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Summary

Polytypic or datatype-generic programming is a form of generic programming where we
abstract over the shape of datatypes: we define functions by induction over the structure
of datatypes. In this thesis we show how to formalize polytypic programming within the
proof assistant Coq and show how we can do fully formal proofs over polytypic programs.

Although the formalization of polytypic functions and polytypic proofs is challeng-
ing, we provide an easy to use interface for the user which allows to define polytypic
functions in a way that is familiar from Generic Haskell and makes it possible to give
straight-forward proofs of properties of polytypic functions. Formal proofs are often time
consuming, but support for polytypic proofs reduces the so-called “burden of proof”. A
single polytypic proof corresponds to a family of proofs, proving that the property holds
for each instance of the polytypic function.

To define a polytypic function, a programmer must give instances for each type
constant (unit, int, sum and product) and give the type of the function when specialized to
types of kind ?. Given these, the function can be specialized to any datatype of any kind.
We have reified the notion of a polytypic function within Coq as a datatype PolyFn
with fields for exactly these components, and programmers familiar with Generic Haskell
should have little difficulty in translating their Generic Haskell definitions to Coq. Func-
tion specialization is then defined as an ordinary (dependently typed) function within
Coq. It takes a PolyFn as input and returns something of the type computed by type
specialization. This can be regarded as a formal proof that term specialization is correct
with respect to type specialization. The main difficulties in this part of the development
were the need for impredicativity of the type associated with kind ? and the absence of
universe polymorphism.

Implementing polytypic programming within a dependently typed language (such
as Coq) gives us some distinct advantages. Since we can formalize type specialization
within the host language, we get type checking of polytypic functions virtually for free.
Furthermore, since polytypic functions are represented by an ordinary datatype within
the host language they are first-class citizens. We can define polytypic functions in terms
of other polytypic functions and it becomes possible to define combinators on polytypic
functions.

We extend the development with polytypic properties and proofs. The structure of
a polytypic proof follows the structure of a polytypic function closely: the user gives
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a proof for each of the type constants and gives the property for types of kind ?. Like
for functions, we provide a lemma that says that polytypic proofs can be specialized to
arbitrary datatypes of arbitrary kinds. This can be interpreted as a formal proof that to
prove a property of a polytypic function it is indeed sufficient to give the instances of the
proof for the type constants.

Most problems in this part of the development stemmed from the fact that in the
specialization of a polytypic proof we need to refer to the specialization of polytypic
functions. A proof specialized to type T is a proof that a property holds for a particular
polytypic function specialized to T. Since the definition of term specialization involves a
number of type conversions, reasoning about these specialized terms involves reasoning
about heterogeneous equalities. However, while our definition of proof specialization is
rather involved this does not affect proofs as seen by the user. The user still only needs to
provide the proofs for the type constants. These proofs are straight-forward, and it should
be possible to automate them to some extent through the use of a custom tactics library.

We discuss how we can deal with (co)inductive datatypes and proofs, following the
same approach that is taken in Generic Haskell. Unfortunately, this requires some manual
work on behalf of the programmer or the prover, and the approach is limited because of
restrictions posed by the Coq guardedness checker. Nevertheless, our proof of concept
demonstrates that the Generic Haskell approach is feasible in a formal setting. Making the
approach more generic, or lifting the restrictions of the guardedness checker, is discussed
in future work.

We go on to review work related to our own. We mention a number of approaches
to generic programming and explain the difference to the approach on which this thesis
is based. We then compare our development to a number of other implementations of
polytypic programming in dependently typed languages, and discuss some work that is of
interest in improving our implementation of recursion.

We can extend the work in this thesis in a number of ways. There is some scope for
automation and syntactic sugar to make defining polytypic functions and proofs more
intuitive. We would like to extend the definition of polytypic properties to allow for
properties about multiple polytypic functions. Other useful extensions include type-
indexed types, the extraction of code to Generic Haskell and the addition of meta-
information to our type universe to allow for such polytypic functions as pretty printers
and parsers.

We conclude that our infrastructure allows for Generic Haskell-style polytypic pro-
gramming in the proof assistant Coq and that we have shown that fully formal (polytypic)
proofs about these programs can be straight-forward.
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Chapter 1

Introduction

The endless quest for higher levels of abstractions is one of the most fundamental topics
in programming language research and in computer science in general. Abstraction is
absolutely essential to computer science; even the most primitive programming languages
depend on abstract concepts such as bytes or variables: abstractions over sequences of
bits (an abstraction because they can be ordered high to low or low to high) and memory
locations (an abstraction because the programmer does not have to worry about the exact
value of the address, or deal with machine hardware details such as segmentation). As
the complexity of computer systems increases, abstraction needs to increase accordingly:
from simple concepts such as bytes to “larger” concepts such as procedures, abstract
datatypes, application programmer interfaces or network protocols, to advanced concepts
such as encapsulation in modern day imperative languages or mathematically inspired
abstractions such as monads in functional languages.

Most sciences, including mathematics itself, attempt to build abstract mathematical
models of the domain of discourse in order to study its properties. Abstraction here is key
as it allows to ignore inessentials: Pythagoras’ theorem about the length of the sides of a
triangle does not depend on the material that was used to build the triangle. This kind
of abstraction can be characterized as information neglect (Colburn and Shute, 2007).
Abstraction as used in computer science is different in a subtle but important way, and
can be described as information hiding: information that is essential in one context (the
exact ordering of the bits in a byte) can be ignored in another context. It is this distinction
that makes it possible to develop large software systems.

Abstraction is correspondingly important when we move beyond merely writing
software to mathematically proving that our software satisfies a given specification.
Software written at a low level of abstraction will be difficult to prove correct as there
are many irrelevant details that need to be taken into account. When we raise the level
of abstraction these details disappear and the proofs will be simpler. Again, this is not
just a case of information neglect but of information hiding: if a programming language
deals with variables rather than naked memory locations we can assume that all variables
correspond to valid areas of memory. In fact, the formal model used for reasoning would

7



Chapter 1. Introduction

not need to deal with “real” memory addresses at all. In contrast, languages such as C
which break this abstraction and allow address arithmetic on variables are notoriously
difficult to reason about.

When we do proofs about software systems, the use of abstraction is not only impor-
tant in the construction of the software but also in the construction of the proof itself. This
should come as no surprise: one of the most fundamental results of computer science
is the Curry-Howard isomorphism which (informally) states that proofs are programs.
Consequently, many of the concerns of software engineering also apply to proof engineer-
ing. This is especially important when we want to construct formal—that is, machine
verified—proofs. Information neglect is commonplace in informal mathematical proofs
where “inessential” details are simply left out, but is not usable when constructing proofs
to be mechanically verified. Instead, we need to make use of information hiding.

Genericity is almost as general a term as abstraction; it refers to parametrization
over some aspect of a system. The kind of genericity that we are interested in here is
parametrization over a datatype. This can take various forms. In (qualified) parametric
polymorphism (in functional languages) or templates (in imperative languages) parts
of the datatype are completely hidden and as a consequence programs must operate
uniformly over elements of these datatypes. The kind of genericity that is the topic of this
thesis is often referred to as datatype-genericity or polytypicity: the program can abstract
over a datatype but can nevertheless take advantage of the structure of the datatype. As
we shall see, this is a powerful abstraction mechanism which can be used both to define
programs and to define proofs over these programs.

In Section 1.1 we will discuss the topic of genericity in programming languages in
more detail, focusing eventually on polytypic programming. The topic of this thesis is the
construction of formal proofs over polytypic programs. We motivate the need for formal
proofs in Section 1.2 and briefly discuss the proof environment that we will use. Finally,
we will give an overview of the rest of the thesis in Section 1.4.

1.1 Generic Programming

Generic programming is a much over-used term, and to different people has different
meanings. What they all have in common is that they provide parametrization over some
aspect of a programming language, making it possible to write more general programs.

1.1.1 Parametrization by Type

Parametric polymorphism is a well-known example of such an abstraction, in this case
abstraction over a type. Let us take lists as an example. In Haskell, we can define two
separate datatypes to represent lists of integers and lists of characters:

data ListInt = INil | ICons Int ListInt
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1.1. Generic Programming

data ListChar = CNil | CCons Char ListChar

These two datatypes are identical except for the type of the elements contained in the
list. We can combine them into a single parametric datatype1 List, which takes a type a

as its argument and constructs lists containing elements of type a:

data List a = Nil | Cons a (List a)

To get the type of integer lists, all we need to do is instantiate a by the type Int.
Given a parametric type we can write a polymorphic function, which abstracts over the
parameters of the type. A function that takes an element of type List a as input does
not have any information about the type of the elements contained in the list: it cannot
examine the elements of the list, it can only rearrange or count them. Two examples of
polymorphic functions on lists are the length and append functions:

length :: List a ! Int

length Nil = 0

length (Cons x xs) = 1 + length xs

append :: List a ! List a ! List a

append Nil l = l

append (Cons x xs) l = Cons x (append xs l)

1.1.2 Parametrization by Function

Another form of genericity is parametrization by functions. This approach is a good fit
for functional languages, because they treat functions as first-class citizens. Functions
parametrized by other functions are called higher-order functions. An example of a
higher-order function is the mapping function for lists, which abstracts over the function
f that is mapped across the list:

mapList :: (a ! b) ! List a ! List b

mapList f Nil = Nil

mapList f (Cons x xs) = Cons (f x) (mapList f xs)

1.1.3 STL and Type Classes

In the world of object-oriented programming, generic programming is probably most
often associated with the Standard Template Library (STL) in C++. This library provides
containers, iterators and algorithms for many datatypes, and therefore allows for many
different forms of abstraction. There is a similar notion in Haskell called type classes,
which allows the programmer to define a function over elements of any type a as long as
a has certain properties. For example, we could define a sort function on lists:

1The term polymorphic datatype is also often used to describe List (Gibbons, 2006, Section 2.2), but
this is not strictly correct: a polymorphic type would have the form 8a . t, whereas the type of List is
la . t.

9



Chapter 1. Introduction

sort :: Ord a => List a ! List a

which acts on lists containing elements of any type a, as long as a satisfies the properties
defined by the type class Ord (in this case, the elements of type a must be comparable).

There are many more examples of different types of generic programming out there,
but discussing them all is beyond the scope of this thesis. We refer the reader to (Gib-
bons, 2006) for a comprehensive classification of generic programming methods. For a
thorough survey and comparison of generic programming methods used by the functional
programming community, see (Hinze et al., 2006a). We will now zoom in on the branch
of generic programming that we will use in this thesis.

1.1.4 Polytypic Programming

The idea of polytypic programming first appeared in the language PolyP (Jansson and
Jeuring, 1997), and a number of related approaches have appeared since such as the
style of polytypic programming often referred to as origami programming (Gibbons,
2006), and the approach of kind-indexed types (Hinze, 2000b) as implemented in Generic
Haskell. This last approach is the one that is the topic of this thesis.

The core concept of polytypic programming is that functions are defined by induction
on the structure of datatypes. Where for parametric polymorphism we abstract from the
occurrence of Int in List Int, here we abstract form the type constructor List itself.
The most important difference between polytypic programming and type classes is that in
addition to abstracting over the structure or shape of a datatype, polytypic programming
also allows us to exploit this structure when defining a function. This is in fact the main
feature of polytypic programming: we can write functions that behave differently for
different datatypes.

As an example, consider the equality function that can compare any two terms, as
long as they have the same type (independent of what that type is). This is a type-indexed
function: it will look at the type parameter it is given and based on that it will determine
how to compare the two elements it gets as input; comparing two boolean values is done
differently than comparing two lists. One way to implement this function is to supply
definitions for all datatypes we want to apply the function to:

data Bool = False | True

eqhBooli False False = True

eqhBooli False True = False

eqhBooli True False = False

eqhBooli True True = True

data List a = Nil | Cons a (List a)

eqhList ai Nil Nil = True

eqhList ai Nil (Cons x xs) = False
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1.1. Generic Programming

eqhList ai (Cons x xs) Nil = False

eqhList ai (Cons x xs) (Cons y ys) =

eqhai x y && eqhList ai xs ys

data Tree a b = Leaf a | Node b (Tree a b) (Tree a b)

eqhTree a bi (Leaf x) (Leaf y) = eqhai x y

eqhTree a bi (Leaf x) (Node y t1 t2) = False

eqhTree a bi (Node x t1 t2) (Leaf y) = False

eqhTree a bi (Node x t1 t2) (Node y u1 u2) =

eqhbi x y && eqhTree a bi t1 u1 && eqhTree a bi t2 u2

If we would continue this for all possible datatypes we would indeed get a function that
is able to compare any two elements of any type. However, this might be a little difficult
because there are infinitely many possible datatypes. This is the way equality is imple-
mented in (non-generic) Haskell, using type classes. Such an approach is often referred
to as ad-hoc polymorphism or overloading. There are some obvious disadvantages to this
approach. We still have to define the equality function for every datatype, and when we
define a new datatype we need to expand the equality function to include it.

So let us have a look at what the equality function actually does, and try to find some
similarities that we can use to make this function a little easier to write generically.

The first thing we notice is that when the constructors of the two terms we want to
compare are different the terms are never equal, so in that case we can always return
False. When the constructors are the same we want to compare the arguments to
the constructors: if it has no arguments (like Nil) we are done and the terms are
equal; otherwise we want to compare each of the arguments using the equality function
recursively with the type argument set to the type of the constructor argument.

Notice that we have described the behaviour of the equality function without using
any datatype-specific information. We can use this information to give a simple structural
representation of datatypes:

• We have a number of base types, like Int and Char.

• Every other datatype consists of a series of constructors, one of which is selected
each time we construct a term of that type. We represent this choice of constructors
as a disjoint union, denoted by the symbol +.

• Each individual constructor is represented as a tuple, containing an element for each
argument to the constructor. We denote this tuple of arguments by the symbol ⇥.

• If a constructor has no arguments it is represented by the unit element, denoted by
Unit.

Hopefully some examples will clarify this. We denote the structural representation of
a datatype by adding a � to the name:

11
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data Bool = False | True

type Bool� = Unit + Unit

data List a = Nil | Cons a (List a)

type List� a = Unit + a ⇥ (List a)

data Tree a b = Leaf a | Node b (Tree a b) (Tree a b)

type Tree� a b = a + b ⇥ (Tree a b) ⇥ (Tree a b)

There is a technicality here: in most functional languages there is no recursion on the type
level, except through algebraic datatypes. This means that we cannot refer to List� in
the definition of List�, and so we must refer to List instead. A detailed discussion of
this is beyond the scope of the current section and we will come back to it in Chapter 4.

We also need a way to build elements of these structural types, and we can do this by
the following datatype definitions:

data Unit = Unit

data a + b = Inl a | Inr b

data a ⇥ b = (a, b)

This means that we must translate all elements of arbitrary types to elements that only
use these structural types. For example, we should apply the following translations:

False :: Bool 7!
Inl Unit :: Unit + Unit

Cons 2 (Cons 3 Nil) :: List Int 7!
Inr (2, Inr (3, Inl Unit)) :: Unit + Int x (List Int)

Fortunately, this is a fairly straightforward translation which can usually be automated.
Now that we have determined the structure of datatypes, we can define a polytypic

function by induction on this structure, i.e. we define the function for all base types,
the unit type, the disjoint union of two types and a pair of types. We can then apply
the function to any datatype that is built up of these components. We call this the
specialization of a polytypic function to a particular type. The polytypic definition of
the equality function is (where we separate the structural type argument from the other
arguments by enclosing it in angular brackets for emphasis):

eqhTi :: T ! T ! Bool

eqhInti i1 i2 = eqInt i1 i2

eqhUniti u1 u2 = True

eqha+ bi (Inl x) (Inl y) = eqhai x y

eqha+ bi (Inr x) (Inr y) = eqhbi x y

eqha+ bi x y = False

eqha⇥ bi (x1, y1) (x2, y2) = eqhai x1 x2 && eqhbi y1 y2

To see how this polytypic equality function can be specialized, we will give a few
examples. Comparing the values True and False of type Bool should return False
because these values are not equal. We know that Bool translates to the structural type
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Unit + Unit, and that True and False correspond to Inr Unit and Inl Unit,
respectively. Therefore, the specialization will take the following form:

eqhBooli True False

= eqhUnit+ Uniti (Inr Unit) (Inl Unit)

= False

Because Bool has two possible constructors, we must first check whether the two
elements we want to compare were built using the same constructor. This is not the case,
and therefore the elements can never be equal.

For our next example we will use the slightly more complicated datatype List Int.
We want to compare the list containing only the integer 2 to the list containing 2 and 3. In
order to keep the example readable we will only expand definitions when necessary. Nil
will be expanded to Inl Unit (leftmost constructor with no arguments) and Cons x

y will be expanded to Inr (x, y) (rightmost constructor with a pair of arguments).

eqhList Inti (Cons 2 Nil) (Cons 2 (Cons 3 Nil))

= eqhUnit+ Int⇥ (List Int)i (Inr (2, Nil))

(Inr (2, (Cons 3 Nil)))

= eqhInt⇥ (List Int)i (2, Nil) (2, (Cons 3 Nil))

= eqhInti 2 2 && eqhList Inti Nil (Cons 3 Nil))

We now have two different cases we need to solve, and we will solve them separately,
starting with the first case. The first case compares the integer 2 to itself, and if eqInt is
defined correctly it should return True:

eqhInti 2 2

= eqInt 2 2 -- External definition of eqInt needed

= True

The second case is a little more complicated. First we need to expand the definitions
of List Int, Cons and Nil. We end up with two different constructors (as was the
case in the example for Bool), which will always return False—the empty list and the
list containing the integer 3 are obviously not the same.

eqhList Inti Nil (Cons 3 Nil)

= eqhUnit+ Int⇥ (List Int)i (Inl Unit) (Inr (3, Nil))

= False

Combining our two results we get True && False which gives an overall result
of False: the list containing only 2 is not the same as the list containing both 2 and 3.

In addition to the equality function we can define numerous other useful func-
tions by induction on the structure of types. Some well-known examples include map,
encode/decode, zip and fold.

1.1.5 Kind-Indexed Polytypic Programming

At the end of the previous section we managed to give a definition of equality that can be
specialized to any type of kind ?. In this section we will see how we can generalize this
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so that we can give a definition of equality that can be specialized to types of arbitrary
kinds: not just to Bool or List Int, but also to the type constructor List a. This
so-called kind-indexed polytypic programming is what sets the approach to polytypic
programming in Generic Haskell apart from most other approaches, and it is the style
that we want to formalize in this thesis.

To understand this approach, we need to understand what we mean by the kind of a
type. A kind can be thought of as a type of a type:

• We use the kind ? to represent nullary constructors (constructors without argu-
ments), e.g. Bool, Int, Char. We often call nullary type constructors simply
types.

• The kind k1 ! k2 represents type constructors that map type constructors of
kind k1 to type constructors of kind k2. For example, the type constructor List
maps the type a to the type List a, both of kind ?. Therefore, the kind of List
is ? ! ?.

To determine the kind of a type constructor there are two things to take into account:
the number of type arguments and their kinds. Let us consider a few examples:

data Bool = False | True

-- no arguments: kind ?

data Maybe a = Nothing | Just a

-- 1 argument a of kind ?: kind ? ! ?

data Tree a b = Leaf a | Node b (Tree a b) (Tree a b)

-- 2 arguments a and b of kind ?: kind ? ! ? ! ?

data GRose f a = GBranch a (f (GRose f a))

-- 2 arguments: f of kind ? ! ?; a of kind ?

-- This gives an overall kind of (? ! ?) ! ? ! ? to GRose.

In other words: we can view the kind ? as the kind of types that actually contain
values, and the kind ? ! ? as the kind of type constructors that take a type of kind ? and
return a type of kind ? (i.e. it takes a type containing values and returns a type containing
values). For example, there are values of type Bool :: ? and Int :: ? and there are no
values of type List :: ? ! ?, but there are values of type List Bool :: ? and List
Int :: ?.

We can now rewrite the signature for the polytypic equality function eq to

eqhT :: ?i :: T ! T ! Bool

emphasizing that eq is indexed by a type T of kind ?. Consider using the polytypic
equality function to compare two lists—we will need some way to compare the elements
of the lists. If we want to index the equality function by a type of a different kind, the
type of the polytypic equality function changes:
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eqhT :: ? ! ?i :: (a ! a ! Bool) ! T a ! T a ! Bool

In order to compare two lists, we must provide it with a function that can compare
the elements of the lists. One solution would be to write a different polytypic equality
function for each possible kind. This is a significant improvement over having to write
a separate function for every type, since the number of different kinds we might use is
likely to be reasonably small. Ideally we would like a single equality function that works
for all types of all kinds, but since the number of kinds is infinite we would never be able
to cover them all. Even if we would write an equality function for every kind that we
actually need, this goes against the generic programming philosophy. What we want is a
single equality function that works for all types.

The problem is that we cannot give a straight-forward type for this equality function:
the type changes depending on the kind of T. The key insight in (Hinze, 2000b) is that a
type-indexed function must have a kind-indexed type:

eqhT :: ki :: Equalhki T

where Equal is used as a type constructor indexed by a kind k, and can be defined as:

Equalhk :: ⇤i :: k ! ?

Equalh?i T = T ! T ! Bool

Equalhk1! k2i T = 8a . Equalhk1i a ! Equalhk2i (T a)

For the case where T :: ?, the type of the equality function will still be T ! T !
Bool, but for any other kinds the type will be different.

We can now give a type to the equality function for both T = Int :: ? and T =
List :: ? ! ? (and all other types of any kind):

eqhInt :: ?i
:: Equalh?i Int

= Int ! Int ! Bool

eqhList :: ? ! ?i
:: Equalh? ! ?i List

= 8a . Equalh?i a ! Equalh?i (List a)

= 8a . (a ! a ! Bool) ! List a ! List a ! Bool

The definition of eq also changes slightly. The previous definition relied on explicit recur-
sion for the sum and product case. However, where eq always received two parameters
before, it now receives a variable number of parameters, depending on the kind of the
type argument. For T :: ?, it gets two parameters: the two terms we want to compare for
equality; but for T :: ? ! ? it needs three parameters: the two terms to compare (e.g.
two lists) and a function to compare the elements contained in them. Since this number is
variable, it is impossible to explicitly list these parameters as arguments to the polytypic
function, or indeed use them in the definition when we recursively call eq. To solve
this problem, the recursion is abstracted out, and the sum and product case receive two
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additional parameters eqA and eqB that can be used to recursively determine equality on
terms of type a and b.

We can also think about this in a different way: rather than giving an instance for
a + b and a ⇥ b for some specific a and b—that is, for types of kind ?—we give an
instance for (+) and for (⇥)—types of kind ? ! ? ! ?. Hence, the instance for these
two cases will be provided with two additional arguments.

eqhT :: ki :: Equalhki T

eqhInti i1 i2 = eqInt i1 i2

eqhUniti u1 u2 = True

eqh+i eqA eqB (Inl x) (Inl y) = eqA x y

eqh+i eqA eqB (Inr x) (Inr y) = eqB x y

eqh+i eqA eqB x y = False

eqh⇥i eqA eqB (x1, y1) (x2, y2) = eqA x1 x2 && eqB y1 y2

1.2 Coq

Coq is a system developed by Gérard Huet and Thierry Coquand (Bertot and Castéran,
2004) for verifying proofs. Coq is often called a proof assistant because it greatly eases
the construction of a proof with the use of libraries and automated proof searching. There
are numerous advantages to using Coq and other proof assistants like Isabelle (Paulson,
1989), Lego (Luo and Pollack, 1992) and PVS (Owre et al., 1996):

• The final proof will be machine verified. A proof done by hand is never guaranteed
to be correct: some cases can be overlooked or there might be some hidden
assumptions that we are not aware of. If the proof is done in Coq this is not
possible, as Coq will ensure that all the cases are covered and any assumptions that
need to be made have to be stated explicitly so that we are always aware of them.

• Coq will keep track of all the necessary subgoals that need to be proven. This is
especially useful for long and complicated proofs where there might be a large
number of subgoals.

• Proof libraries can be developed in Coq to assist in the construction of (parts of)
proofs.

• In addition to proof libraries, Coq also supports specialized tactics. Tactics are
commands that can be applied to a goal. Their effect is to produce a new, possibly
empty, list of goals. If g is the input goal and g1 . . . g

k

are the output goals, the
tactic has an associated function that makes it possible to construct a solution of g

from the solutions of goals g

i

(Bertot and Castéran, 2004). Proofs about generic
programs will have a common ground and we can use tactics to automate these
parts of the proofs.
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The formal system underlying the Coq proof assistant is the Calculus of Constructions
(Coquand and Huet, 1988). The Calculus of Constructions is a dependently typed l-
calculus. Programs in the Calculus of Constructions correspond, via the Curry-Howard
isomorphism, to proofs in higher-order impredicative logic. It is a close cousin of
Martin-Löf type theory (which is, however, predicative) and is one of the most powerful
constructive logics in use today.

An advantage of this approach is that proofs written in Coq are terms in a small
and well understood mathematical calculus and can therefore be verified independently.
Hence, it is possible to write a proof verifier: a relatively simple tool which can be verified
in its entirety. Once verified, proofs in Coq are indeed guaranteed to be correct. In
contrast, proofs written using other proof assistants, such as PVS or Sparkle (de Mol
et al., 2002), are simply large bodies of instructions to those theorem provers. Therefore
the correctness of a proof written in PVS or Sparkle relies on the correctness of the entire
proof assistant. In particular, any future additional feature to one of these proof assistants
may make it possible to prove invalid properties. In Coq, new features (especially new
tactics) do not extend the core language so that generated proofs can still be verified
against the Calculus of Constructions.

Furthermore, Coq takes care to maintain a distinction between programs that are
proofs and programs that are meant to be executed. This mechanism is used to provide
program extraction. Programs can be written in Coq, proven correct in Coq and then
extracted to a general purpose programming language such as Haskell. The extracted
program can then be compiled by an optimizing compiler and run. This means that the
gap between the program which is proven correct and the program that is executed—often
quite large—is minimal.

1.3 Proofs and Generic Haskell

To be able to reason about Generic Haskell programs, we need a way of representing
such programs in the proof assistant Coq. In other words, we need an embedding of
Generic Haskell in Coq. There are some important semantic differences between these
two languages that need to be taken into consideration when trying to embed one in the
other.

A function in Coq can be either inductive or coinductive, but it must always be total.
For inductive functions Coq ensures the functions is total through a syntactic termination
check. A coinductive function is considered total when it productive, and Coq verifies
productivity through a syntactic guardedness check.

Haskell, on the other hand, allows functions to be partial. For example, we could
write a function that filters out all elements that satisfy a given property P from a list. If
the input list is infinite this function might go on forever without producing any result.
While there is no direct translation from such a partial Haskell function to Coq, it is
possible to encode partial functions in Coq. There are a number of ways to convert partial

17



Chapter 1. Introduction

functions to total functions in Coq. For example, we could restrict the input type to lists
of finite length (inductive datatypes). Another possibility is to use the partiality monad as
described in (Capretta, 2005). We will give some pointers to other methods in Section 5.5.

Generic Haskell lives in the same world as Haskell and polytypic functions written in
Generic Haskell can be partial. Programmers using our development will be able to write
polytypic functions directly in the Coq proof assistant, and reason about those functions
using all the tools available in Coq as well as the additional infrastructure for polytypic
proofs that we provide. To reason about a partial polytypic function the programmer must
use one of the available methods to encode this partiality as a total function in Coq.

1.4 Thesis Overview

Our work can be divided into three important stages: adding support for polytypic pro-
gramming to Coq (Chapter 2), providing the necessary infrastructure to enable polytypic
proofs about these programs (Chapter 3) and a way to deal with recursive datatypes and
proofs (Chapter 4).

Chapter 2 is based on (Verbruggen et al., 2008) and discusses polytypic functions
and their types. From a user’s perspective, these functions strongly resemble the corre-
sponding functions in Generic Haskell. Throughout this thesis we will use the polytypic
map function and its type Map as our working example, both of which are defined in
Section 2.4.

Once we have a polytypic definition for map, we can specialize it to any type in our
generic view. For example, the specialization of map to the type of integers is simply the
identity on integers:

Eval compute in specTerm tint map.

= fun (z : Z) => z

: specType tint Map

“Eval compute in” instructs Coq to compute the normal form of a term; tint is the
“code” that corresponds to the type of integers, and specTerm and specType are our
definitions of term and type specialization. In Section 2.6 we discuss term specialization.
Coq reports the type of the result as the specialization of Map (the type of map) to tint;
this evaluates to

Eval compute in specType tint Map.

= Z ! Z : Set

as expected (Set is Coq’s name for kind ?). Type specialization is discussed in Sec-
tion 2.5.

As a second more interesting example consider the type fork, which corresponds to
the type LA . A⇥ A (in Section 2.3 we discuss the encoding of fork in our generic
view). To map a function across a term of this type we need to be given a function to map
across its elements. Thus the specialization of map to fork is
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Eval compute in specTerm fork map.

