one of the first large applications of the method. The technique is presented in

Section 4.1, including details pertaining directly to the palaeoclimate problem ap-

plication. In fact, the problem is too large for even the INLA method.

Model evaluation and comparison for the inverse problem using cross-validation

of the modern dataset was all but impossible using brute force MCMC in Haslett

et al. (2006). An approximate cross-validation procedure developed in Bhattacharya

(2004) and Bhattacharya and Haslett (2008) offers a faster sampling-based approach.

An extension of the inference method of Rue et al. (2008) is developed in Section 4.2.

This allows cross-validation in the inverse sense of the model to be performed ex-

tremely efficiently (many orders of magnitude faster than re-fitting the model for

each left-out datum). Further savings are achieved using computational tricks that

are presented along with implications to accuracy.
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4.1 The Integrated Nested Laplace Approxima-

tion

The Integrated Nested Laplace Approximation (INLA; Rue et al. (2008)) is a new

method of performing Bayesian inference on a particular class of problem. It is

best suited to Bayesian hierarchical models for which there are a large number of

parameters and a small number of hyperparameters, with a specific form of prior

covariance on the parameters.

The forward model fitting required in the pollen based palaeoclimate problem is

one such problem. In fact, the model as introduced in Haslett et al. (2006) is very

well suited to inference via INLA. In Haslett et al. (2006), the model was limited

due to computational concerns; computationally intensive MCMC chains were used

to sample from the un-normalised posterior for the ten thousand latent parameters

in the model. Even after several weeks, the authors admit that “convergence was

far from assured”.

In contrast with MCMC, the INLA method does not sample from the posterior.

It approximates the posterior with a closed form expression. Therefore, problems of

convergence and mixing are not an issue. In order to understand how the posterior

is approximated, a number of steps are required. The first is a Gaussian Markov

Random Field approximation to the posterior for the latent surface, given data

and hyperparameters; this is discussed in Section 4.1.1. Subsequently, Section 4.1.3

shows how a simple approximation is built for the posterior of the hyperparameters,

given data. Section 4.1.4 shows how more accurate approximations are built for

single parameters, if required.

An exhaustive comparison with existing techniques for Bayesian inference, such

as MCMC, is not given in this thesis. Rue et al. (2008) provides a more than

adequate investigation of both the strengths and weaknesses of the method; it is

therefore sufficient here to draw upon those findings. Observations on the suitabil-

ity of the method to the motivating palaeoclimate problem are given in Chapter 6.

Section 4.1.1 shows how the method can work even for uncommon, bimodal likeli-

hoods such as zero-inflated models.
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4.1.1 The Gaussian Markov Random Field Approximation

Multivariate normal priors are frequently assigned to the latent surfaces in a hierar-

chical model to induce a-priori smoothness of the non-parametric surfaces. This is

particularly common in spatial statistics, but the technique can be used for any prob-

lem in which the only prior on a large set of parameters with locations / distances

is that they vary smoothly (see Rue and Held (2005) for details and examples). The

smoothness hyperparameter is taken as known in this section; Section 4.1.3 demon-

strates the construction of the posterior for this and other model hyperparameters.

If the structure of the prior is Markov (defined on a regular grid), then the prior

is a GMRF (Section 2.2.4). Assignment of such priors is common; in fact, this was

the prior used for the response surfaces in Haslett et al. (2006).

When the likelihood for data Y given parameters X is expressible as a multi-

variate normal, then given a multivariate normal prior on X, the posterior π�X SY �
is multivariate normal (due to self-conjugacy the normalising constant has an ana-

lytical solution):

π�Y SX� � MV N�Y ;X,QY � (4.1)

π�X� � MV N�X;µX ,QX� (4.2)

π�X SY � � MV N�X; �QX �QY ��1�QXµX �QY Y �,QX �QY � (4.3)

The dimension of the precision matrices QX and QY is the square of the dimension

of X and Y .

If the likelihood has a diagonal covariance matrix, due to conditional indepen-

dence given the parameters, then the precision matrix is also diagonal. Thus, the

posterior precision matrix is the same as the prior precision matrix with terms added

on to the diagonal.

When the likelihood is not expressible as a multivariate normal then the posterior

is not multivariate normal. However, a simple and fast approximation to the log-

likelihood leads to a Gaussian approximation for the posterior. The un-normalised

posterior is expressible exactly as:
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π�X SY � � exp��1

2
XT QXX � NQ

j�1 logπ�yj Sxj�� (4.4)

for a zero mean Gaussian prior with precision matrix QX .

If the log-likelihood is approximated with a second order Taylor series, then the

approximation is quadratic. Hence, the posterior is expressible as a multivariate

normal:

π�X SY � � exp��1

2
�X � µ�T �QX � diag�c���X � µ� (4.5)� π̃G�X Sθ,Y � (4.6)

π̃G�X Sθ,Y � is then known as the Gaussian approximation, the π̃ denoting that

it is an approximation and the G standing for Gaussian.

The posterior mode µ and the c terms must still be found. c contains the elements

of the likelihood precision that are added to the prior precision diagonal to form the

posterior precision matrix.

An important point to note here is that the log-likelihood is a function of the

parameters X given the data Y . This is what is approximated with a quadratic in

X. Likelihoods that are not approximately quadratic as functions of the data given

the parameters (such as common probability mass functions like the Poisson, the

Binomial, etc) are often adequately approximated as quadratic in X. See Figure 4.1.

The posterior mean µ is found by Newton-Raphson or a similar iterative search

algorithm. The c terms in Equation (4.6) are simply the second order coefficients

of the Taylor series expansion. An important caveat is that the data are modelled

as conditionally independent given the parameters; each Taylor series expansion is

univariate and thus a simple and fast calculation. Writing the log-likelihood as f�x�,
the Taylor series to second order is:

f�x� � f�x0� � f ��x0��x � x0� � 1

2
f ���x0��x � x0�2� a � bx � 1

2
cx2 (4.7)

with b � f ��x0��f ���x0�x and c � �f ���x0� (a is not required). Thus b � f ��x0��cx.
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Fig. 4.1: Although the Poisson with a low rate parameter is a mass func-

tion is poorly approximated by a quadratic, the Poisson for a given count

(in this case 3) is adequately approximated by a Gaussian (quadratic) as

a function of the log-rate.

The search algorithm for finding the mean µ represents the bulk of the work in

finding the Gaussian approximation. Equivalent to Newton-Raphson is iteratively

solving the system of linear equations�QX � diag�c��µ � b (4.8)

for µ.

The key to solving this equation fast is that the Markovian structure of QX (and

thus QX �diag�c�) leads to the matrix being very sparse. A Cholesky decomposition

of a matrix Q renders the matrix as the product of a lower triangular matrix with

its own transpose:

Q � LLT (4.9)

Solving Equation (4.8) for µ then amounts to solving Lv � b for v and then

solving LT µ � v for µ. All calculations are swift and potentially large matrices may

be stored cheaply due to sparseness and lower diagonality.

92



The Taylor series expansion is most accurate if centred on the mode (mean) of

the posterior. Therefore, at each iteration of the search algorithm, the Taylor series

is recalculated. This still represents a small number of computational steps as the

algorithm typically converges quickly (less than 10 iterations for even very large

problems, such as 104 parameters with precision matrices of order 104 � 104).

Univariate Toy Example

A simple toy example illustrates the Gaussian approximation. For a single Poisson

count y � 3 the objective is to construct the posterior probability distribution for the

rate. As the rate is strictly positive, a log-link is used and the log-rate x is inferred.

A diffuse Gaussian prior on x with mean zero and precision κ of 0.001 (variance� 1~κ of 103) is placed on the log-rate parameter. The likelihood is assumed to be

Poisson. As the problem is univariate, numerical integration is easily used to deter-

mine the posterior for the log-rate. Gaussian approximations formed by expanding

a second order Taylor series around 4 different values of the log-rate are shown for

comparison in Figure 4.2.

The posterior distribution is then

π�xSy� � π�x�π�ySx�� exp��κ

2
x2 � yx � exp�x�� (4.10)

To approximate this we construct a quadratic Taylor expansion of the unnor-

malised log-likelihood yx� exp�x� around a suitable x0. The univariate approxima-

tion is now

π̃�xSy�� exp��c � κ

2
x2 � bx� (4.11)

which is in the form of a Normal distribution with mean b
c�κ

and variance 1

c�κ

and from Equation (4.7):

c � ex0

b � yx0 � ex0 � cx0 (4.12)
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The mode x0 is found by iterating the Taylor series expansion with setting x0 ��c � κ�b. This is equivalent to using Newton-Raphson to find the mode of the

posterior. Convergence for this example takes only two steps.

Even if the quadratic approximation to the log-likelihood is poor, the posterior

approximation may be good. An example of this is when the likelihood is a zero-

inflated Poisson (see Section 2.4 and Equation (2.18)) given by

π�ySx� � ¢̈̈̈�̈̈̈¤ 1 � q � qeλ y � 0

qPoisson�y;λ� y A 0
(4.13)

with q � logit�1�x� and λ � ex.

Although the likelihood as a function of count y is bimodal (a mixture of a point

mass at zero and a Poisson), as a function of the log-rate x it is unimodal. However,

it is very skewed and thus the quadratic approximation to the likelihood is poor;

see Figure 4.3(a). The posterior, even under a diffuse prior, is necessarily much

less skewed and thus the Gaussian approximation to the posterior is much better;

Figure 4.3(b).

Multivariate Toy Example

A multivariate example shows the difference between inference using a GMRF ap-

proximation and MCMC sampling. A smooth (Gaussian) curve X is defined at

regular points in a 1-dimensional space. Counts data are generated from a zero-

inflated Poisson with rate parameter given by the exponential of the smooth curve

and probability of potential presence given by the inverse logit:

π�yj Sxj� � ¢̈̈̈�̈̈̈¤ 1 � qj � qjeλj yj � 0

qj

e
�λj λ

yj
j

yj !
yj A 0

(4.14)

with qj � e
xj

1�e
xj and λj � exj .

An intrinsic GMRF prior is placed on X with precision matrix given by

Q � κR (4.15)

where R is as per Equation 2.11 and κ is set to ensure smoothness of the curve

across the locations.
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Fig. 4.2: The effect of varying the point around which the Taylor se-

ries is expanded. The true posterior is shown in black along with the

Gaussian approximation formed through a Taylor series expansion of the

log-likelihood in red. A circle shows the location of the point around

which the Taylor series is formed. The Taylor series is most accurate

at the centre; thus the Gaussian approximation to the posterior is most

accurate when the quadratic approximation to the likelihood is centred

at the posterior mode (mean).
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Fig. 4.3: A zero-inflated Poisson likelihood (black line) given a count

of zero is poorly approximated by a quadratic (red line) in (a). The

posterior for the log-rate (black line) is more adequately approximated

by a Gaussian (red line) in (b).

The goal is then to infer the posterior π�X SY �:
π�X SY � � exp��1

2
XT QX �Q

j�1 logπ�yj Sxj�� (4.16)

Both a Metropolis Hastings MCMC algorithm and a GMRF approximation were

coded and the results for both appear in Figure 4.4. There are 30 locations, regularly

spaced, with counts data generated for each of them. To run an MCMC chain of

length 3 � 105 for the 30 latent parameters took about 4 minutes. In contrast, it

took just under a fifth of a second to fit the GMRF approximation. This represents

a speedup in performance of around 3 orders of magnitude for similar results. Even

then, the MCMC sampler was started in the correct place to avoid burn in and the

code was optimised and tweaked to achieve a good acceptance rate for the proposals.

The most obvious difference between the two Figures is to the right hand side.

It appears that the GMRF approximation is overestimating the response (which is

very low) in this region. However, examination of the trace plot for the log of the

response shows that in fact, the Metropolis-Hastings routine is mixing poorly in

that region (Figure 4.5). This is an illustration of why it is not correct to assume

an MCMC sampler is doing a better job of approximating the posterior than the
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Fig. 4.4: Zero-inflated counts data (blue circles) arise from a rate

(red line) which varies smoothly across discrete locations (x-axis). A

Metropolis-Hastings MCMC algorithm samples from the true posterior,

given an intrinsic multivariate normal prior on the log of the rate. The

results are shown in (a) as the posterior mean (green solid line) and 95%

highest posterior density bounds (black dashed lines) for the rate. A

GMRF approximation to the posterior is similarly shown in (b).

The MCMC chain was run for 105 iterations and then thinned by select-

ing every 10th iteration.

Both inference methods give good results, reconstructing the “true” re-

sponse (red line) well. However, the GMRF method achieves results

around 3 orders of magnitude faster.
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Fig. 4.5: A trace plot of the log-rate at the second location from the

right in Figure 4.4. Despite proposals that are tweaked to ensure good

acceptance rates and thinning to 10% of a long run of length 105 iterations,

the MCMC algorithm does not mix well. Mixing is not an issue for

approximations to the posterior.

GMRF approximation.

4.1.2 Spatial Zero-Inflated Counts Data

Section 4.1.1 shows how the Gaussian approximation may be applied even to mod-

els with mixture likelihoods, such as a zero-modified distribution. A multivariate

example of this is shown in Section 4.1.1, where a GMRF prior and zero-inflated

Poisson likelihood yield a posterior that is adequately approximated by a GMRF. In

this example, the rate and the probability of potential presence are both functions

of a single stochastic process.

It will be shown in Chapter 6 that such a model is suitable in the context of pollen

based ecology. Where such a model is unsuitable, two separate processes should be

modelled; one for the response and another for the probability of presence. However,

such a model is unsuited to approximation with a GMRF. That each datum depends

only on a single parameter is a central assumption (or modelling choice) in fitting

such approximations. This is because approximating the likelihood with a quadratic

98



requires the function to be univariate in the latent parameter; a second order Taylor

series expansion for a bivariate function has 8 terms, compared to 2 for an expansion

of a univariate function.

In some cases, such as the incorporation of zero-mean random effects, the model

may simply be reparameterised so that each datum depends on a single parameter,

which is the sum of the spatial part plus the non-spatial random effect (see Rue and

Held (2005), Chapter 1). This typically leads to a graph / GMRF of double the

size and thus double the number of parameters, but is not a fundamental obstacle

to the implementation of the approximation.

However, a similar reparameterisation does not exist for the zero-modified distri-

bution; the likelihood necessarily depends on two distinct parameters. To see this,

if the zero-inflated counts data depend on, say, x for the response when present

and z for the probability of potential presence, then the second order Taylor series

expansion of the log-likelihood f�x, z� is

f�x, z� � f�x0, z0� � fx�x0, z0��x � x0� � fz�x0, z0��z � z0�� 1

2
�fxx�x0, z0��x � x0�2 � fzz�x0, z0��z � z0�2�� fxz�x0, z0��x � x0��z � z0� (4.17)

where fx is the first order derivative w.r.t. x of f , fz is the first order derivative

w.r.t. z of f , fxx is the second order derivative w.r.t. x of f , fzz is the second order

derivative w.r.t. z of f and fxz is df2

dxdz
.

