
PiCSE: A Framework for Simulation and Emulation ofPervasive Computing Appliations
Vinent Reynolds

A thesis submitted to the University of Dublin, Trinity Collegein ful�llment of the requirements for the degree ofDotor of Philosophy (Computer Siene)
Marh 2015

Delaration
I, the undersigned, delare that this work has not previously been submitted to this or anyother University, and that unless otherwise stated, it is entirely my own work.

Vinent ReynoldsDated: 9th Marh 2015

Permission to Lend and/or Copy
I, the undersigned, agree that Trinity College Library may lend or opy this thesis upon re-quest.

Vinent ReynoldsDated: 9th Marh 2015

Aknowledgements
� Oh odswallop! It's taken me eleven years, and it's perfet. �Edmund: AButler's Tale� � a giant roller-oaster of a novel in four hundred sizzling hapters.A searing inditment of domesti servitude in the eighteenth entury, with somehot gypsies thrown in. My magnum opus, Baldrik. Everybody has one novel inthem and this one's mine�,Edmund Blakadder, 1793.

I have had the pleasure of working with many olleagues who have beome some of my losestfriends. In partiular, Anthony, Daire, Ray, Andronikos and Melanie have supported me whenI needed it and that means a lot to me, more than I an express in these short words. There'sfar too many others to list all the names, but thanks for all the o�ees, the football, the akes,the bisuits, the Starraft and the beers.I owe a speial debt of gratitude to my supervisor, Vinny Cahill. His guidane andpatiene throughout the years have kept the ship steady, and I am indebted to him for all ofthe opportunities whih have arisen out my time in the DSG.Finally, out in the real world, I wouldn't be where I am today without the support andlove of Ba and my daughter Maya. Obrigada amores.vii

Vinent ReynoldsUniversity of Dublin, Trinity CollegeMarh 2015

viii

Abstrat
The �eld of pervasive omputing is hanging rapidly, with the proliferation of and advanesin hardware and ommuniation tehnologies resulting in a shift towards a large-sale, het-erogeneous pervasive omputing world where people and devies move seamlessly betweenpreviously isolated pervasive omputing appliations. Prototyping and evaluation of per-vasive omputing senarios is a neessary yet inherently di�ult step between design anddeployment of new appliations, and simulation has traditionally been both an e�etive andaepted modelling and evaluation methodology that addresses this step.Previous e�orts to provide generi simulation tools that ful�ll the unique requirementsof pervasive omputing have met only limited suess and these have typially foused onextending or modifying existing tools that have been designed for other purposes. There areseveral existing simulators dediated to spei� pervasive omputing domains suh as wire-less sensor networking, ontext-aware omputing, smart spaes, or intelligent transportationsystems. Additionally there are many emulators that provide platform-spei� appliationprogramming interfaes for the evaluation of pervasive appliations in these domains. Per-vasive omputing now enompasses so many sub-domains, tehnologies, and disiplines thatperhaps it is no surprise that truly generi pervasive omputing simulators have yet to be re-ated. Previous work generally su�ers from one of two problems: simulators target a spei�appliation platform or a sub-domain of pervasive omputing, with the result that substantialmodi�ations are required to either simulate or integrate simulations of other sub-domains;or, generi simulators that are too abstrat require substantial e�ort in re-reating reurringelements when speializing the simulator to a partiular domain.The resulting systems do not meet the modelling and evaluation requirements of large-ix

sale, heterogeneous pervasive omputing appliations so there remains a signi�ant openresearh hallenge in this area, whih is to investigate whether a generi simulator an bedeveloped that an model a broad range of existing pervasive appliations as well as newappliations that may emerge in the future. The hypothesis of this thesis is that a framework-based approah to building generi integrated pervasive omputing simulators and emulatorsis a su�iently �exible and extensible approah for the evaluation and modelling of pervasiveappliations.The use of frameworks is a well-reognised software engineering paradigm that is appropri-ate when �exibility, extensibility and reusability are required from the outset. A frameworkomprises a set of abstrat lasses that apture reurring patterns within a group of relatedproblems.The ontribution of this thesis is to show that using a framework is a su�iently �exibleand extensible approah to reating simulators and simulations for a broad range of perva-sive omputing domains. The PiCSE framework - the Pervasive Computing Simulation andEmulation Environment - identi�es the most ommon abstrations found in this �eld, suh assensors and the physial environment, and provides an arhiteture for building simulators forthe many di�erent pervasive omputing sub-domains that exist. These simulators an thenbe used to reate spei� simulations of partiular senarios for these sub-domains. Further-more, the framework an be used to provide an emulation environment for appliations, andmediate the interation between those emulated appliations and any simulated omponents.This thesis desribes the design and implementation of the PiCSE framework and showshow this approah addresses the researh hallenge in this area. The ontribution is evaluatedby instantiating three senarios meeting di�erent requirements suh as sale, use of diversehardware artefats, and omplex appliation exeution environments. These instantiationsvalidate the framework's modularity, �exibility and suitability as an approah for the reationof simulators and simulations for the modern pervasive omputing domain.
x

Contents
Aknowledgements viiAbstrat viiiList of Tables xixList of Figures xxChapter 1 Introdution 11.1 Pervasive Computing . 21.2 Motivation . 41.2.1 Current Approahes to Evaluating Pervasive Computing Appliations 51.2.2 A Set of Challenges for the Modelling and Evaluation of Pervasive Com-puting Senarios . 71.3 A Framework Approah to Simulating and Emulating Pervasive ComputingAppliations. 101.3.1 The PiCSE Framework . 111.3.2 Using the PiCSE Framework . 121.4 The Thesis . 121.4.1 Implementation . 131.4.2 Evaluation . 131.4.3 Thesis Roadmap . 141.5 Summary . 14xi

Chapter 2 Related Work 152.1 Introdution . 152.2 Model-Based Formalisms and Methodologies 162.2.1 Simulation Formalisms . 16The Disrete Event System Spei�ation 16The Disrete Time System Spei�ation 172.2.2 Emulation . 182.2.3 Alternative Software-Based Methodologies 202.3 The Review Criteria . 212.4 An Overview of Pervasive Computing Simulators 252.5 The Key Simulators . 272.5.1 UbiWise . 28RC1: Flexible Heterogeneity . 29RC2: Extensibility . 29RC3: Arhiteture . 29RC4: Appliation Emulation . 30RC5: Interation of Emulated and Simulated Components 30RC6: Network Simulation . 30RC7: Experimental Support . 30RC8: External Interation . 312.5.2 Tatus . 32RC1: Flexible Heterogeneity . 32RC2: Extensibility . 33RC3: Arhiteture . 33RC4: Appliation Emulation . 33RC5: Interation of Emulated and Simulated Components 33RC6: Network Simulation . 34RC7: Experimental Support . 34RC8: External Interation . 34xii

2.5.3 Lanaster Simulation Environment . 35RC1: Flexible Heterogeneity . 36RC2: Extensibility . 36RC3: Arhiteture . 36RC4: Appliation Emulation . 36RC5: Interation of Emulated and Simulated Components 37RC6: Network Simulation . 37RC7: Experimental Support . 37RC8: External Interation . 372.5.4 UbiREAL . 38RC1: Flexible Heterogeneity . 38RC2: Extensibility . 39RC3: Arhiteture . 39RC4: Appliation Emulation . 40RC5: Interation of Emulated and Simulated Components 40RC6: Network Simulation . 40RC7: Experimental Support . 40RC8: External Interation . 412.5.5 SitCom . 42RC1: Flexible Heterogeneity . 42RC2: Extensibility . 43RC3: Arhiteture . 43RC4: Appliation Emulation . 44RC5: Interation of Emulated and Simulated Components 44RC6: Network Simulation . 44RC7: Experimental Support . 44RC8: External Interation . 442.5.6 P-VoT . 45RC1: Flexible Heterogeneity . 46xiii

RC2: Extensibility . 46RC3: Arhiteture . 47RC4: Appliation Emulation . 47RC5: Interation of Emulated and Simulated Components 47RC6: Network Simulation . 47RC7: Experimental Support . 47RC8: External Interation . 482.5.7 StarBED2 . 48RC1: Flexible Heterogeneity . 49RC2: Extensibility . 49RC3: Arhiteture . 49RC4: Appliation Emulation . 50RC5: Interation of Emulated and Simulated Components 51RC6: Network Simulation . 51RC7: Experimental Support . 51RC8: External Interation . 512.6 Perspetives . 522.6.1 RC1 - Flexibility in Modelling Pervasive Computing Components . . . 542.6.2 RC4 - Appliation Emulation . 602.6.3 RC6 - Network Simulator Integration 612.7 Summary . 62Chapter 3 The PiCSE Framework Arhiteture 653.1 Introdution . 653.2 A Framework-Driven Approah for the Testing of Pervasive Computing Appli-ations. 663.3 A Frame of Referene for a Pervasive Computing Simulator 673.3.1 The Sope of External-Faing Features 683.4 Requirements . 703.5 The PiCSE_Core Arhiteture . 72xiv

3.6 The Composition of a PiCSE Instantiation . 763.6.1 Minimum Requirements for a PiCSE Instantiation 783.6.2 PiCSE Instantiations as Sub-Frameworks 803.7 Supported Abstrations . 813.7.1 Supporting the Modelling of the Physial Pervasive Computing Com-ponents . 82The Objet lass . 83Physial Domains . 853.7.2 Supporting the Modelling of the Soft Pervasive Computing Abstrations 863.8 Emulation support within PiCSE . 873.8.1 Enabling Emulation . 873.8.2 The Physial Arhiteture for Emulated Appliations 893.8.3 Supporting Multiple Appliations . 91Disretising an Appliation . 92Exeuting Multiple Appliations . 933.9 Experimental Support . 933.10 Summary . 94Chapter 4 Modelling the Key Pervasive Computing Components 954.1 The PC_Abstration lass ategory . 954.2 ExeutionEnvironments . 974.3 Sensors . 1004.3.1 Push and Pull models . 1014.3.2 Measured Phenomenon . 1024.3.3 Querying . 1024.3.4 Charateristis of Individual Sensor Readings 1034.3.5 External Interfaes . 1044.4 Atuators . 1044.4.1 ExeutionEnvironment Interation . 1054.4.2 Modelling Atuator's E�ets . 105xv

4.5 EnvironmentLayers . 1064.5.1 A Single Modelled Phenomenon . 1064.5.2 A Loation-Based API . 1094.5.3 EnvironmentLayer Complexity . 1114.6 EntityLayers . 1114.6.1 Loation based Interation . 1134.7 PiCSE as a Combinatorial Framework . 1154.7.1 Physial Dependenies . 1164.7.2 Logial Dependenies . 1164.7.3 Limiting the e�ets of updates . 1174.8 Requirements Analysis . 1194.9 Conlusion . 121Chapter 5 Evaluation 1235.1 Introdution . 1235.2 Experimental Methodology . 1235.2.1 The Senarios . 1265.3 The STEAM Emulation Senario . 1265.3.1 Senario Modelling requirements . 1275.3.2 Building the Senario Model . 129Modelling the Senario's Software Components 129Modelling the Senario's Hardware Components 138Interlinking of Simulated Hardware and Software Components 1395.3.3 Exeuting the Senario Simulation . 141Initialising the Experimental Senario 141Exeution of the Simulation . 1435.3.4 Senario Analysis . 146Insights . 147Evaluating the PiCSE requirements . 1535.4 The Car Hardware Senario . 154xvi

5.4.1 Senario Modelling requirements . 1555.4.2 Building the Senario . 156Modelling the senario's software omponents 156Modelling the senario's hardware omponents 159Interlinking of simulated hardware and software omponents 1605.4.3 Exeution of the modelled domain . 162Initialising the experimental senario 162Exeution of the simulation . 1625.4.4 Senario Analysis . 164Insights . 165Evaluating the PiCSE requirements . 1655.5 The Intelligent Transportation Systems Senario 1675.5.1 Senario Modelling Requirements . 1685.5.2 Building the Model . 169Modelling the Senario's Software Components 169Modelling the senario's Hardware Components 1695.5.3 Exeution of the modelled domain . 173Initialising the Experimental Senario 173Exeution of the simulation . 1745.5.4 Senario Analysis . 175Insights . 175Evaluating the PiCSE requirements . 1785.6 Requirements Validation and Conlusion . 1805.6.1 Requirements R1, R2, and R3 . 1805.6.2 Requirement R4 . 1825.6.3 Requirement R5 . 1835.6.4 Requirement R6 . 1845.6.5 Requirement R7 . 1845.6.6 Conlusion . 185xvii

Chapter 6 Conlusions 1876.1 The Challenge Restated . 1876.2 The Contribution . 1886.3 Lessons Learned . 1896.4 Future Work . 190Appendix A Appendix 193A.1 PiCSE Arhiteture Header Files . 193A.2 Evaluation Senarios . 230Bibliography 241

xviii

List of Tables
2.1 Simulator Review Criteria . 222.2 Comparing the review riteria for the key pervasive omputing simulators . . 532.3 Pervasive Computing Components Modelled 545.1 Requirement evaluation metris . 1255.2 The STEAM API . 1295.3 System alls made by STEAM to the underlying operating system. 1305.4 The DUMMY-SEAR API . 1325.5 Lines of ode required to implement the STEAM emulation senario 1495.6 Requirements analysis for the STEAM emulation senario 1535.7 Mapping from system alls to their emulated equivalent 1585.8 Requirements analysis for the Car Hardware senario 1665.9 Requirements analysis for the ITS senario . 1795.10 Overall requirements analysis for R1, R2 and R3 1815.11 The hardware and software models required by the three evaluation senarios 1825.12 Overall requirements analysis for R4 . 1835.13 Overall requirements analysis for Requirement 5. 1835.14 Overall requirements analysis for Requirement 7. 184

xix

List of Figures
2.1 Overlapping Domains of Pervasive Computing Simulators 263.1 The PiCSE_Core arhiteture . 743.2 Coneptual arhiteture showing layers within a generi instantiation of thePiCSE framework . 763.3 Coneptual diagram of a PiCSE simulation in Algorithm Mode 793.4 A PiCSE instantiation in Appliation Mode 803.5 UML Sequene diagram depiting olloated objets senario 843.6 A split level implementation of the PiCSE support for emulating appliations 884.1 The loation of the PC_Abstration lasses within the logial arhiteture. . 964.2 Objets instantiated from the PC_Abstration lass ategory are pre-de�nedto interat using ertain methods. 974.3 The proess by whih a reading passes through a pipeline formed of a ombi-nation of bloking and modifying �lters . 1034.4 Temp_environment lass . 1074.5 A PreipitationLayer objet models rainfall within the simulated environment. 1084.6 EnvironmentLayer instantiations an interat diretly with other Layers . . . 1094.7 Objet instanes within lose proximity, de�ned by the grid's disretised spae,are bundled into a single list . 1124.8 Calulating the Objet instanes within a ertain range in EntityLayer instan-tiations . 114xx

4.9 Logial dependenies an be aptured using Loose or Strit Causality 1185.1 CommandSensor announes event types periodially 1275.2 The CommandSensor appliation broadasts events to his subsribers. 1285.3 The appropriate point at whih STEAM should be emulated must be deter-mined by the user and is not onstrained by PiCSE. 1305.4 STEAM is omprised of an RTE and SUMMY_SEAR library. 1315.5 Extrats from the emulated STEAM library, as de�ned in steamExeEnv.h.The full de�nition of this program may be found in the Appendix. 1335.6 Original STEAM library and emulated STEAM library 1345.7 Comparing original behaviour of the Dummy-SEAR and the emulated DUMMY2-SEAR omponents. 1355.8 Extrats from the CommandSensor program, whih is de�ned in Command-Sensor.pp . 1365.9 Extrats from the TestDevie program, whih is de�ned in TestDevie.pp . . 1375.10 The TestDevie event allbak funtion, whih is de�ned in TestDevie.pp . 1375.11 Modelling of a stati objet an be ahieve by passing a loation parameterduring the instantiation of an ExeutionEnvironment objet. 1385.12 Physial objets an be parameterised with a mobility pattern whih de�nestheir movement during the senario experiment. 1395.13 Code fragment demonstrating the interlinking of the senario's TestDevie ap-pliation and emulated STEAM middleware instane. 1405.14 Code fragment demonstrating the interlinking of the senario's CommandSen-sor appliation, emulated STEAM middleware instane and the modelled mo-bile devies . 1415.15 Code fragment showing the initialisation of the PiCSE_Core aspets of theSTEAM senario environment. 1425.16 Code fragment showing the initialisation of the STEAM senario environment. 1435.17 A sreenshot showing the logged output from the STEAM emulation evaluation.144xxi

5.18 A seondary sreenshot showing the logged output from the STEAM emulationevaluation. 1455.19 Original STEAM library and emulated STEAM library 1475.20 Table showing the number of modi�ed lines of ode with the emulated DUMMY-SEAR library. 1505.21 Photograph of the hardware being emulated. 1545.22 The hardware setup of the Car Hardware Senario. The program running onthe IPAQ, onsumes sensor data via the PIC board. 1555.23 System alls made by the IPAQ appliation 1575.24 System all de�nition �les for the invoked system alls 1595.25 Co-loation of ExeutionEnvironment and the IPAQ appliation 1615.26 Co-loation of ExeutionEnvironment and Sensor Objets 1615.27 A sreenshot showing the logged output from the Car Hardware Senario eval-uation. 1635.28 The Dublin City road tra� network . 1675.29 A snippet from the ityentre.xml �le desribing the road network topologyand onstraints. 1705.30 A sample entry from the path de�nition �le 1725.31 A setion of ode demonstrating how the ar path �le is parsed. 1745.32 Parsing the CityCentre.xml map �le . 1745.33 Two sreenshots from a visualisation of the Dublin tra� senario 1755.34 A vehile interats with its environment to inform its next movement 177A.1 Arhiteture Diagram for typial instantiation 193A.2 Class Category distribution of header �les. 194
xxii

Chapter 1
Introdution
Simulation an play an important role in the life-yle of software engineering projets (Zeigler 00).This is partiularly true in the ase of pervasive omputing where the sale of appliations anbe large and they are often designed to be deployed in less than ideal physial environments(Raza�ndralambo 10). Designing a simulator that meets the modelling requirements of per-vasive omputing is a di�ult hallenge arising from three fators: there is a broad diversity ofappliation areas within the domain; these appliation areas are now interseting, and �nally,new appliation areas are emerging quikly. At present, new simulation tools are being de-veloped to keep pae with eah new appliation area (Mangharam 06; Eugster 06; Jouve 09)within the evolving pervasive omputing domain. This thesis desribes the Pervasive Com-puting Simulation and Emulation (PiCSE)1 framework, its arhiteture and design, the om-bination of whih addresses these hallenges.PiCSE is a framework (Johnson 88) that supports both the reation of pervasive om-puting simulators and individual simulations through the modelling of reurring pervasiveomputing abstrations and their relationships. The reation of domain-spei� pervasiveomputing simulators suh as intelligent transportation system (ITS) simulators or smart-spae simulators is enabled by speialising the PiCSE framework's abstrations to reatedomain-spei� abstrations.The instantiation of a group of PiCSE abstrations, or of any speialised domain-spei�1 Pronouned as Pixie 1

1.1. Pervasive Computingabstrations provided by a domain-spei� simulator results in the reation of an instanesimulation: a simulated model of a spei� pervasive omputing senario. Moreover, thePiCSE framework supports the emulation of appliations that form an integral part of thesesenarios, and these emulated appliations an be integrated into instane simulations. ThePiCSE simulation engine, whih underpins the framework, mediates the interation of em-ulated appliations with simulated artefats. PiCSE's �exible approah enables a person toinstantiate the framework to reate domain-spei� simulators and simulations to evaluate adiverse range of pervasive omputing appliation areas.The remainder of this hapter is strutured as follows. Setion 1.1 provides a broadintrodution to the area of pervasive omputing. The motivation and urrent methodologiesfor evaluating pervasive omputing appliations are presented in setion 1.2 whih then drawson a disussion of these approahes in the �eld to derive the key hallenges in this area. Setion1.3 introdues the onept of frameworks and suggests why a framework-driven approahmight be suessful in addressing these hallenges. A desription of the ontribution of thethesis and the evaluation methodology used is provided in setion 1.4 and a road map of theremainder of the thesis onludes this hapter.1.1 Pervasive ComputingPervasive omputing (Weiser 91; Weiser 93) as an area of researh is one that enompassesmore foused areas suh as ambient intelligene (Bresiani 04), sensor networking (He 04),ontext-aware omputing (Benereetti 01), and smart spaes (Dearle 03). Consider the follow-ing pervasive omputing appliations. Smart-spaes (Tapia 04) are often passive appliations,ating in the bakground and driven by loal sensors, whih an then adapt some aspet of thespae suh as aess ontrol (Selvarajah 10) or telephone all re-routing to a user's require-ments. An environmental-monitoring wireless sensor network (Ji 04) ould omprise sensors,perhaps monitoring preipitation, noise, or temperature, attahed to wireless sensor motesthat propagate that sensor information to other sensor motes through an ad-ho ommuni-ation network. Intelligent transportation systems (Klein 01) typially use embedded sensorssuh as indutive loops in the road network as inputs into algorithms (Salim 08) that improve2

Chapter 1. Introdutionthe throughput of the vehiles in the system. Despite the diversity of these appliations, allof them an be onsidered to lie within the broad domain of pervasive omputing.More reently, there has been a shift towards the integration of heterogeneous pervasiveomputing appliations. As adoption and deployment of pervasive omputing tehnologiestakes hold, the physial and logial boundaries between these appliations are being reduedand now overlap in many ases (Handte 09). The traditional notion of a pervasive omputingappliation as a losed, isolated system is being eroded with the integration of servie-orientedarhitetures into pervasive omputing appliations (Guinard 10), enabling users to exploitthe servies and funtionality of di�erent pervasive omputing appliations as they move be-tween them. If the integration of these pervasive appliations is to be suessful, informationdesribing users of these appliations and the appliations themselves must be freely availableand understandable by all so that it an be onsumed by all pervasive omputing applia-tions when and where they need it. As a result, there has been attempts reently towardsentralising these servies: two reent examples are Google Latitude2 whih provides serviesfor managing a user's loation and Conserv (Hynes 09) whih manages a wider spetrum of auser's ontextual data suh as their alendar events and personal devies that might identifythem.In addition, a new lass of ad-ho pervasive omputing is now emerging with the userat its entre. In itizen sensing (Campbell 08) or partiipatory sensing as it is sometimesknown, users with powerful sensor-enabled mobile devies are augmenting, and in some asesreplaing, stati embedded sensors in the physial environment. The �wisdom of rowds�, ortheir olletive sensed information in this ase, is leading to innovative rowd-soured ap-proahes to environmental monitoring (Lu 09) and even supporting the reation of interativeart installations (Vyas 10).These examples represent a small sub set of all the domains that pervasive omputingaddress, yet despite the diverse nature of these pervasive omputing sub-domains, there are aset of reurring harateristis that are ommon within them. They are typially deployed insensor-equipped spaes, whether those sensors are stati or mobile, where information regard-2www.google.om/latitude 3

1.2. Motivationing the environment and loal ontextual information is leveraged by appliations to providemore tailored and ontextualised funtionality and servies within that environment. In ad-dressing this area, pervasive omputing appliations have to ontend with many non-trivialproblems inluding dependability, large sale, physial distribution, seurity and timeliness.Moreover, typial environments in whih these appliations are deployed inlude buildingsfor smart-spae senarios (Tapia 04), rugged terrain for environmental monitoring (Ji 04) androad networks for intelligent transportation systems (Klein 01). These environments are oftenphysially in a remote loation making deployment and maintenane both di�ult and ostly.1.2 MotivationModelling and evaluation plays a ritial role in the life-yle of any software engineeringprojet but presents some partiular hallenges in pervasive omputing appliation senar-ios. The appliation typially extends beyond the omputer into the physial environmentthrough the use of sensors, atuators, or loation-based servies. The impliations for thetesting of these senarios is that the omplete pervasive omputing eo-system, inluding theenvironment, devies, their users and other fators should be onsidered. However, this in-trodues di�ulties that must be overome. Testing in physial environments suh as oean�oors (Jiang 09), o�es and homes (Selvarajah 10) to road networks (Salim 08) and sportsenvironments (Kranz 07) an be invasive, disruptive and often hampered by bureauray, ifaess is even available. Many of these appliations are prediated upon hardware tehnolo-gies suh as heap, reliable sensors, for example, radio frequeny identi�ation tags (Xu 10) orwireless sensors (Medagliani 10), whih are yet to be widely deployed or even available in thesales that are envisioned, and as a result, aurate real-world deployments in some domainsmay not yet be feasible. Pervasive omputing appliations in the areas of intelligent trans-portation systems or urban-sensing for example, an involve the interation of thousands ortens of thousands of elements. Finally, the evolving nature of the �eld means that new areasare emerging and the pervasive omputing ommunity urrently laks the appropriate toolsto evaluate some of these areas suh as partiipatory-sensing (Campbell 08). In these ases,proof-of-onept prototypes or ustom evaluation tools may have to be developed. Fators4

Chapter 1. Introdutionsuh as these impat upon the time and e�ort required to evaluate and debug a pervasive om-puting prototype, partiularly when onsidering that an exhaustive set of ontrolled senariosmay have to be deployed in order to evaluate a prototype rigorously.1.2.1 Current Approahes to Evaluating Pervasive Computing Applia-tions(Nakata 07) lists testbeds, small-sale laboratory tests and simulation as three methodologiesfor evaluating pervasive omputing appliations. Whih of these methodologies is hosen toevaluate any partiular pervasive omputing senario is in�uened by experimental fatorssuh as the appliation's urrent stage of development and on what the desired outome ofthe evaluation is. The methodology hosen an additionally be in�uened by loal fatorssuh as the tester's aess to hardware devies and testing failities, osts, and the time thatis available to test the appliation. If the purpose of the evaluation is to validate whether apervasive omputing appliation is robust enough to be ready for a ommerial release andsubsequent real-world deployment, then an appropriate evaluation methodology might be touse a large-sale testbed, whereas in the reation of an appliation prototype in an emerginglarge-sale �eld, a simulation-based evaluation may be used.Physial testbeds suh as the Twist (Handziski 06) and MoteLab (Werner-Allen 05) testbedsprovide an experimental platform in whih appliations are exeuted on hardware deviesin a stable environment, where there is usually a supporting infrastruture in the form ofbak-hannels and monitors for the management, ontrolled exeution and debugging of ex-periments. Using native hardware devies as the platform for an experiment potentially givesgreater redibility to results gathered from any experiment when ompared, for example, withsimulated results however, the methodology and supporting infrastruture usually restrits thetestbed to that partiular platform and thus to a spei� domain of pervasive omputing. Todate, most testbeds are very domain spei�, have not been designed with integration ofother domains in mind and thus are not suitable as a generi pervasive omputing evaluationplatform.Small sale laboratory testing is a methodology similar to the use of testbeds in that5

1.2. Motivationexperiments are exeuted on real hardware devies. In ontrast to testbeds however, there israrely a permanent infrastruture supporting the experiments, resulting in experiments thatare often not very salable and that an be di�ult to reprodue in other laboratories.Finally, there are several existing pervasive omputing simulators but few that reogniseor re�et that pervasive omputing is beoming a more multi-disiplinary domain with newemerging areas of researh and their rossover with existing areas of researh. As an eval-uation methodology, simulation's popularity is demonstrated by its wide aeptane withinthe pervasive omputing ommunity as a valid methodology, and many simulation librariesare open-soure and are available for little or no ost (Fall 01; Martin 06a) so it has a lowbarrier of entry in this respet. However, in general, these simulators are rarely designed forinter-operation (Kuhl 99) and are not apable of modelling the diverse range of pervasive om-puting senarios that exist, i.e., a network simulator is not readily adapted to the modellingof a ontext-aware omputing senario beause it was not intended to model onepts suh asuser behaviour and ativities. Therefore, any simulated senario that inludes both aspets ofontext-aware omputing and wireless networking requires either the reation of a new sim-ulation tool for that partiular domain, or the modi�ation and integration of existing tools.In addition to simulation, emulation provides a low ost alternative to the evaluation of appli-ations by removing the physial requirement for the intended devie platform to be availablefor the evaluation of a partiular appliation. Salable and ost-e�etive prototyping an beahieved as multiple instanes of an emulator an be run in parallel, without the experimentaloverhead of managing and deploying an appliation on the hardware devies. Many existingemulators within the pervasive omputing domain are written for appliations targeted fora single spei� platform. For example, the TOSSIM emulator (Levis 03) supports TinyOS(Hill 00) appliations only, although these an run on several related hardware platforms suhas the TMote Sky3 and the MoteIV. By onstraining an emulator to a single appliation plat-form, an emulator is impliitly onstraining its sope to a spei� domain as these appliationplatforms are generally domain-spei�, in this ase, wireless sensor networking.3www.sentilla.om 6

Chapter 1. Introdution1.2.2 A Set of Challenges for the Modelling and Evaluation of PervasiveComputing SenariosThis thesis is onerned with methodologies that are both suitable for the evaluation of awide range of diverse pervasive omputing senarios and that an be extended to evaluate newsenarios that may emerge in the future.It an be seen from the approahes that have been desribed in the preeding setions thattestbeds, small-sale laboratory testing, simulators and emulators meet these requirements tovarying degrees of suess. Testbeds are very e�etive tools and an provide exellent ex-perimental support, however they are expensive to reate and maintain, and are usuallyonstrained to a single appliation domain and hardware platform. In many domains suh asintelligent transportation systems (ITS) and urban sensing, large-sale testbeds may not evenbe feasible to anyone exept the largest industrial researh labs. Whilst it is possible to reatebespoke small-sale laboratory tests for almost any domain, these are inherently limited insale, are often built without onsideration for extensibility and require physial reon�gura-tion for eah new senario. In the ase of both existing simulators and emulators, there are awide range of domain-spei� tools and libraries in existene whih are often extensible withintheir domain but annot be easily integrated with eah other despite their software-only ap-proah. They additionally address omplimentary aspets of pervasive omputing senarios.Simulators an model and be used to evaluate physial elements suh as sensor devies, users,a wireless network, and the environment, whilst an emulator an model the run-time environ-ment of appliations that exeute within those senarios and potentially interat with thoseelements. In onlusion, there is no one size �ts all evaluation strategy that an be appliedto pervasive omputing appliations however, a �exible and ombined approah of both sim-ulation and emulation ould potentially support the evaluation of large-sale heterogeneousappliations.Based on the issues identi�ed in the overview of pervasive omputing domains in setion1.1 and in the range of modelling and testing methodologies used to evaluate those domainsin setion 1.2.1, the following researh problem has been identi�ed. As pervasive omput-ing appliations grow in sale and ubiquity, the range of elements that have be taken into7

1.2. Motivationonsideration when evaluating those appliations is also inreasing. However, all of the eval-uation methodologies su�er to a ertain degree from the same weakness, in that they are tiedto a spei� pervasive omputing domain and are generally not designed to be extended toevaluate new appliations whih ould draw from more than one independent domain.One of the main arguments for maintaining the status quo of testing individual aspetsof partiular pervasive omputing domains in isolation is the need for rigorousness in theexperimental method. By isolating as many experimental fators as possible, it is then easierto ahieve quanti�ably independent, reproduible and objetive results. Certainly, using asingle independent simulator is at least theoretially more suitable for this task. However, ashas been noted, new multi-disiplinary areas of pervasive omputing suh as vehiular ad-honetworks (VANETs) and smart spaes makes it more di�ult to treat these areas in isolation.In the ase of VANETs(Klein 01), the behaviour model responsible for the movement of avehile is a fator in the e�etiveness of a routing protool that might be running within thatVANET. Of ourse, the behavioural model of the vehile an be redued to a plug-in or amobility pattern that might be integrated into a network simulator, but that model still has tobe built by an expert in the vehiular ommunity. Furthermore, there may be appliations inthe future whereby the outome of an appliation that is using the routing protool in�uenesthe behaviour of the vehile. In that ase, the limitations of a simple plug-in based approahwill be exposed and the integration of both network and vehile simulators will then have toahieved.The following hallenges have been identi�ed as key issues in addressing this open researhproblem:1. Flexible Heterogeneity: Any simulator or emulator should be able to support hetero-geneous elements, both hardware and software based, and the fat that these elementsan interat in a manner that is unrestrited by any adopted approah. These elementsmay ome from di�erent pervasive omputing domains.2. Extensibility: Any simulator or emulator should be able to aommodate new emerg-ing areas of pervasive omputing not yet identi�ed, where these new areas an ompriseof both new hardware and software elements not yet identi�ed.8

Chapter 1. Introdution3. Reusability: Any simulator or emulator should simplify the task of building and inte-grating elements that are to be evaluated.Simulation and emulation are two evaluation methodologies that an support large-sale se-narios and that are ommonly implemented using extensible arhitetures, albeit generallywithin their domain only. The hypothesis of this thesis is that a new framework-based ap-proah to building generi integrated simulators and emulators for pervasive omputing ap-pliations is a su�iently �exible, extensible, and reusable approah for the evaluation andmodelling of these appliations. These three hallenges are not exhaustive by themselveshowever. There are additional hallenges in this area that inlude:1. Modelling Large-Sale Senarios: Many pervasive omputing appliations requirethe interation of many thousands of interating features suh as appliations, sensors,and users, and in some ases even more. This motivates the need for a salable approahin addressing this hallenge.2. Timeliness: The realisti modelling of appliation behaviour in many pervasive om-puting domains neessitates the aurate modelling of the time taken for an event suhas a sensor reading or an appliation behaviour.Whilst these are important hallenges in the simulation of pervasive omputing appliations,they are not the key hallenges when addressing the issue of the modelling and simulationof overlapping of new and emerging pervasive omputing appliation domains. Nevertheless,these two hallenges present seondary hallenges and their onsideration is addressed inthe thesis where appropriate. Finally, appliation-spei� requirements suh as seurity anddependability provide additional hallenges but these are pertinent to the appliations thatmay run within the senarios and are not spei� features that are addressed independentlyin this study. 9

1.3. A Framework Approah to Simulating and Emulating Pervasive ComputingAppliations.1.3 A Framework Approah to Simulating and Emulating Per-vasive Computing Appliations.Johnson et al (Johnson 88) de�ne a framework as�a set of lasses that embodies an abstrat design for solutions to a family ofrelated problems.�This de�nition enapsulates the abstrat nature of frameworks, while apturing their suitabil-ity to addressing families of related problems. Other de�nitions, notably those of Campbell(Campbell 91) and Booh (Booh 93) inorporate the onept that the olletion of lassesonstituting a framework, interat in a de�ned manner or pattern. The bene�ts of usingframeworks are well known, and Shmidt (Shmidt 97) lists these primarily as modularity,reusability and extensibility. He states, that frameworks�enhane modularity by enapsulating volatile implementation details behind sta-ble interfaes. This loalisation redues the e�ort required to understand andmaintain existing software.�This de�nition highlights the use of stable interfaes de�ned by a framework to abstrat fromthe implementation of the framework. He goes on to state that stable interfaes�provided by frameworks enhane reusability by de�ning generi omponents thatan be reapplied to reate new appliations. Framework reusability leverages thedomain knowledge and prior e�ort of experiened developers in order to avoid re-reating and re-validating ommon solutions to reurring appliation requirementsand software design hallenges.�This de�nition of reusability aknowledges that if reurring requirements and software designhallenges an be identi�ed amongst a set of related problems, then these an be exploitedwithin a framework to redue the e�ort in reating new appliations. Finally, Shmidt et al(Shmidt 97) state that a well-designed framework enhanes extensibility10

Chapter 1. Introdution�by providing expliit hook methods that allow appliations to extend its stableinterfaes.�and that�framework extensibility is essential to ensure timely ustomisation of new appli-ation servies and features.�The bene�ts of extensibility are lear within frameworks, as it means that the framework anbe extended to support new appliation features identi�ed in addition to the original set ofrelated appliation features.1.3.1 The PiCSE FrameworkThe PiCSE framework is implemented as a set of abstrat lasses that an be grouped intotwo lass ategories (Kruhten 95), the PC_Abstrations and the Abstrat_Interfaes lassategories, that address the three key hallenges identi�ed; �exible heterogeneity, extensibility,and reusability. A third lass ategory, the Core_Components lass ategory, provides a setof ore omponents, for example, the simulation engine, that underpin and are ommon, toall simulations reated using the PiCSE framework.PiCSE's PC_Abstrations lass ategory provides the lass de�nitions of reurring ele-ments of pervasive omputing appliations suh as sensors, environments, and appliationplatforms. These abstrations are designed to be su�iently generi that they may be in-stantiated to reate a diverse range of onrete instanes with variable harateristis, thusmeeting the requirement of supporting heterogeneity. In addition to this, the abstrations takeinto onsideration the likely interations between these instantiations, and the framework ap-proah allows onrete instanes to be modularly ombined, allowing the �exible reation ofmore omplex instantiations.The framework's Abstrat_Interfaes lass ategory omprises a set of abstrat interfaesthat also underpin the PC_Abstrations lass ategory, allowing for the extension of theframework to reate new abstrations. These set of abstrations apture onepts suh asmobility, whether an objet an be arried, whether a feature an be sensed, and others that11

1.4. The Thesisare reurring aross pervasive omputing domains. This lass ategory addresses the hallengeof extensibility within the framework's arhiteture that an aount for emerging domainsin the future.The framework-driven approah addresses the hallenge of reusability by providing om-mon solutions to reurring appliation requirements and software design hallenges. All threelass ategories, the PC_Abstrations, Abstrat_Interfaes and Core_Components lass at-egories ontribute here by providing the base of an extensible framework, that also aptureshow these omponents an potentially interat. The apture of these reurring omponentsand their interations in a generi way within the framework redues the e�ort required toreate new simulators and simulations.1.3.2 Using the PiCSE FrameworkThe PiCSE framework an be speialised by domain experts to a range of pervasive omputingsub-domains. Two experts in separate domains an speialise the PiCSE framework usingPiCSE's reurring interation patterns to reate simulators for their respetive sub-domains,and that these simulators an themselves be provided in the form of frameworks that an befurther speialised where appropriate. Furthermore, simulated and emulated elements of therespetive sub-domains an exist and interat within the same simulated spae if desired.1.4 The ThesisDomain-spei� simulators address partiular appliation domains suh as wireless sensornetworking or ontext-aware omputing and these play an important role in the evaluationof individual appliation areas. However, their onstrained and in�exible arhitetures donot meet the modelling and evaluation requirements of large-sale, heterogeneous pervasiveomputing appliations so there remains a signi�ant open researh hallenge in this area,whih is to investigate whether a generi simulator an be developed that an model a broadrange of existing pervasive appliations as well as new appliations that may emerge in thefuture. 12

Chapter 1. IntrodutionThis thesis addresses this open researh hallenge. PiCSE's framework-driven approahand lass ategory implementations will be shown to be su�iently �exible and extensiblethat users an reate simulators for a broad range of pervasive omputing appliations thathave diverse harateristis, and is a novel ontribution to the state of the art in this �eld.
1.4.1 ImplementationThis framework approah is implemented as a set of C++ (Stroustrup 98) libraries, that aregrouped into three separate lass ategories. The simulation engine underlying the system isbuilt upon an existing event-based simulator, Simpak (Fishwik 95), whih has been extendedusing a multi-thread approah to seamlessly and �exibly manage multiple heterogeneous emu-lated appliations and simulated hardware omponents. Furthermore, the engine supports theinteration of both these simulated hardware omponents and emulated appliations, enablingrealisti input and output hannels to be reated for the emulated appliations. Appliationsthat interat diretly with an underlying operating system via system alls or alternativelythat are built upon middleware an be modelled.
1.4.2 EvaluationThree instantiations of the framework were reated to validate the hypothesis of the thesis'sframework-driven approah. In the �rst Soial-Sensing Senario, an event-based middleware isemulated. Appliations that are built upon that middleware then exhange messages whilstmoving around a onstrained physial spae. In the seond Car-Hardware Emulation Se-nario, Linux system alls are emulated, and appliation instanes use those system alls tointerat with simulated sensors reading data from the environment. The third and �nal In-telligent Transportation Systems Senario models vehiular tra� in part of Dublin, Irelandand demonstrates the simulator's support for large-sale simulations, a omplex environment,and omplex inter-related objet types. 13

1.5. Summary1.4.3 Thesis RoadmapThe remaining hapters of this thesis provide a detailed desription of the PiCSE framework,its ontribution to the state of the art and an evaluation of the work. Chapter 2 providesan examination of the state of the art in simulators and emulators for pervasive omputingand related domains. Chapter 3 desribes the framework, its arhiteture and design and anadditional setion within that hapter also desribes the framework's support for the emulationof appliations. Chapter 4 examines the implementation and features of the key omponentssupported in more detail. An evaluation of the thesis and its ontributions is doumented inChapter 5 and the onlusions are presented in Chapter 6.1.5 SummaryThis hapter outlines the motivation for, approah, and ontribution of the thesis - the designof a framework that an be speialised to reate simulations of pervasive omputing senar-ios. An introdution to the area of pervasive omputing is presented to de�ne the sope ofthe thesis. The work is then motivated by examining the urrent methodologies for evaluat-ing pervasive omputing senarios and identifying a set of open hallenges. An overview ofPiCSE's framework-based approah is then provided before the ontribution of the thesis ispresented.