= fun (A B : Set) (f : A ! B) (x : A ⇥ A) =>

let (a, b) := x in (f a, f b)

: specType fork Map

The second stage of our development is discussed in Chapter 3, which is based on
(Verbruggen et al., 2009). Polytypic properties are the Curry-Howard image of polytypic
types, and are therefore defined by induction on kinds. As our working example we will
use the property that map preserves identities:

map id = id

We define this property informally in Section 3.2.1 and give its formal definition in
Section 3.2.2.

Just like polytypic types, we can specialize a property to a particular type in our
universe, which is described in Section 3.4. For example, we can specialize the property
that map preserves identities to the type fork to get the following property:

= 8 (A : Set) (f : A ! A) (Hx : 8 x : A, f x = x)

(p : A ⇥ A), map f p = p

We discuss the construction of a polytypic proof for such a property in Section 3.2.3. The
interesting thing about polytypic proofs is that, just as for polytypic functions, the user
only needs to provide the proofs for each of the type constants; we can then specialize
this proof to any other type in our generic view. We discuss proof specialization and its
difficulties in Section 3.5.

The last hurdle in our development is to introduce recursion, which is far from a
trivial addition to the existing infrastructure. To avoid muddying the waters early on we
will not discuss recursion in Chapters 2 and 3, but consider it as a separate problem in
Chapter 4.

The approach to adding recursive datatypes and recursive proofs to our development
closely follows the approach taken in Generic Haskell. Unfortunately, this will require
some manual work on behalf of the programmer or the prover, and the approach is limited
because of restrictions posed by the Coq guardedness checker. Nevertheless, our proof of
concept demonstrates that the Generic Haskell approach is feasible in a formal setting.
Making the approach more generic, or lifting the restrictions of the guardedness checker,
is discussed in future work (Section 6.4).

We then finish off by discussing relevant related work in Chapter 5, followed by an
overview of future work and conclusions in Chapter 6.

Throughout this thesis we will often use some form of syntactic sugar to make
definitions more readable and easier to explain. The full definitions can always be found
in the Coq sources (Verbruggen, 2009).
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Chapter 2

Polytypic Programming

2.1 Introduction

The aim of our work is the development of an infrastructure in the proof assistant Coq for
doing proofs over polytypic programs. In this chapter we present the first step towards
this goal: the formalization of polytypic programming in Coq.

The approach to polytypic programming used in Generic Haskell was first introduced
by Ralf Hinze (Hinze, 2000b,a) and has been implemented as a preprocessor for Haskell
and as a language extension in Clean. It has since been recognized that in the context of a
dependently typed language polytypic programming can be expressed entirely within the
language and can be implemented simply as a library (for example, see Altenkirch and
McBride, 2003). Our implementation too takes the form of a Coq library.

The core idea is that if f is a polytypic function of type F we can specialize f to an
ordinary function f hTi over a datatype T. The type of f hTi is the specialization FhTi to
the kind of T. Term specialization ( f hTi) is defined by induction on the structure of T;
type specialization (FhTi) is defined by induction on the kind of T.

The aim of this chapter is to provide an implementation of polytypic programming
in Coq which is easily recognizable to programmers familiar with Generic Haskell or
Generic Clean. In particular, our contributions are:

• We provide an infrastructure for defining polytypic functions and their types which
is very similar to the infrastructure provided by Generic Haskell or Generic Clean
(Section 2.4).

• We formalize term specialization and type specialization in Coq as defined in
Generic Haskell/Clean. In particular, the definition of our type universe is identical
(modulo syntactic differences).

• The definition in Coq has one very important benefit over the existing implementa-
tion in Generic Haskell. Since we use dependent types to specify that the result
of specTerm T f must be of the form specType T F, our implementation is a
formal proof that the term specialization f hTi must have type FhTi.
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The final point is important since it paves the way towards our ultimate goal of pro-
viding an infrastructure in Coq to prove properties about Generic Haskell style programs,
which we discuss in Chapter 3. For this goal to succeed, we must have a definition
of polytypic programming which is both fully formal and as close as possible to the
definition in Generic Haskell or Generic Clean. This chapter provides such as definition.
After a brief introduction to Coq in Section 2.2, we define our generic view (universe) in
Section 2.3. We then show that the interface we provide to programmers in very similar
to the Generic Haskell interface (Section 2.4) and give the formalization of type and term
specialization in Sections 2.5 and 2.6.

We assume that the reader is familiar with Haskell, and has at least some cursory
knowledge of Generic Haskell or Generic Clean. We will not assume any prior knowledge
of Coq.

This chapter is an expanded version of (Verbruggen et al., 2008), and the Coq
sources associated with the formalization described in this chapter can be found online
(Verbruggen, 2009).

2.2 Coq

Before we delve into our formalization of polytypic programming, we will first give a
brief overview of Coq. Coq is a proof assistant developed in Inria (Bertot and Castéran,
2004) based on the calculus of constructions (higher-order predicate logic) extended with
inductive and coinductive datatypes and an infinite hierarchy of universes. The examples
we discuss in this section are all part of our development, and will be referred to in the
rest of the chapter.

2.2.1 Dependent Types

The calculus of constructions (Coquand and Huet, 1988) is a dependently typed lambda
calculus. This means that types are first-class and can be passed as arguments to functions
or returned as results. For example, we can define a function tupleT A n which
constructs the type of homogeneous tuples containing n elements of type A

1

A⇥ A⇥ · · ·⇥ A| {z }
n

as

Fixpoint tupleT (A : Type) (n : nat) {struct n} : Type :=

match n with

| O => unit

| S m => A * tupleT A m

end.

1For each definition associated with tupleT we have an equivalent definition associated with tupleS,
where the only difference is that the type A of the elements has kind Set instead of kind Type.
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Fixpoint introduces a recursive definition, and match denotes pattern matching
(comparable to case in Haskell). Since all functions in Coq must terminate, recursive
functions must be defined by structural induction on one of its arguments, denoted by the
keyword struct. The termination checker in Coq will verify that all recursive calls are
made to structurally smaller arguments. Notice that for the case of n = 0 we return the
unit type (() in Haskell) which has one element denoted by tt. Thus we will use tt to
denote the empty tuple.

To define a function that returns the ith element from an n-tuple, we must first define a
datatype that describes the set of valid indices {0, 1, . . . , n� 1}. This datatype is known
as index and is defined as

Fixpoint index (n : nat) : Set :=

match n with

| O => Empty_set

| S m => option (index m)

end.

The option type can be compared to the Maybe monad in Haskell:

Inductive option (A : Type) : Type :=

| Some : A ! option A

| None : option A.

Inductive introduces an inductive datatype. The syntax can be compared to the syntax
for GADTs in Haskell (Peyton Jones et al., 2006): we specify the kind of the datatype
and list the types of the constructors. The option type has two constructors: None and
Some.

The index type is parametrized by a natural number—a term, not a type—and is
therefore a so-called dependent datatype: a type depending on a term. For anyone not
familiar with Coq and dependently typed programming languages, the index type might
seem a little strange. One way to view it is as a family of types:

For n = 0 we get the empty type Empty set, so index 0 represents the type
containing no elements; i.e. for a tuple of length 0 there are no possible indices.

For n = 1 we get the type option (index 0), which further unrolls to option
Empty set. There are two ways to construct an element of type option A.
To use the Some constructor we need to provide an element of type A, since
Empty set is the empty type no such element exists. That leaves us with the
second constructor which can always be applied to give us the element None :

option Empty set. In other words, for a tuple of length 1 there is one possible
index which we call None.

For n = 2 we can unroll to get the type option (option Empty set). We
can again apply the second constructor to get the element None : option

(option Empty set), but we can now also apply the first constructor since
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we can supply it with an element of the correct type. In this case we have
A = option Empty set, and we have seen already that this contains the sin-
gle element None, so we can construct the element Some None : option

(option Empty set. This gives us two possible indices for tuples of length 2.

This pattern continues for all values of n: we take the n� 1 elements of type index
(n� 1), apply the Some constructor to all of them to get n� 1 elements of type index
n and add in None : index n to get a total of n elements of type index n.
Throughout this thesis we will often replace the syntax of indices by natural numbers for
readability, where 0 = None, 1 = Some None, etc.

Given the datatype index we can write the indexing operator that takes the ith
element from an n-tuple as

Fixpoint getT (A : Type) (n : nat) {struct n}

: index n ! tupleT A n ! A :=

match n return index n ! tupleT A n ! A with

| O => fun i _ => match i with end

| S m => fun i tup => match i with

| None => fst tup

| Some i’ => getT A m i’ (snd tup)

end

end.

The syntax “match e in T return s with” denotes a dependent pattern match
on e : T, where the type of each branch has type s (which may depend on both e and T,
but in this case only depends on e so we can leave the in clause empty). The use of an
underscore in the case for n = 0 indicates an implicit variable that can be automatically
inferred by Coq.

The case for n = 0 is slightly obscure. Since n = 0, we know that i must have type
index 0, which we have already said is the type containing no elements. Matching on
i will therefore not generate any possible cases and we end up with an empty match
construct. This prevents us trying to extract an element from an empty tuple. Also, since
the index i must always be within bounds due to its type, getT is a total function.

2.2.2 Proofs

From a logical perspective, Coq’s language corresponds to constructive higher-order
predicate logic where every program in Coq denotes the proof of its type. This fascinating
result is known as the Curry-Howard isomorphism, but a discussion of this topic would
take us too far afield; we refer the reader to the excellent textbook by Sørensen and
Urzyczyn (2006) instead.

For simple cases we can write these proofs as programs. For example, here is a proof
of modus ponens:

Lemma MP : 8 (A B : Prop), A ! (A ! B) ! B.

Proof (fun (A B : Prop) (a : A) (f : A ! B) => f a).
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“Lemma . . . Proof” is alternative syntax for “Definition . . . :=” to make it clear
that we are writing a proof rather than a program. Of course, there really is no distinction
and this is syntactic sugar only. We could also write

Definition MP : 8 (A B : Prop), A ! (A ! B) ! B :=

fun (A B : Prop) (a : A) (f : A ! B) => f a.

The two definitions of MP are indistinguishable. Coq does, however, make a formal
distinction between terms that are “programs” and terms that are “proofs” in the type
system. The type of a program (say, nat) lives in Set, as we saw above. The type of a
proof (that is, a proposition such as 1 = 1) lives in Prop (both Set and Prop live in
Type0). The reason for the two different sorts is that Coq supports program extraction:
Coq can extract all the computational content (that is, keep the programs but strip the
proofs) to be exported to OCaml or Haskell for efficient compilation.

For more complicated proofs, however, writing proofs by hand (as “programs”)
becomes difficult. Instead, we can make use of tactics. Tactics are small programs that
can search for proofs in a particular domain. The use of tactics enables proof automation,
where Coq can handle most of the more mundane parts of our proofs automatically. This
is a huge help in any realistic proof. One of the simplest tactics is auto, which attempts
to solve the proof by repeated application of the currently available hypotheses. Other
tactics include tactics for induction (i.e., recursion), inversion, arithmetic, etc. Moreover,
Coq supports a language called Ltac in which custom tactics can be written. All tactics
will search for proofs, and then return a proof if one can be found—which will be verified
by Coq. This means that a “rogue” tactic cannot compromise the soundness of the system.

We will not make any significant use of tactics in our development, so we refer
the reader to (Bertot and Castéran, 2004) for more information. However, the support
for tactics and proof automation is an important reason for choosing Coq for our work
(reasoning about polytypic programs) since they will ease the burden on users of our
system; see also Section 6.1.1.

2.2.3 Universe Inconsistencies

In the next few sections we will give a short overview of some of the major stumbling
blocks in dealing with Coq. In this section we will detail how we avoided universe
inconsistencies in our development.

One definition that we will need later in our proof is a characterization of heteroge-
neous tuples, in which every element has a different type. One natural way we might
consider is to define a function which given a tuple of types

(A, B, C)

constructs the type
A⇥ B⇥ C
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We can define this function as

Fixpoint gtupleT (n : nat) : tupleT Type n ! Type :=

match n return tupleT Type n ! Type with

| 0 => fun _ => unit

| S m => fun tup => fst tup * gtupleT m (snd tup)

end.

This definition works fine in most cases. However, if we want to construct a heterogeneous
tuple where the elements themselves are tuples, i.e a heterogeneous tuple of the form

tupleT A1 m1 ⇥ tupleT A2 m2 ⇥ · · ·

Coq will come back with the uninformative error

Universe inconsistency

To understand this error, we must know a little more about universes in Coq. Like in
Haskell, the natural number “5” has type nat. Like in Haskell, the type nat has kind
(or type) Set (Set is called ? in Haskell). Unlike in Haskell, however, this hierarchy
continues ad infinitum: Set has type Type0, Type0 has type Type1, and generally
Type

i

has type Type
i+1. Moreover, there is a coercion rule that if T : Type

i

then
T : Type

j

for any j � i. This stratification of Type prevents the encoding of logical
paradoxes (e.g., Hurkens, 1995).

The user cannot assign these universe levels manually, which is why we simply wrote
Type in the examples above. Coq attempts to assign a suitable level to each occurrence of
Type, infers the constraints on these levels, and verifies that there are no inconsistencies.
For tupleT we have

tupleT : Type
i

! nat! Type
j

(i  j)

The constraint (i  j) comes from the fact that the first argument, A : Type
i

, is used to
construct the new type A⇥ A⇥ · · ·⇥ A : Type

j

.
Now consider what happens when we try to define our tuple of tuple types. The

elements of the tuple are the result of tupleT and therefore have type Type
j

. The
constructed type itself must then have type

(tupleT A m : Type
j

, . . .) : tupleT Type
j

n

Since we pass Type
j

as the first argument to tupleT, and we have said that this first
argument has type Type

i

, we must have Type
j

: Type
i

which will hold only if j < i.
But the constraints i  j and j < i cannot both be satisfied, and Coq reports a universe
inconsistency: there is no suitable assignment that does not result in an inconsistency.

The problem is that Coq does not support universe polymorphism (Harper and Pollack,
1991). A work-around would be to duplicate the definition of tupleT which would then
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have type Type
i

0 ! nat! Type
j

0 . This would change the constraints to j

0 < i, i  j

and i

0  j

0, thus solving the inconsistency. This is, however, not a very elegant solution,
especially since it would lead to further code duplication elsewhere. Fortunately, we can
follow Morris et al. (2007b) and give an alternative definition of heterogeneous tuples
which avoids universe inconsistency without the need for duplication (Morris et al. refer
to this operator as the modality ⇤). Given a tuple

(x, y, z)

of elements of some type A and a function f : A ! Type, we construct the type

f x⇥ f y⇥ f z

This is implemented as

Fixpoint gtupleT (A : Set) (n : nat) (f : A ! Type)

: tupleS A n ! Type :=

match n return tupleS A n ! Type with

| O => fun _ => unit

| S m => fun tup => f (fst tup) * gtupleT m f (snd tup)

end.

While this definition is not formally equivalent, it is equally suitable for our purposes
and avoids the universe inconsistency. The indexing operator associated with gtupleT
takes the following form:

ggetT : 8 (A : Set) (n : nat) (f : A ! Type) (i : index n)

(tup : tupleS A n), gtupleT f tup ! f (getS i tup)

2.2.4 Equality

In Coq, equality is an inductive datatype with exactly one constructor (refl equal)
which says that x = x. Therefore, the expression x = y is true if and only if both x and
y reduce to the same term, under the usual b, d, i and z-reductions (see Section 4.3.2 for
an overview of these reductions).

Equality of Functions

This definition of equality implies the absence of an extensionality principle. Two
functions to sort the elements of a list (e.g. quicksort and mergesort) will be regarded as
different functions, even though they produce the same output for every possible input.
This lack of extensionality is not unreasonable: after all, quicksort and mergesort are not
the same function.

When we start defining properties about our polytypic functions in Chapter 3 this
definition of equality becomes important. The property we would like to define states
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that the polytypic map function preserves composition, i.e.

map f �map g = map ( f � g)

However, these two functions are constructed differently and because extensionality does
not hold in Coq they can never be equal. Fortunately, while we cannot prove that the two
functions are equal, we can prove that the result of the functions is the same given the
same input:

(map f �map g) x = map ( f � g) x

We will define all properties in Chapter 3 in this point-wise style to avoid the problem of
extensionality.

Extensionality as an Axiom

Another solution we could have adopted is to add an axiom of extensionality to Coq,
which does not lead to an inconsistent theory (The Coq Development Team, 2008a,
Section 5.2):

Axiom extensionality : 8 (A B : Set) (f g : A ! B),

(8 x : A, f x = g x) ! f = g.

We have opted not to add extensionality in this thesis because our development can be
done entirely without assuming the axiom. However, if desired, the axiom can be added
and polytypic properties and proofs can be modified accordingly.

Leibniz Equality

Another common notion of equality is Leibniz Equality, which can be defined in Coq as
follows:

Definition Leibniz_eq (A : Set) (x y : A) :=

8 (B : Set) (h : A ! B), h x = h y.

It can be shown that when extensionality is added as an axiom in Coq, Leibniz equality
coincides with pointwise equality (see Figure 2.1). Alternatively, it is possible to add an
axiom stating that pointwise equality implies Leibniz equality, from which extensionality
can be shown (see Figure 2.2). Therefore, the two axioms are equivalent.

Heterogeneous Equality

Another stumbling block regarding equality was that we often had to prove that two
elements a : A and b : B were equal, where A and B are provably equal but not
syntactically equal. This type of equality is usually referred to as heterogeneous or John
Major equality. We will come back to this in Section 3.3, where we also explain the
difficulties in doing proofs about heterogeneous equalities.
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Axiom extensionality : 8 (A B : Set) (f g : A ! B),
(8 (x : A), f x = g x) ! f = g.

Lemma Leibniz_fn : 8 (A B : Set) (f g : A ! B),
(8 (x : A), f x = g x) ! Leibniz_eq f g.

Proof.
intros.
unfold Leibniz_eq ; intros.
assert (f = g) by apply (extensionality _ _ H).
rewrite H0.
reflexivity.

Qed.

Remark Leibniz_eq_to_pointwise : 8 (A B : Set) (f g : A ! B),
Leibniz_eq f g ! (8 (x : A), f x = g x).

Proof.
intros.
unfold Leibniz_eq in H.
assert (f = g) by (change (id f = id g) ; apply H).
rewrite H0.
reflexivity.

Qed.

Figure 2.1: Extensionality to Leibniz Equality

Axiom Leibniz_fn : 8 (A B : Set) (f g : A ! B),
(8 (x : A), f x = g x) ! Leibniz_eq f g.

Lemma extensionality : 8 (A B : Set) (f g : A ! B),
(8 (x : A), f x = g x) ! f = g.

Proof.
intros.
assert (Leibniz_eq f g) by apply (Leibniz_fn _ _ H).
unfold Leibniz_eq in H0.
change (id f = id g) ; apply H0.

Qed.

Remark extensional_to_pointwise : 8 (A B : Set) (f g : A ! B),
f = g ! (8 (x : A), f x = g x).

Proof.
intros.
rewrite H.
reflexivity.

Qed.

Figure 2.2: Leibniz Equality to Extensionality
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2.2.5 Coinduction

Where all recursive functions and datatypes must be shown to be terminating, all corecur-
sive functions and datatypes need to productive. Productivity guarantees that in each step
the function takes at least one new constructor will be produced. Even if we can never
produce the complete result (which could be an infinite list), at least we know that each
step will give us a new piece of the puzzle.

Coq guarantees productivity of corecursive functions and datatypes using a syntactic
guardedness check. In practise this means that every corecursive call must be guarded
by a constructor of the output type of the function. For example, we can represent the
conatural numbers as

CoInductive coN : Set :=

| coZ : coN

| coS : coN ! coN.

and define infinity as

CoFixpoint inf := coS inf.

where the corecursive call to inf is clearly guarded by the constructor coS of the
datatype coN.

The second condition is that the constructor guarding the corecursive call cannot in
turn be passed as an argument to another function if that function cannot be unrolled
by Coq. In Figure 2.3 we use a simple example to show that a guarded call passed as
an argument to an unknown function can become unguarded. A corecursive function
is regarded as an unknown function, so any argument passed to it will be considered
unguarded.

This syntactic guardedness check is quite restrictive, especially considering the
fact that Coq cannot unroll any coinductive functions and must therefore treat them as
unknown functions during the guardedness check. We need to be careful in constructing
our proofs to avoid passing the results of corecursive calls as arguments to coinductive
(or otherwise “unknown”) functions.

In Chapter 4 we will show how we can use corecursive functions to deal with
the specialization of polytypic functions (and proofs) to (co)recursive datatypes. In
Section 4.5 we show that a small change in the construction of a particular proof can
make that proof unguarded.

2.3 Definition of the Generic View

A generic view is a set of codes that represent the datatypes that can be used as a target for
specialization of polytypic functions. For example, if we want to specialize the polytypic
map function to the product type (prod in Coq), we must pass the code for prod
(tprod), as well as the definition of map itself, as arguments to term specialization.
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CoInductive C : Set :=
| MkC : C ! C.

(* The corecursive call is guarded by the MkC constructor *)
CoFixpoint guarded_fn1 : C := MkC guarded_fn1.

(* This does not change the guardedness of its argument *)
Definition leave_guarded (c : C) : C :=
match c with

| MkC c’ => MkC c’
end.

(* The corecursive call is again guarded by MkC, but is then
passed as an argument to leave_guarded. Since we can unroll
the definition of leave_guarded, we can see that this does
not affect guardedness. *)

CoFixpoint guarded_fn2 : C := leave_guarded (MkC guarded_fn2).

(* Stripping the top-level constructor *)
Definition unguard (c : C) : C :=
match c with

| MkC c’ => c’
end.

(* Even though the corecursive call is guarded by MkC, this
constructor is stripped by the function unguard, leaving
it unguarded. This function will not be accepted by Coq.

CoFixpoint not guarded1 : C := unguard (MkC not guarded1).
*)

(* An undefined function. *)
Variable unknown_fn : C ! C.

(* Since Coq cannot unroll an unknown function it cannot accept
this definition - the unknown function could be unguard.
Therefore it is assumed that all guarded corecursive calls
become unguarded when passed to an unknown function.

CoFixpoint not guarded2 : C := unknown fn (MkC not guarded2).
*)

(* Coinductive functions cannot be unrolled in Coq and are thus
treated as unknown function by the guardedness checker. *)

Figure 2.3: Guarded Recursive Call Becomes Unguarded
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However, the result of term specialization should be a function on the product datatype
proper (prod). This means that we must define a mapping from codes in the generic
view to ordinary Coq datatypes. Such a mapping is known as a decoder. Similarly we
need to encode kinds and define the associated decoder. The definitions for our generic
view and its decoders are listed in Figure 2.4.

2.3.1 Kinding Derivations

In our definition of the generic view we do not define a datatype that encodes the grammar
of types, but rather encode kinding derivations to make sure that only well-kinded types
can be represented. An element

T : type nv ek k

is a type of kind k with at most nv free variables, whose kinds are defined in the kind
environment ek. This corresponds to a kinding derivation

ek ` T : k

The type of the environment ek is envk nv, which is an nv-tuple of kinds.
As an example, the rule for lambda abstraction encodes the kinding derivation

(k1, ek) ` T : k2

ek ` LT : k1 ! k2
LAM

Note that we are using De Bruijn indices to represent variables (de Bruijn, 1972). The
indices in a type of nv free variables are of type index nv (see Section 2.2.1), which
guarantees that no indices can be out of bounds.

2.3.2 Decoding Kinds

The decoder for kinds is straight-forward, but there is a subtlety with the choice of Set
as the decoding of kind ?. In the specialization of the arrow kind (Section 2.5), we will
construct types of the form

(8(a : decK star) . . . .) : decK star

Since the bound variable (a) ranges over the very type that is defined, the type of a must
be impredicative. As we have seen in Section 2.2.3, Type in Coq is not impredicative
(but stratified) and returning Type for the decoding of kind ? will result in a universe
inconsistency when we subsequently attempt to define type specialization. Hence we
choose Set instead, enabling the impredicative Set option2.

2Set was impredicative in Coq by default before version 8; this was changed mainly to support classical
reasoning. We will not use classical reasoning, however, and so making Set impredicative does not
compromise the soundness of our proofs (see The Coq Development Team, 2008a,b).
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Another way to solve this problem is to stratify kinds themselves, i.e. to assign
different levels to kind ? depending on nesting depth. We would then get something of
the form

(8(a : decK star
i

) . . . .) : decK star
j

Here we can use Type as the decoding of kind ?, with different universe levels assigned
to the different nesting levels of the kinds. We have opted to use impredicative Set
instead because we did not want to complicate the kind universe. It would be interesting
to see how the infrastructure would change if we use stratified kinds.

2.3.3 Decoding Types

The decoder for types is more involved. To decode a type T with nv free variables, we
must know the decoded types of the free variables in T. Hence, we need an environment
et of type envt that associates a decoded type T

i

with every free variable i in T. Since
the type of T

i

(its kind, if you prefer) depends on the type of i, each element in et has a
different type. We therefore calculate envt from the kind environment ek:

Definition envt nv (ek:envk nv) := gtupleT decK ek.

using the heterogeneous tuple described in Section 2.2.3.
We have already introduced two different environments (ek : envk nv and et :

envt nv ek) and we will need two more in the remainder of this chapter. As it may be
difficult to keep track of so many different environments we provide an overview of the
definitions and their purpose in Figure 2.5.

Armed with the type environment et we can define the decoder for types as shown
in Figure 2.4. Type constants map to their Coq counterparts, variables map to the
corresponding elements in the environment et, application maps to Coq type application
and lambda abstraction maps to Coq type-level functions. To decode the body of a lambda
abstraction we must add the type of the formal parameter to the type environment.

2.3.4 Example Types

In this section we will consider some examples of types, defined as codes in our generic
view with the associated decoding. Consider the type fork: LA . A⇥ A, which we can
encode in our generic view as

Definition fork : closed_type (karr star star) :=

let var := tvar 1 (star, tt) in

tlam (var None ⇥ var None).

The type of fork tells us that it is a closed type of kind ? ! ?. Unfortunately, the
notation (var i represents the ith variable) is slightly heavy, but the addition of syntactic
sugar is future work. We can decode fork to an actual Coq type using our type decoder:

Eval compute in decT fork tt.
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(* Codes for kinds *)
Inductive kind : Set :=
| star : kind
| karr : kind ! kind ! kind.

(* Decoder for kinds *)
Fixpoint decK (k : kind) : Type :=
match k with

| star => Set
| karr k1 k2 => decK k1 ! decK k2
end.

(* Grammar for type constants *)
Inductive type_constant : kind ! Set :=
| tc_unit : type_constant star
| tc_int : type_constant star
| tc_prod : type_constant (karr star (karr star star))
| tc_sum : type_constant (karr star (karr star star)).

(* Codes for types *)
Inductive type : 8 (nv : nat), envk nv ! kind ! Set :=
| tconst : 8 nv ek k, type_constant k ! type nv ek k
| tvar : 8 nv ek i, type nv ek (getS i ek)
| tapp : 8 nv ek k1 k2,

type nv ek (karr k1 k2) ! type nv ek k1 ! type nv ek k2
| tlam : 8 nv ek k1 k2,

type (S nv) (k1, ek) k2 ! type nv ek (karr k1 k2).

(* Syntactic sugar for types with no free variables *)
Definition closed_type (k : kind) : Set := type 0 tt k.

(* Syntactic sugar for type constants *)
Definition tunit := tconst 0 tt tc_unit.
Definition tint := tconst 0 tt tc_int.
Definition tprod := tconst 0 tt tc_prod.
Definition tsum := tconst 0 tt tc_sum

(* Decoder for types *)
Fixpoint decT (nv : nat) (k : kind) (ek : envk nv) (t : type nv ek k)

{struct t} : envt nv ek ! decK k :=
match t in type nv ek k return envt nv ek ! decK k with

| tconst nv ek k tc =>
fun et => match tc in type_constant k return decK k with

| tc_unit => unit
| tc_int => Z
| tc_prod => prod_set
| tc_sum => sum_set
end

| tvar nv ek i => fun et => ggetT i et
| tapp nv ek k1 k2 t1 t2 => fun et => (decT t1 et) (decT t2 et)
| tlam nv ek k1 k2 t’ => fun et arg => (decT t’ (arg, et))

end.

Figure 2.4: Generic View and Decoders
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(* Kind environment:
associates a kind with each free variable *)

Definition envk (nv : nat) : Set := tupleS kind nv.

(* Type environment:
associates a Coq type with each free variable *)

Definition envt (nv : nat) (ek : envk nv) := gtupleT decK ek.

(* Environment of the form ((a1, b1, . . .), (a2, b2, . . .), . . . , (a

np

, b

np

, . . .))
to keep track of free variable replacements
in type and term specialization *)

Definition envts (np nv : nat) (ek : envk nv) :=
tupleT (envt nv ek) np.