This cannot be re-expressed as a function of a single variable. The Taylor series

remains multidimensional and is cumbersome. Equation (4.17) cannot be expressed

as �y�y0�T QY �y�y0� and is therefore incompatible with the GMRF approximation

technique.

In the case of a single underlying process controlling both response and the prob-

ability of potential presence, modelling two separate spatial processes will necessarily

perform worse than modelling the single process. For example, if MCMC methods

are used, the two spatial parts will be very highly correlated (as they in fact arise

from a single process), leading to poor mixing, as shown in Figure 4.6. This is a

consequence of the overparameterisation of the model.

A note on zero-inflated models lying on a grid: The GMRF approximation

method requires all calculations to be defined on a grid across the locations space
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Fig. 4.6: A trace plot of the logit of the probability of potential presence

at the second location from the right in Figure 4.4 when two distinct pro-

cesses are modelled. Despite proposals that are tweaked to ensure good

acceptance rates and thinning to 10% of a long run of length 105 iterations,

the MCMC algorithm does not mix well. The model is overparameterised

as there are double the number of random variables.
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(due to the Markov structure). In Rue and Held (2005) and Rue et al. (2008), the

authors advocate pushing each datapoint to the nearest gridpoint. This will typi-

cally keep the locations within the measurement error as the granularity of the grid

may be very large. When two or more datapoints are closest to the same grid-point

they are simply aggregated or averaged. However, this has implications for zero-

inflated counts data as the distributions are not closed under addition. Therefore,

in this thesis, the data are pushed to the nearest gridpoint but are kept separate so

that there may be multiple counts per gridpoint.

4.1.3 Posterior for the Hyperparameters

In a hierarchical model, some of the hyperparameters may be unknown. They must

be treated as random variables and inferred from the data. An MCMC algorithm will

typically sample from the joint posterior for the parameters and the hyperparameters

given the data π�X,θSY �. This posterior may also be expressed as the product of

the marginal posterior for the hyperparameters π�θSY � and the posterior for the

parameters given the hyperparameters π�X Sθ,Y �:
π�X,θSY � � π�θSY �π�X Sθ,Y � (4.18)

The objective then is to find π�θSY � and π�X Sθ,Y �. Re-expressing Equation (4.18)

as

π�θSY � � π�X,θSY �
π�X Sθ,Y � (4.19)

and using a GMRF approximation for the denominator π�X Sθ,Y � gives the

Laplace approximation for the posterior of the hyperparameters:

π�θSY � � π�X,θSY �
π̃G�X Sθ,Y �RRRRRRRRRRRX�X��θ� (4.20)

and writing the numerator in closed form, up to proportionality constant gives

π̃L�θSY �� π�θ�π�X Sθ�Lπ�YiSXi, θ�
π̃G�X Sθ,Y � RRRRRRRRRRRX�X��θ� (4.21)

where πL�θSY � is called the Laplace approximation to the posterior.
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Integration over the Hyperparameters

As stated previously, the type of problem to which the INLA routine is well suited is

one in which the hyperparameters are essentially nuisance parameters. It is accept-

able to treat them crudely, with a view to integrating them out entirely. Evaluating

Equation (4.21) at a number of discrete points on a grid over all θ is the approach

taken in Rue et al. (2008). The normalised approximate posterior πL�θSY � is found

by summing Equation (4.21) across the points and dividing by the sum.

The marginal posterior for the parameters is then simply the weighted sum over

all the discrete points in θ space:

π̃�X SY � �Q
k

π̃G�X Sθk, Y � � π̃�θkSY � � δk (4.22)

where δk are area weights, depending on the not-necessarily uniform discrete

spacings in the θ space. This is only possible for low dimensional θ, otherwise the

numerical integration quickly becomes difficult as the number of gridpoint grows as

ND, where N is the number of points along a particular component of θ and D is

the number of components of θ.

Rue et al. (2008) shows that this is a good approximation for a wide range of

statistical problem. It is sufficient to note that the MCMC alternative is cumbersome

to the point of rendering it impractical. The hyperparameters are often highly

correlated with the parameters; e.g. the smoothness hyperparameter and associated

latent field random variables. Thus a Metropolis-Hastings algorithm will suffer from

serious mixing problems unless a tailored block-update proposal mechanism is built.

Approximation Using Modal Hyperparameters

A further approximation is to use the modal value of the hyperparameters. The

hyperparameters are then considered known, having been inferred from the data for

the purpose of constructing the marginal posterior for the parameters given the data

(maximum a-posteriori selection of hyperparameters; see, for example Oakley and

O’Hagan (2002)).

This approximation is motivated by the inverse problem application central to

this thesis. In order to invert the model and construct inverse predictive distributions

for unknown hyperparameters, the model must be inverted (inverse problem) for
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each value on the discrete grid of hyperparameters. The marginal distribution for

the posterior of the parameters given the data only is represented as a mixture

of Gaussians (Equation (4.22)). This is itself modelled non-parametrically and a

numerical integration step would be added to each marginal likelihood calculation

for the inverse predictive procedure.

The decision on whether to integrate out the hyperparameters or to simply use

the modal values of the hyperparameters is a trade off between speed and accuracy.

The decision is context specific, depending not only on the data and the model used

and the number of hyperparameters, but also the task that is being performed. For

example, in order to perform actual inverse predictions given counts data the gain

in accuracy associated with integrating over the hyperparameters may well justify

the additional effort, which is not great.

In cross-validation terms, however, the increase in computation is enormous, as

there will be k replications where k is the number of datapoints; furthermore, the

modal approximation will place the bulk of the probability mass in the correct loca-

tion so that the inverse predictive distributions are approximately equal for param-

eters given fixed (modal) hyperparameters and the marginal parameters. Therefore,

use of hyperparameters fixed at their modal posterior values is advocated for the

task of cross-validation. This is discussed for the pollen dataset in Section 6.4.1,

with results.

4.1.4 Laplace Approximation for Parameters

If the posterior for an individual latent parameter (individual location on the non-

parametric latent field) given the hyperparameters π̃�xj Sθk, Y � is required, then the

simplest univariate approximation is the marginal Gaussian, taken from the joint

GMRF approximation. This is already constructed when finding the Laplace ap-

proximation for the hyperparameters posterior and is therefore very cheap. The

marginal variances are computed using a fast recursion algorithm applied to the

already available Cholesky decomposition of the joint precision matrix (see Rue and

Held (2005) or Rue et al. (2008)).

When more accurate approximations are required, there is a Laplace approxima-

tion for the marginal distributions of the parameters given by (Rue et al. (2008))
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π̃L�xj Sθk, Y � � π�X Sθk, Y �
π̃GG�X�j Sxj, Y, θk�RRRRRRRRRRRX�j�X��j

�xjθk� (4.23)

where π̃GG�X�j Sxj, Y, θk� is a Gaussian approximation to the conditional posterior

for all X except xj , evaluated at the kth point of the discrete grid over θ. This Laplace

approximation involves re-fitting a GMRF approximation for each θk and each xj

and is thus expensive computationally.

Approximations to this approximation may be made, such as fitting a skew-

normal via a third order Taylor expansion (called a Simplified Laplace Approxima-

tion in Rue et al. (2008)). Both the computational effort and the accuracy will

fall between the Gaussian approximation and the full Laplace approximation. This

leads to a method of checking the accuracy of the approximations: If the Kullback-

Leibler divergence between Equation (4.22) using the Gaussian and the Simplified

Laplace approximations is small, then both are deemed acceptable. Otherwise, the

Kullback-Leibler divergence between the Simplified Laplace and Laplace approxi-

mation versions of Equation (4.22) are similarly compared. If these again differ,

then the Laplace is the best estimate, but adequacy of the approximation is not

determined (see again Rue et al. (2008)).

Of course, if the one of these more accurate approximations are calculated in or-

der to assess the relative accuracy of the Gaussian approximation then they should

simply be used instead. The computational convenience of the simpler Gaussian

approximation is then lost. An intermediary solution is to calculate the more ac-

curate approximations at a random subset of points; the accuracy of the Gaussian

approximation at these locations then gives an indication of the accuracy across all

locations. If the Gaussian approximation is thereby deemed to be of insufficient

accuracy then the more accurate approximations are required.

4.1.5 Approximation for Parameters: Inverse Problem

The method of checking the accuracy of the approximations given above is for the

forward problem. The interest here is in the inverse problem; if the Gaussian ap-

proximation and the more accurate (but more costly) Laplace type approximations

give the same answer for the inverse predictive distributions, then there is no gain.
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This is an indication that the Gaussian approximation is sufficiently accurate for

the requirements of the inverse problem.

In order to invert the model, the marginal posteriors must be calculated at all

locations. In regions of little data, the GMRF prior will dominate and the posterior

will be close to GMRF (in regions of no data, the posterior will converge to the

prior). Where there is an abundance of data, the Central Limit Theorem will apply

and, again, the posterior will be approximately Gaussian. The Simplified Laplace

involves a third order term for the Taylor series approximation to the posterior; this

is the skew term. Only if the marginal posterior in a given location has significant

skew will the Laplace approximation be closer to the actual posterior than the

Gaussian approximation.

4.2 Cross Validation

Model comparison and evaluation is of fundamental concern in all statistical data

analysis. As previously stated, the concern here is in the inverse problem (predicting

input variable from a given model output variable). For this reason, model evalua-

tion in the inverse sense is the main focus. Specifically, the ability of the model to

successfully reconstruct or predict the correct location of a new count (or vector of

counts) is what determines the usefulness of the model.

As a never ending supply of new data is not available and the model will ul-

timately be used to make unverifiable reconstructions, validation must be done on

the same training data set to which the forward model is fitted. Cross-validation

is a common technique for assessing the model fit to data. M-fold cross-validation

refers to the practice of leaving out a subset of the data (1~M of all the training

dataset); the model is fitted to the remaining data (�M � 1�~M of the total) and

the ability of the model to predict (or reconstruct) the remaining data is assessed.

The concern here is with leave-one-out cross validation; this involves refitting the

model to all but one datum and then assessing the ability of the model to predict

the single left out point. This must be repeated M times, where M is the total

number of datapoints (7742 in the motivating palaeoclimate problem). From here

on, leave-one-out cross-validation will simply be referred to as cross-validation as
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this will be the only form of cross-validation considered.

Performing cross-validation in the forward sense for the palaeoclimate problem

involves fitting the model to all but a single pollen count (or assemblage) and then

predicting that count (or assemblage), given the associated climate (location in

climate space). Cross-validation in the inverse sense is more appropriate. The main

reason for this is that the ultimate goal of the project is to make inferences on

climate, given a vector of fossil pollen counts.

Interest here therefore lies in forming the leave-one-out inverse cross-validation

predictive posteriors for the locations. These are then compared in some way with

the actual observed values. So, for each observation j:

π�lj SỸ�j, L̃�j , ỹj�� S π�ỹj SX, lj�π�lj�π�X SỸ�j, L̃�j�dX (4.24)

In either case, the main difficulty in performing cross-validation is computational.

For example, to perform exact cross-validation using a brute-force approach involves

fitting the model M times, where M is the number of datapoints. The motivating

palaeoclimate problem has just under eight thousand modern / training data col-

lection sites. Given that an MCMC sample of the saturated posterior (the posterior

of the parameters given all training data data) takes of the order of two weeks to

run, eight thousand replications would take 300 years. Some existing techniques are

introduced in Section 4.2.1. A new approach for the cross-validation in the inverse

sense, made possible by the closed form of the forward model posteriors, is explored

in Section 4.2.3. This represents a novel contribution to the INLA methodology.

Looking at Equation (4.24), the brute force approach is to compute the leave-one-

out posterior for the responses π�X SỸ�j, L̃�j� for each left-out datum pair �lj, yj�.
The integral on the right hand side of Equation (4.24) must then be computed

for each j and this represents further computational labour as it is an intractable

integral. The contribution in this work is to deliver a method for fast updates to

the saturated posterior (available in closed form via the INLA method) to be made.

The leave-one-out posteriors are thus available without needing to recompute the

INLA approximations for each leave-one-out subset of the data. This novel extension

of the INLA methodology is detailed in Section 4.2.3 and is a consequence of the

Multivariate-Normal form of the GMRF posterior for X.
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The other challenge in performing cross-validation is how to summarise the model

fit. There are many alternatives, some of which are described in Section 4.2.5.

4.2.1 Importance Resampling

There is a large literature on performing fast Bayesian cross-validations for the

forward problem that focus on methods for speeding up the MCMC re-runs. One

approach involves using importance resampling. (see, for example, a review in Bhat-

tacharya and Haslett (2008)).

Using an idea that first appeared in Gelfand et al. (1992), samples from the

saturated posterior are re-used so that MCMC is not needed for the leave-one-

out cross-validations. Specifically, if the data are �Y,L� (outputs and inputs to

the model, respectively) and the Bayesian hierarchical model is fitted via MCMC

sampling of the latent parameters X, then the saturated posterior is π�X SY,L�.
This gives the importance sampling distribution.

For a particular left out datum yj, the posterior predictive distribution π�ySlj,L�j , Y�j�
is desired. This is calculated from the integral

π�ySlj,L�j , Y�j� � S
X

π�ySlj,X�π�X SL�j , Y�j�dX (4.25)

Integration is via MCMC. Following the notation in Vehtari and Lampinen

(2002), if samples from π�X SL�j , Y�j� are available - denoted Ẋh - then a sample ẏh

from π�ySlj, Ẋh
j � is a sample from π�ySlj,L�j , Y�j�. But π�X SL�j , Y�j� is the unde-

sirable MCMC repetition. A sample from this distribution is more easily obtained

through importance resampling; if Xh is a sample from the saturated posterior

π�X SL,Y �, then samples Ẋh may be obtained by resampling Ẋh with importance

weights given by

wj�h� � π�XhSL,Y�j�
π�XhSL,Y � � 1

π�yj Slj,Xh� (4.26)

This is analytically available, since it is the likelihood function with known pa-

rameters. The weights are thus simple and quick to calculate and samples from

the importance sampling distribution (the saturated posterior) are already available

from the initial MCMC run.
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4.2.2 Cross-Validation in Inverse Problems

When model inputs L are of lower dimension than outputs Y , cross-validation of

the inverse problem may offer an appealing alternative to forward cross-validation.

Discrepancy measures between the data and the corresponding predictive densities

are computed; these measures are easier to construct and interpret for the lower

dimensional variable. Furthermore, when the ultimate interest is in predicting l for

a given y (the inverse problem), then inverse cross-validation is more appropriate.

However, there is very little literature on cross-validation in inverse problems.

In fact, according to Bhattacharya (2004)

“we do not know of any paper that discusses cross-validation in the

context of inverse problems”

Therefore, the technique introduced in Bhattacharya (2004) and presented in

detail in Bhattacharya and Haslett (2008), provides the only benchmark. In that

paper, the authors point out that importance weights for the inverse problem are

not tractable calculations. They suggest using a posterior for a single left-out point

(obtained via regular MCMC) as the importance sampling density and show how to

calculate the importance weights for the other points. Sampling without replacement

is also advocated, to protect against highly variable importance weights. They call

the algorithm Importance Re-sampling MCMC or IRMCMC.