14

Chapter 2
Related Work
2.1 IntrodutionThe use of simulation as a valid methodology for the modelling and evaluation of pervasiveomputing appliations has been established, and three ore hallenges, �exibility, extensibil-ity, and reusability have been identi�ed that must be addressed by generi simulators for thebroad pervasive omputing domain. This thesis desribes a modular generi and extensibleapproah that enables the simulation of a broad range of existing pervasive omputing ap-pliations as well as new appliations that may emerge in the future. The objetive of thishapter is to examine established and prior works in this area that have attempted to addressthese researh hallenges. In doing so, the strengths and weakness of these approahes areidenti�ed and these will be used to derive requirements for the proposed framework-drivenapproah that forms the ontribution to this thesis.In this hapter, an overview is provided of the many simulators in this �eld; examiningboth generi pervasive omputing simulators that attempt to address the entire domain, aswell as some of the simulators for the many sub-domains of pervasive omputing. What isestablished is that there are few truly generi simulators that take a �exible and extensibleapproah to modelling the pervasive omputing domain as a whole.This hapter begins by providing a brief overview of some of the lassial simulationformalisms and methodologies. Based on these and the hallenges identi�ed in hapter one,15

2.2. Model-Based Formalisms and Methodologiesa set of evaluation riteria are identi�ed by whih the simulators established in this state ofthe art will be examined. A broad overview of the representative work in this �eld is thenprovided, before seven of the most well known and ited simulators representing the stateof the art in this spae are then examined. The salient points and other notable features ofeah simulator are noted, and these simulators are measured against the evaluation riteria.Finally, Setion 2.6 takes a step bak and o�ers a wider view on the issues raised by theexamination of the simulators. Additional simulators are onsidered at this stage to broadenthe overall perspetive, and assess alternative approahes and features that are not employedby those examined in detail.2.2 Model-Based Formalisms and Methodologies2.2.1 Simulation FormalismsSimulation is a software-oriented modelling and evaluation methodology and is one of the mostpopular and widely used within the pervasive omputing ommunity today. A simulation isa desription of a system, or at least of some of its omponents expressed in terms of a set ofstates and events (Zomaya 96). Several simulation formalisms exist (Law 00), most notablythe disrete event system spei�ation but also the disrete time system spei�ation, and thedi�erential equation system spei�ation formalisms.The Disrete Event System Spei�ationThe most popular formalism, the Disrete Event System Spei�ation, known as DEVS(Zomaya 96), spei�es a system in terms of a time base, a set of inputs, outputs, urrentstate, and a set of state transition funtions. An implementation of a DEVS simulator typ-ially ontains a time-ordered list of events, often in the form of funtion pointers, a lok,some state information, a set of funtions for handling events and a loop that advanes thesimulation. As the lok progresses to the time of the next sheduled event, that event isremoved from the event list and any orresponding funtionality to that event is invoked.This funtionality an have two e�ets: Firstly, a hange in the state information may our,16

Chapter 2. Related Workand seondly, the event list may be updated, whereby either more events are sheduled in thefuture or existing future events are anelled. The hallenge in building a suessful modelor simulation of any system is in the implementation of funtionality assoiated with anyproessed events.DEVS, as a formalism, an also be extended to parallel and distributed arhitetures(Fujimoto 00; Tropper 02). Simulations of omplex systems an take a long time on singlesequential mahines, and opportunities to parallelise these simulations an greatly speed upthe exeution of these simulations. The amount of atual gain that an be ahieved in suhsystems is determined by a number of fators inluding the spei�ation of the level of �delityrequired and the inter-dependene of any parallelised data sets and proesses.One weakness of the DEVS formalism is that the approah is not easily adapted to real-time simulations, i.e., simulations that appear to proeed at the same speed as the modelledbehaviour would appear in the real world. In the DEVS formalism, the simulation steps fromevent to event, and there is no behaviour modelled or exeuted in between those events. As,suh, there is no modelling of the passing of time in between those events, and the simulationusually ompletes as quikly as possible. Simulators built using the Disrete Time SystemSpei�ation formalism take some steps towards addressing this de�ieny.The DEVS model is arguably the most popular model amongst the simulation ommunityat the present time and several onferenes1 and workshops2, both aademi and industrial,are dediated to solely advaning the model. There are many popular DEVS simulators andtools that are pervasive omputing oriented suh as ns-2 (Fall 01) and Diasim(Jouve 09). Inaddition to that, there are several generi simulation tools and libraries, suh as C-Sim3,JavaSim4, and SimPy whih are also available under open soure lienses.The Disrete Time System Spei�ationIn the Disrete Time System Spei�ation (Zomaya 96), a simulation advanes at �xed time-steps, and at eah time-step the orresponding modelled funtionality or behaviour is invoked.1http://www.ss.org/onfern/springsim/springsim09/fp/springsim09.htm2http://www.isima.fr/~traore/SCSCDEVS/index.html3http://www.-sim.zu.z4http://javasim.odehaus.org 17

2.2. Model-Based Formalisms and MethodologiesAn implementation of this formalism typially ontains a lok, some state information, a setof funtions that model that state information, and a loop that invokes those funtions ateah �xed time-step thus advaning the simulation. In the Disrete Time System Spei�ation(DTSS) formalism, all events our �at the same logial time� and are exeuted in the orderin whih they were sheduled, whereas in the DEVS formalism the events are totally orderedglobally.Real-time simulations are a partiular variation of the DTSS simulation formalism wherethe time steps are synhronised with the time of an entity observing the simulation. Inthis ase, the simulation appears to run at what is alled the �wall-time�. This partiularvariation has many bene�ts, most notably that it appears real from a timing perspetive toan external observer and is thus suitable for approahes where the observer plays a role inthe simulation. This is often the ase where there is a graphial interfae for the observerin, for example, a training simulator, or a game. This synhronisation with the real worldintrodues a timeliness requirement of ourse, whih is that all events that must be observedexternally must be modelled within that time-step. This an introdue an arti�ial bound onthe number of events that an be simulated given that a simulation is being exeuted on adevie with a �xed number of omputing resoures.2.2.2 EmulationAnalysis of appliation behaviour is an important part of the evaluation of a pervasive om-puting senario and is addressed by numerous emulators (Girod 04a; Sobeih 05). An emulatoran be de�ned as a system that implements the behaviour of an original system, i.e., a thirdsystem annot di�erentiate between the behaviour of the original and the emulated system.However due to system resoures and fators suh as the run-time interpretation of instrutionsets, there may be di�erenes in the speed at whih the emulated appliation runs, usuallyslower. Unlike a simulation whih attempts to model the state of a system, an emulator's em-phasis is on realistially modelling the interation between the system and an external party,an appliation in this ase. Emulators allow appliations to be exeuted as if they were atu-ally deployed within their native run-time environment, a requirement that simulators annot18

Chapter 2. Related Workmeet within the overall modelling and evaluation of pervasive omputing senarios. This isimportant as it allows developers to bypass some of the problems inurred whilst bridgingthe gap between a simulated algorithm and a real appliation. The at of implementing andevaluating ode twie (Nishikawa 06), one for the simulation and one for the atual imple-mentation, is time onsuming and the translation from algorithm to appliation an introduedi�erenes in appliation behaviour. Emulation addresses this problem by providing a simu-lation platform for the evaluation of appliation ode but requires that the target platform isrealistially modelled.There are various approahes to emulating omputer programs but these an be split intoeither hardware- or software-level emulation and the approah that is hosen is usually de-pendent on the interfaes upon whih the emulated program is built. For example, when theemulated appliation is programmed so that it interats diretly with the hardware, perhapsaddressing hardware suh as memory, then a hardware emulation tehnique suh as �binarytranslation� an be used. This involves the interpretation and translation of mahine in-strutions from their original form into instrutions that the host platform an interpret andexeute. The hardware-level approah is also used when the aspet of the program underevaluation is dependent on the hardware being used. For example, within wireless sensornetworks, evaluating the performane of a sensor mote an be dependent on the behaviour ofthe CPU or the radio.For programs that do not address hardware but perhaps are implemented at a higher logi-al layer, for example, appliations that are built upon system alls, then software emulation ismore typially used. In this ase, a ompatibility layer must be desribed that provides a map-ping from the original system alls to system alls on the host platform. For example, transla-tion software implementations suh as Wine (Win 07) and WABI (Sun Mirosystems 96) bothemploy this tehnique, e.g., allowing Windows programs to run unmodi�ed on x86 UNIX andSolaris SPARC mahines respetively. The TOSSIM (Levis 03) and EMTOS (Girod 04b)emulators, both emulating TinyOS (Hill 00) appliations, implement the traditional software-level emulation by interepting and redireting funtion alls when the program is beingompiled. In this ase, TinyOS system alls are redireted to a simulated TinyOS operating19

2.2. Model-Based Formalisms and Methodologiessystem that provides all of the required funtionality of the atual operating system but thatan interat with the emulator. Using this approah, there is no need to interept funtionsduring the exeution of the program.It should be noted that some of the related works examined in this hapter use the termsimulation when the term emulation would stritly be more aurate. TOSSIM, a TinyOSemulator is an example of suh an instane, and these instanes are noted throughout thethesis when they our.2.2.3 Alternative Software-Based MethodologiesThere are several software-based approahes that ould be adopted here in addressing thesehallenges but these are inadequate in meeting the broad hallenges identi�ed in hapter 1.For example, one approah would be to build a �super-simulator�, an all-in-one simulator of theentire pervasive omputing area. However, in order to build this type of simulator, it wouldrequire a level of domain expertise in all of the sub-domains in order to implement models ofall the required elements and would not neessarily support areas of pervasive omputing thatare yet to emerge. Simulators that laim to be general pervasive omputing simulators suhas UbiWise (John J. Barton 03) ommonly only model a subset of the omplete set of aspetsof the domain. Any approah that does not expressly inorporate �exibility and extensibilityinto its initial design and arhiteture is not well positioned to be adapted to the hallengesof modelling overlapping and emerging new domains within pervasive omputing.A seond alternative approah is the modi�ation and integration of existing simulators.For example, researhers in aademia and the motor industry have long speulated on theimpat that the emerging area of vehiular ad-ho networks, might have on vehiular appli-ations inluding driver safety and vehile oordination (Salim 08). There are many existingvehile and network simulators so an integration of one of eah of these simulator types shouldbe able to leverage the independent domain expertise of both the vehile simulation ommu-nity and the network simulation ommunity, and ould address the modelling needs of thevehiular ad-ho networking (VANET) ommunity. Depending on the implementation andunderlying formalism of the respetive simulators, this approah requires an understanding20

Chapter 2. Related Workof ommon properties suh as the simulated time and the loation of ommon objets. Ina simulated VANET senario (Mangharam 06), the ommon objets, the vehiles and theirnetwork interfaes have the same loation whih must be synhronised within the respetivevehile and network simulators.Clearly this approah an address the hallenge of modelling overlapping domains, butuntil standardised API's are agreed upon for all simulators, this an only be ahieved on abespoke basis. At present there are no agreed interfaes, and few simulators that an inter-operate. The integration of two or more simulators does not address the hallenge of beingable to model new and emerging areas of pervasive omputing, and this approah is only asextensible as its onstituent simulators are. Finally, an integrated approah neessitates thetester to have the required expertise in eah of the simulators that are to be integrated.In onlusion, building a super-simulator is not a viable approah as it is inherently on-strained with respet to future extensibility whilst e�orts to integrate independently reatedsimulators are limited by a lak of standardisation and by the �exibility and extensibility ofthe onstituent simulators. So what are the alternatives? One approah is to inorporate�exibility, extensibility and re-usability from the start and make these priniples ore featuresof the adopted approah rather than add-ons at the end.2.3 The Review CriteriaThe simulators in this hapter are examined using eight review riteria, of whih abridgedworking de�nitions are provided in table 2.1 and are subsequently expanded. These rite-ria an be ategorised as follows. Review riteria one to three spei�ally map to the orehallenges identi�ed in hapter 1: namely �exible heterogeneity, extensibility and reusability.Review riteria four through eight address spei� features that are ommon to pervasiveomputing simulators that merit examination and are inluded in order to draw out spei�noteworthy features. These riteria an help to identify features of simulators that mightnot neessarily address the identi�ed ore hallenges but may in�uene its arhiteture andimplementation. As will be seen in the following de�nitions, there is some small overlap insome of the review riteria and this is highlighted when it ours.21

2.3. The Review Criteria

Review Criteria De�nitionRC1 FlexibleHeterogeneity Examines whether the simulator supports the �exiblemodelling of multiple instanes of pervasive omputing'sommon omponents.RC2 Extensibility Examines whether the simulator is extensible and an bemodi�ed with ease to support di�erent pervasive omputingdomains.RC3 Arhiteture(inl.Reusability) An overview of the arhiteture from a software engineeringperspetive. Issues overed here may overlap with otherevaluated riteria.RC4 Appliationemulation Examines whether the simulator supports the emulation ofappliations that exist within the modelled appliationdomain.RC5 Interationbetweenemulated andsimulatedomponents Examines whether the interation between instantiations ofabstrations and emulated appliations is supported.RC6 Networksimulation Examines the support the simulator provides for networksimulation of both wired and wireless networks.RC7 Experimentalsupport Examines the support the simulator provides for evaluatingsimulations. This relates also to usability.RC8 ExternalInteration Examines whether the simulator is self-ontained, or whetherit is possible to interat with external simulators, servies orproesses.Table 2.1: Simulator Review Criteria
22

Chapter 2. Related WorkFlexible HeterogeneityThis riteria examines whether the simulator supports the modelling of heterogeneous fea-tures of pervasive omputing appliations. These heterogeneous features may inlude a vari-ety of sensors and other hardware devies, multiple appliations possibly running on di�erentplatforms, users, the physial environment, and other features, both mobile and stati. Addi-tionally, the simulators are reviewed to determine their support for the �exible interation ofthese heterogeneous features, a feature that is required if a simulator is to support emergentand ross-over pervasive omputer appliation domains.ExtensibilityThis review riteria examines whether the simulator is extensible by design. Systems areexamined to determine what support exists for the modelling of new emerging appliationareas of pervasive omputing not yet identi�ed, where these appliation areas an ompriseof both new hardware and software elements.Arhiteture inluding ReusabilityThe third review examines the system's arhiteture from a software engineering perspetive.Issues overed here may overlap with other evaluated riteria. The reusability aspets of thearhiteture are also examined in ases where the arhiteture an be used to model severalpervasive omputing domains.Appliation EmulationThis review riteria examines what support the system provides for the emulation of applia-tions that would typially exist within the modelled appliation domain.Interation between Simulated and Emulated ComponentsThis review riteria examines what support is provided for modelling interation between anysimulated elements and any emulated appliations within the one appliation domain. Thereis a small overlap here with the review riteria onerning �exible heterogeneity.23

2.3. The Review CriteriaNetwork SimulationThis review riteria examines what support the system provides for the network simulation ofany networked elements within the modelled domain. This may inlude both wired and wire-less networks. This review riteria also examines what interfaes are available to algorithmsand any emulated appliations within the simulator.Experimental supportThis review riteria examines what support the system provides for the running, exeution andsubsequent evaluation of any modelled experiments. This ould inlude for example sriptingsupport, debugging features, or the ability to program user behaviour.External InterationThis review riteria examines the systems ability to interat with external simulators, serviesor proesses. Often systems o�er an API to onnet external servies for debugging or systemextension. Any API's that are provided to support this funtionality are examined.Omitted CriteriaThe simulators under review ould also have evaluated against riteria suh as performane,ease of use, and auray, however, the number of simulators attempting to address the generimodelling of pervasive omputing is so few, that to benhmark these against eah other wouldnot be to ompare like with like. The performane or �ease of use� of StarBED, a distributedplatform for simulation an not be ompared in a meaningful way against UbiWise, a simulatorbased upon a PC-based games engine.The �eld of pervasive omputing simulators is not as strongly developed as that of networksimulation for example, where there are maybe twenty aepted simulators that an all berun on a loal mahine. In mature simulation �elds suh as these, the researh questions havemoved on from whether or not it is possible to model some aspet of network behaviour tohow aurate and how quik that model is. 24

Chapter 2. Related WorkFinally, the auray and �delity of any simulator is important, and this is aptured withinRC1 for simulated hardware devies, and in RC4 for emulated appliations, and is a themewhih is arried throughout the frameworks implementation and its evaluation.2.4 An Overview of Pervasive Computing SimulatorsSetion 1.1 in hapter 1 introdued the many overlapping areas of pervasive omputing, allof whih involve di�erent tehnologies and have di�erent modelling requirements yet ontainsome ommonalities. For example, smart spaes (Tapia 04) are often reative appliations,driven by sensors suh as door ontat swithes embedded within the spae, whih an thenadapt some aspet of the spae to a user's requirements. An environment-monitoring wirelesssensor network (Ji 04) ould omprise of sensors, perhaps monitoring preipitation, attahedto wireless nodes that propagate that sensor information to other nodes through an ad-honetwork. ITS systems (Klein 01) typially use embedded sensors suh as indutive loops in theroad network to improve the throughput of the vehiles in the system. All of these domains,and others onsidered, form the broad overlapping spae that is pervasive omputing.This review of related work intersets several disiplines, as shown in �gure 2.1 , someof whih are subsets of pervasive omputing and some that are independent researh areasthat have some ommonalities with pervasive omputing. There are many interpretations ofpervasive omputing, and oasionally simulators that are targeted at pervasive omputingatually only address a subset of the area. Compared with an area of researh suh as wirelesssensor networking, there are surprisingly few well-known simulators targeted spei�ally atthe overall pervasive omputing area. This is mainly due to its broad de�nition, and that fewresearh groups address pervasive omputing as a omplete spae, instead preferring to fouson spei� pervasive appliation areas, suh as ontext-aware or loation-aware omputing.Simulators for pervasive omputing an be broadly ategorised into two groups. The �rstgroup inludes simulators suh as UbiWise (John J. Barton 03), Tatus (O'Neill 05), and theLanaster simulator (Morla 04), whih are pervasive omputing simulators not addressing anypartiular sub-domain. UbiWise and Tatus support reating omplex 3-D simulations of apervasive omputing environment suh as a building or a smart-spae, but not the omponents25

2.4. An Overview of Pervasive Computing Simulators

Figure 2.1: Overlapping Domains of Pervasive Computing Simulators26

Chapter 2. Related Worksuh as wireless sensors that may exist within those environments. The seond group of simula-tors are those that address speialised subsets of the pervasive omputing �eld. For example,Siafu (Martin 06a) is a simulator for ontext-aware omputing appliations. Additionally,there are many instanes of simulators suh as network simulators (Sundresh 04; Sobeih 05)and agent simulators (North 06; Narendra 05) being modi�ed and used to model subsets ofpervasive omputing.In fat, of the many simulators identi�ed in �gure 2.1, only those inside the red oval laimto spei�ally address pervasive omputing, in the broad multi-disiplinary sense that thisthesis onsiders. These seven are perhaps the most important of the simulators onsidered, asthey attempt to address the hallenges that have been identi�ed for a �exible and extensiblesimulator for pervasive omputing. An additional ten simulators, those inside the blue oval,and outside the red oval, either address subsets of pervasive omputing, or are in the overlapof appliation domains suh as intelligent transportation systems with pervasive omputing.To date, there has only been one simulator developed using a framework for the pervasiveomputing domain. Shibuya applied a framework approah (Shibuya 04) to modelling thespatial aspets of human behaviour in a pervasive omputing environment. The fous of thiswork was on human interation within these environments, rather than the environmentsthemselves, however, and the physial aspets of the devies, and appliations that might usethose devies within a pervasive omputing environment were negleted.2.5 The Key Simulators�..This thesis is onerned with methodologies that are both suitable for the evaluation of awide range of diverse pervasive omputing senarios and that an be extended to evaluate newsenarios that may emerge in the future...�. As seen in the previous setion, there have beennumerous works addressing a subset of the requirements of pervasive omputing simulation,but few taking a more omplete approah to modelling the domain as a whole. Of thesesimulators, seven are hosen that o�er the most interesting and note-worthy approahes, andthat are losest in spirit and exeution to a framework-based approah to building �exibleand extensible simulators 27

2.5. The Key SimulatorsThese seven simulators were hosen based on the following riteria. Importantly, theyattempt to address almost all aspets of the identi�ed review riteria, but with varying degreesof suess.Seondly, the typial user of the PiCSE framework is a researher within a small to mediumsized researh group with limited aess to hardware resoures suh as a luster or even aloud-infrastruture. Therefore, this review is onerned with lightweight simulators thatare suitable for onduting experiments in a ost-e�etive manner. By lightweight it is meantthat the simulator an exeute on a single o�-the-shelf desktop omputer that does not requireadditional hardware to ahieve a normal level of performane. As a by-produt this avoidssome of the downfalls of using distributed infrastrutures whih inlude the high osts, andhaving to negotiate and shedule shared aess to that infrastruture.Finally, this review fouses on simulators that are widely available and are being ativelyused within the pervasive omputing ommunity.2.5.1 UbiWiseUbiwise (John J. Barton 03) was one of the original simulators developed for pervasive om-puting, and was motivated by the need for rapid and heap prototyping of pervasive deviesand servies. The simulator provides�a three-dimensional world, built on the Quake III Arena graphis engine, andserves to simulate a �rst person view of the physial environment of a user"(John J. Barton 03)A simulated deployment enables the testing of pervasive servies, implementations of protoolsand integration of devies. Essentially, UbiWise is a human-in-the-loop simulator, whihallows users to interat virtually with simulated devies in a 3-D spae. The simulator aimsto mix simulated and prototype devies and servies where possible.28

Chapter 2. Related WorkRC1: Flexible HeterogeneityUbiWise's environmental modelling is provided by using proprietary Quake III formats, andeditors suh as GtkRadiant are available to develop interative 3-D models. These editorsprovide a graphial interfae for modelling the environment allowing a developer to positiondevies, walls, and so forth. The most basi objet within UbiWise are 'devies' and these arespei�ed through an XML devie desription �le and assoiated Java lass �les. The graphialrepresentation of the devie is also enoded in the �le, by speifying the shape of the objetand assoiated JPEG images for various aspets of the devie.Supporting new sensors, �whether handheld or environmental� is one of the stated aims ofthe UbiWise platform and loation trigger-based sensors, devie inputs as well as networkedsensors are all desribed theoretially. User models are an intrinsi part of any game baseddevelopment platform and are available.RC2: ExtensibilityThe solution proposed is extensible in that new devies, sensors and java based appliationsan be integrated into platform, however the platform itself is a devie-entri and whilstreadily suited to smart-spae type environments, it would be di�ult and time-onsuming toextend the platform to model other types of environments.RC3: ArhitetureUbiWise uses a lient/server arhiteture whih is built upon the Quake III game engine.A single UbiSim server hosts eah simulation and maintains a 3-D representation of theenvironment. A Wise5 lient, representing a user and a hardware devie then onnets tothe UbiSim server. The lient maintains a onsistent view of the environment by exhangingphysial environment messages with the server, whih are then propagated to other users.The devie view and the devie's interation with the environment are similarly handled bypassing devie interation messages. The ombined system of the UbiSim server and Wiselients is known as UbiWise.5Wireless Infrastruture Simulation Environment 29

2.5. The Key SimulatorsRC4: Appliation EmulationWise supports the exeution of appliation ode in the form of Java .lass �les and sine thedevelopers of the system desribe simulating user inputs suh as mouse events, then it appearsthat at least these devie oriented appliations are at least emulated.RC5: Interation of Emulated and Simulated ComponentsAppliations within UbiWise are intended to interat with simulated devies and these deviesan onsume events that are driven by events within the simulated environment, suh asloation-based sensors. There is no evidene of interation of emulated devies with atuatorsalthough this is most likely to be ahievable through hard-oding.RC6: Network SimulationUbiWise supports the simulation of harateristis of network behaviour suh as variablelateny and intermittent onnetions but provide no details of how this simulation is ahievedso this is most likely to be ahieved with their own proprietary simulator.Additionally, network interation within this simulator an be ahieved with an atual livenetwork interfae. As this is a human-in-the-loop simulator, this is possible as a simulationruns at the same speed as in the real world.RC7: Experimental SupportWise is a researh-driven tool for rapid prototyping and provides exellent support for therunning of experiments. Debugging, traing of appliation behaviour as well as user-entriontrols suh as reord and playbak make it easy to evaluate appliations with the Wisesystem. Beyond evaluating appliations, there are no desribed mehanisms for the samelevel of traing although a reord and playbak funtion is likely to be provided within thegraphial part of the platform. 30

Chapter 2. Related WorkRC8: External InterationPart of the Wise devie spei�ation, modelled in XML, allows the appliation's .lass �lesto build upon protools ode suh as HTTP, enabling the integration with external serviesoutside the ontrol of the simulator. As UbiWise runs in wall-lok time6, protool issuessuh as latenies in the network do not have to be simulated but are introdued naturally asthe simulated devie exhanges HTTP messages with external HTTP servies.SummaryIn UbiWise, the developers orretly laim to have ahieved a balane between ��delity�and �simpliity�. Fidelity in this ase meaning �delity to the user interation experiene,and to a realisti environment. In addition to this, UbiWise o�ers realisti modelling ofappliation-level devies and an interative 3-D model of the environment in whih they exist.Enabling simulated devies to interat with external servies lends even more redibility tothis laim, however overall, UbiWise is de�ient in several aspets. It does not provide a�exible arhiteture for simulating anything other than hardware devies, and their embeddedfuntionality, and the environment in whih those devies exist. Hardware devies, suh assensors and atuators, whih are ommon to pervasive omputing senarios, an be modelledbut no framework or generi abstrations are provided to support the development of thesemodels. They must be built from srath using the Quake native Software Development Kit(SDK).Furthermore, no metris are provided regarding the performane or the auray of thesimulator. As UbiWise only attempts to prototype appliation devies and their environment,any analysis regarding auray and performane are valid only in relation to the modellingof the image representation of the devies and the environment. In this respet, UbiWise isarguably e�etive. The modelling of devies is both aurate and realisti from the perspe-tives of both the look-and-feel and the funtionality of those devies. However, this modellingomes at the expense of the time and e�ort required to develop these models. The developers6Wall-lok time is when one seond of simulated time takes one seond of atual time to exeute. This isrequired as UbiWise is a human-in-the-loop simulator.31

2.5. The Key Simulatorsthemselves aknowledge the large e�ort required to build the graphial models required foreah simulation.Finally, UbiWise is not suitable as an experimental platform. Support for running sets ofexperiments does not seem to be built into the design and an API exposing data of interestfor experiments has not been provided. Furthermore, the human-in-the-loop model employeddoes not lend itself to evaluating senarios or running large sets of repeatable experiments.Introduing a random element suh as human behaviour makes it di�ult to repliate ex-periments thus rendering the platform unsuitable for experiments other than those in whihhuman interation is a requirement. This is, however, one of the main selling-points of Ubi-Wise. The lengthy development period is an additional and potentially time onsuming fatorin running large sets of experiments with varying parameters.UbiWise is primarily a graphial simulator however, and not an experimental tool that iseasily extended to new senarios. As suh, it is not surprising that it is de�ient in meetingmany of the requirements identi�ed for this thesis. It is, however, one of the original and fewsimulators targeted spei�ally at this domain, and therefore it is inluded.2.5.2 TatusTatus (O'Neill 05) adopts a similar approah to UbiWise to modelling pervasive omputingsystems. A well-known game engine, Half-Life, is adopted to simulate immersive pervasiveomputing environments in whih users and appliations an interat with virtual worlds.RC1: Flexible HeterogeneityUsing Half-Life's graphial editors, it is possible to reate omplex 3-D implementations ofphysial environments, suh as buildings, rooms and open spaes. A proprietary format,Binary Spae Partitioning (BSP), is used to apture the topology, shape, and even texture ofthe environment as a binary tree whih ensures that the environment an be both mapped andexplored e�iently. In addition to this, users and their ations an be aurately portrayed byusing either a) a real human to drive the simulation or b) programming a �bot�, or Non PlayerCharater (NPC), to repliate these ations. Sensors and atuators are simulated by means32

Chapter 2. Related Workof an API allowing appliations to query and to at upon the simulated environment. Thedevelopers note that only simple atuation is possible due to method parameter restritions:only a single unparameterised use() method is provided.RC2: ExtensibilitySimilar to UbiWise, the Tatus platform provides extensibility through the games engine uponwhih it is built. The Half-Life SDK allows the reation of new physial spaes and for sensorsthat an measure data within that environment. Although the game's SDK does provide ameans of extensibility, the developers of Tatus note the di�ulty and steep learning urvein using that, highlighting that they do not feel that the SDK is an appropriate means ofproviding extensibility for resoure-onstrained researhers.RC3: ArhitetureThe Tatus arhiteture is omposed of three main omponents. The simulator, a modi�edgame engine is the main omponent, whih takes a map de�nition �le and an XML �lede�ning the message format for the sensing and atuation API. A Java proxy ommuniatesa network with the games engine, and provides an API for sending and reeiving messages tothe simulator. Any appliations that are �under test� an use the Java API to interat withthe simulator.RC4: Appliation EmulationThe external proxy provided by the Tatus arhiteture does not provide an emulated interfaefor appliations that are onneting to the simulator. These appliations must be built uponthe proxy's API.RC5: Interation of Emulated and Simulated ComponentsThere are no emulated software omponents within the Tatus arhiteture, and hene thereis no interation between emulated and simulated omponents. Un-emulated appliations33

2.5. The Key Simulatorsthat are onneted to the simulator via the proxy may interat via the sense and query APIsprovided.RC6: Network SimulationAn arhiteture has been proposed for the integration of a third party network simulationtool, TOSSIM, into the Tatus simulator for the integrated simulation of wireless networkingsenarios in pervasive omputing environments. The proposed arhiteture reating a newinterfae between the network simulator and a �Real life Simulator�, itself a proxy that aninterfae with the Tatus Simulator. The loation of wireless nodes, and their mobility patternswould be spei�ed by the Real Life Simulator.RC7: Experimental SupportThe simulator also supports the running of experiments through the inlusion of three features,that exploit the underlying Half-Life infrastruture. Multi-player games allow experiments tobe run with up to eight appliations and eight users, a onstraint imposed by the underlyinggame engine. As previously mentioned, Tatus allows reproduible experiments to also beimplemented by removing the human element and replaing it with an NPC. In addition tothis, experiments an be saved, re-run and logged, using the Half-Life game API, allowingo�-line analysis and evaluation to be performed.RC8: External InterationTatus employs an external proxy that enables the integration of appliations, termed SoftwareUnder Test, into the simulated world. The proxy, whih is not neessarily running on the samemahine as the simulator, provides an API allowing appliations to both query and updatethe world. Events of interest are pushed to a database in the proxy, whereas the proxy's queryAPI allows appliations to �extrat� real information from that database. Similarly, atuationevents are performed using an atuation API, that pushes events diretly into the simulatedenvironment. XML messages are used to exhange data between the simulator and the proxywhih then pushes the data to the appliation, and this exhange is also supported remotely34

Chapter 2. Related Workaross a network.SummaryThe aim of Tatus is to support the inorporation of real-user behaviour into a simulation.In this sense, similar to UbiWise, it an be argued that Tatus allows the aurate modellingof both users and physial environments. These are however only two aspets of pervasiveomputing. Both sensors and atuators are abstrated to an API, provided by the proxy,mediating interation with Tatus's model of the environment. Furthermore, the simulator'sability to be extended to atually inlude di�erent ategories of these devies is supportedonly by the Half-Life SDK. There are no generi models of devies, although developers anutilise Half-Life's support for event triggers to generate events when ertain riteria, suh asproximity, are met.The proxy-style support for external appliations works quite suessfully, and allows manyappliations to interat with the simulator. Ultimately however, these appliations have tobe built upon the proxy's API, and there is no support for emulating the inputs and outputsof the data streams between the proxy and the appliation.Finally, there is no support for integrating a network simulator into this work, although ithas been identi�ed as future work and a potential arhiteture has been proposed. However,sine Tatus runs with a human-in-the-loop, appliations an interat outside the ontrol ofthe simulator with networked servies if required.2.5.3 Lanaster Simulation EnvironmentThe Lanaster hybrid test and simulation environment (LSE) (Morla 04) is an environmentthat supports the integration of third party simulators to evaluate loation-based appliations.Support is provided for external appliations, using a Web Servies interfae, allowing themto interat with simulated environments. The ontrol and interation of both, simulators andappliations, are mediated and ontrolled by a Systems Manager that is also responsible foroverall experimental ontrol. 35

2.5. The Key SimulatorsRC1: Flexible HeterogeneityThe LSE simulator is built using an open approah allowing the onnetion of third-partysimulators that an simulate di�erent aspets of pervasive omputing environments suh asmobility or ontext simulators. No desription is provided of how these simulators mightbe extended in a manner de�ned by the LSE arhiteture and any integration may only beahievable if the third party simulators are designed to provide this funtionality.RC2: ExtensibilityLSE's approah of supporting the integration and mediation of third-party simulators is in-herently extensible. In separating other features suh as the experimental support and theappliation daemons, the simulator has provided a framework for potentially targeting newand emerging pervasive omputing domains.RC3: ArhitetureLSE is built upon a distributed arhiteture whih mediates the ontrol and exeution of ap-pliations and third party simulators. A system manager ontrols the exeution of simulatorsand appliations using a Web Servies interfae allowing these to be exeuted on separatemahines. Low-level kernel aess is required for the mahine on whih appliations are be-ing tested. The System Manager is also responsible for gathering experimental results andprovides data to a graphial user interfae.RC4: Appliation EmulationSupporting atual appliation ode is one of the requirements of the LSE test environment,and the simulator distinguishes between two aspets of the emulation required for those ap-pliations so that the minimum number of hanges to the appliation ode are required.The �rst aspet is that the emulation omponent must support a realisti network inter-fae. Appliations should be able to send and reeive messages aross both 802.11 wirelessLan and GPRS. The emulation omponent should additionally provide interfaes for36

Chapter 2. Related Workreeiving any loation information and any kind of ontext information that mightbe relevant for the appliation behaviour.RC5: Interation of Emulated and Simulated ComponentsThe LSE arhiteture enables the integration of the emulated appliations with third-partyintegrated simulators. By providing a �ontext� api for example, an emulated appliation aninterat with a ontext simulator over a Web Servies interfae.RC6: Network SimulationLSE integrates a popular network simulator, ns-2 (Fall 01) into their test environment, allow-ing the simulator to model the wireless ommuniation between appliations. This is donewithout modi�ation of the appliation ode. Using this software emulation tehnique, pak-ets generated by the appliations are interepted in a modi�ed kernel and redireted throughthe ns-2 simulator. Importantly, this approah is transparent to the appliations themselves.RC7: Experimental SupportLSE provides good support for experimental ontrol. Appliation daemons are providedenabling instantiations and monitoring of individual appliations. Appliation outputs anderror streams are reorded by a system manager for logging whih also an ontrol and monitorthird-party simulators suh as the network and loation simulators.RC8: External InterationLSE exeutes in wall-lok time and interation with external servies is both possible andtransparent in simulated senarios. This is ahieved using the web servies based Global GridForum7 standards to �disseminate the sensor data to other Grid appliations�, that themselvesontribute to the overall simulated senario.7http://www.globus.org 37

2.5. The Key SimulatorsSummaryNo abstrations are provided for the lassial pervasive omputing omponents suh as sensorsor other hardware devies. However as noted, LSE's �exibility or suitability as a pervasiveomputing simulator is ahieved through the use of a Web Servies interfae whih allowsthird-party simulators to be attahed to the overall system. As will be shown later in thishapter, there are simulators that address individual aspets of the overall pervasive omput-ing spae, and potentially these ould be integrated into the LSE simulation environment.Using Web Servies to integrate third party simulators o�ers potential extensibility, however,some onerns arise. The integration of multiple simulators aknowledges and aommodatesthe expertise that eah brings. These simulators an provide omplimentary modelling of sep-arate aspets of pervasive omputing senarios, yet there is no onrete arhiteture withinLSE, to support the ontrolled interation of multiple simulators. For example, there is nospei�ation of a ommon user model, that might allow the user model from one simulator,to interat with a sensor model from a seond simulator.2.5.4 UbiREALUbiREAL (Nishikawa 06) is a smart-spae simulator, that extends the traditional �modi�edgame simulator� employed by UbiWise and Tatus to o�er a more omplete simulation environ-ment. In addition to graphial 3-D environment models, the UbiREAL simulator allows usersto speify physial quantity simulators and also to integrate simulated and real appliationsin the same virtual smart-spae. The basi UbiREAL arhiteture omprises four omponentsthat interlink to ahieve these goals. These omponents are: physial quantity simulators, anetwork simulator, a visualiser and GUI, and appliation programs.RC1: Flexible HeterogeneityThe UbiREAL simulator supports the integration of physial quantity simulators. Thesesimulate�invisible physial quantities suh as temperature, humidity, eletriity and radio38

Chapter 2. Related Workas well as visible (audible) quantities suh as aousti volume and illumination.�(Nishikawa 06)A developer must speify a physial quantity in terms of an appropriate physis formula, forexample, speifying the rate at whih heat dissipates given temperature di�erenes in di�erentareas. This model is supported by a publish-subsribe event mehanism, whih enables theinteration between sensors and the physial quantity being sensed. Very simply, as thephysial quantity hanges over time, sensors, whih are implemented as software drivers, arenoti�ed of these hanges, and a sensing event an our.RC2: ExtensibilityThe UbiREAL struture has been designed as a losed and omplete system. Integrationof third-party simulators and emulation libraries is not onsidered, however a framework forthe simulation of physial quantities does provide a means for extensibility with respet toenvironmental, sensing and potentially atuating models. A methodology for integration ofemulated appliations has been proposed for two emulation API's and oneptually, it isfeasible to onsider how this approah may be extended for other appliation libraries thatthe UbiREAL simulator may integrate in future work.RC3: ArhitetureUbiREAL is a modular omponent-based arhiteture omprised of four interating modules.At the entre of the arhiteture is a smart-spae designer and visualiser whih de�nes thephysial environment, the omponents within and a means for exeuting the simulation. Thismodule takes provides inputs to the network simulator, and also provides a physial envi-ronment in whih emulated appliations an be exeuted. Finally, the entral module alsoprovides an environment and informs the �nal module, whih is the simulator for physialquantities. 39

2.5. The Key SimulatorsRC4: Appliation EmulationUbiREAL allows the emulation of appliations built upon ommon libraries. The emulationis ahieved after by linking with libraries that interfae with UbiREAL, instead of the originallibraries that the appliations were built upon. This linking is performed between the om-pilation and exeution of the program. Thus, any appliation invoations of that library areredireted to the simulator, ahieving emulation. The BSD Soket and java.net libraries, areboth supported, and interepted alls to these libraries are redireted to UbiREAL's bespokenetwork simulator. Emulation of appliations built on software devie drivers is ahieved in asimilar fashion. Calls to the modi�ed devie drivers retrieve values from the physial quantitysimulators, and return them to the appliation.RC5: Interation of Emulated and Simulated ComponentsNo diret interations are de�ned between emulated appliations and simulated physial quan-tities. Diret readings from the physial quantities may be obtained through �devie drivers�but this is not provided through an emulated API.RC6: Network SimulationUbiREAL provides its own internal network simulator for the simulation of wireless ommu-niation. It supports models inluding the free spae model, the line-of-sight model and theray-traing model, and their model takes into onsideration variables suh as the transmis-sion range, reeived signal power and wavelength. Radio propagation is alulated before thesimulation is exeuted, and in simulations involving mobile nodes, the radio propagation isalulated periodially. Periodi alulations may result in some loss of simulation auraywith respet to the wireless model.RC7: Experimental SupportFinally, UbiREAL o�ers a faility for the systemati testing of smart-spae appliations. Ituses a formal methods approah to modelling the domain, in terms of sets of smart-spaes U,rooms R, and devies D. The approah also models physial quantities as attributes in eah40

Chapter 2. Related Workroom. A servie spei�ation is de�ned as a set of rules AP, and a set of propositions, P. Usingthis formal approah, an experiment an be desribed as a servie spei�ation Spe=(AP,P),that spei�es a range of values that attributes an vary over, aross many rooms, R, omprisinga smart spae, U. As these attributes hange during the run of the experiment, events aregenerated and pushed to appliations, thus exerising them.RC8: External InterationUsing a similar approah to LSE, a rediretion of alls is performed at the networking layerwithin the operating system, to enable the integration of real appliations with virtual appli-ations. A modi�ed NAT8 proess on the host omputer of the real appliation examines allnetwork pakets, and pakets destined for emulated appliations are modi�ed and rediretedto the address of the host running the simulator. This ours at the TCP level with theresult that no modi�ations are required to enable external appliations to interat with realappliations.SummaryThe UbiREAL simulator integrates many novel and pratial features into its arhiteture.Partiularly, the integration of real and virtual appliations is an enhanement of LSE's simi-lar approah to integrating external appliations. Similarly, it extends the graphial approahadopted by UbiWise and Tatus, to inlude a model for simulating physial quantities, provid-ing a more omplete model of an environment that is �measurable� by sensors.Although the UbiREAL simulator runs in wall-lok time, an approah that an lead tolengthy experimental times, the inlusion of a formal approah to modelling the experimentsis a signi�ant advanement in the state of the art. Its integration into the simulator makesup partially for the inherent shortomings of using a graphial game-based approah to runexperiments.However, the UbiREAL simulator is onstrained to smart spaes and modelling environ-ments in terms of rooms, and spaes only. It is di�ult to see how this approah ould be8Network Address Translation 41

2.5. The Key Simulatorsextended or modi�ed to inlude large-sale senarios, or senarios where the devies or im-portant omponents are anything other than appliations or sensors. The formal approah tomodelling is onstrained to smart-spae senarios, and experiments run within those senar-ios, although potentially the modelling language used ould be extended to support a broaderrange of senarios.2.5.5 SitComSitCom (Fleury 07) is an open and extensible framework developed at IBM that assists in�developing ontext-aware servies, editing and deploying ontext situation mod-els, and simulating pereptual omponents.� (Fleury 07)SitCom whih stands for Situation Composer, provides abstrations of the main omponentsin ontext-aware omputing servies, and provides a two-tiered arhiteture that supportsthe reation of models of these senarios. SitCom itself provides the underlying framework,providing funtionality suh as modelling the environment, in both 2-D and 3-D, and also anarray of managers for managing the inputs and outputs of a simulation instane. SitMod is aninstantiation of the framework abstrations that forms a situational model, e.g. an instaneof a partiular simulation or experiment.RC1: Flexible HeterogeneityThe working de�nition of ontext that SitCom uses is that of Dey in the development of theContext Toolkit (Dey 00). Here ontext is de�ned as�any information that an be utilised by an appliation, inluding sensed andsynthesised knowledge on users, the objets of the sene, situations, the appliationitself, environment, and world.� (Dey 00)SitCom provides a set of abstrations based around this de�nition that allow ontext-awareomputing senarios to be modelled. These abstrations are partitioned into �ve ategories,eah addressing a general lass of abstrations. Entities are de�ned as features that an42

Chapter 2. Related Workbe mapped one-to-one to real world objets. Entities have a set of attributes, that an beupdated during a simulation, and an be the inputs for Sensors. Sensors onsume attributesof partiular entities, and produe raw sensor data. Pereptual omponents onsume datastreams from sensors and provide the mapping from sensor data to higher level ontextualdata. Contextual data, modelled as fats, is onsumed by instantiations of Situation Modellingabstrations, and provide information about situations, whih onsists of a set of states andtheir assoiated transitions. Finally, a Servies abstration is provided allowing ontext-awareservies to be developed using appliation logi, and user interfae design.
RC2: ExtensibilityThe SitCom simulator does not onsider extensibility as a key requirement. It is targetedspei�ally at the ontext-aware omputing sub-domain of pervasive omputing and its arhi-teture, desribed in the following setion, re�ets that. The simulator does not support theintegration of third-party simulators that might assist in ahieving that extensibility.
RC3: ArhitetureSitCom is desribed as a four-tier arhiteture. At the lowest level, sensors provide raw sensordata, whih is onsumed by pereptual omponents whih are at the seond level. Pereptualomponents add a level of ontextual or semanti meaning to that raw sensor data. Situationalmodelling is the third tier and here information from the pereptual omponents is used in anappliation spei� manner. For example, an appliation here ould interpret a range of sensorinputs inluding presene and ativity to detet whether a room is in use or not. The toptier of omponents are servie-oriented omponents whih at upon individual appliationssuh as the presene appliation. The SitCom simulator is implemented as an extensible Javatoolkit that provides funtionality that support the development of simulations at all fourtiers of its arhiteture. 43

2.5. The Key SimulatorsRC4: Appliation EmulationAppliation emulation is not one of the requirements for the SitCom arhiteture and appli-ations are omposed as part of the Java runtime within the simulation.RC5: Interation of Emulated and Simulated ComponentsAs there is no emulated appliations within the SitCom simulator, no interation betweenthose appliations and simulated omponents is noted. However, appliation lasses thatare deployed an onsume both simulated and real ontextual information from pereptualomponents.RC6: Network SimulationNetwork simulation is not inorporated as a module within the SitCom arhiteture. TheSitCom framework targets ontext-driven appliation and onsiders standalone appliationsthat onsume raw sensor and ontextual information as their inputs. It an be inferred thatsome network omponent may exist within appliations deployed at the servies tier, howeverthese are likely to interat aross real networks and not through ontrolled simulated networks.RC7: Experimental SupportThe SitCom simulator allows experiments to be spei�ed through its GUI, allowing prede�nedsituations (experiments) to be loaded. �Syntheti� or �reorded data� an then be fed into thesimulation. In partiular, SitCom supports the loading of semi-simulated, and real data intoa simulation, allowing the higher-level abstrations suh as the Pereptual Components andthe Situation Modelling abstrations to exploit these real data soures.RC8: External InterationA remote API is provided by the SitCom simulator allowing standalone modules to interatwith the simulator. These remote modules are part of the situational modelling tier of SitComomponents and the API therefore provides methods from querying simulated pereptualomponents. 44

Chapter 2. Related WorkSummarySitCom provides a set of abstrations that model a range of aspets of ontext-aware omput-ing. What is unusual and relatively novel about these abstrations is that they are alignedin the vertial domain, allowing the modelling of all parts of a ontext aware appliation.In addition to this, it enables the modelling of omplex sensors suh as video ameras, andhigher-level pereptual omponents suh as a Body Traker that an exploit these omplexsensors. SitCom has been used to model a range of ontext-aware appliations, suh as aMeeting State Detetor and Crowd Detetor amongst others, and these senarios leverage therange of abstrations provided by the simulator.SitCom's ability to integrate data streams from external sensor soures is a novel feature inthis domain, and allows the evaluation of ontext-aware appliations against real data soures,enabling a stronger validation of those appliations.The authors express that �exibility is ahieved, and this is true for the ontext-awareomputing domain. However, it is di�ult to see that SitCom might be �exible enough toextend to modelling other subsets of pervasive omputing. Perhaps the most glaring omissionfrom the spei�ation of SitCom is that network simulation is not supported internally orexternally.2.5.6 P-VoTP-VoT, the POSTECH Virtual reality system development tool, has been extended by (Seo 05)to provide a virtual pervasive omputing environment, that is suitable for rapid prototyping.Spei�ally, the work is targeted at a subset of pervasive omputing where the aurate mod-elling of the display of data to users is the most important requirement. Although this thesisand state of the art is not onerned with multimedia displays in the general ase, the imple-mentation of the simulator o�ers some novel features, and it is therefore onsidered. Thesefeatures inlude the ability to model the behaviour of devies in a Statehart and the use ofa sripting language to assoiate funtionality with that Statehart.45

2.5. The Key SimulatorsRC1: Flexible HeterogeneityThe simulator implements three lasses of objets, that re�et the targeted multimedia do-main. These objets are sensors, displays, and proessing objets. An instantiation of theP-VoT simulator is a omposition of these objets, whih an interat in a pre-determinedfashion. Sensors push data to proessors, whih then ontrol the output of the display. Adisplay is analagous to an atuator in this partiular pervasive omputing domain.Eah omponent an be spei�ed at di�erent levels of abstration o�ering an additionallevel of �exibility. For example, sensors an be instantiated to produe raw data, �ltered data,or even higher-level data suh as ontextualised data. Proessor objets an be instantiatedto implement raw data proessing patterns suh as �ltering, or higher-level proessing suhas pattern reognition. Finally, displays an be spei�ed at the level of LEDs9 or text at themost basi level, up to 2D and 3D displays.The interation between these objets are modelled using Stateharts. A Statehart spe-i�es the states, the transitions between states and the messages that an be sent betweeninstanes. Upon reahing a ertain state, some Python (a sripting language) ode is invoked.The interations between the di�erent objet types is aptured within the Statehart. Forexample, a model of a passive sensor, remains in an idle state until an objet or the mea-sured phenomenon meets some riteria and the sensor undergoes a state transition. Thishange in state an result in the invoation of a Python method, whereby further ations andomputations an be arried out.RC2: ExtensibilityP-VoT's sripting based approah is low-level but potentially extensible. One of the advan-tages of sripting languages, that they allow rapid prototyping, has been apitalised upon bythe developers and it would be feasible for sript-based extensions to be built within the sys-tem speifying new appliation behaviour and new simulated models. Indeed the developersof P-VoT have validated their simulator's approah against other pervasive omputing do-mains beyond ontext-aware appliations, whih inlude smart devies, smart environmental9Light Emitting Diode's 46

