
Visual Attention Using 2D & 3D Displays

by

Zbigniew Zdziarski, BA, BCompSc (Hons)

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Doctor of Philosophy

University of Dublin, Trinity College

July 2015



Declaration

I, the undersigned, declare that this thesis has not been submitted as an exercise

for a degree at this or any other university and it is entirely my own work.

Zbigniew Zdziarski

July 23, 2015



Permission to Lend and/or Copy

I, the undersigned, agree to deposit this thesis in the University’s open access insti-

tutional repository or allow the library to do so on my behalf, subject to Irish Copyright

Legislation and Trinity College Library conditions of use and acknowledgement.

Zbigniew Zdziarski

July 23, 2015



Acknowledgments

Firstly I would like to thank Dr Rozenn Dahyot without whom I would never have

submitted this thesis. I was very lucky to have her as a supervisor and will undoubtedly

be recommending her to anyone wishing to do any research in computer vision.

Secondly I would like to thank everyone in the GV2 group for the laughs and good

times. I would especially like to thank Dr Claudia Arellano next to whom I sat in the

lab for over three years. We went through thick and thin together!

Next I would like to thank Kieran O’Reilly, frontman of the band White McKenzie

that I was fortunate enough to join on my arrival to Ireland. Kieran’s always been

there for me - a true mate. I will never forget you and hope that our friendship will

continue to develop even if greater distances will separate us.

Lastly I would like to thank all my other friends that made living away from Aus-

tralia (the place I will always call home) that little bit more bearable. People like Ryan

Connolly, Maria Salisbury, Br Conor McDonough, Br Michael O Dubhghaill, and Dr

Alvaro Paul deserve a special mention here. Cheers, guys.

Zbigniew Zdziarski

University of Dublin, Trinity College

July 2015

iv



Abstract

In the past three decades, robotists and computer vision scientists, inspired by psy-

chological and neurophysiological studies, have developed many computational models

of attentions (CMAs) that mimic the behaviour of the human visual system in or-

der to predict where humans will focus their attention. Most of CMA research has

been focussing on the visual perception of images and videos displayed on 2D screens.

There has recently, however, been a surge in devices that can display media in 3D and

CMAs in this domain are becoming increasingly important. Research in this context

is minimal, however. This thesis attempts to alleviate this problem. We explore the

Graph-Based Visual Saliency algorithm [68] and extend it into 3D by developing a new

depth incorporation method. We also propose a new online eye tracker calibration

procedure that is more accurate and faster than standard processes and is also able

to give confidence values associated with each eye position reading. Eye tracking data

is used to evaluate CMAs. We use our novel eye tracking method to create a 2D/3D

video eye tracking dataset obtained from 50 people. A statistical analysis is performed

to locate where perception differs in 2D and 3D in videos. Taking advantage of the

uncertainties associated with our eye tracking data, we also propose a novel Gaussian

mixture model for computing eye tracking heat maps.
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Chapter 1

Introduction

We never see and analyse an entire scene completely in one go [182]. Every second

approximately 108-109 bits of visual stimuli enters our eyes [76, 95, 20]. This is too

much information for the human visual system to handle in real-time so it optimises

the analysis of scenes by picking out important information in regions. When given a

scene, we move our gaze from one important region to another - and it is during this

time that the brain builds its representation.

This optimising action of ours, called selective attention, is the subject of research in

visual attention (VA). Inspired by psychological and neurophysiological studies, robo-

tists and computer vision scientists have attempted to build systems that mimic the

behaviour of the human visual system in order to predict where humans will focus

their attention. As a consequence, in the past three decades numerous computational

models of attention (CMAs) that attempt to locate salient regions in images and videos

have been proposed.

1.1 Applications of Visual Saliency

There is a clear need for the study of VA and CMAs. Indeed, CMAs have proven useful

in a number of applications. These would include:

• Compression and recognition (E.g. [152], [140], [19]). Content-based retrieval

of images and videos is generally based around the concept of first automatically

describing a media file (through the use of feature points, for instance) and then

1



Figure 1.1: Foveated imaging example of a woman doing sign language. Image on right
has its resolution adapted around the woman’s hand and face (taken from [175]).

searching over these descriptions when a user queries for an image/video. Visual

saliency can be used here to describe only the most important sections or regions

of a media file, hence minimising the search space and retrieval time.

• Foveated imaging and thumbnail creation. Foveated imaging is when one

varies the resolution in an image around certain fixation points. An application

of this is progressive transmission for images: more important regions are trans-

mitted with higher resolution to begin with and the remaining regions ‘catch-up’

later [156] [186]. Progressive transmission gives the end-user a quicker view of

the most important parts of an image. Another example pertains to the trans-

mission of videos. One can give a higher resolution to a more important part of

a video hence saving transmission data on the lower resolution areas [175] [76].

An example of this is shown in Figure 1.1 where the most important area of the

image (the lady doing sign-language with her hands) is given a higher resolution.

Another application is thumbnail creation. Thumbnail creation is traditionally

done by shrinking an original image to thumbnail size. Visual saliency can, for

example, be used to create thumbnails by showing only a salient region as a sum-

mary of the image [161] [121]. This concept of thumbnail creation can also be

migrated to the idea of adapting images for small displays like those found on

devices such as mobile phones. It may sometimes be more beneficial for the user

to see the salient parts of an image rather than the entire image itself [36] [108].

2



• Image and video quality assessment. Image and video quality can decrease

as a result of compression. It is often useful to calculate the quality of media to

see, for example, if the compression level is too large or to calculate the efficiency

of a compression algorithm with respect to visible change. Visual saliency has

been used in this task. Ma and Zhang [112], You et al. [185] and Feng et al. [51]

assessed such media quality by giving more weight to quality measurements in

salient regions. The justification for this is that it should be more important to

measure the quality of salient regions rather than regions that a user will ignore.

• Control of vehicles and robots, navigation, and surveillance. Quickly

calculating the state of a situation or analysing an environment by sifting out

irrelevant data is significant in automating vehicular [149] and robotic control [53],

[2], [155] and in tasks such as wilderness search and rescue [148]. CMAs can also

be used in surveillance where important regions can be a factor in determining

the position/viewpoint of a camera [8].

• Automatic evaluation of advertisements, web pages, interface designs,

etc. [77], [29], [113]. Eye tracking is frequently utilised by advertising, web page

and magazine design companies to assess the effectiveness of an advertisement,

interface design, etc. An example of a heat map obtained from eye tracking

of a search results page is shown in Figure 1.2. Eye tracking is, however, un-

comfortable for the user and expensive, and automating this task would be very

financially beneficial to these companies and others working with visual attention

[43] [42].

1.2 Eye Tracking and Visual Attention

The most common way of measuring the performance of CMAs is by comparing their

output to eye movements from humans that are captured by eye trackers. There is an

assumption made when using eye trackers called the Strong Eye-Mind Hypothesis. It

states that “there is no appreciable lag between what is fixated and what is processed”

[90]. That is, what is being fixated on is what the subject is thinking about for

the duration of the fixation. Hoffman et al. [70], however, reports that there is an

approximate 100-200 milli-second lag between visual attention and eye position due to
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Figure 1.2: An example of a heat map of a search results page. The hotter the colour,
the more attention was devoted to that area of the image for a given time period. Heat
maps such as these can typically change as different time periods are analysed for users’
attention (image taken from [30]).

what is called covert attention (discussed further in Section 2.1.1). Regardless of these

findings, the eye-mind hypothesis is still a useful tool for measuring the correlation

between visual attention and eye positions. Indeed, most research on VA uses this

hypothesis [87].

Eye trackers have been around since the 1920s when Guy Thomas Buswell cap-

tured on film reflected beams of light that were shone onto people’s eyes [31]. Since

then eye trackers have become less cumbersome and invasive. Figure 1.3 shows the

original Buswell eye tracker and a commonly-used-today head-mounted eye tracker.

However, eye trackers still lack accuracy. For example, McDonnell et al. reported that
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(a) The Buswell Eye Tracker [31] (b) The Eyelink II Eye Tracker1

Figure 1.3: The original Buswell eye tracker and the well-known head-mounted “Eye-
link II” (SR Research Ltd, v. 2.0) eye tracker.

they accounted for approximately 100 pixels of error on a 1920 x 1200 LCD monitor

when attempting to determine which object was being viewed [125]. Moreover, top-

of-the-range eye trackers are very expensive - prices range from e 4000-e 30,000. It is

necessary, therefore, to attempt to improve the accuracy of eye trackers - at least to

avoid the infeasible (for most) notion of constantly upgrading eye trackers with newer,

more accurate models when they become available.

1.3 Visual Attention in 2D & 3D

Most of VA research has been focussing on the visual perception of images and videos

displayed on 2D screens. More recently, however, it has been shown that humans look

differently at images displayed in 3D compared to 2D [172]. For example Jansen et al.

[82] found that for images shown in 3D, people fixate more, have shorter and faster

saccades (the movement of the eyes between fixations) and tend to explore more with

their eyes.

Due to the differences in viewing behaviour CMAs, to be as accurate as possible,

1Image adapted from http://www.sr-research.com/eyelinkII.html (viewed 31/09/2014)
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need to be specifically tuned or rebuilt for 3D media. Since 3D media is becoming

ubiquitous (e.g. 3D films in cinemas or at home, 3D games, 3D hand-held devices such

as mobile phones and the Nintedo 3DS) this is becoming an increasingly important

area of research. Ultimately, all the applications listed above will need to be ported to

the 3D domain.

Another problem is that the research that has been performed to compare 2D

and 3D VA on videos is minimal. For example, no ground-truth eye tracking dataset

exists for 3D videos. Without such a dataset, it is impossible to accurately verify the

preciseness of 3D CMAs.

This thesis specifically focusses on 3D VA and CMAs and presents work that fur-

thers this scientific field and helps with the problems mentioned above. It also presents

a method to improve current state-of-the-art eye tracking measurement.

1.4 Contributions of this Ph.D.

The contributions of this thesis can be summarised as follows:

• In Chapter 3 we show that CMAs can be used to optimise content-based image

retrieval and other such systems. By describing images containing only one dom-

inant object using feature points solely collected from salient regions (as opposed

to feature points obtained from the entire image), we show that an improvement

in classification results can be obtained. We use the Graph-Based Visual Saliency

Algorithm (described in detail in Section 4.1.1) to show that this algorithm can

be applied to real applications. This algorithm is then used on 3D images in the

following chapter.

• In Chapter 4 we extend the 2D Graph-Based Visual Saliency Algorithm into 3D

by developing a new depth incorporation method. This new 3D CMA outper-

forms all other state-of-the-art 3D algorithms on 3D media.

• In Chapter 5, to more accurately measure visual saliency, we propose a new

online eye tracker calibration procedure. This procedure is shown to be more

accurate and faster than standard processes. It is also able to give confidence
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values associated with each eye position reading - something that current eye

tracking procedures are unable to do.

• To better understand the differences in 2D and 3D viewing behaviour in videos

we ran a full-scale eye tracking experiment with 50 participants who looked at

professionally made videos. This experiment was done using our eyetracking

procedure presented in Chapter 5. Chapter 6 presents this experiment and an

analysis of the difference in viewing behaviour between the 2D and 3D videos. In

this chapter we also present a more scientific way of presenting eye tracking heat

maps. We hope that the analysis presented here will enable any future work in

3D VA to be improved. The resulting eye tracking dataset from this chapter will

also be made available in the near future to the public. As was mentioned above,

no such eye tracking datasets currently exist.

1.5 Publications

The work presented in this thesis has been published in the papers listed below:

• Z. Zdziarski and R. Dahyot. “Feature selection using visual saliency for content-

based image retrieval”. IET Irish Signals and Systems Conference, pages 1-6,

2012.

• Z. Zdziarski and R. Dahyot. “On creating a 2D & 3D visual saliency dataset”.

Proc. of the ACM Symposium on Applied Perception, page 132, 2013.

• Z. Zdziarski and R. Dahyot. “Extension of GBVS to 3D media”. In IEEE

Signal Processing and Communications Applications Conference (SIU), pages

2296-2300, 2014.
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Chapter 2

Background

This background review is based on three seminal Ph.D.’s on the topic (Bruce 2008

[23], Gao 2008 [55], and Judd 2011 [87]), a recent state-of-the-art review published in

2013 by Borji and Itti [20] and is supplemented by new material published since.

Before any work, however, on visual attention (VA) and computational models of

attention (CMAs) is presented, a definition of attention needs to be given. Perhaps the

best such definition was provided by William James in 1890 [81]: “[Attention] is the

taking possession by the mind, in clear and vivid form, of one out of what seems several

simultaneously possible objects or trains of thought. Focalization, concentration, of

consciousness are of its essence. It implies withdrawal from some things in order to

deal effectively with others”. This thesis, of course, focusses on visual attention, which

deals with attention on visual stimuli.

2.1 Attention Mechanisms

The selective attention mechanism has already been mentioned in Chapter 1. This

mechanism is commonly compared to the spotlight model [143, 49], which suggests that

the fovea (the centre of the retina that has the highest resolution) is like a spotlight

being directed to different areas of a dark room. Moving around (a.k.a. saccading)

our fovea and fixating (i.e. focussing) on specific areas of a scene allows us to get an

impression of it. There are two more groups of attention mechanisms important to VA

that need to be presented: covert/overt and bottom-up/top-down.
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2.1.1 Covert Versus Overt Attention

Attention can be distinguished by being either covert or overt. The overt attention

mechanism involves specifically moving one’s fovea to a region of interest and paying

attention to it [59, 154]. For example, if you are listening and looking at someone talking

to you, you are engaging the overt mechanism of attention. Covert attention does not

explicitly involve movement of the eyes and head [59, 154]. An example of covert

attention is concentrating on an object in the corner of one’s eye. Another example is

one of driving: when driving a driver focusses on the road while simultaneously keeping

track of signs and traffic lights.

Covert and overt attention normally operate together [52]. It is widely believed

that covert attention is used to locate interesting regions for overt attention to fixate

on [20, 142]. This process was described in Chapter 1. Nonetheless, it is still possible to

pay attention to things not directly encompassed by the fovea [87]. This is an ongoing

piece of research and currently the standard course of action in CMA research is to not

deal explicitly with covert attention. This thesis will follow suit.

2.1.2 Bottom-Up and Top-Down Attention

When building a representation of a scene, two main attentional mechanisms inter-

act with each other: bottom-up and top-down. The bottom-up attentional mechanism

(a.k.a. automatic, reflexive, exogenous or stimulus driven) pertains to the preattentive

(pre-conscious) phase of attention. It is fast and involuntary. Psychophysicists, how-

ever, are still debating on which attributes exactly pertain to bottom-up attention. For

example, object shape is said to be a “probable attribute” in preattentive attention

guidance but no certainty exists on this. Faces, on the other hand, are thought to be

“probable non-attributes” [182]. In computer vision, especially recently [20], this de-

bate is abstracted over and bottom-up factors are understood to be ones that have been

derived solely from the scene [159, 20, 21]. Top-down saliency uses top-down informa-

tion that is based on conscious, higher-order cognitive processes to influence saliency

analysis. It is voluntary and slower than bottom-up. Top-down information includes

all task-related and personal factors such as the purposes of performing a task or things

like a user’s memory, emotions or likes and dislikes [76]. For example, if we need to

locate a red dragon in a box of toys, we would naturally scan the scene first for red
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objects and from these possibilities locate the desired toy - we have prior (top-down)

information so we know which salient features need to be given more weight. CMAs

are distinguished by whether they rely on bottom-up influences, top-down influences

or a combination of both.

Top-down saliency is a difficult problem in itself and many questions remain unan-

swered. E.g. are bottom-up and top-down calculations performed independently or

does one influence the other? If the latter, how is this performed? How do you predict

top-down influences? Because of such questions, and since bottom-up CMAs are sim-

pler and easier to understand and implement many applications choose to remain with

bottom-up CMAs. In fact, bottom-up CMAs are considered to be ‘general purpose’

attention algorithms and most research in VA is conducted on bottom-up models [20].

This thesis also focusses on bottom-up saliency.

2.2 Bottom-Up Visual Saliency Algorithms

When discussing bottom-up CMAs we limit ourselves to models that compute saliency

maps for videos or images. Saliency can be understood as something that characterises

parts of a scene that stand out from its surroundings. Parts of a scene can be regions

or objects, for example. A saliency map, therefore, is a scalar, two-dimensional map

that indicates the saliency value (conspicuity) for every pixel in an image [87]. Models

that do not compute saliency maps are outside of the scope of this thesis and computer

vision in general [20]. The term visual saliency refers to visual attention that focusses

on bottom-up processes [21]. Visual saliency algorithms (VSAs) are, therefore, bottom-

up CMAs.

2.2.1 Origins

Many VSAs that have been proposed to the scientific community are based on Treisman

and Gelade’s [165] pioneering psychological work published in 1980. They formulated

the “Feature Integration Theory” that explains which visual features are important

and how they are combined to draw human attention. Christof Koch, a professor of

biology and engineering at the California Institute of Technology, and Shimon Ullman,

a professor of computer science at the Weizmann Institute of Science in Israel, then
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Figure 2.1: Architecture of the Koch and Ullman’s model (adapted from [169])

proposed a model of this theory in 1985. Saliency in the Koch and Ullman model is

first calculated by extracting the visual cues of colour, orientation and intensity from

an image. An activation map (an initial saliency map) is then calculated in parallel for

each of these channels. Next, the activation maps are combined into a master saliency

map. Finally, a ranking of salient regions is computed through the use of a Winner-

Takes-All (WTA) network. The architecture of the Koch and Ullman model is shown

in Figure 2.1.

The process of obtaining a master saliency map (without the WTA step) can be

summarised in three stages as suggested by Harel et al. in [68]:

1. extraction

2. activation

3. normalisation/combination

The extraction step is responsible for extracting different feature channels that will

be used to calculate activation maps. An activation map (a.k.a. a conspicuity map
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Figure 2.2: Activation and normalisation example on two feature channels - intensity
and orientation. N(.) is a normalisation operator (adapted from [78]).

[124]) shows the salient areas of an image for a given feature channel (e.g. intensity,

colour, etc.). So, for example, in the colour feature channel a yellow blob will be given

higher saliency values if this blob is located on a completely black background. Or a

vertical bar will be given a high saliency value in the orientation channel if the only

other bars in the image are horizontal. Difference of Gaussian (DoG) is a common way

of calculating saliency for each feature channel. This approach involves constructing a

Gaussian pyramid for each channel and comparing the differences between scales.

The normalisation/combination stage involves the normalisation of activation maps

and then amalgamation of them into one master saliency map. Normalisation is nec-

essary since the feature cues are not all in the same range. Normalisation also takes

into consideration relative differences in an activation map.

The first step shown in Figure 2.2 demonstrates the creation of an activation map

for the intensity and orientation channels of an example image. This activation map is

then normalised (second step in the figure) to be ready for global amalgamation into

a master saliency map.

