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Abstract

The peers in a Peer-to-Peer (P2P) system arrange themselves in a virtual network called

the overlay network. The overlay network sits above the underlying physical network

and is used to search for resources and peers, and to route messages between peers. The

topology of the overlay network is the graph whose vertices are the peers and whose

edges are the connections between the peers. The choice of topology affects application

performance and the correct choice depends on the application. The literature contains

examples of topologies that can be used to implement various types of applications.

Topology adaptation algorithms are used to maintain an overlay network’s topology

as per application requirements. Early P2P applications either did not use topology

adaptation algorithms or used simple solutions based on a centralized component that

results in poor fault-tolerance and scalability. Since 2002, decentralized algorithms have

been proposed that may be used to create and maintain specific topologies. Although

this is certainly an improvement, these algorithms are typically designed to create a

specific topology for a specific application and are therefore not generally applicable or

easily reusable. As a result, topology adaptation algorithms have to be designed from

scratch and an application that has been developed using an existing algorithm cannot

be altered easily to create and maintain a new topology.

This thesis presents a general approach to decentralized topology adaptation in

unstructured P2P overlay networks. The approach is based on a single abstract algo-

rithm called the PEer-to-peer Self-organizing TOpology (PESTO), which can be used

ii



to develop a family of self-organizing topology adaptation algorithms for unstructured

decentralized P2P overlay networks. PESTO is inspired by an idea from sociology,

proposed by economist Thomas Schelling, to explain the existence of segregated neigh-

borhoods in urban areas. An instantiation of PESTO requires formulation of rules

that use a peer’s local awareness of the overlay network topology and result in overall

emergent behavior of the network.

To validate PESTO, we present and evaluate three concrete realizations. Two of

these can be used to cluster peers with a given property, such as geographical location.

The third realization can be used to create a backbone network of powerful computers

called hubs, which can be used for search and for routing of messages between peers.

Simulations are used to demonstrate that the concrete realizations can create self-

organizing overlay network topologies with desirable properties. The three concrete

realizations show that PESTO is sufficiently general to be applicable across a range of

applications.

The topology adaptation algorithms are placed in the context of a general-purpose

P2P reference architecture, called the P2P reference Architecture that Supports Topol-

ogy Adaptation (PASTA). A distinguishing feature of PASTA is that it contains a

component that allows topology adaptation using the novel approach presented in the

thesis. In addition, PASTA serves as a template, which can be used as a starting point

for designing new P2P applications and middlewares. PASTA is sufficiently general

to allow the description and comparison of the structure of existing P2P applications

which is shown through structural description of a number of existing P2P applications.

PASTA’s ability to describe and compare P2P applications can be used to enhance the

understanding of the P2P domain and the research done on it.
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Chapter 1

Introduction

I’m going to show them a world without you, a world without rules and

controls, without borders or boundaries, a world where anything is possible.

Where we go from there is a choice I leave to you. The Matrix [123]

According to the Merriam-Webster dictionary the word peer means, “one that is

of equal standing with another” [10]. Literally translated, P2P means equals commu-

nicating with equals [66]. As the literal translation suggests, P2P in the distributed

systems domain deals with distributed applications in which instances of the appli-

cation, called peers, running on different computers are equal in capability. Since all

the peers in a P2P application can provide services, the P2P design paradigm can be

used to utilize the resources of the computers that were previously relegated to being

consumers of services as clients in the client-server model.

This thesis addresses the general area of P2P computing. The thesis presents a

novel approach for designing P2P overlay network topology adaptation algorithms for

use in unstructured P2P overlay networks. The thesis presents a family of algorithms

that can be used to create and maintain the overlay network’s topology. The topol-

ogy adaptation algorithms are placed in the context of a reference architecture, which

contains a topology adaptation component that can use the topology adaptation algo-
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rithms. The architecture is sufficiently general to allow the description and comparison

of the structure of existing P2P applications and middlewares.

This chapter presents the background information required to understand the work

in this thesis. The chapter first reviews the trends in computing that are contributing

towards making P2P a popular choice for designing distributed applications and then

presents the motivation behind the work in this thesis. We also define a number of key

terms related to the thesis, before we present the thesis’s key contributions.

1.1 Trends in Computing

Moore’s Law [76], an empirical observation by Gordon Moore who cofounded Intel

Corporation, suggests that the number of transistors on an integrated circuit (a measure

of computer processing power) doubles every eighteen months [94, pg. 69]. Since

porposed in 1965, this prediction has generally proved to hold. The processing power

of desktop and mobile computers have been increasing rapidly with time as suggested

by Moore’s Law. In addition the memory, disk space and network connectivity of

computers are also continuing to improve. Figure 1.1 shows the improvement in CPU

processing power, hard disk capacity and available RAM in laptop computers [116].

At the same time, the number of computers with Internet connectivity is continually

growing. Figure 1.2 shows the results of a study conducted twice per year by the

Internet Systems Consortium (ISC). Their most recent report observed a 24% increase

in the number of hosts online from January 2005 to the same month in 2006 [18].

One effect of these developments is that an increasing number of the computational

resources reside on peoples desks in their homes and offices. These computers are con-

nected to intranets and the internet. These computers are generally designed to satisfy

the peak demand of individuals (in particular, human impatience regarding response

time), but the typical personal and office use (web surfing, emailing, spreadsheets and
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Fig. 1.1: A plot of the improvement in CPU processing power, hard disk capacity and
available memory of laptop computers [116].

word processing) only consumes a fraction of a computers resources when measured

over time. As a result, an increasing portion of the planet’s computational resources

are idle much of the time. P2P applications utilize the resources of these computers by

allowing all the computers running the P2P software to become both consumers and

suppliers of information and services.

1.2 Motivation

This section presents the motivation behind the work presented in this thesis. The

motivation behind P2P topology adaptation, the primary contribution of this thesis,

is discussed first and is followed by the motivation for the reference architecture which

forms the secondary contribution of the thesis.
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Fig. 1.2: A plot of the number of computers connected to the Internet [18].

1.2.1 P2P Topology Adaptation

The peers in a P2P system arrange themselves in a virtual network called the overlay

network. The overlay network uses the underlying physical network for communication.

The overlay network is used to perform tasks like searching for resources and services

available on the overlay network and for routing messages between peers. The topology

of the overlay network is the graph whose vertices are the peers and whose edges are

the connections between the peers.

The overlay network topology affects the efficiency of tasks like search and routing

of messages on the network. For example, P2P applications such as Gnutella [92], use

Breadth First Search (BFS) to search for an entity on the overlay network. In BFS,

the search request is forwarded to all the neighbors of a peer. Each search request has

a time-to-live value that is decremented by one at each peer that receives the search

request. The search request is forwarded by the peers until its time-to-live reaches

zero. The coverage of a BFS search can be improved by reducing the overlay network’s

diameter so that a search request can reach a large number of peers on the overlay

network.

4



Another popular way of arranging the peers is the super peer topology used in

popular P2P applications like KaZaA [9] and Skype [13, 26]. If the high bandwidth

consumed by the large number of messages exchanged to perform Gnutella-style BFS

search is an issue for the application, then it may be desirable to create a backbone

network of powerful peers that maintain a directory of resources on the network. A

search request can then be directed to one of these powerful peers, which can collaborate

with the other powerful peers to process the search request by using the distributed

directory that they maintain. Such a backbone network may also be used as a shortcut

for routing messages to remote peers on the overlay network.

Regardless of topology, the overlay network is used by the P2P application to imple-

ment its services. However, the most suitable overlay network topology depends on the

P2P application, and the range of possible topologies is considerable. For example, a

distributed game application can be made more challenging by bringing together peers

with similar competency levels as neighbors. A P2P content distribution application

or a P2P media streaming application would benefit from an overlay network topology

in which geographically close peers are clustered together as neighbors, so that the

content is distributed through neighbors that are physically close to each other and

therefore avail of good bandwidth and latency characteristics.

It is desirable to have algorithms (called topology adaptation algorithms) that can

create and maintain a topology as per application requirements. Such algorithms would

allow an application to have a desired topology so that it can function efficiently.

P2P applications typically lack a central component to improve scalability and fault-

tolerance. Autonomous peers that act using their limited awareness of the overlay

network, and the lack of an omniscient central component makes it challenging to

design algorithms that can create a required topology. The flux of peers on an overlay

network makes it difficult to maintain the topology as required by an application.

Initial P2P applications either did not use topology adaptation algorithms or used
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simple solutions based on a centralized component that results in poor fault-tolerance.

The centralized component also acts as a bottleneck resulting in poor scalability. Since

2002, decentralized topology adaptation algorithms have been proposed in the liter-

ature (e.g., [105, 85, 70, 34, 93, 89, 118, 22, 122, 69, 79, 115] and [27]) that may be

used to create specific topologies. Although this is certainly an improvement, these

algorithms are typically designed to create a specific topology for a specific application

and are therefore not generally applicable or easily reusable. For example, a topology

adaptation algorithm designed for clustering can not be easily used for load balancing.

As a result, topology adaptation algorithms have to be designed from scratch and an

application that has been developed using an existing algorithm can not be altered

easily to create and maintain a new topology. It is desirable to have an approach that

facilitates the development of topology adaptation algorithms.

1.2.2 Reference Architecture

Since the dramatic success of Napster [11] in 1999, many new P2P applications have

been developed. At the time of writing, Wikipedia lists more than one hundred such

applications [17]. A recent survey show that P2P applications generate a high per-

centage of traffic on the Internet [97]. The high popularity of P2P applications among

Internet users is because of their ability to allow users to share information and services

without the need of servers managed by third parties. A forthcoming challenge for the

developers of P2P applications is to ensure that these numerous P2P applications can

interoperate with each other. This is referred to as the interoperability problem in

this thesis. Despite the large number of P2P applications and middlewares, there also

remains a lack of a common vocabulary to accurately describe and compare the struc-

ture of these middlewares and applications. A vocabulary to describe the structure of

a P2P application can be used to classify the research done on the P2P domain on

the basis of the application components it is intended for, and in this way enhance the
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understanding of the P2P domain and the research done on it.

Software architectures are used to communicate the high-level design of a system

to a diverse audience, which may include programmers, managers and customers. The

software architecture design phase is used to make design decisions that affect a sys-

tem’s development, deployment and maintenance phases. The growing popularity of

P2P applications has given rise to numerous P2P middlewares (e.g., JXTA [80], MSN

P2P [72]) that facilitate P2P application development. However, despite the popu-

larity of P2P, the software architecture for any new P2P system is typically designed

from scratch. The designers spend time in identifying the concerns that the application

needs to address and produce a software architecture that addresses these concerns. It

is therefore desirable to reduce the time spent on designing applications by developing

a generally applicable software architecture of P2P applications.

1.3 Defining Peer-to-Peer

P2P applications are distributed systems. Distributed systems are those in which com-

ponents, located at networked computers, communicate and coordinate their actions

only by passing messages [38]. Distributed systems can be broadly classified into those

based on the client-server model and those based on the P2P model. In a client-server

model the client makes a request for a service to a server which provides the service

and replies with a response. A program can play both the roles (i.e., client and server)

but for a different purpose. The idea behind P2P computing is that each peer can

act both as a client and as a server (a trait that is referred as equivalent peers in this

thesis) in the context of some application [25]. Because a peer can act as a server, it

can share resources like processing power, memory and bandwidth with other peers on

the overlay network. Since each peer can act as a server, P2P applications typically do

not require a well-known central server for providing services. The lack of requirement

7



of a central server is referred as serverless design in this thesis.

In the literature, the term P2P is used to describe a wide variety of software appli-

cations. The applications that have been classified as P2P come from a diverse range

of domains such as file-sharing, distributed computing, instant messaging and content

distribution. In the literature, there is a lack of agreement on the set of criteria that

should be used to call an application P2P [25, 73]. Computers that are connected to

the Internet, but have variable connectivity and temporary network addresses are often

called “computers on the edge of the Internet” [81]. For the purpose of this review,

we discuss the definitions in two groups, depending on whether they emphasize the

ability of P2P to utilize computers at the edge of the Internet, as the key defining

characteristics of P2P. The definitions in the first group do emphasize the ability of

P2P to utilize computers at the edge of the Internet, as the key defining characteristics

of P2P, whereas those in the second category do not. The discussion below presents

and analyzes definitions in both the categories of P2P and uses them to produce the

criteria that will be adopted in this thesis to classify an application as P2P.

1.3.1 First Category

Definition 1

Published in 2001, in one of the earliest books on P2P computing the definition below

was proposed for P2P computing:

An application can be called P2P if it satisfies the following two litmus

tests:

1. Allows for variable connectivity and temporary network addresses?

2. Gives the nodes at the edge of the network significant autonomy?

[81, pg. 22]
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Definition 2

A white paper from Microsoft defines P2P as follows:

P2P networking is the utilization of the relatively powerful computers (per-

sonal computers) that exist at the edge of the Internet for more than just

client based computing tasks [72].

Both definitions 1 emphasize the ability to utilize the computers on the edge of

the Internet as a defining trait of P2P applications. These computers are inaccessible

from other machines on the Internet because they have dynamic IP addresses and use

Network Address Translation (NAT). According to the above definitions, the potential

of P2P applications lie in their ability to utilize these computers. However making

this the defining characteristics for P2P applications excludes P2P applications used in

Intranets, where P2P applications are extremely useful for tasks such as collaboration.

P2P applications deployed in an Intranet do not require the capability to utilize the

computers at the edge of the Internet. While the ability to utilize computers at the

edge of the Internet is a benefit of P2P applications we will not consider it a defining

characteristic in this thesis.

1.3.2 Second Category

This section examines definitions of P2P in the second category, in order to identify the

characteristics used in the existing literature to classify an application as P2P. Some

existing P2P definitions listed in no particular order are:

1In both the definitions, underline is used to emphasize the key points of the definition and is not
part of the original text.
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Definition 3

In 2003, Detlef Schoder and Kai Fischbach proposed the following definition for P2P

in CACM:

P2P refers to technology that enables two or more peers to collaborate spontaneously

in a network of equals by using appropriate information and communica-

tion systems without the necessity for central coordination [102].

This definition identifies three key aspects of a P2P system: no necessity for central

coordination, participation in a network of equals and spontaneous collaboration. The

former of these traits is equivalent to the serverless design mentioned earlier. In a

P2P system, peers can collaborate and communicate with each other without a central

authority. The network of equals trait is similar to the equivalent peers trait mentioned

earlier. A peer in P2P computing can act both as a server and a client for same

application. To achieve this, each peer is equivalent in functionality.

P2P systems are good at spontaneous collaboration because they do not need a

centralized component for peers to communicate with each other. Spontaneous collab-

oration is also facilitated by the fact that the installation of special server software is

not required while using P2P, because the software running on all the peers is equivalent

in functionality. Spontaneous collaboration is an advantage and a direct consequence

of the serverless design and equivalent peers, and so it is not considered a key defining

feature of P2P systems in this thesis.

The serverless design and equivalent peers features discussed above are not com-

pletely displayed by all P2P systems. This is especially true for hybrid P2P systems

such as Napster (1999) [11]. Hybrid systems have a central server that exercises cen-

tralized control over certain aspects of the operation of a P2P system. However the

remaining functionality of the system operates without any central control, so such

systems can still be classified as P2P systems. The central server has more capabilities
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and responsibilities when compared with other peers in the system, but the rest of

the peers are equivalent in functionality. For example in Napster (1999) the central

server is used for resource discovery. In Napster (1999) the location of a file is found

through the central server only, but files are exchanged in a P2P fashion by direct

communication between the peers.

Definition 4

Barkai proposes the following definition for P2P in his book:

P2P computing is a network-based computing model for applications where

computers share resources via direct exchange between participating computers

[25].

Definition 5

In 2001, at the IEEE P2P conference the following definition was presented for P2P:

A distributed network architecture may be called Peer-to-Peer (P-to-P,

P2P,...) network, if the participants share a part of their own hardware

resources (processing power, storage capacity, network link capacity, print-

ers,...). These shared resources are necessary to provide the Service and

content offered by the network (e.g., file sharing or shared workspaces for

collaboration). They are accessible by other peers directly without passing

intermediary entities. The participants of such a network are thus resource

(Service and content) providers as well as resource (Service and content)

requester (Servent-concept) [103].

Definition 6

A whitepaper from Intel proposes the definition below for P2P:
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P2P can be defined as any application or network solution that supports

the direct exchange of resources between computers without relying entirely

on a central server [57].

The definitions 4 and 6 above emphasize the serverless design of P2P applications

as a defining characteristic. All the definitions above emphasize the ability to share

and exchange resources by direct communication between peers as a defining trait of

P2P systems. While applications where users can share resources (e.g., files) have

made P2P applications popular, P2P is not limited to applications that deal with

the exchange of resources. P2P is also used for tasks like content distribution [37] and

knowledge management [57]. The direct communication between peers is a consequence

of the serverless design. P2P is not limited to exchange of resources and the direct

communication between peers is a consequence of the serverless design. For this reason,

the ability to share and exchange resources by direct communication between peers is

not used as a defining characteristics of P2P systems in this thesis.

To summarize, according to the definitions above, the defining characteristics of a

P2P systems are:

A Lack of central control (serverless design),

B Peers equivalent in functionality (equivalent peers),

C Utilizing the computers at the edge of the Internet,

D Sharing of resources,

E Spontaneous collaboration.

Table 1.1 shows the defining characteristic of P2P as suggested by each of the six

definitions. Our discussion found that C, D and E are not key defining features of

P2P systems. This leads to the definition of P2P used in this thesis which is:
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Table 1.1: Defining features of a P2P application according to different P2P defini-
tions. Bullet means that the definition suggests that the feature is a necessary criterion
for calling an application P2P.

P2P are distributed systems without central control, where all the peers

are equivalent in functionality.

This definition constraints the research in this thesis. This thesis concentrates on

P2P systems without central control in which all the peers are equivalent in function-

ality.

1.4 Terminology and Background

This section defines the key terms that are required to understand the work presented

in this thesis. This section defines the terms self-organization, reference architecture,

overlay network and topology adaptation as used in the thesis. The section also de-

scribes the types of P2P networks and Schelling’s model.
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1.4.1 Self-Organization

Self-organization refers to the ability of a system to organize itself without any the

influence of an external or an internal dedicated central entity. Camazine et al. define

self-organization as:

a process in which pattern at the global-level of a system emerges solely from

numerous interactions among the lower-level components of the system.

Moreover, the rules specifying interactions among the system’s components

are executed using only local information, without reference to the global

pattern [33, pg. 8].

The pattern observed in a self-organizing system is an emergent property caused by

the interaction between its components. Self-organizing systems are interesting because

of their robustness and scalability [88]. They are robust against failure because there is

no central point of failure. The lack of central control also means that self-organizing

systems can typically scale easily to accommodate a large number of entities in the

system. For these reasons, self-organization is a desirable property for any P2P overlay

network.

1.4.2 Reference Architecture

A software architecture describes the structure of a software system. It describes and

defines the software elements that comprise the system, “the externally visible prop-

erties of these elements, and the relationships among them” [65, pg. 21]. Software

architectures are used to communicate the high-level design of a system to a diverse

audience, which may include programmers, managers and customers. The software

architecture design phase is used to make design decisions that affect a system’s re-

maining development, deployment and maintenance life.
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This thesis presents a reference architecture for the P2P domain. A reference ar-

chitecture defines the software elements, their functional responsibilities and the al-

lowed interactions between them for software systems belonging to a particular domain

[55, 65, 47]. A reference architecture provides a template that can be used as a starting

point for designing the software architecture for software systems within that domain.

A reference architecture saves time and effort in the areas of requirement analysis and

functional partitioning of the system [63]. Reference architectures are often used in

mature domains like compilers and databases. For example, a compiler is composed of

a scanner parser, semantic analyzer and a code generator subsystem [51].

1.4.3 Overlay Network

P2P systems organise the peers in a virtual network, called an overlay network (see

figure 1.3). The overlay network utilizes the underlying physical network for communi-

cation. In an overlay network, a peer is connected to a small subset of available peers.

This is so because if every peer on a P2P system is connected to all the other peers

on the network, then the network would scale poorly. The overlay network’s topology

is the graph in which the peers are the vertices and the connections between them are

the edges. The overlay network is self-organizing in nature. The P2P system takes

care of tasks associated with new peers joining and old peer leaving the system.

The overlay network is used by applications to perform tasks like searching for avail-

able peers, resources and services and for routing of messages between peers, especially

to peers behind firewalls. The services available on a P2P overlay network may utilize

the overlay network’s topology to perform their tasks. For example, a distributed game

service might choose the connected peers as the opponents against whom a competitive

game may be played. A P2P grid service may delegate tasks that can be executed in

parallel to the connected peers.
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Fig. 1.3: A P2P overlay network. An overlay network is the graph whose vertices are
the peers and the edges are the connections between them.

1.4.4 Topology Adaptation

The overlay network’s topology affects the performance of tasks like routing and search-

ing. For example, the effective bandwidth for routing messages between any two peers

on the overlay network is the lowest hop bandwidth on the route between the peers.

The messaging efficiency of routing can be improved by each peer having peers with

similar bandwidths to itself as neighbors. The messaging cost of a search on the over-

lay network can be improved by arranging the topology to create a backbone network

of peers that can maintain a directory of resources, services and peers available on

the overlay network. Search requests can be processed by using the directory on the

backbone network instead of flooding the network with search messages.

The best topology for services varies with their application. For example, in a

distributed game service, peers hosting players with similar ability may be grouped

together as neighbors to better challenge the players. In a P2P grid, it might be useful

if peers with similar bandwidth are joined together as neighbor so that information can

be efficiently exchanged between them.
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Topology Adaptation involves maintaining an overlay network’s topology as per

application requirements. There is a messaging cost associated with maintaining a

topology. The most suitable topology for an application depends upon the application

requirements and the messaging costs that the application can accept.

1.4.5 Types of P2P Networks

On the basis of the overlay network architecture, P2P applications can be divided into

three major categories (see figure 1.4): centralized, decentralized structured and de-

centralized unstructured [73]. Centralized architectures, also known as hybrid P2P, use

a well known central server for performing organizational tasks to facilitate P2P com-

munication. Napster (1999) [11] is a prominent example of a centralized architecture.

According to the definition of P2P presented in section 1.3, a P2P system consists of

equivalent peers. In existing literature (e.g., [73]) hybrid systems are often classified as

a special case of P2P applications even though the central server has more capabilities

and responsibilities when compared with other peers in the system because the rest of

the peers are equivalent in functionality.

In decentralized architectures, also known as pure P2P, peers collaborate without

a central server. In structured decentralized networks, the location of resources and

peers in the network is controlled, typically using a distributed hash table (DHT) of re-

sources available on the network. Chord [117] and Pastry [95] are prominent examples

of systems based on this architecture. Unstructured decentralized P2P networks do

not use a DHT to control the location of resources and peers on the overlay network.

Gnutella [4] and KazaA [9] are popular P2P applications which use unstructured P2P

networks. The position of peers in a structured decentralized network is controlled by

the DHT algorithm that makes topology adaptation difficult. The presence of a central

component makes it comparatively easy and uninteresting to perform topology adap-

tation in hybrid networks and so this thesis is concerned only with topology adaptation
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Fig. 1.4: A taxonomy of P2P systems based on overlay architecture.

in unstructured decentralized networks.

1.4.6 Schelling’s Model

Decentralized systems abound in our world. The existence of life is best explained

by Darwin’s theory of evolution by natural selection, a process that lacks a central

authority. In the eighteenth century Adam Smith, the father of modern economics,

proposed that decentralized economies are a better and more efficient alternative to

centralized control [91, pg. 7]. His ideas have since been validated by a general shift

towards decentralized market-based economies by many nations. Even the human brain

is a collaboration of relatively simple neurons that work together in a decentralized

fashion.

The decentralized systems found in nature are typically self-organizing and self-

managing in nature, i.e., they can organize and manage themselves even though no

central coordinator exists. This makes them a candidate approach for designing so-

lutions (e.g., topology adaptation algorithms) for P2P applications which also lack a

central coordinator. A solution for P2P modelled on decentralized systems found in

nature can also benefit from their ability to recover from perturbations which will make

the solution ideal for dynamic environment of P2P systems.

An agent-based model is a tool that can be used to study the emergence of complex
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behavior from simple rules in decentralized systems. An agent-based model consists

of large number of agents that change their properties and their environment by using

their knowledge of the local neighborhood. In the 1966, economist Thomas Schelling

[119, 100] proposed an agent-based model that can be used to explain the existence of

segregated neighborhoods in urban areas.

This thesis presents a family of topology adaptation algorithms inspired by Schelling’s

model. In Schelling’s model, people act using their awareness of the local neighbor-

hood, which makes it especially attractive for P2P systems in which the peers lack

a global picture of the network topology. In the model, grouping is maintained even

when people join or leave the system (self-organizing), which makes the model ideal

for the dynamic environments of P2P networks.

1.5 The Thesis

While the popularity of P2P applications is increasing, there is a lack of re-use while

designing the software architecture for new P2P applications. At the same time, there

is no common vocabulary to accurately describe and compare the structure of P2P

middlewares and applications. This thesis addresses both these problems by proposing

a reference architecture for the P2P domain. We first identify the concerns (use-cases)

that are common across a wide variety of P2P applications, and then present the

reference architecture, called the P2P reference Architecture that Supports Topology

Adaptation (PASTA), which is based on these concerns. PASTA resolves the lack of

re-use by providing a template that can be used as a starting point for developing the

software architecture for new applications. PASTA identifies the components of a P2P

application. The components and the policies used to implement the different compo-

nents in an applications provide a vocabulary for the P2P domain. The description

and comparison of P2P applications can be done on the basis of the policies used to
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implement the different components.

PASTA consists of modular components that are responsible for handling the core

concerns that a P2P application needs to handle. PASTA is abstract and does not

specify the policies that can be used to handle a core concern. PASTA can be used as

a guide to develop a P2P application or middleware that use a plugin-based approach

for implementing the different components. By changing the plugins for the different

components, a P2P application could be made to easily interoperate with other P2P

applications, and hence address the interoperability problem mentioned in section 1.2.

PASTA is validated by describing the structure of four existing P2P applications and

middleware. PASTA forms the secondary contribution of this thesis.

The primary contribution of the thesis is a novel approach for designing topology

adaptation algorithms. The approach is based on an abstract algorithm inspired by

Schelling’s model called the PEer-to-peer Self-organizing TOpology (PESTO) that can

be used to create a family of self-organizing topology adaptation algorithms for un-

structured decentralized P2P overlay networks. This approach is captured as a key

component of PASTA in the form of the topology adaptation layer, which is respon-

sible for maintaining a topology that satisfies application requirements. To validate

this approach, we present concrete algorithms that instantiate PESTO. Two of these

are clustering algorithms, which can be used to bring together peers with similar char-

acteristics as neighbors. Clustering algorithms are useful for a wide variety of P2P

applications, for example in file-sharing applications where clusters can improve the

performance of messaging on an overlay network by bringing together peers in the

same geographical location as neighbors. The thesis also presents a hub algorithm

based on PESTO that can be used to create a backbone network of powerful com-

puters called hubs in an overlay network. The hub network can be used for tasks like

maintaining a directory of resources on the overlay network that can be used to search

for resources.
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1.6 Thesis Roadmap

The remainder of the thesis is organized as follows:

Chapter 2 reviews the state of the art in the area of P2P topology adaptation and

reference architecture.

Chapter 3 presents PESTO, an abstract algorithm that can be used to create a

family of topology adaptation algorithms. The chapter also describes the simulator

that has been used to evaluate the different topology adaptation algorithms.

Chapter 4 presents and evaluates two algorithms based on PESTO that can be

used to cluster peers with similar properties.

Chapter 5 presents and evaluates a concrete realization of PESTO that can be

used to create a backbone network of hubs.

Chapter 6 presents PASTA and validates it by using it to describe four existing

P2P applications.

Chapter 7 concludes the thesis.

21



Chapter 2

State of the Art

The artist is the creator of beautiful things. To reveal art and conceal the

artist is art’s aim. The critic is he who can translate into another manner

or a new material his impression of beautiful things [125].

This chapter presents the state of the art in the area of P2P topology adaptation

and P2P reference architectures. The topology adaptation review takes the form of a

review of the existing desirable topologies for applications and the existing algorithms

that can be used for topology adaptation, including the only other approach in the

literature for designing topology adaptation algorithms. The reference architecture

review takes the form of a review of a contemporary reference architecture and JXTA

which is an influential P2P middleware with particular attention to their support for

topology adaptation. The chapter concludes with a summary of the state of the art

study.

2.1 Topology

As defined in section 1.4, the topology of a P2P application is the graph in which the

peers are the vertices and the edges are the connections between them. The topology
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is important in P2P applications because it affects the performance of tasks such as

routing of messages on the network. This section reviews a range of interesting topolo-

gies for a P2P application. As discussed in section 1.4.6 systems found in nature are

particularly interesting because of their decentralized characteristics.

