
A New Method to Implement

Bayesian Inference on

Stochastic Differential Equation

Models.

A Thesis presented for the degree of

Doctor of Philosophy

School of Computer Science and Statistics

Trinity College Dublin, Ireland

February 2011

Chaitanya Joshi



Declaration

This thesis has not been submitted as an exercise for a degree at any other University.

Except where otherwise stated, the work described herein has been carried out by the

author alone. This thesis may be borrowed or copied upon request with the permission

of the Librarian, University of Dublin, Trinity College. The copyright belongs jointly

to the University of Dublin and Chaitanya Joshi.

Chaitanya Joshi

Trinity College Dublin,

February 2011.

ii



Summary

Stochastic differential equations (SDEs) are widely used to model numerous real-life

phenomena. However, transition densities of most of the SDE models used in practice

are not known, making both likelihood based and Bayesian inference difficult. Methods

for Bayesian inference have mainly relied on MCMC based methods which are com-

putationally expensive. There is a need to develop a computationally efficient method

which will provide accurate inference.

This thesis introduces a new approach to approximate Bayesian inference for SDE

models. This approach is not MCMC based and aims to provide a more efficient

option for Bayesian inference on SDE models. This research problem was motivated

by a civil engineering problem of modeling the force exerted by vehicles on the road

surface as they traverse it.

Proposed here two new methods to implement this approach. These methods have

been named as the Gaussian Modified Bridge Approximation (GaMBA) and its ex-

tension GaMBA- Importance sampling (GaMBA-I). This thesis provides an easy to

use algorithm for both these methods, discusses their consistency properties, describes

examples where these methods provide efficient inference and also illustrates situations

where these methods would not yield efficient and accurate inference.

To illustrate how GaMBA-I could be used to model complex real life processes,

this research attempts to model the dynamic force exerted by the vehicles on the road

surface using SDE models. An SDE model based on one of the existing differential



equation models was used to fit a simulated force data using GaMBA-I. This was con-

sidered as a ’proof of concept’ work to investigate if the SDE modeling of this problem

is feasible.
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Chapter 1

Introduction

This thesis is about Bayesian inference methods for stochastic differential equation

(SDE) models. Specifically, it introduces a new approach to approximate Bayesian

inference for SDE models. This research problem was motivated by a civil engineering

problem of modeling the force exerted by vehicles on the road surface as they traverse.

Although motivated by an application, the methodologies developed in this the-

sis are for the general problem of Bayesian modeling for SDE models. The emphasis

throughout has been in the context of the general statistical inference problem, and

for the most part the application does not even need a mention.

1.1 Motivation

1.1.1 Motivation for the Applied Research

This research was in collaboration with with Prof. Eugene O’Brien of the School of

Architecture Landscape and Civil Engineering at University College Dublin. The main
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motivation of this project was to develop a better model to understand road degrada-

tion. The principal factor for road degradation is the ’road-vehicle interaction’, which

essentially refers to the forces exerted by the vehicles on the road surface as a result of

the excitation caused by the surface.

In the engineering literature, differential equation models based on Newton’s second

law have been used to capture this interaction. However, it is extremely difficult to

correctly capture all the dynamics in these models, and the models which can actu-

ally be used in practice only manage to capture a majority of these dynamics. These

models assume a much simplified system and their solutions (often only the numerical

solutions are possible) are derived using what is known as the ’finite element method’,

which essentially amounts to discretising the continuous space. In addition to these

modeling constraints, the data available is sparce. The force is typically measured by

fitting sensors within the road surface on a specially constructed patch of road. These

sensors are typically placed every 1.5 meters, or so. Thus, the continuous process (of

forces exerted by the vehicles) is only observed at a few discrete time points.

It was therefore thought that modeling this force using an SDE model might actu-

ally help capture the dynamics of the system more succinctly. Such a model could be

built using one of the existing differential equation models.

1.1.2 Motivation for the Statistical Methodology Research

An SDE model can intuitively be understood as an extension of a differential equation

model which incorporates randomness driven by the Weiner process. While the solu-

tion of a differential equation is a deterministic function, the solution of an SDE is a
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continuous stochastic process known as the diffusion process. A diffusion process is a

continuous time Markov process whose behaviour is governed by its transition density.

This density is in turn governed by the values of the parameters in the SDE model.

Statistical interest in the SDE models centres around the inference on these parameters.

SDE based models have become an increasingly popular choice for modeling real life

processes because of their inherent incorporation of uncertainty. Though SDE models

are an attractive modeling choice, closed form solution to many SDEs used in practice

are not known. In fact, except for a few standard SDE models, the transition density

for most others is not known. Statistical inference for SDE models is therefore not

straightforward.

MCMC based methods have been the most widely used tool for Bayesian infer-

ence in the statistical community for about twenty years. These methods have very

attractive mathematical properties and can be applied to many types of models. But

MCMC methods can also be computationally very expensive for complex models and

computational limitations of the time have often constrained the type of model being

used for a particular problem.

Bayesian inference for SDE models has been centered around MCMC based meth-

ods. In fact, due to the mathematical properties of certain diffusion processes, imple-

mentation of MCMC based methods on SDE models is particularly tricky (let it be

called the ’dependency problem’ for now) and time consuming. This ’dependency prob-

lem’, along with the ever increasing computational ability, has meant that Bayesian

inference for SDE models has been a very active area of research for the last ten years.
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Most of this research effort has concentrated around developing MCMC based meth-

ods which get around the ’dependency problem’. As a result, these methods are com-

plicated to implement, computationally expensive and their use constraints the type

of SDE model that can be used in practice. Thus, there is a need to develop compu-

tationally cheaper methods for Bayesian inference on SDE models.

1.2 Research Contributions

Following are the main research contributions of this thesis.

• This thesis explores a new approach to approximate Bayesian inference on SDE

models. This approach is not MCMC based and is inspired from the work of

Rue et al. (2009) on the Integrated Nested Laplace Approximation (INLA) for

Gaussian Markov Random Field (GMRF) models. This thesis introduces two new

methods to implement this approach. These methods have been named as the

Gaussian Modified Bridge Approximation (GaMBA) and its extension GaMBA-

Importance sampling (GaMBA-I). This thesis provides an easy to use algorithm

for both these methods, discusses their consistency properties, describes examples

where these methods provide efficient inference and also illustrates situations

where these methods would not yield efficient and accurate inference.

• GaMBA provides a general framework which can be used for Bayesian infer-

ence on SDE models rather than using MCMC based methods. As the research

progresses, the methodological advances can be incorporated into the GaMBA

framework to make feasible even faster and even more accurate Bayesian infer-

ence for SDE models. Further, since GaMBA is computationally cheaper than the

MCMC based methods, its use has the potential to make possible the inference

4



on several highly complex processes using SDE models.

• This research has attempted to model the dynamic force exerted by the vehicles

on the road surface using SDE models. As far as the author and the collaborators

are aware, this has not been done so far. An SDE model based on one of the

existing differential equation models was used to fit a simulated force data using

GaMBA. This was considered as a ’proof of concept’ work to investigate if the

SDE modeling of this problem is feasible.

1.3 Overview of Chapters

The rest of this thesis is organised as follows.

Chapter 2 This chapter provides the basic overview of the preliminaries required

to proceed to the topic of Bayesian inference on SDE models – the topic of this thesis.

This includes material on SDEs, diffusion processes, numerical methods for SDEs as

well as material on Monte Carlo methods for Bayesian Inference.

Chapter 3 provides a brief overview of the various statistical inference methods

that have been used for SDE models. This includes both the classical likelihood based

methods as well as methods for Bayesian inference. Special emphasis has been given on

the methods specially relevant to this thesis, i.e. Simulated likelihood based methods

using Importance sampling and Bayesian methods.

Chapter 4 is the main chapter of this thesis. It first describes the basic concept

behind GaMBA and then discusses in detail the various issues encountered while im-

plementing this concept in practice also providing an algorithm which can be used to
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implement GaMBA on any one dimensional SDE model. It then introduces GaMBA-I

and discusses its consistency properties. This chapter describes examples where these

methods provide efficient inference and also illustrates situations where these methods

wont be too efficient. Finally, this chapter discusses various practical aspects regarding

the implementation of GaMBA and GaMBA-I including its limitations.

Chapter 5 is regarding the engineering application and illustrates how GaMBA

can be effectively used in a real life modeling problem. It gives an overview of the

existing differential equation models and then proceeds to describe how an SDE model

can instead be built. This SDE model is then fitted using both GaMBA and the basic

MCMC method on a simulated data for dynamic force. The performance of GaMBA

is compared with the MCMC method, both in terms of accuracy and computational

efficiency.

Chapter 6 concludes the thesis and provides a discussion on the possible areas of

further research.
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Chapter 2

Stochastic Differential Equations

& Monte Carlo Methods for

Bayesian Inference

This chapter provides the basic overview of the preliminaries required to proceed to

the topic of Bayesian inference on stochastic differential equation (SDE) models – the

topic of this thesis.