The first complete implementation and verification of the Koch and Ullman model

was proposed by Itti et al. [78]. Further work to the Koch and Ullman model has

generally contributed to or altered one or more of the three stages listed above [68].

Examples of further work on this model include: Milanese et al. [127], Leavers [102],

and Maki et. al [117].
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Since the Koch and Ullman model many more models have been proposed and

implemented. The most important of these will be presented in the next section.

2.2.2 Other Important VSAs

In their review, Borji and Itti [20] divided VSAs into eight classes: cognitive, bayesian,

decision theoretic, information theoretic, graphical, spectral analysis, pattern classifi-

cation, and others. This thesis will follow suit. The VSAs described here have been

either influential/pioneering in the study of visual saliency and/or performed well in

the exhaustive comparison of 35 state-of-the-art VSAs that was made by Borji, Sihite

and Itti [21] in 2013.

Cognitive models

Cognitive models are strongly based on psychological and neurophysiological findings

such as, for example, Treisman and Gelade’s [165] “Feature Integration Theory” de-

scribed above. Itti’s [78] implementation of the Koch and Ullman model is, therefore,

the first obvious VSA that belongs in this section. His implementation subsamples an

image into a Gaussian pyramid [63] of nine levels. Each pyramid level is then decom-

posed into channels for Red (R - calculated as r−(g+b)/2), Green (G = g−(r+b)/2),

Blue (B = b− (r + g)/2), Yellow (Y = (r + g)/2− |r − g|/2− b), Intensity (the grey-

scale version of the image), and local Orientations (O - calculated using the Gabor

filter at angles 0, 45, 90, and 135 degrees). From these, feature maps fl are calculated

by centre-surround (cs) operations. cs operations are defined as the difference between

fine and coarse scales. For example, if the centre is a pixel at scale c ∈ {2, 3, 4}, the

surround is the corresponding pixel at scale s = c + d, where d ∈ {3, 4}. After the cs

operations, the feature maps are then normalised:

fl = N(
4∑
c=2

c+4∑
s=c+3

fl,c,s),∀l ∈ LI ∪ LC ∪ LO (2.1)

where

LI = {I}, LC = {RG,BY }, LO = {0◦, 45◦, 90◦, 135◦} (2.2)

and N is the normalisation operator.
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In total, the cs operation is performed on 42 maps (6 for intensity, 12 for colour,

and 24 for orientation). The calculated feature maps are finally linearly summed and

normalised once more into a master saliency map. Variations and extensions of this

implementation have been proposed by Frintrop [52], Walther in the Saliency Toolbox

[170], and Walther et al. [171].

Itti in [76] used the concept of adding an additional channel for motion to the Koch

and Ullman model for the video domain. This addition is depicted in Figure 2.3 with

the red boundary showing the standard Koch and Ullman model. Along with standard

colour, intensity and orientation information, Itti added two temporal feature channels:

temporal flicker (flickering of light intensity) and four oriented motion energies: up,

down, left, and right. Just like in the Koch and Ullman model, all these feature channels

were normalised and then merged into a single saliency map. Interestingly, Itti applied

this model to foveation. He reports a 50% average increase in video compression rate

performance for MPEG-1 and MPEG-4 video clips.

Figure 2.3: The Koch and Ullman model (in red) with a motion channel attached as
explored by Itti in [76].
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Since the Koch and Ullman model was proposed, research and understanding of

the human visual system (HVS) has advanced. Le Meur et al. [100] proposed a

VSA that modelled the HVS in a more complex way. Contrast sensitivity functions,

visual masking and perceptual grouping are some of the additional functions they

implemented. This algorithm was shown to outperform Itti’s [78]. Le Meur et al.

[101] later extended their model to the spatio-temporal domain by proposing a fusing

algorithm for achromatic, chromatic and temporal information.

Marat et al. [120] proposed a spatio-temporal VSA that was inspired by the first

steps of the HVS. Modelling the output of the retina, two signals are extracted from

a video stream: parvocellular and magnocellular. Static and dynamic information

(signal orientation, spatial frequencies and optical flow calculated using spatial Gabor-

like filters [27]) is then extracted from these streams from which two saliency maps are

calculated. These are finally fused into a spatio-temporal map. Marat et al. showed

that they were able to accurately predict the eye movements of subjects for the first

few frames of each short clip they analysed.

Bayesian models

In bayesian models, prior knowledge about the scene (e.g. scene context or gist) and

sensory information (e.g. target features) are combined probabilistically in Bayes’ rule

to detect salient regions or objects of interest. Only one notable bottom-up algorithm

from this class has been proposed.

Itti and Baldi [79] introduced a Bayesian definition of surprise as being something

that changes the beliefs of an observer. Prior beliefs of an observer are captured and

new data being observed is said to be surprising if the posterior resulting from new

observations significantly differs (according to the KL divergence measure) from the

prior. For images, prior information is taken as neighbouring locations. In the time

domain, prior information at one point is captured from previous observations.

Decision theoretic models

Decision/Discriminant theoretic models are derived explicitly from a minimum Bayes

error definition. They are based on the premise that perceptual systems evolve to

make decisions that are optimal in a decision theoretic sense. The main idea is that
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CMAs should be optimised with respect to the end task. Most models in this class

are top-down in nature but some have been implemented to remain bottom-up while

maintaining a decision theoretic framework.

Gao and Vasconcelos [56] define a decision theoretic formulation of saliency of visual

features at a given location as the power (expected classification accuracy) of those

features to discriminate (distinguish) between them and a null hypothesis. In bottom-

up visual saliency, the null hypothesis for Gao and Vasconcelos is the neighbourhood

(surroundings) of the given location. Optimality is defined in the minimum probability

of error sense.

The binary classification problem (i.e. discriminating between stimuli of interest

against the null hypothesis) in decision theoretic models is extended to the temporal

domain by Mahadevan and Vasconcelos [115, 116]. They included motion features in a

bottom-up saliency mode. Similarly to Gao and Vasconcelos [56], the neighbourhood

is defined as the null hypothesis. Their spatio-temporal model was shown to robustly

identify salient moving objects for complex backgrounds by using dynamic texture

models as a substitute for optical flow (that can be used for more static clips).

Information theoretic models

Information theoretic models aim to detect regions that maximise the information

sampled from an environment. That is, they aim to detect the most informative regions

while discarding the rest.

Bruce and Tsotsos [24] developed the well-known AIM model (Attention based on

Information Maximisation) that uses Shannon’s self-information measure. Saliency of

a region is calculated as the information it conveys relative to its surroundings. This

is calculated as I(X) = −log(p(X)), where X is a visual feature and p(X) is the

probability of observing X based on its surround. To calculate p(X), independent

component analysis (ICA) is used to reduce the dimensionality of the problem. The

bases for ICA are learned by sampling from a large number of random patches from

natural images (since a single image will not have enough data for this). The final

saliency value for a given image region is the product of the probabilities of observing

this region for each ICA basis coefficient.

Mancas [118] developed a rarity and contrast-based measure of saliency. Contrast
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he calculates on a global and local level. Global contrast is measured by analysing

histograms and local contrast by a centre-surround operation similar to that of Itti et

al. [78]. Rarity is first calculated by computing the mean and variance of the neigh-

bourhood and using other features such as size and orientation (e.g. smaller areas get

higher saliency values). Finally, higher-level methods (e.g. Gestalt laws of grouping)

are used to locate the salient regions.

Wang et al. [174] proposed a computational model to simulate human saccadic

scanpaths on natural images. They integrated three factors to guide eye movements

sequentially: 1) reference sensory responses (to provide a representatinon of the raw

input signal); 2) fovea-periphery resolution discrepancy (to provide detailed informa-

tion around a location and coarse details from the periphery); and 3) visual working

memory (to prevent fixations from returning to previously fixated regions too early).

For each eye movement, three multi-band filter response maps are calculated for the

three factors. These filter response maps are then combined into multi-band residual

filter response maps on which residual perceptual information (site entropy rate) is

calculated at each location. Fixations are ordered by residual perceptual information

scores.

Graphical models

Graphical models have a probabilistic graph model denoting the conditional indepen-

dence between different variables. Graph-based approaches such as Hidden Markov

Models, Dynamic Bayesian Networks and Conditional Random Fields can be employed

in calculations.

Harel et al. [68] developed the Graph-Based Visual Saliency (GBVS) algorithm.

The GBVS algorithm defines a Markov chain over each image channel. States in the

chain represent nodes (pixels) and transition probabilities represent edges that denote

similarity between two nodes. Each node is connected with every other node. Random

walks are then performed on these nodes - the more frequently visited nodes are deemed

more salient. This solution claimed to be biologically plausible (nodes here are claimed

to be representations of neurons, the graph structure is a retinotopically organised

network and communication between nodes is similar to synaptic firing) and strongly

parallelisable. The GBVS algorithm is presented in more detail in Section 4.1.1.
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Liu et al. [110] tackle the visual saliency problem for images with a single salient

object. They propose new features to be used in their calculations such as multiscale

contrast, center-surround histogram, and color spatial distribution. These are used to

describe a salient object locally, regionally and globally. They use images from a large

annotated dataset of 20,000+ images to train a conditional random field to effectively

combine these features. Their model is extended to the spatio-temporal domain (Liu

et al. [109]) by adding motion features (using SIFT flow [107]) to their calculations.

Spectral analysis models

Spectral analysis models perform their saliency calculations in the frequency domain

as opposed to the spatial domain. These models are generally simple to explain and

implement and can generate saliency maps in real-time.

Hou et al. [74] explored the properties of backgrounds by investigating the log

spectrum of images to then extract the spectral residue. Finally, the spectral residue

was transformed to the spatial domain to create a saliency map. This spectral residue

technique has been used previously in, for example, sensory input to detect unexpected

signals or anything that varies from the norm [12, 93].

The first step in Achanta et al.’s [4] model is to transform the colour image I to

the CIELAB colour space. The saliency map is then calculated as:

S(x, y) = ||Iµ − Iwhc || (2.3)

where x, y are pixel coordinates, Iµ is the arithmetic mean image feature vector, Iwhc
is a Gaussian blurred (with a 5 x 5 separable binomial kernel) version of I and ||.|| is

the euclidean distance. Achanta et al. is an example of a global contrast VSA meaning

that it measures the saliency of a pixel by calculating its contrast to every other pixel

in the image. These methods are good at detecting single salient objects on simple

backgrounds but their performance deteriorates the more complex a scene becomes

[184].

Bian and Zhang [17] proposed the Spectral Whitening (SW) model where they used

spectral whitening (a.k.a. balancing or broadening). The first step in the calculations is

to scale the image to a fixed size (a length of 64 pixels is used by Bian and Zhang with
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the image ratio being retained). A windowed Fourier transform F is then calculated:

f(u, v) = F [w(I(x, y))] (2.4)

where I(x,y) is the resized grey-scale image and w is a windowing function. A whitened

(or normalised/flattened) spectral response n is obtained by:

n(u, v) = f(u, v)/||f(u, v)|| (2.5)

This response is then transformed into the spatial domain (reverse Fourier transform),

squared to further enhance the salient regions and convolved with a Gaussian low-pass

filter:

S(x, y) = g(u, v) ∗ ||F−1[n(u, v)]||2 (2.6)

where g is a Gaussian filter. The model is further extended to the spatio-temporal

domain by attempting to separate background motion from localised (salient) motion.

Background motion is detected by utilising phase correlation [39] of two frames. The

resulting motion vector for panning movement is used to shift the global motion of the

two frames to extract the local motion.

Pattern classification models

In these models machine learning techniques are used to model visual attention. The

techniques use pre-recorded eye fixations or manually labelled salient regions as training

data.

Kienzle et al. [92] used eye tracking data to train a support vector machine (SVM)

to model attention. Their aim was to find the functional relationship between image

patches and their corresponding visual saliency. The SVM was trained on a non-linear

mapping between these patches and their saliency scores (obtained from 200 grey-scale

images that were viewed by 14 people). Positive values were given to patches that had

been fixated on and negative values to randomly selected patches. Only the intensity

channel was used.

Judd et al. [88] proposed a similar approach but they trained a linear SVM using a

set of low (e.g. colour, intensity and orientation), mid (horizon line detector), and high-

level (people and face detectors) image features. Saliency values for these features were
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gathered from eye tracking data obtained from 15 people who viewed 1,003 images.

Other models

Other models that do not conform to the above classes are described in this section.

Goferman et al. [60] propose a more context-aware VSA. Four principles of human

attention govern their salient region detection mechanism: low-level feature (colour,

contrast, etc.) considerations, the suppressing of frequently occurring features on the

global scale, the idea that salient patches tend to group together, and finally high-

level feature considerations such as faces. Goferman et al. applied their VSA to image

retargetting and summarisation.

Garcia-Diaz et al. [58] presented the Adaptive Whitening Saliency (AWS) model

that is based on the adaptive whitening of colour and scale features. This is achieved

through decorrelation and contrast normalisation in several steps in a hierarchical ap-

proach. The first step is to transform an (r, g, b) image into a whitened (z1, z2, z3)

representation. This representation is acquired through decorrelation by employing

principal component analysis over multi-scale low-level features. A bank of log-Gabor

filters is used (for orientations of 0, 45, 90, and 135 degrees) to create feature maps

over (z1, z2, z3). Seven scales are calculated for z1 and five each for z2 and z3. Each

feature map from the chromatic component is then whitened and contrast normalised

in a hierarchical manner. The square of the vector norm in the resulting representation

is the final saliency computation.

Table 2.1 shows the VSAs presented in this section accordingly classified into one

of the eight VSA classes.

2.2.3 Summary of VSAs

In 2013, as an accompaniment to the state of the art review of Borji and Itti [20],

Borji, Sihite and Itti [21] performed an exhaustive comparison of 35 state-of-the-art

VSAs against 54 classic synthetic patterns, three natural image datasets (Bruce and

Tsotsos [26], Kootstra et al. [98], and Judd et al. [88]), and two video datasets (Mital

et al. [128] and selected clips from Itti and Baldi [79]). Three metrics were used

for evaluation: correlation coefficient (CC), normalised scanpath saliency (NSS) and

shuffled area under curve (AUC) (these are described in Section 2.4 below). They
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VSA Classes VSAs

Cognitive

Itti (1998) [78], Itti* (2004) [76], Walther
(2006) [170], Walther et al. (2002) [171], Frin-
trop (2006) [52], Le Meur et al. (2006) [100],
Le Meur et al.* (2007) [101], and Marat et
al.* (2009) [120]

Bayesian Itti and Baldi* (2004) [79]

Decision Theoretic
Gao and Vasconcelos (2009) [56] and Ma-
hadevan and Vasconcelos* (2009) [115, 116]

Information Theoretic
Bruce and Tsotsos (2009) [24], Mancas
(2007) [118] and Wang et al. (2011) [174]

Graphical
Harell et al. (2007) [68], Liu et al. (2007)
[110], and Liu et al.* (2008) [109]

Spectral Analysis
Hou and Zhang (2006) [74], Achanta et al.
(2009) [4], and Bian and Zhang* (2009) [17]

Pattern Classification
Kienzle et al.* (2009) [92] and Judd et al.
(2009) [88]

Others
Goferman et al. (2012) [60] and Garcia-Diaz
et al. (2009) [58]

Table 2.1: VSAs presented in this section in their respective classes. * indicates a
spatio-temporal algorithm.

report a number of findings. First, for synthetic images, models based on the feature

integration theory performed well (e.g. Itti et al. [78] and Frintrop et al. [52]). The

best results were obtained by Harel et al.’s GBVS algorithm [68]. Garcia-Diaz et al.

[58] and Bian and Zhang [17] performed highly as well. Synthetic images were classic

patterns that have been frequently used for psychophysical experiments and evaluation

of attention models. These patterns contain only one item (target position) in each

image that differs from all other (distractor) items. Example synthetic patterns used

in the comparison experiments can be seen in Figure 2.4.

Overall, the best model for natural scenes using the CC and NSS metrics was the

GBVS model [68]. With the shuffled AUC metric, the Garcia-Diaz et al. [58] model

is significantly better than all the other models over the three datasets. The GBVS

model performed well with this metric, too. For the two video datasets, it is interesting

to note that models explicitly incorporating motion did not perform better than static

models. The ranking of VSAs here is similar to the one with natural images. That
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(a) Difference in colour (b) Assymetry in one item (c) Difference in orienta-
tion

Figure 2.4: Examples of classic synthetic patterns used in the comparison of VSAs by
Borji et al. [21].

is, on average, GBVS out-scores all other models when using the NSS and CC metric.

Garcia-Diaz et al. [58] is the best performer for both datasets with the shuffled AUC

metric. Bian et al. [17] performed second-best. In light of these results for videos,

Borji, Sihite and Itti call for the best performing static models to be extended into the

spatio-temproal domain to possibly improve their results even more. With respect to

computation time, Hou et al. [74] and Bian and Zhang [17] are the two fastest VSAs

(0.30 secs and 1.1 secs on average, respectively) implemented in Matlab. These provide

an option for trade-off between accuracy and speed sometimes necessary for real-life

applications.

2.2.4 Saliency and Motion

Since this thesis deals with 3D/2D videos, it is appropriate that a separate section

be dedicated to the discussion of motion saliency. Of course, standard visual saliency

models can be used on a per frame basis on videos but the additional dimension of

time provides supplementary information that can be employed to more accurately find

salient regions. This temporal information, however, does add significant complexity

to the equation because we can, if we choose, deal with things like occlusion and

reappearance, changing lighting conditions when switching from indoor to outdoor

locations and vice versa, constant camera angle changes of the same scene, etc. A

number of papers have tackled these issues and a few of the more important ones will

be discussed here.
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It was already mentioned in Section 2.2.2 that Itti in [76] used the simple concept

of adding an additional channel for motion to the classic Koch and Ullman model (cf.

Figure 2.3). Itti compared his motion saliency results against human behaviour (with

an eye tracker) to show that “subjects preferentially fixated locations which the model

also determined to be of high priority, in a highly significant manner”.

Williams and Draper published an interesting paper in which they concluded that

“adding motion channels does not improve the performance of saliency-based selective

attention” [180]. They used the same approach as Itti in [76] by adding a separate

motion channel to the Koch and Ullman model. Their conclusion is surprising but a

criticism of their report is that they used an overly simplistic motion analysis method

- the Lucas-Kanade algorithm. This algorithm only looks at two adjacent frames for

detecting potential salient regions. If the motion estimation algorithm is not accurate

(i.e. not robust), then this may explain why it does not provide good information for

saliency.

A complex solution was proposed by Jeong et al. in [83]. Their system is an amal-

gamation of bottom-up and top-down saliency techniques that combine motion, sym-

metry, as well as depth information. Motion information is analysed in the penultimate

stage of saliency calculation: after standard low-level feature analysis and before in-

corporating depth data. Their motion analysis uses the model proposed by Fukushima

in [54] and is partly biologically based. Motion analysis is only conducted on salient

regions as calculated in step 1 and the rotation, expansion, contraction, and planar

characteristics of motion as well as temporal contrast changes (used to retrieve local

and then later relative velocity) are then examined. Motion changes in each of these

characteristics were given different weight values. Results from this were merged with

depth information to produce a final saliency map.