In this section, we first present common metrics that are used to discuss the topolo-

gies presented later in this section. We then discuss simple topologies, such as the star,

that may be used in P2P applications. This is followed by a discussion of the earliest

topology that has been proposed to study complex topologies in nature. The next

two topologies are found in social networks and in the world around us. Both have

performance and fault-tolerance characteristics that makes them relevent for P2P ap-

plications. Super-peer topology is the next topology discussed in this section. It is

interesting because it is used in two influential P2P applications, namely KaZaA [9]

and Skype [13]. The super-peer topology has poor tolerance to the failure of super

peers. Hub topology is a variation of the super-peer topology which rectifies this flaw.

The last topology discussed in this section is the Clustered topology. It is also found

in the world around us and is useful for a wide array of application scenarios.

The discussion on the topologies is structured as follows: We first describe the

topologies and the metrics associated with them. This is followed by examples of

possible and existing usage of these topologies in P2P networks.

2.1.1 Common Topology Metrics

This section presents common metrics used to evaluate the topologies presented in this

section. These metrics provide valuable information about a P2P topology and can

also be used to evaluate other P2P topologies.
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Characteristic Path Length

The characteristic path length (CPL) measures the average number of hops in the

shortest path connecting any two vertices [124]. Let V be the set of vertices on the

graph, then:

CPL =
2×

∑
vi,vjεV,vi 6=vj

min routing distance(vi, vj)

|V | × (|V | − 1)
(2.1)

where min routing distance(vi, vj) returns the minimum routing distance between

vertex vi and vj.

The CPL value for a given network is one of the determining factors on the perfor-

mance of message routing in the network. A low CPL value would imply that messages

can be routed quickly between peers on the network. A low CPL value also means

that a Breadth First Search (BFS) message will reach a large number of peers on the

topology.

Clustering Coefficient

An overlay network’s Clustering Coefficient (CC) gives an indication of how well the

vertices in the graph are connected to each other. The function neighbors(vi) returns

the set containing the neighbors of a vertex vi and function connections(U) returns the

number of connections between the vertices in the set U where U ⊆ V . The clustering

coefficient of a vertex vi is defined as:

CC(vi) =
2× connections(neighbors(vi))

|neighbors(vi)|(|neighbors(vi)| − 1)
(2.2)

A low value of CC(vi) means that the failure of the vertex (vi) could adversely affect

the connectivity among v′is neighbors because its neighbors are not well connected with

each other. The CC for the whole network gives an indication of the cliquishness of

the topology [124]. It is defined as:
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CC =

∑
viεV

CC(vi)

|V |
(2.3)

A high CC value means that the vertices in the topology are well connected to

each other. In a topology with well-connected vertices there is a significant wastage of

bandwidth because of redundant messages if BFS is used.

Degree Distribution

The degree of a vertex is the number of other vertices to which it is connected. The

degree distribution is studied using a function p(k), which gives the probability that a

vertex on the topology will have a degree k. A plot of the degree distribution function

with p(k) on the vertical axis and k on the horizontal axis, can be used to visualize the

presence of vertices with a given degree in the topology. The degree distribution can

be used to identify the presence of peers with a high connectivity, whose failure may

adversely affect the connectivity of the topology and the routing distance between the

peers.

2.1.2 Simple Topologies

Figure 2.1 illustrates four simple topologies: a star, a ring, a lattice and a tree that may

be used in a P2P application. In a star topology all the peers maintain a connection

to a central peer. A P2P messaging application with a small number of peers is an

example of an application that may use this topology. The application can use the

central peer for tasks such as maintaining a directory of information about other peers,

authenticating the peers using the information in the directory and routing messages

between peers. The short routing distance of two hops between all the non-central

peers and one hop between the central and all the non-central peers is an advantage

of this topology. However, this topology is not interesting to this study because the

central peer is a single point of failure that can cause the entire application to stop
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Fig. 2.1: Examples of simple topologies.

functioning and it would become a performance bottleneck once the number of peers

on the network rises.

Ring, lattice and tree topologies may be used in a P2P application to support

application-level multicasting. These topologies are typically accompanied by a routing

algorithm to prevent redundant traffic. For example, in the lattice topology in [28]

the four neighbors of a peer are called the north (N), south (S), east (E) and west

(W ) neighbors. A peer initiating a multicast request sends the request to all its four

neighbors. A peer receiving a multicast request from its S neighbor only sends it to

its N , E and W neighbors. A peer receiving a multicast request from its N neighbor

only sends it to its S, E and W neighbors. A peer receiving a multicast request from

its W neighbor only sends it to its E neighbor and a peer receiving a multicast request

from its E neighbor only sends it to its W neighbor. The authors show in [28] that

the routing rules prevent redundant traffic. The author of this thesis is not aware of
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decentralized approaches to create and maintain these topologies under a flux of peers

and so these topologies are not discussed in detail in this review.

2.1.3 Random Topology

Random Topology refers to the topology proposed by Solomonoff and Rapport [112]

and independently by Erdös and Reńyi [45] to study the complex topologies in the

world around us. In a random topology n vertices are connected to each other with a

probability p. This means that each edge can exist with an equal probability p.

Let λ be equal to p(n− 1). The CPL of the random topology is small and is equal

to log(n)/log(λ). The CC of the random topology is equal to p/n and tends to zero

as n becomes large [pg. 21][77]. The degree distribution function of random topology

is a Poisson distribution which means that [77]:

p(k) =
e−λλk

k!
(2.4)

The author is not aware of an algorithm or an application from the P2P domain

that tries to create and maintain a random topology. This topology is presented here

primarily because of its historical significance.

2.1.4 Small World Topology

In a small world topology, all the pairs of vertices are connected to each other through

a path consisting of a small number of other vertices. The connectivity between the

vertices, through a small number of intermediate vertices, implies that the routing

distance (measured as the number of vertices in the path minus one) for exchanging

messages between the vertices on the topology will be small. The short routing distance

makes small world a desirable topology for P2P networks. The value of CPL in small

world topology is proportional to log of the number of vertices on the network [pg.
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11][77].

A human social network is a prominent example of a network with a small world

topology. In a human social network, people are connected to each other through a

small number of mutual acquaintances. American economist Stanley Milgram did an

experiment to demonstrate this. He asked participants all over America to send pack-

ages to a particular address through their acquaintances. The packages that reached

the destination were routed there through five to six acquaintances on an average. The

small world phenomenon is also called six degrees of separation because in Milgram’s

experiment on an average six acquaintances were used to send the letter to the des-

tination. Another experiment used data from Internet Movie DataBase (imdb) [5] to

show that the collaboration graph of actors is a small world with 3.65 being the average

number of vertices that connect one vertex to another [124].

In 1998, Watt and Strogatz presented a model (WS model) to study small world

topology [124]. In their model, a two-dimensional lattice topology is rearranged to

create a small-world topology. In the lattice topology N vertices are arranged around

a circle and each vertex is connected to its immediate and next-to immediate neighbors.

Rearranging the lattice involves going through the vertices on the circle and rewiring

the edges with a probability p. The rewiring involves removing the existing edge and

connecting the vertex v to another vertex chosen at random with the constraint that

an edge connecting the randomly chosen vertex and v does not already exist.

When p is 0, the generated topology is the two-dimensional lattice. The CC is high

and it is approximately 3/4 for the two dimensional lattice for a high, average degree

of the vertices (k). The CPL is large and is approximately equal to N/4k for large N .

When p is 1, a random topology is generated. The CPL of the random topology is small

and is proportional to log(N), however the CC is also very low and is approximately

equal to 2 × k/N . When p is between 0 and 0.1, the generated topologies display

small-world behavior with a low CPL and a high CC when compared to the CC of
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the random topology. The degree distribution of the small world topologies in the WS

model is centered around k and the topology lacks vertices with a high degree, whose

loss could adversely affect the connectivity of the topology and the routing distance

between the vertices [24]. This makes this topology robust against targeted attacks.

A variation of the WS model has been proposed independently by Monasson [74]

and by Newman and Watts [78] in which instead of rewiring edges, shortcut edges

joining randomly chosen vertex pairs are added to create the small-world effect. A

similar idea has been used by Zhang [130] to create small-world effect in Freenet.

Freenet is a P2P file storage system that provides anonymity to its users. In Freenet

a key is used to obtain a file stored on the network. Peers in Freenet maintain a cache

for serving files and routing file requests. Research done by Zhang suggests that ability

of Freenet to successfully locate a file under load can be improved by using a cache

replacement algorithm that creates a small world effect. The work is based on the

observation that a small world topology can be constructed if each peer in the network

knows its own neighbors and a small number of randomly chosen distant peers. The

later connections are shortcuts that help in forwarding a file request to distant peers

and help in improving the chances of locating a file.

2.1.5 Power Law Topology

A power law topology is another popular topology that is found in the world around

us. In a power law topology some vertices have a very high degree while the rest of

the peers have a low degree. The vertices with a high degree act as hubs. These high

degree vertices provide short cut paths between vertices on the network. Examples of

power law topology in the world around us include the graph of the world wide web

in which the vertices are documents and the edges are the links pointing from one

document to another and the graph formed by citation patterns in which the vertices

are the papers and the edges are the links to the articles cited in a paper.
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Fig. 2.2: Examples of a super peer topology.

In a power law network the degree distribution function p(k) is related to k by a

power law relation. This implies that:

p(k) = a ∗ kγ (2.5)

where a, and γ are constants. On taking log of both sides the above equation

becomes:

log(p(k)) = log(a) + γ ∗ log(k) (2.6)

This means that when plotted on a log-log graph the power law relation will appear

as a straight line where the slope of the line is γ. The value of γ is 2.45 [24] for the

graph of the world wide web and 3 for the graph formed by citation patterns [90]. The

CPL of a power law network is proportional to log(N)/log(log(N)) where N is the

number of vertices in the network [29]. For topologies with the same number of vertices,

the CPL value of a power law topology is lower than the CPL value of a small world

topology. The low CPL value is a useful characteristic for P2P applications because
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messages can be routed at a faster rate between peers. While both small world and

power law topologies have low CPL, they differ in the degree distribution function. In

the former topology the degree distribution function is centered around k (the average

degree of the peers) while in the later it follows a power law. Small world topology lacks

vertices with a very high degree when compared to the other vertices in the topology.

Simulations have been done to compare the performance of power law and small

world topologies under failure of vertices [23]. In the simulations, vertices were removed

and the change in the diameter of the graph was observed. The study suggests that

power law topology is robust against random failure when compared to small world

topology. Small world topology performs well against directed removal, however the

power law topology is severely affected by a directed removal of highly connected

vertices. Similar results were observed when the performance of power law and random

topologies under failure of vertices was compared. This low resistance to targetted

attacks makes power law especially suitable for applications that are not under fear

of targetted attacks. For example, this topology might be suitable for applications

running in a secure intranet.

A popular model [24] used to explain the existence of power law topology suggests

that power law topology is created because of a higher preference of new vertices

to attach themselves to a vertex with a high connectivity. Power law networks are

referred as scale-free networks in this model because the value of γ is independent of

time and the number of vertices in the network. In this model, the new peers have

global knowledge of connectivity of all the vertices in the topology. In a P2P network

peers lack global knowledge. However, work done in [48] suggests that a power law

topology can be created even when the new vertices lack a global knowledge and use

their local awareness to search for a highly connected peer to which to attach.

Research done by Saroiu [98] suggests that there is diversity in the bandwidth of the

peers that participate in a P2P network. The next section presents three algorithms
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from the literature that can be used to create a power law topology in a P2P applica-

tion to utilize this diversity among the peers by making the peers on high bandwidth

connections high degree vertices that are responsible for a major share of the routing.

2.1.6 Super Peer and Hub Topologies

KaZaA [9] and Skype [13] are successful P2P applications that use a super peer topol-

ogy [26]. A super peer topology can be used to improve the performance of a pure

unstructured P2P application by introducing a degree of structure into the network.

In a super peer topology, the vertices are divided into two categories: super peers and

ordinary peers. Each ordinary peer is connected to exactly one super peer. The super

peers are connected to each other to form an overlay backbone network of super peers.

A super peer and the ordinary peers connected to it form a cluster. The size of the

cluster is the number of peers in the cluster including the super peer [127]. Figure 2.2

presents an example of a super peer topology.

The CPL of the super peer topology depends on the topology of the overlay back-

bone network of super peers. In the worst case, when the overlay backbone network of

super peers is arranged in a line, the CPL will be of the order of the square of number

of super peers (nsp) in the topology. The degree distribution has a spike at 1 and at

nsp with the spike at 1 being much higher than the spike at nsp. The spike at nsp is

caused by the super peers and at 1 by the ordinary peers.

The existing pure unstructured P2P applications such as Gnutella propogate search

messages using flooding. A super peer network can be used to maintain a directory

of resources on the overlay network. The ordinary peers can send the search request

to their super peer which can collaborate with other super peers on the backbone

to return a response. This reduces the need for expensive broadcasts on the overlay

network. The super peer network can also be used to route messages to other peers.

The ordinary peers can send a message to its super peer which can collaborate with
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other peers on the super peer network to route the message to its destination. As

mentioned at the beginning of this section, both KaZaA and Skype use a super peer

topology. However, both are proprietary products and the details of the algorithms

used in them to create the super peer topology are unfortunately not available.

In a super peer system, the failure of a super peer can have a catastrophic conse-

quences causing a complete communication failure for the cluster of nodes attached to

it. To resolve the impediment of catastrophic failure, some P2P systems (e.g., JXTA

[121]) use a variation of the super-peer topology in which the ordinary peers are con-

nected with each other and can be connected to more than one super peer (called a

hub in this thesis). The hubs are connected to each other to form a network of hubs in

a similar fashion to the backbone in super peer networks. In this topology the failure

of a hub is not a catastrophic failure, because the connections between the peers can

be used for communication in case of a hub failure. A hub topology could be consid-

ered as a variation of power law topology in which the vertices with a high degree are

connected to each other.

2.1.7 Clustered Topology

Clustered topology is another topology that is found in the world around us. Examples

of such clustered topologies include residential segregation in urban areas [100] and

clustering of slime molds in adverse conditions to form one big organism [62, pg. 13].

The number of clusters NC in the graph G is a metric that can be used to measure

clustering. The topology is the graph G = (V, E), where V is the set of vertices and

E is the set of edges. Let P = {p1, p2, . . . pn} be the set that enumerates the types

of vertices in the graph G. Let SGpi
= (V (pi), E(pi)) be a subgraph of graph G that

contains all the vertices from the original graph with property pi and the connections

between them, so that:
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V (pi) = {vεV : v.property = pi}

E(pi) = {{v, w}εE : v, wεV (pi)}

A connected component of a graph is a sub-graph in which all the vertices are

connected to each other. We use the term cluster to refer to a connected component of

the graph SGpi
. Let CCpi

= {CC1, CC2, . . . CCn} be the set of connected components

of the graph SGpi
. The number of clusters (NC) in the graph G is :

NC =
n∑

i=1

|CCpi
|

Clustering algorithms are used to rearrange the overlay network so that peers with

similar characteristics are brought together as neighbors. Clustering algorithms change

the overlay network’s topology so that the number of clusters (NC) is minimized.

The type and effect of clustering depends on application concerns but the topology

is useful in a variety of settings. For example, the performance of messaging on an

overlay network can be improved by clustering peers that are close to each other on

the underlying physical network [46, 133]. In a file sharing application, peers sharing

similar files may be clustered together, which can be used to improve search perfor-

mance because search requests can be routed to an appropriate cluster and then a deep

search can be performed within the cluster [46, 69, 79]. The performance of messaging

on a P2P overlay network can be improved by clustering peers in the same geographi-

cal location. Clusters with low intra-cluster network latencies can be used to provide

coarse-grained parallelism in which parts of a parallel application are distributed across

hosts in the cluster [22]. In a distributed game, clustering can be used to bring to-

gether players with similar levels of competency so that their gaming experience can

be improved.
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2.1.8 Summary

The optimal topology for any given application depends on the application’s require-

ments. The first three topologies presented in this section have a small CPL which

makes them useful for applications that desire a small distance between the peers. The

first two topologies have fault-tolerance characteristics that are useful for applications

that expect targeted attack on peers, while power law topology is useful for applica-

tions that expect only random failure or attack. The power law, super peer and hub

topologies are good choices for applications that desire to optimize the search operation

on the overlay network by creating a directory of information about other peers on the

network. The hub topology is a better choice when compared to super peer topology

for an application that desires high fault-tolerance.

The first three and the last topology presented in this section are inspired by nature.

These topologies offer desirable properties such as small average distance between the

peers and fault-tolerance to applications. The topologies from nature are interesting

because typically they are created and maintained in a decentralized, self-organizing

and self-maintaining manner. The topology review presented here is not exhaustive

and it would be interesting to discover other topologies in nature that have interesting

and desirable traits for applications. Another challenge is to modify these topologies

so that they are more useful or provide other uses for applications. For example,

an interesting topology could be designed by merging the power law and clustered

topology, in which the clusters of peers have peers with high degrees that can maintain

directory of resources available in their clusters.

The peers in the first three topologies inspired from nature presented in this section

have a small average distance (CPL) between them. The average distance is typically

of the order of log(N) and is similar to distance between peers on structured overlay

networks. However there is a lack of routing algorithms that can effectively utilize the

short average distance between the peers on the topologies presented in this section to
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achieve routing distance of the order of log(N).

A challenge after identifying a topology is to design algorithms that can create

and maintain the topology in a self-organizing and self-maintaining manner. The next

section reviews existing topology adaptation algorithms.

2.2 Topology Adaptation Algorithms

For the purpose of review, the existing algorithms for topology adaptation have been

divided into two major groups: centralized and decentralized. The decentralized algo-

rithms do not require a central server unlike the centralized algorithms that require a

well-known central server to create and maintain the topology. This section presents

and evaluates existing topology adaptation algorithms that are relevant to this thesis.

While our main interest is in decentralized algorithms, the first two algorithms

reviewed in this section are centralized algorithms. The rest of the topology adaptation

algorithms discussed in this section are decentralized topology adaptation algorithms.

The first algorithm is significant because it is one of the earliest that recognizes topology

adaptation as a means for improving the performance of P2P applications. The second

algorithm is interesting because it presents a mathematical analysis that guarantees

the resulting topology to be connected and have a fixed diameter. It is difficult to

provide such guarantees for decentralized algorithms.

The next three algorithms discussed in this section utilize the diversity in the ca-

pability (e.g., bandwidth, processing power) of the peers on the overlay network by

creating and maintaining a topology, similar to the power-law topology, in which the

powerful peers have a higher degree. The last algorithm among these three is par-

ticularly interesting because it changes the type of the topology from power law to a

random mesh and vice versa with a change in the load on the peers.

For the purpose of review, the existing decentralized algorithms for clustering peers
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can be divided into two major categories based on the criteria used for clustering:

distance-based clustering and content-based clustering. We first review distance-based

clustering algorithms. This is followed by the review of a content-based clustering

algorithm, which is one of the earliest in which a peer uses its local awareness of the

network to establish connections to peers with a similar property. Finally, the section

examines a contemporary (published in 2006) approach for designing decentralized

topology adaptation algorithms.

The review of each algorithm is divided into two parts, the description and the

discussion. The discussion is structured as follows: We first analyze the topology

created by the algorithm and then the algorithm itself. This is followed by a discussion

of the analysis techniques used to evaluate the algorithm.

2.2.1 Improving Breadth First Search (BFS)

In 2004, Silvey et al. proposed two topology adaptation techniques [105], that can be

used to optimize the BFS used in Gnutella. These techniques have been included in

this review because to our knowledge [105] constitute the earliest work in the literature

that uses the term topology adaptation and recognizes it as a technique to improve the

performance of P2P applications.

In [105] the authors argue that the search results obtained by BFS in pure un-

structured networks like Gnutella are exhaustive because they contain response from

multiple peers who may interpret the search request in different ways. The authors

aim to optimize the topology of pure unstructured P2P networks for flooding-based

BFS search by creating a topology with a small diameter and low message redundancy

in flooding. The small diameter ensures that a message can reach all the peers in a

short time. A redundant message is one that is received by a peer from more than one

connection. A lower message redundancy will help in reducing the overall bandwidth

consumption in the network.
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For reducing message redundancy, the authors propose the technique of removing

redundant neighbors. An algorithm for assigning a score to all the neighbors is pre-

sented in which a neighbor is assigned a score of 1/M for each message, where M is

the number of neighbors that send a given message. The peers remove neighbors that

have a low score. The authors assume that the topology adaptation layer has a global

knowledge of the overlay network topology. To prevent disconnection, the authors sug-

gest that the redundant links not be removed once the topology is disconnected and the

redundant link whose removal caused the topology to be disconnected be reintroduced.

For reducing the diameter of the overlay network, the authors suggest adding shortcut

links between peer pairs whose minimum path length is equal to the diameter of the

graph. The authors do not suggest how the peer pair whose minimum path length is

equal to the diameter of the graph should be selected.

Simulations have been done in which the technique for reducing the message re-

dundancy and the diameter of the network are applied to an overlay network in which

there is no flux of peers. The simulation results show that on an average there is a 7%

reduction in the average number of messages passed for a query and a 15% reduction

in the diameter of the network.

Discussion

The authors suggest creating a topology with a small diameter and fewer redundant

links to optimize the performance of BFS. The suggestion to create a small diameter

is good and is similar to the approach presented in [130] (discussed in 2.1.4) to create

a small world effect by creating shortcut links. The suggestion to remove redundant

links will however reduce the fault-tolerance of the topology. Removing the redundant

links will lower the CC of the topology and will increase the risk of disconnecting the

topology under churn of peers.

An interesting point of this algorithm is that it identifies that peers can use local
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information (e.g., the neighbors with a low score) to take actions that can change

the overlay network’s topology. The authors present approaches such as removing

neighbors with low score that can be used to remove redundant links and reduce the

diameter of an overlay network. However, the authors do not present concrete ideas

on how the approaches for managing the topology could be executed without relying

on a central server with a global knowledge of the topology.

Another weak point of this algorithm is that it does not consider overlay networks

with a flux of peers, a scenario that is common in real life overlay networks. To

conclude, this algorithm was an interesting early attempt that recognized topology

adaptation as a general approach for improving the performance of P2P applications,

however it does not represent any viable solution for decentralized topology adaptation.

2.2.2 Building a Low-Diameter Connected Topology

This algorithm has been proposed by Pandurangan et al. in 2001 [85]. It utilizes a

central server, which has a limited knowledge of the peers on the overlay network, to

create and maintain a connected topology with a constant degree and a logarithmic

diameter. This algorithm is interesting because a mathematical model that predicts the

diameter of the generated topology has also been presented by the authors. Existing

decentralized topology adaptation algorithms typically lack a mathematical analysis

that can be used to predict the properties of the generated topology, and so this

approach is potentially interesting for applications that require a guarantee on the

quality of the topology generated.

The algorithm requires a cache running on a well-known server called the host

server, which can maintain information about a constant number (say K) of peers on

the overlay network. When a new peer P joins the overlay network, it is connected

to D nodes chosen at random by the host server from the cache. When the number

of neighbors of a peer P in the cache reaches C, then P is replaced by another peer
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from the overlay network. The peer leaving the cache creates a connection to the peer

that replaces it if they are not already connected. The peer entering the cache is the

preferred peer of the peer leaving the cache. If a peer loses its preferred peer, then it

chooses a random peer from the cache to be its preferred peer.

When a peer has to leave the cache, its neighbors are searched for a peer with degree

less than C that can replace it. If the search is unsuccessful then a similar search is

performed on the neighbors of the peers that were in the cache at that position till

a peer with degree less than C is found to replace the leaving peer. This search is

performed by the host server. When a peer loses a neighbor, it chooses a random

node in the cache with the probability D/d where d is the degree of the peer before its

neighbor left.

The authors have presented a stochastic analysis to show that as a result of this

protocol, the resulting overlay network will be connected with diameter log(N) where

N is the number of peers on the overlay network.

Discussion

This algorithm can be used to create and maintain an overlay network with diameter

log(N) where N is the number of peers on the overlay network. The diameter of the

graph is the largest possible distance between vertex pairs and so the CPL of the graph

will be also equal to or less than log(N) which is the same as in a small-world topology.

A small network helps in routing by reducing the number of hops a message has to

take between any two peers on the overlay network. As mentioned in section 2.2.1, a

small diameter can also improve the performance of a search that uses BFS because

the message reaches a large number of peers on the overlay network. The algorithm

ensures that the degree of a peer is maintained between D and C. This is helpful for

applications that do not desire a power law distribution in peer degree, which makes

the overlay network prone to targeted attacks.
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This topology adaptation algorithm is not decentralized and requires a central

server. The server is used by new peers to join the overlay network and for find-

ing the replacement peer for a peer leaving the cache. Finding a replacement peer for

the cache would require the server to maintain the information about all the peers that

where ever a part of the cache. The central server could become a bottleneck if there

is a high flux of peers or if the peers are from physically distant locations.

It is difficult to provide guarantees on the characteristics of the topology created by

decentralized algorithms because of the large number of variables (e.g., the state of each

peer executing the topology adaptation algorithm, initial topology etc.) involved in the

system. This algorithm is specifically useful for applications that desire a guarantee on

the properties of the overlay network.

2.2.3 Topology Adaptation For Load Balancing

The aim of this distributed topology adaptation algorithm first presented in 2002 [70] is

to adapt the topology to control the flow of the traffic on the network so that peers do

not get overloaded with messages. The algorithm is decentralized and self-organizing in

nature. This algorithm adapts the topology so that more requests are directed towards

peers with a high capacity. Capacity (C) is defined as the number of messages a peer

can process in a given time interval T .

In this algorithm the peers maintain information about the number of incoming

messages from each of their neighbors. The peers periodically check if they are over-

loaded, i.e., whether they are receiving more messages than they can process in a given

time interval. If a peer is overloaded, then it picks one of its neighbors with a high

incoming message rate and redirects it to a peer with a high spare capacity. The over-

loaded peer finds a peer with a high capacity from a list of peers on the overlay network

and their spare capacity that it maintains. The list is populated with data obtained

by periodic exchange of information with neighbors. The simulations suggest that the
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degree distribution in the evolved topology matches the capacity distributions, i.e.,

higher capacity peers have significantly higher degrees.

Discussion

This algorithm adjusts the topology so that the peers with a higher capacity have a

higher degree and consequentially higher responsibility. While the peers with a higher

degree help in load balancing, they reduce the fault-tolerance of the topology because

their failure would adversely affect the diameter and connectivity. The topology gener-

ated by this algorithm will be a power law topology if the capacity distribution follows

a power law. A similar attempt to utilize the power of peers with a higher capacity is

also done in the topology adaptation algorithms presented in sections 2.2.4 and 2.2.5

discussed below.

In this algorithm an overloaded peer searches for a peer to direct the search request,

from a list of peers and their spare capacities that it maintains by periodic exchange of

information between peers. The information in the list may be temporally inaccurate

because of the flux of peers on the network and the change in the load on the peers in

the list. It might happen that the peer to which a message has been redirected has left

the network. The authors do not propose how the information about the peers that

have left the overlay network would be removed from the list.

In this algorithm a peer uses the number of messages that it receives from another

peer (say s) in a given time unit to decide whether the peer s is a constrain on its

resources. However, the number of messages that a peer is sending in a given time unit

does not give an accurate indication of the load it causes on the recipient peer. The

type of message also affects the load on the peer. For example, the messages to obtain

information about the peer can be processed with less load than the messages to search

for a resource, which might require going through all the records that the peer has.

The simulations do not evaluate the scenario where the capacity C of a peer in the
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topology changes with time. The capacity C of a peer might change with time because

with time the user of the peer might like to change the amount of resources available

to the application. Simulations to study the effect of churn, especially the departure of

higher degree peers, on the topology have also not been done. The algorithm seems to

be capable of handling the first scenario, while the effect of the second scenario needs

to be studied.

While the algorithm suffers from minor drawbacks such as temporally inaccurate

cached entries, it does successfully utilize a peer’s limited awareness of the overlay

network to create an effective topology for load balancing in which the peers with a

higher capacity have a higher degree. The contribution of this algorithm would have

risen tremendously if it had studied the effect of churn on the topology, especially the

departure of peers with a higher degree.

2.2.4 Load Balancing in Biased Random Walk Search

GIA [34] was presented in 2003, and two contributors of the previous algorithm are

part of the team which presented it. GIA stands for GIAnduia, which is another name

for the hazlenut spread, Nutella after which Gnutella is named. The authors of GIA

propose that the peers maintain a directory of resources available on their neighbors.