(* Environment containing the functions associated with
free variables in term specialization *)

Definition envf (np nv : nat) (ek : envk nv)
(Pt : PolyType np) (ets : envts np nv ek) :=

gtupleS (fun i => specType’ (tvar nv ek i) Pt ets)
(elements_of_index nv).

Figure 2.5: Overview of Environments

= fun A : Set => A ⇥ A

: decK (karr star star)

and similarly we can decode its kind as

Eval compute in decK (karr star star).

= Set ! Set : Type

As a slightly more complicated example let us consider the type maybe prod, which
has kind ? ! ? ! ?, and represents the type that is either the unit type or a product:
LA . LB . 1 + A⇥ B, defined in Coq as

Definition maybe_prod

: closed_type (karr star (karr star star)) :=

let var := tvar 2 (star, (star, tt)) in

tlam (tlam (1 + (var (Some None) ⇥ var None))).

We can decode this type to

Eval compute in decT maybe_prod tt.

= fun A B : Set => unit + A ⇥ B

which gives us a Coq function in two arguments of type Set. Note that here unit refers
to the predefined unit type in Coq, and ⇥ and + refer to the predefined product and sum
types.

Finally, we will show the code for apply : (? ! ?) ! ? ! ?, which takes a
type constructor F : ? ! ? and a type A : ? and applies F to A:

Definition apply :
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closed_type (karr (karr star star) (karr star star)) :=

let var := tvar 2 (star, (karr star star, tt)) in

tlam (tlam (var (Some None) @ var None)).

The decoding will again be an actual Coq function, using proper Coq application to apply
F to A:

Eval compute in decT apply tt.

= fun (F : Set ! Set) (A : Set) => F A

2.4 Defining Polytypic Functions

In this section we will explain how polytypic functions and their types can be defined
using our library. We think that readers familiar with Generic Haskell or Generic Clean
will experience a comforting familiarity reading our definitions; we will explain specifics
pertaining to Coq as they arise.

2.4.1 Polytypic Types

The type of a polytypic function is a (type-level) function which, given np arguments,
constructs a type of kind ?:

Record PolyType (np : nat) : Type := polyType {

typeKindStar : nary_fn np (decK star) (decK star)

}.

The Record keyword introduces a record of named fields; the difference between records
in Coq and records in Haskell is that records in Coq can be dependent. PolyType has
one parameter (np) and one field (typeKindStar) of type nary fn np Set Set.
A term nary fn n A B denotes the type

A ! . . . ! A| {z }
n

! B

We will refer to np as the number of arguments of the polytypic function (it does not
refer to the number of arguments of the specialized function, which varies with the kind
of the target type).

As readers who are familiar with polytypic programming will know, map is a poly-
typic function of two arguments; its type Map is

Definition Map : PolyType 2 :=

polyType 2 (fun A B => A ! B).

The type of the polytypic function describes the type of the operation that gets per-
formed by the polytypic function at the elements; in this case, map transforms elements of
type A to elements of type B. Specialization of a polytypic function uniformly lifts the op-
eration on elements to an operation on structures containing elements. The specialization
of the type of the polytypic function describes the type of the lifted operation.
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2.4.2 Polytypic Functions

To define a polytypic function, the user only needs to provide the definition for the type
constants; term specialization then takes care of the remaining types. A nice feature of an
implementation of polytypic programming in a dependently typed language is that the
definition of a polytypic function is simply another record, making it very clear to the
user what information is required to define a polytypic function. Reifying a polytypic
function as a record also makes polytypic functions first-class, i.e. they become ordinary
objects in the host language and can be passed as arguments and returned as results of
other functions. The record representing polytypic functions is defined as follows:

Record PolyFn (np : nat) (Pt : PolyType np) : Type :=

polyFn {

punit : specType tunit Pt ;

pint : specType tint Pt ;

pprod : specType tprod Pt ;

psum : specType tsum Pt

}.

In words, a polytypic function has a (polytypic) type of np arguments, and contains
definitions for the type constants tunit, tint, tprod and tsum (for simplicity’s sake,
we do not consider other type constants). The type of these fields is determined by type
specialization (explained in Section 2.5), which ensures that users cannot define ill-typed
polytypic functions. For the specific case of Map, this simplifies to

punit : unit ! unit

pint : Z ! Z

pprod : 8 (A B : Set), (A ! B) !
8 (C D : Set), (C ! D) ! A ⇥ C ! B ⇥ D

psum : 8 (A B : Set), (A ! B) !
8 (C D : Set), (C ! D) ! A + C ! B + D

We can ask Coq to simplify these types for us, which is a great help when defining
the polytypic function. We can now define polytypic map as

Definition map : PolyFn Map :=

polyFn Map

(fun (u : unit) => u)

(fun (z : Z) => z)

(fun (A B : Set) (f : A ! B)

(C D : Set) (g : C ! D) (x : A ⇥ C) =>

let (a, c) := x in (f a, g c))

(fun (A B : Set) (f : A ! B)

(C D : Set) (g : C ! D) (x : A + C) =>

match x with

| inl a => inl _ (f a)

| inr c => inr _ (g c)

end).
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(* Specialize polytypic type Pt to kind k *)
Fixpoint kit (k : kind) (np : nat) (Pt : PolyType np) {struct k}

: tupleT (decK k) np ! decK star :=
match k return tupleT (decK k) np ! decK star with

| star => uncurry (typeKindStar Pt)
| karr k1 k2 => fun tup => quantify_tuple

(fun As => kit k1 Pt As ! kit k2 Pt (apply_tupleT tup As))
end.

(* Apply kit k Pt to the tuple \flrtup{t}{\np} *)
Definition specType’ (np nv : nat) (k : kind) (ek : envk nv)

(t : type nv ek k) (Pt : PolyType np) (ets : envts np nv ek)
: decK star :=

kit k Pt (replace_fvs t ets).

(* Type specialization for closed types *)
Definition specType (np : nat) (k : kind) (t : closed_type k)

(Pt : PolyType np) : decK star :=
specType’ t Pt (ets_tt np).

Figure 2.6: Type Specialization

This is virtually identical to the definition we would give in Generic Haskell or
Generic Clean (see Section 5.3.2 for the Generic Haskell definition), with one exception
perhaps: since Coq is explicitly typed, the fields of the polytypic function take explicit
type arguments. For example, in Haskell we would write the case for the product type as

lf -> lg -> lx -> let (a, c) = x in (f a, g c)

2.5 Type Specialization

As we saw in Section 2.4, a polytypic function map has a polytypic type Map, and
the specialization specTerm T map of map to a type T has the specialized type
specType T Map. In this section we explain how to define

specType : 8 np k, closed_type k ! PolyType np ! Set

The full definition of type specialization is given in Figure 2.6.
Type specialization is a two-phase process. We first define the kind-indexed type kit

k Map by induction on k. Informally, this can be defined as

Pthki : k ! · · ·! k ! ?

Pth?i T1 . . . T

np

= (user defined)

Pthk1 ! k2i T1 . . . T

np

= 8A1 . . . A

np

.

Pthk1i A1 . . . A

np

! Pthk2i (T1 A1) . . . (T

np

A

np

)
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The case for kind ? is supplied by the user (PolyType, see Section 2.4). We can rewrite
the case for arrow kinds as

Pthk1 ! k2i = LT1 . . . T

np

. 8A1 . . . A

np

. (. . .)

to make it more obvious that we must return a type-level function which, given np

arguments, returns a universally quantified type. It is however difficult to give a recursive
definition of this type; a seemingly trivial but very helpful insight is that it is much easier to
work with an uncurried form (it is interesting to note that Altenkirch and McBride (2003)
come to the same conclusion). This gives us the following definition of Pthk1 ! k2i:3

L(T1, . . . , T

np

) . 8A1 . . . A

np

.

Pthk1i (A1, . . . , A

np

) ! Pthk2i (T1 A1, . . . , T

np

A

np

)

To construct this function we first construct the function where both the T’s and A’s are
uncurried:

L(T1, . . . , T

np

) . L(A1, . . . , A

np

) .

Pthk1i (A1, . . . , A

np

) ! Pthk2i (T1 A1, . . . , T

np

A

np

)

This can be translated to the correct type using the function quantify tuple, which
takes a function of the form

L(A1, . . . , A

np

) . T

to the universally quantified type

8A1 . . . A

np

. T

This function can be implemented as follows:

Fixpoint quantify_tuple (A : Type) (n : nat)

: (tupleT A n ! Set) ! Set :=

match n return (tupleT A n ! Set) ! Set with

| O => fun f => f tt

| S m => fun f =>

8 a : A, quantify_tuple A m (fun As => f (a, As))

end.

Paraphrasing, kit k Pt constructs a type that calculates the required specialized
type given a tuple (T1, . . . , T

np

); the second step in type specialization is therefore to
construct this tuple. Hinze states that specialization of a polytypic function pfn of type
Pt to a type T has type

3It is possible to uncurry the first part of the definition because the function is never partially applied. We
could also leave the second set of arguments (the A’s) uncurried, but this generates unreadable types.
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pfnhT : ki : Pthki (bTc1, . . . , bTc
np

)

The definition of the floor operator bc
i

is slightly involved, so we will consider an example
first4. The type Map specialized to the datatype Tex = LA B C . A + B⇥ C should be

(A1 ! A2) ! (B1 ! B2) ! (C1 ! C2) ! Tex A1 B1 C1 ! Tex A2 B2 C2

Recall that the polytypic type Map, which describes the type of the operations map
performs at the elements of a structure, is LA B . A ! B. When we specialize map to a
specific datatype, we will need an instance of this operation for each of the arguments of
that datatype. Hence if the datatype has nv parameters, we will need nv copies of this
operation, each of which will need np type arguments. To keep track of all of these types,
we construct an environment ets : envts of the form

((A1, B1, . . .), (A2, B2, . . .), . . . , (A

np

, B

np

, . . .))

The floor operation bTc
i

replaces each free variable in T (each argument of the
datatype) by the ith variable associated with it by extracting the ith tuple from the
environment and then decoding T using this tuple as the type environment (Section 2.3.3).

Returning to our example, for every LA . · · · we encounter during term special-
ization we will add the elements of the tuple (A1, . . . , A

np

) to the front of the tuples
already in ets (Section 2.6.4). The type of the specialization of the body of the lambda
abstractions in Tex will then be

Pthki (bA + B⇥ Cc1, . . . , bA + B⇥ Cc
np

)

When we specialize a function to a closed type (nv = 0), ets is the tuple contain-
ing np empty tuples (constructed by ets tt np), and (bTc1, . . . , bTc

np

) reduces to
(T, . . . , T). From a user’s perspective (who will usually specialize polytypic functions
only to closed types), this means that all np arguments of a polytypic function will be
initialized to the same type.

The full definition of type specialization is given in Figure 2.6; kit constructs
kind-indexed types and specType’ returns the application of a kind-indexed type to
a tuple (T1, . . . , T

np

). This tuple is constructed by replace fvs, whose definition is
straight-forward and can be found in the Coq sources (Verbruggen, 2009).

2.6 Term Specialization

A polytypic function is fully specified by giving its polytypic type and the cases for all
type constants. The cases for all other types can be inferred. Informally, we can define

4Hinze (2000b) uses naming conventions to define the floor operator, but of course naming conventions
do not work in a formal setting.
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2.6. Term Specialization

the specialization of a polytypic function pfn of type Pt to a type T : k as

pfnhT : ki : Pthki (bTc1, . . . , bTc
np

)

pfnhC : k

C

i = (user defined)

pfnhA : k

A

i = f

A

pfnhLA . T : k1 ! k2i = lA1 . . . A

np

. l f

A

. pfnhT : k2i
pfnhT U : k2i =

(pfnhT : k1 ! k2i) (bUc1, . . . , bUc
np

) (pfnhU : k1i)

In this section, we will show how to define the equivalent definition in Coq. The type
of term specialization is

specTerm : 8 (np : nat) (k : kind) (t : closed_type k)

(Pt : PolyType np) (pfn : PolyFn Pt), specType t Pt

Since specTerm returns a term of the type computed by specType, the definition
of specTerm is a formal proof that term specialization returns terms of the required
type. The definition of term specialization is shown in Figure 2.7; it relies on a number of
auxiliary lemmas which we do not show but will explain below. Again, the full definitions
can be found in the Coq sources. In the remainder of this section we will describe each of
the clauses in the definition of specTerm’.

2.6.1 Constants

The case for type constants seems straight-forward. After all, we should simply use the
definition given by the user. But there is a subtlety we must deal with. Consider the case
for the product constant (tprod). As part of the definition of the polytypic function, the
user will have provided a function pprod of type (Section 2.4.2)

pprod : specType tprod Pt

Recall from Figure 2.4 that tprod is syntactic sugar for

tconst 0 tt tc_prod

As described in Section 2.3, instances of type encode kinding derivations; tprod
encodes the derivation in the empty environment (tt)

∆ ` tconst tc prod : ? ! ? ! ?
CONST

When tc prod is used inside another type, however, it may well be used in an
environment where there are free variables. This arises, for instance, in the use of
tc prod in the definition of fork in Section 2.3.4, where instead we have a derivation
of the form

A : ? ` tconst tc prod : ? ! ? ! ?
CONST
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(* Specialize the polytypic function pfn to type t *)
Fixpoint specTerm’ (np nv : nat) (ek : envk nv) (k : kind)

(t : type nv ek k) (Pt : PolyType np) (pfn : PolyFn Pt) {struct t}
: 8 (ets : envts np nv ek) (ef : envf nv ek Pt ets),

specType’ t Pt ets :=
match t in type nv ek k
return 8 (ets : envts np nv ek),
envf nv ek Pt ets ! specType’ t Pt ets

with

| tconst nv ek k tc => fun ets ef =>
match tc return specType’ (tconst tc) Pt ets with

| tc_unit => convertS convert_tconst_specTerm (punit pfn)
| tc_int => convertS convert_tconst_specTerm (pint pfn)
| tc_prod => convertS convert_tconst_specTerm (pprod pfn)
| tc_sum => convertS convert_tconst_specTerm (psum pfn)
end

| tvar nv ek i =>
fun ets ef => convertT ith_index_f (ggetS i ef)

| tapp nv ek k1 k2 t1 t2 => fun ets ef =>
convertS convert_tapp_specTerm
((instantiate_tuple (replace_fvs t2 ets)
(specTerm’ t1 pfn ets ef)) (specTerm’ t2 pfn ets ef))

| tlam nv ek k1 k2 t’ =>
fun ets ef => dep_curry
(fun As => kit k1 Pt As !

kit k2 Pt
(apply_tupleT (replace_fvs (tlam t’) ets) As))

(fun As : tupleT (decK k1) np =>
(fun fa : kit k1 Pt As =>
(convertS (convert_tlam_specTerm _ _ _ _)
(specTerm’ t’ pfn (add_to_ets As ets) (add_to_ef fa ef)))))

end.

(* Term specialization for closed types *)
Definition specTerm (np : nat) (k : kind) (t : closed_type k)

(Pt : PolyType np) (pfn : PolyFn Pt) : specType t Pt :=
specTerm’ t pfn (ets_tt np) tt.

Figure 2.7: Term Specialization

42



2.6. Term Specialization

In general, we need a function of type

specType’ (tconst nv ek tc_prod) Pt ets

for some number of free variables nv and associated kind environment ek (ets is the
environment we need for the type arguments in the generated type, and will be discussed
later). We could generalize the definition of the polytypic function given in Section 2.4.2
to

Record PolyFn (np : nat) (Pt : PolyType np) : Type :=

polyFn {

. . .
pprod : 8 (nv : nat) (ek : envk nv) (ets : envts np nv ek),

specType’ (tconst nv ek tc_prod) Pt ets ;

. . .
}.

However, this complicates both the definition of a polytypic function and the instances
the user must provide. Fortunately, it turns out that a polytypic type specialized to
tconst nv ek tc prod is the same as that type specialized to tconst 0 tt

tc prod, as proven by the following weakening lemma:

Lemma 1 (convert tconst specTerm)

8 nv ek tc Pt ets,

specType (tconst 0 tt tc) Pt

= specType’ (tconst nv ek tc) Pt ets

Proof. Unfolding definitions (Figure 2.6), we find that we have to prove

(btconst 0 tt tcc1, . . .) = (btconst nv ek tcc1, . . .)

We can prove that the elements of the tuples are equal: decoding a type constant is
independent of the environment provided. We can complete the proof by induction on the
length of the tuples (np). ⇤

2.6.2 Variables

Recall from the informal definition of term specialization at the start of Section 2.6 that
in the case for variables we return the function f

A

constructed in the clause for lambda
abstraction. However, this informal definition relies on naming conventions which do not
translate to a formal setting. Instead we need an environment ef containing the appropriate
function for each free variable.

The tricky part is to assign a type envf to ef , since each element in ef has a different
type. We can compute envf using the heterogeneous tuple defined in Section 2.2.3 as
follows5

5gtupleS is a variation on gtupleT that returns a Set rather than a Type.
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Definition envf np nv ek Pt ets :=

gtupleS (fun i => specType’ (tvar nv ek i) Pt ets)

(elements_of_index nv).

The type of the ith function is the specialized type of the ith free variable. Thus, we
map specType across the tuple containing all possible indices of type index nv

constructed by elements of index. Given ef we can simply return the ith element
in ef as the specialized term for variable i.6 The construction of ef will be considered in
the case for lambda abstraction (Section 2.6.4).

2.6.3 Application

To specialize a polytypic function pfn of type Pt to a type application (T U) we first
specialize to T : k1 ! k2, which will create a term of the form

specTerm’ T pfn ets ef : 8 A1 . . .A
np

,

kit k1 Pt (A1, . . . ,A
np

) ! kit k2 Pt (bTc1 A1, . . ., bTc
np

A
np

)

We instantiate the type variables A1 . . .A
np

in specTerm’ T pfn ets ef to the
elements of the tuple (bUc1, . . . , bUc

np

) using the following function:

instantiate_tuple (A : Type) (n : nat) :

8 (args : tupleT A n) (X : tupleT A n ! Set),

quantify_tuple X ! X args

(see Coq source for a full definition). This leaves us with the following term

(specTerm’ T pfn ets ef) bUc1 . . . bUc
np

: kit k1 Pt (bUc1, . . . , bUc
np

) ! kit k2 Pt (bTc1 bUc1, . . . , bTc
np

bUc
np

)

We can apply this to the polytypic function specialized to the type U, which serendipi-
tously has exactly the right type, and get a term of type

kit k2 Pt (bTc1 bUc1, . . . , bTc
np

bUc
np

)

Since we are specializing to the application (T U), the return type we expect here is

specType’ (tapp T U) Pt ets

We can use the following lemma to complete the definition for application

Lemma 2 (convert tapp specTerm)

8 np k1 k2 Pt ets (T : k1 ! k2) (U : k1),

kit k2 Pt (bTc1 bUc1, . . . , bTc
np

bUc
np

)
= specType’ (tapp T U) Pt ets

6Due to the way we calculate envf, we do need one technical lemma (ith index f) which says that
applying a function to the ith element of elements of index is the same as applying that function to i

itself.
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Proof. Unfolding definitions (Figure 2.6), we find that we have to prove that

(bTc1 bUc1, . . . , bTc
np

bUc
np

) = (bT Uc1, . . . , bT Uc
np

)

We can prove that the elements of the tuples are equal: replacing free variables before or
after application gives the same result. We can complete the proof by induction on the
length of the tuples. ⇤

2.6.4 Lambda Abstraction

In this section we will look at the specialization of a polytypic function pfn of type Pt
to a lambda abstraction (LA . T). The type of this specialization must be

specTerm’ (tlam T) pfn ets ef

: specType’ (tlam T) Pt ets

which can unfolded to

8 A1 . . .A
np

, kit k1 Pt (btlam Tc1, . . . , btlam Tc
np

) !
kit k2 Pt (btlam Tc1 A1, . . . , btlam Tc

np

A
np

)

We can construct this term in two steps. We use the specialization of pfn to T to construct
the body of the expression and use currying to get arguments of the correct type.

Dependent currying

We can construct the required term by first defining a function of the form

fun (A1, . . . ,A
np

) fA => . . .

which we can curry to get

fun A1 . . .A
np

fA => . . .

Currying this function is, however, not entirely straight-forward. The type of the body
of this function

kit k2 Pt (btlam Tc1 A1, . . . , btlam Tc
np

A
np

)

depends on the actual argument tuple that is supplied. We therefore need a dependent
curry function, which can be defined as

Fixpoint dep_curry (A : Type) (n : nat)

: 8 (C : tupleT A n ! Set) (f : 8 (x : tupleT A n), C x),

quantify_tuple C :=

match n

return 8 (C : tupleT A n ! Set)

(f : 8 (x : tupleT A n), C x), quantify_tuple C

with

| O => fun _ f => f tt

| S m => fun c f a =>

dep_curry A m (fun args => c (a, args))
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(fun args => f (a, args))

end.

Specialization to T

To construct the body of the result, we use the specialization of pfn to T:

specTerm’ T pfn (add_to_ets (A1, . . . ,A
np

) ets) (add_to_ef fA ef)

: specType’ T Pt (add_to_ets (A1, . . . ,A
np

) ets)

This does not have the correct type, so we need the following conversion lemma:

Lemma 3 (convert tlam specTerm)

8 k2 T Pt ets (A1, . . . ,A
np

),
specType’ T Pt (add_to_ets (A1, . . . ,A

np

) ets)

= kit k2 Pt (btlam Tc1 A1, . . . , btlam Tc
np

A
np

)

Proof. Unfolding definitions (Figure 2.6) we find that we have to prove that

(bTc1, . . . , bTc
np

) using (add to ets (A1, . . . ,A
np

) ets)
= (btlam Tc1 A1, . . . , btlam Tc

np

A
np

) using ets

Again, we can prove that the elements of the tuples are equal: decoding a lambda
abstraction and then applying it to A is the same as decoding the body of the lambda
abstraction with A added to the front of the type environment. We can complete the proof
by induction on the length of the tuples. ⇤

Adding f

A

to the function environment

Another difficulty in constructing the specialized term for lambda abstraction is in adding
the function f

a

to the environment ef . The existing environment ef has an entry for each
free variable in tlam T, but variable i in the lambda abstraction will become variable
Some i in the body T of the lambda abstraction.

Therefore the function f

X

associated with the ith variable X in the old environment:

f

X

: specType’ (tvar nv ek i) Pt ets

should have type

f

X

: specType’ (tvar (S nv) (k1, ek) (Some i)) Pt

(add_to_ets (A1, . . . ,A
np

) ets)

in the new environment. When every function in ef has been shifted in this way, we can
add the new function f

A

to the start of ef. The following lemma proves that the two types
for f

X

above are indeed equal:

Lemma 4 (convert envf)
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8 nv ek k1 i Pt ets (A1, . . . ,A
np

),
specType’ (tvar nv ek i) Pt ets

= specType’ (tvar (S nv) (k1, ek) (Some i)) Pt

(add_to_ets (A1, . . . ,A
np

) ets)

Proof. Unfolding definitions (Figure 2.6), we find that we have to prove

(btvar nv ek ic1, . . .) using ets
= (btvar (S nv) (k1, ek) (Some i)c1, . . .)

using (add to ets (A1, . . . ,A
np

) ets)

We can prove that the elements of the tuples are equal: to decode variable i we take the
ith element from the environment; this is the same as taking the element Some i from an
environment containing one extra element. We can complete the proof by induction on
the length of the tuple. ⇤

In addition to shifting each function already in the environment, we also need to
convert the type of the function we want to add:

Lemma 5 (convert envf elem)

8 nv ek k1 Pt ets (A1, . . . ,A
np

),
kit k1 Pt (A1, . . . ,A

np

)
= kit k1 Pt (btvar (S nv) (k1, ek) Nonec1, . . .)

Proof. This reduces to a proof of

(A1, . . . ,A
np

)
= (btvar (S nv) (k1, ek) Nonec1, . . .)

using (add to ets (A1, . . . ,A
np

) ets)

Which is trivially true, because decoding the first variable (None) takes the first element
from the type environment, which will always be an element from the tuple of A’s. We
can complete this proof by induction on np. ⇤

2.7 Examples of Polytypic Types and Functions

To conclude this section on polytypic functions and types, we will consider a number of
additional polytypic functions.

2.7.1 Equality

We have already discussed the polytypic equality function in Section 1.1.5, and here we
will give its formal definition in Coq. This function compares any two elements of the
same type for equality, so its polytypic type can be given as:
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Definition Compare : PolyType 1 :=

polyType 1 (fun A => A ! A ! bool).

Specializing this type to the datatype fork (defined in Section 2.3.4) of kind ? ! ?

gives us:

Eval compute in specType fork Compare.

= 8 A : Set, (A ! A ! bool) ! A ⇥ A ! A ⇥ A ! bool

The polytypic equality function itself is defined using the PolyFn record type:

Definition equal : PolyFn Compare :=

polyFn Compare

(fun x y => true)

Zeq_bool

(fun (A : Set) (f : A ! A ! bool)

(B : Set) (g : B ! B ! bool)

(x : A ⇥ B) (y : A ⇥ B) =>

let (a , b ) := x in

let (a’, b’) := y in

f a a’ && g b b’)

(fun (A : Set) (f : A ! A ! bool)

(B : Set) (g : B ! B ! bool)

(x : A + B) (y : A + B) =>

match (x, y) with

| (inl a, inl a’) => f a a’

| (inr b, inr b’) => g b b’

| otherwise => false

end).

which can also be specialized to give us the equality function for type fork:

Eval compute in specTerm fork equal.

= fun (A : Set) (f : A ! A ! bool) (x y : A ⇥ A) =>

let (a1, a2 ) := x in

let (a1’, a2’) := y in

(f a1 a1’) && (f a2 a2’)

2.7.2 Less Than

A variation on the polytypic equality function is given by less than, below. Like
equality, less than will return false when its two arguments have a different structure,
but unlike equality it uses a less-than operator to compare integers. One can think of this
function as “pairwise comparison”.7

This comparison function shares its polytypic type with the polytypic equality func-
tion: Compare (defined above). It can be defined as:

7Lexicographical ordering would perhaps be more sensible on arbitrary data structures, but is a more
involved example. We use structural comparison instead to avoid getting bogged down in the details of the
example.
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Definition less_than : PolyFn Compare :=

polyFn Compare

(fun x y => false)

(fun x y => Zlt_bool x y)

(fun (A : Set) (f : A ! A ! bool)

(B : Set) (g : B ! B ! bool)

(x : A * B) (y : A * B) =>

let (a, b) := x in let (a’, b’) := y in

f a a’ && g b b’)

(fun (A : Set) (f : A ! A ! bool)

(B : Set) (g : B ! B ! bool)

(x : A + B) (y : A + B) =>

match (x, y) with

| (inl a, inl a’) => f a a’

| (inr b, inr b’) => g b b’

| otherwise => false

end).

We can specialize this polytypic function to the type fork again to get:

Eval compute in specTerm fork less_than.

= fun (A : Set) (f : A ! A ! bool) (x y : A ⇥ A) =>

let (a1 , a2 ) := x in

let (a1’, a2’) := y in

(f a1 a1’) && (f a2 a2’)

In Section 3.6 we will show that even though less than and equal have the same
type, they do have different properties. We will prove that equality is commutative but
less than is not.

2.7.3 Count

As a second example, we will consider another well-known polytypic function: count.
This function counts the elements in a data structure, returning a natural number. Note
that types of kind ? never contain any elements, so we can simply return 0 when counting
units or integers. The polytypic type Count and the corresponding polytypic function
are defined as:

Definition Count : PolyType 1 :=

polyType 1 (fun A => A ! nat).

Definition count : PolyFn Count :=

polyFn Count

(fun u => 0)

(fun z => 0)

(fun (A : Set) (f : A ! nat)

(B : Set) (g : B ! nat)

(x : A ⇥ B) =>
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let (a, b) := x in

(f a + g b)%nat)

(fun (A : Set) (f : A ! nat)

(B : Set) (g : B ! nat)

(x : A + B) =>

match x with

| inl a => f a

| inr b => g b

end).

Again, we can specialize both Count and count to the type fork:

Eval compute in specType fork Count.

= 8 A : Set, (A ! nat) ! A ⇥ A ! nat

Eval compute in specTerm fork count.

= fun (A : Set) (f : A ! nat) (x : A ⇥ A) =>

let (a, a’) := x in

f a + f a’

2.7.4 Zero

The polytypic function zero sets all integers in a data structure to the value 0. Its type is
given by Zero, and it is defined as follows:

Definition Zero : PolyType 1 :=

polyType 1 (fun A => A ! A).

\end{lstlist

Definition zero : PolyFn Zero :=

polyFn Zero

(fun u => u)

(fun z => 0%Z)

(fun (A : Set) (f : A ! A)

(B : Set) (g : B ! B)

(x : A * B) =>

let (a, b) := x in

(f a, g b))

(fun (A : Set) (f : A ! A)

(B : Set) (g : B ! B)

(x : A + B) =>

match x with

| inl a => inl _ (f a)

| inr b => inr _ (g b)

end).