Although there is still an MCMC step in the IRMCMC algorithm, it is of much

lower dimension than re-running MCMC for each left out point. Another important

detail is the choice of the initial left-out point; Bhattacharya and Haslett (2008)

demonstrate methods for making this choice.

For cross-validation in inverse problems, IRMCMC not only runs much faster

than doing multiple regular MCMC runs, but it also achieves superior mixing (and

thus more accurate results). This is due to the low dimensionality of the inverse

problem, compared to the forward problem. The MCMC runs in the IRMCMC

algorithm explore the typically multimodal target distribution of l better as updates

for X do not have to be run in parallel (see Bhattacharya and Haslett (2008) for

discussion and examples). In fact, IRMCMC may be thought of as regular MCMC

with a special proposal mechanism.
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4.2.3 Fast Augmentation of the Multivariate Normal Mo-

ments

The INLA method introduced in Section 4.1 delivers closed-form approximations to

the saturated posterior for the latent parameters X. The same weightings in Equa-

tion (4.26) may again be used to perform forward cross-validation without MCMC.

The marginal saturated posterior π�xj SL,Y � (available analytically) is weighted us-

ing Equation (4.26) and the uni-dimensional integral in Equation (4.25 is computed

using fast numerical methods, such as Gauss-Hermite quadrature (see Rue et al.

(2008)).

This section introduces a novel method for fast inverse cross-validation using

the INLA methods. When the saturated posterior for the latent parameters X is

approximated with a GMRF (as per Section 4.1.1) then augmenting this posterior

to correct for a left-out datum is straightforward. The posterior is entirely specified

by the first two moments; fast updates to these to correct for left out data negates

the need to re-fit the entire model.

If both the prior and the posterior are multivariate normal, then the posterior

covariance matrix is given by

Σ � �Q �R��1 (4.27)

where Q is the prior precision matrix and R is the likelihood precision matrix and

is diagonal.

The posterior covariance matrix for the case of leaving out the jth point is simi-

larly given by

Σ�j � �Q �R � rjIj��1 (4.28)

where rj is the precision of the jth datum and Ij is a square matrix of zeros with a

one at the jjth entry.

If for some scalar γj,

Σ�j � �I � γjΣIj�Σ (4.29)

109



then the covariance matrix for all data except any left-out point j may be found

without additional inversion of the precision matrix.

γj is found by post multiplying both sides of Equation (4.29) by Σ�1�j as per

Equation (4.28) gives

I � �I � γjΣIj�Σ�Q �R � rjIj�� �I � γjΣIj��I � rjΣIj�� I � rjΣIj � γjΣIj � rjγjΣIjΣIj� I � rjΣIj � γjΣIj � rjγjΣjjΣIj� I � �rj � γj � rjγjΣjj�ΣIj (4.30)

which only holds if

γj � rj

rjΣjj � 1
(4.31)

The posterior mean is found via

µ�j � Σ�jR�jY (4.32)

which becomes

µ�j � �I � γjΣIj�Σ�R � rjIj�Y� �I � γjΣIj��µ � rjΣIjY �� µ � rjΣIjY � γjΣIjµ � rjγjΣIjΣIjY� µ � γjΣIjµ � �rjγjΣIjΣIj � rjΣIj�Y� µ � γjΣIjµ � γj�rjΣIjΣIj � rj

γj

ΣIj�Y� µ � γjΣIjµ � γj�rjΣjjΣIj � rjΣjjΣIj �ΣIj�Y� µ � γjΣIjµ � γjΣIjY� µ � γjΣIj�µ � Y � (4.33)

Hence, for multivariate normal prior and likelihood, the augmented posterior

moments are calculated using fast matrix-vector products with a few scalar calcu-

lations. In fact, inversion of the precision matrix may be avoided altogether; only
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the marginal means and variances are required in cross-validation. The marginal

variances are quickly calculated from the Cholesky decomposition of the (sparse)

precision matrix Q �R. The updated mean is found by solving the equation�Q �R�ν � �Ij�µ � Y � (4.34)

for ν. Given the Cholesky decomposition of �Q � R� � LLT , the solution is by

forward-solving and then back-solving two sparse systems of linear equations (as per

the solution of Equation (4.8) and is thus very fast. Now the updated mean is given

by

µ�j � µ � γjν (4.35)

The marginal variances are the diagonal of the covariance matrix and are found

via

diag�Σ�j� � diag��I � γjΣIj�Σ�� diag�Σ � γjΣIjΣ�� diag�Σ� � γjdiag�ΣIjΣ�� diag�Σ� � γjΣj, �Σ,j (4.36)

where the required elements of Σ are found directly from the Cholesky decom-

position of the precision matrix Q�R and �Σj,,Σ,j� denotes the jth row and column

of Σ respectively. 1

In the more general case of non-Gaussian likelihoods for counts data, the pos-

terior is approximated as a GMRF and the same shortcuts may be applied, with

appropriate changes. Augmenting the posterior distribution of the latent parame-

ters to correct for leaving out a single datum is again both fast and exact (given the

saturated posterior approximation with a GMRF). Due to the transform generally

required between the latent unconstrained parameters and the expectation of the

counts data, the above equations require adaptation.

1The equations shown here for fast augmentation of the saturated posterior mean and variances
were derived by Professor John Haslett.
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Recall that in the context of the GMRF approximation the posterior mean for

the latent parameters is given by�Q � diag�c��µ � b (4.37)

where b is the first order coefficient in the Taylor series expansion of the log-

likelihood and c is the second order coefficient. Solving this equation for µ is fast

due to the sparse structure of the posterior precision matrix Q � diag�c�, which is

decomposed as LLT . Correcting the vectors b and c to leave out a single datum

at position j is extremely fast as only the jth element is changed. If there is only

a single count at j, then both bj and cj are exactly zero. Otherwise, the Taylor

expansion of the log-likelihood of the remaining counts at j is calculated to get b�j

and c�j at j; but this is a univariate problem and thus very simple and fast.

The augmented mean is then a case of solving�Q � diag�cj��µ�j � b�j (4.38)

for µ�j (note that the prior precision matrix Q is unchanged).

Furthermore, the multidimensional optimization step required to find the mode

around which the Taylor expansions are computed may be entirely avoided. The

Taylor series will be accurate provided the expansion is centred approximately

around the mode. The saturated posterior provides a good approximation and

is already available. Thus extra expensive, iterative searches for the mode (opti-

mization) are not required.

Relationship to Existing Methods

Cross-validation of the forward problem is markedly different from the inverse prob-

lem. In the forward problem, the leave-one-out predictive distribution of a count

given location is required; therefore only the marginal posterior of the latent param-

eter at that known location requires augmentation to account for the left out point.

This is thus a univariate problem.

Furthermore, as the likelihood normalising constant is known, the ratio of the

leave-one-out posterior to the saturated posterior is given by the (inverse of the)

marginal likelihood, which is a known function. This fact is exploited in sampling
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based cross-validation for the quick calculation of importance sampling weights (see

Section 4.2.1).

Rue et al. (2008) also use this ratio for cross-validation of the forward problem

in the context of the INLA method. The marginal posterior for the parameter X at

location i when datum yi is removed is quickly and easily found as

π�xiSY�i� � π�xiSY �
π�yiSxi� (4.39)

where π�xiSY � is the marginal saturated posterior.

As this is univariate, integration and thus normalisation are available numeri-

cally.

The inverse problem is more difficult; dropping a datapoint now requires the con-

struction of the predictive distribution across all locations, given the left out count

and the updated posterior. The normalising constant must be found by calculating

this across all possible locations, so that even if the cross-validation summary statis-

tic is a function of the value of the predictive distribution at the correct location

alone, it must still be calculated everywhere.

Inverse cross-validation is more closely related to the fast rank-one updates de-

scribed in Rue et al. (2008) to compute the posterior multivariate normal mean,

conditioned on a fixed value of the parameter at a single point. These fast updates

are used for the computation of the Laplace approximation for the marginals of the

model parameters (see Section 4.1.4). This task is, at first glance, very different

from the task of inverse cross-validation; however, some of the same methodology is

applied.

Both tasks could be completed through a re-fitting of the entire model but in

both cases this computationally intensive option may be avoided by instead correct-

ing (updating) the moments of the saturated posterior. As in that paper, a multidi-

mensional optimization step is avoided; the saturated posterior mean (mode) is used

as an approximation to the updated mode. As shown above, the Taylor series coef-

ficients b and c are recalculated quickly as they are only required for a single point;

centering the expansion around the approximated mode avoids the multidimensional

optimization.

It should be noted here that these fast updates to the posterior moments assume
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that the joint posterior, across all locations, is available; this is only the case for

the GMRF approximation to the latent parameters. If the Laplace approximation

is used for all the latent parameters, this gives disjoint, albeit potentially more

accurate, approximations for the posterior marginals only. This approximation is

not amenable to fast updating of the saturated posterior for leave-one-out cross-

validation as updates must be performed on a closed-form joint posterior for X.

Local Corrections

The calculations in Equations (4.29) and (4.40) may be sped up by observing that

the effect of removing a datapoint is local. Rue et al. (2008) calls the area effected

by changes to a point / location the “region of interest”. The moments need only

be changed within this region of interest, so that correcting the saturated posterior

involves only a few, fast calculations. The region of interest may be found by working

out from the location of the left-out point until changes to the moments drop below

a certain threshold or by using preset distances to specify the region. Depending on

the size of the preset and fixed region, the latter involves fewer calculations and is

thus faster, but may represent an approximate cross-validation if the region is set

too small.

Inversion of the Posterior Precision Matrix

Solving Equation (4.38) using the same method as per finding the saturated posterior

requires a fresh Cholesky decomposition of the posterior precision matrix; unfortu-

nately L�j is not calculable directly from L. In addition, the marginal variances

given by Equation (4.36) require computation of an entire row (or column; the ma-

trix is symmetric) of the joint covariance matrix. Repeating for each left out point

therefore ultimately involves computing the entire saturated posterior covariance

matrix.

If the entire saturated posterior covariance matrix is calculated then updates to

this matrix are given using Equation (4.29). This is the preferred approach as the

computations associated with a once off full inversion are less than that associated

with solving Equation (4.38) and finding, via recursion, the marginal variances.

The posterior mean, corrected for a left-out point is then given directly by a simple
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matrix-vector product:

µ�j � Σ�jb�j (4.40)

In the context of the GMRF approximation the γj required in Equation (4.29)

is given by

γj � cj

cjΣjj � 1
(4.41)

Hyperparameters

Leaving out data at a single point will have minimal effect on the posterior for

the hyperparameters. Therefore, the approximation that there is no effect on the

hyperparameters is adopted here. The accuracy of this approximation may be tested

by leaving out a datapoint and refitting the Laplace approximation for the posterior

of the hyperparameters. Comparison with the saturated hyperparameter posterior

will show no (negligible) difference if this approximation is accurate. In the limit of

infinite (large amounts of) data, this approximation is exact.

4.2.4 More Computational Savings

Given the above methods for augmenting the posterior moments of the latent pa-

rameters, the main computational burden in performing inverse cross-validation is

in constructing the inverse posterior predictive distributions. As these are often

multimodal in shape (see Section 2.5.1), they cannot be well approximated with

a deterministic distribution. MCMC is the most obvious choice, as per Haslett

et al. (2006) and Bhattacharya and Haslett (2008); however a faster alternative is

presented here.

The approximation to the posterior of the latent parameters requires the impo-

sition of a discrete grid on the locations space. The inverse predictive distributions

are therefore discrete. Hence, Monte-Carlo may again be avoided; the un-normalised

posterior predictive distribution for the locations are calculated at all points on the

grid. Dividing by the sum normalizes the mass function.

The multimodal nature of these distributions is a fundamental challenge to any

MCMC sampling algorithm (see for example Bhattacharya and Haslett (2008)) as
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the Markov chain may become stuck in one mode and fail to explore others. The fine

grid necessitated by the GMRF approximation fortunately eliminates this problem.

4.2.5 Summary Statistics of Model Fit

Having performed inverse cross-validation, a summary statistic is required to report

the “fit” of the model to the data. Bhattacharya (2004) advocates using reference

distributions. A discrepancy measure is computed between samples drawn from the

cross-validation leave-one-out posteriors and the corresponding observations. Four

such discrepancy measures are presented in that work; the first three are measures

of the “distance” between the mode of the posterior predictive distribution and the

observed value, standardised by the variance of the predictive distribution. The

sum of these values is labeled the observed discrepancy. The reference distribution

is then the distribution of the discrepancy measure with the modal values replaced

with samples from the posterior predictive distributions. The model is said to fit

the data if the observed discrepancy is within the 95% highest density region of the

reference distribution. Bhattacharya (2004) also notes, however, that “there seems

to exist no easily computable reference distribution” for this statistic.

Although the reference distributions themselves are unimodal, the discrepancy

measures used in Bhattacharya (2004) are a poor summary of the fit to data of the

multimodal predictive distributions. The percentage of observations falling outside

the corresponding 95% highest posterior predictive distribution is a useful statistic

here. This will be approximately 5% if the model fits the data, regardless of the

shape of the predictive distribution.

Definition 5 ∆ is the percentage of locations that fall outside the 95% highest poste-

rior density region of their leave-one-out cross-validation inverse posterior predictive

distribution.

4.2.6 Toy Problem Example

Repeated runs of a toy model illustrate the cross-validation summary statistic given

in Definition 5. Counts data are simulated from a known distribution function,

defined on a 15 � 15 regular lattice. Leave-one-out cross-validation is performed in
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the inverse sense and the percentage of points falling outside the 95% highest pos-

terior density region of the predictive distribution is calculated. Cross-validation

is performed using the fast updates to the saturated posterior moments derived in

Section 4.2.3; however, these fast corrections are exact, given the GMRF approxi-

mation. Once the modal values of the hyperparameters are found using the Laplace

approximation, they are considered fixed for the cross-validation procedure.

The toy example algorithm is:

1. for i in 1, . . . ,M do

(a) Generate a random GMRF defined on the lattice.

(b) Generate zero-inflated Binomial counts using Equation (3.18), with the

GMRF as the logit of the Binomial parameters.

(c) “Forget” the GMRF values, and the hyperparameters (smoothness of the

GMRF and α in Equation (3.18).

(d) Fit the correct zero-inflated model using the INLA method; call this the

ZI model.

(e) Fit a non-zero-inflated model using the INLA method; call this the non-ZI

model.

(f) Perform fast inverse cross-validation for both models and find the number

of points falling outside their 95% HPD predictive regions; store these as

∆i
ZI and ∆i

non�ZI .

2. Plot the sample density of ∆ZI and ∆non�ZI .

The results for this exercise are shown in Figure 4.7 with M � 300.

