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Summary

The fatigue behaviour of complex three-dimensional notched components is a subject of 

great practical interest to industrial engineers. Unfortunately, the analysis of this type of 

feature presents problems for most assessment methods, which have been developed on the 

basis of standard two-dimensional fatigue specimens. This work is essentially an 

investigation o f several factors that are considered important and unique to the assessment 

o f this type of feature.

It has been demonstrated experimentally that the fatigue assessment methods advocated by 

Taylor [1996; 1999], and indeed most assessment methods, result in conservative 

predictions for certain three-dimensional stress concentration features. These are typically 

very localised stress concentrations characterised by high stress gradients in all directions 

and also stress concentrations characterised by low constraint.

Three possible explanations have been proposed and investigated. These have been termed 

the shape ejfect, the constraint effect and the stressed volume effect.

The shape effect is based on the observation that if  failure is forced to occur at a point or 

small region, via geometrical constraints, it will have a semi-elliptical crack front. It is 

proposed that even at the so-called fatigue limit, crack shape can affect the life o f a 

component through the growth of non-propagating cracks. It is shown that a simple 

correction factor, based on the crack shape, can be applied to account for this.

It is well known that crack tip constraint, or the degree o f plane stress, has a considerable 

effect on fracture. The constraint effect is an investigation o f the corresponding effect in 

fatigue. It is shown experimentally that the stress intensity threshold measured in 

conditions of plane stress is significantly higher than the corresponding value measured in 

plane strain. It is further demonstrated that fatigue predictions made for stress 

concentration features characterised by low notch tip constraint result in conservative 

errors.

xi



The third possible explanation for the conservative errors is referred to as the stress volume 

effect. This idea is based on the fact that the volume o f highly stressed material is 

considerably smaller for localised 3D stress concentrations, when compared to an 

equivalent two-dimensional notched geometry. Hence, the probability of finding a flaw or 

crack initiation location in the stressed region is lower. A method to account for this using 

a Weibull type analysis is proposed. It is shown that if  appropriate values of the Weibull 

modulus are assumed, a stressed volume correction can be made which is self-consistent 

and makes good sense for the specimens considered here. Unfortunately, this is not enough 

data to confirm the validity of the approach.

It is shown that, within the framework of the assumptions made and if all of the effects 

mentioned above are considered, the conservative errors can be accounted for and good 

predictions can be made for the three-dimensional stress concentrations considered in this 

work.
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Nomenclature

Symbol Unit

a mm
ao mm
ap mm
A
AM
b
C
Ce
CvM
CDMs
CMM
CPZ
D mm
E GPa
F
F assumed

F actual

fshape correction

fsize  correction
K MPa m̂^̂
Kc MPa m'̂ ^
K ic MPa m'̂ ^
K f
K,
K,
K'
LM
MPZ
m
N
Nf
n'
P N
P s
PM
PsWT
ps
q
To mm
U
UTS MPa
VM
V re f mm̂

Crack length
El Haddad short crack constant 
Peterson material characteristic length 
Constant factor in the growth rate equation 
Area method or area critical distance method 
Weibull modulus
Ratio o f plain specimen fatigue strength to the yield strength
Parameter to determine the degree o f constraint
Parameter to determine the degree o f constraint
Critical distance methods
Crack modelling method
Cyclic plastic zone
Notch depth
Young's modulus
Crack shape or configuration factor 
Assumed crack shape factor 
Actual crack shape factor 
Correction factor due to crack shape 
Correction factor due to stressed volume effect 
Stress intensity factor
Critical stress intensity factor or fracture toughness
Plane strain critical stress intensity factor or fracture toughness
Fatigue notch factor
The elastic stress concentration factor
Strain concentration factor
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Line method or line critical distance method
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Applied point load
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Ultimate tensile strength
Volume method or volume critical distance method 
Reference volume



V e ff mm' Effective volume
V e n t mm' Critical volume used in the volume method
V mm Crack face displacement
Zi Westergaard stress function
^0*ave MPa Average stress range

MPa Maximum value o f the 1st principal stress range
Acfon MPa The notched specimen fatigue strength range
AOo MPa The plain specimen fatigue strength range
ACTnom MPa Nominal stress range
AOref MPa Reference stress for which the Ps = 37 %
AK MPa m'^^ Range o f the stress intensity factor
AKefT MPa m ‘̂ ^ Effective stress intensity factor range
AKth MPa m ’̂ ^ Threshold stress intensity factor range
AK.th,a MPa m'^^ Threshold stress intensity range used in the resistance curve
A K i MPam'^^ Mode I stress intensity factor range
8 Strain
Ef Fatigue ductility coefficient
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a n MPa Stress field intensity (Pluvinage method)
a y MPa Stress in the y-direction
^ys MPa Yield stress
a f MPa Fatigue strength coefficient
P mm Root radius or the radius in a spherical coordinate system
p* mm Neuber material characteristic length

M MPa Shear modulus
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Chapter 1: Introduction

The fatigue behaviour o f engineering materials is an extremely complex subject. Even after 

more than 100 years of continuous research, industrial engineers still don't have adequate 

tools for the fatigue design and assessment o f real engineering components. Indeed the 

notch sensitivity concept, developed by Neuber [1958], Peterson [1959] and others, more 

than 40 years ago is still the dominant tool used in the high cycle fatigue regime. This is 

due mostly to the complexity o f the problem, but also to the tendency of researchers to 

reduce the problem to the most fundamental level, or to try and isolate the specific problem 

of interest to them. Hence, in the body of research about fatigue of notched components, 

the most common problem studied is the behaviour of very simple two-dimensional 

notched geometries, subject to constant amplitude, mode one loading, in controlled 

environmental conditions. This is a very sound scientific approach, however fatigue 

assessment methods developed in this way are o f little practical use until they have been 

extended and validated to include all complicating factors, such as variable amplitude 

loading, multi-axial loading, environmental effects, residual stresses, size effects, the 

analysis of welded joints and complex geometries to name just a few.

The work presented here is centred on the fatigue analysis methods developed by Taylor 

and co-workers. These include the crack modelling method (CMM) and the critical 

distance methods (CDMs). A brief discussion of these is given in Chapter 2 along with a 

review of other common methods used for the analysis o f notched components. It has been 

shown, prior to the commencement of this work, that the CMM and CDMs can be used 

successfully to predict the behaviour o f standard two-dimensional fatigue specimens and 

various engineering components, in the high cycle fatigue regime. Hence, the initial aim o f 

this project was to extend these methods to include the analysis o f welded geometries.

Some previous work on welded geometries had already been undertaken, with mixed 

results. This is discussed in Chapter 4. Basically, it had been shown that the methods are 

very successful at predicting the behaviour o f two-dimensional welded geometries, 

however significant conservative errors were observed when predicting the behaviour o f a

I



more three-dimensional welded geometry. That is, a geometry where the failure occurs at 

the end of a weld bead.

The initial work undertaken in this project was experimental and was done with the 

purpose of clarifying the conservative predictions observed for the three-dimensional 

welded geometry mentioned above. The results of these investigations are given briefly in 

Chapter 5, although full and complete details are presented in Appendix A. Essentially it 

was concluded that the conservatism is not only limited to 3D welded geometries but can 

also be observed in certain three-dimensional stress concentration features machined from 

solid steel. These features are typically very localised stress concentrations where failure is 

confined to occur from a point or small region and are characterised by high stress 

gradients in all directions.

From this point forward, the focus o f the project moved to understanding and explaining 

this conservatism, which wasn't seen in the two-dimensional case.

The first approach investigated was to consider a volume implementation o f the critical 

distance methods, which was thought to be more appropriate for the assessment o f three- 

dimensional stress concentrations. This is referred to as the volume method and is 

discussed in Chapter 3. Unfortunately it was demonstrated that is approach did not 

significantly decrease the prediction error.

Therefore, three possible explanations, based on the observed differences between two and 

three-dimensional stress concentrations, were proposed and investigated in parallel. These 

have been termed the shape effect, constraint effect and the stressed volume effect and are 

discussed in Chapters 6, 7 and 8 respectively. It is shown in Chapter 9 that if  all o f these 

effects are taken into consideration the conservative errors can be explained.
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Chapter 2: Review of fatigue assessment methods

In the following, a brief review of the most common methods used for the fatigue 

assessment of notched components is undertaken. Particular attention is paid to the way in 

which each of these methods is able to deal with the assessment o f complex three- 

dimensional stress concentrations. But first, some important terms, used throughout this 

work, are defined.

2.1 Definition of terms

Endurance strength

This term is used to indicate the strength o f a component or specimen corresponding to a 

given number o f cycles, which is less than the number of cycles where the knee in the 

stress-life curve occurs. The knee is the position on the curve where the slope decreases, so 

that the curve becomes almost horizontal.

Fatigue limit

This is a slightly misleading term, but one which is too well established in the engineering 

terminology to be forgotten. It implies that there is in fact a fatigue limit, below which a 

component will never fail. Its use here does not imply this. It's simply used to indicate the 

strength of a component or specimen at its life corresponding to the knee in its stress-life 

curve, which is assumed to occur somewhere between 1x10^ and IxlO^ cycles. If no knee 

in the stress-life curve is observed, the term endurance strength is used.

Fatigue strength

As above this term is used to indicate the strength o f a component or specimen at its life 

corresponding to the knee in its stress-life curve, however, the number o f cycles at which 

this occurs is always stated. Hence this is a slightly more precise term than fatigue limit.

Initiation and propagation life

In this work it is assumed that the initiation life of a fatigue crack is very short. That is, it is 

extremely easy to initiate a crack, even if it is very small and confined to a single crystal.



In this way the Hfe of a crack is simply one o f propagation life. It should be noted however, 

that short crack growth behaviour is different to that o f long cracks, which is emphasised 

by the fact that linear elastic fracture mechanics does not provide a valid description o f 

short crack behaviour.

Shape factor or configuration factor, F

This is a factor that modifies the stress intensity reference value (i.e. the stress intensity for 

a through-thickness, two-dimensional centre crack of length 2a in an infinite plate 

subjected to a uniform tensile stress) to account for other cracked geometries, 

configuration and loading conditions.

Stress intensity factor and stress intensity factor range

This is a measure of the strength, or change in strength, of the singularity in the elastic 

stress field ahead o f a crack given by the standard linear elastic facture mechanics 

equation.

Stress intensity threshold

This is the stress intensity range for which negligible crack growth can be observed, or the 

crack growth rate approaches zero. It is considered to be a constant for long cracks. This 

isn't the case for short cracks, where the threshold approaches zero as the crack length goes 

to zero. Unless otherwise clarified the stress intensity threshold is always assumed to be 

the long crack threshold.

2.2 Stress based fatigue assessment methods

2.2.1 The stress-life approach

The stress-life approach to the fatigue assessment o f notched components is based on the 

concept that failure is assumed to occur if  the maximum stress range at the notch tip 

exceeds the fatigue strength o f a smooth specimen at the same life. This can be expressed 

mathematically in terms o f the elastic stress concentration factor, Kt as follows:

^  (2- 1)

4



Where Aoon is the fatigue strength range o f the notched specimen and Aao is the fatigue 

strength range o f the smooth specimen. The elastic stress concentration, Kt is defined as 

the ratio of the maximum local stress at the notch tip, to the nominal stress.

The method is relatively simple to implement, either through the use o f published stress 

concentration factors [e.g. Peterson, 1953; 1974] or by the use of finite element analysis. 

The application to complex three-dimensional geometries generally requires the latter. 

However, one limitation is that it is unable to deal with the class o f problems in which 

there exists a singularity in the elastic stress field. This can occur either through finite 

element modelling simplifications, for example when a fillet radius is modelled as a sharp 

comer or in the modelling of cracks. In this case, the elastic stress concentration factor 

approaches infinity, hence the method would predict a notched fatigue strength o f zero, 

which is clearly incorrect.

The stress-life method is relatively successful at predicting the behaviour of "blunt" stress 

concentrations, however it becomes increasingly conservative when the amount o f plastic 

deformation at the notch root increases, or as the stress concentration becomes sharper. 

This was demonstrated clearly by Frost [1959].

2.2 .2  Critical volum e m ethods

Critical volume theories have been used in the analysis of notches for over 40 years, since 

the work of, Neuber [1958], Peterson [1959], Siebel and Stieler [1955] and others. The 

basic idea is to examine stresses not only at the notch tip but also within a discrete volume 

of material surrounding the notch. It is assumed that fatigue failure will occur if the 

average cyclic stress within this volume exceeds some given value, usually taken to be the 

plain specimen fatigue strength.

2.2.2.1 The Peterson and Neuber methods

The Peterson and Neuber methods are based on critical volume concepts, as discussed

above, but are usually implemented using the "fatigue notch factor", Kf.

unnotched bar fatigue strength
\  —   (2-2 )

notched bar fatigue strength
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In general, Kf is less than Kt and approaches Kt for large notch-root radii and for higher 

strength materials. The relationship between the Kt and Kf is often described in terms o f 

the notch sensitivity index, which is defined as:

Hence, q varies from zero, where there is no notch effect, to unity, where the full effect 

predicted by elasticity theory is observed. The difference between Kf and Kt is a function 

of both the local notch geometry and the material.

Neuber [1958] proposed that the controlling parameter for the fatigue behaviour o f notched 

components should be the elastic stress averaged in some critical volume surrounding the 

stress concentration. He simplified this by using the average stress on a line ahead of the 

notch. He argued that the critical volume or distance should be large enough so that the 

material is sampled homogeneously, that is to say that there should be more than one grain 

included, with ideally enough grains to make sure that the behaviour o f the material in the 

critical volume is typical o f the material as a whole. Based on these ideas, and using the 

notch root radius, p, as a parameter to characterise the stress field surrounding a notch, 

Neuber developed the following approximate formula for the notch factor for R = -1 

loading;

Where p* is the characteristic length, or critical distance of the material. This has to be 

determined empirically and is generally correlated to the ultimate tensile strength of the 

material.

Peterson [1959] used a similar approach, although he simplified the situation even further 

by considering only the stress at a point ahead of the stress concentration. He proposed the 

following;

(2-4)

K . - \ (2-5)
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Where ap is another material characteristic length which has to be determined empirically.

Implementation of these methods for complex three-dimensional stress concentrations is 

usually possible, although it is often difficult to define the nominal stress range, which is 

needed to determine the elastic stress concentration factor, Kt, which is in turn required to 

calculate the notch reduction factor, Kf. Also, because K f is a function o f the notch root 

radius, these methods are unable to deal with the class of problems that are characterised 

by a singularity in the elastic stress field (i.e. when there is no root radius). Situations 

where this is important are discussed in Section 2.2.1.

2 . 22.2  The critical distance methods [Taylor, 1999]

The major weakness of the traditional critical-volume methods, discussed above, is that the 

material characteristic length or critical distance parameter must be determined 

empirically. This parameter is known to vary considerably from one material to another, 

and large errors can occur if the critical distance is slightly incorrect. This problem was 

solved by Taylor [1999] by borrowing a fracture mechanics concept. He pointed out that 

the critical distance can be determined explicitly for a crack and that if a crack is 

considered as the limiting case o f a sharp notch where the root radius goes to zero, then 

this distance should be equally valid for notched components. Tanaka [1983] similarly 

realised this, 16 years earlier, but he failed to appreciate the importance and wide 

applicability o f this approach.

Simplifications, similar to those made by Neuber [1958] and Peterson [1959], can be 

adopted using this approach. That is, the method can be applied by:

a) Considering only the stress range at a single point ahead of the stress concentration. 

This is referred to, by Taylor, as the Point Method (PM).

b) Considering the average stress range on a line ahead of the stress concentration. 

This is termed the Line Method (LM).

This approach can also be implemented by considering the average stress in an area or 

volume surrounding the stress concentration. These are referred to as the Area Method 

(AM) and Volume Method (VM) and are discussed more fully in Chapter 3.
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2.2.22 .1 The point and line methods

A full discussion of the point method and line method will not be included here, as they are 

reported elsewhere [Taylor, 1999; 2001], [Taylor et a l, 2000], [Taylor and Wang, 1999; 

2000] and [Wang, 1999], however it is important to note that the critical distance, for 

these methods is calculated to be:

For the Point Method;

=
AK.

2
(2-6)

For the Line Method:
v2

\ 7 t  j
(2-7)

Where, a« is El Haddad’s constant [El Haddad et a l, 1980], which is a parameter used in 

short-crack fracture mechanics and is defined as:

=
\ 7 l  j

(2-8)

It should be noted that the El Haddad parameter is used only as a convenience, although a 

slightly confusing one. As defined by El Haddad, slo is the geometrical intersection of the 

two lines on the Kitagawa diagram [Kitagawa and Takahashi, 1976], As such it is a 

function of the configuration, or shape factor of the specimen used to construct the 

Kitagawa diagram. This is not the case here, where it is always defined as per equation 2-8 

(this is in fact the Bo for a centre cracked infinite plate where the configuration factor is 

equal to one).

Implementation of the point and the line method is extremely simple and is most easily 

achieved through the use of a linear elastic finite element analysis to determine the stress 

distribution around the stress-concentration in question. Once this is available, the opening 

stress, or first principal stress is plotted on a focus path, ahead of the stress concentration. 

The focus path is simply a line, starting at the hotspot and extending into the component, in 

some direction. The criteria to define the direction of the focus path are discussed below.
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However, once the stress-distance data is available, it is a matter o f determining if the 

stress at the critical distance (PM) or the average stress (LM) is greater than the plain 

specimen fatigue strength. If it is, failure is predicted.

2.22.2.2  Criteria to define the focus path

The focus path is chosen to coincide with the direction o f fatigue crack propagation. In 

order to estimate this for any three-dimensional stress concentration, two criteria are 

needed. These are stated as follows:

a) The plane o f  crack growth is chosen to be perpendicular to the maximum principal 

stress at the hotspot. For two-dimensional geometries the plane of crack growth is a 

line, hence only this criterion required. This is illustrated in Figure 2.1(a), where the 

focus path coincides with the x-axis.

b) The direction of the focus path within the plane o f crack growth is chosen to be the 

direction of minimum crack growth potential. This is determined by examining the 

stress field resulting from the stress concentration, without the presence o f a crack. 

Consider the situation shown in Figures 2.1(a) and (b). The problem is to find which 

angle P, should be chosen in the x-z plane, or the plane of crack growth. If the focus 

path were chosen to be coincident with the z-axis (P = 90”), the stresses on this path 

would be essentially constant and equal to the maximum stress. If it were chosen to be 

on the x-axis (p = 0°), the stress distribution would rapidly fall away to the nominal 

stress. Any other path (between P = 0° and 90°) will result in an intermediate situation. 

Hence, the stress distribution in the x-direction will result in much slower crack growth 

than any other direction in the x-z plane. This is the direction of minimum crack growth 

potential and is chosen to be the focus path because it is believed that crack growth in 

this direction will retard growth in all other directions and is thus more representative 

o f the three-dimensional phenomenon. It should be noted that the direction o f minimum 

crack growth potential is simply the direction with the highest stress gradient.
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Fig. 2.1 - Choice o f the focus path 

2.2.2.3 The Pluvinage method

The Pluvinage approach [Qyalfku et al., 1999; 2001] is essentially a critical distance 

method implemented using the elastic-plastic stress distribution and taking into 

consideration the evolution o f the stress gradient.

Figure 2.2, shows a typical elastic-plastic stress distribution ahead of a notch, which can be 

divided into three distinct regions:

Zone I - the opening stress is nearly constant and/or increasing to a maximum, Om. 

Zone II - is an intermediate transition zone.

Zone III - there exists a pseudo stress singularity, which can be described by,

C (2-9)

where a  and C are constants depending on the load and geometry. The distance that 

corresponds to the beginning of the third zone is referred to as the effective distance, Xef. 

This is assumed to be the boundary of the fatigue process zone and also corresponds to the
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boundary of plastic relaxation. The stress corresponding to this distance is named the 

effective stress, Oef, and is assumed to play the major role in the mechanisms of fatigue.

X
1000 3

2

0

-1

t - 2 f

-3

10 -4
10 X

Fig. 2.2 - The elastic-plastic stress distribution and the relative gradient as a function o f

distance from  the notch tip

The relative stress gradient,^, is also shown in the same diagram. This is defined as:

It can be seen from Figure 2.2 that at the effective distance, the relative stress gradient is a 

minimum.

Based on the above observations and definitions, the following fatigue assessment criterion 

has been suggested. In this approach failure is assumed if the value of the stress field 

intensity, api, described by the equation below, is greater than the smooth specimen fatigue 

strength.

This is essentially the average opening stress, on a line o f length equal to the effective 

stress, multiplied by a weight function, which is determined by the relative stress gradient.

(2-11)
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A similar approach has also been proposed using a volumetric method. In this case the 

effective stress is defined as the average o f the weighted stress inside the fatigue process 

volume:

ef

Where the weighted stress is given by:

(2-13)

And the weight function is defined as:

( p { r , x ) = ^ ^  ^  (2-14)

In the three-dimensional case the relative stress gradient is: 

1

2.2.3 The assessment of welds

There are two schools o f thought regarding the fatigue assessment of welded joints. Some 

people believe that they can be treated exactly the same as solid components and others 

believe that they cannot. In this work the former is assumed. However, two o f the most 

common methods used almost exclusively for the assessment of welded joints are 

discussed below.

2.2.3.1 Design Codes and Standards

Design codes and standards such as BSI [1993], are essentially a "nominal stress" approach 

to fatigue design and are based on a vast quantity of experimental data. They define 

various detail classes, each of which corresponds to an S-N curve. The S-N curve includes 

the effect o f the weld and local stress concentration at the failure location (usually the weld 

toe or root).
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This approach is well accepted, due to its ease of use and formal codification, but is quite 

limited. That is, a designer only has a limited number o f detail classes into which he must 

classify ever>' possible geometry. Also, it is often very difficult to define the nominal 

stress, in a complicated geometry.

2.23.2  The "hot-spot" or structural stress approach

The structural stress approach to the design of welded joints is similar to the nominal stress 

approach, however the structural stress is defined as per Figure 2.3 below. It includes the 

stress raising effects due to structural geometry or local discontinuities but excludes the 

stress concentrations due to the presence o f the weld. A single S-N curve can then be used 

for the assessment of all welds.

\  Local Stress

Horfipot Stress Structural Stress

'Non-Linear 
stress field [Linear 

stress field

Main plate
Local stress affected zone

Fig. 2.3 - Definition o f  structural stress and the hotspot stress

2.3 Fatigue assessment methods based on LEFM

2.3.1 The Smith and Miller method

Smith and Miller [1978] demonstrated that sharp notches could be modelled as cracks 

using linear elastic fracture mechanics (LEFM). Figure 2.4, often referred to as the Smith 

and Miller Diagram, is a schematic representation o f this. It shows that as the stress 

concentration of a notched fatigue specimen is increased (by reducing the notch root 

radius, but keeping the depth constant), experimental results deviate from the prediction 

made using the stress-life method, where the fatigue strength is given by equation 2-1.
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However they subsequently approach the predictions made using LEFM, where the fatigue 

strength is determined from:

Fig. 2.4 - Schematic representation o f the effect o f  K, on the fatigue strength o f notched 

specimens with constant notch depth, showing experimental results and predictions based

on: (a) the stress-life method and (b) LEFM

Hence the stress-life method and LEFM can be used together to obtain a good prediction. 

Which ever of the two methods estimates a higher fatigue strength, will be more accurate.

2.3.2 The crack modelling method (CMM)

The Smith and Miller approach works well for a simple geometry, however for more 

complex shapes, in which it is impossible to define a crack (or notch) depth, equation 2-16 

cannot be used.

The Crack-modelling method [Taylor, 1996] is a solution to this problem. It is essentially a 

method to obtain an equivalent stress intensity range, for any two or three-dimensional 

stress concentration feature, based on the stress distribution. Figure 2.5 is a schematic

(2-16)

Constant Notch Depth, D

Crack Prediction
(LEFM)

Notch Predicrton 
(Stress-Life Method)

Stress Concentration Factor, K
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illustration o f the concept. Essentially, the elastic stress distribution obtained via finite 

element analysis, ahead o f the stress concentration feature, is compared to the theoretical 

stress distribution ahead of a centre-crack in an infinite plate. The theoretical curve, 

obtained via the Westergaard equation [Westergaard, 1939], which best fits the FEA data 

defines an equivalent stress intensity factor. This can then be compared to the stress 

intensity threshold range, AKth, of the material to determine the likelihood o f failure, for a 

given load range. It should be noted however, that like the Smith & Miller method 

discussed above, the CMM must be used in conjunction with the stress-life method to 

obtain a good prediction. Which ever o f the two methods estimates a higher fatigue 

strength, will be more accurate.

w '

2aw

Component FEA 
Applied Loads, L Centre-Cracked Infinite Plate

Stress Stress

Applied Stress Intensity, K

Stresses along X-X' (S-D curve) Stresses along Y-Y'

Stress

Best fit gives a K prediction 
corresponding to loads L

Fig. 2.5 - Schematic illustration o f  the methodology used in the crack modelling technique

More detailed descriptions o f the crack modelling method, together with application of its 

use have been described elsewhere [Taylor, 1996], [Taylor and Carr, 1999], [Taylor et al., 

1997; 1999; 2002], [Taylor and Wang, 2000], [Wang et al., 2000] and [Wang, 1999],

15



where it has been demonstrated that the CMM, when used in conjunction with the stress- 

life method, produces accurate predictions for a wide range o f materials, notch geometries 

and actual components, including welded joints.

2.4 Strain based fatigue assessment methods

2.4.1 The strain-life method

In this approach, fatigue behaviour is described in terms of the local notch strain. This is 

considered important, as the deformation o f material at a notch root is often inelastic 

involving plastic strains.

In order to apply the method it is necessary to have knowledge o f the following:

a) The local stress-strain behaviour o f the material at the notch root. This can be 

obtained via an elastic-plastic finite element analysis or by using various 

approximations, for example the Neuber rule [Neuber, 1961] or Glinka rule [Molski 

and Glinka, 1981],

b) The cyclic stress-strain curve for the material and the strain-life curve, determined 

from constant strain fatigue testing of smooth specimens.

The strain-life approach is most commonly applied to the low cycle fatigue regime, in 

which failure generally occurs in less than 10 000 cycles. In this case, the loads are higher 

and the degree of local, notch-tip plasticity becomes more significant. It can generally be 

applied to any three-dimensional geometry, especially if an elastic-plastic finite element 

analysis is used to determine the local strain. However, problems can result in the 

definition of nominal stress and strain when using the Neuber approximation (see below).

2.4.1.1 Implementation o f the strain-life approach using the Neuber Rule

Neuber [1961] proposed that the geometric mean of the stress and strain concentration 

factors should remain equal to the elastic stress concentration factor during plastic 

deformation. That is:

(2-17)
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Where, for cychc loading

a n d  ^  (2-18)
( J  k  e  A 'Ao-_„ Acr__

Here, Aa and Ae are the local maximum stress and strain range at the notch root 

respectively. If yielding is constrained to occur locally at the stress concentration and the 

nominal stress remains elastic, then the nominal strain range will also remain elastic and is 

given by:

(2-19)
E

Where E is the Young's modulus o f the material. Substitution o f equations 2-19 and 2-18 

into equation 2-17 results in:

Aa-Af = (2-20)
E

Hence, given the elastic stress concentration factor, the nominal applied stress range and 

the Young's modulus o f the material, the relationship between the local stress range and the 

local strain range is uniquely determined. Also, Topper et al. [1969] have proposed the use 

o f the fatigue notch factor Kf in place o f the Kt, in equation 2-20, for cyclic loading when 

using Neuber's rule. This was suggested as it was observed to correlate better vsath 

experimental observations.

A a \£  = ^ ^  (2-21)
E

Once the local stress-strain relationship at the notch tip is known, it can be used in 

conjunction with the measured cyclic stress-strain curve of the material to quantify the 

local strain range experienced at the notch tip. The cyclic stress-strain curve is typically 

represented by the Ramberg-Osgood relationship.

A e  _  A c t  f  A ct
!/»•

(2-22)

So the equation for the stabilized hysteresis loop can then be obtained by doubling 

equation 2-22. Which results in:
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A e =  h 2
2K'

(2-23)

Intersection of equation 2-23 with equation 2-21 results in: 

(Ao-)'
■ +  2A(7

{K^A<yf
2K'

(2-24)

Figure 2.6 is an illustration of the way in which Neuber's rule is used to determine the 

actual notch tip stresses and strains for constant amplitude cyclic loading.

Notch stress, a

A5i
0

s,
Notch strain, e

Ae<=&a/E + 2 (A oaK )'

Fig. 2.6 - Illustration o f how to determine notch strain using Neuber's rule 

2.4.1.2 Mean strain effects

Strain-controlled cycling with a mean strain usually results in a mean stress, which may 

relax fully or partially with continued cycling. This relaxation is due to the presence of 

plastic deformation, and therefore, the degree of relaxation depends on the magnitude of 

the plastic strain amplitude. Mean strain does not usually affect fatigue behaviour unless it 

results in a non-fully relaxed mean stress. Since there is more mean stress relaxation at 

higher strain amplitudes due to larger plastic strains, mean stress effect on fatigue life is 

smaller in the low-cycle fatigue region and larger in the high cycle fatigue region 

[Stephens et a l, 1999].

As discussed in Stephens et al. [2001], the parameter suggested by Smith, Watson and 

Topper can be used to deal with mean stress effects on strain-life fatigue behaviour. This is
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most often referred to as the SWT parameter (or Pswt) and is described as per equations 2- 

25 and 2-26 below.

Equation 2-26 describes the variation of the P s w t  parameter as a function o f the number of 

cycles. It is sometimes referred to as the damage parameter life curve and essentially 

describes the failure condition. It is obtained by substituting the equations describing the 

strain-life curve into equation 2-25. The criterion is therefore based on the assumption that 

quantity defined by equation 2-25 remains constant for a given life.

2.5 Concluding remarks

The theories discussed above are the commonly used and accepted methods for the fatigue 

assessment of notched and welded components. Within the body of this work, only the 

critical distance methods [Taylor, 1999] and the crack modelling method [Taylor, 1996] 

are used and discussed, as these theories form the backbone o f this work. However, where 

possible, other methods have been implemented and compared in Appendix B.

^SW T amp ^  mean ^  amp ̂mean (2-25)

(2-26)
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Chapter 3: The area and volume methods

This chapter is concerned with the area and volume, critical distance methods and their 

application to complex three-dimensional stress concentrations. Taylor [1999] showed that 

if the average stress is evaluated over a semi-circular area o f radius ao ahead o f a crack tip, 

then the threshold for crack propagation is characterised by an average stress that is 

slightly larger than the plain specimen fatigue strength. Hence, he suggested using a 

critical distance or radius of ao, for the area method, with the knowledge that the resulting 

prediction would be slightly conservative.

In the following a more accurate evaluation of the critical radius for the area method, using 

a semi-circular area ahead of a crack, is presented. The analysis is also extended to a three- 

dimensional problem, by considering a semi-spherical volume ahead of a crack.

In this work the area and volume methods have been implemented via macros within the 

ANSYS finite element program. These calculate the average stress via a numerical 

integration. The methodology and user instructions for these macros are presented in 

Appendix C.

3.1 The area method

3.1.1 Which stress component to use

When calculating the critical distances for the point and line methods, the stress ahead of a 

crack on the zero degree line is considered (see Figure 3.1). Along this line the tangential 

stress, Aae, the y-direction stress, Aay, and the maximum principal stress, Aai, are 

equivalent. In all other directions this is not true. Hence, when determining the critical 

radius for the area method, the first thing that must be decided is which o f these stress 

components should be used.
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Fig. 3.1 - Stress components ahead o f  a fatigue crack

The logical approach is to use the stress component responsible for crack growth. 

However, for mode 1 loading, crack growth is along the zero degree line, and as all the 

stress components mentioned above are equivalent on this line, it is not possible to say 

which one is responsible for crack growth. Therefore, consider a mixed mode loading case, 

whereby the crack is also loaded by a remote shear stress. In this case it is typical for a 

propagating crack to change direction in order to follow the direction perpendicular to the 

maximum principal stress. For this reason it is believed that the maximum principal stress 

is the most important stress component for the fatigue assessment o f notched components 

and is used in the following to determine the critical distances for the area and volume 

methods. This is in fact the difference between the result present here and that given by 

Taylor [1999]. In his derivation o f the critical distance for the area method, he considered 

the stresses ahead of the crack in the y-direction only.

3.1.2 Determining the critical radius

As a starting point, consider the elastic stress field surrounding a two-dimensional long 

crack, which, for cyclic loading, is fully described by the equations below [Irwin, 1957]:
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From this, the first principal stress range can be found at any point in the stress field:

A<Ti ( / - , 6 > ) = ^ L
■\I27ir

e
cos—+ 

2
 ̂ 0 . 0 ^  
cos—sm —

V
(3-2)

dA

0 = 0 deg
Crack

Fig. 3.2 - Calculation o f the average first principal stress in a semi-circular area ahead o f

a crack

Consider a semi-circular area, of radius, rc, ahead of the crack tip, as shown in Figure 3.2 

above. The average first principal stress, Aaave, can be found by integration as below.

r

= - ^ \ \^ < y \{ r ,O ) r d r d 0  (3-3)
^ 1/2 ^ 1/4 0 0

Where,
2m

'1/4 ~ ~4/4 = %  (3-4)
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The resuh is.

7ir„ I k
+  • = 0.6482 (3-5)

At the threshold condition, where no crack growth is observed, AKi = AKth, hence

aa:,.
Ao-„ =0.6482 (3-6)

The critical radius for which the average principal stress is equal to the smooth specimen 

fatigue strength, Ago, is given by:

= 0.4202 (3-7)

A s per the point and line methods, (see Chapter 2, section 2.22.2) the critical distance can 

be defined in terms of the El Haddad short crack parameter, â , [El Haddad et al., 1979],

1
= -n

SK.
(3-8)

Hence the critical distance can then be written in terms of ao. 

r  = 1.32a„ (3-9)

3.1.3 Orientation of the critical area for a complex stress concentrations

When applying the area method to a complex geometry, the problem arises of how to 

orientate the critical area. This is demonstrated in Figure 3.3 below. In the work presented 

here this problem is addressed using the following criteria.