The directory is utilized while performing a search operation using random walks that

are biased towards peers with a high degree that might be in a better position to answer

a query because of replication. The authors present a topology adaptation algorithm

to create a topology in which the peers with a high capacity are the peers with a high

degree, which ensures that the load is divided among peers on the basis of their ability

to handle it. The capacity of a peer is the estimated number of messages that the peer

can handle per second and is directly related to the bandwidth of the peer.

In GIA each peer maintains a host cache that is used by the topology adaptation

algorithm. The host cache is a list of peers and associated information such as IP
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address, port number and capacity. The host cache is populated through a well-known

server or by exchanging host information with neighbors.

In the topology adaptation algorithm, each peer periodically calculates its satisfac-

tion level (S) which is a value between 0 and 1. The satisfaction level indicates the

satisfaction of a peer with its neighbors. When S is 1, the peer is fully satisfied and

the algorithm stops. When S is not 1 the peer is dissatisfied. The available capacity

of a peer can be defined as its capacity divided by its neighbors.

The satisfaction level of a peer is 0 if the number of its neighbors is less than

the minimum possible number of neighbors that it can have and 1 if it is equal to the

maximum possible number of neighbors. The minimum and maximum possible number

of neighbors that a peer can have is a predefined constant. If the number of neighbors

of a peer is between the minimum and maximum possible number of neighbors, then

the satisfaction level is the ratio of the sum of the available capacity of all its neighbors

divided by its own capacity. If the ratio is greater than 1 then satisfaction level is 1

and the peer is satisfied. The criterion for satisfaction level means that a peer with a

high capacity will be satisfied when it is connected to a large number of peers with a

lower capacity.

A dissatisfied peer searches the host cache to find a peer with a capacity greater

than its own capacity and tries to connect to it as a neighbor. If a peer with capacity

greater than its own capacity is not found then the dissatisfied peer chooses a random

peer from the host cache and tries to connect to it as a neighbor. If the peer with which

the dissatisfied peer is trying to establish a connection can not accommodate a new

neighbor, then it drops an existing neighbor if the new peer improves their satisfaction

level.

The desire of the peers to be connected to a peer with a higher capacity leads to

a topology in which the peers with a high capacity have a high degree. An imple-

mentation of GIA has been developed using C++ and a simulation has been done on
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PlanetLab testbed [12] using 83 peers. The simulation results demonstrate that the

peers with a higher capacity have a high degree.

Discussion

This algorithm is similar to the topology proposed in section 2.2.3 as it also attempts

to generate a topology in which the peers with a high capacity are the peers with

a high degree. The generated topology in this algorithm shares its advantages and

disadvantages with the topology in the previous section. The key advantage of the

generated topology is load balancing, and the key disadvantage is reduced resistance

to targeted attacks because of the presence of peers with a high degree.

In the previous algorithm (section 2.2.3) the topology is adapted with a change in

a dynamic criterion (the incoming messaging rate of a peer), while in this algorithm

the topology is adapted to account for the capacity of the peers, which is a static

value. This algorithm uses the static value for topology adaptation because the search

technique used in GIA relies on a directory of resources maintained by a peer which will

not be exhaustive for a peer with a lower degree. This choice of criteria for topology

adaptation however does not provide dynamic load balancing depending on the load

on the peers and could lead to overloading on peers with a high degree.

In GIA each peer maintains a directory of resources available on its neighbors that

is used to respond to a search request. The authors do not suggest how this directory

should be updated when peers leave the overlay network. The topology adaptation

algorithm searches for a peer from a cache that it maintains. The cache might have

temporally inaccurate data because of peers leaving the system and the authors do not

suggest how to remove these peers that have left the network from the cache of other

peers.

The topology adaptation algorithms are evaluated using a very small overlay net-

work of 83 peers. The authors study the generated topology through the degree of a
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very small number of nodes. The evaluation should have included better metrics to

evaluate the generated topology. The performance of the algorithm under a flux of

peers has not been evaluated.

This algorithm is similar in essence to the earlier algorithm as both of them utilize a

peer’s limited awareness of the network to create a topology in which the powerful peers

are the peers with the high degree. The techniques discussed in section 2.2.1 show how

topology adaptation can be used to optimize BFS. This algorithm adapts the topol-

ogy for biased random walks search and thus reinforces the applicability of topology

adaptation as a general technique for enhancing unstructured P2P applications.

2.2.5 Changing Topology Type for Load Balancing

DANTE is another algorithm presented in 2006 that extends the idea of using a peer’s

local awareness to create and maintain a desired topology [93]. This algorithm changes

the type of the topology based on the load on the peers. The algorithm creates a

power-law topology when there is less congestion and a random graph when there

is congestion on the network. This is based on the assumption that on a congested

network, hubs might not be able to bear the load and on Guimera’s suggestion in [49]

that a random topology is a better choice in a congested scenario.

In this algorithm a peer is congested if the number of queries processed by it in

the last minute is greater than its processing rate, which is a known constant. In this

algorithm the connections that a peer initiates are called native connections and the

connections that it receives are called foreign connections. The topology adaptation

algorithm is executed periodically by the peers and is used to change the native con-

nections. The peers send random walk messages with TTL to get a list of traversed

peers that become the candidate peers for being used as native connections. A selection

function is applied on the candidate peers to select n peers for the new native con-

nections. The present native connections are terminated and connections with these n
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peers is established.

The selection function selects a candidate peer to be the new native connection

with a probability that is the peer’s attachment kernel normalized by the sum of the

attachment kernel of all the candidate peers. The attachment kernel of a candidate

peer is 1 if it is congested and is the degree of the peer raised to the power of 2 if it

is not congested. This means that an uncongested peer has a higher chance of being

selected as a neighbor than a congested peer and among congested peers, the peer

with a higher degree has a higher chance of being selected as a neighbor. The authors

present a visualization of the overlay network to demonstrate that the topology changes

from a power law topology to a random graph under load.

Discussion

An interesting aspect of this algorithm is that it creates a random graph topology

under load and a power-law like topology when not under load. Another interesting

idea is the selection function which the peers periodically apply on a list of peers in

the topology that they are aware of, to decide their neighbors. This is unlike the idea

of updating a few neighbors that has been used in the previous two algorithms. The

selection function selects an uncongested peer to be its neighbor with a probability

that is proportional to its degree. This is similar to the preferential selection criterion

suggested by Barbasi in [24] (discussed in section 2.1.5) to create a power-law topology.

In the algorithms a peer decides its state on the basis of the peers returned by a

selection function on the results of a random walk. The selection function itself uses

chance to decide the peers that should be used as neighbors. Because of the element of

chance, the active connections that are selected in one iteration of the algorithm might

not be selected in the next, leading to an unnecessary churn in connections, which is

expensive. Further, this implies that the overlay network’s topology is never going to

stabilize and a part of the bandwidth will be continuously used to maintain it.
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The algorithm creates an interesting distinction between the connections that a

peer has. A peer can not refuse or remove foreign connections and this might lead

to the undesired effect of a peer being overloaded. The authors do not present an

explanation as to why a peer can not refuse or remove foreign connections.

The stochastic nature of the selection function is the main drawback of this algo-

rithm. This algorithm is unique because it uses a peer’s local awareness to change the

type of topology of the overlay network.

2.2.6 Topology Adaptation for Distance-Based Clustering

Algorithms for clustering peers that are close to each other on the underlying network

have been presented in [89, 118] and [22]. These three algorithms use a similar approach

which involves using selected landmark peers called originators. The peers measure

their underlying network distance to the originators and connect themselves to the

originator that is closest to them. This approach results in clusters that are based

around the originators.

To allow the ordinary peers to measure their distance from the originators, [89]

proposes that originators broadcast messages with a weight parameter that is reduced

at each peer. The peers join the cluster headed by the originator whose messages had

the highest weight (implies closest distance) when they received it. The clustering

provided by these algorithms depend on the choice of originators. The algorithms

require separate approaches for handling the arrival and departure of peers. These

algorithms are not discussed in detail in this review because of their dependency on

the choice of originators which are selected statically.

2.2.7 Topology Adaptation for Content-Based Clustering

Algorithms presented in [122, 69, 79, 115, 27] are designed to create clusters of peers

that have a similar property. For file-sharing applications this property is typically the
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type of content that a peer is sharing. In all of these algorithms the peers use their

local awareness of the network to establish connection to peers with similar property.

These algorithms are typically accompanied by a routing algorithm that directs search

requests to the most suitable cluster for handling the request. Unlike the rest of the

algorithms that are executed periodically, the algorithm in [27] is executed only when

a peer joins the overlay network. This review concentrates on the earliest algorithm in

this category proposed by Hang et al. in 2002 [79].

In this algorithm, every peer P maintains a host cache that contains information

about other peers on the network. The host cache is populated by exchanging informa-

tion with other peers on the network. Each peer P periodically broadcasts a message.

The peers that receive this message exchange their information with the peer P .

To perform clustering, each peer P periodically executes the topology adaptation

algorithm in which it computes the similarity of the content that it is sharing with the

content that the peers in the host cache are sharing. The similarity is computed using

a function that depends on the application. The peer P selects as its neighbors the

peers whose content is most similar to the content that it is sharing.

A routing algorithm has been proposed to utilize the clustering that is created by

the topology adaptation algorithm. The peer that receives a request computes the

relevance of the query to the content that it is sharing. If the content is not relevant,

then it is forwarded to randomly chosen peers. If the content is relevant, then it means

that the request has reached its target cluster and it is forwarded to all the neighbors.

The simulation are done on overlay networks with up to twenty thousand peers.

The simulations present the ratio of the the percentage of desired results retrieved (R)

to the percentage of peers visited (V ) for a query. The aim of this algorithm is to

increase R and decrease V . The simulations show that the routing algorithm coupled

with the topology adaptation algorithm outperforms search using BFS on an overlay

network.
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Discussion

This algorithm creates a clustered topology of the type discussed in detail in sec-

tion 2.1.7. This algorithm is similar to the previous four algorithms as both in this

algorithm and in the algorithms described earlier the peers utilize their local aware-

ness to create the desired topology. The simulations for this algorithm concentrate

on demonstrating the utility of the topology adaptation algorithm and do not explore

the properties of the created topology. The simulations also do not study the effect

of churn on the network. For example, the routing algorithm utilizes the edges (inter-

cluster edges) that connect peers from different clusters to route the search query to

the appropriate cluster. The authors do not explore the ratio of the inter-cluster edges

to the total number of edges and how they affect the performance of the routing.

This topology adaptation algorithm is similar to the algorithm that has been pro-

posed by Voulgaris et al. in 2004 for semantic clustering [122]. The only difference is

that the host cache in Voulgaris’s algorithm is populated by gossip between randomly

chosen peers on the overlay network to share information about other peers on the

overlay network. The author feels that the presence of two algorithms that share the

same structure but differ in the way certain operations such as populating the host

cache make the case for an abstract topology adaptation algorithm that can be used

to describe and compare the existing topology adaptation algorithms.

2.2.8 T-MAN

First presented in 2004 as a technical report by Jelasity et al. from the University of

Bologna, T-Man [59] presents a general approach for developing topology adaptation

algorithms. An extended version of the research on T-Man was later published in [60].

This review concentrates on [60] as it contains the latest research on T-Man. T-Man

suggests developing rules that the peers can execute using their local awareness to
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create and maintain a desired topology. Like GIA, the peers in T-Man maintain a

cache of other peers on the network called the “random view” that is populated by

“gossip” between the peers about other peers on the network. Each peer also maintains

a list (called the “view”) of peers with whom it maintains active connections.

In the algorithm, each peer P uses a ranking function to order a list of peers

according to its (P ′s) preference of having them as a neighbor. The ranking function

of a peer P takes the list of peers as input and return a sorted list of peers arranged in

a descending order of preference. The challenge in the T-Man algorithm is to design an

appropriate ranking function that can select an individual peer’s neighbors using only

limited knowledge of the overlay network, so that a desired topology can be created.

In this approach, each peer P executes the topology adaptation algorithm once

at a randomly chosen time in every consecutive time interval of duration T . In the

algorithm, the peer selects the best neighbor BN , obtained by applying the ranking

function on the view. The peer merges the information about itself with the information

about other peers in the “view” and the “random view” to create a merged list. The

peer then exchanges its merged list with the merged list of the peer BN . Both P and

BN merge the information in the merged lists and then apply the ranking function on

it to select the top n peers that will form the view. Apart from executing the topology

adaptation algorithms, the peers periodically exchange their random views and use the

exchanged information to enlarge their local random views.

The authors present ranking functions for creating topologies such as line, ring,

torus and binary tree. The ranking functions presented by the authors rank the peers

on the basis of their distance from the peer which is executing the algorithm. For some

of the topologies like ring and torus the ranking function required a global knowledge

of the overlay network. For the binary tree topology the ranking function uses an

identifier assigned to the peers on the basis of their position in the tree.
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Simulations

The authors use simulations to demonstrate that the algorithms developed using T-

Man converge. Simulations have been done on networks with size 214, 217 and 220.

The simulations suggest that within 30 simulator iterations, the algorithms converge

which means that no new edges from the desired topology are introduced. There is

a logarithmic relation between network size and convergence speed. It may happen

that even after the algorithms converge, some peers are not placed at their appropriate

location in the generated topology. The authors claim that the simulations suggest

that this is not common and even if it happens then the misplaced peers eventually

reach their appropriate position.

The views in this algorithm cache information about peers on the network. This

information may become obsolete because of peers that leave the overlay network. To

remove entries for peers that have left the network, the authors propose that the peers

also maintain age information about the peers in their view and purge the H oldest

entries while merging the merged lists described above. The authors present simulation

results that suggest that 1 is the best choice for H.

Discussion

A host cache that contains a peer’s view or knowledge of the topology has been used

in earlier algorithms (e.g., the algorithms discussed in sections 2.2.4, 2.2.5 and 2.2.7).

The idea of using a selection function (referred as ranking function) on the host cache

to create a desired topology has also been used before (e.g., in the algorithms discussed

in sections 2.2.5 and 2.2.7). The authors have identified the general applicability of

this idea in T-Man.

The authors suggest that gossip between the peers should be used to populate this

list. Since the authors present a general approach for designing topology adaptation

algorithms, it would have been better if the operation used for populating the list was
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left abstract and the gossip-based approach was presented as a possible option for im-

plementing it. The gossip based approach might not be desirable in some applications

as it requires a continuous bandwidth usage even when there is no flux of peers on the

network and the desired topology has been achieved. The gossip-based search is also

not helpful if there is an unusually high churn (e.g., more than 10%) of peers on the

network.

In this algorithm the peers keep applying the selection function to the peers in the

host-cache even when they have a desired neighbor set. The authors present T-Man as

an approach for constructing topologies. It would reduce resource consumption (e.g.,

computing, network resources consumed to establish a new connection) if a delay was

introduced between successive applications of the ranking function if a desired topology

has been achieved or the peers that would be best suited as neighbors are not found

in the cache in successive applications of the selection function, resulting in a change

in the active connections.

The authors evaluates only simple topologies such as ring and mesh that can be

generated without the need of a global knowledge of the overlay network. The eval-

uation does not include any interesting topologies that can be generated without the

knowledge of the global network topology. The authors claim that there is a logarith-

mic relationship between the network size and the convergence speed. However, an

inaccurate and confusing definition of convergence is used in the simulations. In the

simulations the algorithm is said to have converged when no new edge from the desired

topology is created. The converged state however does not guarantee that the desired

topology has been achieved nor that the algorithm is not consuming resources.

2.2.9 Summary

The algorithms in this section demonstrate the utility of topology adaptation as a

general technique for improving P2P applications. The section presents algorithms

53



which demonstrate that topology adaptation can be used for load balancing, latency

improvement and to improve the performance of search.

The majority of the existing topology adaptation algorithms concentrate on creating

and maintaining a desired topology. The algorithm presented in section 2.2.5 is novel

in its proposal to completely change the type of the overlay network with change in

conditions on the overlay network. This could be an interesting direction for future

research in the area of P2P topology adaptation algorithms.

The search operation for new neighbors is a major cost in the topology adaptation

algorithms. The algorithms discussed in this section typically maintain a cache that

contains information about other peers on the network and can be used for finding peers

with desired characteristics. This approach suffers from the drawback of temporally

inaccurate data in the cache because of peers leaving the system. Only one possible

solution has been proposed in T-Man to address this drawback. It would be interesting

to investigate other possible solutions for handling this problem.

A lack of mathematical analysis is another common problem with the existing de-

centralized topology adaptation algorithms. An exception is the centralized algorithm

presented in section 2.2.2 which presents an analytical approach to predict the diam-

eter of the generated topology. In general it is difficult to use analytical models to

predict the characteristics of topology generated by decentralized topology adaptation

algorithms because of the large number of variables in the system. None of the decen-

tralized algorithms discussed in this section present a mathematical analysis of their

algorithms but rely on simulations to study their behavior. This is because the ex-

isting mathematical techniques are inadequate to analyze the decentralized topology

adaptation algorithms and more research is required in this direction. In section 4.1

we will show how the existing mathematical techniques are inadequate to analyze the

decentralized topology adaptation algorithm presented in this thesis.

Instead of topology-related metrics (e.g., whether generated topology is connected

54



or disconnected, the average degree of all the peers on the network) the algorithms

discussed in this section are evaluated using the metrics that measure the increase in

performance because of using the topology. Not using the topology-related metrics

would result in a scenario where the evaluation would not be able to capture problems

such as a disconnected topology because of applying the decentralized topology adapta-

tion algorithm. None of the decentralized topology adaptation algorithms presented in

this section (except T-Man) evaluate the effect of peers leaving and joining the overlay

network.

The existing algorithms are application-specific and are not generally applicable or

easily reusable. As a result, application developers have to design topology adaptation

algorithms from scratch and an application that has been developed using an existing

algorithm can not be altered easily to create and maintain a new topology. While the

decentralized topology adaptation algorithms presented in this section are application

specific they do have a common structure. All the decentralized algorithms discussed

in this section explore the idea of peers using their limited local knowledge to create the

desired topology. In all of these algorithms the peers periodically check their neighbors

to determine if they are satisfied with them and if they are not satisfied, then they

rearrange their neighbors. In the algorithms presented in sections 2.2.4 and 2.2.3, a

peer uses a satisfaction criterion to decide if it is satisfied with its neighbors. In the

algorithms presented in sections 2.2.5 and 2.2.7, a peer applies a selection function on a

list of peers to determine the desired neighbors and if the existing neighbors are not the

same as the desired neighbors then the peer is not satisfied. The general applicability

of the later approach has been recognized in T-Man, while that of the former has not

been studied.

55



2.3 Reference Architecture

As discussed in section 1.4.2, a reference architecture for a domain can be used to

compare and describe the structure of existing P2P applications and as a template

for designing applications. To the author’s knowledge only one other reference archi-

tecture has been proposed for the P2P domain that aims to develop a vocabulary of

P2P application components and facilitate P2P application development. This section

presents and evaluates this reference architecture. JXTA is a general purpose P2P mid-

dleware. The JXTA specification contains guidelines for developing P2P applications

and just like a reference architecture it can be used as a starting point for developing

P2P applications. This section presents JXTA and evaluates its use as a reference

architecture. The section examines the suitability of JXTA and the “The Essence of

P2P” for topology adaptation.

2.3.1 The Essence of P2P

In 2005, Aberer et al. presented a reference architecture for the P2P domain [19].

The authors claim that the overlay network with its resource location service is the

core component which allows advanced P2P services and applications to be developed.

The authors first present a conceptual model for P2P overlay networks. As a part of

the model, the authors present the key steps that are required in designing an overlay

network and the desired attributes in the different steps. The key steps in designing

the overlay network are enumerated below:

1. Deciding on the identifier space that will be used to assign unique identifiers

to peers and resources on the overlay network. The identifier space should be

scalable so that it can support large systems. It should provide identifiers that

are independent of the entities’ actual physical location.

2. Deciding on the mapping that will be used to assign an identifier to the peers
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on the overlay network. The mapping might be one-to-one or if the system uses

replication, it is one-to-many.

3. Identify the mapping that will be used to assign resource identifiers to peers.

Typically, all the identifiers in the resource identifier space will be allocated to

a peer. To provide fault-tolerance, a set of peers rather than just one might be

made responsible for an identifier.

4. Decide on the neighborhood relationship that determines the set of peers to which

a given peer maintains connections. It is desirable to have a relationship that

creates a connected topology with a small diameter.

5. Design the routing strategy that will be used to decide to which peer from the

neighbor set an incoming message will be routed.

6. Decide on the strategy to handle the flux of peers. This typically involves repair-

ing the routing tables.

The authors propose a three-layered reference architecture in which the lower layer

is responsible for providing the functionality associated with the overlay network. The

middle layer consists of P2P services that utilize the services offered by the lower layer.

The authors describe a storage service as an example. The top layer is composed of

P2P applications that utilize the services offered by the middle and lower layer. API’s

for the lower layer and the storage services have been proposed. The API for the lower

layer includes functions to allow a peer to join and leave the overlay network, find a

peer whose identifier is provided, route a message to one or multiple peers and get

information about the local peer and its neighbors. The API for the storage service

includes functions to insert, delete, update and query data.
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Discussion

The reference architecture and the conceptual model do not capture how services and

resources can advertise their presence to the overlay network. In some applications,

resources and services might like to advertise their presence to other peers so that

other peers can use these advertisements to locate the resources and services present

in the network. The authors do recognize that creating and maintaining the topology

would be the key steps in designing the overlay network, however they do not define

and describe components in the reference architecture for this. The authors talk about

services as a layer in the reference architecture and present the APIs for a service that

can handle storage on a P2P network. However, the authors do not describe how to

structure services or how the overlay network APIs can be used by a generic service.

Also no validation of the reference architecture is presented.

The authors have presented a conceptual model that enumerates the various steps

in designing an overlay network. However it is hard to consider this a comprehensive

reference architecture. “The Essence of P2P” cannot considered to be a reference ar-

chitecture as per the definition presented in section 1.4.2 because it does not provide

any details of the software components that may be used to implement this high level

component. The “Essence of P2P” only defines the APIs for a very high level compo-

nent (the lower layer in the discussion) that provides the services associated with the

overlay network. The API’s are however useful as they capture the common across a

wide variety of applications and can be used to design a more comprehensive reference

architecture.

The conceptual model recognizes that creating a desired topology (step 3) and

maintaining this topology under a flux of peers (step 5) are key steps in designing an

overlay network. The reference architecture however does not describe or define the

software components that will be responsible for creating and maintaining the topology.

This reduces the utility of this reference architecture for topology adaptation.
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2.3.2 JXTA

JXTA was conceived by Sun Microsystems in 2001 and has been developed as an open

source project. JXTA defines a set of six protocols for P2P applications [8, 80]. The

JXTA community provides a reference implementation of JXTA protocol specification.

The reference implementation can be used for P2P application development.

The JXTA protocols work together to perform services such as discovery, organi-

zation, monitoring and communication between peers. The JXTA protocols can be

used for creating a new service and accessing existing services. The protocols use XML

schemas to describe the format of the messages exchanged between peers to perform

a service. JXTA is policy agnostic and does not specify how the service provided by a

protocol will be implemented. The standardization of protocols helps in interoperabil-

ity between peers.

The JXTA protocol specification is divided into three sections: JXTA Core Speci-

fication, JXTA Standard Services and JXTA Reference Implementations. JXTA Core

Specification must be followed by an implementation to be JXTA compliant. Imple-

mentation of core specification do not guarantee interoperability with other imple-

mentations. JXTA Standard Services define optional components and behavior for a

JXTA implementation. Implementing these components improve the interoperability

of JXTA components. JXTA Reference Implementations contains information about

components implemented by various JXTA bindings which are not required and spec-

ified in either of the sections above. Table 2.3.2 specifies the components defined in

JXTA Core Specification and Standard Services.

The JXTA id is a location independent, unique identifier for entities in a JXTA

network. Resources, services and peers in a JXTA network are described using XML

documents called advertisements. JXTA specifies XML schemas which define the struc-

ture of the advertisements. Figure 2.3 shows the XML schema of a peer advertisement.

JXTA defines a socket like abstraction called Pipe that can be used as a virtual commu-
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Core Specification Standard Services
Id Peer Discovery Protocol(PDP)

Advertisements Rendezvous Protocol(RVP)
Message Peer Information protocol(PIP)
Service Pipe Binding Protocol(PBP)

Peer Resolver Protocol(PRP) Message Transport Bindings
Endpoint Routing Protocol(ERP) Wire Transport

Table 2.1: Components defined in JXTA Core Specification and Standard Services.

<xs:element name="PA" type="jxta:PA"/>

<xs:complexType name="PA" />

<xs:sequence/>

<xs:element name="PID" type="JXTAID" />

<xs:element name="GID" type="JXTAID" />

<xs:element name="Name" type="xs:string" minOccurs="0" />

<xs:element name="Desc" type="xs:anyType" minOccurs="0" />

<xs:element name="Svc" type="jxta:serviceParams" minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence />

</xs:complexType />

Fig. 2.3: XML schema of a peer advertisement.
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nication channel to send and receive messages between peers on the overlay network.

A JXTA enabled service is described using a module specification advertisement.

The module specification advertisement of a native JXTA service contains a pipe ad-

vertisement which can be used to invoke the service. A client interested in invoking

the service uses the Pipe Binding Protocol (PBP) to resolve the Pipe Advertisement

to a pipe on the overlay network. PBP defines the structure of the query and result

XML documents which will be exchanged to locate the pipe.

The PBP query and result are embedded in a Peer Resolver Protocol (PRP) mes-

sage. PRP uses XML schema to define the structure of a XML request and response

messages which are exchanged between peers to resolve a query. The request message

contains the id of the peer from which the query originates. On a peer the request is

directed to a handler, which is generally a service on a peer. For example in this case

the service will be PBP.

JXTA does not puts a restriction on how the PRP message is propagated to peers

in the network. The client may use Rendezvous Protocol (RVP) to propagator the

message on the network. Once the input pipe is located the client needs to determine

whether a route to the service provider exists or not. If a direct connection to the peer

providing the service cannot be found then Endpoint Routing Protocol (ERP) is used

to find intermediate hosts which can route the information to the destination peer.

The route information to the destination peer is stored at the source peer. Once the

connection is established the client utilizes the service by exchange messages through

the pipe.

A Message is the basic unit of data exchanged between peers. A JXTA applica-

tion can exchanges messages by using the pipe abstraction. Messages are transported

on the network using existing network protocols. JXTA specification contains Mes-

sage Transport Bindings which specify the rules for exchanging messages using HTTP,

TCP/IP and TLS. JXTA also specifies the wire representation of messages. Messages
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can be represented as XML or binary data. Message may contain an arbitrary number

of named sub-sections which can hold any form of data.

Advertisements of resources (e.g., pipes) and services in a peer group (overlay net-

work) can be published and discovered using a Peer Discovery Protocol (PDP). PDP

defines the format of the XML messages that will be exchanged to discover the adver-

tisements.

Some JXTA peer-groups may have special peers called rendezvous peer, which

cache advertisements. Rendezvous Protocol (RVP) allows peers to subscribe to the

rendezvous peer. It also allows messages to be send to all the peers who have subscribed

to the rendezvous peer. RVP can be used to propagate messages or to discover an

advertisement. Peer Information protocol (PIP), can be used to inquire the status of

a peer.

The JXTA reference implementation [121] uses a hub topology to perform resolu-

tion operations and for connecting peers that do not have a direct physical connectivity

because of firewall, NAT etc. The rendezvous peers are hubs that organise themselves

into a loosely-coupled network. In JXTA name resolution involves finding one or more

appropriate advertisement. Rendezvous peers maintain a index of advertisements pub-

lished by the ordinary peers. The index maintained by the rendezvous peers is used for

name resolution. Each rendezvous peer maintains a list of other rendezvous peers it is

aware of. At regular time intervals, the rendezvous peers pass this information to all

known other rendezvous peers. The information in the list is used by the rendezvous

peers to maintain the loosely-coupled network.

JXTA as a Middleware

While JXTA specification provides mechanisms to advertise, discover and access ser-

vices it does not specifies how services should be described. There is no JXTA specified

way to describe a service which might be a drawback for a programmer interested in
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using the rest of the JXTA stack for his P2P services.

JXTA is a middleware for P2P applications designed and developed from scratch.

It reinvents and implements considerable amount of work around messaging which has

been done for conventional middleware. For example, JXTA defines the format of the

messages exchanged between the peers and it also specifies how these messages could

be transported across peers using an existing transport like HTTP or TCP. JXTA

could have build upon existing middleware solutions, like CORBA, RMI or SOAP to

provide this functionality. If JXTA was built upon an existing middleware it could have

benefitted from the support for type safe invocations provided in these middlewares.

