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Summary

Real-time computer animation is an essential part of modern computer games and virtual reality

applications. While rendering provides the main part of what can be described as �visual experience�,

it is the movement of the characters that gives the �nal impression of realism. Unfortunately, realistic

human animation has proven to be a very hard challenge.

Some �elds of computer graphics have a compact and precise mathematical description of the

underlying principles. Rendering, for example, has the rendering equation, and each realistic rendering

technique provides its approximate solution. Due to its highly complex nature, character animation

is not one of these �elds. That is one of the reasons why even single character animation still provides

signi�cant research challenges. The challenges posed by a crowd simulator, required to populate a

virtual world, are even larger. This is not only because of the large number of simultaneously displayed

characters, which necessitate the use of level-of-detail approaches, but also the requirement of reactive

behaviour, which can be provided only by a complex multi-level planning module.

In this thesis, we address the problem of human animation for crowds as a component of a crowd

simulator.

To ensure that we start with realistic animation data, we record our data using a camera-based

passive optical motion capture system. We provide a detailed description of our camera setup, our

human body model and our re�ned pipeline, which together allow for robust and precise human motion

reconstruction and its usage in a real-time system.

While the captured motion data provide an accurate representation of human motion, their direct

usability in a real-time system is limited to a simple playback of the original clip on a human model

with body proportions corresponding to that of the original actor. To overcome this limitation, a

data-driven animation synthesis method has to be incorporated to create novel animations based

on the source data. The solution described in this thesis uses a parametric data-driven locomotion

synthesis model, with particular focus on motion synthesis for crowds. This description includes

motion preprocessing, periodisation, parametric motion blending structure and its integration with a

high-level behaviour module.

Even though a compact and general mathematical representation of human motion is problematic,

humans show an impressive, yet intuitive, understanding of human motion. Taking into account that a

resulting animation is almost exclusively presented to a human observer, an e�ective way to determine

the properties of an animated motion is to explore how it is perceived by the human visual system. To

this end, we conducted several perceptual experiments with a view to devising metrics which would

be directly applicable to a crowd animation system. Speci�cally, we present a method to compare

human locomotions in a perceptually correct manner; establish the minimal number of characteristic

animations required for a group of characters to appear varied; and determine the perceptual impact

of two common animation artifacts caused by motion editing � animation timewarping and footsliding.
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1
Introduction

Through the in�uence of the entertainment industry, virtual reality and arti�cially created environ-

ments became a part of our daily lives. With the help of modern computer graphics, artists can

express their visions in virtual worlds with limitless potential. Advances in rendering methods allow

these worlds to become extremely believable; particularly so in movies, where even very complex mod-

els of physical behaviour can be implemented, and every little aspect can be de�ned in advance and

fully controlled by the artist. But even recent games and virtual reality applications, operating under

very limiting constraints of responsiveness and high framerates, can provide a real-time immersive

experience very close to that of the �lm world.

However, to complete the illusion of a living world, impressive visual scenes are not enough � they

need to be inhabited by virtual humans, which in turn have to be moving and interacting, both with

the environment and among themselves. For certain purposes, we need many humans � from dozens

to simulate a tourist group, through thousands to create a protest march or a virtual army, up to

millions if we want to recreate whole cities.

The movie industry o�ers many interesting examples of large crowds. Older movies, such as The

Last Emperor (1987) or Stargate (1994) would employ thousands of actors to create their crowd

scenes. However, the same e�ect and much more can be achieved using computer graphics (CG), with

signi�cant savings in e�ort, �nance and manpower. CG can create a large variety of crowd scenarios

� from highly-stylised crowds (I, Robot, 2004; Antz, 1998), through fantasy-like humanoid characters

(Lord of the Rings Trilogy, 2001-2003; the Chronicles of Narnia, 2005), up to very realistic crowds in

a stylised environment (Inception, 2010) or during natural disasters (�2012�, 2009).

Certain virtual applications and computer games require large crowds as well. The Fifa Soccer series

(1995 - 2011) demonstrates a progress in virtual cheering crowds � from simple repetitive textures in

Fifa 1995 to very realistic crowds in Fifa 2012; although the background nature of these characters

does not require any signi�cant interactions or complex behaviours. Many strategy games employ

large armies of characters (e.g., Age of Empires series (I - III)), but the bird's eye point of view and

15



1. Introduction

Figure 1.1.: Metropolis crowd simulation system.

small size of individual characters simpli�es the task signi�cantly. Several recent games employ crowds

in the most natural and challenging 1st (or close 3rd) point of view (e.g., Assassins Creed I and II).

While extremely impressive considering the level of crowd interaction and real-time framerates on

common hardware, these games also demonstrate the shortcomings of current state-of-the-art crowd

techniques, such as the lack of responsiveness and animation artifacts.

The main topic of this thesis is to address the animation aspects of crowd simulations, creating

an entire city of realistically moving characters in real times. Naturally, in a city simulation, most

of these characters will be walking, hence the focus on the locomotion of humanoid �gures. Our

system should be capable of providing an artifact-free animation for each individual character based

on example animation data (with a very low computational cost), while providing an e�cient interface

to the behaviour module and the necessary animation variety.

1.1. Motivation

As the �eld of data-driven character animation matures, its methods provide increasing levels of

animation realism for single characters. Several distinct groups of methods evolved, each with its own

speci�c set of properties and limitations (see Section 2.5). However, a large majority of these methods

either scale linearly with the number of characters, with a relatively large computational cost for every

character, or do not allow the necessary animation variety required for a crowd. This is an important

issue, as the number of characters in a crowd can be very high. However, not all of them will be visible

at high detail all the time; an aspect described in the rendering systems as level of detail (LOD).

Therefore, we aim to create a data-driven crowd animation model e�ective enough to animate a

large crowd, in a level of detail high enough to provide realistic animation, but at the same time

low enough to avoid any unnecessary computation. Moreover, the computational and storage costs

required for storing a new characteristic animation style should be minimised, with the style creation

automatised as much as possible. Lastly, the animation should be responsive, to enable interactive

crowd simulations that are in�uenced by the user.

The �nal product of each animation synthesis algorithm is presented to a user. Therefore, hu-

man perception plays an important role in animation synthesis, but the perceptual thresholds and

properties of many di�erent animation synthesis aspects remain largely unexplored. As they can

provide interesting insights into the perceivable properties of human motion, and provide ways to

simplify crowd animation without negatively in�uencing the visual aspects of the result, perceptual

experiments are an interesting direction to be explored.
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1.2. Scope

1.2. Scope

In this thesis, we focus on the animation aspects of human locomotion and their perceptual properties,

in the context of crowd animation synthesis.

Apart from an animation module, a typical crowd system has to include high level behaviour and

rendering components. However, these latter two topics are not within the scope of this thesis; we

only describe the layers connecting them to our animation system. For behaviour, we assume the

existence of a system that provides the position and velocity of every character for every frame, with

values within a range natural for a human actor. The rendering should be performed by a state of

the art hardware accelerated graphics engine, that describes the character's deformation using a set

of 4x3 matrices.

Even though we use a certain amount of procedural animation editing, our model is primarily data-

driven and requires a motion database as its input. These data are captured using our passive optical

motion capture system, a description of which is included. While other data sources for our animation

model are possible, they are not described as a part of this thesis. We assume that the data do not

contain explicit constraints information (e.g., footstep timing and positions), and therefore require a

constraints detection step to be performed during a preprocessing stage.

Apart from the behaviour and rendering modules, we assume that a level of detail (LOD) system

is in place, which separates the visible crowd into several groups with di�erent display and animation

accuracy requirements. As such a system is a standard part of either behaviour or rendering module

(or a combination of both) of a crowd simulator, this is a generalisable assumption. The main part

of our work is focused on the middle level of detail characters, with characters large enough to be

individually recognisable, but small enough for the animation not to require an excessive level of

accuracy. Generally, the high LOD characters are in the foreground, usually numbering less than 100;

the middle level of detail characters can number up to several thousand; and the low level of detail,

with characters spanning no more than several pixels of the screen, can be animated using a very

simple model.

As our perceptual experiments are designed to answer questions arising from the technical and imple-

mentation aspects of the thesis, we use only humanoid characters as the experiment stimuli. However,

their representation varies depending on the type of the experiment from a simple stick-�gure, through

a wooden mannequin to a realistic skinned human model. The number of simultaneously displayed

characters also varies depending on the experiment goal from a single character to a group of 25.

While we limit our scope mainly to crowd animation, almost all developed techniques and established

perceptual properties apply to single character animations as well. For a list of limitations of our

implementation and results please refer to Section 7.2.

1.3. Methodology

In a similar way to the rest of the thesis, our methodology can be separated into the implementation

and technical part, and the techniques used for the design and evaluation of perceptual experiments.

1.3.1. Implementation Methodology

The implementation process was performed in cycles, each containing a design, implementation and

evaluation stage. While these cycles are not explicitly re�ected in the thesis, this methodology facili-

tates the continued building and re�nement of the existing set of techniques and connected code base.

The evaluation stage can be performed in several di�erent ways � visually, if the algorithm contains

easily identi�able artifacts not predicted in the design stage, using a suitable evaluation metric, or
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1. Introduction

Figure 1.2.: The Biodancer installation screenshots.

rigorously by performing a formal perceptual experiment.

The implementation uses exclusively the C++ programming language, extensively incorporating

the Standard, Boost, OpenGL and Wild Magic libraries. A large number of other libraries were

used for speci�c tasks, such as ANN (Approximate Nearest Neighbour), SDL (Simple DirectMedia

Layer), wxWidgets, TinyXML, FreeImage and NaturalMotion Morpheme. With the exception of the

Metropolis project, all development was done in the Linux operating system (Ubuntu, Debian), using

the GCC compiler and the CMake building system. To allow the use of the run-time system inside

the Metropolis project, a part of the developed code was ported to the MS Windows and Visual

Studio 2005 compiler. The visualisation of the algorithms' results, both for debugging purposes and

for perceptual experimentation, also includes several GLSL shaders.

1.3.2. Perceptual Experiments and Evaluation

All the perceptual experiments presented in this thesis use standard methods developed in the �eld of

psychophysics. The procedures (tasks) used are variations of the standard n-alternative or n-interval

forced choice task, where several stimuli are presented, separated either spatially or temporally, on a

computer screen (please see the description included in each experiment section for more details).

The majority of the experiments use the method of constant stimuli, where a combination of pre-

sented stimuli are selected from a set of pre-generated examples. Each possible combination of the

tested factors, as represented in the example database, is shown to the user several times, leading to

a reliable measure of the responses. The signi�cance of the results is tested using a repeated mea-

sures analysis of variance (ANOVA), with a post-hoc analysis using the Newman-Keuls comparison

of means, or by performing the standard t-test. All the presented graphs show the average values for

signi�cant factors and their standard error.

For the particular purpose of accurate threshold estimation in the footskating experiments (see

Section 6.3.2), we employ the adaptive staircase method. Its evaluation is performed by �tting a

psychometric curve to the results, with the point of subjective equality (PSE) and just-noticeable

di�erence (JND) parameters determined from the curve shape.

1.4. List of Contributions
The contributions of this thesis can be separated into three groups, which consist of three di�erent

aspects of the research.

The �rst group, technical contributions, focuses on the development of a framework for large

crowd animation. The contributions include:

� a re�ned motion capture pipeline (Chapter 3), which consists of:
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� a camera setup (Section 3.1),

� an anatomically-based human body model (Section 3.4),

� a novel constraints detection algorithm (Section 4.3), and

� a pipeline for converting motion capture data to a format usable in motion editing software

(Section 3.5);

� a novel data-driven animation system (Chapter 5), aiming in particular at large crowd anima-

tions. Its parts are:

� motion preprocessing (Sections 5.2 and 5.3), editing the source animations and making

them periodic,

� a classi�cation scheme (Section 5.3.3), registering each input animation based on its tra-

jectory,

� a parametric model (Section 5.5), and related blending scheme (Section 5.6), and

� a behaviour interface (Section 5.4), connecting the animation system with a higher level

planning module.

The second group, perceptual metrics, provides a set of metrics and recommendations aimed in

particular at data-driven crowd simulations. It is separated into four sections, each describing a set

of experiments, their setup, evaluation and results:

� The human locomotion comparison metric (Section 6.1) provides insights into the way people

di�erentiate between locomotions and identi�es which features provide the largest amount of

information to do so,

� the crowd motion variety experiment (Section 6.2) determines the minimal number of di�erent

characteristic animations required for a group of walking characters to appear varied,

� the footskating perception experiments (Section 6.3) determine the saliency of this common

artifact and evaluate ways to address it in a perceptually consistent manner, and

� the human animation timewarping experiment (Section 6.4) shows that the e�ects of timewarp-

ing, one of the simplest and most common methods for animation editing, are not symmetrically

distributed around zero.

While all these experiments are aimed to be used to tune our crowd animation system, their setup is

independent of the implementation, making the result generalisable to any crowd / animation system.

The last group of contributions contains implementation outputs � code base, programs and

data created during the course of this research:

� the motion editing library, which is the foundation of all programs, demos and experiment

frameworks described in this thesis. It includes a large collection of algorithms, data structures

and data importers/exporters,

� the experimental frameworks, each described in its respective section of Chapter 6,

� the data converter, a GUI application capable of converting data between our motion capture

system, our modelling software and our runtime framework,

� the motion editor, a command-line application allowing advanced manipulations of motion data,

� the Biodancer Installation (Figure 1.2), an interactive installation presented in the Science

Gallery during the Biorhythm exhibition,

� the Metropolis Animation System (Figure 1.1), a crowd animation module integrated into a full

crowd simulation system, and

� the Natural Movers Project, of which the primary output is a consistent database of motions,

containing 83 di�erent actors (45M and 38F), 108 motions per each. The group of actors covers

a varied sample of human subjects, with ages ranging from 14 to 50, weights from 41 to 102kg
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and heights from 1.53 to 1.96m.

1.5. Summary of Chapters
The remainder of this thesis is structured as follows:

� Chapter 2 provides an overview of the previous work related to the topic of this thesis.

� Chapter 3 describes the process of motion capture, aimed in particular at the passive opti-

cal motion capture pipeline. We provide details of the camera and capturing volume setup,

calibration, the developed marker setup and connected human model, and a novel method for

constraint detection.

� Chapter 4 deals with description of the most important constraint type required for locomotion

synthesis, i.e., the footsteps. We analyse several previous approaches and suggest a new method,

applicable to both skeletal and marker data.

� Chapter 5 provides details of our crowd animation module. It includes the description of:

� the motion map concept, used for determining the properties of the input motions,

� data preprocessing step,

� the parametric blending scheme,

� linearised skinning method based on the properties of the blending scheme, and

� details of the animation module integration into a full crowd simulation system.

� Chapter 6 summarises the perceptual experiments we performed in relation to the topic of this

thesis, including

� a perceptually-based human locomotion metric, allowing to compare the characteristics of

human locomotion (Section 6.1),

� the requirements of animation variety for a crowd scene (Section 6.2),

� the impact of footskating and footstep cleanup (the most common locomotion artifact;

Section 6.3), and

� the impact of timing changes on the levels of a motion being perceived as realistic (Sec-

tion 6.4).

� Finally, we conclude in Chapter 7 with an overview of our results, further discussion and plans

for future development.
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Background and Related Work

The area of human character animation is an important part of computer graphics, and as such it

received a lot of attention from the start. The corpus of previous work is therefore very large and

its full account is beyond the scope of this thesis. The following chapter contains a description of

previous work directly in�uencing the development of ideas contained in this thesis.

A brief overview of the content of each section and its relation to the rest of the thesis can be listed

as follows:

� Motion data representation plays a crucial role in storage, data handling and interpolation. In

Section 2.1, we provide a brief overview of common representations, with a focus on joint-based

(skeletal) methods. Throughout the thesis, we use mainly the matrix form (see Section 2.1.2),

but other techniques are used for speci�c tasks (e.g., rotation interpolation using quaternions,

axis-dependent joints using Euler angles).

� The �nal goal is to use skeletal data to drive a human character represented as a polygonal mesh

using a process called �skinning� (see Section 2.2). This topic is also closely related to our linear

mesh deformation technique to speed-up the animation generation in a parametric space (see

Section 5.6).

� Motion editing techniques are necessary for both altering captured motion and creating data-

driven animation models (Section 2.3). They are used in both contexts throughout this thesis

(Section 4.4 and Chapter 5). As constraint-based methods are part of the motion editing �eld,

an overview of constraints detection (closely related to Chapter 4) is provided as well.

� Motion capture serves as our main source of data. A brief summary of motion capture technolo-

gies and motion data storage is provided in Section 2.4.

� Our parametric space, described in Chapter 5, uses a data-driven parametric motion synthesis

model. A summary of previous work on data-driven motion synthesis can therefore be found in

Section 2.5.

� One of the main outcomes of our work is the proposal of several perceptually-based metrics

21



2. Background and Related Work

to assess motion �naturalness� and for clip comparison. A discussion of several metrics from

previous work can be found in Section 2.6, followed by a brief summary of related perceptual

research (Section 2.7).

2.1. Motion Data Representation

The question of motion data representation is fundamental to data-driven character animation, and

as a topic it is still an area of active research.

With the exception of fully parametric representations, each method consists of a description of

keyframes (explicit datapoints with their deformation description) and an interpolation method

(a way to extend the keyframes' description to include other times). During motion synthesis, the

animation system combines these to create a particular pose corresponding to the animation time

parameter.

While other representations exist, the most common way of describing a model in computer graphics

is using a polygonal mesh. This is essentially a piecewise-linear representation of a manifold in space.

An animation of such a mesh is a function describing the position of each vertex in time. Although

an explicit representation of this function can be used directly, for character animation we can exploit

the fact that the human body contains an almost-rigid underlying structure � a skeleton.

This section provides an overview of methods used to describe this skeleton as a method for motion

data representation. As the main focus of this thesis is on data-driven animation models, animation

representation is an important issue. For the most part, our data are represented in a hierarchical

format and we use matrix algebra to perform operations on them (see Appendix A). However, the

storage model for our data uses quaternions to represent orientations and their algebra to perform

accurate orientation interpolation. Moreover, most constraints handling is performed after the source

data are converted into a world-space (Euclidean) representation, as we need to know the exact world

location of each end-e�ector (see Section 4.3).

2.1.1. Animation Skeleton

The most natural way of describing a human skeleton is as a hierarchical structure of rigid

bodies (bones). Any movement of a bone in the hierarchy propagates to all its children bones (e.g.,

the shoulder in�uences all bones in the arm), which is a desirable property for mimicking the real

skeleton. However, this behaviour also ampli�es any errors introduced at the lower levels (Arikan,

2006), thus causing error accumulation at the end nodes (called end-e�ectors; usually feet and hands).

Mathematically, the skeletal structure is represented as a directed graph (tree) of rigid body trans-

formations. The root of this graph, usually located in the pelvis (close to the centre of mass of the

character), is described as a full 6 degrees-of-freedom (DOF) transformation. It determines the over-

all position and orientation of the character. All remaining joints are then described using 3 DOF

rotational transformations related to their parent (see Appendix A for more details).

The actual structure of joints used to create a human model is determined by the human skeleton,

but certain aspects (like spine links, position of the root in the hierarchy, details in the hands) can be

application-speci�c, as some applications bene�t from a more simpli�ed model than others. A common

standard for skeletal topology and naming would simplify the reusability of motion data � a desirable

property especially for public motion databases. The H-Anim ISO standard ("Web 3D Consortium",

2005) aims to achieve this objective by providing standardised topology, naming, rest-poses and types

of joint connections in the human body.

Non-hierarchical (world-space) representations describe bones in Euclidean space relative to
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Figure 2.1.: Linear interpolation of transformation matrices (depicted as three axes of the local coordinate
system) showing the violation of orthonormality principle during interpolation.

a single �world� origin. This representation lacks an implicit propagation of transformations, but it is

useful for several purposes � it forms a basis for most of skinning methods (Section 2.2), and constraint-

based and simulation methods (such as Inverse Kinematics (IK); see Section 2.3.3). Furthermore, by

avoiding the error accumulation of hierarchical methods, it allows for better compression (Arikan,

2006; Troje, 2002). The mathematical representations of non-hierarchical skeletons are the same as

for the hierarchical case, except every bone has to have both its position and orientation represented

explicitly (i.e., storing 6 DOF per bone).

Non-hierarchical methods are often used only temporarily for performing certain types of operations

(e.g., IK), reverting back to the hierarchical representation after this processing is �nished. Neverthe-

less, several methods use them as the main representation � notably the pointlight walker framework

of Troje (2002) and motion compression methods of Arikan (2006).

2.1.2. Bone Representation Overview

The rotational 3 DOF transformations are mathematically described as the SO3 group with compo-

sition operation. This group has several properties that make its representation problematic � it is

inherently non-linear, non-commutative and �nite. This section describes previous work related to

di�erent representations of these transformations.

Rigid-body transformation matrices are the most common way of representing skeletal trans-

formations, and as such they are used extensively in this thesis. The underlying algebra allows simple

composition (using matrix multiplication), correct handling of both translations and rotations in a

uniform manner, and conversion between coordinate frames. General (non-rigid) matrices can also

represent projective transformations, skew and scaling, making them the most versatile representation

and the method of choice for modern graphics hardware.

The main disadvantage of this representation is the lack of a simple interpolation method. A linear

combination of matrices is usable for certain specialised tasks, such as linear skinning (Lewis et al.,

2000), but even if both input matrices represented rigid body transformations (or rotations), the

resulting matrix will generally not. A general matrix can be converted to a rigid-body transformation

using singular value decomposition (SVD) or polar decomposition (Shoemake & Du�, 1992), but both

are computationally expensive, might introduce numerical errors and the result is not de�ned for

all input matrices. Another disadvantage is their inherent data redundancy � 6 e�ective DOF are

represented using 16 numbers (or 3 DOF using 9 numbers for rotational matrices).

Each rigid body transformation matrix can be separated into a world position and 3 axes of a local

coordinate system. One of these axes can be always determined from the other two using the vector

crossproduct. Furthermore, with one of the two axes represented fully, the other one contains only
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one further degree of freedom. This reduces storage requirements to 7 real numbers, with some of

them requiring only limited accuracy to provide a description with relatively small error.

While not providing any advantage over transformation matrices for motion interpolation, this

representation can be used for motion compression. Arikan (2006) uses such representation as a �rst

step of a motion compression algorithm (with each rigid body transformation described as 3 points in

space, thereby providing more accuracy and better compression parameters).

Euler angles decompose an orientation into three (or less) rotations around prede�ned axes. This

representation is simple and intuitive, and allows rotations to be dealt with in a linear manner, thus

allowing even complex linear manipulations such as principal and independent component analysis

(Shapiro et al., 2006) and frequency-domain analysis (Unuma et al., 1995).

Unfortunately, the linear combinations of angular data do not always correspond to expected ge-

ometric results. Each orientation can be represented in an in�nite number of ways and therefore

provide di�erent interpolation results when used naively (each axis angle is periodic). Moreover, the

results are dependent on the order of applied rotations and certain combinations of angles lead to

gimbal lock (a loss of one degree of freedom).

Unit quaternions are a 3D extension of the ability of unit complex numbers to describe 2D

rotations (Shoemake, 1985). They are more e�ective than transformation matrices in representing

orientation (4 real numbers) and their algebra provides a simple and geometrically-correct way of

combining (multiplication), inverting (conjugate) and interpolating (spherical linear interpolation)

orientations. These properties explain why this representation is popular in data-driven character

animation, as they provide an intuitive way of performing all common operations on motion data.

Unfortunately, unit quaternions do not provide an exact way of computing a combination of more

than two orientations or their mean. The can only be used to compute their approximate values,

i.e., a normalised linear combination (Shoemake, 1985) and exponential maps mean (see below),

respectively. Another issue with quaternions is their bipodality � each orientation can be represented

in two di�erent ways. This can be explained by their relationship with axis-angle representation, where

both an axis/angle combination and its negative value represent the same orientation (see Shoemake,

1985 for a more detailed explanation). While in most cases bipodality can be handled properly,

problems can arise when working with several orientations simultaneously (Park et al., 2002).

Exponential maps attempt to linearise the rotation algebra SO3 by mapping it onto a linear

subspace R3 around a particular rotation (often zero). This operation projects the surface of a 4D

sphere onto a section of a 3D hyperplane, thereby successfully capturing most of its local properties, but

providing a poor approximation for non-local ones. For example, this can cause singularities around the

edges of the projection, with decreasing accuracy based on distance from the projection centre(Grassia,

1998). However, it allows the use of an intuitive and commutative algebra on orientations, including

their simple interpolation, integration and di�erentiation. The conversion to exponential maps can be

performed on both quaternions (Grassia, 1998) and transformation matrices (Alexa, 2002).

The centre of mapping is a crucial parameter for the accuracy of exponential maps. For interpolation

purposes, the ideal mapping point would be the weighted mean of its operands (which is also the

interpolation solution). However, no such operation is explicitly de�ned on rotational algebras. Park

et al. (2002) propose to use an optimisation step to determine the best average value, which is also

the main idea behind Alexa's linear rotational algebra (2002). However, performing a non-linear

optimisation step for every interpolation of every character's joint is computationally expensive. Park

et al. (2004) propose to avoid it by using the interpolation result of the previous frame, assuming that

the consecutive frames are close enough to provide su�cient accuracy. Forbes & Fiume (2005) go
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even further in this direction, by computing a single projection centre for each joint, and then using

it throughout the animation.

In his lecture notes, Lee (2008) compares quaternions and exponential maps to points and vectors;

the former expressing the absolute value and the latter its relative displacement. Indeed, this method

is used quite often. For example, constraint-based motion editing uses a displacement function, e.g.,

the hierarchical B-splines approach by Lee & Shin (1999), while motion statistical analysis requires

a linear and commutative algebra for displacements related to an average value (Lim & Thalmann,

2002; Tournier et al., 2009; Forbes & Fiume, 2005).

The last representation in our list � dual quaternions � expands the 4-dimensional quaternion

algebra to 8 dimensions by including the translational information and rede�ning the related operations

(Kavan et al., 2007a). Dual quaternions can be represented either as a pair of quaternions, or as

quaternions constructed of dual numbers. Unfortunately, as it is based on quaternion algebra, this

representation su�ers from many of the same disadvantages as unit quaternions. Moreover, for a

classical hierarchical skeleton, only 3 degrees of freedom are required for most joints (with the exception

of the root), making the added translational information redundant. However, dual quaternions have

a practical use as a non-linear and rotationally correct alternative to standard linear skinning (Kavan

et al., 2007a; see Section 2.2.2).

A group of physically-based methods re�ect the physical structure of the human body on a lower

level of abstraction than the methods mentioned above, often creating a representation of bones,

muscles and other tissues. The motion is then described at the level of joint torques or muscle

activations, with physically-based simulation and constrained controllers guiding the overall behaviour.

However, even though often inspired by (or trained on) captured data, these techniques are not

inherently data-driven, which puts them outside the scope of this thesis. For a detailed list of methods

and their descriptions, please refer to Geijtenbeek et al. (2011) and van Welbergen et al. (2010).

2.2. Character Skinning

Character skinning involves a set of methods that deform a character mesh according to a skeletal

animation. A broader concept of character skinning can be generally divided into three groups:

� generic mesh deformation, i.e., methods that pose the mesh based on a set of constraints,

� skinning, which is actually a speci�c subset of the previous group, which uses a set of rigid-body

transformations as constraints to describe desired mesh deformations,

� image-based methods, which avoid real-time deformation calculations by precomputing an image-

based proxy representation.

In this thesis, we use the simple linear skinning technique for most of our animated characters. An

exception is the linear blending scheme of the parametric space (see Section 5.6), which uses an

interpolation method at the level of skinning matrices instead of using a hierarchical skeleton rep-

resentation. Mathematically, however, it closely resembles the example-based skinning methods (for

more information please refer to Section 2.2.2). The following Sections introduce the related work in

this �eld.

2.2.1. Generic Mesh Deformation

Generic mesh deformation methods use a set of constraints to describe a desired pose of a mesh. The

constraint types can be quite diverse; the most common type speci�es the position of a given subset of

vertices (parameterised by time) or a spatial region where a subset of vertices is supposed to remain

(e.g., above the ground). The deformation method ensures that the �nal mesh pose is plausible while
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satisfying the input constraints. Character skinning represents a speci�c subset of these methods,

and uses a set of rigid body transformations as constraints (see Section 2.2.2). The �eld of generic

mesh deformation is vast and only loosely related to this thesis (see the cloth simulation described

in Section 5.6). For this reason, in the next paragraph we provide only several references for further

study.

A natural way of dividing di�erent generic mesh deformation methods is according to the dimension-

ality of their control objects. Gain & Bechmann (2008) provide a survey using this approach, divided

into four main sections � points (0D), curves (1D), surfaces (2D) and volumes (3D). Apart from the

large group of generic methods, several subgroups received particular attention from the research com-

munity due to their suitability for a particular purpose. Laplacian mesh editing methods (Sorkine,

2005) allow the shape of a mesh to be controlled on both local and global levels, while preserving

the surface details (or deforming them appropriately). Garment deformation methods (e.g., English

& Bridson, 2008) behave in the opposite manner, creating or destroying local details (wrinkles) in a

physically-consistent manner to compensate for overall shape change.

2.2.2. Skinning

Skinning represents a very speci�c group of mesh deformation methods, where the target pose is

described using a skeleton. However, as most skinning methods expect their input to be de�ned

in world space, the hierarchical skeleton is usually converted into a non-hierarchical representation

relative to the world origin (see Appendix A).

The relationship of skinning methods to this thesis is twofold � �rst, all the characters animated

using our parametric space are skinned using a linear skinning approach; and second, we introduce a

novel skinning technique that exploits the properties of our animation model (see Section 5.6).

Linear blend skinning (LBS), also called skeleton subspace deformation (SSD), uses a linear

combination of matrices that describe the transformation of each bone with respect to its original, or

binding, pose to deform a mesh (see Appendix A for a mathematical explanation).

While several more advanced and �exible versions of this method were proposed (see below), the

original simple method is currently the industry standard and the most popular method for skeleton-

based mesh deformation. A detailed description together with a list of properties and drawbacks

is provided by Lewis et al. (2000). The skinning data consists of a set of weights assigned to each

vertex, which connect the vertex with a number of bones (often limited to 4). Each of these weights

is non-negative and their sum equals one. They form a set of weights to compute a weighted average

of the bone transformations, which is then used to determine the deformed position of the vertex.

While very simple and fast to compute, this method has two main drawbacks: the loss of volume

caused by linear combination of matrices (see Figure 2.2) and its inability to represent axis-dependent

transformations (e.g., the human wrist).

Several techniques were developed to address these issues. Apart from non-linear skinning methods,

which usually lead to signi�cant increase in computational cost (see below), linear extensions to

LBS add either more joints or more weights per vertex. The �rst approach was used by Mohr

& Gleicher (2003), who suggested creating new joints as parameterised non-linear interpolations of

existing joint transformations (e.g., using quaternions). Using the second approach, Merry et al.

(2006), proposed using 4 weights per vertex and bone (one for each component of the vertex position),

while Wang & Phillips (2002) used 12 weights, one for each non-trivial element of the transformation

matrix. However, the additional parameters in both of these methods do not have an intuitive meaning

and therefore they are not practical for manual input. For this reason, in all three cases a method
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(1) (2) (3) (4)

Figure 2.2.: The illustration of the artifacts of simple linear skinning. A vertex skinned with weight 0.5 to
both displayed bones (1) is deformed by bone movement, with its new position as a linear combination of the
deformation by the two bones (2). This can lead to loss of volume and self-intersections (3). However, a more
natural solution (4) would require non-linear deformation model.

is provided to derive them automatically from an example mesh animation (with connected skeletal

data).

Given a mesh animation as a source of data, skeletal animation can be described as a problem

of mesh animation compression. From this point of view, skinning methods are decompression

mechanisms with varying abilities to represent the original data. In a classical computer animation

pipeline, this compression is essentially performed manually by an artist. However, a large group of

methods provide automatic ways to do this. For example, Kavan et al. (2007b; 2010) provide methods

based on non-linear optimisation that aim to create a non-hierarchical skeletal structure and a set of

localised skinning weights that represent an animation as closely as possible. While eliminating the

need to specify extra parameters manually, these algorithms are at risk of over-�tting source data,

making the compression relevant only for the animation provided as input.

Non-linear skinning methods provide alternative ways of deforming a mesh based on skeletal an-

imation data. Kavan et al. (2007a) introduce a skinning method based on transformation interpolation

using the non-linear algebra of dual quaternions, thereby successfully addressing the joint-de�ation

problem of linear methods, without adding any additional parameters. Furthermore, they provide

a way to convert this representation to simple linear skinning, at the cost of adding additional in-

terpolation joints into the skeletal hierarchy (Kavan et al., 2009). Physically-based skinning using a

�nite element solver was presented by McAdams et al. (2011). Simulating the bones and attached soft

tissue with collision detection, this technique provides very accurate and physically plausible results.

However, as a non-linear solver, it is computationally very expensive and far from being interactive.

The last group of skinning methods � example-based skinning � use a set of example poses and

an interpolation scheme to synthesise even very complex character deformation at a relatively small

computational cost. However, to achieve plausible results, the space of deformation parameters has

to be sampled appropriately, but determining the positions of new examples is not a trivial task and

their creation poses a signi�cant work overhead. Moreover, the storage costs of a large number of

examples can be high.

Lewis et al. (2000) introduce the Pose Space, an example-based skinning method using a radial

basis interpolation function. They also provide a detailed comparison with traditional linear skinning.

Sloan et al. (2001) extend this approach by incorporating a cardinal basis function (a combination

of linear and radial basis functions). They provide an interactive tool for building the pose space

and introduce the use of pseudo-examples to reparameterise the pose space. However, both methods
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su�er from problems with their interpolation schemes. Radial-basis function parameters are non-local,

in that each point in the parametric space has non-zero weights for all examples. Furthermore, as

parameters tend towards in�nity in any direction, the result converges asymptotically towards the

mean of all examples. Cardinal basis function solves this problem, at the cost of introducing negative

weights with no geometric meaning.

2.2.3. Image-based Techniques

The use of polygonal models can be a limiting factor for systems with a large number of characters

displayed simultaneously on the screen. Level-of-detail techniques aim to address this issue, but the

models cannot be simpli�ed any further than a particular level without severely impacting on visual

quality. Image-based techniques aim to address this problem by representing the geometrical details

using textures instead of the geometry, with a particular texture selected (and optionally deformed)

using the skeletal pose information. They are especially e�ective in extreme scenarios, where the

number of polygons exceeds the number of displayed pixels.

Dobbyn et al. (2005) presented a system built on impostors (or billboards), where a character

is represented by a single polygon with a texture applied. By connecting the impostor generation

system with the on-line renderer, the rendering style was matched exactly, creating seamless transitions

between the two representation. Unfortunately, animated models require a very large number of stored

animation poses. To address this, Kavan et al. (2008) proposed polypostors, which are impostors built

of several textured polygons. By displacing the vertices of these polygons, it is possible to deform the

displayed models and mimic their appearance after deformation without the need to explicitly store

every animation frame.

2.3. Motion Editing
All data-driven animation techniques incorporate a database of motion clips. In order to be able to do

more than just replay the pre-recorded motions, we need methods to alter this data in ways suitable

to its representation and properties.

The large �eld of motion editing methods can be separated into four groups � methods dealing

with motion as a multi-dimensional signal (Section 2.3.1), blending and interpolation methods (Sec-

tion 2.3.2), constraint-based techniques (Section 2.3.3) and physically-based techniques (Section 2.3.4).

The motion editing �eld is related to this thesis in several ways. We deal with motion as a signal,

when we �lter it and blend in motion changes (Section 4.3). Moreover, the motion map method

(Section 5.2) uses signal processing methods quite extensively. Motion blending underpins all data-

driven animation approaches (including our locomotion system; see Sections 5.5 and 5.6), and our

footstep handling (Section 4.4) is just a variation on the theme of constraint-based motion editing

methods. Therefore, we focus in this section primarily on these aspects; for a more detailed overview,

please refer to a more comprehensive survey by van Welbergen et al. (2010).

2.3.1. Motion as a Signal

A motion clip can be represented in a simple manner using a set of joint-angle functions parameterised

by time, which form a multi-dimensional signal. This data can then be altered using signal processing

techniques, such as blending, concatenation, multiresolution editing, timewarping or displacement

mapping (Bruderlin & Williams, 1995).

Adding a smooth displacement function to the motion data allows certain properties of a motion clip

to be changed while preserving its details. Witkin & Popovic (1995) use a cardinal spline to create a

displacement function that changes the input motion to satisfy a set of user-de�ned constraints, using
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IK, changes in joint angle or timing edits. The placement of the knots in their spline is based entirely

on the input constraints and can therefore be quite uneven, leading to overshooting in certain regions

while others are oversmoothed. Lee & Shin (1999) address this issue by implementing a multiresolution

approach, with each level using only splines with evenly spaced knots. Starting from the coarsest level,

each spline is �tted into the di�erence residual, thereby adding more details without compromising

the overall curve shape. Furthermore, their spline is de�ned using quaternions and exponential maps,

which provide a better interpolation scheme than the joint angles used by Witkin & Popovic.

Motion style describes subtle or stylistic di�erences between motion clips of the same type. Amaya

et al. (1996) show on non-locomotion motion clips (e.g., drinking, kicking) how simple amplitude and

speed changes a�ect the emotional context of the motion. Unuma et al. (1995) provide a method, based

on frequency-domain analysis, which is capable of describing, interpolating and altering more generic

styles of periodic motions. A dynamic �lter can be used to emphasise a set of primary movements while

minimising the in�uence of others (Wang et al., 2006). Although this method is particularly suitable

for cartoon animation, Wang et al. also demonstrated its applicability to motion capture data.Hsu

et al. (2005) use a non-linear optimisation technique to �nd spatio-temporal correlations between two

motion clips (both periodic and non-periodic) and then construct a time-invariant representation of

the motion style di�erence.

The motion texturing approach (Pullen & Bregler, 2002) starts with a user-de�ned rough animation

of a small subset of a character's joints. By splitting the source animation into segments, based on

the 2nd derivation zero crossing, and matching them with segments from a motion database, this

approach creates a new animation by providing more details into the animated joints and synthesising

the motion for the free joints.

2.3.2. Blending and Interpolation

Motion clips can also be edited by blending (interpolating) with a database of pre-recorded motion

primitives. To do so, it is necessary to �rst establish both spatial and temporal correspondences and,

based on this information, blend the clips in a way that will reduce the possibility of introducing

motion artifacts.