4.3 Conclusions

This chapter has introduced the application of approximation techniques (INLA) to

inverse problems. The approximations apply to the forward problem, negating the

need for MCMC type inference and returning closed form posteriors. This represents

a speed up of several orders of magnitude in the fitting the forward model to the

training data.
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Fig. 4.7: Multiple runs and cross-validations. Toy data is simulated for a

zero-inflated Binomial model and inverse cross-validation using the cor-

rect model and a similar non-zero-inflated model is performed. This is

repeated and the sample density of ∆ (the percentage of points falling

outside the 95% predicitve density region) is plotted. The incorrect model

(non-ZI) tends to have a higher number of points falling outside the 95%

predicitve density region.
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Spatial zero-inflated models in which there are two entirely separate latent pro-

cesses are not compatible with the INLA method. However, a single-process model

for zero-inflated counts data in which probability of presence and abundance when

present are modelled as functions of a single underlying process is well suited to

the technique. In fact, this model was developed before the INLA method was con-

sidered as it will lead to faster and more accurate inferences than the two-process

model under MCMC, provided the model is correct.

Although model validation is the subject of a very extensive literature for the for-

ward problem, the inverse problem has rarely been considered. MCMC based cross-

validation is computationally intensive in the extreme; Bhattacharya and Haslett

(2008) sets the standard for this research by augmenting MCMC based valida-

tions with importance resampling to greatly speed up calculations. However, this

approach still requires much computation; although running times for an exam-

ple palaeoclimate problem are reduced by several orders of magnitude, the cross-

validation still takes hours or even days to run.

This computational burden hampers the comparison of multiple models. A

method for performing inverse cross-validation is therefore introduced. This method

fits the saturated posterior for the forward model using the INLA method. The hi-

erarchical hyperparameters are fixed at their posterior modal values and a new, very

fast method for correcting the posterior for the parameters is applied. This allows

for fast calculations of the leave-one-out posterior for the forward problem. The in-

verse predictive distributions are also found without resorting to sampling methods;

this is due to the imposition of a discrete grid in the forward fitting stage.

Observing that corrections to the saturated posterior are only necessary in a

local region speeds up the cross-validation further. For the motivating palaeoclimate

problem, inverse cross-validation now takes around one hour using these methods.

The estimated running time using brute-force MCMC re-runs is of the order of many

years; even the fast importance sampling method that set the current standard takes

about two weeks (although most of that is taken in running the initial regular MCMC

chain). These vast improvements in speed are coupled with improvements in the

method also; hyperparameters are no longer fixed a-priori but are estimated from

the data.
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The advancements in the modelling of the pollen data since Haslett et al. (2006)

are therefore as follows:

1. Estimation of model hyperparameters. These were fixed a-priori in Haslett

et al. (2006).

2. Highly accurate closed-form posterior distributions on the latent X are deliv-

ered via INLA. This is achieved with a speed-up of several orders of magnitude,

thus allowing for richer models to be built such as zero-inflated counts likeli-

hoods.

3. Fast updates to the saturated posterior for the latent response to deliver the

leave-one-out posteriors for the inverse problem. The MCMC based method-

ology used in Haslett et al. (2006) does not allow for such corrections to be

made.

4. Model goodness-of-fit metrics, tailored to the inverse problem, are presented

for the fast leave-one-out cross-validations. Such metrics were not considered

in Haslett et al. (2006).
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Chapter 5

Inference Methodology

Highly multivariate data is often challenging to model due to the “curse of dimen-

sionality” Bellman (1957). Much of the work in this thesis is concerned with reducing

the computational burden associated with modelling the response of vegetation to

climate using the modern training data (see Section 1.1.1).

This is achieved through separate analysis of the marginal responses of individual

plant taxa to climate. The approach necessarily ignores between taxa dependencies

but allows for reduction of overall computation. The separate, marginal analyses

can then be brought together post-hoc. This is referred to as the inference-via-

marginals posterior and is an approximation to the joint posterior of the full model.

Situations where the approximation is poor and where it is excellent, or even exact,

are identified.

Details related to working on a discrete grid across the location space are also in-

vestigated. This chapter serves as a review and assessment of the preceding chapters

methodology. The methods are brought together in preparation for the application

to the pollen dataset in Chapter 6.

In particular, the concern here is with inference on multiple latent spatial Gaus-

sian processes defined on a lattice. The INLA methodology introduced in Section 4.1

is unsuitable for this task as it can only deal with one such spatial process at a time

(see Section 5.1.4). If the model does not disjoint-decompose (Section 3.2) exactly

then approximations to the model that do decompose must be sought. The accuracy

of these approximations must then be tested, as per Section 5.3.

The goal is inference on latent random variables X, given counts data Y defined
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at discrete locations C. X is composed of NT processes which are Gaussian (or

approximately so) given the data. Thus at each value of C, there are NT counts

or proportions arising from NT potentially dependent X values. As the posterior is

GMRF due to the methods introduced in Section 4.1, it is expressed via the posterior

mean vector µ and precision matrix Q. i.e. the posterior distribution of X is given

approximately by:

π�X� CM
j�1 π�Yj SXj� � GMRF �X Sµ,Q� (5.1)

The goal is therefore inference on the µ and Q terms. By disjoint-decomposition

into marginals defined as the product of independent multivariate Xi, i � �1, . . . ,NT �
across locations C becomes:

GMRF �X Sµ,Q� � NTM
i�1 π�XiSYi� � NTM

i�1 GMRF �XiSµi,Qi� (5.2)

The INLA method then delivers the terms µi and Qi that define the independent

spatial Xi given the data. The error incurred due to this decomposition is the subject

of Section 5.3.

5.1 Reasons for Disjoint-Decomposition

5.1.1 Parallelisation

If the overall problem disjoint-decomposes (see Section 3.2) then the exploitation

of parallel programming resources is trivial. Inference on each disjoint module may

be performed entirely independently of the others and thus may be done at the

same time on multiple processors. No specialist code or hardware is required and

joint summary statistics are simple and quick calculations that are made on a single

processor.

5.1.2 Memory Usage

When responses are modelled non-parametrically (see Section 1.1.1) as for the

palaeoclimate dataset, the number of parameters is of the order of 103 for a two
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dimensional climate space. Ultimately, the goal is to work with at least three cli-

mate variables (leading to the order of millions of parameters) and also to integrate

out the unknown hyperparameters. The memory required simply to store such a

burdensome model may quickly overwhelm even modern, high specification personal

computers.

Memory usage is therefore one of the most difficult issues associated with per-

forming inference on this dataset. It is crucial to reduce both the computational

overhead and the size the model takes up in memory. Breaking the model down into

a series of approximately disjoint / conditionally independent marginals negates the

need to store and manipulate all of the parameters at once on a single machine.

5.1.3 Inverse Problem

Another large saving in terms of computation is in the inversion of the forward

model; a high dimensional integral (to find the joint marginal likelihood) is replaced

with a product of uni-dimensional integrals. These may be evaluated without re-

sorting to Monte-Carlo based sampling methods that are required for the estimation

of multidimensional integrals.

5.1.4 Compatibility with the INLA Method

If the joint model does not decompose, then inference must be performed for the

entire model at once. Interaction terms between marginals are non-zero and must

be modelled explicitly. For problems consisting of multiple smooth surfaces giving

rise to vectors of counts, such as the motivating palaeoclimate problem, this results

in difficulties for the INLA inference method.

Interaction may occur at one of two levels in the model hierarchy; either in the

prior or the likelihood. The former models smooth surfaces that are not independent

across locations; the latter models independent smooth surfaces that jointly give rise

to non-independent counts. This is a continuation of the discussion in Section 3.2.2.

Prior and Hyperparameters

If the interactions between marginals are modelled at the latent variable stage, then

the joint prior must contain these terms. Specifically, the joint prior precision matrix

123



must contain non-zero terms for the interactions. If they are not known a-priori

then unknown hyperparameters must be introduced to model these inter-process

precisions.

The INLA method deals with hyperparameters via numerical integration. The

entire vector of hyperparameters is set on a discrete grid, as per Section 4.1.3. This

approach requires that the number of hyperparameters is low; any more than five or

so and the method runs into computational difficulty. The motivating palaeoclimate

problem has 28 plant taxa; even crude modelling of the interactions with a single

hyperparameter governing each taxon-taxon interaction results in 378 additional

hyperparameters; this is far more than the INLA method can cope with (Rue et al.

(2008)).

Likelihood and Taylor Expansions

Modelling the interactions at the data level eliminates the need for additional in-

teraction hyperparameters. Interaction terms are placed in the likelihood precision

matrix and are thus parameters rather than hyperparameters; however the data are

not conditionally independent. The Taylor series expansions in the GMRF approx-

imation are no longer univariate, resulting in a massive increase in the computation

required to fit the approximation (see Section 4.1.2). This is a fundamental challenge

to the existing INLA methodology.

5.2 Multivariate Normal Model

Much of this chapter focusses on the marginal analysis of data in a Gaussian setting.

The reasons for exploration of such a problem in a purely Gaussian framework are

as follows:

1. For simple exploration and illustration of key points; the availability of the

posterior in closed form is the primary motivation.

2. For synthesis with the Gaussian approximation technique described in Sec-

tion 4.1. This technique applies a Gaussian prior and approximates the pos-

terior with a Gaussian.
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Given a multivariate normal prior π�X� and multivariate normal likelihood

π�Y SX�, the posterior π�X SY � is multivariate normal with mean and precision ma-

trix given by

µ � �QX �QY ��1�QXµX �QY µY �
Q � QX �QY (5.3)

where the prior precision matrix is QX and the likelihood precision matrix is QY .

5.2.1 Conditions for Perfect Disjoint-Decomposition

If the joint posterior expresses zero precision between processes then a fully joint

inference may be done exactly via the marginals. There are in fact two situations

in which this occurs:

1. The underlying processes are truly independent of each other

2. The joint model creates a posterior with conditional independence across the

latent variables, regardless of any dependency structure suggested by the data

1

The second situation for a perfect inference-via-marginals is clearly illustrated

with two common examples. These are discussed in Section 5.2.2 and Section 5.2.

The terminology used in this thesis will be that the joint model disjoint-

decomposes exactly (see Section 3.2).

It can immediately be seen from Equation (5.3) that the condition for exact

disjoint-decomposition of the posterior is that both the prior and the likelihood

disjoint-decompose. The form of the precision matrix shows whether a density will

decompose; if it is block-diagonal, then the blocks each represent a disjoint part of

the full model. See Table 5.1 for illustration.

The assumption that the precision of process i1 at location j1 given process

i2 at location j2 x j1 is zero is logical; there will not be interaction between a

plant taxon at one climate location and a different taxon at another, disparate

location in climate space. This results in a banded overall precision matrix and is

1All models so far used in the palaeoclimate project have in fact been of this type.
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Table 5.1: Joint prior precision matrix entries, using the indexing system

i2,j2
i1,j1

means precision between processes i1 and i2 at locations j1 and j2,

respectively (processes here are the latent fields). Intra-process precision

is highlighted in yellow and inter-process precision is unhighlighted. If the

processes are conditionally independent given the locations then all values

in the non-highlighted sub-matrices will be zero in the prior precision

matrix, so that it is block-diagonal. This table shows the precision matrix

for number of processes NT � 4 and number of discrete locations NL � 4.
1,1
1,1

1,2
1,1

1,3
1,1

1,4
1,1

2,1
1,1

2,2
1,1

2,3
1,1

2,4
1,1

3,1
1,1

3,2
1,1

3,3
1,1

3,4
1,1

4,1
1,1

4,2
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similar to the Separable Models described in Finkenstdt et al. (2006). However,

their approach cannot be exploited here. Separable models involve modelling two

separate precision matrices; typically a spatial matrix and a temporal matrix. The

spatio-temporal precision matrix is then taken as the Kronecker product of these

two matrices. Taking a Kronecker product of an intra-process precision matrix

and an inter-process precision matrix would impose two modelling aspects that are

unsuitable for this work. Specifically, (i) implementation of a separable model would

require using a common spatial precision matrix for all processes and (ii) would lead

to non-zero i2,j2
i1,j1

terms in the precision matrices for i1 x i2 and j1 x j2.

5.2.2 Compositional Independence

Although it would seem that compositional data analysis must necessarily model

interaction between the components of the composition (in the pollen dataset, the

components are the various plant taxa), Aitchison demonstrates that any statistical

analysis making use of the Dirichlet distribution is in fact imposing a strong implied

independence structure (Aitchison (1986) 3.4). Similarly, any logistic-normal (Sec-

tion 3.5.4) distribution with diagonal precision matrix will impose the same strong

implied independence structure.

For example, in a Bayesian setting, joint inference done on the latent vector of

probability parameters P governing a compositional counts vector Y might proceed

as follows:

Likelihood is Multinomial:

π�Y ;n,P � � n!LNT

i�1 yi!

NTM
i�1 p

yi

i (5.4)

where n � Pi Yi

Prior is Dirichlet

π�P ;α� � 1

B�α� NTM
i�1 pαi�1

i (5.5)

where α is a vector of hyperparameters

The posterior is then Dirichlet due to conjugacy
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π�P ;α � Y � � 1

B�α � Y � NTM
i�1 p

αi�yi�1

i (5.6)

The vector P is subject to the constraint that Pi Pi � 1 and the vector of counts

Y is subject to the constraint that Pi Yi � n.

However, the Multinomial and the Dirichlet actually enforce conditional inde-

pendence given the constraints.

The Multinomial can be expressed as a product of Poisson distributions, with

parameters equal to n � P , conditioned on the sum being equal to the total count

n. This sum (Pi yi � n) itself follows a Poisson distribution with rate parameter n.

π�Y ;n,P � � LNT

i�1 Poisson�yi;λi�
Poisson�n;n� (5.7)

with λi � n � pi and Poisson�yi;λi� � λ
yi
i

e�λ

yi!

Similarly, a Dirichlet with parameter vector η may be expressed as a product

of Gamma distributions, with shape parameters η and rate parameters all equal toPi ηi, conditioned on the sum = 1 following a Gamma distribution with shape and

rate both equal to Pi ηi.

π�P ;η� � LNT

i�1 Gamma�pi;ηi,Pk ηk�
Gamma�1;Pk ηk,Pk ηk� (5.8)

Therefore, to perform joint inference given a vector of counts and using a Dirich-

let prior and a Multinomial likelihood, no accuracy is lost in performing marginal

inferences on each part of the composition and then conditioning on the sum. This

result is regardless of the value of the parameters of the distributions.

If sampling from the Dirichlet posterior is required, this can be achieved by

sampling from the Gamma marginals and then rescaling such that the sum is one.

In fact, this is the usual algorithm for sampling from a Dirichlet distribution. The

post-hoc conditioning or rescaling is the only step that requires joint knowledge of

the marginals.

5.3 Sensitivity to Inference via Marginals

If the joint model disjoint-decomposes then the inference-via-marginals approxima-

tion is exact. If not, the approximation amounts to setting non-zero terms in the
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overall precision matrix to be zero. This is equivalent to breaking some links in the

graph of the model, specifically the inter-process links.