Specializing the polytypic type Zero to the datatype fork gives us the type:

Eval compute in specType fork Zero.
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= 8 (A : Set), (A ! A) ! A ⇥ A ! A ⇥ A

The specialization of the function zero to fork looks like:

Eval compute in specTerm fork zero.

= fun (A : Set) (f : A ! A) (x : A ⇥ A) =>

let (a, a’) := x in

(f a, f a’)

2.8 Higher-order Polytypic Functions

By reifying the notion of a polytypic function as a (record) type within Coq, we have
made them first-class citizens. They can be passed as arguments to other functions and
be computed as results from other functions. We can call such functions higher-order
polytypic functions or, alternatively, polytypic combinators.

To demonstrate this, we will define a combinator which computes the “disjunction”
of two other polytypic functions, both of which must have polytypic type Compare. We
can then use this combinator to define a polytypic less-than-or-equal-to function, given
the polytypic functions less than and equal which we defined above.

The combinator can be defined as follows:

Definition or_poly (pfn1 pfn2 : PolyFn Compare)

: PolyFn Compare :=

polyFn Compare

(fun u v => punit pfn1 u v || punit pfn2 u v)

(fun i j => pint pfn1 i j || pint pfn2 i j)

(fun (A : Set) (f : A ! A ! bool)

(B : Set) (g : B ! B ! bool)

(x : A * B) (y : A * B),

pprod pfn1 A f B g x y || pprod pfn2 A f B g x y)

(fun (A : Set) (f : A ! A ! bool)

(B : Set) (g : B ! B ! bool)

(x : A + B) (y : A + B),

psum pfn1 A f B g x y || psum pfn2 A f B g x y).

Note how it takes two polytypic functions of type Compare and computes another
polytypic function of the same type. Less-than-or-equal-to is now simply defined as

Definition le : PolyFn Compare := or_poly equal less_than.

When we specialize this function to LA . LB . A + Z⇥ B we get a function which is
provably8 equal to

fun (A : Set) (f : A ! A ! bool)

(B : Set) (g : B ! B ! bool)

(x y : decT tex tt A B) : bool :=

8See first class.v in the Coq sources.
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match (x, y) with

| (inl a, inl a’) => f a a’

| (inr (z, b), inr (z’, b’)) => Zle_bool z z’ && g b b’

| _ => false

end

Defining such polytypic combinators is non-trivial, but a further discussion falls outside
the scope of this thesis.
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Chapter 3

Polytypic Properties and Proofs

3.1 Introduction

A key component of polytypic programming is the specialization of kind-indexed types
and the specialization of type-indexed programs. In Chapter 2 we demonstrated how
type specialization and term specialization can be formalized in the proof assistant Coq
(Bertot and Castéran, 2004). As well as an important and obvious stepping stone towards
formal proofs about such programs, that chapter also serves as a formal proof that term
specialization is correct with respect to type specialization.

In many ways, this chapter can be seen as the Curry-Howard mirror image of Chap-
ter 2. Just like polytypic types are types indexed by a kind, polytypic properties are
properties indexed by a kind; and just like polytypic programs are terms indexed by a
type, polytypic proofs are proofs indexed by a type. That should come as no surprise,
since Curry and Howard tell us that we can read “type” for “property” and “program”
for “proof”. Nevertheless, the structure of polytypic properties and proofs (interpreted
as types and programs or not) is sufficiently different from the structure of types and
programs that it introduces many new difficulties that need to be overcome in order to
formalize polytypic proofs.

The purpose of this chapter is to describe these difficulties and present their solutions.
We make the following contributions:

• Although the formal definition of type and term specialization that we have given
in the Chapter 2 makes it theoretically possible to do machine verified proofs over
polytypic programs, in reality this is almost impossible without further supporting
infrastructure. We provide this infrastructure in the current chapter, so that formal
proofs over polytypic programs can be done with very little effort (we give some
examples in Section 3.2.3).

• This chapter can be seen as a formal proof that

– property specialization, the process of specializing a polytypic property to a
particular kind, yields well-formed properties (Section 3.4), and that
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– proof specialization, the process of specializing a polytypic proof to a particu-
lar type, is correct with respect to property specialization (Section 3.5).

• Seen in another light, it is a formal proof that to do proofs over polytypic programs
it suffices to give the instances of the proof for the type constants—just like it
suffices to give the instances of a function for the type constants when defining a
polytypic function.

In the last chapter we have seen how we can formally interpret the informal notation
pfnhTi for the specialization of a polytypic function pfn to a datatype T and the notation
Pthki for the specialization of a polytypic type Pt to a kind k. We have also seen how we
represent the type universe within Coq. To aid readability, we will now feel free to switch
back to the informal notation and trust that the reader will understand the interpretation
of the informal notation as explained in the previous chapter.

This chapter is an expanded version of (Verbruggen et al., 2009), and the Coq
sources associated with the formalization described in this chapter can be found online
(Verbruggen, 2009).

3.2 Polytypic Properties and Proofs

In category theory, a functor can be described as a mapping between categories. A
functor F : C ! D maps every object C 2 C to an object F(C) 2 D, and every arrow
f : A ! B 2 C to an arrow F( f ) : F(A) ! F(B) 2 D. In addition, each functor must
preserve the two functor laws—preservation of identities and composition:

F(id
A

) = id
F(A)

F( f � g) = F( f ) � F(g)

The specialization of map to a datatype T, together with that datatype, forms a functor:
the datatype T gives us the mapping on objects and maphTi provides the mapping on
arrows. It remains to show that the two functor laws hold for map.

In the case of a unary type constructor, such as fork : ? ! ?, the functor laws take
the form:

maphforki id = id

maphforki ( f � g) = maphforki f �maphforki g

However, given a type constructor of two arguments such as maybe prod : ? ! ? ! ?,
the functor laws take a different shape:

maphmaybe prodi id id = id

maphmaybe prodi ( f � g) (h � k) = maphmaybe prodi f h �maphmaybe prodi g k
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It turns out that the shape of these properties depends on the kind of the datatype we
specialize to. Fortunately, it turns out that we can state and prove such properties in much
the same way as we state the types of polytypic functions and give their implementations,
i.e. by making them kind-indexed. In the following sections, we will first give a high
level description of how polytypic properties can be stated, and then discuss how this can
be formalized in Coq. Section 3.2.3 describes polytypic proofs and finally, Section 3.2.4
discusses some arguably simpler ways we considered for formalizing polytypic properties,
and why none of them were appropriate.

3.2.1 Stating Polytypic Properties

To specify a polytypic property we have to give the types of the functions that the property
ranges over and the property itself. Take the example that map preserves identity. This
property ranges over functions of type Map; since Map is kind-indexed, it follows that
the property itself is kind-indexed:

Idhki T : Maphki T T ! Prop

In the case for kind ? the type Maph?i T T specializes to the function type T ! T,
and the corresponding definition of the property is:

Idh?i T : (T ! T) ! Prop

Idh?i T = l f : T ! T . 8x : T . f x = x

To prove that this property (for kind ?) holds for the polytypic map function special-
ized to a type T, we must prove that the property holds for f = maphTi, i.e.

8x : T . maphTi x = x

In other words: in the case for kind ? we have to prove that maphTi is itself the identity
function.

From the definition of the type of the property and the case for kind ?, we can derive
the property for other kinds. For example, the instance for kind ? ! ? will be:

Idh? ! ?i T : (8A1 A2 : ? . (A1 ! A2) ! T A1 ! T A2) ! Prop

Idh? ! ?i T = l( f : 8A1 A2 : ? . (A1 ! A2) ! T A1 ! T A2) .

8(A : ?) (g : A ! A) . Idh?i A g ! Idh?i (T A) ( f A A g)

⌘ l f . 8(A : ?) (g : A ! A) .

(8y : A . g y = y) ! 8x : T A . f A A g x = x
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Instantiating f by maphTi gives the property we would expect:

Idh? ! ?i T maphTi =

8(A : ?) (g : A ! A) . (8y : A . g y = y) ! 8x : T A . maphTi A A g x = x

Given a type A : ? and a function g : A ! A such that g is the identity function on
A, we must show that the property holds for maphTi A A g. Rephrased, we have to
prove that given an identity function g, mapping g across an element of type T is also an
identity function.

The property that map preserves composition is more complicated: composition
ranges over three functions of type Map, each instantiated at a different type:

Comphki T1 T2 T3 : Maphki T2 T3 ⇥ Maphki T1 T2 ⇥ Maphki T1 T3 ! Prop

In the case for kind ? the type Maph?i T1 T2 specializes to the function type T1 ! T2,
and the property is defined as:

Comph?i T1 T2 T3 : (T2 ! T3)⇥ (T1 ! T2)⇥ (T1 ! T3) ! Prop

Comph?i T1 T2 T3 = l( f1, f2, f3) . 8x : T1 . f1 ( f2 x) = f3 x

As before, the definition of the property for other kinds can now be derived. For example,
the instance for kind ? ! ? is:

Comph? ! ?i T1 T2 T3 :

Maph? ! ?i T2 T3 ⇥ Maph? ! ?i T1 T2 ⇥ Maph? ! ?i T1 T3 ! Prop

Comph? ! ?i T1 T2 T3 = l( f1, f2, f3) . 8A1 A2 A3 (g1, g2, g3) .

Comph?i A1 A2 A3 (g1, g2, g3) !
Comph?i (T1 A1) (T2 A2) (T3 A3) ( f1 A2 A3 g1, f2 A1 A2 g2, f3 A1 A3 g3)

⌘ l( f1, f2, f3) . 8A1 A2 A3 (g1, g2, g3) . (8y : A1 . g1 (g2 y) = g3 y) !
8x : T1 A1 . f1 A2 A3 g1 ( f2 A1 A2 g2 x) = f3 A1 A3 g3 x

The property for map will then be

Comph? ! ?i T T T (maphTi,maphTi,maphTi) =

8A1 A2 A3 (g1, g2, g3) . (8y : A1 . g1 (g2 y) = g3 y) !
8x : T A1 . maphTi A2 A3 g1 (maphTi A1 A2 g2 x) = maphTi A1 A3 g3 x

This is a generalization of the usual property, which we can obtain by instantiating g3 by
g1 � g2.
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3.2.2 Polytypic Properties, Formally

We define a polytypic property using the following record type:

Record PolyProp (nt nx np : nat) (Pt : PolyType np):=

polyProp {

idxs : tupleT (tupleT (index nt) np) nx;

propKindStar : 8 (types : tupleT (decK star) nt),

gtupleTS (kit star Pt) (reindex_tuple idxs types) ! Prop

}.

The record contains two fields: the first (idxs, described in more detail below) gives
information about the type of the property, and the second (propKindStar) gives the
property for kind ?.

The record is dependent on four arguments:
Id Comp

nt number of type arguments of the property 1 3
nx number of function arguments of the property 1 3
np number of type arguments of the polytypic type 2 2
Pt polytypic type the property ranges over Map Map

Given nt type arguments T1 . . . T

nt

, the type of a polytypic property indexed by a kind k

generally looks like1

Pthki (T1, . . . , T

nt

)
:::::::::::: 1

⇥ · · ·⇥ Pthki (T1, . . . , T

nt

)
::::::::::::

nx

! Prop

where (T1, . . . , T

nt

)
::::::::::::

i

takes the correct np type arguments for the ith occurrence of Pt

from the tuple of type arguments (T1, . . . , T

nt

) associated with the property; e.g., for
the case of preservation of composition for map, we have that (T1, T2, T3)

:::::::::::1
= (T2, T3),

(T1, T2, T3)
:::::::::::2

= (T1, T2) and (T1, T2, T3)
:::::::::::3

= (T1, T3); compare to the type of Comp,

above. This mapping is given by idxs in the description of the polytypic property.
The property for kind ? is given by propKindStar, given the same tuple of type

arguments (T1, . . . , T

nt

), and a tuple containing nx function arguments:

(g1 : Pth?i (T1, . . . , T

nt

)
:::::::::::: 1

, . . . , g

nx

: Pth?i (T1, . . . , T

nt

)
::::::::::::

nx

)

Since every element in this second tuple has a different type, the type of the entire tuple is
described as a heterogeneous tuple.2 A heterogeneous tuple gtupleTS f (x1, . . . , x

n

)
is a tuple of type ( f x1 ⇥ · · · ⇥ f x

n

). In this case, the function f that we apply
is kit ? Pt, which is the Coq equivalent of Pth?i; and the tuple (x1, . . . , x

n

) that

1This limits the expressiveness of polytypic properties, as they can only refer to a single polytypic type.
A generalization should not be difficult, but is left as future work.

2gtupleTS is a particular variety of a heterogeneous tuple; details can be found in the Coq formalization
but are not important here. We discuss heterogeneous tuples in more detail in Section 2.2.3.
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we supply is the tuple of tuples of types ((T1, . . . , T

nt

)
:::::::::::: 1

, . . . , (T1, . . . , T

nt

)
::::::::::::

nx

), which is

created by reindex tuple.
Hopefully two examples will go a long way towards clarifying these definitions. The

property that map preserves identity can be stated using our library in Coq as3

Definition Id : PolyProp 1 1 Map :=

polyProp 1 1 Map

((1, 1))

(fun T f => 8 x : T, f x = x).

Note that we only provide three arguments to PolyProp: nt, nx and Pt, the argu-
ment np is implicit in the type of Map : PolyType np and can therefore be omitted.
Similarly, the property that map preserves composition can be stated as

Definition Comp : PolyProp 3 3 Map :=

polyProp 3 3 Map

((2, 3), (1, 2), (1, 3))

(fun (T1, T2, T3) (f1, f2, f3) =>

8 x : T1, f1 (f2 x) = f3 x).

3.2.3 Polytypic Proofs

When we define a polytypic (that is, type-indexed) function, it suffices to give the
implementation for the type constants; all other cases can be derived. Likewise, in a
polytypic proof it suffices to prove the property for the type constants. Our development
can be regarded as a formal proof that this is indeed sufficient.

The definition of a polytypic proof mirrors the definition of a polytypic function
(Section 2.4.2):

Record PolyProof (nt nx np : nat) (Pt : PolyType np)

(pfn : PolyFn Pt) (Pp : PolyProp nt nx Pt) : Type :=

polyProof {

prfUnit : specProp tunit Pp

(cst_closed tunit pfn (idxs Pp)) ;

prfInt : specProp tint Pp

(cst_closed tint pfn (idxs Pp)) ;

prfProd : specProp tprod Pp

(cst_closed tprod pfn (idxs Pp)) ;

prfSum : specProp tsum Pp

(cst_closed tsum pfn (idxs Pp))

}

where cst closed generates the tuple of polytypic functions for which we want to
prove the property Pp, instantiated at the correct types. So to define a polytypic proof, we

3We have taken some liberties with notation to keep things simple: we use natural numbers for indices,
and assume that we can decompose tuples as part of a function definition. Such syntactic sugar can be added
to the Coq library as well, but we have left this to future work for now.
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must provide the proofs for the type constants tunit, tint, tprod and tsum. Here
is an example: the proof that map preserves composition.

Lemma map_Comp : PolyProof map Comp.

Proof.

(* This is a polyProof *)

apply (polyProof map Comp);

(* Solve case for unit and int by auto tactic *)

compute; auto; intros.

(* Case for products *)

destruct x ; rewrite H ; rewrite H0 ; auto.

(* Case for sums *)

destruct x ; [rewrite H | rewrite H0] ; auto.

Defined.

Same as for PolyProp, the arguments np, nt, nx and Pt to PolyProof are implicit
in the types of map and Comp and can therefore be omitted. The details of the proof
will be obscure to people not familiar with Coq, but they do not matter for our current
purposes. Suffice to say that the proof is easy; the cases for unit and int are solved
automatically (by the auto tactic), and the other cases follow straightforwardly from
the appropriate assumptions about the components of the pair or the value in the sum
respectively. In Section 6.1.1 we show the case for products in a more human-readable
form.

The polytypic proof that map preserves identity is very similar:

Definition map_Id : PolyProof map Id.

Proof.

(* This is a polyProof *)

apply (polyProof map Id);

(* Solve case for unit and int by auto tactic *)

compute; auto; intros.

(* Case for products *)

destruct x; rewrite H; rewrite H0; auto.

(* Case for sums *)

destruct x; [rewrite H | rewrite H0]; auto.

Defined.

Because of this similarity it should be possibly to write a Coq tactic (proof search
algorithm) to prove many of these polytypic proofs fully automatically; we have left this
to future work.

To anticipate the development of proof specialization in Section 3.5, we can now prove
that map specialized to Tex preserves composition simply by applying proof specialization
to the Lemma map Comp:

specProof Tex map_Comp
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3.2.4 Alternative Definitions

To specify a property using our formalization, the user must specify the type of the
property by means of the idxs tuple of tuples of indices, and the property for kind ?.
The mechanism for specifying the type of the property may seem non-obvious. In this
section, we give the rationale for choosing this approach; this does not affect the remainder
of this chapter and can safely be skipped should the reader wish to do so.

In the definition of a polytypic type (PolyType, Section 2.4.1) we do not ask the
user to specify the kind of the polytypic type. We do not need to, because we can construct
it given np: it will always be

k ! k ! · · ·! k| {z }
np

! ?

That is, given np type arguments of kind k, we construct a type of kind ?.
Unfortunately, the situation is not so simple for properties: as mentioned in Sec-

tion 3.2.2, the type of a property looks like

Pthki (T1, . . . , T

nt

)
:::::::::::: 1

⇥ · · ·⇥ Pthki (T1, . . . , T

nt

)
::::::::::::

nx

! Prop

where the problem is to find the mapping (T1, . . . , T

nt

)
::::::::::::

i

for each occurrence of Pt.

The most obvious solution might seem to simply ask the user to provide the complete
type of the property, given the tuple (T1, . . . , T

nt

). However, this is far too liberal:
specialization relies on a particular shape of the type of the property (see Section 3.4).
Intuitively, the more leeway we give to the user, the less we can assume about the type of
the property and the more difficult it becomes to derive properties for kinds other than ?,
much less automate the derivation of the corresponding proofs.

One possible alternative is to ask the user for a tuple of tuples of types, rather than
the tuple of tuples of indices idxs:

fnTypeArgs : 8 k : kind, tupleT (decK k) nt !
tupleT (tupleT (decK k) np) nx

Temporarily denoting this function by J·K, during the development of property specializa-
tion we need a lemma that says that

J(T1, . . . , T

n

)K J(A1, . . . , A

n

)K = J(T1 A1, . . . , T

n

A

n

)K

In other words, fnTypeArgs should only “shuffle” its input arguments. Since this is
not true for an arbitrary fnTypeArgs, we would have to require it as a separate lemma
in the record. We felt it was simpler to ask for the indices and do the shuffling ourselves.

We attempted to avoid the problem altogether by leaving this shuffling to the case for
kind ?. The type of the property would then become

(8Ts : k

np . Pthki Ts)⇥ · · ·⇥ (8Ts : k

np . Pthki Ts) ! Prop
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where k

n is the tuple of n types of kind k. Again, this does not give us enough information
for property specialization. In particular, when specializing the property for kind k1 ! k2,
we need to construct the property for kind k2 given the property for kind k1. As part of
the property, we need to construct the function arguments to the property; if the function
argument for kind k1 ! k2 is f (e.g., map) and the function argument for kind k1 is
x (e.g., the function that we are mapping across the data structure), then the function
argument for kind k2 is f x. To be able to apply f to x we need to find the right type
parameters to instantiate f , and using this approach we do not have this information.

3.3 Reasoning about Equality

One of the important technical difficulties in term specialization was to find the appropriate
type conversions (the convert xxx lemmas in Section 2.6). Proof specialization reasons
about specialized terms and consequently reasoning about these conversion lemmas was
one of the major technical difficulties in the formalization of proof specialization. In
particular some of the definitions of term specialization had to be adapted to make this
reasoning feasible. In this section, we explain some of these difficulties.

The standard definition of equality in Coq only allows to state equality between terms
of the same type:

(e : T) =
T

(e : T)
REFL

This definition is often too restrictive as it does not allow us to state, much less prove,
that e1 : T1 is equal to e2 : T2 for two provably equal but not syntactically equal types T1

and T2. Heterogeneous or John Major equality (McBride, 2002) is a generalization of the
standard equality relation which allows us to state equalities between terms of a different
type, even though its only constructor still only allows us to prove equality between terms
of the same type:

(e : T) '
T,T (e : T)

JM-REFL

To prove (e1 : T1) 'T1,T2 (e2 : T2) we must first show that T1 = T2, then that e1 = e2, at
which point JM-REFL finishes the proof.

Unfortunately, given some property P : 8A : Set, A ! Prop and e1 'T1,T2 e2,
proving P

T2 e2 given P

T1 e1 is not entirely straightforward: simply replacing e1 by e2 in
P

T1 e1 would yield the ill-typed term P

T1 e2. Instead, the proof usually looks like
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P

T1 e1 ! P

T2 e2

{ generalize over the proof that e1 'T1,T2 e2 }
( 8(pf : e1 'T1,T2 e2), P

T1 e1 ! P

T2 e2

{ generalize over e1 }
( 8(x : T1)(pf : x '

T1,T2 e2), P

T1 x ! P

T2 e2

{ replace T1 by T2 }
= 8(x : T2)(pf : x '

T2,T2 e2), P

T2 x ! P

T2 e2

The final case is easily proven, as we can use pf to replace x by e2 (which now both have
type T2).

Such a proof is not always as straight-forward, however. First, when the terms get
large it is not always obvious which terms need to be generalized over and in which
order. Second, suppose we have some dependent type D : T ! Set, and we have a
function f : 8(t : T), D t ! T

0. Suppose also that we have two elements t1, t2 : T and
an element d1 : D t1 and d2 : D t2, and that we know that d1 'D t1,D t2 d2 (but t1 6= t2).
Now, it may be the case that f uses its first argument only to determine the type of the
second argument (i.e., that f is parametric in its first argument), in which case we should
be able to show that

f t1 d1 = f t2 d2

but this will not hold generally for arbitrary f . Depending on the structure of f (and its
argument), this may or may not be difficult to prove.

In particular, one common function that we will use in the proofs is

convert : 8A B : Set, A = B ! A ! B

Given an element of type A, this function converts it into an element of type B, provided
that we pass in a proof that A = B. To aid readability we will assume that the arguments
A, B and the proof that A = B are implicit. Associated with this function is a lemma
proving that this conversion does not change the actual element, only its type:

Lemma 6 (Convert Identity)

8(A B : Set) (x : A), A = B ! x '
A,B convert p x

However, even armed with this lemma proofs about heterogeneous equality are often
difficult as convert x cannot simply be replaced by x (since this would yield ill-formed
terms). For example, consider the case where f takes an additional argument i, which it
uses to index the vector d1. Then proving that

f i t1 d1 = f i t2 (convert d1)
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may be difficult: this needs to be proven as a property of f , but the occurrence of
convert on the right hand side might make it near impossible to do a proof by induction.
In such cases, it is often better to “push down” converts deeper into terms (so that every
element of the vector is converted, rather than the entire vector).

Unfortunately, the term specialization of a polytypic function to a particular type
contains many calls to convert. To consider one (simple) example, recall that our type
universe type encodes kind derivations rather than the syntax of types. If C is a type
constant of kind k, we have that ∆ ` C : k—since C does not have any free variables,
C has kind k in the empty environment. However, we also have that G ` C : k for all
environments G; this is known as weakening.

When the user defines a polytypic function, they must give the definition of the
function for each type constant C, which will have type Pthki (b∆ ` C : kc1, . . . , b∆ `
C : kc

n

). Term specialization however is defined over open types, that is, over kind
derivations of the form G ` T : k for some type T and kind k.

This is important, because even though the user may only apply term specialization
to closed types, term specialization is defined by induction on types; when it encounters
an abstraction, it needs to introduce a new type assumption into the environment and the
body of the lambda is no longer closed.4 In Section 2.6.1, we therefore proved that

Lemma 7 (convert tconst specTerm)

Pthki (b∆ ` C : kc1, . . . , b∆ ` C : kc
n

)

= Pthki (bG ` C : kc1, . . . , bG ` C : kc
n

)

We can prove this lemma by showing that both argument tuples are the same; since type
constants contain no free variables, both tuples evaluate to (C

⇤, . . . , C

⇤) where C

⇤ is the
Coq type that corresponds to C (the decoding of C). The specialization of a polytypic
function for a type constant is then the definition given by the user converted using the
Lemma 7:

convert (Lemma 7) (user definition)

During proof specialization we have to prove a similar conversion: when we construct
a proof of a property Pp for some polytypic function pfn, we have to show that

Lemma 8 (convert tconst specProof)

Pphki (b∆ ` C : kc0, . . .) (pfnh∆ ` C : ki, . . .)

= Pphki (bG ` C : kc0, . . .) (pfnhG ` C : ki, . . .)

4It is not possible to close the body, because the type assumption corresponds to a real Coq datatype,
whereas the body of the lambda is a code for a type in the universe.
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To prove this lemma, we again show that the two argument tuples are the same. We
already proved this for the first argument tuples; remains to show that the second argument
tuples are identical. Since terms of the form pfnh∆ ` C : ki have type Pthki (b∆ ` C :
kc1, . . . , b∆ ` C : kc

np

) but terms of the form pfnhG ` C : ki have type Pthki (bG `
C : kc1, . . . , bG ` C : kc

np

), we will need to use heterogeneous equality:

Lemma 9

pfnh∆ ` C : ki
'Pthki (b∆`C:kc0,...),Pthki (bG`C:kc0,...)

pfnhG ` C : ki

The specialization of a polytypic function to a type constant simply returns the definition
that was given by the programmer converted by Lemma 7. Hence, both sides of the
equality reduce to

convert (Lemma 7 at ∆) (user definition)

'Pthki (b∆`C:kc0,...),Pthki (bG`C:kc0,...)

convert (Lemma 7 at G) (user definition)

which follows from Lemma 6. We can now prove Lemma 8 using the method that we
sketched above: generalize over Lemma 9, rewrite with Lemma 7, and complete the
proof.

Although this was only a simple example, this kind of reasoning about heterogeneous
equalities involving converts is very common throughout the proof and far from straight-
forward.

3.4 Property Specialization

Section 3.2.2 explains the general form of a polytypic property. For a specific property,
the user specifies the type of the property and gives the property for kind ?; the case for
kind k1 ! k2 can then be derived.

The informal definition of property specialization is very similar to that of type
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Fixpoint kip (k : kind) (nt nx np : nat) (Pt : PolyType np)
(Pp : PolyProp nt nx Pt) {struct k}
: 8 types : tupleT (decK k) nt,
gtupleTS (kit k Pt) (reindex_tuple (idxs Pp) types) ! Prop :=

match k
return 8 types : tupleT (decK k) nt,
gtupleTS (kit k Pt) (reindex_tuple (idxs Pp) types) ! Prop

with

| star => fun types fns => propKindStar Pp types fns
| karr k1 k2 => fun types fns => quantify_tuple_Prop

(fun types’ : tupleT (decK k1) nt =>
8 fns’ : gtupleTS (kit k1 Pt) (reindex_tuple (idxs Pp) types’),
kip k1 Pp types’ fns’ !
kip k2 Pp (apply_tupleT types types’) (app_fs fns fns’))

end.

Definition specProp’ (nt nx np nv : nat) (k : kind)
(ek : envk nv) (t : type nv ek k) (Pt : PolyType np)
(Pp : PolyProp nt nx Pt) (ets : envts nt nv ek)
: gtupleTS (kit k Pt)

(reindex_tuple (idxs Pp) (replace_fvs t ets)))
! Prop :=

kip Pp (replace_fvs t ets).

Definition specProp (nt nx np : nat) (k : kind)
(t : closed_type k) (Pt : PolyType np) (Pp : PolyProp nt nx Pt)
: gtupleTS (kit k Pt)

(reindex_tuple (idxs Pp) (replace_fvs t (ets_tt nt)))
! Prop :=

specProp’ t Pp (ets_tt nt).

Figure 3.1: Property Specialization
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specialization (Section 2.5):

Pphki T1 . . . T

nt

: Pthki (T1, . . . , T

nt

)
:::::::::::: 1

⇥ · · ·⇥ Pthki (T1, . . . , T

nt

)
::::::::::::

nx

! Prop

Pph?i T1 . . . T

nt

= (user defined)

Pphk1 ! k2i T1 . . . T

nt

= l( f1, . . . , f

nx

) . 8A1 . . . A

nt

: k1 . 8(g1, . . . , g

nx

) .

Pphk1i (A1, . . . , A

nt

) (g1, . . . , g

nx

) !
Pphk2i (T1 A1, . . . , T

nt

A

nt

) (app fs ( f1, . . . , f

nx

) (g1, . . . , g

nx

))

The Coq formalization of this definition is given as kip (kind-indexed property) in
Figure 3.1.