The usual approach tomotion interpolation blends skeleton poses (frames) by interpolating each

joint of a hierarchical representation separately using an algebra of rigid body transformations (see

Section 2.1). However, more advanced interpolation methods can avoid certain artifacts caused by

this simple method, such as footsliding. Rose et al. (1996) allow the disassembly of the original

motion into bodyparts and time fragments, based on manually-de�ned spacetime constraints. The

blending can then by performed on each bodypart separately, with di�erent parameters and timings,

and even assembled into more complex motions using IK to enforce blended constraints. Another

advanced interpolation scheme was introduced by Mukai & Kuriyama (2005). Their method �rst

aligns the data in both the spatial and temporal domains and then creates blends using a statistical

kernel-based scheme built on an artifact minimising predictor.

Hierarchical blends of poses create a highly non-linear algebra with respect to end-e�ector positions,

which is a problem particularly for data-driven inverse kinematics. For this reason, IK blending

schemes must attempt to linearise their parametric space using resampling (see Section 2.3.3).

Several methods convert the motion data to an alternative description, which allows them to per-

form the blending and interpolation directly in the new domain. Examples of such descriptions are

parameters of principal components in Euclidean space (Troje, 2002) in geodesic space (Tournier et al.,

2009; Lim & Thalmann, 2002), or in the frequency domain (Unuma et al., 1995).
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The problem of temporal alignment for motion blending was �rst stressed by Rose et al. (1998)

in their Verbs and Adverbs work, showing how it can help to minimise blending artifacts in mo-

tion parameterisation methods. They use manually annotated events and linear timewarping, which

stretches and contracts the signal intervals to match the corresponding events in the time domain, to

ensure that the blending is performed only on similar frames only. However, the explicit de�nition

of discrete constraints can create con�icts and violations of maximal timewarping limits. Therefore,

Ménardais et al. (2004) introduced an algebra capable of handling priorities, con�icting constraints

and incompatible constraint sequences.

Automatic temporal alignment can be achieved using Dynamic Timewarping (DTW), a method

commonly used to match two sequences of events in signal processing (Bruderlin & Williams, 1995).

Unfortunately, for a set of animations that are not su�ciently similar, DTW can introduce timewarping

artifacts, such as non-causality (incorrect event sequence match/order) or excessive time manipulation.

Kovar & Gleicher (2003) address these issues by applying an alternative sequence matching algorithm

in both space and time, limiting the maximal slope and �nal function shape. In contrast to the

DTW algorithm, this leads to an invertible function, making the result usable as a reversible motion

alignment transformation (Mukai & Kuriyama, 2005).

Hsu et al. (2005) use a spatio-temporal optimisation technique to determine correspondences be-

tween two motions in space and time in a single step, thereby allowing a closer motion match with

fewer artifacts. Based on this information, they build a time-invariant di�erence data structure usable

for motion style transfer.

2.3.3. Constraint-based Motion Editing

A constraint is an explicitly de�ned spatial or temporal feature that represents a desired state of

the motion. This feature can be de�ned manually, or extracted from the motion (e.g., footsteps). A

constraint based editing method changes the original motion to satisfy a set of constraints. With this

broad de�nition, most motion editing techniques can be described as constraint based methods, as

they alter the motion to give it a desired property. However, the term usually describes methods that

deal explicitly with spatial features.

Constraint based methods are closely related to several parts of this thesis. Chapter 4 is primar-

ily concerned with footstep constraints detection and enforcement. Our linearised parametric space

(Chapter 5) is aimed at minimising walking motion artifacts de�ned using constraints. Finally, our

perceptual study about footskating evaluates the impact of enforcing (or not) footstep constraints

(Section 6.3).

In this Section, we describe only a small subset of constraint based methods that are directly related

to this thesis. For a more comprehensive overview, please refer to Gleicher (2001).

Constraints Detection

The �rst step of any constraint based motion editing method is to determine the spatial and temporal

information about the constraints in the original data. In practical applications, these data are often

de�ned manually by an animator (Rose et al., 1996; NaturalMotion, 2011), because a fully generic

and accurate method based solely on motion data is yet to be developed.

If a digitised description of the environment is available (or is trivial enough), a simple constraint

detection method can compute the distance between the objects in the environment and the articulated

model (assuming no signi�cant noise in the input data). This computation performed at every frame

can be ine�ective, so Bindiganavale & Badler (1998) propose to determine a set of likely candidates

using the zero crossing of the motion data second derivative (acceleration). A similar method, proposed
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by Hreljac & Marshall (2000), uses local maxima of acceleration data instead. In their implementation,

these points are determined using the �rst derivative of the heel and toe acceleration (jerk), separated

into its horizontal and vertical components. They provide an evaluation of their method using force

platforms.

When noise is present, higher derivatives of motion data tend to be unreliable. To achieve similar

results as higher-order methods, the end-e�ector to object distance threshold can be combined with

a threshold of end-e�ector velocity magnitude (Lee et al., 2002; Ménardais et al., 2004). To avoid

multiple detections caused by noise in the data, Glardon et al. (2006) �lter the data in a preprocessing

step using a PCA based motion anticipation �lter, and incorporates an adaptive thresholding scheme

instead of a single �xed value.

Another group of methods builds on the analysis of the world-space end-e�ector transformation

nullspace (i.e., the subspace that does not change under the transformation). Liu & Popovi¢ (2002)

analyse the translations and provide the information about static or sliding constraints. Salvati

et al. (2004) extend this method by determining the full nullspace of transformations and merging it

over a window of frames. The dimensionality of the solution determines the constraint type � a 0D

constraint is a rotation around a point, a 1D constraint rotates around an axis and a 3D constraint

stops the whole space changing, thus providing a static constraint (please note that a 2D solution

is not possible). Based on this work, Le Callennec & Boulic (2006) develop a method using only a

di�erence transformation between two frames (only 1D and 3D constraints are detectable). They also

develop a prediction �lter, making the detection more robust against a noisy input.

If a set of annotated data is available, a machine learning approach towards constraint detection

is possible. Ikemoto et al. (2006) uses a k-nearest-neighbour classi�er trained on a set of annotated

data and the world positions of leg joints in 21 consecutive frames. This classi�er outputs a vector of

4 binary �ags � left or right, heel or toe. The training is simpli�ed by an interactive training tool.

Inverse Kinematics

Inverse kinematics (IK) is one of the basic tools for constraint based motion editing. For its de�nition,

we should start with de�ning the opposite term � forward kinematics. Forward kinematics de�nes

the position (and orientation) of the end-e�ector p as a function f of all joint states in the chain q

leading to this end-e�ector, with the shape of the function f de�ned by the topology of the skeletal

structure. Inverse kinematics solves the inverse problem, i.e., �nding a joint con�guration that leads

to the desired state of the end-e�ector by creating an inverse function f−1. This is a much harder

problem than forward kinematics, as the inverse function

� does not have to have a unique solution, when the problem is under-constrained. This results

in a subspace of con�gurations, all leading to a correct solution;

� does not have to have any solution, i.e., when the problem is either over-constrained, or simply

outside the space of possible solutions;

� may provide a solution with a large number of degrees of freedom (DOFs), each of them being

highly non-linear.

Previous work provides several di�erent ways of addressing this problem. For relatively simple joint

chains, an analytical solution is possible, which de�nes the complete subspace of all con�gurations.

The IKAN toolkit Tolani et al. (2000) provides such a solution for anthropomorphic limbs.

For more complex chains, a numerical solution is necessary. Unfortunately, numerical methods

usually provide only a single solution, and although the solution subspace can have many degrees of

freedom, these methods are not capable of fully exploring them. As a consequence, the results can

31



2. Background and Related Work

be very unnatural, especially if the starting pose is far from the goal position (van Welbergen et al.,

2010).

The Jacobian inverse method linearises the problem around the current joint con�guration (Welman,

1993). This solution ensures minimal changes to the joint rotations, but it is computationally expensive

and unstable when close to the Jacobian singularities. The Cyclic Coordinate Descent (CCD) (Wang

& Chen, 1991) is both faster and avoids the singularities of the previous method by changing the joint

con�guration one at a time. However, it can exhibit poor convergence and, by not distributing the

transformations along the whole chain, it can lead to unnatural poses (Welman, 1993). To solve the

latter problem, Kulpa & Multon (2005) proposed an alternative iteration mechanism.

The solution ambiguity can be reduced using a larger set of constraints, by analytically de�ning the

plausible con�gurations of the IK chain. Unfortunately, this can lead to an over-constrained problem.

Boulic et al. (2003) provide a system that allows constraints to be prioritised, with each priority level

restricting the solution space for all lower levels to the subspace of its manifold.

Yet another group of methods based on optimisation poses the IK problem as a minimisation

problem, which can be handled using a number of standard non-linear solvers. This approach also

allows other constraints to be added into the IK computation, such as joint limits and inter-joint

dependencies. The main disadvantages are based on the properties of the solver used, with the most

restrictive one being the computational complexity.

A data-driven approach towards solving complex IK chains limits the many-dimensional solution

space to poses that can be represented as a combination of examples from a database, thus providing

more natural solutions. To represent the example combination in terms of end-e�ector position, a non-

linear reparameterisation of the con�guration space is required. A standard solution to this problem is

to use a locally linear approximation of the inverse function by registering a larger set of interpolation

results into a space parameterised by the end-e�ector con�guration.

Wiley & Hahn (1997) use linear nearest neighbour interpolation and dense uniform sampling to

create this structure. Kovar & Gleicher (2004) extend this approach to the temporal domain, using

timewarping to blend di�erent motions, to create a system that can synthesise not only single poses,

but also full animations that reach these poses. Rose et al. (2001) use cardinal basis function interpo-

lation to provide smoother parameterisation. This comes at a cost of more complex blending and a

risk of unnatural poses, as cardinal basis functions do not guarantee positive weights and each pose is

created using a combination of all poses in the parametric structure. Their approach does not sample

the parametric space regularly, but rather uses the smoothness of the inverse function to determine

the locations for new pseudo-examples, thereby improving the resulting accuracy.

Per-frame Inverse Kinematic + Filtering

The classical de�nition of inverse kinematics is as a stateless function, not providing any explicit

consistency between frames. One possible way to extend this information to other frames is to use

�ltering to create smooth motion with enforced constraints. This group of techniques is called Per-

frame Inverse Kinematics + Filtering (PFIK+F), a term introduced by Gleicher (2001), who also

provides a comprehensive list of previous techniques with a discussion of their properties.

Choi et al. (1999) use IK to enforce end-e�ector con�gurations in constrained time intervals and

�lter the poses at the start and end of the interval to ensure smoothness. Many other methods

use a similar approach, and utilise smoothing methods from signal processing �eld (Gleicher, 2001;

Kovar et al., 2002b; Boulic et al., 2003). A di�erent �ltering approach involves �tting a spline to the

constrained data, thus creating a smooth displacement function (Witkin & Popovic, 1995; Lee & Shin,

32



2.3. Motion Editing

1999).

Optimisation Methods

Optimisation methods provide more �exibility than the previous techniques, because the solution to

multiple constraints and their priorities can all be embedded into their minimisation function and

solved in one step. They can also be used to solve IK for the whole animation at once, enforcing solu-

tion continuity, threfore providing both smoothing and constraints enforcement. Their disadvantages

include very high computational complexity, issues with determining a single minimisation function

that includes all the desired properties, and the possibility of unpredictable behaviour (van Welbergen

et al., 2010). A detailed comparison between PFIK+F vs. optimisation techniques was provided by

Gleicher (2001), with the conclusion favouring the former.

Gleicher (1997) provides an implementation of a spacetime optimisation method that enforces con-

straints at speci�ed keyframe locations (the constraint enforcement is not guaranteed outside these

keyframes). This technique was later extended to incorporate many di�erent constraint types, and

provides a comprehensive method for motion retargeting (Gleicher, 1998). A constraint based optimi-

sation technique, capable of synthesising a motion from a set of motion clips, was introduced by Liu &

Popovi¢ (2002). Their approach involves automatic constraint and transition detection, with the �nal

result generated using a spacetime optimiser that prefers smooth and physically correct (balanced)

motions.

Motion Retargeting

Motion retargeting is a speci�c subset of constraint-based motion editing techniques, that focuses on

adapting a motion to a character with a di�erent bone structure and/or bone sizes than the ones from

which the motion was captured.

In the case of locomotion, the footstep cleanup (i.e., footstep constraints enforcement) is the most

important step when retargeting a motion. Essentially, any constraint based motion editing method

can provide a solution, but a targeted method can more successfully address this particular issue.

Kovar et al. (2002b) provides such a method, combining successive steps of root displacement, a speci�c

variant of analytic leg inverse kinematic, root trajectory smoothing and leg lengthening. Another

speci�c footstep cleanup method was introduced by Glardon et al. (2006), who use an IK technique

with constraint preferences.

To retarget motions of other types, cleaning up the foot motion is not su�cient. Gleicher (1998)

introduces a retargeting technique based on spacetime optimisation, which incorporates several types

of user-de�ned constraints, e.g., parameter value range (joint limits), point in a speci�c position,

point constrained to a region (above ground, outside an object), stable point (for footstep cleanup),

point-to-point distance (holding an object) or vector orientation (heading direction).

If the source and the target character have a di�erent topology (e.g., di�erent number of joints in a

limb), a more generic method is required to adapt the motion in a plausible way. Monzani et al. (2000)

proposes such a method that is applicable to humanoid characters. He uses an intermediate skeleton

to standardise the motions and then a combination of IK and �ltering to satisfy the constraints. An

even more generic technique was proposed by Hecker et al. (2008), which was used in a game called

Spore. The user has the freedom to design creatures with a wide range of bodyshapes, number of limbs

(heads, claws, tails) and other radically di�ering properties. The animation is manually speci�ed in a

morphology independent form, which allows it to be retargeted to each speci�c case using a particle

based inverse kinematics technique.
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2.3.4. Physically-based Motion Editing

Methods based on a physical simulation form the most challenging group of motion editing techniques.

The main reason is the complicated nature of the human body, together with the even more impressive

control abilities of the central nervous system. A large number of methods that simulate both aspects

on a di�erent levels of complexity have been developed in recent years, though a complete list is

outside the scope of this thesis. For a detailed overview of physically-based simulation and control

methods, please refer to the Eurographics STAR report by van Welbergen et al. (2010).

Several methods combine a data-driven approach with physical simulation. Popovi¢ & Witkin

(1999) start their motion editing technique with a captured motion clip, �t a physical character model

to the motion, alter the model's parameters to generate a new motion and map the di�erence onto the

original sequence. This approach retains the subtle properties of the original animation (which cannot

be fully represented in the physical model), while providing physically based control of the overall

motion. Their approach uses a simpli�ed human model, created manually to re�ect the intended

motion editing task.

The constraint-based spacetime optimisation technique of Liu & Popovi¢ (2002) incorporates a

physical simulation as a part of the minimisation function, speci�cally a momentum control and a

balance predictor. This allows the full scheme to provide more physically correct results by taking

into account the dynamic properties of the motion.

2.4. Capturing and Storing Motion Data

Motion capture technology provides a means to directly record an actor's motion. For this reason, it

is valuable for all data-driven animation methods as a source of extremely realistic motion data. In

this thesis, we use an optical motion capture system as the source of our data. However, as it is a

commercial system, the software and internal procedures are mostly proprietary. For this reason, we

use it only as a tool (see Chapter 3) and do not discuss its technical details.

The second part of this section deals with motion data storage. Even though there has been a

signi�cant amount of work done on motion compression, in our case it is not an issue (see Section 2.4.2)

and therefore we provide only a very brief overview of previous work in this area.

2.4.1. Motion Capture

Motion Capture covers a very large set of methods capable of tracking human or animal motion in

space. Its applications include surveillance and identi�cation (biometrics), virtual/augmented reality,

computer interaction using gestures and movements, medical/sport applications and accurate 3D

motion recording. Methods can be classi�ed as facial motion capture, bodypart motion capture

(gestures, head movement), full body motion capture or high-resolution techniques. The latter are

capable of capturing garment animation and subtle muscle motions (usually referred to as performance

capture).

This section brie�y describes the di�erent technologies used in this vast �eld. Their large diversity

is characterised by di�erent requirements on the captured motions and the range of sensors capable

of recording a particular type of motion. We will describe only the most common technologies, which

produce data accurate enough for data-driven character animation. For a more complete list, please

refer to Moeslund et al. (2006).

Optical motion capture based on simultaneous multiple viewpoints is most commonly

used in practical applications due to its stability and robustness as well as minimal invasiveness

of the equipment. Markers, which are the physical representation of tracked features (e.g., active
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markers that emit light pulses, or back-re�ecting passive markers in combination with light sources

placed close to the camera positions), have optical properties that are easily recognisable in the each

camera's output. Compared to markerless optical motion capture, this allows more robust tracking and

consequently less noise in the resulting data. The easy identi�cation of a marker in the camera output

allows for simpler data processing and real-time usage. The main disadvantage is the requirement to

place markers on each captured feature, which limits the capabilities for capturing high resolution and

garment movement.

Extending the cameras with panning and tilting capabilities can lead to better coverage of the

capture region with a lower number of cameras at the cost of a more complex camera calibration

procedure (Kurihara et al., 2002).

Markerless motion capture methods identify tracking features automatically, either based on

correspondences between multiple viewpoints, or by analysing 3D representations (optical �ow or

voxel based) extracted from the captured data. Because physical markers are not used, this approach

is more suited to capturing garments and for performance capture. The main disadvantages include a

higher noise ratio in the resulting data (caused by inaccurate detection and triangulation of features),

the requirement for either a non-uniform texture (e.g., clothes with patterns that can be used for

feature detection), or in the case of silhouette based methods, an accurate way to extract the moving

�gure's silhouette from video data.

Other motion capture technologies are not as common sources for data-driven motion synthesis

as the ones mentioned previously. The optical motion capture �eld includes not only multiview

approaches, but also a large group of single view and stereo vision methods. Applications range from

surveillance to low cost motion capture used for advanced user interfaces in virtual environments

(Moeslund et al., 2006). Another group of optical motion capture uses structured light to allow depth

reconstruction, providing a 2.5D representation of the captured volume in the real time (e.g., Microsoft

Kinect). However, the consumer level products of this kind do not provide the same level of accuracy

as previously mentioned systems, while professional level systems are not broadly used due to their

cost.

Non-optical technologies can utilise a broad range of electromagnetic, inertial, mechanical and ultra-

sound location sensors, but only electromagnetic and inertial sensors are used in practice. Electromag-

netic motion capture (Bodenheimer et al., 1997; O'Brien et al., 2000) has limited range but directly

yields the transformations of body segments which, together with with very low noise, makes it ideal

for on-line use (Herda et al., 2000). Inertial sensors provide only acceleration data (2nd derivative of

position with respect to time) which makes them unsuitable for full-body motion capture, but their

low price and simple setup makes them well suited for driving on-line performance capture (Slyper &

Hodgins, 2008).

2.4.2. Storing Motion Data

Motion data, as any other kind of data, need to be stored and retrieved e�ciently. For large databases,

the total size of this data can also pose a problem. In this section, we discuss di�erent aspects of

storing motion data that are directly related to this thesis.

The storage requirements for uncompressed mesh animations pose a signi�cant problem � assuming

a relatively standard number of 10000 vertices in a mesh model, and an animation of one minute length,

recorded with 30 frames per second and stored using IEEE �oating point number representation, the

space required to store this animation is approximately 206 MB.

Skeletal animations provide signi�cant data compression � for the same animation, described by a
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relatively standard number of 22 bones (a skeleton without detailed hands; described by 6 numbers

for the root and 3 for the rest of the joints), the required storage space is only 0.5 MB. With the usual

amount of hard drive space in modern computers, this becomes an issue only for very large motion

databases.

Many of the classical data compression methods can be applied to skeletal motion data. Apart from

generic lossless techniques, the lossy algorithms would include Principal Component Analysis (PCA),

wavelets, motion JPEG (a combination of discrete cosine transformation and entropy encoding) and

subsampling. Arikan (2006) provides a detailed analysis of the properties of each of these methods and

describes a new technique that combines them, which has better properties than any of its individual

components. Faloutsos et al. (2007) provide an even more comprehensive list of compression methods

applicable to motion data.

In all the implementation work in this thesis, we store our data uncompressed, in a binary format

(created with Boost::serialization library), using quaternions for rotational representation, 3D vectors

for translations and IEEE �oating point numbers for their components. This allows to reduce the

whole database of 83 subjects, 100+ motions for each subject, to less than 1 GB of motion data.

Again, compared to the usual capabilities of modern computers, this is a very modest requirement.

Therefore, the motion compression problem is outside the scope of this thesis.

However, motion �le formats pose an important problem for our work � depending on the project,

our pipeline consists of several commercial programs used for data processing (Vicon IQ, Autodesk

3DS MAX, NaturalMotion Morpheme, Autodesk Maya, Autodesk MotionBuilder...) and several 3rd

party run-time libraries used for rendering and animation. Unfortunately, due to the lack of one

generally agreed and supported �le format, these programs and libraries do not cooperate well. In

our work, we have implemented a set of importers and exporters for several of common formats. For

their description and a brief overview of our pipeline, please refer to Section 3.5.

2.5. Data-driven Animation Methods

Data-driven animation methods use a database of existing motion data to synthesise novel animations.

This synthesis is based on blending, concatenating and timewarping of the original data, or using the

original data as a starting point for an optimisation process (possibly based on a physical simulation).

Compared to motion editing techniques (Section 2.3), data-driven animation methods provide more

comprehensive ways of generating novel motions, and often incorporate motion editing as part of the

generation process.

The data-driven animation models, based on a single character but fast enough to generate motion

for a crowd, are the main topic of this thesis. Speci�cally, our parametric space concept (see Chapter 5)

is a data-driven parametric model, and the Biodancer project was based on a beat-synchronised

fragment based technique.

The list of publications in this section is aimed at issues directly addressed in our work. For a more

complete overview, please refer to the Eurographics state-of-the-art report by van Welbergen et al.

(2010).

2.5.1. Fragment Based Methods

Fragment based methods (or graph approaches) concatenate short fragments of motions into a stream

of motion data. More advanced methods can connect complex structures in a similar manner, leading

to hybrid models (see Section 2.5.3).

The motion fragments are stored in a directed graph structure, with all possible clip connections
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usually being precomputed. For this reason, the computational cost of motion synthesis is minimal;

the most complex part is motion planning, which has to search through the graph to synthesise a

motion with the required properties. The resulting motion is highly realistic, as all clip transitions

are at points with high similarity. However, the synthesis system is less responsive and incapable of

reaching certain con�gurations, as the transition can happen only in discrete intervals (Reitsma &

Pollard, 2007). A way to address this drawback is to extend the set of input motion clips by their

pairwise blends, thereby increasing the inter-clip similarity and providing more transition edges, at

the cost of more complex motion planning (Zhao & Safonova, 2009).

The �rst set of fragment based motion synthesis methods starts with an unannotated and un-

structured database of motion clips. Because there is no explicit meaning assigned to the motions,

which could be used to limit the fragment search, a search through the whole graph structure is

required. Early methods plan the motion using the graph structure directly, often leading to large

planning times. Later techniques utilise a certain amount of precomputation, thus speeding-up the

search procedure.

One of the �rst methods that uses global search, and a description of challenges and issues connected

with such approaches, was provided by Lamouret & Van De Panne (1996). Using a simple lamp model

and a database of motions generated using physical simulation, they show that a method based on

splitting motions into fragments and searching through them to �nd a suitable connection clip is

capable of creating plausible animations. To clean the �nal result, they use an IK-based motion

editing technique.

Markov chains are statistical structures made of a �nite number of states connected with edges that

represent transition probabilities. Galata et al. (2001) use variable-length Markov chains to represent

di�erent behaviours in motion data (body contours and 3D marker trajectories). The states of their

chains are described using a common alphabet obtained by vector quantisation of input motion clips,

split beforehand into atomic components. Lee et al. (2002) apply a similar approach to skeletal motion

data, with each frame represented as a Markov state. For storage optimisation, they present a method

to prune the resulting graph. Novel motions are synthesised using graph search, sped up by higher

order statistical models and cluster analysis. Kovar et al. (2002a) creates motion graphs without the

explicit use of statistical techniques, making the approach simpler to implement. Arikan & Forsyth

2002 ease the problem of the costly graph search using a fast randomised algorithm with progressive

re�nement.

Constraints provide a simple yet powerful way of describing di�erent requirements placed on the

resulting motion. Liu & Popovi¢ (2002) provide an optimisation technique, which creates a motion by

combining short motion clips, while enforcing the smoothness and physical constraints (e.g., balance,

momentum).

Kim et al. (2003) create a motion graph suitable for dance and rhythmic motions. They �rst derive

motion beat and rhythmic patterns (a sequence of motion beats) by analysing second derivatives of

motion signals (a method previously used by Bindiganavale & Badler (1998)). Splitting the motion

data into fragments according to these patterns then implicitly guarantees music correspondence.

To improve motion graph search performance, many later techniques incorporate a certain amount

of precomputation or graph optimisation.

Lee & Lee (2004) describe the motion graph as a parameterised state-action model (with parameters

such as reachability and direction) and discretize the animation state, thereby reducing the number

of graph nodes. With this representation, they use reinforcement learning to rank the reachability

of transition edges, eliminating all rarely-used edges. In a similar manner, Srinivasan et al. (2005)
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precompute a mobility map consisting of multiple least-cost sequences from each graph node. De�ning

reachability, these limit the searching space, which allows greedy local searches to be performed rather

than expensive global ones.

Probabilistic Roadmaps (Choi et al., 2003) represent the environment in terms of randomly placed

oriented footsteps and connections between them, thereby describing the possible paths from one

foothold to the next. A path through the environment is planned on this structure using a graph

search algorithm. The footsteps from this path are used to extract a set of matching clips from

the database, which are then connected and adapted to the desired trajectory. Sung et al. (2005)

extend the clip extraction and adaptation procedure by a progressive re�nement from both ends of

the planned path.

If the motion clips in the source database are annotated with motion type, the motion graph can

be assembled into a structure that explicitly represents this information. This provides additional

control over the animation, which is often desirable for practical applications.

A classical example of such an approach are Move Trees, manually de�ned annotated graph struc-

tures used extensively in the animation industry (Mizuguchi et al., 2001). The animator is responsible

for providing source animation clips and de�ning transitions between them, determining all possible

motion combinations beforehand. Gleicher et al. (2003) provide an intuitive interface for authoring

move trees, called Snap-together Motion. First, with the assistance of an automatic algorithm, the

user identi�es a set of common poses between di�erent input animations. These poses are then merged

together, forming a graph node, with fragments of the original animations that describe the graph

edges. The result is a well-de�ned annotated motion graph that is directly usable for real-time ani-

mation. Fat Graphs (Shin & Oh, 2006) merge multiple edges connecting two common poses into a fat

edge, parameterised along an user-de�ned joint, thereby creating a hybrid model (see Section 2.5.3).

Arikan et al. (2003) use motion annotations explicitly to specify the desired motion's parameters.

These annotations are user-de�ned, can represent both the motion type or its style, and allow multiple

annotations for a single motion clip. To ease the annotation process, they employ support vector ma-

chines, which allow a motion database to be annotated using a set of examples. The motion synthesis

is then guided by the user by specifying the annotations and their combinations on a time axis. A

dynamic programming algorithm searches the database for most appropriate clips and stitches them

together to produce the �nal motion. The level of control is limited only by the type of annotations

provided.

2.5.2. Parameterisation Models

Parameterisation methods are aimed at solving the inverse motion problem � from a set of high-

level parameters, determine the combination of motion clips from a database that would lead to

a motion with desired properties. As with forward and inverse kinematics, the inverse problem is

burdened with inherent non-linearity, a large number of possible solutions for certain cases and only

approximate solutions for others.

The following section describes previous work on data-driven parameterisation models. A large

group of similar models, called controllers, use analytical equations to generate the animation sequence.

However, this group is out of scope of this thesis.

Generic Parametric Models

Generic data-driven parametric models do not limit the type of the parameterisation used for describ-

ing the target properties of the motion. As such, their parameters can, for example, describe speed

and velocity for locomotion, target location of a punching motion or a dancing style, all represented

38



2.5. Data-driven Animation Methods

in the same manner. A number of methods that could be classi�ed as being in this group, but which

are usually used for altering a motion sequence instead of synthesizing a new one, are described in

Section 2.3.2.

Perlin et al. (1995; 1996) de�ne source motions analytically using a grammar (as a controller). They

show how, in this representation, motions can be blended (Perlin, 1995) and parameterised (Perlin

& Goldberg, 1996). They also provide a scriptable interface that allows interactive responses, as

demonstrated in an application for multi-user chats.

Several methods allow the synthesis of reaching or other spatially-constrained motions using an

approach resembling data-driven inverse kinematics with �ltering. Wiley & Hahn (1997) introduce

a scheme to linearise the parameterisation of an example-driven reaching motion by resampling the

parametric space. The new samples, created using linear blends between the original motions, are then

registered into the parametric space, thereby providing a local linearisation of the parametric manifold.

Their blending them uses nearest-neighbour linear combination of sample motions. While simple and

fast, this method is not smooth in the �rst derivation, and possibly creates visible discontinuities. To

address this issue, Rose et al. (2001) use cardinal-basis function interpolation. Although not local and

possibly resulting in negative weights, their approach provides a smooth interpolation function, and

is also capable of determining the best position of pseudo-samples, based on the smoothness of the

blend-weight parameters.

Kovar & Gleicher (2004) return to the linear nearest-neighbour approach in their system, arguing

that the necessity of interpolating all example motion creates an unnecessary computational overhead.

Their approach is based on comparing motions using a match web as follows: using a metric, create

a 2D map of comparison values between each pair of frames (in the same spirit as our Motion Maps

� see Section 5.2); then detect the map's local minima and connect them into chains. This procedure

provides a set of possible motion matches together with their timewarping function. After computing

the match webs of all pairs of the input motions, they use a similar approach to Wiley & Hahn (1997)

to �ll the parametric space with pseudo-examples using blending, which results in a locally linearised

version of the inverse function.

Mukai & Kuriyama (2005) incorporate previously described correspondence determination scheme

together with the monotonically increasing timewarping function introduced by Park et al. (2004), (see

below) in their statistical interpolation scheme. The interpolation of this scheme uses a kernel-based

blending method built on a function prediction that minimises the resulting artifacts.

Standard statistical methods used for dimensionality reduction can also be used for parameterisa-

tion. Unfortunately, these methods extract parameters that have only mathematical meanings (e.g.,

direction of highest variance) and do not correspond to logical ones. Nevertheless, they can be used

for compression or for easing-up an optimisation problem (Safonova et al., 2004).

Locomotion Models

Most of the parametric methods introduced above are capable of creating a parametric locomotion

model with a certain amount of accuracy, even though they are not designed to solve this problem in

particular. In the next few paragraphs, we will describe several methods targeted solely at locomotion

generation, which makes them closely related to our parametric space model (see Chapter 5).

The main inspiration for our work is a group of locomotion methods based on trajectory analysis

and parametric motion synthesis. A classic example of these approaches was presented by Park et al.

(2002). Their locomotion model is described using three parameters � style (a discrete parameter

based on the clip annotation, which has to be available beforehand), speed and turning angle. First,
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the source motions are analysed by �tting a circle into their XZ trajectory and extracting their turning

angle and speed. Using these values, each clip can be placed into the parametric space structure. At

runtime, each clip's weight value is �rst determined using cardinal basis function interpolation (see

Sloan et al. (2001) for a detailed description). All clips are then timewarped using an incremental

timewarping scheme, a set of frames for blending is determined and the blended frame is computed

using quaternion exponential maps (each joint is handled relative to a best average orientation deter-

mined using a non-linear optimisation step). Because the �nal blend does not correspond precisely

to the requested trajectory, the last step of the method adapts the footsteps and root position /

orientation to follow the desired trajectory precisely.

The main disadvantage of this method is the chosen parameterisation scheme (Kovar & Gleicher,

2004). While smooth in any derivation, it assigns a non-zero weight for every motion in every point

of the parametric space, thus requiring an expensive many-frame blending for each frame. Moreover,

it can assign a weight lower than zero, which does not have any physical meaning. Finally, when the

parameter values are distant from all datapoints, the function converges towards an average of all

input motions. All these issues are addressed in our solution to the locomotion generation problem

(Chapter 5).

In Park et al. (2004), an extension of the Park's original parametric locomotion model addressed

several issues with the original method and led into the creation of a hybrid model in the spirit of Rose

et al. (1998). There were two major improvements of the parametric part. The �rst improvement

altered the timewarping method � the original scheme permitted negative values, leading to motions

that ran backwards in time. This was addressed by introducing a strictly non-negative timewarping

function, di�erent from the one used for motion blending. Second, the expensive optimisation process

computing the best average for quaternion blending was replaced by the value from the previous

frame. Assuming that the frame di�erence is small, this value provides a good approximation of the

best average point. The original parametric model represents nodes of a graph, allowing to connect

several di�erent parameterisations by transition edges.

The most recent addition to this group, and also closest to our work, is the parametric model by

Johansen (2009). Their technique uses gradient band interpolation, which addresses the drawbacks of

previous methods, providing a non-linear, but continuous, non-negative and monotonous interpolation

function. However, as the resulting weights are non-local and computed using an optimisation, both

the costs of their computation and of pose interpolation are signi�cantly higher than in our approach.

Nevertheless, the overall approach, locomotion cycle analysis and their inverse kinematics techniques

are closely related to our method (see Chapter 4).

An alternative parameterisation can be achieved by signi�cantly simplifying the motion. Extending

the rhytmic motion synthesis method (Kim et al., 2003), Kwon & Shin (2005) decompose animations

into segments using local extrema of the COM (centre of mass) trajectory. By analysing the footstep

pattern, they separate these segments into groups and use each group to create a parametric space

of a particular locomotion type. Afterwards, they create a transition graph between these parame-

teric spaces (with structure similar to Rose et al. (1998)), with each node representing a particular

locomotion type and its walking pattern, and the overall graph allowing type transitions.

A recent addition to locomotion models was presented by Lee et al. (2010). First, the frames

of input motions are represented as motion states, holding a vector with pose information and its

�rst di�erential. All the input states form a high-dimensional continuous motion space, i.e., a path

which represents a motion sequence (both original and synthesised). The value of each motion state

and its position in the motion space determines the possible actions that can be taken in the next
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frame. Each action is a discrete sample from the continuous motion space, created using a linear

combination of neighbouring states, with a slight bias towards example states to avoid drifting into

empty regions of the motion space. By randomly picking one of the actions, it is possible to generate

a plausible random motion. The control of the �nal motion can be achieved in two ways. First, it is

possible to assign weights to the action values, thus preferring certain actions over others. This simple

method unfortunately does not provide exact control and prefers only short-term goals. The second

method samples the motion �eld and uses a reinforcement learning technique over this discrete space.

While much slower than the previous method, it provides signi�cantly more accurate control over the

resulting motion.

An important aspect of a locomotion is motion style, both individual and as a motion type descrip-

tor. Several methods aim at providing a parametric model for motion style (for style transfer as a

motion editing method, please refer to Section 2.3.1). Troje (2002) introduces a generic parametric

model for pointlight walkers (see Section 2.7.1 for more details). This system analyses the source

motions in terms of principal component analysis and contained frequencies (related to the PCA

components), allowing a surprisingly large number of motion styles to be parameterised using simple

linear methods. Another method for parameterising both the locomotion and its style, called Style

Machines, was introduced by Brand & Hertzmann (2000). Their hybrid method represents motions as

Hidden Markov Models (HMM) and allows them to be merged using statistical methods, to provide

parametric abstractions of their styles.

2.5.3. Hybrid Models

Hybrid models combine both parametric approaches and motion graphs to produce a comprehensive

parameterisable model of motion. Previous sections introduced several of these models already, as a

clear division between hybrid models and fragment-based / parametric ones is hard to make.

The �rst classical example of a hybrid model is the Verbs and Adverbs approach introduced by

Rose et al. (1998). In this method, verbs describe the type of the motion (i.e., walking, running) and

adverbs the style (i.e., slow, happy).

The approach consists of several steps. First, the user constructs a verb graph, i.e., he manually

annotates motion clips with their type and creates possible transitions between them (several clips

can have the same type). Then, he adds adverbs to the motions annotated with the same type. The

system processes this information, creating transitions between verbs using IK and blending, and

parametric spaces from adverbs. Interpolating between them is then performed using a radial basis

function. While mostly manual, this method was the �rst of its type and served as an inspiration for

many later techniques.

Several extensions of basic fragment-based motion graph techniques (Kovar et al., 2002a; Lee et al.,

2002; Arikan & Forsyth, 2002; Gleicher et al., 2003) were proposed, thus making them hybrid models.

As previously mentioned, Shin & Oh (2006) introduced Fat Graphs, a parametric extension to

the Snap-together Motion method by Gleicher et al. (2003). In their method, all motions originally

connecting two nodes are merged (using timewarping and dimensionality reduction) into a parametric

structure called fat edge. To allow user interaction, the parameterisation is converted into an intuitive

2D representation along a selected joint, which can be easily manipulated using a 2D controller (e.g.,

mouse).

In a similar manner, Heck & Gleicher (2007) create Parametric Motion Graphs. Using an automatic

motion search and parameterisation described by Kovar & Gleicher (2004), they create a modi�ed

motion graph with states describing parametric structures and edges providing transitions between
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them. The result of this method closely resembles the original work of Rose et al. (1998), in this case

created using an automatic algorithm.

A hybrid method particularly suitable for human locomotion was introduced by Park et al. (2004).

Extending their previous work on locomotion parameterisation (Park et al., 2002) and addressing

several of its issues, they connect several locomotion parametric spaces into a graph structure. This

allows them to transition between di�erent types of locomotion (e.g., running, walking or crawling).

Each of the parametric spaces uses the same parameters, thereby providing a level of consistency

between di�erent motion types.

Another human locomotion method, building on rhythmic motion analysis (Kim et al., 2003), was

introduced by Kwon & Shin (2005). First, in a preprocessing step, they decompose the source motions

into fragments by analysing the COM (centre of mass) trajectory. Then, they analyse the footstep

pattern of these fragments and the corresponding ones together, thereby forming a parameterised state

of a graph structure. The footstep pattern analysis also provides motion fragments that can serve as

transitions between di�erent states. The �nal structure represents a parametric and periodic walking

pattern in each node, thereby allowing transitions between them.

The last hybrid method described in this section is Style Machines approach, introduced by Brand

& Hertzmann (2000). In this method, the structure of the motion is represented as a Hidden Markov

Model (HMM), with each state described as a Gaussian curve in the many-dimensional space of full-

body poses. The method �rst converts each motion into this representation and then merges the

states using an optimisation that minimises the state entropy and cross entropy. This process results

in a single HMM describing the motion patterns extracted from all clips in the database (with their

transitions), and a small number of parameters to adjust the style. In the examples provided in this

paper, of particular interest is the synthesis of walking patterns (periodic motions), which leads to a

circular graph with parameters thus span all styles of locomotion in the source database in a consistent

manner.