The bisector (or line of symmetry) of the critical area is assumed to coincide with 

the direction of the focus path, determined as per section 21 1 .21 . Hence the 

bisector of the critical area is assumed to be perpendicular to the direction of the 

maximum principal stress at the hot spot.
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This implies that the bisector of the critical area is assumed to coincide with the direction 

of crack propagation.

Fig. 3.3 - Application o f  the area method to a complex geometry

3.2 The volume method

3.2.1 The critical radius

The forgoing analysis, for the area method, is two-dimensional and assumes zero stress 

gradient in the thickness direction, as shown in Figure3.4(a) below. However, if  a spherical 

critical volume is assumed instead of a cylindrical one (see Figure 3.4(b)) then the stress 

gradient in all directions can be accounted for.

Fig. 3.4 - Possible choice o f shapes for the volume method
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This is done is a very similar manner as above, except a spherical coordinate system, 

shown in Figure 3.5 below, is used and the average stress is calculated via a triple integral. 

Note that in spherical coordinates, the first principal stress range becomes:

z =  p cos 4>

X

y

Fig. 3.5 - Definition o f  spherical coordinate system
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Hence the average stress is calculated by:

^ ^ o .e .s p h  = 7 ^ 1  j j j sin ̂  i/p d<l> dG
^1/8 0 0 0

1 7: % Pc

Where,

This results in the following:

AK,I ^A ct =  0.699ave,sph
iip o

(3-10)

(3-11)

(3-12)

(3-13)
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Following the procedure outlined above, it can be shown that the critical radius, Pc, where 

the average stress range is equal to the plain specimen fatigue strength is;

= (3-14)

3.2.2 Orientation of the critical volume for a complex stress concentrations

When applying the volume method to a complex geometry the criteria used to orientate the 

critical volume is very similar to the one used for the area method, discussed above. That 

is; the bisector (or line o f symmetry) of the critical volume is assumed to coincide with the 

direction of the focus path, determined as per section 2.2.2.2.2. This implies that the 

bisector o f the critical volume is assumed to coincide with the direction of crack 

propagation.

3.3 Concluding remarks

Because the area and volume methods are more spatial versions of the critical distance 

methods it was expected that they would be more suited to the evaluation of complex 

three-dimensional stress concentrations when compared to the simpler point and line 

methods. In particular it was expected that the volume method, as described above, would 

be useful for the fatigue prediction of localised stress concentrations were the failure 

occurs from a point or very small region, as it is able to take into account the stress 

distributions in all three directions. However, as demonstrated in the following chapters, 

these methods did provide a small increase in accuracy, but in general were a little bit of a 

disappointment and not really worth the added computational complexity.
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Chapter 4: Previous work done on welds

As mentioned in the introduction, the initial aim of this work was to continue the validation 

of the crack modelling method (CMM) and the critical distance methods (CDMs) for the 

fatigue assessment o f welded joints. This chapter is a brief review of the previous work 

done on welded joints.

The way in which the CMM and the CDMs are applied to welds is effectively the same 

method that has been successfully applied to solid parts, using stress data obtained from 

FEA. In this approach, the stresses are calculated by modelling the weld bead and the 

parent material as a solid part, with the same values of Young's modulus and Poisson's 

ratio. The weld bead is generally idealised to have a triangular cross-section with no root- 

radius at the weld toe. The behaviour of the weld is taken into account, in the fatigue 

analysis, by using the appropriate material properties for welds. This is discussed in the 

section below.

4.1 The fatigue properties of welded joints

In order to determine the fatigue properties of welds, fatigue tests on butt-welded bending 

specimens (at R-ratio = 0.1), as shown in Figure 4.6, were undertaken [Barrett, 1998; 

Taylor et al., 2002], The smooth specimen fatigue strength, Aao, was taken to be the 

fatigue strength of the ground butt-welded specimens: 153 MPa at 5x10^ cycles. The 

threshold stress intensity range, AKth, was estimated from the fatigue strength of the 

notched specimens, as it can be assumed that notches, which are sufficiently sharp, will 

behave as if  they were cracks. Hence, AKth, was found to be 6.8 MPa.m'^^. The El Haddad 

short crack parameter, a«, was subsequently calculated to be 0.43 mm. All specimens were 

heat treated in order to relax residual stresses introduced as a result o f the welding process.
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Fig. 4.6 - Determining the material properties for welded steels

4.2 Two-dimensional welded geometries

Considerable work has been undertaken in order to assess the ability of the CMM and the 

CDMs to predict the fatigue behaviour of two-dimensional welded joints in steel [Barrett, 

1998; Taylor et al., 2002; Crupi et al., 2002], Experimental investigations of the welded 

geometries shown in Figure 4.7 below, have been undertaken, the results of which are 

reported by Taylor et al. [2002], and are summarised in Table 4.1 below.

WIDTH-23iim IN BOTH PLATES .APPLIED FORCE

CLAMPING BOLTS WELDS FATIGUE 6mm

i r
100 mm

(a) T-shaped geometry

PLATL W IDTH*25mm

B utt Weht (migroM nd) 

^ —

(b) Butt welded geometry

Fig. 4.7 - Two-dimensional welded geometries
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Table 4.1 - Results o f  the investigation o f  2D welded geometries
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T-shape 2.5 kN 2.53 kN 2.24 kN 2.46 kN 2.09 kN

Butt 140 MPa 102 MPa 131 MPa 138 MPa 129 MPa

In addition, Taylor et al. [2002] also examined the effect of finite element mesh density on 

the prediction errors obtained for the T-shaped specimens shown in Figure 4.7(a). The 

results of that analysis are summarised in Figure 4.8 which shows the predictions for the 

fatigue strength using the CMM, PM, LM and AM, as a function o f mesh element size. 

Also shown are the experimental value and the limits of ±20% error, which is considered 

to be acceptable for these predictions. It can be seen that the methods give reasonable 

predictions even for very large element sizes. This is particularly true for the CMM.
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Fig. 4.8 - Results from the CMM and the CDMs fo r  the T-shaped welds as a function o f

mesh element size

Taylor et al. [2002] also showed that these methods could be used to accurately predict 

data from the literature for non-load-carrying cruciform fillet welds and that the effect of 

plate thickness, whereby the strength is seen to decease as the size increases, is similarly 

accounted for. They also demonstrated that the effect of weld reinforcement angle could be 

successfully predicted using data from the literature for unground butt welds.
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Crupi et al. [2002], have recently undertaken a review of fatigue assessment methods for 

two-dimensional welded geometries in which the CMM and the CDMs were included. 

They showed that these methods resulted in good predictions when data from the literature 

for different geometries, dimensions and materials were considered. In particular, they 

examined cruciform joints in steel; butt welds in AlMg 4.5 Mn aluminium alloy designated 

AA5083; and T-shaped non-load carrying fillet welded joints made of aluminium alloy 

AA5083.

Hence, from the above, it can be concluded that the CMM and the CDMs can be used with 

confidence for the fatigue assessment o f two-dimensional welded joints assuming that the 

correct material parameters are employed.

4.3 A Three-dimensional welded geometry (T-shape-B)

After the success obtained for two-dimensional welded joints, it was decided that a more 

complex three-dimensional case should be investigated. This work was carried out by 

Lucano [1999]. The geometry that was chosen is shown in Figure 4.9 below and is 

designated T-shape-B. The specimen is similar to the two-dimensional T-shaped geometry 

discussed above but the width of the base-plate was increased so that the fillet welds were 

not continuous across the specimen. Fatigue cracks were therefore forced to initiate at the 

weld end (see Figure 4.9). The base-plate was constrained via two bolts located 100mm 

apart. A cyclic load was applied at the end of the vertical member in the vertical direction.
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Fig. 4.9 - First three-dimensional welded geometry assessed

Figure 4.10 shows the S/N data obtained for the T-shape-B welded specimen. A regression 

line has been drawn through the data using a least-squares fit with the standard equation:

= /I/(A(7)” (4-15)
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Fig. 4.10 - Experimental results fo r  T-shape-B welded joint, p lo tted  in terms o f  the applied

load range

Using this data the fatigue strength is really only well defined up to a 2x10^ cycles, 

however the curve is extrapolated to 5x10^ cycles so that the fatigue strength corresponds 

to this number of cycles at which the material properties are calculated. The fatigue 

strength o f this specimen is therefore calculated to be 6.62 kN at 5x10^ cycles.

Three-dimensional finite element models were made in order to estimate the stress 

distribution in the specimen. Various geometrical configurations for the weld bead and 

weld end were investigated and shown to have only a small effect. Table 4.2 is a very brief 

summary of the results obtained. The error factor is defined as;

Error factor  =  strength (4-16)
predicted strength
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Hence, an error factor of greater than one indicates a  conservative prediction, less than one 

is non-conservative and an error factor of one indicates a perfect prediction. This is the 

definition adopted in the remainder o f this work.

Table 4.2 - Summary o f  results from the fatigue assessment ofT-shape-B

Three-dimensionai T-shape specimen
Experimental fatigue strength 6.62 kN at 5x10^ cycles
Point method 3.75 kN
(Error factor) (1.77)
Line method 3.34 kN
(Error factor) (1.98)
CMM 4.12 kN
(Error factor) (1.61)

4.4 Concluding remarks

From the above it was concluded that the CMM and the CDMs are very useful tools for the 

fatigue assessment of two-dimensional welded joints. However, a conservative error was 

encounter when trying to apply these theories to a more three-dimensional geometry. This 

was the extent of the work done concerning welds, previous to the commencement of this 

project. The following chapter describes work undertaken in this project, which is 

essentially a continuation of the above.
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Chapter 5: Defining the problem

As already stated, the initial aim of this project was to continue the work described in 

Chapter 4 concerning welded joints. To very briefly summarise, at this point it had been 

demonstrated that the CMM and the CDMs were very successful at predicting the fatigue 

behaviour o f two-dimensional notched geometries, in both solid components and welded 

joints. However, problems had been encounter when trying to predict a three-dimensional 

welded joint where the failure was constrained to occur at the end of a weld bead (T-shape- 

B).

The starting pomt was to test another three-dimensional welded geometry and see how 

successful the methods were for that case. Again large conservative errors were observed. 

This same conservatism was obtained when trying to predict test data taken from the 

literature for three-dimensional welded geometries, specifically non-load-carrying stiffener 

type and flange type welds. Given this, and knowing that the CMM and the CDMs are very 

successful at predicting the behaviour of two-dimensional welded geometries, several 

three-dimensional stress concentrations, machined from solid steel, were designed and 

tested in order to test the hypothesis that the conservative error was due to the three- 

dimensional geometry, not the welding.

In the work discussed below, only the results o f the experimental work and fatigue 

analyses are included. A more complete description is presented in Appendix A. In the 

following it is desirable to focus on the results and the consequences of these in terms of 

the direction of research, without being bogged down in the details.

5.1 Another 3-D welded geometry (Fillet-A)

The welded geometry chosen for investigation is shown below in Figure 5.1. It was 

selected because, like the three-dimensional T-shape specimen discussed above, it was 

expected that failure would occur at the end of one of the four fillet welds. This specimen 

is an asymmetric, load-carrying, longitudinal fillet welded attachment and is referred to as 

Fillet-A. This investigation was carried out in collaboration with Stefano Marco [2000].
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(a) FEA model (b) Photo

Fig. 5.1 - Three-dimensional welded specimen (Fillet-A)

The specimens were loaded in tension, by fixing the ends and applying a cyclic load at an 

R-ratio of 0.1 using a servo-hydraulic testing machine. The stress-life curve obtained is 

displayed in Figure 5.2. The fatigue strength was determined to be a load range o f 8.4 kN 

at 5x10^ cycles to failure.
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Fig. 5.2 - S-N curve obtained fo r the Fillet-A specimen

Table 5.1 is a very brief summary o f the results from the fatigue analysis of the Fillet-A 

specimens. It can be seen that large conservative errors, with error factor greater than 2, are 

observed.

Table 5.1 - Summary o f  results from  the fatigue assessment o f  Fillet-A

Fillet-A
Experimental fatigue strength 8.4 kN at 5x10^ cycles
Point method 3.78 kN
(Error factor) (2.22)
Line method 3.33 kN
(Error factor) (2.52)
Area method 3.72 kN
(Error factor) (2.26)
Volume method 3.54 kN
(Error factor) (2.37)
CMM 4.24 kN
(Error factor) (1.98)

Note: Error factor is defined as the ratio o f  the Experimental fatigue .strength to the predicted fatigue

strength
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5.2 Weld Data taken from the literature

In the following the CMM and the CDMs have been tested against data taken from the 

literature [ESDU, 1976] for longitudinal fillet welded attachments and joints in steels 

under axial loading. Three specimen geometries have been considered:

a) A non-load-carrying, stiffener type, joint - Figure 5.3

b) A non-load-carrying, flange type, joint - Figure 5.4

c) A non-load-carrying, single sided, stiffener type, joint - Figure 5.5

Three-dimensional finite element models were built in order to obtain the stress 

distributions. The results o f the fatigue analysis are reported in Table 5.2 below. From this 

it can be seen that the methods produce very conservative predictions o f the fatigue 

strength.

2 3 l « S * 7 t | 0 ’ 2 I 4 9 * 7 t | 0 »  2 } 1 4 S f t 7 l | 0 *  2

.V c ^ l e s

Fig. 5.3 - Non-load-carrying weldedjoint (Stiffener type)
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Fig. 5.4 - Non-load-carrying weldedjoint (Flange type)
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Fig. 5.5 - Non-load-carrying weldedjoint (Stiffener on one side only)
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Table 5.2 - Summary o f results for the non-load-carrying welded joints

Stiffener Type Flange Type Stiffener type 
single

Experimental 
fatigue strength

64 MPa 
at 5x10^ cycles

62 MPa 
at 5x10^ cycles

72 MPa 
at 5x10^ cycles

Point method 23.1 MPa 17.7 MPa 54.1 MPa
(Error factor) (2.77) (3.62) (1.33)
Line method 23.75 MPa 15.6 MPa 45.8 MPa
(Error factor) (2.69) (4.10) (1.57)
Area method 24 MPa 17.2 MPa 45.7 MPa
(Error factor) (2.67) (3.72) (1.58)
Volume method 31.26 MPa 18.16 MPa 52.9 MPa
(Error factor) (2.05) (3.52) (1.36)
CMM 26.34 MPa 22.1 MPa 53.9 MPa
(Error factor) (2.43) (2.89) (1.34)
Note: Error factor is defined as the ratio of the Experimental fatigue strength to the predicted fatigue

strength

5.3 Three-dimensional stress concentrations in solid components

Based on the above and knowing that the CMM and the CDMs are very successful at 

predicting the behaviour o f two-dimensional welded geometries, it was proposed that the 

conservative error is due to the three-dimensional geometry, not the welding. In order to 

test this hypothesis several three-dimensional stress concentrations, machined from solid 

steel, were designed and tested. These are discussed below

5.3.1 Material properties

The material chosen from which to machine the specimens was a standard, low carbon, 

structural steel, designated BS 970; 1996: 080A15 (or BS 970: 1955: En2B). A 

considerable amount of work was done in order to characterise this material. This is 

discussed in detail in Appendix A. However here, it is sufficient to say that the plain

specimen fatigue strength (in bending) was found to be 435 MPa at 2x10^ cycles and the
1/2material stress intensity threshold, AKth, was determined to be 11 MPa.m . Hence the El 

Haddad parameter, ao, was found to be 0.205 mm.
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5.3.2 The Model-E specimen

The first solid steel specimen investigated is shown in Figure 5.6 below. This specimen has 

been designated Model-E and the work involving it was done in collaboration with Ezio 

Mazzeo [2000], The specimen was loaded in three-point bending at an R-ratio o f 0.1.

Point of 
Maximum 
Stress —

Fig. 5.6 - Schematic o f  the Model-E specimen

This specimen was chosen for investigation because it shares the following characteristics 

with the three-dimensional welded specimens:

a) The resulting fatigue crack is a non-through crack. In fact, in this case a complex, 

non-planar fatigue cracks emanated from the stress concentration labelled "point o f  

maximum stress" in Figure 5.6.

b) There is a significant stress gradient in all directions emanating from the point of 

maximum stress.

c) Thirdly, the failure is constrained to occur from a very small region.

The fatigue strength was determined to be an applied load range of 6.6 kN at 2x10^ cycles. 

The stress-life curve that was obtained is shown in Figure 5.7 below.
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Fig. 5.7 - S-N curve obtained for the Model-E specimen

Two finite element models were built to investigate this geometry. One contained a root 

radius at the failure location, which was equal to the average measured value o f 0.2mm 

(Model-E2). The other had no root radius (Model-El). Hence, in this case, a singularity in 

the elastic stress field existed at the failure location.

Table 5.3 - Summary o f results for the Model-E

Model-El
(p=Omm)

Model-E2
(p = 0.2mm)

Experimental 6.6 kN at 2x10^ cycles
Point method 2.99 kN 2.52 kN
(Error factor) (2.21) (2.62)
Line method 3.06 kN 3.04 kN
(Error factor) (2.16) (2.17)
Area method 3.35 kN 3.14 kN
(Error factor) (1.97) (2.10)
Volume method 3.70 kN 4.21 kN
(Error factor) (1.78) (1.57)
CMM 4.56kN 3.78 kN
(Error factor) (1.47) (1.75)
Stress-life method
(Error factor)

1.25 kN 
(5.28)

A summary of the results of the fatigue analysis of the Model-E specimen is shown in 

Table 5.3 above. It can be seen that in all cases significant conservative errors are obtained. 

Also, as discussed in Appendix A, section A.3.5, the methods for which the lowest
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prediction errors are obtained (ie. the volume method (Model-E2) and the CMM (Model- 

E2)) are believed to be erroneous. Hence, it was concluded that the fatigue assessment 

methods are not adequate for the assessment of stress concentrations like Model-E.

5.3.3 The Model-T specimen

The second solid steel specimen investigated is shown in Figure 5.8 below. This is a 

sharply notched bar loaded in bending, but the notch is orientated vertically relative to the 

direction of the applied load so that the fatigue crack is forced to initiate at the top of the 

specimen, at the notch root. The work on this specimen, which is designated Model-T, was 

done in collaboration with Thomas Pircher [2001].

This specimen was chosen for investigation because, like the Model-E specimen, the 

fatigue crack must start from a very specific point or at least a small region, but, in this 

case, there isn't a high stress gradient in all directions, as the bending gradient is very 

shallow when compared to the gradient caused by the notch. Also, as discussed in 

Appendix A, section A.4.3.1, a considerable effort was made to measure the evolution of 

the crack shape as it grew.

Fig. 5.8 - Schematic o f  the Model-T specimen

The results of the experimental investigation, in the form of the measured stress-life curve, 

are shown in Figure 5.9 below. The fatigue strength was determined to be a load range of 

11.4kN at 2x10^ cycles. Table 5.4 is a summary o f the fatigue analysis of this specimen. It
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was also shown that fatigue cracks developed at the stress concentration are highly 

elliptical (i.e. a ! 0. 2)  with the major axis orientated along the notch.
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Fig. 5.9 - S/N curve obtained fo r  the Model-T specimen

Table 5.4 - Summary o f  results fo r  the Model-T

Model-T
Experimental 11.4 kN at 2x10^ cycles
Point method 11.48 kN
(Error factor) (0.99)
Line method 13.56 kN
(Error factor) (0.84)
Area method 12.72 kN
(Error factor) (0.90)
Volume method 13.9 kN
(Error factor) (0.82)
CMM 13.64 kN
(Error factor) (0.85)
Stress-life method 5.72 kN
(Error factor) (1.99)

The prediction for the Model-T specimen are in general quite good, and if anything, 

slightly non-conservative. Indeed the point method is almost perfect. The line, area and 

volume methods result in slightly higher predictions with error factors between 0.8 and 0.9. 

These are still considered acceptable.
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5.4 Concluding remarks

From the results outlined above it was concluded that:

a) The problem, which results in the conservative errors, is not only limited to 

welded joints, as it was also observed in the Model-E specimen.

b) Given that good predictions were obtained for the Model-T specimen it was 

concluded that the problem is limited to geometries in which the failure is 

constrained to occur from a very localised stress concentration in which there 

exists large stress gradients in all directions emanating from the hotspot.

Based on this information, three possible reasons as to why the fatigue analysis methods 

are inadequate were proposed and are discussed separately in the following chapters.
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Chapter 6: The shape effect

Methods of high cycle fatigue analysis are generally developed using simple two- 

dimensional geometries as a base. This is certainly the case for the CMM and the CDMs. 

Consequently application of these methods to more complex three-dimensional geometries 

requires additional considerations.

For two-dimensional geometries, whether plane strain or plane stress, a fatigue crack is 

assumed to extend through the thickness o f the specimen. This assumption is not always 

valid for three-dimensional geometries where the growth of semi-elliptical fatigue cracks, 

initiated at stress concentrations is extremely common. In the following it is argued that 

crack shape can affect the life of a component even at its fatigue limit, through the growth 

of non-propagating cracks. How this is accounted for depends on the analysis method and 

how it is applied to three-dimensional geometries. The CMM and the CDMs (specifically 

the point method and the line method) are used below to demonstrate the ideas.

6.1 Non-propagating cracks

Before continuing, a brief review of the literature concerning the nature and prediction 

methods of non-propagating cracks will be undertaken. Fenner et al. [1951] were the first 

to observe the phenomena. Earlier work to determine the fatigue strength of notched 

components was based only on unbroken or completely broken specimens. Fenner and co

workers found that cracks could form at the root of a notch at a stress level that was 

insufficient to cause the cracks to propagate to complete fracture. This was confirmed by 

Frost and Dugdale [1957], who showed that a crack formed at the notch root when the 

nominal stress was very nearly equal to the smooth specimen fatigue limit divided by the 

appropriate value of Kt (i.e. the stress predicted by the stress-life method), but the crack did 

not continue growing until a certain limiting stress level was applied. This behaviour is 

shown in Figure 6.1 below. Frost [1959] later proposed that this limiting stress (for mild 

steel at an R-ratio o f -1) is governed by the parameter ctV, where a  is the nominal stress 

and / is the crack length.
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6.1 - The Frost diagram

Smith and Miller [1977] subsequently demonstrated that linear elastic fracture mechanics 

could be used to describe the horizontal line in Figure 6.1 (this is discussed in Chapter 2,

section 2.3.1). Hence, Figure 6.1, as modified by Smith and Miller can be used as a

mechanism map to describe the conditions under which non-propagating cracks will 

develop and govern the fatigue behaviour o f sharp notches.

An alternative approach to predict the behaviour o f non-propagating cracks is the 

resistance curve method, which is based on LEFM modifications, to predict short crack 

behaviour. Fundamental to the resistance curve approach is the idea that the stress intensity 

threshold is a function of crack length, which approaches a constant as the crack becomes 

large, but decreases from the long crack value when the crack is short. This behaviour is 

observed experimentally and was first modelled by El Haddad et al [1979], They described 

the threshold as per Equation 6-1, where AKth is the stress intensity threshold measured for 

a long crack, a is the crack length and ao is the El Haddad short crack parameter discussed 

in chapter 2.
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a + a
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(6- 1)

The use o f the resistance curve is demonstrated in Figure 6.2 below. The curved line 

describes the variation in the threshold given by equation 6-1. The two almost straight, 

parallel lines describe the increase in stress intensity o f  a small crack, growing from a 

notch, as the crack gets longer. The two lines represent different applied stress levels. The 

uppermost line, labelled AK2, never intersects the resistance curve. Hence, at this stress 

level the crack will continue to propagate until failure occurs. The lower line, labelled AKi, 

just touches the resistance curve at one point. At this crack length and applied stress level 

the crack will become non-propagating. Hence, this condition represents the fatigue limit 

of the component. A lower applied stress level will result in a non-propagating crack o f a 

smaller length.

The El Haddad resistance curve approach has been confirmed to agree well with the 

experimental data for various metals [El Haddad et a i ,  1979; Tanaka et a l ,  1981] and is 

used below, as it fits nicely with the CDMs.
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Fig. 6.2 - The El Haddad resistance curve
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Tanaka et al. have also proposed a slightly different resistance curve approach, which is 

based on crack closure arguments [Tanaka et al., 1981; Tanaka and Nakai, 1983; 1984; 

Akiniwa et al., 1997],

6.2 The effect of crack shape

As already stated, the idea being investigated in this chapter is how the shape of a crack 

can affect the fatigue strength o f a three-dimensional component where cracks are forced 

to have a semi-elliptical shape. It is believe that this occurs because the fatigue limit of 

these components is governed by the growth of non-propagating cracks. Therefore, in the 

following the effect of crack shape on the growth rate o f both long cracks and non

propagating cracks are investigated.

6.2.1 The effect of crack shape on long crack growth

From a fracture mechanics point o f view, the crack propagation rate of a long crack, above

the threshold can be expressed by the Paris equation.

~  = A(AKr  (6-2)
dN

Where, A and m are experimentally determined material constants. By rearranging and 

integrating, the number of cycles, AN, required for a crack to propagate from an initial

length, ai, to some final length af, can be determined as:

AN =  f ----------- da (6-3)
A{AKT

Using the standard LEFM equation for the stress intensity and assuming that the shape 

factor or configuration factor, F, is independent o f crack length, we obtain equation 6-4. 

The assumption that the configuration factor is independent o f crack length is not, strictly 

speaking, valid. However, as long as the shape factor doesn't change significantly between 

the limits of crack growth it is a reasonable approximation and adequate for the purpose of 

qualitatively determining the effect of crack shape on propagation life.
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AN =
AF"'{AcrTn"'

For m not equal to 2

AN = (6-4)

Therefore the number of cycles required for a crack to propagate an arbitrary length (at a 

constant stress range, Aa) is inversely proportional to the shape factor, F, raised to the 

power of the growth rate exponent, m:

6.2.2 The effect of crack shape on non-propagating cracks

In the following the resistance curve, due to El Haddad (see section 6.1), is used in 

conjunction with equation 6-6 below to qualitatively determine the effect of crack shape on 

the crack growth rate of non-propagating cracks. Equation 6-6 is a modification of the 

Paris growth rate equation to account for near threshold behaviour. It can be seen that as 

the stress intensity approaches the threshold value the crack growth rate approaches zero. 

This is a common approach to estimating near threshold crack growth rate, however in 

equation 6-6 the threshold stress intensity range is not the long crack constant, but the 

relationship developed by El Haddad (equation 6-1) to describe short crack growth and 

consequently non-propagating cracks.

The material constants A and m, in equation 6-6, must be experimentally determined and 

the stress intensity range, AK, o f a small crack at the root o f a sharp notch can be estimated 

as per equation 6-7 (assuming again that the shape factor of the crack, F, doesn’t change 

significantly as a function of crack length)

Â Voc pm (6-5)

(6-6)

AK =  FAa^n{a + D) (6-7)
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Figure 6.3 shows the resuUing crack growth curve for the case of a small crack growing at 

R=0.1 at a notch with a depth of 0.75mm and root radius of 0.04mm using a material with 

a plain specimen fatigue limit of 446MPa, and a long crack stress intensity threshold range 

o f 10.52 MPa.m’^̂ (therefore a<, = 0.017mm). The results for a long crack are also shown, 

in this case the constant, long crack, threshold stress intensity is used in equation 6-6.

0.01

1 10

1 10

1 10

1 10

1 10
Long cracks 
(AKth =  constant)

1 10

100

Fig. 6.3 - Crack growth curves, with and without the El Haddad short crack correction

The stress level, for both o f the curves above, corresponds to the line labelled AKi in the 

Figure 6.2. It is in fact the stress level at which the maximum non-propagating crack length 

is formed and is therefore the fatigue limit of the component. The curve for the short crack 

shows a sharp valley, where the crack growth rate approaches zero. This corresponds to the 

point (in Figure 6.2) where the stress intensity of the crack is equal to the threshold stress 

intensity given by the resistance curve or the stress intensity o f the maximum non

propagating crack length.

The effect o f changing the shape factor (or the shape o f the non-propagating crack) in 

equation 6-7 above is shown in Figure 6.4. It can be seen that increasing the shape factor 

results in an increased crack growth rate.
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Fig. 6.4 - The effect o f  crack shape on the growth rate o f non-propagating cracks

The relationship between life, applied stress level, and crack shape can be determined by 

integration of equation 6-6 between a very small crack length (eg. the average grain size) 

and the maximum non-propagating crack length, determined from the resistance curve. 

This is shown schematically in Figure 6.5 below for the same situation as described above. 

It can be seen that as the shape factor increases the permissible applied stress level 

decreases proportionally (for the same life).
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Fig. 6.5 - The effect o f  crack shape on the predicted stress-life relationship

6.3 Assessment of 3D stress concentrations using a 2D “focus path”

Application of the point method and the line method involves evaluating the stress at a 

point, or the average stress on a line ahead of the stress concentration. Hence, the simplest 

way of adapting these methods to a three-dimensional geometry is by the use o f a two- 

dimensional focus path. The focus path is essentially a line extending from the hotspot in a 

direction chosen by some criteria on which the stresses can be evaluated (this is discussed 

in Chapter 2, section 2.2.2.2.2). The analysis is then performed in the same way as per the 

two-dimensional case.

In 2D, the focus path is a straight line that is thought of as being coincident with the plane 

of crack growth. Within this plane the crack length is assumed to be constant, or a through 

thickness crack. Hence, for a three-dimensional stress concentration the use o f a focus path 

is equivalent to making an inherent assumption about the shape o f a crack initiated from 

that stress concentration. This is illustrated schematically in Figure 6.6. Figure 6.6(a) 

shows the actual stress concentration and loading configuration. Figure 6.6(b) shows the 

real crack shape, and Figures 6.6(c) and (d) show the crack shape that would be assumed 

for the choice of two different focus paths (i.e. a straight crack front normal to the focus 

path).
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Fig. 6.6 - The problem created by choosing a 2D focus path

6.4 Quantifying the correction factor

The foregoing analysis demonstrates that;

a) The fatigue limit o f sharp, "crack-like" stress concentrations is governed by the 

growth of non-propagating cracks.

b) The shape of a non-propagating crack affects its growth rate and consequently its 

stress-life relationship. As the shape factor increases the permissible applied stress 

level decreases proportionally (for the same life).

c) The use of a 2D focus path for a 3D stress concentration results in an inherent 

assumption about the shape of a crack initiated from a stress concentration.

Consequently, fatigue predictions made using the focus path concept should be multiplied 

by the correction factor given in equation 6-8, where Fassumed is the shape factor for the 

crack assumed by the choice of a focus path and Factual is the shape factor o f the actual 

crack.

53



L ’ A ^
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shape correction ~  K V
actual actual

This correction factor can be determined by building two finite element models of the 

component being considered, one including a crack with the assumed shape and the other 

with a crack of the actual shape. For both cases, the stress intensity range can then be 

found at the point where the focus path crosses the crack front. It should be noted that, as 

the correction factor is the ratio of these two stress intensity factors, the modelling of the 

stress singularity at the crack tip doesn’t have to be especially accurate. As long at the FE 

mesh used in both models is equivalent, any error is cancelled out.

6.4.1 In te rm s of th e  elliptical integral, O

Given that the error, discussed above, is the result of a difference in crack shape within 

exactly the same geometry (and loading condition), it can be seen that the correction factor, 

as defined by equation 6-8, is independent of geometry and load. That is, the correction 

factor will be exactly the same if the two crack shapes are considered in any geometry. 

Based on this, a more general expression for the correction factor is determined below 

using the stress intensity factor for an embedded elliptical crack in an infinite body 

subjected to uniform tension perpendicular to the crack plane (see Figure 6.7 below).

For this configuration the stress intensity is given by:

<7yfm
K =

O

2

s in ^  + COS^ P (6-9)

Where O is the complete elliptical integral of the second kind, and depends on the crack 

aspect ratio a/c.

< p = | 1 -
(  2\ 

1 - ^ sin^ (j)
72

d(p (6-10)
 ̂ J

Values for O are tabulated in Table 6.1 below. It can be seen that O varies from 1.0 to 

1.571 for a'c ranging from 0.0, for a very elongated ellipse to 1.0 for a circle.

54



Fig. 6.7 - Elliptical crack parameters

Table 6.1 - Values o f  the complete elliptical integral o f the second kind

a'c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

O 1.0 1.016 1.051 1.097 1.151 1.211 1.277 1.345 1.418 1.493 1.571

Figure 6.8 below shows four possible crack shapes, for which the stress intensity can be 

determined, at the location labelled point A. If the y-axis coincides with the direction o f the 

focus path, then the case where the width o f the elliptical crack goes to infinity is 

equivalent to a through crack, which in turn is the shape of the crack assumed by the 

choice of focus path. Hence, if  the actual crack shape corresponds to any of the other three 

shape categories, the correction factor is given in Table 6.2.
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Through crack (a/b -> 0)Focus Path

Blunt ellipse (a/b < 1)

X (b = crack width)

Circular (a ^  - 1)

Sharp ellipse (a/b > 1)

Fig. 6.8 - Possible elliptical crack shape

Table 6.2 - The correction factor for different crack shapes

Through crack a/b = 0 K  = a y f m

Blunt ellipse a/b < 1 ^  _  <j 4 ^
O

f  = O  ,J  shape correction actual

Circular crack a/b = 1 ^  _  c r4 m  

O

f  = o  ,J  shape correction actual

Sharp ellipse a/b > 1 <j 4 ^  bK —
O a

f  -J  shape correction  ̂ actual

It should be noted that <t>actuai is the value o f the elliptical integral (from Table 6 .1 )  for a 

crack aspect ratio that is always between 0.0 and 1.0. This is why the correction for the 

sharp ellipse is different from the other two cases.

It can therefore be seen that the only thing that is needed to determine the correction factor 

is knowledge or an estimate o f  the actual crack shape.
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6.4.2 Verification of the correction factor defined in terms of O

In order to verify if the complete elliptical integral of the second kind, O, can be used to 

define the correction factor, two finite element models of the Model-E component were 

built. One model contained a small, non-planar but circular crack with a shape 

approximately equal to that seen on the failure surface. The second model contained a 

through-thickness crack, as would be assumed by the analysis method. These are shown in 

Figures 6.9 and 6.10 respectively.

The characteristic crack size used in both models was 2ao. This has been shown, by Taylor 

[2002], to be approximately equal to the maximum length of a non-propagating crack, 

initiated at the root of a sharp, crack-like notch. The stress intensity factor of both cracks 

was determined at the point on the crack front coincident with the focus path. This was 

done using a crack face displacement method, which is a standard feature of the ANSYS 

finite element program.