For probability theory, random processes, and stochastic calculus excellent texts in

increasing order of mathematical rigour are: Grimmett and Stirzaker (2001), Koralov

and Sinai (2007), and Dudley (2003). For a complete course on SDE’s and stochastic

calculus, refer to Oksendal (2007). Lacus (2008) provides very accessible introduction

to all aspects of SDE modeling for practitioners; while Kloeden and Platen (1992) pro-

vide an exhaustive account of the numerical methods used for SDE’s, and also provides

a very accessible introduction to probability, random processes, and stochastic calculus.
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For an excellent account of statistical inference and discussion on the strengths

and the possible drawbacks of various approaches to statistical inference, refer to Cox

(2006). Comprehensive texts on Bayesian inference include, among others, Gelman

et al. (2003), Gilks et al. (1996) and Bernardo and Smith (2000). Robert and Casella

(2004) provide a comprehensive account on the Monte Carlo methods in Statistics.

2.1 Stochastic Differential Equations (SDEs)

2.1.1 Why SDE models?

Differential equation models are used to model dynamical systems across a wide range

of areas such as biology, ecology, engineering and economics. Often however, such

differential equation models fail to completely capture the inherent uncertainties asso-

ciated with the system to be modeled. Allowing randomness in some of the coefficients

of a differential equation might result in a more realistic mathematical model. Consider

the following example about a population growth model.

Let N(t) be the size of the population at time t, and a(t) be the relative rate of

growth at time t, then a straightforward differential equation model might be as follows:

dN

dt
= a(t) ·N(t), N(0) = n0 (constant).

It might happen that a(t) is not completely known, but subject to some random

environmental effects, so that

a(t) = r(t) + ”noise”,
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where the exact behaviour of the ”noise” term is not known, but its probability dis-

tribution is known. The function r(t) is assumed to be non-random. The model now

becomes

dN

dt
= (r(t) + ”noise”) ·N(t).

More generally, one might be interested in solving equations of the form

dXt

dt
= f(Xt, t) + g(Xt, t) · ”noise” (2.1)

where f and g are some given functions. The question is, whether it is mathemat-

ically possible to deal with such equations? If yes, then how?

The answer is of course in the affirmative and the resulting equation is called the

stochastic differential equation (SDE). In fact, there are different ways to solve (if the

solution exists) an SDE. The most commonly used approach in mathematical modeling

and statistics is using Itô’s calculus. The solution to a SDE using Itô’s calculus is a

random process; more precisely it is a diffusion process.

The general form of an SDE is given by

dXt = f(Xt, t)dt+ g(Xt, t) · dWt, X0 = x0 (2.2)

where Wt is the Weiner process defined in Section 2.2.1.

The question is how to interpret this equation? That is to say, how to solve this

equation? This question is non-trivial because note that Wt is no-where differentiable.

This is precisely the question that stochastic calculus aims to answer. The different

approaches that can be undertaken for doing this are the Itô’s calculus, its variational
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relative the Malliavin calculus and the Stratonovich integral. The reader is referred to

Oksendal (2007) for a comprehensive introduction to stochastic calculus.

For the purposes of this thesis, the stochastic differential equation (2.2) with some

initial condition x0 is to be conveniently interpreted to mean the integral equation

Xt = x0 +

∫ t

0

f(Xs, s) ds+

∫ t

0

g(Xs, s) dWs (2.3)

where the final integral is defined as an Itô integral.

2.1.2 Existence of the Solution

This subsection states some basic results on the existence of a unique solution to an

SDE. Unless specified otherwise, the following material is based on Lacus (2008), p.

33− 35 and Oksendal (2007), p. 68− 72.

Consider the stochastic differential Equation (2.2). The initial condition can be

random or not. If random, say X0 = Z, it should be independent of the σ-algebra Fm∞
generated by Wt and satisfy the condition E|Z|2 <∞. The two deterministic functions

f(., .) and g(., .) are called respectively the drift and diffusion coeffecients of the SDE,

and it is henceforth assumed that, they are measurable.

As in the ODE case, an SDE may have no solution, or it may have one or more. In

fact, fairly mild conditions on f and g are sufficient to ensure that (2.2) has a unique

solution.

Theorem 1 : Existence and Uniqueness Theorem :- Consider the stochastic

differential Equation (2.2). If the functions f and g satisfy the following conditions:
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Global Lipschitz : For all x, y ∈ < and t ∈ [0, T ], there exists a constant K < ∞

such that

|f(x, t)− f(y, t)|+ |g(x, t)− g(y, t)| < K|x− y|,

Linear Growth : For all x, y ∈ < and t ∈ [0, T ], there exists a constant C <∞ such

that

|f(x, t)|+ |g(x, t)| < C(1 + |x|).

then (2.2) has a unique and continuous strong solution Xt adapted to the σ-algebra

F zt generated by Z and Wt and such that

E

[∫ T

0

|Xt|2dt
]
<∞.

The Lipschitz condition ensures that the solution has continuous paths, and the

linear growth condition controls the behaviour of the solution so that Xt does not ex-

plode to infinity in a finite time.

The result above states that the solution Xt is of strong type. This implies that the

solution is pathwise unique. Xt is strong because the version Wt of the Wiener process

is given in advance, and the solution Xt constructed from it is F zt adapted.

Instead, if the Wiener process version is not assumed to be known then the solu-

tion Xt is called a weak solution. If there are two weak solutions X1 and X2, then

they may not necessarily be pathwise identical, however their distributions would be.

Thus, weak solutions are often enough from a statistical inference point of view. Of

course strong solutions are also weak solutions, but the contrary is not necessarily true.

Sometimes, the global Lipschitz condition of Theorem 6 can be too restrictive (Ku-

toyants (2004), p.25) and can be weakened using a Local Lipschitz condition
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Local Lipschitz : For any M > 0 and all x, y ∈ < such that |x| < M , |y| < M , and

t ∈ [0, T ], there exists a constant KM <∞ such that

|f(x, t)− f(y, t)|+ |g(x, t)− g(y, t)| < KM |x− y|.

Then there exists a unique solution {Xt} of Equation (2.2) under the local Lipschitz

condition (Friedman (1975), p.104).

If the SDEs of interest are (time) homogeneous SDE’s of the form

dXt = f(Xt)dt+ g(Xt)dWt. (2.4)

then, the weak solutions exist under fairly mild conditions as stated below.

Theorem 2 : Existence of weak solution :- (see for e.g. Durett (1996), p. 210

or Kutoyants (2004), p. 25) For time homogeneous SDEs such as Equation (2.4). Let

f be locally bounded, and g be continuous and positive. For some A, if the functions

f and g satisfy the following condition:

xf(x) + g2(x) ≤ A(1 + x2)

for any x ∈ <, then (2.4) has a unique weak solution.

Finally, it can be shown that the solution of an SDE (if it exists) is a continuous

Markov process (Friedman (1975), p.109).

2.1.3 Itô’s formula & Lamperti Transform

Unlike ordinary calculus, it is not possible in stochastic calculus to switch at will

between the two approaches of differential equations and integration. In stochastic
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calculus, the useful range of techniques is practically restricted to those that deal with

integral equations. Of these, an important technique is what is known as Itô’s formula,

which can be seen as a stochastic chain rule and is given by the following theorem

(Grimmett and Stirzaker (2001), pg. 545).

Theorem 3 :Itô’s formula :- If X is a diffusion process satisfying the SDE

of Equation (2.7) and Yt = h(Xt, t), where h is twice continuously differentiable on

[0,∞)×< then Y is also a diffusion process given by

dYt = [hx(Xt, t)f(Xt, t) + ht(Xt, t) +
1

2
hxx(Xt, t)g

2(Xt, t)]dt+ hx(Xt, t)g(Xt, t)dWt

(2.5)

where hx(Xt, t) and ht(Xt, t) denote the derivatives of h w.r.t. its first and second

arguments respectively and evaluated at (Xt, t), whereas hxx(Xt, t) denotes the second

derivative of h w.r.t. X.

There is one particular application of Itô’s formula that is of interest in statistical

estimation problems and is often used (see for e.g. Roberts and Stramer (2001),Ait-

Sahalia (2002),Lacus (2008)). Suppose we have the stochastic differential equation

dXt = f(Xt, t) dt+ g(Xt, t) dWt,

with a non-constant diffusion coefficient. Such an SDE can be transformed into one

with unitary diffusion coefficient by applying the Lamperti transform,

Yt = h(Xt) =

∫ Xt

z

1

g(u, t)
du. (2.6)

Here z is any arbitrary value in the state space of X. Indeed the process solves the

SDE

dYt = b(Yt, t)dt+ dWt,
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where

b(y, t) =
f(h−1(y), t)

g(h−1(y), t)
− 1

2
gx(h

−1(y), t),

where gx = dg(.)/dx.

To obtain this result, one should use the Itô’s formula with

h(x, t) =

∫ Xt

z

1

g(u, t)
du, ht(x, t) = 0, hx(x, t) =

1

g(x, t)
, hxx(x, t) = −gx(x, t)

g2(x, t)
.