When we compare this definition to that of type specialization (Section 2.5), we
see that the only significant difference (other than its type) is that the kind-indexed
property takes an extra tuple of function arguments ( f1, . . . , f

nx

). Consider the property
of preservation of composition, specialized to kind ? ! ? (Section 3.2.1):

8g1 g2 g3 . (g1 � g2) = g3 ! f1 g1 � f2 g2 = f3 g3

In the case that we want to prove this property for map specialized to the datatype
fork : ? ! ?, nx = 3 and ( f1, f2, f3) will all be instantiated to maphforki, the tuple
(g1, g2, g3) corresponds to the three functions in the informal statement of the property,
and

app fs ( f1, . . . , f

nx

) (g1, . . . , g

nx

)

corresponds to the application of maphforki to each of (g1, g2, g3). This is not quite
straight-forward application, however. The types of each f

i

and g

i

are

f

i

: Pthk1 ! k2i (T1, . . . , T

nt

)
::::::::::::

i

g

i

: Pthk1i (A1, . . . , A

nt

)
:::::::::::::

i

From Section 2.5 we know that a polytypic type specialized to an arrow kind k1 ! k2

takes the form
8A1 . . . A

np

: k1 . Pthk1i (A1, . . . , A

np

) ! · · ·

Hence, we first instantiate A1 . . . A

np

in f

i

by (A1, . . . , A

nt

)
:::::::::::::

i

to get a term of type

Pthk1i (A1, . . . , A

nt

)
:::::::::::::

i

! Pthk2i (T1 A1, . . . , T

nt

A

nt

)
::::::::::::::::::::

i

We see that the argument expected here matches the type of g

i

exactly, so we apply this
to g

i

to get a term of type

Pthk2i (T1 A1, . . . , T

nt

A

nt

)
::::::::::::::::::::

i
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The function app fs does exactly this: instantiate f

i

with the appropriate type arguments
and then apply it to g

i

(the definition can be found in the Coq sources).
Given Pphki, we can now define property specialization by applying it to the correct

type arguments:
Pphki (bTc1, . . . , bTc

nt

)

This follows type specialization (Section 2.5) exactly. The corresponding Coq definition
is given as specProp’ in Figure 3.1 and like specType, specProp instantiates
specProp’ to closed types.

3.5 Proof Specialization

Informally, proof specialization can be defined as:

prfhT : ki : Pphki (bTc1, . . . , bTc
nt

) (pfnhTi1, . . . ,pfnhTi
nx

)

prfhC : k

C

i = (user defined)

prfhA : k

A

i = p

A

prfhLA . T : k1 ! k2i = lA1 . . . A

nt

. lp

A

. prfhT : k2i
prfhT U : k2i =

(prfhT : k1 ! k2i) (bUc1, . . . , bUc
nt

) (pfnhUi1, . . . ,pfnhUi
nx

) (prfhU : k1i)

This definition is very similar to the definition of term specialization that we gave in
Section 2.6, except that proofs need an additional tuple of arguments

(pfnhTi1, . . . ,pfnhTi
nx

)

corresponding to the polytypic functions for which we want to prove the property.
Like the definition of term specialization, this truly is an informal definition: many

details are omitted. In particular, since T can be an open type (contain free variables), we
need some information about these free variables, which is provided by three environ-
ments:

ets For each of the nt type arguments to the property, this contains a mapping ets

i

(1  i  nt) from the free variables in T to Coq datatypes so that we can define the
decoding bTc

i

of T. As explained in Section 2.5, each function argument pfnhTi
j

(1  j  nx) requires a similar environment with a mapping for each of its np type
arguments; this environment is given by (ets)

::::
j

.

efs As explained in Section 2.6, each function argument pfnhTi
j

requires an environ-
ment ef containing functions for the free variables in T; efs is a tuple of nx such
environments, one for each argument pfnhTi

j

.
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(* Environment containing proofs for all free variables *)
Definition envp (nt nx np nv : nat)

(ek : envk nv) (Pt : PolyType np)
(Pp : PolyProp nt nx Pt) (ets : envts nt nv ek)
(fns_i : 8 i, gtupleTS (kit (getS i ek) Pt)
(reindex_tuple (idxs Pp) (replace_fvs (tvar nv ek i) ets))) :=

gtupleS (fun i => specProp’ (tvar nv ek i) Pp ets (fns_i i))
(elements_of_index nv).

(* Proof specialization for open types *)
Lemma specProof’ (nt nx np nv : nat) (k : kind) (ek : envk nv)

(t : type nv ek k) (Pt : PolyType np) (pfn : PolyFn Pt)
(Pp : PolyProp nt nx Pt) (prf : PolyProof pfn Pp)
(ets : envts nt nv ek)
(efs : gtupleTS (fun x’ => envf nv ek Pt x’)
(reindex_tuple (idxs Pp) ets))

(ep : envp Pp (fun i => cst (tvar nv ek i) pfn (idxs Pp) ets efs))
: specProp’ t Pp ets (cst t pfn (idxs Pp) ets efs).

Proof.
(* See Coq sources.

The individual cases are explained in the text. *)
Defined.

(* Proof specialization for closed types *)
Definition specProof (nt nx np : nat) (k : kind) (t : closed_type k)

(Pt : PolyType np) (pfn : PolyFn Pt)
(Pp : PolyProp nt nx Pt) (prf : PolyProof pfn Pp)
: specProp t Pp (cst_closed t pfn (idxs Pp)) :=

specProof’ t prf (ets_tt nt)
(create_empty_gtup (envts np 0 tt) nx
(reindex_tuple (idxs Pp) (ets_tt nt))) tt.

Figure 3.2: Proof Specialization

ep Finally, the definition of proof specialization assumes the existence of a proof p

A

for
each free variable A. In the formalization, environment ep contains a proof that the
property holds at type A for each free variable A in T.

Figure 3.2 shows the formal statement (specProof’) that given an open type t, a
polytypic proof prf over a polytypic function pfn, and given the environments ets, efs and
ep, we can specialize the proof to t. The proof is by induction on t, as expected. We do
not show the full Coq proof here (it can be found in the sources). Instead, we will discuss
the individual cases of the proof below.

Since users will mostly be interested in proofs over closed types, we also provide
a lemma (specProof) which states that for a closed type t and a polytypic proof prf

over a polytypic function pfn, we can specialize the proof to t; specProof simply calls
specProof’ with the appropriately constructed empty environments.
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3.5.1 Constants

The case for constants is given by the user except that, as explained in Section 3.3, we
need a weakening lemma that says

Pphki (b∆ ` C : kc0, . . .) (pfnh∆ ` C : ki, . . .)

= Pphki (bG ` C : kc0, . . .) (pfnhG ` C : ki, . . .).

The proof of this lemma was also given in Section 3.3.

3.5.2 Variables

Recall from Section 2.3 that variables in our universe are represented by De Bruijn
indices. To construct the proof for a free variable i, we simply look up the ith element in
environment ep. As for term specialization (Section 2.6), the trickiest part is to define
the type of ep. Informally, the ith element in ep, corresponding to the proof for the ith
variable, has type

Pphki (bic1, . . . , bic
nt

) (pfnhii1, . . . ,pfnhii
nx

)

The formal definition of ep is given in Figure 3.2. The construction of ep will be
considered when we discuss lambda abstraction in Section 3.5.4.

3.5.3 Application

For the specialization of a proof prf of type Pp to an application (T U), we two induction
hypothesis for the types T and U:

IH
T

: 8(A1, . . . , A

nt

) (g1, . . . , g

nx

) .

Pphk1i (A1, . . . , A

nt

) (g1, . . . , g

nx

) !
Pphk2i (bTc1 A1, . . . , bTc

nt

A

nt

)

(app fs (pfnhTi1, . . . ,pfnhTi
nx

) (g1, . . . , g

nx

))

IH
U

: Pphk1i (bUc1, . . . , bUc
nt

) (pfnhUi1, . . . ,pfnhUi
nx

)

and we need to prove:

Pphk2i (bT Uc1, . . . , bT Uc
nt

) (pfnhT Ui1, . . . ,pfnhT Ui
nx

)

If we instantiate (A1, . . . , A

nt

) by (bUc1, . . . , bUc
nt

) and
(g1, . . . , g

nx

) by (pfnhUi1, . . . ,pfnhUi
nx

) in IH
T

and then apply this to IH
U

we get
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a term of type

Pphk2i (bTc1 bUc1, . . . , bTc
nt

bUc
nt

)

(app fs (pfnhTi1, . . . ,pfnhTi
nx

) (pfnhUi1, . . . ,pfnhUi
nx

))

To get the type we actually need we specify two conversion lemmas. The first conversion
is fairly straight-forward, and its proof can be found in Section 2.6.3.

Lemma 10

8 T U, (bTc1 bUc1, . . . , bTc
nt

bUc
nt

) = (bT Uc1, . . . , bT Uc
nt

)

This is the essence of Lemma 2 which we have proved in Section 2.6.3. The second
lemma is a little trickier:

Lemma 11 (convert tapp specProof)

8 T U,

(app fs (pfnhTi1, . . . ,pfnhTi
nx

) (bUc1, . . . , bUc
nt

))

'(Pthk2i (bTc1 bUc1,...)
:::::::::::1

⇥ ··· ),(Pthk1i (bT Uc1,...)
:::::::: 1

⇥ ··· )

(pfnhT Ui1, . . . ,pfnhT Ui
nx

)

The proof of this lemma involves some manipulation of heterogeneous equalities. Note
that Lemma 10, in addition to proving the first argument tuples equal, also proves that the
two types involved in the heterogeneous equality in Lemma 11 are equal.

3.5.4 Lambda Abstraction

For the specialization of a lambda abstraction LA . T we get the induction hypothesis
for the body of the abstraction:

IH
T

: Pphk2i (bTc1, . . . , bTc
nt

) (pfnhTi1, . . . ,pfnhTi
nx

)

for suitably extended environments ets, efs and ep (not shown in the informal notation).
We need to prove:

Pphk1 ! k2i (bLA . Tc1, . . . , bLA . Tc
nt

) (pfnhLA . Ti1, . . . ,pfnhLA . Ti
nx

)
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We know that the specialization Pphk1 ! k2i takes the form

8A1 . . . A

nt

(g1, . . . , g

nx

) .

Pphk1i (A1, . . . , A

nt

) (g1, . . . , g

nx

) !
Pphk2i (bLA . Tc1 A1, . . . , bLA . Tc

nt

A

nt

)

(app fs (pfnhLA . Ti1, . . . ,pfnhLA . Ti
nx

) (g1, . . . , g

nx

))

Recall that for each free variable A in T, we need

• A set of nt types, given by ets, which is used to define the decoding of T, bTc
i

(1  i  nt)

• For each of the nx function arguments to the property, a function that handles
occurrences of terms of type A, given by efs

• A proof of the property at A, given by ep

In the body of the abstraction, we have one additional free variable, so we will need to
extend these three environments: we add (A1, . . . , A

nt

) to ets, (g1, . . . , g

nx

) to efs and
the proof of the property Pphk1i (A1, . . . , A

nt

) (g1, . . . , g

nx

) to ep.
Unfortunately, extending these environments is not quite as trivial as it may seem.

The original environment ep contains proofs of type

Pphki (bic1, . . . , bic
nt

) (pfnhii1, . . . ,pfnhii
nx

)

for each type variable i of kind k, where the decoding is interpreted with respect to the
original environment ets. However, in the body of the lambda abstraction each of these
variables is shifted and is now known as i + 1; variable 0 refers to the variable bound by
the lambda. That means that we need to convert every proof in the original ep environment
to a proof of type

Pphki (bi + 1c1, . . . , bi + 1c
nt

) (pfnhi + 1i1, . . . ,pfnhi + 1i
nx

)

where the decoding is now interpreted with respect to the extended environment ets. This
involves proving that5

Lemma 12 For each variable i of kind k

pfnhii1 'Pthki(bic1,...,bic
nt

)
::::::::::1

,Pthki(bi+1c1,...,bi+1c
nt

)
:::::::::::::: 1

pfnhi + 1i1

where the left side of the equality is interpreted with respect to the original environments
ets and efs, and the right side is interpreted with respect to the extended environments.

5In the abstraction case for term specialization, we have a similar but simpler problem, where we needed
to prove only that the two types in this heterogeneous equality are equal.
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Though this lemma may look innocent, it is in fact the most difficult proof in the entire
formalization, and we needed to modify term specialization slightly to make the proof
feasible. The difficulty comes from the many calls to convert that are generated by term
specialization, so that the proof involves a lot of reasoning about various heterogeneous
equalities. By making sure that these calls to convert are applied at a smaller granularity,
the reasoning in proof specialization is somewhat simplified. A slightly different choice of
universe might make it possible to reduce the number of places where we need conversion
lemmas; we will come back to this in the section on related work.

Once all environments have been extended we need to apply the induction hypothesis
IH

T

, but first we will need two conversion lemmas to get a proof of the correct type. The
first lemma is part of the proof of Lemma 3 in Section 2.6.4:

Lemma 13

8 A1 . . . A

nt

T, (bLA . Tc1 A1, . . . , bLA . Tc
nt

A

nt

) = (bTc1, . . . , bTc
nt

)

where each bTc
i

is decoded with ets extended as described above.

The second conversion lemma we need deals with the function arguments:

Lemma 14 (convert tlam specProof)

app fs (pfnhLA . Ti1, . . . ,pfnhLA . Ti
nx

) (pfnhAi1, . . . ,pfnhAi
nx

)

'(Pthk1!k2i (bLA . Tc1 A1,...)
::::::::::::: 1

⇥ ··· ),(Pthk1!k2i (bTc1,...)
:::::::1

⇥ ··· )

(pfnhTi1, . . . ,pfnhTi
nx

)

Proof. Again, this proof is mostly a matter of juggling with heterogeneous equalities. ⇤

3.6 Examples of Polytypic Properties and Proofs

In this section we will show a few more polytypic properties and their proofs.

3.6.1 Fusion Law for count

First, we have the fusion law for count:

(* h is a morphism on natural numbers *)

Definition morph (h : nat ! nat) :=

h 0 = 0 /\ 8 i j, h (i + j) = h i + h j.

Definition Fusion : PolyProp 1 2 Count :=

polyProp 1 2 Count
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((1), (1))

(fun T (f1, f2) =>

8 h : nat ! nat, morph h ! 8 x : T, h (f1 x) = f2 x).

We can specialize this property, as explained in Section 3.4, to the type fork : ? ! ?

and apply it to two instances of count:

Eval compute in

specProp fork Fusion (counthforki, counthforki).
= 8 (A : Set) (f g : A ! nat)

(Hx : 8 h : nat ! nat, morph h ! 8 x : A, h (f x) = g x),

8 h : nat ! nat, morph h ! 8 p : A ⇥ A,

h (counthforki A f p) = counthforki A g p

This might look a little obscure, but if we take g to be h � f (as is implied by the condition
Hx above), the result will look more like the familiar fusion law for count:

= 8 (A : Set) (f : A ! nat) (h : nat ! nat),

morph h ! 8 p : A ⇥ A,

h (counthforki A f p) = counthforki A (h . f) p

Note that this fusion law for count is rather limited, since the only functions that qualify
as morphism are functions that multiply their argument by a given constant c.

To prove that this fusion law holds for count, we must provide the proofs for each of
the type constants. This proof, again, follows nearly the same structure as the polytypic
proofs map Id and map Comp.

Lemma count_Fusion : PolyProof count Fusion.

Proof.

(* This is a polyProof *)

apply (polyProof count Fusion);

(* Solve case for unit and int by auto tactic *)

compute -[plus]; auto; intros.

(* Case for products *)

destruct x;

rewrite <- (H h H1 H2); rewrite <- (H0 h H1 H2); auto.

(* Case for sums *)

destruct x;

[rewrite <- (H h H1 H2) | rewrite <- (H0 h H1 H2)] ; auto.

Defined.

3.6.2 Commutativity of Equality

As a second example, consider the property that equality is commutative:

Definition Commutative : PolyProp 1 1 Compare :=

polyProp 1 1 Compare

((1))

(fun T f => 8 x y : T, f x y = f y x).
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As we have said before, this is a more general property than the one we want to prove:
it holds for any f of the correct type, whereas we want to prove the property for f =
equalhTi:

8 x y : T, equalhTi x y = equalhTi y x

Specializing this property to fork and applying it to an instance of equal gives us
exactly what we would expect: provided that the f on the the elements of the pair is
commutative, the equality function for the pair is also commutative.

Eval compute in specProp fork Commutative equalhforki.
= 8 (A : Set) (f : A ! A ! bool)

(Hxy : 8 x y : A, f x y = f y x),

8 x y : A ⇥ A, equalhforki A f x y = equalhforki A f y x

The polytypic proof that equality is commutative is slightly different from the proofs
we have seen so far. In the case for integers, we need to prove that integer equality
(Zeq bool) is commutative. Unfortunately this lemma is not part of the Coq library on
integers, so we need to provide this proof ourselves. In the case for products and sums,
we are comparing two pairs/sums x and y, so we need to destruct both of these; whereas
in other proofs we only had a single pair x to deal with.

Definition eq_Comm : PolyProof equal Commutative.

Proof.

apply (polyProof equal Commutative);

compute -[Zeq_bool]; auto; intros.

(* tint *)

unfold Zeq_bool.

puts (Zcompare_antisym x y); rewrite <- H.

unfold CompOpp; elim (x ?= y)%Z; auto.

(* tprod *)

destruct x; destruct y; rewrite <- H; rewrite H0; auto.

(* tsum *)

destruct x; destruct y; auto.

Defined.

3.6.3 Non-Commutativity of less than

Even though less than and equal have the same type, they do have different proper-
ties. In the previous section we have shown that equality is commutative, but the opposite
property holds for less than: if x < y then not y < x. This property can be defined
as:

Definition NotCommutative : PolyProp 1 1 Compare :=

polyProp 1 1 Compare

((0))

(fun T f => 8 x y : t, f x y = true ! f y x = false).

74



3.6. Examples of Polytypic Properties and Proofs

To prove that this property holds for less than we must instantiate the function f by
less thanhTi, and then prove the property for each of the type constants:

Definition lt_NotComm : PolyProof less_than NotCommutative.

Proof.

apply (polyProof less_than NotCommutative);

compute -[Zlt_bool andb]; auto; intros.

(* tint *)

case_eq (Zlt_bool y x); auto; intro.

rewrite <- Zlt_is_lt_bool in *.

apply False_ind; omega.

(* tprod *)

destruct x; destruct y.

rewrite andb_true_iff in H1; destruct H1.

rewrite H; auto.

(* tsum *)

destruct x; destruct y; auto.

Defined.

This proof is slightly more involved than our previous examples, mainly because the
occurrence of the &&-operator (andb) in the definition of less than, which requires
a few more unfolding steps.

3.6.4 zero is Idempotent

As a last example we will consider the property and proof that zero is idempotent, i.e.

zero (zero x) = zero x

In Coq, we can define this property as follows:

Definition Idempotent : PolyProp 1 3 Zero :=

polyProp 1 3 Zero

((0), (0), (0))

(fun T f1 f2 f3 => 8 x : T, f1 (f2 x) = f3 x).

We can prove that this property holds when f1, f2 and f3 are all instantiated to zerohTi
by providing the proofs for each of the type constants. This proof is very straight-forward
and follows the same structure as our earlier examples:

Definition zero_Idempotent : PolyProof zero Idempotent.

Proof.

apply (polyProof zero Idempotent);

compute; intros; auto.

(* tprod *)

destruct x; rewrite H; rewrite H0; reflexivity.

(* tsum *)

destruct x; [rewrite H | rewrite H0]; auto.

Defined.
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Recursion

4.1 Introduction

The careful reader will have noticed that our universe does not contain any notion of
recursion. By far the easiest way to add recursive datatypes would be to add recursion
directly to our type universe, as is done in (Hinze, 2000b). However, since Coq does not
support general recursion at the type level, we would not be able to define a type decoder
for such a universe. Restricting our universe to strictly positive types might provide a
way around this problem, as shown in (Morris et al., 2006). Unfortunately, this approach
is limited to first-order kinds and there is no obvious way to extend it to support types
of higher-order kinds. Since our aim is to be able to reason about Generic Haskell-style
programs, which include higher-order types, we will not use this solution. We discuss the
ideas in (Morris et al., 2006) in more detail in Section 5.4.2.

Generic Haskell lives in the category of complete partial orders and strict continuous
functions. In this category initial algebras and final coalgebras—and therefore inductive
and coinductive datatypes—coincide (Fokkinga and Meijer, 1991), meaning that the
List datatype in Haskell captures both finite and infinite lists. In order to more closely
model Generic Haskell datatypes in Coq we will use coinduction to define (co)recursive
datatypes.

The universe in Generic Haskell or Generic Clean does not include a general recur-
sion operator either (Löh, 2004, Section 7.5.1), (Alimarine, 2005, Chapter 2). Instead,
recursion happens at the term level during the translation to and from the structural
representation of the datatype. We would like to use a similar solution to recursion in our
system. As an example, let us have a look at the coinductive type list:

CoInductive list (A : Set) : Set :=

| nil : list A

| cons : A ! list A ! list A.

Definition list_kind : kind := karr star star.

Definition list_struct : type 1 (list_kind, tt) list_kind :=
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let var := tvar 2 (star, (list_kind, tt))

in tlam (1 + var None ⇥ var (Some None) @ var None).

Definition list’ (A : Set) : Set :=

decT list_struct (list, tt) A.

Although the notation would benefit from some syntactic sugar, hopefully it is clear that
list struct corresponds to the structural type lA . 1 + A⇥ B A, where B is a free
variable of kind ? ! ?. We can decode this type to an actual Coq type using our type
decoder, where we pass the coinductive list type as the decoding of the free variable B.
In other words, the decoded type list’ corresponds to the type lA . 1 + A⇥ list A.

The two types list and list’ are isomorphic, and this isomorphism is witnessed
by an embedding-projection pair:

Definition fromList (A : Set) (l : list A) : list’ A :=

match l with

| nil => inl _ tt

| cons a l’ => inr _ (a, l’)

end.

Definition toList (A : Set) (l : list’ A) : list A :=

match l with

| inl _ => nil

| inr (a, l’) => cons a l’

end.

where we can prove that fromList � toList = id = toList � fromList.
Given this structural representation for lists, we can apply our existing definition of

term specialization to get the polytypic map function specialized to the list struct

type:

Definition mapList’ :=

specTerm’ list_struct map ((list, tt), ((list, tt), tt)).

Coq is now able to tell us that the type of mapList’ is1

(8 A B : Set, (A ! B) ! list A ! list B) !
8 A B : Set, (A ! B) ! list’ A ! list’ B

We can use this definition of mapList’ to coinductively define map specialized to
list

CoFixpoint mapList (A B : Set) (f : A ! B) (l : list A)

: list B :=

toList (mapList’ mapList f (fromList l)).

1mapList’ actually requires an environment containing the map function on list as its first argument.
To aid readability, we will assume here that its first argument is simply this function, not wrapped in any
environment.
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This is exactly the sort of definition that would be used in Generic Haskell or Generic
Clean, but unfortunately the definition is rejected by Coq.

As we have seen, recursive functions (on inductive datatypes) must terminate, and
Coq guarantees this by posing a syntactic restriction on the way functions may be defined:
they have to be “guarded-by-destructors”. Intuitively, this constraint imposes a bound
on the number of possible recursive calls using the size of the term given as input. For
functions that produce terms in coinductive types restrictions are instead placed on the
way the output data is produced. A corecursive call is accepted only if some information
has been produced in the result in the form of a constructor. The terminology is that calls
must be “guarded-by-constructors” (Bertot, 2005). We can describe guardedness in two
steps (Bertot and Komendantskaya, 2008):

1. A position is pre-guarded if it occurs as the root of the function body, or if it is a
direct subterm of a pattern-matching construct or a conditional statement, which is
itself in a pre-guarded position.

2. A position is guarded if it occurs as a direct subterm of a constructor for the
coinductive type that is being defined and if this constructor occurs in a pre-guarded
or guarded position.

A corecursive function is guarded if all corecursive calls occur in guarded positions.
Unfortunately, the definition of mapList above is not (obviously) guarded since

mapList appears in a non-guarded position, and Coq rejects its definition.
In this chapter we will discuss various ways to ensure coinductive functions such

as mapList pass the scrutiny of the Coq guardedness checker, eventually settling on a
minor modification to the guardedness checker in Section 4.3.2. Section 4.6 then goes on
to show a slightly more complicated example where the function is partial and where the
guardedness checker is not so easily satisfied.

4.2 Partiality

One way to define mapList coinductively is to make use of the partiality monad
(Capretta, 2005). The partiality monad allows us to delay computation:

CoInductive Delay (A : Set) : Set :=

| Now : A ! Delay A

| Later : Delay A ! Delay A.

This monad can be thought of as capturing the essence of productivity: the productivity
requirement for a function can be satisfied simply by guarding each corecursive call
by the Later constructor. Since this is a monad we should define the return and bind
operators; returnD returns the result of a computation (wrapped in the monad) and
bindD strings two computations together:
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Definition returnD (A : Set) (a : A) := Now a.

CoFixpoint bindD (A B : Set) (d : Delay A)

(k : A ! Delay B) : Delay B :=

match d with

| Now a => k a

| Later d’ => Later (bindD d’ k)

end.

We can define bottom (the undefined value) by delaying the computation indefinitely:

CoFixpoint bottom (A : Set) : Delay A := Later (bottom A).

The exciting feature of the partiality monad is that it allows us to define a general
fixpoint combinator for mapList, whose type is given by:

Definition lfp_mapList

(h : (8 C D, (C ! Delay D) ! list C ! Delay (list D)) !
8 C D, (C ! Delay D) ! list C ! Delay (list D))

: 8 A B, (A ! Delay B) ! list A ! Delay (list B)

Given this operator we can give a straight-forward definition of mapList, using the
definition of mapList’ from Section 4.1:

Definition mapList (A B : Set) (f : A ! Delay B)

(l : list A) : Delay (list B) :=

lfp_mapList (fun rec A’ B’ f’ l’ =>

bindD (mapList’ (rec, tt) f’ (fromList l’))

(fun result => returnD (toList result))) f l.

Unfortunately, the type of lfp mapList and its definition depend on the type of the
polytypic function we want to define, and the type we want to specialize it to. This means
that we must define a separate fixpoint operator for each specialization of a polytypic
function. However, the definition of the general fixpoint operator is fairly trivial, and it
might be possible to define it polytypically.

Another slight disadvantage of the use of the partiality monad is that all polytypic
functions must now be defined in monadic style. For example, the case for products in
the polytypic map function will take the form:

fun (A B : Set) (f : A -> Delay B)

(C D : Set) (g : C -> Delay D) (x : A ⇥ C) =>

let (a, c) := x in

bindD (f a) (fun b => (

bindD (g c) (fun d => (

returnD (b, d)))))

A more important disadvantage is that this approach can not be extended to deal with
properties and proofs. While it is possible to define a function that delays the construction
of a list, it is not possible to delay the construction of a proof. If we were able to do that,
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we could prove any property P by delaying the proof indefinitely: bottom P. Moreover,
proofs over functions in the partiality monad are far from trivial.

4.3 Guardedness

In the previous section we have shown that we can give a guarded coinductive definition
of mapList by wrapping it in a general fixpoint operator, which we can construct using
the partiality monad. In this section we will take a closer look at our original definition of
mapList:

CoFixpoint mapList (A B : Set) (f : A ! B) (l : list A)

: list B :=

toList (mapList’ mapList f (fromList l)).

The reason that it does not pass Coq’s guardedness check is because Coq does not
sufficiently unroll the definition to be able to see that it is guarded. In this section we
propose two ways to resolve this to get a valid definition of mapList, but first we will
show that the definition is in fact guarded. Let us first unroll the definition of mapList’:

mapList’ =

fun (rec : 8 A B : Set, (A ! B) ! list A ! list B)

(A B : Set) (f : A ! B) (l : list’ a) =>

match l with

| inl u => inl _ u

| inr (a, l’) => inr _ (f a, rec f l’)

end

The recursive call to mapList—which corresponds to the argument rec in the
definition of mapList’—is not obviously guarded by a constructor of list. However,
guardedness is checked with respect to various reductions, and Coq’s guardedness checker
reduces the definition of mapList to:

match

match

match l with

| nil => inl _ tt

| cons a l’ => inr _ (a, l’)

end

with

| inl _ => inl _ tt

| inr (a, l’) => inr _ (f a, mapList f l’)

end

with

| inl _ => nil

| inr (a, l’) => cons a l’

end
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Looking at this more closely, we see that the corecursive call to mapList only occurs
when the input takes the shape cons a l’. The call to fromList (the innermost
match) will convert this to

inr _ (a, l’)

This is the input to mapList’ (the second match), where the recursive call takes place
on the tail of the list to give us

inr _ (f a, mapList f l’).