2.5.4. Group and Crowd Animation

The target of crowd animation is to generate the realistic motion of a large number of characters

simultaneously. For this reason, it is not feasible to de�ne the motion properties for each particular

character's motion on a level usual for single-character animation. Consequently, crowd simulators

work at a higher level of abstraction, with parameters such as crowd density, overall crowd direction

or a source/target (crowd generator and sink) model. The overall structure of a crowd simulator is

often described using a behaviour pyramid, with levels of higher abstraction at the top and physical

/ display levels at the bottom (Paris & Donikian, 2009). This thesis is focused on the lower levels

of this pyramid, i.e., the generation of the character animations and the deformation of the models

representing them.

The following section describes methods that handle the motion of a group of characters moving

simultaneously. We do not address the behaviour simulation, however, as this vast �eld of research is

outside the scope of this thesis.

A classical example of simple trajectory planner is the Boids system (bird-like objects) by Reynolds

(1987). This simulator can synthesise non-trivial scenarios by exploiting the emergent behaviour of

relatively simple individual agents. Extending this approach, Lai et al. (2005) present group motion

graphs, a motion graph-like structure generated from the results of boids simulation. It allows the

synthesis of group motions based on simulation examples and improves the predictability of the results,

without running an expensive simulation.

42



2.5. Data-driven Animation Methods

Social
 

Rational
 

Cognitive
 

Reactive
 

Physical
 

Kinematic
 

Geometric

Figure 2.3.: Behaviour pyramid, illustrating the levels of abstraction used in behavioural simulation. Each level
sends main data output down the pyramid, while receiving a feedback (upward direction) (Paris & Donikian,
2009).

Kwon et al. (2008) introduces a simple method of group motion editing at the trajectory level. Their

technique is based on warping the trajectories of the characters with as little change as possible, while

maintaining their spatio-temporal distances. They represent the trajectories of a group of characters

using a spacetime mesh. 3D curves in spacetime that represent the 2D trajectories of individual

characters and their temporal aspects, are connected by edges representing their spatial relationship,

thus creating a 3D mesh (vertices correspond to a single character's position at a given moment). The

user then de�nes constraints by dragging the vertices (displacing individual characters) or by imposing

constraints on the shape (e.g., limiting the 2D trajectory information by obstacles, such as squeezing

the characters through a narrow hole). New trajectories are then created by manipulating the mesh

using Laplacian mesh deformation, which preserves the details and overall shape and structure by

changing the original mesh as little as possible.

An even higher level of preprocessing is used by Yersin et al. (2009) in their Crowd Patches method.

The whole environment is built out of precomputed blocks, with each of these blocks representing

spacetime motion curves (3D � 2D trajectories and time) of all characters passing through it. Each

side (i.e., 2D plane represented by a spatial edge and the time vector) of each block poses hard

constraints on the entering and exiting trajectories, selected from a pool of patterns. After simulating

the content of each block (accounting for character avoidance, environment and high-level behaviour),

the continuity between neighbouring blocks is guaranteed by this pool of examples. This technique

creates crowd simulation with an extremely low computational overhead, as practically everything in

the simulation is computed beforehand and only replayed in real time, albeit with extremely limited

responsiveness.

A di�erent type of environment mapping is used by Sung et al. (2005). In a preprocessing step,

they create a probabilistic roadmap by randomly sampling the environment to create graph nodes and

creating edges between all pairs of nodes if they are reachable and correspond approximately to the

length of one character's step. Using this roadmap, the motion planner �rst �nds the shortest path

from starting to target node that does not collide with any obstacles. Afterwards, this path is used to

pick the motions that move the character between two consecutive nodes on the path. Starting from

both the start and the end nodes, the planner iteratively picks a motion with the required properties

using a greedy approach, and progresses along the path. Each clip change alters the resulting motion

and its trajectory, with progressive re�nement improving the result with each iteration. The iterative

process stops when both forward and backward paths are similar enough, at which point they are

both merged using a motion editing approach, thus providing the �nal motion. The planning for a
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crowd is performed sequentially, with all previously handled characters being dealt with as moving

obstacles (reusing the probabilistic roadmap structure).

A di�erent kind of preprocessing approach precomputes the character appearance into the texture

memory, displaying an image representation (called impostor) instead of the deformed geometry. This

approach exchanges the computational cost of deformation and rendering of a mesh model with the

storage space required to save all the possible deformations and view angles of the character. Hamill

et al. (2005) provide a detailed evaluation of this approach in terms of number of poses required

for impostor representation to minimise the impact on the perceived quality of the result. Dobbyn

et al. (2005) introduce Geopostors, an extended version of impostors, that allows to seamlessly switch

between the impostor and geometry representation, and enhances the realism of impostor crowd

representation by adding an accurate lighting model and a colour variation scheme. To lever the

storage requirements, Kavan et al. (2008) propose Polypostors, which render the characters using

several polygons (instead of one quad required for an impostor), and allow their deformation, thus

providing an approximation of the original mesh's animation.

2.6. Motion Metrics

A metric (or a distance function) is a function that de�nes a scalar distance between two objects in a

set. This set, together with such metric, is called metric space. A composed metric can be created as

a combination of several di�erent metrics but, by de�nition, such a metric can also return only one

scalar value. An example of a composed metric from the world of data-driven animation is a metric

that compares animation frames using a combination of simpler metrics applied to particular joints.

In our case, we will focus on metrics de�ned on

� separate joints (or bones / rigid components),

� frames (pose information, with optional dynamic data),

� fragments (windows of frames),

� clips (longer frame sequences, usually with di�erent lengths; the aim is often to achieve length

independence),

� style (di�erence between two motions of similar type),

� artifacts (measuring the unnaturalness of edited or synthesised motion),

� classi�cation (the probability that a motion is of a speci�c type, belongs to a speci�c group or

has a speci�c property).

Metrics provide information about the motions and are therefore essential for all data-driven anima-

tion methods, as they provide a way to compare motions, measure physical properties, determine

minimisation targets or the impact of physical interactions. They can be based on any property of

the animation sequence, i.e., kinematic, dynamic, statistical, environment interactions or any other.

There are three basic groups of metrics:

� analytic (based on purely mathematically derived properties of the motion),

� physically based (kinematic, dynamic or environment based)

� perceptual (modelling the way the motion is perceived, usually based on a perceptual experi-

ment).

The analytical metrics are based on the underlying mathematical models that describe the motion

and the environment. While often relatively easy to evaluate and consistent with the algorithmic

foundations of the animation methods, they do not necessarily re�ect any objective properties of the

motion.

Physically-based metrics are usually harder to evaluate and require complex models and additional
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information about both the character and the environment (e.g., weights of the character's bodyparts,

joint limits and friction models). Moreover, they usually represent only very simpli�ed models of the

character, as the realistic simulation of all muscles, the skeletal structure and neurological principles

is still beyond our reach. Nevertheless, they provide results that are signi�cantly closer to the real

world than the analytical metrics, and as such have become popular in recent years.

The last group, perceptual metrics, mimic the response of the human visual system to a particular

motion property, described by the statistical evaluation of results of a perceptual experiment.

In this thesis, the analytic and perceptual metrics are represented in several places. The analytic

metrics are used mainly for constraints detection (see Chapter 4) and for motion analysis for our para-

metric space concept (see Section 5.2). Perceptual metric form a large part of this thesis, particularly

represented in Chapter 6.

2.6.1. Metric De�nition

Informally, a metric, or a distance function, is a way of measuring distances between two objects (with

no restriction on the object type). It is a function that takes two objects of the same type and returns

a single scalar value, i.e., their distance. More formally, it is de�ned as a function d mapping a pair

of objects from a set X to a real number

d : X ×X −→ R

This function has to satisfy following four conditions (with x, y, z ∈ X):

1. Non-negativity � all values of a metric have to be larger than or equal to zero

d (x, y) ≥ 0

2. Identity � a metric results in a zero value if and only if both objects are equal (implicitly

de�ning the equality operator)

d (x, y) = 0 ⇐⇒ x = y

3. Symmetry � the order of operands is not important, i.e., it is a commutative operation

d (x, y) = d (y, x)

4. Triangle Inequality � ensuring that the distance from an element x to z via an element y is at

least as great as the distance from x to z directly (i.e., if the three distances are used to create

a triangle, this triangle will be non-degenerate)

d (x, y) + d (y, z) ≥ d (x, z)

This de�nition provides a way of describing di�erent properties of the compared objects. Please note

that each of the metric functions outputs exactly one real number. More complex metrics can be

created using a combination of simpler ones, but according to the metric de�nition, they can also

output only one real value.

2.6.2. Per-Frame Comparison Metrics

Per-frame metrics combine the joint values (i.e., kinematic information) of two frames, often together

with the associated dynamic properties (or, generally, any per-frame information), into a metric that

describes the di�erence between two animation frames. Out of the large number of metrics described
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in previous work, this section attempts to provide an example for each of the common types.

The simplest way of representing the pose of a hierarchical model is to use the angles of its joints

(i.e., Euler angles representation). Bruderlin & Williams (1995) use this representation in their Motion

Signal Processing work and use it also to determine the frame di�erences. Unfortunately, Euler

angles do not represent the space of 3D rotations well (see Section 2.1.2) and any metric using this

representation will have the same issues.

A metric can be created using a (possibly weighted) sum of Euclidean distances between correspond-

ing points placed on the character. Two common versions of this metric use a pointcloud created from

a low resolution version of a character mesh (Kovar et al., 2002a) and points placed in the location

of joints (Arikan, 2006). If the metric is to represent only the di�erences of poses independently of

the environment, then the global orientation and position of the character has to be removed �rst

from both compared frames. In the case of joint locations, the XZ translation and Y rotation can be

removed by decomposing the root transformation. To align two pointclouds, Kovar et al. (2002a) use

an analytical solution to the alignment problem described as a least-squares �t.

Another very common method of measuring di�erences between two frames is based on a weighted

sum of the lengths of quaternion logarithms computed from di�erence quaternions of corresponding

joints (Lee et al., 2002). This metric was presented in two versions � with the root translation/rotation

term to account for the environment and without, making the metric only pose-dependent. To distin-

guish between the direction of the motion, Lee et al. also add a second term computed in a similar way

out of the �rst di�erentials (velocities) of the joints. Based on the previous description, it can be seen,

that the metric works in the local space of each joint, independently of the hierarchy. For this reason,

correct weight values are critical for a good performance of the metric. Lee et al. (2002) proposed

to use binary weights � one for important joints (shoulders, elbows, hips, knees and spine) and zero

otherwise. Johnson (2002) re�nes these values, adjusting them based on relative joint importance.

Wang & Bodenheimer (2003) provides another set of weights, evaluated by a user study. Their weight

set is determined using least squares �tting on a set of hand-picked good and bad transitions from a

database. They �nd that the overall weight of the velocity part of the metric does not seem to make

any di�erence to the outcome; for the joint di�erences, their results give the highest values for hips

and shoulders, small weights to knees and elbows and zero otherwise.

Forbes & Fiume (2005) use a metric based on the values of the eigenvectors determined using

Principal Component Analysis (PCA). In their motion search algorithm, they convert the motion

data into principal components by �rst subtracting the average pose, linearising the remainder using

exponential maps and decomposing it using weighted PCA (the weights provide accuracy for each

analysed joint; necessary for correctly compressing hierarchical data). Their metric then compares

vectors composed of the values of important components (i.e., with high associated eigenvalues). This

reduced metric provides an e�ective way of both searching a database of motions and performing the

temporal alignment of clips using timewarping.

Another statistical metric was introduced by Li et al. (2002). The original motion is decomposed

into small segments called motion texons using a Markov approach in combination with linear dynamic

systems. The transition likelihood between these segments can then be used as a similarity measure.

A fully dynamics based metric was proposed by Liu & Popovi¢ (2002). They compute the position

of three center-of-mass points computed from the character's body (lower body, upper body and

arms), relative to the character's centre of support. Although they use this metric for a speci�c task

(comparing poses during takeo� and landing in a jumping sequence), it provides a good similarity

measure for any dynamic motions, while remaining very simple and reducing the number of compared
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parameters. As its values are determined by abstracting the actual structure of the character, it can

be used to compare motions performed by humanoid models with very di�erent topologies.

A vector of analytically de�ned Boolean features can be used as a very simple, intuitive and fast

way of comparing motion frames (Müller et al., 2005). Each of these features represent a property of

the frame pose, such as one leg in front of the other or one foot interacting with the ground.

To determine which of these metrics best re�ects both qualitative and quantitative frame di�erences,

Van Basten & Egges (2009) performed a comprehensive study consisting of motion graph building and

a perceptual experiment. They tested three metrics � local joint angles (Lee et al., 2002; with a very

small weight on the velocity part), geometrical (Kovar et al., 2002a) and PCA-based (with weights

determined using the eigenvalues of each component).

In the quantitative test, they �rst build four complexities of a motion graph, with �ve animations

as their source data (832 frames in total), and then synthesise a 33 meters long zig-zag path, testing

three di�erent criteria. The �rst test is aimed at measuring footsliding, i.e., the distance the foot

travels during the footplant. Their results suggest that the best metric to avoid footsliding is the

geometrical one, as it works in the Euclidean space instead of local joint space. The second test

evaluated path deviation as an integral of distance from the desired path. Their conclusions show

that the local joint angles metric provides the best path following, as it prefers inter-animation blends.

This leads to a large amount of turning transitions, while other methods result in many self-blends

(under the constraint of approximately the same number of transitions per motion graph). The third

test measured the on-line graph search time. Again, joint-angles provide the best results, because the

other metrics tend to cluster nodes together into small circles, leading to rapid growth of the search

space.

The qualitative test was designed as an on-line perceptual experiment. Using a pool of 50 motions,

generated as 10-frame blends with 5 di�erent distance levels together with 5 original animations, each

participant was presented with 40 clips and was asked to grade them according to their level of realism

on a scale from 1 to 10. The value of 10 frames for blends was suggested as ideal in several previous

works (Mizuguchi et al., 2001; Kovar et al., 2002a; Rose et al., 1996). Their hypothesis was that there

will be a strict inverse relationship between the distance level and blend realism. This hypothesis was

con�rmed partially, as there was an inverse relationship, but the shape of the results curve exhibited

a signi�cant plateau at the beginning and a non-linear relationship for the rest of the curve.

Another per-frame metrics test based on human perception, using the local joint metric by Lee et al.

(2002), was performed by Wang & Bodenheimer (2004). In their work, they focus on determining an

optimal blending length, the use of timewarping and the detection of blending points. They conclude

that a good transition detection method should use a window of frame di�erences, that the 10-frames

blend length is indeed the best compromise and works under most circumstances (while 8 is already

recognisably di�erent) and that for this short blending window, timewarping does not provide any

visual advantage.

2.6.3. Clip Comparison Metrics

Comparison of animation clips can be performed by applying a per-frame comparison metric to the

frames of the two animations and computing some function of the resulting values (usually an average

or a sum). However, to obtain a meaningful result, the temporal alignment of the two input clips

needs to be established, to ensure that only frames describing similar motion stages are compared.

Taking their inspiration from the signal processing �eld, Bruderlin & Williams (1995) introduce the

usage of dynamic timewarping (DTW). This method allows the temporal correspondences between
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two motion clips to be determined as a piecewise-linear function, linking the best matching candidate

indices selected using a per-frame metric. To achieve better temporal resolution and to limit the

maximum function slope (i.e., maximum time skewing), Kovar & Gleicher (2003) introduce temporal

registration curves, which are further re�ned in their follow-up work (Kovar & Gleicher, 2004), and

later combined with Weighted Principal Component Analysis to obtain better computational e�ciency

(Forbes & Fiume, 2005). The timewarping can be accompanied by spacewarping, thereby providing

higher alignment accuracy. Hsu et al. (2005) introduce an optimisation technique to solve both parts

of this warping combination simultaneously.

Instead of using the per-frame metrics, several approaches use per-bodypart features to compress

the pose (or dynamic) information in an intuitive and meaningful manner. Chiu et al. (2004) create

an index structure of per-frame feature vectors, composed of binary representations of analytically

de�ned frame properties. This allows for faster retrieval of motion sequences, which can be based not

only on the whole motion, but also on its fragments or on a small subset of speci�c features.

A variation on a similar theme was described by Onuma et al. (2008). Instead of using a feature

vector on per-frame basis, they compute its values using an approximation of the total energy of each

joint (with several �ltering and shaping steps to ensure that the result are not biased by the noise in the

motion data). To ensure independence from the actor's bodyshape, they compose values of bodypart

joints together (in a similar way to Chiu et al. (2004); presented as a simple way of dimensionality

reduction) and then compute the ratios between di�erent bodyparts. They show that this method

can also provide a meaningful and length independent way of distinguishing di�erent types of motion

for motion classi�cation.

2.6.4. Classi�cation Metrics

Classi�cation metrics are aimed at extracting the meaning of the motion and, based on this infor-

mation, to sort the motions into categories without considering the style of the motion or properties

of the performer's body. Categories are de�ned by heuristic analysis of the typical properties of a

particular type of motion, or by a set of example motions and a distance metric (selecting the category

of a motion by the closest example). Obviously, for the latter case, any of the clip comparison metrics

can be used, but several methods were developed speci�cally for this purpose.

One such method was introduced by Arikan et al. (2003), where a statistical clustering approach

based on support vector machines is used to generalise and cluster a database based on a small set

of example motions. Unsupervised methods create clusters of motions without the need for explicit

examples, e.g., segmenting in PCA reduced space (Barbic et al., 2004) or clustering in the reduced

space of bodypart energies (Onuma et al., 2008). Analytically determined Boolean feature vectors can

also provide similar clustering capabilities (Müller et al., 2005).

2.6.5. Artifact Metrics

Artifact metrics are used to determine the magnitude of the impact of an e�ect on the naturalness of

a motion. Usually, each metric attempts to measure only one speci�c e�ect (or in a speci�c scenario),

because of the vast number and diversity of possible artifacts in the motion.

To measure the e�ects of artifacts introduced by a motion compression algorithm, a pose distance

metric can be used. In this case, it is explicitly de�ned what the correct answer is, and as the number

of frames should correspond, any of the clip or frame di�erence metrics can be used (e.g., Arikan et al.

(2003) use the per-frame comparison metric introduced by Kovar et al. (2002a) to evaluate artifact

levels between several compression methods).

Van Basten & Egges (2009) perform a comprehensive study to determine the properties of several
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per-frame metrics on the problem of motion graph building and motion generation. Apart from

the actual tested metrics, they also use two artifact metrics to determine the performance of each

method. The �rst of these metrics measures the level of footsliding by �rst detecting the expected

footstep using Y thresholding and then integrating the amount of XZ movement of the foot during

the expected constraint. The second metric determines the amount of path deviation between the

input and output of a motion synthesis algorithm by integrating the distance between the expected

root position and its actual position.

Methods addressing a general notion of naturalness of motion are usually closely related to human

perception, as a generic mathematical de�nition is still out of reach for current techniques. This

paragraph provides only a very short list of these methods. For a detailed overview please refer to

Section 2.7. Reitsma & Pollard (2003) focus on the perception of anomalies in ballistic motions,

altering their timing, acceleration and gravity. McDonnell et al. (2007b) test the possibility of using

di�erent framerates in crowd simulations. Hodgins et al. (2010) determine the perceptual impact of

several arti�cially induced artifacts, concluding that artifacts in facial motion are signi�cantly more

salient than artifacts in body motion. Harrison et al. (2004) test the perceived levels of limb extension

in an animated motion. And �nally, Ren et al. (2005) provide a comprehensive study of di�erent

automatic methods of determining the naturalness of a motion clip (based on machine learning) and

compare their results with the outcome of a perceptual experiment. The conclude, that users are

capable of signi�cantly better performance than any of the tested automatic methods.

2.7. Perception of Motion

As the research on human animation algorithms matures, attention is shifting towards motion per-

ception. This is a logical step, as results of these algorithms are almost always presented to a human

user. As previously shown in many �elds of computer graphics, the human visual system (HVS)

can be very sensitive to certain features of the presented stimuli, while other, often mathematically

signi�cant factors, do not seem to be perceptible at all.

An ultimate test of motion synthesis algorithms is the Animation Turing Test, proposed by Hodgins

et al. (1995). In the spirit of the original Turing test of machine intelligence, it would present an

observer with a real animation and a synthesised one, and the observer should not be able to determine

which is which. However, a motion synthesis algorithm capable of both synthesizing a large variety of

motion, and of passing such a test, has not yet been created (Van Basten & Egges, 2009).

In the context of this thesis, motion perception plays a crucial role. We have developed several

metrics based on motion perception and tested the perceptual saliency of several motion features and

artifacts, on both crowds and single characters (see Chapter 6). This section introduces a small subset

of previous work in the �eld of motion perception closely related to our experiments.

2.7.1. Pointlight Walkers

The pointlight walker is an extremely simplistic stimulus representing human motion, capable of

completely separating the appearance of the character (actor) from the motion information. The

concept was introduced by Johansson (1973) as an extension of their previous work on the motion of

markers on a structureless background. Using the technology available at the time, they attached a set

of 10 to 12 back-re�ective strips on the joints of an actor and captured his motion on a VHS camera

placed next to a halogen lamp. By playing the recording on a TV screen with very high contrast, they

obtain a moving image containing only white dots on a black background. In this pioneering work,

Johansson shows that a moving stimulus of this type is immediately recognised as a human from any
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natural point of view. This fact is not changed even by removing several markers. When the motion

is stopped, however, the impression of a character is lost.

Cutting & Kozlowski presented two important studies based on pointlight walkers and a dataset of

six walkers (3M, 3F). In the �rst study (Cutting & Kozlowski, 1977) they used the original actors as

participants (a group of students who knew each other well), and demonstrated that the identi�cation

of a person is possible based on these stimuli. While far from 100% accurate (the average score was

38%), their results are signi�cantly above the chance level. The second study (Kozlowski & Cutting,

1977) was focused on the walker's gender. With the sideways walking stimuli, the participants were

able to recognise the gender correctly in approximately 70% of cases. However, their dataset contained

one outlier � a female actor consistently labelled as male (an e�ect we found in our study as well; see

Section 6.1.1). They also tested several other stimuli variants. Altering the arm swing, walking speed

and blocking the upper or lower part of the body resulted in reduced recognition performance; static

displays led to gender recognition at the chance level.

Barclay et al. (1978) tested the impact of several other properties on a walker's gender recogni-

tion. They conclude that several aspects are required for successful results (above chance) � motion

duration at least 1.6s, two step cycles, normal presentation speed (timewarping the motion leads to

chance levels), crisp and small markers (di�used markers lead, again, to chance levels), normal display

orientation (vertically reversed display led to recognition signi�cantly below the chance level, reversing

the recognised gender).

Other researchers focused on gender recognition with di�erent types of motions. Dittrich (1993)

presents a cross-evaluation of di�erent actions (locomotions, instrumental motions and social inter-

actions) under di�erent presentation setups (markers on joints, in the middle of bones; normal and

vertically reversed display). He found that locomotions provide the best gender recognition scores, but

all other actions are signi�cantly above chance level as well. Of the di�erent setups, only the vertically

reversed presentation led to a signi�cantly lower recognition rate. Later, this work was extended to

the perception of emotional body language (Dittrich et al., 1996). A pantomimic performance of sev-

eral di�erent emotions (surprise, fear, anger, disgust, grief and joy) was presented to the participants

under several di�erent setups (markers, full light; normal, upside-down). The results shown that all

emotions were recognised with scores signi�cantly higher than chance, with the full-light displays and

normal orientation signi�cantly higher than the others.

Given the simplicity of pointlight walker stimuli, it is possible to create their generative model.

Early work on this subject was performed by Cutting (1978), who created an analytical set of equations

describing the motion of each marker and explored the correlation of its parameters with gender

recognition.

However, important work on this topic, applicable directly to both psychophysics and character

animation, was presented by Troje (2002). He introduces a data-driven pointlight walker synthesis

model based on statistical analysis of a database of motions. In contrast to the previous work, his

pointlight walkers are created using motion capture technology, with each marker being described as a

3D trajectory of an articulated �gure's joint. This provides the means to perform more comprehensive

and accurate motion analysis than was possible with the 2D data representation.

The source database for his model contained 40 subjects (20M, 20F), each consisting of 15 virtual

markers computed using the trajectories of 38 motion capture markers. Several steps are performed to

extract the statistical properties of this data. First, the space of poses (animation frames) is reduced

by performing principal component analysis (PCA) on the marker positions in all input frames. This

provides very successful compression, with 98% of the information contained in �rst 4 components.
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Second, the values of each component can be successfully modelled using a sinus function, with the

�rst two components using the frequency of the motion and the other two its �rst harmonic. This

leads to a compact 229-dimensional vector that describes all the data of a walking sequence. The

third compression level is performed on the walking sequence data, leading to an average walk and 39

eigenwalkers (eigenvectors of full walking sequence).

In the �rst analysis (Troje, 2002), the main focus is on gender recognition, testing several classi�ers

in this context (e.g., height, dynamic properties, walking frequency), and the e�ect of viewing angle

and structural information. He also tests the e�ect of using a stick �gure (markers connected by

lines) instead of unstructured pointlights. In later work (Troje, 2008), this framework is extended

to allow the building of generic linear classi�ers (e.g., male/female, calm/angry, happy/sad, repub-

lican/democrat) by �tting a line described in the parametric space of eigenwalkers into results of

a perceptual experiment. While a linear approach cannot accurately represent all possible motion

properties, the results show impressive accuracy for most real-world scenarios (as demonstrated in an

on-line application).

Although not directly applicable to the synthesis of 3D character animation, due to the fact that

linear analysis does not respect the rigidity of human body segments and the simplicity of the param-

eterisation model, this work provides an important insight into the possibility of creating very simple

linear metrics and generative models for human animation.

2.7.2. Perceptual Motion Metrics

Motion metrics are an essential part of the data-driven animation �eld, used both for comparing

motions (or their fragments) and determining their speci�c properties. As the results of a motion

synthesis algorithm are almost exclusively presented to a human observer, it is important to relate

the properties of these metrics to the properties of the human visual system.

One of the important questions for perceptual metrics is whether it is possible to separate the

appearance of a character from its motion (in a similar manner to a pointlight walker), using a simple

model instead of a fully realistic character. Hodgins et al. (1998) asked this question, concluding that

the answer is no. In their work, they compared a polygonal model to a stick �gure, both of them

animated using a parameterised model of motion changes (torso movement, dynamic arm movement,

additive sinusoidal noise). The participants were presented with pairs of animations and asked to

answer if they were �same� or �di�erent�. For all presented cases, the results show signi�cantly higher

sensitivity to motion alteration when the result is displayed on a polygonal character than on a stick

�gure.

A comprehensive study, testing the in�uence of character model on the perception of gender in

animation data, was presented by McDonnell et al. (2007a). Following the series of studies focused on

this topic using pointlight walkers (Kozlowski & Cutting, 1977; Barclay et al., 1978; Troje, 2002), their

stimuli combine a set of di�erent character models (male, female, neutral mannequin and a pointlight

walker) and di�erent locomotions (male, female and synthetic neutral). The results show a strong

interaction between these, with male and female motions capable of altering the perceived gender of

neutral characters accordingly, and providing an ambiguous result when applied to a model with the

opposite gender.

Van Basten & Egges (2009) provide a comprehensive study of several di�erent frame comparison

metrics and their performance when used for transition detection (using a motion graph). The

qualitative part of their work tested a hypothesis that the output value of a metric for a particular

transition point should be inversely proportional to the realism of the generated transition. This
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hypothesis is con�rmed partially, as the relation is inverse, but it is also highly non-linear with a wide

plateau for small di�erences.

Wang & Bodenheimer (2003) adjust the parameters of a particular frame di�erence metric (intro-

duced by Lee et al. (2002)) to re�ect the perception of motion blending artifacts. Using a set of user

labelled motion transitions, they determine a set of weights by means of a least-squares �t. They

validate their result using a simple perceptual experiment aimed at determining the more natural

transition (at a point detected by the original and modi�ed metric).

Several studies aim at providing information about a speci�c motion artifact on the naturalness

of the resulting motion.

Harrison et al. (2004) studies the perception of length changes of an articulated joint structure

during a motion. Their report contains several experiments performed on a very simple stimulus:

i.e., two black segments connected by a joint on a white background, with one end �xed while the

other one is performing a circular motion. They conclude that the perceptual threshold for segment

extension is 7%, while shrinking is signi�cantly less salient, with a threshold of 20%. The duration

of the alteration plays an important role, successfully masking the change under certain conditions,

while the presence of a distractor does not in�uence the experiment outcome signi�cantly.

Reitsma & Pollard (2003) study in detail the perception of ballistic motion and its editing. Using

a perceptual experiment, they determine that errors in horizontal velocity are easier to detect than

vertical and that acceleration artifacts are more salient than deceleration. Moreover, they derive an

analytical equation usable for predicting the saliency of a manipulation.

A comprehensive study on artifacts that in�uence the animation of di�erent parts of character's

body was presented by Hodgins et al. (2010). Using a set of fully animated and acted clips, they

explore the impact of the presence of facial animation on the emotional response of the experiment

participants. Furthermore, they use short extract of these clips with several types of animation

artifacts introduced to determine their relative saliency. Their results show that facial artifacts are

always more salient, even in the presence of very signi�cant body artifacts.

A generic metric capable of judging the naturalness of any motion clip would provide an impor-

tant tool for determining the e�ciency of a motion synthesis method. Ren et al. (2005) present a

comprehensive study testing a large set of reinforcement learning methods on this problem (mixture

of Gaussians, hidden Markov models, switching linear dynamic system and naive Bayesian approach;

using a global �t or as an assembly of several bodypart classi�ers). As training data, they use a di-

verse set of 261 natural animations and 170 altered animations, with di�erent levels of unnaturalness

introduced (IK edits, keyframe changes, noise, transitions or motion capture noise simulation). Then,

they present each method with a new set of motions to test its e�ectiveness. Moreover, they perform

a perceptual experiment on the same data, with the results handled in the very same way as the

result of the automatic methods. The overall performance of each method is then presented as an

ROC (receiver operating characteristics) curve, which provides the ratio between true positives and

false positives, or between the correctly and incorrectly identi�ed motion clips. They conclude that

the performance of a human observer is still signi�cantly better than any of the automatic techniques,

even though the hierarchical approaches, which construct an overall classi�er from several smaller

per-bodypart ones, perform signi�cantly better than the global ones.

The main topic of this thesis is the simulation of crowds. Several perceptual studies in previous

work focus speci�cally on crowds perception, usually with the aim of reducing the computational

complexity while maintaining its visual quality.

Impostors can be used as a simpli�ed representation of animated characters, using textured polygons
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instead of complex animated meshes. McDonnell et al. (2007b) provide guidelines for the framerate

required for a realistic crowd representation, directly usable as a sampling ratio for impostor-based

systems. They conclude that 16 frames per second is a rate that, when applied to distant characters,

does not create any perceptually salient artifacts. However, for close-up characters, 30 frames per

second are necessary. Hamill et al. (2005) use a �same or di�erent� task, as in Hodgins et al. (1998)

to determine the required resolution, angular sampling and mesh-to-impostor transition distance to

provide a realistic crowd e�ect. Using the same strategy, McDonnell et al. (2005) study the percep-

tual di�erences between several common representations of virtual humans, including high resolution

models with approx. 2000 polygons, low resolution with 800 polygons, impostors, stick �gures and

pointlight walkers, with a particular focus on impostors and low resolution models.

McDonnell et al. (2008) perform a set of experiments on the perception of clones in a crowd system.

Their main focus is on appearance clones, but a set of experiments on motion clones is also provided.

In the comparative section of their work they conclude, that the appearance is more signi�cant than

motion when detecting clones in a crowd. For motions, they show that identifying a clone solely based

on motion is a very hard task, made even harder by showing the motions out-of-step.
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Motion Capture Pipeline

This thesis focuses on a data-driven method for motion synthesis. Our main source of motion data is

our motion capture system � a commercial implementation of the optical motion capture technology

with passive markers by Vicon (2009). It consists of 13 high-speed near infra-red (NIR) cameras, each

equipped with a NIR LED-based directed illumination unit, shaped as a circle around the camera's

lens (see Figure 3.1, right). The markers are plastic (for small sizes) or rubber (for larger sizes)

spheres, covered in back-re�ective tape. For the purpose of full body motion capture, we use markers

with a diameter of 14mm and 20mm; smaller markers are useful for detailed hand and facial capture

(see Figure 3.1, left).

The following section provides detailed descriptions and reasoning behind our camera placement,

marker and skeletal setup, and the calibration process. Surprisingly, even though these steps are

similar for all optical motion capture technologies, we are not aware of any description of them in any

available literature.

3.1. Camera Setup

Camera placement is a crucial part of the motion capture setup process. The goal is to cover the

capturing space as e�ectively as possible, with each point viewed by multiple cameras from several

di�erent angles. This provides a good source of information for the triangulation step of data process-

ing. For practical reasons, it is necessary to place a large number of cameras close to the ceiling of our

capturing space because the room is not dedicated solely for capturing purposes. Furthermore, the

cameras can be mounted horizontally or vertically, thus providing larger viewing angles for a selected

dimension.

Cameras are also equipped with di�erent lens types. Six of our cameras use standard Nikon variable

focal length lenses (i.e., zoom lenses with a large focal length, see Figure 3.1), and provide better

resolution at larger distances while covering a relatively small viewing angle. The seven remaining

cameras are equipped with CCTV (CS-type) short �xed focal length (prime) lenses (see Figure 3.1),
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Figure 3.1.: Detailed view of our motion capture hardware. From left: Re�ective markers used for motion
capture, photographed without and with �ash to demonstrate their back-re�ective optical properties; a wide-
angle IR camera; a narrow-angle IR camera; detail of a long-focal-distance lens with setup rings.

which are ideal for covering large view angles at the cost of lower accuracy at larger distances. Both

types also di�er in aperture values, with prime lenses allowing much wider settings and consequently

more light reaching the sensor (F1.4 for prime lenses and F5.6 for zoom lenses, resulting in a di�erence

in the maximum amount of light reaching the sensor by a factor of 16).

Each camera type therefore provides a di�erent set of properties that, together with practical

aspects, need to be addressed when designing an ideal setup. Our �nal con�guration is shown in

Figure 3.2. Six narrow-angle cameras are mounted vertically on the short side of the capturing area,

covering it lengthwise. Their main purpose is to provide coverage for as much space as possible with

high accuracy provided by their long focal distance. Three horizontally mounted wide-angle cameras

provide a similar view for the long side of the area. As they are necessarily closer to the captured

subjects, their wide angle provides better spatial coverage whilst the lower accuracy at large distances

does not pose any signi�cant problems. The remaining four cameras are mounted horizontally on

tripods and placed in the four corners, closer to the ground. These cameras provide the coverage

for regions not accessible by the long focal-length cameras mounted higher in similar positions. This

con�guration has proven to provide very good coverage of the capturing region, given the constraints

and limitations of our system and capturing space (see Figure 3.3).

Figure 3.2.: Top (left) and perspective (right) views of our camera setup during the motion capture process with
three subjects being captured. Six cameras form the long focal length set (red), accompanied by three wide-angle
cameras (green) and four additional cameras closer to the ground level (blue).
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3.2. Calibration

Figure 3.3.: Coverage of our camera setup. Top (left) and perspective (middle) view of the area covered by at
least 6 cameras; perspective view of area covered by at least 9 cameras (right).

3.2. Calibration

After placing and pointing the cameras, it is necessary to adjust their parameters. These include lens

aperture (F number), lens focus, strobe intensity, camera threshold and gain. This section describes

the process of setting up these parameters, which needs to be performed every time the camera

placement is changed to account for environment change. The procedure starts with each camera's

strobe intensity set to maximum, fully opened aperture (lowest F number), focus set to in�nity, gain

to 1 and camera threshold to 20%.

The �rst parameter that needs to be adjusted is strobe intensity, which determines the strength of

NIR light emitted by the ring surrounding each camera's lens. For most camera setups, the maximal

intensity is the optimal setting, providing enough illumination for subjects approximately 1.5 to 8

metres from the camera. For shorter distances (e.g., facial motion capture), the strobe intensity has

to be lowered in order to avoid ghosting, i.e., overexposed regions that are identi�ed by the software

as markers. Too low a value, however, can lead to insu�cient contrast between markers and other

objects in the scene, causing a large amount of noise.

After this �rst step, the values of focus, aperture and gain are adjusted (in this order). The �rst

two parameters are set manually on each camera's lens by moving the corresponding rings, the third

is software-based, set in the Vicon UI. A small marker is placed in the middle of the capturing area

beforehand. We use 14mm markers for full-body motion capture, but a smaller marker might be

necessary for setups aimed at recording facial or hand motion.

By moving the lens focusing ring, we should try to �nd a value that minimises the apparent size of

the marker in each camera's view. This step needs to be performed on a fully opened aperture (lowest

F number) as with other values, the unfocused marker would appear smaller, making the di�erence

between the focused and unfocused image less obvious. If the marker is not visible in the camera's

view, the gain value should be set to a higher value, which changes the software-based multiplier of the

camera's output intensity. However, this step should be avoided, if possible, because it signi�cantly

increases noise levels in the result. When the marker appears to be in focus, the aperture ring should

be set to the highest value that still allows the camera to cover the desired area. This can be tested by

moving the calibration marker forwards and backwards in the camera's view. Setting the aperture to

a lower level (higher F number) makes the marker appear smaller in the camera's view, thus providing

more accuracy for the recording process.

The last parameter is the software threshold, used to distinguish marker data from background

light. If performed correctly, the process described above should provide good calibration in most

cases. However, if a camera still captures a large number of ghost markers, it might be necessary to

raise the threshold value and, in some cases, repeat the whole calibration process for this camera.
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3. Motion Capture Pipeline

Figure 3.4.: Guiding trajectories for locomotion capture. Left � top view on the trajectory marks; the straight
line marks (red), turning marks (blue) and circular marks, with 1.5m, 3m and 6m diameters (green), are all
contained inside the capturing volume (gray), allowing to capture a large variety of di�erent locomotions. Right
� a photograph of the capture room with an actor.

3.3. Capturing Human Locomotion
Locomotion forms a signi�cant part of human movement and was shown to contain a large amount

of perceptual information (see Section 2.7). However, capturing locomotion in a limited space can

be problematic. A possible solution could be a treadmill; but because walking on a treadmill is not

natural, the subject usually needs a long time period to adjust to this type of movement (Troje, 2002).

The usual construction properties of a treadmill also do not support turning motion.

Our solution uses straight lines and circular trajectories drawn on the ground of the capturing

area (see Figure 3.4). The actor is instructed to walk on a line with a de�ned pace, with each path

spanning approximately three periods of the motion. In the processing stage, it is possible to extract

the walking curvature (by �tting a circle to the actor's trajectory; see Section 5.3.3), which is further

used to separate the global position of the actor from the pose. Poses can then be merged into long

clips using simple blending techniques, while the natural variance of motion is preserved in multiple

trials of one motion type (see Section 5.3.1).