Chapter 2. Related Workmonitoring, and smart spaes suh as an information kiosk.RC3: ArhitetureThe P-VoT simulator is a omponent based simulator that is omprised of a set of authoringtools. An integrated development environment (IDE) provides a Statehart editor, a libraryof reusable virtual and interation objets and a Python exeution environment. The ombi-nation of tools runs on a loal mahine, and provides a graphial user interfae for the reationand spei�ation of simulated experiments. No external interation with external servies,simulators or external appliations is supported within the arhiteture.RC4: Appliation EmulationAppliations are not emulated within the P-VoT system. Instead, they are modelled as �pro-essing objets� and are implemented using Stateharts and the Python sripting language.Within these Stateharts, eah state is de�ned by a sript ontaining algorithms de�ningbehaviour and outputs based on existing states and sensed data.RC5: Interation of Emulated and Simulated ComponentsAs there are no emulated appliations in P-VoT, there is no interation between emulated andsimulated omponents. Appliations that are modelled as state-harts and behaviours mayaess simulated sensor information and use this as part of the sripted appliation behaviour.RC6: Network SimulationThere is no network simulation omponent within P-VoT. The fous of the simulator is onontext-driven, multimedia based pervasive omputing appliations, a very nihe domainwithin pervasive omputing that does not neessarily require network simulation.RC7: Experimental SupportThe P-VoT simulator provides experimental support via an artifat desribed as a data ol-letion objets. These an ollet appliation performane data as well as aggregate data47

2.5. The Key Simulatorsprovided by users of the simulator suh as usability information and survey answers.RC8: External InterationNo external interation is supported within the P-VoT simulator.SummaryLike SitCom, P-VoT is a simulator targeted at a very partiular subset of pervasive om-puting, in this ase ontext-aware multimedia enhaned pervasive omputing environments.With this in mind, it is perhaps unfair to judge the simulator on the riteria by whih othersimulators have been judged. However, this simulator has adopted an approah to speifyingthe behaviour of objets that is novel in the area of pervasive omputing simulators. Theuse of a ombination of a Statehart and the Python sripting language results in a rapidprototyping and evaluation model. The result is a simulation that an be rapidly prototypedand implemented. The developers report that the overall authoring proess, �simple sripting,reating states, and transitions�, an take less than an hour, for a user with experiene of thesystem.2.5.7 StarBED2The last of the ore pervasive omputing simulators to be onsidered is StarBED2 (Nakata 07),whih is a large-sale hybrid of both simulator and physial testbed for pervasive networks.Although not a lassial simulator in the sense of what is onsidered for this thesis, it isnevertheless worth onsidering. Spei�ally, StarBED2 enables the emulation of hundredsof thousands of heterogeneous nodes within pervasive omputing networks. In order to dothis, it outlines the required funtionality to exerise what it has determined to be the mostimportant harateristis of pervasive omputing networks. These harateristis are that:
• A realisti pervasive omputing senario omprises heterogeneous sensor nodes.
• Those nodes may have a high spatial density.48

Chapter 2. Related Work
• The interation between the environment and those nodes is an important fator in theoverall model, whih is a harateristi of pervasive omputing.
• The loation of those nodes is important in modelling the interation of these nodes andtheir environment.In order to ahieve this, StarBED2 provides a physial testbed that emulates the physialenvironment, supports the emulation of several node types and arhitetures, and supportsthe interation of the environment and those nodes. The overall arhiteture of the distributedStarBED2 testbed is not onsidered here, only the arhiteture at a single node within thattestbed.RC1: Flexible HeterogeneityThe environmental spae with StarBED2 is ahieved through either statistial models, orthrough a �realisti manner� where the physial phenomenon is simulated aording to somedomain expertise. There is no support within StarBED for the emulated onept of a sensor,rather that the environmental spae is a data soure whih an provide inputs to nodes thatare within that modelled spae.RC2: ExtensibilityThe �xed and hardware entri approah that StarBED2 has used is not onduive to exten-sibility to other pervasive appliation domains. The fous of the testbed is on the realistitesting of physial nodes in �xed loations and aounting for mobile nodes suh as physialusers or vehiles would be di�ult within the physial testbed desribed.RC3: ArhitetureThe StarBED2 arhiteture is logially strutured as a three tier arhiteture. At the lowesttier, the network spae provides the ommuniation infrastruture of the physial testbed,whih is omposed of approximately seven hundred personal omputers (p). Two networksonnet the nodes. The experimental network is the network in whih experiments run and49

2.5. The Key Simulatorsommuniate. The seond network is the management network, a separate network allowinga user of the testbed to remotely manage the experimental setup and the on�guration of thenodes within that experiment. The physial testbed an also be logially partitioned and antherefore allow multiple experiments to run with di�erene parts of the physial testbed.The seond tier of the arhiteture is the node tier, in whih emulated appliations runand have aess to the underlying physial testbed. Finally, the top tier of the arhitetureis the environmental spae, a simulated environment whih nodes an interat with, eitherquerying or ating upon that environmental spae.
RC4: Appliation EmulationEmulation of heterogeneous nodes within StarBED2 is aommodated at three levels: Themiddleware level, the system all level and the instrution level. Depending on the targetedarhiteture and the implementation of the arhiteture, the appropriate level is hosen. Forexample, emulation would be performed at the middleware or system level when the appli-ation on the node is spei�ed in a high-level language. Alternatively, emulation would beperformed at the instrution level if the operating system on that node was not fully available,and if appliations were being written lose to the hardware layer. In the ases of system alland middleware emulation layers, the emulated appliation must be reompiled and linkedagainst a library that redirets to the StarBED2 testbed instead of the physial hardware.In the ase of instrution-level emulation, an instrution translation is performed to mapinstrutions to methods invoking the orresponding methods within StarBED2.Eah emulated node then runs within its own VMware10 virtual mahine, making eahnode virtual. Up to ten nodes are then run on eah physial mahine within the testbed,and the responsibility then transfers to the VMware software to manage the exeution of theindividual virtual nodes.10http://www.vmware.om 50

Chapter 2. Related WorkRC5: Interation of Emulated and Simulated ComponentsThe interation between emulated appliations and their environment is aptured as a seriesof oneptual spaes and onduits between these spaes. Three types of spaes exist, anenvironment spae, a network spae, and a node spae. Within the node spae, the physialloation of the devie is ritial and it a�ets the nodes interation with the environmentspae, also addressed through physial oordinates. The node's loation within the networkspae onsists of an IP address and port number pair. The logial struture of StarBED2,as a series of spaes and onduits manage the bindings between the physial oordinates andthe network oordinates, enabling the interation between nodes and their environment, andamongst nodes themselves.RC6: Network SimulationThe StarBED2 testbed is a physial testbed and the underlying hardware omponents arenetworked using wired and wireless omponents. There is no network simulation omponentwithin the testbed as the goal of the testbed is to move beyond simulation into hardwarebased testing.RC7: Experimental SupportA separate management layer within the physial part of the testbed is an indiator of howexperimental support is managed. A ontroller tier manages the exeution and on�gurationof individual nodes within the testbed and an reord logged information out-of-band, i.e.the management overlay of the testbed does not a�et any ongoing experiments, a potentialproblem in distributed testing arhitetures.RC8: External InterationEmulated nodes within the StarBED2 arhiteture run in a real-time environment and ontheir virtual mahine within a physial node. As there are no onstraints on the appliationode that run on the emulated nodes, it an be inferred that these an interat with externalsoures without a�eting other nodes within the overall. experiment.51

2.6. PerspetivesSummaryStarBED's approah to emulation is �exible and relatively unique within the pervasive om-puting spae in that it enables the emulation of heterogeneous nodes. The implementationusing a VMware solution eases this task to a degree, in that it transfers the responsibilityof managing the individual instanes to the VMware server. This partially addresses oneof the main problems of emulating multiple appliations: appliation synhronisation. Asappliations exeute in wall-lok time, it is possible for inauraies to enter the simulationwhen appliations do not run in their orret ordering, a problem, that is exaerbated whentrying to integrate emulated real devies with simulated models. StarBED2's VMware-basedapproah addresses this problem, however the overall solution is an expensive one. Runninga VMware server is ostly in terms of mahine overhead, a fat noted by the developers ofStarBED2 and one of the reasons why the number of nodes per single mahine within thetestbed is restrited to ten.The developers make no e�ort to enfore ausal ordering with respet to the ordering ofindividual appliation exeutions within a VMWare instane. In restriting the number ofnodes per instane to ten, they attempt to mitigate the negative side a�ets of overloading theVMWare. The developers note, that on the original StarBED testbed, upon whih StarBED2is based, that when above ten virtual nodes were run, then �realism of experimental resultsbeomes unaeptably low�.2.6 PerspetivesAs a result of the wide range of simulator domains examined, ases will arise where a simulatormay only address a subset of the review riteria. For example, a pervasive omputing simulatormay provide support for environmental models but not for atuators that interat with thoseenvironments. In these ases, the simulators ability to meet a riteria is marked as not-appliable, N/A. In general, however, the simulators are examined against all of the appliablereview riteria, and are marked as either partially, ◦, or ompletely, •, meeting that reviewriteria. Review riteria 3, the system's arhiteture is omitted as it is too subjetive to52

Chapter 2. Related Work
FlexibleHete
rogeneity

Extensibility AppliationE
mulation

ComponentI
nteration

NetworkSim
ulation

Experimenta
lSupport

ExternalInte
ration

UbiWise ◦ ◦ ◦ • n/a n/a •Tatus ◦ ◦ • • ◦ ◦ •LSE ◦ • • • ◦ ◦ •UbiREAL ◦ ◦ • • • • •SitCom ◦ ◦ ◦ ◦ ◦ ◦ ◦P-Vot ◦ ◦ n/a n/a • • n/aStarBed2 ◦ ◦ • • • • •Table 2.2: Comparing the review riteria for the key pervasive omputing simulatorsompat the review in a single olumn.The evaluation riteria for the simulators disussed have been met with varying degreesof suess. Table 2.2 reveals that LSE, UbiREAL and StarBED2 were the most suessfulin meeting these requirements, although none met all of them ompletely. Two importantquestions are raised. Are all of the requirements neessary? Why are some of the require-ments not met? To answer the �rst question, one must examine table 2.2 again. What anbe observed is that none of the original six requirements are ompletely negleted. Only re-quirement four, support for network simulation, is not addressed by more than one simulator.In this ase, two simulators, SitCom and P-Vot were targeted at sub-domains of pervasiveomputing: ontext-aware omputing and multimedia enhaned smart-spaes. In these ases,an aurate model of the user and the environment from its perspetive is more importantthan the modelling of the interation of appliations within that domain. In general though,all of the simulators examined address the requirements to some degree, but do not neessarilymeet them all suessfully.To answer the seond question, the answer an again be found in SitCom and P-VoT. Theseare two simulators that target spei� domains within pervasive omputing, domains that donot require network simulation. The requirements that have been identi�ed though, are that53

2.6. PerspetivesComponent Type Environment Sensor Atuator UserUbiWise • • n/a •Tatus • ◦ ◦ •LSE ◦ • n/a ◦UbiREAL • ◦ n/a •SitCom • • n/a ◦P-Vot • • n/a •StarBed2 ◦ ◦ n/a n/aTable 2.3: Pervasive Computing Components Modelleda generalised pervasive omputing simulator should be able to simulate all sub-domains of thebroad pervasive omputing domain. To address this, an examination omparing the variousapproahes employed by the simulators is now presented. In addition to highlighting thestrengths and weaknesses of eah approah, alternative approahes that may not have beenonsidered by the original seven simulators are introdued, supplementing those approahesalready examined. Thus, it is hoped that a more omplete set of approahes is identi�ed,along with any di�ulties that aompany those approahes.2.6.1 RC1 - Flexibility in Modelling Pervasive Computing ComponentsTable 2.3 shows the degree to whih the simulators modelled the omponents that are typialof pervasive omputing environments. Apart from the observation that none of the simulatorsmodel all of the omponents, the most notable feature is that almost all of the simulators, allwith the exeption of Tatus, fail to provide any support for atuators. This is most likely are�etion of the fat that the proliferation of sensors in pervasive omputing environments hasourred at a muh faster rate than that of atuators, thus generating a greater requirementfor the modelling of this funtionality.EnvironmentThree approahes of note have been introdued by the simulators disussed. Using a graphialtool, Ubiwise, Tatus, and P-VoT an speify a model of the environment in a realisti 3-Dformat. From a person's perspetive, this seems ideal, as it is far more tangible than speifying54

Chapter 2. Related Workthe environment in terms of a physial quantity, whih is the approah adopted by UbiREAL.However, the lengthy time required to develop a model of a physial spae makes this approahprohibitive, even though it is adopted by many simulators. Another point to note is that ithas been previously time-onsuming and di�ult to expand these models into larger and moredetailed representations of the environment, although tools are emerging that will assist inthe automation of this task in the future.Speifying an environment in terms of a physial formula is more expressive from the pointof view of the phenomenon being measured. A physial formula is also more �exible whenonsidering the interation that omponents an have with that environment. For a sensor toalulate the value of the environment at a point in the modelled spae, it simply has to plugin some values, suh as its loation, into the physial formula spei�ed.What is ommon amongst these two approahes is that they both support a publish-subsribe mehanism to notify sensors of hanges in the measured phenomenon. Similarly,game engines typially provide a trigger mehanism, whih an be exploited for this purpose.The �nal approah is to use a simple set of key-value pairs. This approah has been used inSitCom and also in work by (Martin 06b) in the development of their simulator for ontext-aware omputing. In this approah, some aspet of the environment, whether a physialphenomenon or a sense-able �thing�, is indexed by a key and the value of the sensed data isreturned. This approah is limited to phenomena that are simple in type, and do not varyaross more than one parameter. For example, in order to simulate a phenomenon arossa physial spae, in the way that the physial quantity simulators suh as UbiREAL do, akey-value pair would have to be generated at every loation, whih is ine�ient.(Naumov 03) have desribed an extension to ns-2 (Fall 01), that improves the modellingof the environment with a view to improving the e�ieny of a simulation. Naumov et al,have proposed partitioning the spae traking the loation of nodes into a grid omprisingphysial spaes. This logial partitioning enables a more e�ient alulation of the loation ofnodes within the network simulation, and has been shown to improve the performane of thesimulator by signi�ant fators. A similar approah is used by (Sundresh 04) in implementingtheir model of an environment in their wireless sensor network simulator, SENS. The model55

2.6. Perspetivesof the environment is partitioned into smaller physial spaes, whereby eah spae, alled atile, assumes a value of either grass, onrete or wall. The model of the environment is usedto model more aurate radio-propagation models for wireless sensor networks.SensorsTatus, UbiREAL and SitCom o�er the most varied approahes to the modelling of a sensor.The most basi approah to modelling a sensor is to abstrat the physial devie to a queryAPI. This approah is adopted by UbiWise and Tatus, whereby alls to a sensor API returnsensor data from the graphial environment. The Lanaster simulator provides a slightlymore omplex API, that returns ontextual data rather than raw physial data, but the queryAPI abstration remains the same. This simplisti model does not take into aount anyharateristis of the sensor itself.A slightly more omplex approah is to model the devie driver that would be used tonormally aess a sensor, an approah that is used by UbiREAL. In this ase, the sensordata returned is the same as that of UbiWise and Tatus, but it is returned in a format thatthe appliation is expeting. As is noted, using a simple query API means that appliationshave to be re-written to use that API. UbiREAL's approah of abstrating sensors to deviedrivers, essentially provides an emulated interfae, on top of a basi query API. A similarapproah is used in the wireless sensor network simulator domain. TOSSIM (Levis 03), andEmStar (Girod 04a) to a ertain extent, provide the notion of an Analog to Digital Converter(ADC) hannel, but only provide a simplisti implementation with port/value pairs, i.e. aport is read and a single 10 bit value is returned. This value an be random, or a generalmodel an also be implemented using an external funtion.The resultant emulated sensor datais pushed to the emulated TinyOS appliation.SitCom uses its 3-D game-engine based environment model to its advantage to generateaurate models of more omplex sensor streams suh as video feeds or audio streams. Thisis a great example of exploiting the graphial model of the physial environment to its fullpotential, something that UbiWise and Tatus arguably do not.What is missing from all of these models is apturing the atual devie itself. When an56

Chapter 2. Related WorkAPI is presented to an appliation as an abstration of the sensor, all of the harateristisof the sensor are missing. Di�erent sensors have di�erent thresholds for example, and behavedi�erently aording to an error model. Capturing this error and these sensor harateristisan be useful in the omplete modelling of the domain. In wireless sensor networks, modellingwhat happens at the physial sensor is often negleted, beause the fous of the researh isoften on the network layer or the query. There are, however, some wireless sensor network sim-ulators that o�er more omplete models of sensor devies than the simulators in the pervasivedomain, and is more re�etive of the error-prone data that sensors provide in reality.SensorSim (Park 00) introdued the notion of a �sensor hannel�, whih models the phe-nomena whih is sensed rather than the hannel for delivery of sensor events. A sensor hannelexists that models the wave propagation harateristis of infra red light, and a separate modelexists for representing sound waves. In J-Sim (Sobeih 05), the notion of a sensor hannel isagain used to model senseable phenomenon. A sensors physial layer is used as an interfaeto this hannel and is the sole input into the sensor hannel. A sensor propagation model isused in the sensor hannel. Signals propagated over the sensor hannel may be attenuated,aording to signal strength, reeiving thresholds and other harateristis determined by thesensor propagation model. Other fators taken into aount in the model are the loation ofthe sensor, and that the loation of other sensors may also impat upon the signal propagatedover the hannel.AtuatorsThe only pervasive omputing simulator to address the model of an atuator is Tatus, andsimilarly to its model of a sensor, it is abstrated to an API rather than modelling the devieitself. The simple API o�ers appliations the opportunity to update some state in the world,the e�ets of whih are aptured within the graphial environmental model. However, thistehnique o�ers no opportunity to speify atuators with di�erent harateristis, that mighta�et the environment in di�erent ways.Atuators, however, are more ommon in the robotis ommunity, and a simulator de-veloped by (Labella 06) for the sensor and atuator network (SANETs) domain has merged57

2.6. Perspetivesa robotis simulator and a wireless sensor network simulator. The ODE (Ordinary Di�er-ential Equations) system (Parker 04), models the rigid body dynamis of a physial robotiatuator. Similar researh work has been ahieved in Player/Stage11 and has reently beenapplied (Kranz 06) to the pervasive omputing domain. This library approah to modellingatuators is however onstrained to robotis, and is not extensible to atuators, for examplelight swithes, or radiators, that are often onsidered in the smart-spae domain, a subset ofpervasive omputing. From a more general perspetive, it would be useful to onsider atu-ators as they might apply to a physial environment. In partiular, UbiREAL's approah ofspeifying the environment in terms of mathematial funtions de�ning the harateristis ofthe spae would appear to overlap with the robotis approah. Given the expertise requiredto generate the formulae of the phenomenon, the formulae ould be extended to aommodateupdates to the model based on the ations of an atuator.UsersTwo approahes are evident in modelling the users within a pervasive omputing environment.UbiWise, Tatus and UbiREAL all exploit the funtionality of the underlying game engine toprovide realisti models of human users that an interat with their respetive modelled en-vironments. Gamebots and Non-Playing-Charaters (NPCs), an be programmed to interatwith their environments, inluding moving around the environment, using objets, suh asappliations (in Tatus) or physial devies (in UbiWise) modelled within that environment,and interating with other NPCs. The game engine API simpli�es the task of modelling thefuntionality of users within the model.It seems lear though, that the approah of using an NPC is dependent on the physialenvironment that is aptured by the game-engine. In wireless sensor networks, the user isusually de�ned in a strit mobility patterns or more reently, a trae-based mobility patterns.In intelligent transportation systems, the user is a vehile or a person inside a vehile. Con-sidering this broader range of pervasive omputing domains, then individual NPCs must bereated for eah domain.11http://playerstage.soureforge.net/ 58

Chapter 2. Related WorkP-VoT spei�es the behaviour of users in terms of a Statehart, i.e. modelling states, andstate transition funtions. More omplex behaviour an be spei�ed in the Python sriptinglanguage, although there is no spei� ode base for modelling users.There are two points to note. The �rst is that the model of a user is dependent on themodel of the environment in whih that user exists. Seondly, that model of the user mustinterat with that environment in a spei�ed way. This means that the model of the physialenvironment, must be explorable or queryable from a user's perspetive. This holds truewhether the model of the environment is aptured as a building, or a series of rooms, as isthe ase in UbiWise and Tatus, or if the model of the environment is aptured as a series ofstates, in the ase of P-VoT.Several models from outside the pervasive omputing spae have been applied to modellingusers. Formalised models suh as random walk and random waypoint (Camp 02) have beenlong established and used within the wireless network simulation ommunity. These are,however, basi models of a user's loation, moving around an open spae, whose patternof movement is often not a�eted by their environment. More omplex mobility patternshave been established for partiular transport domains suh as rail (Li 06), and road tra�(Esser 97) simulators, and these models apture an inreased dependeny on the environmentompared to the lassial mobility patterns.In addition to these mobility patterns, e�orts have also been made to apture the be-haviour of users spei�ally in the pervasive omputing domain. (Narendra 05) has spei�eda user's behaviour in terms of event-ondition-ations, a rule-based system that has its rootsin multi-agent simulation. The omplete system models hardware devies as resoures andappliations, and they are also spei�ed in terms of event-ondition-ations. The environmentitself is presented in terms of ontextual information. An alternative approah to modellingthe user using XML has been addressed by (Hekmann 03), who exploits an ontology lan-guage, UserML, to model attributes of the user suh as their loation, their ations, and theonditions they are ating under. This model is to be used by real appliations to exhangedata about users though, rather than being part of a larger simulation model, so unfortunatelyit does not tie into any spei� models of the environment that a user might exist in.59

2.6. Perspetives2.6.2 RC4 - Appliation EmulationA typial pervasive omputing appliation requires emulation on two fronts. An appliationan use sensors and atuators to interat with its environment, and it an also use a network,either wired or wireless, to ommuniate with its peers. There are two main approahes toahieving the emulation of these two interfaes.The �rst emulation tehnique, adopted by UbiREAL, and StarBED2 uses a ompile-and-link approah. In this approah, the target appliation is emulated at the immediate level ofits interation with its underlying exeution environment. A library is written that onformsto the API of the system alls or middleware, but interfaes with the simulator instead ofthe original target platform. The emulated appliation is ompiled and linked against thesimulators library instead of the original libraries.A similar approah is used by LSE to enabling the emulation of the appliation's network-ing funtionality. However, instead of redireting method invoations within the appliation,the appliation is ompiled and linked as normal, and the kernel is modi�ed to intereptmessages and re-diret them into the network simulator.The deision of what level to emulate at is dependent on a variety of fators, and maybe in�uened by whether it is the network interfae or hardware interfae, or both, that isbeing emulated. Additional important fators inlude the availability of the soure ode forthe appliation, middleware and system alls upon whih the appliation is built, and theauray of emulation required. A ompile and link approah to emulation is only possiblewhen the soure ode of the appliation is freely available. In this ase, interepting allswithin the kernel is possible, but may only be suitable for emulation of the network interfae.An additional fator to onsider is the auray of the emulation required. In the ompile-and-link approah, alls to the underlying funtionality, whether it is system alls or middle-ware are redireted into the simulator. If an appliation is built upon middleware, and allsto that middleware are redireted immediately into the simulator, then all of the funtionalityof the middleware is lost. If the soure ode for the middleware is available, it may be moreappropriate to retain some of the funtionality, and rediret methods to the simulator aftersome of this funtionality is invoked. 60

Chapter 2. Related Work2.6.3 RC6 - Network Simulator Integration
There are two approahes to supporting network simulation within these simulators: buildyour own or integrate an external simulator. UbiREAL and Tatus have developed theirown network simulators, whih have been integrated diretly into their simulators. Thereare positives and negatives to this approah. There are well established network simulators,suh as J-Sim (Sobeih 05), whih are already widely supported by the wireless sensor networkommunity. Developing yet another network simulator is a time onsuming task, and is an areaof researh in its own right. However, designing your own simulator does allow the developerto exploit fators spei� to network simulation in pervasive omputing environments. Tatus,for example, fators in the loation of rooms and walls, provided by its world model, to modelmore omplex wireless networking environments than a standard network simulator.An alternative approah is to integrate an existing network simulator into the simulatorto perform the role. This approah, used by LSE, requires that mappings from the pervasiveomputing simulator to the network simulator is provided. For example, the loation infor-mation of the individual nodes may be modelled by the pervasive omputing simulator, butis needed by the network simulator for the alulation of nodes within a transmission rangefor example.An additional fator for onsideration is that if the appliations are being exeuted inwall-lok time, then there may be limits on the number of nodes that an external networksimulator an model. The network simulator has two tasks. The �rst is to alulate thereeivers of a message that is sent, and the seond is the delivery of that message to theorret reeiver at the orret time. If the time taken for the two of these tasks is greater thanthe time taken to deliver the message in the real world, then the simulation of the networkis inaurate. The time taken to alulate the reeivers inreases substantially as the numberof nodes in the simulated wireless network inreases, so this may be a limiting fator in thisapproah. 61

2.7. Summary2.7 SummaryThere have been numerous simulators that have been developed to address the need forevaluation tools for pervasive omputing. UbiWise, the suessor to QuakeSim, was the �rstof the well known simulators to be developed, and its game-engine based approah has beenutilised by further simulators in reent years, notably Tatus and SitCom. More reently,UbiREAL has reognised the importane of a more omprehensive approah to simulatingthe domain, integrating improved models of the physial aspets of the environment.However, these simulators have only met with limited suess, and none have addressedall of the requirements identi�ed for modelling a domain. Perhaps the most striking areaof this is in the modelling of the omponents that are the very fabri of these pervasiveomputing senarios. None of the simulators disussed attempt to model a physial sensoritself, instead they prefer to abstrat it typially to a query interfae or a devie driver. Thereis less support for atuators in the existing state of the art. One of the exiting prospetsin pervasive omputing is the use of atuators to a�et the environment, yet this interationbetween the environment, and the atuator, and the atuator devie itself is rarely modelled.The lak of models for these devies is partly due to the fat that pervasive omputingis a very broad area, that enompasses a wide array of physial devies. It is di�ult toome up with a set of omponents that are representative of the domain, and that mayinterat with eah other in unantiipated ways. There have been attempts to integrate thirdparty simulators that address the modelling of these omponents individually, but without aninfrastruture to bind these omponents together, this approah an only ever have limitedsuess.Although it has been established that pervasive omputing is a broad multidisiplinarydomain, the underlying omponents suh as appliations, sensors and the model of the networkare in fat onstrained at an abstrat level. For example, it has been noted that severalsimulators, UbiREAL, Tatus, and UbiWise all employ a publish-subsribe design patternor similar to notify sensors of hanges in the environment, and that this design pattern isindependent of the implementation of the sensor. Similarly, it has been noted that in pervasiveomputing the ations of the user, who may be arrying devies or appliations, are in�uened62

Chapter 2. Related Workby their environment. Compared with the wireless sensor network simulator domain, wherea user is de�ned by a strit mobility pattern, more realisti models of the user and theirinteration with their environment are required.This hapter has provided an overview of the state of the art in the area of simulators forpervasive omputing. Using the review riteria determined, the main works in this area havebeen examined, and have been shown to be de�ient in several aspets. Finally, a omparisonof the adopted approahes to modelling the main omponents was presented, and additionalrelated work in these areas were also identi�ed.

63

Chapter 3
The PiCSE Framework Arhiteture
3.1 IntrodutionAs presented in the opening hapter, this thesis desribes a framework enabling both the sim-ulation and emulation of pervasive omputing senarios. The PiCSE framework is omprisedof three lass ategories, the PiCSE_Core, Abstrat_Interfaes, and PC_Abstrations thatombine to form the PiCSE framework. Developers use the PiCSE_Core lasses to supportinstantiations of the PC_Abstrations lass ategory to reate simulations of tailored perva-sive omputing senarios. Additionally, the Abstrat_Interfaes lass ategory an be used toextend the framework to meet modelling requirements not provided by the PC_Abstrationlass ategory.This hapter presents the PiCSE framework and examines how the reation of simulationsis supported by the PiCSE framework and the underlying infrastruture. The hapter beginsby justifying the appliability of the framework-driven approah and identi�es requirementsthat will guide the framework's design. The oneptual arhiteture of a typial PiCSEinstantiation is then onsidered. This highlights the main levels of interation between therespetive omponents of an instantiation. The main abstrations that are provided to modelthese omponents are then introdued, and this is followed by presentation of the framework'ssupport for the realisti emulation of appliations. Finally, the overall arhiteture of thePiCSE_Core lass ategory is examined. 65

3.2. A Framework-Driven Approah for the Testing of Pervasive Computing Appliations.3.2 A Framework-Driven Approah for the Testing of PervasiveComputing Appliations.Based on the ore hallenges and the seminal de�nitions for frameworks introdued in hapter1, three riteria should be satis�ed in order to onsider a framework driven approah for thetesting of pervasive omputing appliations. These are:1. Are these a family of related problems?2. Do they interat in a de�ned manner or pattern ?3. Could the urrent approahes bene�t from avoiding re-reating and re-validating om-mon solutions to reurring appliation requirements and software design hallenges?The answer in all three ases is yes.Are these a family of related problems? Currently, there are a wealth of simulatorsand emulators all addressing di�erent but related aspets of the pervasive omputing domain.Within these simulators and emulators, there are many reurring ators, omponents andelements inluding persons, sensors, loations, ommuniation abstrations and the environ-ment and in many ases these aspets are oneptually similar but are simulated to di�erentdegrees of granularity or omplexity depending on the aim of the simulator. For example, in anetwork simulator suh as NS-2, a person is abstrated to a mobility pattern suh as randomwalk, or random waypoint (Camp 02), whereas in a ontext-aware omputing simulator, aperson may have additional features suh as an identity, a urrent ativity, and a plan assoi-ated with that mobility pattern. In this ase, learly the onept of loation, mobility and aperson are related, but these are implemented using di�erent models and omplexities arossthe di�erent simulators.Do they interat in a de�ned manner or pattern ? The interations between elementsthat are reurring between simulators are not neessarily pre-de�ned aross all senarios butthere are reurring interation patterns between them. For example, sensors often take sensor66

Chapter 3. The PiCSE Framework Arhiteturereadings from their loal environment, and those sensor reading are generally used by someappliation for the purpose of in�uening and driving some appliation behaviour. Environ-mental monitoring appliations often use stati wireless sensors and a gateway appliationmay distribute a query to those sensors to gather data within the sensor network. Alterna-tively, a sensor an be event-triggered by a hange in the environment, for example a personentering a room or a proximity sensor that detets when a door has losed, and these eventsan trigger some reative appliation behaviour. A seond alternative interation is that anenvironmental monitoring sensor an be hosted on a mobile devie whih is arried by a per-son, and is only invoked when the person is using a ontext-sharing appliation. In all threesenarios, wireless sensor networking, smart-spaes, and itizen sensing, there is a reurringrelationship, a pattern, between the sensor, the environment and the appliation, althoughthe atual mehanis and nature of the pattern di�er in eah senario.Could the urrent approahes bene�t from avoiding re-reating and re-validatingommon solutions to reurring appliation requirements and software design hal-lenges? At present, there are a wide range of simulators for eah of the pervasive omputingsub-domains, and eah has their own interpretation and implementation of the reurring ele-ments suh as loation, sensors, events, and mobility models. Avoiding the re-implementationof these omponents would both ease the task of development, and would give greater redibil-ity to any simulated results as those results would be built upon a ommon base. Finally, a setof omponents and abstrations that were reurring aross all pervasive omputing domainswould open up new opportunities for evaluation of overlapping domains as well as providinga base for an extensible arhiteture that ould aount for emerging domains in the future.3.3 A Frame of Referene for a Pervasive Computing SimulatorIn hapter 1, a broad overview of pervasive omputing and its modern de�nition was presented.In reognising that the future of pervasive omputing will be both multi-disiplinary anddynamially hanging, the fous of this thesis's approah is on an extensible arhiteture thatan aommodate the modelling and evaluation of both new and existing sub-domains of67

3.3. A Frame of Referene for a Pervasive Computing Simulatorpervasive omputing. As suh, the PiCSE arhiteture is not targeting a sub-set of existingpervasive omputing domains and instead intends to be at least theoretially appliable to allpervasive omputing domains.The thesis's approah onsiders the user to be a researher or domain speialist who isusing a standard ommodity personal omputer, i.e. without aess to high-performaneomputing hardware. There are no unusual restritions on the platform that the frameworkshould be deployed on, but the �typial� use-ase that we are onsidering is that of a researherperforming some rapid prototyping, iteration and evaluation of a pervasive omputing senarioand as suh is someone working at his own mahine, typially a desktop omputer.3.3.1 The Sope of External-Faing FeaturesThe analysis of the most pertinent state of the art simulators in this domain, outlined inhapter 2, revealed a range of reurring features that are ommon to pervasive omputingsimulators. These inluded the modelling of sensors, users, domain-spei� appliations, theenvironment, and network simulation amongst others.Network SimulationThe design and implementation of the framework fouses around the ore hallenges of �exibleheterogeneity, extensibility and reusability. One reurring omponent of pervasive omput-ing simulators is the aspet of network simulation. There are already many well-establishednetwork simulators in this domain, and the PiCSE approah does not attempt to reate anew network simulation omponent that ould ompete and potentially displae one of these.Rather, it is reognised that the researh and development of suh network simulators isan entire and independent �eld of researh in its own right, and PiCSE's framework imple-mentation does not attempt to dupliate this researh. Instead it fouses on an extensibleopen arhiteture that allows the future integration of a open network simulator, and thusombining the best of both approahes. 68

Chapter 3. The PiCSE Framework ArhitetureUser InterfaesThe simulators outlined in hapter 2 implemented a variety of user interfaes ranging from ashell-based ommand-line interfae up to a 3-D interative graphial user interfae used forboth the de�nition and the exeution of a simulation. The overall system is implementedas a series of libraries and assoiated sripts for the building and exeuting of simulations.Not having a graphial omponent means that experiments that don't require a human inthe loop an be exeuted quikly. Inluding a �human in the loop�, i.e. in the exeution ofa simulated experiment is an inherently slow approah that is not suited to large sale ex-periments. However, PiCSE's �exible and open implementation ensures that the arhitetureould be extended in that diretion through the addition of a graphial user interfae if thatwas required.The Human or User FatorNevertheless, the human or user element and behaviour is a key part of many pervasiveomputing senarios, partiularly those involving smart spaes or ontext-aware omputing.The modelling of user behaviour within PiCSE is de�ned using a ombination of both mobilitypatterns and event-based model. Although it does not de�ne user behaviour in a manner asextensive as an agent-based model, the basi user model an interat, sense, move within anda�et both the modelled environment and other elements with that modelled environmentsuh as sensors or other domain-spei� elements. This approah allows PiCSE to handleusers as it would any other modelled element within a simulation. In line with Weiser'soriginal vision of pervasive omputing, PiCSE's support for appliation and devie emulationis restrited to those devies and appliations that run in the bakground, sensing, reatingand ultimately prompting hanges in their environment. Therefore, the arhiteture desribedhereafter only onsiders appliations that an run as disrete servies and not those that thatmay require diret user input.As will be seen however, many of these restritions that apply to the sope of the frame-work's arhiteture do not prelude the integration of these omponents and features at alater date. Where appropriate, these extensions are disussed inline in the text.69

3.4. Requirements3.4 RequirementsThere were three main fators taken into onsideration when de�ning the requirements for apervasive omputing simulator. These were primarily highlighted by the analysis of the stateof the art. Review riteria suh as �exible heterogeneity and extensibility are only partially metby the urrent state of the art and are thus inluded diretly as requirements. The requirementof a simulators support for external interation was omitted, as the fous of the thesis wasto develop a standalone extensible arhiteture that ould run on a loal mahine. Seondly,the evolving multi-disiplinary and emerging domains of the future of pervasive omputingmotivate and provide further requirements. Finally, the frame of referene for a pervasiveomputing simulator, as de�ned in the previous setion also in�uenes the identi�ation ofthe requirements.There are many simulators that address subsets of the omplete pervasive omputingdomain but few are generi enough to address all of these subsets. Often, these simulatorsare not suitable for evaluating appliation ode but fortunately there are platform-spei�emulators that meet this requirement. However, these emulators often over simplify theinputs and outputs of the emulated appliations, and it is a requirement of this frameworkthat the �exible and extensible modelling of these sensor inputs and atuator outputs are afundamental part of the omplete evaluation of pervasive omputing senarios. Setion 3.2has stated that by identifying reurring ommonalities within the domain, using a frameworkis a suitable approah to supporting the wide range of related pervasive omputing senarios.The following requirements are therefore identi�ed for the PiCSE simulator:
• R1 The framework should support the �exible and heterogeneous simulation of thehardware elements of pervasive omputing senarios. This is be provided by reatingustomisable abstrations representing physial aspets of the senarios suh as theenvironment, as well as hardware devies suh as sensors and atuators.
• R2 The framework should support the emulation of real-ode appliations developedfor pervasive omputing. These appliations may be built upon middleware that shouldalso be supported. 70

Chapter 3. The PiCSE Framework Arhiteture
• R3 The framework should mediate the �exible interation of any simulated and emu-lated elements forming the simulation of a pervasive omputing appliation.
• R4 The framework should support the reation of new abstrations of both hardwareand software elements, in order that future emerging appliation senarios an be in-orporated into the PiCSE framework.
• R5 The framework should ombine reurring elements of pervasive omputing simula-tions into a set of reusable omponents thus reduing the amount of work required toinstantiate any simulated senarios.
• R6* The framework should support network simulation for both wired and wirelessnetworks.
• R7 A framework that supports the reation of pervasive omputing simulations mustprovide funtionality to support the evaluation of those simulations.At present, there are no simulators for the pervasive omputing domain that meet all of theserequirements. A simulator designed as a framework ould potentially meet these requirementsand would form a ontribution to the state of the art in this area.Requirements R1, R2, R3Requirements R1, R2, and R3 all address the ore hallenge of �exible heterogeneity. A set ofmodelled hardware and software elements that were reurring aross all pervasive omputingdomains and that ould be freely ombined would open up new opportunities for the evaluationof many pervasive omputing domains inluding future domains where the boundaries ofpervasive omputing and other domains begin to interset. At present this level of �exibilityis not provided by any of the state of the art simulators and this requirement is mandated bythe future diretion that pervasive omputing is moving towards.71

3.5. The PiCSE_Core ArhitetureRequirement R4Requirement R4 maps diretly to the ore hallenge of supporting extensibility. A frame-work should support the ability to aommodate new emerging appliation areas of pervasiveomputing, and aommodating these areas should be redued by leveraging on the previouswork enapsulated within the framework, i.e., the task of aommodating these new areasshould be simpli�ed. Without this requirement, new modelling tools must be developed inonjuntion with eah emerging appliation area, despite the predited reurrene of many ofthe aspets of the emerging domain with aspets of previous pervasive omputing domains.Requirement R5The requirement R5 maps diretly to the ore hallenge of reusability. Given the reurringelements, behaviours and patterns that have been identi�ed in pervasive omputing appli-ation senarios, these should be enapsulated within a set of ore omponents within theframework that are ommon to all instantiations of the framework. This requirement followson from requirement R4 and is also mandated by the framework-driven approah that hasbeen deemed to be the most appliable to this domain.Requirements R6* and R7Finally, R6 and R7 are two funtional requirements for the framework. These requirementswere identi�ed as neessary by their frequent reurrene in the simulators examined in thestate of the art, and address both key funtionalities and usability. As noted however in theprevious setion, although network simulation is a reurring feature of pervasive omputingsimulators, the approah used is to allow the integration of an existing and proven networksimulator as a sub-omponent or an out-soured feature of the arhiteture.3.5 The PiCSE_Core ArhitetureThe PiCSE_Core lass ategory provides the ore and reurring omponents of an instanti-ation of the PiCSE framework, i.e., a simulation. It ontrols the dispathing of events raised72

Chapter 3. The PiCSE Framework Arhitetureby the simulated models and ontrols the exeution of appliations in the form of pthreads.Figure 3.1 identi�es the key omponents within the PiCSE_Core. The PiCSE_Core itselfis implemented as a olletion of onrete stati lasses, and an be logially divided intotwo setions: the majority of the omponents interat with both the Simulated_Models andEmulated_Interfaes layer through the PiCSE API, whilst the Domain_Manager (inludingits sub-omponent, the loation manager) interats solely with the Simulated_Models layer.Eah of these omponents plays an important role in the instantiation of a PiCSE in-stantiation. The Domain_Manager is responsible for the management of instantiations thatrepresent the �physial� aspets of the domain. It provides the layer stak, the olletion ofindependent EntityLayer and EnvironmentLayer instantiations, and maintains the depen-denies between them. It provides a global de�nition of variables, suh as the dimensions ofthe modelled domain, and provides servies to the simulated omponents, suh as generatingrandom loations, for the instantiation of simulated Objets.In addition to this, it also plays the role of a Loation_Manager. The Loation_Managermaintains the loation of Net_Interfae instantiations, whih are used to provide a basinetwork simulation interfae. As an ExeutionEnvironment instantiation moves through-out the modelled domain, the loation of its respetive Net_Interfae also moves. TheLoation_Manager manages the modelling of their loations, whih is required by the net-work simulation omponent.The network simulation models the wired and wireless network ommuniation of a PiCSEinstantiation. The model supported is very basi: A paket (in the form of a string ora void*) an be broadast to all loal neighbours or an be uniast to a single neighbour.Pakets an be �dropped�probabilistially, and also based on transmission range. Both of theseparameters an be set by the user. The alulation of the distane between potential reeiversand the sender is performed in onjuntion with the loation manager, whih maintains theloation of all Net_Interfae objets. The realisti modelling of a network simulator is nota feature of the PiCSE simulator. There are many existing network simulators, and thedevelopment of another is an area of researh in its own right. Instead, the PiCSE ore hasbeen arhiteted bearing in mind the future potential integration of a well-known network73

3.5. The PiCSE_Core Arhiteture

Figure 3.1: The PiCSE_Core arhiteture
74

Chapter 3. The PiCSE Framework Arhiteturesimulators, suh as GlomoSim1 or Opnet. Although this has not been evaluated in any ofthe evaluation senarios, the separation of the Loation_Manager and the Net_Interfaeabstration from the network simulation omponent ensures that the network simulationomponent itself ould be potentially replaed.The Thread_Manager and the Event_List_Manager perform the joint role of exeuting aPiCSE simulation instantiation between them. As mentioned previously, the framework's sup-port for emulating multiple appliations is implemented using a master-slave multi-threadedapproah. The Thread_Manager manages the ontrolled exeution of both master and slavethreads. The master thread itself is used not only to swith between the slave threads, butalso to advane the Event_List_Manager, whih is responsible for the sheduling of eventsoriginating from both the simulated models and emulated appliations. Slave threads aresheduled to wake up at a time determined in advane of the thread being put to sleep.The Event_List_Manager maintains two lists: the Sheduled_Event list and theSheduled_Appliation list. The Sheduled_Event list is an implementation of a lassialDEVS event list: a set of events ordered by their timestamps. The Sheduled_Appliationlist is a set of <pthread, ExeutionEnvironment*> tuples, also ordered by their times-tamps. The master thread advanes the two event lists, by heking and determining thenext event. In the ase of the next event oming from the Sheduled_Event list, the threadof ontrol remains with the master thread, the event is dispathed, and the appropriate fun-tionality of the simulated entity is invoked. Alternatively, an event is dispathed from theSheduled_Appliation list. In this ase, the pthread ontained within the tuple is restartedas a slave thread, and when the appliation has ompleted its exeution yle, the thread ofontrol is returned to the master thread. In the ase of either event type ourring, the ur-rent event is stored as a global variable for the duration of the exeution of the appropriatemethodology.Emulation transpareny is maintained as both the behaviour of interating hardware de-vies and the timing of any behaviour is aptured within this model . Further detail of thebehavioural interation and transpareny is outlined in setions 4.3.5 and 4.4.1 of hapter 4.1pl.s.ula.edu/projets/glomosim, www.opnet.om75