For this geometry and choice of focus path the correction factor was determined to be:

\ K  P
  assumed   assumed   i  c o  1 ̂

^hape correction T7
actual actual

With reference to Tables 6.1 and 6.2 above, it can be seen that this is equivalent to the 

correction factor that would be obtained using the elliptical integral, for a circular crack. 

That is:

=1-571 for - = 1  (6-12)
c
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(a) H alf model with mid plane symmetry (b) Zoomed view o f  the crack

Fig. 6.9 - Finite element model including a crack with the correct shape.

(a) H alf model -  mid plane symmetry (b) Zoomed view o f  the crack

Fig. 6.10 - Finite element model including a through-thickness crack.

6.5 Estimating the actual crack shape

The correction factor as defined above is all well and good if  the actual shape o f  the crack 

is known. This is generally only the case if  a failed component is accessible for 

examination, and often not even then. Techniques have been developed to predict the 

shape evolution o f  fatigue cracks. The approach o f Lin and Smith [1997; 1999] is typical. 

They use a linear elastic three-dimensional finite element analysis to estimate the stress 

intensity factor along the crack front, and then employ an experimental Paris-type fatigue
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crack growth relationship to calculate local crack advances at a few points along the crack 

front. They subsequently re-create the finite element model for the new crack front and 

repeat the process. It can be seen that such a method is extremely expensive, in terms o f  

computing resources and time. The method also requires an initial crack shape as an input.

It was therefore decided to try to develop a simple approach to estimate the crack shape, 

and hence the correction factor describe above, using only the information already 

available from the stress and fatigue analyses. Unfortunately, the results were not very 

good, never the less, the approach is illustrated below, via an example, using the Model-T 

specimen, which is shown in Figure 6.11(a) below.

Crack

Dir( 1

Notch

I

Dir

(b) M id-section(a) M odel-T

Fig. 6.11 - Estimating crack shape  -  Model-T

The stress distributions in directions 1 and 2 (as defined in Figure 6.11(b) above) are 

shown in Figure 6.12. It can be seen that there is a big stress gradient in direction 1, due to 

the notch and only a very shallow slope in direction 2, due to the bending gradient. If it is 

assumed that the different stress distributions are the main reason for the different crack 

lengths in these directions, then we can use this to estimate the crack shape, as follows.
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Fig. 6.12 - The stress distributions in directions 1 and 2

A a(D ir 2)A a(D ir 1)

(a) Direction 1 (b) Direction 2

Fig. 6.13 - Crack in an infinite plate subjected to dijferent stress distributions

Consider an infinite plate containing a centre crack of length 2a subjected to two different 

stress distributions, as shown in Figure 6.13 above. The stress distributions are symmetric
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versions of those given in Figure 6.12 for the Model-T specimen in directions 1 and 2. 

Figure 6.13(a) is meant to represent the Model-T crack in direction 1. Direction 2 is 

represented by Figure 6 .13(b).

For both cases the stress intensity factor, as a function o f crack length, can be calculated as 

per the procedure below.

y

Fig. 6.14 - A crack o f  length 2 a, in an infinite plate, subjected to a pair o f  concentrated

forces, P at X = b

The Westergaard stress function for a crack subjected to a pair of concentrated forces P, at 

a distance b from the y-axis (see Figure 6.14), is given by Gdoutos [1999] as;

7 r [ z - b ) \ z  - a

The resulting stress intensity is therefore:

K , = y f 2 ^ \ i m y l z - a  = (6-14)
y l m \ a - b

This enables us to find the stress intensity caused by any internal pressure distribution, if 

the distribution can be discretised into individual loads. Then, via the principal of 

superposition, the stress intensity calculated this way is equivalent to that which would be 

obtained if the same loads were applied as a remote external load. This is essentially the 

basis o f the crack-line loading method.
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For the stress distributions given above, the resulting stress intensity factors, as a function 

o f crack length, are given in Figure 6.15 below. As expected, it can be seen that the stress 

intensity in direction 2 is always higher than direction 1, for the same crack length.

8

□r 17

 Dir 26

5

4

3

2

1

0
0 0.1 0,2 0.50.3 0.4

Crack length, mm

Fig. 6.15 - Stress intensity factor as a function o f crack length for both stress distributions

Once the stress intensity factor is know as a function o f crack length for both cases, the 

crack growth rates, at each crack length, can be calculated via the Paris equation (see 

equation 6-2).

6.5.1 Load sharing criteria

The problem is, how to determine the crack lengths, in both directions at the same number 

of cycles. This is obviously complicated by the fact that in reality the two directions are not 

independent of each other. The crack will grow fastest in the direction with the highest 

stress intensity. However, as the crack in that direction gets longer, it becomes more 

compliant and hence transfers load to the other parts of the crack front. Therefore, if  we are 

only considering two points on the crack front, we must use some criteria to decide the 

degree of load sharing. In the simple approach investigated here, crack face displacement 

is used. If the displacement at the common point, to both directions, is not the same, load is 

transferred from the direction with the bigger displacement to the one with the smaller
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displacement. In effect, the two directions are considered to behave as two springs in 

parallel. That is, they must have the same opening displacement and the sum of the load 

through each side must be equal to the total load.

It is therefore necessary to be able to calculate crack face displacement for any given stress 

distribution. With reference to Figure 6.14, the crack face displacement o f a crack 

subjected to a pair of concentrated forces P, at a distance b from the y-axis can be 

determined in terms of the Westergaard stress function (see equation 6-13), via the 

equation below [Parker, 1981].

v = z  + i
4//

Im Z, (z) where Zj (z) = |  Z, {z)d:

Therefore

(6-15)

4^
Im -  atan

-  bx P
n

1I
fNQ

1

Where, j  = 3 -  4v for plain strain and x  ~
3 - v
1 - v

(6-16)

for plane stress, k is Poisson's ratio and

(j. is the shear modulus.

Equation 6-16 is plotted in Figure 6.16 for a crack of length 2a (where a = I), for a pair o f 

point forces applied at x = 0.5. It can be seen that a singularity exists in the solution at the 

point of the applied load.
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1 0.5 0 5 10

Position on crack, x

Fig. 6.16 - The crack face displacement profde o f  a crack subject to a pa ir o f  concentrated

forces (at X  =  0.5)

At the centre of the crack, x = 0, equation 6-16 reduces to:

.(0 ) = In-
2a  ̂+h  ̂ -  laja^ -h^

7T
(6-17)

The resulting crack face displacements (at x = 0), due to both stress distributions, are 

shown in Figure 6.17 below.

 Dr 1

Dr 2

0 0.1 0.2 0.3 0.4 0.5

Crack length (mm)

Fig. 6.17 - The crack face displacement (at x = 0) fo r  both directions
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Once the stress intensity and crack face displacements (at x = 0) are available, the crack 

shape is calculated via the following algorithm, which was implemented as an Excel 

macro.

1. Assume the crack grows Aa in direction 2 (which has the higher AK and da/dN)

2. Using the Paris equation, (equation 6-2), calculate the number o f cycles, AN, 

needed for this crack extension.

3. Make an initial guess for the change of crack length in direction 1

4. Determine, the stress intensity, the crack face displacement (at x = 0), the crack 

growth rate and the number of cycles needed for this crack extension, via linear 

interpolation.

5. Using a process o f iteration, ensure that the number o f cycles needed for crack 

extension is the same in both directions and the crack face displacement is the same 

in both directions, by transferring load from one direction to the other and by 

changing the length of the crack in direction 1.

6. Once the lengths in both directions are known, the crack front is assumed to be an 

ellipse passing through these points.

6.5.2 Application to the Model-T specimen

Using the procedure outlined above, the predicted crack shape for the Model-T specimen is 

shown in Figure 6.18 below. This was calculated using the following constants for the
1 9Paris growth rate equation: A = 3x10' and m = 3.5.
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Fig. 6.18 - Predicted crack shape for the Model-T specimen

It can be seen that the method predicts that the crack becomes shghtly more elliptical as it 

gets bigger, but in general remains approximately circular. This is contrary to the 

experimentally observed shape, which indicates that the elliptical ratio should be 

approximately 0.2 (see Appendix A, section A.4.3.1).

6.5.3 Application to the Model-E specimen

The method was also applied to the Model-E specimen. The directions chosen on which to 

determine the crack lengths are shown in Figure 6.19 below. The resulting crack shape is 

shown in Figure 6.20. It can be seen that in this case the crack shape is again 

approximately circular. However, for this specimen, this is the expected shape.
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6.19 - The two directions chosen for application to the Model-E specimen
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Fig. 6.20 - Predicted crack shape for the Model-E specimen
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6.5.4 The effect of the growth law constants

A sensitivity analysis was also conducted to determine the effect of the material constants 

used in the Paris law growth rate equation (equation 6-2). The results o f this are 

summarised in Table 6.3 below. It can be seen that the crack growth rate exponent, m, has 

a small effect on the predicted shape. That is, the crack is predicted to be slightly more 

elliptical when a higher growth rate exponent is used. The growth rate constant. A, was 

observed to have no effect on the predicted shape.

Table 6.3 - Predictions for Model-T and Model-E, for different Paris law constants

Model-T Model-E

Dir 2 
(mm)

Dir I 
(mm)

O Dir 2 
(mm)

Dir 1 
(mm)

O

A = 3xl0 '  ̂and m = 3.5 0.5025 0.405309 1.423 0.5025 0.449819 1.490

A = 3x10’’̂  and m = 5 0.5025 0.394461 1.407 0.5025 0.446757 1.485

A = 3xl0 ‘̂  and m = 2 0.5025 0.418463 1.442 0.5025 0.460944 1.507

A = 3x10“̂  and m = 3.5 0.5025 0.404059 1.421 0.5025 0.449819 1.490

6.5.5 Application of the method without load sharing

Because the method, as described above, results in essentially circular crack shapes, even 

for the Model-T specimen, it was concluded that the load sharing criteria used (see section 

6.5.1) is inadequate. It was therefore decided to apply the method without considering any 

load sharing effect. This obviously results in a more elliptical crack shape, which was 

hoped could be used as a lower bound for the analysis. The results are shown in Figure 

6.21 below. Note that the scale of the vertical axis is different to the scale used previously.
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Fig. 6.21 - Predicted crack shapes assuming no load sharing

In this case, the predicted crack shapes are highly elliptical. The elliptical ratios are:

= 0.016 and O = 1.00415 for Model-T
Dir 2

 ̂ - 0.046 and 0 =  1.00065 for Model-E 
Dir 2

This approach is also obviously wrong, as the shape predicted for the Model-E specimen is 

far too elliptical. It is also not very useful as a lower bound to the analysis because the 

elliptical ratios are virtually zero.

6.5.6 Conclusion

From the above it is concluded that, although worth investigating, the approach is too 

simplistic to accurately determine the shape o f a fatigue crack, resulting from any given 

stress concentration. In particular, the load sharing criteria is inadequate. Hence, a step-by- 

step finite element approach, like that used by Lin and Smith [1997; 1999] is necessary. 

Unfortunately this couldn’t be done within the scope of this project.
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6.6 Application of the correction factor

As the method investigated above for predicting the crack shape proved to be fruitless, a 

certain amount of engineering judgement is used below to estimate the actual crack shape 

for the various specimens for which the crack shape was not measured.

6.6.1 Model-T

As already stated, the crack shape for this specimen was measured to be elliptical, with the 

major axis orientated along the notch (see Appendix A, section A.4.3.1). Furthermore the 

elliptical ratio was measured to be approximately 0.2, as shown in Figure 6.22 below. This 

shape makes sense for this specimen and was expected because of the followmg qualitative 

arguments. Firstly, as shown in Figure 6.12 above there is a big difference between stress 

gradients along the top of the specimen and along the notch. Secondly, because the 

bending gradient along the notch is relatively shallow, cracks can initiate at multiple points 

over a relatively large distance along the notch. This is quite probable, because as 

explained in Appendix A, section A.4.4, the hotspot is not at the top surface o f the 

specimen, where simple bending theory would predict. Instead, it is located a very small 

distance down the notch.

Focus path

Actual crack shape 
(not to scale)

Fig. 6.22  -  Crack shapes fo r  the M odel-T specimen

With reference to Table 6.1 above the correction factor for the Model-T specimen is 1.051 

(for a/c = 0.2). Hence, the application of this correction results in an almost negligible 

change. As discussed in Chapter 5 and Appendix A, the results from the fatigue analysis of

70



this specimen were very good, without applying any correction. However, even after 

applying this correction the results will still be good.

6.6.2 Model-E

As already stated, it is believed that fatigue cracks emanating from this stress concentration 

will be approximately circular. Table 6.4 shows the results of the fatigue analysis o f the 

Model-E specimen, before and after the correction factor has been applied, assuming a 

circular crack (i.e. fshape correction 1.58).

Table 6.4 - Fatigue analysis results o f  Model-E 1 with and without the correction factor

Without correction factor With correction factor
fshape correction 1 •

Experimental 6.6 kN at 2x10* cycles
Point method 2.99 kN 4.72 kN
(Error factor) (2.21) (1.40)
Line method 3.06 kN 4.83 kN
(Error factor) (2.16) (1.37)

Note: Error factor is defined as the ratio o f the Experimental fatigue strength to the predicted fatigue 

strength

It can be seen that the correction improves the predictions for the CDMs, although 

conservative errors are still apparent.

6.6.3 Fillet-A

Again, it is expected that the actual crack for the Fillet-A specimen will be approximately 

circular, as it is essentially a comer crack. Therefore, a correction factor o f 1.58 is applied. 

The results are shown in Table 6.5 below.
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Table 6.5 - Fatigue analysis results Fillet-A with and without the correction factor

Without correction factor With correction factor
f' shape correction ~  1 • 58

Experimental 8.4 kN at 5x10^ cycles
Point method 3.78 kN 5.97 kN
(Error factor) (2.22) (1.41)
Line method 3.33 kN 5.26 kN
(Error factor) (2.52) (1.60)
CMM 4.24 kN 6.70 kN
(Error factor) (1.98) (1.25)

Note: Error factor is defined as the ratio of the Experimental fatigue strength to the predicted fatigue

strength

As per the Model-E specimen, application o f the correction factor results in a considerable 

improvement, although conservative errors still remain.

6.6.4 T-shape-B

It is quite difficult to estimate the actual crack shape for the T-shape-B welded specimen. If 

the end of the weld bead is assumed to be a perfectly smooth arc, as it is in the FE model, 

then the stress gradient in the third direction is quite shallow. Hence, one would predict the 

actual crack shape to quite a blunt ellipse. However, in reality local irregularities at the 

weld end could result in higher stress gradients and therefore a higher elliptical ratio. In the 

following an elliptical ratio of 0.4 is assumed. The resuhing correction factor is 1.151. The 

effect of this correction on the fatigue analysis is shown in the Table below. Again it can 

be seen that the result is improved, although conservative errors still remain.

Table 6.6 - Fatigue analysis results T-shape-B, with and without the correction factor

Without correction
With corrections

f  shape correction 1.151
Experimental 6.62 kN at 5x10^ cycles
Point method 3.75 kN 4.32 kN
(Error factor) (1.77) (1.53)
Line method 3.34 kN 3.84 kN
(Error factor) (1.98) (1.72)
CMM 4.12 kN 4.74 kN
(Error factor) (1.61) (1.40)

Note: Error factor is defined as the ratio of the Experimental fatigue strength to the predicted fatigue

strength
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6.7 Concluding remarks

It is argued in this chapter that crack shape can have an effect on the fatigue life o f “sharp, 

crack-like” stress concentrations, for which the fatigue limit is characterised by the growth 

of non-propagating cracks. In particular, it is shown that fatigue assessment methods which 

make use of the 2D focus path concept, for complex 3D geometries, make an inherent 

assumption regarding crack shape and that a simple correction factor, based on the actual 

crack shape, can be applied to account for this.

A simple approach to estimate the crack shape was investigated. Unfortunately, it was 

shown that it doesn't work. Hence, engineering judgement was used, were necessary, to 

make educated guesses for the actual crack shapes and hence the correction factors that 

should be applied.

It was subsequently shown that the correction considerably improves the predictions for 

the Model-E, Fillet-A and T-shape-B specimens without greatly affecting the Model-T 

specimen, for which good predictions were already obtained.

It should be noted that the ideas in this chapter are based on the assumption that non

propagating cracks always exist under certain conditions, at the root o f sharp, crack-like 

stress concentrations. As discussed in section 6.1, this is based on the large body o f work, 

published by very eminent authors, which maintains that this is in fact the case. In effect 

this faith may be misguided, as the experimental observation o f non-propagating cracks, in 

this work, was found to be much more difficult than expected. In theory they should have 

been apparent on all o f the specimens that didn't fail during testing, but in practice this was 

not the case.

As discussed in Appendix A, section A.4.3.1, a considerable effort was made to determine 

the crack shape for the Model-T specimen. This proved to be more difficult than expected 

because of the small crack lengths involved and the practical problems associated with 

using methods, like replica tape at 3-D stress concentrations. The most successful way to 

determine the crack shape was to examine the failure surface under a scanning electron 

microscope. Unfortunately, this couldn't be done for all o f the specimens investigated.

73



Chapter?: The constraint effect

In the study of fracture mechanics, it is universally accepted that crack tip constraint 

strongly influences the fracture toughness o f a material. A high degree o f constraint or 

triaxiality or hydrostatic stress at a crack tip, results in a lower energy requirement for fast 

fracture. This is because the hydrostatic stress state offers less opportunity for the 

redistribution o f high crack tip stress by shear yielding. The difference between fracture 

toughness values measured in plane stress and plane strain is attributed to this 

phenomenon.

It is argued in the following, that a similar effect can be observed in fatigue. That is, low 

crack tip constraint has the affect of increasing the material stress intensity threshold range 

by effecting crack propagation The consequence o f this is that the critical distance used in 

the fatigue analysis methods advocated by Taylor should be increased when predicting the 

behaviour of notched components characterised by low constraint. Two separate 

experimental investigations, presented below, support this.

7.1 Crack tip constraint in fracture

Elasticity theory predicts that the stress at a crack tip is infinite. For a real material this is 

obviously absurd. In reality, local, small scale yielding occurs at the crack tip as soon as a 

load is applied. The effect of this is to redistribute high crack tip stresses via shear yielding. 

This is often referred to as plastic relaxation, which can be thought o f as the inverse of 

constraint. Depending on the stress state the size o f the plastic zone varies. For two- 

dimensional, cracked geometries, the maximum plastic zone size occurs for conditions of 

plane stress and the minimum size for plane strain. If the plastic zone is large, there will be 

considerable plastic relaxation and consequently low constraint. The inverse is true if  the 

plastic zone is small.

From the above it is clear that plasticity and constraint are inseparable. Therefore, in the 

following, methods for predicting the size and shape of the plastic zone ahead of a crack 

are discussed.
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7.1.1 The plastic zon e  size  due to Irwin

The simplest approach to estimate the size of the plastic zone ahead of a long crack was 

proposed by Irwin [1958], by assuming that the shape of the zone would be circular. If the 

elastic stress distribution ahead of a centre crack in an infinite plate (see Figure 7.1) is 

considered, the stress in the y-direction, along the x-axis is given by equation 7-1.

nr
(7-1)

Stress, Oy

Yield stress, Oys

Original crack
\

— r "
/

Notional crack

Elastic stress distnbution

Elastic-plastic 
i \  stress distnbution

Plastic zone 
depth, 2ry

Fig. 7.1 - Plastic zone size due to Irwin

By substituting the yield strength ays, for ay in equation 7-1, an estimate can be obtained 

for the distance, ry, over which the material is plastically deformed. However, as this 

simply cuts off the portion of the elastic stress field above ays, equilibrium isn't satisfied. 

Thus the stress distribution, in Figure 7.1 above, must shift to the right, as shown. The 

actual plastic zone size as estimated by Irwin is 2ry and is given in equation 7-2 below.

1
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K,
for plane stress (7-2)
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The plane strain plastic zone size is usually taken to be one-third of the plane stress value; 

therefore:

K,

J
for plane strain (7-3)

7.1.2 Plastic zone size due to Dugdale

Another model to describe the plastic zone ahead of a crack was formulated by Dugdale 

[1960], for conditions of plane stress. He did this by modelling the plastic regions 

extending beyond the physical crack length, 2c, as narrow strips of length R, which are 

effectively extensions of the crack (see Figure 7.2 below).

Plastic zone
0 y sCTys

crack

Fig. 7.2 - Schematic o f the Dugdale plastic zone strip model

He assumed that there would be an internal pressure, equal to the yield stress acting on 

these strips over the distance R, which re-closes the crack to a length of 2c. In this way 

Dugdale was able to use elastic theory, but eliminated the stress singularity at the end of 

the physical crack. The plastic zone size he calculated is in close agreement with Irwin's 

model and is;

8 J
for plane stress (7-4)
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In order to account for constraint effects under non-plane stress conditions, a constraint 

factor, a ,  is normally adopted (i.e. it is assumed that a constant stress, equal to aoys acts on 

the yielded strips). The lower bound for a  is the plane stress limit ( a  =1) and the upper 

bound is the plane strain value, for which a  is usually assumed to be 3.

7.1.3 Plastic zone shape

The methods above estimate the plastic zone ahead o f  a crack by assuming that it will take 

a specific shape. The following is a method o f estimating the shape o f the plastic zone, 

which unfortunately does not yield any information relating to the absolute size o f  the 

plastic zone. However it does demonstrate the relative difference in the plastic zone size 

for conditions o f plane stress and plane strain. The concept is to use a yield criterion in 

conjunction with the equations for the elastic stress distribution ahead o f a crack. For 

example, when considering the Von Mises criterion, it is assumed that yielding occurs 

when:

(o, (o 2  - Oj)^ + (a, - 0 3 Y = (7-5)

Where a i ,  a 2  and 0 3  are the principal stresses. From chapter 3, section 3.1.2, the principal 

stresses cti and (32 ahead o f a centre crack in an infinite plate are found to be:

K, 0
, .-cos

■\l2nr 2

0 2  =
K, 0
■-i—cos —

V27tr 2

1 ■ 0
1 + sm —

2

1 •1 - s m  —
2

(7-6)

(7-7)

In conditions o f plane stress the third principal stress is equal to zero (i.e. 0 3  = 0). The 

Mohr's circle representation o f  this stress state is shown in Figure 7.3 below. Substituting 

these equations for the principal stress into the Von Mises yield criterion results in the 

following:

K

V2nr
1 + —sin ^ 0  + cos0  

2
= 2a ys (7-8)

Rearranging:

77



{̂ '1
2r 3 . ,

1 + —sm 0 +  COS0
< 2  y

(7-9)

Equation 7-9 above can be normalised by fy, where

2k

K
(7-10)

The result is the normalised shape o f the plastic zone ahead o f a centre cracked infinite 

plate in plane stress.

V y  J  F I-Stress

1 3 . 1
= —+ —sin 0 + —COS0

2 4 2
(7-11)

G

(b) Plane stram

z

0 -,

(a) Plane stress

Fig. 7.3 - Mohr's circles for the conditions ofplane stress and plane strain in a cracked

Following exactly the same method, the normalised shape o f the plastic zone in plane 

strain can be determined. In this case the third principal stress is given by 

Oj = v ( a ,+ 0 2 )?̂ = 0 ,  where v is Poisson's ratio. The Mohr's circle representation o f  this

stress state is also shown in Figure 7.3 above. It can be seen that conditions o f plane strain 

result in a lower maximum shear stress when compared to plane stress. Hence, the plastic 

zone for this case should be smaller. For plane strain the normalised shape o f the plastic 

zone is approximated to be:
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(
r

= - s in '0  + - ( l - 2 v ) '( l  + cos0) (7-12)
^  4 2V y ypi-Slram

A comparison between the normalised plastic zone shape determined in plane stress and 

plane strain is shown in Figure 7.4 below. It can be seen that, as expected, the plastic zone 

is much large for conditions o f plane stress.

Pbna
,Slre»

I J O

Fig. 7.4 - Comparison o f the plastic zone in plane stress and plane strain using the method

described above

The ratio o f the size of the plastic zones in plane stress and plane strain along the x-axes, 

for which 0 = 0 , is therefore:

=0.11 (7-13)
^ \ 0  ^  /Pi-Stress
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Fig. 7.5 - Schematic o f the plastic zone shape for a real situation [Ewalds and Wanhill,

1989]

In a real fracture mechanics specimen, there is an interaction between pure plane stress and 

pure plane strain states. At the side surface of a cracked plate there is no stress in the 

thickness direction, so a biaxial condition of plane stress exits. Proceeding inwards, there is 

an increasing degree of triaxiality, that approaches, and if the specimen is thick enough, 

may correspond to plane strain. Thus, the plastic zone size and shape varies through the 

thickness o f the plate (see Figure 7.5 above).

7.1.4 The effect of constraint on fracture toughness

The fracture toughness, Kc, o f a material is the critical stress intensity factor at which the 

crack extends rapidly in an unstable manner without an increase in load. The general 

relationship between fracture toughness and thickness is shown in Figure 7.6. It can be 

seen that there are three distinct regions:

The plane strain region

Occurs when the specimen is relatively thick so that the material is predominantly in plane 

strain and under maximum constraint. The value of Kc tends to a constant minimum value, 

which is referred to as the plane strain fracture toughness Kic. In this case, the fracture 

surface is typically flat and perpendicular to the direction of the applied load.
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The plane stress region

Occurs when the thickness of the specimen approaches the same size as the plastic zone. 

The maximum Kc value is observed at the thickness where there is minimum constraint. 

This is because more energy is required to push the large plastic zone ahead o f the crack. 

As the material thickness decreases from this value the specimen becomes too thin to 

support a pure mode I fracture, that is, out-of-plane tearing occurs, hence the fracture 

toughness decreases. In this region the fracture surface is typically at 45 degrees to the 

direction of the applied load or has significant shear lips.

The transitional region

This is a transition region between the maximum value measured in plane stress and the 

lower constant value measured in plane strain. In this region the fracture surface is 

characterised by both flat and slanted fracture surfaces. The percentage of slanted fracture, 

or shear lips, decreases with increasing thickness.

Kc

Plane
Stress

Plane
Strain

Transitional
Behaviour

24C

700

 8 -

80

40

D
5 1C 20 10050

Specimen Thickness (mm)

Fig. 7.6 - Variation o f Kc with specimen thickness for a high strength steel [Ewalds and

Wanhill, 1989]

As stated above, the fracture toughness, IQ, approaches a constant minimum value, Kic 

when the thickness of the specimen becomes large compared to the size o f the plastic zone. 

For this reason plane strain fracture toughness, Kic, is considered to be a true material 

property. Guidelines have been developed to ensure that the plane strain fracture toughness
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is obtained when measuring the fracture toughness o f  a material [ASTM, 1974], These are 

generally stated in the following form:

a and t > 2.5
J

(7-14)

Where a is the crack length and t is the specimen thickness. This ensures that that the 

plastic zone o f the specimen is approximately 8 times larger than the plane stress plastic 

zone and 24 times larger than the plane strain plastic zone.

7.2 Crack tip constraint in fatigue

The foregoing discussion has all been in relation to fracture, where failure occurs due to a 

single applied load. In the following, additional factors that should be taken into account 

when considering the effect of crack tip constraint on fatigue behaviour are considered.

7.2.1 The cyclic plastic zone

Sections 7.1.1 and 7.1.2 above describe the plastic zone developed at the tip o f a crack as a 

result of fracture. In terms of fatigue this corresponds to the monotonic plastic zone (MPZ) 

or the plastic zone developed due to the maximum applied load in the loading cycle (point 

A in Figure 7.7). It's important to realise that this is positive plastic deformation, that is, the 

material has been permanently stretched. However, as the load is reduced to the minimum 

load (point B in Figure 7.7) the material in the vicinity of the crack tip is plastically 

deformed in the opposite direction. This results in the formation o f a cyclic plastic zone 

(CPZ), in which the direction o f plastic straining is reversed every cycle.
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Applied
Load

Tune

Fig. 7.7 - Loading cycle

Figures 7.8(a) and (b) show the inelastic stress distributions ahead of a crack (in plane 

stress) for the both the maximum and minimum points in the loading cycle obtained via an 

elastic-plastic FEA. An elastic-perfectly-plastic material, with a yield strength o f 330 MPa 

was used. The R-ratio was 0.1. The extent o f the MPZ and the CPZ can be seen in the 

figures. An important point to realise is that if  a region yields in tension during loading, 

after unloading a portion of that region is in compression. It stands to reason then, that the 

size of the CPZ is related to the load ratio. The lower the R-ratio the bigger the CPZ.
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(a) The inelastic stress distributions from 

the maximum load showing the extent o f 

the MPZ

(b) The inelastic stress distributions from 

the minimum load showing the extent o f the 

CPZ

Fig. 7.8 - Stress distributions ahead o f a crack

The size o f the CPZ can be approximated by substituting 2ays, for CTys and AK for K in 

Irwin's equations for the plastic zone size (equations 7-2 and 7-3). The results are:
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These approximations are vahd for R-ratio > 0 [Stephens et al., 2001],

7.2.2 The effect of constraint on fatigue crack growth rate

In general it is accepted that constraint has an effect on fatigue crack growth. That is, 

cracks propagate slower in conditions of plane stress. This effect can be observed in 

standard fatigue specimens, which tend to show bowed crack fronts, where the crack is 

shortest at the side surfaces o f the specimen.

As stated by Guo et al. [1999], specimen thickness has been found to considerably 

influence the fatigue crack growth rate under the same applied stress intensity factor, when 

the plastic zone size becomes comparable to the thickness. In particular the crack growth 

rate in thin specimens is found to be lower. An example o f this effect is shown in Figure 

7.9 below and is most often attributed to the phenomena of crack closure, which is 

discussed in the section below.

However, as discussed by Knott [1973] other factors must be considered when very thin 

specimen are investigated. In thin precracked specimen the crack initially propagates on a 

plane normal to the applied alternating stress. As it grows, the plastic zone at the crack tip 

becomes larger, until it reaches a critical size, which is related to the sheet thickness. The 

failure surface then changes to 45" slanting through the thickness and the crack growth rate 

accelerates markedly. This can be attributed to out-of-plane tearing, or a Mode III type of 

crack opening, whereby the material immediately above and below the crack tip are 

displaced laterally out-or-plane. This type o f crack propagation is therefore governed my 

Mode III antiplane strain as opposed to Mode I plane stress.
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Fig. 7.9 - Fatigue crack growth data fo r  LY12-CZ aluminium fo r  two specimen thicknesses

[Guo et al., 1999]

7.2.3 Crack closure

The effect o f constraint on fatigue crack growth is complicated by the phenomena o f crack 

closure. As the name implies, the effect o f closure is to cause the faces o f a fatigue crack to 

come into contact (or the crack to close) in the presence o f  a tensile far field load, before 

the crack is fully unloaded. This phenomenon was first observed by Elber [1970] who 

argued that it is the result o f a zone o f  residual tensile deformation left in the wake o f  a 

fatigue crack tip. Subsequent researchers have labelled this plasticity-induced closure or 

Elber closure and have also identified other mechanisms responsible for closure. These 

include, but are not limited to; Oxide-induced crack closure, Roughness-induced crack 

closure and viscous fluid-induced crack closure.

In the following attention is focused on plasticity-induced closure, as it is expected that this 

will have a significant effect on the fatigue crack growth in plane stress and plane strain, 

where the plastic zone size is different. Elber [1970] argued that upon application o f  

constant amplitude cyclic loading during the increasing tensile portion o f  the load, a plastic 

zone is formed and that plasticity occurring at the crack tip remains behind as the crack 

grows. The tensile deformation creates compressive residual stresses which, when the 

specimen is unloaded, cause the two crack surfaces to contact at a stress level, Od, higher
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than the minimum stress level, amm (see Figure 7.10 below). This effect is usually 

accounted for by defining an effective stress intensity range, AKeo (see Figure 7.10 below).

(7-17)

Alternatively the closure ratio, U, can be used

^  eff _ (^max ^op) (7-18)

Hence, Elber’s crack growth rate equation can be expressed, in terms o f the Paris law, as 

follows;

^  = a {a K ^^Y  = A{UAKY  (7-19)

It is expected that a crack growing in plane stress conditions, in which the plastic zone is 

approximately three times greater than in plane strain, will experience a higher level of 

closure. That is, the increased plasticity will result in a higher opening and closing stresses. 

Consequently the effective stress intensity and fatigue crack growth rate will be lower.

AKK eff

AK

Tune

Fig. 7.10 - Schematic representation o f  opening and effective stress intensity factors
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7,3 Notch tip constraint

The foregoing discussion has been limited to the effect of constraint on the behaviour of 

cracks. However, notches can also be characterised by high or low constraint. For a two- 

dimensional notched geometry, the size o f the plastic zone ahead o f the notch will be 

affected by the thickness of the specimen in a similar manner to that discussed above for 

cracks. Consequently the degree of constraint will also vary as a function o f thickness.

As discussed in the previous chapter, the fatigue limit o f sharp, crack-like stress 

concentrations is characterised by the growth of non-propagating cracks at the root notch. 

In this case considering crack tip constraint instead of notch tip constraint may be a more 

relevant approach.

7.4 Quantifying the degree of constraint

Four possible methods to determine the degree of notch tip constramt have been 

investigated and are presented below.

7.4.1 Using the plastic zone size

As mentioned above, the usual approach used in fracture to determine if a 2D cracked body 

experiences conditions o f plane stress or plane strain, is to relate the size o f the plastic zone 

ahead o f the crack to the thickness o f the specimen. The guidelines given in ASTM E 399- 

74 (see section 7.1.4) to ensure that fracture toughness is measured in plane strain are an 

example of this. It is generally accepted that if the size of the plastic zone approaches the 

thickness o f the specimen, conditions of pure plane stress are approached. It is believed 

that this statement is also true for notched components. That is, if  the size of the plastic 

zone ahead of a notch is approximately equal to the thickness of the specimen conditions 

of plane stress will prevail.
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7.4.1.1 The relationship between plastic zone size and a«

In the following a simple relationship between Irwin’s equations for the plastic zone, 2rp, 

(see section 7.1.1) and the El Haddad short crack parameter, ao, is demonstrated. It is 

known that for most engineering materials the plain specimen fatigue limit is less than the 

yield stress, or:

Acr„ < or Acr„ = (7-20)

Where C is a constant, which is less than one (i.e. 0 > C > 1). Therefore, if a 2-D cracked 

body is loaded in fatigue at the threshold condition, the monotonic plastic zone can be 

estimated, using Irwin's equation as:

AK.,

V  J

f . 
A ct.