A very interesting analysis on motion in visual saliency was performed by Arpa et

al. [28, 10]. They propose (after considering earlier psychological studies, e.g. Anderson

[9], Abrams and Christ [3] and Koffka [96]) that objects in a spatio-temporal scene are

in any one of the following six states at a given time: Static (no change of location),

Object Appearance (object has just appeared in the scene), Motion Onset (motion

has started), Motion Offset (motion has ended), Continuous Motion (motion is kept

with the same velocity), Motion Change (motion has changed in direction or speed).

Objects are then given a saliency value according the state they are in and the inhibition
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of return principle (if an object has already been viewed, its saliency value will be

decreased). Each of these states have different saliency values, which were quantified

by eye tracking experiments. Furthermore, a global saliency value is attributed to each

object according to all relationships with other objects. Figure 2.5 depicts the motion

cycle of an object, i.e. its 6 possible states and the relationships between them.

Figure 2.5: The motion cycle of an object in the spatio-temporal domain according to
work performed by Bulbul et al. [28].

Bastan et al. in [13] in 2010 developed a content-based video retrieval (CBVR)

system called BilVideo-7. This MPEG-7 compatible system has automatic content

generation features due to which one can search over a video database with quite

complex search terms such as “Golfer above golf cart” or “Clinton left Blair”. Motion

analysis such as object trajectory and camera motion, among other techniques, is

employed here to find salient objects that are then inserted into a video’s description.

Recently, Gao et al. [57] proposed a new background subtraction technique for

videos to segment well-defined foreground regions. This technique deals with challenges

such as illumination change, background motions (trees, waves, etc.) whose magnitude

can be greater than those in the foreground, poor image quality, camouflage, etc. The

motion saliency algorithm used by Gao et al. is based on the tracking of foreground

candidate blocks detected via dense optical flow. Only those blocks whose trajectories
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are consistent for a certain minimum amount of duration are deemed to be salient and

flagged as belonging to the foreground. Their background subtraction technique was

shown to significantly outperform many state-of-the-art approaches.

Also recently, Li et al. [104] proposed a saliency-based unsupervised video object ex-

traction framework. First, to detect each moving part, motion saliency was calculated

using dense optical flow forward and backward propagation. Then, shape informa-

tion was learned through motion cues for characterising each detected object. Next,

standard saliency calculations (using colour and contrast information) were used to

supplement the motion-induced shape information. Finally, conditional random fields

were employed to combine the salient features to automatically detect objects. This

technique was shown to deal well with unknown pose and scale variations of objects.

2.3 Eye Tracking Datasets

There are a number of eye tracking datasets available in the public domain for both

images and videos. We limit ourselves here to presenting only those datasets that are

predominantly used to evaluate and compare VSAs. Since we are dealing with only

bottom-up saliency in this thesis, we also only present datasets in which participants

were free-viewing (i.e. were not given a task to perform during the experiment). All

participants in these datasets had normal or corrected-to-normal vision.

2.3.1 Image Datasets

Table 2.2 shows the datasets available in the public domain for images. Wang et al.

[173] is the only dataset with 3D images.

2.3.2 Video Datasets

Table 2.3 shows the datasets available in the public domain for video clips. Mathe

et al. had 16 subjects perform their experiment but only 4 of them free-viewed the

videos. Marat et al. [119] had a large number of clips w.r.t. a small total length of

videos because each clip was only 1-3 seconds long. Le Meur et al. [101] had a different

number of people viewing each of the 7 clips. The average number of observers per clip

was 22. No eye tracking datasets exist for 3D videos.
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Study Subjects Dataset Size Resolution

Kienzie et al. [92] 14 200 1024 x 768

Einhauser et al. [44] 7 54 640 x 480

Bruce and Tsotsos [26] 20 120 681 x 511

Stark and Choi [158] 7 15 15 x 20cm

Judd et al. [88] 15 1003 Various

Cerf et al. [33] 7 250 1024 x 768

Peters et al. [141] 4 100 Various

Kootstra et al. [98] 31 99 1024 x 768

Tatler [164] 14 48 800 x 600

Engmann et al. [48] 8 90 1280 x 1024

Engelke et al. [47] 30 7 512 x 512

Le Meur et al. [100] 40 46 800 x 600

Rajachekar et al. [146] 29 101 1042 x 768

Wang et al. [173] 35 18* 1920 x 1080

Table 2.2: Free-viewing eye tracking datasets on images available in the public domain
for CMA evaluation and comparison. * indicates that images were displayed in 3D.

Study Subjects Dataset Size Length Resolution

Mital et al. [128] 42 26 42mins 1280 x 960
Marat et al. [119] 15 324 68secs 720 x 576

Le Meur et al. [101] 17-27 7 98secs 800 x 600
Mathe and Sminchisescu [122] 4 3869 21hrs Various

Dorr et al. [41] 54 18 6mins 1280 x 720
Hadizadeh et al. [65] 15 12 105secs 352 x 288

Alers et al. [6] 12 25 8mins 1280 x 720
Li et al. [105] 14 50 8mins 1920 x 1080

Table 2.3: Free-viewing eye tracking datasets on videos available in the public domain
for CMA evaluation and comparison. Dataset size is measured in number of video
clips.

2.4 Evaluation Measures

The most common way of measuring the performance of VSAs is by comparing their

output to eye movements from humans that are captured by eye trackers. There are

a number of popular ways of doing this and the next few sections will present them.
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There is no consensus as to which or how many of these methods should be used to

assess a VSA. In practice one, sometimes two, methods are used and these are chosen

at the VSA authors’ discretion [20]. To assess VSAs these metrics can be used on

the publically available eye tracking datasets (for images and videos) described in the

previous section.

2.4.1 Kullback-Leibler Divergence (KLD)

The KLD is usually used to measure the distance between two probability distributions.

It is similarly used in the context of visual saliency where it calculates the dissimilar-

ity between the saliency maps obtained from saliency algorithms with fixation density

maps (maps created from eye tracking experiments). Fixation density maps are ob-

tained by convolving a Gaussian filter across fixation locations of all observers [88].

These maps are treated as two probability density functions (PDFs), defined as H and

P respectively in the following equation:

KLD(H,P ) =
∑
x

hx ln

(
hx
px

)
(2.7)

where hx and px denote the values of the normalised maps of H and P respectively at

pixel location x [100, 126]. The lower the KLD value obtained, the better the result

(with a value of 0 denoting equality). This metric was used to assess a VSA, for

example, in the studies of Wang et al. [173] and Itti and Baldi [79].

2.4.2 Pearson Linear Correlation Coefficient (PLCC)

The PLCC measures the linear correlation between the saliency and fixation density

maps H and P :

PLCC(H,P ) =
Cov (H,P )

σHσP
(2.8)

where Cov(H,P ) is the covariance and σH and σP denote the standard deviations of

H and P respectively. The PLCC is a simple calculation that is also invariant to linear

transformation [126]. The higher the PLCC value, the better the result. Studies that

have used this metric include Le Meur et al. [100] and Guo et al. [64].
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2.4.3 Area Under Curve (AUC)

The AUC metric is the area under the Receiver Operating Characteristic (ROC) curve

[62] on the saliency and fixation density maps. Each map is processed by a binary

classifier (a variable threshold) applied to every pixel. If a value in the saliency map is

larger than a threshold it is said to be fixated on with the rest of the pixels said to be

nonfixated [26, 33]. The same is done to the fixation density map and a comparison

between fixated and nonfixated pixels is made between the two maps. The threshold

of the binary classifier is varied and an ROC curve is drawn as the false positive rate

versus the true positive rate. The area under this curve is said to indicate how well

the saliency map aligns with the ground truth (with the value of 1 indicating a perfect

alignment) [20, 126].

Figure 2.6 shows (a) an example image, (b) corresponding fixation density map, (c)

saliency (prediction) map and then (d) & (e) the top 20% of the salient areas from the

ground truth and saliency map with (f) the classification result and (g) the final ROC

curve. In this example the AUC is approximated by a left Riemann sum (represented

by the red rectangles).

The AUC metric was used, for example, by Harel et al. [68] and Bruce and Tsotos

[26] to assess their VSAs.

2.4.4 Normalised Scanpath Saliency (NSS)

The normalised scanpath saliency [137] measures the saliency values at fixation loca-

tions along a person’s scanpath [126]. Borji and Itti [20] define it as a response value

at given human eye positions from a saliency map. The first step in the calculation is

to normalise the saliency map to have zero mean and unit standard deviation. Then

the NSS is calculated as the mean of the saliency values at each fixation location along

a participant’s scanpath. NSS values greater than 0 indicate a better correspondence

than random fixation locations [141]. The NSS was used in the studies of Hou and

Zhang [74] and Pang et al. [136].
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(a) Example image (b) Fixation density map (c) Saliency map

(d) Top 20% from fixation den-
sity map

(e) Top 20% from saliency map (f) Combination

(g) AUC Graph

Figure 2.6: (a) Example image; (b) Fixation density map (ground truth); (c) Saliency
map; (d) & (e) top 20% regions of the fixation and saliency maps respectively; (f)
Classification results: red - true positives, green - false negatives, blue - false positives,
other areas are true negatives; (g) ROC curve (adapted from [126]).

2.4.5 String Edit Metric

The string editing metric/distance is calculated by first grouping fixations into regions

of interest (ROIs) using, for example, k-means. ROIs are then translated into a se-

quence of numbers or letters and ordered by the temporal ordering of fixations. For

example, stringobserver1 = “abdffcd” would indicate a sequence of fixations by an ob-
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server from region ‘a’ to ‘b’ then to ‘d’, etc. The prerequisite here from the CMA

would be that its output is also composed of an ordering of ROIs (e.g. regions with

higher saliency values can be given a higher temporal order). A string edit distance

(also called the Levenshtein distance from Levenshtein [103]) is then calculated to mea-

sure the similarity between the string obtained from the ground truth and the string

obtained from the CMA. The distance is calculated as the number of edits (deletions,

insertions and substitutions) needed before the two strings are identical [145, 22]. Since

this metric requires a segmentation and subsequent ordering of ROIs from the CMA,

it is rarely used in practice. It receives, however, constant reference in the literature

and on this merit is included in this review [20].

2.4.6 Challenges and Problems

There are two important challenges/problems that need to be described here that deal

with the evalution of CMAs: centre-bias and the edge effect.

Centre-Bias

A challenge in visual saliency is linked to centre-bias, which is the tendency of observers

to fixate more on centre regions of images. There are two main reasons why people

do this: 1) photographers tend to place salient objects in the middle of their images;

and 2) observers, by fixating in the middle of an image, can use this as a strategy to

acquire a quick global view of the scene [154, 164].

A number of studies have been performed to analyse centre-bias. For example,

Judd et al. [88] in 2009 found that a simple Gaussian blob model in the centre of an

image outperformed most saliency models at the time. Borji et al. [21] in 2013 created

heat maps of fixations over all images from three datasets. Figure 2.7 depicts these

heat maps in which clear centre-biases can be observed. For example, in the Bruce and

Tsotsos dataset, 80% of fixations are found within the 40% circle radius.

A few CMAs attempt to deal with centre-bias explicitly by increasing saliency

values closer to the centre of images (e.g. Judd et al. [88], Parkhurst and Niebur [138]

and Zhang and Koch [191]). However, dealing with centre-bias explictly makes fair

comparison of models challenging. In fact, Borji et al. [21] regard centre-bias as the

biggest challenge in visual saliency model comparison. Three possible solutions are
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(a) Bruce dataset [26] (b) Kootstra dataset [98] (c) Judd dataset [88]

Figure 2.7: Fixation heat maps for all images from the: (a) Bruce dataset; (b) Kootstra
dataset; and (c) Judd dataset. White rings depict 10% increase in distance from centre
of the image (adapted from [21])

given by them: 1) all CMAs add a centre-Gaussian blob to their saliency maps; 2)

create a dataset that avoids the centre-bias; and 3) design better CMA evaluation

metrics. The first solution would be very hard to police and the second solution will

still not stop people from looking at the centre to acquire a global view of a scene. The

third solution suggests using a shuffled version of the AUC metric.

The shuffled AUC metric was designed by Zhang et al. [190] in 2008. It is calculated

by, for a given image, associating all fixations from one observer with the positive class.

The negative class, however, is composed of a union of fixations from other subjects

from other images [21]. Assuming that a centre-bias exists in the dataset, by including

all other fixations in the negative set less credit is, therefore, given to central fixations.

The idea, then, is that by placing a stronger emphasis on the assessment of fixations

away from the centre (which are harder to predict) one should possess a better CMA

evaluation technique. In fact, Borji et al. [21] regard the shuffled AUC metric as the

most suitable metric for evaluating CMAs.

Edge Effect

The edge effect is intrinsically linked to the centre-bias problem. It is defined as adding

a border of zeros (no saliency) around a saliency map. One can monitor the results

from CMA evalution metrics and vary the size of this border accordingly. Zhang et al.

[190] analysed the edge effect by creating a dummy white saliency map (of size 120 x
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160 pixels) and varying the size of the black border. They found that ROC and KL

scores increased when the black border was incremented from 0 through to 8. Since the

edge effect is linked to centre-bias (people tend to look at the centre of the image so we

remove any CMA output situated along the border), solutions proposed for centre-bias

are applicable here also.
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Chapter 3

Feature Selection Using Visual

Saliency for Content-Based Image

Retrieval

Content-based image retrieval (CBIR) is an area of research that aims at defining

relevant visual features for efficient content retrieval in image databases. In this chapter

we investigate if visual saliency can help in selecting visual features for retrieval and

consequently reduce the computation time and memory consumption needed for visual

feature storage. With one parameter (threshold), we control the number of selected

features in images used for retrieval. We show that even with a small number of

features, the classifiers trained to find the objects of interest still perform well. This

result can be used to scale CBIR systems depending on the computational resources

available on the device being used (e.g. tablets, mobiles, etc.).

3.1 Previous Work

An important question that needs addressing for this chapter is whether bottom-up

saliency can be used for object detection and whether this object detection can be

reliable. Indeed, this question was tackled by Elazary and Itti [46] who used Itti et

al.’s saliency algorithm [78] on the LabelMe dataset [151]. LabelMe is an image dataset

that contains over 24,000 natural images with over 74,000 objects that have been
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annotated manually by the computer science community. Annotations are traces of

the objects themselves rather than bounding boxes. The purpose of this dataset (and

online annotating tools) was initially to collect information about objects in natural

scenes for object recognition algorithms. Elazary and Itti used the bottom-up saliency

algorithm on these images and found that in 75% of images one or more of the top

three salient locations fell on an outlined object. If bottom-up saliency is able to

locate salient regions with such accuracy on images with multiple salient objects, this

should be true more so for images with only a single salient object (as is the case for

images used in the experiments performed for this chapter). This is because, generally

speaking, bottom-up saliency will detect salient objects as long as these objects truly

are ‘salient’, i.e. prominent and not camouflaged. These objects will naturally ‘pop

out’ from the background and this effect is what bottom-up saliency attempts to detect.

When using saliency in CBIR, a common approach among researchers is to find

salient regions and then utilise feature point locating techniques on these regions only.

This was, for example, the strategy used by Rutishauser et al. [152] and Walther et al.

[170]. They chose to employ an additional segmentation step in their calculations by

extracting objects from salient regions. Features were then located from these regions,

i.e. from the extracted objects, rather than the regions defined by visual saliency al-

gorithms. This segmentation step, however, has not always performed well in practice

and still requires further work [91].

No one has yet shown that bottom-up saliency can be used to optimise feature point

extraction in CBIR without the need for any other processing steps (e.g. segmentation

or object detection). Nor has anyone analysed what the effect is of changing the saliency

measure to decrease the size of extracted regions on classification results.

In this chapter, we chose to use the GBVS algorithm [68] for saliency calculations

because it has been shown to perform consistently well over numerous datasets [21].

The Speeded Up Robust Features (SURF) feature point algorithm developed by Bay

in [14] is used to locate and describe feature points in this chapter. This feature

detection method was selected due to its robustness, memory efficiency in describing

feature points and superior speed when compared to other popular feature detection

methods such as the Scale Invariant Feature Transform (SIFT) method [111, 86]. The

standard classification technique Support Vector Machines (SVM) is used to perform

the classification on the selected SURF features using saliency information.
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Correctly
classified

Incorrectly
classified

Horses
C 84.5% 15.5%
C̄ 98.7% 1.3%

Flowers
C 80.1% 19.9%
C̄ 97.8% 2.2%

Faces
C 90.3% 9.7%
C̄ 99.9% 0.1%

Table 3.1: Percentage of training features correctly and incorrectly classified by the
SVM.

We present next in more detail our basic CBIR system and the experiments done

to assess the usefulness of saliency for this application.

3.2 CBIR Design

A dataset of three image classes was collected: horses, yellow flowers, and faces. The

horses dataset was obtained from the INRIA Horses V1.03 dataset [89]. The yellow

flowers dataset was compiled from images from the Visual Geometry Group’s (The Uni-

versity of Oxford) set [130]. The faces dataset was a combination of the ‘face94’ Essex

face database [1], the MIT CBCL Face dataset [177] and the Caltech101 dataset [50].

All faces chosen from the dataset were of head-on shots and each dataset was used sep-

arately. The three image classes were selected because they are a good representation

of objects with differing colour, texture and context.

The first step in the experiment was to train a two-class SVM. For each dataset,

100 positive images were cropped to only include the object of interest: horse, yellow

flower or face. These images and 100 negative images (taken from the negative images

folder of the INRIA Horse V1.03 dataset) were then scanned for SURF feature points.

All the calculated feature points were then fed into the SVM. Classification results of

the SVM for the training features are shown in Table 3.1, with C representing feature

points correctly classified in the positive group and C̄ feature points correctly classified

in the negative group.

The GBVS algorithm gives a saliency value between 0 and 1 for each pixel from an
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image, where 0 signifies no saliency, and 1 indicates the highest saliency value possible.

Entire regions can have saliency values of 1 and the distribution of saliency values can

vary depending on each image.

A different subset of images to the training set was used for testing. For each object

of interest (horse, flower, face), 40 positive (P) and 40 negative (N) images were tested.

The objects in the positive image group cover approximately 25% to 35% of the total

size of the image (contrary to the images used to train the SVM classifiers, the test

images of the objects of interest were not cropped). Some examples of the images in

P can be seen in Figure 3.3.

SURF features are computed for these test images; however, only the features

associated with a saliency above a threshold T are fed into the classifier to try to find

the images with the object of interest.