3.6. The Composition of a PiCSE Instantiation

Figure 3.2: Coneptual arhiteture showing layers within a generi instantiation of thePiCSE framework3.6 The Composition of a PiCSE InstantiationThe framework supports three levels of modelling: the reation of simulated models only,emulated appliations only and both together. Figure 3.2 represents a oneptual arhite-ture apturing the most generi instantiation of the framework involving both simulated andemulated entities. The purpose of this is to have a frame of referene when disussing theinteration of omponents between these layers. The following oneptual layers are identi�edand now desribed from the bottom up.The PiCSE Core LayerThe PiCSE_Core provides the main funtionality required to support and manage all instan-tiations of the PiCSE framework. This inludes, amongst others, an event list, a shedulingAPI, an event manager, an objet manager, a thread manager, and a network simulationomponent. The funtionality here is provided by omponents within the PiCSE_Core lassategory, and are disussed in detail in setion 3.5.The Simulated Models LayerThe layer diretly above the PiCSE_Core is the Simulated_Models layer. Classes withinthis layer are either derived from the abstrations provided within the PC_Abstrations lassategory or are domain-spei� models derived from the Abstrat_Interfaes lass ategory.76

Chapter 3. The PiCSE Framework ArhitetureSimulated models from a typial pervasive omputing senario would inlude sensors, a-tuators, a model of the environment and domain-spei� models. These interat with thePiCSE_Core to shedule events, thus driving the simulation. They an also interat in-diretly with other simulated objets through the spei�ation of both physial and logialdependenies, whih are desribed in detail in hapter 4.The Emulated Interfaes LayerThe Emulated_Interfaes layer is the next oneptual layer and is required when appliationsform part of the modelled senario. This layer sits between the simulated models and applia-tions and mediates the interation between the two. Classes within the Emulated_Interfaeslayer are written to repliate the behaviour of the native environment in whih the appliationwould run and provide the mapping between a real appliation and simulated models. Thisan our in two situations:1. The �rst situation is when an appliation has been written to interat with a hardwaredevie suh as a sensor. In the ase of a sensor, for example, an appliation may interatwith the devie physially via a serial able, and logially, through the underlying �lesystem of the operating system. In this situation, the simulated sensor must providean emulated interfae so that the appliation an read data from it in a partiularformat. Modelling of these interfaes is performed through instantiation of lasses fromthe PC_Abstration lass ategory.2. The seond ourrene is when appliations are built diretly upon system alls ormiddlewares, and is shown in �gure 3.2 as the diret meeting point between the emulatedinterfaes layer and the PiCSE_Core layer. In the ase of a middleware providingnetworking funtionality, the emulated interfaes layer provides a mapping betweenthe appliation's alls to the middleware and the framework's network simulator. Alibrary ontaining mappings of ommon system alls is provided in the PiCSE_Corelass ategory, and users an instantiate their own appliation spei� mappings usingabstrations provided in the PC_Abstration lass ategory.77

3.6. The Composition of a PiCSE InstantiationAs noted above, it is possible to reate instantiations of the framework without appliations.It is even possible to reate instantiations of the framework that inlude appliations andare built without emulated interfaes. But in these ases, the appliation must be at leastpartially re-written to use the PiCSE APIs to aess the simulated models.
The Appliation LayerThe �nal layer is made up of appliations that are used within the senario. The applia-tions an transparently interat with hardware devies, middleware or the emulated operatingsystem through the Emulated_Interfaes layer. Appliations are used as they would be inthe native environment, i.e. without hange and are ompiled into a PiCSE instantiation.Certain limitations exist that restrit the lass of appliations that an be run within PiCSE,and these limitations are explored later.
3.6.1 Minimum Requirements for a PiCSE InstantiationThere exists a set of minimum requirements for an instantiation of the framework. Theframework supports the dual funtionality of simulation and appliation emulation, eah ofwhih addresses the modelling of separate, yet inter-dependent, aspets of pervasive omputingsenarios. It may be more helpful though to imagine the framework overing these twofuntionalities and the wide span between them. A typial pervasive omputing senario wouldontain elements of both simulated and emulated omponents. However, at the boundariesof this supported span are instantiations of the framework where only simulated entities oremulated appliations are required. The framework enfores no restritions or dependenieson the number of instantiations of simulated and emulated models. Regardless of whether thesenario being modelled requires simulated or emulated elements, or both, an instantiationof the PiCSE_Core is required. The provision of the PiCSE_Core that is reused in allvariations of PiCSE instantiations partially address R5, the reusability requirement.78

Chapter 3. The PiCSE Framework Arhiteture

Figure 3.3: Coneptual diagram of a PiCSE simulation in Algorithm ModeAlgorithm ModeIn instantiations with only simulated models, models are reated of the hardware devies,the environment and additional domain-spei� objets (or a subset of these three). As thereare no appliations to interat with these devies, the objets an only interat amongstthemselves. An API exists, within the lass de�nitions of the key abstrations, that allowsother simulated models to query the sensors as simulated objets, although not through anemulated interfae that an appliation would typially use.Within the ontext of the use of the PiCSE framework, this is depited in �gure 3.3.This is so alled as typially a new objet is introdued that implements an algorithm, thatinterats with the hardware devies and the environment. The inlusion of an algorithmobjet is not neessary, but a simulation of hardware devies and the environment on theirown, without any interation, is not very interesting! New lasses that implement algorithmsare reated using interfaes and abstrat lasses from the Abstrat_Interfaes lass ategoryand not from the PC_Abstration library.Appliation ModeAt the opposite end of the supported spetrum are instantiations of the framework in Applia-tion Mode2. In Appliation Mode, shown in �gure 3.4 , appliations use an emulated interfae2No hanges have to be made or parametrised within the framework to ahieve the di�erent modes of use.The onept of di�erent modes is purely oneptual and merely re�ets instantiations reated with or withoutertain abstrations. 79

3.6. The Composition of a PiCSE Instantiation

Figure 3.4: A PiCSE instantiation in Appliation Modeto interat with the PiCSE ore. In this mode, there are no simulated models to interat with,however the networking simulation funtionality of the PiCSE_Core is available, allowing ap-pliations to exhange messages through the simulator. The Appliation Mode is highlightedmerely to show that the framework supports the emulation of appliations independently ifrequired.3.6.2 PiCSE Instantiations as Sub-FrameworksThe framework plays two di�erent roles: The primary role, as outlined in Chapter 1 is toreate simulations through the instantiation of the framework, whilst the seondary role ofthe framework is that it an be used to instantiate domain-spei� simulators whih areframeworks in their own right. These an then be used to instantiate simulations for apartiular sub-domain of pervasive omputing.The many domains of pervasive omputing, suh as ambient omputing, ontext-awareomputing, and smart spaes, eah have their own modelling requirements, suh as the saleand type of environment to be modelled and the various hardware omponents found withinsuh environments. Take for example, an intelligent transportation system (ITS) senario.The required simulated models for this senario might inlude the following:
• GPS and indutive loop sensors
• Road network environment
• Tra� light atuators 80

Chapter 3. The PiCSE Framework Arhiteture
• VehilesIt is entirely feasible to reate an instantiation of the framework to model this senario. Thisis in itself the primary role of the PiCSE framework. However, a single instantiation of theframework is restrited by the funtionality of that instantiation. For example, the vehile be-haviour may be �xed or the behaviour of the tra� lights ould be �xed. Di�erent developers,that wish to evaluate separate appliations within this domain, should be aommodated. Oneappliation might be examining the use of GPS sensor data in maximising vehile throughput.A seond appliation might look at using the same sensor data to provide ollision avoidanesoftware within the vehiles. In these ases, it makes sense to allow users to instantiate thePiCSE framework to reate an intermediary framework that may be then instantiated to theindividuals requirements. The result of a PiCSE instantiation in this ase is not a simulation,but a framework allowing other developers to reate their own ITS simulations. The PiCSEframework is �exible enough to allow multiple appliations with di�erent requirements to runwithin one simulation, should suh a senario be required by a developer. This is a signi�antstep towards ahieving the requirement of R1 and R2, the requirements relating enabling the�exible simulation and emulation of multiple elements of heterogeneous pervasive omputingdomains.From an implementation point of view, the PiCSE_Core omponents remain the same.A new lass ategory of abstrations and onrete lasses, that are spei� to the ITS do-main, are reated using instantiations and derivations from the PC_Abstrations and theAbstrat_Interfaes lass ategories. Abstrations of this new lass ategory are then instan-tiated to reate individual onrete simulations. The ability to reate new frameworks fromthe PC_Abstrations and the Abstrat_Interfaes lass ategories ontributes to meetingrequirement R4, the extensibility requirement.3.7 Supported AbstrationsThe �generalised� PiCSE instantiation that is presented in setion 3.6 has provided an intro-dution to the general ategories of omponents that PiCSE supports. These are formalised as81

3.7. Supported Abstrationsabstrations within the PiCSE framework, whih an be partitioned into three separate lassategories. The PC_Abstrations and the Abstrat_Interfaes lass ategories meet PiCSE'smodelling requirements and are now introdued in the following setions 3.7.1 and 3.7.2. The�rst setion explores the abstrations required to support the modelling of the �physial� as-pets of pervasive omputing, suh as an environment or a sensor. The seond subsetionintrodues models that abstrat the �software� omponents, the appliations and middlewarethat might exist within the modelled domain. The abstrations presented in these setionsform the basis upon whih the PC_Abstrations are built whih satis�es requirements R1,R2, and R3, the requirements for �exible heterogeneity.The implementation and interation of these omponents is explored in greater detail inhapter 4 and validated in hapter 5, whilst their integration in the overall PiCSE arhiteturehas been introdued in setion 3.5.3.7.1 Supporting the Modelling of the Physial Pervasive ComputingComponentsThe PiCSE framework is based on the disrete event simulation formalism. In this formalism,a simulated event is de�ned as something that ours at a partiular disrete time withina simulation. It is the ourrene of these events, the orresponding state hanges, andsubsequent hanges to the event list that make up an entire simulation instane.All physial abstrations within the PiCSE framework are derived from the Simulatedabstration. This means that they an all produe, shedule and proess events during theexeution of a PiCSE instantiation. An instantiation of a �physial� abstration an shedulean event to our at a spei�ed interval in the simulated future. When this time is reahed,the event instane is dispathed, and the instantiation, to whih the event belongs aknowl-edges the event and performs some ation. The Simulated abstration enables this eventproessing to our at spei� instantiations of �physial� omponents, and these instantia-tions are required to implement a simple event proessing funtion ::doEvent(Event) thatis invoked when the sheduled event ours.In PiCSE, an Event is de�ned loally, i.e. events are spei� to a partiular type of entity,82

Chapter 3. The PiCSE Framework Arhitetureand the same event for a di�erent entity may have a di�erent meaning, and may result indi�erent behaviour. In pratise, they are represented simply as enumerated types, and a singleenumerated list is usually spei�ed per instantiation of a physial abstration.The Objet lassSeveral key abstrations have been identi�ed that are present to various degrees in manypervasive omputing domains. These inlude sensors, atuators, and other domain-spei�objets, suh as a vehile in the ase of an ITS senario, or a mobile node in the WSN domain.The most ommon attributes of these have been aggregated into the Objet abstration.LoationAll instanes of the Objet abstration have a loation, whih an be either expliit or impliit.An Objet instantiation with an expliit loation is an Objet that is independent of otherObjet instanes. That is, it either exists by itself or it is in ontrol of its own loation.Alternatively, an Objet an have an impliit loation. In this senario, the objet's realloation is the loation of another objet with whih it is physially assoiated.This an our through the feature of objet olloation: a feature that supports thereation of omplex objets, through the aggregation and assoiation of instanes of spe-ialisations of ertain abstrations. In the ase of the Objet abstration, it is possible toassoiate physial objets with eah other using the ::addObjet(Objet* b) method of theObjet abstration. The result is that the �added� Objet instane (b from above) assumesthe loation of the Objet to whih it was added. This frequently ours in senarios, inwhih an Objet, suh as a sensor, is arried by a user. The sensor's loation is impliitlythat of the person holding it, for example, a vehile arrying a GPS devie. Figure 3.5 is aUML sequene diagram that outlines the interation between a �robot objet� and a ollo-ated �sensor objet�. As the robot moves, eah olloated objet is noti�ed of the movementand updated its own position internally, and noti�es any other referenes to that loation.EntityLayer instanes, whih are mentioned in the diagram are a method for referring andaessing physial objets and are disussed in detail in hapter 4.83

3.7. Supported Abstrations

Figure 3.5: UML Sequene diagram depiting olloated objets senarioSeveral related abstrations to the Objet lass are also provided. A Mobility_Objetis an abstration that provides mobility patterns, suh as the random walk (Camp 02) andrandom way-point patterns, that are ommon in the simulation of wireless sensor networks.By impliation, any Objet instanes that are �added� to a Mobility_Objet instane wouldalso move aording to that mobility pattern.Sensor and Atuator abstrations are also provided. Within the PiCSE framework, theSensor abstration is provided to model a physial sensing devie, i.e. a devie that anmeasure a physial phenomenon modelled within a PiCSE instantiation. As an objet, it hasa loation, and that loation an be used to sense an assoiated physial phenomenon at aertain point. A Sensor instantiation an at periodially or sporadially, and may be queriedusing the ::getState() method. An invoation of this method impliitly uses the sensor'sloation to query the assoiated sensed physial phenomenon at that loation.Similarly, an Atuator an �a�et� the state of a physial phenomenon at a ertain lo-ation. It has a loation, whih again may be expliit or impliit, and an also generateevents. A user of the PiCSE framework is required to de�ne the e�et that an Atuatoran have on the assoiated physial phenomenon by implementing a ::setState(void*)method. Loation-based atuation on physial environmental phenomenon is supported, aswell as atuation upon other Objet instanes.84

Chapter 3. The PiCSE Framework ArhiteturePhysial DomainsAll instanes of the abstrations introdued in setion 3.7.1 are omponents of an overallmodel that aptures a partiular pervasive omputing domain. The modelling of the physialaspets of the domain inludes the apturing of many physial attributes suh as measurableand manipulable environmental phenomenon, additional domain-spei� features that mayimpat upon a model, and the objets themselves.For example, a typial model of the domain of a smart spae senario may apture a user,any sensor that a user or appliation may utilise, a representation of a room or a building,and any physial phenomenon that the sensor may be measuring. If a user is to evaluate theperformane or behaviour of the appliation, then a realisti model of the appliations inputs(i.e., the physial phenomenon measured by a sensor) and outputs is required. Furthermore itis not possible to apture a building, or a road in the ase of ITS senarios, in an abstrationas broad as an Objet.To model the physial aspets of a domain, a new abstration, Layer, is introdued.The Layer abstration, and the related abstrations Environment_Layer and Entity_Layer,an be speialised to reate models that support the �exible modelling of physial aspets ofpervasive omputing domains that annot neessarily be aptured by the abstrations alreadyintrodued above. The Environment_Layer abstration an be used to apture environmentaland spatial physial phenomenon whilst Entity_Layer abstrations an be used to aptureobjets that exist within those environments. These abstrations are explained in furtherdetail in hapter 4.Modelling physial phenomena using an extensible and �exible design is non-trivial giventhe wide range of phenomenon and environments enountered in pervasive omputing. TheLayer abstration itself aptures only the most general aspets of a domain, leaving the userwith the task of building omplex models through speialisation. In general however, a singleinstane of a Layer abstration is used to apture a single physial aspet of a modelleddomain. Coneptually, a layer is a 3-D grid of �xed size that maps onto the senario beingmodelled. Layer instantiations are 2-D by default, but an support the third dimensionof physial height. In addition to the physial x and y dimensions of the spae, eah layer85

3.7. Supported Abstrationsinstantiation is parametrised with the granularity of the grid within the layer. The granularityof a �spae� within the grid an be arbitrarily large or small and o�ers an additional degreeof �exibility in the instantiation of the abstrations. The APIs that are provided to interfaeto the Layer exploit the disretisation transparently.Even greater �exibility and omplexity are ahieved through the use of the layer stak.This is a representation whereby multiple layers representing individual physial aspets ofthe simulated domain are logially olloated and threaded together to build models thatmay be dependent on more than one phenomenon. This olletion of layers is the entirerepresentation of the domain being modelled, even though individual layers only apture asingle phenomenon.The interation of both the Sensor and Atuator abstrations, with their assoiated phys-ial phenomenon, is aptured within the API of the Entity_Layer and Environment_Layerabstrations. In addition, instanes of the Entity_Layer abstration are used internally tooptimise the performane of PiCSE, through the management of existing Objet instanesthat a user may de�ne.3.7.2 Supporting the Modelling of the Soft Pervasive Computing Abstra-tionsPiCSE provides three main abstrations for supporting the integration of �soft� pervasiveomputing aspets. The AppliationWrapper abstration is used to integrate ode fromappliations into a PiCSE instantiation. The ExeutionEnvironment abstration is providedto emulate the environment in whih the appliation originally would have been exeuted.Finally, the Net_Interfae abstration an be instantiated to aess PiCSE's basi networksimulator.The AppliationWrapper abstration provides a wrapper that an be used to enapsulatean instane of an appliation. With some restritions, it is possible to integrate appliationsoure ode into a PiCSE instantiation without modi�ation, allowing the soure ode tointegrate with the simulated models introdued in setion 3.7.1. This is ahieved through theinstantiation and assoiation of an ExeutionEnvironment abstration.86

Chapter 3. The PiCSE Framework ArhitetureThe ExeutionEnvironment may be viewed as either an emulated operating system oran emulated middleware, depending on the user's implementation. It supports multiple ap-pliations in the form of AppliationWrapper instantiations, and also multiple simulatedhardware devies, suh as Sensor and Atuator instanes, that may be assoiated with theappliation.Communiation is an important aspet of many pervasive omputing senarios, andmany appliations and middleware systems implement some sort of ommuniation paradigm.PiCSE provides the Net_Interfae abstration to address this. The abstration an be in-stantiated to implement both wired and wireless ommuniation. Appliations an use aNet_Interfae abstration, via an instantiation of their assoiated ExeutionEnvironmentto broadast or uniast messages aross either a simulated wired or wireless network, andmultiple network interfaes are supported.3.8 Emulation support within PiCSEAppliation ode that an interat with sensors and atuators form an important part of thepervasive omputing domain. It is a ommon, but an ine�ient pratise, that this ode is typ-ially written one for the simulation of a partiular domain and is then rewritten at the timeof atual deployment. This ours beause most simulators do not provide an API for the ap-pliation being developed. PiCSE addresses this issue by providing the AppliationWrapperand ExeutionEnvironment abstrations introdued previously. This setion addresses howPiCSE supports this important funtionality and thus meets some of the framework's mostimportant requirements. Two aspets of the overall arhiteture that are worth highlightingare how spei�ally the framework supports emulation at the level of an individual appliation,and seondly, how the framework supports the emulation of many appliation instanes.3.8.1 Enabling EmulationThe following harateristis of appliations deployed in pervasive omputing environmentsare noted. Typially, they 87

3.8. Emulation support within PiCSE

Figure 3.6: A split level implementation of the PiCSE support for emulating appliations
• May interat with hardware devies suh as sensors and atuators.
• May ommuniate with peers, servers and other devies, using a wired or wireless net-work.
• May be built upon middleware, that provides the above funtions, or may aess theseservies diretly using low level system alls.In the ase of PiCSE, the hardware devies are implemented as instantiations of the abstra-tions introdued in setion 3.7.1, and an API is provided to model the wired and wirelessommuniation. Where e�etive emulation is required, it is imperative to maintain the APIsupon whih the appliation is developed, whilst seamlessly interating with the simulatedmodels. The appliation believes (and behaves as if) it is interating with real hardwaredevies, when it is atually interating with instantiations of the PiCSE abstrations.PiCSE ahieves this using a split level design illustrated in �gure 3.6. The appliation isintegrated into the framework using the AppliationWrapper abstration. The API of thePiCSE_Core exists at the base level and provides an interfae to all instanes of the �phys-ial� abstrations, suh as the sensors and atuators, as well as the remainder of the PiCSE88

Chapter 3. The PiCSE Framework Arhiteturefuntionality. An instantiation of an ExeutionEnvironment abstration exists between thePiCSE ore and appliation levels, and mediates the interation between the appliation andthe ore. This ExeutionEnvironment instantiation must �bind� the alls from the applia-tion's original API to the orresponding funtionality within the PiCSE_Core. The libraries,middleware or system alls, upon whih the appliation is based, have to be rewritten in orderto ahieve this suessfully. An instantiation of the ExeutionEnvironment abstration playsthis role. Using this methodology, PiCSE is in fat transparent to the appliation.Although this approah requires some overhead in implementing theExeutionEnvironment instantiation, it is envisaged that these �bindings� will onlyhave to be written one per appliation type and that over time a library of ommonre-usable bindings an be produed, i.e. one binding for the TinyOS API, one binding toimplement Linux system alls and so on. When a binding already exists for a ommonplatform, it will be possible to integrate appliations diretly into PiCSE instantiations usingonly an AppliationWrapper instantiation, whih requires signi�antly less implementatione�ort. The split-level design partially satis�es requirement R4, software extensibility as itallows new software platforms to be integrated into the PiCSE framework in the future.3.8.2 The Physial Arhiteture for Emulated AppliationsAn entire instantiation of the PiCSE framework onsists of instantiations of the abstrationsintrodued in setion 3.7, instantiations of abstrations derived from the Abstrat_Interfaeslass ategory all supported by a single instantiation of the PiCSE_Core. All of the afore-mentioned lass ategories and abstrations are implemented as libraries of C++ lasses.Emulated appliations in the form of soure ode, whih must meet ertain requirements thatare now outlined, are ompiled and linked into the libraries.A point to note is that the proess of appliation emulation begins with the ommand toompile the exeutable. As the appliation ode is unmodi�ed, alls within the appliationto ertain methods must be interepted. If they are not, then the ode will ompile and linkagainst the appliations original libraries. By using ertain �ags, the ompiler is rediretedto the emulated versions of the appliation's libraries. The linker ompletes the proess89

3.8. Emulation support within PiCSEof binding the appliation alls to the emulated funtionality of an ExeutionEnvironmentinstantiation.PiCSE provides support for the emulation of appliations with ertain harateristis. Themain requirement is atually that the appliation interats with the underlying operating sys-tem or a middleware in some way. Sine one of PiCSE's requirements is that appliation odeis unmodi�ed, the framework exploits the appliation's alls to the operating system or tothe middleware as an opportunity to rediret the appliation. Ironially, simple appliationswhih have no interation with libraries or the underlying operating system are also not suit-able, as there is no easy way of ontrolling their exeution without modifying the appliationode itself. Tehnially PiCSE an support suh an appliation provided that it will eventu-ally exit, but in any ase, an appliation suh as this would not atually be doing anything�interesting�, sine it has no inputs or outputs.There are some limitations to the approah that has been implemented. In order tomaintain �ne-grained ontrol over the exeution of an appliation, it was hosen to not usean o� the shelf virtual-mahine based approah but instead to modify libraries that theemulated appliations have been built on so that they an interat with the PiCSE simulationenvironment. If an appliation has been built upon a library that has not yet been extended,then that appliation annot be emulated with an experiment.At present, no threading libraries suh as the POSIX library have been ported for inlusionin the PiCSE arhiteture and as a onsequene, emulation of multi-threaded appliationsis not yet supported. In reimplementing part of a library suh as the POSIX library, amapping would have to be provided between the sheduling funtionality of the library to theorresponding funtionality within the PiCSE ore arhiteture. The ported library wouldhave to provide an API that supported the sheduling, exeution, essation and interruptionof appliations that would be built upon that library. However, �ne-grained ontrol of theindividual threads would not neessarily be required for PiCSE to be able to support multi-threaded appliations.The same level of appliation ontrol that is required for multi-threaded appliationswould be required when exeuting distributed simulation experiments, albeit at a more ourse90

Chapter 3. The PiCSE Framework Arhiteturelevel of ontrol. In addition to this, the distributed nature of the simulation would requirethe inlusion of a oordinating omponent at the ontrol level that provided and managedthe funtionality to identify node simulators ompeting and aessing on�iting resoureswith an experiment. In addition, this omponent would have to provide the funtionality topotentially resolve any arising on�its, typially using a rollbak feature whereby a remotenode simulator ould roll bak its simulation to a previous state. On the node simulator side,this would require the implementation of a omponent that ould store a series of rollbakstates, whih would be subsequently released by the oordinating simulator when no on�itshave been identi�ed. There is extensive literature (Fujimoto 00) on the suitability of extendingDEVS-based simulators to distributed environments, a primary reason why a DEVS-orientedapproah was originally adopted, however this funtionality and omponents have not beenbuilt into the urrent implementation of the PiCSE simulation framework.
3.8.3 Supporting Multiple AppliationsPiCSE is based upon the disrete event simulator paradigm, but appliation emulation andexeution does not lend itself naturally to this model. A disrete event simulator exeutes asquikly as possible, and individual events take zero 'simulated time' to exeute. Appliations,both real and simulated, do however take time to exeute, and it is di�ult to ontrol theexeution of appliation instrutions in a ontrolled manner, so that the exeution of disretemodel events and the exeution of the appliation's instrutions are orretly ordered. Infat it is very di�ult without ontrolling the individual exeution of the instrutions formingthe appliation and having knowledge of the time taken to omplete eah instrution. Thisapproah is known as �binary translation� and is very umbersome. An alternative software-based approah is possible in ases where the appliation soure ode is available. The abilityto support multiple appliations, developed independently ontributes to meeting require-ments R2 and R3, the two requirements relating to the support for the �exible integration ofemulated software elements. This approah is now disussed in setion 3.8.3.91

3.8. Emulation support within PiCSEDisretising an AppliationOne of PiCSE's main requirements is that no modi�ations are made to emulated appliationsand therefore all ontrol of the appliation's exeution must our outside of the appliationitself. It is possible to disrete-ise the exeution of the appliation. The exeution of a series ofinstrutions omprising a part of an appliation would our at a disrete point in simulatedtime, and would therefore take zero time to omplete. PiCSE makes this assumption andthus allows appliations to be adapted transparently to an exeution yle that is suitable forexeution within a disrete event simulator.In pratise this means that an appliation starts or resumes its exeution whenever anevent ours that should normally trigger the appliation's exeution. When the appliationreahes the end of its urrent exeution yle, for example, it pauses its exeution while wait-ing for another event or perhaps invokes the system all sleep(int seonds), the proessingof the event list and the advane of other simulated events then resumes. The PiCSE frame-work provides funtionality to ontrol the exeution, pausing, and resumption of emulatedappliations. It does this in a transparent manner from the appliation's perspetive. How-ever, this omes at the expense of aurate modelling of the time taken for the program toexeute. PiCSE makes attempts to alleviate this problem, allowing a �pause� to be introduedtransparently into an appliation's exeution, thus slowing down the emulated exeution ofthe appliation. The result is that the net simulated-time taken for a series of instrutions tobe exeuted an be modelled orretly, if that time taken to exeute those instrutions in reallife an be measured. So if for example, a set of instrutions has been measured to take 5msto exeute in real life, PiCSE will exeute these instrutions in 0ms (i.e., a disrete event),but an then model a pause of 5ms before the next instrution is exeuted.The ability to approximate the total time taken to exeute an aspet of a programs fun-tionality ombined with a similar level of �ne-grained ontrol of other time-related aspets ofthe domain suh as hardware events and domain-spei� events goes towards addressing theseondary hallenge identi�ed in hapter 1 of aurately modelling the timeliness requirementsof pervasive omputing appliation domains. 92

Chapter 3. The PiCSE Framework ArhitetureExeuting Multiple AppliationsA multi-threaded approah is implemented to support this feature of PiCSE. Appliations areexeuted within their own thread, whose exeution is ontrolled from within the simulator.A master-slave thread implementation ontrols the swithing between threads. The masterthread manages the proessing of the event list, thus advaning the overall simulation, andalso manages the exeution of the slaves and the appliations.The PiCSE event list and event sheduling mehanism is modi�ed to allow for di�erentevent types. These types inlude Model_Events, Thread_Begin events and Thread_Swithevents. All event type ourrenes are treated disretely, i.e. they take no simulated timeto our. When an event of type Thread_Swith ours, the master thread restarts theappropriate slave thread (whih is the appliation), and immediately relinquishes its ownthread of exeution. It is the appliation's assoiated ExeutionEnvironment instane thatultimately relinquishes ontrol bak to the master thread.Although there may be multiple appliations (and orresponding threads) in the simu-lator, there is only ever a single thread being exeuted at any one time. The PiCSE_Coreexploits the thread's apabilities merely to retain ontrol of the exeution of an appliation,in order to ahieve a disrete exeution of the appliation, and not to atually have multiplethreads or appliations exeuting onurrently. At present, only appliations written in C++(Stroustrup 98) have been emulated. The soure ode of the appliation is ompiled into thesimulator to make a single program. In addition to this, only single threaded appliationsare supported at present. In order to enable the emulation of multi-threaded appliations,the pthread library will have to be partially ported, so that the underlying thread shedulingbehaviour does not interfere with the threading mehanism of the PiCSE_Core.3.9 Experimental SupportThe well known Observer design pattern (Gamma 95) is supported within the PiCSE frame-work and is implemented by all of the abstrations that are provided to model the �hard�aspets of pervasive omputing domains. This design pattern is exploited by the PiCSE93

3.10. Summaryframework to provide a Logger abstration that eases and supports the task of logging �eventsof interest� and results during the ourse of a simulation's exeution.Several derived abstrations suh as the Environmental_Layer_Logger,Entity_Layer_Logger and Objet_Logger are also provided, all of whih provide log-ging funtionality but for di�erent soures of interest. Conrete instanes of the Loggerabstration an subsribe to events sheduled by instanes of the Simulated abstration,suh as Sensor and Atuator instantiations, and are noti�ed when these events our. Areording of the event and any additional parameters required is then written to a �at text�le. Instanes of the Logger abstration an be additionally parametrised using the followingtwo methods:1. The method ::setPeriod(int period) is used to request periodi logging of someaspet of a simulated domain, irrespetive of when events of interest may our.2. The method ::setLoggingWindow (int time2start, int duration) is used to de�nea period of interest within an experiment. This is useful for experiments in whih thereis a boot-strapping period and logging during this period is not required. A trigger analso be used to de�ne the time at whih to begin logging if it is not known at the timeof instantiation.3.10 SummaryThis hapter introdued and derived the requirements that guided the design of the PiCSEframework. The arhiteture of the PiCSE_Core, the underlying infrastruture that supportsall instantiations of the PiCSE framework, was explored. The main abstrations supportedby PiCSE were then introdued. These were divided between abstrations that supportedthe modelling of the physial aspets of a pervasive omputing senario, and abstrationsrequired to support the appliations emulated within that senario. A further examinationwas then provided of the framework's support for emulating appliations that exist within thesimulated appliation senarios. 94

Chapter 4
Modelling the Key PervasiveComputing Components
This hapter desribes the PC_Abstration lass ategory, whih provides all abstrationsrequired to reate an instantiation of the PiCSE framework. This hapter begins by exam-ining the relationships of the omponents and their role within a PiCSE instantiation. Theomponents themselves, their �exibility and suitability for supporting the modelling of theomponents and their implementations are then addressed individually.4.1 The PC_Abstration lass ategoryThe PC_Abstrations lass ategory provides a set of abstrat lasses that an be instanti-ated to meet the modelling requirements of the omponents identi�ed to be ommon arosspervasive omputing senarios. It is intended that developers instantiate lasses from thisategory, or reate new lasses using inheritane where required. Dependenies between in-stanes of these lasses are then modelled to reate more omplex instantiations. Theseinstantiations interat with a single instantiation of the PiCSE_Core to form an exeutablesimulation. Alternatively, developers may reate more speialised abstrations reating theirown framework, that may itself be instantiated for a partiular pervasive omputing domain.In relation to the logial arhiteture presented in hapter 3, instantiations of abstrations95

4.1. The PC_Abstration lass ategory

Figure 4.1: The loation of the PC_Abstration lasses within the logial arhiteture.from this lass ategory are found in both the Simulated_Models and the Emulated_Interfaeslayers, as shown in �gure 4.1. The lasses within this ategory provide the abstrations for thesimulated models and also abstrations enabling the emulated appliations to be run withininstantiations of the framework. As suh, this lass ategory an be separated into two partsaddressing separate requirements R1, R2, and R3 introdued in hapter 3.
• R1 The framework should support the �exible simulation of the heterogenous hardwareelements of pervasive omputing senarios. This is provided by reating ustomisableabstrations representing physial aspets of the senarios suh as the environment, aswell as hardware devies suh as sensors and atuators.
• R2 The framework should support the emulation of real-ode appliations developedfor pervasive omputing. These appliations may be built upon middleware that shouldalso be supported.
• R3 The framework should mediate the �exible interation of any simulated and emu-lated elements forming the simulation of a pervasive omputing appliation.Five abstrations are desribed in this hapter and these an be broken into three logi-al ategories: objets, the environment, and appliation environments. Both objet- andenvironment-related abstrations are loated within the Simulated_Models Layer in the logi-al arhiteture, and the implementation of these addresses requirement R1. The appliation96

Chapter 4. Modelling the Key Pervasive Computing Components

Figure 4.2: Objets instantiated from the PC_Abstration lass ategory are pre-de�ned tointerat using ertain methods.environment abstrations support instantiations from the Emulated_Interfaes Layer and theimplementation of these address requirement R2.Figure 4.2 shows the typial simpli�ed interation of instantiations of these omponents.As outlined in hapter 3, the support for these instantiations is provided by the underlyingPiCSE_Core lass ategory. In hapter 2, the ommon interation patterns of these om-ponents were identi�ed, and the design and implementation of the abstrations re�et therequirements of meeting these interation patterns. In this hapter, the features of note, theommonalities and the interation patterns identi�ed in hapter 2 are addressed as they applyto eah of the �ve abstrations.4.2 ExeutionEnvironmentsThe ExeutionEnvironment abstration supports the emulation of the environment in whihan appliation would normally exeute. The abstration supports appliations that are builton API's of the underlying platform, and also appliations built on middleware instanes thatabstrat these underlying platforms. The abstration onsists of two parts. It supports thebuilding of libraries that provide aess to the modelled hardware devies within a PiCSEinstantiation. Seondly, the abstration supports the reation of an API, upon whih ap-pliations an be built, allowing the appliations to interat seamlessly with the modelleddevies.The abstration also supports the modelling of the networking funtionality of an op-97

4.2. ExeutionEnvironmentserating system or middleware platform, through the networking interfae provided by theNet_Interfae abstration. The following requirements exist amongst all exeution environ-ments.
• An ExeutionEnvironment abstration an interat with simulated hardware devies,in the form of instantiations of the Sensor, Atuator and Objet abstrations. Theabstration must also support the interation of the ExeutionEnvironment with theunderlying PiCSE_Core.
• The ExeutionEnvironment abstration must provide the interfaes required by theappliation, so that the ode of appliations an be preserved without hange. Thisallows seamless emulation of the appliation behaviour.
• The role of any ExeutionEnvironment instantiation is to mediate the interation ofthese two interfaes.Split-Level API ImplementationThe mediation between the di�erent interfaes is ahieved logially using the split-level APIapproah that was desribed in 3.8.1 of hapter 3. The ExeutionEnvironment abstrationsupports the instantiation of the middle layer, whih is termed the Replaeable EmulationUnit. This middle layer binds method invoations from the appliation, through the API tothe orresponding methods within the PiCSE instantiation. One method of doing this is torewrite partially the libraries on whih the appliation has been developed. Using this method-ology, the PiCSE instantiation, and all simulated models inluding the hardware devies, theenvironment, and the network, are all transparent to the appliation.The Replaeable Emulation Unit only has to be written one to enable the emulationof a family of appliations. For example, one instantiation of the ExeutionEnvironmentabstration is required to reate a TinyOS_ExeutionEnvironment that would enable theemulation of all TinyOS appliations. Similarly, one instantiation would exist for the ContextToolkit middleware and so on. 98

Chapter 4. Modelling the Key Pervasive Computing ComponentsThe mediation of the two interfaes is supported within the ExeutionEnvironment ab-stration by another abstration of a �le, alled PFile. The ExeutionEnvironment abstra-tion supports a olletion of these, that an be addressed by a key (analagous to a �lesystempath) providing an abstrat model of a �lesystem. Both appliations and hardware deviesan read and write to these PFile instantiations, that an at as a logial bu�er between thehigher level (appliations) and the lower level (hardware devies).Appliation InterationAppliations are supported in the ExeutionEnvironment abstration through theAppliationWrapper lass. The wrapper lass allows appliations to be assoiated with asingle ExeutionEnvironment, and allows the ExeutionEnvironment to shedule the initial-isation of the appliation using the ::sheduleExeution(long int t) method.Hardware InterationModels of hardware devies are integrated into the ExeutionEnvironment abstration usingtheir Emulated interfae. This interfae will be introdued in more detail in the follow-ing setions desribing the Sensor and Atuator abstrations, but very brie�y, it providesan interfae allowing an ExeutionEnvironment instane to interat with an instane of asimulated hardware devie. From the ExeutionEnvironment perspetive, eah Emulatedinterfae an be hooked into a PFile instane. The Emulated interfae of a sensor an pusha sensor reading through the PFile interfae, where it an be read by an appliation fromthat emulated �lesystem. A similar data �ow ours in the opposite diretion for atuators.Appliations an write ommands to the PFile interfae whereby they are pushed to theAtuator instantiation and the resultant simulated atuation is performed.Network Simulator Interation Typial pervasive omputing appliations may alsoommuniate with their peers and/or external servies using wireless or wired ommu-niation, or both. Exluding situations where middleware is used to provide abstra-tions, this is usually performed at the transport layer using known abstrations, suh as99

4.3. Sensorsa 'soket'. The ExeutionEnvironment abstration provides the Net_Interfae interfae,whih supports this funtionality. This interfae allows messages to be sent to PiCSE'sNetwork_Simulation_Manager whih supports the simulated broadasting and uni-astingof messages aross wired and wireless networks.Abstration LimitationsTheoretially, PiCSE supports the emulation of large numbers of these instantiations.No upper limits are plaed on the number of devies or appliations that a singleExeutionEnvironment instantiation an support, and the PiCSE framework itself plaes noonstraints on the number of ExeutionEnvironment instantiations. As desribed in hapter3, however, eah appliation runs within its own thread of ontrol, so the overall number ofappliations may be onstrained by the number of threads supported by the physial mahineused to run the simulation.4.3 SensorsThe Sensor abstration is provided as a generi abstration of all physial sensors that anapture physial phenomena. Aording to the Oxford English Ditionary (OED) (Soanes 05),a sensor:�is a devie giving a signal for the detetion or measurement of a physial propertyto whih it responds.�There are two parts to this de�nition and both are aptured within this abstration. The�rst is that a sensor measures a physial phenomenon. Within the earth and oean sieneommunities, the term software sensor (Chen 98; Masson) has gained tration in reent yearsand is used to desribe a system used to �ompute an estimate of some quantity of interest,based on a mathematial model and other (faithful) measurements.�The PiCSE Sensor abstration only aptures devies that measure physial phenomenon,suh as temperature, noise, et, but does not provide any support for the omputation orestimation of those physial phenomenon. This is instead aptured in the EnvironmentLayer100

Chapter 4. Modelling the Key Pervasive Computing Componentsdesribed later in this hapter. The OED de�nition also aptures that a sensor presents asignal, i.e., a reading, to the user of that sensor. Both of these interations, between thesensor and physial phenomenon, and between the sensor and its user, are aptured withinthe Sensor abstration.Within the broad de�nition of pervasive omputing, there are a wide range of sensorswith a range of properties that have to be met. Consider for example two di�erent types ofarbon dioxide sensors. The �rst, deployed in an environmental monitoring senario ouldmeasure the ambient levels of CO2 in the sensor's loality, and ould potentially be on asensor board interating with an embedded operating system suh as TinyOS. A seond CO2sensor, deployed as part of an engine management system in a vehile, would be ontrolledby an on-board omputer, aessed aross a ontroller area network (CAN)-bus and wouldreturn a value apturing the CO2 emissions of the vehile. These are two examples of sensorsmeasuring the same phenomenon, but eah having unique harateristis. In the �rst, themeasured phenomenon is dependent on the loation of the sensor within its environment.In the seond, the measured phenomenon is independent of the loation, but dependenton the attributes of a modelled objet, a vehile. The basi Sensor abstration meets therequirement that a sensor an measure a phenomenon from a wide range of soures withvarying harateristis.
4.3.1 Push and Pull modelsAn additional harateristi that is aptured by the Sensor abstration is whether the sensoris ative or passive. An ative sensor in e�et measures or �pulls� its measurements from thephenomena that it is sensing. A passive sensor is driven by hanges in the phenomena that itis measuring and measurements are e�etively �pushed� onto the sensor devie. An exampleis a photosensitive swith, that is ativated whenever the level of light in its environmentreahes a ertain threshold. 101

4.3. Sensors4.3.2 Measured PhenomenonThe Sensor abstration an support a diverse range of measurable phenomenon, whih arelassi�ed as being either exteroeptive or proprioeptive. An exteroeptive sensor meansthat the sensor takes it readings from external stimuli, i.e. its environment. Proprioeptivesensors take their readings from objets to whih they are physially attahed. In the aseof exteroeptive sensors, instantiations are parameterised to query an instantiation of eitheran EnvironmentLayer or an EntityLayer. Instantiations of proprioeptive sensors typiallyquery instantiations of the lass, or lasses derived thereof. An example of a proprioeptivesensor would be a GPS sensor measuring its �own loation� or the vehile CO2 sensor men-tioned previously. A thermistor measuring the ambient temperature in the room would bebound to a EnvironmentLayer instane that models the temperature of that room.4.3.3 QueryingDepending on the modelled phenomenon that a sensor measures, a reading is obtained usingone of three native methods.1. EnvironmentLayer instantiations are queried using theEnvironmentLayer::queryState(Loation l) method. The sensors loation isused as the default parameter.2. EntityLayer instantiations are queried using theEntityLayer::getObjetsWithinRange(Loation l, double range) method,whih returns a group of Objets within a ertain loation.3. Objet instantiations are queried using a simple Objet::getReading() method, thatan return either a numerial or a more omplex objet type suh as a loation.The returned value in all of these instanes an be passed diretly to the user of the sensor,in whih ase the sensor an be oneptualised as a user's or appliation's gateway to thephysial environment. Alternatively, the value an be manipulated and proessed to reate amore realisti reading that is representative of an atual physial sensor.102

Chapter 4. Modelling the Key Pervasive Computing Components

Figure 4.3: The proess by whih a reading passes through a pipeline formed of a ombinationof bloking and modifying �lters4.3.4 Charateristis of Individual Sensor ReadingsIndependently reated sensors that measure the same phenomenon may have unique proper-ties, suh as di�erent levels of auray and preision, that may a�et the �nal reading thatis presented to the user of that sensor. An additional property ould be a threshold that asensor may not be able to measure above or below. These funtional harateristis have tobe supported within the abstration.A �exible method for modelling these properties is to use a sensor pipeline, displayed in Fig4.3. The sensor pipeline omprises of a ombination of �lters whih may "modify� or �blok�a measured phenomenon in some way. The initial measurement is made when the sensorretrieves data from the measured phenomenon, either an EntityLayer, an EnvironmentLayeror an Objet instantiation. This initial raw value is then pushed onto the sensor pipelinewhere it passes through a series of �lters. �Modifying �lters� may update the value in someway by adding some error based on a normal error distribution for example. A �bloking�lter� determines if it was physially possible to make the original reading, and may takethe loation of the sensor and the distane to the sensed phenomenon into aount. All�lters may themselves be dependent on other modelled omponents within a simulation, forexample, be that Objet or Layer instantiations. By ombining many of these �lters into asingle oneptual pipeline, through whih all sensor measurements must pass, it is possible toprovide a �exible and potentially, aurate model of a sensor.103

4.4. Atuators4.3.5 External InterfaesThe remaining part of the Sensor abstration is the delivery or the presentation of thereading to the appliation. In PiCSE terms, this is mediated by an instantiation of theExeutionEnvironment abstration that plays the role of either a devie driver for the sen-sor, or some middleware that abstrats that funtionality. The role of modelling the inter-ation is split between the Sensor and the Emulated abstration. The instantiation of thesensor is responsible for the formatting of the �ltered data into a form understood by theExeutionEnvironment.The Emulated abstration, not previously introdued, is used to assist in the modelling ofthe interation between the objet and the ExeutionEnvironment. Its role is to manage theinteration of the sensor with an instane of an ExeutionEnvironment, in a way that enablesthe aurate emulation of the interfae. For example, an ExeutionEnvironment instantiationmay represent a Sensor as part of the �le system. In this ase, the Emulated instantiationpushes the sensor readings, as they our, to the appropriate part of that modelled �le system.4.4 AtuatorsTraditionally, atuators would have been used within losed or embedded environments, suhas manufaturing or tra� ontrol systems. Non-funtional properties, suh as safety andseurity, had to be onsidered (and still are), and these losed systems were best suitedto meeting these requirements. In reent years, Wireless Sensor and Atuator Networks(WSANs) have beome a well established paradigm, and projets suh as WiSeNts1, and nowCONET2 are exploring the interation between embedded systems, pervasive omputing, andwireless sensor networks.The use of atuators represents a �ow of e�et in the opposite diretion to that of sensors:sensors, in the shape of hardware or software measure some aspet of their environmentand appliations onsume sensor data to produe some meaningful results; whilst atuatorsenable appliations to a�et the environment. Therefore, the integration of atuators in1 www.embedded-wisents.org2 www.ooperating-objets.eu 104