3.4. Human Skeleton Model
An unavoidable problem connected with optical motion capture technology is marker occlusion. While

dense camera placement and correct setup can signi�cantly reduce its e�ects, it is impossible to

completely eliminate cases where a set of markers is not visible by at least two cameras.

Common motion capture software provides means to reconstruct the missing data using extrapola-

tion (Vic, 2009; Menache, 2000). Apart from simple methods (e.g., using a linear function or a spline

to �ll-in the gaps in data), it is possible to use kinematic or dynamic solvers that can exploit the

knowledge about model's topology. Vicon IQ software uses an iterative non-linear kinematic solver to

perform this task (Vic, 2009).

However, during our experiments we found out that the provided stock markerset was too sparse,

leading to artifacts with as little as two simultaneously occluded markers. Moreover, the stock skeletal

model included joints that do not correspond closely to human anatomy. Based on the analysis of

Menache (2000), we have developed a new markerset and skeletal model (see Figure 3.5), providing

better coverage, closer correspondence to human anatomy and better results when used in conjunction

with manufacturer's software.

The description of the human skeleton as an articulated hierarchy of transformations, referred to

as a skeleton, is the most common way of representing human anatomy in the computer animation

�eld (see Section 2.1.1). This representation uses a 6 degree of freedom (DOF) joint to represent the
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Figure 3.5.: Original Vicon markerset with 43 markers (left) compared to our markerset with 55 markers
(right). The main di�erence lies in the denser layout with two markers describing each joint and at least one
additional marker per each rigid body. Right: Di�erences between the original Vicon skeleton model (left) to
our model (right). The main di�erences (circled) include 6 DOF joints in spine and neck as compared to the
3 DOF anatomically-correct version of our skeleton, 2 DOF joints on wrists and ankles compared to 3 DOF
joints in our version and the di�erent, anatomically-correct spine structure.

character root (usually placed in the pelvis area, close to the centre of gravity of the human body)

and 3 DOF for the rest of the joints. This corresponds closely to the characteristics of the human

skeleton, even though an actual human body is not perfectly rigid and its joints have a signi�cantly

more complex structure than a 3 DOF rotation around a point.

For motion capture purposes, this description is often extended by joint limits, allowing some joints

to have only a certain DOF based on their local coordinate system. This is yet another simpli�cation as

these joints usually have a more complicated structure that cannot be described in terms of rotational

DOFs (i.e., the wrist) (Menache, 2000). However, for the purposes of computer animation, this

description is considered su�cient.

Our skeleton uses this form of description, but in comparison with the original model provided by

the equipment manufacturer, it tracks the structure of the human body more accurately. Speci�cally,

it does not use any 6 DOF joints (rotation + translation) with the exception of the root. The original

production skeleton contained two more 6 DOF joints to represent spine and head, which allowed an

easier �t to the motion data, but also produced severe non-rigidity artifacts. This property rendered

the resulting motion unusable for the animation of mesh models.

The creation of the new skeleton and marker model was a tedious process, as the non-linear optimi-

sation algorithm used for skeleton �tting gives unpredictable results. For this reason, it was necessary

to use a trial-and-error re�nement process, which in the end led to the new structure presented here.

3.5. Canonical Software Interface

Due to the lack of a generally agreed skeletal motion �le format, interfacing di�erent software in the

motion capture pipeline can be problematic. Moreover, certain tasks (like footstep cleanup based

on constraints detection) can be very tedious to perform in generic motion editing software. We

address these problems using two tools implemented as a part of this thesis. The �rst one, the Vicon

Animation Converter, is a GUI application allowing the Vicon data (V and VSK �le formats) to be

converted into more generic �le formats suitable for our particular pipeline (BVH for skeletal data,

CSM for marker data). Moreover, it allows the data to be previewed on a simple model, thus providing

a way to identify possible motion artifacts. The second tool, the Animation Editor, is a command-
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3. Motion Capture Pipeline

Figure 3.6.: Vicon to 3DS MAX animation converter software.

line tool allowing several common motion editing task (bodypart merging, constraints detection and

enforcement, animation cutting, periodization, trajectory adjustment) to be performed, together with

supporting several more �le formats for both data import and export. As a command-line tool, it is

fully scriptable, allowing the editing tasks to be performed in a semi-automatic manner.

Vicon Animation Converter

The export of motion data from the Vicon software into 3D Studio MAX (3DS), which is required

by our processing pipeline, has proven to be a problematic task as both programs use proprietary

�le formats and do not support any simple way of exchanging information. The original solution

required exporting marker trajectories from the Vicon software and carrying out the skeleton �tting

in 3DS. This was not an ideal solution, as 3DS does not provide any means of skeleton calibration

and consequently the skeleton �tting could not achieve accurate results.

The solution we developed moved the skeleton calibration and �tting procedures into the Vicon

software. The processing is performed in two steps. First, a calibration motion is captured, exercising

each joint of the actor's body. This motion is processed in a calibration procedure, adjusting the

skeleton parameters to the captured data. Second, by �tting this skeleton to the rest of the captured

motion clips, we can ensure parameter stability and guarantee a good �t to all the input motions.

The problem of data exchange was addressed by implementing a conversion tool capable of reading

the proprietary Vicon �.V� �le format and converting it into a broadly supported Biovision motion

format. The main challenge was the reverse-engineering of the Vicon �.V� format, as its documentation

is inaccurate and incomplete and it contains a large amount of data not required for skeletal data

extraction. This tool has become an inherent part of our motion capture pipeline and is extensively

used both in the Natural Movers project and in all other motion capture tasks for projects in our

group.

Animation Editor

The animation editor tool is a more advanced command-line application for skeletal and marker data

editing. It satis�es the need for extensive manual motion adjustments in generic animation software,

which is both labour intensive and repetitive. Moreover, some of the supported manipulations are not

possible in the canonical software (such as bodypart merging) and therefore have to be performed on

the raw motion data.

The list of tasks provided by this tool contains:
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Figure 3.7.: The pipeline for Metropolis project characters animated using NaturalMotion Morpheme software,
illustrating the large number of di�erent editing steps and �le formats required in a typical pipeline.

� motion format conversion (loading and saving in most of the motion formats listed below),

� animation cutting (by specifying the �rst and the last frame of the animation),

� FPS change (resampling the original animation data; if the motion was converted to be periodic

beforehand, the adjustments keep the frame continuity),

� skeleton standardisation (changing the skeletal structure by projecting its hierarchy to a hierar-

chy speci�ed by a con�guration �le and adapting the motion using interpolation / joint merging

to re�ect the new structure),

� bodypart cutting and appending from a di�erent source �le (exchanging a bodypart with sepa-

rately captured data � necessary for detailed hands or facial capture),

� skeleton �xing (the manipulations based on constraint detection, as described in Section 4.4.1),

� motion periodisation (see Sections 5.2 and 5.3),

� trajectory bone extraction and on-spot conversion (see Section 5.3),

� locomotion trajectory editing (curvature changes with inverse kinematics for enforcing the con-

straints).

This tool has proven to be of great help for simple everyday motion capture editing tasks.

Motion Data File Formats

The �eld of computer animation requires a large amount of work to be performed manually. This

originates in the artistic background of the �eld � every single aspect of the �nal result has to be

under the direct control of the artist, and often each of these aspects has its own set of speci�c tools,

algorithms and approaches. Consequently, the �eld contains a large number of specialised programs

aimed at speci�c tasks in the pipeline.

This is also the case for our animation pipeline. In a typical pipeline used in the Metropolis project

(see Figure 3.7), a motion clip is:

� captured and processed in the Vicon IQ software,

� altered using our motion editing tool, creating periodic animations and �ltering the constraints,

� imported into 3DS MAX, converted into 3DS native format and applied to a character,

� exported into the NaturalMotion �le format and used in the Morpheme tool for building a Move

Tree,

� exported into the native Morpheme Runtime format, which then gets imported into the runtime

system,

� and �nally the animation is extracted from the Morpheme runtime module and applied to a

character.

Even though this example shows the highest number of steps taken in practice in our pipeline, it

demonstrates the large number of di�erent programs and �le formats required to bring a motion clip

from motion capture to the �nal product.

Unfortunately, there is no widely accepted motion �le format that would create a common link

between all these steps. Several attempts at standardisation have been made, such as the H-Anim

human model description ("Web 3D Consortium", 2005) or Collada �le format (Barnes, 2006), but

none of them have been widely accepted by the 3D software producers (e.g., Autodesk developed
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3. Motion Capture Pipeline

their own version of the Collada �le format, which is not compatible with the original standard). For

this reason, our tools support many di�erent �le formats (listed below), thereby allowing the data

import/export from and to most common computer animation tools.

Skeleton File Formats

VSK (Vicon Skeleton) �le format stores the information about skeletal data in a XML-compatible

format. Apart from the hierarchical information and the base pose, it describes the degrees of

freedom for each joint (including the rotational axes), optical motion capture marker locations

and their connections to the skeletal structure.

ASF (Acclaim Skeleton File) is a plain text format that describes skeletal data. Predating the XML

speci�cation, it uses an alternative section and subsection markup, capable of describing the

skeletal hierarchy and base pose, a small subset of dynamic properties (bodypart weights, centre

of mass location) and per-joint axis-based degrees of freedom with simple joint limits. It can

represent multiple skeletons in one �le.

XSF (XML-compatible Skeleton Format) is a variation of the ASF �le format, with a speci�cation

compatible with XML. Even though the XML family of languages allows the hierarchy to be

implicitly de�ned in the tag structure, this format uses a linear list of bones, with an attribute

explicitly enumerating the IDs of all the children bones.

Motion Data File Formats

C3D is a generic non-proprietary binary �le format. It is separated into a header and a set of

containers, allowing a large volume and wide variety of data to be speci�ed. The structure of

the �le enables the reading software to parse only the data it can interpret and skip over the rest.

The original de�nition provides a set of standard header records and a description of several

types of data blocks (allowing both skeletal and marker data to be stored).

V (Vicon motion �le format) is a proprietary extension of the C3D format. Keeping the general

structure of the original speci�cation, it enables the reading software to skip over the extensions

and read only the standard C3D motion data. The Vicon extensions include mainly several

new types of header records, and an extension of the 3D trajectory data to include the level of

accuracy for each sample (determined by the number of cameras used to reconstruct its value).

AMC (Acclaim Motion Capture) �le format describes the motion data, and is intended to be paired

with an ASF �le describing the corresponding skeletal structure. The data description uses plain

text and the markup is similar to the ASF �le.

XAF (XML-compatible Animation Format) is, in a similar manner to the ASF/XSF relationship, an

XML-based version of the AMC �le format.

Combined Skeleton and Motion Data Formats

BVH (Biovision Hierarchy) is the most commonly used motion �le format. It is in plain text, with

a simple structure that is very easy to parse. It consists of two sections � the �rst section,

denoted by the HIERARCHY keyword, describes a single skeleton structure. This structure

provides the position of each bone relative to its parent (with a base orientation assumed to be

the identity), its parent and children, and the number and type of all its degrees of freedom. The

second section, denoted by the MOTION keyword, speci�es the number of frames followed by

the animation data. These data are organised into frames, with each frame providing one real

number for one degree of freedom speci�ed in the skeleton section. The main drawback of this
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format is the combination of enforced identity orientation for base pose and the Euler angles for

orientation representation, which can lead to gimbal lock and inaccurate data interpolation.

BIP (Autodesk Biped) is a proprietary binary format introduced in the Autodesk MotionBuilder

software, later included in 3D Studio MAX. The animation data stored in this format also

contain separated constraints and end-e�ector information, allowing a simpli�ed retargeting of

the animation data. Unfortunately, this format is not documented, making it usable only inside

Autodesk products and impossible to support in our tools.

FBX (FiLMBOX) is an Autodesk Exchange �le format, allowing any mesh, texture, skeleton or

animation data to be stored in a compact binary representation. It was intended as an exchange

format, allowing data transfer from one software product to another. Unfortunately, there are

several incompatible versions of this format, and the publicly available speci�cation is now

obsolete and no longer used in Autodesk software products. This format is not supported by

our tools.

OgreSkeleton was developed as the �le format for the real-time Ogre graphics engine. It has two

versions � a compressed binary representation and an XML-compatible one, with a �le converter

provided. Each �le can contain only one skeleton and its �lename is linked to a corresponding

mesh �le. The animation data are structured into a set of animation clips, each consisting of

tracks describing an ordered set of keyframes and their time values. The animation data for

each joint are then reconstructed using nearest-neighbour interpolation of the keyframes.

Collada is an XML-compatible �le format developed by the Khronos group as an universal data

exchange �le format (Barnes, 2006). It is designed to be capable of containing any 3D scene

data, with the skeletal animation of multiple characters being just a small subset of its full

capabilities. Unfortunately, the �exibility of this format makes it also very complex, and even

though an open-source software development kit (SDK) is provided, its adoption by the 3D

industry is lacking. Moreover, Autodesk software uses their own incompatible version of this

format, making the use of the o�cial SDK impossible.

Marker Data File Formats

CSM (Character Studio Motion capture format) is a plain text �le format describing the raw motion

capture data of a marker-based optical motion capture system. It enables the calibration data of

the character (distances of certain joints measured in a special pose), the animation properties

and the marker data, with a special markup for missing marker frames to be stored. The

animation data are organised in frames, with 3 real values for each marker.

C3D/V are binary �le formats capable of describing both skeletal and marker data. The marker

data section of this �le is organized into frames and allows missing data to be described using a

special value.

MNM is a specialized �le format allowing markers in a CSM �le to be renamed to match the internal

description of the software. It is used by Autodesk 3DS MAX and Autodesk Character Studio,

allowing them to import data from sources that were not directly intended to be used with these

programs.
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4
Footstep Constraints

Constraints are explicitly represented, time-varying properties of a motion clip. Often, instead of

describing an existing property of the clip, they represent a desired property, and serve as an input to

motion editing or motion synthesis algorithms (see Section 2.3.3). In our work they are used as both

� they are �rst detected in the input motion clips, and then enforced to remove noise and artifacts

present in the original motions. This chapter deals speci�cally with these two problems in relation to

footsteps.

In the case of locomotion, footstep constraints represent the information about a foot (or part of

it) in contact with the ground. They are an important feature of a walking pattern, and provide

information necessary for motion retargetting, which is performed when a recorded motion is adapted

to a character with di�erent body shape than the original actor. We have demonstrated the necessity

of correct footstep constraint handling in our perceptual experiment (see Section 6.3).

In the motion data obtained from motion capture, the footstep constraints are not represented

explicitly (with the exception of motion capture with force platforms (Hreljac & Marshall, 2000)).

The implicit footstep information, however, is often heavily in�uenced by noise. There are many

di�erent noise sources in�uencing the optical motion capture setup:

� measurement noise (caused by camera noise, camera resolution, occlusions and camera switch-

ing),

input motion
(skeletal or 

marker data)

end-e�ector
3D positional

infomation
(Section 4.3.1)

�ltered
end-e�ector

positional data

binary
constraint

data

�nal binary
constraint

data
. . .

end-e�ector position
and orientation

in constrained frames

�nal
animation

data

Data 
conversion
(Section 5.6)

Input data
�ltering

(Section 4.3.2)

Constraints
detection

(Section 4.3.3)

Binary data
�ltering

(Section 4.3.4)

Ende�ectors
position computation

(Section 4.4.2)

Constrains enforcement
and �ltering
(Section 4.4.3)

. . .

Figure 4.1.: Footstep enforcement pipeline.

65



4. Footstep Constraints

Figure 4.2.: The foot bones and their representation in our optical motion capture. Left � the relative location
of the foot markers and its virtual bones; middle � an actual skeletal structure of the foot, with lower leg bones
(black), tarsus (purple), metatarsal bones (green) and phalanges (red); right � side view demonstrating the
implicit representation of the heel in the skeletal data.

� environment noise (light pollution, uneven or non-rigid �oor),

� noise based on the physical properties of an actor's body and its model (non-rigidity of bodyparts,

shoe compression, dynamic skin and tissue movement),

� skeleton �tting artifacts,

� systematic noise (instrument miscalibration).

In this section, we describe a set of algorithms speci�cally designed for detecting and cleaning footstep

constraints for motion capture data. While our algorithms can be generalised to other constraint types,

they are designed under the strong assumption that a constraint in motion data is represented either

by an end-e�ector static in space, or rotating around a point or axis. While this assumption is correct

for feet during a locomotion (and most other natural motions), it does not apply generally to other

end-e�ectors of the human body.

Our analysis of time-related properties of locomotion is restricted to normal walking, with speeds in

range approximately from 0.5m/s to 2.5m/s. Outside this interval, the features of locomotion change

signi�cantly and so does the footstep pattern � below 0.5m/s, the walk changes into a shifting motion,

with long periods of both feet planted on the ground and almost no pelvis movement; above 2.5m/s,

walking changes into jog or run. While both cases can be handled by our algorithms with minimal

changes (di�erent threshold values), they are not speci�cally discussed in this chapter.

4.1. Feet Motion Capture
The human foot is the terminal part of the leg which bears the weight of the body and allows

locomotion. Its mechanical structure contains more than 26 bones and 33 joints, connected with

more than 100 muscles, tendons and ligaments (Kahle et al., 1986).

From the motion point of view, there are four main segments of the human foot (in this paragraph,

we will be referring to Figure 4.2, middle). Tibia and �bula (black) are the two bones of the lower leg

connecting the knee with the ankle structure. The tibia is the strongest weight bearing bone of the

body and also the second largest; the �bula is the smaller of the two, with an articulating function.

They both form the ankle joint by their connection to the tarsus (purple), which is composed of the

ankle bone, heel bone and �ve irregular bones that create the arches of the foot, serving as a shock

absorber. Five metatarsal bones (green) form the middle of the foot and, �nally, the toes are composed

of phalanges (two for the big toe and three for other toes). Altogether, the foot bones and muscles

form a complex articulated structure with many degrees of freedom, allowing �exibility, durability,

shock absorption and detailed articulation.

For the purposes of motion capture, we simplify this structure signi�cantly (Figure 4.2, left and

right). The main reason for this simpli�cation is that such a high level of detail is not necessary to

produce believable motion, and most of our virtual characters would be wearing shoes, thus limiting
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the range of possible subtle movements signi�cantly. Therefore, we represent the lower leg using a

single bone, connected by a 3 DOF ankle joint with a rigid structure representing both tarsus and

metatarsal bones (with the heel not explicitly included; see Figure 4.2, right), which is further linked

with a 1 DOF toe joint, connecting the metatarsal structure with a single toe bone formed by all

phalanges. This simple structure does not describe many features of the foot realistically (e.g., the

possible independent motion of di�erent toes, the dynamic properties of the tarsus), but it is an

approximation of the human foot suitable for our purposes.

In our optical motion capture pipeline, the movement of each foot is captured using 6 markers

(see Figure 4.3). Five of these markers are �xed to the actor's shoes (a very �exible pair of canvas

shoes with thin rubber base), with the last marker being attached from the outside to the ankle. We

use markers with 12mm diameter (Figure 3.1, left, second largest marker), as they provide enough

accuracy without interfering with the actor's movement. The redundancy of the marker information

allows us to reconstruct the foot movement even when several markers are occluded simultaneously.

The marker information is transformed into skeletal data using the motion capture processing

software (Vicon IQ 2.5) as a part of the full-body skeletal �tting process. As many of the features are

not represented in this simple model (e.g., the �exibility of the foot arches, non-rigidity of the foot

and leg bones), the �nal motion contains a certain amount of noise, caused inherently by the model,

due to the �tting method used (see Figure 4.4) and by the optical motion capture process itself.

4.2. Anatomy of a Footstep

The footstep can be generally divided into four distinct stages, determined by the combinations of 2

di�erent foot constraints (Johansen, 2009; see Figure 4.5). The stages can be described as:

1. heel strike (heel strikes the ground and the foot rotates around the heel; for most normal walks,

this stage is very short),

2. static foot (the foot is lying on the ground with no explicit motion),

3. constrained toe (the foot is in the process of lifting with all the force focused on the toe; toe

bone is constrained and ankle is rotating around the toe joint),

4. lift-up (the foot is not in contact with the ground).

From this description, we can derive two di�erent constraints:

� ankle (heel) constraint � static in stage 2, rotational in stages 1 and 3 (in further text, we describe

the constraint in stage 3 as toe-only, even though, technically, both bones are constrained),

� toe constraint � static in stages 2 and 3.

Obviously, a more anatomically correct description of the footstep would be signi�cantly more complex.

However, for the purposes of footstep cleanup, our simple model provides a suitable level of abstraction.

For constraints detection and enforcement, the most important task is to use accurate start end

end times, and guarantee the constraint continuity. This ensures that no artifacts are introduced in
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Figure 4.3.: Foot markers placement and naming in our capture pipeline.
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Figure 4.4.: Non-rigidity �tting artifact of skeletal motion capture data. The �exibility of human body on heel
strike cannot be represented by a rigid skeleton, causing an artifact on the end-e�ector.

the constraint enforcing process (such as sticky or �oating feet). Another important problem is to

distinguish between stage 2 and 3 � if the transition point is shifted towards later, the heel sticks to

the ground. As the leg is almost stretched at that moment already, enforcing such a constraint can

either cause problems with knee-popping in the inverse kinematics stage (i.e., a discontinuity in the

bending angle of the knee, based on non-linear relationship between the angle and foot position), or

requires a more complex �x of the root position (Kovar et al., 2002b). An early termination of stage

2 can lead to a more subtle artifact which can be described as a �oating heel.

4.3. Footstep Detection

The accurate detection of the time intervals during which constraints are active is a crucial step in

the footstep cleanup process. Unfortunately, due to the complexity of human motion and the many

di�erent sources of both systematic and noise artifacts in the data, this is not a simple task. This

section describes the tests of previous methods and introduces a new detection method, which is more

robust than previous techniques.

The main requirement placed on the technique we are looking for is accuracy. Moreover, while we

will demonstrate the footstep detection primarily on the skeletal data, it should be applicable to the

marker data alone, thereby extending its use to raw motion capture data cleanup and �tting. This

expectation mainly limits the input of the algorithm � the trajectories contain only the positional

component and no bone rotation information is available. Furthermore, it requires the method to be

�exible in dealing with several di�erent artifact types � the skeletal data are in�uenced by additional

artifact sources (e.g., skeletal �tting), but they are less likely to contain random noise present in

marker data (the �tting process averages over several markers, reducing the measurement noise with

Gaussian properties).

4.3.1. Input Data

The input to our constraint detection algorithm are 3D positional trajectories of the markers (joints)

with respect to the world origin (global positions). In order to be able to handle both joint and

marker data in a consistent manner, we do not use the orientation information present in the joint

A fully
planted foot

Stage 1:
Heel on the ground
(ankle constrained)

Stage 2:
Both heel and

toes on the ground
(both ankle and
toe constrained)

Stage 3:
Heel liftup

(toe constrained)

Stage 4:
Toe liftup

(no constraints)

Figure 4.5.: The description of di�erent stages of a footstep.
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Figure 4.6.: XYZ plot of joint trajectories during locomotion. The �at regions represent a foot lying on the
ground.
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Figure 4.7.: The y (up) component of the foot marker trajectory data during a footstep. The numbered regions
represent manually annotated footstep stages.

representation.

The axis-separated trajectory data for a straight and curved walk are presented in Figure 4.6 (only

joints presented for clarity, marker trajectories are similar; see Figure 4.9). This graph shows the

distinct �at regions, where a position of a joint does not change in time. However, it also shows that

these regions are not precisely determined, having a smooth lead-in and lead-out transition. This

poses a signi�cant problem for constraint detection.

The problem can be also illustrated on a graph with the separate Y trajectories of the markers,

manually labelled with the start and end of each footstep stage (Figure 4.7). While the transition

between stage 1 and 2 is de�ned by an edge in several markers (LMT5 and LMT1), all the other

transitions are present somewhere in a relatively smooth region.

The separation of x-z and y data (horizontal and vertical) is a common manipulation of the trajectory

data, often used for footstep constraint detection purposes (Hreljac & Marshall, 2000). It is a very

intuitive description, as the y data represent the distance between the marker (joint) and the constraint

object (�oor; assuming a �at �oor surface) and the x-z part describes the forward and side trajectory

(see Figure 4.8).

4.3.2. Input Data Filtering

A motion capture system is a physical measuring device and as such, its output data contain a certain

amount of noise. As an electronic system with discrete outputs, a large portion of its noise levels can be

modelled using the standard additive white Gaussian noise model with limited bandwidth. Therefore,

the spectrum of the original signal will be �at on the logarithmic scale, up to the sampling frequency.
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Figure 4.8.: The x-z and y axis separation of joint data for two di�erent locomotions (top � a straight walk,
bottom � a turning motion).
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Figure 4.9.: A comparison between the y axis data of the joints and closest markers. While both descriptions
show very similar trends, the marker data contain more noise. On the other hand, the averaging property of
joint �tting can oversmoothen certain properties usable for constraint detection.
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The di�erential of this signal, however, will have its noise spectrum shifted towards higher frequencies

(which can be proven by converting the noise signal to the frequency domain and computing its

di�erential there). This e�ect can be demonstrated on any of the trajectories captured by our motion

capture system (see Figure 4.10).

50 60 70 80 90 100 110

-0.022

-0.02

-0.018

time [frames]

Y 
di

st
an

ce
 [m

]

50 60 70 80 90 100 110
-0.1

-0.05

0

0.05

0.1

time [frames]

Y 
ve

lo
ci

ty
 [m

s
-1

]

Figure 4.10.: An illustration of the input signal di�erentiation causing an increase in the noise levels (left � y
ankle position during a footstep, right � y ankle velocity).

In Section 4.3.1, we have described the properties of the input signal, stating that a constraint is

represented in the input data by a �at region. A simple method to detect this �at region is by using

a threshold of the �rst derivative of the signal (the marker velocity). This is a standard method

for constraint detection used in previous work (Lee et al., 2002; Ménardais et al., 2004). To detect

the start and end of a constraint, several approaches used even higher derivatives, such as the zero

crossing of the acceleration data (Bindiganavale & Badler, 1998), or the zero crossing of the �rst

derivative of acceleration data (jerk; Hreljac & Marshall, 2000). However, with each higher derivative,

the amount of noise in the input signal is signi�cantly ampli�ed. In our experiments, even acceleration

data exhibited levels of noise that excludes them from practical use. For this reason, it is necessary

to �lter the input data.

Our target is to determine the start and end of a constraint. However, such information has usually

a pulse nature, which moves it to a high frequency part of the signal spectrum � a naive way of signal

�ltering, which addresses noise reduction by removing the high frequencies, would smooth out this

information. Therefore, in the following paragraphs we attempt to �nd a way to �lter the motion

data, which removes the noise while keeping the details about footstep events intact.

Gaussian Filter

The Gaussian function is the most commonly smoothing �lter in signal processing. It is in�nite, its

pulse response is another Gaussian and it has a well known bell shape. Its two parameters are the

centre (expected value) µ and the standard deviation σ:

g (x) =
1√
2πσ

e−
(x−µ)2

2σ2 (4.1)

For the case of signal �ltering, the Gaussian function is centred (µ = 0), leaving only the standard

deviation parameter σ.

The input data of the �ltering process are discrete, with each sample corresponding to the informa-

tion of one animation frame. For this reason, in all the following equation we will use integer variable

i to describe the sample (frame) index, instead of the continuous free variable x used in Equation 4.1:

i ∈ (1..n)

with n denoting the total number of input samples (frames).

The �ltering process is performed using the discrete convolution of the signal function f with a

smoothing kernel g created using the equation above. The resulting discrete function (f ? g) is then
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de�ned as:

(f ? g) (i) =
∞∑

j=−∞
f (i+ j) g (i) (4.2)

with values outside the range of the input signal usually de�ned as zero (or as a mirror of the original

signal).

From a certain amount of input signal data, the convolution can be signi�cantly sped-up by trans-

forming both the input signal and the kernel into the frequency domain (using a Fast Fourier Trans-

formation, FFT), thus converting the convolution into simple multiplication. However, this assumes

that the input signal is periodic and the number of samples is a power of two (both issues can be

addressed by padding).

For a simple non-Fourier implementation of this �lter, it is possible to limit its kernel size to the

interval (−3σ...3σ), as the integral of the Gaussian function in this range covers more than 99% of its

total energy. Therefore, we can de�ne a variable s using the ceil rounding function (denoted by d e)
as:

s = d3σe

and the surrounding set Ω′(i) of a sample i as:

Ω′(i) = (−s ... s)

together with a value w denoting the cardinality of this set (and the width of the convolution window):

w = 2s+ 1 (4.3)

However, the convolution as de�ned in Equation 4.2 provides smaller values around the signal edges,

as all the data outside the de�nition range are assumed to be zero (or distorts them when the values

are mirrored). Therefore, for practical reasons, we de�ne a sample index dependent surrounding set

Ω(i):

Ω(i) = (max (1, i− s)− i ...min (n, i+ s)− i) (4.4)

and use a normalised version of the convolution:

(f ? g) (i) =
1

k (i)

∑
j∈Ω(i)

f (i+ j) g (j)

k (i) =
∑
j∈Ω(i)

g (j)

where k(i) is the normalisation term of the convolution value.

By applying the convolution, we receive the �ltered result in Figure 4.11. While addressing the

noise successfully, Gaussian �ltering also in�uences the leading and trailing edges of the constraint

signi�cantly. Moreover, its results are highly dependent on the smoothing parameter σ.
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Figure 4.11.: Result of �ltering the y ankle signal from Figure 4.10 using a discrete Gaussian �lter.
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Median Filter

The median �lter is a non-linear method aimed particularly at noise removal. It replaces the current

value of the discrete signal by the median of its neighbours, by selecting the median value from a

window of samples centred at the current position.

The practical implementation processes the set Ω(i) surrounding a sample (frame) i (Equation 4.4)

by sorting them according to their value and selecting the sample in the middle of the sorted array.

The only parameter of the �lter is the width of the processing window w (see Equation 4.3).

The resulting function (see Figure 4.12) is smoothed to a certain degree, with all signi�cant peaks

and changes removed. The lead-in and lead-out slopes, however, are perfectly preserved. Unfortu-

nately, the changes in the �rst derivative of the function are minimal, suggesting that this �ltration

has to be performed on each derivative separately.
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Figure 4.12.: Result of �ltering the y ankle signal from Figure 4.10 using a median �lter.

Bilateral Filter

Bilateral �lter is a non-linear �lter consisting of two Gaussian kernels, one applied to sample distances

and the other to sample values. It uses a modi�ed (normalised) version of the convolution algorithm

and the combination of two kernels, both of which do not allow any processing speed-up in the

frequency domain (as in the original Gaussian �lter). However, compared to the Gaussian �lter, it

has an important property of edge preservation.

Using the notation established for the Gaussian function, the bilaterally �ltered function h(i) for a

sample i is de�ned as

h (i) =
1

k (i)

∑
j∈Ω

f (i) gs (i− j) gv (f (i)− f (j))

k (i) =
∑
j∈Ω

gs (i− j) gv (f (i)− f (j))

where Ω is the surrounding of sample i (Equation 4.4), k(i) is the normalisation coe�cient for sample

i, gs(x) is the spatial Gaussian function, gv(x) is the value smoothing Gaussian function and f(x) is

the input function. The �nal �ltering function therefore has two parameters � the spatial standard

deviation σs and the value standard deviation σv.

The �ltered result can be found on Figure 4.13. The noise smoothing properties of this �lter are

similar to the Gaussian �lter, but the major edges are preserved signi�cantly better in both the

original function and its �rst derivative. Furthermore, the impact of the two con�guration parameters

is relatively intuitive and the �nal result is not overly sensitive to their values.
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Figure 4.13.: Result of �ltering the y ankle signal from Figure 4.10 using a bilateral �lter.

Discussion

In previous paragraphs we have discussed the use of several classical examples of �ltering methods of

signal noise cleanup on motion data. The main aim is to reduce the levels of noise in the signal, which

mostly in�uences the high frequencies of the motion, without compromising the relevant constraint

cues. Unfortunately, some of these cues are contained in the high frequency information.

The properties of the described techniques can be summarised as following:

� The Gaussian �lter signi�cantly reduces noise levels, both in the original signal and in its deriva-

tives. Unfortunately, it also negatively in�uences the larger edges in the data, thus interfering

with important properties required for the constraint detection.

� The Median �lter successfully reduces the noise levels in the original signal while preserving

important signal cues, but it does not reduce the noise in higher derivatives and furthermore

in�uences the signal in a non-linear and non-smooth manner (removing the outliers). This can

introduce new artifacts to the result that can be hard to predict.

� The bilateral �lter preserves the signal edges while successfully removing the noise both in the

original signal and in its derivatives. It includes two con�guration parameters, but the �nal

output is not overly sensitive to its values.

Comparing these properties, we conclude that the best method for our purposes is the bilateral �lter.

Our evaluation did not include several important �lter types used in practice. A number of In�nite

and Finite Impulse Response �lters (IIR and FIR) can be used to �lter discrete data. However,

both types introduce a signi�cant phase shift of the signal, interfering with constraint information.

Moreover, generally, their response is similar to linear �lters, represented in our short list by the

Gaussian �lter.

From the large group of linear �lters, we have included only simple Gaussian �lter. Other �lters,

such as the Butterworth, Chebyshev or Elliptic are used in practice (with the Butterworth �lter

speci�cally uses by the Vicon IQ motion processing software), providing di�erent frequency and phase

characteristics. However, the general property of in�uencing certain frequencies without the distinction

between the noise and signal data is common in all these methods.

Finally, our evaluation did not include any state-based �lters (e.g., Kalman �lter) or more complex

statistical or simulation approaches, as our target is to provide a simple and generic preprocessing

technique with predictable results. However, it is possible that some of the more advanced techniques

would provide better pre-�ltering properties.

4.3.3. Detection Methods

The following section focuses on the properties of di�erent footstep constraints detection methods. As

discussed earlier, we are focusing on footsteps only, and the tested methods are speci�cally designed as

such. Moreover, our methods are designed to function on both marker and joint data, thus excluding

any possible orientation information that might be available for joint data.

In the following text we describe several methods from previous work, which do not require the
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use of high order derivatives of the source data. The main reason for this limitation is the fact that

the data from our motion capture system have proven to be relatively noisy, with higher di�erentials

unusable for constraint detection (even when �ltered in a preprocessing step). Therefore, we start

with the simple positional methods, continue through �rst derivation thresholding and �nish with a

simple method of our own, based on rotation axis detection inspired by the work of Le Callennec &

Boulic (2006).

Each method is described together with its characteristic properties, and with an informal analysis of

suitability for locomotion foot constraint detection. Unfortunately, apart from the measurable physical

quantities discussed in this chapter (e.g., well-de�ned threshold value, noise invariance, continuity),

a direct evaluation of constrain detection methods is problematic. This is caused primarily by the

fact that motion capture data do not represent the constraint values explicitly, and humans are not

capable of identifying them directly. However, an indirect evaluation of footstep constraints is provided

in Section 6.3.

Y Position Thresholding

Assuming a standard studio motion capture setup for simple locomotion, the environment description

is trivial � a �oor plane positioned at the origin, with the normal pointing up. The distance of a joint

from this environment can be computed simply by taking the y axis of the position at given point

of trajectory. This is essentially an implementation of the environment-distance idea described by

Bindiganavale & Badler (1998).
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Figure 4.14.: The illustration of the y axis thresholding constraint detection approach, with manually labeled
stages of the footstep in light gray. The thresholds are set up manually to represent the expected constraints
well.

An illustration of this approach can be found in Figure 4.14, which also demonstrates well the

problem with the threshold setup � determining a threshold value applicable to our data is not trivial

and depends heavily on the input. Moreover, simple thresholding is not e�ective for the ankle data,

as it supplies no explicit features to distinguish between di�erent stages of the motion (a solution

would require a hysteresis thresholding, with one more con�guration variable). While both problems

can be addressed using a machine learning approach, the derived values would apply only to one type

of motion, a single actor and one particular motion capture setup (recalibration of the system would

change the values slightly, o�setting the threshold).

Moreover, this method is particularly sensitive to the calibration of the �oor plane and the �atness

of the �oor. Even slight miscalibration of the normal vector, leading to a �oor tilt of only one angular

degree, would lead to Y di�erence of 9 centimetres in a capturing volume 5 meters long; a systematic

error of a similar magnitude as the threshold value. Figure 4.14 shows a slight miscalibration of

a similar type � the �oor Y value is shifted approximately 2 centimetres below its actual position,
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Figure 4.15.: A detailed view on a single footstep detected using XZ position thresholding. Each of the de-
picted points is a single sample in 120Hz motion capture data; the gray circles describe the maximal threshold
diameters from the cluster's centre.

leading to values below the zero level.

XZ Position Thresholding

In the previous method, we have separated the Y data from the XYZ trajectory to allow separate

processing of the distance from the �oor. The remaining XZ data describe the movement parallel to

the �oor plane. During a foot constraint, this movement should be minimal, as the foot is in contact

with the ground.

A second method, based directly on the end-e�ector positional data as well, can detect the centre

of a cluster of samples and threshold the positional distance (see Figure 4.15).

This method performs relatively well and is signi�cantly more generalisable (it does not depend on

the �oor calibration and the di�erence between actors is minimal). However, the heel lift-up stage is

not distinguishable from the standing phase (stages 2 and 3), as the XZ movement during the lift-up

is minimal. This problem could be addressed by combining with the previous method, but the number

of di�erent thresholding parameters would increase signi�cantly, making it unpractical.

Speed Thresholding

A simple mechanism for detecting static segments of a trajectory is to determine its velocity (using

the �rst derivative, in our case calculated from our discrete data) and then threshold its magnitude

(speed). This is also a method used often in previous work (Lee et al., 2002; Ménardais et al., 2004).

A graph of speed values for ankle and toe bones during a walking motion can be found in Figure 4.16.

However, computing the �rst derivative of the motion capture data also signi�cantly enhances the

signal noise (see Section 4.3.2). Rescaling the Y axis of the speed graph provides an insight into this

problem (see Figure 4.17). Moreover, thresholding speed values for di�erent walk speeds or styles can

be a challenge, as the required threshold value can di�er signi�cantly (see Figure 4.18). Le Callennec

& Boulic (2006) address this issue by implementing an adaptive threshold, but as its value is adjusted

using previously determined constraints, it does not present a reliable estimate of its actual value (i.e.,

heavily relies on a perfect calibration and similarity between multiple footsteps).
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XZ and Y Separation and Rotational Point Detection

Inspired by the work of Le Callennec & Boulic (2006), constraints can be detected from positional data

by recovering a common rotational point or axis. Unfortunately, the original work was speci�cally

aimed at detecting constraints in skeletal data, with mathematical background built on the analysis

of di�erential transformation between two frames (both rotational and translational). We aim for a

more �exible method, applicable to only positional information, which would generalise these methods

to marker trajectories.