The accuracy of the inference-via-marginals approximation depends on several

factors. The magnitude of the non-zero terms that are set to zero to facilitate de-

composition are the most obvious of these. The further these are from zero, the

greater the interaction and hence the worse the inference-via-marginals approxima-

tion will be. However, given non-zero interactions, several other factors will impact

the level of accuracy.

Ultimately, the interest is in the differences between a full joint model and the

inference-via-marginals model in terms of the inverse problem. Of course, if the

forward model disjoint-decomposes exactly, then the inverse predictive distributions

will be identical for the two models.

The worst case scenario is presented in Figure 5.1. A single surface is replicated

T times; random counts are generated at various points in the location space. In-

verse cross-validation predictive distributions are formed and the joint predictive

distribution is found by taking the product and normalising (see Section 3.2). How-

ever, this model treats the surfaces as independent; they are in fact fully correlated.

This results in a linear increase with ∆, the percentage of points lying outside their

95% cross-validation highest inverse predictive density with T .

Thus the inference-via-marginals model is a poor approximation; correlation

of 1 between the surfaces (as they are all identical) represents the upper bound

of inaccuracy of the inference-via-marginals approximation. Even if the data are

simulated for each replication of the surface independently, the model does not

disjoint-decompose.

To see this, take s1�c� � s2�c� both the same smooth function of c. Random sam-

ples x1 � N�s1, ǫ� and x2 N�s2, ǫ� will have high corr�x1, x2� but low corr�x1, x2Sc�.
So inference on the forward model may be completed marginally. Thus the result in

Figure 5.1 is, at first glance, counter-intuitive. Independent counts should yield a

tighter predictive density on the correct location. ∆ should converge to zero as the

predictive cross-validation densities converge to Dirac distributions on the correct

locations.

The reason why this is not so is a peculiarity of the inverse problem; the shape of
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the response surface in this case is such that for any given location, there is typically

one or more other locations with the same (or a very similar) value for the response.

When a point is left out, the posterior variance at that point is greater than the

locations for which there is data (for illustration, see Figure 2.3(b)). Thus the

marginal likelihood is higher for these other locations; in turn the inverse predictive

density will give greater weight to those locations with data and a similar response

to the correct location. For a single response surface, this does not cause a problem.

It is when analysing multiple surfaces that the issue arises.

Although the correct, left-out location has non-zero predictive density for a single

surface (and is within the bounds of the 95% highest posterior predictive density

95% of the time), it will tend to zero as T increases. Multiplication of the density

with itself T times will cause the location with the single highest density to gain all

the mass as the number of replications of the surface increases. Thus, the correct

location loses predictive probability mass and ∆ increases.

In the simplest example, suppose inference on a single surface leads to the (cor-

rect) location predictive density of 75% probability mass a location A and 25% at

location B, with location B the correct location. This is ok in terms of the ∆ statis-

tic; B is within the 95% HPD region. Now suppose that we are presented with new

data from the same response, but treat it as independent. We might find, again

without error, that this data suggests P �A� � 70% and P �B� � 30%. Again, this is

ok. Assumption that the data are independent however, leads to a multiplication

and re-normalisation of these values so that P �A� � 87.5% and P �B� � 12.5%. A

third dataset yields P �A� � 80% and P �B� � 20%. The resultant multiplicative

joint predictive distribution then has P �A� � 96.55% and P �B� � 3.45%. Now B is

outside the 95% HPD region.

This issue will not arise when there is no other region of the location space

with a very similar counts data vector. Using the exact same model and code

used to produce Figure 5.1, but generating a new random response surface for each

replication results in a ∆ statistic of exactly zero for 20 surfaces. This is because

each surface carries independent information on the location given counts data.

Figure 5.2 shows a plot of ∆�T � for random independent surfaces.

Note that this convergence to a probability of one at the correct location will
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Fig. 5.1: A single smooth surface gives rise to counts data at locations.

Cross-validation in the inverse sense (location given count) is used to find

∆, the percentage of points falling outside their 95% highest predictive

distribution region. As the data are simulated and the model fitted is

the same as the model used to generate the data, ∆ is about 5%.

Taking T replications of the surface and taking the normalised product of

the cross-validation inverse predictive distributions is equivalent to fitting

the inference-via-marginals model to a joint model that has maximum

inter-process correlation: the more replications of the single surface, the

worse the approximation and the higher the ∆ statistic. The above graph

depicts 10 replications with randomly generated data for each value of T

(scatter plot). The line is a mean across these 10 replications.
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also occur for the case of replicated identical surfaces when the cross-validation is

performed using the saturated posterior.

5.3.1 Discrete HPD Regions

The reason why ∆ does not converge to 5% and instead converges to 0% as the

number of conditionally independent counts increases is due to the discrete grid. As

per Section 3.1.3, the HPD region contains 95% or more of the total probability

mass. Therefore, the expected value of ∆ is B 5% for each independent surface.

As more of these conditionally independent components are brought together,

each with ∆ B 5%, the predictive distributions become increasingly peaked. They

are centred on the correct location (under the correct model) and so the probability

mass becomes focused at the correct location. Eventually, the 95% HPD region

becomes smaller than the grid spacing so that all the mass is concentrated on a single

gridpoint. Using the algorithm in Section 3.1.3 for constructing discrete 95% HPD

regions then results in selection of the single gridpoint that contains all this mass.

As this is the correct location, none of the points lie outside their corresponding

95% (or more) HPD region and ∆ tends to zero. A graphic illustration of this

phenomenon is presented in Figure 5.3.

5.3.2 Nested Constrained Models

Nested constrained models represent an interesting opportunity to apply disjoint-

decomposition to a joint model that does not decompose exactly as the product of

its marginals (see Section 3.5.6).

Given knowledge of the nesting structure, the joint model may be exactly ex-

pressed as the product of the marginals across all levels of the nesting hierarchy,

where the dependencies within levels are accounted for in the likelihood using knowl-

edge of the counts and responses of higher levels in the structure.

The advantage of such models is that they will disjoint-decompose iff nesting

structure is known a-priori. If the nesting is not known, the marginals model at

the lowest level only will be a poor fit to the data. Figure 5.4 shows results for

inference-via-marginals models fitted to the same data-sets used in Figure 3.14, but

with the added task of inference of the forward model. It is clear that attempting to
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Fig. 5.2: A single smooth surface gives rise to counts data at locations.

Cross-validation in the inverse sense (location given count) is used to find

∆, the percentage of points falling outside their 95% highest predictive

distribution region.

Generating T such independent surfaces and taking the normalised prod-

uct of the cross-validation inverse predictive distributions is equivalent

to fitting the inference-via-marginals model to a joint model that has

zero inter-process correlation. The inference-via-marginals approxima-

tion is exact and as the independent information increases, the inverse

predictive densities converge towards Dirac distributions on the correct

locations (see Section 5.3.1).
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(a) 2 counts per location
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(b) 20 counts per location

Fig. 5.3: UPPER PANELS: A linear response gives rise to Gaussian

counts (blue circles). If there are n independent counts at each location,

this is analagous to multiple conditionally independent counts. These

counts data are used to inform the mean posterior response on a coarse

grid (red line) and fine grid (green line) and posterior variances (the bro-

ken lines depict the mean response �2σ with σ the posterior standard

deviation).

LOWER PANELS: As the number of independent observations increases,

the inverse predictive distribution becomes sharper; a mean count of 5

given 2 counts (Figure (a)) gives rise to a broader predictive distribution

than a mean count of 5 given 20 counts (Figure (b)).

The probability mass on the coarse grid is depicted without joining the

points (red circles). The fine grid approximates continuous space and so

a line is used.

Although the coarse and fine grids deliver similar results at the coarse

gridpoints (subject to the difference in scale due to the differing number

of evaluation points), Figure (b) shows how the 95% HPD region will dif-

fer. The coarse grid now concentrates all mass at a single point. Hence

the discrete 95% or greater HPD region will actually converge to a 100%

HPD region and the ∆ statistic converges to 0%.
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Fig. 5.4: Sample density for the ∆ fit statistic, which is 5% in theory,

under the correct model. The correct model is nested with two levels.

If the nesting structure is unknown then the decomposed model (red

density) is a poor fit. The sample ∆s were obtained via multiple random

runs. The inference via-marginals model is a poor approximation to the

joint model, resulting in many more points lying outside their 95% HPD

predictive region.

model the joint model as the product of the marginals without exploitation of the

nesting structure results in a poor model fit. In contrast, knowledge of the nesting

structure allows for exact disjoint-decomposition of the model.

5.4 Conclusions

Inference on multivariate models comprised of multiple spatial processes may be

performed in disjoint modules; provided there is no interaction between these mod-

ules in either the prior or the likelihood. Decomposition is into the marginals for

each process.
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The multivariate normal setting delivers insight into more general models, where

the posteriors may be approximated with a GMRF. This approximation requires

that the model decomposes. If it does not, then use of a disjoint-decomposable

model is equivalent to a model with the interaction terms set to zero. This is an

approximation, the accuracy of which is determined by the degree of correlation

between the marginals. When such correlation is non-zero, the loss in accuracy

increases linearly with the number of non-independent processes. Accuracy here is

measured by the percentage of points lying outside their 95% discrete HPD region

under leave-one-out cross-validation inverse predictive distributions.

Compositional models, in which both the data and the likelihood parameters are

constrained under summation, represent a class of model that do not decompose.

However, many compositional models do decompose for inference on the model

parameters, subject to a post-hoc conditioning or rescaling. Compositional models

which do not disjoint-decompose may in do so given knowledge of a nesting structure.

Such structures must be known a-priori to facilitate decomposition of the model.
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Chapter 6

Application: the Palaeoclimate

Reconstruction Project

The motivating problem is palaeoclimate reconstruction from pollen data. This

chapter applies methods and models established in earlier chapters to this problem.

No fossil reconstructions are presented; the focus here is in model fit and validation

of the inverse problem. The inverse problem here is to predict (reconstruct) climate

variables given a pollen assemblage.

Models are evaluated using cross-validation of the modern dataset in the inverse

sense and the use of the inference-via-marginals approximation is evaluated. The

inverse cross-validation is achieved using the fast updates derived in Section 4.2.3.

The nested model is novel in this application.

6.1 Bayesian Palaeoclimate Reconstruction Project

The work contributed by this thesis to the ongoing Bayesian palaeoclimate recon-

struction project described in Haslett et al. (2006) is presented. The main crux of the

methodology up to and including the publication of that paper was acknowledged

to be computational. Approximation of the posterior for the parameters of the for-

ward model with closed form expressions via INLA greatly reduces the computations

(Section 4.1).

137



6.1.1 The RS10 Dataset

The dataset comprises 28 pollen taxa proportions. There are 7742 sampling locations

in the modern training dataset, each of which has physical variables (longitude,

latitude and altitude) and climate recorded. The climate is measured here as the

growing degree days above 5oC, GDD5 and the mean temperature of the coldest

month, MTCO. The former is a temperature sum and is a measure of the growing

season.

The data are reported as counts, with total equal to around 400. In fact, many

of the sampling locations do not have the total count reported; only the proportions

are reported. In these cases, the somewhat unsatisfactory step of assuming a total

count of 400 is taken. The reported climates are typically not in fact from precisely

the same location in physical space as the lake from which the pollen grains are

taken. The nearest meteorological station provides data on the climate. Thus an

error term should be appended to these climatic observations. Expert opinion is

used to inform these and a post-hoc method for correcting the inverse predictive

distributions is used in Section 6.4.3.

The ultimate goal is to reconstruct these climate variables given fossil pollen

counts. As this task cannot be assessed directly, inverse cross-validation on the

modern training data, for which climate is known, is presented as a best-available

model validation tool. This task could only be performed approximately in Haslett

et al. (2006); the MCMC methodology was too labourious to cope with re-fitting

the model for each left-out datum. The saturated posterior was therefore re-used

for each approximate cross-validation step.

The INLA methodology allows approximations to be fitted quickly to the poste-

riors for the response surfaces and assorted hyperparameters, given the counts data.

This thesis presents one of the first large scale tests of the INLA technique. The

RS10 dataset is not only large, but some details present extra challenge to the INLA

method that are not addressed in Rue et al. (2008): There are multiple, potentially

interacting, counts at each sampling location; each of these are subject to overdis-

persion and zero-inflation relative to standard counts likelihood models. The counts

vectors are constrained by the data collection method (count until a pre-chosen total

is sorted) and are thus compositional in nature. The climate space should in fact
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be 3D; although alluded to in Rue et al. (2008), large scale problems such as this

pose problems for the INLA methodology.

Although additional assumptions and / or approximations have to be made to

allow the application of INLA type inference to the dataset, the method performs

well. Running times to fit the forward model approximations are around 4 orders

of magnitude faster than for MCMC based inference. This is on a 50 � 50 size grid

across 2D climate space; each non-parametric response surface is thus described by a

latent field of 2500 random variables. Leave-one-out cross-validation for the inverse

problem is achieved using fast updates to the saturated posterior in around an hour.

The approximations’ most appealing characteristic is the closed form expressions

for the posterior distributions; this allows such manipulations as the fast updates of

posterior moments used for inverse cross-validation.

Application of these methods to the RS10 pollen dataset does, however, reveal

some drawbacks to the INLA method:� All hyperparameters had to be given initial values. If these were poorly chosen,

the iterative search algorithm did not converge. Trial and error is necessary

for each new forward model fitted to the data to find sensible initial values.� The data are highly overdispersed. It was not possible to fit GMRF approxi-

mations to the response surfaces posteriors for models without overdispersed

likelihoods.� The GMRF approximation is computationally incompatible with fitting mul-

tiple latent fields unless they are conditionally independent. If they are not,

inference on the degree of dependence must be modelled via a hyperparame-

ter for each pair of responses; this quickly swamps the numerical integration

step in the INLA method. Thus, only disjoint-decompositional models will be

considered.� Zero-inflation; although the model with probability of potential presence and

abundance when present is compatible with the GMRF approximation, models

in which there are two distinct processes driving these responses are not com-

patible, as shown in Section 4.1.2. Although evidence has been presented that
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supports the single-process model for the RS10 dataset, fitting the two-process

model would be of interest.� 3D (and above) climate space poses a real challenge to the INLA method.

Sparsity of the precision matrices is much reduced in higher dimensions and

therefore the fast numerical routines are slowed. This remains an outstanding

issue.

6.1.2 Software and Hardware

The time taken to fit a GMRF approximation to the response surface of a single

taxon on a 50 � 50 2D grid is of the order of 30 seconds for a 50 � 50 size grid on

the climate space. Finding the modal value for the hyperparameters takes about

2 minutes for a model with 3 hyperparameters (for each iteration of the search

for the modal configuration, a full GMRF approximation to the parameters given

the data and the hyperparameters must be fitted). Exploration of the 3D grid of

hyperparameters takes up to 5 minutes.

In all cases, the GMRFLib C library was used. This library of C functions is

available as a free download at http://www.math.ntnu.no/~hrue/GMRFLib/

Other freely available C libraries used were GSL, LAPACK, BLAS, an ATLAS.