2.2 Diffusion Processes

A particle is said to be diffusing about a space <n whenever it experiences erratic

and disordered motion through the space; for example, one may speak of radioactive

particles diffusing through the atmosphere, or even a rumour diffusing through a pop-

ulation. Random processes which try to model such phenomena are called diffusion

processes. They are continuous both in state space (Ω = <n) as well as the index set

(T = <d). A diffusion process can be defined as follows (Stirzaker (2005), pg. 224):

Definition : A random process X = {Xt : t ≥ 0} is called a diffusion process, if it

is a continuous (a.s) Markov process satisfying

P (|Xt+h −Xt| > ε|Xt = x) = o(h) for all ε > 0, (2.7)

E(Xt+h −Xt|Xt = x) = a(Xt, t)h+ o(h), (2.8)

E([Xt+h −Xt]
2|Xt = x) = b2(Xt, t)h+ o(h). (2.9)

The functions a and b are called the ’instantaneous mean’ (or ’drift’) and ’instanta-

neous variance’ (or ’diffusion’) of X respectively.
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If dXt is used as a convenient shorthand to denote the small increment in Xt over

a small interval dt, then using the properties (2.7) to (2.9) above dXt can be expressed

as

dXt = a(Xt, t) dt+ b(Xt, t) dWt (2.10)

where Wt is the Weiner process defined in the next subsection. Equation (2.10) is in

fact the general form of an SDE. Thus, another way to look at diffusion processes, and

the one that will be adhered to in this thesis is as a solution to a stochastic differential

equation using Itô’s calculus. Ornstein-Uhlenbeck process, geometric Brownian motion

process, etc are some such examples of diffusion processes. Such processes are used to

model phenomena in a wide range of areas such as economics, biology and engineering.

2.2.1 Weiner Process

The Wiener process is the archetypal diffusion process and is in fact the process incor-

porated in all SDE’s. Its development was motivated by the need to model the erratic

random motion of tiny particles observed by the Scottish botonish Robert Brown in

1827; therefore it is also commonly referred to as the Brownian Motion . It is de-

fined as follows (Grimmett and Stirzaker (2001), pg. 516):

Definition : A Wiener process W = {Wt : t ≥ 0}, starting from W0 = w, say, is a

real valued Gaussian process such that:

(a) W has independent increments;

(b) Ws+t−Ws is distributed as N(0, σ2t) for all s, t ≥ 0 where σ2 is a positive constant;

(c) the sample paths of W are (Hölder) continuous.
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The process W is called a standard Wiener process if σ2 = 1 and W0 = 0. If W is

non-standard then Ŵt = (Wt −W0)/σ is standard.

Clearly (a) and (b) specify the fdds of the Wiener process which is Gaussian. An

immediate implication of (b) is that the Wiener process has stationary increments,

since the distribution of Ws+t −Ws depends on t alone.

The autocovariance function of W is given by :

c(s, t) = E([Ws −W0][Wt −W0])

= E([Ws −W0]2 + [Ws −W0][Wt −Ws])

= σ2s+ 0 if 0 ≤ s ≤ t,

which is to say that,

c(s, t) = σ2min(s, t) for all s, t ≥ 0. (2.11)

There are two types of statements to be made about random processes. The first

deals with sample path properties, and the second with distributional properties. While

(a) and (b) in the definition specify the fdds of the Wiener process; some of the path

properties are immediately clear as well. For example, Equation (2.11) implies that

E([Ws+t −Ws]
2)→ 0 as t→ 0;

i.e. W is continuous in mean squared.

Following is the list of important properties of the Wiener process:

• it is a Markov process;

• it is a Gaussian process;
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• it has stationary and independent increments;

• its sample paths are (Hölder) continuous almost everywhere;

• but they are differentiable (a.s) nowhere.

2.2.2 Ornstein-Uhlenbeck (OU) Process

This process is popular generalisation of the Wiener process model and is given by

dXt = (θ1 − θ2Xt) dt+ θ3 dWt, X0 = x0, (2.12)

with θ3 ∈ <+, and θ1, θ2 ∈ <. With θ1 = 0, the OU process first originated in

Physics (Uhlenbeck and Ornstein (1930)), where it was founded on the assumption

that the velocity of the particle (rather than its position) undergoes a random walk

and that the motion of the particle is damped by the frictional resistance of the fluid.

Vasicek (1977) later used the OU process to model evolution of interest rates.

The transition density of the OU process pt(Xt|X0 = x0); i.e. the density of the

distribution of Xt given X0 = x0, is Gaussian with mean and variance respectively

(Lacus (2008), pg. 45)

µt(x) =
θ1

θ2

+

(
x0 −

θ1

θ2

)
e−θ2 t

and,

σ2
t (x) =

θ2
3(1− e−2θ2 t)

2 θ2

.

The OU process has several interesting properties. Contrary to the Wiener process,

it is a process with finite variance for all t ≥ 0. Also, OU process is ergodic and its

invariant law is Gaussian with mean θ1/θ2 and variance θ2
3/2θ2. For θ2 > 0, the process

is mean reverting, meaning that the process tends to oscillate around some equilibrium
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state. In fact θ2 governs the rate at which the process reverts back to it’s mean.

2.2.3 Diffusion Bridge

Although diffusion processes are continuous time processes, while modeling a real life

phenomemenon, they might often be observed only at discrete time points. Thus, it

is often of considerable interest to determine the distribution of the path taken by a

diffusion process between the two observed time points. Such a diffusion process con-

ditioned on the values taken by the process at two distinct time points is called a ’tied

down diffusion process’ or a ’diffusion bridge’.

Definition : Let X = {Xt} be a diffusion process such that Xt1 = a and Xt2 = b

for t1 < t2. Then the diffusion bridge Y = {Yt} is a random process which has the

same distribution as {Xt|Xt1 = a,Xt2 = b; t1 ≤ t ≤ t2}. In a short-hand notation, such

a bridge is often referred to as a (t1, a, t2, b) bridge (Bladt and Sorensen (2010)).

The diffusion bridge corresponding to the Wiener process is called a Brownian

bridge and its fdds are Gaussian as given by the following theorem (Oksendal (2007)).

Theorem 4 : Let B = {Bt : t1 ≤ t ≤ t2} be a process with continuous sample

paths and the same fdds as the Wiener process W = {Wt : t1 ≤ t ≤ t2} conditioned

on Wt1 = a and Wt2 = b. The process B is a diffusion process which solves the SDE:

dBt =
(b−Bt)

(t2 − t)
dt+ dWt, B0 = a.

It turns out that Bt has a Gaussian transition density and with instantaneous mean
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µt and variance σ2
t given by:

µt = a+
(t− t1)

(t2 − t1)
(b− a) for t1 ≤ t ≤ t2,

σ2
t =

(t− t1)(t2 − t)
(t2 − t1)

for t1 ≤ t ≤ t2.

Note that µt is just the linear interpolation between a and b, and the variance

σ2
t → 0 as t ↓ t1 or t ↑ t2.

It is also possible to derive a closed form expression for an OU-bridge (diffusion

bridge corresponding to the OU process) when θ1 = 0. It can be shown (Bladt and

Sorensen (2010)) that the (0, a, 1, b) OU-bridge Xt is a solution to the SDE:

dXt =
θ2 (Xt − 2(Xt − b e−θ2(1−t)))

(1− e−2θ2(1−t))
dt+ θ3 dWt, X0 = a.

In general, there are some results available (e.g. Bladt and Sorensen (2010), Lyons

and Zheng (1990)) to obtain SDEs for diffusion bridges corresponding to general diffu-

sion processes. Consider a diffusion corresponding to a general SDE in Equation (2.2).

Then as stated in Delyon and Ying (2006), the distribution of a discretised (t1, a, t2, b)

diffusion bridge corresponding to this SDE is same as that of another diffusion Yt

satisfying

dYt = f̃(Yt, t) dt+ g(Yt, t) dWt, Y0 = a, t1 ≤ t ≤ t2,

where

f̃(Xt, t) = f(Xt, t) + [gg′](Xt, t)∆x(log p(t,Xt, t2, b)),

and p(t,Xt, t2, b) is the transition density of Xt. In practice, however, theses results

are often of limited use since they require the transition density of the original diffu-

sion to be known in closed form. Therefore apart from a few exceptions such as the
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Wiener process, or the OU process, it is not possible in general to derive closed form

expressions for diffusion bridges.

For this reason, simulating diffusion bridges (exact or approximate) is an important

problem of the statistical inference on SDE models.

2.3 Numerical Methods for SDEs

An exact closed form solution is often not known for many SDEs used in practice. For

such SDEs, approximate solutions can be simulated using numerical methods which are

usually based on the time discrete approximations of the continuous solution. Thus,

to simulate a solution over the time interval [T0, T ], the time interval is divided into

N parts such that T0 = t0 < t1 < · · · < tN−1 < tN = T . For the sake of simplicity, it

is assumed here that the time points t0, t1, · · · , tN are equally spaced with an interval

δ = ti − ti−1, for i = 1, · · · , N between any two consecutive time points. Figure 2.1

illustrates this time discretisation. However,it is important to note that this condition

is not necessary, and these methods could be defined for a more general time discreti-

sation (see Kloeden and Platen (1992)).