= a.
V ^y^ J

-  a  ̂ for plane stress (7-21)

2 r \
1 [ aatJ

In < ŷ  ̂ J 3 3
— for plane strain

Where a<, is:

(7-22)

= -n
(7-23)

It can be seen that, for both stress states, the monotonic plastic zone size, 2ry, is always 

smaller than ao Hence, it is proposed that a« can be used as a parameter to estimate the 

degree o f constraint, for cracks and crack-like stress concentrations. Specifically, if  the 

thickness of a specimen is the order o f C a^ then conditions o f plane stress will prevail.

7.4.1.2 Testing AKth in plane stress

A consequence of the above is that it is not possible to measure the stress intensity 

threshold o f most engineering materials in plane stress. This is because a two-dimensional 

cracked specimen with a thickness o f approximately C ao would be needed. For example, 

in order to determine AKth in plane stress for the low carbon steel used in this work (ao ~ 

0.2mm), a 2-D specimen with a thickness o f less than 0.2mm would be required. It is 

clearly not possible to do this type o f test. Even if it were possible to obtain specimens thin 

enough, which still retain their normal material properties, the specimen would be
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subjected to out-of-plane tearing (or a Km failure mode). This explains why the effect o f 

plane stress at threshold conditions is not discussed in the literature.

7.4.1.3 Extension to 3-D stress concentrations

It is proposed that this approach can be extended to a more three-dimensional case by 

considering the specimen thickness at a small distance ahead of the stress concentration. 

Consider the longitudinal fillet weld shown in Figure 7.11 below. This is similar to the 

Fillet-A specimen. The end of the weld bead terminates at the edge of the smaller member 

and results in failure from that edge. If it is assumed that the stress concentration is crack- 

like then the plastic zone size can be approximated via equations 7-21 and 7-22 described 

above. It can also be seen from Figure 7 .11(c) below, that because the stress concentration 

occurs at a comer, the effective thickness o f the section can be determined as a function of 

the distance from the corner. For example, if the plastic zone size is estimated to be x 

millimetres, then the thickness of the section at a distance of x millimetres from the comer 

is 2x millimetres (see Figure 7.11(c)). It can be seen that this relationship is independent of 

the plastic zone size and depends only on the included angle between the two free edges 

(i.e. 90” in this case). Furthermore, we know that conditions o f plane stress prevail if  the 

thickness of the specimen approaches the plastic zone size.

Plastic zone

(b) Section Through Hatched Plane

(a) Longitudinal Fillet Weld End (c) Specimen Thickness

Fig. 7.11 - Failure from the end o f a longitudinal fillet weld (Fillet-A)
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Hence, the question is, what stress state will prevail if  the specimen thickness is twice the 

size of the plastic zone (at the extent o f the plastic zone)? The most likely answer is that 

stress state will be neither pure plane stress or plane strain.

The argument above can equally be applied to any situation in which failure occurs at a 90“ 

comer. The Model-T specimen is another such case. Therefore, it is proposed that the 

Fillet-A specimen and the Model-T specimen experience approximately the same degree of 

notch tip constraint, which is most probably an intermediate stress state that is neither pure 

plane stress nor pure plane strain.

However, other geometries characterised by a smaller included angle between the fi'ee 

surfaces at the stress concentration feature, will experience conditions of pure plane stress. 

One such geometry is investigated in section 7.5.2 below. Others can be found, for 

example, at the intersection o f a free surface and a hole, when the axis o f the hole is at an 

acute angle to the free surface. These are often referred to as knife-edge stress 

concentrations.

7.4.1.4 The plastic zone sizes for the various sf)ecimens

Elastic-plastic finite element models were built in order to determine the size of the plastic 

zones at the stress concentration features of the various specimens, discussed in Chapter 5.

The load range applied to the models was the experimentally determined fatigue strengths 

reported in Chapter 5 at an R-ratio of 0.1. In the case o f Model-E and Model-T the 

measured cyclic stress-strain curve, for the actual material, was used. This is presented in 

Appendix A. The same curve was used for the Fillet-A specimen, which is in fact correct 

for the parent metal but is expected to be inaccurate for the weld metal and heat affected 

zones.

The values of the MPZs and CPZs, measured along the direction of the focus path, are 

reported in Table 7.1 below.
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Table 7.1 - Plastic zone sizes

MPZ (mm) CPZ (mm) 3o(mm)

Model-E 0.74 0.18 0.205

Model-T 0.343 0.0 0.205

Fillet-A 0.46 0.22 0.43

It can be seen that the Model-T specimen has no CPZ, this is believed to be correct as it 

was checked thoroughly and a similar result was obtained using the Neuber rule (see 

Appendix B, section B.3.2).

Even though the MPZ for the Model-E specimen is quite large compared to a«, the 

thickness of the specimen at a distance of â ,, from the hotspot is the full thickness of the 

specimen. Hence, this specimen is not expected to experience a constraint effect.

It can be seen that the MPZs of the Model-T and Fillet-A specimens are approximately the 

same as the a« value. As discussed above, it is believed that for these specimens experience 

approximately the same degree o f constraint, which is most probably neither pure plane 

stress nor pure plane strain.

7.4.2 Elastic parameters

In the following, three parameters that depend only on an elastic stress distribution are 

presented as an alternative means of quantifying the degree of notch tip constraint.

7.4.2.1 The parameter

The ps  parameter is a way of quantifying the degree o f plane strain or plane stress and 

consequently the degree o f constraint that is present at a stress concentration feature of 

arbitrary geometry. Figure 7.12 shows two notched bodies. Figure 7.12(a) represents 

conditions o f plane strain. The plane represented by the blue lines (dotted) is the plane of 

interest. The principal stresses are shown on the plane at the notch tip. In this case the 

principal stress in the thickness direction is due to the Poisson effect and is equal to 

0 2  = v(oi +a3);^ 0 , where v is Poisson's ratio. Figure 7.12(b) is a similar diagram that
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shows conditions o f  plane stress. In this case the body is sufficiently thin to relax the stress 

in the direction perpendicular to the plane, hence Oj = 0 .

j

(a) Plane strain (b) Plane stress

Pig. 7.12 - Plane strain and plane stress conditions fo r  a sharply notched body loaded in

uniaxial tension

These stresses are easily found using a finite element analysis. Hence, equation 7-24 can be 

used to define the degree o f  plane stress or plane strain for any given geometrical stress 

concentration.

ACTa - The principal stress range perpendicular to the plane o f  interest. This is 

generally the second principal stress, A a2 as shown in Figure 7.12. For 

conditions o f  plane stress A<r  ̂ = 0 ,  in plane strain A<r„ = + A<t  ̂)

Acb - The principal stress range in the crack opening direction and in the plane o f  

interest. This is generally the first principal stress, cti as shown in Figure

(7-24)

Where:

7.12
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Actc - The principal stress in the direction o f crack growth. This is generally the 

third principal stress, 03 as shown in Figure 7.12

Hence:

ps  = 0 Implies conditions o f pure plane stress, and

ps = 1 Implies conditions of pure plane strain.

ps > 1 Implies that Acr^ > v(Acr^ + Acr^). This may occur if there is an external force

applied in the out-of-plane direction. 

ps < 0 Implies that there is a negative stress in the out-of-plane direction.

7.4.2.2 Elastic strain energy parameter, Ce

In the elastic range of a typical engineering material, the elastic strain energy can be 

divided into two components; strain energy that results in distortion (or distortion energy), 

and strain energy that does not, (the result of hydrostatic stress). It is generally accepted 

that for a ductile material, distortion energy results in shear yielding whereas a very large 

amount of hydrostatic stress can be withstood without plastic deformation. This is the basis 

of the Von Mises yield criteria. The following is the mathematical realisation o f this:

For a given stress state the total strain energy is defined as (in terms o f the three principal 

stresses):

In order to eliminate the contribution of the hydrostatic stress, an average stress is defined:

The strain energy due to the average stress is then calculated:

(7-25)

O '^ (7  2 +  <T2<T3 +<TjCr3 )] (7-27)

Hence the distortion energy is given by:
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-  ^ a ( a v )  =  +  ^ 2  +  )]
j L

(7-28)

It is possible to think o f the energy due to the average stress, UoCav), as constraint energy.

Hence, the total elastic strain energy is the sum o f distortion energy and constraint energy.

Given this, it is possible to define a parameter to measure constraint as follows:

7̂.29)
^^1 0 1

Using this parameter, Ce, it is then possible to quantify the degree o f constraint for all 

possible stress states, such that:

Ce = 0 The average stress is zero, consequently Ua(av) = 0. This implies there is no 

constraint energy.

C e= 1 This implies cti = a 2 = or pure hydrostatic stress. There is complete 

constraint.

Ce < 0 Not possible 

C e > 1 Not possible.

7 .4 .2 .3  Von Mises stress parameter, C vm

This parameter is very similar to the Ce parameter but is less intuitive; while at the same 

time is slightly easier to apply. The parameter is essentially the ratio o f Von Mises 

equivalent stress to the first principal stress and is defined as:

(7-30)
A cTi

It indicates the degree o f  constraint in terms o f Von Mises equivalent stress, (Von Mises 

stress gives an indication o f  distortion energy and hence the opposite o f  constraint).

C v m  0 Then c t v m  c t i -  This implies CT2 = 0 3  = 0 or uniaxial tension.

CvM= 1 Then gvm = 0. This implies 0 1  = 0 2  = 0 3  or hydrostatic stress. There is 

complete constraint.

CvM<0 Then Ctvm >cTi
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CvM> 1 Then ctvm < C7i This occurs when a i < 0 and implies a completely 

compressive stress state.

7.4.3 Application of the elastic parameters

7.4.3.1 Wei ded geometries

Figures 7.13 to 7.15 below show the application o f the three elastic constraint parameters 

to the following welded geometries:

-  Fillet-A (see section 5.1)

-  T-shape-A (see section 4.2)

-  T-shape-B (see section 4.3)

1.2

1

Fillet-A
T-shape-B
T-shape-A
30

0.8

0.6

0.4

0.2

0
1.40 0.2 0.4 0.6 0.8 1 1.2

Distance (mm)

Fig. 7.13 - Application o f  the ps parameter to the welded geometries

It can be seen from Figure 7.13 above that the ps  value at the hotspot and also at the 

distance ao along the path is lowest for the Fillet-A specimen and greatest for the T-shape- 

B specimen.
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Unfortunately this parameter is quite sensitive to the direction of the focus path. That is, 

considerable variations are observed if  the direction o f the focus path is slightly altered. 

This was especially a problem for the Fillet-A specimen, which is a very three-dimensional 

stress concentration. It is also very sensitive to the way in which the end of the weld-bead 

was modelled for the Fillet-A specimen (ie. as a spherical, triangular or square end, see 

Appendix A, section A.2.4.3),

Another problem with the ps  parameter is caused by the way finite element programs 

define principal stresses. That is, the principal stresses are defined using magnitude, not 

direction. Hence, even in a simple 2-D analysis it is possible for the directions o f the 

principal stress to change along a given path. This makes calculation of the ps  parameter 

very difficult, especially for complex geometries.

Fillet-A
T-shape-B
T-shape-A
ao

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

- 0.2

Distance (mm)

Fig. 7.14 - Application o f  the Ce parameter to the welded geometries

Figure 7.14 above shows the application of the Ce parameter to the three weldled 

geometries. It can be seen that the Ce parameter shows a similar trend to that exhibited by 

the ps parameter. That is, the Fillet-A specimen is less constrained than the T-shapied 

specimens.
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The Ce parameter takes the whole elastic stress field into account, without regard to the 

relationship between crack orientation and the stress directions. It therefore represents the 

total range of possible stress states. The ps parameter forms a subset within this more 

general parameter. To make matters more complicated, the position of the ps  subset within 

Ce changes depending on the type of geometry being considered. Specifically, this means 

that a cracked fatigue specimen in plane strain = 1) will have higher Ce values than a 

plane strain specimen containing a blunt notch. This makes Ce only really useful as a 

comparison between similar specimens.

Fillet-A
T-shape-B
T-shape-A
ao

0.8

0.6

0.4

0.2

0.4 0.6 0.8

- 0.2

Distance (mm)

Fig. 7.15 - Application o f the Cvm parameter to the welded geometries

Figure 7.15 above shows the application of the Cvm parameter to the three welded 

geometries. It can be seen that the Cvm parameter shows a very similar trend to that 

exhibited by the ps and Ce parameters. That is, the Fillet-A specimen is less constrained 

that the T-shaped specimens.

7.4.3.2 Model-E

Table 7.2 summarises the application of the constraint parameters to the Model-E 

geometry for both FE models (ie. with and without the root radius). It is seen that for the 

model without the root radius the value for the ps parameter is very high at both the
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hotspot and at ao. However the model that includes the root radius shows less constraint 

especially at the hotspot. This is because the presence of the root radius creates a very thin 

section directly at the hotspot that relaxes the out-of-plane stress and reduces the 

constraint. Nevertheless, at a distance of ao, the constraint values are similar to the model 

that doesn’t include the root radius.

Table 7.2 - Application o f the elastic constraint to Model-E

Model-E Ps Ce Cvm
Without root radius

At hotspot 0.77 0.426 0.285
A t a o 1.39 0.555 0.365

With root radius
At hotspot 0.021 0.136 0.004
A t a o 0.809 0.459 0.310

From the above it was concluded that the constraint effect should not be a factor in the 

fatigue analysis of Model-E.

7.4.3.3 Model-T

Figure 7.16 below shows the application of the elastic constraint parameter to the Model-T 

specimen (see section 5.3.3). It can be seen that all of the parameters are relatively low.

 Ce
 Cvm
 ao0.8

o 0.4

0.2

0.2 0.4 0.6 0.8 
Distance (mm)

Fig. 7.16 - Application o f the elastic constraint parameter to the Model-T specimen
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7.4.3.4 Discussion

In general it is considered that the elastic constraint parameters discussed above can give a 

reasonably good indication of the degree o f constraint at a given stress concentration. 

However each method contains problems and limitations, discussed above, which must be 

taken into consideration. Also, the fact that these parameters are calculated using only the 

stress determined along the focus path, is quite limiting. For example, in the case o f the 

Model-T specimen the focus path is chosen to be along the top surface o f the specimen (or 

very close to this, see Appendix A, section A.4.4.1). It is clear that for this path, the degree 

o f constraint will be low, because it is not possible to have a stress at a free surface. It is 

therefore suggested that the approach discussed above, which is based on the plastic zone 

size is more useful and reliable.

7.5 Experimental investigations of the constraint effect

Two separate experimental investigations of constraint were undertaken. These are 

discussed below.

7.5.1 Determining AKth in both plane stress and plane strain

In order to determine, conclusively, if  there is any difference in the fatigue stress intensity 

threshold measured in plane strain and plane stress, a material with a large ao value was 

tested, in which it is possible to obtain a two-dimensional plane stress specimen.

7.5.1.1 The specimens and material properties

Figure 7.17 below shows the two-dimensional, sharply edge-notched, tension specimens 

that were tested in two different thicknesses (0.5mm and 6mm), to represent plane stress 

and plane strain conditions. The specimens were 200mm x 50mm with a nominal notch 

depth of 15mm and an average notch root radius of 0.035mm,
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Fig. 7.17 - Sharply notched aluminium specimens; two thicknesses (0.5mm and 6mm)

The material was wrought aluminium specified by BS 1470:1987 [BSI, 1987] as 1050A 

with a H14 temper. This is 99.5% pure aluminium with mechanical properties as per Table 

7.3 below.

Table 7.3 - Mechanical properties o f Aluminium 1050A H14

Tensile strength
Elongation on 50 mm

Materials thicker than

Min.
(MPa)

Max.
(MPa)

0.5mm 
min. (%)

0.8mm 
min. (%)

1.3mm 
min. (%)

2.6mm 
min. (%)

3.0mm 
min. (%)

100 135 4 5 6 6 8

Hardness tests were conducted on specimens of the material, taken from both thicknesses, 

to ensure there were not significant deviations in the mechanical properties. The results are 

shown in Table 7.4 below. It can be seen that there is almost no difference in hardness. It is 

therefore assumed that the other mechanical properties will also be the same.

Table 7.4 - Micro-hardness measurements

Vickers Hardness Average

0.5mm thickness 44.0 42.8 42.2 43.9 42.3 43.0

6.0mm thickness 44.9 43.6 43.9 39.9 44.8 43.4
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7.5.1.2 Fatigue tests and results

The specimens were cyclically loaded via an Instron servo-hydraulic testing machine at an 

R-ratio of 0.1. The clamping arrangement was such that rotation o f the specimen ends was 

constrained.

The initial intention was to determine the stress-life curves for both thicknesses and hence 

determine the threshold stress intensity ranges by assuming that the behaviour of a sharp 

notch is crack-like. However, the final crack length obtained for each specimen tested was 

not constant. This was because visual inspection was the only way in which crack length 

and hence failure o f the specimen could be determined. A reduction of stiffness technique 

was not viable because the testing machine was not sensitive enough to detect the change 

in displacement necessary for the method to be reliable. Hence, it was decided that crack 

growth data could also be measured, from which crack growth rate curves could be 

obtained and used to correct the crack lengths to a common value. This also allowed 

determination of the threshold stress intensity ranges via crack growth rate curves.

Crack length data was measured by interrupting the test and using replica tape to take a 

copy of the specimen surface. The replica was subsequently examined under an optical 

microscope and the crack length was measured. Using this technique cracks as small as 

0.05mm could be observed and measured.

7.5.1.2.1 Measured S-N curves

The results, including the measured crack lengths are reported in Table 7.5 and Table 7.6 

below. The S-N curves obtained are shown in Figures 7.18 to 7.20 below.
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Table 7.5 - Experimental results 6 mm specimens

Specimen

Number

Applied Stress 

Range [MPa]

Initial Stress 

Intensity Range 

[MPa m̂ '̂ ]

Number of 

Cycles

Measured 

Crack Length 

[mm]

1 No Result

2 50.983 14.323 1.038E+04 total

3 28.507 7.989 1.507E+05 total

4 27.300 7.683 4.043E+04 1.6

5 18.153 5.079 2.417E+05 1.9

6 12.205 3.350 4.085E+05 1.8

7 21.273 5.955 4.011E+04 1.3

8 9.103 2.563 8.309E+05 1.5

9 7.605 2.133 1.816E+06 2.75

10 6.052 1.687 1.555E+06 0.478

11 21.894 6.031 1 253E+05 0.679

12 5.471 1.530 1.700E+06 0 (run out)

Table 7.6 - Experimental results 0.5 mm specimens

Specimen

Number

Applied Stress 

Range [MPa]

Initial Stress 

Intensity Range 

[MPa m̂ '̂ ]

Number of 

Cycles

Measured 

Crack Length 

[mm]

1 48.776 13.459 5.243E+03 Total

2 26.557 7.365 4.885E+04 Total

3 24.669 6.762 3.709E+04 3.5

4 17.570 4.789 1.552E+05 3.4

5 21.145 5.774 2.679E+04 2

6 11.747 3.223 1.416E+06 5.9

6(a) 9.142 2.496 2.159E+06 0 (run out)

7 15.201 4.149 3.385E+05 2.3

8 21.092 5.724 3.503E+04 2.535

9 9.855 2.683 1.030E+06 0.795

10 9.204 2.502 1.600E+06 0 (run out)

11 16.242 4.407 1.895E+05 2.061

12 9.575 2.614 1.157E+06 1.953
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100.000

10.000

1.000
1.E+03 1.E+04 1.E+06 1.E+071.E+05 

No. Cyc. to Failure

Fig. 7.18 - Measured S-N curves fo r  the 6mm specimens

100.000

10.000

1.000
1.E+03 1.E+04 1.E+05 

No. Cyc. to Failure

1.E+06 1.E+07

Fig. 7.19 - Measured S-N curve fo r  the 0.5 mm specimens
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100.000

“  10.000

#  0.5mm

■  6mm 

* " ^ P o w e r  (0.5mm) 

^ ^ ■ “ Power (6mm)
1.000

1.E+041.E+03 1.E+05 

No. Cyc. to  Failure

1.E+06 1.E+07

P'ig. 7.20 - Both measured S-N curves

From the above, the fatigue strength of these specimens is predicted by drawing regression 

lines with the standard equation, through the data using least-squares fitting. The fatigue 

strengths are found to be;

9.04 MPa at 2x10^ cycles for the 0.5mm specimens 

6.51 MPa at 2x10^ cycles for the 6mm specimens

7.5.1.2.2 Failure surfaces

The failure surfaces for the two different specimens were observed to be very different. 

The cracked surface o f the thicker, 6mm specimens, were typically flat and perpendicular 

the direction of the applied load with slightly bowed crack fronts. However, the cracked 

surfaces in the thin specimens were orientated at 45 degrees to the direction of the applied 

load.
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7.5.1.2.3 Crack growth rate data

In order to determine the crack growth rate curves, crack length as a function o f the 

number o f cycles was measured for many specimens. Hence, data was obtained at various 

applied stress levels and crack lengths and therefore at various stress intensity ranges. An 

example o f the data, for Specimen 8 with 0.5mm thickness, is shown in Table?. 7 below.

Table 7.7 - An example o f crack growth data for specimen 8 with 0.5mm thickness

Number of 

Cycles

Crack

Length

[mm]

Stress

Range

[MPa]

Shape
Factor

Stress 

Intensity 

[MPa m '̂̂ ]

da/dN
[mm/cyc]

1500 0 21.092 1,265 5,711

10074 0,43 21.092 1.271 5.822 5015E-05

15015 0,661 21,092 1,274 5.882 4,675E-05
18026 0,884 21,092 1,277 5.939 7,406E-05

21016 1.052 21,092 1,280 5,983 5619E-05

24029 1,441 21.092 1.285 6.084 1291E-04
27265 1,609 21.092 1,288 6.128 5192E-05
32024 2,184 21,092 1,297 6.278 1 208E-04

The shape factor or configuration factor, F, used to determine the stress intensity factor 

above, is taken to be [Pickard, 1986]:

F  =

2 0 -1 3

(7-31)

W - 7
W

Where D is the notch depth, a, is the crack length and W is the width of the specimen.

The crack growth rate, da/dN, was then calculated, via equation 7-32, at each stress 

intensity level and these points were plotted against AK on crack growth curves (see 

Figures 7.21 and 7.22).

(7-32)
dN
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1.E-03

1.E-04
No 10
Reference
No 11

1.E-05 No 11A
No 11B
No 4A
N0 8 A1.E-06

1.E-07
10

AK

100

Fig. 7.21 - Crack growth rate curve fo r the 6mm specimens

.E-03

.E-04

No 7 
No 8
Reference 
No 9 
No 7A 
No 11 
No 12

.E-05

■o

.E-06

.E-07
100

AK

Fig. 7.22 - Crack growth rate curve fo r  the 0.5mm specimens

In addition to the experimental data plotted in Figures 7.21 and 7.22 there is a reference 

curve on each figure. This is a line that is governed by equation 7-33 below.
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(7-33)

Where:

A Is the crack growth rate constant

m Is the crack growth rate exponent, and

AKth Js the threshold stress intensity range, for a long crack

For both thicknesses, the values of A, m, and AKth have been manually adjusted to obtain a 

reasonably fit with the experimental data. The values chosen are reported in Table 7.8 

below. The reference curves are plotted together in Figure 7.23.

Table 7.8 - Reference curve constants

A

[mm/(cyc. MPa’”)]

AKrt.

[MPa

m

6mm Thickness le-6 1.3 1.5

0.5mm Thickness 9e-6 2.8 1.8

.E-03

.E-04

 Reference 6mm
 Reference 0.5mm.E-05

.E-06

.E-07
100

AK

Fig. 7.23 - Comparison o f crack growth rate curve
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Figure 7.23 clearly demonstrates the difference between the two specimen thicknesses. It 

can be seen that for low crack growth rates, the curve for the 0.5mm specimens is below 

the curve for the 6mm specimens. Consequently the 0.5mm specimens have a higher 

threshold value. However, at approximately 5.8xlO'^mm/cycle the curves cross each other. 

This means that in the Paris or linear region, the thinner specimens have a higher crack 

growth rate.

As discussed in section 7.2.2, a probable explanation for this behaviour relates to the 

danger o f  out-of-plane loadings in thin specimens. That is, small deviations from in-plane 

loading can cause M ode-Ill stress intensities which tend to increase the crack growth rate. 

The fact that the failure surface in the thin specimens was observed to be a 45° to the 

direction o f the applied load supports this. It is therefore suspected that this effect is being 

observed in the thin specimen and that it is more pronounced at higher stress intensities 

were the loads are higher. Hence, the near threshold shown in Figure 7.23 is believed to be 

correct.

7.5.1.3 Life Corrected to a crack length o f 0.8mm

These reference curves, discussed above, have then been used below to correct the life o f 

the specimens, measured at various crack lengths, to a common crack length value. In 

order to do this, a small visual basic program was written which essentially performs a 

numerical integration o f equation 7-33 above. The resistance curve concept whereby the 

threshold stress intensity range decreases from the usual long crack value, when the crack 

is short, was also included. The El Haddad approach, discussed in Chapter 6, section 6.1, is 

used.

For this analysis, a plain specimen fatigue limit, Agq, o f  50 MPa is assumed. This value is 

an estimate based solely on the specified UTS o f the material. The resulting slo values are 

0.998mm for the 0.5mm specimens and 0.215mm for the 6mm specimens.

The results o f this correction are tabulated in Tables 7.9 and 7.10 below, whereby the life 

o f each specimen is estimated at a crack length o f 0.8mm.
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Table 7.9 - Life correction to a crack length o f  0.8mm fo r  the 6mm specimens

Specimen

Number

Applied 

Stress Range 

[MPa]

Measured Data No. of Cycles for 0.8mm Crack Length

No. Cycles

Crack Length 

[mm]

Without

R-curve

With

R-curve

1 No result

2 50.983 1.038E+04 total -2.195E+05 -2.189E+05

3 28.507 1.507E+05 total -4.501 E+05 -4.468E+05

4 27.300 4.043E+04 1.6 -6.370E+03 -5.270E+03

5 18.153 2.417E+05 1.9 1.047 E+05 1.096E+05

6 12.205 4.085E+05 1.8 1.146E+05 1.332E+05

7 21.273 4.011E+04 1.3 -6.785E+03 -5.125E+03

8 9.103 8.309E+05 1.5 3.798E+05 4.301 E+05

9 7.605 1.816E+06 2.75 -2.517E+05 -1.170E+04

10 6.052 1.555E+06 0.478 2.749E+06 2.256E+06

11 21.894 1.253E+05 0.679 1.364E+05 1.359E+05

12 5.471 1.700E+06 0 1.700E+06 1.700E+06

Table 7.10 - Life correction to a crack length o f  0.8mm fo r  the 0.5mm specimens

Specimen

Number

Applied 

Stress Range 

[MPa]

Measured Data No. of Cycles for 0.8mm Crack Length

No. Cycles

Crack Length 

[mm]

Without

R-curve

With

R-curve

1 48.776 5.243E+03 total -8.527E+03 -8.077E+03

2 26.557 4.885E+04 total -6.974E+03 -2.874E+03

3 24.669 3.709E+04 3.5 1.820E+04 2.161E+04

4 17.570 1.552E+05 3.4 9.933E+04 1.162E+05

5 21.145 2.679E+04 2 1.203E+04 1.619E+04

6 11.747 1.416E+06 5.9 6.699E+05 1.077E+06

6(a) 9.142 2.159E+06 0 2.159E+06 2.159E+06

7 15.201 3.385E+05 2.3 2.730E+05 3.020E+05

8 21.092 3.503E+04 2.535 1.426E+04 1.962E+04

9 9.855 1.030E+06 0.795 1.030E+06 1.030E+06

10 9.204 1 600E+06 0 1 600E+06 1.600E+06

11 16.242 1.895E+05 2.061 1.479E+05 1 650E+05

12 9.575 1.157E+06 1.953 1.157E+06 1.063E+06

The resuhing S-N curves are shown in Figures 7.24 to 7.26 below. Note that only positive 

values are plotted on the graphs.
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1.000
1.E+03 1.E+04 1.E+061.E+05 

No. Cyc. to  Failure

1.E+07
y= 1626.9X'

Fig. 7.24 - Modi fied S-N curve for the 6mm specimens

100.000

10.000

1.000
1 .E+03 1 .E+04 1.E+05 

No. Cyc. to  Failure

1 .E+06 1.E+07

y = 154.82x-°̂ ®̂ 2

Fig. 7.25 - Modified S-N curve for the 0.5mm specimens
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Fig. 7.26 - Both modified S-N curves

From these S-N curves the fatigue strength o f these specimens is predicted to be:

9.39 MPa at 2x10^ cycles for the 0.5mm specimens 

5.59 MPa at 2x10^ cycles for the 6mm specimens

In should be noted that the number of cycles for a crack to grow 0.8mm is calculated to be 

negative for several specimens (see Tables 7.9 and 7.10 above). This is a physical 

impossibility that suggests the calculation method is not very accurate. This is especially a 

problem for the 6mm specimens as 5 out of the 11 test points are invalid because they have 

a negative number o f cycles to failure.

Regardless, the Modified S-N curves show a bigger difference between the two thicknesses 

than the Measured S-N curves.

7.5.1.4 A check of the degree o f constraint

In order to check that conditions o f plane stress and plane strain were actually achieved in 

the specimens, two elastic-plastic finite element analyses were undertaken. These were
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two-dimensional models of the actual notched geometries; one model was in pure plane 

stress and the other in pure plane strain.

The stress-strain curve of the material was modelled as being bi-linear, where the yield 

strength was assumed to be 70MPa and the ultimate tensile strength was taken to be 

lOOMPa (as per the minimum published value). The load applied on each o f the models 

was the experimentally determined fatigue load reported above (using the modified S-N 

curves) that is, 9.39 MPa for the 0.5mm specimens and 5.59 MPa for the 6mm specimens.

The size of the monotonic plastic zone (MPZ) and cyclic plastic zone (CPZ) for each case 

was determined as per Table 7.11 below. Note that these are the sizes of the plastic zones 

measured along the notch bisector (or the zero degree line).

Table 7.11 - Plastic zone sizes

MPZ size (mm) CPZ size (mm) MPZ / CPZ

Pure plane stress 0.361 0.051 7.08

Pure plane strain 0.057 0.011 5.18

It can be seen that the MPZ for the case of pure plane strain is very small compared to the 

thickness of the actual specimens (6mm). Therefore it is expected that plane strain 

conditions are predominate in these specimens. On the other hand the MPZ for the plane 

stress specimen is approaching the same size as the thickness of the actual plane stress 

specimen (0.5mm). Hence, this specimen should experience conditions of plane stress.

7.5.1.5 Conclusion

The most important conclusion that can be made from this experimental investigation is 

that the stress intensity threshold measured in plane stress is higher than that measured in 

conditions of plane strain. For the material investigated here, the plane stress threshold was 

measured to be approximately 1.68 time higher than plane strain value, using the S-N 

curves. When considering the crack growth rate curves this factor was determined to be 

2.15.
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7.5.2 A notched component in plane stress (Model-J)

In order to further test the hypothesis that low constraint affects fatigue behaviour and can 

result in the poor performance of the CMM and CDMs, a notched fatigue specimen in 

which the crack would grow in predominately plane stress conditions was devised and 

tested. This was done in calibration with Jerome Guillios [2000].

7.5.2.1 The specimen and material properties

The specimen was designated Model-J and is shown in Figures 7.27 and 7.28 below. It was 

machined from an inch-by-inch mild steel bar and then stress relieved. The specimen was 

tested in three point bending. Crack growth was in the negative y-direction, starting at the 

stress concentration feature and propagating through the very thin section.

The specimens were machined from the same material previously used for the Model-E 

and Model-T specimens. This material is discussed at length in Appendix-A, section A. 1. 

It was determined to have a plain specimen fatigue limit (in bending), Agq, o f 435 MPa and
1 / 9a material stress intensity threshold range, AKth, of 11 MPa.m at an R-ratio of 0.1. Hence 

the value o f a« was found to be 0.205 mm.

Fig. 7.27 - Three-dimensional view o f  the M odel-J specimen

113



6.9

010

100

Front viewMid section

Fig. 7.28 - Dimensions o f  the Model-J specimen

1.5.22  Defining the degree o f constraint

7.5.2.2.1 Application o f the elastic constraint parameters

Before the specimen was tested, a finite element analysis was conducted to determine the 

degree o f constraint using the elastic parameters discussed above (see section 7.4.2). The 

results o f this analysis are reported below in Figure 7.29. It can be seen that all of the 

parameters indicate a very low constraint factor.
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Fig. 7.29 - Elastic constraint parameters applied to the Model-J specimen
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1.52.2.2  Elastic plastic finite element analysis

In addition, an elastic-plastic finite element analysis o f the Model-J specimen has been 

undertaken to determine the degree o f constraint.

The load range applied to the model was the experimentally determined fatigue strength 

(see section 7.5.2.3 below) at an R-ratio of 0.1. The measured cyclic stress-strain curve, for 

the actual material, was used. This is presented in Appendix A. The MPZ is determined to 

be approximately 5.1 mm and the CPZ is 1.36mm. It can be seen from the cross sectional 

view in Figure 7.28 that, at the extent of the MPZ, the thickness (2.7mm) is considerably 

less than the size o f the plastic zone. Hence, conditions of plane stress will prevail in this 

specimen.

7.5.2.3 Experimental results

The results o f the experimental investigation o f the Model-J specimen are reported in 

Table 7.12 and Figure 7.30 below. From these the fatigue strength was determined to be 

3.16 kN at 2x10^ cycles.

Table 7.12 - Experimental test results - Model-J

Test No. R-ratio Load Range 

(kN)

No. of cycles Comment

1 0.101 2.63 2.87E+06 No failure - Test aborted

2 0.103 4.49 6.99E+05 Failure

3 0.094 3.705 1.26E+06 Failure

4 0.113 3.12 1.85E+06 Failure

5 0.089 2.515 4.45E+06 Failure

6 0.102 2.2 5.66E+06 Failure

7 0.105 2.04 9.70E+06 No failure - run out

8 0.098 6.14 2.91E+05 Failure
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Fig. 7.30 - Experimental results - Model-J

7.5.2.4 Fatigue analysis results

For this specimen the choice of the focus path is logical because the specimen has two 

planes o f symmetry. Hence, the focus path starts at the hot spot and extends down through 

the centre of the thin cross section shown in Figure 7.28 above.