Chapter 4. Modelling the Key Pervasive Computing Componentspervasive omputing ompletes the loop of the interation between the appliation and thereal world. (Verdone 07) larify the de�nition of an atuator as �a devie able to manipulatethe environment rather than observe it�. It is this �manipulation� of the environment thatthe PiCSE Atuator abstration must apture.4.4.1 ExeutionEnvironment InterationThe implementation of the atuator abstration is similar to that of the Sensor abstration.There is however no push and pull distintion in atuators. All atuators either at inde-pendently, or more ommonly are under the ontrol of an appliation. Again, the interationof the emulated appliation and the model of the simulated atuator is mediated by a om-bination of an ExeutionEnvironment instantiation and an Emulated Instantiation. In thissenario, the role of the Emulated instantiation is to parse or interpret any ommand that theappliation may issue, and invoke the appropriate method within the Atuator instantiation.This is analogous to the �formatting� role played by the Emulated instantiation in the Sensorabstration.4.4.2 Modelling Atuator's E�etsWithin pervasive omputing, the environment is not just the stati physial environment,suh as the road or the atmosphere, but also inludes objets within that environment, thatmay themselves be a part of the senario. The Atuator abstration therefore an interatwith the three PiCSE abstrations, EnvironmentLayer, EntityLayer and Objet that areprovided to model this environment.There are two methods of modelling atuation on the environment within PiCSE, andthey are distinguished by where the knowledge of the e�et of an atuator lies. The �rstmethod plaes the responsibility of modelling the e�ets within the omponent that has beenatuated upon. In this ase, the atuator shedules an event within the omponent, and whenthe event ours, potentially immediately, the omponent onsumes the event and updatessome attribute to re�et the e�et of the atuation.Alternatively, the atuator itself may maintain a referene to the omponent on whih it105

4.5. EnvironmentLayersatuates, and updates the state itself. Using the �rst tehnique, the a�eted omponent musthave an understanding of the apabilities of the atuator. Using the seond tehnique, anatuator must have knowledge of the modelling aspet of the environment that it is updating.The main abstrations, EnvironmentLayer, EntityLayer and Objet, present an API thatexposes their state allowing Atuator instantiations to �atuate� upon them.As introdued in the Sensor abstration, the use of a ��lter� pipeline is also supported,allowing the modelling of more omplex atuation events, that are perhaps dependent onmore than one aspet of the modelled environment. In the atuator pipeline, the �lters anbe used to determine whether the atuation an atually our and what its e�ets will be onthe environment.4.5 EnvironmentLayersThe simplest most abstrat onept within the PiCSE framework is that of the physial phe-nomenon. A physial phenomenon is a tangible aspet of an environment within a pervasiveomputing domain and is aptured within the EnvironmentLayer abstration. By tangible,it is meant that the physial phenomenon is both detetable and an also be manipulated. Inthe ontext of pervasive omputing, that means that it an be sensed and atuated upon byhardware devies. An EnvironmentLayer abstration supports the modelling of a single phe-nomenon. EnvironmentLayer instantiations an also be grouped and they then olletivelyform part of a simulated model of the environment. A group of EntityLayer instantiationsform the remainder of the modelled environment.4.5.1 A Single Modelled PhenomenonThe most generalised representation of a physial phenomenon, representing some aspet ofan environment, is that it has a ertain state or value at a ertain loation at a ertain time.The EnvironmentLayer abstration uses loation as the foal point of a grid-based approahto modelling that physial phenomenon. The EnvironmentLayer abstration implements athree-dimensional grid of �xed size, that maps onto the senario being modelled. In addition106

Chapter 4. Modelling the Key Pervasive Computing Components
EnvironmentLayer

+populate()

+setInitialEvents()

FLOAT_EnvironmentLayer

#grid: float**

+setState(l:Location,f:float)

+queryState(l:Location): float

+getStateAverage()(): float

+getGrid(): float**

Temp_environment

+populate()

+setInitialEvents()

+transform()Figure 4.4: Temp_environment lassto the physial x, y and z dimensions of the spae, eah EnvironmentLayer instantiation isparametrised with the granularity of the grid within the layer. The granularity of a �spae�within the grid an be arbitrarily large or small and o�ers an additional degree of �exibility.Within eah disretised part of this grid, the value of modelled phenomenon is the same, asat all other points within the same disretised spae.A physial environment is of ourse a dynami system, and the EnvironmentLayer ab-stration provides an abstrat method that an be implemented to update the phenomenonrepresented. The abstration an be parameterised to evolve periodially, i.e. an abstratmethod, ::transform(), that is equivalent to a state transition funtion, an be invoked at�xed time intervals. Alternatively, the transformation an be driven by events that our inother Layer or Objet instantiations. This is examined in detail later.From a onrete lass point of view, an EnvironmentLayer objet an represent any phys-ial phenomenon from the de�nition above. Figure 4.4 shows the lass hierarhy for a Tem-perature EnvironmentLayer instane. The abstrat populate() method is de�ned to set theinitial environment temperature values and the abstrat transform() method de�nes to speifyhow those values hange over time.The abstrat implementation of EnvironmentLayer a�ords developers the freedom totailor the layer to their requirements and the parameters of freedom within an instantiationinlude the size of the modelled spae, its granularity, its state and a state transition funtionthat is invoked to update the state of the physial phenomenon at a partiular time.107

4.5. EnvironmentLayers

Figure 4.5: A PreipitationLayer objet models rainfall within the simulated environment.The Modelling of Continuous PhenomenonWhilst some phenomenon lend themselves to oarse-grained modelling, other more ontinuousphenomenon suh as natural or physial phenomenon are desribed by mathematial formulae.In these ases, an inherited instane of the EnvironmentaLayer lass instane should providea method implementing this formula, whih an then be invoked to determine the state of thephenomenon at a partiular point in time. This approah is provided as an alternative to the�disretised� approah presented above.Environmental Monitoring SenarioConsider an environmental monitoring senario. A set of sensors are physially deployedaross a large geographi spae and ommuniate wirelessly to aggregate sensor informa-tion that has measured the preipitation in an environment. In modelling this senario, anEnvironmentLayer objet, PreipitationLayer an be instantiated to model the amount ofrainfall, a physial phenomenon.By way of example, �gure 4.5 , shows the PreipitationLayer model, representing anarea of 10km*10km with a disrete granularity of 500 metres. The state modelled is the108

Chapter 4. Modelling the Key Pervasive Computing Components
Figure 4.6: EnvironmentLayer instantiations an interat diretly with other Layersamount of rainfall, measured in millimetres. Rainfall is a oarse-grained phenomenon3 buta smaller granularity an be used if more aurate modelling is required. A transition fun-tion is de�ned to apture the amount of rainfall dependent on the time of day. Separatemeteorologial onditions an be aptured within other Layer instantiations.By varying the granularity, and the orresponding ::transform() method, a wide rangeof phenomenon an be modelled. EnvironmentLayer objets an be tailored to model othersimple physial phenomenon suh as the topology of the ground, the presene of buildingsor roads, and the levels of light, noise or temperature at a partiular loation within theenvironment.4.5.2 A Loation-Based APIThe EnvironmentLayer abstration is used to model physial phenomenon. The role of sensingand atuating is important within the de�nition of the EnvironmentLayer abstration, sineit is only sensors and atuators that an interat with the modelled environment in PiCSEinstantiations. Considering this, the EnvironmentLayer abstration has to support that in-teration and it an be said that this interation is the driving fore behind the loation-basedAPI of the abstration.SensingWhen an EnvironmentLayer::queryState(Loation) method is invoked, theEnvironmentLayer objet maps the loation parameter to a region within the grid. The state3 Rainfall does not hange in quantitative terms signi�antly from metre to metre, so it possible to use alarge regional granularity. 109

4.5. EnvironmentLayersof the EnvironmentLayer objet at that region is then returned. A sensor an 'sense' thestate of the modelled phenomenon by invoking the ::queryState(Sensor::getLoation())method using its own loation as the parameter. Two sensors whose respetive loa-tions both map to the same region within an EnvironmentLayer, as determined by theEnvironmentLayer granularity, will both sense the same value of the modelled phenomenon.The ::queryState(Loation) method abstrats the variable granularity and grid sizes ofdi�erent instantiations, thus simplifying the interation.AtuatingThe EnvironmentLayer provides two methods, one virtual and one abstrat, to supportthe interation of Atuator and the EnvironmentLayer instantiations. The �rst method::setState(Loation, state) provides a simplisti 'set' orresponding to the 'get' method::queryState(Loation). This method may be invoked by the atuator, and from the per-spetive of an EnvironmentLayer instantiation, it is the atuator that is performing the ation.Alternatively, the EnvironmentLayer lass provides an abstrat method::loalTransform(Loation soure, double sope, int event=0) that an also beinvoked by an atuator. In this instane, the EnvironmentLayer objet is required toimplement a loalised version of its own ::transform() method, that takes into aount thesoure, sope and type of event that the atuator has generated.The �rst method ::setState(Loation, double) is limited, sine it does not take intoaount the potential sope of an atuator's ations. Furthermore, the atuator is required tounderstand the semantis of the behaviour of the EnvironmentLayer, so that it an updatethe state to an appropriate value. For this reason, the seond method is preferred whenmodelling the e�ets of an atuator's ations. However, this method has its own limitationsas the tehnial apabilities of the atuator may not be known, and providing alternativemeans of interation between Atuator objets and EnvironmentLayer objets helps meetthe �exibility requirement. Furthermore, providing a loalised version of the ::transform()method improves salability, as it redues the time and omputation required in modellingthe interations between atuators and the environment.110

Chapter 4. Modelling the Key Pervasive Computing Components4.5.3 EnvironmentLayer ComplexityUsing logial dependenies, a large-sale representation of a range of environments an bemodelled by instantiating multiple EnvironmentLayer objets and reating dependenies be-tween them.The EnvironmentLayer abstration supports the modelling of more omplex phenomenonthrough the framework's underlying support for logial dependenies. An EnvironmentLayerinstantiation an implement its state and ::transform() methods to be dependent on otherinstantiations in a simulation. For EnvironmentLayer instanes, these are often alternativeEnvironmentLayer objets or EntityLayer objets, although tehnially all simulated objetssupport the logial dependenies paradigm.By way of an example, onsider a simple extension to the environmental monitoring se-nario just introdued. A new lass TemperatureLayer is introdued that models anotheraspet of the physial environment, the temperature. More spei�ally a sientist wishes toapture the priniple that inreases in the temperature inrease the likelihood of rainfall.This relationship is enabled and aptured within the PiCSE framework as a logial depen-deny, i.e. a PreipitationLayer instane is dependent upon a TemperatureLayer instane.In this extended senario, the PreipitationLayer instane, an subsribe to events fromthe TemperatureLayer, and an also use the TemperatureLayer interfae to determine thetemperature at ertain loations.The separation of the grid-based implementation from the API means that omplexEnvironmentLayer instantiations an be built by treating other layers as simple state in-formation, that is loation dependent. Consequently, EnvironmentLayer instantiations anbe logially olloated to reate a more omplex model of an environment, that is independentof the underlying implementation.4.6 EntityLayersThe EntityLayer abstration implements the seond Layer abstration, ompleting PiCSE'ssupport for modelling of pervasive omputing environments. Many di�erent types of objets111

4.6. EntityLayers

Figure 4.7: Objet instanes within lose proximity, de�ned by the grid's disretised spae,are bundled into a single listan be found in pervasive omputing, suh as vehiles in intelligent transportation system(ITS) senarios, people in smart spae senarios, and RFID tags in logistis. In almost allases, these objets themselves form part of the environment in whih they exist. They interatwith eah other and an a�et the physial aspets of the environment that are measured bysensors, as well as being detetable by sensors themselves. The EntityLayer abstrationprovides a model that supports the modelling of these objets within a physial spae.Similar to the EnvironmentLayer abstration, the loation of these objets is entral tothe role within pervasive omputing environments and this is re�eted in the implementationof this abstration. The same underlying model of a disretised grid of physial spae exists,but eah of these disrete spaes no longer represents a physial phenomenon, but ontainsa list of Objet instanes within the disretised spae, as shown in �gure 4.7. All Objetinstanes within a partiular bounded region of an EntityLayer grid are in lose proximityin the simulated spae.An alternative key-based approah allows groups of Objet instantiations to be referenedby an identi�er known to all. This approah is suitable for modelling senarios where theabsolute loation of the Objet instanes is not as important, but some other non-loationbased identi�er may be used. For example, referening Sensor instantiations that are ative,or updating the loation of all Objet instanes representing people inside a building. Inthese senarios, a key �ACTIVE� would be used to obtain all Objet instanes, and in theseond senario, the identi�er of the building would be used to referene the person Objetinstanes. 112

Chapter 4. Modelling the Key Pervasive Computing ComponentsAs noted in hapter 1, supporting the modelling of large-sale appliation domains is animportant seondary hallenge that must be met by PiCSE's arhiteture. The e�etive lo-ation management of simulated objets plays a large role in developing e�ient simulationsthat support large sale senarios. The use of a loation-based referening mehanism formodelling and management of physial omponents enables large-sale simulations by ex-ploiting the loation information to bound the amount of interations that an our betweensimulated models.All Objet instanes, whether they are Sensor, Atuator, or domain spei� Objetinstanes, implement their own ::transform() method, whih may be invoked periodiallyor alternatively event driven. The EntityLayer abstration allows all Objet instanes of aertain type to be treated as a single Objet, and an instantiation of the abstration an beparameterised to transform all objets independently or as a unit.4.6.1 Loation based InterationSimilar to the EnvironmentLayer abstration, EntityLayer instantiations an potentially in-terat with instantiations of Sensors, Atuators, other domain spei� Objets, and otherLayer instantiations. The EntityLayer abstration provides two APIs based on the under-lying modelling mehanisms mentioned in setion 4.6, whih are a loation- and a key-basedAPI.QueryingTwo methods are provided for retrieving olletions of objets based on their loation.GROUP_OF_OBJECTS* getObjetsWithinRange(Loation soure, long doublerange);GROUP_OF_OBJECTS* getObjetsWithinBoundingRetangle(Loation,Loation);The �rst method, ::getObjetsWithinRange(...) returns a list of Objet pointers, whihare within a proximity of length range of the loation soure. Figure 4.8 demonstrates113

4.6. EntityLayers

Figure 4.8: Calulating the Objet instanes within a ertain range in EntityLayer instan-tiationsthe proess by whih the nodes within range are alulated. The EntityLayer uses theloation parameterised, and the range to alulate the disretised spaes that overlap with theparameterised range. Objets within these disretised spaes are then heked for proximityto the parametrised loation. Finally, the list of Objets that are alulated to be withinthe range are returned. A similar method ::getObjetsWithinBoundingRetangle(...)returns a list of Objet pointers that are onstrained by the two parameterised loations.The key-based approah to querying is supported with the ::getObjetsByKey() methodwhih uses the key to index a hash-map of Objet pointers, and then returns a list of Objetpointers.GROUP_OF_OBJECTS* getObjetsByKey(string key);UpdatingUpdating the EnvironmentLayer abstration is also supported using either the loation- orkey-based methods. An EntityLayer abstration supports the modelling of objets withintheir environment, but not the atual objets themselves. So any event, either updating oratuation that is to be performed on a group of objets, i.e. an EntityLayer instantiationis performed on all objets individually. This mapping to the individual Objet instanes, isperformed by the abstration transparently.The method ::setState(loation, range, event) applies an update to all Objet in-stanes, within a determined range. The method ::setState(loation, loation, event)applies an event to all Objet instanes within a retangle, bounded by the two parameterised114

Chapter 4. Modelling the Key Pervasive Computing Componentsloations. Finally, the ::setState(key, event) method applies an event to all Objet in-stanes indexed by that key. In the ase of eah of these methods, the abstration, usingthe query methods outlined, determines the list of objets to whih the event pertains, andthen shedules the event to our in 0 seonds in eah individual Objet instane. In theevent, that two or more events are sheduled to exeute at the same time step, the events areproessed in the order that they were sheduled, but all at the same simulated time.MobilityMobility of Objet instanes are handled transparently. As an Objet updates its loation,any EntityLayer instantiations that referene that Objet are noti�ed, and in the event thatthe Objet has moved from one disretised part of the grid to another, the instantiation isupdated using the ::updateObjetsGridLoation(Objet*) method.4.7 PiCSE as a Combinatorial FrameworkThe PiCSE framework is intrinsially �exible as its arhiteture provides generi abstrationsthat an be instantiated to model the ommon omponents of pervasive omputing senarios.However, learly not all omponents of all domains an be antiipated in advane and theAbstrat_Interfaes lass ategory provides lasses and interfaes that allow developers toreate models to meet their own domain modelling requirements. In addition to enablingthe reation of new abstrations, the framework should support the apturing of logial andphysial relationships between instantiations of the PiCSE abstrations, allowing the reationof models that are beyond the instantiation of a single abstration. Both physial and log-ial dependenies are aptured within the framework and supported by the lass ategories.Supporting the free interation, ombination and inter-dependene of simulated hardware andsoftware elements within the framework is a key step towards addressing the hallenge iden-ti�ed in hapter 1 as �exible heterogeneity and is also requirement R3 with respet to thePiCSE framework. 115

4.7. PiCSE as a Combinatorial Framework4.7.1 Physial DependeniesThe framework aptures physial dependenies that our regularly whilst reating realistimodels. The main physial dependeny onerns the loation and olloation of objets.This reurring pattern aptures the senario where an objet is being �arried� by anotherobjet, its �owner �. In this situation, a physial dependeny is reated, whereby the loationof the �arried� objet assumes the loation of its owner. It is neessary to apture thisrelationship to allow instantiations of low-level objet-based abstrations to be ombined intomore omplex instantiations.
4.7.2 Logial DependeniesThe framework should apture the dependenies within a senario whereby the state of anobjet is dependent on the state of another objet. Take a typial environmental monitoringsenario, suh as the forest-�re detetion senario desribed in (Yu 05). In this senario, awireless sensor network is deployed to detet forest �res. In the PiCSE framework, models ofthe environment are aptured as sets of instantiations of the EnvironmentLayer abstration.An instantiation of a senario suh as this one ould inlude a layer representing a model ofthe forest and a layer representing the forest �re. A logial dependeny exists here and isrequired to fully model this senario, i.e. the state of the layer representing the forest �re isdependent on the layer representing the loation or presene of trees.The PiCSE framework supports the reurring pattern of logial dependenies, again sup-porting the reation of omplex instantiations from ombinations of simpler instantiations.Capturing this dependeny requires that a hange within a simulated model an initiate anupdate within a dependent simulated model. The PiCSE framework provides an event noti-�ation servie, so that omplex inter-dependent instantiations an be built if required. Thenature of the dependeny between two models an be aptured as implementing either stritor loose ausality. 116

Chapter 4. Modelling the Key Pervasive Computing Components4.7.3 Limiting the e�ets of updatesPiCSE supports the reation of omplex simulated types, suh as o-loated Objets throughthe addition of an event publish-subsribe model. This an potentially lead to omplex inter-dependenies between instantiations. Depending on the nature of these dependenies, and theauray of the simulation required, an atuator an ause events; that is events that ouras a result of an original atuation event.PiCSE provides two approahes that attempt to mitigate the potential omputationale�et of simulating asading events, although it does not fully prevent these errors at thehuman level. For example, it may be neessary for developers to speify ylial dependeniesbetween objets within a simulation, whih if unheked would result in an in�nite numberof asading events. Typially this an happen when an update in one objet would shedulean immediate update one or more other objets, whih may ultimately inlude the original.To mitigate this, dependenies between layers an be spei�ed as being either LOOSE orSTRICT. A LOOSE dependenies do not neessarily result in an immediate update of statewhen an event ours, whereas a STRICT dependeny does.1. Loose Causality Event noti�ations to dependent models are aknowledged and the::transform() method is invoked as usual at a sheduled time in the future. This isthe default behaviour.2. Strit Causality The reeption of an event noti�ation auses an immediate loalinvoation of the ::transform() method.In the event of loose ausality being implemented, there exists a period of time betweenthe periodi invoations of the ::transform() method, indiated in �gure 4.9 where thedependent model has not been updated to take into aount the new data in the model uponwhih it is dependent. Implementing strit ausality between dependent models however anause asading updates, whereby an update in one model fores another model to update,whih an in turn fore more layers to update and so on. Therefore, a trade o� exists betweenmaintaining the onsisteny of inter-dependent models and the e�ort required to maintain thatonsisteny. The amount of simulation �delity that may atually be lost by implementing the117

4.7. PiCSE as a Combinatorial Framework

Figure 4.9: Logial dependenies an be aptured using Loose or Strit Causality

118

Chapter 4. Modelling the Key Pervasive Computing Componentsloose ausality is dependent on the modelled domain, and only the user an put a value onthat �delity. Aside from implementing strit ausality as the alternative rigid approah, alazy approah to ausality would be implement a rollbak funtion within the framework ofthe loose ausality approah, whereby if a on�it was deteted, an inonsisteny ould bereversed by rolling bak the simulation to the point where the on�it arose and implementinga loalised and immediate STRICT update.Atuator instantiations an also exploit the loation-based APIs of the EnvironmentLayerand EntityLayer abstrations to spatially limit the amount of atuation that is performedupon the environment. This means that omputational time is not wasted evaluating thee�ets of an atuator on objets that are outside of its de�ned range. For example, when aspeaker (atuator) makes a sound, it an speify a range that will determine what simulatedelements will be atuated upon, whih in this ase means will hear the sound.4.8 Requirements AnalysisThe requirements determined for the PiCSE framework were determined at the outset ofhapter 3, and they are one again presented and then examined to determine whether theyhave been satis�ed by the arhiteture and design of the framework.
• R1 The framework should support the �exible and heterogeneous simulation of thehardware elements of pervasive omputing senarios. This is be provided by reatingustomisable abstrations representing physial aspets of the senarios suh as theenvironment, as well as hardware devies suh as sensors and atuators.
• R2 The framework should support the emulation of real-ode appliations developedfor pervasive omputing. These appliations may be built upon middleware that shouldalso be supported.
• R3 The framework should mediate the �exible interation of any simulated and emu-lated elements forming the simulation of a pervasive omputing appliation.
• R4 The framework should support the reation of new abstrations of both hardware119

4.8. Requirements Analysisand software elements, in order that future emerging appliation senarios an be in-orporated into the PiCSE framework.
• R5 The framework should ombine reurring elements of pervasive omputing simula-tions into a set of reusable omponents thus reduing the amount of work required toinstantiate any simulated senarios.
• R6 The framework should support network simulation for both wired and wirelessnetworks.
• R7 A framework that supports the reation of pervasive omputing simulations mustprovide funtionality to support the evaluation of those simulations.Requirements R1, R2, and R3 The modelling of both hardware and software om-ponents is provided by the high-level lasses, Sensor, Atuation, EnvironmentLayer,EntityLayer, AppliationWrapper and ExeutionEnvironment and their respetive inher-ited lasses. PiCSE's support for modelling multiple simulated heterogeneous hardware andsoftware elements and the framework's �exible implementation allows the potential intera-tion, ombination and inter-dependene of these omponents without restrition. These threerequirements have been met by the arhiteture, design and implementation of the framework.Requirement R4 The support of the PiCSE framework's arhiteture to address the re-quirement of extensibility is met by two aspets of its design. An instantiation of the PiCSEframework an itself be a domain-spei� sub-frameworks, omposed of extensions of the soft-ware and hardware abstrations provided by the PC_Abstrations lass ategory. Addition-ally, the Abstrat_Interfaes lass ategory provides a set of interfaes that allow the develop-ment of new abstrations that are not urrently modelled within the existing framework im-plementation. These extensions an interat and interoperate with the existing PiCSE_Coreand the existing abstrations. Additionally, the split-level design of the framework's emula-tion omponent allows new emulation appliation APIs to be added when in the future whennew platforms or middlewares emerge. These funtionalities and design features meet theframework's extensibility requirement, R4. 120

Chapter 4. Modelling the Key Pervasive Computing ComponentsRequirement R5 The PiCSE_Core framework engine omprises of a set of omponentsthat are ommon to all PiCSE simulations. This reusable engine, and the identifying ofreurring software patterns that are aptured within the lasses for the hardware and softwareelements, and their inter-dependenies meets the framework's reusability requirement, R5.Requirement R6 The PiCSE framework provides two feature that address the aspet ofnetwork simulation within pervasive omputing senarios. The Net_Interfae lass and theunderlying Network Manager omponent provide a rudimentary API for the simulation ofnetwork behaviour. This requirement, R6, is partially met.Requirement R7 The PiCSE framework's provides a �exible API that allows a developerto speify time windows, where the the behaviour and state of objets of interest within asimulation is reorded. This requirement, R7, is partially met.4.9 ConlusionOverall, the requirements identi�ed in hapter 3 have been satis�ed. Requirements R1, R2,R3, R4, and R5 whih address the ore hallenges identi�ed in hapter 1 have been fullymet in the design of the arhiteture and implementation of the PiCSE framework. Theadditional funtional requirements R6 and R7 have been partially satis�ed. It was deidednot to inorporate a full network simulator into the framework's design as there are manyexisting well-established network simulators already in existene. Rather than ompete withthese simulators, the framework provides an open loation-based API allowing all elementsto be queried so that the integration of the framework with a third-party network simulatormight be ahieved in the future. With respet to the experimental support, there are nowidely aepted standards for reording the output of simulated experiments in the pervasiveomputing domain so this feature has not been implemented. In-line analysis and debuggingof pervasive omputing appliation senarios was also not implemented, and as suh thisrequirement is only partially met.
121

Chapter 5
Evaluation
5.1 IntrodutionThe PiCSE framework has identi�ed ommon harateristis of a set of reurring omponents,and implemented these in a set of lass abstrations that an be ustomised to a wide arrayof pervasive omputing senarios. Instantiations of these abstrations an be freely omposedinto more omplex instantiations, demonstrating the �exibility of the framework approah.This is supported by the abstration's interfaes, that support the strutured ompositionof these omplex instantiations, whilst impliitly enapsulating reurring interation patternswithin the domain. This hapter presents three senarios that demonstrate the ful�lment ofthe framework's requirements as they were outlined in the beginning of hapter 3. Both thesimulation and emulation aspets of the framework are evaluated in three diverse independentappliation domains that highlight the diversity of pervasive omputing senarios.5.2 Experimental MethodologyWhen evaluating a framework based arhiteture, the typial approah is to instantiate threedistintive yet related senarios that exerise the ability of the framework to be �exiblyadapted to those senarios. In addition to this requirement of a framework, further require-ments were determined for the PiCSE framework at the outset of hapter 3, and they are123

5.2. Experimental Methodologyone again presented.
• R1 The framework should support the �exible and heterogeneous simulation of thehardware elements of pervasive omputing senarios. This is be provided by reatingustomisable abstrations representing physial aspets of the senarios suh as theenvironment, as well as hardware devies suh as sensors and atuators.
• R2 The framework should support the emulation of real-ode appliations developedfor pervasive omputing. These appliations may be built upon middleware that shouldalso be supported.
• R3 The framework should mediate the �exible interation of any simulated and emu-lated elements forming the simulation of a pervasive omputing appliation.
• R4 The framework should support the reation of new abstrations of both hardwareand software elements, in order that future emerging appliation senarios an be in-orporated into the PiCSE framework.
• R5 The framework should ombine reurring elements of pervasive omputing simula-tions into a set of reusable omponents thus reduing the amount of work required toinstantiate any simulated senarios.
• R6 The framework should support network simulation for both wired and wirelessnetworks.
• R7 A framework that supports the reation of pervasive omputing simulations mustprovide funtionality to support the evaluation of those simulations.The methodology adopted in this evaluation is to extend the subjetive approah of frameworkinstantiation to measure, quantitatively where possible, the suess of PiCSE framework inaddressing the additional requirements identi�ed. By evaluating the senarios individually andthen subsequently drawing onlusions and insights aross all three senarios , a more rigorousevaluation is ahieved. The metris that have been identi�ed to validate these requirementsare outlined in table 5.1. 124

Chapter 5. EvaluationRequirement MetrisR1 The number of diverse instanes of all hardware omponentsR2 The number of instanes of emulated omponents, bothappliations and middlewares.R3 The number of instanes of omponent inter-relationships, whihis de�ned as an interation between two seperately reatedinstanes of PiCSE abstrations.R4 The number of instanes of inherited reusable abstrations.Measure the proportion of the simulation that is omprised ofre-usable domain spei� elements.R5 The proportion of the simulation that is provided by the PiCSEframeworks ore lasses.R6 Demonstration of network funtionality in appliation senarios.R7 Demonstration of evidene of evaluation support funtionality.Table 5.1: Requirement evaluation metrisThese metris are applied aross three distint pervasive omputing senarios. These se-narios, a Steam Emulation senario, a Car Hardware senario and an Intelligent Transporta-tion Systems senario are re�etive of ommon appliation domains atively being onsideredwithin the pervasive ommunity at this time and have reurring harateristis that will exer-ise the �exibility, reusability and extensibility of the PiCSE framework. These harateristisinlude
• Complex models omprising of many distintive hardware and environmental ompo-nents.
• Multiple appliation types written both natively and on middleware platforms.
• Complex interation between hardware, software and environmental fators for the pur-pose of domain-driven objetives suh as oordinated behaviour, environmental dete-tion and distributed information gathering.The three senarios are presented in the following format. A high level desription of thesenario is presented, in whih its harateristis and key omponents are drawn out. This isthen followed by a desription of how PiCSE's abstrations provide the supporting funtional-ity required to model these omponents and their interation. The exeution of the resulting125

5.3. The STEAM Emulation Senariomodelled senario is disussed and any domain insights are highlighted. Finally, the evaluationmeasures how e�etive the instantiated senario exerises the framework's requirements.5.2.1 The SenariosThe STEAM Emulation senario models the interation between multiple mobile pervasiveomputing appliations, running on simulated PDA devies, that ommuniate using event-based middleware. This senario aptures the e�ets of mobility in the ommuniation be-tween the two appliations, through the emulation of the event middleware, and its integrationinto the network simulator.The Car Hardware Senario is haraterised by the modelling of the realisti integrationof simulated and emulated omponents. The realisti modelling of the hardware interfaeis entral to the e�etive emulation of the appliation, and this senario exerises PiCSE'ssupport for this requirement.The third and �nal senario presented is an Intelligent Transportation Systems senario.A simulation of a smart Dublin tra� environment, this senario models a higher level ofomplexity within the simulated aspets of the senario inluding thousands of interatingvehiles, roads and smart tra� lights. This large-sale senario aptures a large degree of bothphysial and logial dependenies between a range of instantiations of PiCSE abstrations.5.3 The STEAM Emulation SenarioThe �rst instantiation of the PiCSE framework models the emulation of two appliations thatommuniate using event-based middleware. The STEAM middleware, desribed in detail by(Meier 03), enables event-based ommuniation for ollaborative appliations in distributedenvironments. The middleware provides several underlying servies abstrating from theunderlying ommuniation medium. An announement servie periodially broadasts a listof available event types that may be subsribed to. A disovery servie is monitoring theenvironment for these announements. An appliation may use STEAM's prodution servieto produe and broadast these events, whilst a subsription servie allows these events to126

Chapter 5. Evaluation

Figure 5.1: CommandSensor announes event types periodiallybe subsribed to, and provides �ltering funtionality based on three riteria: event type,ontent and proximity. Combinations of these �lters allow a �ne-grain of ontrol over theultimate delivery of these events to the appliation built upon the middleware. All serviesare available on eah STEAM middleware instane, but may not neessarily be utilised; forexample, some instanes may be event produers only, whilst others may be both eventproduers and subsribers.In this senario, depited in �gures 5.1 and 5.2, two appliations running on handhelddevies, one stati and one mobile, use the STEAM middleware to exhange messages. Themobile devie, CommandSensor, produes two types of message, �newMission� and �haltMis-sion� every seven seonds, and moves around the physial environment following a randompath. The stati devie, TestDevie subsribes to events of type �newMission�, and uponreeiving an event, an event handler is triggered, and a method is invoked within the appli-ation. In this simpli�ed senario, the appliation writes some output to a log. It should beevident that this type of middleware is typial of pervasive omputing environments, and ouldunderpin for example smart environments where funtionalities are disovered only when auser moves into a ertain proximity of a devie or a feature.5.3.1 Senario Modelling requirementsFrom the PiCSE perspetive, there are three �software� elements that require modelling. Thetwo appliations, CommandSensor and TestDevie must be instantiated individually, and aresheduled to exeute at a parameterised time. These two appliations both run on instanes127

5.3. The STEAM Emulation Senario

Figure 5.2: The CommandSensor appliation broadasts events to his subsribers.of the STEAM middleware, the third software abstration, whih must interat with thenetwork simulator to model the wireless delivery of messages. As shown in �gure 5.2 , theCommandSensor appliation raises events periodially, and broadasts them in the wirelessdomain; the TestDevie appliation reeives these events on its network interfae wherebythey are reeived by a listener and an appropriate handler is invoked.There are two �hardware� modelling aspets of this senario that map diretly to the keyabstrations within the PiCSE framework. The nodes are physial objets that have a loationwithin the environment. As shown in �gure 5.1, one node is mobile and moves aording to therandom waypoint movement pattern. The seond �hardware� abstration is the environmentitself. In this senario, the environment utilises PiCSE's default environment implementation,as no omplex environment features are required. In e�et, the environment is a free spae inwhih the nodes an move freely.In addition to the highlighted hardware and software omponents, an e�etive modelof this senario must address two high level features. These features inlude mobility andthe modelling of the middleware funtionality. Mobility is a key harateristi of STEAMappliations. The senario an only demonstrate the e�etiveness of the STEAM middlewareby realistially modelling the mobile omponents of the senario. The STEAM middlewareimplements a range of funtionality at di�erent levels within its libraries. The senario mustretain the key parts of this funtionality for the senario to be a realisti validation of theSTEAM middleware. 128

Chapter 5. EvaluationFuntion name Funtionality providedinit_rte_publish() Initialises the Real Time Event publish omponentinit_rte_subsribe() Initialises the Real Time Event subsribe omponent(un)announe() Broadasts an event type announement ordenounementsend_event() Raises an event on the event hannel(un)subsribe() Subsribes/Unsubsribes the middleware instane to apartiular event typeregister_update_loation_b() Set a allbak method where the urrent loation anbe obtained fromvarious allo_x()funtions Various supporting funtions for memory managementet.Table 5.2: The STEAM API5.3.2 Building the Senario ModelModelling the Senario's Software ComponentsModelling the STEAM MiddlewareThe original STEAM middleware is implemented as a library written in C++. The libraryomprises of two main omponents. An RTE library provides the ore funtionality for sub-sribing to events, announing events and sending events, whilst the underlying seond partof the library, Dummy-SEAR, provides funtionality to both reserve and release hannels forommuniation and to send serialised messages on those hannels. The STEAM API, imple-mented in the C programming language, is provided allowing appliations to be built uponSTEAM and provides the funtions outlined in table 5.2. The Dummy-SEAR aspet of themiddleware interfaes with the operating system and network stak invoking the system allslisted in table 5.3.In order to suessfully emulate the STEAM middleware, its appliation stak, shown in�gure 5.3 has to be re-written in terms of PiCSE omponents so that any of the API's uponwhih STEAM is built must be provided and replaed by the orresponding funtionalityprovided by the PiCSE ore. In the ase of this partiular ommuniation middleware, thisis primarily the networking funtionality. There is some variability in how this might beahieved as there is a number of points within STEAM where an integration with PiCSE may129

5.3. The STEAM Emulation Senario
Funtion name Souresoket()setsokopt()bind()sendto()Revfrom() from sys/soket.h
htons() from mahine/endian.hinet_pton() from arpa/inet.hpthread_reate()pthread_detah()pthread_exit() from pthread.hTable 5.3: System alls made by STEAM to the underlying operating system.

Figure 5.3: The appropriate point at whih STEAM should be emulated must be determinedby the user and is not onstrained by PiCSE.130

Chapter 5. Evaluation

Figure 5.4: STEAM is omprised of an RTE and SUMMY_SEAR library.be ahieved. The point at whih the middleware is emulated ould be anywhere within theSTEAM appliation stak, ranging from the API where the appliation interfaes diretly withthe middleware, to the API between the STEAM middleware and the underlying operatingsystem. Choosing the appropriate point within that spetrum is a trade-o� between severalfators, whih inlude:
• the maintenane of key funtionality and logi provided within the middleware.
• the provision of any required simulated funtionality within the PiCSE ore.
• the fator whih the simulation is ultimately trying to measure.In the ase of this evaluation, the aim is to show that the framework is �exible enough toemulate the middleware behaviour with as muh �delity as possible, and this is ahieved bymaintaining as muh of the middleware's logi and funtionality as possible. In the ase ofthe STEAM middleware, shown in �gure 5.4 , it is atually omprised of two omponent131

5.3. The STEAM Emulation SenarioDUMMY-SEAR funtion nameinit_dummy_sear_publish()init_dummy_sear_subsribe()reserve_hannel()reserve_hannel_for_subsribe()free_hannel()send_on_hannel()register_b_for_rev_from_hannel()Table 5.4: The DUMMY-SEAR APIparts: the RTE library and the DUMMY-SEAR library, where the RTE library is responsiblefor the event management, and the DUMMY-SEAR omponent is responsible for the timelyserialisation, marshalling and transmission of messages ontaining events raised by STEAMappliations. Sine the event-based logi was self-ontained within the RTE omponent, it isappropriate to leave that untouhed. In doing so, any appliations within the senario thatare built upon the STEAM middleware an run without modi�ation, an important riteriafor usability. The DUMMY-SEAR omponent primarily handles the network ommuniation,and it was within this omponent where it was deemed appropriate to map funtionality tothe PiCSE ore. DUMMY_SEAR provides the API, shown in table 5.4 whih is aessed byRTE. The funtionality abstrated by these API's must be modi�ed to interfae with PiCSEinstead of the originally targeted operating system.The two instanes of the STEAM middleware are implemented as instanes of theSteamExeutionEnvironment lass, shown in �gure 5.5 , whih is derived from theExeutionEnvironment abstration. The ExeutionEnvironment abstration, whih it-self implements the Net_Interfae abstration, transparently registers itself with theNetwork_Simulator as a wireless sender and reeiver. Therefore, two basi methods haveto be implemented. Net_Interfae::send(void*) and Net_Interfae::deliver(void*msg). These methods interat diretly with the network simulator in the PiCSE_Core, andit is via these methods that the PiCSE framework, both sends and delivers STEAM eventsbetween appliations built upon the STEAM middleware.By way of example, �gure 5.6 shows the methods invoked when an appliation sendsan event via the STEAM middleware. Part a) traes the method alls through the RTE,132

Chapter 5. Evaluation
#ifndef STEAM_EXEC_ENV#define STEAM_EXEC_ENV#inlude "exeEnv.h"lass SteamExeutionEnvironment:publi ExeutionEnvironment{publi:SteamExeutionEnvironment(Loation l);~SteamExeutionEnvironment();// RTE - Funtions alled from RTE_Proximity libraryint init_rte_publish_loal();int init_rte_subsribe_loal();hannel_id announe_loal(subjet sub, proximity* prox,lateny lat, period per,adaptation adapt);void unannoune_loal(hannel_id h);int send_event_loal(int hannel_id, event* event);subsription_id subsribe_loal(subjet sub, reeive_event b);void unsubsribe_loal(subsription_id h);void register_update_loation_b_loal(update_loation_b b);void make_allbaks_for_loal(steam_event* st_ev);void free_steam_event_loal(steam_event* ev);// DUMMY-NETIF - Funtions alled from DUMMY2-SEAR funtionsvoid send(void*);void deliver(void*);// DUMMY2-SEAR - Variables needed for DUMMY2-SEAR funtionsint send_soket;int rev_soket;};#endifFigure 5.5: Extrats from the emulated STEAM library, as de�ned in steamExeEnv.h. Thefull de�nition of this program may be found in the Appendix.