The feet contains several possible rotational axes, depending on the footstep phase (see Figure 4.5)

� in the �rst phase, the ankle rotates around the heel point. The second phase is mostly static, with

the lower leg bones rotating around the ankle bone. In the third phase, the ankle rotates around the

toe point and in the fourth phase, the rotational axis is not detectable close to the foot (while the

leg performs a rotational motion centred at the hip, the foot follows a parabolic trajectory, with its

approximate rotational centre below the ground). From this simple analysis we can see that the stages

can be recognised using the position of the rotational axis or its distance from one of the joints of the

foot.

Another important observation used in this method is the fact that, ignoring the sample order, a

circle �tted into a random pattern of points would have a diameter corresponding to their spread (see

Figure 4.19, left). A di�erent e�ect can be observed on noisy straight trajectories, where the �tted

circle would have a large diameter.

To use this information for detecting footstep constraints, we can also use the fact that all rotational

constraints of a foot during the walking motion have their axis approximately parallel with the ground.

Following the separation introduced above, we can convert the joint (marker) trajectories into 2D by

using the XZ component as the forward direction and the Y component as up. The XZ of each

trajectory signal f(i), separated into components as f(i) = (fx(i), 0, fz(i)), is then converted into

scalar monotonous function g(i) using the formula:

g(i) = g(i− 1) +

√
(fx(i)− fx(i− 1))

2
+ (fz(i)− fz(i− 1))

2

e�ectively di�erentiating the XZ component of the trajectory data, computing its magnitude and

integrating it back into a function (with g(0) = 0). This leads to a 2D discrete function as shown on

Figure 4.20.

A visual analysis of this data (Figure 4.21, left) reveals several obvious circular trajectories, with

constrained frames determined by the small circle diameters. An objective analysis by �tting circles
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Figure 4.16.: Velocity magnitude (speed) graph of one foot during straight walking motion, with the noise
reduced using the bilateral �lter.
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Figure 4.17.: Detail of a footstep in the speed graph from Figure 4.16. The noise in the �rst derivative of the
trajectory data is prominent even after �ltering the source data using a bilateral �lter, with signi�cantly higher
levels in the marker data as compared to the joint data.
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Figure 4.18.: A graph of joint speeds for di�erent types of locomotion (un�ltered source data).

Figure 4.19.: An illustration of the circle �t into noisy data. Left � �tting a circle into noisy positional data
of a static point leads to a circle dependent on the noise amplitude. Right � a circle �t into a noisy straight
trajectory leads to a circle with large diameter.
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Figure 4.20.: The XZ-Y separation for circle detection. The XZ components of the trajectory data are integrated
into a single scalar forward function, leading to a concise description of the end-e�ector height in relation to
the overall travelled distance.
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Figure 4.21.: Rotation centre analysis of the XZ-Y separated trajectory data as a constraint detection method.
Left � illustration of circles present in the end-e�ector trajectories; right � the circle centres detected by �tting
circles into windows of 7 samples.

time [frames]

ro
ta

tio
n 

ce
nt

re
 d

is
ta

nc
e 

[m
]

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1
LeftAnkle
LeftToe
LeftAnkle threshold
LeftToe threshold

Figure 4.22.: The radii of detected circles in footstep data, based on windows of 7 samples.

into windows of data that are several frames wide (see Appendix C) roughly corresponds to the

preliminary visual analysis (see Figure 4.21, right). To determine frames with small diameters, we

can threshold the function of circle diameters as depending on the sample index (Figure 4.22). The

thresholding values are determined intuitively � the expected maximal circle radius corresponds to

the expected inaccuracy in the joint (marker) data, which is in turn determined by the size of the

bodypart being analysed. For the case of ankle and toe in further examples, the threshold values are

10cm and 5cm respectively (Figure 4.22).

Apart from the threshold values, the second important parameter is the �tting window size. Using

a small window leads to a large amount of noise in the data, but it also preserves the important

edges (in a similar manner as �ltering techniques; see Section 4.3.2). In previous work, Le Callennec
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Figure 4.23.: The impact of di�erent �tting window width on the detected circle diameters.
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Figure 4.24.: The median �ltering of the circle diameters (the source data are generated using a 3 samples
wide window to simulate noisy data input).
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Figure 4.25.: The comparison of the xz-y separation (left) to the rotational axis detection (right). The latter
method exhibits data with noise patterns closely corresponding to the preliminary assumptions.

& Boulic (2006) develop a complex noise prediction/�ltering scheme to address this issue. However,

their approach is limited to use only two consecutive frames of the motion. As we are using only

positional data, our approach allows us to use multiple frames, thereby signi�cantly reducing the

amount of noise. However, even when using a large window, the method does not in�uence the

signi�cant edges signi�cantly (see Figure 4.23 for a comparison of di�erent �tting window sizes). In

the practical implementation, the �tting frame window is always 7 samples wide.

Another important observation with our method is the fact that pre�ltering the motion (using any

of the methods described in Section 4.3.2) actually a�ect our results in a negative way, thereby intro-

ducing noise into the circle diameter function. This can be explained by the fact that the pre�ltering

method is not feature-aware and therefore destroys important information with the noise.

However, the result, exhibits a certain amount of spiky noise, especially for a small window diameter.

A �lter speci�cally designed to deal with this noise pattern is the median �lter (see Figure 4.24), which

can be as an optional post-processing step of the detection algorithm.

The main problem of our method is the XZ-Y separation, which assumes that the rotational axis is

parallel to the ground plane. Moreover, the separation algorithm integrates the noise on the XZ axes,

which leads to signi�cantly larger forward motion than which was present in the original data, along

with a certain level of bias in the detection results (see Figure 4.25).

Rotation Axis Method

The rotational axis detection method attempts to address the drawbacks of the technique introduced in

the previous section. First, we want to be able to allow an arbitrary axis of rotation, as the rotational

axes of feet are not precisely parallel with the ground, especially for turning motions. Second, the
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Figure 4.26.: A comparison between XZ-Y separation method and the rotation axis method. Due to the noise
integration in the XZ-Y conversion and the assumption of the rotation axis parallel with the ground, the
diameters detected using this method are signi�cantly larger and contain higher levels of noise than the data
generated using the rotation axis (3D �t) method. Both graphs were generated using a window of 7 frames.

XZ integration error (see Figure 4.25) is an aspect that introduces a certain amount of noise into the

detection process.

As in the previous method, our inspiration comes from the work of Le Callennec & Boulic (2006) � we

aim to determine the constrained frames by �nding a common axis of rotation and then thresholding

the maximum rotation radius. However, while the XZ-Y separation assumed that the axis of rotation

is parallel with the ground plane, the rotational axis method determines the axis direction from the

circular motion of the end-e�ector.

The algorithm consists of two steps. For every window of joint (marker) positions, we �rst �t a

plane into the data using a standard least-squares �tting algorithm (see Appendix B). By projecting

the marker positions to this plane, we obtain a 2D version of the data, which can then be used for

circle �tting in the same way as the previous method.

While technically more generic than the previous method, the results are very similar (Figure 4.26

shows a comparison of the un�ltered results).

A simple extension applicable to this method, providing more data about the rotational axis change,

is to determine the distance between detected rotational points (i.e., intersection between the rotational

axis and the �tting plane) between each pair of frames (see Figure 4.27). This metric provides a

function with distinct spikes at the point of the rotational axis transition, allowing a more robust

detection of di�erent stages of the constraints. However, a detailed analysis of this method is reserved

for future work.

4.3.4. Filtering Output

The output result of each constraint detection method is a per-constraint binary discrete signal, with

value 1 whenever a constraint condition is satis�ed and 0 otherwise. However, independently of the
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Figure 4.27.: An example of between-frame rotational centre distance function on footstep data. Notice the
distinct spikes corresponding to the start and end of each footstep stage.

20 40 60 80 100 120 140 160 180 200

Original data

Median, w = 3

Median, w = 7

Median, w = 11

Median, w = 19

Median, w = 31

Figure 4.28.: An example of binary median �ltering of the output constraint data with noise. The input data
are generated using the same example data as in Figure 4.23, with a �tting width of 3 samples (generating a
signi�cantly higher levels of noise for demonstration purposes).

constraint detection method used, this signal contains a certain amount of noise, prominent especially

at the beginning and end of the constrained interval. The per-frame detection methods, such as

velocity thresholding or our rotation axis method introduced in Section 4.3.3, produce a speci�c spiky

pattern (see Figure 4.28, top). Several statistical or state-based methods were used to address this

problem in previous work (see Section 2.3.3), incorporating the temporal information into the per-

frame constraint detection results. We aim at a simpler solution, applied as a post-processing step of

the constraint detection algorithm.

The median �lter is a classical non-linear noise reduction �lter used in signal processing. We have

already introduced its use on motion data in Section 4.3.2, where each discrete signal value was a real

number. However, the nature of this �lter enables its simple adaptation to binary data.

While it is possible to implement the binary version of median using a classical sorting algorithm

(see Section 4.3.2), the binary nature of the data allows to simply count the number of samples with

1 and with 0 value in a window and return the one which is more common. The only parameter

of this �lter is the window width, but on our data we found that the result is not sensitive to its

value. For practical implementation, we use a window, which is 11 samples wide (see Figure 4.28 for

a comparison of di�erent widths).

In the �nal step of constraint detection, we enforce the correct order of footstep stages. The necessity

of this step is caused by the fact that in rare occasions, the noise accumulated in some of the source

clips led to a wrong order, either missing the stage one in the footstep, or starting with stage three

immediately followed by stage two (with the error state not longer than several milliseconds). To
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Figure 4.29.: The skeleton miscalibration artifact. A seemingly correct base pose (left) can lead to a consistent
behaviour of the feet either below (middle) or above (right) ground during the footstep.

address this issue, we use a heuristic solution, which determines the stage two �rst and derives the

other stages related to its time interval. This simple method ensures correct footstep handling in the

footstep enforcement stage (see Section 4.4).

4.4. Footstep Constraints Enforcement

Given the binary function describing the expected time intervals for each constraint, a method is

needed to ensure the ful�lment of the relevant constraint condition (e.g., a foot static on the ground).

Moreover, as this requires an alteration of the original motion, the constraint enforcement method has

to ensure that no artifacts are added into the �nal result.

The constraint enforcement has its primary use in two cases. First, as a post-processing step of

motion capture pipeline, as no captured animation is perfect, both due to noise and motion recon-

struction methods used. Second, as a step of a motion synthesis method � most data driven motion

editing/synthesis methods alter the motion in a way that disrupts the original crisp constraints (e.g.,

by blending), and a reconstruction step is required to make the motion realistic.

In this section we provide a description of two methods used in our work. The �rst method aims

to correct a systematic error caused by skeleton miscalibration (Section 4.4.1), which is a speci�c

problem related to locomotion recorded using a motion capture technique with rigid body skeleton

�tting, but also applies to motion retargeting. The second method describes a more generic method

for footstep reconstruction, which consists of determining the idealised foot trajectories (Section 4.4.2)

and altering the animation to follow them (Section 4.4.3).

Throughout this section, we will be using the classic matrix notation used in skeletal animation,

which describes the local coordinate matrices of a bone in the binding pose as Ri, its animated

transformation as T i, the premultiplied transformation as P i, the global binding pose transformations

as Ai and the global animated poses as F i, with i determining the bone index. For a detailed

description of this notation and its mathematical background, please refer to Appendix A.

4.4.1. Skeleton Miscalibration Correction

A skeleton-based human animation relates the animation data to a starting pose of the skeleton, often

referred to as binding pose (see Appendix A for more details). However, if this pose is not accurate, the

resulting animation exhibits a certain amount of systematic errors. In the case of human locomotion,

there are two important types of these errors. The �rst type of error leads to incorrect positions of

the feet during a footplant, i.e., whole feet are either above or below the ground. This artifact can be

addressed by translating or rotating the positional component of the root transformation. The second

artifact exhibits itself only on the heels, i.e., during a footplant, the heel is consistently either above or

below the ground, while the toe joint is planted correctly (see Figure 4.29). The focus of this section

is aimed at the latter case.

There are several possible causes of this artifact. One is a di�erent shape or height of the foot, when
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Figure 4.30.: Methods of addressing the feet miscalibration artifact. The original motion, with heels consistently
below (above) the ground (left) can be altered using an IK approach, but this would lead to signi�cant di�erence
of feet height during the footstep (middle), which has to be addressed at the knee level. By altering the base
pose, however, the artifact can be successfully addressed without any further need of pose adjustments (right).

the motion is applied to a di�erent character. Another one is speci�c to the skeleton-based motion

capture, where the skeleton is calibrated on a di�erent motion or slightly inaccurate marker set than

captured. The main reason for this type is the fact that the human body is not rigid and the skeleton

cannot represent the dynamic data accurately. However, in both cases, the artifact exhibits itself in

the same way.

With constraint time interval data available, a standard method of enforcing constraints would use

a certain type of inverse kinematics (IK, e.g., see Section 4.4.3). However, for this kind of artifact,

the IK method, which �attens the feet as the �rst step, can lead to signi�cant foot height di�erence.

This di�erence has to be compensated for at the knee level (see Figure 4.30, middle). Adjusting the

skeletal base pose, though, can lead to a solution that does not alter the source animation signi�cantly

(see Figure 4.30, right).

The corrective algorithm then consists of several steps:

1. As we want to keep the overall foot direction (rotation around Y axis) intact, we extract the XZ

transformation by �rst transforming the unit vector x using the global ankle matrix F a, leading

to a transformed vector xt:

xt = F ax x =


1

0

0

0


2. From this vector, we can extract the rotation angle α:

α = −atan2
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0


3. which can be used to create a matrix M that expresses the rotation around the Y axis by angle

α. This way we can extract the XZ transformation matrix F
(xz)
a :

F (xz)
a = M−1F a

4. By converting the rotational part of F (xz)
a to quaternion representation, we can use NLERP

(normalised linear interpolation) to compute the approximate average transformation F̄ a of all

the footstep frames of the animation clip, with axes lying on the XZ plane (keeping the Y

directional part intact).

5. Using this matrix, we can alter the binding pose and the animation frames, so that the overall
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ankle transformation stays intact, thus achieving the e�ect illustrated on Figure 4.30 (right):

R′a = RaF̄ a

T ′a =
(
F̄ a

)−1
T a

leading to the premultiplied matrix P ′a:

P ′a = R′aT
′
a

=
(
RaF̄ a

) ((
F̄ a

)−1
T a

)
= P a

and consequently

F ′a = F a

For practical reasons, we use the same correction matrix for both feet, which keeps the skeletal

structure symmetric. As a result of this transformation, the foot orientation of the skeleton in the

binding pose then corresponds to the average orientation of the constrained feet.

4.4.2. End-e�ector Positions

The input data of the footstep correction algorithms described in Section 4.4.3 consist of the original

animation and the full target trajectories of the feet. These trajectories should contain corrected foot-

step information, while being as close as possible to the original feet trajectories without introducing

any discontinuity artifacts. This section focuses on determining these trajectories.

An alternative approach, often used in previous work, would use only target information of the

constrained frames. After solving the poses for these frames, it would employ a �ltering scheme to

reduce discontinuity artifacts. However, our scheme allows a simpler and consistent data handling for

all frames of the animation, not di�erentiating between the constrained and unconstrained frames.

A speci�c property of footstep handling is the fact that the constraint consists of two separate joints.

The primary joint (ankle) describes the overall motion of the foot, and its representation implicitly

contains the heel bone (see Figure 4.2). The secondary joint is the toe, which, as a child of the ankle

joint, is directly in�uenced by the ankle motion. The target feet trajectory has to explicitly re�ect

this property.

A footstep constraint can be fully described using three points on the foot (heel, ball joint, toe) and

four stages (see Figure 4.5). The behaviour of each of the three points can be described as follows:

1. The heel is in contact with the ground during footstep stages one and two, with rolling contact

motion during stage one.

2. The ball (or toe) joint is constrained in stages two and three, with the ankle rotating around its

position in stage three (thereby temporarily reversing the parent-child relationship, as the ankle

motion should be dependent on the ball joint motion).

3. The toe tip is in contact with the ground in stages two and three, and partially in stage four.

However, in our implementation, we ignore the heel contact in stage one, as in a normal walk it is

very short; and toe tip from stage four, as it does not give a signi�cant force response to the foot.

As our thesis is primarily concerned with locomotion, we focus on periodic animations. The periodic

conversion operation, as described in Section 5.3.1, alters the original motion data by detecting and

cutting one motion period and making sure that the start and end of the resulting animation clip are

connected. Consequently, the �rst and the last frame of this clip contains the same pose, di�ering only
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in the global body translation and rotation, which allows the motion clips to be simply concatenated

in order to generate a long animation (see below). However, the blending required to achieve the

similarity between the start and end frames can introduce a certain level of footsliding, requiring a

post-processing step performing footstep cleanup.

Given the �rst frame (t = 0) and last frame (t = τ) of a periodic clip with period τ , we can create

the periodicity transformation of the root T p using the root local transformation matrix T 1(t):

T p = T 1 (τ) (T 1 (0))
−1

whose properties then allow us to convert between the �rst and last frame as follows:

T pT 1 (0) = T 1 (τ)

T−1
p T 1 (τ) = T 1 (0)

By concatenating the clips (transformed by (T p)
n), we can create an animation with arbitrary length.

Converting the animation to world space, we can express the periodic transformation as

F p = F 1 (τ) (F 1 (0))
−1

= R1T 1 (τ) (R1T 1 (0))
−1

= R1T 1 (τ)T 1 (0)
−1

R−1
1

= R1T pR
−1
1

The world space periodic transformation is the same for all joints of the skeleton. Therefore, it can

be used for creating periodic animations of separate bodyparts (e.g., feet) in the world space.

The �rst step towards determining the full end-e�ector trajectory is to compute the �nal footstep

position and orientation in a particular constraint interval, for our case the double constrained phase

(i.e., stage two). Assuming a certain level of noise at the beginning and the end of the constraint, the

best starting value would be in its time interval centre. In the case of periodic animation, however,

the start time tstart can actually have a higher value than tend, therefore describing a constraint that

wraps around the end and start of the period. The actual tcentre can therefore be computed using:

tcenter =
tstart + tend

2
mod τ

The full footstep information involves two parts � ankle and toe. The constrained ankle transformation

F ′
ankle(tcentre) is determined from the original F ankle(tcenter) by using only the XZ translation and Y

rotation from F ankle(tcenter), and Y translation together with XZ rotation from Aankle. This process

e�ectively plants the ankle segment of the foot on the ground. The constrained toe transformation

F ′toe (tcenter) is determined using:

F ′toe (tcenter) = F ′ankle (tcenter)Rtoe (tcenter)

which sets the T toe to identity, thus making the whole foot fully planted.

To generalise the constraint information to other frames of the constraint interval (tframe), we have

to take into account the periodicity of the animation. This leads to a total of �ve possible forms of
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the �nal F ′ankle(tframe) computation:

F ′ankle (tframe) =



F ′ankle (tcentre) tstart < tcentre < tend

F ′ankle (tcentre) tend < tstart < tcentre and tframe ≥ tstart
F−1
p F ′ankle (tcentre) tend < tstart < tcentre and tframe < tstart

F pF
′
ankle (tcentre) tcentre < tend < tstart and tframe ≥ tstart

F ′ankle (tcentre) tcentre < tend < tstart and tframe < tstart

(4.5)

The F ′toe is computed in a similar way by substituting in the previous equation. This provides all the

foot trajectory information for footstep stage two.

Stage three requires the toe joint to be fully planted, while the ankle joint rotates around its position.

Using a small variation of the methods described above, we decompose the original ankle motion to

its XZ and Y parts, while enforcing the XZ part to be connected to the fully constrained toe joint.

This provides the ankle motion for stage three directly based on the original motion, thus minimising

the introduced changes.

At this point, we have determined the full trajectory for stages 2 and 3. To make sure that the �nal

animation does not contain any non-smooth transitions, we determine the corrective transformation for

the remaining frames by linearly interpolating between the end of the previous footstep and beginning

of the next. The corrective transformations for the ankle bone, describing the di�erence between the

original animation and its corrected version at the beginning and end of a constrained interval, can

be determined using:

F
(c)
ankle(tstart) = F ′ankle(tstart) (F ankle(tstart))

−1

F
(c)
ankle(tend) = F ′ankle(tend) (F ankle(tend))

−1

with the interpolated matrix F
(c)
ankle(tframe) computed using quaternion SLERP. For simplicity we do

not provide all �ve versions, which can be determined using a similar approach as in Equation 4.5.

The �nal animation frames are then computed using:

F ′ankle(tframe) = F
(c)
ankle(tframe)F ankle(tframe)

To ensure no undesirable artifacts, the toe bone is interpolated in the local space (matrices Rtoe) in

the same way, making the motion relative to the corrected ankle motion.

4.4.3. Footstep Constraints Solutions

Using the simple kinematic algorithm from Section 4.4.2, we have determined the position and orien-

tation of both feet for each frame of the animation. The new trajectories are smooth and follow the

original data as closely as possible while enforcing the foot constraints.

In this section, we describe three kinematic methods that change the original animations to ac-

curately follow a new trajectory. Two of these algorithms are tested in our perceptual study aimed

at footstep correction saliency (see Section 6.3). Although more complex dynamic or optimisation

solutions are possible, kinematic algorithms are prevalent in previous work due to their simplicity and

the possibility of combining them with simple �ltering methods.

For the sake of simplicity, we avoid mathematical descriptions of each of the methods, as all the
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Figure 4.31.: Limb-lengthening solution for footstep constraints. The original limb pose (left) is �rst adjusted
in the hip joint to point to the expected end-e�ector position (middle). Then, the limb is scaled so that its knee
joint is placed in the expected position (right). This leads to constraint satisfaction without changing the knee
angle, eliminating the possibility of the knee popping artifact.

concepts can be implemented using simple 3D geometric operations and transformation algebra.

Given the trajectories of both feet, several possible animation manipulations to cause the feet to

follow each trajectory can be summarised as follows:

� the limb lengthening solution changes the leg bone lengths to reach the �nal position without

in�uencing the root or knee movement. However, adjustments to hip and ankle bones are

necessary.

� the root�x solution primarily a�ects the position of the root bone to enforce constraints. Con-

sequently, the ankle and hip joints have to be changed to re�ect the new root position, but the

knee can essentialy remain unchanged.

� the inverse kinematics solution focuses on changing the leg con�guration, a�ecting the knee

joint, and consequently the hip and ankle joints. In the case of a leg not being able to stretch

to a certain distance, a correction of the root position is necessary.

� a heuristic combination of all the above.

Each of these solutions produces a certain number of artifacts, but the nature of these artifacts di�er

signi�cantly (e.g., knee-popping, body pose changes, limb length changes). The following paragraphs

aim to analyse their possible impacts.

The limb-lengthening solution takes its inspiration from a perceptual study performed by Har-

rison et al. (2004), who showed that, under certain conditions, even signi�cant changes of limb length

provide perceptually plausible results. This should allow the leg length to be changed signi�cantly,

while keeping the overall pose (determined mainly by the knee angle) intact.

Our proposed method �rst changes the orientation of the hip joint to re�ect the new direction. The

leg resize value can then be computed using a ratio between the original leg length and the distance

between the hip joint and the constrained ankle. Rescaling both the upper and lower leg connects

the leg bones with the ankle joint, which leads to an adjustment of ankle orientation to re�ect the

constrained target.

The root�x solution attempts to adjust the root position to compensate for the end-e�ector

displacement, while changing the leg con�guration as little as possible. The following paragraphs

describe two tested versions of the algorithm.

The �rst naive version keeps the knee con�guration intact, changing only the hips and ankle orien-

tations. The computation follows two steps: First, a circle is computed by intersecting two spheres

centred at the constrained ankles, with their diameter determined by the leg lengths from the current

frame. Second, the new root position is determined by �nding the point on this circle which is closest

to the original root position. While this solution is feasible for most joint con�gurations, necessitating

only minimal adjustments of the root position, certain combinations of constraint positions relative

to the original state can lead to severe artifacts (see Figure 4.32)
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Figure 4.32.: The naive root�x solution for footstep constraints. Left � a successfully applied correction leads
to root position change proportional to the required end-e�ector change. Right � a case when a relatively minor
end-e�ector correction leads to a large di�erence in the root position.

Figure 4.33.: XZ-Y separate root�x solution. The �rst step determines the best �t in the XZ plane (left), while
the second step determines the Y position (right).

A second option, addressing the main drawback of the previous one, computes the new root position

in two steps: First, the root is shifted in the XZ plane to a point determined by the ratios between

the original root and end-e�ector positions (see Figure 4.33). Second, the root is shifted on the Y axis

only and the new leg con�guration is determined using IK. While not keeping the knee con�guration

static, this solution limits both the artifacts and the changes in feet con�guration. Unfortunately, it

also changes the root motion, potentially causing artifacts that in�uence the whole body dynamics.

The inverse kinematics solution is a standard way of solving constraints problems. It determines

the new leg con�gurations by �nding the smallest changes of the leg joints that satisfy the constraints.

For certain cases, when a sole change of the leg's con�guration cannot provide a solution, a root

change (similar to the root�x solution) is necessary. A classical artifact of IK is the knee popping,

caused by a non-linear relationship between the leg extension and joint parameters (knee). A simple

solution to this problem can be to limit the maximal stretch of the leg, but that often leads to more

severe changes of the root trajectory.

A hybrid solution, presented by Kovar et al. (2002b), uses a combination of all methods above

to provide a comprehensive footstep cleanup solution. In their method, the IK solution is used to

change the leg con�guration, together with a root�x when the IK change would lead to knee popping

or is not able to provide a solution. As altering the root trajectory can lead to discontinuities in the

motion, they �lter the resulting root trajectory using a low-pass �lter and, so as not to alter the leg

con�guration, they apply the changes using the limb lengthening solution.

After testing all the previous approaches (see Section 6.3.3 for a perceptual experiment comparing

two of the solutions), we use primarily the hybrid approach, while not changing the bone lengths.

Based on the results of our experiment, the lengthening solution would be an ideal choice, but it

requires a slight change in the skinning algorithm (see Kavan et al. (2007a) for more details). While

it is not a problem in a custom animation system, this alteration is not possible in the main 3D

animation software systems (3DS MAX, Maya).
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5
A Linearised Locomotion System

for Crowd Animation

Animation of individual characters is a well-established topic in animation research with a broad range

of methods available (see Section 2.5). However the animation of many hundreds or even thousands of

simultaneously visible characters presents new challenges. First, a data-driven heterogeneous crowd

requires a variety of motions, so fully automatic motion pre-processing is highly desirable. Second,

the run-time component of the animation system needs to be fast enough to allow for the real-time

rendering of many individually animated characters. For this reason, previous crowd models tended to

employ very simpli�ed motion models (see Section 2.5.4). In this chapter, we present a novel animation

system, targeted speci�cally at human locomotion and medium level-of-detail (LOD) characters.

Because we are focusing on crowd animation, we assume a LOD management system is already in

place, which allows the characters to be separated into three groups:

1. a small group of characters closest to the camera, animated with a highly accurate animation

model (contains usually up to 20 characters),

2. medium level-of-detail characters, occupying most of the screen area in high density crowd

scenarios, whose motion still requires a high level of accuracy, but its smallest details are not

recognisable anymore (usually up to several thousand characters; all characters in Figure 1.1

belong to this group),

3. and the largest group of very distant characters, who are far enough away to allow extremely

simple animation models (e.g., an animation with a signi�cantly reduced number of bones, a

single repeated walk pattern, or no animation at all).

A single character can change its group many times during a single simulation run. To avoid intro-

duction of artifacts into the motion, the transition has to be smooth (e.g., linear blend between the

two animation models over a number of frames), and the transition point should be randomised with

hysteresis (di�erent in and out value). Both of these conditions represent the animation equivalent of
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Preprocessing Runtime system

Motion planning /
high-level behaviour

Physical behaviour layer

Trajectory analysis /
parameters extraction

Motion
synthesis

Parametric
space

structure

Motion capture data

Periodic locomotion

Trajectory bone extraction

Param. extraction,
trajectory bone

update

Figure 5.1.: The overview of our data-driven locomotion system, showing the division between preprocessing
and runtime components, with data �ow depicted using arrows.

rendering LOD transition techniques, and are aimed to prevent a sharp transition line.

Our data-driven locomotion system can be separated into components, re�ected in the structure of

this chapter:

� we �rst provide an overview of the system functionality (Section 5.1),

� then introduce the Motion Map concept, a novel way of manipulating motion comparison ma-

trices (Section 5.2),

� next we describe the fully automatic preprocessing of the motion clips used in our system �

the periodisation, trajectory bone embedding and trajectory idealisation; these steps allow the

abstraction of high-level locomotion features from the animation data (Section 5.3),

� we then demonstrate the integration of our model into a behaviour pipeline, using the derived

high-level locomotion features in the previous section and a PD controller as an optional interface

layer (Section 5.4),

� the parametric space concept and its parameters are then described. This is the central part of

our synthesis model (Section 5.5).

� Based on the properties of our parameterisation, we present a linearised skinning model, capable

of combining both mesh-based animation and articulated characters (Section 5.6).

� Finally, we evaluate the model in terms of computational speed and e�ciency (Section 5.7).

5.1. Overview

Our system can be characterised as a parametric locomotion synthesis method. While essentially a

single-character technique, its computational e�ciency and optimised integration with a higher-level

planning module make it particularly suitable for crowd animation. A very similar technique, using

the same basis for the parameter representation and the interpolation synthesis, was independently de-

veloped by CryTek and deployed in CryEngine 3 (as presented at the Game Development Conference,

2011).

Our system can be divided into two parts � �rst, the preprocessing phase, where the underlying data

structure is created, and second, the runtime system, which uses the preprocessed data to generate

character motion for the crowd system (Figure 5.1).

Because we aim to use motion capture data as input, each motion clip needs to be preprocessed

before it can be placed in the parametric space structure (described in Section 5.5). This consists of en-
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suring periodicity (Section 5.3.1), creating an auxiliary trajectory bone (Section 5.3.2) and extracting

clip parameters (Section 5.3.3).

The run-time system takes the parametric space structure and motion planning data as input,

analyses the planned trajectory in order to extract parametric information and uses these parameters

to create the resulting motion by blending and timewarping source motion clips (Section 5.5).

Our concept is closely related to several previous methods. It is a parameterisation method based

on motion blending, in principle similar to parameterised nodes in the work of Rose et al. (1998) or

edges in Shin & Oh (2006) and Heck & Gleicher (2007). It allows for motion synthesis by interpola-

tion (Wiley & Hahn, 1997; Sloan et al., 2001), but as the motion parameters after interpolation are

well-de�ned, we do not require resampling of the parametric space. Lee et al. (2010) recently intro-

duced a locomotion model built around a many-dimensional parameterisation of keyframes. Their

approach encoded the time domain, in the form of pose samples, into the parameterisation structure,

thereby implicitly allowing timewarping and multiple clip blending. Even though their method can

parameterise and generate a wider variety of motions than our approach, the synthesis results do not

correspond exactly to the expected outcome of the parameters, and therefore require an expensive

graph planning mechanism to provide a motion with the expected properties. By explicitly repre-

senting the time axis, our approach allows more accurate motion synthesis with a very simple motion

planner.

Our method builds on the work of Park et al. (2002), who introduced an interpolation based

locomotion model, which was later incorporated into a more generic graph-based motion generation

approach (Park et al., 2004). Our work di�ers from their approach in several important ways � our

method includes a fully automatic procedure to build the parameterisation structure from a set of

motion clips. We use a di�erent parameterisation structure and interpolation scheme, thus allowing

us to perform local blends alone (3 motions) instead of blending all motions for every combination of

parameters. Moreover, it allows us to generate motions that correspond to the requested parameters

accurately, without requiring any additional post-processing.

5.2. Motion Map Concept

The motion preprocessing in our system is built around the concept of a motion map. It is essentially

a visual representation of a matrix of per-frame comparison values (based on a metric function), with

one pixel corresponding to each pair of frames. In this way, time-dependent manipulations can be

performed, which is hard to achieve otherwise.

This allows us to perform time-dependent manipulations that are hard to do otherwise.

The idea of a motion map is not entirely new. Kovar & Gleicher use the same concept in several

of their works (2002a; 2003; 2004) to perform time-dependent matching of motions using registration

curves. The graph approach of Lee et al. (2002) starts with a description of motions as Markov

processes, with a state for each frame and a transition edge for each pair of frames, describing their

similarity. A Markov process can be represented as a transition matrix, which is also a motion map.

Many other examples of its usage can be found, as it provides a convenient and intuitive way of

describing the di�erence between two animations (or between di�erent segments of one animation).

In our work, we interpret the motion map as an image, and perform image-based signal processing

operations to analyse the properties of the motion. This provides a novel perspective on motion data,

allowing signi�cant simpli�cations of some of the more complex operations on the motion.

In the following paragraphs, we describe several ways to generate motion maps and how we have

used them in the context of our work.
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(1)(1) (2)(2) (3)(3) (4)(4) (5)(5)

(6)(6)

Figure 5.2.: The motion maps visualisation overview. Both horizontal and vertical axes describe animation
frames (1 per pixel), with the origin in bottom left corner, while the pixel colour represents the value of two
frame comparison. The maps describe: (1) a straight normal walking motion; (2) a stopping motion; (3)
slow walking on a circle; (4) fast (horizontal) vs. slow (vertical) walking motion; (5) a vault; and (6) a vault
(horizontal) with a normal walking motion (vertical).

5.2.1. Visualising Motion Maps

In addition to automatic path-�nding for timewarping curves (Kovar & Gleicher, 2003), motion maps

can provide important insights into the nature of a motion, or the comparative properties of two

motions. In this section, we provide an informal description of the motion properties that can be

explored using motion maps; in Section 5.2.3, we elaborate further on a subset that is usable for

periodic motion analysis.

Motion maps can be used to detect popping artifacts, which are very common in motion capture

data (caused by lost markers, camera switching and systematic noise). They are represented as vertical

and horizontal lines with high contrast, caused by a quick change of pose in the animation (see Figure

5.2, 5 and 6). While it is possible to detect them by other means, motion maps provide a simple and

automatic way of determining both the location and severity of the artifact. If both horizontal and

vertical axis represent the same motion, the horizontal and vertical lines will intersect on the diagonal.

Another important property of the motion map is that, when both horizontal and vertical axes

represent the same motion clip, the motion map has zero diagonal and is symmetric (see Figure 5.2, 1,

2, 3 and 5). For periodic motions, the similarities between periods create distinct diagonal lines in the

motion map, which are parallel to the main diagonal (Figure 5.2, 1). Comparing two periodic motions

with di�erent periods leads to a similar e�ect, with the diagonal skewed in the direction corresponding

to the timing di�erence (see Figure 5.2, 4). This e�ect, together with a specialised smoothing method,

is used for period detection in our system (see Section 5.2.3).

If the motion is not perfectly periodic, or periods of the two motion do not match (see Figure

5.2, 3), the parallel diagonals are distorted (a phenomenon used by Kovar & Gleicher (2004) for the

construction of registration curves). Our example shows how even a small sample of walking on a

circular trajectory can contain relatively large variations.

A static part of the motion clip causes smearing of the image, as there is no change in the posture

over a period of time (see the stopping motion in Figure 5.2, 2).

A highly dynamic motion, such as a vault (see Figure 5.2, 5), would not exhibit any of the previously

mentioned properties. From our example, however, it is easy to see that the starting and ending pose

of the vault was the same, and that the vault was �nished with a straight step (by comparing it with

a locomotion clip; see Figure 5.2, 6).

A motion map of a long sequence can provide more insights into the nature of the motion. Figure

5.7 contains a dancing motion � its regular structure is easy to identify, together with sequences of

repetitive movements and similarities between di�erent parts of the dance. Automatic motion analysis
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Figure 5.3.: A comparison of metric functions, showing their impact on the resulting motion map.

of this type, based on beats and rhythmic patterns, was performed by Kim et al. (2003). In our case,

we used the motion maps to detect the dancing patterns as related to the beat and used them to

create an interactive installation called Biodancer (see Figure 1.2).

The analysis of the properties mentioned above can be performed using relatively simple image

processing algorithms. In Section 5.2.3, we use them to detect the most suitable period of a motion, as

required for our parametric motion synthesis methods. However, the applications and implementations

of other methods mentioned above pose an interesting avenue for future research.

5.2.2. Comparison of Metric Functions

A motion map is generated by comparing pairs of frames using a metric function, which strongly

in�uences the properties of the resulting map. In this section, we evaluate the use of two metric

functions � a global function, based on the world positions of points on the character's mesh (Kovar

et al., 2002a) and a local function, which is determined by the di�erences between joint angles (Lee

et al., 2002). Both functions are used in a form that does not account for the character's position in

the environment.

As the temporal properties of the motion are determined by the frame sequence (Kovar et al.,

2002a), we do not explicitly use the dynamic aspects of the motion, such as velocity or acceleration.

Previous work suggests that the dynamic properties are not important except for judging the overall

direction of the motion (Wang & Bodenheimer, 2003). Moreover, in a later processing step, we will

be working with motion timewarping; the use of dynamic properties would make this impossible, as

any signi�cant timing changes would have to be re�ected back into the metric computation.

We test two versions of each metric � weighted and unweighted. The weighting values for the local

metric were suggested in Lee et al's original paper (2002) and a set of weights for the global metric

were described by Arikan (2006).

In Figure 5.3, we use three motions to demonstrate the di�erent properties of the four metrics.

The �rst row contains a comparison between a slow walk on a circular trajectory and a straight
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Original motion maps Gaussian smoothing
(σ = 13 frames)

Rectangle smoothing
(width = 20 frames)

Figure 5.4.: An illustration of the e�ects of applying a normalised smoothing �lter to a motion map.

walk with normal speed. While both clips contain locomotions performed by the same actor, the

overall poses and timing di�er signi�cantly. Moreover, the actor turned his upper body slightly at

the end of the straight walk clip (i.e., looked in a wrong direction), thus creating an artifact in the

motion, but not changing its overall character. Arguably, this artifact was better handled by the

global metric (especially the weighted version), as it did not change the overall features of the motion

map. Moreover, the global metric provides stronger local features for temporal mapping between the

two motions (diagonal lines), which is, again, a desired property.

The middle row of Figure 5.3 shows motion maps generated by comparing a straight walking cycle

with itself. The very strong 45° diagonal lines set apart by a constant distance, show the strong periodic

nature of the walk. However, the global metrics also exhibit strong antidiagonal lines, matching the

forward motion of a leg in one cycle with its backward motion in the other cycle. This shows that the

global metric is not capable of correctly distinguishing between the left and right cycle, which might

lead to problems for certain types of motions.