The current JXTA specification lacks support for type safe invocations, which can lead

to difficult to track bugs in a JXTA application. Bugs caused by mismatch in data

type are very comman and difficult to diagnose. In JXTA application programmer has

to do all the programming for a type safe invocation.

In JXTA, the specification for exchanging messages between peers is interleaved

with the specification for the core functionality (e.g., finding routes, identifying and

describing resources) required by a P2P system. For example the Core Specification

contains the rules for ids and advertisements, along with the structure of a message.

While reading the JXTA specification, considerable effort is required to map the pro-

tocols to the layer (application or messaging) at which it operates. This makes JXTA

overly complex and difficult to understand.

There are two ways to implement a service in JXTA: pipe and an existing mid-

dleware. There are two ways to publish a service in a JXTA network: using a pipe

advertisement and a module specification advertisement. These approaches provides a

high level of control to application developers, however complexity like this makes the

learning cure for JXTA very steep.
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JXTA as a Reference Architecture

JXTA provides protocol standards for a P2P middleware and a reference implementa-

tion. As per the definition used in this thesis (see section 1.4.2) a reference architecture

describes and defines the software elements that comprise the system. While JXTA

specification provides protocols for many different components of a P2P application,

it does not makes an attempt to describe and define the core components of a P2P

application and so it can not be classified as a reference architecture. A reference ar-

chitecture provides the vocabulary that can be used to discuss the structure of existing

P2P applications. The complexity of JXTA specifications and the mixture of P2P

specific concerns with messaging concerns makes it difficult to develop a vocabulary

for P2P that is based on JXTA. JXTA provides an easy to use API that can be used

to develop P2P applications. However, it does not provide a design that can be used

to understand or develop the software architecture of the P2P application.

JXTA and Topology Adaptation

JXTA specification is topology agnostic and does not provide any direct support for

topology adaptation. However, the protocols from JXTA specification may be used for

implementing topology adaptation algorithms. For example, the request and response

messages between peers can be exchanged using PRP. The JXTA reference implemen-

tation uses a hub topology for implementing rendezvous service. The JXTA reference

implementation however does not provide control over the underlying topology that

the applications built using the JXTA reference implementation use.

2.3.3 Summary

Neither JXTA nor “The Essence of P2P” provide support for topology adaptation.

“The Essence of P2P” does not describes how topology adaptation can be implemented
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in an application. The JXTA protocols may be used for topology adaptation, however it

does not recognizes topology adaptation as a core service for applications and provides

no direct support for topology adaptation.

According to the definition of reference architecture used in this thesis neither JXTA

nor “The Essence of P2P” can be classified as a reference architecture. JXTA provides

limited support for describing and comparing the structure of existing applications and

can not be classified as a reference architecture as per the definition used in this thesis.

“The Essence of P2P” does not presents the details of the software components that

may be used to implement an application. This makes it of limited use while designing

a P2P application. However, it does present the steps in designing the overlay network

and the choices used in these steps can be used to describe and compare existing

applications. It can therefore be seen as a first step towards a general-purpose reference

architecture.

2.4 Summary

This chapter reviewed topologies, topology adaptation algorithms and reference ar-

chitectures from literature. The chapter reviewed topologies from nature and found

them to be particularly interesting because of their self-organizing nature and desirable

characteristics such as low average distance between peers. The decentralized topology

adaptation algorithms share a common structure, but were developed from scratch.

The existing mathematical techniques are inadequate for analyzing the decentralized

algorithms and more research is required in this direction. As per the definition of

reference architecture used in this thesis neither JXTA nor “The Essence of P2P” dis-

cussed in the review can be classified as a reference architecture. Further both provide

limited support for topology adaptation reducing their utility for designing applications

that require topology adaptation.
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Chapter 3

Topology Adaptation Using

Schelling’s Model

God does not play dice with the universe [35].

In 1969, American economist Thomas Schelling proposed an agent-based model

that can be used to describe the existence of residential segregation in urban areas.

This chapter presents an abstract algorithm inspired by Schelling’s model that can

be used to create a family of decentralized and self-organizing topology adaptation

algorithms. A concrete realization of the abstract algorithm can be executed by the

peers to create and maintain an overlay network with a particular topology.

This chapter gives a brief introduction to agent-based models and then describes

Schelling’s model as proposed in 1969. The chapter subsequently presents the abstract

algorithm called the PEer-to-peer Self-organizing TOpology (PESTO). This is followed

by a discussion of the messaging cost associated with PESTO, a description of the steps

involved in instantiating PESTO, and a comparison of PESTO with T-Man discussed

in section 2.2.8. The chapter then presents the design and usage details of a simulator

that can be used for evaluating the concrete realizations of PESTO.
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3.1 Agent-Based Models

An agent-based model [44] is a tool that can be used to study the emergence of complex

behavior from simple rules in decentralized systems. An agent-based model consists

of large number of agents that act to change their properties and their environment

by using simple rules based on the agent’s limited awareness of the entire system.

Schelling’s Model described below is a putative example of an agent-based model.

Agent-based models are difficult to analyze mathematically and software frameworks

like Jade [6] and StarLogo [15] are typically used to simulate and understand their

behavior.

P2P applications share many similarities with agent-based models:

1. Both peers and agents lack a complete picture of the environment and act exclu-

sively on the basis of local information.

2. Both P2P applications and agent-based models lack central control.

The characteristics of agent-based models that makes them a promising approach

for designing P2P applications are:

1. The accumulated actions of the individual agents that act autonomously on sim-

ple rules using their limited awareness of their environment result in a far more

complex and interesting behavior (called emergent behavior) than the behavior of

individual agents. Peers can be programmed in a similar fashion to act on simple

rules using their limited awareness of the environment to create a desired global

behavior. The challenge is to design the simple rules that lead to the desired

global behavior.

2. Agent-based systems are typically good at adapting to changing environmental

conditions and are resilient to deviant behavior in a small number of agents. The
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adaptive and resilience characteristics are promising because P2P applications

work in a dynamic environment with a constant flux of peers.

3.2 Schelling’s Model

Residential segregation is a common phenomenon in urban areas and has been observed

as early as in 1842 by Friedrich Engels, one of the founding fathers of communism. He

observed an inexplicable pattern in the residential plan of the city of Manchester in

the UK. In his book The Conditions of the Working Class in England, Engels observed

that the design of the 19th century Manchester city segregated people belonging to

different classes, even though the city was not built to any plan [62, pg. 36]. Engels was

unsuccessful in finding a central cause of this segregation and failed to recognize that

the segregation could occur in the absence of a central figure directing the segregation.

In 1969, American economist Thomas Schelling proposed an agent-based model to

explain the existence of segregated neighborhoods in urban areas [99, 119, 100]. While

the model is well-known for explaining residential segregation, it can also be used to

explain segregation between any two classes in a variety of scenarios such as boys and

girls in a party or students and faculty.

Description

In Schelling’s Model, the world is considered an m × n grid. The world is populated

by two types of agents, called blue and red turtles, which are analogous to people in

the real world. Approximately two thirds of the cells in the grid are populated by

blue or red turtles. The remaining cells are empty. Each cell can host a maximum of

one turtle. In the beginning, a random number of blue and red turtles are randomly

distributed on the grid.

All the turtles act using a simple rule which states that a turtle is satisfied if at
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Fig. 3.1: Schelling’s world before (left) and after (right) the turtles are satisfied.

least a certain percentage of its neighbors are of the same color as itself and that if a

turtle is not satisfied with its neighbors, then it moves to an adjacent empty cell (if

available) chosen randomly. The simulation goes on until all the turtles are satisfied

with their neighbors. As the simulation progresses, segregation can be observed on

the grid. Such segregation is an emergent behavior caused by the desire of the turtles

to ensure that a certain minimum percentage of their neighbors are the same color

as themselves. Figure 3.1 shows snapshots of a Schelling’s world before and after

the turtles are satisfied, when the turtles desire 30 percentage of their neighbors to

be similar. The diagrams were drawn with NetLogo [126], an agent-based modelling

software.

In Schelling’s Model, the turtles act using their awareness of the local network

topology. This makes the model interesting for P2P systems, because the peers do

indeed lack a global picture of the network topology. In Schelling’s Model, grouping is

maintained even when turtles join or leave the system, which makes it attractive for

the dynamic environments of P2P networks.
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Schelling’s work is often misclassified as an example of a cellular automaton [128,

53]. A cellular automaton is a model that can be used to study the emergence of

complex behavior from simple rules. A cellular automaton is a lattice of sites in which

each site can have k possible values. The value of each site is updated by using a rule

that depends on the value of sites in the neighborhood around it [83]. Schelling’s Model

is concerned with agents (turtles), not sites, that change their location property using

simple rules based on the state of their neighborhood.

Variations of Schelling’s Model have been mathematically analyzed by Zhang [131,

132] and Young [129], as a game played between people. In the game, each player has

a strategy and a payoff that is determined by the status of the player’s neighborhood.

By using theories from stochastic dynamical systems, Zhang has shown that the stable

state for the system is a segregated state.

Simulations

NetLogo comes with a sample model that can be used to simulate Schelling’s Model.

The sample model has two parameters: the total number of turtles (N) and the per-

centage of similar neighbors (PSND) that each turtle desires. In the NetLogo model,

segregation can be observed visually in a graphical display of the turtle world (see

figure 3.1). The model tracks the percentage of turtles having all similar neighbors

(PTASN) over time. This metric gives a numerical idea of segregation.

The simulations are done for a grid of 50 × 50, which has 1500 turtles; half of which

are blue and half red. Figure 3.2 plots PTASN after the simulations are complete ver-

sus PSND. The parameter PSND, has a critical value PSNDunstable, beyond which

the simulation does not converge to a state where all the turtles are happy with their

neighbors. The PTASN value does not stabilize when PSND is beyond PSNDunstable.

The value of PSNDunstable observed in the simulations was 75% and so PTASN val-

ues for PSND after 75% are not plotted. When PSND is beyond PSNDunstable the
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Fig. 3.2: Plot of PTASN vs PSND.
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Fig. 3.3: UML Class diagram of the TopologyAdapter abstract class. The manage-
Topology method presents the structure of PESTO. The methods calculateSatisfaction,
executeAdaptation and delayBeforeNextAdaptation are virtual abstract methods im-
plemented in subclasses.

percentage of dissatisfied turtles fluctuates around a high value (e.g., for PSND 75

the percentage of dissatisfied turtles fluctuates around 85%) and movement of turtles

is observed in the grid. This suggests that when PSND is beyond PSNDunstable the

movement of some of the dissatisfied turtles to an adjacent empty cell on the grid does

not changes their satisfaction with their neighbors and because of this the simulation

does not converges.

Even a small value for PSND, leads to the emergent behavior of a very high

percentage of turtles having all similar neighbors (PTASN). Simulations suggest that

segregation does not depend on the number or number of types of turtles. The sample

NetLogo model was modified so that the world is populated with more than two types

of turtles. An emergent behavior similar to the old model was observed.

3.3 PESTO

Schelling’s algorithm is the algorithm executed by turtles in the Schelling’s Model.

In Schelling’s Algorithm, the turtles periodically calculate their satisfaction with their
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neighborhood and if they are not satisfied then they execute steps to change their neigh-

borhood. Variations of Schelling’s algorithm can be created by changing the satisfaction

criteria, the frequency with which the satisfaction criteria are calculated and the steps

taken to change the neighborhood. The self-organizing and decentralized nature of

Schelling’s algorithm makes it an attractive approach for creating and maintaining a

desired topology in P2P overlay network. This section presents an abstract algorithm

called the PEer-to-peer Self-organizing TOpology (PESTO) that can be used to create

a family of topology adaptation algorithms for decentralized unstructured P2P over-

lay networks. PESTO is based on Schelling’s algorithm. While PESTO may be used

for topology adaptation in hybrid P2P networks, however as discussed in section 1.4.5

the presence of a central component makes it comparatively easy and uninteresting to

perform topology adaptation in hybrid networks and so this thesis concentrates only

on utilizing PESTO for topology adaptation in unstructured decentralized networks

3.3.1 Description

In the Template Method [41] design pattern, the skeleton of an algorithm is defined

in an operation, deferring the steps that may change to a subclass. The subclasses

implement the steps that vary. The skeleton of the algorithm provides a template that

can be used to create a family of algorithms. In this work, the Template Method design

pattern is used to create PESTO, an abstract algorithm based on Schelling’s algorithm,

which provides a template for P2P topology adaptation algorithms. The pseudo-code

for the manageTopology method in figure 3.3 encapsulates PESTO. Just like Schelling’s

algorithm, the steps that may vary in PESTO are the satisfaction criteria, the actions

to be performed if a peer is not satisfied and the frequency with which the satisfaction

state should be checked. A peer calculates its satisfaction state at pre-defined intervals

and if it is not satisfied, it executes its topology adaptation steps (TAS).

Satisfaction state is a boolean value indicating whether a peer is satisfied with
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Operation Details
count(property) The number of neighbors of a given

node matching the given property.
add(peers) Add the given peer or peers as a neighbor
drop(peer) Drop the given peer as a neighbor
neighbor(property) Returns a neighbor with the

given property.
search(property) Search for peers on the overlay network

with the given property.

Table 3.1: The operations that can be executed by the peers. The operations are
used in this thesis to describe the concrete realizations of PESTO.

Satisfaction Criteria Topology Adaptation Steps
count(same property)∗100

count(all)
> PNSP step 1:

drop(neighbor(different property))
where PNSP is the desired step 2:
Percentage of Neighbors with add(search(same property))
Similar Property

Table 3.2: A satisfaction criterion and topology adaptation steps that can be used to
bring together peers with similar properties (e.g., bandwidth).

its local view of the overlay network’s topology. The satisfaction state of a peer is

calculated using the calculateSatisfaction method. If a peer is not satisfied with its

neighbors then the topology adaptation steps are performed by calling the executeAdap-

tation method. The topology management algorithm, specified in the manageTopology

method, is executed repeatedly. The time delay between successive executions of the

topology management algorithm is determined by the return value of the method delay-

BeforeNextAdaptation. The satisfaction criteria (SC), the topology adaptation steps

and the time delay will vary with the application and the topology desired.

Table 3.1 presents the operations that can be used to describe SC and TAS. Ta-

ble 3.2 presents a simple example of SC and TAS inspired by Schelling’s Model that
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can be used for clustering peers with similar properties. The SC state that a peer is

satisfied if it has at least a small percentage of similar peers as neighbors. The associ-

ated TAS is that the peers drop a dissimilar peer, find similar peers and add them as

neighbors.

PESTO is evaluated by presenting concrete realizations that can be used to create

a clustered and a hub topology. Section 2.1 presented a review of a range of interesting

topologies for P2P applications. The simple topologies such as ring, lattice and tree are

not interesting because to the author’s knowledge it is difficult to create and maintain

them using a decentralized approach. While both small-world and power law topolo-

gies are interesting because of their low CPL, the power law topology is more useful

for P2P applications as it utilizes the diversity among peers on the overlay network.

Section 2.2.3 and 2.2.4 presents two existing topology adaptation algorithms that may

be used to create a power law topology and so we have not explored in detail the option

of creating a power law topology using PESTO. We present examples of SC and TAS

in section 3.3.3 that can be used to create a power law topology but we do not evaluate

these SC and TAS. PESTO is based on Schelling’s model that is used to explain the

existence of segregated neighborhoods in urban areas. In a clustered topology peers

with similar characteristics are grouped together as neighbors. The clustered topology

is an obvious first choice that has been used in this thesis for evaluating PESTO, be-

cause of its similarity with segregated neighborhoods. Chapter 4 explores the approach

to clustering, presented in table 3.2 in more detail and also presents another example

for SC and TAS that can be used for clustering in pure unstructured P2P networks.

The hub topology is the other topology that has been used in this thesis to evaluate

PESTO because of a lack of topology adaptation algorithms to create and maintain

a hub topology. To the author’s knowledge, the JXTA reference implementation (dis-

cussed in section 2.3.2) uses the only other existing topology adaptation algorithm for

creating a hub topology. Chapter 5 presents a concrete realization of PESTO that can

75



be used to create a network of hubs in a pure unstructured P2P network.

PESTO is advantageous because it can be used as a basis for designing decen-

tralized, self-organizing topology adaptation algorithms. Another advantage of this

approach is that an application can dynamically change its topology adaptation al-

gorithm. For example, an application would be coded against the TopologyAdapter

abstract class and the concrete implementation of the abstract algorithm could be

changed at runtime by using the Component Configured design pattern that allows

“applications to link and unlink its component implementations at runtime without

having to modify, recompile or statically relink the application” [32, pg. 75].

3.3.2 Messaging Cost

There is a messaging cost associated with utilizing the topology adaptation algorithms

based on PESTO. A topology adaptation algorithm based on PESTO may consume

bandwidth to calculate the satisfaction state and to execute the topology adaptation

steps. The messages exchanged to execute the topology adaptation steps depend on

the choice of the topology adaptation step. In a topology adaptation algorithm based

on PESTO, a peer may take a proactive approach and ping its neighbors periodically

to find information about them which it can use to decide its satisfaction state. If k is

the average number of peers to which each peer on the overlay network is connected

and n is the number of peers on the overlay network, then a topology adaptation

algorithm that takes a proactive approach requires the peers to exchange kn messages

every iteration. This is a common messaging cost that will be incurred by all the

topology adaptation algorithms based on PESTO that take a proactive approach.

If this common messaging cost is a concern for an application then a topology

adaptation algorithm may use a reactive approach in which a peer P uses cached

information about its neighbors to decide its satisfaction state. The peer P may change

the cached information about a neighbor and recompute the satisfaction state when
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an event such as the ones described below occur:

1. the peer P receives a notification from its neighbors about a change in their

status,

2. the underlying network connection between P and its neighbor N breaks. In

this scenario P may try to reestablish connection to N and if the reconnection

attempt fails then P may remove N as its neighbor.

3. P is unable to deliver a message to a neighbor.

For a satisfied peer using the reactive approach, the topology adaptation algorithm

will wait in the delayBeforeNextAdaptation(. . .) method till an event such as the

one described above occurs. Compared to the proactive approach, a small number of

messages are exchanged to compute the satisfaction state when the reactive approach

is used. A drawback of this approach is that a neighbor might not notify P about a

change in its status. Another drawback of the reactive approach is that it may take

time before a peer realizes that a neighbor is not available.

3.3.3 Designing Algorithms Using PESTO

This section enumerates the steps in designing a topology adaptation algorithm based

on PESTO.

Step 1: Identify the Desired Topology

The first obvious step in designing a topology adaptation algorithm is to identify the

desired topology for the application. Different applications require different topologies.

Section 2.1 presents several topologies that may be utilized in an application. For

example, a messaging application might desire a small routing distance between the

peers and a high tolerance to failure of peers. For such an application, the power-law

topology discussed in section 2.1.5 would be a good choice.
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Step 2: Identify the Topology Metrics

The next step is to decide on the metrics that can be used to evaluate the topology

created by the topology adaptation algorithm. For the messaging application presented

in step 1, the generated topology can be evaluated using the metrics characteristic path

length (CPL) and degree distribution function (p(k)) discussed in section 2.1.1. The

desired topology will be achieved when the value of CPL is of the order of log(N)

where N is the number of peers on the network and pk has a power law relation with

the degree (k) of a peer.

Step 3: Define the SC and TAS

The key challenge in designing topology adaptation algorithms using PESTO involves

creating satisfaction criteria (SC) and topology adaptation steps (TAS) that can be

executed autonomously by the peers, without requiring a global knowledge of the net-

work, to create the desired topology.

Here we outline possible SC and TAS that can be used to create a power law

topology. Let C be the ordered list of peers that a peer is aware of. The list C is

arranged in a descending ordered of the degree of the peers so that the peer with

the highest degree is at the beginning of the list. The list could be populated by

sending random walk messages to explore the network as done in DANTE (described

in section 2.2.5). For creating a power law topology, a possible SC could be that a peer

P is connected to at least n peers from the m peers at the beginning of the list C. We

discussed in section 2.1.5 that power law topology is created because of a preference of

a peer to connect to other peers with a high degree and we expect that this SC would

result in a preferential attachment to peers with a high degree. In the TAS the peer

would try to establish connections to the m peers at the beginning of the list C so that

it (P ) is connected to at least n of them. If the peer P is unsuccessful in establishing

the n connections then it may send search messages in its neighborhood to determine
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other peers with a high degree with which it may establish a connection.

Step 4: Verify the Algorithm

The topology adaptation algorithm is verified through simulations using simulators

such as the one presented in section 3.4. The algorithms are evaluated using the

metrics identified in step 2. If the results are as decided in step 2, then the topology

adaptation algorithm can be used. If the results are not as expected then the designer

has to go back to step 3 and refine the SC and TAS. The simulations can also be

used to decide on the values of the variables in SC. For the topology example in this

section, simulations may be used to decide on the values of m and n.

3.3.4 Comparison with T-Man

PESTO was first presented in 2004 at a workshop in Parallel Problem Solving in Na-

ture VIII (PPSN-VIII) [107]. Presented in the same year as PESTO and discussed in

section 2.2.8, T-Man is another recent approach that has been proposed for designing

topology adaptation algorithms. The aim of both PESTO and T-Man is to provide a

template for designing decentralized topology adaptation algorithms. It was observed

in section 2.2.9 that typically a decentralized topology adaptation algorithms can be

described using a common structure. Typically in existing decentralized topology adap-

tation algorithms the peers periodically check their neighbors to determine if they are

satisfied with them and if they are not satisfied, then they rearrange their neighbors.

In the algorithms, a peer may use a satisfaction criterion to decide if it is satisfied

with its neighbors or it may apply a selection function on a list of peers to determine

the desired neighbors, and if the existing neighbors are not the same as the desired

neighbors then the peer is not satisfied. The general applicability of the later approach

for deciding satisfaction has been recognized in T-Man, while that of the former is used

in PESTO.
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In both algorithms, the challenge is to design rules that peers can execute using

their limited awareness to create the desired topology. PESTO provides the SC and

TAS abstractions and T-Man provides the ranking function abstraction that can be

used to design the rules. In the opinion of this author, the abstractions for designing

the simple rules are equally intuitive for both the algorithms. The rest of this section

presents the advantages of PESTO when compared to T-Man.

T-Man relies on a cache populated by gossip between peers to search for the desired

neighbors. Such a gossip-based search suffers from the disadvantage that bandwidth

is continuously consumed even when there is no flux of peers on the network, which

might not be desirable for an application in which flux of peers is not expected after

a certain time. As described in section 2.2.8, gossip-based search also suffers from

the disadvantage of temporally inaccurate information in the cache because of peers

leaving and joining the system. In contrast, PESTO allows more flexibility to the

designers as it does not enforce a particular search method. In fact, in chapter 4 we

present a topology adaptation algorithm based on PESTO that does not require a

search operation.

In the algorithms designed using T-Man, the peers execute the topology adaptation

algorithm periodically. This is unlike PESTO that gives the designers the flexibility to

control the interval between successive execution of the topology adaptation algorithm

through the delayBeforeNextAdaptation(...) method.

PESTO is more flexible when compared to T-Man and does not suffer from the

drawback of a high churn of socket connections. In algorithms designed using T-Man,

the peers apply a ranking function on the peers in the cache to choose a neighbor. The

information in the cache populated by a gossip-based search evolves with time, and a

peer will have to change the socket connections to its neighbors several times before its

neighbor set stabilizes. Establishing a socket connection is a time-consuming process

and the churn in the socket connections is another weak point of algorithms designed
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using T-Man. The algorithms designed using PESTO and studied in this thesis do not

suffer from this drawback.

3.4 Simulator

A simulator has been developed as a part of this thesis to evaluate concrete realizations

of PESTO. In this section we first present a general description of the simulator and

then the instructions on how to utilize it.

3.4.1 Description

In this simulator, all the peers are within one simulator process. The simulator is single

threaded, which means that the peers execute their algorithm sequentially. Each peer

has an implementation of PESTO associated with it. Each peer can be associated

with a different implementation of the abstract algorithm if desired. In each iteration

(also referred as a time unit) the simulator iterates over all the peers so that they can

execute their topology adaptation algorithms. In the simulator, each peer is assigned

an identifier which determines the order in which the simulator goes through the peers.

The simulator goes through the peers in the ascending order of their identifier. The

simulator allows the users to customize the conditions when the simulations should

stop. By default, the simulations stop when all the peers are satisfied or when a

user-defined number of iterations is reached.

The approach of sequentially executing the topology adaptation algorithms of the

peers in a simulator iteration is a simplification that does not captures the concurrency

issues and the stochastic nature of the real network. For example, in a real network

in which the peers are using the topology adaptation steps specified in table 3.2, two

peers having the same property executing the step 2 of the topology adaptation steps

might have only one third peer with a similar property available that can accept only
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one other neighbor. In the simulator the peer with the lower identifier will be able to

successfully execute its topology adaptation step and add the third peer as its neighbor.

In a real network the peer from whom the third peer first receives the add message will

successfully complete its topology adaptation step. While the sequential execution is

a drawback it has been chosen because it is simple to implement and scales well for a

large number of peers. Further, the sequential execution is an approach that has been

used for P2P simulations in the existing literature. For example, QueryCycle simulator

[101], [130] and PeerSim [61] use sequential execution in simulations. While PeerSim

also supports an event driven approach the authors do recognize in [61] that in their

experience the sequential execution should work fine for most scenarios.

The simulator software provides an implementation of a peer class. It expects the

users to provide implementations for the TopologyAdapter interface that will be asso-

ciated with the peers. The simulator uses the Interceptor [32, pg 109] design pattern

to allow users to execute their own code before and after each simulator iteration and

when the simulation starts and ends. The simulator allows users to customize how

peers are connected to the overlay network. It provides default implementations that

can be used to create a random topology and a power-law topology using the algorithms

in [24].

The simulator provides a Reporter class that can calculate the value of metrics such

as the clustering coefficient and the characteristic path length of the network. The

Reporter class uses the boost C++ graph library [104] for graph-related algorithms

such as Dijkstra’s algorithm [50] used to find the shortest path between vertices in a

graph.

3.4.2 Using the Simulator

The simulator is a C++ library and a user will have to write a C++ application

to utilize it. The library is enclosed within the namespace SchellingSimulator. This
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Fig. 3.4: UML Class diagram of the TopologyGenerator Interface.

section describes the key steps in writing an application to perform a simple experiment

using the simulator.

Step 1: Implement the Topology Adaptation Algorithm

The Adapter [41, pg. 139] design pattern is used by the Simulator to interact with

the topology adaptation algorithm. The simulator expects the topology adaptation

algorithm to be encapsulated in a class that implements the TopologyAdapter abstract

class shown in figure 3.3. The simulator provides implementations for the methods in

Table 3.1 that are used in the concrete realizations of PESTO evaluated in this thesis.

As discussed in section 2.2.9 the search(property) operation used to find peers with the

given property is an integral part of topology adaptation algorithms. The simulator

provides implementations for doing search(...) using Breadth First Search (discussed

in section 2.2.1) and biased random walk search with replication (discussed in section

2.2.4).

Step 2: Implement the Topology Generator

The simulator expects an implementation of the TopologyGenerator interface (shown

in figure 3.4) that is used by it to create new peers using the implementation of the

method createPeer(...) and to connect them to the existing peers in the topology

using the implementation of the method connectPeer(...). The TopologyGenerator

implementation allows users to customize the topology generation functionality of the
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simulator.

The simulator provides two partial implementations of the TopologyGenerator in-

terface that provide implementations for the connectNode(...) method. These imple-

mentations can be used to create a random topology using the algorithm described in

section 2.1.3 and a power-law topology using the algorithm discussed in section 2.1.5.

Step 3: Write the Main Application

The application first obtains an instance of the Simulator class that has been imple-

mented using the Singleton design pattern [41, pg. 127], as shown below:

Simulator *s = Simulator::getSimulator();

Create an instance of the TopologyGenerator interface implemented above and

pass the instance to the Simulator as shown below. The instance will be used by the

Simulator to create new peers and to connect them to the topology.

MyTopologyGenerator m;

s->setTopologyGenerator(m);

Create the desired number of peers and connect them to the topology using the

code below. In this code, the simulator is used to create a peer with a property

p and an implementation of the abstract Schelling’s algorithm provided in the class

MyTopologyAdapter. The simulator is also used to connect the peer to the topology.

The property of the peer is an integer value and depends on the experiment.
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MyTopologyAdapter mta;

PeerId p = s->createPeer(p, mta);

s->connectPeer(p);

Once the desired number of peers and a topology have been created, the experiment

can be run by calling the run(...) method of the Simulator class as shown below.

s->run(0);

In the run(...) method, the simulator executes a loop. In every iteration (also re-

ferred as simulator iteration) of the loop, the simulator goes through all the peers in the

Topology, executing their topology adaptation algorithm specified in the manageTopology(...)

method of their implementation of the TopologyAdapter abstract class.