The following saliency thresholds were used in our experiment: T = 0 (no saliency

information used), 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. The higher the value of T, the

fewer the number of feature points fed into the SVM. Figure 3.1 shows the training

and testing flowchart of the experiment.

3.3 Performance Using Visual Saliency

The test set of positive images for each object of interest was treated as one large

image by collecting all the feature points found in all images into one pool. The

pool of features from the positive images were run separately in the SVM to the pool

of features from the negative images. For each threshold we compute the following

proportion:

pp =
ap
np

, pn =
an
nn

(3.1)

where ap is the number of feature points in P classified as C, an is number of feature

points in N classified as C̄, np is the total number of feature points detected in P and nn

is the total number of feature points detected in N. The confusion matrix corresponds

to:

C C̄

P pp 1-pp

N 1-pn pn
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Figure 3.1: Flowchart of the training and testing phases of the experiment

A standard error can be computed to measure the uncertainty associated with the

proportions pp and pn such that:

SE(p) =
√
p(1− p)/n (3.2)

where p is pp (resp. pn) and n is np (resp. nn) and the assumption that the data has

a normal distribution. The proportion pp and 1 − pn for each dataset was computed

for each threshold value T with its corresponding standard error appearing as error

bars. If selecting features using saliency can reduce computation time, we want to

check that the retrieval result will not deteriorate as fewer features are considered for

classification.
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3.3.1 Classification Results

Figure 3.2 (a), (b) and (c) show these plots for the horses, yellow flowers and faces

datasets respectively. The positive classifications pp improves as the saliency threshold

increases for all objects (with 0 ≤ T ≤ 0.8). The improvement with saliency (T=

0.8) versus without saliency (T=0) is of 10% for Horses, 12% for Flowers, and 12% for

Faces. This seems to indicate that the feature points that are left out for classification

as T increases are more often from C̄ (background) than the class of interest C (horse,

flower, face). On the other hand, the (false positive) proportion 1− pn measuring the

proportion of points classified in C in the negative set of images (where no object of

interest appears) remains more or less constant whatever the saliency level chosen.

This first result indicates that selecting features using saliency will not deteriorate

classification performances but can in fact improve them.

As the saliency threshold increases, the standard errors for the proportions also

increase. This is due to the fact that the number of selected features, np and nn,

decrease while the proportions, pp and pn, increase (and hence so does p(1− p)) as T

increases (see Equation 3.2). Therefore, although pp generally improves as the threshold

increases, the certainty about how much the proportion actually improves is reduced.

It can also be noticed that the standard errors for faces are smaller at each value of T

compared to the other two classes. The reason for this is that more feature points were

being detected in this class of images as opposed to flower and horse images (cf. Figure

3.2 (d)). Most of the face images were taken with relatively ‘busy’ backgrounds that

foster bountiful amounts of feature point detection. The difference in the number of

feature points detected in the three classes can also explain the low pp values obtained

for the faces dataset. More background points will bring down the value of pp.

It should also be noted that variations in numbers of feature points can occur in

images in the same class and not just across classes. This can be noticed in Figure 3.3.

The yellow flower, for example, on the left has significantly less feature points than the

flower on the right.

Figure 3.3 shows some results of the feature classification on images of the positive

classes for two saliency thresholds. Although the classifier (SVM) used is not optimal

(some points on the object are misclassified as C̄ while some points on the background

are classifed as C), the objects of interest are well found by many feature points even
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Figure 3.2: (a): proportion of correct classification for the horses dataset pp (solid blue
line) and 1 − pn (green dashdot line) w.r.t. T; (b) proportion of correct classification
for the flowers dataset pp (solid blue line) and 1− pn (green dashdot line) w.r.t. T; (c)
proportion of correct classification for the faces dataset pp (solid blue line) and 1− pn
(green dashdot line) w.r.t. T; (d) total no. of feature points np for horses (solid blue
line), flowers (green dashdot line) and faces (dotted red line) and nn (aqua dashed
line).
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as the saliency threshold increases.

Figure 3.3: Example results for T = 0.3 and 0.6. From top to bottom: horses, flowers
and faces. Green dots indicate feature points classified in the image class (C), purple
dots indicate feature points classified outside of it (C̄).

3.3.2 Disk Space Usage Results and Discussion

Another aspect of this experiment was to see what effect changing the value of T would

have on disk space usage and classification time. Figure 3.4 (a) shows a plot of the

memory usage required for storing feature points in memory for the three classes of

images. A SURF feature point is a 64 element vector of floating point numbers. Since

the size of doubles stored in memory is machine dependent, a single unit of memory

usage was used for a double to abstract over this machine dependence (1 double = 1

unit, 1 SURF feature point = 64 units).

Figure 3.4 (a) depicts a clear downward trend for memory usage for all three classes.

This trend is linear until T = 0.7 when the rate of change decreases. At T = 0.5, for

example, a 60% decrease in required memory usage is obtained, while a 75% result is

obtained at threshold value 0.6.

Figure 3.4 (b) shows the computation time that was clocked for classifying the

images in the three image classes. These results were obtained on a 2.67 GHz Intel
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Core2 Quad CPU running Windows 7 with 4 GB of RAM. The classifying application

(libsvm [35]) was used in Matlab.
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Figure 3.4: (a) Memory usage for positive images w.r.t. T for horses (solid blue line),
flowers (green dashdot line) and faces (red dotted line); (b) Classification computation
time for positive images w.r.t. T for horses (solid blue line), flowers (green dashdot
line) and faces (red dotted line).

The computation time graph is very similar to the memory usage graph of Figure

3.4 (a). One would expect this as the classification computation time is directly propor-

tional to the number of features stored in memory, assuming all the feature points can

be easily stored in RAM. An approximate speed-up of 60% and 75% was recorded for

the T values of 0.5 and 0.6 respectively, which is exactly the same level of improvement

as recorded for memory usage.

3.4 Conclusion

This chapter showed that visual saliency can be used to help in efficiently selecting

visual features in a retrieval system. Selection of features using visual saliency reduces

computation time and memory consumption needed for visual feature storage. The

saliency threshold can be tuned efficiently to get the best retrieval performance for

both accuracy and speed, and it can be used to scale the system to different devices.
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Chapter 4

Extension of GBVS to 3D Media

Most of visual saliency (VS) research has been focussing on the visual perception of

images and videos displayed on 2D screens. More recently, however, it has been shown

that humans look differently at images displayed in 3D compared to 2D [82, 172] and

subsequently a few algorithms for 3D saliency have been proposed [24, 173]. This chap-

ter investigates the extension of visual saliency algorithms (VSAs) to media displayed

in 3D. The Graph-Based Visual Saliency (GBVS) [68] algorithm is assessed for 3D im-

ages and then a new 3D GBVS algorithm is proposed. Finally, experimental results are

presented that show that the 2D and proposed 3D GBVS algorithms outperform other

common 2D algorithms as well as their state-of-the-art 3D extensions on 3D media.

4.1 State of the Art

The following sections will present the Graph-Based Visual Saliency algorithm and

discuss the current state of the art for 3D VSAs and depth incorporation in VSAs.

4.1.1 The Graph-Based Visual Saliency Algorithm

Proposed by Harel et al. [68], the GBVS algorithm is a 2D VSA that uses a Markovian

approach to calculate its saliency maps. The first step in this algorithm is to break up

the input image into the following feature channels: colour, intensity and orientation

(similarly to Itti et al. [78]). Orientation is calculated by using the Gabor filter at 0 and

90 degrees. Intensity is the grey-scale version of the image calculated by eliminating
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the hue and saturation information while retaining the luminance with the following

equation: 0.2989 ∗ R + 0.5870 ∗G+ 0.1140 ∗ B, where R, G and B and the red, green

and blue colour channels respectively. Colour is treated as two channels: Blue-Yellow

(calculated as abs(B−min(R,G)), and Red-Green (calculated as abs(R−G)). Salient

regions are then located in each of these channels by computing:

d((i, j)||(p, q)) =

∣∣∣∣log
M(i, j)

M(p, q)

∣∣∣∣ (4.1)

where M(i, j) is the value of the pixel (i, j) in the feature map M (i.e. in the feature

channels of colour, intensity or orientation). Following this, a fully connected graph GA

is created by connecting every node (a.k.a. points or vertices - these represent pixels

in this case) with all other nodes in each M . The edge (a.k.a. arc or line) of each node

connection from (i, j) to (p, q) is assigned the following weight:

w((i, j), (p, q)) = d((i, j)||(p, q))× F (i− p, j − q) (4.2)

where

F (a, b) = exp

(
−a

2 + b2

2σ2

)
(4.3)

and σ is a free parameter set to approximatively one tenth to one fifth of the image

width. All the weights, w, are, hence, proportional to their dissimilarity and distance

in M . A Markov chain is then created over GA. A Markov chain is defined as a system

with a set of states S = {s1, s2, ..., sn} that undergoes transitions from one state to

another. If the chain is currently in state si then it moves to state sj according to

probability pij. The system is memoryless meaning that the next state depends only

on the current state and not on any previous sequences of states. Probabilities pij

are called transition probabilities. The equilibrium (stationary) distribution, π, is the

probability of being in the various states after n steps and is the same on all steps. It

is defined as: ∑
i∈S

π(i)P (i, j) = π(j), j ∈ S, (4.4)

where P is the transition function and π(i) is a probability distribution. This condition

is usually written as πP n = π. Any ergodic Markov chain (i.e. any chain in which it is

possible to eventually get from one state to any other state with positive probability)
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has a unique π that is strictly positive.

In the Markov ergodic chains defined by the GBVS algorithm nodes are treated as

states and edge weights as transition probabilities. The equilibrium distribution π of

the Markov chain calculated for each GA reflects the time a random walker would spend

at each node. Higher values are obtained for nodes with higher dissimilarities with their

surrounding nodes. This is because it is more likely to transition into subgraphs with

lower similarity measures. The final saliency map is calculated by linearly pooling all

equilibrium distributions.

This algorithm has been stated as being biologically plausible, meaning that its

method for calculating saliency is similar to the way our human visual system works.

In our brain neurons are connected in a retinotopically organised network called the

visual cortex. The neurons communicate with each other via synaptic firing in a way

which produces emergent behaviour including the flagging of areas of a scene that

require additional processing. The individual nodes in the GBVS algorithm act in a

similar way to neurons in the visual cortex, i.e. nodes also communicate in a connected

network to detect regions of interest. Moreover, computations at each node or region

can also be done completely in parallel [68].

4.1.2 3D Visual Saliency Algorithms

Stereoscopic images displayed on 3D screens allow us to immediately perceive depth

information [129]. Incorporating depth or disparity information in the calculation of

saliency is therefore a natural extension to VSAs for automatically analysing 3D con-

tent. Three strategies have been proposed to use depth information [172]: the depth-

weighting model, depth-saliency model and the stereo-vision model. The following

sections will describe each strategy and all 3D VSAs pertaining to it. The depth maps

used in these models can be obtained from either depth detecting apparatuses (e.g. the

Microsoft Kinect) or calculated with depth estimating algorithms.

The depth-weighting model

The depth-weighting model weights 2D saliency computations with a corresponding

depth map. That is, every pixel (or target, region, etc.) is directly related to its depth

and no features are searched for or extracted from the depth map.
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Examples of VSAs belonging to this strategy of depth incorporation are Chamaret

et al. [34] and Maki et al. [117]. Chamaret et al. have proposed to multiply the saliency

map computed with any 2D VSAs by the inverse of the depth map. Regions appearing

closer to the viewer are then made more salient. Indeed, close areas have been shown

to be viewed more often than regions further away [172]. These regions, hence, should

be deemed more salient. Chamaret et al. then used this saliency calculation to refine a

single region-of-interest that was selected earlier through a nearest-neighbour filtering

and thresholding approach.

Maki et al. propose to assign the closest target region with highest priority. They

locate this region by histogramming the depth map and creating a target mask by back

propagating a selected depth range. The target mask is then used as a depth cue and

incorporated into saliency calculations.

The depth-saliency model

The second strategy is the depth-saliency model that creates a depth saliency map

(DSM) by first looking for features in the depth map and then linearly pooling this

with 2D VSA computations.

A number of depth incorporating strategies belonging to this group include Ouer-

hani and Hugli [135], Potapova et al. [144] and Wang et al. [173]. Ouerhani and

Hugli [135] propose a standard depth cue integration saliency algorithm based on the

Koch and Ullman model [94] (see Section 2.2.1). Alongside the colour, intensity and

orientation cues, depth information is also analysed in a similar fashion. Saliency out-

put generated by all cues is combined equally or with different weights into a master

saliency map. This solution, as it is based on the Koch and Ullman model, is biologi-

cally plausible.

In 2011, Potapova et al. [144] published a paper on saliency in robotics. In it they

examined three different 3D cues for the task of detecting grasp points on objects for

robots. These cues were: surface height (SH), relative surface orientation (RSO) and

occluded edges (OE). They combined these cues with standard 2D visual cues (colour,

orientation and intensity) to build a probability map. A probability map is a map that

provides probabilities of detecting salient features.

Wang et al.’s [173] DSM calculations include a Difference of Gaussian (DoG) filter-

45



ing step over the depth map and then correlation of the contrast map with the degree

of depth saliency through the use of results obtained from a psychophysical experiment

of theirs. The DSM is then either added or multiplied to the corresponding 2D saliency

values (2D+DSM and 2DxDSM respectively).

The stereo-vision model

The third depth incorporating VSA strategy is the stereo-vision model. This strategy

attempts to directly model the stereoscopic mechanisms in the human visual system.

Bruce and Tsotsos [25] present the only VSA that belongs to this group. They ex-

tend their 2D VSA [166] that uses a visual pyramid processing architecture by adding

additional neurons to model stereo vision [25].

Most 3D VSAs belong to the first and second categories. Figure 4.1 shows a diagram

that summarises how they operate. The first model is simple to incorporate to existing

2D VSAs and is computationally less demanding than the second model. However,

salient regions in more complex 3D scenes may be missed by the first model that the

second model could detect due to it directly searching for depth features.

Figure 4.1: Two depth incorporating strategies: (a) the depth-weighting model; (b)
the depth-saliency model [172].
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4.1.3 Assessment of Depth Incorporating Algorithms

Apart from Wang et al. [173] and Potapova et al. [144], none of the depth incorporating

strategies above have had any quantitative validation performed with eye tracking

data. Moreover, none of these strategies have been compared to each other. Wang

et al. performed quantitative experiments to remedy this. They showed that the best

algorithms for incorporing depth information belong in the second strategy and that

optimal results were obtained when DSMs were added to 2D VSA saliency maps. They

also confirmed quantitatively that for 3D images 2D Bruce outperforms 2D Hou (and

that 2D Hou outperforms 2D Itti) and this ordering remains true in 3D when adding

the DSM. These algorithms proposed by Wang et al. are denoted 3D Itti, 3D Hou and

3D Bruce. Adding a DSM provided the best results but was the most computationaly

demanding. Alternatively, Chamaret’s method to include depth information performed

poorly but was the most computationally efficient.

4.2 GBVS Extensions to 3D Media

The GBVS algorithm has never been extended to 3D and we propose to incorporate

depth information in three ways: using Chamaret et al.’s approach [34] (denoted 3D

GBVS (Chamaret)), using the DSM as proposed by Wang et al. [173] (denoted 3D

GBVS (Wang)), and using our own approach (denoted 3D GBVS (our approach)).

This last method (3D GBVS (our approach)) involves a three-step process: selecting

a low or high scaling factor corresponding to depth values, restriction of the depth-

range that saliency values are affected by this scaling factor, and then the subsequent

scaling of these saliency values. The first step entails calculating the median and mean

values of the depth map. If the median is smaller than the mean, a higher scaling

factor is chosen (SF in eqs 4.6 and 4.7) and vice versa otherwise. The idea behind this

is to detect images that have unique objects in the foreground and hence will stand

out on their own in 3D. A smaller median value compared to the mean would provide

an indication of this. This method is a fast way of detecting features in the depth

map. The second step is performed by retaining only the depth values in the depth

map that have a 2D saliency value over a chosen saliency threshold ST (saliency values

are scaled between 0 and 1, where 1 indicates very salient and 0 indicates no saliency).

47



We denote these selected depth and 2D GBVS saliency values {(di, si)} (i is the pixel

index in the map) and find the range of these values by computing:{
l = mini{di} (lower bound)

h = maxi{di} (upper bound)
(4.5)

and the middle of the interval is then defined by dm = h+l
2

. For the pixel i, we compute

• If di < dm then

Si =
si

1 + SF × dm−l
dm−di

(4.6)

• If di > dm then

Si = si

(
1 + SF × h− dm

di − dm

)
(4.7)

where SF is the chosen scaling factor (high or low from step 1), Si is the new 3D

GBVS value, and si is the 2D GBVS value. We have set SF = 0.35 (high SF ) or

SF = 0.1 (low SF ) and ST = 0.4 in our experiments. These threshold values were

chosen after an exhaustive search. The justification behind the last two steps is that

depth information should only be used on areas with high-enough saliency and should

not be ‘wasted’ elsewhere. If salient regions are only present in the foreground, the

competition for scaling should only take place there.

4.3 Experimental Results

We used the eye tracking database supplied by Wang et al. [173] as ground truth. This

database contains 18 stereoscopic images, eye tracking data obtained from 35 human

subjects, corresponding depth and disparity maps and eye fixation density maps. This

database serves as a ground truth and is noted 3D VS because the stereoscopic images

were displayed on a 3D screen (as opposed to 2D VS ground truth that collects eye

tracking data with the images displayed on a 2D screen). In our experiments, we used

the Pearson Linear Correlation Coefficient (PLCC) [126, 114] and Kullback-Leibler

divergence (KLD) [100, 126] to measure the performance of VSAs. These were also

used in Wang et al.’s study [173].
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4.3.1 Evaluation of 2D VSAs Against 3D VS

In Table 4.1 we compare the 2D GBVS algorithm on this dataset with Itti’s, Hou’s

and Bruce’s algorithms using the PLCC (defined in Eq. (2.8)) and KLD (Eq. (2.7))

metrics. Note that the 2D GBVS algorithm was not analysed by Wang et al. [173]

but they did compute the PLCC and KLD for 2D Itti, 2D Hou and 2D Bruce. Our

numerical results differ slightly from theirs due to rounding errors and different image

scaling algorithms. Our results in Table 4.1 confirm Wang et al.’s assessment for 2D

Itti, 2D Hou and 2D Bruce and our contribution in Table 4.1 is to show that the 2D

GBVS algorithm outperforms all other 2D VSAs by far.

PLCC KLD Yr of publication

2D Itti 0.154 2.781 1998 [78]
2D Hou 0.299 0.877 2007 [74]
2D Bruce 0.346 0.704 2009 [24]

2D GBVS 0.589 0.314 2007 [68]

UTPL [173] 0.897 0.127

Table 4.1: Performances of 2D VSAs. Higher PLCC and lower KLD values indicate
better performances.