Approximation provided by a method could be assessed at two levels: strong con-

vergence and weak convergence. The strong convergence criterion is useful when the

purpose of the simulation is to approximate the true path as closely as possible. On

the other hand, when the objective is to approximate the distributional properties of

the true diffusion, the weak convergence criterion is more appropriate. Thus, for the

purposes of this thesis, the weak convergence criterion is of primary interest. The rate
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Figure 2.1: Time discritisation for numerical methods.

at which a method converges to the true process is determined by its order of conver-

gence. Methods of approximation of some order that strongly converge, usually have a

higher order of weak convergence. The reader is referred to Kloeden and Platen (1992)

for a detailed exposition on this topic.

Definition : A time discrete approximation Xδ of a continuous process X, with

the time increment δ of the discretisation, is said to be of general strong order of

convergence γ to X, if for any fixed time horizon T it holds true that

E|Xδ(T )−X(T )| ≤ Cδγ, ∀δ < δ0, (2.13)

with δ0 > 0 and C a constant not depending on δ.

Definition : A time discrete approximation Xδ is said to converge weakly of order

β to X, if for any fixed time horizon T and any 2(β + 1) continuous differentiable

function g of polynomial growth, it holds true that

|E(g(X(T ))− E(g(Xδ(T )))| ≤ Cδβ, ∀δ < δ0, (2.14)

with δ0 > 0 and C a constant not depending on the time increment of the discretisation

δ.
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Two widely used numerical methods will be defined in this section. Consider the

SDE (2.2) with initial condition XT0 = X0, and a discretisation of the time interval

[T0, T ] as shown in Figure 2.1.

2.3.1 The Euler approximation

One of the simples time discrete approximations of a diffusion process is the Euler

approximation or the Euler-Maruyama approximation as it is sometimes called. It can

also be interpreted as a strong Taylor approximation of order 0.5 (Kloeden and Platen

(1992)).

The Euler approximation of Equation (2.2) is a continuous stochastic process Y =

{Yt, T0 ≤ t < T} with Y0 = X0, and satisfying the following iterative scheme

Yi+1 = Yi + f(Yi, ti)δ + g(Yi, ti)(Wi+1 −Wi), (2.15)

for i = 1, · · · , N − 1, where Wt denotes the Weiner process and where the notation

Yi = Yti , Wi = Wti has been used.

Under the assumption that the criteria for existence of a solution as described

in Theorem 1, Section 2.1.2 are satisfied, Euler approximation is strongly convergent

with order γ = 1/2 (see Theorem 10.2.2 in Kloeden and Platen (1992)). Under an

additional assumption that the coefficients f and g are four times continuously differ-

entiable, Euler approximation is weakly convergent with order β = 1. Further, with

milder assumptions on f and g a weak convergence of order β < 1 can be achieved (see

Chapter 14 of Kloeden and Platen (1992)).
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Euler method is preferred by many statistical inference methods because its transi-

tion density is Gaussian which is easier to analyse and evaluate. This transition density

is given by

P (Yi+1|Yi,Θ) = N(µeu, σ
2
eu), j = 0, 1, ..., (m− 2) (2.16)

where

µeu = Yi + f(Yi, ti) · δ

σeu = g(Yi, ti) · δ1/2.

2.3.2 The Milstein approximation

Usually the Euler scheme gives good numerical results when the drift and diffusion co-

efficients are nearly constant (over the concerned time interval). In general, however, it

may not be particularly satisfactory, and thus the use of higher order approximations is

recommended (see Kloeden and Platen (1992), pg. 342). The Milstein approximation

is one such method. It can also be interpreted as a strong Taylor approximation of

order 1.

This method uses Itô’s lemma to increase the accuracy of the approximation by

adding the second-order term. Let gx denote the partial derivative of g(Xt, t) with re-

spect to x. Then the Milstein approximation of Equation (2.2) is a continuous stochas-

tic process Y = {Yt, T0 ≤ t < T} with Y0 = X0, and satisfying the following iterative

scheme

Yi+1 = Yi + f(Yi, ti)δ + g(Yi, ti)(Wi+1 −Wi) +
1

2
g(Yi, ti)gx(Yi, ti){(Wi+1 −Wi)

2 − δ},

(2.17)
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for i = 1, · · · , N − 1, where Wt denotes the Weiner process. Simplified notation of

Yti = Yi and Wti = Wi has been used.

Under the assumption that the criteria for existence of a solution as described in

Theorem 1, Section 2.1.2 are satisfied, and additional continuity assumptions on coef-

ficients f and g, Milstein scheme is strongly convergent with order γ = 1 (see Theorem

10.6.3 in Kloeden and Platen (1992)). Further, under the added continuity conditions

on f and g, it is also weakly convergent with order β = 1 (see Chapter 14 of Kloeden

and Platen (1992)).

2.3.3 Effect of step size δ

By definition, the accuracy of both the pathwise approximation as well as the weak

approximation depends firstly on the rate parameter and secondly on the step size δ.

For a given method, the rate parameter is usually known and constant (for e.g. Euler’s

method has γ = 0.5 and β = 1). However the practitioner can control the accuracy of

the approximation by changing the step size δ.

For Euler’s method, Equations (2.13) and (2.14) imply that while the pathwise ap-

proximation E|Xδ(T )−X(T )| has an upper bound of o(δ0.5), the weak approximation

|E(g(X(T ))−E(g(Xδ(T )))| has an upper bound of o(δ). Thus, both these approxima-

tions get better as δ becomes smaller. Refer to Kloeden and Platen (1992) for detailed

illustrations on the effect of δ over the quality of the approximations.

This property has an important consequence for statistical inference. As will be

discussed in Chapters 3 and 4, an approach in statistical inference involves imputing
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latent variables simulated using Euler’s approximation. For this inference to be ac-

curate it is imperative that the step size is small enough. Though this increases the

computational demand of the inference method, it also imparts the desirable asymp-

totic consistency properties to the method.

2.4 Monte Carlo Methods for Approximating Pos-

terior Distributions

Bayesian inference involves computing probabilities and expectations. For continuous

probability distributions, this implies evaluating integrals. Although, exact analytical

evaluation of such integrals would be preferred, often they are non-standard or analyti-

cally intractable. When analytical evaluation is impossible, numerical integration is an

option. However, Bayesian model specifications can often produce high-dimensional in-

tegrals for which numerical methods become computationally involved. This is because

the number of function evaluations required to achieve a certain degree of approxima-

tion increases exponentially in the dimension of the problem. Therefore, it is important

to consider other methods for evaluating integrals which do not suffer so directly from

the increase in the dimensionality of the problem. Monte Carlo methods are a class of

such methods.

The term Monte Carlo methods refers to a general class of computational methods

that rely on repeated random sampling to compute their results. In statistics, these

methods are used to approximate analytically intractable, high dimensional integrals

which need to be evaluated to obtain probabilities, moments, etc. Their implementa-

tion typically involves two steps. First step involves sampling a large number of draws
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from the desired probability distributions. The second step involves approximating the

integral required to obtain the necessary inference.

This section provides a brief overview of the Monte Carlo methods relevant to this

thesis. They are - Monte Carlo integration, Importance sampling and Markov Chain

Monte Carlo (MCMC) methods.

2.4.1 Monte Carlo Integration

Monte Carlo integration is a Monte Carlo method for obtaining integration based

summaries. Suppose X is a random variable with probability density p(X). Then

Monte Carlo integration can be used to estimate the the following integral

J(X) =

∫
h(X)p(X) dX = Ep[h(X)] (2.18)

as

Ĵ(X) =
1

N

N∑
i=1

h(Xi) (2.19)

where X1, X2, · · · , Xn
i.i.d∼ p(X). Then by the Strong Law of Large Numbers

Ĵ(X)
a.s→ J(X) as N →∞

Further, when h2 has a finite expectation under p, the speed of convergence of Ĵ

can be assessed (see Robert and Casella (2004), Section 3.2) since the variance

V[Ĵ(X)] =
1

N

∫
(h(X)− Ep[h(X)])2p(X) dX

can also be estimated using X1, X2, · · · , Xn through

V̂[Ĵ(x)] =
1

N2

N∑
i=1

[h(xi)− Ĵ(x)]2. (2.20)
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This is a very useful property in practice, since it provides the rate at which the

variance of the Monte Carlo estimate decreases as the sample size N increases. Further,

unlike numerical approximation methods this rate does not depend on the dimension-

ality of X.

Because the Monte Carlo integration is a direct consequence of the Strong Law

of Large Numbers, it requires the samples to be independent. However, in practice

it might still provide a good approximation when the samples are not strictly inde-

pendent. Further, the strong law of large numbers is available for stationary Markov

chains (see Roberts and Rosenthal (2004)). Thus, the Monte Carlo integration method

works for both the direct simulation methods (which generate independent samples)

as well as the Markov chain Monte Carlo methods (which generate correlated samples).

Monte Carlo integration has many uses in Bayesian inference since many integrals

of interest can be approximated by expectations e.g. it appears when evaluating predic-

tive density for a new observation, marginalizing out parameters, obtaining posterior

moments, etc.