The results o f the fatigue analysis are presented in Table 7.13 below. It can be seen that the 

errors are conservative and in general quite large, with error factors ranging approximately 

between 3 and 4.
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Table 7.13 - Summary o f results from the fatigue assessment o f  Model-J

Model-J
Experimental fatigue strength 3.16 kN at 2x10^ cycles
Point method 0.97 kN
(Error factor) (3.26)
Line method 1.07 kN
(Error factor) (2.95)
Area method 1.01 kN
(Error factor) (3.13)
CMM 0.766 kN
(Error factor) (4.12)
Stress-life method 0.86 kN
(Error factor) (3.67)

Note: Error factor is defined as the ratio of the Experimental fatigue strength to the predicted fatigue
strength

1.52.5  Discussion and conclusions

As discussed in Chapter 2, section 2.3.1, Smith and Miller [1978] showed that stress 

concentration features can be modelled either as cracks using LEFM or as notches using 

the stress-life method. Features with a low stress concentration factor, Kt, fall into the 

notch category and high stress concentration features are crack-like. For Model-J the result 

of the crack modelling method and the stress-life method are approximately the same. This 

implies that on the Smith & Miller diagram (see Figure 2.4) the stress concentration factor 

of Model-J lies somewhere close to the transition point Kt* and is not really notch-like or 

crack-like.

The results from the experimental investigation o f Model-J show the trend that was 

expected. That is, the CMM and the CDM’s were very conservative when predicting 

fatigue crack growth in the very thin section (or plane stress conditions) o f Model-J. It is 

assumed that this is at least partly due to the effect of low constraint.
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7.6 Quantifying the effect of constraint

As discussed in section 7.4.1.2 it is not possible to experimentally measure the stress 

intensity threshold, in conditions of plane stress, for most engineering materials as it would 

require test specimens which are excessively thin (less than ao). Therefore, we must have 

some way of estimating it. Two possible ways of doing this are discussed below:

7.6.1 Method 1

The first possible approach is to assume that the relationship between the thresholds 

measured in plane strain, A K u i l p i a n e  s t r a in ,  and plane stress, A K t h i p i a n e  s t r e s s ,  is similar to that 

which exists for fracture toughness Kic and Kc (see section 7.1.4). This is thought to be 

worth investigating because the plastic zone size, ahead of a crack, is essentially the same 

function of stress intensity (or stress intensity range) for both fatigue and facture. Hence, 

there is a good probability that similar trends will be observed. This is supported by Knott 

[1973] who believes that the effect of constraint in fatigue should be similar to that in fast 

fracture, assuming that the fast fracture occurs by ductile (fibrous tearing) mechanisms, 

because both types of failure are controlled by the level of plastic strain near the crack tip.

Of course, in order to prove that this is indeed the case, experimental investigations of both 

the AKth and Kc must be undertaken for the same material, in plane stress and plane strain. 

It would have been nice to do this for the aluminium discussed above. Unfortunately it was 

not possible due to time restrictions and because thicker specimens are needed to 

determine the plane strain fracture toughness (6mm was the biggest commercially 

available thickness).

If it is assumed Kth and Kc will follow the same trends with respect to their behaviour in 

plane strain and plane stress, it is possible to make some general approximations for the 

value of Kth in plane stress based on published data for Kc in plane stress. Figure 7.6 above 

shows one set of data discussed by Edwalds and Wanhill [1989]. It shows the variation of 

Kc with thickness for a high strength steel. It can be seen that Kc determined in plane stress 

is approximately 1.8 times the value measured in plane strain.
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Another set of data, for aluminium alloy 2219-TB7 is shown in Figure 7.31 below. For this 

material a similar difference is observed. In this case Kc measured in plane stress is 

approximately 2.3 times higher than the plane strain value.
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Fig. 7.3} - Variation o f  fracture toughness with thickness fo r  2219-TB7 Aluminium Alloy

Another set of data for an aluminium alloy is discussed by Knott [1973] and is shown in 

Figure 7,32 below. This figure gives toughness in terms of the critical strain energy release 

rate, which is directly proportional to the square o f the critical stress intensity factor, Kc. 

Therefore, for this material the Kc value measured in plane stress is approximately 2.96 

times higher than the plane strain value.
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Fig. 7.32 - Variation o f  toughness with thickness in an Al-Zn-Mg-alloy [Knott, 1973] 

All o f this data suggests the following very approximate relationship:
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(7-34)

The same relationship can be assumed for the threshold stress intensity factor, that is:

A A "  II  ^  ^  th \ plane stress ^  ^
“ AA" I ~th I plane strain

It can be seen that the results from the experimental investigation discussed in section 7.5 

falls within this range. Therefore, this assumption gives us an upper and lower bound for 

the value o f A K t h l p a n e  s t r e s s ,  which allows us to make fatigue predictions for components like 

Model-J which are characterised by low constraint.

Table 7.14 below shows the predictions made with the CDMs and the CMM using this 

upper and lower bound values for the threshold stress intensity range. It can be seen that 

predictions are improved, although conservative error are still apparent, even when the 

upper limit of AKthlpane stress is used.

7'ahle 7.14 - Results o f  the fatigue analysis o f Model-J using different AKth values

Plane stain values
AK,h = 11 MPa 

Bo = 0.205mm

AKthlpstrtss l*5AKthlpstrain
AK,h= 16.5 MPam''^ 

Ho = 0.458mm

AKrtilpstress ^AKrtilpstrain
AK,h = 33 MPa m'^ 

8o = 1.832mm
Experimental 3.16 kN at 2x10^ cycles
Point method 0.97 kN 1.12 kN 1.79 kN
(Error factor) (3.26) (2.82) (1.77)
Line method 1.07 kN 1.29 kN 2.21 kN
(Error factor) (2.95) (2.45) (1.43)
CMM 0.766 kN 1.15 kN 2.30 kN
(Error factor) (4.12) (2.75) (1.37)
Stress-life meth. 0.86 kN 0.86 kN 0.86 kN
(Error factor) (3.67) (3.67)
Note: Error factor is defined as the ratio of the Experimental fatigue strength to the predicted fatigue 
strength

7.6.2 Method 2

The second possible approach is to maintain the relationship that exists, in conditions of 

plane strain, between the monotonic plastic zone size and ao, for conditions o f plane stress. 

This relationship is discussed in section 7.4.1.1, where it was shown that for plane strain.
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the plastic zone size ahead o f a crack is approximately a factor o f C^/3 smaller than a„, for 

any given material. For plane stress this factor is only , where:

C = ^  (7-36)

Therefore, in order to have the same ratio, o f the plastic zone size to 3o, for both plane 

strain and plane stress, we must increase the a« value, for plane stress, by a factor o f  3. This 

ensures that for both stress states, ao is always greater than the plastic zone by 

approximately a factor o f three. Therefore, given the relationship between AKth and ao!

Ih \ plane stress'^  Ih \ plane strain

This idea is supported by the experimental evidence obtained using the aluminium 

specimens discussed above, for which the difference between AK* values, measured in 

plane stress and plane strain, was between 1.4 and 2.

On the other hand, using this modified value for â , in plain stress to obtain fatigue 

predictions for the Model-J specimen doesn't significantly decrease the prediction error 

(see Table 7.15) because the Model-J specimen has a relatively low stress gradient when 

compared to a crack. It is interesting to note that for this specimen the monotonic plastic 

zone is very large, approximately 5.1 mm, (see section 7.5.2.2.2), hence the relationship 

between ao and the plastic zone size, discussed above, is not maintained for this specimen.

The final column o f Table 7.15 below shows the fatigue predictions for the Model-J 

specimen using values o f ao and AK^, which result in good predictions. It can be seen 

unrealistically large values are required.
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Table 7.15 - Results o f the fatigue analysis o f  Model-J using different material properties

3o = 0.205mm 
AKft = 11 MPa m*'̂

a„ = 0.615mm 
AK«h = 19 MPa m*'̂

ao = 3.94mm 
AKa = 48.4 MPa m'^

Experim ental 3.16 kN at 2x10^ cycles
Point method 0.97 kN 1.195 kN 2.77 kN
(Error factor) (3.26) (2.64) (1.14)
Line method 1.07 kN 1.403 kN 3.51 kN
(Error factor) (2.95) (2.25) (0.90)
CMM 0.766 kN 1.10 kN 3.37 kN
(Error factor) (4.12) (2.87) (0.94)
Stress-life method 0.86 kN 0.86 kN 0.86 kN
(Error factor) (3.67) (3.67;

Note: Error factor is defined as the ratio o f the Experimental fatigue strength to the predicted fatigue 
strength

7.7 Concluding remarks

This chapter is essentially an investigation of the effect of constraint on fatigue behaviour.

It has been shown that:

[1] Stress intensity threshold is a function of constraint. That is, the threshold 

measured in plane stress is higher than the plane strain value. This was confirmed 

for a material with a large a<, value, which could be tested in both plane strain and 

plane stress.

[2] Fatigue predictions made using the CMM and the CDMs for stress concentrations 

characterised by low constraint result in conservative errors. This was confirmed 

by the experimental investigation o f the Model-J specimen.

[3] Furthermore, even if it is accounted for in the most optimistic way, the addition 

of a correction to account for low constraint still results in conservative error for 

the Model-J specimen (see section 7.6.1). It is therefore concluded that there are 

other factors affecting the fatigue behaviour o f this specimen. One possibility is 

the stressed volume effect, which is discussed, in the following chapter.

[4] Methods to determine the degree of constraint were investigated. The most useful 

criterion was to relate the plastic zone size to the specimen thickness. Based on 

this, it is believed that the Model-E specimen will not show a constraint effect.

[5] It is also believed that the Model-T and Fillet-A specimens will have the same 

degree of notch tip constraint, which is most probably neither pure plane strain 

nor pure plane stress. This implies that at least some effect o f low constraint 

should be observed in both cases and consequently a correction should be applied
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to both cases. However, as shown in Chapter 5, good fatigue predictions were 

made for Model-T without any modification to the analysis methods. This was 

not the case for the Fillet-A specimen where big conservative errors were 

observed. Hence, the application of any correction factor to the predictions for 

the Fillet-A specimen will improve the result while the predictions for the Model- 

T specimen will get worse. However, it is expected that the specimens are 

predominately in conditions of plane strain. Hence the correction will be small 

and not greatly affect the results for the Model-T specimen.
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Chapter 8: The Stressed Volume Effect

This chapter is an investigation of the third possible explanation for the conservative errors 

discussed in Chapter 5 and is summarised as follows. Figure 8.1 below shows four 

different stress concentration features. Figures 8.1(a) and (c) are two-dimensional 

specimens for which the CMM and the CDMs give good results. Figures 8 .1(b) and (d) are 

examples of three-dimensional stress concentration features which result in conservative 

predictions. It can be seen that a major difference between these, is that the 3-D features 

are localised stress concentrations where failure occurs from a point or small region, while 

in the 2-D case, cracks can initiate at any point along the width o f the specimen at the 

stress concentration feature.

An alternative way of looking at this difference is in terms o f stressed volume. In the three- 

dimensional case the amount of highly stressed material is significantly less when 

compared to a two-dimensional geometry.

The stressed volume effect is a well-known phenomenon in fatigue. Essentially, fatigue 

strength is observed to decrease as the amount of highly stressed material is increased. This 

is qualitatively explained by noting if the amount o f stressed material is large, there is a 

greater probability that it will contain crack initiation sites.
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(a) 2-D welded geometry 
(T-shape-A)

(c) 2-D solid geometry

(b) 3-D welded geometry 
(T-shape-B)

(d) 3-D solid geometry 
(Model-E)

Fig. 8.1 - Illustration o f  the stressed volume effect 

8.1 Definition of terms

Before continuing several confusing terms, which are important to the ideas being 

considered in this chapter are defined.

Crack initiation sites:

Crack initiation sites are defined as, all locations were fatigue cracks may initiate. These 

include material flaws and manufacturing defect or can be as simple a grain that is weaker, 

or preferentially orientated, when compared to other grains. The definition excludes 

geometrical stress concentrations features (i.e. notches)
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The stressed volume effect:

The stressed volume effect is defined as a reduction in strength due to the fact that there is 

more stressed material. This could occur by either:

1. A change of scale. For example, the difference observed between geometrically similar 

specimens, o f different size, subjected to a uniform stress distribution (see section 8.3 

below).

2. The presence of a stress gradient. For example the reduction in fatigue strength due to 

the stress gradient at a notch.

3. By a combination of the above. For example the difference observed in the fatigue 

strength of rotating bending specimens of different diameters. In this case, an increase 

in diameter results in an overall increase size and at the same time decreases the stress 

gradient (see Figure 8.7 and Appendix D).

Size effect:

This term is defined exactly as per the stressed volume effect. That is, it implies a reduction 

in strength due to a greater size of stressed material.

Stress sradient effect:

This is defined as a stress volume effect or size effect caused by the presence of a stress 

gradient.

6.2 The critical distance methods and the stressed volume effect

Do the critical distance methods account for the effect o f stressed volume? This is an 

extremely difficult question to answer. Yet, it is fundamental to the idea being investigated 

in this chapter.

Indeed this was the original idea o f Neuber [1958] who postulated that fatigue strength 

depends on the average stress acting over an elementary volume o f the material ahead o f a 

notch. Hence, in this way stress gradient effect can be accounted for. This is supported by 

the fact that the critical distance methods, as defined by Taylor [1999] have been shown to 

successfully predict the fatigue behaviour of a wide range of two-dimensional notched 

geometries and materials [Taylor and Wang, 2000], We can therefore say, that the critical
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distance methods can predict the stressed volume effect when it is due to a stress gradient 

caused by the presence of a notch.

Secondly, the CDMs can be used to make predictions for the size effect observed in plain 

steel rotating specimens. This is done in Appendix D for a large quantity of experimental 

data, however because the material properties are unknown (specifically AK* and a<,) it is 

difficult to assess the accuracy of the predictions. It is concluded, on the basis of 

experience and engineering judgement, that in the majority o f cases the point method 

under-predicts the experimental data. Nevertheless it can at least be stated that CDMs 

make some sort of correction when a stressed volume effect is caused by both a change in 

scale and due to the presence o f a stress gradient.

Based on this evidence one could be convinced that the critical distance methods do 

account for stressed volume effects. However, as is always the case, the following 

arguments demonstrate that the situation is not completely black and white.

In their current form, the CDMs can in no way account for a stressed volume effect due 

solely to a change o f scale. For example, the difference in fatigue strength of different 

sized, plain specimens, tested in cyclic tension. Compared to the fatigue behaviour of 

notched components this is a much simpler situation. There is no stress gradient and in 

general the material behaviour remains elastic. Hence, it can be argued that this is a true 

size effect and that the difference observed in the fatigue strength is due solely to the 

statistical distribution of crack initiation sites, or more specifically to the statistical 

distribution in the size and location of crack initiation sites within the specimens. This is 

discussed in greater detail in the following section.

The real problem, when trying to say what the CDMs do and do not account for, is that we 

don't really understand the underlying mechanisms of the critical distance methods or why 

they work. It is unlikely that the stressed volume effect is the only mechanism or factor 

involved in the fatigue behaviour of notched components. The formation o f local notch tip 

plasticity and the growth of non-propagating crack are examples of other factors that 

should also be taken into consideration. In fact, a recent paper, Taylor [2001] proposed that 

the CDMs work by specifying the necessary condition for the growth of non-propagating 

cracks.
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A third argument that creates doubt as to whether the CDMs take into account the stressed 

volume effect, in a complete way, is as follows. In the original work by Neuber [1958] 

concerning the CDMs, he argued that the critical volume should be large enough so that 

the material ahead o f the notch is sampled homogeneously. That is to say the critical 

volume must be larger than one grain. If this is not the case the material will be 

quantitatively different. For example, it will not contain grain boundaries and would 

therefore behave differently to a typical material sample. If the critical volume is between 

one grain and ten grains the situation is not so clear. However, if  the volume is greater than 

approximately ten grains then it can be assumed that conditions of homogeneity will be 

approached. It can be seen that this argument is different from the probabilistic one, given 

above, which states that if  the amount of stressed material is large, there is a greater 

probability that it will contain crack initiation sites. It seems logical that the probabilistic 

argument can only be used IF the stressed volume is big enough to ensure homogeneity. 

For smaller volumes the whole process o f fatigue could be different so it is not wise 

extrapolate from larger volumes. It is therefore possible that when using CDMs, we look at 

a volume of material is large enough to ensure homogeneity, but we don’t take account of 

probabilistic effects.

As always, the honest answer to the question posed at the beginning o f this section is: we 

really don't know. Nevertheless the arguments present here create enough doubt to justify 

investigating other approaches to account for the stressed volume effect. In particular it is 

thought that an alternative approach or correction could be used in conjunction with the 

critical distance methods without accounting for the same effect twice.

8.3 Size effects in plain cyclic tension specimens

There is some doubt as to whether a size effect is actually observed in plain specimens 

loaded in axial tension. On the basis o f the data given in Table 8.1 and plotted in Figure 

8.2, Heywood [1962] states that the fatigue limit of steels tested in reversed axial loading is 

practically independent of the size of specimen. This is an important point to resolve 

because if no size effect is observed in plain tension specimens there is little point pursuing 

a statistical approach to predict size effects.
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It is safe to say that if  the effect were real it would be less obvious than the corresponding 

effect observed in plain rotating bending specimens because there is no stress gradient, and 

would also be a function o f the material. Therefore, the position taken in this work is only 

subtly different from Heywood's. Here it is argued the size effect is real phenomena but for 

many materials is lost within the experimental scatter.

Table 8.1 - The ejfect o f size on plain steel reversed tension specimens [Heywood, 1962]

Material UTS (MPa)
Diameter o f  test 

section (mm)
Fatigue limit 

(± MPa)
3.658 386.1

3 .1 % N i,0 .9 % C r (En36) 820.5 9.169 370.9
12.7 370.9

4.826 186.8
4.826 186.8
4.826 204.1

Mild steel, 0.07% C, 8.382 204.1
0.2% Mn, 0.2% Si

^ o o .  1
14.224 204.1
24.892 176.5
24.892 202.7
35.052 200.6
4.826 593.6

2.6% Ni, 0.75% Cr, 0.6% 8.382 572.3
Mo, 0.43% C (En26) y  !Z . L 12.7 603.4

24.892 570.9

800
♦ set 1 
■ set 2 
▲ set 3

600

.t:

. i  400

U I

200

Diameter (mm)

Fig. 8.2 - The ejfect o f  size on the plain fatigue strength o f steel measured in reversed

tension [Heywood, 1962]
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8.4 A statistical approach to the stressed volume effects

In the following, an alternative approach to predict size effects in fatigue is investigated. It 

is essentially a statistical approach, which is often used to predict brittle facture in all kinds 

o f engineering materials.

8.4.1 The Weibull distribution

The Swedish engineer, Weibull [1951; 1961], developed an approach that can be used to 

deal with the probability aspects o f fatigue. He proposed the following:

Where Ps(Vref) is the probability of survival, and is defined as the fraction of identical 

samples, each o f volume Vref, which survive fatigue loading at a stress range o f Act. The 

quantities, ACTref and b are experimentally determined material constants.

Equation 8-1 is plotted in Figure 8.3 below. It can be seen that when the applied stress 

range. Act, is equal to zero the probability o f survival is one, that is all samples survive. As 

Act approaches ACTref samples begin to fail. When Act is equal to ACTref the probability of 

survival is equal to 37% and as Act goes to infinity, virtually all samples fail.

Therefore Acref is simply the applied stress range which allows 37% of specimens to 

survive and the constant b is referred to as the Weibull modulus, which tells how rapidly 

the fatigue limit falls as Act approaches ACTref. Figure 8.3 shows the Weibull distributions 

for three different values of the Weibull modulus. The lower the modulus, the greater the 

variability in the fatigue strength and conversely, a material with a high Weibull modulus 

has a well-defined fatigue strength.

(8- 1)

130



b= 10 
b= 100

0,6

0,4

0.2

100

- 0.2
Fatigue stress, Aa

Fig. 8.3 - The Weibull cumulative probability distribution fo r  various Weibull modulus

values and AOref = 5 0

8.4.2 Two-parameter and three-parameter distributions

The Weibull distribution discussed above is often referred to as a two-parameter Weibull 

distribution. Three-parameter Weibull distributions also exist, in which a third parameter is 

used to define the minimum stress range (other than zero). Equation 8-1 then becomes:

exp-
Ag--Ag-^„

(8-2)

8.4.3 Volume dependence

The forgoing discussion is related to how the probability o f survival depends on the 

applied stress range, but it also depends on volume. This was formulised by Weibull in the 

following way.
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If the probability o f one sample, o f volume Vref, surviving a stress range Act is Ps(Vref), 

then the probability of n similar samples all surviving the same stress is (Ps(Vref))". If all o f 

the n samples were then joined together to form one sample with volume V=nVref then its 

probability of survival would also be {Ps(Vref)}"- Therefore, the probability o f survival o f a 

specimen with volume V, is;

(8-3)

This is equivalent to

In InV.ref

(8-4)

By rearranging and substitution of Equation 8-1

pX v ) ^  exp] In P , ) i = exp-
V.ref ref

(8-5)

8.4.4 Comparison between specimens

Equation 8-5 above, allows us to make a comparison between specimens o f different size 

(but with uniform stress distributions). It is possible to show that for a constant probability 

of failure:

A cTj

A c t ,
(8-6)

Figure 8.4 below shows a graphical representation of equation 8-6. That is, it shows the 

predicted relationship that exists between the fatigue strength o f two specimens of different 

volume, in terms o f the Weibull modulus. It can be seen that the only way to achieve a big 

change in stress is to have a small Weibull modulus.
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Fig. 8.4 - A graphical representation o f equation 8-6

8.4.5 The effective volume model

The ideas discussed above, are only really useful for un-notched tension specimens in 

which the total volume of the specimen is subjected to a constant stress. Effective volume 

models [Fischer et al., 2002; Trantina and Johnson, 1983] are a way of dealing with more 

general cases. In these the probability of survival is calculated as a function of the volume, 

which is effectively being fatigued. Hence, the probability of survival, using a two- 

parameter Weibull distribution, is given by:

(8-7)

Or, alternatively

max (8-8)

Where
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dV  (8-9)
max /

In tension fatigue specimens with no stress concentrations, the effective volume, Veti is 

equal to the volume o f the specimen, V. All other stress states result in the effective 

volume being less than the volume o f the specimen (i.e. Veff < V). The effective volume is 

therefore the volume o f the specimen that is effectively being fatigued at the maximum 

stress range, Aamax-

Alternatively, it can be assumed that it is only the surface area o f  the specimen, which is 

important. This is reasonable given that fatigue cracks usually initiate at the surface o f a 

specimen. In this case, the integration in equations 8-7 and 8-9 is done over the specimen 

area and the model is referred to as an effective area model.

An analytical example o f the application o f  this approach is given by Fischer et al. [2002]. 

They showed that if  a three-point bending fatigue specimen with a constant rectangular 

cross-section, is considered, as shown in Figure 8.5 below, the stress state as a function o f  

the X, y and z coordinates is given by:

^ C J { x , y , z ) = ^ ^ C T „
hi

(8-10)

From equation 8-10, the effective volume, Vefi, is therefore:

hi 0 0 0

420 '^  j  , j  yvhl
axdydz -

hi 2[b + \ f
(8-11)

Hence, for a specimen where w = 25.4mm, h = 15mm and 1 = 200mm and the Weibull 

modulus is assumed to be 14, the effective volume would be calculated to be 169mm^.

It should be noted that this analysis assumes that the maximum bending stress is the 

controlling stress component and effectively ignores any contribution o f  shear stress, 

which has a different stress gradient. This may not be a wise approach, especially when 

considering a plain specimen which is initiation controlled.
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Fig. 8.5 - Example specimen for the ejfective volume integration showing the definition o f  

the coordinate system. Note that the origin o f  the coordinate system is located on the half

width (w) o f  the specimen

8.4.5.1 Comparison between specimens

The effective volume method gives us more flexibility to make comparisons between 

specimens. Using this approach the relationship between the fatigue strengths of two 

specimens with different size, geometry or stress distributions, for the same probability of 

survival, is given by:

A ct max,l

A ct max, 2 V J
(8-12)

8.4.5.2 Application to size effect data for plain specimens

8.4.5.2.1 Plain rotating bending specimen

In the following the way in which the effective volume model is used to predict the size 

effect observed in the fatigue strength of plain rotating bending specimens is demonstrated.

A rotating bending specimen with both rectangular and cylindrical coordinate systems is 

shown in Figure 8.6 below. For this loading condition the stress function is given by:

Ao-(.x,y,z)=Ao-„ax^ = Acr̂ ax (8-13)
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The effective volume is calculated by substituting equation 8-13 into equation 8-9, so that:

{h + 2) Jo
(8-14)

0 =  0'

Fig. 8.6 - Rotating bending specimen

However, it must be remembered that this is a rotating bending specimen, hence every 

point on the surface of the specimen is fatigued once per cycle. The stress function above 

doesn't represent this, as it assumes reversed bending. Hence, a better stress function would 

be:

Aa{x,y, z)=A(j^^^ (8-15)

In this case the effective volume is calculated to be:

_ IR^TtL 
+ 2)

(8-16)

Therefore the ratio o f effective volumes between similar specimens but with different 

diameters is given by:

_ 2R,^7± {b + 2) _ f
{b + 2 ) 2 R l 7 ± J

(8-17)

With reference to section 8.4.5.1 above, the ratio o f fatigue strength o f two specimens with 

different diameters, but the same probability of survival can be calculated as follows:

136



A ct

A ct

max,l

max, 2

e f f ,2

V j

R.

v̂ i y
(8-18)

8.4.5.2.2 Plain cyclic tension specimens

The effective volume of a cylindrical cyclic tension specimen is simply the volume o f the 

specimen gauge length. Therefore the ratio o f effective volumes between similar 

specimens but with different diameters is given by;

(8-19)7tR,^L
nR^L

R,

v̂ 2 y

With reference to section 8.4.5 .1 above, the ratio o f fatigue strength of two specimens with 

different diameters, but the same probability of survival can be calculated as follows;

A ct max,l

A ct max, 2

r.2 r R ^ \ %
(8-20)

8.4.5.2.3 Discussion

It can be seen that exactly the same relationship is predicted for both plain rotating bending 

specimens and plain cyclic tension specimens. As already stated the size effect observed in 

cyclic bending is significantly different to that which is observed in tension. It is therefore 

apparent that the same relationship will not predict both effects.

This is highlighted in Figure 8.8 below, which shows the application of equation 8-20 to 

the size effect data given in Figure 8.7(b) below. It has been done for both the cyclic 

tension data and the reversed bending data (Figures 8.8(a) and (c) respectively). It can be 

seen that to achieve a reasonably good fit for the tensile data a Weibull modulus of 

approximately 100 is needed. However when the approach is applied to the rotating 

bending data, a Weibull modulus of roughly 18 results in a good fit.

Therefore, it appears that the effective volume method is not entirely self-consistent in this 

respect. However, as usual there are other factors that have not been considered here which 

may be relevant. For example, when deriving the ratio o f effective volumes above, for both
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the tension and bending specimens, it was assumed that different sized specimens would 

have the same length. This may not be an accurate assumption.

Also, it is very probable that surface yielding is a factor in the fatigue behaviour plain 

rotating bending specimens. This will result in a reduction in maximum stress. Hence, it is 

possible that predicting the behaviour of plain specimens is not a good way to test the 

theory. Regardless o f this, the approach is investigated further in the following section by 

considering how it could be applied to notched components.

500

CrNi steel(M Pa) & rotating bending

300 400
C- steel 0.35%)

steel tension, S „ -0
200 300

100 200

100
100

diameter d Imin) 1.05 Cr-steel.

(a) Rotating bending (b) Rotating bending & cyclic tension

Fig. 8.7 - Size effect on the fatigue limit o f  different types o f  steel in bending and tension

[Schijve, 2001]
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500

400

300

200

b= 10104

500

400

300

b = 100

(a) Cyclic tension (b) Rotating bending

Fig. 8.8 - Application o f  the effective volume model to the size effect data given in Figure

8 .7(b) above

8.4.5.3 Extension to notched components

If the stressed volume effect is the primary mechanism at work in the fatigue behaviour of 

notched components, than the effective volume method described above should be able to 

predict the fatigue strength of this type o f feature. If this is true then it implies that the 

effective volume method can be used as a stand-alone fatigue criterion for the assessment 

o f notched components. It can essentially be thought o f as the stress-life method, because it 

is based on the maximum stress, but it includes a correction to account for the effect of 

stressed volume.

However, as discussed above, the stressed volume effect is certainly not the only 

mechanism involved and it is unlikely that it is the primary mechanism governing the 

fatigue behaviour o f notches. Nevertheless, in the following, the idea is investigated in 

terms of how it can be applied to notched components and is applied to the 3-D specimens 

considered throughout this work. However, it is impossible, within the scope o f this project 

to prove weather the approach is valid or too simplistic to predict the behaviour o f all 

notched components.
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8.4.5.3.1 Definition of failure

The definition of failure for this method can be a little confusing. Essentially a notched 

component is predicted to fail if  it has the same probability o f  survival as the plain 

specimen. The notched specimen in question can be compared directly to the plain 

specimen, via the equation 8-12 repeated below, which ensures that the two different 

geometries have the same probability of survival. The failure criterion can therefore be 

stated as: Failure is predicted if

^ ^ m a x  \ notched ~

V.eff  I plain

eff \ notched j

A ct max I plain (8-21)

8.4.5.3.2 Calculation of the effective volume

In section 8.4.5 above the effective volume is calculated analytically for the simple case of 

a plain specimen with a rectangular cross-section tested in three-point bending. For a more 

complicated geometry the effective volume can be calculated via a numerical integration 

based on finite element stress data. In this case the effective volume is given by;

No. o f elements

Z
i = l A<t_

V. (8-22)

Where Aoi and V, are the element stress range and volume of element number i. Aamax is 

the stress range of the most stressed element and b is the Weibull modulus.

In order to prove the numerical procedure is reliable, FE models of a rectangular beam 

loaded in three-point bending were built and the numerical result was compared to the 

analytical one (see equation 8-11). This was done for three different FE meshes and 

various values of the Weibull modulus. The different FE meshes are described in Figure 

8.9 below. The dimensions of the rectangular bar considered were 200 x 25.4 x 15 mm.

140



Mesh 1

- 22780 elements.

- 1 St order bricks

- 10 elements 

through the 

thickness

- Very uniform 

mesh

Mesh 2

- 8950 elements.

- 2nd order Tets

- Approx. 4 

elements through 

the thickness

- Relatively 

uniform mesh

Mesh 3

- 36620 elements.

- 2nd order Tets

- Equivalent to 

Mesh 2 accept the 

centre section has 

been refined

Fig. 8.9 - Different FE meshes examined
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Table 8.2 shows the comparison between the effective volumes determined using the three 

different FE meshes and the analytical result. It can be seen that Mesh 3 gives the best 

result and Mesh 1 the worst. It can also be seen that the numerical result for the effective 

volume becomes increasingly worse as the Weibull modulus is increased. This is because 

the numerical error is raised to the power of the Weibull modulus.

Also shown in Table 8.2 is the prediction error that would result if  the effective volume, 

calculated numerically were used in a fatigue analysis instead of the analytical one. The 

error is calculated as:

Error -
V,e ff \ analytical

\  K f f  \f e a  )

(8-23)

Table 8.2 - The effective volume of a beam loaded in three-point bending

Weibull 
modulus, b

Analytical 
(ea 8-11)

Mesh 1 Mesh 2 Mesh 3

1 Veff 9525 10747.26 10368.33 9779.221 Error 0.886 0.919 0.974

10 VetT 314.87 872.71 507.08 369.59
Error 0.903 0.953 0.984

30 Veff 39.65 352.64 92.21 67.15
Error 0.930 0.972 0.983

60 Veff 10.24 206.01 28.54 24.98
Error 0.951 0.983 0.985

100 Veff 3.73 133.64 11.84 12.15
Error 0.965 0.989 0.988

It can be seen that the prediction error is in fact very good, even for very large values o f the 

Weibull modulus. This is because unlike the effective volume, the prediction error is not a 

strong function o f the Weibull modulus. It is therefore concluded that the numerical 

procedure, outlined above, can be used.

8.4.5.3.3 Application to the various specimens

In the following the method is applied to the various 3-D specimens discussed throughout 

this work. This has been done for various values of the Weibull modulus. A sample
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calculation for the Model-E specimen, using a W eibull modulus o f 1 is given below. A full 

summary o f  the results is given in Table 8.3 below.