The free statistical software language R was used for post-processing results and for

creating all images and plots appearing in this thesis.

The hardware used is a dedicated Beowulf Linux cluster, consisting of 3 machines

each of which has 2 3.4GHz processors and 4GB of RAM. This allows for the parallel

implementation of the INLA method on up to 6 taxa at a time. Running the code

on a single node machine of similar speed as the cluster nodes (such as a laptop

or PC) involves running each INLA fit sequentially. Thus run times are increased

approximately 5-fold for the 28 taxa dataset when parallel resources are not available

(6 processors handle 6 taxa at a time; this requires 5 such groups of 6 for the 28 taxa

problem). As all models considered disjoint-decompose, no message passing between

nodes is necessary. The algorithms are perfectly parallelizable and specialist parallel

computing code is not strictly required.

The methodology for the pollen dataset in Haslett et al. (2006) suffers from the

usual issues related to MCMC based inference. Mixing is poor and convergence is
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far from assured, even for runs lasting several weeks on multiple machines. Cross-

validation, requiring many re-runs, is therefore all but impossible; for this reason the

model validation results obtained here using the INLA method are not contrasted

with MCMC based cross-validations.

Although the model in Haslett et al. (2006) appears to perform joint inference

of all plant taxa at once, the underlying Dirichlet prior has an implied indepen-

dence structure, given the constraint. Had inference been performed on each taxon

separately and the results scaled post-hoc, the outcome would have been identical.

6.2 Model Description

In the forward problem, the responses are modelled a-priori as independent GMRFs,

via an appropriate link function to the ��ª,ª� range. Two models are considered

in this chapter; a model that is disjoint-decomposed by taxon (referred to as the

by-taxon marginals model) and a nested model. A grid size of 50 � 50 was used

to model the GMRFs. The granularity of this grid was selected based on expert

opinion of the measurement accuracy of the reported climates.

The forward model for each taxon is fitted independently of the others. Inversion

of the model (for cross-validation) is also performed separately for each taxon, with

scaling to induce the constraint (see Section 3.5.2) performed via Monte-Carlo. The

joint predictive distributions are then formed as the normalised product all 28 taxon-

specific inverse predictive distributions.

For all models in this chapter, the prior on the latent field is an intrinsic GMRF.

The prior is specified through the precision matrix, which has a second order Markov

structure matrix S given by

Sij � ¢̈̈̈̈̈̈̈̈̈̈̈̈̈̈�̈̈̈̈̈̈̈̈̈̈̈̈̈̈¤
20 d2�i, j� � 0�8 d2�i, j� � 1

2 d2�i, j� � 2

1 d2�i, j� � 4

0 d2�i, j� A 4

(6.1)

where d2�i, j� � �ir � jr�2 � �ic � jc�2 is the squared distance between node i and

node j on the 2D discrete grid. The subscripts r and c stand for the row index and
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column index of a node on the 2D grid.

This is the precision matrix derived from a second-order random walk in 2-

dimensions that appears in Rue and Held (2005). (Appropriate corrections for the

boundaries are made so that the rank of the matrix is N � 2, where N � 50 � 50;

these appear in Kneib (2006)).

The prior precision matrix Q is then the structure matrix S scaled by the positive

hyperparameter κ

Q � κS (6.2)

The second order Markov structure ensures a stochastically smooth response

surface with higher κ values for smoother surfaces.

Unless otherwise specified, all likelihood models are zero-inflated and overdis-

persed. Furthermore, all counts likelihoods are overdispersed Poisson (Negative-

Binomial) or overdispersed Binomial (Beta-Binomial). Where required, the nor-

malisation of the product-of-Poissons type models is performed via Monte-Carlo

sampling as per Section 3.5.7.

A maximum of three hyperparameters are included in the model for each taxon:

1. κ; the smoothness of the latent surface.

2. δ; the degree of overdispersion. limδ�ª� no overdispersion.

3. α; the power index of the single-process zero-inflation model.

Models with non zero-inflated likelihoods have only the first two hyperparame-

ters.

Fitting of the forward model is performed using the INLA methodology. A

GMRF approximation for the saturated posterior of the transformed latent surfaces

is made. The Laplace approximation for the hyperparameters is used; however

they are then fixed at their posterior modal values, for simplicity. This results in

a large computational saving, with seemingly no substantive loss in accuracy (see

Section 6.4.1).

To summarise, the goal is to build closed-form posteriors on latent random vari-

ables X, which describe response-to-climate surfaces for all plant taxa. i.e. the
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posterior π�X SY,L� is sought. There are NT counts Y associated with locations in

the climate space L. A-priori, the X are modelled as independent across the NT

taxa and stochastically smooth across discretized L via intrinsic GMRF specifica-

tion. The posterior is found approximately using the INLA methodology detailed

in Section 4.1.

The independence is due to the disjoint-decomposition; this is first done taxon-

by-taxon and the results are shown to have an error associated with this decompo-

sition, using the methods developed in Section 5.3. A nested compositional model,

as introduced in Section 5.3.2 is then invoked to reduce this error. This involves

a re-ordering and scaling of the data, with inference then proceeding as per the

by-taxon model.

Thus, the goal is to fit the decomposed forward model to the modern data Y

π�X,θSY � � π�X Sθ,Y �π�θSY �� NTM
i�1 π�XiSθi, Yi�π�θiSYi� (6.3)

where the right hand side is fitted using the INLA method. Thus, given GMRF

priors on π�XiSθi� and univariate, zero-inflated counts likelihoods π�yi,j Sxi,j, θi�, the

by-taxon posteriors are formed

NTM
i�1 π�XiSθi, Yi�π�θiSYi� � NTM

i�1 πG�XiSθi, Yi�πL�θiSYi�� NTM
i�1 πG�XiSθi, Yi�C π�θi�π�XiSθi�LNL

j�1 π�yi,j Sxi,j, θi�
π̃G�XiSθi, Yi� RRRRRRRRRRRXi�X�

i
�θi�(6.4)

with subscript G denoting the GMRF approximation and subscript L denot-

ing the laplace approximation. The constant C is determined by normalisation on

the grid upon which the πL�θiSYi� are defined (see Section 4.1.3). NL is the total

number of locations in L at which there are data. πG�XiSθi, Yi� are formed as per

Section (4.1.1).

All likelihoods in the by-taxon model are zero-inflated Negative-Binomials:

π�yi,j Sxi,j, αi, δi� � ¢̈̈̈�̈̈̈¤ 1 � qi,j � qi,jp
δi

i,j yi,j � 0

qi,j
Γ�δi�yi,j�
yi,j !Γ�δi� pδi

i,j�1 � pi,j�yi,j yi,j A 0
(6.5)
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where the parameters αi and δi are part of θi, pi,j � δi

δi�e
xi,j and qi,j � � e

xi,j

1�e
xi,j �αi

For those modules in the nested compositonal model that have only one other

term in the same nest zero-inflated Beta-Binomial likelihoods are employed:

π�yi,j Sxi,j, αi, δi� � ¢̈̈̈�̈̈̈¤ 1 � qi,j � qi,j
Γ�δi�Γ�nj�δi�1�pi,j��
Γ�nj�δi�Γ�δi�1�pi,j�� yi,j � 0

qi,j�nj

yj
�Γ�δi�Γ�yi,j�δipi,j�Γ�nj�yi,j�δi�1�pi,j��

Γ�nj�δi�Γ�δipi,j�Γ�δi�1�pi,j�� yi,j A 0
(6.6)

with pi,j � e
xi,j

1�e
xi,j , qi,j � � e

xi,j

1�e
xi,j �αi

and nj is the total count at location j. All other

likelihoods in the nested compositional model are zero-inflated Negative-Binomials,

as per Equation (6.5) above.

6.2.1 Cross-Validation

Fast updates to the saturated posteriors in Equation (6.3) using the method de-

veloped in Section 4.2.3 delivers a method for inverse leave-one-out cross-validation

without recourse to re-fitting the model with one less datapoint. Inversion of these

leave-one-out posteriors is straightforward due to the discretization of L to a lattice.

The ∆ statistic (percentage of points lying outside their leave-one-out cross-

validation inverse predictive distribution 95% highest posterior distribution region)

is computed across all training data and all taxa. Values much larger than 5%

indicate a poor model fit to the data.

The sample density and mean value for D�lj� (the expected squared distance to

the observed climate lj , under cross-validation) are used to compare models. This is

a summary statistic (introduced in Section 2.6.1) on the predictive precision of the

model in the inverse problem. In a 2D climate space across GDD5 and MTCO,

the D metric for climate lj � �GDD5j,MTCOj� is given by

D�lj� � Eπ�lSY,L�j�Sl � lj S2� NQ
i�1 π�liSY,L�j� ��GDD5i �GDD5j�2 � �MTCOi �MTCOj�2� (6.7)

where N is the total number of gridpoints.
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6.2.2 Fast Inversion of the Forward Model

Inversion of the forward model was performed in Haslett et al. (2006) using MCMC.

One-at-a-time sampling based inference of the inverse problem may be avoided al-

together when the climates are constrained to lie on a discrete grid. The GMRF

approximation in Section 4.1.1 already requires the use of such a grid. The poste-

rior predictive probability mass function for the inverse problem is calculated at all

discrete points on the grid and hence may be normalised.

6.2.3 Buffer Zone for Inverse Problem

In order to speed up the numerical inverse predictive distribution algorithm, those

points lying outside a region of support were eliminated from the computation. This

is possible as the modern training data all lie within a zone defined as the observed

modern climate space. Although, theoretically at least, prehistoric climates may

have occurred that were outside this zone they are not of interest as the response

surface method requires that the palaeoclimates have some modern analogue. The

zone, with buffer, is shown in Figure 6.1 for a 50 � 50 regular grid. Use of this

buffer zone is equivalent to placing a prior of zero on points outside the buffer and

a uniform prior inside for the inverse predictive distributions.

The response surfaces interpolate / extrapolate the counts data, but only within

this bounded region. Areas outside this buffer zone are deemed to be outside the

support of the data and are not considered. All internal points are interpolated.

6.3 Zero-Inflation

Many of the counts / proportions data are exactly zero. For the 28 plant taxon

dataset a full 63.16% of the modern counts are zero. The data is highly zero-inflated

and models not accounting for this will underestimate the expected proportions (see

Salter-Townshend and Haslett (2006)).

Zero-modified distributions (Section 2.4.1) provide a way to account for these

additional zeros explicitly in the model. However, the zero-modified distribution

has two parameters; to facilitate compatibility with the GMRF approximation of

Section 4.1.1, likelihoods must be functions of a single parameter.
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Fig. 6.1: The modern climate data, when constrained to lie on a regular

50 � 50 grid are depicted as black dots. Eliminating the points of the

grid that lie outside the red buffer cuts down on the number of discrete

points at which the inverse predictive density must be computed. In

effect, climates of no modern analogue are not considered and are given

a-priori weights of zero.
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Models of the type introduced in Salter-Townshend and Haslett (2006) and Sec-

tion 2.4.1 provide a solution to this problem; in fact this type of model was motivated

by the pollen dataset and was developed as a single-process model before compat-

ibility with the GMRF approximation was considered. This model does not apply

to every zero-inflated dataset; it was motivated by analysis of the pollen dataset

specifically and applies to any dataset in which the probability of potential presence

and the abundance when present are governed by a single latent process.

The motivation for using Equation (2.22) in the pollen data analysis is based

on logical conclusions on the nature of ecological counts data. Martin et al. (2005)

identify four sources of zeros in observation of counts data in ecological datasets: the

first two are essential / structural zeros, which they refer to as “true zeros” and the

last two are sources of non-essential / sampling zeros which they refer to as “false

zeros”.

The four sources in Martin et al. (2005) are:

1. Species does not occur at sample site because of the ecological process, or

effect under study; habitat unsuitable.

2. Species does not saturate its entire suitable habitat; absent at sample site by

chance.

3. Species occurs at the site, but is not present during the survey period.

4. Species occurs at sample site and is present during survey. However, the

observer fails to detect it.

Applying the four sources of zero count identified by Martin et al. (2005) to the

RS10 pollen dataset informs a model for the extra zeros.

Modelling the data with the response surface technique (Section 2.5.1) shows the

first source to occur when the response tends to zero. Therefore this source will be

accounted for by any response surface model where the response tends to zero in

areas of unsuitable climatic conditions. The second source is due to non-climatic

(and unmeasurable) factors, such as plant migration, soil type and topology. The

third source is a factor of the finite size of the sample; the plant taxon is present in

the location of the sample, but not in the sample itself.
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The second and third sources become one and the same (from a climatic view-

point) if there is a uniform pollen rain in regions where the plant taxon occurs.

This is one of the principles of pollen analysis introduced in Birks and Birks (1980)

and is due to atmospheric turbulence mixing the pollen and spores (see also Smol

et al. (2001)). This single source of extra zero is then referred to as the non-climatic

source and is the primary concern here.

The final source of zero count is accounted for by the counts likelihood function.

For example, using a Binomial likelihood for the counts, given there are no zeros

arising from sources one to three, will deliver this final source of zero. These are

effectively non-extra zeros and as such are part of the non-zero-inflated model.

Therefore, a zero-inflated model is required to account for a single source of

extra zeros, the non-climatic source. The single-process model in Section 2.4.1 is

advocated for the pollen and climate dataset. The justification for such an approach

is that the environmental pressure exerted by climate influences the probability of

presence and the expected proportion if present in a related fashion.

This is not to say the two are the same; all that is required to justify the single-

process zero-inflated model is that a single process governs both presence and abun-

dance when present. This is the case if the random extra zeros due to non-climatic

factors are more likely to occur in regions where the climate is less suitable. This

follows as a natural assumption; non-climatic factors promoting absence (such as un-

suitable soil type) will be more likely to cause a plant type to fail in climatic regions

where the plant is already struggling than in conditions under which it thrives.

The power link in Equation (2.22) is motivated for the pollen dataset by several

simple observations:

1. The response r (propensity to produce pollen as a function of climate) and

the probability of potential presence q both have limits of zero and one.

2. As the climate approaches total unsuitability, the probability of potential pres-

ence must tend to zero

lim
r�0

q � 0 (6.8)
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3. In the limit of the response tending to unity, that taxon must be observed

(propensity to produce pollen is absolute). Therefore, the probability of po-

tential presence tends to unity

lim
r�1

q � 1 (6.9)

The simplest functional relationship between the response and the probability of

potential presence is that q is some power of r. Limiting this power to to be positive

ensures that q increases monotonically with r (see Section 2.4.1).

The validity of this simple, monotonic relationship between probability of poten-

tial presence and abundance when present is demonstrated in Figure 6.2. Plots such

as these suggest a positive relationship between probability of potential presence

and abundance when present.

Further evidence from the data that the power-law monotonic relationship be-

tween probability of potential presence and abundance when present is given by

Figure 6.3. Neither probability of potential presence or abundance when present are

directly estimable from the data. However, the probability of non-zero proportion

and the positive abundances act as crude proxies for these values. These proxies are

plotted in Figure 6.3.