The Upper Theoretical Performance Limit (UTPL) [157] computed by Wang et al.

[173] is also reported for both PLCC and KLD. The UTPL is commonly used as a

benchmark for 2D visual saliency models, and 2D GBVS is halfway in performance

between this theoretical limit and the best 2D VSA previously reported (2D Bruce).

Figures 4.5 and 4.3 (c)-(f) shows some saliency maps for these 2D VSAs.

4.3.2 Evaluation of 3D VSAs Against 3D VS

Our 3D VSAs are also evaluated on the same dataset. Wang et al. found their proposed

2D+DSM approach to be the best way to incorporate depth in saliency calculations,

and this method is referred to as (Wang) in Table 4.2. We implemented their approach

for all the four 2D VSAs as well as Chamaret’s and our own proposed method with the

GBVS algorithm. Table 4.2 confirms the results for Itti (Wang), Bruce (Wang) and

Hou (Wang) as reported by Wang et al. [173].
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(a) Original image (b) Fixation density map (ground
truth)

(c) 2D Itti

(d) 2D Hou (e) 2D Bruce (f) 2D GBVS

(g) 3D GBVS (Wang) (h) 3D GBVS (Chamaret) (i) 3D GBVS (Our method)

Figure 4.2: Saliency maps with VSAs. (a) Original image #1 [173], (b) Corresponding
fixation density map, (c)-(f) Saliency predictions from the four 2D VSAs: Itti, Hou,
Bruce and GBVS, (g)-(i) Saliency predictions from the three 3D VSAs: 3D GBVS
(Wang), 3D GBVS (Chamaret) and 3D GBVS (Our method)
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(a) Original image (b) Fixation density map (ground
truth)

(c) 2D Itti

(d) 2D Hou (e) 2D Bruce (f) 2D GBVS

(g) 3D GBVS (Wang) (h) 3D GBVS (Chamaret) (i) 3D GBVS (Our method)

Figure 4.3: Saliency maps with VSAs. (a) Original image #2 [173], (b) Corresponding
fixation density map, (c)-(f) Saliency predictions from the four 2D VSAs: Itti, Hou,
Bruce and GBVS, (g)-(i) Saliency predictions from the three 3D VSAs: 3D GBVS
(Wang), 3D GBVS (Chamaret) and 3D GBVS (Our method)

51



Our contribution in Table 4.2 is to show that the three 3D VSAs we proposed out-

perform all 3D VSAs proposed by Wang et al [173]. Surprisingly, Chamaret’s method

in the GBVS fared better than Wang’s algorithm (that is also the most computation-

ally demanding method). Note however that 3D GBVS (Chamaret) and 3D GBVS

(Wang) are outperformed by 2D GBVS (cf. Table 4.1). Our simple and fast proposed

method for incorporating depth obtained the best results. Figure 4.5 (f)-(i) shows ex-

ample saliency map results for 2D GBVS, 3D GBVS (Wang), 3D GBVS (Chamaret)

and 3D GBVS (Our method). An improvement on 2D GBVS can be seen in 3D GBVS

(Chamaret) and 3D GBVS (Our method) - both are closer to the ground truth.

3D Saliency Algorithms PLCC KLD Yr of pub.

3D GBVS (Chamaret) 0.573 0.379
3D GBVS (Our method) 0.602 0.306
3D GBVS (Wang) 0.561 0.484

3D Itti (Wang) 0.364 0.627 2013 [173]
3D Bruce (Wang) 0.419 0.657 2013 [173]
3D Hou (Wang) 0.436 0.558 2013 [173]

Table 4.2: Performances of 3D-VSAs. Higher PLCC and lower KLD values indicate
better performance.

Table 4.3 shows the results for each image in the database for 2D GBVS, 3D GBVS

(Chamaret) and 3D GBVS (Our method). On average, 3D GBVS (Our method)

improves 2D GBVS (significant improvement for the PLCC and KLD as shown by a

paired t-test with p<0.1).

There were, however, some images in the dataset for which our depth incorporation

method was detrimental to the final saliency calculations. Because our method is

partly based on the depth-weighting model it operates under the assumption that

closer objects are more salient. There are scenarios where this may not be the case,

e.g. a long bare hallway with a person standing at the end of it. Two examples from

the dataset fitting into this category can be seen in Figures 4.2 and 4.4. For these

two images the 3D GBVS obtained worse results than 2D GBVS (cf. Table 4.3). In

Figure 4.4 the rowing machines in the background have saliency values in the ground

truth similar to the values of the two boxers. Our depth incorporation method chooses

to increase the saliency values of the people at the expense of the rowing machines.
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(a) Original image (b) Fixation density map (ground
truth)

(c) 2D Itti

(d) 2D Hou (e) 2D Bruce (f) 2D GBVS

(g) 3D GBVS (Wang) (h) 3D GBVS (Chamaret) (i) 3D GBVS (Our method)

Figure 4.4: Saliency maps with VSAs. (a) Original image #11 [173], (b) Corresponding
fixation density map, (c)-(f) Saliency predictions from the four 2D VSAs: Itti, Hou,
Bruce and GBVS, (g)-(i) Saliency predictions from the three 3D VSAs: 3D GBVS
(Wang), 3D GBVS (Chamaret) and 3D GBVS (Our method)

Similarly in Figure 4.2 the model of the head is the most salient object. Our 3D GBVS

calculation emphasised the pink crayon more (which is closer) than the head model.

4.4 Conclusion

In this chapter we demonstrated that the GBVS algorithm is greatly superior in pre-

dicting fixations in 3D compared to other state-of-the-art algorithms. We also showed

that our simple and fast extension to Chamaret’s method of depth incorporation out-

performs all other depth incorporation methods analysed by Wang et al. We showed
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(a) Original image (b) Fixation density map (ground
truth)

(c) 2D Itti

(d) 2D Hou (e) 2D Bruce (f) 2D GBVS

(g) 3D GBVS (Wang) (h) 3D GBVS (Chamaret) (i) 3D GBVS (Our method)

Figure 4.5: Saliency maps with VSAs. (a) Original image #18 [173], (b) Corresponding
fixation density map, (c)-(f) Saliency predictions from the four 2D VSAs: Itti, Hou,
Bruce and GBVS, (g)-(i) Saliency predictions from the three 3D VSAs: 3D GBVS
(Wang), 3D GBVS (Chamaret) and 3D GBVS (Our method)
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GBVS GBVS+Chamaret GBVS+Proposed

Img. # PLCC KLD PLCC KLD PLCC KLD
1 0.540 0.188 0.488 0.217 0.489 0.216
2 0.636 0.206 0.623 0.454 0.678 0.203
3 0.490 0.300 0.496 0.401 0.520 0.295
4 0.477 0.226 0.496 0.284 0.503 0.226
5 0.612 0.212 0.665 0.199 0.643 0.200
6 0.703 0.236 0.669 0.314 0.688 0.262
7 0.608 0.235 0.650 0.246 0.642 0.221
8 0.516 0.693 0.454 0.820 0.497 0.741
9 0.564 0.263 0.463 0.286 0.560 0.237
10 0.552 0.190 0.577 0.172 0.573 0.175
11 0.599 0.399 0.467 0.506 0.565 0.417
12 0.490 0.406 0.542 0.456 0.519 0.404
13 0.688 0.263 0.434 0.624 0.684 0.280
14 0.609 0.388 0.559 0.442 0.590 0.395
15 0.796 0.315 0.801 0.362 0.808 0.297
16 0.524 0.509 0.523 0.540 0.541 0.494
17 0.544 0.249 0.606 0.233 0.574 0.236
18 0.647 0.380 0.805 0.270 0.763 0.292

Avg.: 0.589 0.314 0.573 0.379 0.602# 0.306#

Table 4.3: Results for each image for GBVS, GBVS-Chamaret and GBVS-Our method.
Higher PLCC and lower KLD values indicate a better performance. # indicates that
it is significantly different from the 2D model (paired t-test, p<0.1).
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this with a significant result for the PLCC and KLD metrics.
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Chapter 5

Eye Tracking and Kriging

Eye tracking is used to validate eye movement behaviour for various applications such as

image and video quality measurement [112, 185], interface design assessment [29, 30],

to verify the accuracy of CMAs [188, 173] or simply to observe and assess the eye

movement behaviour of people to whom different media are shown [66, 75]. This

chapter presents the various eye tracking tools available and how they operate. It

then presents an assessment of the accuracy of the “Eyelink II” (SR Research Ltd,

v. 2.0) head-mounted eye tracker. Finally, a novel method is presented for capturing

eye tracking data that improves the accuracy of eye trackers, provides a measure of

uncertainty for all captured data and also significantly eases the eye tracking recording

process.

5.1 Eye Tracking Equipment

Eye tracking equipment can be separated into two groups: remote and head mounted/tower-

based. Remote sensors (a.k.a. non-intrusive systems) attempt to extract users’ eye

movements from a distance by using an external camera. These sensors provide a

non-intrusive way of eye tracking to the point where the user may not even know that

their eye movements are being recorded. Head-mounted eye trackers, as the name sug-

gests, sit atop of the user’s head and typically use infra red (IR) lighting to illuminate

the pupil and extract its orientation. When IR light is impractical (e.g. outdoors),

image-based methods have also been proposed [163]. Tower-based systems are similar
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(a) Remote1 (b) Tower-based2 (c) Head mounted3

Figure 5.1: Three types of eye tracking devices

to head-mounted ones. The only difference is that the tracker is mounted onto a tower

and the user places his head inside the tower. Figure 5.1 shows setups for remote,

head-mounted and tower-based trackers. Since head movement, light, etc. need to be

taken into consideration in the capturing process of remote trackers, head mounted

and tower-based trackers have been shown to be more accurate [67, 133].

Eye tracking apparatuses can support binocular or monocular tracking of the eyes.

Remote sensors typically record eye movements from 60Hz (60 readings per second) up

to 1000Hz. Tower-based and head mounted trackers can have recording frequencies of

up to 2000Hz.

The eye tracker that we used in our experiments was the “Eyelink II” (SR Research

Ltd, v. 2.0) head-mounted eye tracker (shown in Figure 5.1 (c)). This eye tracker

was connected to a machine running Windows 98 and the Eyelink software and was

responsible for directly recording eye data from the tracker. The machine in turn

was connected to a Windows 7 computer with 8GB Ram and 3.1GHz processor that

ran the perception experiments. The eye tracker is accurate to within 0.5 degrees of

visual angle [150]. Binocular data was collected at 500Hz. Participants viewed the

1Image adapted from http://www.tobii.com/en/eye-tracking-research/global/products/

hardware/tobii-tx300-eye-tracker/ (viewed 5/10/2014)
2Image adapted from https://web.uvic.ca/psyc/masson/eyetracking.html (viewed

5/10/2014)
3Image adapted from http://www.sr-research.com/eyelinkII.html (viewed 31/09/2014)
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experiments on a 32” LCD monitor set at 1920x1080 resolution. Each participant’s

head was stabilised with a chin rest that was placed 80 cm from the screen. All

participants in the experiments had normal or corrected-to-normal vision.

5.2 Calibration

To be accurate, eye trackers need a calibration phase prior to any tracking taking place.

This calibration phase estimates physical characteristics of the human (e.g. cornea

curvature) and determines the relationship between the eye position and position on

the screen [73]. Calibration takes place by showing points of known position on the

screen and requesting that the user focus on them. The more points displayed to

the user, the more accurate the calibration can be. The calibration phase needs to

be repeated after a certain amount of time because the accuracy of the eye tracker

degrades over time. Due to this and the cost of good eye trackers, using eye tracking

technologies to capture the visual behaviour of a set of candidates is a long, expensive

and tedious process to set [153, 85].

Usually, eye tracking calibration is performed by the operator through the use of

the eye trackers built-in calibration tool. Such tools, however, are black boxed meaning

that it is not known exactly how this calibration takes place and what decisions are

being made on behalf of the user. Moreover, even directly after calibration, error is

still present in the data [18]. The default way to use eye trackers, therefore, is to allow

accuracy to degrade until the next calibration stage.

5.2.1 State of the Art on Accuracy Analysis and Improvement

As mentioned above, eye tracking equipment lack in accuracy [67]. For example, Mc-

Donnell et al. reported that they accounted for approximately 100 pixels of error on

a 1920 x 1200 LCD monitor when attempting to determine which object was being

viewed [125]. A number of studies have been performed to analyse and improve the

error produced by eye trackers. For instance, Holmqvist et al. [72] found that accuracy

in many eye trackers tends to be the best in the middle of the screen and that bright

backgrounds will cause the pupil size to decrease, which can lead to poorer results.

Hornof and Halverson [73] found that the error can be different at various locations
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on the screen at a given time. They also suggest using implicit required fixation lo-

cations (locations that you know that everyone will look at while performing a task)

to detect in real-time when calibration is required. Not all tasks, however, have such

locations. Interestingly, Sugano et al. [160] established that saliency maps can assist in

gaze prediction. They propose a calibration-free eye tracking method by mapping eye

images to gaze points by kriging (described in the next section). Saliency maps, in this

case, are treated as probability distributions of gaze points. Although an interesting

concept, the accuracy reported was only 6 degrees (the Eyelink II eye tracker reports

an accuracy of 0.5 degrees). Also, according to the in-depth survey on eye trackers by

Hansen and Qiang [67] “new eye models and theories need to be developed to achieve

calibration-free gaze tracking”.

5.2.2 State of the Art on Kriging

This section will introduce the topic of interpolation and then the interpolation tech-

nique of kriging.

Interpolation is the method of obtaining (estimating) values within the range of a set

of known points that have been obtained by, for example, sampling or experimentation.

The intuitive way of calculating these values is to take a weighted average of the N

surrounding known values:

X̂(s0) =
N∑
i=1

λiX(si) (5.1)

where

λi ∝ ||s0 − si|| (5.2)

and X̂(s0) is the value being estimated at s0, X(si) are the known values at si (i ∈
1...N). This interpolation method, although intuitive (its usage dates back to Ancient

Babylonian astronomers and Greek mathematicians) does not provide results with a

measure of certainty for interpolated values. To combat this disadvantage kriging was

developed.
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Kriging

Kriging interpolation has been used extensively in geographical and geostatistical ap-

plications. The mathematics behind it were developed by Andrey Kolmogorov (1903-

1987) [97] and Herman Wold (1908-1992) [181] in the 1930s and by Norbert Wiener

(1894-1964) in 1949 [178]. The word ‘kriging’ was coined by Pierre Carlier (French:

krigeage) but brought into Anglo-Saxon mining terminology in 1963 by the French

mathematician Georges Matheron (1930-2000) [123]. The technique is named after the

South African mining engineer Danie G. Krige (1919-2013) who wrote a Master’s thesis

on using kriging to evaluate concentrations of gold and other metals in blocks of rock

from samples collected from drill holes [99, 38].

Kriging is based on the assumption that data being interpolated has a continuous

nature and that nearby points have a higher degree of spatial correlation than points

found further away. Interpolation is hence performed by giving larger weights to closer

observed points. An advantage of kriging interpolation over standard linear interpola-

tion methods includes the fact that it provides an estimation of the uncertainty along

with interpolation results [5].

There has recently been a resurgence of kriging and today it may be better known

as Gaussian Process Regression (GPR) in the spatial statistics field. Kriging is in fact

a subcase of GPR with slightly differing terminology. For example, the terms ‘sill’ and

‘range’ (see Figure 5.2) would be referred to as the ‘variance paramater’ and ‘scale

parameter’ in GPR literature [32, 80].

Ordinary kriging

Ordinary kriging is by far the most popular form of kriging in practice so it will be

explained here first. It uses the standard interpolation technique with weights (Eq.

5.1) but to ensure an unbiased estimate, the weights are made to sum to 1:

N∑
j=i

λi = 1 (5.3)
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The expected error is assumed to be E[X̂(s0)−X(s0)] = 0 and the estimation variance

is given by:

var[X̂(s0)] = E[{X̂(s0)−X(s0)}2]

= 2
N∑
i=1

λiγ(si, s0)−
N∑
i=1

N∑
j=1

λjλiγ(si, sj)
(5.4)

where γ(si, sj) is the semivariance of X between the data points si and sj.

The goal in kriging is to find the weights λ that minimise the variance in 5.4. To

impose the constraint in 5.3 a Lagrange multiplier (ψ) is added such that the auxiliary

function f(λi, ψ) containing the variance we wish to minimise is defined as:

f(λi, ψ) = arg min var[X̂(s0)−X(s0)]− 2ψ

{
N∑
i=i

λi − 1

}
(5.5)

With the two partial derivatives of the auxiliary function set to 0 for i = 1, 2, ..., N this

gives a set of N + 1 equations with N + 1 unknowns:

N∑
i=i

λiγ(si, sj) + ψ(s0) = γ(sj, s0),∀j (5.6)

This is the kriging system for points that provides the values for the weights λ in

Equation 5.1. The variance of the estimated results can be obtained by:

σ2(s0) =
N∑
i=i

λiγ(si, s0) + ψ(s0) (5.7)

Variogram

To solve Equation 5.5, a variogram function γ, which is directly linked to the covariance

of the stochastic processes, is chosen to model the spatio-temporal dependencies. In

practice, this variogram is chosen such that it best describes a computed empirical

variogram. Depending on the empirical variogram, a different model can be chosen.

One of the most common models is the exponential model, which can be described as:
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γ(x) = c

{
1− exp(

−x
r

)

}
(5.8)

where c is the sill and r the range as shown in Figure 5.2. The sill and range will

ultimately dictate the size of the weights λ. A nugget can also be added to the model

to more closely control the covariance close to the origin.

Partial 
Sill 

Nugget 

Range 

Sill 

ɣ 

Figure 5.2: Exponential variogram model.

Some other common variogram models include the bounded linear, circular, spher-

ical and pentaspherical.

Simple and universal kriging

As was mentioned earlier, the most common form of kriging is ordinary kriging, which

assumes that the mean is unknown. Two other well known forms of kriging are simple

and universal kriging. Simple kriging is used when the mean of a random variable is

known (from past experience, for example). This additional knowledge can be used in

calculations. With a known mean, µ, Equation 5.1 becomes

X̂(s0) =
N∑
i=1

λiX(si) + {1−
N∑
i=1

λi}µ (5.9)
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Universal kriging is used when the spatial processes are comprised of stochastic and

deterministic components. It assumes that we have a model telling us how the mean

evolves in the spatio-temporal domain. The general formula then becomes

X̂(s0) =
K∑
k=1

N∑
i=1

akλifkX(si) (5.10)

where f is a set of polynomials representing the non-stationary components with

unknown coefficients ak.

5.2.3 Use of Kriging/GPR

An example of kriging being used for interpolation is Oliver and Webster [134] who

used it to map and control soil salinity in the Jordan Valley of Israel. Recently, Umer

et al. [168, 167] used kriging in wireless sensor networks to make monitoring systems

more resilient to coverage holes.