2.4.2 Importance Sampling

When implementing Monte Carlo integration, samples are drawn directly from the dis-

tribution of interest p(·). However, in certain situations (see Robert and Casella (2004),

Section 3.3), it may be more appropriate to sample from a different distribution – of-

ten called the importance sampling density (see Geweke (1989)) – instead and then to

modify the representation of the integral as an expectation with respect to this density.
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The method of importance sampling involves representing Equation 2.18 as

J(X) =

∫
h(X)

p(X)

q(X)
q(X) dX = Ep[h(X)], (2.21)

where q(X) is the importance sampling density and then estimating J(X) as

Ĵ(X) =
1

N

N∑
i=1

h(Xi)
p(Xi)

q(Xi)
(2.22)

where X1, X2, · · · , Xn
i.i.d∼ q(X). Geweke (1989) has shown that as long as the sup-

port of q(·) contains the support of p(·), then Ĵ(X)
a.s→ J(X) as N →∞ irrespective of

the choice of q(·). Importance sampling is therefore a very appealing method (Robert

and Casella (2004), Section 3.3) as it puts very little restriction on the importance

sampling density and it can be chosen as the density which is easier to sample. In

practice, however, a well chosen importance density can make the estimation more

efficient and Geweke (1989) provides come guidelines in this regard.

Importance sampling gives more weights to regions where p(X) > q(X) and down-

weighs regions where p(X) < q(X). Thus, if q(·) is chosen so as to have the same

mode as p(·) but with a larger variance, then more samples will be drawn from the

high density region of p(·). This can be a desirable property.

If the probability measure corresponding to the importance density is absolutely

continuous with respect to the probability measure of interest, then importance sam-

pling can be implemented using the change of measure formula (Radon Nikodym deriva-

tive).

Let X = X(ω) be measurable on probability space (Ω,F , P ). Let Q(ω) be a

probability measure absolutely continuous with respect to P (ω) and let P̃ = dP/dQ
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be the Radon-Nikodym derivative of P (·) with respect to Q(·). Then, Equation (2.21)

can be expressed as a Lebesgue integral

J(X) =

∫
h(X(ω)) dP (ω) =

∫
h(X(ω))

dP

dQ
dQ(ω)

= EQ

[
h(X(ω))P̃ (ω)

]
, (2.23)

which can be approximated using importance sampling as

Ĵ(X) =
1

N

N∑
i=1

h(X(ωi))P̃ (ωi) (2.24)

where, ω1, · · · , ωN ∼ Q(·).

2.4.2.1 Girsanov’s Theorem

Girsanov’s theorem is a change of measure theorem for stochastic processes (Lacus

(2008)). Because it provides an analytical expression for the change of measure, it is

useful in statistical inference on stochastic processes and is often used in inference on

SDE models (see Prakasa Rao (1999), Kutoyants (2004)). The theorem stated below

is from Lacus (2008), pg. 41.

Consider three SDEs:

dXt = b1(Xt) dt+ σ(Xt) dWt, X1
0 , 0 ≤ t ≤ T,

dXt = b2(Xt) dt+ σ(Xt) dWt, X2
0 , 0 ≤ t ≤ T,

dXt = σ(Xt) dWt, X0, 0 ≤ t ≤ T,

and let P1, P2 and P denote the three probability measures induced by the solutions

of these three SDEs respectively.
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Girsanov’s theorem: Assume that the coefficients of each of the above SDEs

satisfy conditions for existence of a weak solution mentioned in Section 2.1.2. Assume

further that the initial values are either random variables with densities f1(·), f2(·) and

f(·) with the same common support or non-random and equal to the same constant.

Then the three measures P1, P2 and P are all equivalent and the corresponding Radon-

Nikodym derivatives are

dP1

dP
(X) =

f1(X0)

f(X0)
exp

{∫ T

0

b1(Xs)

σ2(Xs)
dXs −

1

2

∫ T

0

b2
1(Xs)

σ2(Xs)
ds

}
, (2.25)

and

dP2

dP1

(X) =
f2(X0)

f1(X0)
exp

{∫ T

0

b2(Xs)− b1(Xs)

σ2(Xs)
dXs −

1

2

∫ T

0

b2
2(Xs)− b2

1(Xs)

σ2(Xs)
ds

}
.

(2.26)

When importance sampling is to be used for inference on SDE models, Girsanov’s

theorem can be used to evaluate the Radon-Nikodym derivative if the probability mea-

sure corresponding to the importance density is absolutely continuous with respect to

the probability measure of the diffusion process.

2.4.3 Markov Chain Monte Carlo (MCMC) Methods

The Monte Carlo integration and importance sampling methods discussed above illus-

trate how Monte Carlo methods could be used to approximate the integrals, but these

methods rely on the samples having been already drawn from the desired distribution.

Even though direct sampling methods such as rejection sampling and the inverse trans-

form method etc. draw samples exactly from the desired distribution, these methods

break down as the dimensionality of the distribution increases. In such cases approxi-

mate sampling methods such as MCMC can be used.
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MCMC methods are an elegant way of sampling from high-dimensional distributions

and thus approximating high-dimensional integrals. They are based on the premise (see

Cappé et al. (2005)) that simulating an i.i.d sequence X1, X2, · · · , Xn with common

probability distribution π is not the only way of approximating π in the sense of be-

ing able to approximate the expectation of a π integrable function. In particular, one

may consider an ergodic Markovian sequence {Xi} with π as its stationary distribution

instead. An MCMC method for the simulation of a distribution π can be defined as

(see Robert and Casella (2004)) any method producing an ergodic Markov chain {Xi}

whose stationary distribution is π.

Implementing these methods typically involves running several Markov chains for a

large number of transitions until each of them can be considered to have reached sta-

tionarity. It is important to note that the samples drawn using these methods typically

represent realisations of a set of identically distributed, correlated random variables.

Based on the mechanism used to generate the Markov chains, these methods can be

classified into two main types: the Gibbs sampling and the Metropolis-Hastings (MH)

algorithm.

2.4.3.1 Gibbs Sampling

It is the simplest MCMC method to implement and originated in statistical physics

where it was known as the heat bath algorithm. It relies on the assumption that each

of the full-conditional distributions f(θi|θ−i) is a distribution from which samples can

be easily drawn. Its steps can be summarised as follows:

Step I : Initialise θ0
2, · · · , θ0

n.
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Step II : for r = 1 to R

• sample θr1 from f(θ1|θr−1
2 , · · · , θr−1

n ),

• sample θr2 from f(θ2|θr1, θr−1
3 , · · · , θr−1

n ),

...

• sample θrn from f(θn|θr1, · · · , θrn−1).

Step III : Repeat Step II for a large (R) number of times, until the stationary

distribution is reached for every θi.

Step IV : Continue sampling using Step II, the samples can now be considered to be

draws from their respective stationary distributions, as desired.

Gibbs sampling is often the first choice when the full conditionals are available in

closed form. It is not straightforward to use Gibbs sampling if this is not the case.

However, in certain cases it is possible to get around this problem, for e.g. when the

full conditional distributions are univariate log concave or nearly log concave, methods

such as ARS and ARMS (see Gilks et al. (1994)) can be used to implement Gibbs

sampling. A drawback of Gibbs sampling is that when θi’s are highly correlated, the

convergence can be excruciatingly slow. This is because high-correlation implies that

new samples drawn from the full conditionals render values very close to the previous

samples and thus the chains move very slowly. In such cases, the model needs to be

suitably reparameterised before Gibbs sampling can be used. See Robert and Casella

(2004) for some suitable reparameterisations.

2.4.3.2 Metropolis-Hastings (MH) Algorithm

MH algorithm is a generalization by Hastings (1970) to the Markov chain method first

proposed by Metropolis et al. (1953). The idea is to sample from the joint distribution
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f(θ1, θ2, · · · , θn) instead of the full conditionals. Let Θ = (θ1, θ2, · · · , θn), and the tar-

get distribution π(Θ) = f(θ1, θ2, · · · , θn). This method can be implemented whenever

it is possible to evaluate π(Θ∗)/π(Θ), normalising constants need not be known. The

basic idea is as follows.

Given that the Markov chain is in state Θr, the algorithm draws a proposal state

Θ∗ from a proposal distribution q(·|Θr). The proposal state is then accepted with

probability:

α(Θr,Θ∗) = min

(
1,
π(Θ∗) q(Θr|Θ∗)
π(Θr) q(Θ∗|Θr)

)
.

If the proposal state is not accepted then the chain remains in the same state. The tran-

sition probabilities of this Markov chain can be written as PΘr,Θ∗ = α(Θr,Θ∗)·q(Θ∗|Θr).

The MH algorithm steps can be summarised as follows:

Step I : Initialise Θ0.

Step II : for r = 1 to R

• Given the chain is in state Θr, generate a proposed value Θ∗ by sampling

from q(Θ∗|Θr),

• Compute the acceptance probability α(Θr,Θ∗),

• Accept Θ∗ with probability α(Θr,Θ∗), in which case Θr+1 = Θ∗, else Θr+1 =

Θr.

Step III : Repeat Step II for a large (R) number of times, untill a stationary distri-

bution is reached for every θi.