The last row describes a comparison of a vaulting motion with itself, starting and ending in a similar

pose. In this case, the global metric correctly recognises the signi�cant di�erences between the poses

during the vaulting motion, while the local metric is strongly in�uenced by the localised joint poses,

ignoring the fact that the character is for a time upside down. Moreover, the temporal similarity

between the half-step at the beginning and end of the sequence is much better described using the

global metric. Therefore, in this case, the global metric performs better.

From these examples, we can conclude that the global metric introduced by Kovar et al. (2002a)

provides more intuitive results. This conclusion is also supported by our perceptual evaluation of

motion metrics as presented in Section 6.1.

5.2.3. Period Detection with Motion Maps

The motion maps can be considered as greyscale images, i.e., 2D matrices with one �oating point

value per cell, which enables us to use image processing techniques. With an intuitive analysis, we

can interpret each operation as a method for comparing motions, that exhibit certain properties. Our

main target is to detect suitable transition points, which can be used to cut a part of an input clip to

create a periodic animation.

By considering the neighbourhood of a particular pixel, we take into account the time-domain

properties of the corresponding motion fragment. The forward �ow of time is described by the main

diagonal (bottom-left to top-right), while the secondary diagonal represents the reversed time �ow.

Simple smoothing of the motion map, using either a Gaussian smoothing function or a rectangular

window, can determine the similarity between a window of frames (see Figure 5.4). While useful for

noise �ltering, this method smoothens both forwards and backwards in time, without taking the frame

sequence into account.
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Original motion map Gaussian smoothing
(σ = 20 frames)

Diagonal Gaussian
(σ = 20 frames)

Diagonal rectangular
(width = 22 frames)

Diagonal rectangular
(width = 50 frames)

Diagonal Gaussian
(σ = 75 frames)

Gaussian smoothing
(σ = 20 frames)

Original motion map

Figure 5.5.: A comparison of 2D Gaussian smoothing with the e�ects of the diagonal smoothing approach.

To address this issue, we can smoothen the image diagonally using a 1D smoothing function,

resulting in a sum of comparisons of consecutive frames only (see Figure 5.5). This corresponds to the

multiple consecutive frames comparison approach taken by Kovar et al. (2002a), who also present a

comprehensive justi�cation for doing so. The Gaussian �lter gives more weight for the values close to

the centre of the evaluation window, which is a useful property for motion blending (the 50% blend is

in the middle of the blending curve, so it is the point with the highest possible blending error). The

diagonal does not have to have the angle of 45°; any other angle between 0 and 90° would correspond

to a certain level of timewarping. A more e�ective approach to detect arbitrary angles of line segments

is the Hough transformation, which can be utilised for this purpose. This approach, together with

local minima detection (see below), can be used for a motion graph transition search, as it essentially

allows all combination of frames and di�erent timewarping values to be compared, with each frame

pair tested only once.

The methods shown on Figures 5.4 and 5.5 also di�er in boundary handling. While the former

use a normalised smoothing �lter implementation (not taking into account the values outside the

map), which distorts the map close to the edges, the latter simply exclude all pixels close to an edge

from the �ltering (which is also the approach taken in all the following examples).

For detecting a motion period, it is desirable to �nd two consecutive motion fragments of the

same length with very similar corresponding frames, as they need to be blended together to reduce

the possibility of artifacts (see Section 5.3.1 for more details). Therefore, it is desirable to link the

blending length, described using the width of the smoothing window, with the total period length,

represented as the Manhattan distance from the diagonal. This approach is illustrated in Figure 5.6.

However, we need to address the handling of the boundaries, as they are even more pronounced in

this case (Figure 5.6, 2 and 3). The previously used approach, excluding any blends that contain

unde�ned values, would lead to a 50% reduction of usable pixels (Figure 5.6, 4). However, if we limit
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the corrective blend (Figure 5.6, 4 shows an example of limiting the corrective blend to 50% of the

period length), we can include signi�cantly more pixels, thereby allowing us to use shorter source clips

that include only one full period and a smaller fraction of another period.

The possible transition frames are described as local minima of the motion map (the best frames

from the neighbourhood). To detect them, we can employ another image processing technique � the

Laplacian �lter, which results in values close to zero for pixels at local extrema.

To limit the interval of evaluated comparisons, it is sometimes desirable to exclude values above

certain level. This can be simply achieved using image thresholding. However, the thresholding

values are relative to the range of the input values and their histogram. Applying histogram equal-

isation on the motion map alters the values to make them directly related to the percentage of their

occurrence in the map (see Figure 5.7). This allows the threshold to be simply set, for example, to

0.2 to eliminate 80% of the highest values.

The position dependent smoothing �lter, together with histogram equalisation and image thresh-

olding, is the combination we use for period detection from now on. It has proven to be robust enough

to handle all the data in our motion capture database (more than 1700 clips of locomotion), and to

detect motions where a period was not present due to a processing error.

5.3. Data Preprocessing
Motion capture as the input data source of an animation system can provide very realistic results,

but the raw motions need to be extensively edited in order to �t the system's requirements (e.g.,

periodicity, parameterisation). The design of our system allows the raw data to be used directly, with

the necessary editing being performed in a fully automatic manner.

5.3.1. Periodisation

The �rst preprocessing step involves converting the original motions to periodic, loopable clips. Be-

cause human locomotion is very close to being periodic, the necessary changes to the original motion

are very small.

To detect the period of an input motion clip, we use the motion map concept and the period

detection procedure introduced in Section 5.2.3. This provides us with the �rst frame and the last

frame of the best period in the input motion, which are then used to crop the source animation.

When the animation clip contains exactly one period of the input locomotion, we convert the motion

to its di�erential form � i.e., the motion of the root of the skeleton hierarchy, that originally describes

the global character position and orientation in space, is changed into a di�erence of the orientation

and position between the current and subsequent frame:

(1)(1) (2)(2) (3)(3) (4)(4) (5)(5)

Figure 5.6.: An example of period detection using the �periodic smoothing� approach. The original motion
map (1) can be smoothed using a normalised version of the periodic smoothing (2). However, the number of
smoothed frames can be very low close to the edges (3 � the colour corresponds to the number of frames used for
smoothing, related to the full length of the source animation). Therefore, it is desirable to exclude the values
with a low number of samples (4 � full second period required, 5 � 50% of second period required).
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Figure 5.7.: An illustration of histogram equalisation on a motion map generated from a dancing sequence.
After the equalisation is applied, the value x of each pixel directly maps to the percentage of values in the
interval [0...x) in the map.

Figure 5.8.: Illustration of the footsliding artifacts as a result of period di�erence frame blending (left � original
animation, right � blended result). If the di�erence frame contains a non-identity transformation for the root
bone (blue), the hierarchical nature of the blending algorithm introduces a certain amount of footsliding in the
middle of the animation clip.

dTroot(n) = Troot(n) (Troot(n− 1))−1

Troot(n) = dTroot(n)Troot(n− 1) (5.1)

where Troot is the original root transformation in matrix form, dTroot is the transformation in di�er-

ential form and n is the keyframe number. This step ensures the independence of each frame from its

position in global space and allows direct blending of all data in the frames.

Then we compute a frame that contains the di�erences between the �rst and the last frame of the

detected period. This frame is blended into the animation with weights ranging from −0.5 to 0.5,

making the �rst and last frames match exactly. Finally, the motion is converted back to its original

form (Equation 5.1). This processing ensures that minimal changes are made to the source animation,

while extracting a precise period of the motion.

Unfortunately, even though the changes were minimised, the resulting motion can still contain

certain artifacts. The most salient is footsliding, which is caused by the hierarchical nature of the

blending method (see Figure 5.8). However, as the level of introduced footsliding is relatively small, it

is possible to correct it using a standard inverse kinematics approach without introducing any further

problems.

5.3.2. Trajectory Bone Embedding

High-level control of a character in a scene is usually provided by its trajectory, the velocity associated

with each point on the trajectory, and (optionally) other data, such as motion constraints and contact
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(1) (2) (3)

Figure 5.9.: An illustration of di�erent trajectory extraction methods. Both the root projection method (1) and
the Zero Momentum Point (2) can lead to a placement distant from the current feet position, which can lead to
footsliding artifacts during blending. An average of the end-e�ector projections (3) provides a simple solution
to this problem.

points. In order to simplify the connection of this information with the locomotion data, we introduce a

trajectory bone, i.e., a representation of the idealised motion trajectory extracted from source motions,

which is positioned on the ground under the character. The skeleton hierarchy and motion data are

then updated so that the trajectory bone is placed at the root of the skeleton hierarchy, with the

original root bone (usually positioned in the pelvis area) becoming its only child.

The trajectory bone movement is created in two steps. First, an approximation of the trajectory

is extracted from the original motion. There are several possible approaches to achieve this � root

projection, zero-momentum projection and end-e�ector trajectory (see below). Then, the extracted

trajectory is idealised by �tting a circle into this trajectory and extracting its curvature and the motion

speed.

The root projection approach is the simplest way of extracting the motion trajectory. By discarding

the Y component of the root's motion, a �attened curve is projected onto the ground, describing the

overall motion of the character. Unfortunately, this simple approach fails for fast turning motion,

where the whole character is leaning sideways (a case that is relatively common in our source data).

The projection point in that case is not under the feet of the character, but rather shifted left or

right (see Figure 5.9), which leads to sideways footsliding when a transition from a straight walk to a

turning one is needed.

Another method, inspired by physical simulation of a walking character, would use the zero-

momentum point. This is a point, located under the feet of the character, with respect to which

the reaction force of the foot/ground contact does not produce any horizontal moment (assuming

a stable pose). Unfortunately, the source motion capture data are too noisy to produce a reliable

estimate of this point.

The last tested option, which has proven to be the most reliable, averages the trajectory of the end-

e�ectors. In the case of locomotion and a standard skeleton, the end-e�ectors correspond to four joints

� left and right toe and heel. This leads to a very well behaved estimate of the �nal trajectory, which

is also suitable for blending, as the character with the pose represented in respect of this trajectory

leans around the point under his feet, providing an expected and natural behaviour.

5.3.3. Parameter Extraction and Trajectory Idealisation

In the next step, we extract the high level motion parameters and update the behaviour of the

trajectory bone, leading to an idealised version of the trajectory. The chosen parameters should

always be independent; for our pedestrian locomotion system, we have chosen tangent velocity and

curvature, as they allow the intuitive description of trajectory shape and instantaneous velocity in the
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Figure 5.10.: The idealised trajectory extraction, demonstrated on a turning locomotion.

run-time system.

Instead of �tting a general curve to the trajectory (Kwon & Shin, 2005), we chose to follow the

approach taken by Park et al. (2002) and �t a circle to the approximate trajectory, as its diameter

can be directly translated into the curvature parameter. By projecting points on the trajectory onto

the �tted circle, we can determine the average tangent velocity of the motion. Because the original

method based on least-squares �tting proved not to be robust enough for our dataset (mainly for

almost straight motions), our �tting method is based on creating a template trajectory from three

motion periods. This involves �tting the circle to every corresponding combination of three points

and computing the centre and diameter by averaging the �tted circles.

After extracting the parameterisation, the trajectory bone is updated to follow the idealised tra-

jectory precisely and with constant speed, thus providing us with the motion abstraction we need in

order to synthesise the resulting locomotion in the run-time system. If we now apply Equation 5.1

to the motion, the root (trajectory bone) di�erential transformation in each frame would be exactly

the same. This property is used in the runtime system to create motion that is independent to global

position.

Finally, we synchronise the start of every motion clip to a similar phase of locomotion. We begin

with a frame selected from one of the animations on the basis of detected constraints (e.g., both feet

on the ground) and �nd a matching frame in all animations in the set. By converting clips to the

di�erential versions (Equation 5.1), reordering the frames to start with the desired frame by appending

the preceding frames to the end of the animation, and converting the clips back to absolute format,

we create a set of synchronised animations suitable for our run-time system.

5.4. Behaviour � Animation Interface

A typical single-character animation system would implement the full animation functionality by

merging a higher-level behaviour/motion planning component with an animation synthesis system.

However, crowd simulators often include a signi�cantly more complex hierarchical behaviour system,

with the main data �ow from higher levels down. In most cases, feedback is directed up through

the hierarchy, informing the higher levels about the constraints of the lower ones (e.g., reachability,

blocked path, impossibility to reach the goal due to animation limits). This feedback should be limited

and/or highly predictable, to avoid unnecessary restrictions on high-level behaviour models.

The animation synthesis algorithm and the low-level planning module usually addresses the lower

levels of the behaviour hierarchy. In the same way, we aim to implement the physical and kinematic

layers of the behaviour pyramid (see Figure 2.3 � the physical layer taking a trajectory as its input,

returning the animation parameters, and the kinematic layer producing the animation frames.
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5. A Linearised Locomotion System for Crowd Animation

Figure 5.11.: Limited and damped PD controller (behaviour interface) path following examples, with the original
trajectory depicted in black and the resulting smoothened version in red. If the path from the high level behaviour
module is smooth, the generated trajectory follows it accurately (left). However, if it contains non-smooth
segments (right) or overly sharp turns (middle), the PD controller follows it as closely as possible without
violating the animation system limits.

A typical data-driven animation method, such as motion graphs, includes a high amount of semantic

information, which serves as a base for building the working space of a planning module. Generating

a speci�c animation in this space requires expensive optimisation methods (expensive either in terms

of computational complexity or spatial requirements to store preprocessed data; see Section 2.5).

Moreover, often a requested animation cannot be generated at all, but this fact cannot be easily

determined before the full planning is �nished.

In comparison, our system limits the planning module only by maximum speed and maximum

curvature for a given speed (both described with a single polygon � the convex hull of the parametric

space; see Section 5.5), and by maximum �rst derivatives of these parameters (i.e., how fast the

parameters can change). Therefore, it is easy to evaluate if a path is plausible in a high level behaviour

module, as any motion inside these intervals is synthesisable. To achieve a similar �exibility, previous

methods employ expensive corrective techniques, altering the generated motion to re�ect the requested

parameters accurately (e.g., Park et al. (2002) use a footstep correction post-processing algorithm,

Lee et al. (2010) require a graph-planning algorithm).

The input to the animation system from the higher level behaviour consists of a trajectory (ori-

entation and position of a character in space at a particular time) and its associated instantaneous

velocity. The velocity value is directly used as one of the parameters in the parametric space, whilst

the curvature parameter is determined from two consecutive frames by determining the centre of ro-

tation de�ned by two consecutive points and their corresponding tangent vectors on a trajectory. The

resulting blending weights are determined by the position of these parameters in parametric space.

However, this approach still requires certain changes of the behaviour system (or a certain level of

animation/behaviour feedback) in order to re�ect the animation limits. To allow the use of a generic

behaviour module, we use a damped PD controller as the behaviour system's lowest physical layer.

The controller is used to follow the path generated by the higher levels as closely as possible, without

violating the constraints. The limiting factors create integrative e�ects on the motion, while the

controller's PD nature assures fast convergence towards the required trajectory (see Figure 5.11).

This method was practically implemented in the Metropolis system (see Figure 1.1), leading to

highly realistic crowd animation with minimal artifacts. Its limitations are directly linked to the

constraints of the animation synthesis � very sharp turns, if not explicitly represented in the source

animations, cannot be generated (see Figure 5.11, right), leading to trajectory deviation. The speed

outside the supported range leads to even more serious artifacts, such as characters lagging behind

the expected position for speed above the maximum limit, and oscillation when the speed is too low
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Figure 5.12.: The artifacts of the PD controller as a behaviour � animation interface. The requested speed
is higher than maximum limit (left), leading to �lacking behind� artifact; lower than minimum limit (middle),
with �oscillation� e�ect; or not moving at all (right), with �moving in circles� problem.

(see Figure 5.12).

These artifacts are the most serious drawbacks of this interface type, and the only way to address

them is to extend the parametric space (please refer to Section 5.5 for its detailed description). If

no additional animations are available or possible, this extension has to be implemented using data

extrapolation. The most straightforward method is to generate new pseudoexamples using a motion

editing method and add them to the parametric structure. However, this technique does not allow for

responsive adjustments of the actual animation state.

A more responsive solution can be achieved using a motion correction method, e.g., in a similar spirit

to Park et al. (2002). However, such real time adjustments tend to be computationally expensive.

For extrapolation in the speed dimension, animation timewarping can be used to synthesise new

animations with minimal computational cost. In Section 6.4, we provide a perceptual evaluation of

such manipulation, which can also serve as a guide for time-based animation editing.

5.5. Parametric Space Concept

The core of our parametric motion synthesis model lies in the parametric space concept � a space par-

titioning structure allowing locomotion to be synthesised from input motion clips by motion blending

and timewarping techniques. The structure itself is built from a point cloud, where every point

represents the parameters of a motion clip.

A crucial step in locomotion parameterisation is the selection of suitable parameters, which are then

translated to weights for the actual clip blending. Several options were explored in previous work (see

Section 2.5.2), but by far the most common approach uses speed and angular velocity (Park et al.,

2002, 2004; Pettré & Laumond, 2006). However, for the particular case of crowd animation, this is

not the most suitable option.

In a crowd scenario, the behaviour system consists of several layers responsible for di�erent levels

of motion planning. Higher levels plan the overall trajectory shape and consequently in�uence mainly

the side steering of the character. Lower levels implement the responsive behaviours, which uses

the locomotion speed as its primary mechanism (i.e., character stopping or slowing down before an

unexpected collision). This implies that the character's speed and the trajectory shape should be

independent parameters of the locomotion model, allowing to fully decouple these two aspects of

motion planning.

However, both speed (or tangent velocity, [m/s]) and angular velocity ([◦/s] or [rad/s]) are time-

dependent parameters. Consequently, changing character's speed while keeping the angular velocity

103



5. A Linearised Locomotion System for Crowd Animation

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

d 
[m

/s
]

-90° -45° 0 45° 90°
curvature [°/m]

Figure 5.13.: The parametric space structure and the region of in�uence of one clip.

constant changes the trajectory shape (and vice versa). This is an undesirable property, as it requires

readjustments of both parameters if either speed or trajectory changes.

In our system we use speed (or tangent velocity, [m/s]) and trajectory curvature ([°/m]). Because

only one parameter is time-dependent, this choice provides a more suitable and fully decoupled para-

metric description of local motion properties.

The idea of a parametric space is not novel � many previous works used a similar approach towards

locomotion generation (see Section 2.5.2). Most of these methods employ a non-linear interpolation

method, such as radial basis function (Rose et al., 1998) or cardinal basis function (Park et al.,

2002, 2004; Kwon & Shin, 2005). While there are many advantages to using these methods (e.g.,

interpolation smoothness, extrapolation capabilities), they come with several serious problems.

First and foremost, they are non-local � for each point in the parametric space, all the source

clips have to be blended with di�erent weights (Kovar & Gleicher, 2004). This is an issue especially

for highly optimised systems, as the number of clips can be relatively high (15 in the example in

Figure 5.13) and blending all of them presents a signi�cant computational overhead. The cardinal

basis function can also contain negative weights, which do not have any physical meaning (thereby

reversing the source clip). Finally, the non-linearity causes unpredictable results � an animation

generated from a datapoint half way between the clips with speeds of 0.5m/s and 1.0m/s does not

yield an animation with speed 0.75m/s. For this reason, some of the later methods, as well as some

of the earliest, employ linear K-nearest neighbour interpolation (e.g., Lee et al. (2010)).

Because our parametric space is 2-dimensional, we can partition it using Delaunay triangulation.

Employing barycentric coordinates, we can then represent every point inside the convex hull of the

original pointcloud as a linear combination of three original points, giving us weights to be used for

motion blending (in a similar manner as Pettré & Laumond, 2006). Because any trajectory (within the

speed / curvature limits) can be described in these terms, we are able to synthesise the corresponding

motion precisely.

In mathematical terms, each animation sequence Sa is a triplet of curvature ca, speed sa and clip

length la:

Sa = (ca, sa, la)

The ca and sa parameters describe the 2D position (ca, sa) of each source clip in the parametric space.

To synthesize an interpolated clip Si = (ci, si, li), we �rst determine the triangle of the parametric
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Figure 5.14.: An example motion clip (right) generated by a sequence of parameter changes inside the para-
metric space (left).

space containing its datapoint (ci, si). The vertices of this triangle describe three motion clips S1, S2

and S3; the datapoint position provides three barycentric coordinate values λ1, λ2 and λ3:

λ1 + λ2 + λ3 = 1

0 ≤ λ1, λ2, λ3 ≤ 1

λ3 = 1− λ1 − λ2

The curvature parameter ci is therefore computed as:

ci = λ1c1 + λ2c2 + λ3c3

and the target speed as:

si = λ1s1 + λ2s2 + λ3s3

The barycentric coordinate values also determine the weights for motion clip interpolation (denoted

in Section 5.6 as u(i)).

However, for periodic clip synthesis, we need to ensure that the interpolation is performed on frames

with corresponding poses. While more sophisticated schemes can be used (e.g., dynamic time warping

(Park et al., 2002), registration curves (Kovar & Gleicher, 2003)), under the assumption that the

di�erences between clips are not large, a simple linear timewarping scheme su�ces. The advantage of

this simple scheme is its clip data independence and consequently predictable behaviour. The clips

are therefore retimed to have a common length li (leading to no change if l1 = l2 = l3).

A naive way of computing a common length li would be to use the same interpolation scheme as

the other clip parameters:

li = λ1l1 + λ2l2 + λ3l3

However, the timewarping manipulation of a clip also changes the overall speed of its animation:

s′1 = s1
l1
li
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Figure 5.15.: The inaccuracies caused by the linear blending scheme (illustrated on a small parametric space
with four motion clips) and the corrective step that alters the length interpolation method.

leading to the actual interpolated speed of:

s′i = λ1s
′
1 + λ2s

′
2 + λ3s

′
3

= λ1s1
l1
li

+ λ2s2
l2
li

+ λ3s3
l3
li

which describes a non-linear relation between the blending weights and the resulting speed. A stan-

dard solution, often used for linearisation of example-based inverse kinematics, would be to alter the

blending scheme. However, that would also in�uence the curvature parameter, and a local linearisation

and/or pseudoexample registration would be necessary (Lewis et al., 2000).

Our scheme, though, allows the timewarping to be changed independently by altering the length of

the blended result li. Therefore, to achieve the speed match, we can use:

si = s′i
sili = λ1s1l1 + λ2s2l2 + λ3s3l3

li = λ1
s1
si
l1 + λ2

s2
si
l2 + λ3

s3
si
l3

which leads to the correct speed of the interpolated motion (see Figure 5.15).

The �nal step in the real-time process is the generation of the actual motion based on the computed

position in the parametric space, performed on per-frame basis.

To implement our blending scheme described above, we �rst normalise the time scale of all animation

clips to a common uniform time tu ∈ [0...1). This approach is inspired by procedural locomotion

generation, where it primarily allows to link step length, locomotion speed and time (Boulic et al.,

1990, 2004). The per-frame time update rule, integrating the between-frames time di�erence into the

uniform time value tu, can then be computed using:

tu(t+4t) =

(
tu(t) +

4t
li

)
mod 1.0

where t describes integrated real time value, 4t the time di�erence between previous and current
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generated frame and li the length of the blended animation.

The frame blending can be based on the quaternion algebra interpolation scheme (normalised linear

interpolation), but our model's properties allow us to use a simpli�ed linear version of blending (see

Section 5.6 for more details). The trajectory bone, which is placed at the root of the skeleton hierarchy,

needs to be handled separately in order to minimise deviations from the required trajectory. In our

system, the position and orientation of the trajectory bone corresponds to the position of the trajectory

in the current timeframe, thus ensuring that it is followed precisely.

5.6. Linearised Animation

When animating crowds, the �rst bottleneck that needs to be addressed is caused by character skin-

ning, which transfers the motion from underlying structure to the character mesh. Even though the

most commonly used method, Skeletal Subspace Deformation (SSD), is fully linear and very e�cient,

a bottleneck results from the large number of vertices that need to be updated. With modern graphics

hardware, however, this can be addressed by using the GPU to perform these computations, as its

massively parallel architecture is particularly suitable for this task.

The second bottleneck related to animation arises when the number of displayed characters reaches

thousands. Classical approaches, which use IK, inverse dynamics or graph search/optimisation tech-

niques, do not scale well and cannot be used for a large portion of the crowd (with the exception of the

characters closest to the camera � the highest LOD). The middle LOD is our target, and thus we do

not aim to provide the most realistic and physically correct motion. Instead, our solution needs to be

fast, simple and reasonably accurate, thereby allowing us to animate as many characters as possible.

In this section we describe and justify the use of linear methods for skeletal animation blending.

This is an important part of our animation system, but the methods are not limited to the simple

locomotion case we present. Our blending process could also be adapted to accelerate and enhance

methods like Fat Graphs (Shin & Oh, 2006), Parametric Motion Graphs (Heck & Gleicher, 2007) or

many other animation techniques based on motion interpolation.

Character rendering routines require skinning transformations, i.e., bone transformations from the

rest pose to the animated pose, as their input. The standard way of computing these transformations

is as follows: Let us assume that π(i) denotes the parent bone of a bone with index i, and Ri is

the relative transformation matrix between the bones i and π(i) (as speci�ed by the binding pose).

Matrices Ai (which describe the binding pose in the world space) of the individual bones in the object

coordinate system are thus given as:

Ai = R1...Rπ(i)Ri (5.2)

These matrices do not change during animation and can therefore be precomputed. Their counterparts

in the animated skeleton are matrices F i, which represent animated transformations of the character's

bones in the world space:

F i = R1T 1...Rπ(i)T π(i)RiT i = F π(i)RiT i (5.3)

where T i are the animated bone transformations with respect to the binding pose. The �nal skinning

matrices Ci are then given as:

Ci = F i(Ai)
−1 (5.4)

Animation systems traditionally only work with the bone transformations T i; the skinning trans-

formations Ci are computed in the rendering stage by matrix multiplication as described above. This
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Algebra / operation +, - *, / fn
Conversion to Ci matrices (i.e., playing the animation
Quaternions 129 102 0
Euler angles 123 106 0
Matrix interpolation 0 0 0

Interpolation between n transformations + conversion
Quaternion NLERP 4n+ 128 4n+ 107 1
Euler angles 3n+ 120 3n+ 106 6
Matrix interpolation 12n− 12 24n− 24 0

Table 5.1.: The cost of generating one Ci matrix from di�erent representations, assuming that input anima-
tions were converted to a particular representation in preprocessing step. '+, -' denotes the total number of
additions, '*, /' the number of multiplications and divisions, and 'fn' the number of more complex functions
such as goniometrical functions and square roots.

method ensures that bone lengths (speci�ed by matrices Ri) stay constant, as long as transformations

T i are rotations (scaling/shearing bone transformations are not usually used, and the translation

component is zero with the exception of the root bone transformation T 1). Unfortunately, the matrix

concatenations, and especially the rotation interpolation required for animation blending, may slow

the system down when the number of animated characters is large.

A natural description of algorithmic complexity is the total number of required mathematical op-

erations, separated into groups according to their computational cost.

The common interpolation methods, i.e., Spherical Linear Interpolation of Quaternions (SLERP),

Normalised Linear Interpolation of Quaternions (NLERP) and Euler angles all work in the local

space of T i transformations. This provides the advantage of keeping the bone lengths constant, but

requires three matrix multiplications on top of the interpolation and conversion cost to compute

the Ci skinning matrix. Each of these three methods has its own advantages and disadvantages.

Quaternion SLERP is the most accurate blending method, keeping the angular velocity constant and

using the shortest possible interpolation path, but it is de�ned only for two orientations. Quaternion

NLERP has similar properties to SLERP, is de�ned for any number of orientations, but does not keep

the angular velocity constant. Euler angles are the simplest, linear, commutative and most intuitive

rotation representation, but their interpolation neither keeps the angular velocity constant, nor uses

the shortest interpolation path. This can result in severe interpolation artifacts even for small angular

di�erences, especially when angles are close to singularities.

Our method of choice is the linear interpolation of Ci matrices (with the Ci matrices for

on-spot animations precomputed in a preprocessing stage):

C
(result)
i =

∑
j

u(j)C
(j)
i

 A1

with C
(result)
i denoting the �nal transformation of bone i, u(j) the blending weight for animation j,

C
(j)
i the skinning tranformation of bone i in animation j and A1 the trajectory bone transformation

in the current frame. Even though this approach does not satisfy the bone rigidity constraint (the

transformations are interpolated in a global (world-space) coordinate system), for a small number

of interpolated transformations it provides a signi�cant improvement in overall computational cost

(see Table 5.1). Note that common motion synthesis methods require only about 2-3 motions to be

blended at any given time.

Even though the problem with non-rigidity of bones that arises with linear matrix interpolation

108



5.6. Linearised Animation

Figure 5.16.: Left: Demonstration of errors introduced by our blending method (orange � spherically interpo-
lated motion, blue � proposed linear interpolation). Right: An illustration of the di�erences between motion
clips with di�erent turning parameters.

may appear to be signi�cant, we argue that for our purposes this is not an issue. As shown by

Harrison et al. (2004), the bone length changes are below perceptual limits for length di�erences of up

to approximately 19% (for shrinking a bone), which leaves us with the possibility of blending linearly

between two joints with an angular di�erence of up to 62 degrees. Blending between animations in

frames that contain larger angular di�erences would be impractical, as it would lead to artifacts even

in standard blending methods (e.g., foot sliding or velocity artifacts).

Another argument can be built on frame distance metrics, which calculate the di�erence between

two frames as a scalar value (or a low dimensional vector). Distance metrics are used in many

animation techniques to �nd a sequence of frames suitable for blending and/or transitioning between

two animations. The most common approach is to use the Euclidean distance of feature vectors,

with features de�ned either in kinematic space (i.e., T i, quaternions or quaternion logarithms) or

Euclidean space (i.e., F i, object space joint positions, or positions of vertices of the driven mesh). For

large angular di�erences between two joints, which would result in visible artifacts with our blending

method, these metrics would return very large values, suggesting that the transition/blend between

the animations in this frame will not lead to natural results.

To reduce artifacts when blending between very di�erent animations, we can create new example

clips by blending between two very di�erent clips at preprocessing time (as suggested by Zhao &

Safonova (2009)). Because this step is performed o�-line, we can even a�ord to use expensive methods

such as quaternion SLERP and inverse dynamics.

Apart from the issue of computational complexity, the linear combination of Ci matrices as an ani-

mation method has other interesting properties. An example, which is very useful for the locomotion

engine described in this paper, is the ability to blend between two locomotion animations with di�er-

ent speeds and step lengths but similar relative timing (which can be assured using timewarping). In

each animation, the movement of the root relative to the ground and the movement of a planted foot

relative to the root, are the same except for their opposite directions. When performing the blending

linearly in Euclidean space, every resulting animation will have the foot planted, independently of

the blending weights (because the resulting blended relative displacements between the root and the

ground, and between the planted foot and the ground, will be the same). Performing the same blend
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in kinematic space and/or by non-linear methods will always result in a slight di�erence between these

two motions, thus causing footsliding artifacts. Kinematic blending methods have to apply inverse

kinematic/dynamic techniques to achieve the same result. In our method, this is achieved intrinsically,

at the price of slightly non-rigid bones in the underlying skeleton.

Mesh animation describes the motion of a polygonal mesh using the trajectories of its vertices.

The skinning methods, such as the most common Skeleton Subspace Deformation (SSD, linear blend

skinning), also represent a form of mesh animation. The di�erence is that there is an underlying

skeletal structure driving the skinning process, which can be non-linear, and which also introduces

dependencies between the vertices of the mesh. To distinguish between this structured representation

and true mesh animations, we will use the term mesh animation only for animations consisting of a set

of independent trajectories of individual vertices (belonging to a mesh object with �xed connectivity).

The only remaining structural information is the index of each vertex, identifying its place in the mesh

description, and the polygons (triplets of vertex indices).

Because the subject of this thesis is crowd simulation, mesh animation is mainly interesting for

providing the clothes for the crowd. The simulation of cloth in real time is very expensive, and for a

large group of characters we would prefer to use blends of pre-simulated results.

Many di�erent methods can be used for blending between two mesh animations applied to the

same polygonal mesh. Gain & Bechmann (2008) provide a survey of di�erent mesh deformation

methods, which can be used to deform one animation (or the space it resides in) to match the other,

thus providing the means to blend between them. Another group of methods includes those that

use the polygonal information and create blends that ensure minimal deformation of the polygonal

structure (English & Bridson, 2008). While all these techniques can provide very good results, they

are computationally expensive. Linear blends between mesh animations are very simple and therefore

appealing for a crowd system. However, a naive combination of this type of blending with skeletal

animation on the underlying character mesh would lead to problems with interpenetration. We will

now show that our linear animation blending method is compatible with linear blending between mesh

animations.

The simplest and most common skinning method used for skeletal animation is skeletal subspace

deformation (SSD; see Lewis et al. (2000) for a detailed description). It uses the skinning matrices

Ci to transform the vertices of a mesh from their binding position vn to a new animated position v′n

(both in the world space) using:

v′n =
N∑
i=1

wi,nCivn (5.5)

where N is the total number of bones, Ci represents the skinning matrix corresponding to bone i

and wi,n are the skinning weight parameters. Each wi,n parameter is a scalar value in the interval

[0..1], all weight parameters for a particular vertex sum to 1 and generally there is a limited number

of non-zero weight parameters per vertex (a common number is 4).

A frame of an animation sequence a (from a set of animations A) in our representation consists of

a set of C(a)
i matrices, one for each bone i. The blending equation, combining a set of animations

with weights u(a) (each a scalar value in the interval [0..1] and summing to 1), and producing the �nal

skinning matrix Ci would be:

Ci =
A∑
a=1

u(a)C
(a)
i

The combination with skinning equation (5.5) yields the equation for the �nal transformed vertex
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Oursystem SkinnedclothesSkinnedclothesOursystem

Figure 5.17.: A combination of a pre-simulated mesh animation with a skeletal animation. Pre-simulated
clothes, allowed by our linearised animation system (left) provide better deformation than the skinning method
(right).

position v′n:

v′n =
N∑
i=1

wi,n

A∑
a=1

u(a)C
(a)
i vn

=
A∑
a=1

u(a)
N∑
i=1

wi,nC
(a)
i vn

=
A∑
a=1

u(a)v(a)
n

where v
(a)
n describes a vertex vn transformed by a frame from animation a. Therefore, the resulting

vertex position is a linear combination of meshes animated by the original skeletal animation sequences.

This allows us to combine mesh animation and skeletal animation, which would not be possible with

hierarchical and/or kinematic blending methods, as their non-linearities would lead to inconsistencies

between mesh and skeletal results (i.e., intersections and collisions between the character and the

linearly animated cloth).

We use this method to combine pre-simulated cloth animation with the skeletal animation system,

giving us the means to dress our crowd characters in mesh-based clothes and to blend between their

animations in the very same way as we blend between the skeletal poses.

5.7. Runtime Performance

We have tested our animation method and the locomotion system in an isolated environment to avoid

including unrelated computation costs (e.g., rendering, high-level behaviour model). In each test we

generated one million blended frames for a character with 22 bone segments. In the blending speed

tests, we randomised the indices of the frames used for blending, while for the animation system tests,

we generated a random trajectory with continuous parameter changes. The results of our experiments

can be found in Figure 5.18.

The costs of frame blending on actual hardware correspond relatively well to our theoretical

results (see Section 5.6), showing signi�cantly longer times for traditional non-linear blending methods

(Figure 5.18, middle). The di�erence is even more pronounced when we include the cost of conversion

into skinning matrices (Figure 5.18, right). Using our method for simple blending, a speed-up factor

of up to 8.3 is achieved for the computation of skinning matrices when blending between two frames

and up to 7 when interpolating three animations.

The runtime animation system uses several operations to compute each frame (see Section 5.4).
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Figure 5.18.: Results of the performance tests of our blending method and the resulting animation system.
Each character consists of 22 bones, which is typical for a real-time system. Results are based on one million
frames of animation and expressed in terms of time needed to generate one frame of skinning animation for
one character.

The �nal frame is generated by blending three frames belonging to animations indexed by a triangu-

lation of parametric space. Each of these animation frames is created by blending the two keyframes

of the input animation closest to the current normalised time value. This blending method avoids

any jittering artifacts while still keeping the number of necessary operations low. Because of the large

number of operations involved, the performance impact of the conversion into skinning matrices is

lower, but our system still achieves a speed-up of 3.62 over a system using traditional quaternion

blending methods (see Figure 5.18, left).

Another test demonstrated that the blending performance does not depend on data coherence. A

sequential frame generation test for one character moving through space in a coherent way performed

almost exactly as well as a fully randomised test generating random frames for a crowd of 1000

characters (16.849µs and 17.105µs per character, respectively). This property holds not only for our

system, as a corresponding result is obtained for Normalised LERP blending (53.550µs and 53.887µs).
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Perceptual Studies

Human perception is an area of research, that is closely related to human animation synthesis due

to the fact that all synthesised motions are ultimately presented to a human observer. The corpus

of previous work in this �eld (see Section 2.7) contains a number of perceptual studies focused on

humanoid animation, leading to signi�cant optimisations of the animation synthesis process.

The following chapter describes several perceptual studies aimed at di�erent aspects of human

locomotion synthesis. Their main aim is directed towards properties of the algorithms described in

previous chapters, their extensions and optimisations. However, each experiment is designed to be

generalisable to other methods of data-driven motion synthesis, making their results independently

useful.

The subjects addressed in the next four sections can be summarised as follows1:

� Section 6.1 describes the creation of a perceptually-based locomotion metric, where results from a

perceptual experiment are used to adjust and compare the properties of several metrics presented

in previous work. A generic motion comparison metric supported by perceptual evidence would

have broad use in data driven animation methods; in the context of this thesis, it can be used

primarily for building motion maps (see Section 5.2).

� In a crowd simulator, it is important to know how many di�erent examples of human motion

are required to make the crowd look varied. In our experiment (Section 6.2), depicting a crowd

scenario, we determined that the number of di�erent characteristic animations necessary to give

the illusion a varied crowd was three. This has a direct impact on the amount of memory needed

to store motion data, i.e., we need to create only three parametric spaces (see Section 5.5) to

animate a crowd.

� Footskating is the most common artifact in data-driven locomotion generation methods. In Sec-

tion 6.3, we evaluate its saliency and the perceptual impact of its clean-up. Our �ndings suggest

1Please note that experiments in this section are not in chronological order, and were both conducted and presented

as separate and generic studies, independent of the technical work presented in other chapters of this thesis.
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that footsliding is indeed a perceptually salient artifact and that a simple length-based clean-up

method can be more successful in removing this artifact than some of the more comprehensive

ones. This closely relates to several parts of this thesis:

� the accurate constraints detection mechanism (Chapter 4),

� the footskate removal methods (Section 4.4) and the footsteps in our locomotion synthesis

system (Chapter 5),

� and the lengthening blending scheme, used in conjunction with our locomotion synthesis

(see Section 5.6).