In the spatial statistics domain, GPR was used for trajectory analysis by Cox

et al. [37] by using it to model trajectories of participants’ hand movements during

psychology experiments. They found it a suitable method that provided them with

fine-grained glimpses into cognitive processes of participants’ responses.

In the context of gaze estimation Noris et al. [132] used GPR and SVM to estimate

and analyze gaze information for children aged 6-18 months. They created a wireless

head-mounted camera (see Figure 5.3) for this purpose and trained the GPR using raw

pixel intensities of the eye regions to known image coordinates that test participants

were requested to fixate on. The same was done to train an SVM and results were

compared between the two methods. Accuracy was, however, not of primary impor-

tance to them. They report results of up to 2.34 degrees (using GPR) but on adult

subjects only.

Williams et al. [179] propose to use GPR for gaze estimation by also learning a

mapping of images of the eyes from a camera to known gaze positions on the screen.

They crop camera images to contain only images of the eyes and then perform a feature

extraction step (greyscale intensity) of the eye images. Features are then converted into

feature vectors that are used in the mapping from inputs to outputs. They use GPR

with calibration data to estimate gaze positions and report accuracy results of up to
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Figure 5.3: A baby wearing the WearCam from [132].

0.83 degrees. However, the test data to assess their method was captured in the middle

of the calibration phase (between 16 calibration points shown for 1 second each). This is

an unrealistic scenario for usual eye tracking experiments that require longer periods (a

few minutes) between calibration phases. Hence, it is impossible to determine whether

this method is robust for real-world scenarios. It also questions the accuracies reported

for their method because the further you move from the calibration phase, the less

accurate your readings will become.

Recently, Liang et al. [106] reported eye gaze estimation results equal to the Eyelink

II eye tracker (0.5 degrees). They have a similar technique to Williams et al. except

that they propose an improvement to their feature extraction step. However, they

only had 5 people perform their assessment experiment and, therefore, their results are

statistically insignificant especially since they did not provide any in-depth statistical

analysis in their results. Similarly to Williams et al., they also gathered their test

data close to their calibration phase meaning that in a real eye tracking scenario their

accuracy results may prove to be worse than reported.

No one has used kriging (or GPR) to improve already existing commercial eye

trackers that are more accurate than anything that has been so far proposed in the

latest state of the art in computer vision. Nor has eye tracking with kriging been shown

to be a viable option for real-world eye tracking scenarios.
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5.3 Automatic Kriging Calibration for Eye Track-

ing

This section will propose a method to record eye tracking data more accurately by

defining a new calibration process. By using interpolation, information obtained from

all calibration steps can be used to accurately interpolate pixel shifts on eye tracking

data. This method can also reduce costs. Good eye trackers are too expensive for

general public use. Improving the accuracy of an older eye tracker can remove the

need to invest in a newer more accurrate one [67].

Section 5.3.1 will describe the way kriging can be used to model drift in eye tracking

and Section 5.3.2 will describe how the calibration phases were set up to implement

the kriging technique.

5.3.1 Ordinary Kriging in Eye Tracking

We define two spatio-temporal stochastic processes, ∆x and ∆y, representing the eye

tracking data shifts from recorded to real locations in horizontal and vertical directions

respectively. These processes vary in space and time during the recording and we

note s = (x, y, t) the location or site in the space-time domain where (x, y) refers to

the spatial position in pixels, and t is the time measured in seconds. At several known

sites {si}i=1,··· ,N , calibration measurements are recorded {∆x(si),∆y(si)}i=1,··· ,N as part

of the recording session.

To perform interpolation we propose to use ordinary kriging that assumes that the

expectations of the spatio-temporal stochastic processes do not depend on location in

space and time, i.e. E[∆x(s)] = µx and E[∆y(s)] = µy, ∀s. Both expectations µx and

µy are, however, unknown. Considering a new site s0 = (x0, y0, t0), the shifts can be

estimated by interpolation as follows [176]:

∆x(s0) =
N∑
i=1

λxi ∆x(si) + εx(s0) (5.11)

and

∆y(s0) =
N∑
i=1

λyi ∆y(si) + εy(s0) (5.12)
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where λxi and λyi are the weights assigned to the calculated (horizontal and vertical)

shifts of the known sites. We assume the expectation of the errors are zeros, i.e.

E[εx(s0)] = 0 and E[εy(s0)] = 0.

The parameters λs are then estimated by minimising the variance of the errors:
(
{λ̂xi }i=1,··· ,N , µ̂x

)
= arg minE[(εx(s0))

2](
{λ̂yi }i=1,··· ,N , µ̂y

)
= arg minE[(εy(s0))

2]
(5.13)

with the following constraints on the weights (for unbiased estimation):

N∑
i=1

λxi = 1 and
N∑
i=1

λyi = 1

This corresponds to
{λ̂xi }i=1,··· ,N = arg minE[(∆x(s0)−

∑N
i=1 λ

x
i ∆x(si))

2]

{λ̂yi }i=1,··· ,N = arg minE[(∆y(s0)−
∑N

i=1 λ
y
i ∆y(si))

2]

(5.14)

To solve Equation (5.14), with Lagrange multipliers to enforce the constraints of the

weights, a variogram function γ, which is directly linked to the covariance of the

stochastic processes, is chosen to model spatio-temporal dependencies:

E[(∆x(s0) −
N∑
i=1

λxi ∆x(si))
2] = 2

N∑
i=1

λxi γ(si, s0) −
N∑
i=1

N∑
j=1

λxi λxj γ(si, sj) (5.15)

and similarly

E[(∆y(s0) −
N∑
i=1

λyi ∆y(si))
2] = 2

N∑
i=1

λyi γ(si, s0) −
N∑
i=1

N∑
j=1

λyi λyj γ(si, sj) (5.16)

The same exponential variogram function γ is used for both stochastic processes ∆x

and ∆y, and it is defined as γ(si, sj) = 0 when the distance between the two sites is
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null ‖si − sj‖ = 0, otherwise when ‖si − sj‖ > 0, the variogram is defined as:

γ(si, sj) =

(
cx + σ2

x

(
1− exp

(
−‖xi − xj‖

ax

)))
×(

ct + σ2
t

(
1− exp

(
−‖ti − tj‖

at

)))
(5.17)

with notation si = (xi, yi, ti) = (xi, ti) to address both time and (isotropic) space

domains separately. For all our spatio-temporal kriging calculations we used the gstat

package in R4 and spacetime data structures [139]. To estimate the parameters of the

variogram (cf. Tab. 5.1 and Fig. 5.2), using our data an empirical variogram was

first calculated onto which the exponential variogram model was fitted. The variogram

determines how the weights λs are computed, dictating the influence of the observed

data on the interpolated point; e.g. sites that are too far away (as controlled by the

range) would have little or no impact on the interpolated values for ∆x and ∆y. Figure

5.4 shows an example empirical variogram of data from a participant (∆y) and the

variogram fitted onto this data.

Function Sill Range Nugget

Space σ2x + cx = 1000 ax = 750 pixels cx = 0

Time σ2t + ct = 1000 at = 150 secs ct = 0

Table 5.1: Estimated parameters for the spatio-temporal exponential variogram (cf.
Fig. 5.2).

5.3.2 Our Calibration Method

Our calibration method involves individually showing calibration points, of which true

positions on the screen are known, distributed equally on the screen. The user focuses

on each of the points and fixation data is recorded by the eye tracker. Calibration sites

{si}i=1,··· ,13 in the spatio-temporal domain are where our shifts {∆x(si),∆y(si)}i=1,··· ,13

are recorded.

4http://www.r-project.org/
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(a) Empirial variogram (b) Fitted variogram

Figure 5.4: Example empirical and fitted variogram on real data from a particpant.

The next section will discuss the experiment that was set up to test and assess the

new calibration method and the results obtained from this experiment.

5.4 Experimental Results

The experiment was divided into two stages. The first stage was performed using the

built-in calibration tool that comes with eye trackers. The second stage was identical to

the first except that it was performed using our kriging calibration apart from the initial

calibration at the start of the recording that was performed with the built-in calibration

tool. The order of these stages was randomised for each run of the experiment. For

calibration we used 13 points for both stages. Fewer points can be used but accuracy

is degraded as the number of calibration points decreases.

Each of the two stages was divided into parts consisting of the following: a calibra-

tion step, three test points shown of known position, a short film clip (25 secs), three

test points shown again, a short film clip (25 secs), and the same three test points

shown again. Each part was repeated to the participant four times with no breaks.

The three test points were points chosen to assess the accuracy of kriging interpolation.
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The adjustment performed via interpolation on the fixations on these points was com-

pared to the real known positions of the points on the screen. One point was chosen to

be in the middle of three calibration points, one point was chosen to be in the middle

of two calibration points and one test point was chosen to be at exactly the same site

as a calibration point. Figure 5.5 shows the positions of the calibration and test points

used in the experiment. The built-in calibration tool was used only once for the second

stage of the experiment - at the very beginning to align the eye tracker with the screen.

Figure 5.5: The 13 calibration points (red) and 3 test points (blue) used in the second
stage of the experiment. The red-blue point was used as a calibration and test point.

Eye movements were recorded using the eye tracker and setup described in Section

5.1. The experiment was conducted 11 times on four different people. Since both eyes

were tracked, this gave us de facto 22 separate runs of the experiment.

Firstly, we show how the accuracy of the eye tracker degrades over time. The data

used for this was taken from the second stage of the experiment where we use our own

calibration method. If we opt not to use interpolation, the raw fixation data can be

used on the known positions of the three test points to see how this difference (error)

from the real positions of the points changes over time. We use the Euclidean distance

as a measure of the error. For each group of three test points shown, the average error

was calculated for these and plotted over time. Figure 5.6 shows the average error with

its standard deviation that is depicted as error bars. Next we compare our method
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Figure 5.6: Average degradation of accuracy of the eye tracker over the 22 experiments.
Standard deviation shown as error bars.

of calibration with the standard method. Figure 5.7 shows the error along with the

standard deviation (error bars). There is a clear improvement of accuracy with the

kriging method.

Figure 5.8 shows the interpolated shift ∆x(x, y, t) at a chosen time t over the entire

screen. We see that the shift varies significantly from approx. -10 to over 60 pixels.

Figure 5.9 shows the interpolated shifts ∆x(·, ·, t) and ∆y(·, ·, t) over time for one

selected pixel (the left-most, middle calibration point from the start until the end of the

experiment) for two people. It can be seen in this figure how the shift values generally

increase as the experiment progresses. The shift values increase to compensate for

the increase of error. Note that kriging interpolation also provides a measure of the

uncertainty for each interpolated value and the confidence intervals are also shown: the

confidence intervals are zero for calibration times (no uncertainty). The further away

the point is from a calibration site, the larger the confidence interval.

71



0 2 4 6 8 10
0

10

20

30

40

50

60

70

Test point groups

A
vg

. E
rr

or
 (

pi
xe

ls
)

Std Calib. Method VS Our Calib. Method

Figure 5.7: Average error for each showing of the three test points with standard de-
viations obtained using the standard calibration method (red) and our kriging method
(blue) over the 22 experiments.

The kriging calibration approach presented here also allows for the time taken to

conduct experiments to be reduced compared to standard calibration. This is because

only one initial calibration step with the built-in tool is required with our kriging

method. With the standard method, sometimes calibration with the built-in tool has to

be repeated several times during a calibration stage. On average, the experiments using

the standard method of calibration took 19% longer than the kriging approach. Shorter

recording sessions both save time and also increase the comfort level of participants.

The comfort level for the operator of the eye tracker is also improved since he/she

is not tied to the computer controlling the eye tracker through the duration of the

experiments.

Although the eye tracking recording sessions are shorter for the participants it

should be mentioned that additional work is passed down to the experimentor in the
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Figure 5.8: Example image representing ∆x(x, y, t = 143) interpolated on the entire
screen.

post-processing stage. Scripts need to be written to extract calibration point fixations

of participants from eye tracking data. These fixations then need to be fed into the

application that performs kriging. Finally, another script needs to be used to combine

the original eye tracking data with shift calculations to yield the final interpolated eye

position values. This additional effort can be deemed acceptable, however, considering

the benefits of our method discussed above.

5.5 Conclusion

In this chapter we have proposed to use kriging interpolation to accurately correct

eye tracking data. This new approach limits the need to use the black-boxed built-

in calibration tool during the recordings. Kriging calibration has been shown to be

more accurate than standard calibration, it provides a measure of uncertainty for all
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Figure 5.9: (a) ∆x for one pixel (a calibration point) for one person; (b) ∆y for the
same person and point; (c) ∆x for one pixel (a calibration point) for another person;
(d) ∆y for the same person and point;
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interpolated data and also significantly eases the eye tracking recording process. Since

eye tracking is used to validata VSAs, improving eye tracking equipment accuracy with

our kriging interpolation will have a positive knock-on effect on this field of research as

well as on other fields that use eye tracking. Moreover, since eye trackers are expensive

(prices range from e 4000-e 30,000), improving them will avoid the infeasible (for most)

notion of constantly upgrading them with newer, more accurate models when they

become available.
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Chapter 6

2D & 3D Visual Perception

3D film viewing is becoming a major source of entertainment not only in cinemas but

in private lounges as well. It is implicitly known that people view video content in 3D

differently to 2D [7, 11]. Moreover, viewing content in 3D presents new challenges and

paradigms (e.g. new artefacts and imperfections that are not present in 2D [16, 7]) that

impact the viewing experience. 2D VSAs cannot, therefore, be directly ported into the

3D domain without the loss of accuracy. It is important, hence, that an analysis of

the difference between 2D/3D viewing behaviour is performed so that work on VSAs

in the 3D domain can advance.

This chapter presents the acquisition of a 2D/3D professionally-made video dataset,

eye tracking data accompanying it and an analysis of the difference in 2D and 3D view-

ing behaviour of people on this dataset. The work presented here was performed over

the space of 12 months: 2 months to ascertain the current level of research on this topic,

1 month to locate and extract appropriate videos to be used in the dataset, 2 months

to implement the experimental setup (eye tracker interfacing with a C++ program

using the GRUB library that connects to a Quadro video card to display 3D content

on a 3D screen), 1 month of testing this setup, 1 month of running the experiment on

50 people, 1 month of performing kriging interpolation on the eye tracking data we

obtained and, finally, 4 months of analysis of this data.

The first section of this chapter looks at the current state of the art in 2D/3D

analysis of viewing behaviour. The next section presents our new method for creating

fixation density maps and the following sections will present the results of our viewing
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behaviour analysis, which will also include advice to film makers and editors.

6.1 2D/3D Viewing Behaviour

Jansen et al. [82] performed a study to investigate the effect of disparity in viewing nat-

ural still images in 2D and 3D. They found that for images shown in 3D, people fixate

more, have shorter and faster saccades (the movement of the eyes between fixations)

and tend to explore more with their eyes. They also found that there was minimal

difference in saliency of mean luminance, luminance contrast and texture contrast.

El-Nasr and Yan [45] conducted a study to analyse visual attention patterns of

players within an interactive 3D game environment. The intention of the study was

to provide data for game designers to improve gaming experiences. They found that

since games are highly goal oriented, top-down cues dominate visual attention more

than bottom-up ones (only motion and colour were analysed here) but in a few cases,

bottom-up features overwrote any top-down influences. The specific example discussed

where the latter took place was of a red object whose brightness increased over time.

This object was located on the side of the screen and not on the path the player was

supposed to be taking. The colour feature overwrote the top-down task and drew

players’ attention to the object.

Studies have been performed to analyse where people look when watching movies

in 2D. For example, Goldstein et al. [61] performed experiments whose results showed

that male and older people were more likely to look in the same place when watching

movies than female and younger people. Their study was used to improve an automatic

screen zooming device for the visually impaired.

Very little has been done, however, to analyse differences in viewing behaviour

between 2D and 3D movies. Häkkinen et al. [66] in 2010 analysed six scenes from a short

film. 20 students were asked to view these scenes in random order. The participants

were given a task prior to viewing that asked them to decide which version (2D or 3D)

was better. In their analysis, Häkkinen et al. divided each scene into areas of interest

(e.g. water, boy, background) and counted the number of fixations in these. They

found that the same content when viewed in 3D produced a more widely distributed

gaze pattern from their viewers. Criticisms of their work include the fact that the

comparison task introduced top-down factors that could have influenced their results,
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e.g. students may have specifically roamed with their eyes to assess quality in the

foreground and background of scenes. Also, the six scenes analysed were chosen to not

have large amounts of camera or object movements. The dataset analysed, therefore,

was only a minimal representation of real movies.

Huynh-Thu and Schiatti [75] performed a similar experiment with 21 video se-

quences taken from a variety of sources such as advertisements, films and computer

graphics animations. The clips were chosen to incorporate a wide variety of scene char-

acteristics in terms of motion, contrast, colour and depth. 18 participants were told to

view these clips freely. Half of the participants viewed the clips in 2D first, the other

half in 3D. They found that a higher fixation frequency and longer average fixation

duration were exhibited in 2D viewing. Faster saccades were reported for all but one

of the 3D clips. Criticims of their work include the fact that the video clips did not

include an audio track. Sound is inherent in films and, hence, it can be argued that

the experiment was also not emulating a true film viewing experience. Sound has also

been shown to affect eye movements [131].

Another important criticism of the work done by Huynh-Thu and Schiatti and

Häkkinen et al. is that the same people were used to view the media in 2D & 3D (al-

though sometimes 2D was shown before 3D and vice-versa). This completely disregards

the effect of memory on attention guidance. If a person has already seen a scene in

one dimension, when he looks at the same scene (with the same semantic information)

in another dimension, he may look at it differently. Differences in viewing behaviour

in these studies, therefore, cannot be just attributed to 2D-3D factors but also must

be attributed to memory bias. Many studies have been conducted to show that mem-

ory bias plays a significant (if not prominent) role in attention guidance [71, 183, 15].

Most importantly, Hadizadeh et al. [65] recently performed an experiment where they

showed the same 12 videos to participants twice. Significant differences were found in

the viewing behaviour by observers between the first and second viewings.

Moreover, both Huynh-Thu and Schiatti and Häkkinen et al. used remote eye track-

ers, which, as was mentioned in the previous chapter, are less accurate than others.

Ramasamy et al. [147] also compared 2D and 3D viewing but specifically as a tool

for filmmaking. They found that in one scene the gaze data in 3D was more focused

when compared to the 2D version, which is a different result to that of Häkkinen et al.

and Huynh-Thu and Schiatti as discussed above. The clips analysed, however, were
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taken from a first person stereoscopic film that simulated the human field of view. This

viewing paradigm is dominant in games but not in films.

Finally, none of the analyses presented in this section have used in-depth statistical

means to show significant differences between 2D and 3D viewing behaviour. With

our kriging interpolation, we can accurately show when the difference between 2D and

3D viewing behaviour is statistically significant and we can also provide a measure of

certainty.