Step IV : Continue sampling using Step II, the samples can now be considered to be

draws from their respective stationary distributions, as desired.
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The originally proposed algorithm by Metropolis et al. (1953), known as the Metropo-

lis algorithm is a special case where the proposal distribution is symmetric i.e. q(Θr|Θ∗) =

q(Θ∗|Θr), so the acceptance probability reduces to

α(Θr,Θ∗) = min

(
1,
π(Θ∗)

π(Θr)

)
.

The Gibbs sampler can also be considered as a special case of the MH algorithm where

the proposal distribution is such that the proposed value is always accepted with prob-

ability 1, i.e. α(Θr,Θ∗) = 1, always.

A widely used example of the proposal density is the random walk in which case

q(Θr|Θ∗) = q(|Θr −Θ∗|) and in this case, the MH algorithm is often referred to as the

Random walk Metropolis-Hastings (RWMH).

The choice of the proposal generating distribution and its parameters is important

because its relationship to the target density dictates the rate of convergence. Rel-

atively small proposal moves can result in high acceptance rates (the percentage of

moves accepted), long time to convergence and poor mixing i.e. the full support of

the target distribution will not be properly explored and low probability areas will be

under-sampled. Conversely, when the proposal moves are large in relation to the spread

of the target density, the proposed states will have low acceptance rate and the chain

will take long to converge. Many families of proposal distributions have been defined.

More discussion of this issue can be found in Gilks et al. (1996), Gelman et al. (2003),

and Chib and Greenberg (1995).

2.4.3.3 Metropolis within Gibbs Algorithm

Though MH algorithm is widely applicable and easy to understand, sampling from

n dimensional distribution can often be computationally very expensive. It might be
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the case though, that for some of these n parameters the full conditional distributions

are available in closed form. Such parameters can be sampled using a Gibbs sampling

step while for the rest of the parameters can be jointly sampled using the MH algorithm.

Even when full conditionals are not available for any of the parameters, each of

the parameters can be individually sampled as in Gibbs sampling, by replacing Step II

of Gibbs sampling algorithm with Step II of the MH algorithm. This modification is

referred to as Metropolis within Gibbs algorithm.

A common situation where Metropolis within Gibbs algorithm is used is in the

models where data has been augmented. Data augmentation involves introducing latent

variables into the model and is often used to facilitate approximation of the likelihood

(in situations where it is not known in closed form) but also in order to facilitate

sampling and improve mixing. Suppose that the target distribution

P (Θ|X) ∝ P (Θ)P (X|Θ)

is computationally difficult, or intractable, but the data X can be augmented with a

latent variable Z so that:

P (Θ,Z|X) ∝ P (Θ)P (X,Z|Θ)

where the new likelihood P (X,Z|Θ) is now tractable, as also are P (Θ|X,Z), P (Z|Θ,X)

.

The advantage of data augmentation is that even when P (Θ,Z|X) is difficult, Gibbs

sampling, or Metropolis withing Gibbs sampling can be used to alternatively sample

from P (Θ|X,Z) and P (Z|Θ,X). It will be illustrated in Chapter 4, that data augmen-

tation is very commonly used in the MCMC methods for Bayesian inference on the

SDE models.
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2.4.3.4 Theoretical insight into MCMC Convergence

The MCMC methods briefly described above are of course very attractive and have

been extensively used to obtain Bayesian inference. Several questions emerge though,

such as : why do MCMC methods work? Is it possible to mathematically prove that

the Markov chains generated by these methods indeed converge to the intended sta-

tionary distribution? If they do, then is it possible to quantify the rate of convergence?

Finding answers to such questions has been an active area of research and an excellent

review of the work done can be found in Roberts and Rosenthal (2004).

Markov chains generated by the MCMC methods are discrete time, but typically

with continuous state space Ξ. MCMC methods are designed so that the stationary

distribution exists. However, as Roberts and Rosenthal (2004) point out, a Markov

chain with a stationary distribution may not converge to it, if the chain is reducible.

Further, a Markov chain also needs to be aperiodic and Harris recurrent for the ergodic

theorem (essential for the convergence of Monte Carlo integration for Markov chains)

to hold (Robert and Casella (2004)). As Tierney (1996) and Roberts and Rosenthal

(2004) point out both the MH algorithm and the Gibbs sampler satisfy the condi-

tions of φ-irreducibility, aperiodicity, and Harris-recurrence and so their convergence

to a stationary distribution is thus mathematically established. In fact because of

Harris-recurrence, the convergence is guaranteed from any starting point in the state

space. Convergence of MCMC methods in general should not be taken for granted,

as Roberts and Rosenthal (2006) point out the conditions under which the Metropolis

within Gibbs algorithm is not Harris recurrent and therefore the convergence is not

guaranteed when the chain is started from a φ-null set in Ξ.

Though, the conditions for mathematical convergence have been established for
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many MCMC algorithms, the rate at which they do so can not yet be quantified in

all the cases. Roberts and Rosenthal (2004) review some of the results that have been

obtained in this regard, but also point out that more results are needed and also that

the results obtained so far can not often be useful in practice.

From the point of view of implementing MCMC methods in practice some results

regarding the optimal acceptance rate for MH algorithms are available. An optimal

acceptance rate is the one which ensures fastest convergence to the stationary distribu-

tion by the MCMC algorithm (though, in practice, one can never be completely sure

that the stationarity has been achieved). This is nonetheless of practical significance,

because the acceptance rate can be easily monitored using a computer and can be con-

trolled by the the practitioner, for example, by changing the variance of the proposal

distribution. Roberts et al. (1997) and Roberts and Rosenthal (2001) proved that un-

der certain assumptions the optimal acceptance rate for RWMH algorithm was 0.234.

Further Roberts and Rosenthal (2004) argue that even when these assumptions are

not strictly met, this optimal rate can still provide a good approximation to the true

optimal rate. More recently, Neal and Roberts (2006) have proved that this optimal

rate of 0.234 also holds for Metropolis within Gibbs algorithms.

2.4.3.5 Convergence Diagnostics for MCMC

The results mentioned in the previous section are important as mathematical proofs of

the validity of the MCMC methods, however, they provide little guidance to a practi-

tioner on when to stop running an MCMC algorithm and produce results.

For MCMC methods to produce accurate inference it is imperative that the algo-
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rithm has explored the state space well (Robert and Casella (2004)). In practice, for

a MH based method, this can be monitored by controlling the acceptance rate. An

acceptance rate closer to 1 might indicate that the chain is exploring the space in very

small steps which means that the chain will take much longer to explore the entire

space. On the other hand an acceptance rate closer to 0 could indicate that the chain

is taking very large steps and therefore getting stuck in a particular state for too long.

The optimal rate mentioned above, can act as a guidance to achieving the acceptance

rate at which the chain will efficiently explore the state space. However, achieving a

near optimal acceptance rate does not mean that the chain has converged, and various

diagnostic tools have been proposed to access the convergence.

The trace plots of the Markov chains are often examined, they are a visual tool for

evaluating how well the chain has mixed. Further, as noted in the previous section, the

starting point of the chain plays an important role in determinining its convergence,

specially when the chain is not Harris recurrent. For such chains, the convergence can

be tricky to determine as the chain that appears to have converged might be stuck in

a region of the parameter space determined by the starting point of the chain. This

can also happen when models are over-parameterized or have multi-modal posterior

densities. It is therefore advisable to run the chain from different starting points as

suggested by Gelman and Rubin (1992).

The concept of mixing is a qualitative one and it is therefore natural to assess it

with visual tools, although quantitative diagnostics have been developed, for example

the Gelman-Rubin statistic Gelman and Rubin (1992). Non-parametric tests, such as

for example the Kolomogrov-Smrionov test can also be used to assess convergence. It

is important to note, that many such tests have been developed to be used on i.i.d
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samples, and Robert and Casella (2004) suggest ways in which these tests can be used

to assess convergence of Markov chains.

Comparative reviews of MCMC diagnostics can be found in Cowles and Carlin

(1996), and Robert and Casella (2004) for example, among numerous available texts.

However, as Roberts and Rosenthal (2004) point out none of the diagnostic techniques

provide any rigorous guarantees, and can also introduce bias in resulting estimates by,

at times, prematurely claiming convergence. Therefore these techniques should not be

over-relied upon.

2.4.3.6 Parallel Processing of MCMC algorithms

Due to their Markovian nature, MCMC algorithms are not straightforward to paral-

lelise and therefore still remain computationally expensive to implement. Nevertheless,

the easy availability of multi-core processors has generated much interest in developing

ways to parallel-process MCMC algorithms to save computational effort. Some meth-

ods have already been proposed - for example see Brockwell (2006), and Jacob et al.

(2010). At present however, applicability of such methods is still limited. The author

is not aware of the use of such methods on SDE models.
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Chapter 3

Statistical Inference on Stochastic

Differential Equations

This chapter aims to provide a brief overview of the various statistical inference meth-

ods that have been used for stochastic differential equation (SDE) models.