� Finally, in Section 6.4, we evaluate the e�ect of linear timewarping on the perceived naturalness of

an animation. We �nd that speeding-up the animation has a signi�cant impact on the perceived

naturalness of the motion while even signi�cantly slowed-down motions are still recognised as

natural. This �nding is important for many data-driven motion synthesis methods, can provide

interesting insights into the timewarping curve generation, and also allows a simple motion

extrapolation for our parametric locomotion model.

Unless explicitly stated otherwise, the animation data used in our experiments were captured using

our Vicon motion capture system (see Chapter 3), with a markerset consisting of 55 markers (see

Section 3.4). The motions are processed in the Vicon IQ system and converted to be periodic in

our pipeline (see Section 5.3.1) and rendered in real-time using the OpenGL rendering system. The

speci�c animation processing steps are described in detail in the stimuli section of each experiment.

6.1. A Human Locomotion Comparison Metric

Underpinning most data-driven methods of human animation is a metric, which allows the similarity

between two motion clips and/or short segments of input motions to be determined. Many other

metric types exist, that allow the animations to be classi�ed into groups, or their speci�c properties

to be determined (see Section 2.6). At the lowest level, though, two frames describing two character

poses are compared, with an extension to short motion segments achievable by simply averaging the

similarity values of corresponding frames of the input segments (thereby accounting for changes of the

motion as well, which is similar to comparing derivatives of the pose changes (Kovar et al., 2002a)).

For longer sequences, a timewarping technique is required to align the clip segments in the time domain

(Kovar & Gleicher, 2004).

In this section, we present a metric based on the di�erence between two frames (poses) of human

locomotion, which is directly derived from the results of a perceptual experiment. The narrow focus of

the metric (human locomotion) is necessary for two reasons: �rst, it might be possible that metrics for

di�erent motion types would need di�erent parameters, thereby requiring a classi�cation to take place

before the comparison. Second, as we want to base our metric directly on a perceptual experiment,

for experiment design we prefer a relatively small selection of clips of one type.

The practical use of such a metric is mainly in data-driven locomotion synthesis, which is also

the main theme of this thesis. With a perceptually-driven metric, we can take into account only

perceptually salient features of the motion in the motion map building process (see Section 5.2). The

approach we use is not built from scratch, but rather uses previously introduced metrics, adjusts their

parameters, evaluates their e�ciency and alters them to provide more perceptually correct results.

Evaluation and adjustments of a metric is of course not a new topic. Wang & Bodenheimer (2003)

alter the parameters of the metric introduced by Lee et al. (2002) (a metric included in our basic

metrics set as well) using a set of classi�ed motion examples and a minimisation technique. They also

provide a perceptual evaluation of their results. Van Basten & Egges (2009) provide an evaluation
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6.1. A Human Locomotion Comparison Metric

Figure 6.1.: Layout of the locomotion metric perceptual experiment. Users were asked to select two of the four
shown motions, which they felt were the most similar.

of several metrics, using both mathematical methods and perceptual experiments. One conclusion of

particular relevance to our work is that the shape of a perceptually-driven metric is highly non-linear.

For more details about other methods please refer to Section 2.6.

The contribution presented in this section can therefore be summarised as follows:

� an approach for forming frame comparison metrics based on perceptual experiments,

� a metric created using this framework, describing the di�erence between locomotions of di�erent

subjects,

� an evaluation of the most common analytical frame comparison metrics and their suitability for

expressing perceptual metrics, and

� an evaluation of di�erent shaping functions (Euclidean, Manhattan and sigmoid) with respect

to perceptual results.

6.1.1. Perceptual Experiment

Our motion capture database used for this experiment contained walking motions of twenty one walkers

(14M and 7F). The motions were captured using a 13 camera Vicon optical system (see Chapter 3),

with 43 markers placed on the body of the subject, and a capturing framerate of 100 FPS (Frames

Per Second). Each walker was instructed to walk up and down along a straight line in our capture

area until they felt comfortable and were walking at their natural pace. We then recorded a number

of walks from each of them.

Captured data was then retargeted to a neutral wooden mannequin �gure and converted into

periodic clips by blending between two periods of the input motion (see Section 5.3.1). The period

was detected by cross comparing the frames of the motion and detecting the minima of the resulting

motion map (see Section 5.2.3). Because both periods of the motion are nearly similar, the resulting

blending curve is always a straight line (see Figure 6.4). By testing several di�erent metrics, we found

that all of them performed similarly (for this particular purpose), which meant that the type of metric

used in this stage was unimportant.

Twenty-nine participants (18M, 11F) took part in our perceptual experiment. All participants were

naive to the purpose of the experiment and had normal or corrected to normal vision. A matrix

of 4 front-facing characters was displayed using orthogonal projection, with each character's motion

di�erent from the others and randomly chosen from a set of 21 straight walking locomotions (see

Figure 6.1). The orthogonal projection ensured that the characters are not translating horizontally on

the screen, while it did not a�ect the characteristic side motion of the walks. Participants were asked
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to select two of the motions that they felt were most similar, by clicking a mouse. This n-alternative

forced choice design was inspired by the animation experiment by McDonnell et al. (2008). However,

in contrast to their method, the number of simultaneously displayed characters was reduced from 9

to 4, signi�cantly simplifying the task (the pair selection from a matrix of 3x3 characters proved to

be too di�cult).

Sixty-three trials in total were shown to each participant, each allowing 10 seconds for the selections.

If the participant did not answer in the allotted time, additional set of motions was displayed. The 10

second time interval was chosen to avoid a long and detailed examination of the motion by participants,

as we were more interested in their immediate reaction. The number of remaining trials was displayed

on the screen between each trial, which guided participants to �xate on the screen centre. For every

trial, we recorded which motions were displayed and the selected pair.

Evaluation

The recorded results were then converted to a table, where the value in each cell represented the

perceived di�erence between the two motions indexed by row and column number; for our 21 clips,

this leads to a table with a total number of 441 cells. Each cell is �lled with a ratio r(i, j) of the

number of times the two animations i and j were not identi�ed as similar to the overall number of

trials where these two animations were displayed together

r(i, j) =

i 6= j 1− #similar(i,j)
#total(i,j)

i = j 0
(6.1)

where #similar(i, j) is the count of the cases when the animation pair (i, j) was identi�ed as similar

and #total(i, j) is the number of times this pair was shown together (the two values recorded during

the experiment). The diagonal elements are �lled with zero values, as there were no trials where a

single clip would be simultaneously shown twice.

To illustrate the data obtained from each trial, we can denote the four simultaneously displayed

motions as m1...m4, with motions m1 and m2 selected as similar. From the user's input, we create

two similarity samples � (m1,m2) and (m2,m1), and 12 simultaneously displayed samples ((m1,m2),

(m1,m3), (m1,m4), ... (m4,m1), (m4,m2), (m4,m3)). This illustration shows that the �nal function

is symmetric, while the positiveness and identity values of the result are determined by equation 6.1.

The last condition required for a metric de�nition (see Section 2.6.1) is the triangle inequality, which

can be evaluated algorithmically by testing all possible combinations � in our data we found out that

it is ful�lled for 98.6% of all possible combinations, with the remaining 1.4% considered to be noise.

This analysis allows us to consider our data as a metric function.

Further analysis of the results showed several interesting properties of this table. To perform this

analysis, we can interpret its rows/columns (because the matrix is symmetric, there is no di�erence

between these two options) as n points in n-dimensional space (in our case n = 21). By applying

Principal Component Analysis to this data and sorting the walks by the �rst component value, we

obtain an ordering that makes a clear distinction between the actors' genders. In the same manner

we can apply the K-means clustering algorithm with two clusters on our data, which results in two

distinctive groups based on the gender of the walkers (see Figure 6.2). This shows an interesting

property of the experiment results � the direction of the highest variance in the data is linked with

the gender of the walkers. Even though the importance of gender in motion di�erence was shown in

previous work (Kozlowski & Cutting, 1977; Barclay et al., 1978; Cutting, 1978; Troje, 2002; McDonnell

et al., 2007a), the direct relation of gender with the direction of the highest variance in locomotion
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Figure 6.2.: Results of the classi�cation performed on the data obtained in the perceptual experiment. The
�male� (blue) and �female� (red) membership functions show the natural division of the motions by the gender of
the actor. The order of actors on the horizontal axis is given by their projection onto �rst principal components
of the source data. The green line shows the division line between the �male� and �female� groups.

di�erence recognition is, to our knowledge, a new �nding.

This relation fails in two cases - female F1 and male M14 (Figure 6.2). The incorrect classi�cation

of male actor M14 can be explained by his age, as this was the youngest male actor captured. Mis-

classi�cation of certain female actors is a phenomenon shown in several previous works (Kozlowski &

Cutting, 1977; McDonnell et al., 2007a). Moreover, our dataset was also used in one of our previous

studies (McDonnell et al., 2007a), where the same walker was consistently marked as a male as well.

Therefore, we can still assume that from the perceptual point of view, this classi�cation is correct.

A graphical representation of the values in the source table, sorted by the �rst principal component,

is shown in Figure 6.3. The colours of the related motions appear darker, showing their lower di�erence

and close relationship (with black on the diagonal meaning no di�erence), whilst light colours signify

more distant motions.

6.1.2. Motion Metrics Toolkit

With the results of the perceptual experiment, we can try to de�ne analytical metrics to reproduce the

perceptual results as closely as possible. Instead of creating a metric from scratch, we choose to alter

parameters of existing metrics using an optimisation technique. By comparing how the metric �ts, we

can also test the ability of each metric to represent the perceptual results. To reduce the number of

optimisation parameters, we separate each metric into a weighted average of bodypart metrics. This

step generalises the computed weights to any humanoid body structure, independent of the actual

number of joints in each bodypart, and allows us to determine the perceptual saliency of the motion

of each of them.

To ensure the generality of our method, the metrics have to be invariant to global position and

heading of the character. In the same spirit as Kovar et al. (2002a), we discard the XZ position and

Y orientation of the character, thereby e�ectively converting each motion to be on-the-spot.

The primitive metrics used in our toolkit are used on single joints of the skeletal hierarchy. Each

of them is based on previous work and focuses on a di�erent aspect of the joint pose or motion.

The angular di�erence metric measures the joint orientation distance (with respect to the parent

bone) as a di�erence between two quaternions (Lee et al., 2002). A naive implementation would use
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Figure 6.3.: Graphical representation of the data obtained in our perceptual experiment. A large value of the
function signi�es large di�erence between two respective motions; the black diagonal means no di�erence when
a motion is compared to itself. The green dashed line shows the threshold between the male and female clusters
from Figure 6.2.

the quaternion dot product, but a more complex function based on quaternion logarithm provides

both a better function pro�le and a simple handling of quaternion antipodality (Shoemake, 1985)

dang = min
(∥∥log (q−1

1 q2

)∥∥ ,∥∥log (q−1
1 (−q2)

)∥∥)
where dang is the resulting angular di�erence between the quaternions q1 and q2. Please note that the

quaternion logarithm is a 3D vector whose length is linearly dependent on the sinus of the rotation

angle. A classical implementation of transformations in homogeneous space performs a translation

and then rotation, which means that a joint a�ects only the following joints but not the con�guration

of the actual joint (resulting in the weights shift of the local metric as compared to the global ones;

see Table 6.3).

The global positional di�erence metric is based on the world-space joint position distance (Kovar

et al., 2002a; Arikan, 2006):

dpos = ‖p1 − p2‖

where p1 and p2 describe both joint 3D positions and dpos is the resulting metric value. The on-spot

motion conversion makes this metric invariant with respect to global character position and orientation

(the altering of the resulting values does not have an impact on the metric performance (Kovar et al.,

2002a)).

The third primitive metric, global velocity di�erence compares the magnitude of the velocity di�er-

ence of a joint in the global coordinate frame (Lee et al., 2002). As in the previous case, the on-spot

conversion makes this metric invariant with respect to global character motion, but also alters the

results signi�cantly � e.g., a standing foot constraint would have a zero velocity in the original motion,

but after the on-spot conversion it will be moving with a negative velocity originally assigned to the

root. However, for the comparison of the animation frames, this metric still provides valid results

(Kovar et al., 2002a). It is the only primitive metric in our set that describes the dynamic properties

explicitly � in discrete frame data, the velocity v(i) in a frame i is computed as a positional di�erence
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between frames i and i+ 1, divided by the time di�erence between two frames (dt):

v (i) =
p (i+ 1)− p (i)

dt
= (p (i+ 1)− p (i))FPS

where FPS is the frames per second value of the animation. The velocity di�erence dvel(i) for frame

i is then expressed as:

dvel (i) = ‖v1 (i)− v2 (i)‖

= ‖(p1 (i+ 1)− p1 (i))− (p2 (i+ 1)− p2 (i))‖FPS

All the metrics mentioned above are applicable to a single joint only. For comparing animation

frames, we need to merge them to form composite metric functions. Lee et al. (2002) suggests to

do so by simply excluding unimportant joints (e.g., leaving only elbows, shoulders, hips, knees and

spine). A more general description would use weights wi for each value of the primitive metric di,

resulting in a composite metric function d:

d =

∑
i widi∑
i wi

(note that a linear combination with non-negative weights always preserves all 4 conditions of a metric,

as long as all combined functions are metrics).

A human body metric should also be symmetric (e.g., the left and right arm should always have

the same weight). To achieve that, we de�ne each component of our composite metric as an average

of several symmetrically corresponding joints (see Table 6.2). The properties and the characteristic

motion of each group can be also visualised using motion maps (see Figure 6.4).

Index Group Included joints

1 Head Head
2 Clavicles LeftClavicle, RightClavicle
3 Upper Arms LeftUpperArm, RightUpperArm
4 Forearms LeftForearm, RightForearm
5 Hands LeftHand, RightHand
6 Thighs LeftThigh, RightThigh
7 Calfs LeftCalf, RightCalf
8 Feet LeftFoot, RightFoot

Table 6.2.: The groups of a human body composite metric, based on body symmetry.

Di�erent metrics can also be created by applying what we will call shaping functions, i.e., func-

tions that alter the metric function pro�les. A generic shaped composite metric ds is then de�ned

as:

ds =

∑
i wiF (di)∑

i wi

where i determines the metric group index, di are the bodypart metrics and F (a) is a shaping function

applied to a scalar value a. In our framework, we use three shaping functions � squared Euclidean,

Manhattan and sigmoid.

The squared Euclidean function deuclid is a classical method used in least-squares �tting. Its pro�le
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Figure 6.4.: The components of a composite metric based on two periodic animation, visualised using mo-
tion maps. The red line represents the �comparison� line � the best timewarping/blending line between two
animations.

is a parabolic U-shaped function:

deuclid =

∑
i wi (di)

2∑
i wi

The Manhattan distance dmanh simply sums the values of each bodypart metric:

dmanh =

∑
i widi∑
i wi

while the sigmoid function dsigm provides a logarithmically shaped pro�le (a logarithm does not satisfy

the metric properties) and is often employed in modelling human visual responses:

dsigm =

∑
i wi

di
di+1∑

i wi

With all necessary components de�ned, we can �t the analytic metrics to the experiment data.

With three shaping functions and three distance metrics, we create 9 composite metrics, each described

as a weighed sum of a set of bodypart metrics of one type, altered by a shaping function. The base

metric values are provided by a sum of per-frame values on the blending curve, normalised by the

total number of frames used (see Figure 6.4). This provides a metric function independent of the

animation length, while preserving the properties of the underlying primitive metric.

The �tting process alters the bodypart weights wi to re�ect the experimental results in the least-

squares sense, thus minimising the term:

e =
∑
i

(
wiF (di)− d(exp)

i

)2

with the weight normalisation performed as a post-processing step.

For the �nal metric to conform to the metric de�nition (see Section 2.6.1), each of the weights

has to be non-negative. For this reason, we use the non-negative least squares iterative optimisation

technique proposed by Lawson & Hanson (1974) (as implemented in the Matlab environment).

6.1.3. Results

The results of the non-negative least squares �t for all combinations of shaping functions and primitive

metrics can be found in Table 6.3. The non-negative nature of the �t makes the �tting function highly

non-linear, and consequently causes many of the values to disappear completely (i.e., the best non-

negative �t requires them to be set to zero).
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euclid2 22.62 1.07 10-3 0 0 1 0 0 0 0 0
Angles manh 22.499 3.27 10-3 0 0 1 0 0 0 0 0

sigmoid 22.39 1.33 10-2 0 0 0 0 0 1 0 0
euclid2 (46.47) (8.49 10-5) (0) (0) (0.45) (0.5) (0.06) (0) (0) (0)

Positions manh 19.91 1.11 10-3 0 0 0.1 0.6 0.01 0 0.29 0
sigmoid 20.29 1.13 10-2 0 0 0 1 0 0 0 0
euclid2 123.33 1.29 10-3 0 0 0 0 1 0 0 0

Velocities manh 36.05 5.42 10-3 0 0 0 0 0.87 0 0.13 0
sigmoid 20.80 1.87 10-2 0 0 0 0.66 0.19 0 0.15 0

Table 6.3.: The results of the non-negative least squares metric �tting, with non-convergent results denoted
using brackets.

As we can see, overall the sigmoid shaping function matches the results of our experiment best. This

corresponds to previous perceptual research (e.g., Onuma et al. (2008), who shown that the pro�le

of a distance metric function is logarithmically shaped), and we can conclude that the logarithmic

nature of the human visual system is extended also to our case of human locomotion di�erence.

Consistently with Troje (2002, 2008), our results also suggest that arm motion is the most important

feature of the human body in judging locomotion di�erences. This fact is supported by all types of

primitive metrics (see Table 6.3).

Finally, the best primitive metric for comparing human motion is the global positional di�erence.

This is a logical result, as the global positions directly describe the poses of the �gure. Interestingly,

the dynamics properties, as described by the velocity-based metrics function, produced the worst

match, hinting that the actual static poses are of greater importance when judging the characteristics

of the motion than the dynamics (which is consistent with the �ndings of Wang & Bodenheimer

(2003)).

6.1.4. Conclusions

The development of a more general metric capable of emulating human perception of motion di�erences

seems feasible from our results. In this light, our work can be seen as a �rst step towards developing

a well-de�ned mathematical metric with a desired set of perceptual properties.

6.2. Crowd Motion Variety

A crowd simulation system requires signi�cant computational and storage resources, with a major part

dedicated solely to creating the impression of variety. In the case of a data-driven crowd simulator,

a certain level of animation and model re-use is inevitable. A high re-usability ratio can provide

signi�cant savings in terms of computational e�ort, memory footprint and artists' time. However, it

can also lead to the disturbing impression of a crowd full of identical individuals, or clones, an e�ect

that has been recently explored by McDonnell et al. (2008).

In this section, we build on this work and present a framework that enables a large range of scenarios

to be created and con�gured to test the perception of human motion in groups and crowds. Using this

framework, we conduct a perceptual study to �nd the number of individual motions that are needed

to make the movements of a crowd of virtual humans look varied. Our results can be used to derive

guidelines regarding the resources required to create, store and process captured motions. Although
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the focus of this work is on the dynamic aspects of the animation (e.g., the way a character walks),

our framework could also be used to study the static properties (e.g., skeletal structure variations)

and the e�ects of a character's general appearance (e.g., 3D skinned model).

6.2.1. Experiment Framework

In this section we present our framework for evaluating the perception of crowd animation. The

�rst step involves creating the model to be used to represent the appearance of the character. Raw

captured motions can seldom be used without some preprocessing, so our second step is to process

the animations while making minimal adjustments to the original motion. Finally, di�erent crowd

scenarios must be created, which involves the generation of natural and collision-free trajectories for

di�erent sized crowds of virtual characters. In all three steps, our aim is to make the framework as

con�gurable and generic as possible.

We wished to create a parametric human model for our framework, so that it could be used to

represent both the static and dynamic properties of motion, if required. However, in this section we

are interested in determining the number of characteristic motions needed to create the illusion of

variety, and hence we also need a way to view the dynamic properties in isolation.

The static properties of the animation are fully represented by the skeleton and its T-pose; we can

use this information to construct a model to represent the appearance of the characters.

The simplest models are constructed by displaying the model's joints as dots (i.e., a point-light

walker, see Section 2.7.1). The hierarchy of bones is then represented implicitly by the dynamic

information of the animation. Even though the human visual system (HVS) can easily derive the

hierarchy from a moving model of this type (Johansson, 1973), in practical applications in computer

graphics, the skeleton is always represented explicitly. A simple representation is to connect the dots

by sticks, leading to a stick-�gure, while more advanced models make use of rigid-body segments and

skinning techniques, thereby creating a realistic representation of the human body. Unfortunately,

these representations are not perceptually equivalent, as it has been shown that motion properties

are more easily perceived on realistic human models (Hodgins et al., 1998; McDonnell et al., 2007a).

However, with more realistic models, confounding visual cues can be introduced, such as gender,

skinning, bodyshape and texture. For that reason, we use a simple mannequin character composed of

rigid segments, which has been shown to be gender neutral while still retaining the body structure,

and therefore represents motion properties well (McDonnell et al., 2007a). We chose this model in

order to focus on the motion properties of the animation, though for future experiments our framework

could be easily extended to include a larger variety of appearance models.

While we could use a pre-modelled mannequin character to display every motion, this would require

retargeting every animation to �t the skeleton of this model, potentially introducing motion artifacts.

Whilst all retargeting methods aim to achieve minimal changes to the original motion, a parametric

representation of the mannequin model would allow these changes to be reduced even further. Our

animation framework therefore creates the mannequin model by building a simple `box' model with

parameters directly derived from bone lengths (Figure 6.5, middle). By applying several iterations of

the Catmull-Clarke subdivision scheme and �attening several critical surfaces (soles of feet, palms),

we create a fully parameterised mannequin model (6.5, right).

This parametric model of the character provides the required �exibility in terms of displaying both

the static and dynamic properties of any motion in exactly the way they were captured.

However, in the particular case of the experiment described in this section, we are interested in

examining the dynamic properties of the motion alone, and therefore wish to eliminate any static cues
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6.2. Crowd Motion Variety

Figure 6.5.: Mannequin character building steps. A stick-�gure skeleton (left) is used as a starting point to
generate a parametric box-�gure (middle), which is then subdivided using Catmull-Clarke subdivision to provide
a smooth mannequin character (right).

that could identify an individual's body shape. For this reason, the skeletons have to be identical, so

to minimise retargeting errors for a set of animations the skeleton used is the average of the source

skeletons. Assuming an identical pose of all source skeletons (which is true for all motion capture

systems), their only di�erences are in the bone lengths (i.e., the translational parts of the rigid body

transformations used to describe the skeleton). To create an average skeleton for our experiment, we

can therefore simply average the corresponding bone lengths.

In order to use captured animations in a real application, a certain amount of preprocessing is

inevitable. In our case, we need to ensure that the character follows a speci�c trajectory for given

length of time. Our aim is to change the animation data as little as possible, while allowing the

required level of experimental control.

A simple representation of an animation performed on a �at surface is its trajectory. This is also the

usual representation for solving the collision avoidance problem (see below). In the case of locomotion,

we derive the trajectory by averaging the projection of the feet bones on the ground (leaving only XZ

translation and Y rotation), thereby creating a trajectory bone (see Section 5.3.2). Using the motion

map approach (see Section 5.2), we can detect one period of the motion, convert it into the periodic

form (see Section 5.3.1) and by simply concatenating these periods, create an animation with arbitrary

length, while retaining the properties of the original.

We complete the motion preprocessing step by adjusting the animation to �t our average skeleton,

according to the adaptation described by Kovar et al. (2002b). As we create a skeleton with minimal

bone-length di�erences for our experiment, we do not require the lengthening step for any of our source

animations, though a greater range of body shapes would necessitate this step in future experiments.

Ideally, we would like to create scenarios in which animated characters are placed randomly in

a given region and are assigned random trajectories, with a di�erent scenario generated for every

trial. However, without any further processing, the generated trajectories would often intersect in

the corresponding animation frames, which would lead to collisions between characters (Figure 6.7,

left). In order to achieve maximal randomness while avoiding disconcerting character collisions, we

introduce a simple iterative least-squares optimisation scheme based on rigid-body �tting. First, we

place the animations into random positions and directions in the desired area. With each trajectory

represented as a set of 2D vectors vi(t) (where i is the animation's index and t is the time value / index

of the keyframe), we can de�ne a vector da,b(t) describing the di�erence between two corresponding
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6. Perceptual Studies

Figure 6.6.: The trajectory reconstruction and trajectory bone embedding. The 2D trajectory (left, middle) is
extracted by averaging the projection of the end-e�ectors on the ground (right) and creating a new parent bone
following this trajectory.

(1) (2) (3) (4)

Figure 6.7.: Scenario trajectory optimisation � random trajectories result in a large number of intersections
(1), causing many collisions (2). Our optimisation approach ensures a collision-free scenario (3, 4).

points on the trajectories a and b as:

da,b(t) = vb(t)− va(t)

We can also create similar displacement vectors for enforcing the trajectories into a certain area. The

displacement force vector fa,b(t) is then created from vector da,b(t) as:

fa,b(t) =
da,b(t)

‖da,b(t)‖
(max (0, fmin − ‖da,b(t)‖))2

where fmin is the minimal enforced distance. This equation describes a simple repulsion force of a

particle system (fmin was set to 1.5m in all our experimental scenarios described below). By adding

the force vector:

fa(t) =
∑
b

fa,b(t)

to each point va(t) of the trajectory a, we create a deformed version of the trajectory data. Sub-

sequently, we can �t the original trajectory data into the deformed trajectory using rigid-body least

squares �t, thereby creating a displaced version of the original trajectory. By iteratively applying this

process, we minimise the sum of all norms of vectors fa,b(t), e�ectively creating a poisson distribution

in every frame, leading to a set of collision-free trajectories (Figure 6.7, right).
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6.2. Crowd Motion Variety

Figure 6.8.: The experiment stimuli and their creation � the stimuli as presented to the subject (top) and their
creation, with trajectories and characters coloured according to their respective animations (bottom). In the
depicted trial, the gold standard is shown on left.

6.2.2. Experiment Design

We used the methods described in the previous section to determine the minimum number of individual

motions required to create the impression of a varied crowd of walking humans. We also explored

how this number was a�ected by the size of the crowd and the speed of motion. Our stimuli consisted

of short animations, each depicting a crowd of walking mannequins. We hypothesised that using a

higher number of individual animations will make the crowd look more varied, up to a certain limit

value. Therefore, we tested four values of factor motion consistency, where 100% motion consistency

meant that all characters in the scene used the same animation, and the lowest value meant that four

animations were each used to animate 25% of the crowd. We also tested whether the size of the crowd

will a�ect the perception of cloned animations, as more characters on the screen could either mask their

motion similarities or else provide more examples to aid in spotting the animation clones. Therefore,

the factor crowd size had three values � low (8 or 9 characters), medium (15 or 16 characters) and

high (24 characters). The +/- 1 is to ensure that the number of characters is divisible by the total

number of animations used in the stimulus, in order to enforce an even distribution of the number of

simultaneously displayed animations. Finally, we tested whether the speed of motion will in�uence the

perceived variety of the crowd, i.e., whether the personal characteristics of the actors have di�erent

e�ects on the perception of motion di�erences depending on their speed (slow, with one period of

1.32± 0.03s; normal, with one period of 1.06± 0.01s; or fast, with one period of 0.90± 0.01s).

As the input data for our experiment stimuli, we used only straight walks from our motion cap-

ture database, which contains motions from 83 actors (45M and 38F), with ages ranging from 14

to 50, weights from 41 to 102kg and heights from 1.53 to 1.96m. While the framework described

in Section 6.2.1 allows the use of turning locomotions, the narrow focus on straight walks allows to

both signi�cantly reduce the number of required stimuli and to explore the worst-case scenario by

eliminating an important source of locomotion variation.

In order to avoid any motions with artifacts caused by an outlying body build, we selected the 24

required actors for each gender by performing Principal Component Analysis on the weight and height
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Figure 6.9.: The selection of motion clips based on actors' body shapes (left � males, right � females). The non-
standard body builds were rejected (outside the ellipse), while accounting for di�erent height and weight trends
(a similar approach is used for computing BMI, and our selected subset would then correspond to participants
closest to �average�.

data (separately for each gender), constructed an elliptical Gaussian curve around the mean point,

with directions determined by the recovered eigenvectors and standard deviations proportional to the

eigenvalues, and selected the 24 actors projecting to the highest values on this curve (see Figure 6.9).

This procedure provided a subset with su�cient variance, whilst avoiding any weight/height outliers.

For the input motion data, we used 3 straight walking motions from each actor (according to the

speed factor). The motions were preprocessed by extracting one period, and looping to make the total

length of each clip 5 + tp seconds, where tp was the length of one period of the motion. By selecting

the start of each motion randomly from the interval [0...tp), we achieve full desynchronisation of the

displayed motions.

During the experiment, the stimuli were presented on two separate 19-inch LCD screens using their

native resolution of 1280x1024 pixels and refresh rate of 60Hz. On one screen, an animation was

displayed where every member of the crowd was animated using an individual motion (i.e., the gold

standard). On the other screen, the same animation was shown, but with cloned motions based on

the motion consistency factor (see Figure 6.8). We counterbalanced the position of the gold standard

across all trials, and randomised the order of trials for each participant. We also tested whether the

gender of the actors in�uenced the perception of variety in the motions and therefore showed only

all male or all female motions simultaneously in each of the scenarios, also counterbalanced. The

scene data were generated before each trial, with the placement of trajectories �rst randomised and

subsequently optimised to avoid any collisions (see above). The camera view was centred in the middle

of the scene and oriented at an angle of 20° above the ground plane with the view angle set to 35°

vertically to encompass the full scene, which was always 12m in diameter.

The scene was rendered using the OpenGL rendering system with vertical synchronisation turned

on to avoid any possible �ickering artifacts. The experiment itself consisted of 144 trials: 4 (motion

consistency) Ö 3 (crowd size) Ö 3 (speed) Ö 2 (counterbalanced for actor gender) Ö 2 (counterbalanced

for gold standard position). Each trial lasted 10 seconds and consisted of two repetitions of the 5 second

animations. The borders of both screens started blinking 2.5 seconds before the end of each trial (at

0.5 second intervals), to indicate the end of the time limit. Following each trial, there was a 2 second

delay before the next display of stimuli, during which the remaining number of trials was displayed in
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Figure 6.10.: Results from the experiment on the perception of crowd variety.

the centre of each screen.

Twelve volunteers (7M, 5F) from students and sta� of our university participated in our experiment.

All participants were naive to the purpose of the experiment and had normal or corrected to normal

vision. They were asked to indicate on which screen was every character walking di�erently by pressing

one of two clearly indicated buttons on the keyboard. We recorded both the accuracy of their answer

and their response time. If a participant did not answer in the allocated time limit, the progression of

trials was paused until the answer was provided. The total duration of the experiment was about 30

minutes per participant. After the experiment was �nished, participants were asked to �ll in a simple

questionnaire, aimed at determining the discrimination method they adopted.

6.2.3. Results

First, we analysed both the percentage of correct answers and the response times recorded for all

participants. As expected, we found no e�ect of either the gender of the actors or the position of the

gold standard, so we averaged across these factors. We then performed a repeated measures ANalysis

Of VAriance (ANOVA) on the remaining three factors: motion consistency, crowd size and speed (see

Figure 6.10).

For answer accuracy, we found a main e�ect of motion consistency (F3,33 = 7.6517, p < 0.0006) and

a three-way interaction between all three factors (F12,132 = 2.1858, p < 0.02). Post-hoc analysis of the

main e�ect using Neuman-Keuls comparison of means showed that there were two distinct groupings

of values, with no signi�cant di�erence within these sets. Motion consistencies of 100% and 50%,

i.e., where either 100% or 50% of the characters were animated using the same cloned motion, were

signi�cantly easier to detect than the more varied scenarios.

Neuman-Keuls post-hoc analysis of the three way interaction did not provide any more information

(no combination of factors was signi�cantly di�erent), and a further study with a larger number of

participants would be required to explain this e�ect.

Trials lasted 10 seconds with a warning sign shown at 7.5 seconds, and the average response time

was 7.548s with standard error of 0.054s. The ANOVA on response times showed a main e�ect of

crowd size (F2,22 = 4.3230, p = 0.03). Neuman-Keuls post-hoc comparisons showed response times

were signi�cantly slower when the largest number of characters was displayed. The di�erence of means

was, however, only 0.27s.

In an informal questionnaire presented to each participant after �nishing the experiment, partic-

ipants reported that the discrimination method they adopted during the experiment was based on

searching for pairs of similar motions. If they succeeded in �nding such a pair on either of the screens,
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they reported the other as the correct answer. Failing that, they resolved to a �general feeling� of the

stimulus and selected the one seemingly more varied.

Our results strongly suggest that the dominant factor in the perception of crowd variety is the

number of cloned motions present in the scenario. The factors of crowd size and motion speed have,

at best, only a weak and unpredictable e�ect on the perception of motion variety in a crowd. We

found that the maximum number of individual motions successfully detectable was 2, i.e., when 50%

of the crowd was animated using one motion, and the other 50% also all animated using a second

motion.

6.2.4. Conclusions

The main guideline we can provide from this study is that to preserve the perception of motion variety

in a typical pedestrian crowd, there is no need for more than 3 di�erent characteristic animations per

gender of the displayed characters (whereas 2 motions are not enough). By setting a 10s limit for the

answer, our results only indicate the participants' immediate impression of the crowd motion variety.

These results are therefore probably most valid for a classical game-like scenario, but may not hold

under careful scrutiny of the animations.

6.3. Footskating and Footskate Cleanup

Footskating (or footsliding) is an artifact caused by incorrect or inaccurate handling of foot con-

straints, such as ground contacts, during character's locomotion. As the primary topic of this thesis

is locomotion synthesis, footskating and footskate clean-up is one of the main problems addressed

(see Chapter 4). In this section, we evaluate the perceptual saliency of this artifact, together with

the performance of some methods for its cleanup, both aspects that currently represent a gap in the

available knowledge of animation perception.

In our �rst experiment (Section 6.3.2), we determined minimal perceivable footsliding thresholds,

assuming that the observer is aware of its presence. We showed that participants can perceive even very

low levels of footsliding (<21mm in most conditions), especially when environment cues highlight the

artifacts. In the second experiment (Section 6.3.3), we introduced footsliding at levels that are clearly

perceivable, and corrected them using two methods (Kovar et al.'s method (2002b) and lengthening

of body segments alone, as in Harrison et al. (2004)). As each of these methods alter the animation in

certain ways, they can introduce side e�ects and artifacts into the original motion. By asking users to

compare the corrected motions with the uncorrected ones, we showed that corrected animations are

always preferred to animations with footsliding, independently of the correction level required. Results

also showed that participants considered animations corrected with the body segment lengthening

method to be of higher quality than those edited using Kovar's method. Our results provide valuable

insights for developers of games and VR applications by providing thresholds for the perception of

footsliding artifacts, as well as a visually e�ective method for correcting this disturbing artifact.

6.3.1. Stimuli Preparation

Because our goal is to ask participants to judge the quality, naturalness and perceivable artifact levels

of motions, we need to ensure that the original motions (before alterations based on the experiment

objective) are of high quality, natural and artifact-free. Motion capture technology can provide such

motions. For our experiments, we selected a set of motions from our database (83 actors, with a

variety 100+ motion types per actor). First, based on the biometric data (using the same method as

in Section 6.2), we selected 10 actors (5 male and 5 female) with normal body builds. Second, for each

actor we selected a straight walk with a speed close to the actor's average walking speed. Finally, we
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Figure 6.11.: Illustration of the footstep cleanup and parameterised footskate introduction used in our exper-
iments. From top: original motion with imperfect footsteps; a cleaned-up version of the original animation;
the same animation with a hight level of forward footslide introduced (slide of 15cm per footstep).

carefully checked that the selected motions did not contain any visible artifacts.

A classical representation of a motion clip relates motion data to the character's skeleton, which

represents his/her body structure. While real-world applications would use more realistic skinned

human models, which have been shown to convey more information than simpler models (Hodgins

et al., 1998), one of the sources of a diversity of animation artifacts is motion retargeting, which adapts

the motion to a new skeleton (e.g., a skeleton of a displayable character; Kovar et al., 2002b). In order

to avoid these alterations, we chose to display the motions on virtual mannequin �gures, generated to

accurately re�ect the morphology of the original actors (see Section 6.2.1). Such mannequins o�er a

more suitable representation for our purposes than stick �gures, as they convey the character's spatial

information, while avoiding the problem of retargeting inherent to skinned characters.

Due to the physical nature of the motion capture technology, a certain number of artifacts will

always be present in the captured motion (see Figure 6.11, top), caused by measurement noise and the

capturing/processing pipeline. To ensure that we started with perfect animations, we �rst detected the

footstep constraints using the rotational-axis method (see Section 4.3) and then cleared any residual

foot motion using the method of Kovar et al. (2002b). As we did not perform any retargeting, the

footskate correction on captured motions caused only minimal changes (Figure 6.11, middle). Even

though the detection algorithm is fully automatic, its parameters were manually checked and adjusted

for each animation to ensure the resulting constraint accuracy.

6.3.2. Baseline Experiment

In the �rst experiment, our aim was to determine the saliency of footsliding for worst-case scenar-

ios, when participants are aware of its presence or when it is emphasised by the properties of the

environment.

In order to allow for precise control of the footsliding, we modelled its e�ects by altering the

translational component of the root trajectory. Our model consists of two distinct components relative

to a character's heading direction � the front footskate and the side footskate.

Front footskate was introduced by multiplying the forward directional movement of the root by a
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speed coe�cient. This resulted in speeding-up (i.e., gliding) for values above one, or slowing-down

(i.e., moonwalking) for values below one (with no change when the value was exactly one). For all

the motions used in this experiment, an increase or decrease of 10% of the root velocity corresponded

to an average foot position change of 74.2± 1.3mm per footstep. The amount of footsliding in mm is

linearly related to the speed coe�cient.

Side footskate was introduced by adding a perpendicular displacement proportional to a sinus func-

tion (with period consistent with that of the animation and phase synchronised with the midpoint of

the left foot constraint). The neutral value in this case was zero, while positive values led to outwards

footskating (i.e., the constrained foot was moving away from the character's root projection on the

ground) and negative values to inwards footskating.

This approach ensured that only smooth changes were introduced into the original motions, while

providing a controllable way of introducing footsliding artifacts similar to the ones seen in VR appli-

cations (caused by speeding up, slowing down, or blending between straight and curved locomotions).

The experiment was divided into two main blocks. In the �rst block (grid environment), we tested

the worst-case scenario where a grid texture on the ground provided visual guides (Figure 6.12, top

row). The grid was white on a blue background with interline distances of 10cm. The second block

(neutral environment) used a plain blue ground without any texture (Figure 6.12, bottom row). Each

block was further divided into two parts (Part 1 and Part 2). Part 1 tested frontwise footsliding with

motions viewed from the side (Figure 6.12, right column), while Part 2 tested sidewise footsliding

with motions viewed from the front (Figure 6.12, left column). This choice of viewport/footsliding

combinations ensured that we tested the worst-case scenarios (where the footsliding direction was

always perpendicular to the view direction), because we observed that the viewing direction can play

an important role in perceived levels of footsliding. Motions were displayed on a 24-inch screen at

60Hz and participants were seated approximately 60cm from the screen.