133

5.3. The STEAM Emulation Senario

Figure 5.6: Original STEAM library and emulated STEAM libraryand DUMMY-SEAR libraries respetively before the event is passed to the underlyingoperating system. In part b), the DUMMY_SEAR library has been replaed with theDUMMY-SEAR library whih was implemented in the SteamExeutionEnvironment lass.The emulated send_on_hannel method sends the event to the network simulator via theNet_Interfae::send method. Beyond that method, the network simulation omponent of thePiCSE framework alulates the potential reeivers of that message based on proximity anddelivers that message to those reeivers at a sheduled point in the future. The deliver ofmessages at a time in the future is enabled to allow developers to simulate paket delays, butthis is not a feature of this partiular senario.Figure 5.7 shows the modi�ations required to eah of these funtions in order to rediretthese funtions from making alls to the underlying operating system to the PiCSE ore.The left olumn shows the original funtionality provided within the DUMMY-SEAR library,and the right hand olumn shows the funtionality provided by the emulated library, namedDUMMY2-SEAR library, and the alls that are made to the PiCSE libraries in order toahieve that emulation.Modelling the Senario's AppliationsThere are two appliations, CommandSensor and TestDevie, in this senario. Bothare supported by their respetive AppliationWrapper instantiations, Command_Wrap and134

Chapter 5. Evaluation

Figure 5.7: Comparing original behaviour of the Dummy-SEAR and the emulatedDUMMY2-SEAR omponents. 135

5.3. The STEAM Emulation SenarioCommandSensor::CommandSensor(){if(init_rte_publish() == -1){printf("Init-rte-publish failed.\n");exit(1);}my_proximity = allo_proximity();my_proximity->proximity_hull.type = CIRCLE;// non-rt latenylat.min = 0; lat.max = 0;//period is in milliseondsper = 1000;strpy(newMissionSubjet, "NewMission");hannel_id newMissionChannel;newMissionChannel = announe(newMissionSubjet, my_proximity, lat, per, ommandSensor_adapt)newMission_event = allo_event();newMission_event->sub = newMissionSubjet;int xv = 0 ;while (xv < 10){sleep(7);if(send_event(newMissionChannel, newMission_event) == -1){printf("Error in send_event\n");exit(1);}xv++;}}Figure 5.8: Extrats from the CommandSensor program, whih is de�ned in CommandSen-sor.ppTest_Wrap and these instantiations initialise the CommandSensor, and TestDevie programsrespetively. The CommandSensor program is a simple program that exerises the STEAMevent prodution API. In this senario, this program initialises itself by alling the appropriateRTE library methods, and then sends two separate events on the reated STEAM event han-nel. As an be seen in �gure 5.8 , these messages are raised periodially every seven seondsand are sent ten times in total. The TestDevie program, an abbreviated version of whih isshown in �gure 5.9 , is a simple STEAM event onsumer, that listens for �NewMission� eventsby registering a allbak funtion shown in �gure 5.10 . It is the STEAM middleware that in-136

Chapter 5. Evaluation
TestDevie::TestDevie(){if(init_rte_subsribe() == -1){printf("Init-rte-subsribe failed.\n");exit(1);}if(init_rte_publish() == -1){printf("Init-rte-publish failed.\n");exit(1);}testDevie_ur_lo.lat = 0;testDevie_ur_lo.lon = 0;subsribe("NewMission", testDevie_revev);printf("End\n");}Figure 5.9: Extrats from the TestDevie program, whih is de�ned in TestDevie.pp
void testDevie_revev(event* ev){printf("THIS IS THE TEST DEVICE RECEIVING AN EVENT\n");printf("¬¬\n");printf("Reeived event of subjet \"%s\", withontent:\n[%s℄\n", ev->sub, ev->ont);printf("¬¬\n");}Figure 5.10: The TestDevie event allbak funtion, whih is de�ned in TestDevie.pp

137

5.3. The STEAM Emulation SenarioSteamExeutionEnvironment* testDevieSee =new SteamExeutionEnvironment(Loation(0,0));Figure 5.11: Modelling of a stati objet an be ahieve by passing a loation parameterduring the instantiation of an ExeutionEnvironment objet.vokes that allbak, whih is triggered by the delivery of a �NewMission� Event from the PiCSEnetwork simulator to the middleware instane through its Net_Interfae::deliver(void*)method. The full de�nition of both the TestDevie and CommandSensor programs an befound in the Appendix.Modelling the Senario's Hardware ComponentsModelling Stati ObjetsThere are two physial omponents in this senario: the stati physial devie upon theTestDevie program is running, and the mobile physial devie on whih the CommandSensorprogram is running. The �rst physial devie is spei�ed in the senario to be a stati objet,initiated at a �xed loation, whih remains at that loation throughout the duration of theexperiment. This an be done in PiCSE using two methods. The �rst method is to usea Mobility_Objet lass, whih may be parameterised at instantiation with the STATICenumerator. Alternatively the ExeutionEnvironment an be parameterised with a loationat the time of instantiation. In the implementation of the STEAM senario, the seondapproah was utilised as only a single line of ode is required to initialise this, and this anbe additionally ahieved by passing a loation parameter during the reation of the senarioExeutionEnvironment as seen in �gure 5.111 .Modelling Mobile ObjetsAn instane of a Mobility_Objet is instantiated and parameterised with the RAN-DOM_WAYPOINT parameter to model the mobility of the devie hosting the Command-1Variable names may have been renamed in ode extrats in order to failitate readability and understandingof the senario. 138

Chapter 5. EvaluationMobility_Objet* ommandSensorMobObj =new Mobility_Objet(Loation(0,0), RANDOM_WAYPOINT) ;Figure 5.12: Physial objets an be parameterised with a mobility pattern whih de�nestheir movement during the senario experiment.Sensor program. When a Mobility_Objet is initialised with this parameter, shown in �gure5.12 , its path is determined using the random waypoint algorithm. This is a well known andfrequently used algorithm in network simulation experiments in whih an objet's mobilitypattern is guided by a series of waypoints, the next of whih is determined upon arriving atthe previous waypoint. MOBILITY events are transparently sheduled by the PiCSE simu-lator to move the Mobility_Objet towards its next waypoint. By default, these two objetinstanes are added to the default environment, default_entLayer, whih is managed by theDomain_Manager omponent.Interlinking of Simulated Hardware and Software ComponentsThe �nal step in the modelling of the STEAM senario is to interlink the individual hardwareand software omponents that have been desribed and instantiated in setions 5.3.2 and 5.3.2of this hapter. So far, these omponents have been reated in isolation: that is to say, that theomponents suh as an emulated middleware instane and a modelled physial devie that hasa loation are reated but are not yet interlinked in a meaningful way. However, appliations inPiCSE, handled by their AppliationWrapper instantiations have to be assoiated with theirrespetive ExeutionEnvironment instantiations before they an be meaningfully exeuted.In addition to emulating the middleware, the SteamExeutionEnvironment instantiationhas a physial loation within the simulated world. As this senario ontains mobile nodes,the loation of the instantiation, and the impliit loation of all appliations running ontop of that instantiation, have to re�et the loation of the mobile nodes. Therefore aninstantiation must be assoiated with a Mobility_Objet instane that models its physialnode. If that Mobility_Objet moves within the simulated environment, the loation ofthe ExeutionEnvironment instantiation should be orrespondingly updated automatially.139

5.3. The STEAM Emulation SenarioThis is ahieved within PiCSE by the Loation_Manager omponent of the PiCSE ore. TheNetwork_Simulator is also informed of the updated position of the ExeutionEnvironmentinstane.Figures 5.13 and 5.14 show ode fragments from the initialisation of the senario exper-iment in whih the instanes, that been been desribed in setions 5.3.2 and 5.3.2, are nowimplemented and interlinked.As the ode fragment in �gure 5.13 shows, the emulated middleware is instantiated in a1. SteamExeutionEnvironment* testDevieSee =new SteamExeutionEnvironment(Loation(0,0));2. thirdprog* testDevieWrapper = new thirdprog();3. testDevieSee->addEmulatedAppliation(testDevieWrapper);Figure 5.13: Code fragment demonstrating the interlinking of the senario's TestDevieappliation and emulated STEAM middleware instane.single line, line 1. The appliation TestDevie is instantiated through its appliation wrapper,and is also instantiated in a single line, line 2. The interlinking of these omponents is ahievedin a single line, line 3, whereby the program, mediated by its appliation wrapper is 'added'to the middleware through the addEmulatedAppliation method. This method assoiates theprogram and any of its underlying middleware alls to a single emulated STEAM middlewareinstane, in this ase, named testDevieSee. This �hook� allows appliation events that areraised as part of its exeution to be pushed down into the middleware, and onversely allowsevents to be delivered from the middleware to the appliation.Figure 5.14 shows how the interlinking of software and hardware omponents is ahievedfor a mobile appliation, the CommandSensor program and middleware instane in this se-nario. The appliation and the middleware instane are reated similarly to the TestDevieinstantiation in lines 1,3 and 4. Two further lines of ode are required to apture the interlink-ing of these omponents. A Mobility_Objet named ommandSensorMobObj, is instantiatedin line 2 as desribed in setion 5.3.2, and the program's exeution environment, the emulatedmiddleware instane ommandSensorSee, is now linked to that Mobility_Objet instane us-ing the addObjet() method. 140

Chapter 5. Evaluation1. SteamExeutionEnvironment* ommandSensorSee =new SteamExeutionEnvironment(Loation(0,0));2. Mobility_Objet* ommandSensorMobObj =new Mobility_Objet(Loation(0,0), RANDOM_WAYPOINT) ;3. prog* ommandSensorWrapper = new prog();4. ommandSensorSee->addEmulatedAppliation(ommandSensorWrapper);5. ommandSensorMobObj->addObjet(ommandSensorSee);Figure 5.14: Code fragment demonstrating the interlinking of the senario's CommandSen-sor appliation, emulated STEAM middleware instane and the modelled mobile deviesThis is ahieved using PiCSE events. The Mobility_Objet periodially shedules MO-BILITY events. Eah event ourrene invokes a method that moves the Mobility_Objettowards its next waypoint. Upon reahing the waypoint, the node hooses a waiting period,and its next waypoint, and shedules another MOBILITY event at the end of the waitingperiod. As the Mobility_Objet moves, as determined by the parameterised random way-point algorithm, any objets o-loated with that objet, in this ase the emulated STEAMmiddleware instane and the CommandSensor appliation running on that middleware, alsomove aording to the same random waypoint algorithm. Simulated objet mobility is thusahieved when the experiment is exeuted.5.3.3 Exeuting the Senario SimulationInitialising the Experimental SenarioAs in all of the senarios desribed in this hapter, an instantiation of the PiCSE_Corelass ategory must exist and enable the simulation of the senario. The primary role ofthe PiCSE_Core in this instantiation, is to manage the models of the nodes, exeutingsheduled events when required, and to manage the exeution of the two appliations, theCommandSensor and TestDevie programs. The PiCSE_Core's network manager also modelsthe wireless network ommuniations between the appliations whih is mediated by theSTEAM middleware.The PiCSE_Core is the �rst set of omponents to be instantiated, and the follow-141

5.3. The STEAM Emulation Senarioint main(int arg, har **argv){..// Create a simulation enginenew Future(LINKED); // event list, lok, etSimulator::Instane();// Instantiate the networkNetwork::Instane();// Create a worldWorld::Instane();..}Figure 5.15: Code fragment showing the initialisation of the PiCSE_Core aspets of theSTEAM senario environment.ing omponents are reated by the ode snippets shown in �gure 5.15 . The key om-ponents are the Domain_Manager, the Network_Simulator and the Event_List_Manager.The Domain_Manager initialises a world model, instantiating an empty EntityLayer,default_entLayer, by whih all Objet instantiations an be referened. TheNetwork_Simulator reates an EntityLayer that maintains the position of all Net_Interfaeinstantiations, that is instantiations that an send and reeive messages. Finally,the Event_List_Manager instantiates two event lists, the Sheduled_Event list andSheduled_Appliation list. These lists are also empty by default.In addition to the PiCSE ore omponents, a range of senario spei� parameters have tobe de�ned. Figure 5.16 shows an exerpt from the main.pp, whih de�nes the experiment'sinitialisation main method. The experiment's duration is spei�ed in milliseonds; the physialsize of the experimental spae is de�ned as a Cartesian spae of one square kilometre, andthe experiment is de�ned to run over a single iteration.The sheduling of the exeution of the simulated appliations at a spei�ed period after thebeginning of the simulation, �nally ompletes the de�nition and initialisation of the STEAMsenario and the senario experiment is now ready to be exeuted. In this senario, the twoappliations are sheduled to start at staggered intervals in order to highlight behaviour whenone of the appliations is not running. 142

Chapter 5. Evaluationint main(int arg, har **argv){ int simDuration = 1000*60*2.5;int iterations = 1;int worldXSize = 1000, worldYSize = 1000;// Set the size of that worldWorld::setXSize(worldXSize); World::setYSize(worldYSize);// Set simulation durationSimulator::setDuration(simDuration);// Shedule the exeution of emulated appliationstestDevieWrapper->sheduleExeution(1970);ommandSensorWrapper->sheduleExeution(1980);Figure 5.16: Code fragment showing the initialisation of the STEAM senario environment.Exeution of the SimulationThe experiment was performed on an o�-the-shelf Dell Latitude C400 laptop, equipped witha minimal 512 MB of RAM and running on Ubuntu 6.10, Edgy Eft, an open soure operatingsystem built around the Linux kernel.The experiment was exeuted within a terminal and �gure 5.17 shows an exerpt of thelogged output of the experiment. A more omplete exerpt of the logged output is availablein the appendix. The exerpt in �gure 5.17 shows the two programs simulated exhange anddelivery of events via the STEAM middleware after the initialisation of the experiment, andthe initialisation of the programs, and the �gure is annotated with a series of pop-up notes,whih explain the outputs of the experiment.The CommandSensor program, logially exeuting on the Mobility_Objet raises twoevents, �NewMission� and �HaltMission� every seven seonds. The TestDevie program, exe-uting in a stati environment, onsumes �NewMission� events only. A number of events ofinterest should be noted in �gures 5.17 and 5.3.3 .In notes 4 and 5 of �gure 5.17, the TestDevie program reeives two messages: a �HaltMis-sion� announement and a �NewMission� event. The �HaltMission� is reeived and proessedby the middleware. The middleware heks its subsription lists for subsribed appliations,but none are found for events of this type so no allbaks are made to the TestDevie appli-143

5.3. The STEAM Emulation Senario

Figure 5.17: A sreenshot showing the logged output from the STEAM emulation evaluation.ation. In ontrast, the �NewMission� event is an event type for whih a allbak has beenregistered, so when the middleware heks its subsription lists for subsribed appliations, it�nds the registered allbak method within the TestDevie appliation, whih in this senarioprints the output seen in note 5.Notes 6 and 7 demonstrate another feature of the STEAM middleware. In note 6, theCommandSensor raises another �NewMission� event and transmits it from the loation (108,50). Note 7 shows what happens at the TestDevie's STEAM middleware instane uponreeiving that event. Although the program has subsribed to these event types, no allbakis made and the event is e�etively disarded as the CommandSensor has de�ned that themessage is only to be delivered if the reeiver is within a ertain proximity. In this partiularase, the CommandSensor has de�ned the proximity to be 100 metres and the distane fromthe sender to the reeiver is approximately 119 metres. The proximity is de�ned within theCommandSensor as:my_proximity->proximity_irle.radius = 100;144

Chapter 5. Evaluation

Figure 5.18: A seondary sreenshot showing the logged output from the STEAM emulationevaluation.

145

5.3. The STEAM Emulation SenarioFinally, note 8 of �gure demonstrates the range transmission aspet of the network simulatoromponent of the PiCSE simulator. The CommandSensor transmits a �NewMission� eventat the loation (209,98), but the event is not reeived by the TestDevie middleware asthe sender in this ase is approximately 231 metres from the only potential reeiver. Thedefault transmission range within the simulator is 200 metres, and therefore the message isnot delivered.5.3.4 Senario AnalysisSeveral of PiCSE's abstrations have been exerised in this senario. In the modellingof the loation of the ExeutionEnvironment instantiation, a physial dependeny wasreated using the underlying Objet abstration. Mobility_Objet omponents, andExeutionEnvironment instantiations are both derivations of the Objet abstration. Themodelling of the o-loation of a middleware instane and a physial mobile node in thissenario, demonstrates the abstration's support for modelling physial dependenies. Thisdependeny is independent of the atual Objet instantiations, thus validating the abstratapproah and the apturing of this dependeny ontributes to aurately ful�lling the mod-elling of one of the senario's key features, that of mobility.The Net_Interfae abstration is implemented by default for all ExeutionEnvironmentinstantiations. The API allows a range of message types to be passed through the simulator,irrespetive of the appliation or middleware that is sending and reeiving those messages. Inthis senario, the SteamExeutionEnvironment instantiation uses the abstrations interfaeto send and reeive STEAM events. The outputs of the senario simulation demonstrate therudimentary funtionality of a network simulator, and show how a event-based messagingmiddleware may be integrated into that network simulation omponent.In the ase of the STEAM middleware, the event subsription and publiation APIs,in addition to the supporting methods required were deemed to be entral to the auratemodelling of the STEAM senario. The Dummy-SEAR aspet of the library was not entralto the appliation senario, so the emulation point was hosen appropriately. The loation ofthe emulation point at this point preserves the key middleware funtionality, and this is the146

Chapter 5. Evaluationseond feature of the STEAM senario that must be supported.Overall, from a domain perspetive, the simulation of this senario was a suess. TheSTEAM senario's two most important features, the apturing of mobility and its e�ets onthe behaviour of the appliations, and the retention of the key funtionality of the middle-ware have both been ful�lled. In both ases, this has been ahieved using features of thePiCSE framework. Physial dependenies have been demonstrated to work as a methodologyfor modelling o-loation, enabling the simulation of realisti mobility-based senarios. Sim-ilarly, the ExeutionEnvironment abstration has been demonstrated that it an be used toe�etively emulate middleware, at least of the event-based ommuniation variety.InsightsThe primary e�ort in this senario was in the implementation of the emulation of the STEAMmiddleware, and this is where the most relevant and important observations are to be made.The most important learning is around how muh e�ort is required to provide the emulatedmiddleware. Coneivably, almost any of the layers, shown in part a) of �gure 5.19 ould have

Figure 5.19: Original STEAM library and emulated STEAM librarybeen hosen as the point at whih to emulate. Consider the seletion of the emulation point byexamining the API from top to bottom. A trade-o� ours as the emulation point desendsinto the lower levels of the middleware implementation. As the emulation point lowers, agreater amount of the existing middleware funtionality is maintained, however there are also147

5.3. The STEAM Emulation Senariomore likely to be operating system alls invoked above the emulation point. These systemalls must additionally be emulated if they remain in the middleware implementation.In the ase of this experiment, the emulation point hosen removed the need for pthreads tobe implemented as part of the emulation. In ontrast, one system all, extern unsigned intsleep (unsigned int __seonds) remained above the emulation point, and this system allwas emulated in order to preserve the funtionality of the middleware. The hoosing of theemulation point for any emulated appliations or middlewares should be onsidered as partof a domain spei� ost-bene�t analysis that should be addressed by any user of the PiCSEframework.Some restritions were noted in the overall approah taken to inorporating appliationsdeveloped by third parties. At present, only programs whih are developed in ++ are in-orporated. Bindings ould theoretially be made available in alternative languages suh asjava, and python, but this has not yet been tested. This would be a signi�ant amount ofwork involved in suh an undertaking, and a re-arhiteting of the PiCSE ore to representa more distributed simulation environment would be required. In suh an arhiteture, emu-lated programs would likely be exeuting within a lightweight loal PiCSE instantiation andthe management of these instantiations ould be oordinated and synhronised through aentralised instantiation.As PiCSE does not provide a sand-box, or a virtual environment based approah, somehanges have to be made to appliations before they an be implemented. Within the sopeof appliations that are developed in ++, several hanges had to be made to the appliationsbefore they ould be embedded into a PiCSE simulation. In ++, the program is invokedthrough a single main() method. As an instantiation of the PiCSE framework already ontainsthe only available main() method, the main() method of any emulated appliations must berenamed.In a similar vein, some ++ keywords that are used within a program may have to berenamed. For example, stati variables should be renamed, for example pre-pended with anamespae suh as the appliationWrapper instane, in order to ensure there are no on�itswith other emulated programs. 148

Chapter 5. Evaluation De�nition (.h) Implementation (.pp)steamExeEnv 67 477testDevie 34 91ommandSensor 36 199main 61Table 5.5: Lines of ode required to implement the STEAM emulation senarioIn analysing the e�ort required to implement this senario, the odebase is onsidered inthree parts.1. The lines of ode required to emulate the ore aspets of the middleware.2. The lines of ode required to implement the two appliations, TestDevie and Com-mandSensor, that exerise that middleware.3. The lines of ode that are required to onstrut and initialise the senario.The lines of ode methodology is hosen over determining the time taken to implement thesenario as that methodology an be subjetive and skewed by fators suh as the knowledgeof a user of a system, their level of domain expertise, and their overall skill as a developer. Thenumber of lines of ode is in itself a subjetive approah for measuring e�ort, but arguablyless so than the time taken. Table 5.5 shows the lines of ode required to implement thesenario as onsidered when broken into the three parts. It an be seen that the greateste�ort, at least as measured by the total lines of ode written, is in the implementation ofthe emulated middleware. Figure 5.20 examines the breakdown of the salient aspets of thatimplementation. By omparing the lines of ode in the original implementation and in theemulated implementation, it an be seen where the fous of attempting to aurately emu-late the middleware was plaed. The implementation of methods suh as get_rev_soket()and get_send_soket() were forfeited, whilst free_hannel() and send_on_hannel() werereimplemented. These re�et the point at whih the middleware was emulated at. Simulat-ing network behaviour is forfeited whilst the modelling of the hannel-based ommuniationbehaviour of the middleware is maintained. 149

5.3. The STEAM Emulation Senario

Figure 5.20: Table showing the number of modi�ed lines of ode with the emulated DUMMY-SEAR library.

150

Chapter 5. EvaluationOverall, the number of lines of ode required to implement those hanges is demonstratedin this senario at least to be relatively small and in most ases in line with the originalimplementation of the relevant aspets of the middleware. This is broadly positive as itdemonstrates that in these ases, a like-by-like substitution an be made when replaing theoriginal line of ode with a line of ode that invokes the simulated funtionality within PiCSE.Furthermore, the e�ort required to implement the emulated STEAM middleware is a singleup-front e�ort that needs to be theoretially implemented one and then emulated middlewarean then be used in other senarios without modi�ation.The atual behaviour within the senario is de�ned through a ombination of the TestDe-vie and CommandSensor appliations, implemented in 125 and 235 lines of ode respetively.The experiment was initialised and the world and models reated in the main.pp �le andare implemented in 61 lines of ode. The number of lines of ode to de�ne the experimentalbehaviour and to initialise and onstrut the senario is relatively small in this partiularsenario as its fous was to demonstrate the feasibility of the middleware emulation aspetof the PiCSE ore. In this senario, existing omponents were used to exerise the mobilitymodels for example, and no ustom hardware omponents were de�ned. As suh, the smallnumber of lines of ode is more a re�etion of the non-omplexity of the senario rather thana statement suggesting that any senario an be onstruted in a similarly small number oflines of ode.This senario has not been repliated in the real world setting so no omparison an bemade between the simulated behaviour and observed real behaviour. However some observa-tions and insights an be drawn based on the running of the simulation alone.Overall the emulated appliations and the STEAM middleware instanes have behavedas expeted. Within the middleware, a full range of its funtionality was observed, fromwithin the middleware and up to the appliations that were running on that middleware.Within the physial environment that was onstruted within this senario, the models forthe physial aspets of the simulator have moved and interated as expeted. Finally, thenetwork simulation omponent has been seen to deliver messages as expeted whilst respetingexpeted senario harateristis suh as mobility traits and transmission ranges.151

5.3. The STEAM Emulation SenarioHowever, there are several features that are missing from this experiment that an observerwould expet to see had the experiment been onduted in a real world setting. For example,by removing the part of the library that was built upon the pthread library, some non-deterministi aspets of the middleware's behaviour have been removed. In a more omplexsenario with greater interation of its omponents, inreased demand for resoures withina middleware instane would have a�eted the exeution and behaviour of that middleware.In a real world setting, one would also �nd that all pakets sent by the ommuniationmiddleware aross the network would not have been delivered due to interferene or otherissues not aptured by our PiCSE's basi network simulation omponent. For example, thetransmission range of a wireless network is not an absolute �xed number and is in�uenedby a number of fators suh as the mobility of the objets and olusion reated by buildingsand users arrying devies.Finally senario spei� behaviour that ours in the real world suh as the positioningof external omponents suh as buildings, and mehanial aspets of omponents that arerepresented in this senario as mobility objets are also missing. Similarly, the senariopresumes that the appliations are the sole running appliations on their host devie, andtherefore the senario does not take into aount some features suh as demand from otherappliations for omputing resoures of that host devie.Although the STEAM emulation senario as desribed does not aount for these �real-world� onerns, the senario ould have been extended to take these aspets into aount.The sheduling omponent of the PiCSE ore has a faility for delaying the exeution of anappliation, allowing for some rudimentary simulation of the delayed or even failed exeutionof an appliation. The network simulation omponent an drop pakets probabilistially, andan be integrated into a third party network simulator to take advantage of existing provennetwork simulation models. Finally, all physial artefats within this senario an be extendedto take into aount aspets of physial omponents suh as failure and human behaviour.Indeed, the next two senarios that are presented examine some of these aspets.152

Chapter 5. EvaluationMetris STEAM EmulationsenarioThe number of diverse instanes of all hardwareomponents.1 1 objet type, 1environment typeThe number of instanes of emulated omponents, bothappliations and middlewares.1 2 appliations, 1middleware instaneThe number of instanes of omponentinter-relationships, whih is de�ned as an interationbetween two separately reated instanes of PiCSEabstrations.2 1 objet-environmentrelationship, 1appliation-middlewarerelationship, 1appliation-objetrelationshipThe number of instanes of inherited reusableabstrations. 1 middleware instaneMeasure the proportion of the simulation that isomprised of re-usable domain spei� elements. 53.1% of 898 LOCThe proportion of the simulation that is provided bythe PiCSE frameworks ore lasses.3 79.7% of 4429 LOCDemonstration of network funtionality in appliationsenarios. TRUEDemonstration of evidene of evaluation supportfuntionality. FALSETable 5.6: Requirements analysis for the STEAM emulation senarioEvaluating the PiCSE requirementsThe outomes of this senario and its subsequent analysis are summarised in table 5.6 . Therequirements are measured with respet to their assoiated metris whih were identi�edin setion 5.2 of this hapter. This senario provides a demonstration of almost all of thebasi funtionalities provided by the PiCSE framework. Instanes of almost all of the mainsoftware and hardware abstrations were reated and some heterogeneous interations betweensome of these instantiations were also demonstrated. Note 3 of this requirements analysishighlights that the framework an provide up to 80% of the e�ort required in reating thebasi omponents that this typial pervasive omputing senario requires.A �nal over-arhing analysis of the requirement satisfation aross all three senarios isompleted in the �nal setion of this hapter.153

5.4. The Car Hardware Senario

Figure 5.21: Photograph of the hardware being emulated.5.4 The Car Hardware SenarioThe ar hardware senario is the seond senario used to validate the PiCSE framework. Thereal-world equivalent of this senario was �rst desribed in (Senart 06) and was presentedas a potential appliation for the MoCoA framework, a software framework for supportingthe development of ontext aware appliations. This appliation senario envisages a sentientrobot, an autonomous mobile robot with onboard sensors, whih is ontrolled by an appliationdeveloped using the MoCoA framework, with the ability to read sensor data from those sensorsand then reason and at upon that sensor data.A prototype of this senario was onstruted using the hardware shown in �gure 5.21. Two sensors, a ompass and a sonar sensor are attahed to a PIC miro-ontroller boardwhih is physially attahed to a re-purposed remote-ontrol ar. These sensors periodiallymeasure the distane to, and the relative orientation of the loation of any deteted obsta-les. An appliation hosted on an IPAQ PDA devie, running a slim-line Linux distribution,implements low-level funtionality that reads the raw sensor data from the abstrat Linux�le-system.The embedded nature of this senario, albeit in the ontext of a mobile robot is typial of154

Chapter 5. Evaluationpervasive omputing senarios. Sensor data samples real world phenomenon and is onsumedand reasoned upon, until some ationable deision is reahed and some hanges are a�eted,sometimes with the appliation itself as is the ase in ontext-aware omputing, but oftenin the environment. This is more typially seen in ambient assisted living or smart spaesenarios. In ontrast to the STEAM senario presented in setion 5.3, this senario washosen as it re�eted the sometimes embedded nature of pervasive omputing appliations.In these senarios, appliations are typially no longer written upon middleware frameworksbut diretly upon appliation programming interfaes provided by an operating system.5.4.1 Senario Modelling requirementsThe high level set up of this senario is shown in �gure 5.22 . The modelling of the emulated
Figure 5.22: The hardware setup of the Car Hardware Senario. The program running onthe IPAQ, onsumes sensor data via the PIC board.interation between the hardware and software omponents, whih is mediated by an emulatedLinux operating system is aptured and is the primary fous of this senario. By modellingthis interation, it will be demonstrated that PiCSE an emulate ertain pervasive omputingappliations that are built diretly upon API's of an operating system as well as emulatingappliations that are built upon pervasive omputing middlewares.Two features of this senario must be modelled by the PiCSE instantiation in order forthe evaluation senario to be validated.Emulation of system all based programming interfaes. This senario shouldvalidate the framework's ability to emulate at the level of system alls. The senario should155

5.4. The Car Hardware Senariotherefore inlude an appliation that is built upon a representative sample of these types ofsystem alls.Realisti modelling of the interation between simulated and emulated hardwareomponents. The realisti modelling of the interation and behaviour between the sensorsand the appliation is ritial to this senario. In order to be able to state that the PiCSEframework an emulate these hardware omponents, the appliation in this senario shouldbehave as if it was interating with real sensor devies and do so without modi�ation.The senario's modelling requirements are ompleted by imagining a third party viewerwho wishes to observe and apture aspets of the senario for o�ine post-experimental analy-sis. The senario should demonstrate the funtionality required to support suh a viewer andreord his events of interest.5.4.2 Building the SenarioThere are three physial and two software modelling aspets to this senario. The two sen-sors are implemented as instantiations of the Sensor abstration. An instantiation of anEntityLayer abstration models the loation of obstales that the sonar sensor an de-tet. A Mobility_Objet is used to model the remote-ontrolled vehile. The Linux op-erating system, on whih the IPAQ appliation runs, is aptured as an instantiation of theExeutionEnvironment abstration, while the IPAQ appliation itself, is inorporated usingan instantiation of the AppliationWrapper abstration.Modelling the senario's software omponentsThe IPAQ appliationThe program that is running on the IPAQ is implemented as a single lass that inludes anin�nite while-loop whih is an a suspended state until a sensor reading is reated and theappliation is noti�ed. The appliation then reads and validates the sensor reading and raisesan event whih ould then be onsumed by a separate navigation module. In the simulation of156

Chapter 5. Evaluation27. fd = open(DEVICE, O_RDWR | O_NOCTTY | O_NDELAY);84. rv = selet(fd+1, &read_fds, NULL, NULL, NULL);87. res = read(fd, buffer, 1);249. lose(fd);Figure 5.23: System alls made by the IPAQ appliationthis senario, the fous is on the realisti emulation and interation between the sensors andthe appliation so the navigation module and its logi is not inluded as part of this senario.Within PiCSE, this appliation is handled in the normal way. An instantiation of theAppliationWrapper lass, Chs_Wrap, initialises the IPAQ appliation by invoking the ap-propriate method of the appliation lass, in this ase, its onstrutor, CarHardwareSensor().The appliation's while-loop is implemented as a single thread that is waiting on haraterevents to our on an open �lestream. The thread is bloked while no new haraters areavailable at that �le-desriptor and is only awakened when a sensor pushs a harater tothat desriptor. The appliation makes referenes to four di�erent system alls within itsimplementation and these are listed in �gure 5.23 . These system alls are the bridge betweenthe appliation and its sensors, via all used to interat with the underlying �le-system. In orderfor the emulated version of this appliation to behave without modi�ation, these system allsshould be implemented and emulated by some aspet of the PiCSE framework. Fortunately,this is handled by a new instantiation of the ExeutionEnvironment lass.The Linux_ExeutionEnvironment InstantiationAn instantiation lass of the ExeutionEnvironment abstration,LinuxExeutionEnvironment, is implemented to emulate the Linux operating system.This instantiation lass provides the emulated equivalent of the system alls that are madeby the IPAQ appliation. The mapping between these system alls and their emulatedequivalent is listed in table 5.7 . For example, the appliation invokes the system allint open (__onst har* __file, int __oflag, ...)157

5.4. The Car Hardware SenarioLinux System Call Emulated System Callint open (__onst har* __�le, int__o�ag, ...); int open (__onst har* __�le, int__o�ag, ...);ssize_t read (int __fd, void *__buf,size_t __nbytes) __wur; ssize_t read (int __fd, void *__buf,size_t __nbytes) __wur;int lose (int __fd); int lose (int __fd);int selet (int __nfds, fd_set *__restrit__readfds, fd_set *__restrit__writefds, fd_set *__restrit__exeptfds, strut timeval *__restrit__timeout); int selet (int __nfds, fd_set *__restrit__readfds, fd_set *__restrit__writefds, fd_set *__restrit__exeptfds, strut timeval *__restrit__timeout);Table 5.7: Mapping from system alls to their emulated equivalentThis funtion tries to open the �le __�le, and returns a �le desriptor, an integer,used as a handle subsequently by the appliation to read data from that �le. TheExeutionEnvironment abstration provides an abstration of a single �le, PFile, and aolletion of these PFiles, analagous to a �lesystem, an be addressed by a har* key string.When the program running on the IPAQ, invokes the open(...) funtion, it is transparentlyredireted to the LinuxExeutionEnvironment equivalentint LinuxExeutionEnvironment::open_loal(__onst har* __file,int __oflag, ...)This method searhes the ExeutionEnvironment's abstration of the �le-system, and returnsa �le desriptor, linked to a PFile instane, for the parameterised �le. Subsequent alls by theappliation to system alls suh as read(...), and write(...), that use that �le desriptor,will interat with the assoiated PFile instane.This rediretion is ahieved using the ompile-and-link approah, whereby alls to thesystem API are interepted when the program is being ompiled and are linked to the equiv-alent API of the LinuxExeutionEnvironment. At the time of the program ompilation, theIPAQ's all to inlude the appropriate de�nition �les, listed in �gure 5.24 for their respe-tive system alls are interepted. PiCSE-spei� versions of these header �les implement themapping that are listed in table 5.7 and that were just desribed.158

Chapter 5. Evaluation#inlude <stdio.h> /* Standard input/output de�nitions */#inlude <unistd.h> /* UNIX standard funtion de�nitions */#inlude <fntl.h> /* File ontrol de�nitions */#inlude <errno.h> /* Error number de�nitions */#inlude <termios.h> /* POSIX terminal ontrol de�nitions */Figure 5.24: System all de�nition �les for the invoked system allsModelling the senario's hardware omponentsThis senario is omprised of four physial omponents: an environment, �the room� in whihthe senario takes plae is de�ned. There are three senario objets present with that room:the vehile, its sonar sensor and a detetable obstale.The Room_Layer Instantiation and a Detetable ObstaleThe room is aptured as a Room_Layer whih is an instantiation of the EntityLayer abstra-tion. It models a physial spae with a granularity of one metre, and that ontains a singledetetable Objet instantiations at a �xed Cartesian loation (10,10). This layer is queryableby a sensor instantiation.The Vehile InstantiationThe vehile is modelled using a ustom extended Objet lass. This approah was hosento demonstrate how a spei� mobility pattern ould be implemented, thus aommodatingmore mobility-based senarios in addition to the frequently used random waypoint mobilitypatterns. In this instane, the vehile is de�ned to move from a �xed loation in a spei�eddiretion and at a �xed speed.The Sonar_Sensor InstantiationThe Sonar_Sensor lass is an sub-lass instantiation of both the Sensor and Emulated ab-strations. The Sensor aspet of the instantiation queries the Room_Layer for sensor data. Atthe time of onstrution, the sensor objet is parameterised with its data soure, an instaneof the EnvironmentLayer abstration, that models the loation of obstales within a physial159

5.4. The Car Hardware Senariospae.A sensor reading ours when a sensor objet takes a single reading and manipulates somedata value returned, objet present, into the format required by the emulated interfae. Inthe ase of this physial sensor, the atual sensor reading is eleven haraters long: the �rstfour haraters identifying the sensor; the next six haraters provide the reading and the�nal harater, �/n� delineates the sequene.In order to potentially apture some of the timing harateristis of an atual sensor,this sensor model produes two types of events: CHS_SENSE events and CHAR_ events.Creating a sheduling di�erene between the time a sensor reading takes plae (CHS_SENSE)and when the reading is pushed to the PIC board (CHAR_EVENT) allows a user to modela harateristi of an atual sensor suh as a delay. The sensor is additionally parameterisedwith the frequeny of the sensor events, in this ase, every 0.5 seonds.The ObjetLogger InstantiationFinally, an ObjetLogger is introdued to monitor the sonar_sensor and reord the eventsof interest for a viewer. The ObjetLogger omponent is parameterised with an instane ofan Objet abstration and with the �le name to whih it logs events. By default, no eventsare logged, so the ObjetLogger subsribes to all events by invoking the Sensor abstration'smethod, ::Attah(this).Interlinking of simulated hardware and software omponentsLogial Co-loation of ExeutionEnvironment and Sensor AbstrationsThe senario requires that the urrently separated instanes of the sensor, the appliation andits exeution environment be interonneted in order to ahieve its modelling objetive. Theappliation should run on the exeution environment, and should onsume sensor events thatare delivered to that exeution environment via an emulated PIC board.Figure 5.25 shows the now familiar instantiation and o-loation of an appliation withits ExeutionEnvironment. More interestingly, �gure 5.26 shows the mehanism by whih thesensor is attahed to its ExeutionEnvironment instane. An instantiation of an Emulated160

Chapter 5. EvaluationLinuxExeutionEnvironment* IPAQ = new LinuxExeutionEnvironment();ChsApp* a = new ChsApp(5,LAPTOP);Figure 5.25: Co-loation of ExeutionEnvironment and the IPAQ appliationSonar* sonar_sensor = new Sonar(rl,IPAQ);LAPTOP->addEmulatedHardware(sonar_sensor, "/dev/ttyS0");Figure 5.26: Co-loation of ExeutionEnvironment and Sensor Objetsabstration, the sensor in this senario, must be added to an ExeutionEnvironment abstra-tion in order for any potential interation between a Sensor and an appliation an our.This binds the Emulated instantiation to a logial point, in this ase a PFile addressed atthe loation "/dev/ttyS0" , within an ExeutionEnvironment. With this instrution, anyevents raised by the sensor are pushed to the ExeutionEnvironment's emulated �le-system,whereupon the IPAQ appliation an read and utilise them.
Logial Dependeny between ObjetLogger and the Sonar_SensorA logial dependeny is reated automatially between the ObjetLogger and the Objetinstantiation, whih is the Sonar_Sensor in this ase. The ObjetLogger is noti�ed ofall events in the ase that no partiular event type is subsribed to. In the ase of theSonar_Sensor instane in this senario, it raises TRANSFORM events, whih are the eventsraised when a sensor takes a periodi reading. It also raises CHAR_EVENT events, whih aregenerated when a harater is pushed to its Emulated instantiation. When these events our,all subsribers, the ObjetLogger in this senario, that are assoiated with the Sonar_Sensorare noti�ed. On noti�ation, the ObjetLogger reords the event, and its timestamp withinits log�le. 161

5.4. The Car Hardware Senario5.4.3 Exeution of the modelled domainInitialising the experimental senarioThe reader should refer to sub-setion 5.3.3 of the earlier STEAM senario for a desriptionof the initialisation of the standard PiCSE omponents whih are reated and initialised forevery simulation. A single appliation, exeutionEnvironment and sensor are instantiated asdesribed in setion 5.4.2 and the senario is now ready to be exeuted.Exeution of the simulationThe experiment was performed on an o�-the-shelf Dell Latitude C400 laptop, equipped witha minimal 512 MB of RAM and running on Ubuntu 6.10, Edgy Eft, an open soure operatingsystem built around the Linux kernel.The experiment was exeuted within a terminal and �gure 5.27 shows an exerpt of thelogged output of the experiment. The output lists some senario parameters at the outset,suh as the size of the world and the duration of the experiment. The timestamps denote thedi�erent times, in milliseonds, that the listed events ourred at.1. The �rst TB_event (Thread Begin) ours at 5 milliseonds. At this timestamp, theIPAQ program has now begun, and will enter into it's paused state, waiting for a sensorevent to awaken it.2. At 500, the �rst M and Sonar events our. This is �rst sheduled sensor event. Thesensor takes a reading at this time and shedules a series of serialisation events, wherebyeah harater of the sensor reading is written to the PFile �le-system individually. Asthere are eleven haraters in the sensor reading, eleven E_ events are sheduled at thetimestamps 501ms, 502ms, 503ms, et up to 511ms.3. At eah of the sheduled times, 501ms and 502ms for example, an E_ and a TS_ eventours. An E_ event is an event of an emulated objet, the sensor in this ase. The TSevent denotes a Thread Swith event. This ours when the senario exeution swithesfrom the master simulation thread, whih drives the entire experiment, to an emulated162

Chapter 5. Evaluation

Figure 5.27: A sreenshot showing the logged output from the Car Hardware Senarioevaluation.

163

5.4. The Car Hardware Senarioappliation thread, in this ase the IPAQ appliation whih is reading eah individualsensor harater.4. After the �nal harater arrives at 511ms, the appliation outputs2 the sensor readingwhih was been read by the appliation. In this senario, the sensor reading is an elevenharater sequene of '0', '0', '0', '3', '0', '0', '0', '0', '0', '0', '/n'. The �rst four haratersare to be interpreted as the sensor id, the value 3, and the �nal six haraters denotethe atual sensor reading, in this ase, the value 0. The appliation outputs the sensorreading when it has read the de-limiter harater whih it interprets as the end of thesequene.5.4.4 Senario AnalysisValidation of the senarios requirements.The senario introdution outlined two requirements in order for the partiular senariorequirements to be validated in addition to the PiCSE evaluation requirements. The �rstrequirement, �Emulation of system all based programming interfaes�, is ahieved by theprovision of the IPAQ appliation whih is built upon �ve system alls whih have been listedin table 5.7.The seond requirement, that the interation between the simulated and emulated om-ponents is aptured realistially. By realistially, it is meant that the emulated omponentsprodue the same outputs as a real sensor, and that any interation with an independentappliation is the same as the original sensor upon whih it is modelled.The outputs of the sensor have been suessfully repliated in the simulation of this se-nario. Evidene of this is provided by the unmodi�ed appliation ode implemented by theIPAQ appliation. The ompile-and-link approah utilised by the PiCSE framework meansthat no modi�ations are required to run the IPAQ appliation within the framework. Theappliations invoations of the underlying system alls are transparently redireted into the2The original IPAQ appliation did not produe this output but the program was slightly modi�ed in orderfor the logged experimental output to have some meaningful data and provide some insight into the internalworkings of the appliation. 164

Chapter 5. EvaluationPiCSE framework where the expeted behaviour is simulated using the analogous funtionalityprovided by the PiCSE ore.InsightsAlthough this senario is rather simple in terms of the number of the omponents that havebeen modelled, the modelling of the interation between the sensor and the appliation isrealisti. The senario does not plae muh emphasis on realisti modelling of the physialaspets of the sensors atual sensing harateristis, so no onlusions an be drawn regardingthe frameworks modelling of hardware omponents.The ompile-and-link approah utilised again in this senario has again worked suess-fully as a seond lass of appliation has been suessfully emulated. The integration ofthe LinuxEmulated interfae, and the LinuxExeutionEnvironment lass enable the emu-lated interation between modelled hardware and software omponents. If, theoretially, theSonar_Sensor was to simulate a hardware failure, and fail to send any further haraters tothe ExeutionEnvironment, the orret appliation behaviour would still our: the programwould wait inde�nitely until the next harater arrives! The simulation of the sensor's be-haviour is ahieved at a high level of granularity. Individual harater events are simulatedand the senario an even simulate a delay on the writing to the emulated �le-system. Theaurate modelling of the interation is the key feature of this senario, and in this respet,the framework meets the modelling requirement.Finally, one logial dependeny was used in this senario. The ObjetLogger omponentused PiCSE's built-in support for logial dependenies, to subsribe to events generated by anObjet, in this senario, the Sonar sensor. This lass of logial dependeny is independent ofthe instantiations of this senario, and this independene o�ers further validity to the PiCSEframework's laim of �exibility and omposability.Evaluating the PiCSE requirementsThe thesis's requirements are measured for this senario with respet to their assoiatedmetris and presented in table 5.8 . 165

5.4. The Car Hardware Senario

Metris Car Hardware senarioThe number of diverse instanes of all hardwareomponents 1 environment (room), 2objets (ar,sensor)The number of instanes of emulated omponents, bothappliations and middlewares. 1 appliation (IPAQ), 1ExeutionEnvironment(Linux)The number of instanes of omponentinter-relationships, whih is de�ned as an interationbetween two separately reated instanes of PiCSEabstrations. 1 objet-environmentrelationship, 1 appliation-exeutionEnvironmentrelationship, 2appliation-objetrelationship (IPAQ-sensor,IPAQ-ar)The number of instanes of inherited reusableabstrations. 1 exeutionEnvironment(Linux)Measure the proportion of the simulation that isomprised of re-usable domain spei� elements. 31.6%1The proportion of the simulation that is provided bythe PiCSE frameworks ore lasses. 65.5%Demonstration of network funtionality in appliationsenarios. n/aDemonstration of evidene of evaluation supportfuntionality. TRUE (1 ObjetLogger)Table 5.8: Requirements analysis for the Car Hardware senario

166

Chapter 5. Evaluation

Figure 5.28: The Dublin City road tra� networkThe Car Hardware Senario provides a seond demonstration of the funtionality providedby the PiCSE framework. A seond lass of appliation, those built upon low-level system allshave been emulated suessfully, while the ommon pervasive interations between hardware,A �nal over-arhing analysis of the requirement satisfation aross all three senariosis ompleted in the �nal setion of this hapter. software and environmental omponentshave been demonstrated again. It is noted in the table however, that the omparatively lowperentage, 31.6%, of the proportion of simulation omprised of re-usable domain spei�elements is aounted for by the implementation of the emulated Linux environment. A highproportion of this implementation is related to low-level funtionality suh as thread ontroland read-write operations and a lot of this funtionality is provided from within the PiCSEore and not from within the atual emulated environment whih was reated for this senario.5.5 The Intelligent Transportation Systems SenarioThe third and �nal instantiation of the PiCSE framework is a simulation of an IntelligentTransportation Systems (ITS) senario. The ITS senario is a large-sale simulation of aportion of the Dublin City road network, shown in �gure 5.8 that is approximately 5 km2 inarea and the number of vehiles being simulated at any one time is in the order of thousands.ITS senario's are partiularly suited to simulation beause of the inherent di�ulty, ost and167

5.5. The Intelligent Transportation Systems Senariorisk in evaluating the senarios in the real world.ITS senarios are onsidered to be part of the pervasive omputing domain, and ontainmany of the harateristis of typial pervasive omputing senarios suh as handling mobilityfor users and reative intelligent physial spaes and artefats. The senario has ertainproperties that exerise elements of the PiCSE framework. There are a large number ofdependenies, suh as the relationship of vehiles with eah other and with other features ofthe environment suh as the tra� lights. The ITS senario is both inherently dynami andlarge sale and so this senario tests those aspets of the framework as well. Although thereare no emulated appliations within this senario, there is ontrol logi in plae that modelsthe behaviour of the tra� lights.5.5.1 Senario Modelling RequirementsThe primary motivation for hoosing the ITS senario was both its sale and its omplexity.A working simulation of thousands of interating instantiations would provide an exellentindiator of the frameworks apaity to simulate large sale pervasive omputing senario,whilst the variety and omplexity of the features of an ITS senario will test the abstrationsthat the framework provides.The senario is omprised of a road network of 270 juntions (nodes) and 459 roads(edges) linking those juntions. Over a simulated two hour period, over 10,000 simulatedvehiles traverse that road network, eah travelling aording to its own pre-de�ned pathsand at any one time, there is approximately 1000 simulated vehiles within the road tra�network. In omparison to the �rst two senarios evaluated for this thesis and and to otherpervasive omputing appliation domains this is undeniably a large sale senario.The omplexity of the senario is re�eted not just in the types of omponents required tomake up the senario but also in their internal omplexity and dependene on other instanetypes for both their implementation and behaviour. A rih environment model must beinstantiated apturing both stati and dynami aspets of the environment. A model of theroad topology is required that re�ets the normal onstraints of what we onsider to be atra� system, suh as the number of lanes, and any speed limit that may exist on that road.168

Chapter 5. EvaluationA dynami aspet of the environment is the modelling of the loation of all of the vehiles.For example, indutive loop sensors that report the detetion of vehiles within the loalroad network. Tra� light atuators are present at the inoming road at a juntions withinthe system. They atuate indiretly on the environment, by in�uening a vehile's behaviour.Finally, the movement pattern of the vehiles (users) must also be modelled, taking intoaount fators suh as loal �rules of the road� and the position and behaviour of othervehiles amongst others.Finally, messages are exhanged wirelessly between the tra� light ontrollers, so theinstantiation must trak the loation of thousands of both mobile and stati, senders andreeivers. Although there is internal omplexity and a large amount of ontrol logi withinthe behavioural aspet of a simulated aspet, the senario does not ontain any emulatedappliations.5.5.2 Building the ModelModelling the Senario's Software ComponentsThere are no emulated appliations or middlewares within this senario. Any ontrol logithat governs behaviour within any of the senario's physial omponents suh as the vehilesor the tra� lights are desribed inline as part of the next setion.Modelling the senario's Hardware ComponentsModelling of Road Network EnvironmentThe road topology is initially desribed in a ustom XML �le format, whih is parsed andthen instantiated to reate the lass objets that are used in the simulation. In the exampleof the topology de�nition that is shown in �gure 5.29 , a juntion with the unique ID 1526 isde�ned as a juntion ontaining a tra� light (TL), and is loated at the Cartesian loation[379278.0, 266013.0℄. An �inomingJuntion� is de�ned, whih is the de�nition of an road (anedge) that an arry tra� from that juntion (1525) into the juntion 1526. The numberof lanes (2), the length of the road (141.7m), and the max speed on the road (30 km/h)169

5.5. The Intelligent Transportation Systems Senario

<juntionRe><id>1526</id><type>TL</type><loation><xCoordinate>379278.0</xCoordinate><yCoordinate>266013.0</yCoordinate></loation><inomingJuntion><id>1525</id><numLanes>2</numLanes><linkDistane>141.69333082400175</linkDistane><maxVeloity>30.0</maxVeloity><outgoingJuntionRef><id>1527</id><ationType>R</ationType></outgoingJuntionRef><outgoingJuntionRef><id>850</id><ationType>S</ationType></outgoingJuntionRef></inomingJuntion>...Figure 5.29: A snippet from the ityentre.xml �le desribing the road network topologyand onstraints.