The input to the run(..) method is a pointer to a function that is used to return

a boolean value and expects no input. At the beginning of the loop, a true return

value is expected from this function for the experiment to be terminated. Users can

customize the termination of the experiment by providing their implementation of the

run(...) method. When the input to the run(...) method is 0, the default function

is used in which the experiment terminates when all the peers are satisfied or 1,500

simulator iterations are reached.

Step 4: Analyzing Experiment Results

The methods to analyze the results of an experiment are encapsulated in the Re-

porter class. The methods in Reporter use the current topology stored in the singleton

Simulator object to calculate metrics such as percentage of satisfied peers, clustering

coefficient, characteristic path length and degree distribution. The last three metrics

are discussed in detail in section 2.1.1.
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Fig. 3.5: UML Class diagram of the SimulatorInterceptor class.

Customizing the Simulator

The users can execute their own code at different points in the run(...) method of

the Simulator class to perform tasks such as adding new peers to the topology at

the beginning of an iteration. To utilize this functionality, a user has to extend the

SimulatorInterceptor class (shown in figure 3.5), add their code to the appropriate hook

method and then create an instance of the extended class in their application. When

an instance of the extended class is created, the default constructor of the base class

registers the user’s simulator interceptor with the Simulator. Users can create as many

simulator interceptors as they desire.

The simulator executes the code from the simulator interceptor methods, before,

after and inside the loop in the run(...) method of the Simulator class. The code in

the beforeStartingRunLoop() method is executed before starting the loop, the code

in the afterCompletingRunLoop() method is executed after completing the loop, the

code in the preRunLoop() method is executed before starting the code in the loop and

the code in the postRunLoop() method is executed after completing the code in the

loop. The default implementation of these simulator interceptor methods in the base

class do nothing and simply return the boolean value true.
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3.5 Summary

This chapter has described the agent-based Schelling’s Model that can be used to de-

scribe residential segregation in urban areas and is the inspiration behind the abstract

algorithm for topology adaptation presented in this thesis. The chapter presented

the abstract algorithm called PESTO that provides a template for designing topology

adaptation algorithms. PESTO was compared with T-Man which provides an alterna-

tive approach for designing topology adaptation algorithms. The comparison suggests

that PESTO is more flexible when compared to T-Man and does not suffers from the

drawback of a high churn of connections. Finally we presented a simulator that can

be used for evaluating concrete realizations of PESTO. The next two chapters present

concrete realizations of PESTO that can be used for topology adaptation.
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Chapter 4

Clustered Topology

No man is an island, entire of itself; every man is a piece of the continent,

a part of the main . . . [40]

As described in section 2.1.7, clustering algorithms rearrange the overlay network’s

topology to create clusters of peers that have similar characteristics. This chapter

presents two clustering algorithms that are concrete realizations of PESTO and the

simulation results of applying these algorithms to a series of overlay networks. The

chapter then presents a case study to demonstrate the utility of the clustering algo-

rithms. The results show that the performance of messaging on an overlay network

can be improved by applying the clustering algorithms to bring together peers with

similar bandwidth connections. The algorithms have been published in [111] and the

case study in [107]. The chapter finally compares the clustering algorithms with the

state-of-the-art algorithms for clustering discussed in section 2.2.

4.1 Clustering Algorithms

In section 2.1.7, a formal definition of clustering was presented and the advantages

of clustering in overlay networks discussed. In the simplest form, clustering involves
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Algorithm 1 SelflessClustering Algorithm

PNSPdesired ← % of neighbors with similar property desired
while true do

PNSPactual ← count(same property)∗100
count(all)

if PNSPactual < PNSPdesired then
if count(all) > 1 then

drop(neighbor(n: n.property = different property and n.count(all) > 1))
end if
add(search(same property))

end if
sleep(delay)

end while

Algorithm 2 SelfishClustering Algorithm

PNSPdesired ← % of neighbors with similar property desired
while true do

PNSPactual ← count(same property)∗100
count(all)

if PNSPactual < PNSPdesired then
drop(neighbor(n: n.property = different property))

end if
sleep(delay)

end while
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Fig. 4.1: UML Class diagram depicting the TopologyAdapter interface and two con-
crete realizations.

rearranging the overlay network’s topology to minimize the number of clusters (NC).

In the literature, the term clustering is often used to refer to identification of clusters

in a network. However, in this work the term refers to the creation of clusters. Cluster

identification can be done by using algorithms proposed in [118, 22, 89, 133].

This section presents two clustering algorithms, called the SelflessClustering Al-

gorithm and the SelfishClustering Algorithm, which can be executed by the peers on

an overlay network. The clustering algorithms are concrete realizations of PESTO as

shown in figure 4.1. In both algorithms, a peer examines its neighbors at regular inter-

vals to see if it is satisfied with them, and if it is not satisfied then it executes a series of

topology adaptation steps. The clustering algorithms use the same satisfaction criteria

but differ with regards to the topology adaptation steps.

The clustering algorithms are self-organizing which means that they organize the

peers using their local awareness of the overlay network’s topology and without any

central authority. The clustering algorithms maintain the reorganized topology under

a flux of peers by calculating a peer’s satisfaction state at regular intervals and taking

topology adaptation steps if the peer is not satisfied with its neighborhood.

Algorithms 1 and 2 present the pseudo-code for the clustering algorithms. The
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operations that have been used in the pseudo-code are described in table 3.1. The

clustering algorithms are described below in detail:

• SelflessClustering Algorithm: The satisfaction criteria states that a peer is

satisfied if at least a certain percentage of its existing neighbors are similar to

it. This percentage is called the desired percentage of neighbors with similar

property (PNSPdesired). In this algorithm, a dissatisfied peer performs the steps

below:

– step 1 - Drop a dissimilar neighbor N if it is not the only neighbor and

the neighbor N is connected to at least one other peer (to ensure that the

topology remains connected).

– step 2 - Search for a similar peer that has a free connection slot. If a

suitable peer is found, then add it as a neighbor.

• SelfishClustering Algorithm: This algorithm uses the same satisfaction crite-

ria that is used in the SelflessClustering Algorithm. In this algorithm a dissatis-

fied peer drops one randomly chosen dissimilar neighbor. This algorithm is called

SelfishClustering because in this algorithm a dissatisfied peer drops a dissimilar

neighbor even if the dissatisfied peer is the only link connecting the dissimilar

neighbor to the overlay network. The selfish dropping of a dissimilar neighbors

can result in peers that are disconnected from the overlay network.

The topology adaptation steps taken by the peers are intended to create a feedback

effect that results in an overlay network with a PNSP value that is higher than the

PNSPdesired. When an unsatisfied peer adds another similar peer or drops a dissimilar

peer as its neighbor, it increases its PNSP value as well as the PNSP value of the

peer it is interacting with.
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4.1.1 Messaging Cost

The clustering algorithms incur a common messaging cost that is associated with cal-

culating the satisfaction state. As discussed in section 3.3.2, a topology adaptation

algorithm may take a proactive or a reactive approach to calculating the satisfaction

state. The best choice of approach to calculating the satisfaction state depends on

the application. An application that can incur the high messaging cost may choose

a proactive approach for better accuracy. Alternatively an application may choose a

reactive approach. The cost associated with calculating the satisfaction state will be

incurred throughout the life of the overlay network and is therefore not very useful in

evaluating the algorithms. Apart from this common messaging cost, the SelflessClus-

tering Algorithm incurs an additional messaging cost of searching for similar peers on

the network.

Search Cost

The number of messages exchanged to perform the search operation for similar peers

is a major cost of utilizing the SelflessClustering algorithm. The cost depends on how

the search operation is implemented, which can be done in a variety of ways. For

example, the search can be performed by using a Gnutella-like breadth first search

(BFS) that floods the overlay network with a search request [92]. The number of

messages exchanged to perform BFS is high, but it performs a thorough search of the

peer’s neighborhood and is very likely to find a similar peer if one exists. If the high

traffic overhead caused by BFS is an issue, then the search can be performed by random

walks [20], which is cheaper but will not search a peer’s neighborhood as thoroughly

and is therefore less likely to find a similar peer. Another alternative is biased random

walk proposed by Chawathe et al. [34], which performs a more exhaustive search

than random walk. In this approach, each peer maintains a directory of resources

available on its neighbors, and the random walk is biased towards peers with a high
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degree because they are assumed to have have more information about resources on

the overlay network.

A fourth possibility is to implement the search operation as a gossip-based search. In

a gossip-based search, a peer uses a list of peers, populated with information gleaned

from messages routed through it on the overlay network and periodic exchange of

information about other peers on the overlay network with neighbors, to find a similar

peer [75]. The performance of a gossip-based search is stochastic, and the chance of

finding a suitable peer will depend upon the diversity (in terms of information about

other peers on the overlay network) of the messages that are routed through the peer

looking for a similar peer. Other search algorithms are of course also possible, and the

most suitable approach depends on application requirements.

4.1.2 Time Delay

The time delay between successive estimations of the satisfaction state is another im-

portant factor that affects the cost of utilizing the clustering algorithms. A satisfied

peer need not estimate its satisfaction state repeatedly. Similarly, a peer that is unable

to successfully execute its topology adaptation steps need not estimate its satisfaction

state repeatedly. They can instead use an exponentially increasing time delay between

successive estimation of the satisfaction state.

4.1.3 Analysis

This section explains why only a specific case of the clustering algorithms can be math-

ematically analyzed using the existing techniques for analyzing Schelling’s model. The

specific case that can be analyzed is when PNSPdesired is 100, which unfortunately will

not be relevant in a real life implementation because, as will be shown in section 4.2,

it generates a disconnected overlay network topology. Zhang [131, 132] has mathemat-

ically analyzed variations of Schelling’s model. In his analysis, the models are treated
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as a game played between two players chosen at random from the turtles on the grid.

A potential function is then obtained for the game. The potential function can be used

to analyze the overall behavior of the game instead of concentrating on the activity of

an individual turtle. Zhang defines the potential function as follows:

Let Γ be an n-person game with finite strategy sets Z1, Z2, . . . Zn. The

payoff function of player i is ui : Z → R where Z = Z1 × Z2, . . . Zn is

the set of strategy profiles. A game Γ is a potential game if there exists a

function λ : Z → R such that for every i and for every z−iεZ−i, u
i(x, z−i)−

ui(y, z−i) = λ(x, z−i)− λ(y, z−i), for every x, yεZi. λ is called the potential

function of this game [131, p.151].

The change in a player’s utility is equal to the change in the potential function. Let

S be the set of all the states that maximize the potential ρ:

S = {x|ρ(x) ≥ ρ(y),∀y, xεX}

where X is the set of all the possible states in which the system can exist. It can

be shown that:

S is stochastically stable under the perturbed process. That is, in the long

run, we will see a state in S almost all the time [131, p. 153].

It is not possible to obtain a potential function for the clustering algorithms, if

PNSPdesired is not 100. In the clustering algorithms, the utility function for the players

is min{PNSPactual, PNSPdesired}. In the clustering algorithms, a peer can choose from

one of the following strategies: add a similar neighbor, drop a dissimilar neighbor or

do both. The change in the utility of a peer when it chooses one of these strategies

depends upon its state (satisfied or unsatisfied), when PNSPdesired is less than 100.

When an unsatisfied peer drops a dissimilar neighbor or adds a similar neighbor or
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does both then there is an increase in the utility of the unsatisfied peer. However,

when a satisfied peer loses a dissimilar neighbor or gains a similar neighbor or both,

then there is no change in its utility. It is not possible to obtain a potential function

when PNSPdesired is less than 100 because the change in the utility of a peer depends

on its state.

When PNSPdesired is 100, then the change in the utility of a peer is not dependent

on its state. A satisfied peer does not have the choice of dropping a dissimilar neighbor

because a connection with a dissimilar peer can not exist if it is satisfied. When

PNSPdesired is 100, the addition of a similar neighbor will always increase the utility.

Let US be the utility sum of all the peers. When a peer adds a similar peer or drops

a dissimilar peer, then the change in its utility is ∆US
2

because the utility of the peer

and the peer being dropped or added change by a similar amount. US
2

is the potential

function for this system as the change in the utility of a peer on choosing a strategy

is ∆US
2

. Theoretically, the maximum possible value of the potential function is 50 ×

number of peers. This will happen when there are no connections between dissimilar

peers and the similar peers are connected together in clusters. Dropping a dissimilar

peer or adding a similar peer maximizes the potential function, increasing the stability

of the system and bringing it close to a clustered state.

4.2 Simulations

This section presents the simulation results of applying the clustering algorithms to a

series of overlay networks. The simulations were done using the simulator described

in section 3.4. Two types of simulations were performed: static simulations which use

an overlay network that has no flux of peers and dynamic simulations in which new

peers are added to the overlay network at regular intervals. The static simulations were

performed because it is easy to simulate and analyze the results when there is no flux
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of peers on the overlay network. The static simulations also demonstrate the ability of

the clustering algorithms to create a desired topology in a special scenario when there

is no flux of peers on the overlay network. The dynamic simulations are used to show

that the clustering algorithms can maintain the desired topology even when there is a

continuous arrival of peers on the overlay network.

The rest of this section is structured as follows: we first define the metrics that are

used to study the result of applying the clustering algorithms on the overlay networks.

This is followed by a description of the experimental setup. Finally we present and

analyze the results of the static and dynamic simulations.

4.2.1 Metrics

The first metric presented in this section is used to measure the relative decrease in

the number of clusters caused by the clustering algorithms. The next two metrics are

used to examine the clusters created by the clustering algorithms. Then we present a

metric that is used to measure the time (measured in simulator iterations) taken by

the clustering algorithms to converge. Finally, we present the metric that is used to

measure the messaging cost of the clustering algorithms.

Relative Decrease in Number of Clusters (RDNC)

The Number of Clusters (NC) metric was formally defined in section 2.1.7. The metric

Relative Decrease in Number of Clusters (RDNC) is used to measure the decrease in

the number of clusters because of applying the clustering algorithm. Let NCorig be

the number of clusters in the original overlay network. Let NCcurr be the number of

clusters in the overlay network after applying the clustering algorithms. RDNC can

then be expressed as:

RDNC =
(NCorig −NCcurr)× 100.00

NCorig

(4.1)
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A high value of RDNC indicates that a large number of groups of similar peers

on the overlay network are merged to form a small number of large sized groups. The

desired value of RDNC will vary with application. An application will typically desire

to have a high value of RDNC, but the application might have to do a trade-off

between RDNC and Coverage described below.

Coverage (C)

Coverage (C) gives an indication of the cost of clustering. It is the cost of clustering in

terms of the number of edges used to maintain the clustering. Let m be the number of

intra-cluster edges and m be the number of inter-cluster edges. Then C [31] is defined

as:

C =
m

m + m
(4.2)

C can have a minimum value of 0, when none of the clusters are connected to each

other. The minimum value of C is undesirable because it will lead to an unacceptable

situation of a disconnected overlay network topology.

The desired value of C will vary with the application. For example, an application

that desires to cluster peers with a similar property, such as bandwidth to improve the

performance of messaging on the overlay network, will desire to have a low value of

C. As discussed in section 2.1.7 in a file sharing application, peers sharing similar files

may be clustered together, which can be used to improve search performance because

search requests can be routed to an appropriate cluster and then a deep search can be

performed within the cluster. Such an application will desire to have a high value of

C so that the inter-cluster edges could be used to quickly route search requests to the

appropriate cluster.
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Percentage of Peers in Top Clusters (PPTC)

The metric Percentage of Peers in Top Clusters (PPTC) is used to examine the distri-

bution of peers in the clusters of different types of peers. As defined in section 2.1.7,

let P = {p1, p2 . . . pn} be the set that enumerates the types of peers on the overlay

network and CCpi
= {CC1, CC2 . . . CCn} be the set of clusters with peers of type pi.

Let max(CCpi
) be a function that returns the cluster CCi with the maximum number

of peers from the set CCpi
. PPTC is the count of the peers in the clusters with the

maximum size for each type of peer.

PPTC =
∑
pi∈P

|max(CCpi
)| (4.3)

A high PPTC implies that most of the peers are a part of the largest clusters of

each category. The clustering algorithms merge the existing clusters creating clusters

with a large size and a high value of PPTC for the overlay network. PPTC is used

to examine the distribution of peers in the clusters of different types of peers, and the

value of this metric will vary with application.

Time to Converge (TC)

A topology adaptation algorithm converges when all the peers are satisfied with their

neighbors. The Time to Converge (TC) for a topology adaptation algorithm, is the

total number of simulator iterations in which all the peers are satisfied with their neigh-

bors. This metric is a measure of the time taken by a topology adaptation algorithm to

converge and is used in both the static and the dynamic simulations. A good clustering

algorithm will have a low TC value.
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Messaging Cost (MC)

As discussed in section 3.3.2, there is a common messaging cost associated with utilizing

the topology adaptation algorithms based on PESTO. The common messaging cost is

used by the peers to determine the status of their neighbors. The status information is

used to calculate the satisfaction state. For the common messaging cost, the clustering

algorithms may either use a proactive approach if the application can incur the large

extra messaging cost or a reactive approach in which a small number of messages

are exchanged by a peer to notify its neighbors about a change in its state. This

common messaging cost will be incurred throughout the life of the overlay network

and is therefore not very useful in evaluating the algorithms.

The number of messages exchanged to perform the search operation for similar peers

is the other messaging cost in utilizing the SelflessClustering algorithm. The number

of messages exchanged to reconnect the disconnected peers to the topology is the extra

messaging cost for the SelfishClustering algorithm. The Messaging Cost (MC) metric

measures the number of messages exchanged, other than the common messaging cost to

determine the status of neighbors, by a PESTO based topology adaptation algorithm.

In the simulations MC measures the number of messages exchanged till all the peers

are satisfied with their neighbors or a pre-defined number of simulator iterations is

reached. A small value of MC is desired for the clustering algorithms.

4.2.2 Static Simulations

Simulation Setup

In the static simulations, the effects of applying the clustering algorithms on power-

law topologies is studied. The clustering algorithms are applied on the topologies

with PNSPdesired varying from 10 to 100 in increments of 1, and the effect of the

algorithms is studied using the metrics described in section 4.2.1. The topologies were
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Fig. 4.2: A plot of relative decrease in the number of clusters after applying the
SelflessClustering Algorithm against PNSPdesired on power-law topologies with 100,
500, 1,000 and 5,000 peers.

Fig. 4.3: A plot of relative decrease in the number of clusters after applying the
SelfishClustering Algorithm against PNSPdesired on power-law topologies with 100,
500, 1,000 and 5,000 peers.
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Fig. 4.4: A plot of the maximum, mean and minimum values of the relative de-
crease in the number of clusters after applying the SelflessClustering Algorithm against
PNSPdesired on four different power-law topologies with 5,000 peers.

Fig. 4.5: A plot of standard deviation of RDNC, TC and MC against PNSPdesired

after applying SelflessClustering algorithm on four different power-law topologies with
5,000 peers.
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Fig. 4.6: A plot of PPTC after applying the SelflessClustering Algorithm against
PNSPdesired on power-law topologies with 100, 500, 1,000 and 5,000 peers.

Fig. 4.7: A plot of PPTC after applying the SelfishClustering Algorithm against
PNSPdesired on power-law topologies with 100, 500, 1,000 and 5,000 peers.
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generated using the simulator described in section 3.4. A study of initial Gnutella

topologies by Ripeanu [92] suggests that the degree distribution followed a power law

(see section 2.1.5 for power-law topology). Simulations have been done using four

different power-law topologies of 100, 500, 1,000 and 5,000 peers created by using the

algorithm discussed in section 2.1.5. In these topologies, each peer can have a maximum

of 10 neighbors and a new peer is connected to 3 peers chosen randomly with a bias

towards peers with a high degree. It is ensured that the initial topologies are connected

before applying the clustering algorithms on them.

In the simulations, the overlay networks have equal proportions (selected randomly)

of five different types of peers. Each type of peer has a unique property that distin-

guishes it from other types of peers. In a real-life scenario, this unique property could

be the geographical location of the peer or the content type that is being shared.

In the SelflessClustering Algorithm, the unsatisfied peers search for peers similar to

themselves on the overlay network. In these simulations, a variation of GIA’s [34] search

algorithm, described in section 2.2.4 is used. In GIA, each peer maintains a directory

of resources available on its neighbors, and searches are performed using random walk.

The random walk is biased towards peers with a higher degree that are in a better

position to handle a search request because their directory contains information about a

larger number of peers on the network than a peer with a low degree. In the simulations,

each peer maintains a directory that contains information about its neighbors and the

neighbors of its neighbor instead of resources. This directory is used to handle search

requests.

In the clustering algorithms, a peer has to periodically check the status of its neigh-

bors to ensure that it is satisfied. The information about the neighbors of neighbors

can be piggy-backed on these requests. This is an advantage when compared to gossip-

based search, because gossip-based search will use separate messages to interact with

randomly chosen peers on the overlay network for populating a similar directory of in-
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formation about peers. In section 2.2.9, we observed that temporally inaccurate data in

directories is a problem. In the search approach taken here, the data in the directories

can be periodically validated at no extra message cost when the status of the neighbors

is obtained for topology adaptation.

RDNC and PPTC: SelflessClustering

Figure 4.2 plots RDNC against PNSPdesired after applying the SelflessClustering Al-

gorithm on power-law topologies with 100, 500, 1,000 and 5,000 peers. Figure 4.6

plots PPTC against PNSPdesired after applying the SelflessClustering Algorithm on

the same topologies. As figure 4.2 shows, RDNC increases with a rise in PNSPdesired.

The increase in RDNC becomes constant after a certain PNSPdesired value that varies

with the topology and is under 35 in the simulations. Figure 4.6 shows that, at this

point, the value of PPTC is 100 which means that all the peers of a type are part of

the same cluster.

Figure 4.2 shows that the RDNC is higher for topologies with a large number of

peers than topologies with a small number of peers. This is because the topologies

with a large number of peers have large number of clusters to start with, and for all

the topologies the SelflessClustering Algorithm reduces the number of clusters to 5,

the total number of types of peers on the overlay network. This happens consistently

after PNSPdesired reaches 35. Figure 4.4 plots the average, minimum and maximum

RDNC against the PNSPdesired after applying the SelflessClustering Algorithm on

four different power-law topologies with 5,000 peers. The figure shows that there

is a small difference between the maximum, minimum and mean values. Figure 4.5

shows the standard deviation of RDNC against PNSPdesired for the four different

topologies. The standard deviation is approximately 0, when PNSPdesired is above 32

which suggests that the SelflessClustering algorithm produces similar RDNC in all the

four topologies.
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RDNC and PPTC: SelfishClustering

Figure 4.3 plots RDNC against the PNSPdesired after applying the SelfishClustering

Algorithm on power-law topologies with 100, 500, 1,000 and 5,000 peers. Figure 4.7

plots PPTC against PNSPdesired after applying the SelfishClustering Algorithm on

the same topologies. The decrease in the number of clusters after applying the Self-

ishClustering Algorithm varies between 40% and 75% and PPTC varies between 30%

and 75%. Just like the SelflessClustering Algorithm, in the SelfishClustering Algorithm

also overlay networks with a higher number of peers display a higher value of RDNC

because they have a large number of small clusters to start with, which are merged

together by the SelflessClustering Algorithm to create a small number of large clusters.

In the SelfishClustering Algorithm peers drop dissimilar neighbors without checking

if the dissimilar peer has other neighbors. This selfish dropping of peers results in peers

being disconnected from the overlay network. The decrease in clustering and PPTC

for the SelfishClustering Algorithm is erratic when compared to the SelflessClustering

Algorithm. This is because the disconnected peers are reconnected to three randomly

chosen peers on the overlay network.

The erratic variations in the RDNC and PPTC results makes it difficult to es-

timate the trend in variation of RDNC and PPTC with PNSPdesired. There are

four commonly used techniques that can be used in such a scenario to estimate the

trend [114, pg. 437]. They are: the freehand method, the moving-average method, the

method of semiaverages and the least-square method. These methods can be used to

draw a trend line or a trend curve that represents the simulation results. In the free-

hand method visual inspection is used to draw the trend line or the trend curve. The

method suffers from the disadvantage of individual judgment and is not very interest-

ing. In the moving-average method the simulation results are averaged out to estimate

the trend. In this method n consecutive data values are taken at a time starting from

the first data value in the simulation results. The average of the n consecutive data
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Fig. 4.8: Trend curves that show the relative decrease in the number of clusters after
applying the SelfishClustering Algorithm against PNSPdesired on power-law topologies
with 100, 500, 1,000 and 5,000 peers.

Fig. 4.9: Trend curves that show the PPTC after applying the SelfishClustering Al-
gorithm against PNSPdesired on power-law topologies with 100, 500, 1,000 and 5,000
peers.
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Fig. 4.10: Trend curves that show the maximum, mean and minimum values of the rel-
ative decrease in the number of clusters after applying the SelfishClustering Algorithm
against PNSPdesired on four different power-law topologies with 5,000 peers.

Fig. 4.11: A plot of standard deviation of RDNC, TC and MC against PNSPdesired

after applying SelfishClustering algorithm on four different power-law topologies with
5,000 peers.
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values becomes the new simulation result that is used to plot the trend. This methods

suffers from the disadvantage that the data items at the start and the end are lost.

Further, extreme data values may adversely affect the estimated trend and so this

method has not been used. In the semiaverages method the data is divided into two

parts. the trend line is drawn through the average of the data in both the parts. This

method is simple to implement, however the trend line depends on the choice of the

size of the parts. In the least-square method a trend line or a curve is drawn through

the simulation results that minimizes the sum of the square of the distance between

the simulation results and the trend line or the curve [114, pg. 283]. In this thesis

least-square method is used for predicting trend because it minimizes the error mea-

sured using distance between the data points and trend line or curve. The least-square

method implementation in Gnuplot [3] is used for predicting trends.

A visual inspection of figure 4.3 suggests that RDNC first drops sharply and then

decreases normally with an increase in PNSPdesired. A similar pattern is observed in

the PPTC against PNSPdesired graph in figure 4.7. Curves of the form A∗ln(B∗x)+C

where A, B and C are constants that can be obtained using least-square method and

ln(x) is the natural logarithm of x, show a similar pattern. The least-square method

is used to fit a trend curve of the form A ∗ ln(B ∗ x) + C in the results to study the

variation of RDNC and PPTC with a change in PNSPdesired (see figure 4.3 and 4.7 for

raw data). Figure 4.8 plots the trend curves that show the variation of RDNC with

PNSPdesired after applying the SelfishClustering Algorithm on power-law topologies

with 100, 500, 1,000 and 5,000 peers. Figure 4.9 plots the trend curves that show the

variation of PPTC with PNSPdesired after applying the SelfishClustering Algorithm

on the same topologies. The plots show that the RDNC and PPTC is highest when

PNSPdesired is 10 an decreases with an increase in PNSPdesired. As described in

section 2.1.5 in a power-law network some vertices have a very high degree while the

rest of the peers have a low degree. The peers with a low degree have a high chance
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Fig. 4.12: A plot of the cluster Coverage (C) after applying the SelflessClustering
Algorithm against PNSPdesired on power-law topologies with 100, 500, 1,000 and 5,000
peers.

of being disconnected from the topology as PNSPdesired increases because of their low

degree. The random reconnections of a large number of disconnected peers decreases

RDNC and PPTC.

The static simulations generate results for variation of RDNC with a change in

PNSPdesired after applying the SelfishClustering Algorithm on four different power-law

topologies with 5,000 peers. These results also suffer from erratic variations because

of random reconnections. The least-square method is used to fit a trend curve of the

form A ∗ ln(B ∗ x) + C to study the variation of RDNC with a change in PNSPdesired

on each topology. Figure 4.10 plots the minimum, maximum and mean values of the

RDNC against PNSPdesired for the four topologies. The RDNC decreases with an

increase in PNSPdesired. The figure shows that there is a small difference between the

minimum, maximum and mean values. Figure 4.11 plots the standard deviation in the

RDNC against PNSPdesired.
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Fig. 4.13: A plot of the cluster Coverage (C) after applying the SelfishClustering
Algorithm against PNSPdesired on power-law topologies with 500, 100, 1,000 and 5,000
peers.

Cluster Coverage: SelflessClustering

Figure 4.12 shows a plot of Cluster Coverage (C) against PNSPdesired for the Selfless-

Clustering Algorithms when applied on overlay networks with 100, 500, 1,000 and 5,000

peers. The cluster coverage decreases with an increase in PNSPdesired and reaches 0

when PNSPdesired reaches 90%. As mentioned in section 4.2.2, the number of clus-

ters reaches 5, one for each type of peer on the networks, when PNSPdesired is 35 for

the different topologies. Applying the clustering algorithms beyond that reduces the

inter-cluster edges and increases the intra-cluster edges.