To accurately determine the perceptual threshold for footsliding for each participant, we used an

adaptive double staircase experiment design (Cornsweet, 1962), in a standard Yes-No form (a variant

of 2-alternative forced choice) with �xed up and down steps, as described by García-Pérez (2001). We

used a down/up step ratio of 0.871, converging at 52.38% point of the psychometric curve, and set

the stopping condition to 20 reversals.

In each trial, participants observed one of the ten motions, randomly selected, with the introduced

amount of footsliding corresponding to the current state of the staircase experiment. They were asked

to determine if the character is footsliding, and to answer by pressing the �yes� or �no� button, clearly

marked on the computer's keyboard. The description of what footsliding is was provided both formally

on the instruction sheet and informally by the experimenter. There was no explicit time limit and

the adaptive nature of the method used did not allow the length of the experiment to be precisely

determined beforehand, but none of the participants took more than 20 minutes. Because of the

complexity of the task, each participant performed at most two parts and received a book voucher in

recognition of their e�orts.

Nine volunteers took part in the grid environment block of this experiment (2F, 7M), with �ve

participants for grid Part 1 and four participants for grid Part 2. Fourteen volunteered for the neutral

environment block (5F, 9M), with eight participants for neutral Part 1 and six participants for neutral

Part 2. For this and all subsequent experiments, all participants were naive to the purpose of the

experiment and came from various educational backgrounds.

To evaluate the results, we used the Matlab psigni�t toolbox (Wichmann & Hill, 2001) to �t a

logistic psychometric curve into the data for each block/part, both to each participant and to the
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Figure 6.12.: Stimuli examples for the baseline experiment. Top row: worst-case scenario with the environment
providing visual guides. Bottom row: second tested environment without visual cues.

Case

Grid environment Neutral environment
Footsliding Footsliding

Speed coef. amount [m] Speed coef. amount [m]
PSE JND PSE JND PSE JND PSE JND

gliding 1.028 0.010 0.021 0.007 1.115 0.034 0.084 0.027
moonwalking 0.984 0.007 -0.011 0.005 0.971 0.013 -0.021 0.009

sliding outwards - - 0.006 0.002 - - 0.018 0.005
sliding inwards - - -0.005 0.001 - - -0.014 0.005

Table 6.4.: PSE and JND for baseline experiment. Absolute values are given in metres; relative values as a
ratio of the motion speed-up/slow-down.

overall merged results. A psychometric function models how the participant's response to stimuli

varies depending on the variation of these stimuli. The results of the evaluation are presented in

Figure 6.13, which shows both ratings per-participant and the overall psychometric curve. The overall

point of subjective equality (PSE, the point where participants are equally likely to �nd the stimulus

acceptable or otherwise) and just noticeable di�erence (75% JND; the minimum increase of the PSE

stimulus value needed to be detectable 75% of the time) are summarised in Table 6.4. As expected, the

results show that the accuracy of footsliding detection is greatly improved by the visual cues present

in the grid environment. Furthermore, the levels of footsliding perceived in the grid environment

(especially for the side case) suggest that the limit is approaching the display resolution of the screen.

Our interpretation is that, e�ectively, any footsliding, no matter how small, will be perceived on a

surface with visual cues.

However, the results are di�erent for the neutral environment. In the case of front footsliding, the

results showed that participants are more disposed to perceive footsliding caused by slowing-down

rather than speeding-up, with the speed coe�cient PSE of 0.971 and 1.115 respectively. These values

corresponded to respective errors of approximately 21mm and 84mm. In the case of side footsliding,

a lower threshold with PSE < 20mm was found.
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Figure 6.13.: Results of the baseline experiment. The horizontal axes represent the footsliding amount in
metres; vertical axes represent the probability of identi�cation of footsliding at a given level; original per-
participant curves are depicted in thin gray; overall �tted curve in thick black.
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Figure 6.14.: Stimuli example for the footskate cleanup experiment.

6.3.3. Footskate Cleanup Experiment

Our previous experiment showed that the perceptual threshold for footsliding is relatively low, espe-

cially when environment cues are present to highlight its e�ect. However, it is still unclear whether

footsliding should be corrected in all cases, or if sometimes a remedial action can actually deteriorate

the quality of the motion even further. For this reason, in our second experiment we compared anima-

tions with footsliding to animations that had been corrected. We hypothesised that possible artifacts

might play an important role in a participant's responses to the corrected motions, and might even

lead to them preferring the original animation despite footsliding being present.

Considering the importance and frequency of footsliding artifacts, a surprisingly low number of

methods have been proposed to correct them (see Section 2.3.3). For our experiment, we selected two

basic methods commonly employed in real-time systems. The �rst and more comprehensive method

was introduced by Kovar et al. (2002b). In this method, footskating is cleaned up using successive steps

of a character's root displacement, root trajectory smoothing, leg inverse kinematics and leg segment

lengthening. The second and simpler method employs only lengthening of the character's limbs to

reach the desired end-e�ector position (which corresponds to the last step of Kovar's algorithm).

While the �rst method is much more sophisticated, and therefore is expected to perform signi�cantly

better, simple limb lengthening might provide acceptable results, as hinted by work of Harrison et al.

(2004), who showed that under certain conditions, limb lengthening of up to 19% might go unnoticed

by the observer. In the experiment, these two methods will be compared both against each other and

with uncorrected animations. In the following text, these three options will be described as Kovar's

correction (K), Lengthening correction (L) and Uncorrected (U) respectively.

In VR applications, footsliding in the direction of the character's movement is a necessary price for

responsiveness, and therefore is more common than side footsliding. For this reason, in this experiment

we focused on the former aspect alone. Our results should generalise to side footskate as well, but

this needs to be con�rmed in future work.

Twelve participants volunteered for this experiment (3F, 9M). Seventy-two animations were pre-

sented in randomised order, with factors: 2 directions (gliding and moonwalking) Ö 3 footsliding levels

(50%, 75%, 99%) Ö 3 comparisons (U-K, U-L, K-L) Ö 4 repetitions. The 3 footsliding levels, selected

according to the results of the Baseline experiment, were the 50%, 75% and 99% points of the psy-

chometric curve, which each represent an average footsliding distance of 84mm, 111mm and 196mm

respectively for gliding and 21mm, 30mm and 60mm for moonwalking.

In each trial, participants viewed two characters displaying the same motion with the same level of
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Figure 6.15.: The main e�ect of comparison factor on trials where corrected motions (K or L) were presented
together with uncorrected ones (U).

introduced footsliding, di�ering only in the correction method (U, K or L). The character displayed on

the left was always blue and the right one always orange, matching two coloured keys on the keyboard.

In each displayed pair, a random selection was made to decide which of the characters will display

which motion. Participants were instructed to select the character displaying the most natural motion,

without any additional information about the bodypart or artifact they should focus on.

In the previous experiment, footsliding was displayed from the side view, as it gave the most

information about the front sliding motion of the feet. In this experiment, however, the artifacts are

present both in the feet and in the character's overall movement. Because camera angle can in�uence

the perception of both aspects di�erently, we used the canonical viewpoint (Ennis et al., 2011), thereby

providing as much information as possible about both the overall quality of the motions and the

footsliding (Figure 6.14).

The evaluation of the results of this experiment is performed in two steps, as its design inherently

contains two distinct sets of data, each of which provide separate results and require separate inter-

pretation. The �rst data set includes a comparison of corrected motions displayed together with the

uncorrected ones (cases U-K and U-L). The second is used to directly compare the two correction

methods when displayed simultaneously (K-L).

To correct or not to correct? To evaluate participants' preferences between corrected and

uncorrected motions, we extracted a subset of our data that contained the answers from trials when

uncorrected motions (U) were displayed simultaneously with motions corrected using either of the

correction methods (K or L).

We performed a three-way repeated measures ANOVA with within-subjects factors comparison

(U-K and U-L), direction (moonwalking and gliding) and footsliding level (50%, 75% and 99%).

In this evaluation (and in all subsequent evaluations), the post-hoc analysis was performed using

the standard Newman-Keuls test for comparison of means. The results showed a main e�ect of

comparison (F1,11 = 7.376, p < 0.05), where footsliding animations corrected with the lengthening

method were preferred to uncorrected motions more often than animations corrected with Kovar's

method (Figure 6.15). The results also showed a main e�ect of footsliding level (F2,22 = 3.737,

p < 0.05), where corrected animations were more likely to be preferred with higher levels of the

footsliding (Figure 6.16).
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Figure 6.16.: The main e�ect of footsliding level factor on trials where corrected motions (K or L) were
presented together with uncorrected ones (U).

The results also show that, overall, the corrected motions were considered to be of better quality in

more than 70% of the trials, independent of the level of introduced footsliding. To explore this fact

further, we carried out single t-tests on collapsed data to determine if there was a real preference of

correction methods over non-correction (i.e., preference signi�cantly di�erent from 50%). The data

was collapsed over direction and level factors, as we were interested in the overall preference of each

correction method against non-correction. The results showed that both correction methods were

preferred to non-corrections in signi�cantly more than 50% of the cases (t(11) = 2.946, p < 0.05 for

Kovar's corrections and t(11) = 8.666, p < 0.00001 for lengthening ones). From this result we can

conclude, that correcting footsliding should always be preferred over not correcting it, even if it implies

changing the motion.

Preferred correction method? The analysis above shows that corrected animations are preferred

to uncorrected ones, with the lengthening method prefered on average more often than Kovar's method.

The second subset of our data allows for a more direct comparison between the two correction methods

when displayed side-by-side.

We performed a two-way repeated measures ANOVA with within-subjects factors direction and

footsliding level on the preference of L over K. Results showed no signi�cant e�ect of direction or

footsliding level. We then averaged participant ratings over these two factors and carried out a

single t-test to determine if one of the correction methods was signi�cantly preferred to the other

(i.e., preference signi�cantly di�erent from 50%). The results showed that the lengthening of body

segments method was ranked higher than Kovar's approach 72% of the time (t(11) = 5.693, p < 0.0005,

Figure 6.17).

6.3.4. Conclusions

In this section we have presented a set of experiments addressing the perceptual e�ects of footsliding in

VR applications. Our results have shown that participants can perceive even very small levels of this

artifact, with a trend towards accepting higher levels of footsliding in the direction of the character's

movement. Moreover, we have shown that the ability to perceive footsliding is increased even further

by visual cues in the environment, i.e., a grid texture on the ground, up to a point close to the screen

resolution.
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Figure 6.17.: Lengthening correction method is preferred over Kovar's when displayed simultaneously.

Out of the two tested correction methods, users preferred the simpler lengthening method. This

could imply that the perceptual threshold for limb lengthening is relatively high (a �nding consistent

with the work of Harrison et al. (2004)), and that the artifacts introduced by Kovar's method are

perceptually more salient. However, attention would also a�ect the user's preference, as Harrison

et al. (2004) demonstrated that limb length changes of over 20% can go unnoticed only when the

user's attention is not focused on the extending limb.

In our experiments, the stimulus character was a neutral mannequin �gure. While a well-justi�ed

choice for our scenario, future work has to evaluate how these results would scale on more realistic

characters, as they could prove to result in even less tolerance towards both footsliding and correction

artifacts. Moreover, a general perceptual evaluation of limb lengthening on highly realistic humanoid

characters has yet to be performed.

The viewpoint and camera angle can also play a signi�cant role in footsliding perception. In our

experiments, we have chosen two approaches � in the �rst experiment, we chose the worst-case scenario,

by placing the camera in direction perpendicular to the introduced footsliding. While a valid choice

for our goals, a di�erent angle might prove to be more forgiving. In the second experiment, we have

used the canonical viewpoint. This choice was motivated by the fact that in this experiment it is not

only footsliding that we are evaluating, but also the overall motion artifacts introduced by correcting

it. A di�erent camera angle might mask either of these artifacts, shifting the user's preference towards

one or another.

To conclude, future research on the perception of motion artifacts (such as footsliding) should

explore features such as high quality human characters, in�uence of environment, camera angle, camera

motion, and the e�ects of the user's attention.

6.4. Human Locomotion Timewarping

Understanding the perception of timing in humanoid character motion can provide insights useful for

computational and storage cost optimisation, motion editing and motion extrapolation for data-driven

motion synthesis methods (such as our locomotion system). In this section, we provide a perceptual

evaluation of linear timewarping for human locomotion.

In our experiment, participants were shown pairs of walking motion clips, both timewarped and at

their original speed, and were asked to identify the real animation. We found a statistically signi�cant
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Figure 6.18.: The stimuli of the timewarping experiment. Left � screenshot from the running experiment (side
view, stick �gure); right � stick �gure and geometrical model used in the study.

di�erence between speeding up and slowing down, which shows that displaying clips at higher speeds

produces obvious artifacts, whereas even signi�cant speed reductions were perceptually acceptable.

6.4.1. Experiment Design

Five motion captured clips of a walking animation served as the stimuli for our experiment. These

�ve animation speeds covered a normal range of human walking, ranging from 0.8 m/s to 2.4 m/s

with 0.4 m/s increments. For each clip, we created four other versions using timewarping to match

the speed of the other clips, leading to a total of 25 clips (e.g., the 1.2 m/s motion was slowed down

to 0.8 m/s and speeded up to 1.6, 2.0 and 2.4 m/s). We hypothesised that timewarping would be less

noticeable if the timewarped speed is close to the original speed of the clip.

The experiment consisted of sequences depicting two animated characters side-by-side (Figure 6.18,

left). Both characters (Figure 6.18, right) were either stick �gures or geometric models (as a model's

level of detail was found to a�ect perceptual sensitivity to errors in motion (Hodgins et al., 1998)),

facing forwards or sideways (to test the e�ect of the viewpoint), with each simultaneously displayed

pair using the same setup. One character's animation depicted the original motion, randomly placed

on the left or right side of the screen, while the other's was timewarped to match its speed. We also

tested each real animation against itself as a control case.

Sixty naive participants from the general public (64% male and 36% female) volunteered for this

experiment. The instruction sheet indicated that one of the motions was a real captured motion and

the other one was synthetically edited. The task was to indicate which of the two animations was

the real motion by clicking the left or right mouse button. Each participant completed 100 trials in

randomised order (25 motion clip combinations, 2 models, 2 viewpoints), leading to an average of 8

minutes per participant.

6.4.2. Results

Using a 3-factor repeated measures ANalysis Of VAriance (ANOVA) with factors model type (stick or

geometric), viewpoint (front or side), and speed (speed-up or slow-down), we found a main e�ect of

model type (F1,59 = 8.09, p < 0.007). Post-hoc analysis using Newman-Keuls comparison of means

showed that participants were more sensitive to timewarping on the geometric models than on the

stick-�gure. This implies that the e�ect of timewarping is more noticeable on more detailed characters,

which is consistent with previous results (Hodgins et al., 1998). No main e�ect of viewpoint was found,

implying that side and front views did not a�ect sensitivity to timewarping artifacts.

A main e�ect of speed was found (F1,59 = 133, p < 0.000001), where participants were able to notice
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Figure 6.19.: Results of the timewarping experiment, showing that motion speeding up produces severe percep-
tual artifacts while even signi�cant slow down is perceptually acceptable. The graphs show timewarping results
in terms of absolute speed di�erenced (left) and relative timewarping ratio (right).

speeded up motions on average 80% of the time vs. 47% of the time for slowed down animations. These

results were consistent across conditions. Since we used a 2AFC (2 alternative forced choice) paradigm,

this suggests that participants were simply guessing when they viewed a slowed down animation beside

a real one. Therefore, consistent with Reitsma & Pollard (2003), the e�ect of timewarping is much

more noticeable when speeding up motions than when slowing them down.

In order to investigate the speed factor further, we averaged the accuracy of participants' ratings

for each timewarp level (-1.6 to +1.6 m/s with 0.4 m/s steps) and each timewarp ratio (0.33 to 3.0).

A single factor repeated measures ANOVA showed a main e�ect of timewarp level (F8,952 = 104.4,

p < 0.00001). Figure 6.19 shows that, as expected, performance was at chance (i.e., 50% accuracy) for

the real animation compared with itself. Furthermore, for all slowed down animations, performance

was also at chance, showing that participants did not prefer the real animations more than even

signi�cantly slowed down ones. However, when the animations were speeded up, participants were

much more sensitive to the di�erent levels of timewarping � up to almost 100% for a 0.8 m/s animation

speeded up to 2.4 m/s. This implies that signi�cantly slowed down walking animations are perceived

as real, whereas even small increments in speed will be noticed.

6.4.3. Conclusions

The results of this experiment have implications for both motion compression and data-driven param-

eterisation models. They suggest that, in motion compression, the underlying databases do not have

to contain densely sampled low speed locomotions, as they can be reconstructed from higher speeds

without producing perceptual artifacts. Similarly, the indications are that motion synthesis methods

should avoid timewarping a source motion to create a faster movement. Rather, interpolation be-

tween slowed down locomotion clips would be preferable to the traditional combination of speeded up

and slowed down animations. However, our conclusions are directly applicable to walking locomotion

only, with speeds ranging from 0.8 m/s to 2.4 m/s, and further studies are now needed to con�rm and

generalise our results.

6.5. Conclusions

Our experiments provide interesting insights into problems related to the main topic of this thesis, the

human locomotion synthesis. However, they are not tightly bound to out particular set of techniques,

which makes them generalisable to other data-driven animation systems.

138



6.5. Conclusions

Our locomotion comparison metric directly re�ects the perceptual properties of a locomotion clip,

which makes it suitable for transition detection. In the context of this thesis, its most signi�cant

use is for motion map building (see Section 5.2). The crowd variety experiment shows that the

total number of di�erent characteristic motions required for a varied appearance of a crowd to is

relatively low. Our result of three motion styles per gender allows signi�cant savings in the memory

requirements of a crowd animation system. Our set of footskating experiments addresses the most

important artifact of human locomotion synthesis. We con�rmed that it is a very salient artifact, but

also recommended a simple method of its correction, which has better perceptual properties than state

of the art methods. Finally, in our timewarping experiment, we found a signi�cant asymmetry in the

perception of naturalness connected with animation time manipulation. This provides a guideline for

both animation editing and parameter extrapolation � the slowing down of an animation has almost

no perceptual impact, whilst the speeding up will lead to artifacts.
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7
Conclusions

In this chapter, we re�ect upon the contributions of this thesis and discuss potential directions for

future work, primarily aimed at addressing some of the limitations of the introduced techniques and

experiments.

7.1. Contributions

In Section 1.4, we introduced the contributions of this thesis, which we now discuss further.

7.1.1. Technical Contributions

The primary technical contribution of this thesis is the parametric locomotion model. We have

introduced several methods and concepts for building a parametric structure from several clips of

human locomotion, such as motion maps, the trajectory bone and skinning matrix blending, which

allow both building the parametric space and synthesising the motion to be fully automatic. Moreover,

we have evaluated the computational complexity of this model, showing that for the purpose of

animating middle level of detail characters, it is signi�cantly more e�cient than previous work.

To provide data for the locomotion model, we have also demonstrated an improved animation

pipeline, including the motion capture system setup, an improved human body model used for

kinematic data reconstruction, and a set of preprocessing tools that allow an animation to be converted

into periodic form, and detect and re�ne/reconstruct the footstep constraint information.

All these together form a comprehensive motion capture based animation suite, providing a complete

and mostly automatic solution to locomotion generation for crowds.

7.1.2. Experimental Results

The results of our perceptual experiments provide interesting insights into how human motion is

perceived, which can be used to reduce and target the computational resources required for animation

generation.

Our locomotion metric experiment compared the performance of di�erent analytical metrics to
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perceptual data. We showed that the global positional metrics re�ect the characteristic locomotion

properties the best and that the motion of certain bodyparts, e.g., hands and feet, is more salient

than others. Based on these results, a new combined metric was created, which re�ects closely the

recorded data. Finally, the mthods can be used to determine the perceptual properties of di�erent

types of motion.

In a similar fashion, we have tested the level of motion variety required for a group of characters

displayed simultaneously on the screen to appear varied. Our results show that there is no need

for motion data from more than three actors, independently of other aspects of the motion, such as

motion speed. This could signi�cantly reduce the amount of manual work and data storage required

to create a realistic crowd scenario.

Our motion timewarping experiment provided interesting insights into time manipulation of

an animation clip. We have found that the perceptual impact of timewarping di�ers signi�cantly

between the slowing down and speeding up of motion, with the negative e�ects of speeding up being

signi�cantly more salient. This is an important �nding, as it can impact on both existing techniques

(i.e., speeding up should be avoided if possible) and provide guidelines for new systems development

(which should favour motion slowing down).

Finally, the last set of experiments was aimed at footskating during locomotion and related foot-

skate cleanup. Our perceptual experiments con�rmed that footsliding is a very salient artifact

which, as long as the character is close enough to the camera, should always be corrected. However,

the state-of-the-art techniques can be improved upon by adopting a much simpler limb lengthening

approach.

7.1.3. Implementation Outputs

During the course of this research, many implementation solutions were created, underpinning both

the technical and experimental aspects of the thesis.

A primary output is the C++ motion editing library, which serves as a base for all technical demos,

practical applications and perceptual frameworks. It consists of a large collection of algorithms and

data structures, all developed with reusability in mind. Based on this library, a set of motion editing

tools was developed, allowing semi-automatic editing of the motion data. These allow the developer to

simplify and automatise the motion processing pipeline, enabling both application interoperability due

to the large number of supported �le formats, and a signi�cant reduction in manual data processing.

Moreover, each of the perceptual experiments comes with its own real-time framework based on the

library, which is generally signi�cantly more �exible than the limited case used for each experiment.

Apart from the technical demos, two practical applications were developed as �nal outputs of

the development stage. The Metropolis animation system is an implementation of the locomotion

parametric model described in this thesis, while the Biodancer project, presented as a part of the

Biorhythm exhibition in the Science Gallery, shows primarily the state-based animation synthesis,

motion maps concept and constraints detection methods.

Finally, the main implementation output of the Natural Movers project is a consistent motion

capture database, containing 100+ motions captured from 83 actors. This provides a large variety of

characteristic motions usable for both motion analysis and parametric motion synthesis.

7.2. Limitations and Future Work

The future work on the methods presented in this thesis is focused primarily on addressing related

drawbacks and providing a generalisation of the concepts.
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7.2.1. Parametric Locomotion Synthesis

While the parametric locomotion synthesis model is �exible and more e�cient than previous tech-

niques, it has several important limitations, which also provide possible directions for future work.

First, we address only locomotion on a �at surface. While su�cient for the Metropolis project, a

parametric representation of slope and/or stairs would be necessary for a more advanced cityscape.

Following the concepts used in our solution, these issues can be addressed either by extending the

parametric space by using another dimension to describe slope, or by creating an approximate fast

non-hierarchical inverse kinematic scheme built on the same assumptions as the non-hierarchical mesh

deformation model.

Second, the system as presented does not include transitions between di�erent levels of detail, which

would be necessary for a practical application. This limitation is caused by the fact that the system

as it stands was e�cient enough to drive all characters, while at the same time accurate enough not to

produce any salient artifacts. The solution to this limitation can be implemented on the behaviour �

animation interface, by including the level of detail parameter and allowing an LOD transition period,

with two animation systems temporarily running for both characters.

Third, a state-based animation transition would be necessary to include motions that are not

parameterisable by the speed and turning angle, such as stopping and starting the walk, or scene

object interactions. This can be addressed using some of the hybrid techniques from the previous

work, or by exploiting the fact that all motions inside the parametric space are synchronised, which

will signi�cantly simplify the state transition detection.

7.2.2. Experiments

Our experiments speci�cally address several issues related to the topic of this thesis, but the general

area of human animation perception o�ers large potential for future research. In this section, we

address only directly related limitations of our approach and possible future work.

The main limitation of our experiments, with the exception of the motion timewarping perception,

is the fact that our characters are represented as mannequin �gures. While a valid choice (supported

by previous work), which allows us to separate the appearance of the model from its motion without

introducing unrelated body shape cues, perceptual performance in comparison with other models was

never rigorously examined.

The locomotion metric experiment was aimed at evaluating human locomotion and only walks

with actor's normal walking speed were used. A set of further experiments might be required to

evaluate if the results generalise over di�erent walking speeds, locomotions and to di�erent motion

types. Moreover, we have chosen to evaluate the three most common metric functions and three simple

shaping functions, with a single comparison value for the whole clip, and clip alignment performed

using linear timewarping. A di�erent choice for any of these aspects might provide a more accurate

match of an analytic metric with the perceptual results.

The motion variety experiment focused on determining the minimum requirement for animations

in a crowd scene for the overall motion to appear varied. However, we have examined only the worst-

case scenario, where all displayed characters were moving with approximately the same speed, using a

straight walk and had the same gender. Moreover, the animations were not manipulated in any way,

providing us with very clean results, but excluding interesting ways of providing motion variety. All

these aspects provide a large numver of opportunities for further investigation.

Themotion timewarping experiment determined the di�erence between speeding-up and slowing-

down a locomotion. However, we have not found any perceptual threshold for the unrealistic manip-
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ulation of motion slow-down. This can be explained by a possible response bias, i.e., in that the

speeding-up was so salient, that the slowing down seemed relatively correct in comparison, indepen-

dently of the manipulation magnitude. A future experiment should explore these two cases separately,

mapping the overall saliency curve precisely. Moreover, we have merged the results of timewarping

di�erent original motion speeds, thus providing a generalised results. It might be the case that dif-

ferent original speeds allow for di�erent levels of timewarping. Finally, the results need to be tested

on di�erent types of motion. This was already partially explored in a di�erent context in previous

work (e.g., ballistic motion (Reitsma & Pollard, 2003)), but a comprehensive study would provide

very important insights into the perception of motion dynamics.

Finally, the footskating set of experiments established the importance of footstep cleanup and

evaluated several popular methods. However, our experiment used a particular setup which, while

providing the worst-case scenario, might prove to be too strict for real world applications. Moreover,

we have used two methods of footstep cleanup, which do not represent a complete set of methods

from previous literature. A di�erent method selection might prove to provide a perceptually more

acceptable solution, or some of the methods used might be insu�cient under other conditions than

those tested.

7.3. Final Remarks
In this thesis, we have tackled the problem of data-driven locomotion synthesis for crowds. Focus-

ing on the middle level of detail, our work successfully addresses all stages of a data-driven motion

synthesis model - starting from motion capture equipment and its calibration, through data process-

ing, system implementation, and �nishing with a perceptual evaluation of locomotion-related motion

properties. Moreover, each step of this work is usable independently from the other parts, with a

particular focus on generalisability of the experimental results. Finally, the practical implementa-

tion of the concepts described in related projects (Metropolis, Natural Movers, Biodancer, perceptual

frameworks) demonstrates the applicability of our results.
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A
Matrix Algebra

for Skeletal Character Animation

In the �eld of character animation, the skeleton is by far the most common way of describing the

structure of the human body. While providing a good approximation of the musculo-skeletal system, it

can be described using a simple hierarchical structure of rigid body matrices, which corresponds to the

algebra commonly used in computer graphics. The notation established in this appendix corresponds

to the main text of the thesis, providing a more concise overview of the underlying mathematical

principles.

The skeleton is de�ned as a hierarchy of transformations, or bones, which describe the base pose (or

binding pose) of the character. The animation frames then describe deformation related to this pose

(see below). The base pose can have several di�erent forms, depending on the method or algorithm

it is intended for (see Figure A.1). The motion capture software (e.g., Vicon IQ) usually uses a �T�

pose, as it o�ers a well-de�ned calibration pose without severe marker occlusion. The �I� pose is

preferred by modelling and animation software (e.g., BVH �le format, 3D Studio MAX), as it is the

most natural standing pose for a character. Finally, an �A� pose is often used for skinning purposes,

as it describes a pose approximately in the middle of the range for shoulders. However, the pose of

the shoulder joint is often not well de�ned and can vary signi�cantly between characters.

The hierarchy of bones is described as a directed graph without loops (i.e., directed tree). The

bones form nodes of this graph, and are indexed using i

1 ≤ i ≤ n

where n is the total bone count and root node has always index 1. Edges are de�ned using a binary
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A. Matrix Algebra for Skeletal Character Animation

Figure A.1.: The base poses of a skeleton. From left � the �T� pose, used often in motion capture; the �I�
pose, a common base pose for motion editing software; and the �A� pose, often used as a base pose for model
skinning.

relation projecting each node with index i to its parent node π(i), with

1 ≤ π(i) ≤ n
π(i) 6= i

Each bone transformation is a rigid body transformation Ri, relative to its parent bone. The bones

of a skeleton are then described as a vector

vskel = [R1,R2, ...Rn]

In a similar manner, animation keyframes are represented as a vector of transformations T i, one

for each bone of the associated skeleton

vframe = [T 1,T 2, ... T n]

Their purpose is to represent the change of the skeletal pose in time. This alters the binding pose

transformations Ri, creating animated poses P i

P i = RiT i

The P i matrices are often called the premultiplied format, a common way of storing animation data

(saving one matrix multiplication)

vpremult = [P 1,P 2, , ... P n]

= [R1T 1,R2T 2, ...RnT n]

All the description above uses matrices in local format, i.e., each transformation is relative to its

parent, recursively. However, for display and practical use, we often need to convert this representation

to the global format, with each transformation relative to the scene origin. This e�ectively discards

the hierarchical nature of the transformation representation. To create a global representation Ai of

each bone of the skeleton in its binding pose, we concatenate all the bone transformation recursively:
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Ai = Aπ(i)Ri

= R1...Rπ(π(i))Rπ(i)Ri

To create a global representation F i of each bone of the animated skeleton, we concatenate the

transformation matrices in premultiplied format

F i = F π(i)P i

= P 1...P π(π(i))P π(i)P i

= F π(i)RiT i

= R1T 1...Rπ(π(i))T π(π(i))Rπ(i)T π(i)RiT i

Therefore, using the premultiplied representation, it is possible to save one matrix multiplication per

bone when converting to the global format.

Finally, the skinning format describes an animated bone transformation, relative to its respective

binding position:

Ci = F i (Ai)
−1

This representation can be used to transform the vertices of the base model to correspond to the new

skeletal pose in the skinning process. Each vertex vj , described as a homogeneous 3D vector

vj =


v

(x)
j

v
(y)
j

v
(z)
j

1


can be transformed into its deformed position v′j using the equation:

v′j =
n∑
i=1

wi,jCivj

where wi,j is the skinning weight associating the vertex j with bone i. These weights are adjusted

manually by the artist during the animated character creation process, and by de�nition have the

following properties:
0 ≤ wi,j ≤ 1∑n
i=1 wi,j = 1

with the number of non-zero weights for a particular vertex traditionally limited to 4.

159





B
Least Squares 3D Plane Fit

While simpler and more e�cient approaches exist, a simple way of solving least squares plane �t is

using Singular Value Decomposition (SVD). The SVD implementation is not trivial, however there are

many libraries and packages providing this functionality (i.e., the BLAS library). Moreover, the use

of this algorithm in this thesis is only in the preprocessing, and consequently it is not computationally

critical.

The problem can be summarised as �tting a plane into a set of points:

vi =
[
v(i)
x , v(i)

y , v(i)
z

]
, i = (1..m)

while minimising the square distance of each point to the plane. The plane can be described in three

ways:

� as a point r0 and a normal vector n,

� as a point r0 and two non-parallel vectors s and t, or

� as a normal vector n and a scalar distance c

Each point

r = [rx, ry, rz]

on the plane then must satisfy

n · (r − r0) = n · r + c = 0

or in the parametric representation

r = r0 + as + bt

Even though the only requirement on s and t is that they are not parallel, we will assume in the fol-

lowing description, without loss of generality, that they are perpendicular, creating a 2D orthonormal

basis. This can be enforced by a simple cross-product manipulation of one of these vectors. Using
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B. Least Squares 3D Plane Fit

these terms, we can de�ne the minimisation error function e as:

e (n, c) =
m∑
i=1

(n · vi + c)
2

First, we solve the minimisation for c, thus �nding an extremum of e (c):

e (n, c)

dc
= 0

2
m∑
i=1

(n · vi + c) = 0

m∑
i=1

(
nxv

(i)
x + nyv

(i)
y + nzv

(i)
z + c

)
= 0

nx

m∑
i=1

v(i)
x + ny

m∑
i=1

v(i)
y + nz

m∑
i=1

v(i)
z +mc = 0

c = − (nxv̄x + ny v̄y + nz v̄z)

where

v̄ = [v̄x, v̄y, v̄z]

is the centroid of the data. This signi�es, that the resulting plane includes the centroid of the data,

therefore we can state that in the parametric equation above:

r0 = v̄

and we can convert the input data to a centered version by subtracting the cetroid:

v′i = vi − v̄

Next, we de�ne a matrix A, which contains all the data:

A =


v′1

v′2

...

v′m


By performing the Principal Component Analysis (PCA) on these data, we obtain a set of orthogonal

eigenvectors, with the �rst pointing the direction of highest variance, the second representing the

direction of highest variance after the projection of the data into subspace de�ned by remaining

vectors etc. The PCA can be performed using the SVD algorithm, decomposing the matrix A into

three components:

A = UΣV

where V describes the new orthonormal basis, from which we can derive the vectors of the plane

equation:

V =
[
sT , tT ,nT

]
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By projecting the points into the coordinate system de�ned by V , we can also obtain the coordinates

of the points projected onto the plane in 2D coordinate system de�ned bys and t:

Y = AV

with the 2D coordinates described by �rst two columns of the matrix Y .
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C
2D Least Squares Circle Fit

The input to the 2D least squares circle �tting is a set of 2D points:

vi =
[
v(i)
x , v(i)

y

]
, i = (1..m)

into which we want to �t a circle described using the equation

(x− cx)
2

+ (y − cy)
2

= r2

where [x, y] are the coordinates of points on the circle, c = [cx, cy] are coordinates of the centre and

r is the circle's diameter. To �t a circle into a set of points, we want to minimise the error function

e
(
r2, cx, cy

)
=

(
m∑
i=1

(
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2

)2

which leads to three independent parameters. To determine the extrema of the error function, we �rst

di�erentiate it by r2:

∂e
(
r2, cx, cy

)
∂ (r2)

= 2

m∑
i=1

((
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2

)
(−1)

= −2
m∑
i=1

(
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2

with the extrema present when the �rst derivative is equal to zero:

m∑
i=1

(
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2 = 0
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C. 2D Least Squares Circle Fit

In a similar manner, we can di�erentiate by cx:

∂e
(
r2, cx, cy

)
∂ (cx)

= 2
m∑
i=1

((
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2

)
2
(
v(i)
x − cx

)
(−1)

= −4
m∑
i=1

((
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2

)(
v(i)
x − cx

)
= −4

m∑
i=1

v(i)
x

((
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2

)
+

+4cx

m∑
i=1

(
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2

and merging with the equation for ∂e/∂
(
r2
)
above, we obtain:

∂e
(
r2, cx, cy

)
∂ (cx)

= −4
m∑
i=1

v(i)
x

((
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2

)
+ 4cx

∂e

∂ (r2)

= −4
m∑
i=1

v(i)
x

((
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2

)

Solving for the zero result (extrema):

∂e
(
r2, cx, cy

)
∂ (cx)

= 0

m∑
i=1

v(i)
x

((
v(i)
x − cx

)2

+
(
v(i)
y − cy

)2

− r2

)
= 0

m∑
i=1

v(i)
x

((
v(i)
x

)2

− 2v(i)
x cx + c2x +

(
v(i)
y

)2

− 2v(i)
y cy + c2y − r2

)
= 0

m∑
i=1

(
v(i)
x

)3

− 2cx

m∑
i=1

(
v(i)
x

)2

+ c2x

m∑
i=1

v(i)
x +

+

m∑
i=1

v(i)
x

(
v(i)
y

)2

− 2cy

m∑
i=1

v(i)
x v(i)

y + c2y

m∑
i=1

v(i)
x − r2

m∑
i=1

v(i)
x = 0

To simplify the equation above, we can compute the mean v̄ of all points vi:

v̄ =
1

m

m∑
i=1

vi

and by describing each point vi in relation to this mean:

v′i = vi − v̄
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we can conclude that:

m∑
i=1

v′i =
m∑
i=1

vi −mv̄

=
m∑
i=1

vi −m

(
1

m

m∑
i=1

vi

)
= 0

Describing the c in the same terms:

c′ = c− v̄

the equation above then simpli�es to:

m∑
i=1

(
v(i)
x

)3

− 2cx

m∑
i=1

(
v(i)
x

)2

+ c2x

m∑
i=1

v(i)
x +

+
m∑
i=1

v(i)
x

(
v(i)
y

)2

− 2cy

m∑
i=1

v(i)
x v(i)

y + c2y

m∑
i=1

v(i)
x − r2

m∑
i=1

v(i)
x = 0

m∑
i=1

(
v
′(i)
x

)3

− 2c′x

m∑
i=1

(
v
′(i)
x

)2

+

m∑
i=1

v
′(i)
x

(
v(i)
y

)2

− 2c′y

m∑
i=1

v
′(i)
x v

′(i)
y = 0

therefore:

c′x

m∑
i=1

(
v
′(i)
x

)2

+ c′y

m∑
i=1

v
′(i)
x v

′(i)
y =

1

2

(
m∑
i=1

(
v
′(i)
x

)3

+

m∑
i=1

v
′(i)
x

(
v
′(i)
y

)2
)

Similarly for cy:

c′x

m∑
i=1

v
′(i)
x v

′(i)
y + c′y

m∑
i=1

(
v
′(i)
y

)2

=
1

2

(
m∑
i=1

(
v
′(i)
y

)3

+
m∑
i=1

(
v
′(i)
x

)2

v
′(i)
y

)

Which �nally leads to a linear set of equations, that can be easily solved. From the solution, we can

determine the actual centre coordinates by:

c = c′ + v̄

To solve the radius, we can expand the term for ∂e/∂
(
r2
)
:

m∑
i=1

(
v
′(i)
x − c′x

)2

+
(
v
′(i)
y − c′y

)2

− r2 = 0

m∑
i=1

(
v
′(i)
x

)2

− 2c′x

m∑
i=1

v
′(i)
x +mc

′2
x +

m∑
i=1

(
v
′(i)
y

)2

− 2c′y

m∑
i=1

v
′(i)
y +mc

′2
y −mr2 = 0

m∑
i=1

(
v
′(i)
x

)2

+

m∑
i=1

(
v
′(i)
y

)2

+mc
′2
x +mc

′2
y −mr2 = 0

c
′2
x + c

′2
y +

∑m
i=1

(
v
′(i)
x

)2

+
∑m
i=1

(
v
′(i)
y

)2

m
= r2

167