6.2 Eye Position Maps

As an indication of participants’ viewing patterns in our experiments for a given frame

or number of frames eye position density maps were calculated. These were calculated

using information obtained from the eye tracker and our kriging calculations. Currently,

maps such as these are calculated by placing a Gaussian function for every fixation (for

fixation density maps) or eye position (for eye position density maps) obtained from eye

trackers to create a Gaussian mixture model (GMM). The standard deviation chosen,

however, for each of these functions varies. Le Meur and Baccino [126] suggest that

1◦ is used as a convention. In practice, however, it is frequently chosen arbitrarily.

For example, Wang et al. [173] chose 2◦ for each of their Gaussians. It can be argued

that sometimes these numbers are chosen to make the maps look aesthetically pleasing

because if the number of participants is small, a lower standard deviation will make

the map look bare.

Our kriging calculations provide us with variance information associated with every

eye tracker reading. This variance can be used on the Gaussians that make up a fixa-

tion/eye position density map and is a much more accurate, informative and scientific

(because it is based on statistics) way of calculating these. For each eye position for

each person we plot a Gaussian to create a GMM. Since the number of eye positions for

a given frame can vary for each person (due to eye tracker variability, etc.) we average

each person’s GMM before summing them to create the final GMM (i.e. eye position

density map):

f(x, y) =
1

N
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1
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where N is the number of participants, Ji the number of readings for a given frame

for participant i, σxik is the variance for the kth reading in the x-direction (σyik for the

y-direction) for person i and xik the kth x position of the eye (yik for the y position)

for person i. Example eye position density maps can be seen in Figure B.1 (d) and (f).

6.3 2D & 3D Perception

This section will present a comparison between 2D and 3D viewing behaviour. Our

novel kriging intepolation method was utilised to capture the viewing behaviour for

this comparison.

6.3.1 The Dataset

The dataset, depicted in Table 6.1, is composed of 8 video clips. It is divided into

three groups: strong 3D (i.e. videos with salient objects that protrude from the screen,

scenes with a large depth plane, etc.), little camera and object movements, and fast

camera and object movements. Häkkinen et al. [66] only analysed clips from the second

group. We felt that it was necessary for there to be videos representing more than just

one group. These three were chosen because they appear to have different effects on

people when viewed in 3D compared to 2D. As will be shown, this proved to be true.

6.3.2 The Questionnaire

A short anonymous questionnaire was also given to every participant (see Appendix

A). This was done to garner more information about the viewing population to discern

cluster classes of viewing behaviour and to ascertain any consensus on 3D technology.

This has not been done before for 3D and 2D viewing comparison experiments.

6.4 Experimental Results

This section will discuss results obtained from the perception experiment that was run.

50 people (25 males and 25 females) were asked to watch the videos listed in Section

6.3.1. The experimental setup with the eye tracker is described in Section 5.1. Half of
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Movie Title Segment location Duration

Strong 3D
1) The Ultimate Wave T. 0:02:57-0:03:18 0:21
2) Life of Pi 0:05:08-0:05:29 0:21
3) Megamind 0:21:09-0:21:28 0:19

Total 1:01

Little camera and object movements
4) The Ultimate Wave T. 0:32:01-0:32:19 0:18
5) Avatar 0:05:19-0:05:47 0:28
6) To the Arctic 0:21:46-0:22:07 0:21

Total 1:07

Fast camera and object movements
7) Alice in Wonderland 0:12:45-0:13:25 0:40
8) Life of Pi 0:40:44-0:41:05 0:21

Total 1:01

Total for all clips 3:05

Table 6.1: List of films used in the experiment

the participants watched the 2D versions of the videos and the other half just the 3D

(with 3D goggles on) in random order. Only one version was watched by each person

to avoid memory affecting the viewing of the same content in a different dimension.

Interspersed between the videos in the dataset were 7 calibration phases as well as 16

2D and 3D pictures of real (from the BOLD 3D faces dataset [84]) and synthetic (from

3ds Max) faces - both male and female. Analysis of viewing behaviour of these 2D/3D

faces is outside of the scope of this thesis and is left for future work.

6.4.1 Collection of Results

A t-test was conducted to measure the significance of the difference between mean

positions computed in the 2D and 3D cases. The variances used for this were taken

from our kriging uncertainties. Figure 6.1 summarises the results. Each bar represents

a video sequence and the red regions show where there was significant difference in

the viewing behaviour. Figure B.1 (e) & (g) shows the single Gaussian representation

of eye positions for frame 55 from video #1. The difference between 2D and 3D was
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calculated to be significant by the t-test.

Figure 6.1: Summary of results. Video #7 was split in two for ease of comparison.

The calculations to ascertain significant differences in viewing behaviour were per-

formed as a guide to help us notice when there were divergences in 2D/3D viewing

patterns so that further analysis (for film makers, for example) could be done. This

analysis is presented in the following sections. Due to the number of eye position

maps referenced in these sections, they will be placed in the Appendix. Where optical

flow diagrams and disparity maps are presented, they were created using Sun et al.’s

algorithm [162]. This algorithm was inaccurate on two occasions. In these cases the

disparity maps were created using OpenCV (version 2.4.9) and its semi-global block

matching algorithm, which is a modified version of Hirschmuller’s algorithm [69, 40].

6.4.2 Videos with Strong 3D

We observe a statistical difference between 2D and 3D visual saliency in the videos

presenting strong 3D. In fact, these videos, on average, had the most amount of dif-
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ferences (see Table 6.1), which could indicate that the additional dimension plays a

significant role in the viewing behaviour of viewers. Statistics from eye tracking data

from this group of videos can be found in Table B.1.

Video #1

Video #1 is from the documentary ‘Ultimate Wave Tahiti’. It shows a model of our

solar system with planets orbiting the Sun. The camera pans from left to right during

which the spinning Earth slowly comes into view with the Moon also featuring promi-

nently. Other planets, especially Mercury and Venus, also have visible roles. The 3D

in this video clip is very strong and the planets that feature and the Sun have distinct

places in the 3D plane in front of a starry background. The audio for this clip is of

a man talking generally about gravity and how it affects the tides on Earth and does

not point out anything in particular in the video.

The major difference between 2D/3D perception in this video is that 3D viewers

principally focussed on only 1-2 objects (mainly Earth or the Moon and Venus) at any

given time. In 2D, viewers had a much more distributed viewing pattern with the Sun

(the largest object in the clip), Earth, Moon, Venus and Saturn (which is behind the

Sun) being focussed on a lot. This can be seen in Figure B.1 (d) & (f) and Figure B.2

(d) & (e) that present the eye position density maps for frames 55 & 59. This is the

very beginning of the clip after a short amount of time has passed for the viewers to

grasp the context of the visual and audio cues being presented. It is interesting to note,

therefore, that distinct objects in the 3D plane grabbed the attention of participants

from the very beginning of the clip. Figure B.3 and B.4 in Appendix B shows this to

also be true for later parts of the clip. In fact, this held true throughout the video.

Whereas in 2D, viewing was always more distributed until the end, when it appears

to become more concentrated on the objects closest to the camera (see Figure B.5).

This would indicate that the viewers’ attention became more focussed when they had

finished exploring the entire scene in 2D.

A number of things can be gathered from these results. Firstly, motion and depth

can play a dominating role in attention grabbing in 3D when the audio is of a general

nature (i.e. not originating from a source in the video or not pointing out anything in

particular in the video). The Sun is the brightest and most intense object in the clip.

83



Moreover it also has a face on it. Despite this, it is rarely glanced at in 3D. The flying

planets of Venus and Earth and its Moon dominate the saliency because they ‘pop out’

of the screen and move past the viewer - despite them being grey in colour. Moreover,

the background planets (e.g. Saturn) are ignored, as is the starry background. This

means that in scenarios such as this one, film makers need to devote a lot more time

to detail for an entire scene in 2D whereas in 3D, just the prominent objects can be

focussed on. Details such as a face on a sun may be missed entirely in 3D.

Video #2

Video #2 is from the movie ‘Life of Pi’. It begins with a close-up shot of water in a

public swimming pool and a boy quickly surfacing from it. Other swimmers can be

seen in the background. The camera then turns down to look at the boy from above.

Shortly after, the camera changes as if to be looking through the eyes of the boy and

the viewer sees a man at the side of the pool kneeling down and offering his hand to the

boy. The scene then changes to show the man carrying the boy while walking beside

the pool. The camera slowly zooms out and after a short time the boy is thrown back

into the pool. The last part of the video shows the boy in the pool with the camera

being situated directly underneath the boy in the water. The audio is first of a man

talking about his past when he was a boy and then changes to the man in the video

when he is shown carrying the boy beside the pool. He is telling the boy how he should

learn to swim (before he throws him into the pool). The 3D is strong in this clip

especially when the entire pool can be seen (with other swimmers or onlookers).

It can be noticed that the 3D in this video also plays an important role in the

attention grabbing of viewers. A significant difference is seen when the man offers his

hand to the boy, which in 3D protrudes from the screen. In 2D everybody focusses on

the man’s face while in 3D most people turn their gaze to the hand. This can be seen

in Figure B.6 (c) and (d). Once again it can also be noticed that in 3D, viewers’ gaze is

more focussed while in 2D it tends to be more dispersed. Figure B.6 (g) and (h) shows

how at the beginning of the clip before the boy surfaces, in 3D people tended to look at

one point in the scene while in 2D the lack of the depth dimension had viewers spread

out their viewing. Similarly, when the man is carrying the boy beside the swimming

pool, in 3D viewers tended to remain focussed on the two characters while in 2D they
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switched from viewing the man and boy and exploring the scene especially when the

camera zoomed out. Figure B.7 (c) and (d) shows a significant difference in viewing

behaviour where 2D viewing is more dispersed than 3D and Figure B.7 (g) and (h)

shows an example where this no significant difference in viewing behaviour showing

that in 2D viewers focussed on the two characters as well.

To summarise, we see in this video how 3D, when used effectively, can focus the

viewer’s attention on salient objects or how it can control it by moving objects out of

the screen.

Video #3

Video #3 is from the animated movie ‘Megamind’. It shows how Megamind (the

villain of the movie) appears in a cloud of smoke and a laser show in the middle of

a city square. Around the city square are citizens and policemen behind barriers. As

Megamind appears the policemen draw their guns. Megamind skips into the crowd

joyfully and the policemen out of fright drop their weapons to the ground. The audio

is simply of a song playing in the background. All scene cuts have deep 3D in them.

Once again 3D plays an important role here in the attention grabbing of viewers.

There is a similar scene to one in the previous video with the man’s hand in which there

is a close-up shot of a policeman who has his gun drawn. In 3D this gun protrudes

from the screen. Just like in the previous video, in 3D most people turned their gaze

to the gun while in 2D gazes were focussed on the man’s face. This can be seen in

Figure B.8 (c) & (d). However, viewers’ gazes in 3D in this video were not quite as

focussed as they were in the previous two. When Megamind skips towards the crowd,

the camera is behind him and you can see the entire crowd in front of this character.

In 2D everybody (without exception) focussed on the moving character while in 3D,

participants explored the scene for a short time. This can be seen in Figure B.8

(g) & (h). The quirky look of Megamind managed to hold the attention in 2D but

the additional dimension in 3D coupled with vibrant colours and fine details of the

background dragged the attention away in 3D for a short time.

We learnt from these three videos, therefore, that it is possible to control gaze a lot

more in 3D. For example, motion and depth can override the urge to explore (as we

saw in video 1). The only exception (noticed in our set of videos) to this rule is when a
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scene’s background is vibrant in colour and ‘interesting’. In this case, the viewer may

choose to divert their attention away from the main object in the scene. Also, if a sole

object significantly protrudes from the screen, this will drag attention away in 3D - as

was noticed in videos 2 & 3.

6.4.3 Videos with Little Movement

Video #4

Video #4 is from the documentary ‘Ultimate Wave Tahiti’. The clip shows two men

sitting on the beach talking about surfing. Behind the two people is a small beach

shack, surf boards and a beach forest. The audio is of the two men talking.

By far the two most salient regions in this video are the faces of the two men - both

in 2D and 3D. Our test for significant viewing difference found that 11% of the video

was different in 2D compared to 3D. This difference was always due to a few members

of one viewing group choosing to look more at one man rather than the other at a

particular moment in time that appears to be random - the audio does not explain

this either. This can be seen Figure B.9 (c) & (d) where more spread is present in 2D

while in Figure B.9 (g) & (h) more spread is present in 3D. Apart from that no other

reasons for differences were noticed so we can conclude that for videos such as this

one (a simple conversation between two people with no camera movements) minimal

differences between viewing behaviour will be exhibited.

It was mentioned in Section 6.1 that Häkkinen et al. [66] performed their 2D/3D

analysis on clips with little camera movement. In fact, one of their clips was very

similar to video #4 - of two people having a conversation together. They concluded

that people explore a lot more with their eyes in 3D. As just stated, we found this

to not be the case for videos of this nature. Table B.2 shows that the total number

of fixations, average fixation count and total distance travelled by the eyes is very

similar. This shows that Häkkinen et al.’s pre-screening request to their participants

to analyse which version of the clip is better (2D or 3D) played the defining role in

their results and, therefore, contaminated them by adding an artificial (i.e. not present

in real viewing conditions) top-down effect.
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Video #5

Video #5 is from the film ‘Avatar’. The first part of the clip is from the view of a

camera looking down at a man’s face while he is lying down. The camera slowly zooms

into his eyes. The scene then changes to show two views of one of his eyes before going

back to the initial downward looking shot. In this last shot a few drops of water slowly

appear out of the camera and drop down. The audio is of atmospheric music and the

man’s breathing.

In this clip the face of the character was still the most salient feature of the video.

However, since the audio was not of an engaging nature, a little bit of exploring took

place also. The exploring was very similar in 2D and 3D. Nearly the same amount

of fixations, fixation duration and distance travelled was exhibited in 2D and 3D (cf.

Table B.2). There was one scene where the viewing behaviour was noticeably different

in 3D, however. When the drops of water appear in the second half of the clip, in

3D they protrude from the scene and become salient and fixated upon. First the two

drops in the middle of screen (that combine to make one drop) are noticed both in 2D

and 3D (Figure B.10 (a)-(d)). Then the drop on the bottom right of the screen slowly

appears. It is fixated on strongly in 3D (despite never completely coming into focus)

but never in 2D (Figure B.10 (e)-(h)). Finally the drop on the left appears. It is fixated

on strongly in 3D and a little less in 2D (Figure B.11 (a)-(d)). This drop comes into

focus as the one in the middle and right drop out. You can notice, therefore, that 3D

plays a role here as the 3 protroduing objects (the droplets) are heavily fixated on. In

2D only the objects in focus are looked at and even then, not so strongly. This shows

that also in scenes with little camera/object movement, depth can be used to control

viewers’ attention in 3D.

Video #6

Video #6 is from the documentary entitled ‘Into the Arctic’. It shows two deers lying

on the ground amongst bushes. The audio is of a general nature - a soothing song

playing in the background.

This clip did not have any faces or humans present nor a single source of audio.

Because of this significantly more exploring took place in 3D. In the two previous

videos, the two conversing people and the face (and eye) of the man managed to reign
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in the ‘urge’ to look around. The deers were not considered as interesting, even the

young one. Table B.2 shows that there was 10% more distance travelled by the eye as

well as more fixations and a shorter average fixation length. This shows that in 3D

when there are no (or very little) camera movements, if the director of a film wants to

keep viewers focussed on 1 or 2 objects he/she needs to make sure that there is either

an interesting conversation taking place between people or to make important objects

stand out in 3D space.

6.4.4 Videos with Fast Movement and Changes

The following sections present an analysis of the viewing behaviour on the last two

videos in the dataset.

Video #7

Video #7 is from the 2010 film ‘Alice in Wonderland’. The 40 second long clip is

of Alice falling down a hole with objects constantly moving past her and the camera

view changing every few seconds. Alice is also spinning around throughout the clip.

The wide array of objects flashing past (like pianos, books, lamps, etc.) adds to an

atmosphere of confusion. The audio is of Alice screaming for the duration of her fall

and of an orchestra playing a rhythmic piece to suit the mood.

There was very little difference in viewing behaviour between the 2D and 3D ver-

sions of this clip. The fast changing scene gave participants little time to grasp any-

thing concrete and most of the gazes were focussed on the middle of Alice while she

was falling both in 2D and 3D. There is a significant difference (according to our t-test)

when Alice is first shown to the viewers (frames 80-115). During this time nearly all of

the 2D participants were focussed on the middle of the screen. The 3D participants,

however, took the opportunity to examine the person that had just appeared to them

- see Figure B.12 (a)-(d). Once the character is grasped as being a young girl, the dif-

ferences between 2D and 3D become minimal. The viewing behaviour for most of the

frames flagged as being significantly different by our t-test appears to be erratic and

random in nature (sometimes there is a little more spread in 2D and sometimes in 3D,

for example) - this would coincide with the fast-paced scene. None of the objects that

fly past Alice are focussed on despite some of them being prominent in 3D - they move
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past too quickly. The scene does slow down a little, relatively speaking, two times.

Once when a big piano comes into scene (frames 495-575). First the camera shows it

moving close to Alice’s face who subsequently tries to protect herself from it with her

arm. Then there is a close-up of its keys being invisibly pressed. During this time no

significant differences in 2D and 3D were recorded. The last ‘slow’ scene is at the very

end of the clip. Alice falls onto a bed, bounces off it and then is seen falling deeper

into the hole with the camera not following. There is a small difference in viewing

behaviour when Alice falls on the bed. In 2D the middle of the bed is the main area

of interest. In 3D some of the participants followed Alice down onto it. Figure B.12

(e)-(h) shows this.

Video #8

Video #8 is from the film ‘Life of Pi’. The clip shows Pi (the protagonist of the film)

inside a lifeboat while it is being tossed around at sea by big waves at night. There is

a large ship in close proximity that can be seen at the beginning and end of the scene.

The camera follows Pi and the lifeboat erratically and changes angles frequently. The

audio is of Pi struggling to remain in the boat and the waves crashing around him.

As with the previous video, there is little here to distinguish the viewing behaviour

between the groups who saw the 2D and 3D versions of the clip. The salient object

was Pi throughout the scene and viewers faithfully followed his struggles with the

waves. There were only a few groups of frames where the viewing was flagged as being

significantly different - it is difficult, however, to determine the reasons for this and,

as with the previous video, appear to be random (to suit the erratic nature of the

video, perhaps). The first is when the boat goes up a wave and all we see is the side

and bottom of it - Pi disappears for a short time (frames 160-180). The 2D viewing

pattern was a little more dispersed than the 3D one (Figure B.13 (a)-(d)). The second

scene is when the boat is seen from a distance riding a wave (frames 265-300). Once

again, viewing behaviour in 3D is more focussed (Figure B.13 (e)-(h)). The last two

groups of frames flagged for being significantly different belong to the one scene: the

boat is riding on top of a wave with the camera positioned at the back of it (frames

430-493). This scene is relatively less ‘frantic’ than the other parts of the clip. This

time, however, the 3D viewing pattern is the one that is more dispersed (Figure B.14
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(a)-(d)). As with the other two scenes flagged as having significantly different frames,

the dispersion is minimal. No major exploring took place, i.e. the focus still remained

on the salient object.