Cluster Coverage: SelfishClustering

Figure 4.13 shows a plot of Cluster Coverage C against PNSPdesired for the Selfish-

Clustering Algorithm when applied on overlay networks with 100, 500, 1,000 and 5,000

peers. The cluster coverage decreases with an increase in PNSPdesired and reaches 0

110



Fig. 4.14: A plot of the Time to Converge (TC) after applying the SelflessClustering
Algorithm against PNSPdesired on power-law topologies with 100, 500, 1,000 and 5,000
peers.

when PNSPdesired is between 60% and 70%. When cluster coverage reaches 0, the

topology is disconnected and this might not be good for applications.

Time to Converge: SelflessClustering

Figure 4.14 shows a plot of TC against PNSPdesired for the SelflessClustering Algorithm

when applied on overlay networks with 100, 500, 1,000 and 5,000 peers. The TC is

between 2 and 10. The graphs show that TC varies slightly with the number of peers

(N) on the overlay network.

TC changes in steps with a rise in PNSPdesired by 10. This is because in simulations

a peer can have a maximum of 10 neighbors, and a rise only by 10 in PNSPdesired

causes a peer’s satisfaction criterion to change. The TC increases with an increase in

PNSPdesired and then decreases when PNSPdesired reaches 70. Figure 4.17 shows a plot

of the maximum, mean and minimum Time to Converge (TC) against PNSPdesired for

the SelflessClustering Algorithm when applied on four different power-law topologies

111



Fig. 4.15: A plot of the Time to Converge (TC) after applying the SelfishClustering
Algorithm against PNSPdesired on power-law topologies with 500, 100, 1,000 and 5,000
peers.

Fig. 4.16: Trend curves that show the Time to Converge (TC) after applying the
SelfishClustering Algorithm against PNSPdesired on power-law topologies with 500,
100, 1,000 and 5,000 peers.

112



Fig. 4.17: A plot of the maximum, mean and minimum Time to Converge (TC)
after applying the SelflessClustering Algorithm against PNSPdesired on four power-law
topologies with 5,000 peers.

Fig. 4.18: The maximum, mean and minimum Time to Converge (TC) after applying
the SelfishClustering Algorithm against PNSPdesired on four power-law topologies with
5,000 peers.
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with 5,000 peers. The TC is between 2 and 10. The graphs show that that there is a

small difference between the maximum, mean and minimum values. Figure 4.5 shows

the standard deviation of TC against PNSPdesired for the four different topologies.

Time to Converge: SelfishClustering

Figure 4.15 shows a plot of Time to Converge (TC) against PNSPdesired and fig-

ure 4.16 show the Time to Converge (TC) trend curves against PNSPdesired for the

SelfishClustering Algorithm when applied on overlay networks with 100, 500, 1,000

and 5,000 peers. Just like the RDNC values for the SelfishClustering algorithm, the

least-square method is used to fit trend curves of the form A ∗ ln(B ∗ x) + C on the

raw TC data to obtain the trend curves. For the SelfishClustering Algorithm, the TC

is between 5 and 50. Just like the SelflessClustering Algorithm, the TC varies slightly

with the number of peers (N) on the overlay network.

Like the SelflessClustering Algorithm, the TC is low for high PNSPdesired. TC is

low for high PNSPdesired because when PNSPdesired is high, the topology adaptation

steps of a larger number of peers contribute towards satisfying dissatisfied peers. When

PNSPdesired is low, a smaller number of peers are dissatisfied that execute topology

adaptation steps to satisfy themselves. Figure 4.18 shows the maximum, mean and

minimum values of the trend curves for Time to Converge (TC) against PNSPdesired for

the SelfishClustering Algorithm when applied on four different power-law networks with

5,000 peers. There is a small difference between the maximum, mean and minimum

values. Figure 4.11 plots the standard deviation in the TC against PNSPdesired.

Messaging Cost: SelflessClustering

In the SelflessClustering Algorithm, apart from the mandatory messaging cost for the

clustering algorithms, the peers generate messages to search the overlay network for

a peer with a desired property if they are not satisfied with their neighbors. In every
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Fig. 4.19: A plot of the number of messages exchanged to perform search after ap-
plying the SelflessClustering Algorithm against PNSPdesired on power-law topologies
with 100, 500, 1,000 and 5,000 peers.

Fig. 4.20: A plot of the number of messages exchanged to reconnect disconnected
peers after applying the SelfishClustering Algorithm against PNSPdesired on power-
law topologies with 100, 500, 1,000 and 5,000 peers.
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Fig. 4.21: A plot of the maximum, mean and minimum number of messages exchanged
to perform search after applying the SelflessClustering Algorithm against PNSPdesired

on four power-law topologies with 5,000 peers.

iteration, the messages exchanged to perform the search will be proportional to the

number of unsatisfied peers × O(search). In the simulations, GIA’s search algorithm

[34] described in section 2.2.4 is used to implement the search operation. The messages

exchanged to maintain the directory on each peer can be coupled with the mandatory

messages exchanged to determine the status of a neighbor and are therefore not included

in the search cost in this algorithm. The search operation is of O(h) where h the horizon

of search and is set to 6 in the simulations.

Figure 4.19 shows a plot of MC against PNSPdesired for the SelflessClustering

Algorithms when applied on power-law topologies with 100, 500, 1,000 and 5,000 peers.

The number of messages exchanged to perform search is approximately 70,000 when

PNSPdesired is 100. As PNSPdesired increases, the number of messages exchanged to

perform search increases because the number of peers that are dissatisfied with their

neighbors increases. The number of messages exchanged to perform search increases

with increase in number of peers in the topology because the number of dissatisfied
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Fig. 4.22: The maximum, mean and minimum values of the trend curves for the mes-
sages exchanged to reconnect disconnected peers after applying the SelfishClustering
Algorithm against PNSPdesired on four power-law topologies with 5,000 peers.
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peers that need to perform search increases.

Figure 4.21 shows a plot of the maximum, average and mean of the messages ex-

changed to perform search against PNSPdesired for the SelflessClustering Algorithm

when applied on four different power-law topologies. The MC varies between 10, 000

and 70, 000. Figure 4.5 shows the standard deviation of TC against PNSPdesired for

the four different topologies.

Messaging Cost: SelfishClustering

In the SelfishClustering Algorithm, the peers do not search for other peers on the over-

lay network. In the SelfishClustering Algorithm there is an overhead of messages ex-

changed to reconnect the peers that are disconnected from the overlay network because

of selfish dropping. However, this overhead is far less than the overhead of searching

for a similar peer on the network. Figure 4.20 shows a plot of MC against PNSPdesired

for the SelfishClustering Algorithms when applied to power-law topologies with 100,

500, 1,000 and 5,000 peers. The total number of messages exchanged for reconnections

is within 3,000 and constitutes only a fraction of the messages exchanged to perform

the search for the SelflessClustering Algorithm. Figure 4.22 shows the maximum, mean

and the minimum of the trend curves (of the form A ∗ ln(B ∗ x) + C obtained by using

least-square method on the raw data) for MC against PNSPdesired for the SelfishClus-

tering Algorithm when applied on four different power-law topologies with 5,000 peers.

The MC values fall between 2, 000 and 2, 600. Figure 4.11 plots the standard deviation

in the MC against PNSPdesired.

Disconnected Topology

A critical value of PNSPdesired (called PNSPcritical) was observed in the simulation

results above which the overlay network’s topology was disconnected. The value of

PNSPcritical is different for different networks. We have not been able to find any
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correlation between the network and the PNSPcritical value. For the SelflessClustering

Algorithm, the PNSPcritical value is close the value of PNSPdesired when C reaches

0 and there are no inter-cluster edges. A typical value of PNSPcritical is 90 for the

SelflessClustering Algorithm and 30 for the SelfishClustering Algorithm.

Discussion

For both the clustering algorithms a low value of PNSPdesired (e.g., 10 to 20) is sufficient

to achieve a substantial decrease in the number of clusters. The Cluster Coverage

(C) decreases with an increase in PNSPdesired. As mentioned in section 4.2.1, some

applications might desire a high value of C whereas others might desire a low value of

C. For the former applications a low value of PNSPdesired may be used whereas for

the latter a high value of PNSPdesired may be used.

MC and RDNC are higher for the SelflessClustering Algorithms when compared to

the SelfishClustering Algorithm for the same PNSPdesired. We suggest that an appli-

cation with a long life incur the high MC of SelflessClustering Algorithm to achieve a

high RDNC, and an applications with a short life use the SelfishClustering Algorithm

to achieve a low RDNC at a low MC.

4.2.3 Dynamic Simulations

This section presents the results of the dynamic simulations in which there is a con-

tinuous arrival of peers on the overlay network. The overlay network topology has

100 peers initially. Five peers are added to the network in every simulator iteration

till there are 5,000 peers on the network. The simulations go on till all the peers are

satisfied or 1,500 simulation iterations are reached. The simulations have been done

using PNSPdesired value of 10 because it is far below the PNSPcritical value for both

SelflessClustering and SelfishClustering Algorithms. Just like the static simulations,

the overlay network has equal proportions of five different peers of each type and a bi-
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Fig. 4.23: A plot of number of clusters (NC) against simulator iterations when the
SelflessClustering and SelfishClustering Algorithm are applied.

ased random walk algorithm with replication has been used to search for similar peers

in the SelflessClustering Algorithm.

Results

For the SelflessClustering Algorithm the simulations stop in 980 iterations when the

number of peers on the overlay network reaches 5,000 and for the SelfishClustering

Algorithm the simulations stop in 990 iterations when the number of peers on the

overlay network reaches 5,000 and all the peers are satisfied. Figure 4.23 shows a plot

of the number of clusters on the overlay network against time (simulator iteration)

when the SelflessClustering and SelfishClustering algorithms are applied on the overlay

network of 100 peers described above. The number of clusters are calculated every

fifth simulator iteration. The SelflessClustering Algorithm maintains the value of the

number of clusters between 5 and 6 even when there is an arrival of peers on the

network. This is higher than the number of clusters when using the SelfishClustering
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Fig. 4.24: The top figure shows a plot of PPTC against simulator iterations when
the SelflessClustering Algorithm is applied. The bottom figure shows a plot of PPTC
against simulator iterations when the SelfishClustering Algorithm is applied.
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Fig. 4.25: The top figure shows a plot of Coverage (C) against simulator iterations
when the SelflessClustering Algorithm is applied. The bottom figure shows a plot of
Coverage (C) against simulator iterations when SelfishClustering Algorithm is applied.
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Algorithm which vary because of the reconnection of the disconnected peers. The

number of clusters remains between 15 and 40 for the SelfishClustering Algorithm.

Figure 4.24 shows a plot of PPTC against time (simulator iteration) when the

SelflessClustering and SelfishClustering algorithms are applied on the overlay network

of 100 peers with continuous arrival of peers described above. In the SelflessClustering

Algorithm more than 99% of the total number of peers are part of the clusters with

the maximum number of peers for each category. For the SelfishClustering Algorithm

this figure varies between 98% and 99%. For static simulations on an overlay network

with 5,000 peers a PNSPdesired value of 10 produces a low PPTC value of 68.82 for

SelflessClustering algorithm (see figure 4.6) and 59.76 for SelfishClustering algorithm

(see figure 4.7). The PPTC values for an overlay network with 5,000, are on the higher

side because the influx of peers changes the satisfaction state of already satisfied peers

on the network who engage in further topology adaptation. This does not happens in

static simulations.

Figure 4.25 shows a plot of Coverage (C) against time (simulator iteration) for

the dynamic simulations. The Coverage (C) is between 0.29 and 0.36 for the Selfless-

Clustering Algorithm and 0.59 and 0.6 for SelfishClustering Algorithm. As shown in

section 4.2.2 a lower value of C might be desired by some applications and it can be

obtained by choosing a higher value of PNSPdesired.

The clustering algorithms display emergent behavior. When all the peers are satis-

fied and the number of peers on the overlay network reaches 5000, the PNSP value is

55 for the overlay network on which the SelflessClustering Algorithm was applied and

47 for the overlay network on which the SelfishClustering Algorithm was applied. The

PNSP value is much higher than the PNSPdesired value of 10.
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4.2.4 Discussion

The simulations show that the clustering algorithms can create and maintain a clustered

topology even when there is a continuous arrival of peers on the overlay network. A

visual examination of figures 4.14 and 4.16 show that the TC varies slightly with

the number of peers on the network and this makes the clustering algorithm good for

overlay network with a large number of peers on the network. Both the algorithms have

a mandatory messaging cost that is generated to check the status of the neighbors. An

implementation of the clustering algorithms could piggyback on these messages the

information required to maintain the directories on the peers.

The SelflessClustering Algorithm has a high MC and RDNC when compared to

the SelfishClustering Algorithm. An application that requires a high RDNC (e.g.,

an application that desires to optimize the performance of messaging on the overlay

network by bringing together peers in the same geographical location) could use the

SelflessClustering Algorithm. However, if the large number of messages generated by

the SelflessClustering Algorithm is an issue then an application may use the Selfish-

Clustering algorithm. As discussed in section 4.2.2, the choice of PNSPdesired depends

on the RDNC and C that an application requires and the MC that it can incur.

In the clustering algorithms, the value of the parameter PNSPdesired is set us-

ing static simulations. This is a major drawback of the clustering algorithms. It

would be useful if SC and TAS are designed that can dynamically decide the value of

PNSPdesired. The overlay network is disconnected when PNSPdesired reaches PNSPcritical.

A disconnected topology is of limited use for an application. A major challenge in dy-

namically deciding the PNSPdesired value is identifying when the overlay network will

get disconnected.

In an overlay network that utilizes the clustering algorithms presented in this thesis,

a peer needs to spend some time and resources before it can efficiently utilize the

capability of the P2P system. The time and resource expenses might act as a deterrent
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for peers to leave the system after they have consumed the resource of their interest.

4.3 Improving the Effective Bandwidth Between Peers

This section presents the simulation results for a use-case that demonstrates the utility

of the clustering algorithms. In an overlay network, a message is routed through a

number of peers before it reaches its destination. The bottleneck bandwidth between

the source and the destination is the smallest of the bandwidths of the hops in the

route. The bottleneck bandwidth gives an accurate upper bound of the rate at which

information will be exchanged between peers [98]. Typically, in a pure P2P network

(e.g., Gnutella) the location of the peers is decided randomly, and therefore peers with

high bandwidth may be adjacent to peers with low bandwidth, introducing undesired

low bottleneck bandwidths in the network. This section shows how the clustering

algorithms can be used to cluster peers on similar bandwidth connections, so that the

effective bandwidth between the peers on the overlay network is high, which will help

the peers to exchange information at a faster rate.

In this section, we first present the metric that is used to measure the effect of

the clustering algorithms on the effective bandwidth of the network. This is followed

by a description of the bandwidth distribution of the peers for the overlay networks

used in the simulations. Finally we present the results of two types of simulations that

have been done using both the clustering algorithms: static simulations which use an

overlay network that has no flux of peers and dynamic simulations in which peers are

added at regular intervals in the system.

4.3.1 Percentage Increase in BBN

The bottleneck bandwidth for the network (BBN) is the average of the bottleneck

bandwidth between all possible pairs of peers in the network. In the simulations,
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Fig. 4.26: A plot of PIBBN after applying the SelflessClustering Algorithm against
PNSPdesired on power-law topologies with 100, 500 and 1,000 peers.

the metric Percentage Increase in BBN (PIBBN) is used to measure the rise in the

effective bandwidth of the network. Percentage Increase in BBN is defined as :

PIBBN =
(BBNcurrent −BBNoriginal)× 100

BBNoriginal

(4.4)

4.3.2 Bandwidth Distribution

A 2003 study of the types of hosts that participate in a Gnutella network [98] suggests

that 30% of the peers are on very high bandwidth connections of at least 3 Mbps and

30% of them are on bandwidth connections of at least 1 Mbps. Even though the study is

four years old, we expect the bandwidth heterogenity to persist. The simulations have

been done on overlay networks in which 30% of peers chosen at random are connected

to the Internet on 1 Mbps and 3 Mbps lines, and the rest of them are connected to the

Internet on 56 Kbps lines.
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Fig. 4.27: A plot of PIBBN after applying the SelfishClustering Algorithm against
PNSPdesired on power-law topologies with 100, 500 and 1,000 peers.

4.3.3 Static Simulations

The static simulations the static simulations have been done on three different power-

law networks of 100, 500 and 1,000 peers each using PNSPdesired values from 10 to

100 in increments of 1. The power law topologies are similar to the once used in sec-

tion 4.2.2. In each iteration, the simulator goes through all the peers, checking their

satisfaction state and executing the topology adaptation steps for each peer that is not

satisfied. The simulations go on till all the peers are satisfied or 1,000 simulator itera-

tions are reached. The metric PIBBN is used to measure the effect of the clustering

algorithms. In the simulations in this section, the effects of time delay between succes-

sive estimation of satisfaction state has not been investigated and the peers estimate

their satisfaction state at every simulator iteration.

In the SelflessClustering Algorithm, each unsatisfied peer searches for a similar peer

on the overlay network. Just like the simulations in section 4.2.2, the search operation

in the simulations has been implemented using random walk that is biased towards
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peers with a higher degree.

Improvement in BBN

Figures 4.26 and 4.27 show plots of PIBBN against PNSPdesired for the SelflessClus-

tering and SelfishClustering algorithms respectively when applied on overlay networks

with 100, 500 and 1,000 peers. PIBBN is up to 800% for the SelflessClustering Al-

gorithm and 700% for the SelfishClustering Algorithm. The PIBBN rises when the

clustering algorithms are applied because the connections between dissimilar peers are

removed and similar peers are clustered together as neighbors. In the SelfishClustering

Algorithm peers drop dissimilar neighbors without checking if they are the only neigh-

bor of the dissimilar peer. This selfish dropping of peers results in peers disconnected

from the overlay network. The change in BBN for the SelfishClustering Algorithm

is slightly erratic compared to the SelflessClustering Algorithm because the discon-

nected peers are reconnected to three randomly chosen peers on the overlay network.

Figure 4.13 shows that for the SelfishClustering algorithm the coverage C becomes 0

when PNSPdesired is close to 80. In figure 4.27 a sharp rise in PIBBN is observed

when PNSPdesired is 80 because there are no connections between peers on different

bandwidths.

Discussion

Simulations in section 4.2.2 showed that the overlay network topology is typically

disconnected when PNSPdesired is above 30 for the SelfishClustering Algorithm and

above 90 for the SelflessClustering Algorithm. A disconnected topology is not useful

for an application because all the peers will not be able to communicate with each

other. When PNSPdesired is below 30, the PIBBN is very low (approximately below

10) for the SelfishClustering Algorithm which makes it less attractive when compared

to the SelflessClustering Algorithm.
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Section 4.2.2 discusses the messaging cost involved with performing topology adap-

tation using the clustering algorithms. There is a trade-off between PIBBN and the

number of messages exchanged. The optimal choice of PNSPdesired and the clustering

algorithms depend on the application and its characteristics. For an overlay network

with a long life, it may be advisable to use the SelflessClustering Algorithm to gain a

high PIBBN by exchanging many messages. However for an overlay network with a

short life span, it may be better to choose a small PNSPdesired and the SelfishClus-

tering Algorithm, which does not provide a high PIBBN , but which is less costly in

terms of the number of messages exchanged.

4.3.4 Dynamic Simulations

This section presents the results of the dynamic simulations in which there is a con-

tinuous arrival of peers. The network has 100 peers initially and five peers are added

to the network in every simulator iteration till there are 5,000 peers on the network.

The simulations go on till all the peers are satisfied or 1,500 simulation iterations are

reached. The simulations have been done using PNSPdesired value of 10 because it

is far below the PNSPcritical value for both the SelflessClustering and SelfishCluster-

ing algorithms. Just like the static simulations, the distribution of types of peers on

the overlay network follow the pattern described in section 4.3.2 and a biased random

walk with replication has been used to search for similar peers in the SelflessClustering

Algorithm.

Results

For both algorithms, the simulations stop within 980 iterations when the number of

peers on the overlay network reaches 5,000. Figure 4.28 shows a plot of the PIBBN

against time (simulator iteration) when the SelflessClustering and SelfishClustering

algorithms are applied on the networks described above. PIBBN is calculated every
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Fig. 4.28: A plot of PIBBN against simulator iterations after applying the Selfless-
Clustering and the SelfishClustering algorithms.

twentieth simulator iteration. The SelflessClustering results in a percentage rise in

BBN that varies between 140% and 180% and the SelfishClustering Algorithm results

in a percentage rise in BBN that varies between 40% and 70%. PIBBN is lower for

SelfishClustering Algorithm when compared to the SelflessClustering Algorithm. This

is similar to the behavior of PIBBN in static simulations. The results show that the

clustering algorithms can maintain a substantial rise in BBN even when there is an

influx of peers on the overlay network.

4.3.5 Summary

The simulations in this section show that the clustering algorithms result in a rise in

BBN and can maintain this rise even when there is a continuous arrival of peers on the

network. The optimal choice of PNSPdesired and clustering algorithm depends upon

the application and its characteristics. Typically the PNSPdesired is restricted to be

less than PNSPcritical.
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A drawback of the simulations in this section and the simulations in the previous

section is that the effect of peers leaving the overlay network has not been studied.

However we expect that the clustering algorithms should work even when peers leave

the overlay network at regular intervals. In the clustering algorithm a peer periodically

checks its neighbors to decide if it is satisfied with them and if some of the neighbors

have left the overlay network then it will account for them in its satisfaction state.

If the peer is unsatisfied because of a neighbor leaving, then it can execute topology

adaptation steps to maintain the topology.

4.4 Related Work

As mentioned in section 2.2 for the purpose of review, the existing decentralized al-

gorithms for clustering peers can be divided into two major categories based on the

criteria used for clustering: content-based clustering and distance-based clustering.

The distance based clustering algorithms are optimized to cluster peers that are close

to each other on the underlying physical network. The content-based clustering al-

gorithms discussed in section 2.2.7 are designed to create clusters of peers having a

similar property. For file-sharing applications this property is typically the type of

content that a peer is sharing. The content-based clustering algorithms are accompa-

nied by a routing algorithm that directs search requests to the most suitable cluster

for handling the request.

The distance-based clustering algorithms presented in section 2.2.6 use a similar ap-

proach which involves using selected landmark peers. The peers measure their under-

lying network distance to the landmark peers and connect themselves to the landmark

peer that is closest to them. This approach results in clusters that are based around

the landmark peers. If the landmark peers are not evenly distributed across the overlay

network’s topology then this algorithm would result in unevenly sized clusters. The
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major drawback of these algorithms when compared to the clustering algorithms pre-

sented in this chapter is their dependency on centralized components (landmark peers)

which determine the clustering in the topology.

Hang et al. proposed one of the earliest algorithms for content-based clustering [79].

The algorithm is described in detail in section 2.2.7. In this algorithm, each peer P

maintains a host-cache containing information about other peers on the network. The

peer P obtains the information in the host-cache by flooding the overlay network with

a request for information about other peers. The peer P then establishes connections

to peers that share similar content. In this algorithm, the peers will keep executing the

expensive operation of flooding the network for topology adaptation even when they

already have the neighbors required for the desired topology. In comparison, the peers

using the clustering algorithms presented in this chapter do not consume the network

resources to search for new neighbors once the desired topology has been achieved.

In the SelflessClustering algorithm the peers will only search for new neighbors if the

topology desired by a peer is altered due to peers leaving or joining the overlay network.

Another example of content-based clustering is presented in [27], in which a new

peer which is in the process of joining the overlay network obtains information about

other peers that share similar content and then establishes connections to them. The

system is in a clustered state before the peer joins, and the choice of neighbors assures

that it remains in a clustered state. While this is a conceptually elegant model, it is

not without problems. Typically, a joining peer has only minimal knowledge of the

network’s topology and this knowledge is often limited to just one bootstrap node.

Unless the bootstrap node happens to share similar content to the new peer, it is

unlikely that its position in the clusters will be very useful for the new node, and an

expensive search operation may be required to find suitable neighbors.
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4.5 Summary

The chapter has demonstrated that Schelling’s model can be used effectively for clus-

tering in P2P overlay networks. The chapter has presented two algorithms, SelfishClus-

tering and SelflessClustering algorithms; based on PESTO. The chapter has reviewed

the latest technique for mathematically analyzing Schelling’s model and explained why

only a specific case of the clustering algorithms can be analyzed with this technique.

Further research is required on the mathematical analysis to explain the other cases

of the clustering algorithms. Simulations are used to examine the clustering achieved

by the two algorithms. The simulation results demonstrate that the algorithms can

be used to bring together similar peers on the overlay network even when there is a

continuous arrival of peers.

The chapter also presented a case study to demonstrate that the clustering algo-

rithms can be used to increase the effective bandwidth between peers on an overlay

network, so that they can exchange information at a faster rate. The rise in the band-

width is caused by clustering of peers using similar bandwidth connections on the

overlay network. A similar clustering can be expected when instead of bandwidth a

different criterion (e.g., geographical location of the peers) is used.
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Chapter 5

Hub Topology

All animals are equal, but some animals are more equal than others [82].

In section 2.1.6 we described the hub topology in which peers with high capacity

and availability (called hubs) are connected together to form a backbone network in

the overlay network. The backbone network can be used for tasks such as maintaining

a directory of resources on the network and for routing messages between peers. This

chapter presents a decentralized topology adaptation algorithm called the HubAlgo-

rithm for creating and maintaining a hub topology. The algorithm has been published

in [108] and [109]. The HubAlgorithm is a concrete realization of PESTO. The de-

scription of the algorithm is followed by simulation results that demonstrate that the

HubAlgorithm can be used to create and maintain a hub topology. The chapter finally

compares the HubAlgorithm with the algorithm used in the JXTA reference implemen-

tation which also creates a hub topology.

5.1 HubAlgorithm

In section 2.1.6, a formal definition of a hub topology was presented and the advan-

tages of a hub topology were discussed. This section presents a decentralized topology
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Fig. 5.1: The HubAlgoritm is a concrete concrete realization of PESTO.

adaptation algorithm, called the HubAlgoritm, which can be executed by the peers on

an overlay network. The HubAlgoritm is a concrete realization of PESTO as shown

in figure 5.1. In the HubAlgoritm a peer examines its neighbors at regular intervals

to see if it is satisfied with them and if it is not satisfied, then it executes a series of

topology adaptation steps.

The HubAlgoritm is self-organizing because it organizes the peers using their local

awareness of the overlay network’s topology and without any central authority. The

HubAlgoritm maintains the reorganized topology under a flux of peers by calculating

a peer’s satisfaction state at regular intervals and taking topology adaptation steps if

the peer is not satisfied with its neighborhood.

In a hub topology there are two categories of peers: ordinary peers and peers

with high capacity and availability called the hubs. In the HubAlgoritm, the peers

themselves choose the role of hub or peer. To create a hub topology, the ordinary peers

and hubs execute different versions of the HubAlgoritm depending on their type. The

HubAlgoritm executed by the ordinary peers is referred to as the HubAlgoritm(peer)

and the HubAlgorithm executed by the hubs is referred as the HubAlgoritm(hub).

Algorithm 3 shows the pseudocode for the HubAlgoritm(peer) and algorithm 4 shows
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the pseudocode for the HubAlgoritm(hub). The operations that have been used in the

pseudo-code are described in table 3.1.

Algorithm 3 HubAlgorithm(peer)

maxNeighbors ← Maximum number of neighbors that a peer can have
while true do

if count(hubs) == 0 then
if count(all) == maxNeighbors then

drop(neighbor(n: n.property == any and n.count(all) > 1))
end if
add(search(hub))

end if
sleep(delay)

end while

Algorithm 4 HubAlgorithm(hub)

Hmax ← Maximum umber of hubs desired as neighbors
while true do

if count(hub) >= Hmax then
drop(neighbor(hub))

end if
if count(hub) == 0 then

add(search(hub))
end if
sleep(delay)

end while

Table 5.1 shows the satisfaction criteria and the topology adaptation steps that will

be executed by the hubs and the ordinary peers. The SC and TAS are different for

ordinary peers and hubs. The satisfaction criteria for HubAlgoritm(peer) states that

an ordinary peer is satisfied if it is connected to at least one hub. If an unsatisfied

ordinary peer is connected to the maximum possible number of neighbors, then it drops

a randomly chosen ordinary peer neighbor that is connected to more than one peer.

The unsatisfied peer then searches for a hub and adds it as its neighbor. Irrespective

of the success or the failure of the TAS, the SC is evaluated again after waiting for a
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Peer SC TAS
Hub Hmax > count(hub) step 1:

and if (count(hub) > Hmax)
count(hub) ! = 0 drop(neighbor(hub))

step 2:
where, Hmax is the if (count(hub) == 0)
maximum number add(search(hub))
of hubs desired
as neighbors.