Finally, this will pass through toList (the outermost match) and be converted to

cons (f a) (mapList f l’)

Considering that this is the only occurrence of the corecursive call, we know it will always
be guarded by the cons constructor. Unfortunately, Coq’s guardedness checker is not
quite clever enough to detect this, and the definition is rejected.

4.3.1 CPS Transforms

One way to convince Coq that the above coinductive definition of mapList is guarded
is to use CPS transforms (Plotkin, 1975)—a function is in continuation-passing style
(CPS) if instead of returning a value it takes an explicit continuation function which is
applied to the result of the function.2

We must modify mapList’ slightly so that it does not return the resulting list’ B

directly, but instead applies a continuation K. We can then move the application of K into
the branches of the match construct, ensuring that Coq will unfold the application of K
(since Coq never unfolds an application when the function is applied to an argument of
the form match ... end, we need to move the application inside the branches).

Definition CPS_mapList’

(rec : 8 A B : Set, (A ! B) ! list A ! list B)

(A B R : Set) (f : A ! B) (l : list’ A)

(K : list’ B ! R) : R :=

match l with

| inl u => K (inl _ u)

| inr (a, l’) => K (inr _ (f a, rec f l’))

end.

We can use CPS mapList’ to define CPS mapList, much as we did before, except
that we now pass toList as the continuation:

CoFixpoint CPS_mapList (A B : Set) (f : A ! B)

(l : list A) : list B :=

CPS_mapList’ CPS_mapList f (fromList l) (@toList B).

2Thanks to Bruno Barras and Russell O’Connor on the Coq mailing list for suggesting this possibility.

82



4.3. Guardedness

Because the application of toList is now moved inside the branches of the match
construct associated with CPS mapList’, Coq is able to reduce the definition of
CPS mapList to

CPS_mapList f l =

match

match l with

| nil => inl _ tt

| cons a l’ => inr _ (a, l’)

end

with

| inl _ => nil

| inr (a, l’) => cons (f a) (CPS_mapList f l’)

end

and this definition is accepted because the corecursive call is clearly guarded by the cons
constructor.

Although this method shows that the corecursive call in mapList is indeed guarded
as long as the term can be sufficiently unrolled by Coq, the integration of this method
with our existing development is far from trivial. In particular, we would need to modify
the return type of term specialization to incorporate the CPS transform.

As discussed in Chapter 2 the type of term specialization is given by type specializa-
tion:

specTerm (t : closed_type k) (pfn : PolyFn Pt)

: specType t Pt

and type specialization for the polytypic type Map takes the type for kind ? as given by
the user:

Definition Map : PolyType 2 :=

polyType 2 (fun A B : Set => A ! B).

and specializes this to kind ? ! ? to get the correct type for map acting on (the structural
representation of) lists. To incorporate the CPS transform, we need to find a new type
Map, which gives us the correct specialized type for list’. Again, just as for the use of
the partiality monad in Section 4.2, the definition of polytypic types and functions given
by the user must change. For partiality we needed to make all of these definitions monadic,
here we need to incorporate the CPS transform in each of them. This is obviously not
ideal. Furthermore, it is not obvious what the new polytypic type Map for kind ? should
be. We might consider the following definition:

Definition Map : PolyType 3 :=

polyType 3 (fun A B R : Set => A ! (B ! R) ! R).

However, its specialization to the type list’ would be:

8 A B R : Set, (A ! (B ! R) ! R) !
list’ A ! (list’ B ! list’ R) ! list’ R
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which is not at all what we want. Unfortunately, there does not seem to be a definition of
Map that specializes to the correct type for CPS mapList’, so we cannot easily modify
type and term specialization to integrate CPS transforms.

4.3.2 µ-Reduction

Coq checks guardedness with regards to the input modulo the following reductions:

b-reduction (function application) Reduce an abstraction applied to a term to the body
of the abstraction with its argument replaced by the term it is applied to:
(fun x ) t) u !b t[x/u].

d-reduction (variable substitution) Substitute a variable or constant by its value in its
context: x !d u (where the environment contains x := u).

i-reduction (destructor constructor) This reduction relation consists of two separate
reductions. First, replace a pattern match applied to a constructor term by the
appropriate branch; for example

match cons x xs with !i P (cons x xs)

| nil => P nil

| cons y ys => P (cons y ys)

end

Second, unroll a function which is (structurally) recursive in its nth argument once,
if a constructor argument is supplied for the nth argument:

fix plus (n m : nat) : nat :=

match n with

| O => m

| S p => S (plus p m)

end

!i

fun n m : nat =>

match n with

| O => m

| S p => S ((fix plus (n’ m’ : nat) : nat :=

match n’ with

| O => m’

| S p’ => S (plus p’ m’)

end) p m)

end

Since plus is structurally recursive in its first argument, plus (S n) m !i,d,b

S (plus n m), but plus n (S m) is not affected by i-reduction.
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z-reduction (local definitions) Given a local definition of a variable, substitute that
variable by its value: let x := u in t !z t[x/u].

In the previous section we have shown that the recursive call in the coinductive
definition for mapList is in fact guarded, and that by applying a CPS transform to the
result of mapList’ we force Coq to reduce the definition sufficiently to satisfy the
guardedness checker. In this section we will show how to modify the actual guardedness
checker in the Coq source code in such a way that it reduces the definition of mapList
sufficiently to pass the test.

It is important to note, however, that we do not modify the code that performs the
guardedness check itself: the definition of guardedness does not change. We only apply
an additional reduction before the function is checked for guardedness, which we will
call µ-reduction.

Intuitively µ-reduction can be thought of as the collapsing of nested match state-
ments, and is similar to the case-of-case transformation as implemented in the Glasgow
Haskell Compiler (Peyton Jones, 1996, Section 5). For a more formal definition we will
represent the match construct by

match
p

e with h f1, f2, . . .i

This is close to the internal representation of match in the Coq source code, modulo
some syntactic differences to aid readability. The attribute p indicates the type of the
match. For a scrutinee e of type t1, p will return the type of the branches; that is, p takes
the form l(x : t1) . (t2 : Set). A match is dependent if the type of the branches depends
on the value of the scrutinee—in other words, when x occurs free in t2. If the match is
not dependent (the type of each branch is the same) it is called a simple match.

The branches are represented by the functions f1, f2, . . ., whose arguments correspond
to the arguments of the constructor associated with that branch. For example, if we match
on a term of type list A, the branch for the nil constructor will be a nullary function
of type (t2 nil), and the branch for the cons constructor will be a binary function of
the form la l . e

0, where e

0 : t2 a l.
Figure 4.1 shows the definition of µ-reduction. It makes use of an operator f •

n

g

which corresponds to the composition of a function f with a function g of arity at least n.
The definition assumes that g is a concrete function; i.e., of the shape lx1 . lx2 . · · · .
This is sufficient for our purposes. When applying this operator to a branch, n will be
the arity of the constructor associated with that branch. In our examples we will leave n

implicit for readability. To see how µ-reduction works, let us go back to our definition of
mapList after b, d, i and z reductions have been applied:

match

match

match l with

| nil => inl _ tt
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µ-reduction is defined to be the smallest compatible closure of

match
p

⇣
match

p

0
e

0 with h f

0
1, . . .i

⌘
with h f1, . . .i

!µ

match
p•p

0
e

0with h(lx . match
p

x with h f1, . . .i) • f

0
1, . . .i

where
f •0 e = f e

f •(n+1) (lx . e) = lx . ( f •
n

e)

Figure 4.1: µ-Reduction

| cons a l’ => inr _ (a, l’)

end

with

| inl _ => inl _ tt

| inr (a, l’) => inr _ (f a, mapList f l’)

end

with

| inl _ => nil

| inr (a, l’) => cons a l’

end

This definition does not pass the guardedness check. Internally, it can be represented by

matchl : list’ B . list B

matchl : list’ A . list’ B

matchl : list A . list’ A

l

with hinl tt, la l

0 . inr (a, l

0)i
with hlu . inl tt, l(a, l

0) . inr ( f a, mapList f l

0)i
with hlu . nil, l(a, l

0) . cons a l

0i

Figure 4.2 shows how this term can be simplified by applying mu-reduction twice,
first to the inner-most two matches and then to the resulting outermost two matches.

Translating the result back to normal Coq notation gives us the definition of mapList
that we would expect:

match l return list B with

| nil => nil

| cons a l’ => cons (f a) (mapList f l’)

end

When we modify Coq to check guardedness with respect to µ-reduction (in addition
to the other reduction relations), Coq will be able to verify that the corecursive call in
mapList is in fact guarded. See Appendix A for a diff file detailing our modifications
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matchl : list’ B . list B

matchl : list’ A . list’ B

matchl : list A . list’ A

l

with hinl tt, la l

0 . inr(a, l

0)i
with hlu . inl tt, l(a, l

0) . inr ( f a, mapList f l

0)i
with hlu . nil, l(a, l

0) . cons a l

0i
!µ matchl : list’ B . list B

match(l : list’ A . list’ B)•(l : list A . list’ A) l

with h(le . matchl : list’ A . list’ B

e with hlu . inl tt, . . .i) • (inl tt), . . .i
with hlu . nil, l(a, l

0) . cons a l

0i
!b,i matchl : list’ B . list B

matchl : list A . list’ B

l

with hinl tt, la l

0 . inr ( f a, mapList f l

0)i
with hlu . nil, l(a, l

0) . cons a l

0i
!µ match(l : list’ B . list B)•(l : list A . list’ B) l

with h(le . matchl : list’ B . list B

e with hlu . nil, . . .i) • (inl tt),
(le . matchl : list’ B . list B

e with h. . . , l(a, l

0) . cons a l

0i) •
(la l

0 . inr ( f a, mapList f l

0))i
!b,i matchl : list A . list B

l

with hnil, la l

0 . cons ( f a) (mapList f l

0)i

Figure 4.2: µ-Reduction Example

to the Coq source code.
We can now specialize the polytypic function map to the corecursive type list by

specializing it to the non-recursive type list’ and applying the appropriate functions
from the embedding-projection pair.

4.4 Proofs

In Section 4.3.2, we have shown how coinduction can be used to define the specialization
of a polytypic function to a recursive datatype. This section shows how to specialize
proofs of polytypic properties in the same way.

Let us take a look at the proof that map preserves identities: mapId. First we need
to modify our definition of this property to incorporate potentially infinite datatypes, like
list. To prove that two lists are equal, we need to compare each corresponding pair
of elements in the lists. If the lists are infinite, this cannot be done in finite time, and
therefore the proof is non-terminating. Since non-terminating proofs are not allowed in
Coq—we would be able to prove anything—we need a different notion of equality to
compare potentially infinite lists: bisimilarity.

Whereas equality is an inductive relation, and therefore requires that any proof about
equality terminates; bisimilarity on potentially infinite datatypes is a coinductive relation,
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requiring instead that all proofs are productive. In a proof involving a coinductive property,
we must be able to show that we can always produce the next step in the proof. The
bisimulation relations for list and list’ are defined as follows:

CoInductive bisim_list (A : Set)

: list A ! list A ! Prop :=

| bisim_nil : bisim_list nil nil

| bisim_cons : 8 (a1 a2 : A) (l1 l2 : list A), a1 = a2 !
bisim_list l1 l2 !
bisim_list (cons a1 l1) (cons a2 l2).

Inductive bisim_list’ (A : Set)

: list’ A ! list’ A ! Prop :=

| bisim_inl : 8 u u’ : unit,

bisim_list’ (inl _ u) (inl _ u’)

| bisim_inr : 8 (a1 a2 : A) (l1 l2 : list A),

a1 = a2 ! bisim_list l1 l2 !
bisim_list’ (inr unit (a1, l1)) (inr unit (a2, l2)).

The bisimilarity relation for list’ does not need to be coinductive, because its proofs
will always terminate: we can provide both a proof that the heads of the lists are equal,
and a proof that the tails are bisimilar (using bisim list). Note that we use equality
to compare the elements of the lists instead of bisimilarity, which restricts the lists that
can be compared: we cannot show that two lists of lists are bisimilar. The reason is that
we do not have a “generic” bisimilarity relation that we can use to compare elements of
type A. We will discuss this problem in a little more detail in Section 6.3.4.

Using these bisimilarity relations, we can define mapIdList’, a proof that the
function mapList’ preserves identities, given that we have such a proof for the tail of
the list:

Theorem mapIdList’ (A : Set) (f : A ! A) (l : list’ A)

(rec : 8 (A : Set) (f : A ! A) (l : list A),

(8 x : A, f x = x) ! bisim_list (mapList f l) l)

: (8 x : A, f x = x) !
bisim_list’ (mapList’ f l (@mapList A A)) l.

Ideally, this property and its proof will be provided by the specialization of the property
Id and its proof mapId to list’. However, since unlike for equality we cannot give
one definition of bisimilarity that can be used for any datatype, we cannot even state the
polytypic property, much less give a polytypic proof for it. This can be solved by using
type-indexed types, which is discussed in future work. In this section we will simply
assume that mapIdList’ is defined, and focus on the problem of (co)recursion only.

We can now prove the property Id specialized to list in a similar way as we have
defined the function mapList:

Theorem mapIdList (A : Set) (f : A ! A)

(Hx : 8 x : A, f x = x) (l : list A)
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: bisim_list (mapList f l) l.

Proof.

cofix mapIdList; intros A f Hx l.

rewrite (list_decomposition_lemma (mapList f l)); simpl.

change (bisim_list (list_decompose

(toList (mapList’ (mapList, tt) f (fromList l)))) l).

rewrite <- list_decomposition_lemma.

rewrite <- to_from_id_list.

apply (to_preserves_bisim_list

(mapIdList’ mapIdList _ Hx _)).

Defined.

Modulo some matching on equality proofs, this proof is equivalent to the corecursive
function

CoFixpoint mapIdList (A : Set) (f : A ! A)

(Hx : 8 x : A, f x = x) (l : list A)

: bisim_list (mapList f l) l :=

to_preserves_bisim_list

(mapIdList’ mapIdList f Hx (fromList l)).

and we can see that the proof follows the structure of mapList, the only difference is
that the result is not guarded by toList but by to preserves bisim list:

Definition to_preserves_bisim (A : Set) (l l’ : list’ A)

(H : bisim_list’ l l’)

: bisim_list (toList l) (toList l’) :=

match H in bisim_list’ l l’

return bisim_list (toList l) (toList l’) with

| bisim_inl _ _ => bisim_nil A

| bisim_inr a b la lb Ha Hl => bisim_cons Ha Hl

end.

The recursive call to mapIdList occurs as an argument to mapIdList’. Unrolling
the definition of to preserves bisim, we see that the recursive call will match
the argument Hl for the bisim inr constructor. Since Hl only occurs guarded by
bisim cons, the above proof of mapIdList is guarded, provided that we use our
definition of µ-reduction as described in Section 4.3.2.

4.5 Restrictiveness of Syntactic Guardedness

While the above proof of mapIdList is guarded, this guardedness very much depends
on the actual proof given. A minor change to the proof can break guardedness. For
example, if we change the proof slightly, using transitivity of the bisimilarity relation:

CoFixpoint bisim_list_trans (A : Set) (xs ys zs : list A)

(pf : bisim_list xs ys)

: bisim_list ys zs ! bisim_list xs zs :=
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Lemma mapIdList (A : Set) (f : A ! A)

(Hx : 8 x : A, f x = x) (l : list A)

: bisim_list (mapList f l) l.

Proof.

cofix mapIdList ; intros A f Hx l.

rewrite (list_decomposition_lemma (mapList f l)) ; simpl.

change (bisim_list (list_decompose

(toList (mapList’ (mapList, tt) f (fromList l)))) l).

rewrite <- list_decomposition_lemma.

apply bisim_list_trans with (ys := toList (fromList l)).

apply (to_preserves_bisim (mapIdList’ _ _ mapIdList Hx)).

rewrite to_from_id; apply bisim_id.

Defined.

This seems like an equally valid proof of mapIdList. However, this proof is
not guarded. The reason for this is that although the recursive call is still guarded
by the bisim cons constructor as before, it is now also part of an argument to
bisim list trans, which is a a corecursive function, and Coq does not check for
guardedness of arguments to corecursive functions (see Section 2.2.5).

So we can indeed use coinduction to construct a proof of mapIdList, but we need
to be very careful when constructing this proof. The syntactic guardedness check as
implemented in Coq is very brittle, and will easily break. In particular, we have to
make sure that the term containing the recursive call is not passed as an argument to a
corecursive function or to another unknown function. This also means that any lemmas
we use must be transparent instead of opaque, i.e. Coq must be able to access its proof to
verify guardedness.

4.6 Count Example

In the previous section we have shown that the syntactic guardedness check used in Coq
can be quite restrictive, and we need to be very careful to keep our definitions guarded.
Related to that is the choice of codomain for our function, which we will deal with in this
section.

As an example, consider the polytypic count function (see Section 2.7), whose
type we gave as T ! nat. As long as we are talking about induction and recursive (but
finite) datatypes, this type is sufficient. However, as soon as we want to reason about
coinductive types, we can no longer use nat as the codomain of the function. Counting
the number of elements in an infinite list will result in an infinite number, which cannot
be represented by nat.

We will need to make three modifications to the type of count: we need to make it
coinductive, we need add an auxiliary datatype that includes a domain-specific constructor,
and we need to add a step constructor. We will look at each of these modifications in turn.
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4.6.1 Conatural Numbers

The first and most obvious modification that we need is to use conatural numbers rather
than natural numbers: i.e., a datatype that describes both finite and infinite numbers. The
conaturals can be defined as follows:

CoInductive coN : Set :=

| coZ : coN

| coS : coN ! coN.

This allows us to represent infinite numbers, e.g.:

CoFixpoint inf := coS inf.

4.6.2 Domain-Specific Constructors

We can now reason about infinite numbers, but this is not sufficient. In Section 4.5 we
have seen that syntactic guardedness poses some restrictions, and for some polytypic
functions it is a little tricky to satisfy the guardedness checker. In particular, a corecursive
call cannot be passed as an argument to a function. We run into this problem here
when trying to specialize count. For example, when specializing count to trees, the
non-leaves case gives us two corecursive calls to count each of the subtrees, the result of
which we then want to add together:

add (count f t1) (count g t2)

However, this will make the corecursive calls to count arguments to the (corecursive)
add function and we have seen in Section 4.5 that arguments to a corecursive function are
never guarded. To solve this we need to define a domain-specific variation on conatural
numbers that includes addition as a constructor:

CoInductive coN’ : Set :=

| coZ’ : coN’

| coS’ : coN’ ! coN’

| add’ : coN’ ! coN’ ! coN’.

This will ensure that the corecursive calls to count are guarded by the add’ constructor.
We need a flattening function that takes a coN’ and flattens out all occurrences of

add’ to get a coN. In the next section we will show that this flattening function cannot
be defined with the current definition of conatural numbers.

Whenever a polytypic function applies a coinductive function to its corecursive calls
we will need to add a domain-specific datatype along with a flattening function to satisfy
the guardedness checker.

4.6.3 Delaying Computation

To convert a domain-specific conatural number into a regular conatural number we need to
define a function that flattens out all add’ constructors. One way to define this function
is as follows:
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CoFixpoint flatten_coN’s (ns : list coN’) : coN :=

match ns with

| nil => coZ

| n :: ns’ =>

match n with

| coZ’ => flatten_coN’s ns’

| coS’ n’ => coS (flatten_coN’s (n’ :: ns’))

| add’ m’ n’ => flatten_coN’s (m’ :: n’ :: ns’)

end

end.

Definition flatten_coN’ (n : coN’) : coN :=

flatten_coN’s (n :: nil).

However, two of the corecursive calls are not guarded in this definition (in the case for
coZ’ and add’), so this definition is rejected by Coq—and rightly so! Consider the case
where the number we are trying to flatten consists only of add constructors: we would
never produce a result. Such a number would result from trying to count the leaves in
an infinitely branching tree without any leaves. Hence, this function is not productive.
To make it productive, we can add a tau constructor to our codomain, which takes a
role very similar to that of the Later constructor of the partiality monad discussed in
Section 4.2: it allows us to delay computation, potentially indefinitely.

CoInductive coN : Set :=

| coZ : coN

| coS : coN ! coN

| tau : coN ! coN.

We can then rewrite the flatten function so that it passes the Coq guardedness requirements:

CoFixpoint flatten_coN’s (ns : list coN’) : coN :=

match ns with

| nil => coZ

| n :: ns’ =>

match n with

| coZ’ => tau (flatten_coN’s ns’)

| coS’ n’ => coS (flatten_coN’s (n’ :: ns’))

| add’ m’ n’ => tau (flatten_coN’s (m’ :: n’ :: ns’))

end

end.

Definition flatten_coN’ (n : coN’) : coN :=

flatten_coN’s (n :: nil).

4.6.4 Polytypic Count, Coinductively

We can now give a new definition of the polytypic count function that can deal with
coinductive datatypes:
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Definition co_Count : PolyType 1 :=

polyType 1 (fun A => A ! coN’).

Definition co_count : PolyFn co_Count :=

polyFn co_Count

(fun u => coZ’)

(fun z => coZ’)

(fun (A : Set) (f : A ! coN’)

(B : Set) (g : B ! coN’)

(x : A ⇥ B) =>

let (a, b) := x in

add’ (f a) (g b))

(fun (A : Set) (f : A ! coN’)

(B : Set) (g : B ! coN’)

(x : A + B) =>

match x with

| inl a => f a

| inr b => g b

end).

We can use co count to define count on lists:

Definition countList’ :=

specTerm’ list_struct co_count ((list, tt), tt).

CoFixpoint countList (A : Set) (f : A ! coN’)

(l : list A) : coN’ :=

countList’ (countList, tt) f (fromList l).

4.6.5 Count Fusion

To be able to do proofs about count, we need a notion of bisimilarity on conatural
numbers. Again, we will need two versions: bisim coN and bisim coN’, where
bisim coN’ needs an additional constructor to deal with addition. We then need a
proof that when two numbers of type coN’ are related under the bisimilarity relation
bisim coN’, the flattening of these numbers will be related under the bisimilarity
relation bisim coN.

The generalization of the count fusion proof of Section 3.6 to the coinductive
co count is straightforward (Figure 4.3). Unfortunately, when we attempt to prove
count fusion for lists in a similar manner to the proof of preservation of identity in
Section 4.4, we find that Coq rejects the proof because of an unguarded corecursive
call: the proof generated by proof specialization is more complicated than the proof we
would do by hand, and the guardedness checker is not sophisticated enough to be able to
see that the proof is indeed guarded. This is mostly due to the ubiquitous manipulation
of heterogeneous equalities in the proofs generated by proof specialization; it is future
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work to see if we can either change proof specialization to return simpler proofs or make
another modification to the guardedness checker to ensure that Coq is able to verify that
the proof is in fact guarded.

To illustrate that the approach does work in principle, we can give a manual proof of
count fusion for list’, and use this manual proof to construct a proof of count fusion
for list, following the same structure as the proof for mapIdList in Section 4.4.
These two proofs can be found in Figure 4.4.

The polytypic proof co countFusion in Figure 4.4 is accepted by Coq as guarded.
Modulo some matching on equalities, this proof corresponds very closely to the following
corecursive definition:

CoFixpoint countFusionList (A : Set) (f g : A ! coN’)

(h : coN’ ! coN’) (Hmorph : morphism_coN’ h)

(Hx : 8 h0 : coN’ ! coN’, morphism_coN’ h0 !
8 x : A, bisim’ (h0 (f x)) (g x))

(l : list A)

: bisim’_P 1 (h (countList f l)) (countList g l) :=

countFusionList’ countFusionList f g Hmorph Hx (fromList l)

and we see that the structure is again very similar to that of mapList.
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Definition co_Fusion : PolyProp 1 2 co_Count:=
polyProp 1 2 co_Count
((None, tt), ((None, tt), tt))
(fun types fns =>
let t := fst types in

let f1 := fst fns in let f1’ := snd fns in

let f2 := fst f1’ in

8 h : coN’ ! coN’, morphism_coN’ h !
8 x : t, bisim’_P 1 (h (f1 x)) (f2 x)).

Definition co_countFusion : PolyProof co_count co_Fusion.
Proof.
apply (polyProof co_count co_Fusion);
compute -[flatten_coN’].

(* unit *)
intros h Hmorph u.
destruct Hmorph as (Hzero, Hadd).
apply bisim’_P_trans with (d1:=0) (d2:=0) (n2:=coZ’); auto.
apply bisim’_bisim’_P; apply Hzero.
apply bisim_coZ’_P.

(* int *)
intros h Hmorph z.
destruct Hmorph as (Hzero, Hadd).
apply bisim’_P_trans with (d1:=0) (d2:=0) (n2:=coZ’); auto.
apply bisim’_bisim’_P; apply Hzero.
apply bisim_coZ’_P.

(* prod *)
intros A fns Ha B fns’ Hb h Hmorph p.
destruct p as (a, b);

destruct fns as (f1, f’); destruct fns’ as (g1, g’).
destruct f’ as (f2, _); destruct g’ as (g2, _).
destruct Hmorph as (Hzero, Hadd).
apply bisim’_P_trans with (d1 := 0) (d2 := 0)

(n2 := add’ (h (f1 a)) (h (g1 b))); auto.
apply bisim’_bisim’_P; apply Hadd.
apply bisim_add’_P with (dm := 1%nat) (dn := 1%nat).
apply Ha; auto.
apply Hb; auto.

(* sum *)
intros A fns Ha B fns’ Hb h Hmorph s.
destruct fns as (f1, f’); destruct fns’ as (g1, g’).
destruct f’ as (f2, _); destruct g’ as (g2, _).
destruct s; auto.

Defined.

Figure 4.3: Count Fusion, Coinductively
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Lemma countFusionList’
(rec : 8 (A : Set) (f g : A ! coN’) (h : coN’ ! coN’),

morphism_coN’ h !
(8 h : coN’ ! coN’, morphism_coN’ h !
8 x : A, bisim’ (h (f x)) (g x)) !

8 l : list A, bisim’_P 1 (h (countList f l)) (countList g l))
(A : Set) (f g : A ! coN’) (h : coN’ ! coN’)
: morphism_coN’ h !

(8 h : coN’ ! coN’, morphism_coN’ h !
8 x : A, bisim’ (h (f x)) (g x)) !

8 l : list’ A, bisim’_P 1 (h (countList’ (countList, tt) f l))
(countList’ (countList, tt) g l).

Proof.
intros rec A f g h Hmorph Hx l.
elim Hmorph; intros Hzero Hadd.
destruct l; compute [countList’ specTerm’]; simpl.
apply bisim’_P_trans with (d1:=0) (d2:=0) (n2:=coZ’); auto.
apply bisim’_bisim’_P; apply Hzero.
apply bisim_coZ’_P.
destruct d as (a, l’).
apply bisim’_P_trans with (d1 := 0) (d2 := 0)
(n2 := add’ (h (f a)) (h (countList f l’))); auto.

apply bisim’_bisim’_P; apply Hadd.
apply bisim_add’_P with (dm := 0) (dn := 1%nat).
apply bisim’_bisim’_P; apply Hx.
apply Hmorph.
apply (rec A f g h Hmorph Hx).

Defined.

Theorem countFusionList (A : Set) (f g : A ! coN’)
: 8 (h : coN’ ! coN’), morphism_coN’ h !
(8 h : coN’ ! coN’, morphism_coN’ h !
8 x : A, bisim’ (h (f x)) (g x)) !

8 l : list A,
bisim’_P 1 (h (countList f l)) (countList g l).

Proof.
cofix countFusionList; intros A f g h Hmorph Hx l.
rewrite (decomp_id_coN’ 1 (countList f l)); simpl.
rewrite (decomp_id_coN’ 1 (countList g l)); simpl.
elim Hmorph; intros Hzero Hadd.
change (bisim’_P 1 (h
(decomp_coN’ 1 (countList’ (countList, tt) f (fromList l))))
(decomp_coN’ 1 (countList’ (countList, tt) g (fromList l)))).

do 2 rewrite <- decomp_id_coN’.
apply
(countFusionList’ countFusionList f g Hmorph Hx (fromList l)).

Defined.

Figure 4.4: Count Fusion Specialized to list
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Related Work

As already explained in the Chapter 1, “generic programming” is a very general term
which has been instantiated in many contexts. A detailed survey of generic programming
approaches is therefore well beyond the scope of this thesis. For a detailed survey
on generic programming in Haskell, we refer the reader to a survey paper by Hinze
et al. (2006a), or the paper by Rodriguez et al. (2008) which gives an overview of the
numerous “light-weight” generic programming approaches implemented as libraries in
Haskell. Instead, we will restrict ourselves to datatype-generic programming, which for
the purposes of this chapter we will roughly define as

Definition 1 (Datatype-generic programming) A datatype-generic function is a single
function that can be applied to terms of many different datatypes.