6.4 Results

6.4.1 Treatment of Hyperparameters

There are three hyperparameters specified in the model for pollen response to cli-

mate. These are; (i) the smoothness of the response across climate space, (ii) an

overdispersion parameter and (iii) the power index for the zero-inflation. In order

to integrate out the hyperparameters, the model is fitted for each discrete triplet

and a weighted average is calculated, as per Equation (4.22).

Computation time and memory usage are of real concern in performing the cross-

validation. Evaluating the inverse predictive distributions only at the modal value

of the posterior for the hyperparameters reduces both run-time and memory usage

by a factor of the number of discrete triplets. Even a coarse grid across the hyper-
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Fig. 6.2: Example histograms of the raw proportions data for the plant

taxon Alnus (Alder).

The left panels show the selected local region of climate space in a red

box within red-cross-hairs. The black dots are sampling locations for the

modern data.

The accompanying right panels show the histogram of proportions data

for Alnus within the (red) boxed region. Figure (a) shows the proportions

data in a region of low abundance; many of the proportions are exactly

zero in this region of climate space.

Figure (b) shows the proportions data in a region of high (and highly

variable) abundance. Fewer of the proportions are exactly zero in this

region of climate space than in Figure (a), however there are still addi-

tional zeros.

150



0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Alnus

% zeros

m
ea

n 
no

n−
ze

ro
 p

ro
po

rt
io

n

(a)

0 20 40 60 80
0.

00
0.

05
0.

10
0.

15

Castanea

% zeros

m
ea

n 
no

n−
ze

ro
 p

ro
po

rt
io

n

(b)

Fig. 6.3: Example plots of mean positive proportion against percentage

of zero-proportions for Alnus (Alder) and Castanea (Chestnut). The local

probability of presence is estimated by the percentage of non-zero pro-

portions in a region. Similarly, positive abundance is estimated by the

mean of the non-zero proportions in a region. Moving across all climatic

regions and calculating these two numbers in the local region (locality

size as per Figure 6.2) indicates that abundance and probability of pres-

ence are positively related. The form of the relationship between mean

non-zero proportion and probability of a zero is a positive relationship for

both taxa above. The two taxa differ in the details of this relationship.
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parameter space results in an average of 54 for the number possible configurations

of the three hyperparameter values for each taxon.

Evaluation at the mode represents an approximation to the integration over the

hyperparameters. The data are not overly sensitive to the hyperparameters as they

depend on them indirectly. However, an evaluation on the impact of using the model

fitted at the modal hyperparameters (modal-hyperparameters approximation) must

be conducted to justify the saving in computation.

Figure 6.4 shows the effect on the predictive power in the inverse sense for a

model evaluated using the modal hyperparameters and the same model having in-

tegrated out the hyperparameters (the model used is that in Section 6.4.5). The

predictive power of a model is summarised using the performance statistic intro-

duced in Section 2.6.1. The expected squared distance to the true left-out obser-

vation is calculated, with expectation taken w.r.t. the posterior predictive inverse

cross-validation distribution. The kernel density estimate of the expected squared

distance D to the left-out observation lj (climate) appears to be insensitive to the

use of the modal-hyperparameters approximation. This result, along with the large

computational saving of about two orders of magnitude, justifies the use of the

modal-hyperparameters approximation.

6.4.2 Marginals Model

Inference using the decomposed by-taxon model was applied to the pollen dataset.

Under the marginals model (Section 3.2.1) each taxon is taken as independent of all

the others. The individual taxa returned cross-validation ∆ statistics that were con-

sistent with theory; i.e. about 5% of points fell outside their 95% highest predictive

distribution region (see Figure 6.5).

The mean value of ∆ is 4.15% (see Figure 6.5). This is around the theoretical

value of 5% or less, given a model that fits the data (see Section 5.3.1).

However, bringing the cross-validation predictive densities for all taxa together

reveals an error. For 2 taxa there are �28

2
� � 378 possible choices of 2 taxa; for 3 taxa

there are �28

3
� � 3276 unique combinations; etc. Taking a random 10 of these �28

T
�

possible combinations for each of T � �1, . . . 27� and computing the ∆�T � statistic

for each gives an indication of the relationship between T and ∆.
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Fig. 6.4: The kernel density estimate for D�lj� � Eπ�lSL�j ,Y ���l � lj�2�, across

all 7742 j.

The green density is the correct method in which the hyperparameters

are averaged over, weighting the inverse cross-validation posterior pre-

dictive distributions by the posterior for the hyperparameters. The red

line represents results using a far faster approximation to this; the in-

verse cross-validation is performed only once, using the posterior modal

hyperparameters. This approximation is found to be both excellent and

far cheaper. Run times are reduced by almost two orders of magnitude.
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Fig. 6.5: The percentage of points falling outside their corresponding

95% highest cross-validation posterior predictive density for taxon i is ∆i.

This density estimate of ∆ is based 28 ∆i values. The mean value for ∆

is 4.15%.

If the joint model (all taxa) disjoint-decomposes exactly, then ∆�T � should stay

around 5% (while D�T � goes down). This is clearly not the case, as shown in

Figure 6.6. ∆ increases with T , showing that the plant taxa are not conditionally

independent given climate. Thus the joint model does not disjoint-decompose ex-

actly. Figure 5.1 indicates that this occurs when the response surfaces are correlated,

given climate.

Predictive Power of the Model

The ∆�T � plot in Figure 6.6 clearly demonstrates that the disjoint-decomposition

of the model by taxon is not a good fit to the data as error rate increases with

the more taxa modelled. Even still, the inverse predictive power of this model as

measured with D increases with increased T . This result is shown in Figure 6.7.

D (the expected squared distance to the observed normalised climate) decreases as

T increases. It shows that as more taxa are modelled, the precision of the inverse

predictive densities becomes higher. This relationship is not linear.
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Fig. 6.6: Plot of ∆ (percentage of points lying outside their corresponding

leave-one-out inverse cross-validation 95% highest predictive region).

The forward model for each pollen taxon is fitted independently. Inverse

predictive densities are computed for each point in the training dataset

for cross-validation. For each of T � �1, . . . 27�, 10 of the �28

T
� possible

combinations are chosen at random and the joint ∆ value is computed

for each. These are shown as a scatter plot of ∆ against T ; there are 10

values at each value of T . The mean across the 10 values is shown with

a line. This is the mean value for ∆�T � and it shows that ∆ increases

linearly with T to a value of 34.54% for all 28 taxa.
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Fig. 6.7: Plot of the expected squared distance to the observed normalised

climate is D.

The forward model for each pollen taxon is fitted independently. Inverse

predictive densities are computed for each point in the training dataset

for cross-validation. For each of T � �1, . . . 27�, 10 of the �28

T
� possible

combinations are chosen at random and the mean D value is computed

for each. These are shown as a scatter plot of D against T ; there are 10

values at each value of T . The mean across the 10 values is shown with a

line. This is the mean value for D�T � and it shows that D decreases with

T .
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6.4.3 Uncertainty in Climate Measurements

There are errors associated with the modern climate data measurements. Expert

opinion 1 suggests that GDD5 measurements may be taken as plus or minus 100

degree days and MTCO as plus or minus 2 degrees. A crude method for correcting

for these uncertainties post-hoc is to convolve the cross-validation inverse posterior

predictive distributions with a kernel that has a width on this scale.

A 2D truncated Gaussian kernel convolution was applied to each of the leave-

one-out posterior predictive distributions for the inverse cross-validation. This has

the effect of increasing the variance of the inverse predictive distributions. For

example, in the marginals by-taxon model below, convolution with a Gaussian kernel

of variance 3 and truncation distance equal to 3 grid spacings was used.

The resulting predictive distributions are still defined on the regular grid. The

value at each gridpoint becomes a weighted average of its neighbours, with weights

determined by the Gaussian kernel. The truncation of this kernel is for computa-

tional reasons; beyond 3 grid spacings the weights are extremely low (0.248% of the

central weight) and therefore not computed.

This Gaussian blurring causes the ∆ statistic to drop from 34.54% (very poor

fit) to 14.2%. This is around half of the non-blurred version. In fact, the slope of the

line in Figure 6.6 roughly halves. At the same time, the predictive power statistic

D increases from 0.14 to 0.148, representing a loss in accuracy of just 5%. However,

this is a crude and somewhat ad-hoc method to account for the uncertainty in the

reported climates, the form of which is unknown.

6.4.4 Zero-Inflated Model

The results presented above include an explicit modelling of the zero-inflation of the

data, as per Section 6.3. If the data is not modelled with a zero-inflated likelihood

and an overdispersed likelihood is used, as per Haslett et al. (2006), then the results

will differ.

Analysis of the impact of explicit modelling of the extra zeroes was performed

through comparison with a model in the spirit of Haslett et al. (2006). Specifically,

two models with identical priors for the latent surfaces but with differing likelihoods

1obtained via correspondence with Brian Huntley
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Fig. 6.8: The effect on the sample density of the expected squared dis-

tance D�lj� to the left-out observation lj in inverse cross-validation. Al-

though the kernel convolution with a truncated Gaussian kernel results

in a halving of the number of points falling outside the 95% HPD region of

the associated cross-validation inverse predictive distribution, the D�lj�
statistic is not dramatically effected. The mean D for the non-blurred

version is 0.14 and for the Gaussian blurring, D � 0.148.
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were fitted to a subset of the data (500 points).

The likelihood for the non zero-inflated model is an overdispersed scaled Poisson

for each of the individual taxa. Mixing the Poisson with a Gamma function leads

to a negative-Binomial likelihood. Thus, for taxon i at climate location index j

π�yij Sxij , δi� � Γ�δi � yij�δδi

i �nλij�yij

yij !Γ�δi��nλij � δi�δi�yij
(6.10)

with λij � exij

The zero-inflated model uses a mixture of this likelihood with a point mass at

zero. The size of the point mass at zero is 1 � qij

π�yij Sxij, δi, αi� � ¢̈̈̈�̈̈̈¤ 1 � qij � qijNB�0;xij , δi� yij � 0

qijNB�yij ;xij , δi� yij A 0
(6.11)

with qij � � e
xij

1�e
xij �αi

and NB�yij ;xij , δi� given by Equation (6.10).

Thus, for each of the 28 taxa, there are 2 hyperparameters (κi and δi) to be

estimated for the first model and 3 hyperparameters (κi, δi and αi) for the zero-

inflated model. This zero-inflated negative-Binomial likelihood is the same used to

produce the results in this section thus far. Comparison between the results for the

two models using the ∆ and D inverse cross-validation summary statistics is shown

in Table 6.4.4. Also shown is the mean posterior modal value for the overdispersion

hyperparameter δi across all taxa i � 1, . . . ,28. These results indicate that the zero-

inflated model is a better fit to the data and that the likelihood variance (controlled

by δ) is reduced. This leads to higher predictive power, as revealed by a lower mean

expected squared distance to the observations D.

6.4.5 Nested Compositional Model

Section 3.5.6 introduced the concept of nesting structures within compositional

counts data. It is demonstrated in that section that lack of appropriate modelling

of the nesting will lead to erroneous inferences and that this may manifest as an

increased inverse predictive density error as measured by the statistic of the per-

centage of points lying outside their corresponding 95% highest predicitve density

region.
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Model ∆ D δ

Negative-Binomial 10.8 0.179 0.252

Zero-inflated Negative-Binomial 8.0 0.146 1.40

Table 6.1: Summary statistics for model fit and comparison for an overdis-

persed model (Negative-Binomial) and an overdispersed and zero-inflated

model (zero-inflated Negative-Binomial). The overdispersed and zero-

inflated model is a better model fit to the data (lower ∆ statistic) and

has a higher precision in inverse predictive ability, as measured with D.

The degree of overdispersion δ is reduced, as shown by a higher average

δ. In fact, δi was higher for each taxon; results shown here are across all

28 taxa. Gaussian blurring as per Section 6.4.3 is employed.

Applying the nesting structure depicted in Figure 6.9 leads to markedly different

cross-validation results for the RS10 pollen dataset. This is referred to as the nested

model. Although it is disjoint-decomposable, the taxa are no longer modelled as

conditionally independent given the climate; the individual components of a nest

still are.

Given the nesting structure, errors associated with the inference-via-marginals

models are minimized; this is because down to all but the final level in each nest

there are only two categories as the preceding nest is divided in a binary split. Thus

each nest may be modelled as with Binomial type likelihood and is thus univariate.

The sum-to-unity constraint forces the two components of the split to be per-

fectly negatively correlated. Any other form of interaction is swamped and cannot

therefore impact the model. As only one branch of each split need be modelled (the

response of the other is exactly 1 minus the first), normalisation is not required.

For the 28 taxa there are 32 components of the nested model. The overall ∆

statistic improved from 14.2% for the by-taxon model to 6.12% for the nested model.

Based on this cross-validation statistic, the nested model makes considerably fewer

errors for the inverse problem on this dataset.

Fortunately, the reduction in error does not appear to come with a reduction of

predictive accuracy. The sample density of the D values for the by-taxon marginals

model and the nested model is shown in Figure 6.10. The nested model produces
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lower values for the expected squared distance to the observation, showing greater

predictive power in the inverse problem. The mean values for D were found to be� D � 0.148 for the by-taxon model.� D � 0.125 for the nested model.

Figure 6.12 shows three example leave-one-out inverse cross-validation predictive

densities and the associated left-out points for both the marginals-by taxon model

and the nested model, with nested structure as per Figure 6.9.
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Fig. 6.9: The layout of a compositional nesting structure in the pollen data. The taxa are grouped according to a

progressively finer discrimination by botanic similarity. Although a seemingly very complicated model, it facilitates

decomposition of the model, and thus the inference, into smaller independent tasks that may be run in parallel. This

is certainly not the only such structure that could be imposed on this dataset. (Obtained through correspondence with

Brian Huntley.)
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Conditional Independence of Lowest Levels

If the nesting structure given by Figure 6.9 is correct then the components of each

nest should be conditionally independent, given the climates and the constraint

(where there are only two components they are fully negatively correlated and the

question is non-applicable).

The results of applying the same method of plotting ∆ against T as in Section 6.6

for the nest labeled “more drought tolerant” is shown in Figure 6.11. There is not

a wide range of values across which to evaluate ∆�T � (maximum T is 6 taxa) and

therefore it is not straightforward to assess whether ∆ varies with T . For all other

nests, such as that labeled “wide ranging cool temperate”, there are even fewer

values of T .

The figure shows that ∆ does not increase as more taxa are modelled. This results

suggests that the taxa within the “more drought tolerant” nest are conditionally

independent, given climate.

6.4.6 Outliers

The D statistic and the distribution of D�lj� may be used to compare the inverse

predictive power of two or more models. Analysis of the individual expected squared

distances D�lj� is also used to detect outliers as these will have larger than expected

D values, under the fitted model.