170

Chapter 5. Evaluationare all de�ned for the inoming road. The �nal part of the inoming road de�nition is thelist of �outgoingJuntionRef�s. These are the legitimate exits that a vehile an make whenapproahing the juntion 1526 while approahing from juntion 1525. There are two possibleexits for the 1525-1526 road segment: a right (R) turn onto the road segment 1526-1527, anda straight turn onto the road segment 1526-850. The omplete XML de�nition of juntion1526 an be found in the appendix.An XML parser is used to parse and instantiate a series of Juntion_Objets that modelthe orresponding JuntionReord from the XML �le. An extension of the PiCSE Objetlass, eah juntion an potentially shedule and reate events, but in this senario, theyare simple oneptual objets that have a physial loation, a unique juntion identi�er andreferenes to other onneted juntions.Eah instane of the JuntionObjet lass is instantiated and stored in an instantiation ofan EntityLayer extension alled the RoadNetwork_EntityLayer that aptures the modellingof the stati topology of the road network. The RoadNetwork_EntityLayer lass's key-basedAPI is used by other models to query aspets of the road network. For example, a vehilethat has to explore the path ahead, an use the urrent juntion ID as the key, and an usethe returned Juntion_Objet to explore onneted juntions and hene determine availablepaths.Modelling of Car BehaviourEah vehile within the senario is modelled as an instane of the Vehile_Objet lass, anextension of the Mobility_Objet lass. Eah Vehile_Objet is responsible for updating itsown position. A detailed desription of the algorithm employed here is outside of the sopeof this thesis, but the inputs on whih the algorithm makes it ontrol deisions are based onsenario variables that are modelled so these are disussed.Based on a ar-following model, the algorithm takes the following fators into aount:
• Status of tra� lights on the urrent road
• The loation and status of other vehiles on that road and upoming adjoining roads171

5.5. The Intelligent Transportation Systems Senario10519,1,1,16,1169,1153,1442,984,1590,702,1589,1586,1266z,1444,1636,1483,1701,1622,1623,610Figure 5.30: A sample entry from the path de�nition �le
• The topology of the road itself and its loal onstraints
• The vehiles own pre-de�ned path.Tra� Light Status The status of a tra� light objet is determined by querying theTra�LightEntityLayer objet using the road segment id. This returns a tra�Light objetwhih ontains the tra� light data. Tra� light timing information is available, but only theenumerated values of red, green, and amber are used by the vehiles behavioural algorithm.Loation of other vehiles The modelling of the entirety of the vehiles within the networkis aptured by another instantiation of the EntityLayer abstration, the VehileEntityLayerlass. Its key-based API is used to query the EntityLayer for all vehiles on a partiular roadsegment identi�ed by the onatenated string of two juntion IDs. The returned vehileOb-jets are iterated over by the vehile's behaviour algorithm to determine the vehiles that arenearby and theirRoad Topology Variables relating to a road segment that a vehile is travelling on, suh asthe number of lanes, any loal speed restritions, and its length are all taken into onsiderationin the vehiles behavioural algorithm. The same fators for any outgoing roads beyond theend of the urrent road segment are also taken into aount.Vehile Paths Finally, the behavioural algorithm onsiders the vehiles pre-determinedpath. The vehile path is de�ned as a series of juntions that the vehile must traversethrough the road network and the path begins and ends at a leaf node within the roadnetwork. Figure 5.30 shows the path de�nition for a single vehile.1. The �rst value, 10519, is the timestamp(ms), that the vehile will begin its journey.172

Chapter 5. Evaluation2. The seond value, 1, indiates the vehile type. A �1� denotes a ar.3. The third value denotes the driver type, allowing for future types of driver behaviourto parameterised.4. The values from position four until the end are a series of juntion IDs that the vehilemust pass through to omplete its path. The �rst road segment will then have the ID�16-1169�, and will then turn onto the road segment �1169-1153�.In addition to the urrent road segment, the behavioural algorithm takes into aount theupoming road segment that a vehile will enter and uses that path information to determinethe orret lane position for exeuting a turn onto that road segment.Modelling of Tra� Light BehaviourThe tra� light model is implemented as ombination of a ontroller and atuators. TheTraffiLightController implements a �xed-phase yle algorithm in order to ontrol theations of the ApproahLights_Atuator that exists on eah juntion. A �xed-phase ylealgorithm is the tra� light ontrol algorithm widely used today, whereby a �xed time periodis de�ned for eah of the tra� lights three possible states, red, green or amber.The ApproahLights_Atuator instanes are added to TraffiLightController at thestart of the framework's instantiation. The Atuators have an enumerated state, that isqueried by vehiles and is of the governing fators in the vehile's behavioural algorithm.5.5.3 Exeution of the modelled domainInitialising the Experimental SenarioBefore the simulated senario is exeuted, two external data soures are parsed and loadedinto the experiment.The de�nition of the vehile's paths is ontained in a �le �data/TraeFile_wholemap_0�,whih ontains 10,008 vehile traepaths for a simulated two hour period. Figure 5.31 displaysa ode snippet demonstrating how the simulator handles so many potential event generators.173

5.5. The Intelligent Transportation Systems Senario// define the trae soure filestring soures[noOfSoures℄ = { "data/TraeFile_wholemap_0" };// Create Parsers for the trae files and shedule their first events.for (int s=0; s<noOfSoures; s++) {// parse the file and get the first row-entryLineParser* a = new LineParser(soures[s℄,&network_map);long int t = a->getNextTime();if (t!=-1) {// shedule the next ar load eventSimulator::shedule(&generate_ars,GENERATE_CARS,t,a);}}Figure 5.31: A setion of ode demonstrating how the ar path �le is parsed.RoadNetworkEntityLayer network_map;juntionParser jP(argv[ARG_JUNCTION_FILE℄, &network_map);jP.proessXML() ;Figure 5.32: Parsing the CityCentre.xml map �leEvents are sheduled and reated for the next vehile and path only that are ontained withinthe �le. When that timestamp is omplete and that event has been exeuted, the following en-try is read and the appropriate event is sheduled. Hene, the number of GENERATE_CARevents that are sheduled is never more than one, and not 10,008.The de�nition of the road topology is de�ned in �data/mapFiles/ityentre.xml� andparsed and loaded into the EntityLayer as shown in �gure 5.32 . The juntion parser ex-trats the juntion ID, and the juntions outgoing and inoming juntions, and from thoseonstruts the appropriate road segment instanes and the vehileEntityLayers that will storevehile objets that are on those segments. The experiment is now ready to exeute.Exeution of the simulationFigure 5.33 show the outputs from the experiments that have been loaded into a viewer madefor this partiular senario. The framework logs the loations of the vehiles and the status174

Chapter 5. Evaluation

Figure 5.33: Two sreenshots from a visualisation of the Dublin tra� senarioof tra� lights at eah timestep. The �rst sreenshot shows a zoomed out partial of the mapde�ned by the ityentre.xml �le. Irish readers will note that the map entred around theity entre of Dublin. The seond sreenshot is a lose up from the upper left quadrant areaof the map and represents and approximate 750m long setion of road3.The vehiles are denoted as yellow retangles, whilst the tra� lights whih are loatedand intersetions between road segments are shown as small irles with either read, green oramber.5.5.4 Senario AnalysisInsightsObserved Vehile BehaviourVehiles follow a rather reognisable pattern of starting slowly and respet the distane andspeed of vehiles in front of them and even demonstrate some exellent lane-hanging be-haviour in antiipation of upoming juntion traversals. At a maro level, the vehiles areseen to bunh up at tra� lights and at times of tra� ongestion. Simulated aidents anbe sheduled within the senario. However, as the vehiles behavioural algorithm does nottake aidents and path re-routing into aount, a rather preditable blokage and reduedthroughput inevitably ours.3From O'Connell Bridge at the bottom up along O'Connell St!175

5.5. The Intelligent Transportation Systems SenarioHandling The Senario Complexity
The most di�ult aspet of the ITS senario was to model the omplexity of the senarioand its omponents. Figure 5.34 shows a sequene diagram showing the key interationsbetween the Vehile_Objet, and other simulated Objet and Layer instanes. All of theseinterations are supported by the underlying abstrations, EntityLayer and Atuator. TheITS environment is a omplex layered model where EntityLayer instantiations, representingtra�, the road network itself, and tra� light atuators interat, sometimes expliitly tomodel a omplex senario.The stati topology of the road network does not lend itself to the loation-based modelprovided by the EnvironmentLayer abstration. A loation, in this instane would only referto a point on the road, whereas a logial identi�er, suh as roadID an refer diretly to the roaditself. For this reason, the EntityLayer abstration and its key-based API are better suitedto the modelling of the road network. For similar reasons, a key-based API is better suitedto modelling the loation of the vehiles themselves. In this senario, the only interationbetween vehiles was the impliit interation that governed the vehile's behaviour. Thispartiular senario did not use the loation-based API of the EntityLayer, but a simplehypothetial extension of the senario validates the EntityLayer's support for both a key-and loation-based API.In total, over ten thousand additional lines of ode were required to apture the senario'somplexity. A large proportion of this was in the modelling the ars behavioural algorithm, apartiularly omplex algorithm that had to take a number of input variables from other partsof the senario as well as alulating a large number of inline variables before deiding on theoptimum ar behaviour. The model of the Vehile_Objet's behaviour was underpinned bythe availability of the detailed model of the physial ITS environment and its omponents.Therefore, the �exibility of the framework's abstrations, and the support for building omplexinter-dependent abstrations is validated. 176

Chapter 5. Evaluation

Figure 5.34: A vehile interats with its environment to inform its next movement
177

5.5. The Intelligent Transportation Systems SenarioHandling Large Sale SenariosAddressing the requirement identi�ed that was to support large-sale appliations, the ITS se-nario suessfully modelled a large number of vehiles interating, and a large, albeit simpli�edmodel of an ITS wireless network. This is due in part to the physial and logial partitioningemployed with the EntityLayer abstration. The physially partitioned EntityLayer, wherenearby Vehile_Objets are grouped together, and an be addressed by loation, reduesthe e�ort required by the network simulator to alulate the number of wireless reeivers.The logial partitioning of the spae groups Vehile_Objets into sets based on theirloation within the road network. This ensures that Vehile_Objets only interat withthose on the same road, and not those that are physially lose by but on separate roads.However, the framework's support for modelling large sale senarios, and this senarioin partiular, has not been measured. Therefore, there is no quantitative analysis of PiCSE'ssupport for large-sale senarios, other than to state that in this senario, up to 1000 inter-ating vehiles and other simulated omponents were present at any time with the senario'ssimulated duration.Evaluating the PiCSE requirementsTable 5.9 presents the requirements analysis of this ITS senario and measures the frameworksseven requirements against the identi�ed metris. Of note in this senario are the number ofinstanes of diverse instanes, 8, and the number of inter-relationships, over 20, identi�ed intable 5.9. These numbers strongly support the argument that this senarios omplexity is avalidation of the framework's apaity to model heterogeneous pervasive omputing senarios.A large e�ort was required to implement this senario. Over ten thousand ITS spei�lines of ode were required to implement the behavioural algorithms and modelling omplexitythat formed this senario, however a large part of that of that odebase is made of re-usableomponents that an be used in future ITS simulations and is now in the form of an ITSPiCSE sub-framework. The omplexity required to model the senario's behaviour again isre�eted in the relatively low ratio (24%) between the PiCSE ore lasses and the overall se-nario implementation. The impliations of this are now disussed in the overall requirements178

Chapter 5. Evaluation
Metris ITS senarioThe number of diverse instanes of all hardwareomponents 3*objets instanes (ar,tra� light, juntion),4*entityLayers(JuntionLayer,VehileEntity-Layer,Tra�LightEntityLayer,1* atuator (TL_atuator)The number of instanes of emulated omponents, bothappliations and middlewares. n/aThe number of instanes of omponentinter-relationships, whih is de�ned as an interationbetween two separately reated instanes of PiCSEabstrations. 20+The number of instanes of inherited reusableabstrations. 4 primary (Car_Objet,TL_Objet,Juntion_Objet,RoadEnvironmentLayer)Measure the proportion of the simulation that isomprised of re-usable domain spei� elements. 57.7% of 11,128 LOCThe proportion of the simulation that is provided bythe PiCSE frameworks ore lasses. 24% of 14,659 LOCDemonstration of network funtionality in appliationsenarios. n/aDemonstration of evidene of evaluation supportfuntionality. ITS senarioTable 5.9: Requirements analysis for the ITS senario

179

5.6. Requirements Validation and Conlusionvalidation and the hapter's onlusion.5.6 Requirements Validation and ConlusionThis hapter presented three distint instantiations of the PiCSE framework. Overall, theseinstantiations exerised the framework's �exibility and extensibility through the implementa-tion of a diverse range of simulation and emulation modelling requirements that were drivenby the senario's requirements. Although the requirements were met by the arhiteturaldesign and implementation of the framework, the purpose of these three senarios was tovalidate the approah and hypothesis of the thesis.5.6.1 Requirements R1, R2, and R3The modelling of both hardware and software omponents is provided by the high-levellasses, Sensor, Atuation, EnvironmentLayer, EntityLayer, AppliationWrapper andExeutionEnvironment and their respetive inherited lasses. PiCSE's support for mod-elling multiple simulated heterogeneous hardware and software elements and the framework's�exible implementation allows the potential interation, ombination and inter-dependene ofthese omponents without restrition. The frameworks support for this is demonstrably learin table 5.10 whih outlines the many senario instanes that were reated using the PiCSEframeworkTable 5.11 , summarises the implementations of the key abstrations that were identi�ed.The three senarios neessitated a diverse number of instantiations of the abstrations, bothsoftware and hardware, that are supported by the PiCSE framework. In addition, as seenin the senario desriptions there were many dependenies aptured as interations betweenthese instantiations.Overall, the �exible instantiation of multiple abstrations, of both software and hardwareelements, veri�es the framework's meeting of requirements R1, R2, and R3 and these havebeen met by the arhiteture, design and implementation of the framework.180

Chapter5.EvaluationMetris STEAM Emulationsenario Car Hardware senario ITS senarioThe number of diverse instanes ofall hardware omponents 1 objet type, 1environment type 1 environment (room), 2objets (ar,sensor) 3*objets instanes (ar,tra� light, juntion),4*entityLayers(JuntionLayer,VehileEntity-Layer,Tra�LightEntityLayer,1* atuator(TL_atuator)The number of instanes of emulatedomponents, both appliations andmiddlewares. 2 appliations, 1middleware instane 1 appliation (IPAQ), 1ExeutionEnvironment(Linux) n/aThe number of instanes ofomponent inter-relationships, whihis de�ned as an interation betweentwo separately reated instanes ofPiCSE abstrations. 1 objet-environmentrelationship, 1appliation-middlewarerelationship, 1appliation-objetrelationship
1 objet-environmentrelationship, 1appliation-exeutionEnvironmentrelationship, 2appliation-objetrelationship(IPAQ-sensor,IPAQ-ar)
20+

Table 5.10: Overall requirements analysis for R1, R2 and R3

181

5.6. Requirements Validation and Conlusion
STEAMEmu
lation

CarHardwar
eEmulation

DublinTra�
Simulation

Sensors n/a • •Hardware Atuators n/a n/a •Flexibility Environment ◦ • •Mobile nodes ◦ ◦ •Software Middleware • n/a n/aFlexibility HW Component n/a • n/aTable 5.11: The hardware and software models required by the three evaluation senarios5.6.2 Requirement R4The support of the PiCSE framework's arhiteture to address the requirement of extensi-bility is met by two aspets of its design. An instantiation of the PiCSE framework anitself be a domain-spei� sub-frameworks, omposed of extensions of the software and hard-ware abstrations provided by the PC_Abstrations lass ategory. Additionally, the Ab-strat_Interfaes lass ategory provides a set of interfaes that allow the development ofnew abstrations that are not urrently modelled within the existing framework implemen-tation. These extensions an interat and interoperate with the existing PiCSE_Core andthe existing abstrations. Additionally, the split-level design of the framework's emulationomponent allows new emulation appliation APIs to be added when in the future when newplatforms or middlewares emerge.Table 5.12 demonstrates the number of lines of ode and the instanes from the three se-narios that ould be re-used in future simulations. Only one of the senarios, the Dublin traf-� senario, was implemented as an intelligent transportation systems (ITS) sub-framework,although all three instantiations ould be extended if required. The tra� simulator hassubsequently been extended to implement a range of tra� light ontroller algorithms, andevaluate vehile oordination and planning algorithms. As there is only one instane of a182

Chapter 5. EvaluationMetris STEAMEmulationsenario Car Hardwaresenario ITS senarioThe number of instanes ofinherited reusableabstrations. 1 middlewareinstane 1 exeutionEnvi-ronment(Linux) 4 primary(Car_Objet,TL_Objet,Juntion_Objet,RoadEnviron-mentLayer)Measure the proportion ofthe simulation that isomprised of re-usabledomain spei� elements. 53.1% of 898 LOC 31.6%1of 1856LOC 57.7% of 11,128LOCTable 5.12: Overall requirements analysis for R4Metris STEAMEmulationsenario Car Hardwaresenario ITS senarioThe proportion of thesimulation that is providedby the PiCSE frameworksore lasses. 79.7% of 4429LOC 65.5% of 5387LOC 24% of 14,659LOCTable 5.13: Overall requirements analysis for Requirement 5.sub-framework, this requirement is only partially validated. These funtionalities and designfeatures meet the framework's extensibility requirement, R4.5.6.3 Requirement R5The PiCSE_Core framework engine omprises of a set of omponents that are ommon toall PiCSE simulations. The PiCSE_Core engine was re-used without modi�ation aross allthree senarios and table 5.13 lists the perentage of the senario simulation that was providedby the PiCSE ore. The wide variane in the perentages listed is in inverse proportion to theomplexity of the senario, but what the �gures learly show is that for small sale senar-ios with a limited numbers of modelled omponents, PiCSE arguably provides a signi�antproportion of the foundations for the development of those simulations.This reusable engine, and the identifying of reurring software patterns that are aptured183

5.6. Requirements Validation and ConlusionMetris STEAMEmulationsenario Car Hardwaresenario ITS senarioDemonstration of evideneof evaluation supportfuntionality. FALSE TRUE (1ObjetLogger) Yes. Logging andsenario logviewer.Table 5.14: Overall requirements analysis for Requirement 7.within the lasses for the hardware and software elements, and their inter-dependenies meetsthe framework's reusability requirement, R5.5.6.4 Requirement R6The PiCSE framework provides two feature that address the aspet of network simulationwithin pervasive omputing senarios. The Net_Interfae lass and the underlying NetworkManager omponent provide a rudimentary API for the simulation of network behaviour.The STEAM emulation senario and the Dublin tra� senario both utilise the basi networksimulation omponent. Both senario's are omprised of both stati and mobile nodes, and thetra� senario has implemented but not demonstrated both wired and wireless ommuniationhannels.Networked ommuniation between ITS omponents is frequently posited as a means ofaugmenting and improving a drivers experiene whilst driving, and as a means of maximisingvehile throughput through a road network. The ITS PiCSE senario aommodates thesesenarios by extending the senario's omponents with the Net_Interfae lass enabling theexhange of messages aross simulated wired and wireless networks.These aspets of the senario verify the framework's basi network simulation funtionality.and this requirement, R6, has been validated.5.6.5 Requirement R7The PiCSE framework's provides a �exible API that allows a developer to speify time win-dows, where the the behaviour and state of objets of interest within a simulation is reorded.As shown in table 5.13 , two of the three senarios utilised experimental logging during184

Chapter 5. Evaluationtheir exeution, whether to verify the orret funtioning of the STEAM event middleware,or to log and subsequently view the orret vehile behaviour. The implementation of thislogging using PiCSE's API validate the framework's requirement R7.5.6.6 ConlusionAll requirements whih address the ore hallenges identi�ed in hapter 1 have been fullymet in the design of the arhiteture and implementation of the PiCSE framework. Thesenarios presented in this hapter are drawn from a broad spread of pervasive omputingappliation domains, and present a wide range of individual requirements that the frameworkdemonstrably meets.The framework's elegane in handling the diversity of these senarios will still providing ameaningful and extensible odebase from whih to develop future simulations in other domainsis validation of its approah, arhiteture and implementation. Furthermore it is a validationof the hypothesis of this thesis that it is possible to reate suh a framework for the simulationof pervasive omputing senarios.

185

Chapter 6
Conlusions
This thesis presented the arhiteture, implementation and evaluation of PiCSE, a frameworkwhose abstrations an be instantiated to reate simulations of, and simulators for, pervasiveomputing appliations. This hapter onludes the thesis by restating the hallenges inreating a generi approah to this task, and presents the main ontributions of this thesis inaddressing those hallenges. The ontribution of the thesis is positioned with respet to thestate of the art, and �nally, potential future work is explored.6.1 The Challenge RestatedSimulation an provide a quik and ost-e�etive evaluation tool, that addresses some ofthe di�ulties in evaluating pervasive omputing appliations. There have been several at-tempts to provide a generi tool supporting the simulation of this domain; however, they haveonly met with limited suess. Previous work in this area has largely foused on develop-ing models of the physial environment, and emulating appliations that exist within thatenvironment. The modelling of hardware devies, suh as sensors and atuators, that existwithin those environments, and are an integral part of those environments, has been largelyisolated. Approahes to building these generi tools have been entred around the extensionof existing established simulators of sub-domains of pervasive omputing suh as wireless sen-sor networking, or graphial environmental simulators. However, these approahes have been187

6.2. The Contributiondemonstrated to be insu�iently �exible in being able to integrate aspets of other pervasiveomputing sub-domains in a generi manner. The open researh hallenge in this �eld is toinvestigate whether a generi simulator an be developed that an model a broad range ofexisting pervasive omputing appliations as well as new appliations that may emerge in thefuture.6.2 The ContributionThe multi-disiplinary and evolving nature of the domain has neessitated the developmentof a more �exible and extensible approah to the building of these tools, an approah thataptures and re�ets reurring features and patterns of pervasive omputing appliations. Theontribution of this thesis is the validated de�nition and arhiteture of a framework-basedmethodology for the modelling of pervasive omputing senarios.The PiCSE framework adopts a bottom-up approah to addressing the modelling of per-vasive omputing senarios whereby �exibility, extensibility, and reusability are prioritisedas ore features of the framework's arhiteture. In the examination of the state of the art,reurring themes were identi�ed that were ommon to many pervasive omputing senarios.These reurring themes, suh as ommon devies, reurring interation patterns were sim-pli�ed from their implementations, and fundamental abstrations were derived and apturedwithin the framework to implement these themes. The ontribution of the framework hasbeen implemented as three lass ategories, eah of whih addresses one of the ore hallengesidenti�ed. The PC_Abstration lass ategory aptures a reurring set of abstrations, suhas sensors, atuators, the environment, and appliations, that may be freely ombined in a�exible and heterogeneous manner to reate simulations of omplex appliation senarios. TheAbstrat_Interfaes lass ategory provides the de�nition of a set of fundamental abstrationsthat an be extended to aommodate new appliation areas that may emerge in the pervasiveomputing domain. Finally, the PiCSE_Core lass ategory provides a ommon base uponwhih all instanes of the framework are built and its generi arhiteture and implementationaddresses the hallenge of reusability.This approah ontrasts diretly with the work of many of the simulators presented in188

Chapter 6. Conlusionshapter 2. For example, with the exeption of UbiREAL, the simulators that hoose toimplement models of the physial environment have all done so using 3-d modelling tools.PiCSE's approah, whih is similar to that of UbiREAL, begins at the bottom, enabling themodelling of the most simple and basi measurable phenomena. If more omplex environmentsare required, then arbitrarily omplex environments an be built from the abstrations thatapture these phenomena. In ontrast to UbiREAL, PiCSE adopts this philosophy in theimplementation of all of its abstrations, whereas UbiREAL only implements its environmentin this manner.Three instantiations of the framework were presented in hapter 5, that were representa-tive of the diverse range of typial pervasive omputing appliations. These senarios variedin their requirements, sale and omplexity. From simple objets moving in pre-de�ned mo-bility patterns, to vehiles that implement omplex behavioural patterns, and from emulatingmessage-oriented middlewares to sensor-driven embedded appliations, the abstrations sup-porting these models have proven to be su�ient in enabling the modelling of many pervasiveomputing domains. It is therefore reasonable to onlude that using a framework is a suit-able approah that meets the requirements of modelling a wide range of pervasive omputingdomains.6.3 Lessons LearnedSome limitations to the approah hosen have been identi�ed and exposed through the eval-uation senarios. The limitations of using a single mahine are perhaps not so importantthese days with heaper hardware and pay as you go solutions in the loud now growing inpopularity but the approah utilised in this thesis has plaed limitations on the number andomplexity of appliations that an be simulated at any one time. Whilst, the ompile-and-link approah to emulating appliations proved feasible for the evaluation of this thesis, amore robust arhiteture utilising virtual mahines would be required to provide a really �ex-ible approah to appliation emulation. This is arguably a limitation of the implementationof the framework rather than a material �aw within the approah of using a framework itself.With respet to the evaluation and validation of the thesis, it has been observed that189

6.4. Future Workas the omplexity of a simulated senario grows, the more domain spei� knowledge andmodelling is required. As the ITS senario demonstrates, the PiCSE framework an simplifythe modelling of the omponents, it an provide a skeleton around whih a developer an bringdepth and omplexity, but it is up to that user to provide that domain spei� knowledge. ThePiCSE framework only promises a framework and an give a user with the inputs, however,domain-spei� behavioural logi and omplexity an require a lot of additional work to bringa senario to life. There is only so muh a framework an provide!6.4 Future WorkThere are numerous potential diretions that this work ould take in the future. At present,there are limitations within the urrent implementation that ould be addressed in the shortterm.The aurate modelling of failure has been an integral part of simulation for wireless sensornetworks for a long time, however this feature has yet to ross over into the pervasive om-puting simulator domain. None of the seven simulators explored in hapter 2 have addressedthis issue, but its suessful integration is an important requirement for the future. Buildingrobust algorithms, for example inferene engines, that are fault tolerant and robust in thepresene of both error-prone and inaurate hardware, is an ongoing area of researh withinthe pervasive omputing ommunity. At present, there is no support for modelling the failurethat is often present in pervasive omputing domains. Modelling failure at the software levelwould be a welome development. PiCSE's thread manager omponent provides rudimen-tary support for �killing� an appliation, however, in order to ontinue with the framework'stheme of �exibility, the ExeutionEnvironment and AppliationWrapper abstrations shouldbe extended to supporting the varying degrees of failure. The seond short-term goal is theextension of the framework's emulation apabilities to support multi-threaded appliationsand to provide bindings for other programming languages beyond C++ so that appliationode from other appliations might be integrated.The PiCSE ITS sub-framework has been used a simulation tool for a variety of appliationdomains within the intelligent transportation systems researh �eld. Researh investigating190

Chapter 6. Conlusionsinter-tra� light ommuniation as a means of maximising vehile throughput by oordinatingtra� light behaviour has been arried out by several authors inluding (Salkham, 2010) and(Duspari 2009).It ould be argued that in these heady days of loud omputing, and the relatively heapvirtualisable hardware providers suh as Amazon, that the days of having a simulator or asimulator framework that an run in your loal desktop mahine or a server are numbered.Whilst there will always be a ase for outsouring omputing power and and frameworks thatmay run upon them, there still exists a nihe requirement for a simulation tool that is researhfoused and allows the rapid prototyping of experiments and senarios. Aess to testbeds isalso inreasing but again doesn't o�er the immediay of a loal mahine, that doesn't requiresheduled aess. For how long this remains the ase is open to debate.In the longer term, the future work that will emerge will depend on the diretion thatpervasive omputing moves in. Five years ago, many pervasive omputing systems were basedupon embedded sensors ommuniating using wireless tehnologies, yet right now, new avenuesof researh within pervasive omputing suh as soial-sensing, and pervasive health-are areemerging due to the proliferation of smart phones suh as the Apple IPhone. The dereasingost of these devies and wider network onnetivity are ushering in a new aspet of pervasiveomputing where the power and ontrol of these sensing devies rests with the user and notjust in the physial spaes oupied by those users. The smart phone's inreased ability toontextualise and understand its environment and its ability to integrate with servies bothloally and on the web make it is di�ult to predit what new appliation areas will emerge inthe future within pervasive omputing, however the PiCSE framework's �exible and extensiblearhiteture will be at the entre of evaluating those appliation areas.

191

Appendix A
Appendix
A.1 PiCSE Arhiteture Header FilesFigureA.1 gives an overview of the PiCSE arhiteture and an be used when onsideringthe soure header �les inluded below. The soure �les inluded below are drawn from thearhiteture's three lass ategories, whih are desribed in hapters 3 and 4. FigureA.2outlines the distribution of the header �les aross the three lass ategories.

Figure A.1: Arhiteture Diagram for typial instantiation193

A.1. PiCSE Arhiteture Header Files

Figure A.2: Class Category distribution of header �les.PC_Abstration lass ategoryThese �les are the header �les for the lass de�nitions ontained with the PC_Abstrationlass ategory. For an explanation of the lasses and their arhiteture, please refer to hapter3 of this thesis.environmentalLayer.h#ifndef RPS_LAYER#define RPS_LAYER#inlude "simulator.h"#inlude "layer.h"#inlude <vetor>#inlude <list>///// TO DO//implement dtors properly and dealloate memory./*** EnvironmentLayer's are used to model an aspet of the physial* environment. Perhaps they would be better refatored to be* environmental layers.*/ 194

Appendix A. Appendixlass EnvironmentLayer: publi Layer{publi:EnvironmentLayer(long double granularity=100,long int period=0);/*** Abstrat populate funtion alled to instantiate values* Not sure why this is needed. Clarify!*/virtual void populate() = 0;/// Shedule initial events. Again not sure why this is required.virtual void setInitialEvents() = 0;/*** Default is to not subsribe to any events so this is an empty method.* Note that this is virtual so inheriting lasses an over-write as appropriate.*/virtual void Update(Observable* sr){}/*** Default is to not subsribe to any events so this is an empty method.* Note that this is virtual so inheriting lasses an over-write as appropriate.*/virtual void Update(Observable* sr, int event){}proteted:private:void registerSelf();};
/*** Extends the EnvironmentLayer to add a grid of doubles.* Also inludes double-based set'ers and get'ers*/lass DOUBLE_EnvironmentLayer: publi EnvironmentLayer{publi:DOUBLE_EnvironmentLayer(long double granularity=100,long int period=0); 195

A.1. PiCSE Arhiteture Header Files~DOUBLE_EnvironmentLayer(){}void setState(Loation, double);double queryState(Loation);double getStateAverage();double** getGrid();proteted:double** grid;private:};/*** Extends the EnvironmentLayer to add a grid of Int's.* Also inludes int-based set'ers and get'ers*/lass INT_EnvironmentLayer: publi EnvironmentLayer{publi:INT_EnvironmentLayer(long double granularity=100,long int period=0);~INT_EnvironmentLayer(){}void setState(Loation, int);int queryState(Loation);int getStateAverage();//need to make this proteted or somethingint** getGrid();proteted:int** grid;private:};/*** Extends the EnvironmentLayer to add a grid of Float's.* Also inludes float-based set'ers and get'ers*/lass FLOAT_EnvironmentLayer: publi EnvironmentLayer{publi:FLOAT_EnvironmentLayer(long double granularity=100,196

Appendix A. Appendixlong int period=0);~FLOAT_EnvironmentLayer(){}void setState(Loation, float);float queryState(Loation);float getStateAverage();float** getGrid();proteted:float** grid;private:};ostream& operator<<(ostream&, DOUBLE_EnvironmentLayer&);ostream& operator<<(ostream&, INT_EnvironmentLayer&);ostream& operator<<(ostream&, FLOAT_EnvironmentLayer&);#endifentityLayer.h#ifndef REF_LAYER#define REF_LAYER#inlude "simulator.h"#inlude "layer.h"#inlude <vetor>#inlude <list>#inlude <map>///// TO DO// Implement dtors properly, dealloate memorytypedef std::list<Objet*> GROUP_OF_OBJECTS;typedef std::map<string, Objet*> FLAT_LIST_OF_OBJECTS;/// Indiates whether objets update themselves or if layer updates them as a whole.197

A.1. PiCSE Arhiteture Header Filesenum UPDATE_TYPE {SELF, AUTO_T};/// Types of events generatedenum ENT_LAYER_EVENT_ID {ENT_LAYER_TRANSFORM_EVENT = 0, // Layer has updatedOBJECT_TRANSFORM_EVENT }; // Objet has joined or left/*** A lass that ontains referenes to entities.* Provides funtionality for managing groups of similar types of polymorphi objets.* These are grouped into lists of objets whih are maintained in a grid.* See user doumentation for greater detail.*/lass EntityLayer: publi Layer{publi:EntityLayer(long double granularity = 100,long int period = 0,UPDATE_TYPE = SELF); /// default is for objets to update themselves~EntityLayer();void addObjet(Loation,Objet*);// adds it to a flat list aessed by key stringvoid addObjet(string, Objet*);// why not pass in loation parameter here?void removeObjet(Objet*);// remove objet from flat_listvoid removeObjet(string);// retrieve a pointer to an Objet based on string key// returns NULL, if no Objet found.Objet* getObjet(string);/// Updates the grid loation of an objet.void updateObjetsGridLoation(Objet* o);/// Updates the grid loation of an objet. This version used after a transfer of ownership has ourred.void updateObjetsGridLoation(Objet* o, Loation previousLoation);GROUP_OF_OBJECTS* getObjetsWithinRange(Loation, long double);GROUP_OF_OBJECTS* getObjetsWithinBoundingRetangle(Loation, Loation);void transform(); 198

Appendix A. AppendixGROUP_OF_OBJECTS** getGrid();FLAT_LIST_OF_OBJECTS* getList();/*** Default is to not susribe to inoming events.* EntityLayers an be inherited from if a user wishes to subsribe to be notified of published events.*/virtual void Update(Observable* sr){}virtual void Update(Observable* sr, int event){}virtual void doEvent(int eid);bool loseEnoughToReeive(Loation, Objet*, long double);proteted:private:/// Registers itself with the world as part of the modelvoid registerSelf(){World::registerEntityLayer(this);}void addUpdatedObjet(Loation,Objet*);gridLoation searh(Objet*);GROUP_OF_OBJECTS** grid;FLAT_LIST_OF_OBJECTS* flat_list;UPDATE_TYPE updateType;};ostream& operator<<(ostream&, EntityLayer&);#endif

sensor.h 199

A.1. PiCSE Arhiteture Header Files#ifndef SENSOR#define SENSOR#inlude "environmentLayer.h"#inlude "objet.h"enum SENSOR_EVENTS {SENSE=0};/*** A generi lass for a sensor whih doesn't really do muh.*/lass Sensor: publi Objet{publi:Sensor(long int t2s,long int p);Sensor(long int p=0);~Sensor(){}virtual void doEvent(int l);private:proteted:};/*** A float sensor*/lass F_Sensor: publi Sensor{publi:/// Default sensor is sporadiF_Sensor(FLOAT_EnvironmentLayer* sr, long int p=0);~F_Sensor(){}/// Returns a reading from the soure layer using the sensors loationfloat getReading();virtual void transform();private:FLOAT_EnvironmentLayer* sensedLayer;};/*** A double sensor*/lass D_Sensor: publi Sensor{publi:/// Default sensor is sporadiD_Sensor(DOUBLE_EnvironmentLayer* sr, long int p=0);~D_Sensor(){}/// Returns a reading from the soure layer using the sensors loationdouble getReading();virtual void transform();private:DOUBLE_EnvironmentLayer* sensedLayer;};/*** An int sensor*/lass I_Sensor: publi Sensor{publi:/// Default sensor is sporadiI_Sensor(INT_EnvironmentLayer* sr, long int p=0);~I_Sensor(){}/// Returns a reading from the soure layer using the sensors loationint getReading();virtual void transform();private:proteted:INT_EnvironmentLayer* sensedLayer;};#endif

200

Appendix A. Appendixatuator.h#ifndef ACTUATOR#define ACTUATOR#inlude "environmentLayer.h"#inlude "entityLayer.h"#inlude "objet.h"enum ACTUATOR_EVENTS {ACTUATE=0};/*** A generi lass for an atuator whih doesn't really do muh.* Provides periodi/sporadi funtionality.*/lass Atuator: publi Objet{publi:Atuator(long int p=0);~Atuator(){}virtual void doEvent(int l);virtual void transform(){ atuate(); }virtual void atuate() = 0;private:};/// An objet atuatorlass Objet_Atuator: publi Atuator{publi:Objet_Atuator(Objet* s, long int p = 0);~Objet_Atuator(){}virtual void atuate(){}private:proteted:Objet* sr;};/// An atuator for ating on entity layers 201

A.1. PiCSE Arhiteture Header Fileslass EntityLayer_Atuator: publi Atuator{publi:EntityLayer_Atuator(EntityLayer* s, long int p = 0);~EntityLayer_Atuator(){}virtual void atuate(){}private:proteted:EntityLayer* sr;};/// An atuator for ating on FLOAT based environmental layerslass Float_EnvironmentLayer_Atuator: publi Atuator{publi:Float_EnvironmentLayer_Atuator(FLOAT_EnvironmentLayer* s, long int p = 0);~Float_EnvironmentLayer_Atuator(){}virtual void atuate(){}private:proteted:FLOAT_EnvironmentLayer* sr;};/// An atuator for ating on DOUBLE based environmental layerslass Double_EnvironmentLayer_Atuator: publi Atuator{publi:Double_EnvironmentLayer_Atuator(DOUBLE_EnvironmentLayer* s, long int p = 0);~Double_EnvironmentLayer_Atuator(){}virtual void atuate(){}private:proteted:DOUBLE_EnvironmentLayer* sr;};/// An atuator for ating on INT based environmental layerslass Int_EnvironmentLayer_Atuator: publi Atuator{publi: 202

Appendix A. AppendixInt_EnvironmentLayer_Atuator(INT_EnvironmentLayer* s, long int p = 0);~Int_EnvironmentLayer_Atuator(){}virtual void atuate(){}private:proteted:INT_EnvironmentLayer* sr;};#endifemulated.h#ifndef _EMULATED_IF_#define _EMULATED_IF_#inlude <string>using namespae std;#inlude "exeEnv.h"lass Emulated{publi:/// Set the the exeution environmentvoid setExeutionEnvironment(ExeutionEnvironment* e);/// A pointer to the exeution environment layer_onor working_bakups;ExeutionEnvironment* exeutionEnvironment;/// Set attah point for a sensor, or atuator.void setAttahPoint(string);string getAttahPoint();string attahPoint;};#endifexeutionEnvironment.h 203

A.1. PiCSE Arhiteture Header Files#ifndef EXECUTION_ENVIRONMENT#define EXECUTION_ENVIRONMENT//#inlude "fntl.h"#inlude <map>#inlude <string>#inlude "objet.h"#inlude "netif.h"using namespae std;lass p_file;lass Emulated;typedef std::map<std::string, p_file*> dev2pfile;typedef std::map<int,p_file*> fd2pfile;lass ExeutionEnvironment:publi virtual Objet, publi Net_interfae{publi:ExeutionEnvironment();void addEmulatedAppliation(Emulated* e);void addEmulatedHardware(Emulated*,string);virtual void transform(){}virtual void doEvent(int i){}proteted:void reateFSpae(std::string __file);dev2pfile* d2p;fd2pfile* f2p;private:// int fdount;};#endif 204

Appendix A. AppendixappliationWrapper.h#ifndef APPLICATION_WRAPPER_H#define APPLICATION_WRAPPER_H#inlude <pthread.h>#inlude "simulated.h"#inlude "emulated.h"#inlude "observer.h"enum APP_EVENTS {START_APP=0};// An program emulation wrapper.lass AppliationW :publi Simulated,publi Observable, publi Emulated{publi:/// Ctor, shedules appliation start time, provided exeution env is setAppliationW(long int t,ExeutionEnvironment*);/// Plain tor, instantiates variables.AppliationW();/// Dtor, needs to be implemented~AppliationW(){}/// Shedules exeution t ms into the futurevoid sheduleExeution(long int t);/// Returns true if exeution env is set, false otherwisebool isExeEnvSet();/// Obtains mutexvoid getLok();/// Invokes program. To be implemented by hild lassvirtual void run() = 0;/// Kills the urrentThread after notifying the base thread to restart it.void killThisThread();private:/// Used for thread signallingpthread_ond_t thread_ond; 205

A.1. PiCSE Arhiteture Header Files/// The thread.pthread_t thread;/// shedules start eventvoid doEvent(int);/// Starts the threadvirtual void exe();/// Returns true if program already sheduled to start.bool started;};// Have to all a -style fun for pthread// This is a dummy oneextern void* fun(void*);#endif

206

Appendix A. AppendixCore_Components Class Category Header FilesThese �les are the header �les for the lass de�nitions ontained with the Core_Componentslass ategory. For an explanation of the lasses and their arhiteture, please refer to hapter3 of this thesis.pise.h#ifndef _PICSE_HEADERS#define _PICSE_HEADERS/// The basi headers required.#inlude "queuing.h"#inlude "world.h"#inlude "network.h"#inlude "simulator.h"////////////////////////// Modify this to inlude all the basi headers.#inlude "objet.h"#inlude "entityLayer.h"#inlude "environmentLayer.h"#inlude "objetLogger.h"#inlude "environmentLayerLogger.h"#inlude "entityLayerLogger.h"#inlude "mobilityObj.h"#inlude "sensor.h"
207

A.1. PiCSE Arhiteture Header Files#endifsimulator.h#ifndef SIMULATED#define SIMULATED/*** An interfae whih all event generating events must inherit from.*/lass Simulated{publi:/*** Abstrat method alled when an event is performed* �param int event id speifies the event to perform*/virtual ~Simulated(){}virtual void doEvent(int eventid)=0;};#endifworld.h#ifndef WORLD#define WORLD#inlude <iostream>#inlude <vetor>#inlude <list>#inlude "message.h"lass Net_interfae;lass EntityLayer;lass EnvironmentLayer; 208

Appendix A. Appendixlass Objet;lass Loation;typedef std::list<EntityLayer*> ENTITY_LAYER_STACK;typedef std::list<EnvironmentLayer*> ENVIRONMENT_LAYER_STACK;enum DIMENSIONS{TWO_D =0, THREE_D};// singleton lass.lass World{publi:stati World* Instane();/// Registers a layer in the worldstati void registerEntityLayer(EntityLayer*);stati void registerEnvironmentLayer(EnvironmentLayer*);/// Returns the origin of the 'world'// stati Loation getOrigin(){ return *origin;}stati long double getXSize(){return xSize;}stati long double getYSize(){return ySize;}stati long double getZSize(){return zSize;}stati long double getModelXSize(){return xSize + xOffset;}stati long double getModelYSize(){return ySize + yOffset;}stati long double getModelZSize(){return zSize + zOffset;}stati long double getXOffset(){return xOffset;}stati long double getYOffset(){return yOffset;}stati long double getZOffset(){return zOffset;}stati void setXSize(long double x, long double tX = 0){xSize = x-tX; xOffset = tX;}stati void setYSize(long double y, long double tY = 0){ySize = y-tY; yOffset = tY;}stati void setZSize(long double z, long double tZ = 0){zSize = z-tZ; zOffset = tZ;}// stati void setOrigin(Loation* l){origin = l;}/// Gets a random loation within the worldstati Loation getRandomLoation(DIMENSIONS=TWO_D);209

A.1. PiCSE Arhiteture Header Filesstati void registerObjet(Objet*);/// Should be in a omms layer, delivers a message to all objets// stati void deliverMsg(Loation,Msg*);//////////////Networkingstati void registerNetIF(Net_interfae*);proteted:/// Default torWorld();~World();private:stati World* worldInstane;/// Loation of origin (artesian system)// stati Loation* origin;/// Sale of the worldstati long double xSize, ySize, zSize, xOffset, yOffset,zOffset,TRANSMISSION_RANGE, PROB_DROP_MESSAGE ;/// Layer stakstati ENTITY_LAYER_STACK* EntityLayerStak;stati ENVIRONMENT_LAYER_STACK* EnvironmentLayerStak;// stati void probabilistiDeliver(Msg*, Objet*);};//ostream& operator<<(ostream&, Loation&);
//lass Loation{publi:Loation(long double xa=0, long double ya=0, long double za=0)210