In particular, type classes do not classify as datatype-generic programming under this
definition because a type class is a collection of functions, one for each datatype; although
we can abstract over this collection, type classes do not constitute a single function that
can be applied to terms of different datatypes.

This definition still includes many different approaches, many of which are only
marginally related to our work in this thesis. Most of this chapter will therefore have the
following shape:

1. We start with the current focus (starting with our broad definition of datatype-
generic programming, above)

2. We classify approaches that fit the current scope into two or more groups, only one
of which is directly related to the approach we take in this thesis

3. We give a canonical example for each group that is not directly related

4. We narrow the scope to the group which includes the approach we take, and
reiterate.

The chapter concludes with a brief discussion of research on productivity.
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5.1 Scrap Your Boilerplate

Approaches to datatype-generic programming can be divided into two major groups:
approaches that take advantage of certain properties of the types of the terms they are
applied to, and approaches that do not. In this section we will discuss one well-known
approach to generic programming that does not take advantage of properties of the
datatype: Scrap Your Boilerplate. In the next section we will focus in on the second
group.

The Scrap Your Boilerplate (SYB) approach (Lämmel and Jones, 2003) —and its
numerous variations (Lämmel and Jones, 2005; Hinze et al., 2006b; Hinze and Löh,
2006b)— is aimed towards programs that traverse data structures built from mutually
recursive datatypes. These programs usually consist of a lot of “boilerplate” code to
traverse the structure and a small amount of “real” code that does the important work.
The idea is that most of this boilerplate code can be written once and then reused, leaving
the programmer free to concentrate on more important parts of the code. To achieve
this a small library is provided containing two types of generic combinators: recursive
traversals and type extensions. Generic functions are then defined in terms of these library
functions. We will give a short explanation of how this approach works, using a function
that increases the salary of every employee of a company as an example.

In this example, the boilerplate code would traverse the company structure, perhaps
going through all departments, all units within these departments, all employees in these
units and finally, the salary of these employees. Only when we have traversed through
the entire company structure and found the employees will the algorithm actually do any
useful work: increase the salary of these employees, given by the function incSalary.

data Salary = S Float

data Company = Company (List Dept)

data Dept = Dept Name (List SubUnit)

data SubUnit = EUnit Employee | DUnit Dept

...

incCompany :: Float -> Company -> Company

incCompany k (Company ds) = Company (map (incD k) ds)

incDept :: Float -> Dept -> Dept

incDept k (Dept nm us) = Dept nm (map (incUnit k) us)

...

incSalary :: Float -> Salary -> Salary

incSalary k (S s) = S (s ⇥ (1 + k))

Depending on the company structure, there could be a long list of traversals before finally
the function incSalary is reached. Using the Scrap Your Boilerplate approach none
of the traversal methods are necessary, and can be replaced by the following code:

increase :: Float -> Company -> Company

increase k = everywhere (mkT (incSalary k))
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The function mkT transforms incSalary so that it can be applied to any node in the
tree, not just Salary nodes; this is called type extension. The resulting function behaves
like incSalary when applied to a Salary and like the identity function otherwise.

The function everywhere is a generic traversal combinator that applies its argument
function to every node in the tree. In addition to this there are other traversal combinators
that, for example, apply their argument functions to only those nodes in the tree that
satisfy certain conditions.

The main advantage of this approach is that it can deal with arbitrary datatypes,
including nested and mutually recursive datatypes, without any extra complications.
However, the Scrap Your Boilerplate approach can be seen as orthogonal to the Generic
Haskell approach: in SYB a small amount of boilerplate code is still necessary to define
the generic traversals. This boilerplate might be eliminated using Generic Haskell.

To be able to compare the Scrap Your Boilerplate approach to other generic ap-
proaches, Hinze et al. (2006b) retrofit a generic view to the SYB approach: the spine view.
Hinze and Löh (2006b) then identifies some limitations of the SYB/spine view approach
and suggests improvements:

• The spine view is inherently value-oriented: any value can be regarded as a data
constructor applied to other values. This introduces the limitation that we can
only define generic functions that consume data, since we do not know which
constructors together constitute a datatype. To remedy this Hinze and Löh (2006b)
introduce the typed spine view. This view has access to additional information about
datatypes; in particular, a datatype is viewed as a list of constructor applications,
allowing us to write generic functions that produce data.

• The spine view is limited to datatypes of kind ?. Generic functions such as map,
that abstract over type constructors are therefore out of reach. To address this
problem, Hinze and Löh (2006b) again define a new view: the lifted spine view,
which works in a very similar manner as the spine view, but with each constructor
lifted to types of kind ? ! ? . However, the approach remains limited to datatypes
of a finite set of kinds.

For a comprehensive overview of these different spine views, including mechanisms to
combine them, see (Hinze and Löh, 2009), which is largely based on (Hinze and Löh,
2006a).

The use of type casts in the SYB approach complicates proving properties about
generic functions in SYB. As far as we are aware the only work dealing with proofs about
SYB functions (Reig, 2006) converts SYB programs into Generic Haskell first and then
applies the techniques described in (Hinze, 2000a).
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5.2 Origami Programming

We now start to narrow our definition slightly and consider only approaches to datatype-
generic programming that take advantage of some properties of the datatype. Again, we
can split these approaches into two groups: semantic versus syntactic approaches. While
semantic approaches use properties of the type arguments to define generic functions—
such as the fact that the datatype is a functor—it does not inspect the datatype. In contrast,
in syntactic approaches the structure of the datatype is essential and generic functions are
defined by induction on this structure. We will zoom in on syntactic approaches, which
we will refer to as polytypic programming, in the next section. An example of a semantic
approach is what is often referred to as origami programming because of the abundance
of folds and unfolds. In this section we will discuss origami programming in some more
detail.

Origami programming (Gibbons, 2006) is based on the idea that datatypes are fix-
points of pattern functors, where the pattern functor describes the shape of the datatype.
The theory of datatypes as fixpoints of functors is explained in detail in (Backhouse et al.,
1998). We can define a datatype Fix, which takes such a pattern functor s and a type a

of kind ?, and gives us the fixpoint of f :

data Fix s a = In {out :: s a (Fix s a)}

The pattern functor for lists and, using that, the definition of the List datatype can be
defined as follows:

data List� a b = NilF | ConsF a b

type List a = Fix List� a

Note that List� is not recursive, and takes an extra argument b which effectively
represents the recursion. The type constructor Fix then ties the recursive knot in the
definition of List.

There are some restrictions on the datatypes to which the type constructor Fix
can be applied: the approach is limited to datatypes that can be represented by pattern
functors which are bifunctors (which in Haskell terms restricts it to regular datatypes of
kind ? ! ? ), captured by the following type class:

class Bifunctor s where

bimap :: (a ! c) ! (b ! d) ! (s a b ! s c d)

where bimap should preserve identity and composition, although those properties cannot
be expressed in Haskell. As another example of a pattern functor, consider the type of
trees with elements only at its leaves:

data Tree� a b = LeafF a | NodeF b b

type Tree a = Fix Tree� a

Both Tree� and List� can be shown to be instances of the Bifunctor class:

instance Bifunctor List� where
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bimap f g NilF = NilF

bimap f g (ConsF x y) = ConsF (f x) (g y)

instance Bifunctor Tree� where

bimap f g (LeafF x) = LeafF (f x)

bimap f g (NodeF t1 t2) = NodeF (g t1) (g t2)

Generic functions can now be defined in terms of bimap and the constructor and destruc-
tor for the datatype Fix:

map :: Bifunctor s => (a ! b) ! Fix s a ! Fix s b

map f = In � bimap f (map f) � out

fold :: Bifunctor s => (s a b ! b) ! Fix s a ! b

fold f = f � bimap id (fold f) � out

There is a trade-off in the range of datatypes covered by an approach and the elegance
with which functions such as fold can be defined. By restricting the approach to
datatypes whose pattern functors are bifunctors, we get a very short and elegant definition
of fold; whereas in Generic Haskell the fold function requires some extra machinery,
but there is no such restriction on the datatypes for which a generic function is defined.

The use of a type class to capture the notion of a bifunctor has the disadvantage that
the user must provide an instance of Bifunctor for each new pattern functor (and thus
each new datatype). The language extension PolyP, which we will discuss in Section 5.3.1,
eliminates this restriction by not treating the datatype as a black box.

Proofs about generic origami functions can be done using the theory of initial algebras.
See (Gibbons and Paterson, 2009) for some example properties and proofs that use the
theory of natural transformations.

5.3 Polytypic Programming in Haskell

We now narrow our focus further and consider only approaches which take advantage of
the structure of the datatype. We call such approaches polytypic and the approach that
we use in this thesis is one example. There are, however, various possible views on the
construction of datatypes. Examples of views include the “sums of products” view we
take in this thesis and is essentially the view used in Generic Haskell and Generic Clean.
Other examples include the view in PolyP, one of the earliest approaches to polytypic
programming, and the spine view, a more recent development we discussed in Section 5.1.

The approaches we discuss in this section all have in common that polytypic functions
are not first class: we cannot define functions that take polytypic functions as an argument,
only specific instantiations of polytypic functions can be passed as arguments to other
functions. In the next section, we will refine our focus one final time and concentrate
on approaches to polytypic programming implemented in dependently typed languages,
where polytypic functions become first-class.
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5.3.1 PolyP

PolyP (Jansson and Jeuring, 1997) was the first generic language extension for Haskell.
The approach taken in PolyP is in a sense a variation on origami programming, since it
also treats datatypes as fixpoints of pattern functors—and is therefore also restricted to
regular datatypes of kind ? ! ? . However, there is one important difference: PolyP
allows us to inspect the structure of these pattern functors in order to define generic
functions, thus allowing for different behaviour of the function for different datatypes
and expanding the range of functions that can be defined generically.

Pattern functors are type constructors of kind ? ! ? ! ? representing the recursive
structure of a datatype, and they can be built using the following grammar:

f ::= g + h | g⇥ h | Par | Rec | d@g | Const t | Empty

Each functor is a sum of products of either a parameter (Par), the datatype itself (Rec),
the composition of datatype d and functor g (d@g) or constant types (Const t, where t

may be Int or Char, etc.). An empty product is represented by the unit type Empty.
By forcing a pattern functor to conform to this grammar we ensure that it is a bifunctor.

Given the same type constructor Fix as in Section 5.2 (which we will repeat here for
convenience), we can define the pattern functor for lists and apply Fix to get the type
List:

data Fix s a = In {out :: s a (Fix s a)}

data List� = Empty + Par ⇥ Rec

type List a = Fix List� a

We should now be able to define the generic fold function in a similar fashion as
we did for origami programming, except that we do not have an explicit bimap function
as part of the Bifunctor class that we can use. However, we can define bimap

polytypically by induction on the structure of pattern functors. This is a distinct advantage
over origami programming because it eliminates the need to provide an instance of the
type class for each new datatype. The polytypic bimap function is defined as follows:

polytypic bimap :: (a ! c) ! (b ! d) ! s a b ! s c d

= l p r !
case s of

g + h ! (bimap p r) -+- (bimap p r)

g ⇥ h ! (bimap p r) -⇥- (bimap p r)

Empty ! id

Par ! p

Rec ! r

d@g ! map (bimap p r)

Const t ! id

with
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(-+-) :: (g A B ! g C D) ! (h A B ! h C D) !
((g + h) A B ! (g + h) C D)

(-⇥-) :: (g A B ! g C D) ! (h A B ! h C D) !
((g ⇥ h) A B ! (g ⇥ h) C D)

where map is the generic map function defined on bifunctors. Since we now have a
polytypic function bimap, we can define fold generically in exactly the same way as we
did in the origami programming approach in Section 5.2.

Due to the explicit recursion marker in pattern functors, functions such as fold can
easily be defined in PolyP. At the same time this poses the restriction that generic functions
in PolyP only act on regular datatypes of kind ? ! ? . It has proven difficult to define a
view on datatypes that includes such an explicit recursion marker which is not restricted
to regular datatypes. Rodriguez et al. (2009) make use of recent Haskell extensions such
as generalized algebraic datatypes (GADTs) and type families to describe a technique that
allows a fixpoint view for systems of mutually recursive (and thus non-regular) datatypes.

5.3.2 Generic Haskell

Since the approach that we take in this thesis was designed to model that used in Generic
Haskell, we can be brief in this section. Generic Haskell (Löh, 2004) represents datatypes
using the sums of products view: the choice of constructors is represented by a sum,
whereas the list of arguments to a particular constructor is represented by a product with
the nullary constructor represented by the unit type. In addition, Generic Haskell records
information about constructors (Con) and record labels (Label) such as the name and
fixity of the constructor or label. This information can be used in generic functions such
as pretty printers, where the name of the constructor is needed.

In addition to the extra information stored about constructors and labels, an important
difference between the structural types in Generic Haskell and PolyP (as discussed in
Section 5.3.1) is the absence of an explicit recursion marker. This difference in structural
types is in fact the most notable difference between Generic Haskell and PolyP and the
most important other differences stem from this.

In Generic Haskell, the structural types for List a and Tree a b (trees with
elements of type a at the leaves and elements of type b at the nodes) are given as:

type List� a =

Con "Nil" (..) Unit

:+: Con "Cons" (..) (a :⇥: (List a))

type Tree� a b =

Con "Leaf" (..) a

:+: Con "Branch" (..) (b :⇥: ((Tree a b) :⇥: (Tree a b)))

These structural types represent the top-level structure of a datatype. A type T and
its structural representation T

� are isomorphic, and this isomorphism is witnessed by an
embedding-projection pair of type
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data a $ b = EP {from :: a ! b, to :: b ! a}

The Generic Haskell compiler generates these embedding-projection pairs, and they are
not available to the generic programmer (unlike in PolyP, where the application of In
and out is the responsibility of the programmer).

A generic program is then defined by induction on these structural types. For example,
the generic map function in Generic Haskell takes the form

map{|T :: k|} :: Map{[k]} T T

map{|Unit|} Unit = Unit

map{|Int|} i = i

map{|Char|} c = c

map{|:+:|} mA mB (Inl x) = Inl (mA x)

map{|:+:|} mA mB (Inr x) = Inr (mB x)

map{|:⇥:|} mA mB (x :⇥: y) = mA x :⇥: mB y

map{|Con c|} m (Con x) = Con (m x)

map{|Label l|} m (Label x) = Label (m x)

Note that the type of the generic map function is given by a kind-indexed type Map as
we have discussed in Section 2.4.1.

Given this generic definition of map it can be specialized to any type that can be
described by the structural representation in Generic Haskell. This specialization is done
at compile time and is hidden from the programmer.

Generic Clean is very similar to Generic Haskell; the main difference is the integration
of generics with the type class system, which has some advantages (Alimarine and
Plasmeijer, 2001). Moreover, a lot of effort is put into reducing the efficiency overhead of
polytypic programming (Alimarine and Smetsers, 2004, 2005).

5.4 Dependent Polytypic Programming

PolyP, Generic Haskell and Generic Clean all rely on preprocessors or language extensions
to define generic programming. As a consequence, polytypic functions are not first-class;
in addition, the language extension or preprocessor must include an extension of the host
type system to typecheck polytypic functions (if such an extension is absent, only the
instances of the polytypic functions can be typechecked).1

When we move to a language with a much more powerful dependent type system we
can do polytypic programming entirely within the host language. Polytypic functions can
now be made ordinary terms in the host language and are therefore first-class. The type
checker for the host language can typecheck the polytypic functions since we can define
what it means for a polytypic function to be well-typed within the host language.

We have now arrived at the class of related work which is most closely related to ours,
and we discuss a number of approaches in this section.

1The spine view lives in between the two worlds as it uses generalized algebraic datatypes: a poor man’s
implementation of dependent types. Polytypic functions still are not first-class, however.
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5.4.1 PolyP-style Generics

The work by Pfeifer and Rueß (1999) has been cited (Benke et al., 2003) as the first
formalization of polytypic programming in a dependent language. The paper consists of
two parts. The first part of the paper formalizes the semantic bifunctor-based approach
that we know from origami programming (Section 5.2). The translation to a dependently
typed language (in fact, Coq) is reasonably straightforward and we do not reproduce
it here. However, note that definitions such as map and fold as given in Section 5.2
cannot be given, as the recursion is not structural (see also Chapter 4). Instead, it is
assumed that as part of the proof of the initiality of a datatype a dependent eliminator
(i.e., a fold) is given (Definitions 9 and 10 in their paper). The polytypic function map
can then of course easily be defined.

The second part of the paper formalizes the syntactic approach familiar from PolyP.
The universe that is considered is simpler than the universe in PolyP, however, and is
defined as shown in Figure 5.1 (we have paraphrased the definition to make it easier to
compare to the other definitions in this chapter).

Like in PolyP, the syntactic approach is used to define bimap once and for all for all
datatypes that can be represented in the universe. Moreover, the bimap laws (preservation
of identity and composition) are proven. Although this is clearly a proof about a polytypic
function, it is not a “polytypic” proof in the sense that the proof is by direct induction
on the universe: no special “proof specialization” machinery is in place. It is also an
extremely simple proof; to emphasize this, we have shown the full proof in the figure.

Note that here (like in PolyP) the bifunctor is not recursive (and does not need to be):
the recursion is handled by an explicit parameter. Moreover, the authors do not give a
definition of the initial algebra induced by these (bi)functors: in other words, recursion is
not handled polytypically.

Benke et al. (2003) continue from this work; although it seems that they do give
a decoder for the universe and (for instance) give a fold operation, well-definedness
(termination) of the fold operation is taken for granted. For their simple universe (the first
of a series), they define fold as

iterS C d (IntroS x) = d (F

1
S (iterS C d) x)

Here, d is the “step” function of the fold; the definition maps (F

1
S) the fold across all

recursive occurrences of the datatype and then applies the step function to the result. This
is the usual definition of a fold operation, but note that the recursive occurrence of iterS

is not (obviously) applied to structurally smaller arguments. In fact, it is not applied to
an argument at all. Of course, since F

1
S will only apply its argument to the recursive

occurrences of the term, and since those occurrences must be structurally smaller since
the term is inductive, this definition is well-defined. However, in a type theory such as
Coq that relies on “obvious” structural induction, a definition such as this will not be
accepted (if it was, we would not have any of the difficulties we describe in Chapter 4).
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Inductive code :=
| sum : code ! code ! code
| prod : code ! code ! code
| var : code
| rec : code.

Fixpoint Bifunctor (c : code) (A X : Set) : Set :=
match c with

| sum c1 c2 => Bifunctor c1 A X + Bifunctor c2 A X
| prod c1 c2 => Bifunctor c1 A X ⇥ Bifunctor c2 A X
| var => A
| rec => X
end.

Fixpoint bifunctor (c : code) (A B X Y : Set)
(f : A ! B) (g : X ! Y)

: Bifunctor c A X ! Bifunctor c B Y :=
match c return Bifunctor c A X ! Bifunctor c B Y with

| sum c1 c2 => fun s =>
match s with

| inl l => inl (bifunctor c1 f g l)
| inr r => inr (bifunctor c2 f g r)
end

| prod c1 c2 => fun p =>
let (l, r) := p
in (bifunctor c1 f g l, bifunctor c2 f g r)

| var => fun a => f a
| rec => fun x => g x
end.

Lemma bifunctor_id : 8 (c : code) (A X : Set)
(e : Bifunctor c A X),

bifunctor c (fun x => x) (fun x => x) e = e.
Proof.

induction c; simpl; intros; auto.
destruct e; [rewrite IHc1 | rewrite IHc2]; reflexivity.
destruct e; rewrite IHc1; rewrite IHc2; reflexivity.

Qed.

Lemma bifunctor_comp : 8 (c : code) (A B C X Y Z : Set)
(f2 : B ! C) (f1 : A ! B)
(g2 : Y ! Z) (g1 : X ! Y)
(e : Bifunctor c A X),

bifunctor c f2 g2 (bifunctor c f1 g1 e) =
bifunctor c (fun a => f2 (f1 a)) (fun x => g2 (g1 x)) e.

Proof.
induction c; simpl; intros; auto.
destruct e; [rewrite IHc1 | rewrite IHc2]; reflexivity.
destruct e; rewrite IHc1; rewrite IHc2; reflexivity.

Qed.

Figure 5.1: Universe in (Pfeifer and Rueß, 1999)
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The authors continue by extending the simple universe in various ways: first to
(almost) the universe of PolyP and then beyond by supporting mutually recursive datatypes
as well as indexed datatypes. They give a proof of reflexivity and substitutivity of Boolean
equality in the smaller universe. The definition and the proof are defined in terms of
the fold operator that follows from the initial algebra so this can really be regarded as a
“polytypic proof”.

Compared to the universe we consider in this thesis, however, the class of kinds
supported by both is limited to first-order kinds (in the case of (Pfeifer and Rueß, 1999),
even only kind ? ! ?, like in PolyP).

5.4.2 Strictly Positive Types

In (Morris et al., 2006) we finally find a way to decode universes with recursion. The
approach relies on an cunning idea: rather than giving a direct translation from a code to
a datatype, the authors give a datatype which is indexed by a code: rather than giving the
translation to a datatype, they formalize what it means for a datatype corresponding to a
code to be inhabited. Before we consider the full universe of strictly positive types, we
first give a Coq-formalization of a “Morris-style” decoder for the simple Pfeifer universe
from the previous section in Figure 5.2.

The Pfeifer universe contains two distinguished free variables, var and rec. In
the definition of the bifunctor in Section 5.4.1 we treated both variables simply as free
variables, but now we want to treat rec as marking the recursive occurrences of the
datatype. Nevertheless, as in any decoder, we need an environment that decodes the free
variables in the code: that is, we need the decoding of var and the decoding of rec.
Since the length of this environment is fixed, we have simply inlined it as two arguments
to the decoder El: the decoding of var is a type A, but the decoding of rec is a code
Rec. This is crucial to be able to give an interpretation of recursion: the decoding of
recursion is simply the decoding of the entire code again. We will discuss if this approach
can be used for Generic Haskell-style generics in Section 6.4.2.

Morris et al. (2006, 2007a) give a universe of strictly positive types, shown in Fig-
ure 5.3. The syntax in the figure is that of Epigram, but is hopefully self-explanatory. It
defines a dependent datatype SPT, indexed by a natural number n which indicates the
number of free variables in the type. The constructors are given in natural deduction style,
with the arguments to the constructor above the line and the result type of the constructor
below.

When we compare this universe to the universe we use in this thesis (Figure 2.4) we
find many differences. Some seem merely cosmetic; for example, the type constants and
the “0” and ”successor” constructors for selecting free variables have been inlined into the
definition of the universe.2 More important differences come from the two constructors

2The authors say that inlining the constructors for selecting free variables makes proofs easier; it would
be interesting to see if it would have the same effect in our universe.
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Inductive El’

the environmentz }| {
(A : Set) (Rec : code) : code ! Set :=

| El_void :
El’ A Rec one

| El_inl : 8 (l r : code),
El’ A Rec l !
El’ A Rec (sum l r)

| El_inr : 8 (l r : code),
El’ A Rec r !
El’ A Rec (sum l r)

| El_pair : 8 (l r : code),
El’ A Rec l !
El’ A Rec r !
El’ A Rec (prod l r)

| El_top :
A !
El’ A Rec var

| El_in :
El’ A Rec Rec !
El’ A Rec rec.

(* Decoding "closed" types *)
Definition El (A : Set) (c : code) : Set := El’ A c rec.

(* Pattern functor for lists *)
Definition ListF : code := sum one (prod var rec).

(* Embedding lists into the structural representation *)
Fixpoint fromList (A : Set) (xs : list A) : El A ListF :=

match xs with

| nil =>
El_in (El_inl El_void)

| cons x xs’ =>
El_in (El_inr (El_pair (El_top x) (fromList xs’)))

end.

Figure 5.2: Morris-style Decoder for the Pfeifer Universe

data
n : Nat

SPT n : ?
where

vz : SPT (s n)

T : SPT n

vs T : SPT (s n)

‘0’ : SPT n ‘1’ : SPT n

S, T : SPT n

S‘+’T : SPT n

S, T : SPT n

S‘⇥’T : SPT n

K : ? T : SPT n

K‘!’T : SPT n

F : SPT (s n)

‘µ’F : SPT n

Figure 5.3: Universe of Strictly Positive Types
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gMap f x ( rec x

gMap (mF f f) (top x) ) top (f x)
gMap (mU f) (top x) ) top (gMap f x)
gMap ml (top x) ) top x

gMap (mF f f) (pop x) ) pop (gMap f x)
gMap ml (pop x) ) pop x

gMap (mU f) (pop x) ) pop (gMap f x)
gMap f (in x) ) in (gMap (mU f) x)
gMap f void ) void
gMap f (inl x) ) inl (gMap f x)
gMap f (inr x) ) inr (gMap f x)
gMap f (pair x y) ) pair (gMap f x) (gMap f y)
gMap f (fun f) ) fun (lk ) gMap f ( f k))

Figure 5.4: Generic Map in (Morris et al., 2007a)

on the bottom line in the figure: the type constants include the function space (but the
domain of the function must be a constant type) and the universe includes recursion. Their
universe does not include type application, however, and therefore covers parametric
types of first order kind.

Polytypic functions are functions on elements of the decoder datatype El. For
example, Figure 5.4 shows the generic map function as given by Morris et al.. We have
shaded the part that deals with free variables and the recursion markers; this part can
probably be dealt with in a general way (just like we deal with variables in a general
way in this thesis) and individual polytypic functions can ignore them. The non-shaded
part contains the definitions for unit, sums, products, and arrows; these are very similar
to their Generic Haskell counterpart, with the exception that the number of function
arguments we get does not depend on the kind of the type constant. Rather, we always get
an environment f which contains functions for each of the free variables in the datatype.

In the paper, the authors prove the two functor laws “by easy induction”. So it seems
that proofs in their universe do not need the sort of infrastructure we have given in
Chapter 3. It is not obvious what properties of their universe makes this possible, and
it would be interesting to see if we can “backport” some properties of their approach to
make our proofs easier. On the other hand, the definition of the functor laws is not as
direct (for example, a special composition operator needs to be defined for composition
of morphisms over environments).

Morris et al. (2007a) continue with an extension of the universe to include dependent
datatypes, but a discussion of these “strictly positive families” is beyond the scope of this
thesis.
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5.4.3 Generic Haskell-style Generics

There are a few implementations of Generic-Haskell style generics in a dependent pro-
gramming language: Altenkirch and McBride (2003) give an implementation in Oleg
(the dependent language developed by Conor McBride in his doctoral thesis, McBride,
1999) and Norell (2002) presents a similar design in Alfa and follows (a preprint of) the
first paper closely; Sheard (2007) goes some way towards a design in Wmega. None of
these formalizations attempt to do any proofs (polytypic or otherwise) over polytypic
programs.

Since both our implementation in Coq in Chapter 2 and the implementations in Oleg
and Alfa are based on the work by Hinze, it should come as no surprise that there are
many similarities between both formalizations. Of course, the host language is different,
which inevitably leads to variation in the design. Most notably, Oleg and Alfa appear to
support general recursion, which simplifies the implementation of polytypic programs
but is less suitable to the implementation of polytypic proofs.3

An important difference between these designs and our own is that the concept of
a polytypic function is not reified in the host language: there is no data structure that
corresponds to our PolyFn record (Section 2.4.2). Instead, polytypic functions are
written by direct induction on the universe and there is no separate specialization process.
We think that it is important to identify polytypic functions (and polytypic proofs) as
stand-alone concepts, as we feel it makes functions and proofs easier to write. Moreover,
since it forces polytypic functions to be more uniform (as most of the work is done by
specialization, which is the same for every polytypic function), polytypic proofs can also
be smaller. Finally, it will make the formalization more accessible to programmers used
to Generic Haskell.

5.4.4 Containers

Containers (Hoogendijk and de Moor, 2000; Abott et al., 2003) and also (Jay, 1995;
Backhouse and Hoogendijk, 2003) are a very different view of datatypes. Unfortunately,
most of the literature on containers relies heavily on category theory and is therefore not
easily accessible to people not well-versed in this subject. Section 5 of (Altenkirch et al.,
2007) is one notable exception and our exposition here is mostly based on that paper.

The basic idea of container types is to separate out the shape of a term (like a list
or a tree) from the values in the term. To interpret a term as a container, we need three
components: we need a characterization of the shape of the term, we need a mapping
from this shape to a set of positions within the term, and we need a mapping from these
positions to the values in the term.

For instance, consider the type of vectors or lists of a given length (here and elsewhere
in this section we will use Coq for our examples):

3(Norell, 2002, Section 7.6, Converting to real types) goes as far as to consider the lack of recursion in
type theory a “flaw” in type theory for the purposes of doing polytypic programming.
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Inductive Vec (A : Set) : nat ! Set :=

| vnil : Vec A 0

| vcons : 8 n, A ! Vec A n ! Vec A (S n).

We can consider the shape of a vector to be its length, that is, a natural number. Given the
shape of a vector, we can compute the set of positions in the vector. In this case, the set
of positions is the set of indices 0 . . . n� 1, which is computed by Fin:

Inductive Fin : nat ! Set :=

| fz : 8 n, Fin (S n)

| fs : 8 n, Fin n ! Fin (S n).