In order to determine the effective volume o f  the plain specimen the dimensions must be 

know. These are given below for both the solid steel and welded plain bending specimens:

Dimensions o f  the welded plain bending specimens: 12.7 x 25.4 x 100 mm

Dimensions o f  the solid steel, plain bending specimens: 15 x 25.4 x 100 mm

The solid steel plain bending specimen fatigue strength: 435 MPa at 2x10^ cycles

The welded plain bending specimen fatigue strength: 153 MPa at 5x10^ cycles

The effective volume for a beam loaded in three point bending is given by:

whl 3
êff \plain- ^  = 1058/ww for the solid steel specimen and b = 5 

2(b + 1)

The effective volume o f the Model-E specimen was determine via the numerical procedure 

to be (see Table 8.3):

Veff = 4.01x10'^ for b = 5 

The correction due to the different effective volumes is given as:

Volume correction = e f f  I  plain

lu o d e l-E  j

/  , \ / b  ^

4.01.X10 - 3 y
= 12.14

Therefore the predicted maximum stress that should occurs at the stress concentration 

feature o f  the Model-E specimen at its fatigue limit is:

Predicted max stress = e ff  I plain

e f f  \ M odel-E  j

12.14 X  435 = 5280.9

The maximum stress at the Model-E stress concentration, determined via FEA, at the 

experimentally determined fatigue load is equal to 1814 MPa. Therefore the error factor is 

determined to be:
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 ̂ Actural maximum stress 1814 MPa „  ̂^,
error jac t or  ----------------------------------- = ----------------- = 0.344

Predicted maximum stress 5280.9 MPa

Table 8.3 - The effective volume o f a beam loaded in three-point bending

W
ei

bu
ll 

m
od

ul
us

, 
b

uu
1

u 00 73 —

i  "l
b<

^  r-

5  II S  1
b<

<D ^

1 I
1b<

Fi
lle

t-A

T-
sh

ap
e-

B

Effective Vol. Veff 4.01x10'^ 0.093 4.93x10'^ 2.28x10'^ 0.19

Vol. correction 12.14 6.47 7.35 13.14 5.43
3

Predicted max stress 5280.9 2816.29 3197.25 2010.42 830.79

(Error factor) (0.344) (0.308) (0.367)

Effective Vol. Ven- 1.04x10-^ 3.95x10'^ 3.51x10'^ 1.14x10"" 3.20x10'^

Vol. correction 4.45 3.09 3.13 4.33 3.11
10

Predicted max stress 1935.75 1344.73 1361.55 662.49 475.83

(Error factor) (0.937) (0.645) (0.862)

Effective Vol. Veff 8.54x10^ 2.78x10"' 1.98x10-^ 7.43x10'" 3.05x10"'

Vol. correction 1.67 1.49 1.50 1.54 1.47
30

Predicted max stress 726.45 646.07 652.5 235.62 224.91

(Error factor) (2.497) (1.342) (1.799)

Effective Vol. Vefr 4.73x10^ 6.93x10" 5.58x10'^ 6.87x10'" 1.46x10'^

Vol. correction 1.28 1.22 1.22 1.22 1.20
60

Predicted max stress 556.8 530.46 530.7 186.66 183.6

(Error factor) (3.258) (1.634) (2.212)

Effective Vol. Vefr 3.56x10-^ 2.56x10'^ 2.80x10'" 6.79x10'" 1.04x10-^

Vol. correction 1.15 1.12 1.13 1.11 1.11
100

Predicted max stress 500.25 489.92 491.55 169.83 169.83

(Error factor) (3.626) (1.770) (2.388)
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It is not possible to define the error factor for the welded specimens (i.e. Fillet-A and T- 

shape-B), because the stress concentration features in these cases were modelled in the 

FEA as sharp comers with no root radius. Hence, the maximum stress at these locations 

calculated using an elastic analysis is infinite.

It can be seen for the other three specimens that a Weibull modulus of between 10 and 30 

will result in error factors of one. In fact. Table 8.4 below shows values for the Weibull 

modulus result in perfect predictions:

Table 8.4 - The effective volume o f  a beam loaded in three-point bending

Weibull modulus (b) need for a perfect prediction

Model-E 10.5

Model-T 16.9

Model-J 11.7

This is quite a good result as it can be seen that values for the three specimens are 

approximately the same. Hence, choosing the single 'best' value of b will result in small 

errors all round.

8.4.5.4 The Weibull modulus

As mentioned in section 8.4.1 above, the Weibull modulus is essentially an experimentally 

determined constant. Furthermore, it is thought o f as being a material constant, but only 

within the framework of a particular approach. This means that for a given material the 

Weibull modulus used in conjunction with the effective volume method should be 

constant. However if an alternative approaches is used with the same material, for example 

the effective area method, mentioned above, then the Weibull modulus will not necessarily 

be the same.

84.5.5 Discussion

As already stated, the foregoing analysis can be described as an effective volume 

correction to the stress-life method. It has been included here, because it is a very 

interesting approach to the problem of stressed volume and because the way in which the
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effective volume is defined is quite elegant. However, it is essentially a stand-a-lone 

fatigue criterion. Above it has been applied to;

A) The size effect observed in a series of published data for plain rotating steel 

bending specimens and a set of data using the same steel showing the effect o f size 

on the plain fatigue strength measured in reversed tension (see section 8.4.5.2.3). It 

was shown that the method is not self-consistent because very different values of 

the Weibull modulus are needed to predict the two effects.

B) The fatigue behaviour o f the 3-D stress concentrations discussed throughout this 

work (see section 8.4.5.3.3). In this case a Weibull modulus of between 10 and 17 

resulted in the best fit with the experimental data.

This is by no means is an extensive or conclusive study, but it is suspected that the 

criterion is not going to prove particularly useful for the fatigue prediction of notched 

components. Hence, the concept has been investigated no further. Also, as the focus of this 

project is on the CDMs and the CMM, we are more interested in developing a stressed 

volume correction for these, than exploring an entirely different concept.

Unfortunately the effective volume method is not compatible with the critical distance 

methods. This is because the effective volume method is based on the maximum stress, 

while the critical distance methods consider the average stress inside a critical volume 

surrounding the stress concentration (or a simplification of this).

It is tempting however to say that we can use the same volume correction determine above 

in conjunction with the CDMs. However, consider the situation shown in Figure 8.10 

below, which demonstrates the application o f the volume, critical distance method to two 

different notched geometries. Failure is assumed if  the average stress is greater than the 

plain specimen fatigue strength.
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Critical
volume 

Critical
volume

Sharp notch Blunt notch

Fig. 8.10 - Application o f  the volume method to two different notched geometries

However if equation 8-9 is used to determine the critical volumes for both of these notches, 

it will result in different effective volumes and therefore predict that we should apply a 

correction to the CDMs. This is not a desirable situation because we know that the CDMs 

predict the behaviour of two-dimensional notched components well.

8.5 An effective volume correction to the CDMs

In the following a simple approach is investigated in order to make an effective volume 

correction, which can be applied to the critical distance methods [Taylor, 1999]. This is 

again based on the Weibull distribution, however before continuing the following two 

terms must be defined:

Critical volume:

The term critical volume is defined as the volume ahead of a stress concentration in which 

the average stress is calculated in order to apply the volume method (i.e. the volume, 

critical distance method). This is discussed in Chapter 3.

Effective volume:

The term effective volume is used, as above, to mean the volume of a specimen that is 

effectively being fatigued.

The idea is to use the critical volume to be the effective volume. Figure 8.11 below 

demonstrated the application of this to two-dimensional notched geometries of different 

width. It can be seen that the critical volume or the semi-cylindrical volume at the notch tip 

is greater if  the width of the specimen is greater. If the average stress in each of theses
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volumes were the same, then the CDMs would predict that they would have the same 

fatigue strength. However, because the volume of stressed material is not equivalent, the 

probability of failure in both cases is not equivalent either.

Case(T) C ase@

Fig. 8.11 - The change in stressed volumes for a 2-D notched component caused by a

change o f width

Hence, the thinner specimen is effectively stronger than the wider one by a factor o f

f  V  ^critjl II

V
\  crit,\ J

8.5.1 The stressed volume correction

In the work discussed here we are essentially interested in determining the difference 

between two-dimensional and three-dimensional notched geometries. Hence, following the 

logic above, it can be seen that if the CDMs are used to define failure, but the critical 

volumes are not equal then the geometry with the smaller critical volume should be 

multiplied by the following correction. In most cases the three-dimensional stress 

concentration has the smaller critical volume. Therefore the correction is:

fvolume correction (8-25)

Where b is the Weibull modulus, applicable to this analysis method.
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8.5.2 Application to three-dimensional stress concentrations

In order to apply this to localised three-dimensional stress concentrations, consider the two 

different ways, discussed in Chapter 3, to define the shape of the critical volume to be used 

for the application of the critical volume method. The first is a semi-cylindrical shape 

(Figure 8.12 (a)), which is the logical choice for a 2-D geometry or a geometry with a 

constant cross-section like Figure 8.1(a) and (c). The second is a semi-spherical shape 

(Figure 8.12 (b)) which is more applicable to very concentrated or localised stress 

concentration like Figure 8.1 (b) and (d). It was also shown in Chapter 3 that if  the first 

principal stress is used, the critical radii are 1.32ao for the semi-cylinder and 1.54ao for the 

semi-sphere. The volumes for these shapes are reported in Table 8.5 below.

Fig. 8.12 - Two possible choices for the shape o f the volume ahead o f a stress 

concentration used in the volume method

Table 8.5 - Volumes o f the semi-cylinder and semi-sphere

Semi-cylinder Semi-Sphere

Critical radius = 1.32ao 

Volume = ]^(nr^)v = l.l^ lW a]

Critical radius = 1.54ao 

Volume = 7.649a^

Note: W = the width of the specimen

8.5.3 Application to the various specimens

Table 8.6 below shows the critical volumes used for each o f the three-dimensional 

specimens. Note that the specimens do not have the same critical volume.
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-  The critical volume for the Model-E specimen is simply the semi-spherical volume.

-  In the case of the Model-J specimen, the specimen is so thin the majority of the 

semi-spherical volume is outside of the specimen.

-  For the Model-T specimen, it seems wrong to use a semi-spherical volume. This is 

because we know that the stress gradient along the notch is quite shallow, making this 

specimen more similar to a 2D notch. Therefore, the effective volume has been 

calculated by assuming it will be a semi-cylindrical shape. The length of the cylinder 

has been estimated by taking the distance along the notch where the stress is greater 

than the plain specimen fatigue strength (i.e. Aa > Aao). This results in a semi- 

cylindrical shape with a length of 5.1mm.

-  A similar procedure was used to calculate the length of the semi-cylindrical volume 

used for the T-shape-B welded specimen. In this case the length is approximately 

1.5mm.

-  For the Fillet-A welded specimen, the critical volume is one quarter of a sphere, 

because in this case failure occurs from a comer.

Table 8.6 ~ The critical volumes used for each o f  the 3-D specimens investigated

Critical volume

Shape Size

2D notched 

specimen

Semi-cylinder im iW a ]  =2.737x25.4x0.205" = 2.922mm^ Solid steel 

l l 'i lW a l  = 2.737 x 25.4 x 0.43^ = \2.%5Amm  ̂ Welds

Model-E Semi-sphere 7.649a^ =7.649x0.205' =0.0659mw'

Model-T Semi-cylinder 1.1'ilWal = 2.737 X 5.1 x 0.205" = 0.5866mm'

Model-J Part-sphere 0.00269mm^

Fillet-A 1/4-sphere 7.649a,' / 2 = 7.649 X 0.43' / 2 = 0.3041mm'

T-shape-B Semi-cylinder 2.131Wal =2.737x1.5x0.43" = 0.7591mm'

Note: Bo = 0.205mm for the solid steel specimens and 0.43mm for the welded specimens

The effective volume corrections when compared to a 2D notched geometry with a width 

of 25.4mm are shown below in Table 8.7, for various values of the Weibull modulus.
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Table 8.7 - The effective volume o f  a beam loaded in three-point bending

The effective volume corxccX\on,foiumecorrecUon

Weibull 

modulus, b
Model-E Model-T Model-J Fillet-A T-shape-B

I 44.340 4.981 1086.245 42.269 16.935

10 1.461 1.174 2.012 1.454 1.327

15 1.288 1.112 1.594 1.284 1.208

20 1.209 1.084 1.418 1.205 1.152

30 1.135 1.055 1.262 1.133 1.099

60 1.065 1.027 1.124 1.064 1.048

100 1.039 1.016 1.072 1.038 1.029

It can be seen that the correction factor quickly approaches 1 as the Weibull modulus 

increases.

8.5.4 Discussion

If we were to speculate and assume that Weibull modulus to be approximately 20, then it 

can be seen that an almost negligible correction is made for the Model-T specimens while 

a correction o f between 1.124 and 1.418 are made for the remaining specimens. This 

would appear to make a lot o f sense. Also, there is no reason to assume that the two 

materials considered (i.e. solid steel and welded steel) should have the same Weibull 

modulus. In fact it is more logical to assume that, due to the nature o f welding, the welded 

material will have a lower Weibull modulus.

As already stated the Weibull modulus is an empirically determined material constant, but 

only within the framework o f a particular analysis method. Therefore, there is no 

possibility o f  obtaining a value from the literature. To put it bluntly, there is simply not 

enough data considered above to make a concrete conclusion.

In the following chapter, stressed volume corrections based on this approach are applied to 

the various 3D specimens discussed throughout this work. The W eibull modulus is 

assumed to be 20 for the solid steel specimen and 10 for the welded specimens. As already
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stated there is not enough data to say if these are realistic values. Nevertheless it is shown 

that, in general, good predictions are made if  these values for the Weibull modulus are 

used.

8.6 Concluding Remarks

Two different approaches, both based on a Weibull type analysis have been investigated to 

describe the probabilistic aspect, or stressed volume effects observed in fatigue data. It was 

shown that both methods could be used to predict the fatigue behaviour o f notched 

components, if appropriate values of the Weibull modulus are used. The problem is that we 

have no way of determining if those values are actually realistic.

Another reason for caution regarding the forgoing analysis relates to the scatter in the 

experimental data. It has been shown that reducing the size of the stressed volume o f a 

fatigue specimen has the effect of increasing the mean life. However, it is expected that the 

dispersion of the experimental data will also increase. This is not reflected in all o f the 

experimental data obtained in this work, particularly for the Model-J specimen (see Figure 

7.30), in which the scatter is extremely low. Hence, this tends to indicate that, for this 

specimen, the explanation for the bad predictions should probably be sought elsewhere. 

Nevertheless, the stress volume effect is applied to all specimens in the following chapter. 

It is concluded that more work needs to be done in this area.
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Chapter 9: Combining the Effects

The purpose of this section is to look at the big picture and to tie together the results from 

the preceding three chapters in which the various effect were considered separately. 

Therefore, the following is a brief summary o f the application of all three effects to the 

three-dimensional specimens considered throughout this work.

9.1 Model-E

It is believed that the Model-E specimen is affected by 

the shape effect and the stressed volume effect only. If 

the actual fatigue crack is assumed to be circular in 

shape than the correction due to the shape effect is:

f sshape correction = 1.58

As discussed in Section 8.5.4 and Table 8.7 of the „  „ , , ,  , , r-F ig. 9.1 - Model-E
previous chapter, if  the Weibull modulus is assumed 

to be 20, then the correction due to the size effect is: 

f  — 1 288J  size correction  1  • O  o

Table 9.1 below show the results o f the fatigue analyses for this specimen, with and 

without the application of these correction factors. It can be seen that results are very good, 

with error factors very close to one, if  these correction are considered.

Table 9.1 - Fatigue analysis results o f  Model-E 1 with and without the correction factors

Without correction

With corrections
f  = 1 58J  shape correction

f  — 1 288J  size correction 1 ^  o  o

Experimental 6.6 kN at 2x10^ cycles
Point method 2.99 kN 6.08 kN
(Error factor) (2.21) (1.09)
Line method 3.06 kN 6.23 kN
(Error factor) (2.16) (1.06)

Note: Error factor is defined as the ratio of the Experimental fatigue strength to the predicted fatigue 
strength
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9.2 Model-T

As discussed in Chapter 5, good results were obtained 

for the Model-T specimen without the application of 

any correction. It is therefore believed that this 

specimen is not greatly affected by any o f the three 

factors investigated.

Fig. 9.2 - Model-TIt was shown experimentally that the actual crack 

shape for this specimen is highly elliptical. Hence, the shape correction factor was 

determined to be:

shape correction = 1.051

As discussed in Section 8.5.4 and Table 8.7 o f the previous chapter, if the Weibull 

modulus is assumed to be 20, then the correction due to the stressed volume effect is also 

very low:

f  size correction 1.084

In terms of the constraint effect this specimen is quite problematic. As discussed in 

Chapter 7, it is believed that the stress state at the failure location is neither pure plane 

stress nor plane strain. Hence, some effect of low constrain should be observed. However 

having said that, it is expected that the stress state will be predominately plane strain. 

Hence, it is believed that the correction for low constraint will be small and not greatly 

affect the results for the Model-T specimen.

As there is no reliable way of quantifying the constraint effect for this specimen, Table 9.2 

below demonstrated the application of the shape and stressed volume corrections only. It 

can be seen that the application o f any correction factor, no matter how small, makes the 

predictions worse.
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Table 9.2 - Fatigue analysis results Model-T with and without the correction factors

W ithout correction W ith corrections
f  shape correction 1-051

f  size correction ~ 1-084
Experim ental 11.4 kN at 2x10^ cycles
Point method 11.48kN 13.08 kN
(Error factor) (0.99) (0.87)
Line method 13.56 kN 15.44 kN
(Error factor) (0.84) (0.74)
CMM 13.64 kN 15.54 kN
(Error factor) (0.85) (0.73)

Note: Error factor  is defined as the ratio o f the Experimental fatigue strength to the predicted fatigue 
strength

9.3 Model-J

In this case, the thickness of the section, at 

the failure location, is small compared to 

the plastic zone size. Hence, the stress 

state is expected to approach conditions of 

plane stress. Therefore, it is believed that 

the Model-J specimen is affected by the 

constraint and stressed volume effects only.

As discussed in Section 8.5.4 and Table 8.7 o f the previous chapter, if the Weibull 

modulus is assumed to be 20, then the correction due to the stressed volume effect is:

f  size correction 1-418

As discussed in Chapter 7, section 7.6.1, one way to account for the effect of constraint 

was two assume that the relationship between the threshold measured in plane strain and 

plane stress is similar to that which exists for fracture toughness. This lead to an upper and 

lower bound for the threshold, which could be used to estimate the effect o f constraint in 

fatigue. In the following both the upper and lower bounds are considered. The results are 

presented in Tables 9.3 and 9.4 below. It can be seen that if  the upper bound is considered 

the point method still contains a slight conservative error, but in general the results are 

quite good. If the lower bound for the constraint correction in used, conservative errors, 

which are quite large, are still apparent.

Fig. 9.2 - Model-J
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Table 9.3 - Fatigue analysis results Model-J with and without the correction factors, using

the UPPER bound fo r  the correction due to constraint

Without correction
With the correction due 

to constraint
^^^th lpstress  3  A K.th|pstrain

W ith both 
corrections

f  size correction 1.418
Experimental 3.16 kN at 2x10^ cycles
Point method 0.97 kN 1.79 kN 2.54 kN
(Error factor) (3.26) (1.77) (1.24)
Line method 1.07 kN 2.21 kN 3.13 kN
(Error factor) (2.95) (1.43) (1.01)
CMM 0.766 kN 2.30 kN 3.26 kN
(Error factor) (4.12) ...............  ................ (0.97)
Note; Error factor is defined as the ratio of the Experimental fatigue strength to the predicted fatigue 
strength

Table 9.4 - Fatigue analysis results Model-J with and without the correction factors, using

the LOWER bound fo r  the correction due to constraint

Without correction
With the correction due 

to constraint
^ ^ th lp s tre s s  1 •  ̂̂ ^^thjpstrain

With both 
corrections

f  size correction 1-418
Experimental 3.16 kN at 2x10^ cycles
Point method 0.97 kN 1.12 kN 1.59 kN
(Error factor) (3.26) (2.82) (1.98)
Line method 1.07 kN 1.29 kN 1.83 kN
(Error factor) (2.95) (2.45) (1.73)
CMM 0.766 kN 1.15 kN 1.63 kN
(Error factor) (4.12) (2.75) (1.94)
Note; Error factor is defined as the ratio of the Experimental fatigue strength to the predicted fatigue 
strength

If it is assumed that the upper bound values are more appropriate for this specimen and this 

material, it can be seen that the errors are acceptable. Alternatively, it is possible to achieve 

acceptable errors by using a constraint correction that is within the expected range.
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9.4 Fillet-A

It is expected that the main factors affecting the Fillet-A specimen 

are the shape effect and the stressed volume effect.

If  the shape o f the actual crack is assumed to be circular, the shape 

correction is: 

f  = 1 5 8J  shape correction

As discussed in Section 8.5.4 and Table 8.7 o f the previous chapter, 

if  the Weibull modulus, for the welded material is assumed to be 10, 

then the correction due to the stressed volume effect is: 

f  = 1 454J  Size correction
Fig. 9.4 - Fillet-A

In terms o f  the constraint effect the comments made above with respect to the Model-T 

specimen are also valid here.

Table 9.5 below shows the application o f the shape and stressed volume corrections to the 

Fillet-A specimen. It can be seen that these corrections result in very good predictions with 

error factors approximately equal to one.

Table 9.5 - Fatigue analysis results Fillet-A with and without the correction factors

Without correction

With corrections
f  shape correction 1.58
f  . = I 454J  Size correction ^  •

Experimental 8.4 kN at 5x10^ cycles
Point method 3.78 kN 8.68 kN
(Error factor) (2.22) ( 0 . 9 6 )

Line method 3.33 kN 7.65 kN
(Error factor) (2.52) ( 1 . 0 9 )

CMM 4.24 kN 9.74 kN
(Error factor) ( 1 . 9 8 ) ( 0 . 8 6 )

Note: Error factor  is defined as the ratio o f the Experimental fatigue strength to the predicted fatigue 
strength
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9.5 T-shape-B

It is expected that the T-shape-B welded specimen 

will be affected by both the shape and stressed 

volume effects, while the constraint effect is not 

expected to be significant.

If the elliptical ratio of the actual fatigue crack is 

assumed to be 0.4, then the correction factor due to 

crack shape is;

Jshape correction ~  1151

As discussed in Section 8.5.4 and Table 8.7 of the previous chapter, if the Weibull 

modulus, for the welded material is assumed to be 10, then the correction due to the 

stressed volume effect is: 

f  = 1 327J  Size correction

Table 9.6 below shows the results of the fatigue analyses of this specimen with and without 

the application of the corrections. It can be seen the addition of the correction factors 

results in acceptable predictions, with error factors ranging between 1.05 and 1.29.

Table 9.6 - Summary o f results from the fatigue assessment o f T-shape-B

Without correction

With corrections
f  shape correction 1.151
f  = 1 327J  size correction *  ■ *

Experimental 6.62 kN at 5x10^ cycles
Point method 3.75 kN 5.73 kN
(Error) (1.77) (1.15)
Line method 3.34 kN 5.10 kN
(Error) (1.98) (1.29)
CMM 4.12 kN 6.29 kN
(Error) (1.61) (1.05)

Note; Error factor is defined as the ratio of the Experimental fatigue strength to the predicted fatigue 
strength

h'otigue cntical 
tocatioits (Weld eods)

Fatigue critical 
locatioiu (Wcki ends)

Fig. 9.5 - T-shape-B
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9.6 Discussion

It can be seen that the corrections given above are in general successful at explaining the 

conservative errors originally obtained using the CDMs and the CMM alone.

It should be noted however that these results have been presented in the most flattering 

light possible. This is due to the nature o f the assumptions and educated guesses that have 

had to be made along the way. The most noteworthy o f these include:

-  The method used to estimate crack shape. In all cases except the Model-T specimen, 

crack shape was estimated base on engineering judgement alone.

-  The method used to predict the constraint effect. In the above, the biggest correction, 

which is still within the realm o f possibility, was used.

-  The value of the Weibull modulus used to predict the stressed volume effect. As 

already stated this is an experimentally determined material constant. Even though the 

values used above make a great deal o f sense, it must be acknowledged that there is not 

enough data considered to make any concrete conclusions about the accuracy of the 

stressed volume correction.
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Chapter 10: Conclusions

1. Nonnal fatigue assessment methods are not able to predict the fatigue behaviour of 

three-dimensional stress concentration features in which the failure is constrained 

to occur from a very localised stress concentration, characterised by large stress 

gradients in all directions emanating from the hotspot. This was shown to be the 

case for the CDMs and the CMM discussed in the body of this work and the other 

fatigue assessment methods used in Appendix B, which include the traditional 

Peterson and Neuber approaches. In particular, all o f these fatigue assessment 

methods result in conservative errors. This has been demonstrated experimentally 

for both welded geometries and a specimen machined from solid steel.

2. A partial explanation for this is related to the fact that fatigue cracks resulting from 

this type of stress concentration typically have an elliptical shape. It is proposed 

that crack shape can have an effect on the fatigue life of sharp, crack-like stress 

concentrations, for which the fatigue strength is characterised by the growth of non

propagating cracks. In particular, it is shown that fatigue assessment methods 

which make use o f the 2D focus path concept make an inherent assumption 

regarding crack shape and that a simple correction factor, based on the actual crack 

shape, can be applied to account for this. It is demonstrated that this correction 

improves the predictions for the 3D specimens considered here, however 

conservative errors still remain.

3. It was also demonstrated that normal fatigue assessment methods are unable to 

predict the behaviour of stress concentration features characterised by low notch tip 

constraint. Again, significant conservative errors are obtained. It is believed that 

this is analogous to the effect o f constraint observed in fracture mechanics, 

whereby the fracture toughness measured in plane stress is found to be much higher 

then the corresponding value determined in plane strain. It was subsequently shown 

experimentally, using a material with a large value, that the stress intensity 

threshold is also a function of constraint. That is, the threshold measured in plane 

stress is higher than the plane strain value. It can be seen that this has a direct
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impact on the CDMs and the CMM, which both make use of this parameter. It was 

proposed that this could be accounted for by assuming that the relationship between 

the threshold measured in plane strain and plane stress is similar to that which 

exists for fracture toughness. It was demonstrated that even if this is done in the 

most optimistic way, conservative errors are still apparent.

4. Methods to determine the degree of constraint were investigated. The most useful 

criterion was to relate the plastic zone size to the specimen thickness. Based on this, 

it is believed that most three-dimensional stress concentrations are not affected by a 

constraint effect, although other geometries, characterised by very thin sections, 

like knife-edge stress concentrations, will be affected.

5. A third possible effect has been investigated which may explain the conservative 

errors that remain even after the application of the corrections discussed above. It is 

proposed that a geometry characterised by a small volume of highly stressed 

material will have a lower probability of failure and consequently appear stronger. 

A correction factor, based on a Weibull type analysis has been proposed, which can 

be applied to the CDMs. It is shown that if  reasonable values of the Weibull 

modulus are assumed (i.e. values within the expected range) then sensible 

corrections can be made for the 3D specimen considered. Unfortunately, the 

validity o f this analysis is unproven.

6. It was also demonstrated that for these types of stress concentrations the volume 

and area implementation of the critical distance methods does not result in a 

significant improvement over the simpler point and line methods. It is concluded 

that the slight increase in accuracy is not worth the additional computational 

complexity.
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Appendix A: Experimental Investigations

The purpose of this appendix is to provide full details of the experimental investigations 

and fatigue analyses undertaken in this project. Only a brief outline of this work is included 

in the body of the text, so as not to distract from the line o f thought being considered. 

Because of this there is a small amount of repetition. This is regretted however it is 

considered necessary.

A. 1 Material characterisation

Much of the experimental work undertaken throughout this project was done using the 

same structural steel. That is BS970: 1996: 080A15 (or previously BS970: 1955: En2B). 

Considerable work was undertaken to properly characterise this material. This is discussed 

below.

A. 1.1 Mechanical properties and the monotonic stress-strain relationship

A series of tensile tests were conducted on the steel in order to determine its mechanical 

properties and monotonic stress-strain relationship. Figures A. 1(a) and (b) below show the 

measured load-displacement curves, (c) and (d) show the resulting engineering stress-strain 

relationship and the true stress-strain relationship is given in Figures A. 1(e) and (f).

From this the average mechanical properties were determined to be the following:

Ultimate tensile strength, UTS 410 MPa

Yield strength, ays 

Young's modulus, E 

Assumed Poisson's ratio, v

290 MPa

210 GPa

0.3
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Fig. A .l - Results o f  the tensile tests

The true stress (atme) and strain (Stme) are calculated via the standard equations

<y,rue =  ^,rue =  1h (1 +  f  )  ( A - 1)

Where, Ceng and Seng are the engineering stress and strain respectively.
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A. 1.2 The cyclic stress-strain relationship and LCF data

Strain controlled tests were performed on the material by the Gaydon Research Centre, 

Gaydon, England, which is part o f the Landrover group. Figure A.2(a) below shows the 

measured cyclic stress-strain relationship. Figure A.2(a) is a comparison between the 

cyclic and monotonic curves. It can be seen that the material cyclically hardens.

400

300

200

——  Cy lie curve 

 M onotonic (true)

100  -

0 .0 ! 0.02
Strain

0.03 0.04

400

300

200

K'=562.8M Pa
n'=0.077100

0.01 0.02
Strain

0.03 0.04

(a) (b)

Fig. A.2 - Cyclic stress-strain curve

In order to apply the strain-life method, low cyclic fatigue (LCF) data was also determined 

by the Gaydon Research Centre. Figure A.3 below shows the resulting strain-life curve, on 

which the relevant LCF parameters are shown.
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Fig. A.3 - M easured strain-life curve 

A. 1.3 Chemical properties

The chemical composition o f the material was obtained from a chemical analysis carried 

out at the TWI Institute, Cambridge, The UK.

Element (wt %)

C Si Mn P S Cr Mo Ni A1 As B Co

0.12 0.18 0.57 0.012 0.009 0.079 0.024 0.12 0.004 0.016 0.0003 0.013

A. 1.4 Fatigue properties

A. 1.4.1 Plain specimen fatigue strength in bending

In order to determine the plain fatigue strength in bending, specimens were machined from 

inch-by-inch bar. The material at the top and bottom of the section was removed in such a

•  Elastic 
■  Plastic 
▲ Total

a/=562.8 MPa 
b=-0.0618 
s/=0.6485 
c=-0.5%5 
E=208430 MPa 
K' =471.28 MPa 
n' = 0.077

Asc/2 = 0.0027(2Nry

A sp /2  =  0.6485(2N,y
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way as to obtain an inch-by-half inch section with a length of 100 mm, as shown below 

(Figure A.4).

12.7nun

1OOnun

Fig. A.4 - The plain bending specimen

The specimens were tested in three-point-bending at an R-ratio of 0.1. The applied stress 

range was calculated using the standard elastic bending equations shown below;

i
A

-►I

4

M y

I y
and therefore Ao = AL —  

4 I (A-2)

Each specimen was individually measured after machining, to account for small variations 

in size. Hence, slightly different moments of inertia. I, were determined for each specimen.

The results o f the fatigue tests are summarised in Table A.l below. The ensuing S-N curve 

is shown Figure A.5.
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Table A .l - Test results fo r  plain bending specimen

Test No
Elastic stress range 

(MPa)
No. of cycles Comment

1 435 5.51 E+06 No Failure

2 517.1 3.93E +05 Failure

3 488.7 4.68E +05 Failure

4 322.25 1 .OOE+07 No Failure

5 440 3.40E +05 No Failure

6 402 1.16E+07 No Failure

7 440 6.77E +05 Failure

8 431 2.50E +06 No Failure

1000

435 MPa

_ l

♦  Failures 
□ Run outs

100
1.E+081.E+05 1.E+06 1.E+07

No. Cycles

Fig. A.5 - S-N curve fo r  the plain specimen loaded in bending

It can be seen from the above that failure data points are quite scarce. This was because it 

was very difficult to get failures, as the slope of the curve, in the region between 1x10^ and 

1x1 o’ cycles, is so shallow. Nevertheless the plain specimen fatigue strength (in bending) 

was determined to be approximately 435 MPa at 2x10^ cycles for an R-ratio of 0.1. At first 

sight it is possible to assume that this is an error, because it is higher than the ultimate 

tensile strength o f the material (410 MPa, see section A. 1.1). However there are two 

factors that contribute to this. Firstly, as discussed in section A. 1.2, the material cyclically 

hardens. Hence, during the experiments, the specimens were observed to plastically
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deform, or bend on application of the first several loading cycles and then continue to cycle 

in an elastic manner. The second contributing factor is that the specimens were loaded in 

bending, with a relatively thin cross section. Hence the resulting bending gradient creates a 

stressed volume, or size effect, which causes the fatigue strength determined in bending to 

be greater than the corresponding value determined in tension.

In order to examine this effect, and also because there was some doubt about the validity of 

the value determined in bending, the plain specimen fatigue strength was also determined 

in tension. This is discussed in the section below.

A.1.4.2Plain specimen fatigue strength in tension

The plain specimen fatigue strength for this material was also determined in tension at an 

R-ratio of 0.1. Hourglass specimens, machined from inch-by-inch bar were used and are 

shown in Figure A.6 below.

—  0.02 B

07+0.1 0 02O

0.02 A Both 015 Diameters@ 0.02 A

/ / 0.02 A

Fig. A.6 - Tension plain specimen fatigue specimens

The results are summarised in Table A.2 and illustrated in the S-N curve below (Figure 

A.7). Also plotted on the S-N curve is the fatigue limit determined in bending.
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Table A.2 - Test results fo r  plain tension specimen

Specimen
Elastic stress range 

(MPa)
No. of Cycles Comment

1 420.95 9.50E+01 Failure

2 227.36 2.00E+06 No Failure

3 328.70 4.65E+06 No Failure

4 375.48 1 27E+06 Failure

5 389.77 2.18E+02 Failure

6 381.97 3.87E+02 Failure

7 374.18 3.78E+02 Failure

8 374.18 6.49E+02 Failure

9 353.39 1 26E+07 No Failure

10 374.18 1.19E+06 Failure

11 385.87 4.37E+03 Failure

12 363.78 1.23E+06 Failure

13 378.33 5.62E+03 Failure

To
a.s
«wc<0
q:
(/)(A
£
ih

+08

•  Failure
□  Ru n out

\
Bendin g 435MPa

t
□

□

□

y = 402 92^-0 0062

1.E+01 1.E+02 1.E+03 1.E+04 1.E 

Slo. of Cycle:

+05 1.E+06 1 .E+07 1.E

Fig. A.7 - S-N curve fo r  the plain specimens loaded in tension

The plain specimen fatigue strength (in tension) was determined to be approximately 370 

MPa at 2x10^ cycles for an R-ratio o f 0.1.
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It can be seen that the cup/e is characterised by a very shallow slope, which made testing 

difficult, as only a very small difference in stress results in a big change in life, Again, this 

resulted in a limited number of data points in the 1 to 10 million range. However, as 

expected the fatigue strength, in this case, is less than the value determined in bending and 

also less than the ultimate tensile strength.

A. 1,4.3The threshold stress intensity factor

In order to estimate the threshold stress intensity factor, AKth, for this material, sharply 

notched specimens, as shown in Figure A. 8 below, were tested. AKth is then estimated 

from the notched specimen fatigue strength. This is the usual approach used to determine 

AKth throughout this work and is based on the ideas expressed by the Smith & Miller 

diagram (see Chapter 2, section 2.3.1). The specimens were made from inch-by-inch bar. A 

notch with a depth of 5mm, a nominal root radius o f 0.25mm and an included angle of 45 

degrees was machined across the top. The specimens were loaded in three-point bending as 

shown in Figure A. 8 and the length of the specimens was 100mm (i.e. the distance between 

reaction points).