Normal count(hubs) > 0 step 1:
if (count(all) == maxNeighbors)

drop(neighbor(n: n.property == any
and n.count(all) > 1))

step 2
add(search(hub))

Table 5.1: Satisfaction criteria and topology adaptation steps that will be executed
by the hubs and the ordinary peers to create a backbone network of hubs within the
overlay network.

time period specified by the method delayBeforeNextAdaptation(. . .).

The satisfaction criteria for the HubAlgoritm(hub) states that a hub is satisfied if

it is connected to at least one other hub and has less than Hmax hubs connected to

it. If an unsatisfied hub does not have any hubs as its neighbors then it searches for

another hub HO and adds HO as its neighbor. If the unsatisfied hub has more than

Hmax hub neighbors, then it drops an existing hub neighbor that is connected to more

than one hub. This is to ensure that a hub will not get disconnected from the hub

network. The former topology adaptation step, taken by a hub that is not connected

to any other hub, creates a feedback effect that strengthens the hub network. When

an unsatisfied hub adds another hub HN as its neighbor, it increases the number of

hubs to which it is connected as well as the hub neighbor count of HN .
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5.1.1 Messaging Cost of the HubAlgorithm

A peer in an overlay network using the HubAlgoritm generates messages to obtain

information about its neighbors so that it may decide its satisfaction state. As described

in section 3.3.2, if the peers use a proactive approach then they generate a total of kn

messages, where k is the average degree of the peers and n is the number of peers on the

overlay network; every iteration to check the status of their neighbors. If this messaging

cost is unacceptable, then a peer P may choose a reactive approach in which it may

take time before P receives notifications about the change in status of its neighbors.

The choice of the approach used by a peer for obtaining information about its neighbors

is an implementation choice. As described in section 3.3.2, this is a common messaging

cost that will be incurred throughout the life of the overlay network and is therefore

not applicable in evaluating the specific topology adaptation algorithm.

Search Cost

Apart from the mandatory messaging cost associated with calculating the satisfaction

state of a peer, the number of messages exchanged to perform the search operation

for similar peers is the other major cost of utilizing the HubAlgoritm. The search

operation can be implemented in a variety of ways such as breadth first search (BFS),

random walk, random walk with a bias towards peers with a high degree as described

in section 2.2.4 or as a gossip-based search. Other search algorithms are of course also

possible, and the most suitable approach depends on application requirements.

5.1.2 Time Delay

As described in section 4.1, the time delay between successive estimation of the satisfac-

tion state is another important factor that affects the cost of utilizing the HubAlgoritm.

A satisfied peer or hub need not estimate its satisfaction state repeatedly. Similarly, a
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peer or hub that is unable to successfully execute its topology adaptation steps need not

estimate its satisfaction state repeatedly. It can instead use an exponentially increasing

time delay between successive estimation of the satisfaction state.

5.2 Simulations

This section presents the simulation results of applying the HubAlgorithm on overlay

networks. The simulations have been done using the simulator described in section 3.4.

Two types of simulations have been done using the HubAlgorithm: static simulations

which use an overlay network that has no flux of peers and dynamic simulations in

which new peers are added to the overlay network at regular intervals. As described in

section 4.2 it is easy to simulate and analyze the results when there is no flux of peers.

The dynamic simulations are used to show that the HubAlgorithm can maintain a hub

topology even when there is a continuous arrival of new peers on the network.

All the simulations have been done on overlay networks in which 90 percent of the

peers chosen randomly are assigned the role of ordinary peer and the rest are assigned

the role of hub. The maximum number of connections is 5 for an ordinary peer and

20 for a hub. It is ensured that the initial overlay network topology is connected.

The search operation is performed using a Depth First Search (DFS) on the overlay

network.

The rest of this section is structured as follows: we first define the metrics that are

used to study the result of applying the HubAlgorithm on the overlay networks. This

is followed by a description of the setup, and presentation and discussion of the results

of static and dynamic simulations.
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5.2.1 Metrics

This section describes the metrics that are used to evaluate the HubAlgorithm. In this

section H is the set of hubs and P is the set of peers on the overlay network. Let

EH,H be the set of connections connecting two hubs, EP,P be the set of connections

connecting two peers and EH,P be the set of connections connecting a hub to a peer

on the overlay network.

The simulation in this section use the five metrics defined below. Apart from these

metrics, Time to Converge (TC) and Messaging Cost (MC) defined in section 4.2.1

are also used to evaluate the algorithm. As defined in section 2.1.6, the hub topology

consists of hubs that are connected to each other to form a backbone network of hubs

and ordinary peers that are connected to these hubs. The first two metric’s presented

below are used to examine the hub network. The next metric measures the average

connectivity between the ordinary peers and the hubs. The last two metrics provide

an average count of the remaining two types of connections in the topology.

Hub-Hub Degree

Hub-Hub (HH) degree is defined as:

|EH,H |
|H|

(5.1)

HH shows how well the peers in the hub network are connected to each other. It

is not desirable to have a high value of HH because then the number of slots available

with the hubs for ordinary peers will decrease.

Percentage of Hubs in Largest Hub Component

The Hub Network HN is a graph in which the vertices are members of the set H and

edges are members of the set EH,H . The Percentage of Hubs in Largest Hub Component
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(PHLHC) is the percentage of the total number of hubs that are part of the largest

component in HN . A large value of PHLHC is desirable for the HN .

Peer-Hub Degree

Peer-Hub (PH) degree is defined as:

|EH,P |
|P |

(5.2)

It is desirable to have PH close to 2 for better fault tolerance. If the PH is 2 then

an ordinary peer can access the hub network through another hub if one of the hubs

to which it is connected fails.

Hub-Peer Degree

Hub-Peer (HP ) degree is defined as:

|EH,P |
|H|

(5.3)

HP measures the average number of connections between a hub and an ordinary

peer. The HP value can be high or low depending on the number of ordinary peers in

the topology. Typically, HP will have a high value close to the maximum number of

connections

Peer-Peer Degree

Peer-Peer (PP ) degree is defined as:

|EP,P |
|P |

(5.4)

It is useful to have a PP value of 1 or higher so that the ordinary peer is not

disconnected from the topology, in case the hubs to which it is connected fail.
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Overlay Network Size HmaxCritical TC MC
100 3 4 70
500 4 5 860
1,000 3 5 2314

Table 5.2: HmaxCritical and TC and MC at HmaxCritical

5.2.2 Static Simulations

The static simulations have been done on power law networks because a study of initial

Gnutella topologies by Ripeanu [92] suggests that the degree distribution followed a

power law. The simulations go on till all the peers are satisfied or 1,000 simulator

iterations are reached. Simulations have been done on four different power law networks

(created by using different seeds values for the random network generator on Linux) of

100, 500 and 1,000 peers each using Hmax values from 1 to 10.

A critical value of Hmax (called HmaxCritical) was observed below which all the peers

were not satisfied even after 1,000 simulator iterations. The value of HmaxCritical is

different for different power law networks. A typical value of HmaxCritical observed in

the simulations is 5. When Hmax is below HmaxCritical the simulations do not converge

because some of the hubs are not satisfied as they are not able to find another hub to

which to establish a connection.

Table 5.2 shows the HmaxCritical and TC and MC at HmaxCritical for overlay networks

with 100, 500 and 1,000 peers. When Hmax is greater than or equal to HmaxCritical all

the peers are satisfied and the TC is 5 simulator iterations. Apart from the mandatory

messaging cost to check the satisfaction state, the peers on the overlay network using

the HubAlgorithm exchange messages to search for other peers. For a network of 100

peers, typically the MC is 100. For a network of 1,000 peers, typically the MC is less

than 3,000. The simulations converge when all the peers are satisfied, which means

that each hub on the overlay network is connected to at least one other hub and at
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Fig. 5.2: A plot of total number of messages exchanged against simulator iterations
for dynamic simulations.

most to Hmax hubs, and all the ordinary peers are connected to at least one hub.

5.2.3 Dynamic Simulations

The second set of simulations have been performed on a power law network where

new peers join the system every simulator iteration to demonstrate that the approach

can be used in dynamic environments. The simulations start with a small network of

100 peers, and 5 new peers are added every iteration till the number of nodes reaches

5,000. The simulations have been done using a Hmax value of 5, as this was a typical

HmaxCritical value. The simulations go on till there are 5,000 peers on the overlay

network and all the peers are satisfied or 1,500 simulator iterations are reached. The

simulations were repeated for five different power law networks generated by using

different seed values for the random number generator on Linux.
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Fig. 5.3: A plot of hub-hub and peer-hub degree against simulator iterations, for
dynamic simulations.

Results

The time to converge (TC) is 980 for the HubAlgorithm. Figure 5.3 shows a plot of

HH and PH against time (simulator iterations) for simulations performed on one of

the power law networks. Throughout the simulations, PH has the desired value of 2.

When the simulations start, each hub is connected on average to approximately 2 other

hubs. However, within 100 simulator iterations HH changes to 3 and it stays at that

value throughout the simulations, because of the HubAlgorithm. In the simulations

the hubs can have a maximum of 20 neighbors. The HP is close to a high value of

16 which means that the ordinary peers get a high number of slots to connect to the

hubs. The PP is close to 4 throughout the simulations. The high value of PP will be

useful for an ordinary peer to search for new hubs to connect to if it is disconnected

from the hubs to which it is connected.

Figure 5.2 shows a plot of the total number of messages exchanged to perform

topology adaptation against time (simulator iterations) for the power law network of
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Figure 5.3. The total number of messages exchanged (120,000) to perform topology

adaptation may seem to be on the high side. However, for an overlay network with a

long life it may be advisable to create an adaptive network of hubs by exchanging lots

of messages. Also, in the simulations the search operation was implemented without

any caching. Caching can be used to improve the efficiency of the search operation,

thereby reducing the total number of messages exchanged.

The simulations show that the HubAlgorithm does not ensure an unpartitioned HN

graph. Only for fifty percent of the simulations is the HN graph unpartitioned. This

is a small percentage. However for all the simulations PHLHC has a very large value

of more than 99% which means that a large number of hubs are members of the largest

component of the HN graph. Whether this is acceptable depends on the application.

When the simulations converge, all the peers are connected to at least two hubs.

The hubs are connected to at least one other hub and form a hub network with PHLHC

more than 99%. The simulations show that the HubAlgorithm can maintain an adap-

tive network of hubs even when there is a continuous arrival of new peers on the

network.

5.2.4 Discussion

The previous sections presented simulation results to demonstrate that the HubAl-

gorithm can create and maintain a hub topology. The HubAlgorithm maintains the

desired PH value of 2 and has a very high value of PHLHC which is more than

99%. In the simulations, 10% of peers chosen randomly are assigned the role of hubs.

This means that a very small number of approximately 5 hubs out of 500 are not

connected to the hub network. Further effort is required to refine the HubAlgorithm

so that PHLHC can be increased further. For the dynamic simulations, it takes 980

iterations to add 4,900 peers to change the number of peers on the overlay network to

5,000. The TC for the dynamic simulations is 980, which means that all the peers are
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satisfied within 1 simulator iteration after adding the last batch of 5 peers.

In the HubAlgorithm, static simulations are used to decide the value of the param-

eter Hmax. This is a drawback of the HubAlgorithm and further research is required

to dynamically decide the value of Hmax in an application. In the HubAlgorithm the

peers themselves choose the role of hub or peer. This is a disadvantage because the

peers lack global knowledge about other peers on the overlay network and might incor-

rectly classify themselves as hubs when peers with a higher capacity and availability

are available or ordinary peers when they are the peers with a higher capacity and

availability. A workaround to this problem could be that the application decides the

specifications that will be used to categorize a peer as hub or ordinary peer. Another

solution to this problem is a decentralized algorithm proposed in [96], that can be used

by peers to determine the range of a characteristics and the number of peers with the

given characteristics on the overlay network. This algorithm is a candidate solution

to enhance the HubAlgoritm so that the peers can autonomously decide if the they

should join the network as a hub or an ordinary peer. A peer may choose to join the

overlay network as a hub if it has a higher value for the characteristics used to decide

whether a peer should act as a hub or an ordinary peer.

5.3 Related Work

To the author’s knowledge, the JXTA reference implementation (discussed in sec-

tion 2.3.2) uses the only other existing topology adaptation algorithm for creating

a hub topology. In the topology adaptation algorithm used in the JXTA reference

implementation, each hub maintain a list of all the other hubs it is aware of. To create

a hub topology, a hub periodically exchanges its list of hubs with its neighbors. The

list of hubs received is appended to the hub’s existing list. A hub will establish con-

nection to the other hubs in the list to create the hub network. A drawback of the
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topology adaptation algorithm in the JXTA reference implementation is that it does

not specify the number of hubs to which each hub maintains a connection. This could

be a problem, because if the hubs maintain connections to a large number of other hubs

then ordinary peers may not get free slots to connect to a hub. If the hubs maintain

connections to a small number of other hubs, then other hubs, may not get slots to

connect to hubs. Unfortunately, no evaluation of the topology adaptation algorithm in

JXTA is presented, which makes meaningful comparison difficult.

5.4 Summary

Chapter 4 presented two clustering algorithms based on PESTO that can be used

to create a clustered topology. This chapter presented the HubAlgoritm, the third

concrete realization of PESTO that can be used to create a hub topology. Together,

the three algorithms demonstrate the general applicability of PESTO as a template

for creating topology adaptation algorithms. The chapter presented simulation results

to demonstrate that a self-organizing network of hubs can be created by using the

HubAlgoritm. In the HubAlgoritm a peer decides whether it should act as a hub or an

ordinary peer. Future work could involve investigating the possibility of creating an

algorithm based on PESTO, in which the peers mutually decide whether a peer should

act as a hub or an ordinary peer.
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Chapter 6

Reference Architecture

Science means simply the aggregate of all the recipes that are always suc-

cessful. All the rest is literature [87].

This chapter presents a reference architecture for the P2P domain called P2P ref-

erence Architecture that Supports Topology Adaptation (PASTA). While the primary

contribution of the thesis is an abstract algorithm for designing topology adaptation

algorithms, PASTA complements this contribution by providing a template for devel-

oping applications that require topology adaptation. PASTA has been published in

[110]. The chapter begins with a definition of Service Oriented Architecture (SOA)

and a discussion on the rationale behind taking a service centric view in the reference

architecture. Then we present the diagrammatic notation used to describe the reference

architecture and a summary of a study of existing P2P applications and middlewares,

which was used as the basis for deriving the reference architecture. Next we present

PASTA itself and its validation through description of the structure of existing P2P

applications and middlewares using the reference architecture. The validation demon-

strates that PASTA is not limited to applications that require topology adaptation

and is generally applicable. Finally, we present a comparison between PASTA and

an existing reference architecture called “The Essence of P2P” that was discussed in
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section 2.3.1.

6.1 Service-Oriented Architecture

A service is a unit of work done by a service provider to achieve desired results for a

service consumer [52]. Service-oriented architecture (SOA) is an approach that utilizes

software services as fundamental elements for developing software applications [84, 52,

86]. In SOA, software resources are services available and discoverable on a network.

Common Object Request Broker Architecture (CORBA) [54], Microsoft’s Distributed

Component Object Model (DCOM) [120] and SOAP [14] are examples of middlewares

that provide support for SOA.

In SOA, the underlying implementation details of a service are hidden from the

service consumer through encapsulation. There is a loose coupling between the service

provider and the service consumer, which means that changes can be done in either one

of them without affecting the other. The service provider and the service consumer

must agree on an interface that does not change. The service consumer uses the

service interface description and the service address to access the service. The service

provider can easily change the implementation of the service without breaking the

service consumer. Also, if required, the service consumer can use a service at an

alternate location if it has same service interface as the original service. The loose

coupling between the service provider and consumer facilitates the use of the same

service across many applications, thereby reducing the development cost and errors in

the application and ensuring faster development time [71, pg. 17-18].

PASTA uses the service-oriented approach because it lends itself well to modelling

P2P applications and middlewares. P2P systems are typically used to share a wide

variety of resources and services. A P2P system can be used to access shared services

which perform tasks such as providing information about other peers on the network,
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numerical computations and routing of messages on the overlay network. A P2P system

can be used to access a wide variety of shared resources such as files, videos, messages,

CPU cycles and storage space. The shared resources can be accessed through services

running on the peers. Since all the sharing in a P2P system can be conceptualized

using services, a service-oriented approach has been used in the reference architecture.

PASTA is designed to support the sharing and access of services on a P2P network. A

service-centric view facilitates the development of applications using PASTA because

the software implementation of the applications can use the support for service-oriented

architecture provided by the existing middlewares like CORBA [54] and SOAP [14].

Peers join a P2P network to utilize services offered by other peers. The services

can be divided into two types: network service (NES) and node service (NOS). A

network service is available on more than one peer in the network. Different instances

of the network service work together to execute a task. A node service is offered by an

individual peer. The service is specific to the peer offering the service.

6.2 Documenting Software Architectures

Software architectures are documented using views, each of which concentrates on a dif-

ferent aspect of the software system. Different researchers suggest using different types

and numbers of views for documenting software architectures. For example Booch et

al. [30] suggest using 4+1 views, Bass et al. [65] suggest using 3 views and Soni et al.

[55, 113, 56] suggest using 4 views. This work follows the suggestion given by Soni et

al. They suggest using four views called the conceptual view, module view, execution

view and code view to document a software architecture. The views are enumerated

in the order in which they should be designed. The code view describes the organiza-

tion of the source code and the object code. The execution view defines the run-time

entities of the software system and their associated attributes, such as the memory
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usage and hardware assignment. The module view describes the decomposition of the

software and its organization into layers. The last three views deal with the actual im-

plementation of the software system using programming languages, operating systems,

communication mechanisms and so forth and so are not relevant for documenting a

reference architecture.

The conceptual view is the only of the four that is suitable for documenting a refer-

ence architecture. The conceptual view describes the structure of the software system

at a high level of abstraction, using architecture elements which can not be directly

implemented by using software technology [55]. In this view, the functionality of the

system is mapped to architecture elements called conceptual components (or just com-

ponents), with coordination and data exchange handled by elements called connectors.

Both components and connectors can be further decomposed into more components

and connectors. The notion of building a system by interconnecting components is

appealing because of the potential for reuse and for incorporating off-the-shelf compo-

nents into implementations based on the architecture. The components interact with

the outside world using elements called ports. The description of a port includes de-

scription of the messages (operations) that the component can process as well as the

messages that it invokes. Connectors interact with the components using elements

called roles. Both ports and roles obey protocols. A protocol is defined as a set of

incoming message types, outgoing message types and the valid message exchange se-

quence. A port and a role can be connected together if the port’s protocol is the

conjugate of the role’s protocol.

The diagram used to describe a conceptual view is called a component-connector

(CC) diagram. A CC diagram shows the elements (e.g., components and connectors) of

the conceptual view. This thesis uses the UML 2.0 standard to draw the CC diagrams.

There is no direct mapping between the elements of the component-connector diagram

and the UML notation [58]. Table 6.1 shows the UML elements that have been used
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Component-Connector UML 2.0
element element
Component Component
Connector Associations
Role Not represented
Port Port
Protocol Note

Table 6.1: The UML 2.0 elements used to draw component-connector diagrams.

to draw the elements of CC diagrams. UML components can contain other UML

elements, which makes them an ideal choice for representing CC components. The

newly introduced concept of ports in UML 2.0 is similar to the ports in CC diagrams

and has been used to represent the ports. UML associations have been used to represent

connectors as suggested in [58]. Since roles and ports which are connected to each other

must obey similar protocols, roles are not documented in the CC diagrams.

6.3 Core Concerns for a P2P Application

Current P2P applications can be divided into three major groups based on application

domain: parallel computing, content management and collaborative applications [73].

We have studied middlewares and applications belonging to all the three categories

and have identified the concerns that a P2P application needs to address [106]. The

concerns can be divided into five groups. Table 6.2 presents the groups along with

the concerns. The concerns are the use-cases that a P2P application needs to address.

PASTA handles all these use-cases.

In the rest of this section, we discuss each group and the concerns that fall within

it. We also give examples of how these concerns are handled in existing applications.
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Group Concern
Naming Identification of entities in a P2P system (identification).

Resolution of entity id to a physical address (resolution).
Overlay Search for a connected peer on the overlay network
Management (search).

Handle join requests (join).
Handle leave requests (leave).
Maintain the topology (topology).

Service Advertise services/resources to share (advertise).
Management Discovery of shared services/resources (discovery).

Access the service/resources (access).
Routing of messages (routing).

Security Authentication of peers (authentication).
Authorization of peers to access a resource/service
(authorization).
Secure transmission of messages (confidentiality).

Table 6.2: The core concerns that a P2P application needs to address.

6.3.1 Naming

The concerns belonging to this group are: assigning an identifier to the entities (e.g.,

peers, resources, services, etc.) in the system (identification) and resolving an entity’s

identifier to its physical network address (resolution). P2P systems assign a network

(underlying physical network) and location-independent identifier to the entities in a

system. The identifiers allow P2P systems to manage entities whose network address

(typically IP address) changes with time. The identifiers are dynamically resolved to

determine the current network address of the entity.

Different applications take different approaches to naming. In the JXTA [80] ref-

erence implementation, the identifier is a 128 bit universally unique identifier (UUID)

generated by each peer. The JXTA reference implementation uses a combination of

a central server (called rendezvous server) and IP multicast to resolve identifiers to a

network address. Jabber uses a central server for both identification and resolution.

Pastry [95] maintains a Distributed Hash Table (DHT) which can be used to locate
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the entity with a given identifier.

6.3.2 Overlay Network Management

The concerns in this group are: searching for an existing overlay network to join

(search), handling of requests to connect to the network (join), leaving the network

(leave) and managing the topology (topology). Peers join an overlay network through

another peer which is already connected to the overlay network. Connected peers’

addresses may be a well-known information it can be obtained by other means such as

an IP multicast. The peer accepting the join request may redirect the incoming peer

to another peer. The connecting peer may also be supplied with information relevant

for it such as the network address of other peers connected to the overlay network. As

discussed in Section 2.1 and 2.2 the topology of an application affects its performance.

Managing the connections of a peer so that the desired topology can be created and

maintained is a major challenge for applications.

In hybrid solutions such as Jabber [21, 39], peers connect to a well-known server

to join the overlay network. In JXTA the connecting peer uses the combination of

a well-known server (rendezvous server) and IP multicast to obtain the connected

peer’s address that will be used by it to connect to the overlay network. In Pastry,

the connected peer’s address has to be obtained through out-of-band means. The

connecting peer in Pastry receives information which it can use to populate its routing

table. In Jabber the connecting peer only receive information about the connectivity

status of the peers in which they are interested. The peers register their interest with

the central server. Peers may inform one or more peers on the overlay network when

they leave the overlay network. For example, in Jabber the peers send a presence

message of type unavailable to the central server.
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6.3.3 Service and Resource Management

The concerns in this category are: advertising the details of the services and resources

that the peer offers to the overlay network (advertise), discovering services and re-

sources to use on the network (discovery), accessing the services and resources (access)

and routing the messages (routing). Peers use the overlay network to advertise their

resources and services and to discover new resources and services which they can use.

P2P systems generally maintain a directory of services and resources. A peer can

publish the details of the resources and services it is offering to the directory. The

directory could be maintained on one peer (e.g., Jabber). Alternatively the directory

can be distributed across some (e.g., JXTA) or all the peers (e.g., casca [43]) in the

network. The peers maintaining the directory can be chosen through an algorithm

or they can be special-purpose peers responsible for maintaining the directory. Peers

can discover the details about the shared services and resources by sending a query

message to the peers responsible for maintaining a directory. Peers may also send

multicast messages to all the peers on the network to find the details about services

and resources available on the network. The service/resources can be accessed by using

mobile code (e.g., JXTA, SpeakEasy [42, 43]) or by doing a Remote Procedure Call

(RPC).

A peer can directly send the message to the destination peer if the destination peer’s

address is available. If the destination peer is not accessible or its network address is

not available, then the source peer may route the message to one or more known peers

on the network, which can route the message to the destination peer. The intermediate

peers can be chosen from the known peers randomly or by using an algorithm (e.g.,

Pastry), or they might be well-known specialized peers (e.g., the rendezvous peers in

JXTA route messages to peers behind firewalls).
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6.3.4 Security

The concerns related to security are: authentication of peers to ensure the identity of

a peer (authentication), checking the authorization of a peer to access a resource or a

service (authorization), and secure transmission of message (confidentiality). Authenti-

cation and authorization can be mutual between the interacting peers (e.g., SpeakEasy)

or a central peer can be used (e.g., Jabber). The reference architecture presented in

PASTA does not elaborate on the security-related concerns.

6.4 P2P Reference Architecture

This thesis uses the term servent created by combining the first three letters of the

word server and the last three letters of the word client, to refer to components which

provide a service and can be used to access a similar service provided by another peer.

A servent can act both as a client and a server. As defined in section 1.3 all the peers

in a P2P network are equivalent in functionality and can act both as a client and a

server. A peer needs to act both as a consumer (client) and provider (server) for all

the concerns mentioned in table 6.2 because of which PASTA handles most of these

concerns using servents.

Figure 6.1 presents a high-level overview of PASTA. PASTA consists of three key

components: common runtime, security and core servents. The common runtime pro-

vides the messaging infrastructure used to exchange messages between peers in order

to invoke (access) a service. The common runtime is used by all types of servents

to communicate with servents on other peers. The security component handles the

security-related concerns such as authentication, authorization and the secure trans-

mission of messages. We suggest using aspects [64, 1] to implement the security-related

concerns. PASTA does not define the structure of the security components. Except

for routing, the core servents address all the concerns that a P2P application needs to
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Fig. 6.1: A UML diagram providing a high level overview of the P2P reference archi-
tecture.
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Fig. 6.2: A UML diagram depicting the conceptual view of the core servents of the
reference architecture. The core servents handle most of the concerns which need to
be addressed by a P2P application.

handle. The routing logic may vary for different services and is handled by the servent

for which a request arrives. In PASTA an application consists of application servents

(e.g., for file sharing or instant messaging) that are responsible for the application logic.

PASTA supports multiple co-existing application servents. This means that an appli-

cation developed using PASTA can be used to share multiple services. An instance

of PASTA can have multiple instances of the core servents, security component and

runtime. These instances can be used by an application to connect to different overlay

networks.

6.4.1 Core Servents

There are six core servents (see table 6.3) which handle all the concerns except routing

and access. Figure 6.2 shows a conceptual view of the core servents. The core servents

along with the concerns they handle are shown in table 6.3. A servent can handle

incoming messages from both remote and local servents and applications. The protocol
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Core Servent Concern
OverlayNetworkDiscovery (OND) Search
MembershipManagement (MM) Join (JN), Leave (LV)
ServiceAdvertisement (SA) Advertise
ServiceDiscovery (SD) Discovery
Naming (N) Identification (ID), Resolution (RES)
TopologyAdapter (TA) Topology

Table 6.3: The core servents of the reference architecture and the concerns they
handle. The access concern is handled by the client and server components of the
common runtime. The routing concern is handled by the individual servents.

used by the core servent ports is shown in table 6.4 using the notation suggested in

[55]. The table does not show implementation-specific details. The protocols define

the structure of the messages exchanged to invoke these servents.

Overlay Management

In this section we discuss the core servents that address the concerns related to the

overlay management group. The OverlayNetworkDiscovery (OND) servent is used to

obtain already connected peers on the overlay network to which a new peer can connect.

The port portOND of the OND servent expects a single incoming message getPeers with

the new peer’s details and responds with information about a list of peers to which the

new peer can connect. The MembershipManagement (MM) servent is used to handle

requests to join and leave the overlay network. The port portMMJ of the MM servent

expects an incoming message joinOverlayNetwork with the new peer’s details. Upon

receiving the joinOverlayNetwork message, the servent can reject, accept or redirect

the new peer’s request. The port portMML of the MM servent is used to leave the

overlay network and expects a single incoming message called leaveOverlayNetwork.

The TopologyAdapter core servent used to handle the topology concern is discussed in

detail in section 6.4.3.
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portMMJProtocol portONDProtocol portSDProtocol
incoming incoming incoming
joinOverlayNetwork( getPeers( findService(name,

newPeerInformation) newPeerInformation) criteria)
outgoing outgoing outgoing
redirect(PeerInformation[]) PeerInformation[] ServiceDetail[]
reject
accept(PeerInformation[])

portSAProtocol portGetIdProtocol portGetPeerProtocol
incoming incoming incoming
advertise(ServiceDetail) getId( getPeer(id)

ServiceOrResource
Description)

outgoing outgoing outgoing
success id PeerInformation
fail

portMMLProtocol portTAProtocol
incoming incoming
leaveOverlayNetwork registerServentCache(

serventCacheName,
topologyAdaptationPolicy)

outgoing outgoing
accept
reject

Table 6.4: The protocol obeyed by the ports of the core-servents in the reference
architecture.
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The topology adaptation algorithm can be applied at the OND and MM core ser-

vents, so that a new peer joining the network establishes connections to peers on the

overlay network in such a fashion that the desired topology is maintained. For a new

peer, bootstrapping to the overlay network is a challenging task because of lack of

information about all the peers currently connected to the network. The view taken in

PASTA is that it is not appropriate to perform topology adaptation at this stage since

it will make it even more difficult for a new peer to connect to the overlay network.