Consider the SDE

dYt = f(Yt, t,Θ) dt+ g(Yt, t,Θ) dWt, Y0 = y0, t ≥ 0, (3.1)

where W is an r-dimensional Wiener process, Θ ∈ Ξ ⊂ <d is an unknown param-

eter, f(·, ·,Θ) : <p × [0,∞) 7−→ <p and g(·, ·,Θ) : <p × [0,∞) 7−→Mp×r (Mp×r being

the set of p× r matrices).

It is henceforth assumed that a weak solution to Equation (3.1) exists. In particular,

it is assumed that the f(·) and g(·) satisfy the following:

A 1 : For any R > 0 and all x, y ∈ <p such that |x| < R, |y| < R, and t ∈ [0, T ],
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there exists a constant KR <∞ such that

|f(x, t)− f(y, t)|+ |g(x, t)− g(y, t)| < KR|x− y|,

A 2 : For all x, y ∈ <p and t ∈ [0, T ], there exists a constant C <∞ such that

|f(x, t)|+ |g(x, t)| < C(1 + |x|).

Additional assumptions, wherever required would be specified in the following dis-

cussion.

3.1 Inference on Continuously Observed Diffusions

Diffusion processes are continuous time processes. In principle, a diffusion process

could be observed as continuous paths or only at discrete time points. Statistical in-

ference procedures based on these two types of data are quite different. The focus of

this thesis is only on the discretely observed case – which is also the one most often

encountered in practice. The rest of this chapter will mainly review statistical inference

methods concerned with discretely observed diffusion processes. However, for the sake

of completion, some basic results from the continuous case are briefly mentioned below.

First note that if Y was observed continuously from time 0 until time T , then in

principle, at least, the quadratic variation of the process completely determines (rather

than estimates) the diffusion coefficient, since it is well known (for e.g Sorensen (2004)

,Oksendal (2007)) that for any t ∈ [0, T ],

n∑
i=1

[YiT2−n − Y(i−1)T2−n ]2
a.s→
∫ T

0

g2(Yt, t,Θ) dt as n →∞. (3.2)

If it is now assumed that Equation 3.1 also satisfies the following assumption:
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A 3 : g(·) is independent of Θ and is a constant,

then, under the assumption A 3, g can be determined using the sample path as

(Prakasa Rao (1999),Polson and Roberts (1994)):

1

T

n∑
i=1

[yiT2−n − y(i−1)T2−n ]2
a.s→ g2 as n →∞.

Once the diffusion coefficient g(Yt, t) is completely known (or is determined), the

likelihood function for Θ based on the continuous observations Y in the time interval

[0, T ] is given by (for e.g. Sorensen (2004), Pedersen (1995b), Lacus (2008))

lT =

∫ T

0

f(Ys, s,Θ)′(g(Ys, s)g(Ys, s)
′)−1 dYs −

1

2

∫ T

0

f(Ys, s,Θ)′(g(Ys, s)g(Ys, s)
′)−1f(Ys, s,Θ) ds

(3.3)

Note that, Equation 3.3 is just the Radon-Nikodym derivative (Equation 2.25) obtained

using Grisanov’s theorem.

Consider the following two assumptions:

A 4 : SDE is time homogeneous, i.e. f(Yt, t,Θ) = f(Yt,Θ) and g(Yt, t,Θ) = g(Yt,Θ)

for ∀ t ≥ 0,

A 5 : the functions f and g satisfy the following condition:

yf(y) + g2(y) ≤ A(1 + y2)

for any y ∈ < and some A > 0.

If the SDE in equation 3.1 satisfies these assumptions in addition to A 1 and A 2

and also the sufficient conditions for recurrence (see Kutoyants (2004), p. 40) then it

has ergodic properties with the invariant density given by
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πΘ(y) =
1

M(Θ)g2(y,Θ)
exp{2

∫ y

y0

f(x,Θ)

g2(x,Θ)
dx, } (3.4)

where M(Θ) is the normalising constant.

The reader is referred to Prakasa Rao (1999) for a detailed review of the methods

for statistical inference on continuously observed diffusion processes.

As mentioned earlier, the main interest of this thesis is on the methods for discretely

observed diffusions. These methods are now classified and reviewed.

3.2 Likelihood Based Methods

In most applications, the data are observed only at discrete time points 0 = t0 < t1 <

· · · < tn. Let Y = {y0, y1, · · · , yn} be the corresponding observations. For the sake of

notational convenience, it is also assumed that these time points are equally spaced; ∆

being the time difference between each of them, although most of the methods work

equally well when this is not the case.

If the transition densities p(s, x, t, y,Θ) of Yt are known, then the log-likelihood

function

ln(Θ) =
n∑
i=1

log(p(ti−1, yi−1, ti, yi,Θ)) (3.5)

can be used for estimation of Θ. Sufficient conditions for the maximum likelihood

estimator (MLE) thus obtained to be consistent and asymptotically normal have been

given (see for e.g. Prakasa Rao (1999), Kutoyants (2004)). For the few SDE models,

such as for e.g. the O-U, GBM, and CIR models, for which an exact likelihood is
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known, numerical methods are often used for maximising the log-likelihod (see Lacus

(2008) for details).

However, for many SDEs used in practice, their transition densities are not known

in the closed form and therefore Equation 3.5 can not be used. Several different ap-

proaches have been used to get around this problem. Various statistical inference

methods thus developed can be classified on the basis of the approach they follow.

Approximated Likelihood Methods try to provide an approximation to the true tran-

sition density. The Estimating Functions approach consists of constructing a function

of Y and Θ which imitates the score function and then to approximate the MLE using

this function. One of the prominent non-likelihood based approach is the Method of

Moments approach. Finally, a wide variety of methods have also been proposed to

carry out Bayesian Inference.

The remainder of this chapter provides an overview of these various approaches.

The method developed as part of this thesis is a method to carry out Bayesian in-

ference, but it also has strong links to the importance sampling methods proposed to

carry out the approximated likelihood methods. Therefore Bayesian methods and the

importance sampling method are reviewed in more detail than the rest.

3.3 Approximated Likelihood Methods

These methods try to approximate the true transition density using a known density.

Two such methods have been reviewed in this section.
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3.3.1 Simulated Likelihood Methods

The simulated likelihood method was independently proposed by Pedersen (1995b)

and Santa-Clara (1995) – see also Brandt and Santa-Clara (2002). The basic idea is

to approximate the true (unknown) transition density p(s, xs, t, xt,Θ) by a sequence of

transition densities p(M)(s, xs, t, xt,Θ) of the Euler’s approximation that converge to

p(s, xs, t, xt,Θ) as M →∞ and then to define the approximate log-likelihood functions

l(M)
n (Θ) =

n∑
i=1

log(p(M)(ti−1, yi−1, ti, yi,Θ)). (3.6)

For M = 1, the density of the Euler approximation p(1)(s, xs, t, xt,Θ) is not an ac-

curate approximation of p(s, xs, t, xt,Θ), unless ∆ = (t− s) is sufficiently small. When

∆ is too large, the idea is to consider a smaller δ << ∆, for example, δ = ∆/M for

M large enough. This is done by imputing M − 1 latent variables X1, · · · , XM−1 and

simulating x1, · · · , xM−1 using Euler’s scheme with x0 = x, and xM = y corresponding

to time points τ1, · · · , τM−1 with τ0 = s and τM = t. Figure 1 illustrates the data

impuation.

p(M)(s, xs, t, xt,Θ) is then given by

p(M)(s, xs, t, xt,Θ) =

∫
<p(M−1)

M∏
j=1

p(1)(τj−1, xj−1, τj, xj,Θ) dx1 · · · dxM−1 (3.7)

where the one-step transition density of the Euler approximation p(1)(τj−1, xj−1, τj, xj,Θ)

is given by

p(1)(τj−1, xj−1, τj, xj,Θ) = N
(
xj−1 + f(xj−1, τj−1,Θ) · δ , g2(xj−1, τj−1,Θ) · δ

)
. (3.8)
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Figure 3.1: Imputing latent variables.

Using the Markovian property of the Euler approximation and the Chapman-Kolmogorov

equations, Equation (3.7) can be interpreted as (see Pedersen (1995b), Theorem 1)

p(M)(s, xs, t, xt,Θ) = ExM−1
[p(1)(τM−1, xM−1, t, xt,Θ)] (3.9)

In practice, Monte-Carlo integration is used to approximate the integral. Thus,

starting from Ys = x, M trajectories of the process Y are simulated using the Euler’s

method and then p(M)(s, xs, t, xt,Θ) is approximated using

p(M)(s, xs, t, xt,Θ) ≈=
1

K

K∑
k=1

p(1)(τM−1, x
(k)
M−1, t, xt,Θ). (3.10)

Strong Law of Large number implies that this Monte-Carlo approximation can be

made arbitrarily accurate by using a large enough M .

Let a(t, x,Θ) = g(t, x,Θ) · g(t, x,Θ)
′

denote the covariance structure for the mul-

tivariate diffusion. Then, Pedersen (1995b) proves the following results which provide

the sufficient conditions under which the approximation l
(M)
n (Θ) becomes asymptoti-

cally exact.
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Theorem 1 : In addition to A 1 and A 2 assume that for all Θ ∈ Ξ that:

A 6 : (i) : (t, x) 7−→ f(t, x,Θ) is continuous.