This approach was applied to the pollen training dataset and the highest D

value for the nested model was found to be D � 0.661. Figure 6.13 shows the inverse

predictive distributions for this datum given the nested model. Examination of the

data at that location revealed there to be only two taxa present, Artemesia (sage-

brush and wormwood) and Chenopodiaceae, both of which are non-anthropogenic

grasses. The reported climate is GDD5 � 128 and MTCO � �168, a cold-in-winter

climate with a very short growing season. The fitted responses for these taxa show

that these grasses thrive in temperate climates. However they are indigenous to the

physical region and are hardy. Although they may in fact grow sparsely at that

location, they will nevertheless dominate the assemblage. Most interestingly, this

outlier is the sampling location with the highest altitude; 5100 metres above sea

level, in the mountains in Kashmir.
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Fig. 6.10: Sample densities of the expected squared distance to the true

climates under the leave-one-out inverse cross-validation predictive distri-

butions. The nested model has a lower mean expected squared distance

D � 0.125 than the by-taxon marginals model D � 0.148, showing a greater

ability to give accurate inverse predictions, given the training data.

Investigation of the effect of extreme altitude on outliers expands on this result.

Defining those data that have a D metric greater than the 95% quantile for D (i.e.

the top 5% least well predicted data) to be outliers and plotting the sample density

of the altitudes associated with those outlying data reveals thicker tails than the

sample density of the entire dataset. This is shown in Figure 6.14.

A similar analysis for another climate variable for which data are available is

shown in Figure 6.15. In this example, the ratio of actual to potential evapotran-

spiration (AET/PET) is used. This figure suggests that low values of AET/PET

- indicating arid conditions - tend to be less well predicted by the model as the

red line (sample density for AET/PET of the subset of the data with the top 5%

worst predicted climates) shows a sample with a lower proportion of high values

of AET/PET. This indicates that modelling of these AET/PET values should be

carried out.

Figure 6.14 demonstrates that there is a relationship between the altitude of

the sampling location and the probability that the datum will be an outlier in

164



1 2 3 4 5

0.
5

1.
0

1.
5

2.
0

2.
5

T

∆

Fig. 6.11: Plot of ∆ (percentage of points lying outside their correspond-

ing leave-one-out inverse cross-validation 95% highest predictive region).

The forward model for each pollen taxon in the nest labeled “more

drought tolerant” is fitted independently. Inverse predictive densities

are computed for each point in the training dataset for cross-validation.

For each of T � �1, . . . 5�, the joint ∆ value is computed for all �6

T
� possible

combinations. These are shown as a scatter plot of ∆ against T . The

mean across the �6

T
� values is shown with a line. This is the mean value

for ∆�T � and appears to show that ∆ does not vary substantially with T .
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Fig. 6.12: Some examples of inverse cross-validation predictive distri-

butions for the marginals-by-taxon model and the nested model associ-

ated with Figure 6.9. Despite delivering sharper predictive densities, the

nested model makes fewer errors, as measured by the ∆ statistic.

The true climate locations are marked with a dot; the intersection of two

lines highlights the location.
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Fig. 6.13: The outlier identified by the greatest expected squared dis-

tance between the observation and its associated leave-one-out inverse

cross-validation predictive distribution (D � 0.661). Inspection of the data

reveal that there are only two taxa present at this sampling location and

that it is the sampling location with the highest altitude; 5100 metres

above sea level. The observed location in climate space is marked with a

dot and cross hairs.

167



0 1000 2000 3000 4000 5000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Altitude

D
en

si
ty

Fig. 6.14: The sample density of 2 sets of altitudes from the RS10 dataset.

The black density represents the entire dataset. The red line represents

the sample density of those altitudes whose expected squared distance

D�lj� to the observed climate location lj is in the top 5% of all D. This

density has thicker tails, suggesting that extreme altitude, both high and

low, has a negative effect on the predictive power of the model for the

inverse problem.
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Fig. 6.15: The sample density of 2 sets of AET/PET from the RS10

dataset.

The black density represents the entire dataset. The red line represents

the sample density of those AET/PET values for which the expected

squared distance D�lj� to the observed climate location lj is in the top 5%

of all D. 2D climate lj is defined in terms of GDD5 and MTCO.
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the inverse (climate predictive) sense. There are only 9 datapoints whose cross-

validation climate predictive distributions place exactly zero probability mass at

the correct location. The 9 altitudes, in metres, associated with these locations are�3030,3050,2000,3085,2790,3030,3050,15,168�
7 out of 9 of these have altitudes that are above the 98% quantile. This again

suggests a strong link between extreme altitude and lack of fit. The final two values

suggest that this is not the only factor.

6.5 Conclusions

6.5.1 Advances

The cross-validation model fit statistic ∆ is a simple measure of fit; if the model fits

the data, then the theory dictates that ∆ should be around 5% or less. Simulated

data, for which the model is known, in Chapter 4 shows that values as high as 10%

are possbile. Values above this have not been observed for toy problems that are on

the same scale as the pollen problem.

This allows for a simple, albeit crude, check of model fit to be made. For example,

the disjoint-decomposition by-taxon of the model did not appear to be a good model

fit to the data. More importantly, a positive linear relationship between the number

of taxa used in the model and the ∆ statistic was established empirically. This

relationship suggests that the disjoint-decomposition by-taxon is a poor model due

to a non-zero dependence between the taxa, given the climate.

Comparison between models is performed using the cross-validation statistic D.

D�lj� is the expected squared distance to the climate observation lj , under the model

and given all other data. The lower this value, the more accurately the trained model

can predict or reconstruct climates, given a counts vector. Thus, models with lower

D are preferred.

∆ and D are used constructively to illustrate the importance of modelling ad-

vances made since Haslett et al. (2006) such as zero-inflated counts likelihoods.

However, the greatest contribution to modelling the RS10 dataset is the delivery

of working methods to compare and validate such models, using the INLA based

170



approximation techniques. MCMC based methods fail to achieve this objective due

to the computational burden associated with sampling based methods.

Estimation of the various hyperparameters of the model is also performed quickly

using approximation methods. This is difficult in the extreme using MCMC based

methodology due to issues of mixing.

The discrete grid on which the data are made to lie facilitates fast inversion of the

forward model. Normalisation of the posterior for climate, given count is performed

numerically. This further speeds up cross-validation in the inverse sense.

A new nested compositional model is introduced. Assessment of the particu-

lar nesting structure reported on here shows a marked improvement in this model

over the marginals by-taxon model. Most of the apparent conditional dependence

between the various plant taxa has been accounted for via the nesting. This is

achieved without incurring large computational overhead or developing additional

code.

6.5.2 Shortcomings

Work has not yet been carried out to determine what value of D determines a model

that may be said to fit the data. One method for performing such a calculation is

to use Monte-Carlo methods to simulate data from the fitted model; the D statistic

based on the simulated data then represents the D value for a model that fits the

data.

Although the nested model defined by the diagram in Figure 6.9 leads to a

welcome decrease in both ∆ and D, it is not clear from these statistics that the

model may be said to fit the pollen data. Further criticism of the nesting structure

is certainly required; alternative nesting structures should also be explored. The

structure in Figure 6.9 is based on expert opinion, but comes with caveats; it is by

no means a final statement of definite nesting structure.

Results for models with additional climate dimensions, for which data is avail-

able, have not been presented here. Perhaps the by-taxon decomposition of the

model is a satisfactory assumption for a 3D climate. Taxa that are not condition-

ally independent given 2 climate dimensions may be conditionally independent given

3 or more climate variables.

171



The post-hoc Gaussian-blurring of the climate predictive distributions is ad-hoc

and not thoroughly investigated. It is an attempt to account for the uncertainty

in the reported climates for the training data in a cheap and simple way. Further

thought is required in this area.

Both ∆ and D were used with success to identify problematic data. Sampling

locations associated with extreme altitudes were found to have an association with

being outliers with respect to the fitted model. However, the definition of outlier is

not firmly established here and incorporating the altitudes into the model has not

been addressed.
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Chapter 7

Conclusions and Further Work

Application of a cutting edge statistical methodology (INLA) to a large scale palaeo-

climate reconstruction project has delivered two important research contributions.

Firstly, the modelling associated with the palaeoclimate problem has been advanced.

In particular, inference is now performed quickly, without recourse to MCMC. Sec-

ondly, the INLA methodology itself is challenged and extended. A method for fast

cross-validation in the inverse sense is introduced. The richer models developed for

the palaeoclimate problem are guided by the fast model validation procedure.

Both of these contributions are the subject of ongoing research. No claim is

made to have developed a finished model for the palaeoclimate project; indeed the

imperfection of the models contained in this thesis is demonstrated. Further exten-

sions of the INLA method to cope with higher dimensions and modelling of data

that are not conditionally independent is desirable.

7.1 Conclusions

The motivating pollen dataset is massively zero-inflated. In Haslett et al. (2006),

this over-abundance of zero counts was dealt with via an overdispersion model.

This method underestimates the mean of the response surfaces and overestimates

the variance.

Zero-modified distributions are a flexible class of model that can account for zero-

inflation of counts data. Typically, these models require an extra parameter to model

the probability of potential presence. For spatial data, modeling of non-parametric
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response surfaces for zero-inflated counts data in this way requires doubling the

number of latent parameters. MCMC inference may slow drastically due to this

large increase in random variables.

A single-process zero-modified distribution is therefore developed that requires a

single extra (hyper)parameter. This model is valid for data in which the probability

of extra zeros and the abundance, given presence, are functions of a single underlying

process. Justification of such a model is provided for the pollen dataset and a simple,

yet flexible model for this data is constructed. Synergy of this model with the

emerging INLA inference procedure is demonstrated, as is incompatibility of INLA

with traditional zero-inflation models.

Multivariate counts data, constrained to sum to a total, may exhibit high corre-

lation, even after taking the constraint into account. Modelling such dependencies

is inherently difficult. Nested models may provide a solution for breaking down such

dependencies in compositional counts data. The main advantage of such models is

that, given the nesting structure, the joint model will disjoint-decompose exactly.

This means that inference may be performed on many separate, smaller problems

in parallel. More importantly, decomposition of the joint model is required in order

to apply the fast INLA inference methods.

Gaussian and Laplace approximations are fitted to the posteriors for the parame-

ters and hyperparameters of the pollen dataset. This results in a dramatic reduction

in both the forward and inverse stages of the non-parametric inference.

The forward fitting stage using approximations takes approximately 40 minutes

for all 32 pollen types in the nested model. For a similar, yet cruder (non-zero

inflated), model MCMC runs were previously ran for up to several weeks. Cross-

validation was impracticable and hyperparameters had to be fixed a-priori.

The marginals model required for use of the INLA methods may break down

with large numbers of correlated taxa. This can be tested for using inverse cross-

validation statistics such as the percentage of training data points that lie outside

their corresponding 95% highest posterior predictive density region.

If the data are in fact nested, then this enables decomposition of the problem.

This cannot be achieved without knowledge of the structure of the nesting. These

nested models are a novel aspect of compositional data analysis. One such nesting
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structure, given by expert opinion, is applied to inference on the pollen dataset,

with promising results.

Cross-validation is an important tool in model validation. A contribution in this

thesis is a method for performing fast cross-validation in the inverse sense, using

the INLA inference procedure. Approximating the saturated posterior for the latent

variables with a multivariate normal permits fast updates to be made to correct for

leaving out a single datum. This procedure has application in any spatial context

where the interest is in the inverse problem and the forward model posterior is

approximately Gaussian.

7.2 Further Work

This is perhaps the most important section in the thesis as there are several outstand-

ing challenges in this project. Some of these are already the subject of preliminary

investigation.

7.2.1 3 Dimensional Climate Space

The RS10 pollen dataset includes more than just two climate variables. Expert

opinion in the botany community advocates using at least three in building the

response surfaces.

In theory, the Gaussian approximation works in the same way in any number of

dimensions; however, a second order intrinsic GMRF prior (such as used in Chap-

ter 6) is far less sparse in 3D than in 2D. Thus, the fast sparse-matrix algorithms

employed in fitting a GMRF approximation to the posterior will be disproportion-

ally more labourious. In addition, the grid size G scales as GD where D is the

dimension. Even moving up a single climate dimension from 2D to 3D can cause

memory to become an issue as a single realisation of a response surface goes from

taking around 50 kilobytes to around 2 megabytes for a grid with sides of length

G � 50. Cross-validation, involving a unique inverse predictive distribution for each

datum, thus takes up 7742 times more for the RS10 pollen dataset.

Preliminary results in 3D climate space are encouraging, but inference is slow.

There are further coding issues, such as how to create a buffer zone in 3 dimensions.
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7.2.2 Covariates

The outlier of highest D value was found to be from the sampling location of high-

est altitude. Altitude measurements are in fact available for all samples. Careful

modelling of the altitude as a covariate to account for its effect should eliminate

this problem. There are several options for dealing with such nuisance covariates;

they may be fully modelled as the climate variables are, leading to an increase in

the dimensionality of the problem. A more crude treatment, such as fitting a linear

smooth of the counts data to the altitudes might suffice.

7.2.3 Inference Procedures

For compatibility with fast approximate inference procedures, the inference-via-

marginals model is required. This can lead to errors in the inverse problem if the

model does not decompose exactly. Although the imposition of the nested structure

greatly reduced these errors for the pollen dataset, the problem did not disappear

altogether.

It should be noted that the nesting structure used here is based on the opinion

of a single expert. Other nesting structures may well lead to a further reduction

or even elimination of the dependence induced error. These structures can either

be selected a-priori based on expert opinion, as here, or perhaps inferred from the

data. The latter may prove to be a very interesting problem in itself.

Weighting the marginal predictive distributions with the inverse of the correlation

between counts is one ad-hoc method to reduce the dependency / correlation of the

response surfaces given climate. Another option might be to use the nest as specified,

but only down to the lowest binary splittings.

The hyperparameters must be pre-specified at sensible values for the iterative

search algorithm in the INLA method to converge to the mode. Trial and error is

the current practise; this could be replaced by a crude but fast method based on

the model and the data, which would further automate the inference procedure.
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7.2.4 Model Validation

Two model validation summary statistics are used in the inverse sense; the number

of training data that fall outside the 95% highest density region of the leave-one-out

cross-validation posterior predictive distributions ∆ and the mean expected squared

distance to the observed climate D.

These statistics still require a scale to determine what values are significant.

Monte-Carlo simulation could be used to simulate data from the fitted forward

model; the test statistics ∆ and D would then be calculated on this toy data. These

inform what values these statistics take when the model fits the data. Repetition

of this exercise should be used to build upper and lower bounds and confidence

intervals for the statistics. The values pertaining to the real data would then be

compared with these theoretical ranges.

Other cross-validation summary statistics should be developed for the inverse

problem. Distance metrics that are commonly applied in forward cross-validation

methods may be unsuitable as they frequently assume a unimodal predictive distri-

bution. Inverse predictive distributions are commonly multimodal.

Preliminary work has begun on information criteria such as the Deviance Infor-

mation Criterion for model comparison. The difficulty in the inverse setting is that

the normalising constant for the inverse model is not known. In fact, unlike the

forward model (likelihood), it is a function of the model parameters and thus the

mean of the deviance is difficult to compute.
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