Service Management

This section describes the core servents that address the core concerns belonging to

the service management group. The access concern is handled by the common runtime

component discussed in section 6.4.2. A peer wishing to advertise its services sends

an advertise message to the port portSA of its ServiceAdvertisement (SA) servent.

The SA servent may advertise the service detail to the SA servent of the other peers

on the overlay network and responds back to its peer with a success or fail message.

The ServiceDiscovery (SD) servent is used to discover the details of services on the

overlay network that match a search criterion. The portSD port of the SD servent

expects a single incoming message findService with the search criteria and responds

with the details of a list of services matching the search criteria. The service details

could include information such as the network address and geographical location of the

peer. The SD servent provides the search functionality specified in table 3.1 that can

be used to search for peers with a given property on the overlay network. As mentioned

earlier the routing is handled by the servent for which a request arrives.

Naming

Core servents that address the concerns belonging to the naming group are discussed

in this section. The Naming (N) servent is used to assign a unique identifier to entities
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Fig. 6.3: A UML diagram presenting a conceptual view of the runtime component.

in a P2P system (using portGetID) and to resolve an entity’s id to a network address

(using portGetPeer).

6.4.2 Common Runtime

The common runtime can be further decomposed into three components (see figure 6.3)

which are: Client, Server and CacheManager. The server component receives messages

from the network and dispatches them to the appropriate servent. The client compo-

nent helps servents to invoke services provided by servents on other peers. Together

the Client and the Server components handle the access concern. Table 6.5 shows the

protocols used by the ports of the common runtime components. The portClient port

of the Client component is used to send a given Message to a destination address. The

Message format is determined by the protocols used by the port to which the message

is destined. The portServer of the Server component is used to receive messages. The

server directs an incoming messages to an instance of the servent type (specified in

destination Address) for which the message is intended.
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portCreateProtocol portClientProtocol portServerProtocol
incoming incoming incoming
createServentCache( sendMessage( receiveMessage(

serventCacheName, dstnAddress, Message)
setOrKeyValuePair, Message)
topologyAdaptation-
Policy)

outgoing outgoing outgoing
ServentCache success

fail

Table 6.5: The protocol obeyed by the ports of the runtime components.

CacheManager and Servent Cache

The CacheManager component shown in figure 6.3, is responsible for maintaining a

cache called the servent cache. As defined in section 1.4.3, the topology of an overlay

network is the graph in which the peers are the vertices and the connections between

them are the edges. The servent cache of a peer P constitutes its local view of the

overlay network’s topology and provides information (such as the network address

of the peer) about all the peers to which P is connected. The aim of the topology

adaptation algorithms is to change these connections so that a desired global topology

can be created. The servent cache may also contain information about other peers on

the network, and this information may be used to find peers with a desired property

with which P might like to establish a connection.

The servent cache can also be used to process both incoming and outgoing requests

for a service. For processing requests the servent cache may be implemented as a

table of (key, value) pairs. The key is an application specific entity (e.g., file id for

a file-sharing application) that is required to process the request. The value contains

information such as the details of a peer that may process the request and cached

response to the request for a given key.
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Fig. 6.4: A UML diagram presenting a conceptual view of the ServentCache compo-
nent.

portAddProtocol portSearchProtocol
incoming incoming
addEntry( search(

serventCacheEntry) criteria)
outgoing outgoing
success serventCacheEntry[]
fail

portUpdateProtocol portDeleteProtocol
incoming incoming
updateEntry( deleteEntry(

serventCacheEntry) serventCacheEntry)
outgoing outgoing
success success
fail fail

Table 6.6: The protocol obeyed by the ports of the ServentCache component.
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A servent instance may ask the CacheManager to create a servent cache of a desired

type (set or table). The data stored in a servent cache will vary with the service. For

example, for a file sharing service the servent cache can be a set of (file id, host)

pairs. One servent cache can be shared across multiple servents. Table 6.5 presents the

protocols for the CacheManager component. The port portCreate of the CacheManager

component is used to create a servent cache. In the incoming message, the port expects

a name for the ServentCache, the topology adaptation step to be used on the servent

cache and the description of the servent cache (set or table of (key, value) pairs). The

port creates a new servent cache if one with the given name and properties does not

exist and then returns a reference to it.

Figure 6.4 presents the component diagram of the ServentCache component and

table 6.6 presents the protocols. The portAdd, portUpdate, portDelete, portSearch

ports of the CacheManager are used to add, update, remove and search entries from a

servent cache.

6.4.3 Topology Adaptation

The ServentCache contains information about the peers on the overlay network to

which the local peer is connected. A request for a service would be redirected to one or

more of these connected peers if the local servent handling the request can not handle

it. The TopologyAdapter servent works on the servent cache. Its role is to ensure

that a peer is connected to other peers which will help in an optimal processing of the

service.

PESTO presented in section 3.3 is a possible approach to implement this com-

ponent. The concrete realizations of PESTO described in the previous two chapters

can be used to manage the ServentCache so that a desired global topology is created.

PASTA provides support for the operations described in table 3.1 to implement these

algorithms. The concrete instantiations can use the search facility offered by the SD
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servent and the servent cache to find peers with a desired property. Neighbors can be

added and removed by using the portAdd and portUpdate of the ServentCache. The

portSearch of the ServentCache can be used to find connected peers with a desired

property.

As discussed in sections 2.1 and 2.2, the optimal topology depends on the applica-

tion. PASTA allows multiple application servents with different topology requirements

to co-exist in an application. In PASTA, multiple topologies are allowed in the appli-

cation through the topology subsystem, which incorporates the topology adapter core

servent, the CacheManager and the ServentCache components. An application can

have multiple instances of the topology adapter and ServentCache servents.

6.4.4 Generic Servent

Figure 6.5 shows the conceptual view of a generic P2P servent. During initialization,

a servent may do either of the following:

• advertise its services using the port portSA of the ServiceAdvertisement servent,

• use the port portGetId of the naming servent to get an id for the servent,

• use the port portAdd of the CacheManager to obtain a ServentCache.

The Implementation component provides the actual service implementation. The

Implementation component uses a ServentCache (if used by the servent) to find an

existing response for an incoming request. If a response is available from the Servent-

Cache, then it is returned. However if a cached response is not available, then the

Implementation component tries to process the request locally, and send a response.

If it can not process the request locally then it invokes the RemoteAccess component

that uses other peers on the overlay network to process the request and generate a

response. The Implementation component directs a request to the Router component
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for processing if the request’s destination is not the servent’s peer. Before returning

the response, the Implementation component updates the ServentCache (if required)

by using its portUpdate.
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The RemoteAccess component of a servent is used to process a service request by

using other peers on the overlay network if it can not be processed locally by the

servent. The RemoteAccess component uses its FindPeers component to find details of

peers hosting similar servents that can be used to process the request. The FindPeers

component uses the ServentCache and/or the ServiceDiscovery servent to find these

peers. The FindPeers component uses the port portGetPeer of the Naming servent to

resolve a peer id to its IP address. The InvokeService component then processes the

incoming request using the servents on the peers supplied by the FindPeer component.

6.4.5 Interoperability

Interoperability is the problem of ensuring that the several P2P applications can inter-

operate with each other. As discussed in section 1.2, interoperability is a forthcoming

challenge for the developers of P2P applications. Existing P2P systems such as JXTA

[67] try to solve the interoperability problem by defining standards (format and on-wire

form of the message) for the messages exchanged between peers. However messaging

standards alone do not ensure interoperability. For example, a peer (P ) might not

implement the SA servent and instead use a multicast on the overlay network policy

for the SD servent to discover services on the overlay network. An overlay network

(ON) with a small number of peers might expect its peers to use a policy of multicast

to all known peers for the SA servent and to use the information provided by the SA

servent to perform service discovery (SD). When P joins ON , messaging standards,

for example those set by JXTA, ensure that peers on ON can understand the SD mes-

sages sent by P . However, the peers on ON will not know how to process the messages

sent by peer P .

PASTA complements the notion of using messaging standards to ensure interoper-

ability by allowing an overlay network to be defined in terms of the policies it uses to

implement the different components of the reference architecture. Applications based
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on PASTA can be designed so that they allow a new peer to join an overlay network

only if it has the set of instances of the reference architecture elements that implement

the policies that the overlay network desires. This will ensure that only the peers that

can interoperate with other peers join an overlay network. Further if the applications

uses a plugin-based approach for implementing the different components then the new

peer may obtain the plugins that provide implementation for components with the

desired policies from a central repository or a search on the existing overlay networks

to which it is connected, so that it may join the overlay network.

6.5 Validation of PASTA

As discussed in section 1.2.2 a reference architecture can be used to design new ap-

plications and it provides a vocabulary that can be used to describe and compare

the structure of existing applications. All the components of PASTA are abstractions

that can have multiple instances implemented using different policies. The existing

applications can be described using PASTA by identifying the application servents and

the policies that will be used to implement the different components of PASTA. This

section describes a range of existing P2P applications and middlewares using PASTA.

Based on the application domain, the existing P2P applications can be divided

into three major categories: parallel computing, content management and collabora-

tive [73]. Parallelizable P2P applications split a large computation-intensive task into

smaller sub-pieces that can execute in parallel over a number of independent peer

nodes. Content Management applications focus on storing and retrieving information

from various peers in the network. Collaborative applications allow users to collaborate

in real time, without relying on a central server to collect and relay information.

In this section we first describe Gnutella which is an influential content management

system. This is followed by Freenet which is one of the earliest content management
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system that provides censorship ability. We then describe Jabber an application for

collaboration that can also be used as a middleware for developing collaborative appli-

cations. Finally we describe JXTA which is an influential multi-purpose P2P middle-

ware. JXTA has been used to develop JNGI [7] a parallel computing application.

For each P2P system the routing algorithm and the ServentCache structure is de-

scribed. The routing policy and the ServentCache used by all the servents in the P2P

system is documented using tables.

6.5.1 Gnutella

Gnutella [4, 92] is a decentralized P2P file-sharing network. Gnutella creates an un-

structured, self-organizing overlay network of peers. There is no constraint on the

position of the files. A peer uses a breadth-first search on the overlay network to lo-

cate a file. Once the peer containing the file is located, a direct connection is used to

transfer the file.

All the peers in Gnutella implement two application servents which are: File get-

File(String fileName) which is used by other peers to download files and PeerInfor-

mation getPeers() which is a network service used by a connected peer to discover

other peers on the overlay network. Table 6.7 shows the policies used by Gnutella

to implement the different core servents. The table also describes the routing policy

and the ServentCache used by the different servents. New peers join the Gnutella net-

work using an available peer from a list of well-known peers which are connected to the

Gnutella overlay network. When the new peer joins the network, the peer accepting the

connection provides the new peer with information about other peers on the network.

Naming service is provided by the Gnutella application. The application generates a

unique 16-byte identifier for each new message.

ServiceDiscovery is implemented as a network service. The ServiceDiscovery, Over-

layNetworkDiscovery and getPeers() servents share a single ServentCache which is a
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ServentCache
Name Description
PeerCache (GPC) Set of Peer Information

Routing Policy
Name: Multicast (GMC)
Algorithm:
if (isRequest(message)) {

if (!hasSeen(message.id)) {
message.TTL (Time to live) = message.TTL - 1
message.TTL ! = 0 ? forwardMessage(GPC - message.peer) :
sendMessageResponse(message.peer)
cache(message.id and message.peer mapping)
}
} else {

if (hasSeen(message.id)) {
forwardMessage(findPeerWhichSendRequest(message.id))
}
}

Application Servents
Name Routing Servent

Policy Cache
PeerInformation getPeers() GMC GPC
File getFile(String fileName) none none

Core Servents
Name Policy Routing Servent

Policy Cache
OND Well-known peers none GPC
MM Peers on the none GPC

overlay network
SA none none none
SD Multicast to peers GMC GPC

in PeerCache
N(ID) none none none
N(RES) none none none
TA none none none

Table 6.7: Describing Gnutella using PASTA.
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set of addresses of the peers on the overlay network. A peer searches for a desired file it

wants by using the ServiceDiscovery servent. The ServiceDiscovery servent sends out a

multicast message containing a search request for a getFile service, which can provide

a file matching the peer’s requirements to all the peers in the ServentCache. A peer

receiving the request responds with its address and a list of files matching the search

query. If the time to live for the request has not elapsed, then the peer forwards the

request to all the nodes in its ServentCache. The getPeer() network service is accessed

by sending a multicast to all the peers in the ServentCache. The peer receiving the

request responds with information about itself. If the request has not reached its time

to live then the peer propagates the request to the peers in its ServentCache.

6.5.2 Freenet

Freenet [36, 2] is a censorship-proof P2P content storage and retrieval system. It

provides complete anonymity to the publishers and users of content. Freenet is designed

to reduce the slashdot effect1, by caching files on multiple nodes closer (in terms of node

hops) to the content’s users. All data stored on Freenet is associated with a key.

Table 6.8 presents the ServentCache and the routing policy used in Freenet. All

the peers in Freenet implement two application servents which provide network services.

They are DatagetData(Keyk) which returns data for a given key, and voidinsertData(key, data)

which is used to publish data associated with a key. Table 6.9 shows the policies used

by Freenet to implement the core servents of PASTA. The table also describes the

routing policy and the ServentCache used by the different core servents. New peers

join the Freenet network using an available peer from a list of well-known peers which

are connected to the Freenet overlay network. When a new peer joins, the existing

peers work together to assign the new node a portion of the key space to manage. The

1Slashdot effect refers to the slowing down or temporarily closing of a web-site because of a heavy
influx of web-traffic caused by a mention of the web-site on Slashdot, a popular technology news and
information site.
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ServentCache
Name Description
DataCache (FDC) table of

(dataKey, (hostAddress, data)) tuples

Routing Policy
Name: Freenet Routing Algorithm (FRA)
Algorithm:
if (isRequest(message)) {

if (FDC.hasEntryForKey(message.dataKey)) {
if(FDC.hasDataForKey(message.dataKey)) {

sendMessageResponse(message.peer)
} else {

forwardMessage(FDC.getHost(message.dataKey))
cache(message.id and message.peer mapping)
}
} else {

if (FDC.closestKey(message.dataKey) == thisPeer.id) {
sendMessageResponse(message.peer)
} else {

cache(message.id and message.peer mapping)
forwardMessage(FDC.getHost(FDC.closestKey(message.dataKey)))
}
}
} else {

if (hasSeen(message.id)) {
forwardMessage(findPeerWhichSendRequest(message.id))
}
}

Table 6.8: The ServentCache and the Routing Policy used in Freenet.
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Application Servents
Name Routing Servent

Policy Cache
Data getData(Key k) FRA FDC
void insertData(key k, data d) FRA FDC

Core Servents
Name Policy Routing Servent

Policy Cache
OND Well-known peers none none
MM Key space to manage FRA FDC
SA none none none
SD none none none
N(ID) unique id generated FRA FDC

by consulting existing
peers on the network

N(RES) none none none
TA Prune ServentCache none none

Table 6.9: Describing Freenet Using PASTA.
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Naming servent generates a unique key for files to be stored on Freenet using SHA-1

hash function. The SHA-1 algorithm ensures that same key is generated for identical

files. Freenet does not allow the resolution of the identifier to a network address to

ensure anonymity of the peer storing the file.

The getData(...) and insertData(...) servents share a single ServentCache which

is a table of (dataKey, (hostAddress, data)) tuples. The ServentCache is pruned by

the TopologyAdapter to ensure that its size does not exceed a specified limit. A least

recently used algorithm is used to remove the data for a key. The host address is still

cached so that the data can be retrieved at a later time if required.

The getData(...) and insertData(...) servent implementations propagate a request

to the host (in the ServentCache) whose key is closest to the key in the request. The

getData(...) request is not propagated further, and a response is sent back if the key

in the request is already present in the ServentCache along with the data, otherwise

the request is forwarded to the host in the ServentCache whose key is closest to the

key in the request. The getData(...) response is sent back to the peer which forwarded

the request which in turn sends the response back to the peer from which it received

the request. The response is not directly sent back to the peer from which the request

originates in order to preserve anonymity of the peer interested in the resource. The

insertData(...) request is not propagated further and data is added to the ServentCache

if the id of the peer is closest to the key in the request than any other key already present

in the ServentCache, otherwise the request is forwarded to the host in the ServentCache

whose key is closest to the key in the request.

6.5.3 JXTA

Described in section 2.3.2, JXTA [8, 80] is a specification for developing P2P applica-

tions. The specifications can be implemented as a framework which can be used for

P2P application development. The Project JXTA reference implementation [121] is
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JXTA Protocol PASTA Elements
PDP ServiceDiscovery, ServiceAdvertisement
PRP Client, Server
RVP Application Servents
ERP Application Servents
PIP Application Servents

Table 6.10: A mapping between the JXTA protocols and PASTA.

one such framework. As discussed in section 2.3.2, JXTA can not be classified as a

reference architecture because it does not describes and defines the components of an

application. It concentrates on providing a messaging standard for P2P applications

so that they can interoperate.

JXTA specifications define a set of six protocols for P2P applications. JXTA pro-

tocols work together to perform services required by a peer. The protocols use XML

schemas to describe the format of the messages exchanged between peers to offer a

service. JXTA is policy agnostic and does not specify how the service provided by a

protocol will be implemented. Table 6.10 shows a mapping between the JXTA protocols

and PASTA. The Peer Resolver Protocol (PRP) defines the structure of XML request

and response messages which are exchanged between peers. The rest of the protocol

messages are embedded within a PRP message. The client and server component in

the common runtime can use this as the format of the messages exchanged between

peers. A peer can advertise and discover resources and services on the overlay network

using Peer Discovery Protocol (PDP). The ServiceDiscovery and ServiceAdvertisement

elements can exchange messages using the format specified in the PDP protocol.

There is no direct mapping possible between the next three protocols and PASTA

elements. An application that desires the services supported by these protocols can

implement the desired services as application servents. These JXTA protocols can be

used by the application servents. The rest of this paragraph describes the three proto-
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cols that do not have a direct mapping with PASTA. The Peer Information Protocol

(PIP) in JXTA, that can be used to find the details about a peer. In JXTA the client

may use Rendezvous Protocol (RVP) to find peers if the message has to be propagated

over the overlay network. PASTA does not provides a dedicated servent to find peers

that can propagate a message on the overlay network. This has been done to keep

the list of core servents minimal. In PASTA a servent can use the ServentCache or

the ServiceDiscovery servent to find peers which can propagate a message over the

overlay network. If JXTA cannot find a direct connection to a destination peer then

the Endpoint Routing Protocol (ERP) is used to find intermediate hosts which can

route the information to the destination peer. In PASTA routing is the responsibility

of the servent handling the message. PASTA does not stipulate a specific service that

is responsible for finding peers that can be used to route messages and suggests using

the ServiceDiscovery component to find peers that can route the message.

6.5.4 Jabber

Jabber [16, 21, 39] provides specifications for developing instant messaging (IM) appli-

cations. Jabber implementations provide a realization of these specifications. Jabber

is intended for IM applications, but the infrastructure provided by it can be used for

developing other types of P2P applications.

Table 6.11 shows the application servents that Jabber provides and describes how

Jabber implements the core servents. Jabber uses a hybrid P2P architecture. The

Jabber server is used for authenticating peers and resolving identifiers to network

addresses. However, peers can exchange data directly by establishing connections

which are brokered using Jabber servers. A new peer connects to the central server

to join the overlay network. The central server provides the connecting peer with

information (e.g., availability of peer and peer address) about other peers in which

the connecting peer is interested. The Jabber server provides three presence re-
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Application Servents
void receiveMessage(String mesg)
boolean subscribeToPresenceInformation(String peerId)
String[] getSubscribedPeers()
boolean getPresenceInformation(String peerId)

Core Servents
Name Policy
OND central server
MM online peers
SA none
SD none
N(ID) central server
N(ID) central server
TA none

Table 6.11: The application servents provided by Jabber and the policies used by
Jabber to implement the different core servents. The servents in Jabber do not use a
ServentCache. The servent implementations in Jabber do not have routing capability.
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lated services: subscribeToPresenceInformation(...) which can be used to tell the

Jabber server about interest in a peer’s (with id peerId) availability information,

getSubscribedPeers() gives a list of all the peers in which the peer invoking this ser-

vice is interested and getPresenceInformation(...) can be used to receive presence

information about a peer (with id peerId) on the network. All the peers implement a

service called receiveMessage(...) which can be used to send a chat message to them.

6.5.5 Conclusion

This section has successfully described a range of existing applications and middlewares

using PASTA. The applications can be compared using the basis of the policies that

they use to implement the different PASTA components. Currently we think that the

core servents in PASTA provide the common services required by a range of applica-

tions. However, if required later the core servents may be extended to include new

servents that provide services such as a peer information service specified by PIP in

JXTA. We have not used PASTA to design an application, but we feel that it should

be easy as it can be used to describe the design of a variety of existing applications

and middlewares.

6.6 Comparison with Essence of P2P

Presented in section 2.3.1 “The Essence of P2P” [19] is an existing reference architecture

for the P2P domain. The concept of reference architecture has been defined and its

advantages has been discussed in section 1.4.2. Both PASTA and “The Essence of

P2P” can be used to describe and compare the structure of an existing application

and also used as a starting point for developing the software architecture of a new

application. A key difference between “The Essence of P2P” and PASTA is that PASTA

has been validated (see section 6.5) by using it to describe the structure of existing P2P
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applications. PASTA also complements “The Essence of P2P” by providing support

for topology adaptation and by taking a service-centric view.

As discussed in sections 1.2 and 2.1, the topology of an application affects its per-

formance. As defined in section 1.4 topology adaptation involves creating and main-

taining a desired topology and is a major challenge for P2P application developers.

“The Essence of P2P” does not specify how topology adaptation can be performed

in a P2P application. The primary contribution of this thesis is PESTO an abstract

algorithm for designing topology adaptation algorithms. PASTA builds on PESTO by

providing a template for developing applications that support topology adaptation.

A service-centric view has been taken to simplify PASTA because the notion of

services lends itself well to modelling P2P applications and middlewares. A P2P over-

lay network is used to share both resources and services among peers on the overlay

network. However resources can be accessed through services and so PASTA takes a

service-centric view. In PASTA peers on the overlay network work together to use ser-

vices offered by each other. The shared services can be used to access resources shared

on the overlay network. The service-centric view is another key difference between

PASTA and “The Essence of P2P”.

6.7 Summary

This chapter identified the core concerns that a P2P application needs to address. The

chapter presented PASTA, a reference architecture for the P2P domain. PASTA uses a

service-oriented approach that facilitates the development of a software implementation

(e.g., a P2P file-sharing application) because the software implementation can use the

support for service-oriented architecture provided by the existing middlewares. The

chapter validated PASTA by using it to describe four prominent P2P applications and

middlewares.
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While PASTA is a general reference architecture it can also be used as a template for

developing applications that support topology adaptation using PESTO. Chapters 4

and 5 presented three concrete realizations of PESTO that can be used for topology

adaptation. These three algorithms are possible solutions that can be used to imple-

ment the TopologyAdapter core servent in PASTA, to design applications that require

a hub or a clustered topology.
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Chapter 7

Conclusion

This chapter presents the conclusion of the work presented in this thesis. We first list

the achievements of the thesis and then describe future work. Finally we present the

closing remarks.

7.1 Achievements

The overlay network’s topology is important in P2P applications because it affects the

performance of tasks such as routing of messages and search on the overlay network.

Topology adaptation algorithms can be used to create and maintain a desired topology.

As discussed in section 1.2, application developers have until now developed topology

adaptation algorithms from scratch. The lack of a central peer, makes it challenging to

design algorithms that can create a required topology. The flux of peers on an overlay

network makes it difficult to maintain the topology as required by an application.

This thesis presented an abstract algorithm PESTO that can be used as a template for

designing self-organizing topology adaptation algorithms for decentralized unstructured

P2P overlay networks. PESTO was compared with the only other approach from the

literature that can be used to create a topology adaptation algorithm and was found
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to be more flexible.

This thesis has shown how PESTO can be used to create a family of topology

adaptation algorithms. Concrete realizations of PESTO were presented to validate

its utility as a template for designing topology adaptation algorithms. Two algorithms

called the SelflessClustering and the SelfishClustering based on PESTO were presented

in chapter 4 that can be used to create a clustered topology. An algorithm called the

HubAlgorithm based on PESTO was presented in chapter 5 that can be used to create

a hub topology. A possible approach to constructing a concrete realization of PESTO

to create a power-law topology was presented in section 3.3.

The SelflessClustering, the SelfishClustering and the HubAlgorithm are self-organizing

in nature. Algorithms were validated using simulations, which showed that the algo-

rithms can create the desired topologies and maintain them under a continuous arrival

of peers joining the network. The simulation results show that the clustering algo-

rithms and the HubAlgorithm converge within 10 simulator iterations, which is a good

result.

As discussed in section 1.2.2, the P2P domain has reached a level of maturity

that a reference architecture should be proposed for it. PESTO is presented in the

context of a reference architecture PASTA that can be used by application designers

as a starting point for developing the software architecture of P2P applications that

supports topology adaptation. In PASTA, the topology adaptation core servent is

responsible for topology adaptation, and PESTO can be used to implement this core

servent. PESTO with PASTA provides useful abstractions for designing applications

that support topology adaptation.

While PASTA allows for topology adaptation, it is a generic reference architecture

that can be used to describe and compare the structure of existing applications. PASTA

has been validated by describing existing applications and middlewares. PASTA was

compared with another contemporary P2P reference architecture and was found to
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be an improvement over the existing reference architecture by providing support for

topology adaptation and by taking a service-centric view. The latter enhancement

facilitates the implementation of an application designed using PASTA because an

existing middleware that provides support for Service-oriented architecture could be

used to implement the application.

7.2 Future Work

A limitation of the simulations is that we have not evaluated the scenario when peers

leave the overlay network. In the PESTO-based topology adaptation algorithms pre-

sented in this thesis, a peer periodically checks its neighbors to decide if it is satisfied

with them. A peer can execute topology adaptation steps if it is dissatisfied because

of its neighbors leaving the overlay network. We expect that the topology adaptation

steps would maintain the desired topology in this case also. However simulations are

required to estimate the rate of departure of peers under which the algorithms can

perform effectively.

The topology adaptation algorithms presented in this thesis depend on the choice of

parameters such as PNSPdesired for the clustering algorithms and Hmax for the HubAl-

gorithm. Currently, simulations are the only way to decide the best value for these

parameters and this is a major disadvantage of the topology adaptation algorithms in

this thesis. Further research is required to design TAS and SC that do not depend on

parameters that require simulations to decide their best value.

It is difficult to mathematically analyze decentralized topology adaptation algo-

rithms because of the large number of variables. Section 4.1 presented an analysis

of a specific case (when PNSPdesired is 100%) of the SelflessClustering and Selfish-

Clustering algorithms and showed that it is difficult to analyze the other cases (i.e.,

when PNSPdesired is less than 100%). A future work based on this thesis is to present
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mathematical analysis that explains the results from the simulations.

We have not developed an application using PASTA, however while validating the

architecture we found that PASTA is generally applicable because it can be easily used

to express applications from different application domains. We expect that PASTA

would provide a good starting point for developing an application.

As discussed in section 1.2, a reference architecture provides the basis that can

be used to solve the interoperability problem, so that peers on different overlay net-

works using different protocols and policies could interoperate with each other. The

interoperability aspect of PASTA has not been evaluated in this thesis and remains

a future work. However, we feel that the modular design of PASTA, using compo-

nents that can be implemented using different policies facilitates interoperability. An

application based on PASTA could be implemented using a plugin-based approach so

that by changing the plugins for the different components it could be made to easily

interoperate with other applications.

7.3 Closing Remarks

The October 2006 issue of the reputed magazine Communications of the ACM (CACM)

recognizes nature inspired computing as an emerging approach for solving computing

problems [68]. As discussed in section 1.4.6 the nature-inspired solutions are inter-

esting because typically they are self-organizing. This thesis has proposed a solution

to designing topology adaptation algorithms using the emerging approach of nature-

inspired computing. The solution is based on an agent-based model proposed by

Thomas Schelling and is one of several agent-based models in literature. We hope

that this thesis motivates exploration of other agent-based models for solving P2P and

distributed system problems.
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