Fig. A.8 - Sharply notched specimen used to determine the threshold stress intensity range

The test results are summarised in Table A.3 below. The resulting S-N curve is shown in 

Figure A.9.
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Table A.3 - Test results fo r the sharply notched bending specimen

Test No.
Elastic stress range* 

(MPa)
No. of cycles Comment

1 187.8 4.40E+04 Failure

2 146 1.38E+05 Failure

3 112.2 1.63E+06 Failure

4 101.7 9.23E+06 Run out

5 108.7 5.00E+05 Failure

6 108.14 3.70E+05 Failure

7 104.63 4.57E+05 Failure

8 94 6.59E+05 Failure

9 86.13 3.50E+06 Run out

* The stress range is the maximum elastic bending stress calculated using the gross section

■ e

1.E+07

Fig. A.9 - S-N curve for the sharply notched bending specimen

The fatigue strength of this specimen is determined to be 88 MPa at 2x10^ MPa for an R- 

ratio o f 0.1.

A. 1.4.4Determining AKth and a„

Because the plain specimen fatigue strength has been determined in both bending and 

tension, two different sets of values for AKth and ao are determined below (see Table A.4). 

This raises the question of which values should be used in the fatigue analyses. Within the

1000

nQ.

mU)
o>k.
w

100

y = 1155.5x-°^^®

♦'

10 
1.E+04

♦ Failure 

□ Run outs

1.E+05 1.E+06

No. of cycles
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body o f this report, the values calculated using the plain specimen fatigue strength in 

bending are used. This is because this was the value determined first and because it can be 

argued that it is more correct to use these because the sharply notched specimen was also 

tested in bending. However, within this appendix both sets o f  material properties are used. 

It is shown that there is in fact very little difference between the fatigue predictions made 

using the two different sets o f values. This is because the effect o f increasing the critical 

distance is to some extent, cancelled by the effect o f  decreasing the plain specimen fatigue 

limit.

The results from testing o f  the smooth and notched specimens, are summarised below:

Aool bending s  435 MPa at 2x10^ cycles - Plain specimen fatigue strength in bending

Aool tension s  355 MPa at 2x10^ cycles - Plain specimen fatigue strength in tension

AoonSSSM Pa at 2x10^ cycles - Fatigue strength o f the sharply notched

The stress intensity threshold, AKth and a« are calculated by using El Haddad’s equation. 

This is in the form;

Where D is the depth o f the notch and F the configuration or shape factor. It is assumed 

that:

specimen

AK,;, = F Aa^7t(D + a J (A-3)

For the plain or smooth specimens: F = 1,

For the notched specimen:

D = 0 mm and Aa = Aoo

D = 5 mm and Aa = Aqoh

For the notched specimens the configuration or shape factor, F, was assumed to follow the 

relationship shown in equation A-4 below. This has been taken from Pickard [1986] and 

applies to an edge cracked specimen loaded in 3-point bending.



Where a is the crack length and W is the width of the specimen. This equation is based on

finite element results and is valid for the following geometrical conditions:

—  = 4 and — <1.2 (A-5)
W W

For the notched specimen, where a = D, these requirements are satisfied as;

—  s  3.984 and — s  0.398 <1.2 (A-6)
W

Hence the configuration factor is found to be;

F s  0.9816 (A-7)

Using the plain specimen fatigue strength determined in BENDING, a system of equations

is defined as; 
r

1̂ 1, ‘•35^n(a„ MPam^

AK* U „ ,=  0.98l6x88^^(0.005+(a„ M Pam ^ (A-8)

The results are;

«o \bending=  0 205 mm (A-9)

Using the plain specimen fatigue strength determined in TENSION, a system of equations 

is defined as;
r

l„„=370^ jt(a„  |,^ „ )  M Pam ^

AK. 0.9816k88>(0.005 +(a, | „ ) )  MPam>^ (A-10)

The results are;

MPam>̂
0.288 mm (A-11)
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The resulting two sets of material properties are summarised in Table A.4.

Table A.4 - Summary offatigue material properties

AK,h(MPam"^) ACTo(MPa) flo(mm)

Bending 11.046 435 0.205

Tension 11.13 370 0.288

It should be noted that AKth could have been determined directly from the equation below, 

as in this case the notch depth, D, is much greater than ao. Hence, no short crack effect is 

observed and the use of El Haddad's equation is unnecessary.

(A-12)

A.1.4.5The Smith and Miller diagram

Once the material properties are know, specifically, the plain specimen fatigue strength and 

the threshold stress intensity factor, it is possible to plot the Smith and Miller diagram for 

this steel (see Figure A. 10 below). The dotted line on the figure indicates the stress 

concentration factor of the notched specimen used to determine the threshold stress 

intensity factor (see section A. 1.4.4). It can be seen that the notch is in fact crack-like and 

justifies the use of this specimen to determine the threshold stress intensity factor.
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Fig. A.IO - The Smith and Miller diagram

A. 1.5 S tress  relieving

Specimens were heat treated in order to relax residual stresses introduced as a result o f 

machining or welding processes. This was considered especially important for the welded 

specimens.

In order to stress relieve this steel, specimens were heated slowly to 600°C in a furnace and 

left at that temperature for 4 hours. After which, the furnace was turned off and the 

specimens left to cool slowly inside the furnace. The Figure A. 11 below shows that this 

should result in around 85% relief
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Fig. A .l 1 ~ The ejfect o f stress relief on mild carbon steel 

A. 1.6 Hardness test

A series of micro hardness tests were conducted on the steel. The purpose of this was to 

further characterise the material and also to examine the effect of the stress relief process 

discussed above. Hence, tests were conducted before and after stress relieving.

A micro-hardness testing machine was used to indent highly polished material samples, 

with a load of 300mg using a diamond pyramid indenter. Both longitudinal and transverse 

sections (relative to the material rolling direction) were tested. The testing machine 

automatically calculated the Vicker hardness value, Hv, which is defined as the load 

divided by the total surface area of the indent [Ashby and Jones, 1986]. The results are 

reported in Tables A. 5 and A. 6 below.

Table A.J - Micro-Vickers hardness values for the non-stress relieved material

Non-stress relieved steel

Tests Hv

1 2 3 4 Average

Section

Transverse 125.3 128.5 132.2 128.6 128.6

Longitudinal 127.8 129.4 127.2 130.9 128.8
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The same experiment was carried out on the stress relieved steel, to determine if the stress 

relief process affected the hardness o f the material and consequently the other material 

properties.

Table A.6 - Micro-Vickers hardness values for the stress relieved material

Stress relieved steel

Tests Hv

1 2 3 4 Average

Section
Transverse 124.9 127.7 128.5 123.8 126.2

Longitudinal 132.9 130.3 129.1 129.8 130,5

From the above it was concluded that there was no significant difference in the hardness 

measured for the stress-relieved and not-relieved material. Hence it was assumed that the 

stress relief process did not affect the material properties.

A. 1.7 Microstructure

Figures A. 12 and A. 13 below show the microstructure o f the steel in both the longitudinal 

and transverse sections (relative to the rolling direction) for two different magnifications. 

These samples were polished to a roughness o f 0.06^m with a diamond suspension 

mixture. Following this, the polished surfaces were exposed to a weak hydrochloric acid 

solution, in order to etch the surface and make the grain boundaries visible.

It can be seen that the grains are slightly elongated, due to the effect o f rolling, in the 

longitudinal section, whereas a more uniform structure is observed in the transverse 

section.
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100 X magnification 500 x magnification

Fig. A.12 - Microstructure in the longitudinal direction

WOx magnification 500 x magnification

Fig. A .l3 - Microstructure in the transverse direction
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A.2 The Fillet-A specimen

A.2.1 The specimen

As discussed in Chapter 5, section 5.1 the geometry shown in Figures A. 15 and A. 14 

below was chosen for investigation because, like the three-dimensional T-shape specimen 

discussed in Chapter 4, it was expected that failure would occur at the end of one o f the 

four fillet welds. Work on this specimen, which is referred to as Fillet-A, was done in 

conjunction with Stefano Marco [2000].

J25.
110

Fig. A. 14-  Dimensions o f  the Fillet-A specimen (mm)
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(a) FEA model (b) Photo

Fig. A. 15 - The three-dimensional welded specimen (Fillet-A)

A.2.2 Material properties and welding

The parent material used to make the Fillet-A specimens was the structural steel discussed

in section A. 1 above. However, for the fatigue analysis the properties for welded carbon

steel, as discussed in Chapter 4, section 4.1, were used. These are summarised below:

The plain specimen fatigue strength, Aao 153 MPa at 5x10^ cycles
1/2The threshold stress intensity factor, AKth 6.8 MPa.m

The El Haddad parameter, ao 0.43 mm

The quality of welding was considered to be good; no undercut, lack o f fusion, voids or 

other discontinuities were encountered, at least in the fatigue critical locations. All o f the 

welding was done by the same operator, using a manual arc welding procedure, with
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covered electrodes (class ASME SFA - 5.1, diameter 0.32mm, 138 Amps). A welding jig  

was also used in order to keep the plates in the correct position during welding

Figure A. 16 below shows a transverse cross-section of an actual welded specimen. It can 

be seen that the penetration of the weld into the narrow plate is almost insignificant. This is 

evident because the gap between the narrow plate and the wide plate extends in the 

horizontal direction for a length that is almost equivalent to the width of the narrow plate 

itself

Fig. A. 16 - A transverse section o f  the Fillet-A specimen

A.2.3 Experimental results

The specimens were loaded in tension, by fixing the ends and applying a cyclic load at an 

R-ratio of 0.1 using a servo-hydraulic testing machine. Table A.7 below is a summary o f 

the results obtained.
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Table A.7 - Test results, Fillet-A

Specim en

No.
R-ratio

Load range 

[kN]

Horizontal

displacem ent

[mm]

No. of cycles
Crack location

1 0.1 18 0.24 152173 Thin plate

2 0.1 5.4 0.07 1E+07 Not failed

3 0.1 9 0.12 1791791 Thin plate

4 0.1 9 0.12 1748717 Thin plate

5 0.1 7.2 0.10 9858009 Wide plate

6 0.1 16.2 0.22 351695 Thin plate

7 0.1 8.1 0.11 7708867 Wide plate

8 0.1 14.4 0.19 316573 Thin plate

9 0.1 12.6 0.17 415489 Thin plate

10 0.1 10.8 0.14 3295745 Wide plate

The final column of Table A.7 indicates that the fatigue cracks didn't always occur in the 

thin plate, as shown in Figure A. 17. Three specimens failed via fatigue crack growth in the 

wide plate as illustrated in Figure A. 18 below. This was investigated via a stress analysis 

of both ends o f the weld bead. It was seen that failure was only slightly more likely to 

occur in the thin plate than in the wide plate. In fact, the point method predicted the fatigue 

strength at the wide plate to be only approximately 15% greater than in the thin plate.

Regardless of this, all failures were considered when plotting the S-N curve below. Also, 

the focus of the stress analysis discussed below is centred on predicting failure in the thin 

plate.

Fig. A.17 - Failure in the thin plate
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Fig. A. 18 - Failure in the wide p la te

The resuhing stress-life curve is displayed in Figure A. 19 below. The fatigue strength was 

determined to be a load range of 8.4 kN at 5x10^ cycles to failure.

100

«  Failures 

□ run out

y = 191 .86 x-°2031

1.E+05 1.E +06 1.E+07 1.E +08

Cycles to Failure

Fig. A. 19 - S/N curve obtained fo r  the Fillet-A specimen

A.2.3.1 Horizontal displacement of the lower clamp

As a consequence of the asymmetrical nature of the Fillet-A specimen, application o f the 

load resulted in considerable horizontal displacement of the bottom clamp on the Instron 

testing machine. Figure A.20 shows a schematic of the deflected shape caused by 

application of the load. It can be seen that if  left unrestrained the ends o f the specimen 

would rotate. However the clamping arrangement is such that the specimen ends are not
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allowed to rotate, hence a bending moment is developed at the ends o f the specimen, which 

results in a lateral load being applied to the clamps. The bottom clamp on the testing 

machine is attached to the hydraulic actuator and is evidently characterized by a lower 

lateral stiffness than the top clamp, which is attached to the crosshead of the machine.

As the horizontal movement of the bottom clamp was considerable it was thought that this 

might have an effect on the stress analysis o f the component. In order to account for this, 

the displacement was measured and applied as a boundary condition to the finite element 

models.

Fig. A. 20 - Schematic o f the Fillet-A specimen and deflected shape caused by application

o f the load

The displacement was measured, using an analogue dial gauge, for both static and dynamic 

loads. Figure A.21 shows the horizontal displacement measured as a function of the 

applied static load. It can be seen that an approximately linear relationship exits.
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static measurements by dial gauge
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Fig. A.21 - Measurement o f  lower clamp displacement in static conditions

The next step was to measure the horizontal displacements under dynamic loads. This was 

done for two different load cycles (AL=9kN and AL=18kN at R-ratio=0.1) at a range of 

frequencies. The results of this investigation are shown in Figures A.22 and A.23 below. It 

can be seen that the displacements are relatively independent of frequency for both load 

cycles and approximately equal to the values obtained under static loads. This meant that it 

was possible to use only the displacements obtained under static loads.
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Dynamic measurements by dial gauge (A L=9kN, R=0.1)
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Fig. A. 2 2 - Measurement o f lower clamp displacement for a load range o f 9kN at various

frequencies

Dynamic measurements by dial gauge (DL=18kN, R=0.1)
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Fig. A.23 - Measurement o f lower clamp displacement for a load range o f 18kN at various

frequencies
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A.2.4 Stress and fatigue analysis

This section describes the work undertaken to determine the stress distribution within the 

Fillet-A specimen and the subsequent fatigue analyses. In all models, the parent material, 

heat affected zone (HAZ) and the weld bead were modelled as a single solid component 

with the same material properties. For an elastic analysis, this implies the same Young's 

modulus and Poisson's ratio. It is expected that for the above, these values will not be 

significantly different.

Where possible the double symmetry of the geometry and loads was exploited, so that a 

quarter model was created. In order to investigate the effect of the horizontal movement of 

the bottom clamp discussed in section A.2.3.1 above, a half model, utilising the vertical 

plane o f symmetry was used.

A.2.4.1 Mesh refinement

The FE mesh size was refined at the fillet weld end, where it joined the thin plate. The 

criterion suggested by Wang [1999] was used to define the mesh size. That is, in order to 

obtain an accurate prediction for the point method, 5 elements were included within a 

distance o f a„ from the hotspot.

A.2.4.2 Weld penetration and the gap distance

Figure A.24(a) below shows a typical cross-section through one of the finite element 

models (note that only half the cross-section is shown due to the plane o f symmetry on the 

left). The weld bead is assumed to be triangular in cross-section and there is no root radius 

at the weld toe. The detail on the right demonstrates the way in which the weld bead joins 

the two plates. Note that there is no weld penetration, as was observed in the real 

specimens and that the gap between the plates is assumed to be rectangular.
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(a) H alf the cross-section (due to the plane Detail

o f  symmetry on the left)

Fig. A. 24 - Cross-section through the model

A.2.4.3 Modelling of the weld end

The end of the weld was modelled using three different shapes; a convex shape, a concave 

shape and a squared-off shape. These are shown in Table A. 8. In all cases there is no root 

radius at the termination of the weld end. It should be noted that this is the most fatigue 

critical location and modelling it like this results in a singular point in the elastic stress 

field.

A.2.4.4Summary of FE models

Five, linear elastic, three-dimensional finite element models of the Fillet-A specimen are 

discussed below. These were built in order to determine the effect o f

-  The shape of the weld end, which is the most critical fatigue location.

-  The gap between the thin and the wide plates

-  The horizontal displacement o f the lower end of the specimen when it was loaded

on the test machine (see section A.2.3.1 above).

These models are summarised in Table A.8.
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Table A.8 - Summary o f  fmite element models mvestigatedfor the Fillet-A specimen

Model name Description Weld end shape

Fillet-A 1.1

Fillet-A 1.2

Fillet-A 1.3

Fillet-A 2

Fillet-A 3

Quarter model

0.05mm gap between plates

Quarter model

0.25mm gap between plates

Half model

0.05mm gap between plates 

Horizontal displacement included 

(see section A.2.3.1)

Quarter model

0.05mm gap between plates

Quarter model

0.05mm gap between plates

A.2.4.5 Selection of the focus path

For all models, the focus path was determined as per the criteria given in Chapter 2, section 

2.2.2.22. That is, the focus path is chosen to be the direction o f minimum crack growth 

potential, in the plane perpendicular to the maximum principal stress at the hotspot. Table 

A.9 lists the direction cosines, which define the vectors normal to the assumed planes of 

crack growth for each of the FE models (i.e. the direction of the first principal stress at the 

hotspot). Figure A.25 below shows the orientation o f this plane for Model: Fillet-Al .1.

197



Table A.9 - Direction cosines o f the vector normal to the assumed plane o f  crack growth

X cosine Y cosine Z cosine

M odelAl.l 0,42960 0.77678 -0.46049

ModelAl.2 0.42653 0.77832 -0.46075

ModelAl.3 0.41912 0.71832 -0.55529

ModelA2 0.60010 0.77472 -0.19922

ModelA3 0.37656 0.83578 -0.39959

ANS^S

Fig. A. 25 - The plane perpendicular to the 1st principal stress at the hotspot

In order to determine the focus path, within the plane of crack growth, the stress-distance 

curves for various directions in the plane are compared. Figure A. 26 is a top view of the 

Fillet-A models, which shows how the direction within the plane of crack growth is 

defined. That is, the direction where theta equals zero, coincides with the interface of the 

two plates.
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Fig. A. 26 - Top view o f the Fillet-A specimen, showing the definition o f the angle 0, within

the plane of crack growth

The stress-distance curves for various angles o f theta, within the plane of crack growth are 

compared in Figure A.27 below. The distance corresponding to the critical distance o f the 

point method (i.e. e j l )  is also highlighted. Ignoring the 0 = 90° curve, which is suffering 

from some numerical instability, it can be seen that the direction with the steepest stress 

gradient is 6 = 0°. Hence, this is chosen as the focus path, as it represents the direction of 

minimum crack growth potential.
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Fig. A.27 - Stress - distance curves for the various angles in the plane o f crack growth, for

the Fillet-A } . l  model
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A.2.4.6Summary o f the results

Table A. 10 shows the results of the fatigue analyses for the Fillet-Al .l model, for the 

various paths, in the assumed plane of crack growth. It can be seen that the fatigue 

predictions for all the critical distance methods and the CMM are extremely conservative, 

with error factors greater than 2. However the results for the focus path (i.e. the 0° path) are 

the least conservative.

For the remainder o f the models, only the results for the point method, the line method and 

the CMM (for the focus path) are presented below (see Table A l l) .  This is believed to be 

adequate to demonstrate the effect on the fatigue predictions o f the variations 

modifications being considered in each model.

Table A. 10 - Summary o f  results fo r  the Fillet-Al. 1 model
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Experimental 8.4 kN at 5x10^ cycles
Point Method 3.78 kN 3.49 kN 3.21 kN 2.93 kN 2.61 kN 2.34 kN 3.49 kN
(Error factor) (2.22) (2.41) (2.62) (2.87) (3.22) (3.59) (2.41)
Line Method 3.33 kN 3.29 kN 3.17kN 2.95 kN 2.69 kN 2.37 kN 3.45 kN
(Error factor) (2.52) (2.55) (2.65) (2.85) (3.12) (3.54) (2.43)
Area Method 3.72 kN
(Error factor) (2.26)
Volume Method 3.54 kN
(Error factor) (2.37)
CMM 4.24 kN 3.89 kN 3.62 kN 3.56 kN 3.31 kN 2.73 kN 4.03 kN
(Error factor) (1.98) (2.16) (2.32) (2.36) .J 2 .5 4 ) (3.08) (2.08)
Note: Error factor is defined as the ratio of the Experimental fatigue strength to the predicted fatigue 
strength
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Table A .l 1 - Comparison o f results fo r  different models (on the zero degree path in the 

plane perpendicular to the first principal stress at the hotspot)
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Experimental 8.4 cN at 5x10^ cycles
Point Method 3.78 kN 3.89 kN 2.76 kN 2.96 kN 3.81 kN
(Error factor) (2.22) (2.16) (3.04) (2.84) (2.20)
Line Method 3.33 kN 3.78 kN 2.22 kN 2.62 kN 3.38 kN
(Error factor) (2.52) (2.22) (3.78) (3.21) (2.49)
CMM 4.24 kN 4.20 kN 3.15 kN 3.23 kN 4.17 kN
(Error factor) (1.98) (2.00) (2.67) (2.60) (2.01)
Note; Error factor is defined as the ratio o f the Experimental fatigue strength to the predicted fatigue 
strength

A.2.5 Discussion

The results presented above show that the fatigue predictions for the Fillet-A specimen 

were very conservative, with error factors o f 2 or greater. Furthermore, none of the 

geometrical variations considered improved the predictions. Hence it was concluded that 

the analysis methods are inadequate to analyse this type of specimen.

A.3 The Model-E specimen

A.3.1 The specimen

The Model-E specimen is shown below in Figures A.28 and A.29. As discussed in Chapter 

5, section 5.3.2, this specimen was chosen for investigation, to test the fatigue prediction 

methods for a non-welded, complex three-dimensional stress concentration. This work was 

done in collaboration with Ezio Mazzio [2000].
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Fig. A. 28 - Schematic o f  the Model-E specimen
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Fig. A. 29 - Dimensions o f  the Model-E specimen in mm 

A .3 .2  Material properties

The Model-E specimen was machined from the structural steel discussed in section A.l 

above. For this material the plain specimen fatigue limit was determined in both bending 

and tension, consequently two sets of (fatigue) material properties were obtained. These 

are summarised in Table A. 1 above.



A.3.3 Experimental results

As shown in Figure A.28 above, the specimen was tested in three-point bending at an R- 

ratio o f 0.1. Figure A.30 is a picture o f both halves of a typical failure, with a detail, at 

increased magnification, of one of the sides. It can be seen that the failure surfaces are very 

complex and non-planar in the region o f the stress-concentration. Also, the fatigue regions 

can clearly be distinguished from the fast fracture regions.

Fig. A.30 - The failure surface

The experimental data and the S-N curve obtained for this specimen are shown in Table 

A. 12 and Figure A.31 below.

203



Table A. 12 - Summary o f experimental results for the Model-E specimen

Test No R-ratio
Load Range 

(kN)
No. of cycles Comment

1 0.103 5.47 3.12E+06 Failure

2 0.103 8.19 1.14E+06 Failure

3 0.106 7.26 1.95E+06 Failure

4 0.098 6.44 2.08E+06 Failure

5 0.101 4.54 5.08E+06 Run out

6 0.093 5.34 4.09E+06 Failure

7 0.098 15.49 7.20E+04 Failure

Note; Error factor is defined as the ratio o f  the Experimental fatigue strength to the predicted fatigue 
strength

100
#  Failure 

□ Run out

z
4)
O )cn
Q£

1.00E+04 1.00E+05 1.00E+06

No. of Cycles

Fig. A.31 - S/N curve obtained fo r  the Model-E specimen

The fatigue strength was determined to be an applied load range of 6.6 kN at 2x10^ cycles. 

A.3.4 Stress and fatigue assessments

Two finite element models were built to investigate this geometry. One contained a root 

radius at the failure location, which was equal to the average measured value of 0.2mm. 

This specimen was called Model-E2. The other had a zero root radius o f zero (it was 

designated Model-El). This is demonstrated in Figure A.32.
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f ig.  A. 32 - Finite element models o f  the F'illet-A specimen (a) M odel-El - no root radius 

(b) Model-E2 - the root radius equals 0.2mm

A.3.4.1 Selection of the focus path

For this specimen, the plane of symmetry simplifies the selection of the focus path, as it is 

intuitively obvious that the focus path should lie on the plane o f symmetry. Hence only one 

criterion is needed. In this case, the plane of crack growth (and consequently the focus 

path) is assumed to be perpendicular to the maximum principal stress at the hotspot. The 

direction of the focus path, for each of the models, is summarised in Figure A.33 and Table 

A. 13 below.
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Hotspot
Focus pathFocus path

Model-El Model-E2

Plane of symmetry of Model-E

Fig. A. 3 3 - Orientation o f the focus path, Model-E

Table A. 13 - The orientation o f the focus path, Model-E

Angle 0 (The direction of the focus path relative to the vertical)

Model-El 46.9°

Model-E2 60.3”

In order to check the assumption that the focus path should lie on the plane of symmetry, 

the stress-distance curves for various angles within the assumed plane of crack growth are 

compared in Figure A.34 below. It can be seen that the zero degree curve (or the curve on 

the plane o f symmetry) is characterised by the highest stress gradient. Hence, this direction 

represents the direction of minimum crack growth potential and is the correct choice for 

the focus path according to the criteria given in Chapter 2, section 2.2.2.2.2.
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Fig. A. 34 - The stress distance curves for Model-El for various angles within the assumed

plane o f crack growth

A.3.4.2Summary of results

Table A. 14 below is a summary of the fatigue assessment results for the model-E 

specimen. It can be seen that for each assessment method there are four separate results. 

This because the analysis has been done for both finite element models (i.e. with and 

without the root radius) and for both sets of fatigue material properties (as discussed in 

section A. 1.4 above).
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Table A. 14 - Summary o f results for the Model-E

AGoI bendina 0.205mm) Aool tension ( a o  = 0.288mm)
M odel-El
(p=Omm)

Model-E2
(p = 0.2mm)

Model-El
(p=Omm)

Model-E2
(p = 0.2mm)

Experimental 6.6 kN at 2x10^ cycles
Point method
(Error factor)

2.99 kN 
(2.21)

2.52 kN 
(2.62)

3.09 kN 
(2.14)

2.56 kN 
(2.58)

Line method
(Error factor)

3.06 kN 
(2.16)

3.04 kN 
(2.17)

3.19 kN 
(2.07)

3.05 kN 
(2.16)

Area method
(Error factor)

3.35 kN 
(1.97)

3.14 kN 
(2.10)

3.65 kN 
(1.81)

3.25 kN 
(2.03)

Volume method
(Error factor)

3.70 kN 
(1.78)

4.21 kN 
(1.57)

3.65 kN 
(1.81)

4.07 kN 
(1.62)

CMM
(Error factor)

4.56kN
(1.45)

3.78 kN 
(1.75)

4.65 kN 
(1.42)

3.83 kN 
(1.72)

Stress-life meth.
(Error factor)

1.25 kN 
(5.28)

1.06 kN 
(6.23)

Note: Error factor is defined as the ratio o f the Experimental fatigue strength to the predicted fatigue 
strength

A.3.5 Discussion

It can be seen from Table A. 14 that the result for the point, line and area methods are very 

conservative, with error factors ranging between 1.81 and 2.62. Also, only a very small 

difference can be observed between the results obtained using the two sets of material 

properties.

It can be seen that there is quite a large difference between the results for the volume 

method, depending on which finite element model is used. This is because the root radius 

in the Model-E2 model (which is the same order o f magnitude as the critical radius) causes 

a large part of the semi-spherical critical volume to be outside the specimen. Hence a 

smaller than expected volume, characterised by higher stresses is obtained. Consequently 

the average stress is higher and the predicted fatigue limit is less conservative. It is 

believed that for this reason the result obtained for the volume method using the Model-E2 

model is erroneous and should be disregarded.

Furthermore, from Table A. 14 it can be seen that the difference between the CMM and the 

CDMs, is quite significant. A probable explanation for this can be found by examining the 

Kitagawa diagram (see Figure A.35). This shows that for short cracks the real fatigue limit 

is lower than that predicted by standard fracture mechanics methods and subsequently the
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CMM. Previous experience suggests that the CDMs are more able to predict the behaviour 

of short cracks. Hence, if  there is a large difference between the predictions made using the 

Critical Distance Methods and the Crack Modelling Methods (where the CMM is 

overestimating the fatigue limit), the former should be taken as being more accurate. 

Reference to Figure A.35 shows that if  the length o f a crack is less than Qo, short crack 

behaviour can be expected and the CMM will overestimate the fatigue limit. In this case Uo 

is between 0.2mm and 0.3mm, which is very similar to the root radius of Model-E. This 

suggests that the stress concentration o f Model-E is short crack-like.

If the above is accepted then it can be seen that the fatigue methods result in very 

conservative predictions, with error factors ranging between 1.4 and 2.0. From this it was 

concluded that the methods are inadequate to assess the behaviour o f complex 3D stress 

concentrations.

CoHSiaiU value of thresK ox.

........................ ^  riain -specim cn
N f a t i i j u c  l lm i l ,  i c .

P itigu c  
lim it - 
nominal 
applied 
stress ran^e

CMMExDeriir.emaJ data

SHORT CRACK LONG CRACK

C rack  lcn(;th (Logarithm ic 5C-ale)

Fig. A.3J - The Kitagawa diagram, describing short crack behaviour

A.4 The Model-T specimen

A.4.1 The specimen

The second solid steel specimen investigated is shown in Figures A.36 and A.37 below. 

The specimen is a sharply notched bar loaded in three-point-bending, but the notch is 

orientated vertically relative to the direction of the applied load so that the fatigue crack is 

forced to initiate at the top of the specimen, at the notch root. As discussed in Chapter 5, 

section 5.3.3 this specimen was chosen for investigation because it is a slightly more
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complex stress concentration than a pure two-dimensional case. The bending gradient 

causes the fatigue crack to grow from the notch root at the top o f the specimen. 

Furthermore the fatigue crack will have a semi-elliptical shape, which was hoped, we 

would be able to measure. The work on this specimen, which is designated Model-T, was 

done in collaboration with Thomas Pircher [2001],

i

Fig. A.36 - Schematic o f  the M odel-T specimen

TDDIT

Detail A

Top View
Detail A

Notch

Front View ^  Section A-A

Fig. A.37 - Dimensions o f  the model-T specimen in mm
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A.4.2 Material properties

As per the Model-E specimen, Model-T was machined from the structural steel discussed 

in section A. 1 above. For this material the plain specimen fatigue limit was determined in 

both bending and tension, consequently two sets of (fatigue) material properties were 

obtained. These are summarised in Table A.4 above.

A.4.3 Experimental results

The experimental data and S-N curve obtained for this specimen are shown in Table A. 15 

and Figure A.38 below.

Table A. 15 - Summary o f  experimental results, Model-T

R-ratio
Load Range 

(kN)
No. o f cycles Comment

0.1 22.5 1.42E+05 Failure

0.1 22.5 1.42E+05 Failure

0.1 18 3.70E+05 Failure

0,1 15 7.21E+05 Failure

0.1 12.35 1.30E+06 Failure

0.1 10.04 2.55E+06 Failure

0.1 10.88 3.08E+06 Failure

0.1 10.8 2.27E+06 Run out

0.1 9.02 1.07E+07 Run out

0.1 7.65 l.OOE+07 Run out

0.1 7.2 l.OOE+07 Run out
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Cycles to failure

Fig. A. 38 - S-N curve obtained for the Model-T specimen

The fatigue strength was determined to be a load range o f 11,4kN at 2x10^ cycles.

A.4.3.1 Crack shape observation and measurement

In order to observe the evolution of the fatigue crack shape, three different methods were 

tried. The first approach was to apply periodic overloads during the fatigue test in order to 

mark the crack front at various crack lengths. It was hoped that we could achieve a failure 

surface characterised by beach-marks as per typical in-service failures. Two different 

overload values were tried, but unfortunately neither result was satisfactory as nothing 

different could be observed on the failure surface even under an electron microscope.

The second method was direct visual observation o f the crack, through a travelling 

microscope. Acetate replica tape was also used to measure crack growth along the top 

surface. Measurements o f the crack length, along the top surface and along the notch root, 

as a function of the number of cycles were recorded. The results o f this investigation are 

presented in the section immediately below.

The third approach was to grow a small fatigue crack, then cut and open the specimen to 

allow direct observation of the crack. This was done for two specimens and the resulting 

failure surfaces were examined using a scanning electron microscope (SEM).
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A.4.3.1.1 Crack growth measurements

The results of the crack growth measurements are presented in Figure A.39 below and 

summarised in Figure A.40. In each of the graphs, the measured crack length along the top 

surface and the notch root are plotted against the number of cycles. The applied load range 

was 15 kN at an R-ratio of 0.1.
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Fig. A. 39  -  Results o f  the crack shape measurement tests
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Fig. A .40 - Comparison o f  the crack shape experiments

Figure A.40 shows all of the measured data plotted together. It can be seen that the 

repeatability is not very good, especially for the measurements along the notch. This is 

because it was very difficult to observe the crack length in this direction, as replica tape 

could not be used, and the travelling microscope was difficult to use because of its small 

depth o f field. Also, heat-treating of the specimens to relieve residual stresses resulted in 

the specimens being covered by a thin oxide layer, which had to be removed via polishing 

with a fine grain sand paper. This was difficult to achieve along the notch root and the 

resulting surface when viewed under the microscope was not optimal for observing crack 

growth. For these reasons the measurements in the direction of the notch, especially for 

small crack lengths, must be viewed with suspicion. This is highlighted in the section 

below.

A.4.3.1.2 SEM observations of the crack shape

The most successful approach to observe the crack shape for this specimen was to grow a 

small fatigue crack, then cut through the majority o f the specimen cross-section (without 

destroying the fatigue crack) so that an impact caused the remaining cross-section to 

failure via fast fracture. Using a scanning electron microscope (SEM) it was then possible

214



to differentiate between the different parts o f the failure surface (i.e. fatigue and fast 

fracture). This was done for two specimens, which are referred to as crack-and-open 

specimens 1 and 2.

In order to determine what the different parts o f the failure surfaces look like, a failed 

specimen used to produce the S-N curve, in which the different regions were visibly 

obvious, was examined. Figure A.41 below shows a typical fatigue failure surface and 

Figure A.42 shows a typical fast fracture surface. It can be seen that they are very 

different. The majority of the fatigue failure surface is characterised by linear striations or 

ridges typical of fatigue. Some smooth regions are also apparent; these are most probably 

fractured grains. The fast fracture surface on the other hand is characterised by a dimpled 

surface.