Finally, we can define a (total) mapping from this set of positions to the values of the
elements in the vector:4

nth : 8 (A : Set) (n : nat), Vec A n ! Fin n ! A.

A (unary) container then is a type S describing shapes and a mapping P from shapes to a
type describing positions:

Inductive UCont : Type :=

| ucont : 8 (S : Set) (P : S ! Set), UCont.

An instance of a container is given by a particular shape s and a mapping f from the
positions in s to the values in the datatype:

Inductive UExt : UCont ! Set ! Type :=

| uext : 8 (S : Set) (P : S ! Set) (X : Set)

(s : S) (f : P s ! X),

UExt (ucont S P) X.

For instance, we can regard a vector as a container as follows:

Definition Vec_UExt (A : Set) (n : nat) (xs : Vec A n)

: UExt (ucont nat Fin) A :=

uext n (nth xs).

As another example, consider the type of binary trees with data at the branches (but none
at the leaves). The shape of such a tree is itself a tree without any information about the
values in the tree. We can describe these “tree shapes” as

Inductive TreeShape : Set :=

| sleaf : TreeShape

| snode : TreeShape ! TreeShape ! TreeShape.

Note that a natural number can similarly be considered as a list without values, with 0
taking the role of the empty list and successor taking the role of the cons constructor.
Like the type of vectors was indexed by its shape (a natural number), the type of trees is
indexed by the shape of trees:

4For conciseness we leave some of the definitions in this section as an (easy) exercise to the reader.
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Inductive Tree (A : Set) : TreeShape ! Set :=

| tleaf :

Tree A sleaf

| tnode : 8 (lsh rsh : TreeShape),

A !
Tree A lsh !
Tree A rsh !
Tree A (snode lsh rsh).

Next, we need a mapping from a shape to a set of positions: in this case, paths through a
tree. For vectors, we had that both the type of vectors and the type of positions is indexed
by the shape of the vector; here, both the type of trees and the type of paths through trees
is indexed by a tree shape:

Inductive Path : TreeShape ! Set :=

| phere : 8 (lsh rsh : TreeShape),

Path (snode lsh rsh)

| pleft : 8 (lsh rsh : TreeShape),

Path lsh !
Path (snode lsh rsh)

| pright : 8 (lsh rsh : TreeShape),

Path rsh !
Path (snode lsh rsh).

Finally, we need a total mapping from positions to values in the tree (the equivalent of
nth for vectors). This mapping is easily defined; here, we give its type only:

find : 8 (A : Set) (s : TreeShape), Tree A s ! Path s ! A.

The treatment of both datatypes is very similar, and indeed we can now interpret trees as
containers in a similar way that we interpreted vectors as containers:

Definition Tree_UExt (A : Set) (s : TreeShape) (t : Tree A s)

: UExt (ucont TreeShape Path) A := uext s (find t).

Some definitions and proofs about containers can be done semantically. For instance, we
can very easily prove (up to eta-expansion) that every container is a functor:

Definition ucmap (C : UCont) (X Y : Set) (f : X ! Y)

(c : UExt C X) : UExt C Y :=

match c in UExt C X return (X ! Y) ! UExt C Y with

| uext _ _ _ s g => fun f => uext s (fun x => f (g x))

end f.

Lemma ucmap_id : 8 (C : UCont) (X : Set) (c : UExt C X),

ucmap (fun x => x) c = c.

Lemma ucmap_comp : 8 (C : UCont) (X Y Z : Set)

(f : Y ! Z) (g : X ! Y) (c : UExt C X),

ucmap f (ucmap g c) = ucmap (fun x => f (g x)) c.
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However, since containers can be built from “constant containers”, “sum containers”,
“product containers”, etc. we can also give syntactic definitions and proofs by induction
on the structure of the container. This makes it possible to define a generic equality
function, for instance. Containers do not generalize easily to higher-order kinds (Conor
McBride, personal communication), but do generalize to indexed (dependent) datatypes
(Morris and Altenkirch, 2009). A discussion of indexed containers is, however, beyond
the scope of this thesis.

5.5 Dealing with Termination and Productivity

Semantic approaches to dealing with termination are fairly well-established. The standard
reference on Coq (Bertot and Castéran, 2004) discusses the use of a general accessibility
predicate to define well-founded inductive functions (Section 15.2) and the use of domain
specific accessibility (Section 15.4) as advocated by Ana Bove in her thesis (Bove, 2002).

Unfortunately, a similar approach to coinduction has not yet emerged and this is a
current hot topic in type theory research. As discussed in Chapter 4, a coinductive function
in Coq must satisfy a syntactic guardedness condition which informally guarantees that

1. Each corecursive call is made under at least one constructor.

2. If the corecursive call is under a constructor, it does not appear as an argument of
any function.

However, there are many useful corecursive functions that do not satisfy this condition.
The standard example of a function violating the first condition is the function which
filters out the elements that do not satisfy some predicate P from a stream:

filter (x :: xs) =

8
<

:
x :: filter xs if P(x)

filter xs otherwise

In fact, the filter function is not guaranteed to be productive: if no element in the stream
satisfies P then filter will never return an element and is therefore not productive. In
(Bertot, 2005; Bertot and Komendantskaya, 2008) it is shown how to define functions
such as filter by decomposing the problem into an inductive component (an inductive
proof that there is at least one element satisfying P) and a coinductive component (a proof
that this holds for all substreams of the stream).

A simple example of a function which fails to satisfy the second guardedness condition
but is nevertheless productive is the function that defines the stream of Fibonacci numbers:

fibs = 0 :: 1 :: fibs� tail(fibs)

where � is the pointwise addition of two streams. There are various ways in which
functions such as these can be defined. One solution suggested by Danielsson and Al-
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tenkirch (2009) is to define an ad-hoc domain specific language: in this case, a coinductive
datatype with a (coinductive or inductive) constructor for �. We can then separately give
an evaluation of the domain specific language to pure streams. Unfortunately, Coq does
not currently support mixing inductive and coinductive definitions so that although the
approach advocated by Danielsson and Altenkirch can be used in Coq, it requires an
encoding of induction within a coinductive datatype.

Another possibility is given by Gianantonio and Miculan (2003), who give a theory
of complete ordered families of equivalences which can be used to define functions with
an inductive and a coinductive component. They give a definition of the infinite list of
primes. This is an interesting example because it is effectively a constructive proof that
there are infinitely many primes (in particular, the next larger prime number can always
be generated in finite time).

Bertot and Komendantskaya (2009) suggest to avoid the direct use of coinduction
and use induction only; for example, a stream can be defined as a function from natural
numbers. Finally, Niqui (2009) uses notions from category theory to define a coinductive
fixed point operator for a large class of coinductive functions (a “l-coiteration scheme”),
including the Fibonacci numbers.

Finally, there is some work in tracking termination and productivity through the type
system instead (Abel, 2006). This is interesting as it frees us from syntactic restrictions,
but unfortunately currently none of the major proof checkers implement it. Abel (2009)
shows that the theory of sized types can be extended to Generic Haskell-style polytypic
functions.
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Future Work and Conclusions

We will start this final chapter with an overview of future work. There is some scope
for automation both in the definition of polytypic proofs and in the machinery required
for recursion (Section 6.1). The use of syntactic sugar in a number of areas could be
beneficial to hide some of the more complicated details from the user and make our
definitions as intuitive as possible (Section 6.2). In Section 6.3 we discuss a number
of useful extensions to the work in this thesis. To make use of the fact that polytypic
functions in our development are higher-order, we need to slightly modify our definition
of the PolyFn Record type. We would also like to extend the definition of polytypic
properties to allow for properties about multiple polytypic function. Other extensions that
might be of interest are type-indexed types, the extraction of code to Generic Haskell and
the addition of some meta-information to our type universe to allow for such polytypic
functions as pretty printers and parsers. We discuss the problem of recursion in Section 6.4,
and in Section 6.5 we conclude the thesis.

6.1 Automation

6.1.1 Tactics for Polytypic Proofs

When we look closely at the proofs from Sections 3.2.3 and 3.6 we find a great deal
of commonality. For example, the case for products in the proof that map preserves
identities and the proof that equality is commutative are

8xy : A, f x y = f y x

8xy : B, g x y = g y x

f a a

0 ^ g b b

0 = f a

0
a ^ g b

0
b

8x : A, f x = x

8x : B, g x = x

( f a, g b) = (a, b)
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and the corresponding case in the proof of count fusion is

8i j : nat, h (i + j) = h i + h j

8x : A, h ( f x) = f

0
x

8x : B, h (g x) = g

0
x

h ( f a + g b) = f

0
a + g

0
b

All of these proofs are solved in a similar way (although the proof of count fusion requires
one additional step). It should therefore be possible to construct such polytypic proofs
almost fully automatically. There might be some base cases, like commutativity of
equality on integers, which rely on library lemmas that need special treatment. However,
the use of domain-specific tactics or hint databases should be sufficient to solve most of
these special cases.

6.1.2 Generate Support for Recursion

At the moment quite a bit of machinery is required to specialize a polytypic function (or
proof) to a coinductive type:

1. A structural representation type (list’) for every coinductive type (list).

2. The corresponding embedding-projection pair (translating between list and
list’).

3. For each polytypic function (map) and each coinductive datatype (list) the
corecursive definition (mapList), making use of the embedding-projection pair:

CoFixpoint mapList (A B : Set) (f : A ! B) (l : list A)

: list B :=

toList (mapList’ mapList f (fromList l)).

4. Lemmas that the embedding-projection pair forms the witness of an isomorphism.

5. A definition of decomposition of terms of the coinductive type and a lemma that
decomposition is an identity function.

Most of this infrastructure (excluding only the lemmas) is also needed in Generic Haskell,
where it is generated by the Generic Haskell preprocessor. It would be useful to have
tactics that can automatically generate these definitions.

The same infrastructure will be required for polytypic proofs, but here the situation is
slightly trickier. For instance, the definition that map preserves identity, specialized to
coinductive lists, is approximately

CoFixpoint mapIdList (A : Set) (f : A ! A)

(Hx : 8 x : A, f x = x) (l : list A)

: bisim_list (mapList f l) l :=

to_preserves_bisim_list

(mapIdList’ mapIdList f Hx (fromList l)).
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which follows the same structure as mapList, with to preserves bisim list

taking the role of one half of the embedding-projection pair for bisimilarity. However,
the actual proof is more involved as it requires reasoning about equality (Section 4.4).
In particular, it needs to make use of a decomposition lemma to unroll corecursive
definitions.

6.2 Syntactic Sugar

Some of the definitions are a little cumbersome and could use some syntactic sugar to
lighten the burden on the programmer. Ideally, we would like polytypic functions and
types to be defined in Generic Haskell syntax. As is, we have put some effort into making
the style of polytypic function definitions closely resemble the style used in Generic
Haskell by carefully choosing our generic view on datatypes to match the view used in
Generic Haskell. However, some additional syntactic sugar might ease the switch from
one language to another.

A more pressing need for syntactic sugar can be found in the definition of polytypic
properties. In this thesis we have mostly applied this syntactic sugar already, defining the
property that map preserves identities (for kind ?) as

fun T f => 8 x : T, f x = x

whereas the actual definition takes the form

fun types fns =>

let T := fst types in

let f := fst fns in

8 x : T, f x = x

The arguments always take the form of tuples of types and functions and the user must
extract the individual elements from the tuples to be able to use them in the definition of
the property.

Another use for syntactic sugar can be found in the way we index tuples and represent
variables: in both cases we use the index type. An element of type index is either
None or takes the form Some (Some (. . . None)). It should be possible to use the
standard syntax for natural numbers instead.

6.3 Extensions

6.3.1 Expressivity of Polytypic Properties

As defined in this thesis (Section 3.2.2), the type of a polytypic property generally looks
like:

8(T1, . . . , T

nt

) . Pthki (T1, . . . , T

nt

)
:::::::::::: 1

⇥ · · ·⇥ Pthki (T1, . . . , T

nt

)
::::::::::::

nx

! Prop
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This limits the expressiveness of polytypic properties, as they can only refer to a single
polytypic type Pt. There are many properties that apply to a combination of polytypic
functions. For example, we might want to express the property that mapping across a
structure does not affect the count of that structure. This property would have a type
similar to

8T1 T2 . Counthki T2 ! Maphki T1 T2 ! Counthki T1 ! Prop

and might be defined as

fun T1 T2 f1 f2 f3 => 8 x : T1, f1 (f2 x) = f3 x.

As another example, consider polytypic functions for encoding and decoding a term into
a bitstream (Hinze and Jeuring, 2003, Section 1.4). A natural property we might want
to state and prove is that decoding is right inverse to encoding. In (Jansson and Jeuring,
2002) many more examples of conversion functions and their inverses can be found.

The main difficulty in modifying properties in this way is the construction of the type
arguments for each of the polytypic types. In Section 3.2.2 we have explained that

(T1, . . . , T

nt

)
::::::::::::

i

takes the correct np type arguments for the ith occurrence of Pt from the tuple of type
arguments associated with the property. If we allow for different polytypic types we also
get a different number of type arguments (np) for each of these polytypic types.

Since many of the lemmas concerning property and proof specialization involve these
“shuffled tuples”, the lack of uniformity is likely to cause some difficulties, especially
since those lemmas make heavy use of heterogeneous equality and are therefore rather
complicated and difficult to modify. If this difficulty can be resolved we think the modifi-
cation to allow properties over more than one polytypic function should be reasonably
straight-forward.

6.3.2 Meta-information

In both Generic Clean and Generic Haskell the generic view on datatypes is extended
with some meta-information like names of constructors. Such information is essential in
the definition of certain polytypic functions such as pretty printers and parsers (Hinze and
Jeuring, 2003, Section 2.5) and in larger scale applications of polytypic programming
such as the automatic generation of graphical user interfaces for web elements (Plasmeijer
et al., 2007). If we want to be able to reason about such functions, this meta-information
must also be added to our universe. Although this may complicate the polytypic proofs, it
should not pose any difficulties in the polytypic metatheory.

118



6.3. Extensions

6.3.3 Extraction to Generic Haskell

The Coq proof assistant supports extraction of Coq programs to Haskell. This is important
since it eliminates the gap between the system which has been proven correct and the
system that is actually deployed. Since we have based our development on Generic
Haskell, it would be useful if we could expand this extraction mechanism in such a way
that polytypic functions in our system can be extracted to Generic Haskell code. Of
course, the gap can never be completely eliminated. Proofs about polytypic functions are
correct with respect to the specialization process that we have given. It is not guaranteed
that they will still hold when using the specialization process used by Generic Haskell.
However, this problem already exists without polytypicity: when extracting code to
Haskell, it is assumed that the execution of that code is compatible with the execution of
the code within Coq. It is not too much of a leap to make the same assumption about the
Generic Haskell specializer.

Extraction to Generic Haskell should not be too difficult to implement. The extrac-
tor code must be able to recognize our PolyFn structure and generate the appropriate
Generic Haskell code. It must also recognize which instances of the polytypic functions
are used and generate the corresponding specializations. Of course, since the implemen-
tation of polytypic functions in a dependent language is strictly more expressive, not
all Coq programs can be so translated. For example, no translation can be given for
higher-order polytypic functions.

6.3.4 Type-indexed Types

Throughout this thesis we have used the polytypic map function as a running example.
Polytypic map makes it possible to prove that a type on the universe is a functor if it is
accompanied by the two corresponding functor laws: preservation of identity and compo-
sition. When we first introduced these properties (Section 3.2.1), we stated preservation
of identity as

Idh?i T : (T ! T) ! Prop

Idh?i T = l f : T ! T . 8x : T . f x = x

However, this lemma is too strong when we generalize to coinductive datatypes: we
should not require equality, but bisimilarity. Unfortunately, although it is possible to give
a definition of equality that can be used to compare terms of arbitrary types, there is no
such definition for bisimilarity. Therefore, the property would have to be something like

Idh?i T = l f . 8x : T . f x ⇡
T

x

where (⇡) is a function 8(T : ?), T ! T ! Prop for some type T. Unfortunately,
such a function cannot be given for arbitrary types, but we can give such a function

119



Chapter 6. Future Work and Conclusions

Definition Bisim : PolyType 1 :=
polyType 1 (fun A => A ! A ! Prop).

Definition bisim : PolyFn Bisim :=
polyFn Bisim
(fun x y : unit => True)
(fun x y : tint => x = y)
(fun (A : Set) (HA : A ! A ! Prop)

(B : Set) (HB : B ! B ! Prop)
((a, b) (a’, b’) : A ⇥ B) =>

HA a a’ /\ HB b b’
(fun (A : Set) (HA : A ! A ! Prop)

(B : Set) (HB : B ! B ! Prop)
(x y : A + B) =>

match (x, y) with

| (inl a, inl a’) => HA a a’
| (inr b, inr b’) => HB b b’
| _ => False
end).

Figure 6.1: Type-Indexed Definition of Bisimilarity

polytypically: we can define a type-indexed type (Hinze et al., 2004). Using a type-
indexed definition of bisimilarity ⇡hci, we might state the property that map preserves
identity as

Idh?i T = l f . 8c : closed type ? . decT c = T ! 8x : c . f x ⇡hci x

In words: for all types T whose code in the universe is c and for all elements x of type c,
maphci x is related to x in the bisimilarity relation specialized to c.

As it stands, our existing infrastructure for type-indexed terms can almost be used to
define type-indexed types. Figure 6.1 gives the definition of type-indexed bisimilarity.

Unfortunately this definition is not accepted. In Section 2.4.1 we show that a polytypic
type takes np type arguments and returns a term of type decK star = Set. In the
definition of Bisim, the result type A ! A ! Prop lives in Type. To allow this
definition we would need to change the decoder for kinds to return Type for kind ?

instead of Set. In Section 2.3.2 we explain our choice to use an impredicative sort as the
decoding of kind ?, and although Set in Coq is (optionally) impredicative, Type is not.
To change this from Set to Type we need to stratify our kind universe to eliminate the
need for impredicativity.

One would hope that in a dependently typed language there is no essential difference
between type-indexed values and type-indexed types. Type-indexed types are a crucial
ingredient for some proofs (such as proofs about bisimilarity, as we have seen) and
are useful to support other kinds of reasoning about polytypic functions. For instance,
it should be possible to prove that every type in the universe denotes a container (see
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Section 5.4.4), enabling semantic proofs about containers. However, this requires the
computation of the type of shapes and positions: both type-indexed types. It would be
interesting to see if a stratified kind universe introduces any unexpected difficulties and
whether it indeed allows us to define type-indexed types.

6.4 Recursion

6.4.1 Satisfying the Guardedness Checker

In Chapter 4 we have seen that we can use the specialization of map to list’, which
we call mapList’, to give a definition for map acting on lists:

Definition mapList’ :=

specTerm’ list_struct map ((list, tt), ((list, tt), tt)).

CoFixpoint mapList A B f l :=

toList (mapList’ mapList f (fromList l)).

This works for two reasons:

1. The structural representation of list’ has an occurrence of list, which it
treats as a free variable. The specialization of map to list’ therefore wants two
functions: one for the elements of the list, and one for the tail of list—that is, map
specialized to list’ is a bifunctor. This setup can be compared to that in PolyP
(Section 5.3.1) except that the variable denoting the recursion (list here and rec
in the PolyP universe) is not given special treatment in our development.

2. After unfolding this definition, Coq will find that any recursive occurrence of
mapList will be guarded by a cons constructor, inserted by toList (provided
that the guardedness checker applies µ�reduction, as explained in Section 4.3.2).

In principle, the same approach should work for proofs, and we demonstrated this
in Section 4.4 using a handwritten proof for list’. Unfortunately, it fails when using
proof specialization. The reason is that the proof given by proof specialization for list’
is rather complicated—mostly due to the ubiquitous manipulation of heterogeneous
equalities. The Coq guardedness checker is not sophisticated enough to unroll such a
complicated definition to check for guardedness. In order to use proof specialization here,
we need to simplify the resulting proofs.

In Section 5.4.2 we have discussed an alternative universe as defined by (Morris
et al., 2006). One minor difference between their universe and ours is the inlining of free
variable selection: their universe contains one constructor to select the first free variable
and another to weaken the environment (throw one argument away). In their paper they
say this makes proofs easier. It would be interesting to see if we can extend our universe
in a similar manner, and what effect this has on the result of proof specialization.
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However, even if such a universe simplifies proofs constructed by proof specialization,
this change may not be enough. The proofs generated by proof specialization will have to
be thoroughly examined to find out why they cause trouble during guardedness checking.
We can then either attempt to simplify the generated proofs or to extend the guardedness
checker further. This might be a process that requires patience, however: the proof that
map preserves identity specialized to list’ in normal form spans nearly 110 pages
(sic).

6.4.2 Extending the Universe

The ideal solution to the problem of recursion would be an extension of the universe
with support for recursion. This is not an easy problem, however. We have seen that
in the related research on implementing generic programming in a dependent language
(Section 5.4) only one such universe is given: the universe of strictly positive types. As
explained, Morris et al. do not give a direct translation from a code in their universe to a
datatype. Instead, they give a datatype which is indexed by a code: rather than giving the
translation to a datatype they formalize what it means for a datatype corresponding to a
code to be inhabited.

Although this is an ingenious idea, it does not easily scale to higher-order kinds. The
decoding of a type variable of a kind other than ? will be an uninhabited type. By directly
formalizing what it means for a type corresponding to a code to be inhabited, such type
variables cannot be treated. In particular, we cannot add type application to the universe
in the same way—we cannot define what it means for a type corresponding to a code
F A to be inhabited by defining what it means for the types corresponding to F and
A to be inhabited. This approach can therefore not be used for Generic Haskell-style
(kind-indexed) generics. The definition of a Generic Haskell universe which includes
recursion is a challenging research problem.

One possibility might be to take inspiration from some of the approaches mentioned
in Section 5.5 which avoid syntactic checks for termination or guardedness. For instance,
it might be possible to use the ordinal-based sized types approach from Abel (2009).
It is not clear however if this approach can be ported to Coq, or whether we need a
proof assistant that directly supports sized types (Abel (2009) mentions that he does not
consider type checking sized types in the paper; Bertot and Komendantskaya (2009) cite
the work by Abel and mention that it cannot currently be used in Coq). Moreover, Abel
does not consider coinductive polytypic programs; he does consider coinduction in his
thesis (Abel, 2006), which also gives a brief treatment of polytypic programming, but
coinductive polytypic programs are mentioned as future work in (Abel, 2009).
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6.5 Conclusions

Implementing polytypic programming (kind-indexed or otherwise) within a dependently
typed language rather than as a language extension to or preprocessor for a functional
language has significant benefits. Since we can formalize type specialization within the
host language we get type checking of polytypic functions virtually for free. Further,
polytypic function can be reified within the host language (that is, we can define a datatype
that denotes polytypic functions) and are therefore first-class citizens: they can be passed
around as arguments and returned as results. As a consequence, polytypic functions
can be defined in terms of other polytypic functions and it becomes possible to define
combinators on polytypic functions.

Throughout the development we needed to operate at the boundaries of type theory:
we wrestled with universe inconsistencies and the absence of universe polymorphism,
the need for impredicativity and ubiquitous reasoning about heterogeneous equalities.
The syntactic checks for guardedness can be difficult to satisfy—when a proof is defined
this way it is accepted, but when a proof is defined that way it is rejected. Semantic
approaches to guardedness would be preferable.

Formalizing polytypic programs and proofs is therefore non-trivial, but once the
infrastructure is in place that is no longer an issue. By reifying polytypic functions as a
datatype PolyFn, Generic Haskell programmers will feel at home in Coq because they
can define polytypic functions in a way that is familiar to them. The process of specializa-
tion is also known from Generic Haskell; the only difference is that specialization is now
an ordinary (higher-order) function within the host language which takes a PolyFn as
input and returns the specialized function as output which can then immediately be used
in the definition of other functions.

Moreover, we have provided exactly the same infrastructure for proofs. By reifying
polytypic proofs as a datatype PolyProof, the correspondence between polytypic
functions and their polytypic proofs becomes very clear. Programmers need to give
proofs for, and only for, the same cases that they need to give instances for when they
define the polytypic function itself. Although we have to restrain the properties that
can be expressed somewhat so that we can define proof specialization, these restrictions
should not be too limiting in practise (especially given the relatively straight-forward
extension we discuss in Section 6.3.1).

We set out to demonstrate that it is possible to do Generic Haskell-style polytypic
programming within a dependently typed language, and that it is possible and straight-
forward to do proofs over such programs; and this is what we have shown. Qed.
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Appendix A

µ-Reduction

A copy of this file can also be found online (Verbruggen, 2009).

--- coq-8.2pl1-orig/kernel/inductive.ml

+++ coq-8.2pl1/kernel/inductive.ml

@@ -858,10 +858,92 @@

with Not_found ->

raise (CoFixGuardError (env, CodomainNotInductiveType b)))

+(*
+ * WV: New functions

+ * See thesis for explanation and justification.

+ *)

+

+(* Like zip in Haskell *)

+let array_zip arr1 arr2 =

+ assert (Array.length arr1 == Array.length arr2) ;

+ if (Array.length arr1 == 0)

+ then [| |]

+ else let result = Array.make (Array.length arr1)

+ (Array.get arr1 0, Array.get arr2 0) in

+ for i = 0 to Array.length arr1 - 1 do

+ Array.set result i (Array.get arr1 i, Array.get arr2 i)

+ done ;

+ result ;;

+

+(* Like unzip in Haskell *)

+let array_unzip arr =

+ if Array.length arr == 0

+ then ([| |], [| |])

+ else let (x, y) = Array.get arr 0 in

+ let arr1 = Array.make (Array.length arr) x in

+ let arr2 = Array.make (Array.length arr) y in

+ for i = 0 to Array.length arr - 1 do

+ let (x, y) = Array.get arr i in

+ Array.set arr1 i x ;

+ Array.set arr2 i y

+ done ;

+ (arr1, arr2) ;;

+

+(* f o \x. \y. e |-> \x. \y. f e *)

+let compose_constr env f g n =

+ let rec compose_constr_rec f g n =
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+ if n == 0

+ then (mkApp (f, [| g |]))

+ else match kind_of_term g with

+ | Lambda (x, t1, t2) ->

+ mkLambda (x, t1, compose_constr_rec (lift 1 f) t2 (n - 1))

+ | _ -> assert false

+ in compose_constr_rec f g n ;;

+

+(* Find (strong) beta-iota-delta-zeta-mu normal form *)

+let betadeltaiotamu env e =

+ let rec mu_rec e =

+ let e’ = Reduction.whd_betadeltaiota env e in

+ match kind_of_term e’ with

+ | App (f, args) ->

+ let (f’, ch_f) = mu_rec f in

+ let (args’, ch_args) = array_unzip (Array.map mu_rec args) in

+ (mkApp (f’, args’), ch_f || Array.fold_right (||) ch_args false)

+ | Case (ci, p, t, br) ->

+ let (p’, ch_p) = mu_rec p in

+ let (t’, ch_t) = mu_rec t in

+ let (br’, ch_br) = array_unzip (Array.map mu_rec br) in

+ let def = (mkCase (ci, p’, t’, br’),

+ ch_p || ch_t || Array.fold_right (||) ch_br false) in

+ (match kind_of_term t with

+ | Case (ci’,p’,t’,br’) ->

+ let argtype =

+ (match kind_of_term p with

+ | Lambda (x, t1, t2) -> t1

+ | _ -> assert false) in

+ let fn = mkLambda (Anonymous, argtype,

+ (mkCase (ci, lift 1 p,

+ mkRel 1, Array.map (lift 1) br))) in

+ let new_branches =

+ Array.map (fun (br, n_args) -> compose_constr env fn br n_args)

+ (array_zip br’ ci’.ci_cstr_nargs) in

+ (mkCase (ci’, compose_constr env p p’ 1, t’, new_branches), true)

+ | _ -> def)

+ | _ -> (e’, false)

+ and repeat_mu_rec e =

+ let (e’, ch_e) = mu_rec e in

+ if ch_e then repeat_mu_rec e’ else e’

+ in repeat_mu_rec e

+

+(*
+ * WV: end new functions

+ *)

+

let check_one_cofix env nbfix def deftype =

let rec check_rec_call env alreadygrd n vlra t =

if not (noccur_with_meta n nbfix t) then

- let c,args = decompose_app (whd_betadeltaiota env t) in

+ (* WV: call betadeltaiotamu instead of whd_betadeltaiota *)

+ let c,args = decompose_app (betadeltaiotamu env t) in

match kind_of_term c with

| Rel p when n <= p && p < n+nbfix ->

(* recursive call: must be guarded and no nested recursive
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programming in Haskell. In School on Datatype-Generic Programming, volume 4719
of Lecture Notes in Computer Science, pages 72–149. Springer–Verlag, 2006a.
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