Appendix A. Appendix: x(xa), y(ya), z(za){}long double x; // metreslong double y;long double z;void applyOffset(){x -= World::getXOffset(); y -= World::getYOffset();}void removeOffset(){x += World::getXOffset(); y += World::getYOffset();}};#endifnetwork.h#ifndef NETWORK_SIM#define NETWORK_SIM#inlude <string>#inlude <map>#inlude "entityLayer.h"using namespae std;lass Net_interfae;typedef std::map<string, Net_interfae*> FLAT_LIST;/**Class representing wireless network. Reeivers, represented by Net_interfae objetsan register with the network, at a given loation, and are allowed to send and reeivemessages. The sending and reeiving of messages is mediated by the Network lass. Two fatorsare taken into onsideration when delivering messages. The TRANSMISSION_RANGEand PROB_DROP_MESSAGE*/lass Network{publi:stati Network* Instane(); 211

A.1. PiCSE Arhiteture Header Files//////// WIRELESS/// Registers a Net_interfae objet for sending and reeiving messagesstati void registerNetIF(Net_interfae*);/// Broadast a msg void* to all reeivers within distanestati void broadastMsg(void*, Net_interfae*);/// Broadast a msg string to all reeivers within distanestati void broadastMsg(string, Net_interfae*);/// Send a msg void* to a reeiver speified by string adrstati void uniastMsg(void*, string adr, Net_interfae*);/// Send a msg string to a reeiver speified by string adrstati void uniastMsg(string, string adr, Net_interfae*);/// Set the transmission rangestati void setTX(long double t){TRANSMISSION_RANGE = t;}/// Set the probability of dropping a messagestati void setProbDrop(long double pd){PROB_DROP_MESSAGE = pd;}///////// WIREDstati void registerLan_NetIF(Net_interfae*);/// Send a msg void* to a reeiver speified by string adrstati void uniastLanMsg(void*, string adr, Net_interfae*);/// Send a msg string to a reeiver speified by string adrstati void uniastLanMsg(string, string adr, Net_interfae*);/////////// Delivers an event whih has been sheduled in a past. This method spawns a thread.stati void deliverSheduledEvent(NetworkVoidTuple*);stati void* deliver(void*);stati void getLok();proteted:Network();~Network();private:/// Traks reeiversstati EntityLayer* wirelessLayer_Channel1;212

Appendix A. Appendix/// Flat list of wireless reeivers indexed by addressstati FLAT_LIST* all_wireless_rvrs;/// Flat list of wired reeivers indexed by addressstati FLAT_LIST* all_wired_rvrs;/// Maximum Transmission_range. Defaulpt 200mstati long double TRANSMISSION_RANGE;/// Probability of dropping message. Default .05stati long double PROB_DROP_MESSAGE;/// Deliver message void* using PROB_DROP_MESSAGE, delay timeunits into the futurestati void probabilistiDeliver(void*, Net_interfae*, int delay = 1);/// Deliver message string using PROB_DROP_MESSAGEstati void probabilistiDeliver(string, Net_interfae*, int delay = 1);stati Network* networkInstane;};enum TUPLE_TYPE{STRING=0,VOIDPTR};// lass to represent a network message event// instanes deleted upon returning from delivery allbaklass NetworkVoidTuple{publi:// the intended reeiverNet_interfae* re;// pointer message || string message indiated by tupleType.void* message;string messageS;//TUPLE_TYPE tupleType;};#endifmessage.h 213

A.1. PiCSE Arhiteture Header Files#ifndef ENVIRONMENT#define ENVIRONMENT#inlude <string>lass Msg{publi:Msg(){}virtual ~Msg(){}};#endifnetif.h#ifndef NET_IF#define NET_IF#inlude <string>#inlude "objet.h"using namespae std;/*** Extends Objet beause it has an impliit loation*/lass Net_interfae: publi virtual Objet{publi:/// Default// Net_interfae();/// Ctor, with addressNet_interfae(/*string a,*/bool=false);~Net_interfae();/// Send void* parameter to everyonevirtual void send(void*); 214

Appendix A. Appendix/// Send void* parameter to partiular addressvirtual void send(void*, string);/// Send string to everyonevirtual void send(string);/// Send string to partiular addressvirtual void send(string, string);/// Abstrat deliver API for objet deliveryvirtual void deliver(void*)=0;/// Abstrat deliver API for string deliveryvirtual void deliver(string)=0;/// Required for doEventvirtual void transform(){}/// Returns address if set, "" otherwisestring getAddress();ExeutionEnvironment* getExeutionEnvironment(){return assoiatedExeEnv;}private:// string address;ExeutionEnvironment* assoiatedExeEnv;proteted:void setExeutionEnvironment(ExeutionEnvironment* e){assoiatedExeEnv = e;}};#endif
logger.h#ifndef LOGGER#define LOGGER#inlude "observer.h"#inlude "simulated.h"#inlude "simulator.h" 215

A.1. PiCSE Arhiteture Header Filesenum LOGGER_EVENT { LOG_EVENT = 0};/*** Logger is a lass whih utilises event subsription servies provided in lass Logable.* Logger is the 'observer' part of observer/observable.*/lass Logger: publi Observer, publi Simulated{publi:Logger(){};/// Ctor takes a string and opens a file for outputLogger(string);/// Flushs the output stream and then loses it.virtual ~Logger();/*** Sets a period of time within the experiment that is to be logged.* �param time2begin is the RELATIVE time in the future that the logging is to begin at.* �param duration is the length of time to log for*/void setLoggingWindow(long int t, long int d=Simulator::getDuration()-Simulator::urrentTime());/*** Cheks if time for one more event before end of run.* To be removed. This is an unneessary hek. Just shedule it, and if run ends, so what.* This is more effiient than heking every time*/bool timeForOneMoreEvent();/*** Set the logging period* �param p is the period*/void setLoggingPeriod(long int p);proteted:/*** Cheks to see if time is within the loggingWindow set in setLoggingWindow()* �return true if in window or no window set*/ 216

Appendix A. Appendixbool hekValidLogWindow();/// Default log event to be implemented by inheritorsvirtual void log() = 0;/// Calls default log() method on sheduled log eventsvirtual void doEvent(int id);/// The output fileofstream output;/// Time to start logging.long int loggingWindowOpening;/// Time to stop logging.long int loggingWindowClose;/// The period of this logger(default is 0)long int LOGGING_PERIOD;/// Bool indiating whether window set or notbool window_set;};#endifutilities.h#ifndef UTILITIES_H#define UTILITIES_H#inlude "world.h"#inlude <string>#inlude <iomanip>#inlude <sstream>#inlude <math>using std::string;using std::ostringstream;lass UTILITIES{publi:stati long double distaneP2P(Loation, Loation, DIMENSIONS=TWO_D);stati long int max(long int, long int); 217

A.1. PiCSE Arhiteture Header Filesstati long int min(long int, long int);stati string generateUniqueIDFromPrefix(string);private:stati long int idount;};#endifsimulatorVariables.h#ifndef SIM_VARIABLES#define SIM_VARIABLESonst long int SIMULATION_DURATION = 1000*60*60*1; // 12 hours#endifThe Abstrat_Interfaes Class Category Header FilesThese �les are the header �les for the lass de�nitions ontained with the PC_Abstrationlass ategory. For an explanation of the lasses and their arhiteture, please refer to hapter4 of this thesis.layer.h#ifndef LAYER#define LAYER#inlude "world.h"#inlude "utilities.h"#inlude "simulated.h"#inlude "observer.h"/*** Simple lass to represent a loation in a grid.218

Appendix A. Appendix*/lass gridLoation{publi:gridLoation():x(0),y(0){}gridLoation(int a, int b):x(a),y(b){}int x, y;};/// Event's generate by a Layerenum LAYER_EVENT_ID{LAYER_TRANSFORM_EVENT};/*** A simple abstration used to model or enapsulate* one aspet of the simulation. In lass Layer, the notion of the* grid is no more than size and granularity. Only in derived* layers does this beome more onrete.*/lass Layer: publi Simulated,// performs eventspubli Observable, // for logging and also forpubli Observer{publi:Layer(long int period=0, //update periodlong double gran = 10, // granularitylong double = World::getXSize(),// default size is that of the worldlong double = World::getYSize()//,// long double = World::getXSize(),// default size is that of the world// long double = World::getYSize(),/* Loation = World::getOrigin()*/); // default origin of worldvirtual ~Layer(){}/// Abstrat funtion to be ompleted by sub lassesvirtual void transform()=0;/*** Returns the x size of the grid*/long int getGridXSize(){return gridXSize;}/** 219

A.1. PiCSE Arhiteture Header Files* Returns the y size of the grid*/long int getGridYSize(){return gridYSize;}virtual void doEvent(int id);proteted:/// How often the layer is updated. Can be 0long int updatePeriod;/// The size of an individual piee of the gridlong double granularity;/// Size of spae represented in layer in real terms. mtrslong double xSize, ySize;/// Dimensions of the grid used in the layerlong int gridXSize, gridYSize;/// The artesian origin of the grid// Loation origin;private:};#endifnetif.h#ifndef NET_IF#define NET_IF#inlude <string>#inlude "objet.h"using namespae std;/*** Extends Objet beause it has an impliit loation*/ 220

Appendix A. Appendixlass Net_interfae: publi virtual Objet{publi:/// Default// Net_interfae();/// Ctor, with addressNet_interfae(/*string a,*/bool=false);~Net_interfae();/// Send void* parameter to everyonevirtual void send(void*);/// Send void* parameter to partiular addressvirtual void send(void*, string);/// Send string to everyonevirtual void send(string);/// Send string to partiular addressvirtual void send(string, string);/// Abstrat deliver API for objet deliveryvirtual void deliver(void*)=0;/// Abstrat deliver API for string deliveryvirtual void deliver(string)=0;/// Required for doEventvirtual void transform(){}/// Returns address if set, "" otherwisestring getAddress();ExeutionEnvironment* getExeutionEnvironment(){return assoiatedExeEnv;}private:// string address;ExeutionEnvironment* assoiatedExeEnv;proteted:void setExeutionEnvironment(ExeutionEnvironment* e){assoiatedExeEnv = e;}};#endif
221

A.1. PiCSE Arhiteture Header Filesobjet.h#ifndef OBJECT#define OBJECT#inlude <iostream>#inlude <string>#inlude <list>#inlude <map>#inlude "world.h"#inlude "message.h"#inlude "layer.h"#inlude "simulated.h"using std::out;using std::endl;using std::list;using std::map;typedef std::map<string,Objet*> att;enum OBJECT_EVENT{MOVEMENT=0};/*** Objet lass. Objets an be "owned" & "attahed". Define what these mean modelwise..* Attah probably shouldn't be in here..? These is really part of an emulated abstration...*/lass Objet:publi Simulated, publi Observable{publi:///Default torObjet();virtual ~Objet();///Preferred torObjet(Loation,string = UTILITIES::generateUniqueIDFromPrefix("D_Objet"));///A polymorphi funtion for updating.virtual void transform()=0; 222

Appendix A. Appendix/// Return string idstring getID(){ return id; }/// Return loationvirtual Loation getLoation();/// Set loation, only valid if owner set to NULLvoid setLoation(Loation l);/// Return previous loationvirtual Loation getPreviousLoation();/// Set the previous loationvirtual void setPreviousLoation(Loation l){previousLoation = l;}/// Set a layer whih this objet is ref'd in. Can be multiple ownersvoid setOwner(EntityLayer*);/// Set the updatePeriod, in ase you don't want to set it at the onstrutorvoid setUpdatePeriod(long int i){updatePeriod = i;}/// Set the objet owner. Used in olloated objetsvoid setObjetOwner(Objet*);/// Add an objet to this one. Used in olloated objets senariosvoid addObjet(Objet*);/// Attah an objet to this one physiallyvoid attahObjet(Objet*, string);/// Update the loation of olloated objetsvoid updateColloatedObjets();/// Called to instantiateObjs. This should be 'friendly' and not publivoid instantiateObjs();/// Return instane of attahed devie if it exists.Objet* findDevie(string);/// Adds a layer to a list of referersvoid addReferer(EntityLayer*);/// Removes a later from the list of referers.void removeReferer(EntityLayer*);proteted:/// Layer whih this objet belongs to, what it this used for?EntityLayer* owner;/// Layers whih this objet belongs to. These have to be updated as an objet moves.std::list<EntityLayer*>* layer_referenes; 223

A.1. PiCSE Arhiteture Header Files/// The owner objet if this objet is olloatedObjet* objetOwner;/// String identifierstring id;/// Makes a all to the owning layer to update a grid loationvoid updateLayerLoation();/// update period of this objetlong int updatePeriod;private:/// Register objet with worldvoid registerSelf();/// Loation of this objet.Loation loation;/// The previous loation of this objetLoation previousLoation;/// A ontainer for olloated objetsstd::list<Objet*>* olloatedObjets;/// A ontainer for attahed objets;att* attahedObjets;bool COLLOCATED_INST;};ostream& operator<<(ostream&, Objet&);#endifobserver.h#ifndef OBSERVER_H#define OBSERVER_H#inlude <iostream>#inlude <vetor>#inlude <fstream>#inlude <string> 224

Appendix A. Appendix#inlude "simulator.h"#inlude "simulated.h"using namespae std ;using std::ofstream;using std::ios;using std::string;enum ausality_type{LOOSE=0, STRICT};lass Observable;///*** Observer*/lass Observer{publi:Observer(ausality_type=STRICT);virtual ~Observer(){}/// Called when any event ours at a logable to whih the logger has subsribed to.virtual void Update(Observable*) = 0;/// Called when an event, whih the logger has subsribed to, ours at the logable soure.virtual void Update(Observable*, int)= 0;ausality_type ausalityType;int lastEventType;int lastEventTime;Observable* eventSoure;private:};///*** Observable is a lass whih is provides event subsription and notifiation servies.* Basially it's the 'observable' part of observer/observable.225

A.1. PiCSE Arhiteture Header Files*/lass Observable {publi:Observable();~Observable(){};void Attah(Observer*);void Attah(Observer*, int);void Detah(Observer*);void Detah(Observer*, int);void Notify();void Notify(int);private:vetor<Observer*> generalObservers;vetor< vetor<Observer*>* > eventSpeifiObservers;};#endifsimulated.h#ifndef SIMULATED#define SIMULATED/*** An interfae whih all event generating events must inherit from.*/lass Simulated{publi:/*** Abstrat method alled when an event is performed* �param int event id speifies the event to perform*/virtual ~Simulated(){}virtual void doEvent(int eventid)=0;}; 226

Appendix A. Appendix#endifmobilityObjet.h#ifndef MOBILITY_OBJECT#define MOBILITY_OBJECT#inlude "objet.h"#inlude "simulator.h"#inlude "observer.h"#inlude <string>onst long int MOVER_PERIOD = 1000;onst double MIN_SPEED = 0; // m/sonst double MAX_SPEED = 10;onst double MAX_PAUSE = 30000;/* RANDOM_WALK NOT IMPLEMENTED YET*/enum MOBILITY_MODEL{RANDOM_WAYPOINT=0, RANDOM_WALK, STATIONARY};enum MOB_EVENT_ID {MOBILITY_EVENT, REACHPOINT_EVENT};lass Ref_Layer;lass Mobility_Objet: publi virtual Objet{publi:///Default torMobility_Objet(){}~Mobility_Objet(){}///Preferred torMobility_Objet(Loation, MOBILITY_MODEL=RANDOM_WAYPOINT);void deliver(Msg*);/// Implement your own transform() and doEvent()/// if you want to reate your own mobility modelvirtual void transform();virtual void doEvent(int); 227

A.1. PiCSE Arhiteture Header Filesvoid reahWayPt();private:/// Implements the random waypoint algorithmvoid randomWayPoint();void newRandWayPt();bool reahWayPtInNextIteration();void newRandWayPtParams();/// Stationary objet movement algorithmvoid stationary();/// Random walk movement algorithmvoid randomWalk();double urrentSpeed;double urrentAngle;Loation destination;long double lastUpdate;long double prevDist2pt;long double pauseTime;MOBILITY_MODEL mobilityModel;void (Mobility_Objet::*mobilityFunPtr)();};ostream& operator<<(ostream&, Mobility_Objet&);#endifp�le.h#ifndef PICSE_PFILE#define PICSE_PFILE#inlude <string> 228

Appendix A. Appendix#inlude <queue>lass ExeutionEnvironment;lass p_file{publi:p_file();~p_file(){}//implementhar pullChar();void pushChar(har);std::string _id;har buffer[1024℄;int nexthar;int fd;pthread_ond_t* ativeListener;ExeutionEnvironment* ativeExeutionEnvironment;std::queue<har>* bufferq;};#endif

229

A.2. Evaluation SenariosA.2 Evaluation SenariosSTEAM Soure FilesThe following are the primary header �les that are used to de�ne the STEAM evaluationsenario. The main.pp �le de�nes the setup and initialization of the experiment. TheSteamExeEnv.h header �le de�nes the STEAM emulated environment whih is the emu-lated middleware omponent. TestDevie.h and CommandSensor.h are the de�nitions of twoappliations that run on top of instanes of that STEAM middleware. Finally, Command-SensorProg.h is an example of an AppliationWrapper lass whih is used to initialise theTestDevie and CommandSensor appliations.main.pp#inlude <iostream>#inlude <sstream>#inlude <stdlib>#inlude "network.h"#inlude "pise.h"#inlude "steamExeEnv.h"#inlude "ommandSensorProg.h"#inlude "soProg.h"#inlude "testDevieProg.h"#inlude "mobilityObj.h"int main(int arg, har **argv){ int simDuration = 1000*60*2.5; 230

Appendix A. Appendixint iterations = 1;int worldXSize = 1000, worldYSize = 1000;// Create a simulation enginenew Future(LINKED); // event list, lok, et// Create worldSimulator::Instane();// Set simulation duration//Simulator::setDuration(1000*60*2.5);Simulator::setDuration(simDuration);// Create a worldWorld::Instane();// Set the size of that worldWorld::setXSize(worldXSize); World::setYSize(worldYSize);// Intantiate the networkNetwork::Instane();SteamExeutionEnvironment* FIRST_SO[iterations℄;SteamExeutionEnvironment* SECOND_SO[iterations℄;SteamExeutionEnvironment* MOVING_SENSOR[iterations℄;Mobility_Objet* mob[iterations℄;for(int xk =0 ; xk < iterations ; xk++){SECOND_SO[xk℄ = new SteamExeutionEnvironment(Loation(0,0));thirdprog* r = new thirdprog();SECOND_SO[xk℄->addEmulatedAppliation(r);r->sheduleExeution(1970);
231

A.2. Evaluation Senarios// if you want to demo funtionality, use fixed loations.MOVING_SENSOR[xk℄ = new SteamExeutionEnvironment(Loation(0,0));mob[xk℄ = new Mobility_Objet(Loation(0,0), RANDOM_WAYPOINT) ;prog* p = new prog();MOVING_SENSOR[xk℄->addEmulatedAppliation(p);p->sheduleExeution(1980);mob[xk℄->addObjet(MOVING_SENSOR[xk℄);}// Exeute the simulationSimulator::run();exit(1);///}steamExeEnv.h#ifndef STEAM_EXEC_ENV#define STEAM_EXEC_ENV#inlude "exeEnv.h"#inlude "rte-impl.h"#inlude "rte-mem.h"#inlude "simulator.h"//#inlude "netif.h"lass p_file;lass SteamExeutionEnvironment:publi ExeutionEnvironment/*, publi Net_interfae*/{publi:SteamExeutionEnvironment(Loation l);~SteamExeutionEnvironment();// RTE - Funtions alled from RTE_Proximity library232

Appendix A. Appendixint init_rte_publish_loal();int init_rte_subsribe_loal();hannel_id announe_loal(subjet sub, proximity* prox, lateny lat, period per,adaptation adapt);void unannoune_loal(hannel_id h);int send_event_loal(int hannel_id, event* event);subsription_id subsribe_loal(subjet sub, reeive_event b);void unsubsribe_loal(subsription_id h);void register_update_loation_b_loal(update_loation_b b);void make_allbaks_for_loal(steam_event* st_ev);void free_steam_event_loal(steam_event* ev);private:// RTE - Funtions alled from loal RTEvoid send_loal_event(steam_event* st_ev);void* make_announement(event_hannel* our_hannel);// DUMMY2-SEAR - Funtions alled from loal RTEint init_dummy_sear_subsribe();int init_dummy_sear_publish();event_hannel* reserve_hannel(lateny lat, float requested_period, proximity* prox, adaptation adapt, subjet event_name);event_hannel* reserve_hannel_for_subsribe(subjet sub);void free_hannel(event_hannel* handle);int send_on_hannel(void* msg, event_hannel* to);// DUMMY-NETIF - Funtions alled from DUMMY2-SEAR funtionsvoid send(void*);void deliver(void*);// RTE - Variables needed for loal RTEint publish_initialised;int subsribe_initialised; 233

A.2. Evaluation Senarioshannel_table publish_hannels;hannel_table subsribe_hannels;int max_hannel_id;update_loation_b update_loation;// DUMMY2-SEAR - Variables needed for DUMMY2-SEAR funtionsint send_soket;int rev_soket;// Neessary to inherit from Net_interfaevoid send(string) {}void deliver(string) {}virtual void transform() {}};#endiftestDevie.h#ifndef _TESTDEVICE_H_#define _TESTDEVICE_H_#inlude "rte.h"#inlude "rte-publish.h"#inlude "rte-mem.h"#inlude <iostream>using std::out;using std::endl;#inlude <string>using std::string; 234

Appendix A. Appendix/*** �warning Copyright Trinity College Dublin* �lass CommandSensor* �brief Gives ommands to the ar.* �author Aline Senart* �date 05-08-19*/lass TestDevie{publi:/** Construtor. */TestDevie();/** Destrutor. */virtual ~TestDevie();};#endif //_TESTDEVICE_H_ommandSensor.h#ifndef _COMMANDSENSOR_H_#define _COMMANDSENSOR_H_#inlude <unistd.h>#inlude "rte.h"#inlude "rte-publish.h" 235

A.2. Evaluation Senarios#inlude "rte-mem.h"#inlude <iostream>using std::out;using std::endl;#inlude <string>using std::string;/*** �warning Copyright Trinity College Dublin* �lass CommandSensor* �brief Gives ommands to the ar.* �author Aline Senart* �date 05-08-19*/lass CommandSensor{publi:/** Construtor. */CommandSensor();/** Destrutor. */virtual ~CommandSensor();};#endif //_COMMANDSENSOR_H_
236

Appendix A. AppendixommandSensorProg.h (AppliationWrapper)#ifndef NEW_PROG#define NEW_PROG#inlude "app.h" // from /libs/piselass prog: publi AppliationW{publi:prog();void run();};#endifITS Map De�nition File ExerptBelow is a sample omplete Juntion Reord taken from ityentre.xml, the xml map �le thatwas used to de�ne the road network topology and onstraints in the ITS evaluation senario.<juntionRe><id>1526</id><type>TL</type><loation><xCoordinate>379278.0</xCoordinate><yCoordinate>266013.0</yCoordinate></loation><inomingJuntion><id>1525</id><numLanes>2</numLanes><linkDistane>141.69333082400175</linkDistane>237

A.2. Evaluation Senarios<maxVeloity>30.0</maxVeloity><outgoingJuntionRef><id>1527</id><ationType>R</ationType></outgoingJuntionRef><outgoingJuntionRef><id>850</id><ationType>S</ationType></outgoingJuntionRef></inomingJuntion><inomingJuntion><id>1527</id><numLanes>2</numLanes><linkDistane>73.16419889536138</linkDistane><maxVeloity>30.0</maxVeloity><outgoingJuntionRef><id>1525</id><ationType>L</ationType></outgoingJuntionRef><outgoingJuntionRef><id>850</id><ationType>R</ationType></outgoingJuntionRef></inomingJuntion><inomingJuntion><id>850</id><numLanes>2</numLanes><linkDistane>82.87339742040264</linkDistane><maxVeloity>30.0</maxVeloity>238

Appendix A. Appendix<outgoingJuntionRef><id>1525</id><ationType>S</ationType></outgoingJuntionRef><outgoingJuntionRef><id>1527</id><ationType>L</ationType></outgoingJuntionRef></inomingJuntion><outgoingJuntion><id>1525</id><numLanes>1</numLanes><linkDistane>141.69333082400175</linkDistane><maxVeloity>30.0</maxVeloity></outgoingJuntion><outgoingJuntion><id>1527</id><numLanes>1</numLanes><linkDistane>73.16419889536138</linkDistane><maxVeloity>30.0</maxVeloity></outgoingJuntion><outgoingJuntion><id>850</id><numLanes>2</numLanes><linkDistane>82.87339742040264</linkDistane><maxVeloity>30.0</maxVeloity></outgoingJuntion></juntionRe><juntionRe> 239

A.2. Evaluation Senarios<id>810</id><type>null</type><loation><xCoordinate>379486.0</xCoordinate><yCoordinate>265683.0</yCoordinate></loation><inomingJuntion><id>801</id><numLanes>1</numLanes><linkDistane>44.384682042344295</linkDistane><maxVeloity>30.0</maxVeloity></inomingJuntion></juntionRe>

240

Bibliography
[Benereetti 01℄ Massimo Benereetti, Paolo Bouquet & Matteo Bonifaio. DistributedContext-Aware Systems. Human-Computer Interation, vol. 16, 2001.[Booh 93℄ Grady Booh. Objet-Oriented Analysis and Design with Applia-tions. Benjamin-Cummings Publishing Co. In., 1993.[Bresiani 04℄ Paolo Bresiani, Loris Penserini, Paola Busetta & Tsvi Ku�ik. AgentPatterns for Ambient Intelligene. In Proeedings of 23rd Interna-tional onferene on Coneptual Modelling, November 2004.[Camp 02℄ Tray Camp, Je� Boleng & Vanessa Davies. A survey of mobilitymodels for ad ho network researh. Wireless Communiations andMobile Computing, 2002.[Campbell 91℄ Roy H. Campbell, Nayeem Islam, Ralph Johnson, Panos Kougiouris& Peter Madany. Choies, Frameworks and Re�nement. In 1991International Workshop on Objet Orientation in Operating Systems,pages 9�15, 1991.[Campbell 08℄ A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, R.A. Peterson,Hong Lu, Xiao Zheng, M. Musolesi, K. Fodor & Gahng-Seop Ahn. TheRise of People-Centri Sensing. Internet Computing, IEEE, vol. 12,no. 4, pages 12 �21, july-aug. 2008.[Chen 98℄ F.Z. Chen & X.Z. Wang. Software Sensor Design Using Bayesian241

BibliographyAutomati Classi�ation and Bak-Propagation Neural Networks. In-dustrial and Engineering Chemistry Researh, vol. 37, no. 10, pages3985�3991, 1998.[Dearle 03℄ Alan Dearle, Graham Kirby & Ron Morrison et al. Arhitetural Sup-port for Global Smart Spaes. In Proeedings of 4th InternationalConferene on Mobile Data Management, 2003.[Dey 00℄ Anind K. Dey & Gregory D. Abowd. The ontext toolkit: aiding thedevelopment of ontext-enabled appliations. In Workshop on SoftwareEngineering for Wearable and Pervasive Computing, pages 434�441,New York, NY, USA, 2000. ACM Press.[Esser 97℄ J. Esser & M. Shrekenberg. Mirosopi Simulation of Urban Tra�Based on Cellular Automata. Journal of Modern Physis, 1997.[Eugster 06℄ Patrik Eugster, Benoit Garbinato & Adrian Holzer. Pervaho: ADevelopment Test Platform for Mobile Ad ho Appliations. In Mobileand Ubiquitous Systems: Networking Servies, 2006 Third AnnualInternational Conferene on, pages 1 �5, july 2006.[Fall 01℄ K Fall & K. Varadhan, editeurs. The ns Manual (formerlyns Notes and Doumentation). http://www.isi.edu/nsnam/ns/ns-doumentation.html (last visited 13 May 2011), 2001.[Fishwik 95℄ Paul Fishwik. Simulation Model Design and Exeution: BuildingDigital Worlds. Prentie Hall, 1 edition, 27 January 1995.[Fleury 07℄ Pasal Fleury, Jan Curin & Jan Kleindienst. SitCom - DevelopmentPlatform for Multimodal Pereptual Servies. In V. Marik, V Vyatkin& A.W. Colombo, editeurs, Proeedings of Internation Conferene onIndustrial Appliations of Holoni and Multi-Agent Systems, pages104�113. Springer-Verlad Berlin Heidelberg, 2007.242

Bibliography[Fujimoto 00℄ Rihard M. Fujimoto. Parallel and Distributed Simulation Systems.2000.[Gamma 95℄ Erih Gamma, Rihard Helm, Ralph Johnson & John Vlissides.Design Patterns:Elements of reusable Objet-Oriented Software.Addison-Wesley, 1995.[Girod 04a℄ Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos,Nithya Ramanathan & Deborah Estrin. EmStar: a Software Envi-ronment for Developing and Deploying Wireless Sensor Networks. InProeedings of the 2004 USENIX Tehnial Conferene, 2004.[Girod 04b℄ Lewis Girod, Thanos Stathopoulos, Nithya Ramanathan, Jeremy El-son, Deborah Estrin, Eri Osterewil & Tom Shoellhammer. A Systemfor Simulation, Emulation, and Deployment of Heterogenous SensorNetworks. In Proeedings of the 2nd ACM Conferene on EmbeddedNetworked Sensor Systems (SenSys 04), 2004.[Guinard 10℄ Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess& Domni Savio. Interating with the SOA-Based Internet of Things:Disovery, Query, Seletion, and On-Demand Provisioning of WebServies. IEEE Trans. Serv. Comput., vol. 3, pages 223�235, July2010.[Handte 09℄ Marus Handte, Wolfgang Apolinarski, Pedro Marron, VinnyReynolds, Danh Le Phuo & Manfred Hauswirth. PECES MiddlewareChallenges: On Building the Bridge Between Islands of Integration. InPaul Cunningham, editeur, eChallenges 2009 Conferene Proeedings.Leture Notes in Computer Siene, 2009.[Handziski 06℄ Vlado Handziski, Andreas Köpke, Andreas Willig & Adam Wolisz.TWIST: a salable and reon�gurable testbed for wireless indoor ex-periments with sensor networks. In Proeedings of the 2nd interna-243

Bibliographytional workshop on Multi-hop ad ho networks: from theory to reality,REALMAN '06, pages 63�70, New York, NY, USA, 2006. ACM.[He 04℄ Tian He & Sudha Krishnamurthy et al. Energy-E�ient SurveillaneSystem Using Wireless Sensor Networks. In 2nd International Con-ferene on Mobile Systems, Appliations and Servies (MobiSys '04),June 2004.[Hekmann 03℄ Dominik Hekmann. A Speialised Representation for UbiquitousComputing and User Modelling. In Workshop on User Modelling forUbiquitous Computing at User Modelling 2003 (UM'03), 2003.[Hill 00℄ Jason Hill, Robert Szewzyk, Ale Woo, Seth Hollar, David Culler &Kristofer Pister. System arhiteture diretions for networked sensors.SIGARCH Comput. Arhit. News, vol. 28, pages 93�104, November2000.[Hynes 09℄ Gearoid Hynes, Vinny Reynolds & Manfred Hauswirth. A ContextLifeyle for Web-based Context Management Servies. In Proeed-ings of the 4th European Conferene on Smart Sensing and Context(EuroSSC), 2009.[Ji 04℄ Xiang Ji & Hongyuan Zha. Sensor positioning in Wireless Ad-hoSensor Networks Using Multidimensional Saling. In Proeedings ofIEEE INFOCOM, pages 2652�2661, 2004.[Jiang 09℄ Mingxing Jiang, Zhongwen Guo, Feng Hong, Yutao Ma & HanjiangLuo. OeanSense: A pratial wireless sensor network on the sur-fae of the sea. In Pervasive Computing and Communiations, 2009.PerCom 2009. IEEE International Conferene on, pages 1 �5, marh2009.[John J. Barton 03℄ Vikram Vijayaraghavan John J. Barton. UBIWISE, A Simulatorfor Ubiquitous Computing Systems Design. Rapport tehnique, HP244

Bibliography Labs, http://www.hpl.hp.om/tehreports/2003/HPL-2003-93.html,29 April 2003.[Johnson 88℄ Ralph E. Johnson & Brian Foote. Designing Reusable Classes. JOOP,vol. 1, no. 2, pages 22�35, 1988.[Jouve 09℄ W. Jouve, J. Bruneau & C. Consel. DiaSim: A parameterized simula-tor for pervasive omputing appliations. In Pervasive Computing andCommuniations, 2009. PerCom 2009. IEEE International Confereneon, pages 1 �3, marh 2009.[Klein 01℄ Lawrene A. Klein. Sensor Tehnologies and Data Requirements forITS. Arteh House, 2001.[Kranz 06℄ Matthias Kranz, Radu Bogdan Rusu & Alexis Maldonado. A Play-er/Stage System for Context-Aware Intelligent Environments. In Sys-tem Support for Ubiquitous Computing Workshop (UbiSys 2006),2006.[Kranz 07℄ Matthias Kranz, Wolfgang Spiessl & Albreht Shmidt. DesigningUbiquitous Computing Systems for Sports Equipment. In PervasiveComputing and Communiations, 2007. PerCom '07. Fifth AnnualIEEE International Conferene on, pages 79 �86, marh 2007.[Kruhten 95℄ P. B. Kruhten. The 4+1 View Model of arhiteture. IEEE Software,1995.[Kuhl 99℄ Frederik Kuhl, Rihard Weatherly & Judith Dahmann. CreatingComputer Simulation Systems: An Introdution to the High LevelArhiteture. Prentie Hall, 1 edition, 18 Otober 1999.[Labella 06℄ Thomas Halva Labella, Gerhard Fuhs & Falko Dressler. A SimulationModel for Self-organised Management of Sensor/Atuator Networks.245

Bibliographyhttp://www7.informatik.uni-erlangen.de/ dressler/publiations/fg-selbstorganisation-2006.pdf, 2006.[Law 00℄ Averill M. Law & W. David Kelton. Simulation Modelling and Anal-ysis. MGraw-Hill Higher Eduation, 3rd edition, 2000.[Levis 03℄ Philip Levis, Nelson Lee, Matt Welsh & David Culler. TOSSIM:Aurate and Salable Simulation of Entire TinyOS Appliations. InProeedings of 1st ACM Conferene on Embedded Networked SensorSystems (SenSys 03), 2003.[Li 06℄ Ting Li, Freek Hofker & Fred Jansma. Passenger Travel BehaviousModel in Railway Network Simulation. 2006 Winter Simulation Con-ferene, 2006.[Lu 09℄ Hong Lu, Wei Pan, Niholas D. Lane, Tanzeem Choudhury & An-drew T. Campbell. SoundSense: salable sound sensing for people-entri appliations on mobile phones. In Proeedings of the 7th in-ternational onferene on Mobile systems, appliations, and servies,MobiSys '09, pages 165�178, New York, NY, USA, 2009. ACM.[Mangharam 06℄ Rahul Mangharam, Daniel Weller, Raj Rajkumar, Priyantha Mu-dalige & Fan Bai. GrooveNet: A Hybrid Simulator for Vehile-to-Vehile Networks. In Mobile and Ubiquitous Systems: NetworkingServies, 2006 Third Annual International Conferene on, pages 1 �8,july 2006.[Martin 06a℄ Miquel Martin & Petteri Nurmi. A Generi Large Sale Simulator forUbiquitous Computing. In Third Annual International Conferene onMobile and Ubiquitous Systems: Networking & Servies, 2006 (Mo-biQuitous 2006), San Jose, California, USA, July 2006. IEEE Com-puter Soiety. 246

Bibliography[Martin 06b℄ Miquel Martin & Petteri Nurmi. A Generi Large Sale Simulatorfor Ubiquitous Computing. Third Annual International Conferene onMobile and Ubiquitous Systems: Networking and Servies, pages 1�3,July 2006.[Masson ℄ M. H. Masson, S. Canu & Y. Grandvalet. Soft-ware Sensor Design Based on Empirial Data.http://www.hds.ut.fr/ em2s/sym/Toulouse/intronew.ps.[Medagliani 10℄ P. Medagliani, J. Leguay, V. Gay, M. Lopez-Ramos & G. Ferrari.Engineering energy-e�ient target detetion appliations in WirelessSensor Networks. In Pervasive Computing and Communiations (Per-Com), 2010 IEEE International Conferene on, pages 31 �39, 29 2010-april 2 2010.[Meier 03℄ Rene Meier & Vinny Cahill. Exploiting Proximity in Event-BasedMiddleware for Collaborative Mobile Appliations. In 4th IFIP In-ternational Conferene on Distributed Appliations and InteroperableSystems (DAIS '03), volume 2893, pages 285�296. LNCS, 2003.[Morla 04℄ Riardo Morla & Nigel Davies. Evaluating a Loation-Based Applia-tion: A Hybrid Test and Simulation Environment. In Proeedings of2nd International Conferene on Pervasive Computing, 2004.[Nakata 07℄ Junya Nakata, Satoshi Uda, Toshiyuki Miyahi, Kenji Masui, RazvanBeuran, Yasuo Tan, Ken-ihi Chinen & Yoihi Shinoda. StarBED2:Large-sale, Realisti and Real-time Testbed for Ubiquitous Networks.In 3rd International Conferene on Testbeds and Researh Infrastru-ture for the Development of Networks and Communities (TRIDENT-COM), 2007.[Narendra 05℄ Nanjangud C Narendra. Large Sale Testing of Pervasive ComputingSystems Using Multi-Agent Simulation. In Proeedings of Third IEEE247

BibliographyInternational Workshop on Intelligent Solutions in Embedded Systems(WISES2005), 2005.[Naumov 03℄ Valery Naumov & Thomas Gross. Simulation of Large Ad Ho Net-works. In In Proeedings of The Sixth ACM International Workshopon Modeling, Analysis and Simulation of Wireless and Mobile Systems(MSWiM 2003), 2003.[Nishikawa 06℄ Hiroshi Nishikawa, Shinya Yamamoto, Morihiko Tamai, Kouji Nishi-gaki, Tomoya Kitana, Naoki Shibata, Keiihi Yasumoto & Minoru Ito.UbiREAL: Realisti Smartspae Simulator for Systemati Testing. In8th Int'l Conf. on Ubiquitous Computing (UbiComp2006). LNCS4206,September 2006.[North 06℄ M.J. North, N.T. Collier & J.R. Vos. Experienes Creating ThreeImplementations of the Repast Agent Modeling Toolkit. ACM Trans-ations on Modeling and Computer Simulation, vol. 16, no. 1, pages1�25, January 2006.[O'Neill 05℄ Eleanor O'Neill & Martin Klepal. A Testbed for evaluating HumanInteration with Ubiquitous Computing Environments. In Proeedingsof 1st International Conferene on Testbeds and Researh Infrastru-tures for the DEvelopment of NeTworks & COMmunities (TRIDENT-COM), 2005.[Park 00℄ Sung Park, Andreas Savvides & Mani B. Srivastava. A SimulationFramework for Sensor Networks. In Proeedings of the 3rd ACM In-ternational Workshop on Modeling, Analysis and Simulation of Wire-less and Mobile Systems (MSWiM 2000), 2000.[Parker 04℄ E.L. Parker. Current Researh in Multi-Robot Systems. Journal ofArti�ial Life and Robotis, 2004.248

Bibliography[Raza�ndralambo 10℄ T. Raza�ndralambo, N. Mitton, A.C. Viana, M.D. de Amorim &K. Obrazka. Adaptive deployment for pervasive data gathering inonnetivity-hallenged environments. In Pervasive Computing andCommuniations (PerCom), 2010 IEEE International Conferene on,pages 51 �59, 29 2010-april 2 2010.[Salim 08℄ F.D. Salim, Liheng Cai, M. Indrawan & Seng Wai Loke. Road In-tersetions as Pervasive Computing Environments: Towards a Multi-agent Real-Time Collision Warning System. In Pervasive Computingand Communiations, 2008. PerCom 2008. Sixth Annual IEEE Inter-national Conferene on, pages 621 �626, marh 2008.[Shmidt 97℄ Douglas C. Shmidt. Guest Editorial: Objet-Oriented AppliationFrameworks. Communiations of the ACM, Speial Issue on Objet-Oriented Appliation Frameworks, vol. 40, no. 10, 1997.[Selvarajah 10℄ K. Selvarajah & N. Speirs. Integrating Smart Spaes into the PEr-vasive Computing in Embedded Systems (PECES) Projet. In Con-sumer Communiations and Networking Conferene (CCNC), 20107th IEEE, pages 1 �2, jan. 2010.[Senart 06℄ Aline Senart, Raymond Cunningham, Melanie Bourohe, NeilO'Connor, Vinny Reynolds & Vinny Cahill. MoCoA:CustomisableMiddleware for Context-aware Mobile Appliations. 8th InternationalSymposium on Distributed Objets and Appliations (DOA 2006),2006.[Seo 05℄ Jinseok Seo, Gwanghoon Goh & Gerard J. Kim. Creating ubiquitousomputing simulators using P-VoT. In MUM '05: Proeedings of the4th international onferene on Mobile and ubiquitous multimedia,pages 123�126, New York, NY, USA, 2005. ACM.[Shibuya 04℄ Kazuhiko Shibuya. A Framework of Multi-Agent-Based Modeling,249

BibliographySimulation, and Computational Assistane in a Ubiquitous Environ-ment. SCS Journal of Simulation, 2004.[Soanes 05℄ Catherine Soanes & Angus Stevenson. Oxford English Ditionary.Oxford University Press, 2005.[Sobeih 05℄ Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou, Lu-Chuan Kung,Ning Li, Hyuk Lim, Hung-Ying Tyan & Honghai Zhang. J-Sim: ASimulation and Emulation Environment for Wirelesss Sensor Net-works. In Proeedings of the 38th Annual Simulation Symposium(ANSS 2005), 2005.[Stroustrup 98℄ Bjarne Stroustrup. An Overview of the C++ Programming Language,1998.[Sun Mirosystems 96℄ Sun Mirosystems. Wabi 2.2 Users Guide. Rapport tehnique, SunMirosystems, 1996.[Sundresh 04℄ Sameer Sundresh, Wooyoung Kim & Gul Agha. SENS: A Sensor,Environment and Network Simulator. In Proeedings of IEEE/ACMAnnual Simulation Symposium, 2004.[Tapia 04℄ Emmanuel Munguia Tapia, Stephen S. Intille & Kent Larson. AtivityReognition in the Home using Simple and Ubiquitous Sensors. InProeedings of 2nd International Conferene on Pervasive Computing,2004.[Tropper 02℄ Carl Tropper. Parallel disrete-event simulation appliations. J. Par-allel Distrib. Comput., vol. 62, no. 3, pages 327�335, 2002.[Verdone 07℄ Roberto Verdone, Davide Dardari, Gianlua Mazzini & Andrea Conti.Wireless Sensor and Atuator Networks. Aademi Press, 21 Deem-ber 2007. 250

Bibliography [Vyas 10℄ Dhaval Vyas, Anton Nijholt, Dirk Heylen, Alexander Kröner & Ger-rit van der Veer. Remarkable objets: supporting ollaboration in areative environment. In Proeedings of the 12th ACM internationalonferene on Ubiquitous omputing, Ubiomp '10, pages 37�40, NewYork, NY, USA, 2010. ACM.[Weiser 91℄ MarkWeiser. The Computer for the 21st Century. Sienti� Amerian,vol. 265, no. 3, pages 94�104, September 1991.[Weiser 93℄ Mark Weiser. Some Computer Siene Issues in Ubiquitous Comput-ing. Communiations of the ACM, vol. 36, no. 7, pages 74�84, 1993.[Werner-Allen 05℄ G. Werner-Allen, P. Swieskowski & M. Welsh. MoteLab: a wirelesssensor network testbed. In Information Proessing in Sensor Networks,2005. IPSN 2005. Fourth International Symposium on, pages 483 �488, april 2005.[Win 07℄ Wine: Windows Emulator for x86 Unixes. http://www.winehq.org/,2007.[Xu 10℄ Xunteng Xu, Lin Gu, Jianping Wang & Guoliang Xing. Negotiatepower and performane in the reality of RFID systems. In PervasiveComputing and Communiations (PerCom), 2010 IEEE InternationalConferene on, pages 88 �97, 29 2010-april 2 2010.[Yu 05℄ Liyang Yu, Neng Wang & Xiaoqiao Meng. Real-time forest �re de-tetion with wireless sensor networks. In Proeedings of Interna-tional Conferene on Wireless Communiations, Networking and Mo-bile Computing, 2005., volume 2, pages 1214�1217, September 2005.[Zeigler 00℄ Bernard P. Zeigler, Herbert Praehofer & Tag Gon Kim. Theory ofModelling and Simulation. Aademi Press, 2nd edition, 2000.251

Bibliography[Zomaya 96℄ Albert Y. H. Zomaya. Parallel and Distributed Computing Handbook.MGraw-Hill Professional, 1996.

252