Figures A.43 and A.44 show the failure surface o f the first crack-and-open specimen at a 

fairly low resolution. The specimen is orientated so that the notch is aligned with the 

bottom of the figure. An approximately elliptical shape, with the major axis orientated 

along the notch, is immediately obvious. The dimensions of the ellipse are approximately 

1.6mm along the notch and 0.3mm perpendicular to the notch. In these figures the surface 

is divided into three zones (A, B and C). The following three figures show the failure 

surface of these three zones at higher resolution. It can be seen that zones A and B (Figures 

A.45 and A.46) are fatigue failure surfaces. Although it appears that a certain amount of 

rubbing between opposing crack faces has occurred. Zone C on the other hand (see Figure 

A.47) is clearly fast fracture. Hence, it is concluded that shape of the fatigue crack is 

highly elliptical with the major axis orientated along the notch.
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Fig. A.41 - Typical fatigue failure surface

Fig. A. 42 - Typical fast fracture failure surface
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Sample 1
012598  WD19.7mm 26.bkV°x35

Fig. A. 43 - First crack-and-open specimen - showing zone A

Sample 1
012598 WD19.7nim 26 .b k V °x 3 5

Fig. A. 44 - First crack-and-open specimen - showing zones B and C
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Fig. A. 45 - First crack-and-open specimen - zone A

M  «V /  - * -  ^"n A  Sai%)ie-'l , , ’■ '
012596 WDig/smm 2b.0kV x500° lOOum

Fig. A.46 - First crack-and-open specimen - zone B
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Fig. A.47 - First crack-and-open specimen - zone C

It should be noted that for this specimen the growth of the fatigue crack was also measured 

using the travelling microscope and replica tape as per the procedure outlined in section 

A.4.3.1.1 above. In fact, the measurements given in Figure A.39(c) are for this specimen. It 

can be seen that the maximum length measured along the notch, using the travelling 

microscope, was 0.04mm. This is woefully inaccurate compared to the actual value of 

1.6mm measured using the SEM. This underlines the comments made above, concerning 

the accuracy of the measurements made using the travelling microscope.

The second crack-and-open specimen is shown in Figure A.48 below. The notch is again 

orientated along the bottom of the figure and again a very distinctive elliptical shape can be 

seen. The dimensions of the ellipse are approximately 2.26mm along the notch and 0.5mm 

perpendicular to the notch. However, the right end o f the ellipse appears to be slightly 

different. Therefore, the failure surface has been divided into two zones (A and B) as 

shown in Figures A.49 and A. 50. Higher resolution views of the failure surfaces in these 

two zones are given in Figures A.51 and A.52.
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Fig. A. 48 -  Second crack-and-open specimen

Fig. A. 49 - Second crack-and-open specimen - showing zone A
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Fig. A.50 - Second crack-and-open specimen - showing zone B
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Fig. A.51 - Second crack-and-open specimen - zone A
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Fig. A. 52 - Second crack-and-open specimen - zone B

Figures A.51 and A.52 show that both zones A and B are characterised by fatigue failure. 

Hence, it is concluded that fatigue cracks developed at the Model-T stress concentration 

are highly elliptical with the major axis orientated along the notch. The elliptical ratio 

appears to be approximately 0.2.

A.4.4 Stress and fatigue assessments

In order to determine the stress distribution within the specimen, a linear Elastic finite 

element analysis, of the component was undertaken. Due to the symmetry of the problem, 

it was possible to utilise a half model (see Figure A.53(a)).

Again, the mesh refinement criteria suggested by Wang [1999] was used. That is, 

approximately 5 elements were placed within a distance a« from the hotspot. This resulted 

in a very fine mesh (element size ~ 0.04mm) at the failure location.



Due to this fine mesh size, an unexpected phenomenon was observed. That is, the hotspot 

did not occur at the top surface of the specimen, where normal bending theory would 

predict. Instead, it was located a very small distance, approximately 0.17mm, down the 

notch (see Figure A.53(b)).

(a) FEM o f  M odel-T (a) Detail o f  the hotspot

Fig. A. 5 3 - The finite element analysis o f  the Model-T specimen

It is believed that this is a real effect, and is explained as below. Figure A.54 shows the X, 

Y and Z stresses, plotted along the root o f the notch. Note that the X, Y and Z stresses 

correspond to the principal stress for this specimen. It can be seen that the stress in the X- 

direction (or maximum principal stress) takes its maximum value approximately 0.17mm 

down the notch root. Also from this diagram, it is possible to observe that the Y and Z 

stresses are zero at the top of the specimen (i.e. Distance=Omm) and then increase. This is 

because at a free surface it is impossible to have a normal force, which is not externally 

applied.

Figure A.55 below shows the stress states that exist at the top o f the notch and short 

distance along the notch root by considering two elemental volumes at these locations. The 

element at the top surface is free to contract in both the Y and Z directions (i.e. stress is 

relaxed). The element below the top surface is however constrained in the Z direction; 

hence at this location a stress is developed in that direction.
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Fig. A. 54 - The X, Y and Z  stresses plotted along the root o f the notch
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Fig. A. 55 - The stress states o f two-elemental volumes at the notch root. One at the top

surface o f the specimen and one slightly below

Given that Hooke's law, describing the relationship between normal stresses and strains, is:

+Ĉ z))

(A-13)
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Given that the strain in the Z direction is equal to zero for the lower elemental volume (No. 

2), the relationship between stress in the X direction and the Z direction, at this location, is:

ẑ2 = ^(^z2 -  ^cr.2) = 0 ^  cr-2 = vcr̂ 2 (A-14)
t

If it is assumed that the strain in the x-direction, for both elemental volumes, must be 

approximately the same, then:

(A-15)
t

(A-16)
t t

Hence:

<7.,=(\-v̂ )a„sOSl<r,, (A-17)

That is, the X direction stress (or the maximum principal stress) at the top surface should 

be slightly lower than the stress a short distance along the notch root. This is approximately 

the difference observed in Figure A.54 above.

A.4.4.1 Direction of the focus path

For this specimen the plane of crack growth is obviously the plane of symmetry, which is 

in turn the plane perpendicular to the maximum principal stress at the hotspot. In order to 

determine the direction of the focus path, within the plane of crack growth, the stress- 

distance curves, for various directions within this plane are compared in Figure A.57 

below. The direction of the angle is defined as per Figure A. 56. Note that the paths begin at 

the hotspot (just below the top surface of the specimen). The zero degree path is therefore 

parallel to the surface of the specimen and the 90 degree path is along the notch root.
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Odeg
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90dec

Fig. A. 56 - Definition o f  the focus path angle, within the plane o f  crack growth

•—Odeg 
■— 15deg 

30deg 
45deg 

*— 60deg 
^ 7 5 d eg  
H— 90deg

0.3

Distance (mm)

0.4 0.50.2

Fig. A.57 - Stress-distance curves fo r  various angles within the plane o f  crack growth

It can be seen that the zero degree path has the steepest stress gradient and therefore 

represents the path of minimum crack growth potential. This path is used in the following 

for the fatigue analyses.

A.4.4.2 Summary of results

Table A. 16 below shows the results obtained for the various fatigue analyses using the 

focus path described above. Note that the analyses are done using two different sets of 

(fatigue) material properties (see section A. 1.4).
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Table A.16- Summary o f  results fo r the Model-T

AcTqI bendina (a<> 0.205mm) A c o l  tension ( a o  = 0.288mm)
Experimental 11.4 kN at 2x10^ cycles
Point method 11.48 kN 11.4 kN
(Error factor) (0.99) (1.00)
Line method 13.56 kN 13.34 kN
(Error factor) (0.84) (0.85)
Area method 12.72 kN 12.7 kN
(Error factor) (0.90) (0.90)
Volume method 13.9 kN 14.25 kN
(Error factor) (0.82) (0.80)
CMM 13.64 kN 13.8 kN
(Error factor) (0.85) (0.83)
Stress-life meth. 5.72 kN 4.86 kN
(Error factor) (1.99) (2.35)

Note; Error factor is defined as the ratio o f the Experimental fatigue strength to the predicted fatigue 
strength

A.4.5 Discussion

The predictions for the Model-T specimen are in general quite good, and if anything, 

slightly non-conservative. Indeed the point method is almost perfect. The line, area and 

volume methods result in slightly higher predictions with error factors between 0.8 and 0.9. 

These are still considered acceptable.

The CMM and the CDM’s give considerably more accurate results than the stress-life 

method, which is very conservative. With reference to the Smith and Miller diagram (see 

Figure A. 10), this implies that the stress concentration is indeed crack-like.

Also, it can be seen that the error is not greatly affected by the material properties used. 

That is, the material properties obtained using the plain specimen fatigue strength 

determined in bending or tension, as discussed in section A. 1.4.4 above.

A.5 Concluding remarks

The purpose of this appendix was to present the experimental work and subsequent fatigue 

analyses done as part of this project in a concise but through manner. It expands on the 

work presented in Chapter 5 and as such the concluding remarks made there are equally as 

valid here.
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Appendix B: Application of other fatigue methods

Within the body of this work the main fatigue analysis methods used are the critical 

distance methods [Taylor, 1999], the crack modelling method [Taylor, 1996] and the 

stress-life method. The purpose of this appendix is to present the results o f other analyses 

methods when applied to the various specimens discussed throughout this work. It was not 

convenient to do this within the body of the text because the specimens were presented at 

different stages.

B. 1 The Pluvinage method

As discussed in Chapter 2, section 2.2.2.3, the Pluvinage approach is a critical distance 

method implemented using the elastic-plastic stress distribution, which takes into account 

the stress gradient via a weighting function. Here, the method has been implemented as per 

Qyalfku et al. [1999], This is essentially a two-dimensional approach that considers the 

stress distribution plotted on a line ahead of the stress concentration. It should be noted 

however that the authors have recently updated the method to be a volumetric approach, 

which takes into account the hydrostatic stress [Qyalfku et al., 2001].

In order to obtain the stress distribution, an elastic-plastic finite element analysis, using the 

cyclic stress-strain curve, discussed in Appendix A section A. 1.2, has been undertaken for 

each o f the specimens. In each case the experimentally determined load at the fatigue limit 

has been applied at the correct R-ratio.

As no guidelines have been given regarding the choice of the focus path, the criteria 

described in Chapter 2, section 2.2.2.2.2 were used. The elastic-plastic stress-distance 

curve for the Model-E, Model-J, Model-T and Fillet-A specimens are shown in Figure B.l 

below.
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Fig. B .l - Elastic-plastic stress distributions

The stress-distance curves for the Model-E and Model-J specimens (Figures B .l(a) and (b) 

respectively) show the expected relationship. That is, the maximum stress occurs a small 

distance along the path, inside the specimen. Also, it can be seen that the maximum stress 

is higher in the Model-E specimen, implying a higher degree o f constraint, or less plastic 

relaxation.

This behaviour is not observed for the Model-T and Fillet-A specimens (Figures B. 1(c) and

(d) respectively), in which the maximum stress occurs at the very beginning of the path. It 

was expected that this would happen for the Fillet-A specimen, which has no root radius at 

the failure location, but is not fully understood for the Model-T specimen.

The next step in the analysis is to determine the relative stress gradient. This is defined as 

per equation B-1 and is plotted in Figure B.2, for the various specimens. A little bit of
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numerical instability can be seen, however this is simply due to the nature o f the numerical 

integration.
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Fig. B.2 - The relative stress gradient, Model-E

In accordance with the methodology the critical distance, Xgf, coincides with the point of 

minimum relative stress gradient. It can be seen from Figure B.2 that this is only clearly 

defined for the Model-E and Model-J specimens. The resulting critical distances are given 

in Table B.l below.

Once the critical distance is known, the predicted fatigue strength is given as per equation 

B-2. The results are also summarised in Table B. 1.
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1
Acr„ = ------- \^cr^{[- Xx îx

^ef 0

(B-2)

Table B .l - Summary o f  results from the Pluv inage approach

Critical distance, Xef 

(mm)

Actfi (MPa) Error factor*

Model-E 0.16 999.9 2.29

Model-J 0.8 898.1 2.06

Model-T Undetermined Undetermined

Fillet-A Undetermined Undetermined

Note: Using the plain specimen fatigue limit determined in bending, AOo| bending = 435 MPa

Unfortunately it was not possible to determine the results for the Model-T and Fillet-A 

specimens, as the critical distance could not be determined. However, it can be seen that 

the results for the Model-E and Model-J specimens are very conservative, with error 

factors greater than two. In this respect, the Pluvinage method shows the same trend as the 

critical distance methods and the crack modelling method.

A distinct disadvantage of this approach, aside from the time and computer resources 

needed to do the elastic-plastic FEA, is the fact that an elastic-plastic FEA is non-linear. 

Hence if the result of the analysis is inaccurate, as per the predictions above, it is not 

possible to simply scale the result to determine the predicted failure load.

B.2 The Neuber and Peterson methods

As discussed in Chapter 2, section 2.2.2.1 application o f the Neuber and Peterson methods 

requires the presence of a root radius at the stress concentration feature being analysed. 

Hence, it was only possible to analyse three specimens using these methods, Model-E, 

Model-T and Model-J. Fortunately, all o f these specimens were machined from the same 

steel, for which the Peterson and Neuber material constants are calculated as per the 

equations below.

The Peterson material constant for steels, given by Stephens et al. [2000]:
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Qp = 0.0254
^ 2070^

V ^ u t s  y

= 0.468m/n (B-3)

The Neuber material constant [Neuber, 1958]

p*  = 624.8 X10^ exp(- 0.0034<j„,J = 0 .155ww (B-4)

For each o f the three specimens investigated, the way in which the nominal stress range, 

Aonom, and the elastic stress concentration factor, Kt was determined is shown in Figures 

B.3, B.4 and B.5 below. Note that some data from the finite element analyses has been 

used. The results o f the analyses are summarised in TableB.2 below.

/  A(

\
!

A/,,„ = 52kN

Aa„„„ -  AL..„ = \29.5M Pa

= 1814MPa from the FEA

Fig. B.3 - Definition o f  the elastic stress concentration factor fo r  the Model-E specimen

a:, =1 + 2 I— = 5.32 
P

A(t„_ = 1174A^a from the FEA

Acr„„„ =
Ac7„

K.
= 220.1 MPa

Fig. B.4 - Definition o f  the elastic stress concentration factor fo r  the Model-J specimen
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AcTn,ax = 867. \MPa from the FEA 

Acr„„„ = \ Q9.6MPa from the FEA

K. = ^ ^ ^  = 7.91

Fig. B.5 - Definition o f the elastic stress concentration factor for the Model-T specimen

Table B.2 - Summary of results for the Neuber and Peterson methods

Neuber method Peterson
method

Experimental
result

Model-E
Estimatedfatigue strength 
Fatigue reduction facture 
(Error factor)

2.21 kN
K f=7.92
(2.36)

3.57 kN 
Kf = 4.893 
(1.46)

5.2 kN

Model-J
Estimated fatigue strength 
Fatigue reduction facture 
(Error factor)

1.09 kN 
Kf = 4.178 
(2.12)

1.11 kN 
K f= 4.108 
(2.08)

2.32 kN

Model-T
Estimated fatigue strength 
Fatigue reduction facture 
(Error factor)

8.83 kN 
Kf= 5,125 
(1.29)

11.58kN 
Kf= 3.907 
(0.98)

11.4kN

Note; This analysis uses the plain specimen fatigue limit determined in bending, A a „ l  bending = 435 MPa

It can be seen that the Peterson and Neuber methods also show the same trends as the 

critical distance methods and the crack modelling method. That is, the results for the 

Model-E and Model-J specimens are very conservative while relatively good predictions 

are obtained for the Model-T specimen.

B.3 The strain life method

As discussed in Chapter 2, section 2.4.1, the strain-life method has been implemented 

below in two ways. The first approach uses the strains obtained via an elastic-plastic finite 

element analysis. The second way is to use the Neuber rule [1961] to estimate the notch tip 

strains.
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B.3.1 Using an elastic-plastic FEA

Table B.3 below is a summary o f the notch tip stresses and strains obtained via the elastic- 

plastic finite element analyses, in which the applied loads were equal to the experimentally 

determined fatigue limits. The strain-distance curves, plotted along the various focus paths, 

are also shown in Figure B.6 below.

Table B.3 - Summary o f  notch tip stresses and strains obtainedfrom FEA

Max. values Min. values Amplitude Mean

Model-E Omax= 370.1 MPa

e„,ax = 0.016128

Omin = -376.4 MPa 

e„i„ = 0.006238

O'amp = 373.3 MPa 

Samp = 0.00494

^mean 3.15 MPa 

emea„ = 0.001 1183

Model-J ĉ max = 337.1 MPa 

emax = 0.007811

Omin = -341.6 MPa 

E m m  = 0.001894

(Jamp = 339.4 MPa 

Samp = 0.0029585

Omean = *2 25 MPa 

Emean = 0.0048525

Model-T < 7 m a x  = 333.0 MPa 

£ m a x  = 0.0044567

amin = -253.7 MPa 

e„,i„ = 0.001918

C T am p = 293.4 MPa 

C a m p  = 0.00126935

<7mean = 39.65 MPa 

Emea„ = 0.00318735

Fillet-A ( J m a x  = 424 MPa 

e m a x  = 0.0147

ĉ min = -383.5 MPa 

Emin = 0.0047913

o ^ a m p  = 403.75 MPa 

E a m p  = 0.00495435

< 7 m e a n  = 20.25 MPa 

E m e a n  = 0.00974565

0.012

Model-E

Model-J

Fillet-A

Model-T

0.01

0.008

0.006

0.004

0.002

0.2 0.4 0.6 0.8
Distance (mm)

Fig. B.6 - The strain-distance curves (maximum principal, total strain)
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Once this data is available, the maximum strain amplitude, for each specimen, can then be 

plotted on the strain-life curve. These data points are shown in Figure B.7 below, it can be 

seen that they correspond to 2Nf = 1x10^ cycles. The solid line is the strain-life curve 

discussed in Appendix A, section A. 1.2. This curve is effectively the prediction, for the 

maximum allowable strain amplitude, made using the strain-life method.

0.01

Model-E

Fillet-A■o

■  Model-J

■  M odel-J 

A M odel-E  

o  Filiet-A 

-t- M odel-T
Model-T

0.001
1.E +03 1.E +04 1 .E + 071 .E + 05  

2Nf [Rev]

1 .E + 06

Fig. B.7 - The strain-life curve showing the strain amplitude o f  the various specimens,

determined using the FEA data

It must be noted however, that the above does not take into account the effect of mean 

strain. As discussed in Chapter 2, section 2.4.1.2 this can be done through the use of the 

Smith, Watson and Topper parameter, Pswr- The resulting life curve is shown in Figure 

B.8 below, in which the values for the various models are also shown.
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Fig. B.8 - Application o f  the Smith, Watson and Topper parameter (using the FEA data)

It can be seen that the lives predicted for the specimens are all quite conservative. Indeed, 

this method predicts that the Model-E specimen should only survive approximately 1000 

cycles. The results for the other three specimens are less conservative to various degrees, 

with the Model-T specimen giving the best predictions. Hence, the trends seen for the 

critical distance methods are again observed here.

B.3.2 Using the Neuber rule

As discussed in Chapter 2, section 2.4.1.1, in order to use the Neuber rule to estimate the 

local notch tip stresses and strains, you must be able to define the elastic stress 

concentration factor, Kt, and the fatigue reduction factor, Kf. Hence, this approach could 

only be applied to three specimens, for which these values are given in section B.2 above.

Figure B.9 below shows the estimated stress-strain relationship at the notch tip for the 

Model-E, Model-J and Model-T specimens. These values are summarised in Table B.4.
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Fig. B.9 - The estimated stress-strain relationship at the notch tip 

Table B.4 - Summary o f  estimated notch tip stresses and strains using the Neuber rule

Max. values Min. values Amplitude Mean

Model-E Omax = 3 4 4  MPa 

S„ax = 0.0182

(Jmin = -255.5 MPa 

Emin = 0.00976

<7amp = 299.8 M Pa 

Eamp = 0.00422

CTmean = 44.25M Pa 

emean = 0.01398

Model-J <7max = 337.9 MPa 

e„,ax = 0.01491

cfmin = -248 M Pa 

£min = 0.00796

Oamp = 292.95 M Pa 

Eamp = 0.003475

CTmean = 44.95M Pa 

en.ean = 0.0111435

Model-T CTmax = 311 MPa

Emax = 0.00602

C T m i n  = -192 M Pa 

e™„ = 0.00303

<7amp = 251.5 M Pa 

Eamp = 0.001495

CTmean = 59.5 M Pa 

Emean = 0.004525
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Comparing the values above with the strain amplitudes obtained via FEA (see Table B.3 

above), it can be seen that, for these specimens, the Neuber rule is relatively accurate 

(±20%).

1000

Model-E
Model-J

Model-T

■ Model-J 

A Model-E 

+  Model-T

100
1.E+041.E+03 1.E+071.E+05

2Nf [Rev]

1.E+06

Fig. B. 10 - Application o f the Smith, Watson and Topper parameter (using the Neuber

rule)

As per the section above, once the notch tip stresses and strains are known the fatigue 

prediction can be made using the Smith, Watson and Topper parameter, P s w t - The 

resulting life curve is shown in Figure B.IO above, on which the values for the various 

models are also shown.

As expected the results are very similar to those obtained using the FEA data. That is, the 

predictions for all o f the specimens are conservative, with Model-E being the most 

conservative and Model-T being the least conservative.
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B.4 Concluding remarks

It has been shown above that the predictions o f the Pluvinage method, the traditional 

approaches o f Neuber and Peterson and the strain-life method (implemented using FEA 

data and the Neuber rule) all show similar trends to the critical distance methods and the 

crack modelling method. That is, very conservative predictions were obtained for the 

Fillet-A, Model-E and Model-J specimens, while the Model-T specimen enjoyed more 

accurate predictions. From this it was concluded that the critical distance methods and the 

crack modelling methods are not unique in being unable to predict the fatigue behaviour of 

certain complex three-dimensional stress concentrations.
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Appendix C: ANSYS macros

C. 1 The area method macro

C.1.1 Methodology

The area method is implemented via a numerical integration done within an ANSYS 

macro, which makes use of the ANSYS - path operations commands. Essentially, the area 

being considered is discretised by multiple paths onto which the stress is plotted, radiating 

from the hotspot as shown in Figure C. 1 below.

y

dA = r.dr.d0

- x (0  = O°)

ANSYS paths - with the stress 
defined at discrete points

Fig. C .l - The area method macro methodology

C. 1.2 Running the Area Method macro

In order to run the macro, the user must make sure that two files, {AreaMeth.mac and 

AreaMethStart.mac) are either in the working directory of the current ANSYS model or in 

the ANSYS docu subdirectory (C:\Program Files\Ansys Inc\ANSYS57\docu).
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If these two files are present, simply type, AreaMethStart in the command prompt. The 

following dialogue box will appear and wait for user input.

•*: Mulli-Piompt to i V aiiables

A reaH eth
F or c a l c u l a t i n g  th e  a u e rag e  s t r e s s  in  a  c ir c u la i*  A rea

N unber o f  th e  H o tsp o t Node 

CenNd

HuMber o f  a  Node on th e  x - a x is  

xNd

NuMber o f  a Node in  th e  x -y  p la n  

xyNd

NaxinuM A ngle

MaxAng

NuMber o f  P a th s

NoPaths

R ad ius o f  th e  C i r c u la r  A rea 

Rc

Nunber o f  P o in ts  on th e  P a th s  

N oPoin ts 

The S t r e s s  Conponent

S trT ype

OK C an ce l

Fig. C.2 - User interface fo r  the Area Method macro

C.1.3 Inputs

CenNd, xNd and xyNd

The first three inputs are node numbers, which define a cylindrical coordinate system. 

The first node defines the centre o f the area and is generally taken to be the hotspot 

node. The second node is a node on the x-axis or the zero degree direction and the third 

is simply any node in the x-y plane. (Note: it is sometimes necessary to copy the 

hotspot node in order to create a node along the x-axis).
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MaxAng

The fourth input defines the angle of the circular sector considered. This is usually 

180°, which implies a semi-circle.

NoPaths

The fifth input is the number of ANSYS paths that are used to divide the area (see 

Figure C .l). This number should be increased until solution convergence has been 

achieved.

Rc

The sixth input is the radius o f the circular sector being considered. As discussed in 

Chapter 3, Section 3.1.2, this is usually taken to be 1.32 ao.

NoPoints

The seventh input is the number of divisions into which the ANSYS paths are divided. 

Again, this value should be increased until solution convergence has been achieved.

StrType

The last input defines the stress component that is averaged inside the circular sector. 

This defaults to the first principal stress.

C.2 The volume method macro

C.2.4 Methodology

The volume method is implemented in a very similar manner as per the area method 

discussed above. Except in this case the numerical integration is carried out within a 

spherical volume using a spherical coordinate system.
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C.2.5 Running the Volume Method macro

In order to run the macro, the user must make sure that two files, (VolMeth.mac and 

VolMethStart.mac) are either in the working directory of the current ANSYS model or in 

the ANSYS docu subdirectory (C:\Program FilesVAnsys Inc\ANSYS57\docu).

If these two files are present, simply type, VolMethStart in the command prompt. The 

following dialogue box will appear and wait for user input.

Uoineth
For c a lc u la t in g  th e  average s t r e s s  In a  s p h e r ic a l  uo lune 

Nunber o f th e  H otspot Node

CenNd j ;

Nunber o f a  Node on th e  x -a x is

xNd I"--------------- -

Nunber o f a  Node in  th e  x~v p lan

xyHd I

Angle in  x -y  p lane

NaxAng j  ....................■

Nunber of P a th s  in  x -y  p lane

NoPaths j

R adius o f th e  S p h e r ic a l  U olum

0« 1 /^  sp h , l « l / 4  sp h , sph

Nunbe ro  f  Po in  t  s o n t  he P a t hs

C.2.6 Inputs

CenNd, xNd and xyNd

The first three inputs are node numbers, which define a spherical coordinate system. 

The first node defines the centre of the area and is generally taken to be the hotspot

B M ulti-Piom pt foi V d iiab les

N oPoints A

ox C ancel

Fig. C.3 - User interface for the Volume Method macro
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node. The second node is a node in the x-direction or on the 0 = 0° line and the third is 

simply any node in the x-y plane. (Note; it is sometimes necessary to copy the hotspot 

node in order to create nodes in the appropriate directions).

MaxAng

The fourth input defines the enclosed angle in the x-y plane. This is usually 180°, 

which implies a semi-circle.

NoPaths

The fifth input is the number of ANSYS paths (in each plane) that are used to divide 

the volume. This number should be increased until solution convergence has been 

achieved.

Typ

The sixth input defines the shape in which the average volume is calculated. Three 

different shapes are possible; a half sphere, a quarter sphere and one eights o f a sphere. 

For these the Typ input should be 1, 2 or 3 respectively.

Rc

The seventh input is the radius of the circular sector being considered. As discussed in 

Chapter 3, Secfion 3.2.1, this is usually taken to be 1.54 ao.

NoPoints

The final input is the number of division into which the ANSYS paths are divided. 

Again, this value should be increased until solution convergence has been achieved.
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Appendix D: Application of PM to rotating bending data

The purpose of this appendix is to present the application of the point method [Taylor, 

1999] to a large amount of experimental data which demonstrates the size effect observed 

in the fatigue strength of rotating steel bending specimens. The data, given in Table D. 1 

below, has been produced by various authors but was compiled by Hey wood [1962].

Twenty-eight different steels, of various chemical composition and strength, are included. 

The point method has been applied to each material separately (see Figure D.l below), by 

choosing the value of a„, which results in the best fit with the experimental data. The best 

fit was chosen on the basis of visual inspection. Based on this 3o value the threshold stress 

intensity factor, AKth, for the material was then estimated using the El Haddad equation. 

That is:

(D-l)

The intention is to determine if the point method is suitable to predict the size effect 

observed in this data.

D.1 The Data

The experimental data is reported in Table D. 1 below.
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Table D. 1 -  Size effect data fo r  plain steel specim ens testing in bending

Data set Material
UTS

(MPa)
Yield

strength
(MPa)

Elongation
%

Diameter
(mm)

Fatigue
limit

(MPa)

1 0.44% C, 0.6% Mn 563.3 301.3 32

I.27 
6.86
II.94 
25.40 
50.80

240.6 
246.2
229.6
216.5
218.6

2 0.42% C, 0.6% Mn, 
0.15% Si, hot rolled

508.9 256.5 34

I.27 
6.86
II.94 
25.40

232.4
220.6
220.6
231.0

3 0.57% C, 0.6% Mn, 
0.26% Si, H.T. 703.3 462.0 20

I.27
II.94

331.0
337.9

4 0.45% C - - -
1.27

12.70
50.80

217.2
220.6
224.1

5 0.19%C - - -
1.27
7.62

25.40

179.3
191.0
168.9

6
0.46% C, 0.66% Mn, 

0.2% Si, 3.3% Ni, (SAE 
2345 H.T.)

865.3 686.1 22.7

3.18
4.06
6.35
7.62
12.70
22.10
38.10

484.0
487.5 
459.9 
482.7
458.5 
441.3
458.5

7 0.2% C, 0.5% Mn (SAE 
1020, strain relieved) 413.0 240.6 37

4.06
6.35
12.70
25.40
47.50

200.0
200.0
193.1
193.1
193.1

8
0.39% C, 0.7% Mn, 

1.7% Ni, 0.7% Cr, 0.35% 
Mo (SAE 4340 H.T.)

1037.0 917.7 18.2

2.54
7.62
9.40
11.94

586.1
552.3
558.5
520.6

9
0.08% C, 0.4% Mn, 
0.7% Ni, 0.07% Mo 
(H.T. 50, as rolled)

458.5 335.1 32

2.54
7.62
9.40
11.94

303.4
317.9
315.1
289.6
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Table D. 1 (continued) - Size effect data for plain steel specimens testing in bending

Data set Material
UTS

(MPa)
Yield

strength
(MPa)

Elongation
%

Diameter
(mm)

Fatigue
limit

(MPa)

10
0.31% C, 0.5% Mn, 

1.1% Cr, 0.2% M o(SAE 
X4130 H.T.)

977.7 797.1 17

3.05
6.35
12.70
22.10
38.10

513.7
481.3
448.2
448.2
448.2

11
0.22% C, 0.5% Mn, 

0.2% Si(SA E 1020, as 
rolled)

427.5 222.7 28

3.05
6.35
12.70
25.40
50.80

227.5
217.2
186.2
193.1
193.1

12
0.34% C, 0.8% Mn, 

0.24% Si (SAE 1035, as 
rolled)

604.0 325.4 25

3.05
6.35
12.70
25.40
44.45

268.9
268.9
244.8
244.8
237.9

13

0.34% C, 0.8% Mn, 
0.24% Si (SAE 1035, 

polished and annealed in
vacuo)

535.1 299.2 27.5

3.05
6.35

12.70

241.3
234.4

217.2

14 0.14%C, 0.5% Mn, 
3.1% Ni, 0.9% Cr (H.T.) 818.4 - 27

3.56
7.11

479.2
401.3

15 0.46% C, 0.7% Mn, 
0.2% Si, 0.12% Mo 617.1 - 31

2.03
7.62

25.40
50.80

266.1
274.4 
248.2
236.5

16 (SAE X4340-A) - - -
7.62

25.40
50.80

551.6
496.4
496.4

17
0.38% C, 0.8% Mn, 

1.8% Ni, 0.7% Cr, 0.25% 
Mo (SAE 4340 H.T.)

1128.7 - 16

3.05
6.35
12.70
25.40
44.45

568.8 
558.5
537.8
510.2
510.2

18 0.17% C, 0.7% Mn, 
0.2% Si, normalised 462.0 299.9 40

2.54
4.06
6.35
12.70

265.5
265.5
265.5 
244.1
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Table D. 1 (continued) - Size effect data for plain steel specimens testing in bending

Data set Material
UTS

(MPa)
Yield

strength
(MPa)

Elongation
%

Diameter
(mm)

Fatigue
limit

(MPa)

19 0.04% C 379.2 - -

1.02
2.03
4.06
7.87

298.6
271.7
275.8
275.8

20 0.41% C 448.2 - -

1.02
2.03
4.06
7.87

210.3
186.2
186.2
186.2

21

0,35% C 

(Mechanically polished)

609.5 - 25

2.03
4.06
7.87
16.00
32.00
56.13

280.6
264.8
256.5 
242.0 
219.3
225.5

22

0.35% C 

(Electrolyically polished)
609.5 - 25

2.03
4.06
7.87
16.00
32.00

229.6
220.6
207.5 
202.7
216.5

23 Ni-Cr steel, HT. 1130.8 1028.7 11
7.62

27.43
588.1
509.5

24 1% C, normalized 830.8 374.4 12
7.62

27.43
323.4
294.4

25 1 % C, annealed 638.5 279.2 13.5
7.62

27.43
294.4
264.8

26 0.1% C 406.8 255.8 29.5
7.62
17.27
27.43

259.3
255.1
244.8

27 0.3% C 553.7 327.5 24
7.62
17.27
27.43

288.9
284.1
269.6

28 0.17% C, 0.35% Cr 528.8 - 26
7.62

27.43
313.7
294.4

D.2 Application of ttie point method
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Fig. D . l - Application o f the point method to size e ffe ct data fo r  rotating steel specimens
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Fig. D .l(cont) - Application o f  the P M  to size e ffect data fo r  rotating steel specimens
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Fig. D. l(cont) - Application o f  the P M  to size effect data fo r  rotating steel specimens
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Fig. D .l(cont) - Application o f the P M  to size e ffect data fo r  rotating steel specimens
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Fig. D .l(cont) - Application o f  the PM to size effect data fo r  rotating steel specimens

D.3 Discussion

As expected there is quite a lot of scatter in the experimental results presented above. 

Therefore, data sets for which there are only two or three data points should be treated with 

suspicion. Nevertheless, it can be seen from the above, that for each material, there is a 

value o f a« that can be used in conjunction with the point method, which results in good 

correlation with the experimental data. The question is; are these ao values and subsequent 

AKth values realistic?
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A very general rule-of-thumb is that high strength materials usually have small ao values 

(i.e. less than 0.1mm), while a« is typically quite large in low strength materials like cast 

iron and aluminium (greater than 1mm). In fact, experience with the critical distance 

methods suggests that the a<, values used above to predict the experimental data are, in 

most cases, too high. Furthermore, it can be seen that the greater the 3o value, a bigger 

difference is predicted between large and small diameter specimens. Therefore it is 

concluded that the point method does make some correction for the size effect observed in 

plain rotating steel specimens, however if  the correct material properties were used, the 

point method would under-predict the observed experimental result.
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