We saw in these last two videos, therefore, that there is very little difference between

2D and 3D viewing behaviour when a scene has fast changes throughout it. Although

the general ambience can be altered with the addition of an extra viewing dimension

(e.g. objects can be caught by peripheral vision flying at the user through the screen)

it is a lot easier for film makers to predict where people are going to look - if they

can predict this in 2D then chances are it will be the same in 3D. Even when a scene,

relatively speaking, slows down for a short amount of time, viewers will not explore the

scene too much because they know (subconsciously) that they have to remain focussed

as things may change quickly any second.

6.4.5 Questionnaire

A summary of results from the questionnaire can be seen in Figure 6.2. There are a

number of positive elements for 3D films that can be extracted from this questionnaire.

For example, nearly half of the participants believe that the additional dimension

enhances the viewing experience and over 20% of participants believe that better spatial

perception is possible in 3D. Also, just under 20% of participants believe that films in

3D have brighter colours and/or better resolution and that scenes are more realistic in

this domain. There were, however, a number of criticisms of 3D films, the main one

(36%) being that 3D viewing is straining on the eyes or inconvenient (18%) due to the

need to wear glasses. Interestingly, 18% of people stated that objects in 3D are hard

to focus on or follow especially when fast camera or object movement is occurring. In

Section 6.4.4 we came to the conclusion that the difference in 2D/3D viewing behaviour

is minimal. Coupled with what participants said here, this could be an argument to

make 3D effects minimal or non-existent in such fast-paced scenes (especially if it is

going to cause strain). Also, a major criticism of 3D films is that they can be distracting

(26%). We saw, for example, in our analysis of videos #2, #3 and #5 that attention

can shift to salient objects protruding from the screen. Such 3D effects can be deemed

to be distracting if they can break a person’s immersion in the story of a film at the

expense of thinking about 3D ‘gimmicks’. These effects should, perhaps, be left to
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films like animations.

6.5 Conclusion

This chapter presented the large-scale acquisition of a 2D/3D video dataset along with

accompanying eye tracking data from 50 people. Our method of kriging interpolation

was used on the eye tracking data and subsequently an analysis of participants’ viewing

behaviour was performed. This analysis was supported by a novel Gaussian mixture

model for computing eye tracking heat maps that takes advantage of the uncertainties

associated with our eye tracking data. The eye tracking dataset will be made public

and will be the first such dataset in the public domain. Finally, results from the

questionnaire were also presented. This chapter represents a total of 12 months of work

and results from it (e.g. that motion and depth combined can be the main drawing

factor of attention or that there is minimal difference in viewing behaviour on fast-

paced scenes) can be used to advance the field of visual saliency in 3D. Future work

presented in the next chapter will delineate this further.

91



Figure 6.2: Summary of results from questionnaire.
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Chapter 7

Conclusion

7.1 Summary

In this thesis we showed that CMAs can be used to assist and improve content-based

image retrieval systems. With a single threshold we controlled the number of features,

taken from salient regions, that are used to classify an image. We show that even with

a small number of features, the classifiers trained to find the objects of interest still

perform well.

Our second contribution is a new way to incorporate depth into visual saliency

calculations. Using this method we extend a state-of-the-art CMA and show that the

new 3D CMA outperforms other common 2D algorithms as well as their state-of-the-art

3D extensions on 3D media.

The most common way to evaluate CMAs is to compare their output to eye move-

ments from humans that are captured by eye trackers. Eye trackers, however, lack in

accuracy. Our third contribution is a novel method for capturing eye tracking data

that improves the accuracy of eye trackers, provides a measure of uncertainty for all

captured data and also significantly eases the eye tracking recording process. Improv-

ing the accuracy of eye trackers has financial benefits also since top-of-the-range eye

trackers are very expensive. It is frequently infeasible, therefore, to constantly upgrade

eye trackers to newer more accurate models when they become available.

As a final contribution, we conducted a large-scale acquisition of a 2D/3D video

dataset along with accompanying eye tracking data from 50 people. This dataset will
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be made public and will be the first such dataset in the public domain. It will now be

possible to evaluate 3D CMAs on videos. We also present an analysis of the difference in

viewing behaviour between the 2D and 3D videos. We find, for example, that motion

and depth combined can be the main drawing factor of attention or that there is

minimal difference in viewing behaviour on fast-paced scenes. Taking advantage of the

uncertainties associated with our eye tracking data, we also propose a novel Gaussian

mixture model for computing eye tracking heat maps. The contributions mentioned

here have formed a foundation for the future improvement of 3D visual attention and

CMAs.

7.2 Future Work

The fledgling world of CMA in 3D is an exciting one with vast opportunities for new and

pioneering research. Even the work presented in our thesis can be extended in many

ways. Our new depth incorporating method could be tested on many more 2D state-

of-the-art CMAs. We improved on Wang et al.’s [173] journal paper but the ultimate

goal with research in our field is to improve 3D visual saliency. Using and assessing

these new 3D CMAs in real applications, such as thumbnail creation or vehicle/robot

navigation, is one such sure way of reaching this goal.

More eye tracking datasets could also be created for 3D images and videos. Only

one of each now exist compared to 22 in total for 2D. The more datasets with varying

images and videos that exist the better that CMAs can be evaluated and fine-tuned

before they are used in real-life applications. The large number of 2D eye tracking

datasets have allowed 2D visual saliency to steadily improve. The same should be

true for 3D visual saliency in the near future. Any new image datasets created should

also keep in mind the centre-bias discussed in Section 2.4.6. This was not explicitly

considered in the dataset of Wang et al.’s [173] but is an important challenge in image

eye tracking dataset creation.

It would be useful to also perform some more accuracy analysis with respect to

kriging and eye tracking. For example, one could analyse the trade-off between the

number of calibration points in a calibration phase and the accuracy obtained. Fewer

calibration points would speed up the eye tracking process even more. One could also

analyse the effect of decreasing the number of calibration phases in an experiment
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or even increase the time between calibration phases. More calibration phases would

produce a better variogram but, once again, at the expense of inflating the experiment

time and perhaps participant discomfort.

There is potential for a lot more future work to be performed with the new eye

tracking film dataset that we created as part of this thesis. One obvious extension is

the creation of a spatio-temporal 3D CMA. No such algorithm currently exists. To

assist in this, even more statistical analysis could be performed on the difference in

viewing behaviour between the 2D and 3D videos.

More research on covert and overt attention in 3D is also necessary. It was shown

that, in general, there is little difference in viewing behaviour in 2D/3D with fast-paced

scenes. If people do not look differently in these cases, how necessary is it, then, to

embellish scenes with 3D outside of salient regions? How does covert attention work

in 3D in this respect?

Another possibility is to see if there is a difference in where people look based on

culture, gender or age in 3D. There is preliminary material for this available with the

answers from our questionnaire. We were hoping, for example, to analyse the viewing

patterns of people who have different native directions of reading. Unfortunately, all

of our observers naturally read from left to right but analysis like this has never been

performed whether in 2D or 3D. With respect to gender, we conveniently managed to

obtain an equal number of females and males to perform our experiment. Analysis of

this kind, therefore, is ready to be performed. Clearly there are mountains of potential

future work possible with our new 3D video eye tracking dataset.

Our dataset comprises of material that was professionally made for 3D viewing de-

vices. We can assume that directors and cinematographers have been specially trained

for this medium. Further research, then, could be performed on amateur 3D videos

that could contain artefacts specific to the 3D domain in their clips. A recent satelitte

project of ours has been to analyse and summarise social media videos (e.g. Zdziarski

et al. [187] and Zdziarski et al. [189]). Glasses-free 3D mobile devices are slowly enter-

ing the market (e.g. the LG Optimus 3D P920) so it is only a matter of time before

social media is flooded with 3D videos. Research in visual attention in this area is

becoming a necessity.

95



Appendix A

Questionnaire for Experiment
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GV2 Experiment with 3D and 2D video clips 

Each question is optional.  Feel free to omit a response to any question; however we would 

be grateful if all questions are responded to. 

 

Questionnaire for experiment 
 

Age: ……..   

 

Are you male or female?   □ Male □ Female 

 

What is your natural (native) direction of reading? 

 □ Left to right 

 □ Other: ___________ 

 

On a scale of 1 to 10 (1 = poor, 10 = excellent), how would you rate your 

motor/perception skills in sports/activities such as juggling, tennis, basketball, 

football, etc.? ____________ 

 

Are you aware of any impairments that you may have related to visual perception? 

(e.g. colour blindness, problems with depth perception) 

□ Yes         

□ No  

 

Do you wear glasses/contacts?   □ Yes  □ No 

 

Can you give us 3 positive things about 3D movies and 3 negative things? 

 _____________________________ 

 _____________________________ 

 _____________________________ 

 _____________________________ 

 _____________________________ 

 ______________________________ 

_______________________________________________________________ 

_______________________________________________________________ 

 

What kind of movies/information would you prefer to see in 2D or 3D? 

___________________________________________________________ 

___________________________________________________________ 

___________________________________________________________ 

___________________________________________________________ 

___________________________________________________________ 

 

Would you like to make any comments about the experiment you just participated 

in? 

___________________________________________________________ 

___________________________________________________________ 

___________________________________________________________ 



Appendix B

Eye Position Density Maps and

Statistic Tables for 2D/3D

Perception Experiment

Video Avg. Fix. Avg. Avg. Avg. Sacc. Avg. Sacc. Avg. Sacc. Avg. Dist
Length # Fix. # Sacc. Ampl. Vel. Peak Vel.

2D

1 378 44 50 6.39 0.0473 257.1 3.3×10e6

2 448 37 41 4.93 0.0423 241.2 1.5×10e6

3 391 48 54 4.71 0.0395 230.0 2.3×10e6

3D

1 402 41 50 6.55 0.0443 250.8 3.5×10e6

2 406 41 45 5.47 0.0424 259.1 1.7×10e6

3 390 48 53 4.80 0.0391 237.4 2.4×10e6

Table B.1: Eye tracking statistics from the left eye summarising 2D and 3D eye move-
ments from the videos in group 1 (strong 3D). Euclidean distance is in pixels.
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Video Avg. Fix. Avg. Avg. Avg. Sacc. Avg. Sacc. Avg. Sacc. Avg. Dist
Length # Fix. # Sacc. Ampl. Vel. Peak Vel.

2D

4 407 32 37 5.61 0.0427 239.2 2.1×10e6

5 458 52 58 5.65 0.0477 245.2 2.7×10e6

6 402 36 40 5.34 0.0428 249.0 2.9×10e6

3D

4 415 32 36 5.71 0.0431 233.8 2.1×10e6

5 441 54 59 5.78 0.0449 255.4 2.6×10e6

6 388 40 43 5.61 0.0443 256.4 3.2×10e6

Table B.2: Eye tracking statistics from the left eye summarising 2D and 3D eye move-
ments from the videos in group 2 (little or no camera movement). Euclidean distance
is in pixels.

Video Avg. Fix. Avg. Avg. Avg. Sacc. Avg. Sacc. Avg. Sacc. Avg. Dist
Length # Fix. # Sacc. Ampl. Vel. Peak Vel.

2D

7 505 73 81 4.41 0.0433 242.8 3.3×10e6

8 533 35 38 4.33 0.0427 243.1 2.1×10e6

3D

7 487 76 86 4.35 0.0435 244.8 3.4×10e6

8 514 36 39 4.69 0.0443 242.4 2.3×10e6

Table B.3: Eye tracking statistics from the left eye summarising 2D and 3D eye move-
ments from the videos in group 3 (videos with fast movement and changes). Euclidean
distance is in pixels.
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(a) Frame 55 from video #1 (left image)

(b) Optical flow diagram [162] (c) Disparity map [162]

(d) Eye position density map for 2D (e) Corresponding single Gaussian represen-
tation

(f) Eye position density map for 3D (g) Corresponding single Gaussian represen-
tation

Figure B.1: (a) Frame 55 from video #1; (b) optical flow for this and next frame;
(c) disparity map; (d) & (f) eye position density maps in 2D and 3D; (e) & (g) cor-
responding single Gaussian representations. The difference between the Gaussians is
significant. 100



(a) Frame 59 from video #1 (left image)

(b) Optical flow diagram [162] (c) Disparity map [162]

(d) Eye position density map for 2D (e) Eye position density map for 3D

Figure B.2: (a) Frame 59 from video #1; (b) optical flow for this and next frame; (c)
disparity map; (d) & (e) eye position density maps in 2D and 3D.
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(a) Frame 186 from video #1 (left image)

(b) Optical flow diagram [162] (c) Disparity map [162]

(d) Eye position density map for 2D (e) Eye position density map for 3D

Figure B.3: (a) Frame 186 from video #1; (b) optical flow calculation for this frame
and the next; (c) disparity map for this frame; (d) & (e) eye position density maps in
2D and 3D for this frame.
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(a) Frame 242 from video #1 (left image)

(b) Optical flow diagram [162] (c) Disparity map [162]

(d) Eye position density map for 2D (e) Eye position density map for 3D

Figure B.4: (a) Frame 242 from video #1; (b) optical flow calculation for this frame
and the next; (c) disparity map for this frame; (d) & (e) eye position density maps in
2D and 3D for this frame.
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(a) Frame 416 from video #1 (left image)

(b) Optical flow diagram [162] (c) Disparity map [162]

(d) Corresponding eye position density map
for 2D

(e) Corresponding eye position density map for
3D

Figure B.5: (a) Frame 416 from video #1; (b) optical flow calculation for this and next
frame; (c) disparity map for this frame; (d) & (e) eye position density maps in 2D and
3D for this frame.
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(a) Frame 184 from video #2 (left image) (b) Disparity map [162]

(c) Corresponding eye position density map
for 2D

(d) Corresponding eye position density map
for 3D

(e) Frame 55 from video #2 (left image) (f) Disparity map [162]

(g) Corresponding eye position density map
for 2D

(h) Corresponding eye position density map
for 3D

Figure B.6: (a) Frame 184 from video #2; (b) disparity map; (c) & (d) eye position
density maps in 2D and 3D. (e) Frame 55 from video #2; (b) disparity map; (g) & (h)
eye position density maps in 2D and 3D.

105



(a) Frame 234 from video #2 (left image) (b) Disparity map [162]

(c) Corresponding eye position density map
for 2D

(d) Corresponding eye position density map
for 3D

(e) Frame 280 from video #2 (left image) (f) Disparity map [162]

(g) Corresponding eye position density map
for 2D

(h) Corresponding eye position density map
for 3D

Figure B.7: (a) Frame 234 from video #2; (b) disparity map; (c)&(d) eye position
density maps in 2D and 3D. (e) Frame 280 from video #2; (b) disparity map; (g)&(h)
eye position density maps in 2D and 3D.
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(a) Frame 165 from video #3 (left image) (b) Disparity map [162]

(c) Corresponding eye position density map
for 2D

(d) Corresponding eye position density map
for 3D

(e) Frame 335 from video #3 (left image) (f) Disparity map [162]

(g) Corresponding eye position density map
for 2D

(h) Corresponding eye position density map
for 3D

Figure B.8: (a) Frame 165 from video #3; (b) disparity map; (c)&(d) eye position
density maps in 2D and 3D. (e) Frame 335 from video #3; (b) disparity map; (g)&(h)
eye position density maps in 2D and 3D.
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(a) Frame 150 from video #4 (left image) (b) Disparity map [162]

(c) Corresponding eye position density map
for 2D

(d) Corresponding eye position density map
for 3D

(e) Frame 193 from video #4 (left image) (f) Disparity map [162]

(g) Corresponding eye position density map
for 2D

(h) Corresponding eye position density map
for 3D

Figure B.9: (a) Frame 150 from video #4; (b) disparity map; (c)&(d) eye position
density maps in 2D and 3D. (e) Frame 193 from video #4; (b) disparity map; (g)&(h)
eye position density maps in 2D and 3D.
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(a) Frame 500 from video #5 (left image) (b) Disparity map [162]

(c) Corresponding eye position density map
for 2D

(d) Corresponding eye position density map
for 3D

(e) Frame 610 from video #5 (left image) (f) Disparity map [69, 40]

(g) Corresponding eye position density map
for 2D

(h) Corresponding eye position density map
for 3D

Figure B.10: (a) Frame 150 from video #5; (b) disparity map with new drop high-
lighted; (c)&(d) eye position density maps in 2D and 3D. (e) Frame 610 from video
#5; (b) disparity map with new drop highlighted; (g)&(h) eye position density maps
in 2D and 3D. A different disparity map extraction algorithm is used in (f) because
the one from Sun et al. [162] would not detect the small droplet.
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(a) Frame 635 from video #5 (left image) (b) Disparity map [162]

(c) Corresponding eye position density map
for 2D

(d) Corresponding eye position density map
for 3D

Figure B.11: (a) Frame 635 from video #5; (b) disparity map for this frame with new
drop highlighted; (c) & (d) eye position density maps in 2D and 3D for this frame.
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(a) Frame 98 from video #7 (left image) (b) Disparity map [162]

(c) Corresponding eye position density map
for 2D

(d) Corresponding eye position density map
for 3D

(e) Frame 863 from video #7 (left image) (f) Disparity map [162]

(g) Corresponding eye position density map
for 2D

(h) Corresponding eye position density map
for 3D

Figure B.12: (a) Frame 98 from video #7; (b) disparity map; (c)&(d) eye position
density maps in 2D and 3D. (e) Frame 863 from video #7; (b) disparity map; (g)&(h)
eye position density maps in 2D and 3D.
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(a) Frame 170 from video #7 (left image) (b) Disparity map [162]

(c) Corresponding eye position density map
for 2D

(d) Corresponding eye position density map
for 3D

(e) Frame 285 from video #7 (left image) (f) Disparity map [69, 40]

(g) Corresponding eye position density map
for 2D

(h) Corresponding eye position density map
for 3D

Figure B.13: (a) Frame 170 from video #8; (b) disparity map; (c) & (d) eye position
density maps in 2D and 3D. (e) Frame 285 from video #8; (b) disparity map; (g)
& (h) eye position density maps in 2D and 3D. A different disparity map extraction
algorithm is used in (f) because the one from Sun et al. [162] would not detect the
boat.
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(a) Frame 450 from video #8 (left image) (b) Disparity map [69, 40]

(c) Corresponding eye position density map
for 2D

(d) Corresponding eye position density map
for 3D

Figure B.14: (a) Frame 450 from video #8; (b) disparity map for this frame; (c) &
(d) eye position density maps in 2D and 3D for this frame. A different disparity map
extraction algorithm is used in (b) because the one from Sun et al. [162] would not
detect the boat.
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