(ii) : a(t, x,Θ) = a(Θ) is positive definite.

Then p(s, xs, t, xt,Θ) exists, and for all 0 ≤ s < t, x ∈ <p and Θ ∈ Ξ

p(M)(s, xs, t, ·,Θ)→ p(s, xs, t, ·,Θ)

in L1 as M →∞.

The above theorem assumes a(t, x,Θ) to be independent of t and x. Pedersen

(1995b) shows that it is possible to prove the above convergence by letting a(·) depend

on x, if the SDE is assumed to be time-homogeneous as stated in the following result.

Theorem 2 : Assume that for all Θ ∈ Ξ that:

A 7 : (i) : f and g are time homogeneous, i.e. f(t, x,Θ) = f(x,Θ), and g(t, x,Θ) =

g(x,Θ).

(ii) : f(x,Θ) and g(x,Θ) are bounded with bounded derivatives of any order.

(iii) : a(x,Θ) is strongly positive definite, that is there exists an ε(Θ) > 0 such

that a(x,Θ)− ε(Θ) Ip is a non-negative definite for all x ∈ <p.

Then p(s, xs, t, xt,Θ) exists, and for all t ≥ 0, xs, xt ∈ <p and Θ ∈ Ξ

p(M)(s, xs, t, ·,Θ)→ p(s, xs, t, ·,Θ)

in L1 as M →∞. Furthermore,

p(s, xs, t, xt,Θ) = lim
M

inf p(M)(s, xs, t, xt,Θ)

for almost all y ∈ <d, and so if p(M)(s, xs, t, ·,Θ) converges pointwise, then it

converges to p(s, xs, t, ·,Θ).
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Pedersen (1995b) further states that though the assumptions in Theorem 2 are very

restrictive, it should be possible to replace the boundedness condition on f and g by

conditions such as A 1 and A 2, and also that only few derivatives of f(·,Θ) and g(·,Θ)

are really needed for the proof.

Once the asymptotic convergence of p(M) to p is thus established, the main justifi-

cation for using l
(M)
n (Θ) as a substitute for ln(Θ) for large values of M is given by the

following result:

Theorem 3 : If p(M)(s, xs, t, ·,Θ) → p(s, xs, t, ·,Θ) in L1 as M → ∞ for all

0 ≤ s < t, xs ∈ <p and Θ ∈ Ξ, then l
(M)
n (Θ)

P→ ln(Θ) as M → ∞, for all Θ ∈ Ξ and

n ∈M.

Thus, for a large class of multi-variate SDEs which satisfy the regularity conditions

of either Theorem 1 or Theorem 2, the true likelihood function can be approximated

arbitrarily closely for a large enough M and K using the simulated likelihood method.

Further, Pedersen (1995a) proves that the maximum likelihood estimator thus obtained

is consistent and asymptotically normal without requiring any assumption on the dis-

tance between the discrete observation time-points.

To implement this method in practice, l
(M)
n (Θ) needs to be calculated at a finite

number of points Θ ∈ Ξ. This can be done using some numerical optimization method,

for example, Newton’s method. Pedersen (1995b) suggests finding the initial values of

Θ for a numerical maximisation by maximising l
(M)
1 (Θ). It is then possible to compute

both the Hessian as well as the gradient explicitly and thus employ a numerical op-

timization method. While doing so, it is advisable to use the same random numbers
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εt in the Euler discretisation to simulate sample paths for each value of Θ explored.

Brandt and Santa-Clara (2002) provide details for this implementation.

Though this approach has very appealing theoretical properties, as Lacus (2008)

points out, in practice, it can be computationally very expensive because for each pair

of observations, K trajectories of length M are needed. Usually, a large number of

simulations K are needed, and M may vary from 5 to 10 for reasonable estimates. If

this approximation has to be used as a function of the parameters Θ in order to get the

maximum likelihood estimates of the parameters, this task may require a very large

amount of time.

3.3.1.1 Using Importance Sampling

Durham and Gallant (2002) illustrated that most of the paths simulated using the Euler

method method conditional on Ys = xs miss the next observed point Yt = xt, render-

ing this method computationally inefficient. They proposed two different approaches

to improve the efficiency for one dimensional SDE models. The first approach is to

use bias reduction techniques which basically involve choosing a better approximation

to the transition density than the one offered by Euler’s approximation. The second

approach aims to reduce the variance by using the Importance Sampling method to

obtain more efficient Monte-Carlo estimates of Equation (3.9). The importance sam-

pling approach is described in detail below.

Consider the approximation in Equation (3.9). Often, a very large number K of

sample paths need to be simulated in order to get an accurate approximation rendering

it numerically inefficient. One way to improve the numerical efficiency is by using the

49



Importance sampling method. Let q(x1, · · · , xM−1) denote the proposal density to be

used for the importance sampling. Let {xk = (xk,1, · · · , xk,M−1), k = 1, · · · , K} be

independent draws from q. Then Equation (7) can be approximated as

p(M,K)(s, x, t, y,Θ) =
1

K

K∑
k=1

∏M
j=1 p

(1)(τj−1, xk,j−1, τj, xk,j,Θ)

q(xk,1, · · · , xk,M−1)
, (3.11)

where xk,0 = x and xk,M = y for all k. Let (X1, · · · , XM−1) be a random vector

with density q. Consider the following assumption:

A 8 :

E

[∏M
j=1 p

(1)(τj−1, Xj−1, τj, Xj,Θ)

q(X1, · · · , XM−1)

]
<∞.

Then under assumption A 8, P (M,K) a.s→ P (M) as K →∞, using the Strong Law of

Large Numbers, as long as the support of q(·) contains the support of p(·).

Durham and Gallant (2002) propose three different proposal densities that could

be used in the importance sampling set-up for efficient approximation of the likelihood.

The first sampler is based on the Brownian bridge. The second sampler is a modifica-

tion of the first sampler and is called the Modified Brownian bridge (MBB) sampler.

The final sampler is the one proposed by Elerian et al. (2001).

Brownian Bridge Sampler : The Brownian bridge sampler for the SDE of Equa-

tion (3.1) conditioned on Ys = xs and Yt = xt for any 0 ≤ s < t is given by the Euler

discretisation of the following SDE:

dỸτ = f̃(Ỹτ , τ,Θ) dτ + g(Ỹτ , τ,Θ) dWτ , Ỹs = xs, Ỹs = xs 0 ≤ s ≤ τ ≤ t, (3.12)
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where, the drift is given by

f̃(xτ , τ,Θ) =
xt − xτ
t− τ

.

Again, using the Markov property of the Euler’s approximation, the proposal den-

sity is given by

q(x1, · · · , xM−1) =
M∏
j=1

q(1)(τj−1, xj−1, τj, xj,Θ), (3.13)

with x0 = xs and xM = xt and where q(1)(τj−1, xj−1, τj, xj,Θ) is the density of the

one-step Euler’s discretisation of Equation (3.12) given by

q(1)(τj−1, xj−1, τj, xj,Θ) = N
(
xj−1 + f̃(xj−1, τj−1,Θ) · δ , g2(xj−1, τj−1,Θ) · δ

)
.

(3.14)

Thus, p(M,K) of Equation (3.11) can now be evaluated where q(x1, · · · , xM−1) is now

given by Equation (3.13).

Note that, Equation (3.12) is a true Brownian bridge (recall Theorem 4 in Chapter

2) only if g(·) is unity, and that one way to achieve this is by transforming the SDE.

Further, Durham and Gallant (2002) point out that because the Brownian bridge sam-

pler has the same diffusion coefficient as the original SDE, they are locally equivalent.

Therefore, the Radon-Nikodym derivative of the two measures can be obtained in closed

form using Girsanov’s theorem. Thus, p(M,K) can also be computed in this case, by

using the Euler discretisation of this derivative process and they provide the details of

this implementation.

Modified Brownian Bridge (MBB) Sampler : The MBB sampler is also a

discretised Gaussian density which is derived as follows. Consider the distribution of

Xj conditional on Xj−1 = xj−1 and XM = xt. This can be expressed as

51



P (Xj|xj−1, xt,Θ) =
P (xt|Xj,Θ) · P (Xj|xj−1,Θ)

P (xt|xj−1,Θ)
. (3.15)

P (Xj|xj−1,Θ) can be approximated using the Euler’s density as

P (Xj|xj−1,Θ) ≈ N
(
xj−1 + f(xj−1, τj−1,Θ) · δ , g2(xj−1, τj−1,Θ) · δ

)
. (3.16)

Similarly, considering the time lag of (M−j+1) ·δ, P (xt|xj−1,Θ) can be approximated

using Euler’s density as

P (xt|xj−1,Θ) ≈ N
(
xj−1 + f(xj−1, τj−1,Θ) · (M − j + 1) · δ , g2(xj−1, τj−1,Θ) · (M − j + 1) · δ

)
.

(3.17)

Finally, P (xt|Xj,Θ) is approximated using an ’Euler like’ (but not Euler) approxima-

tion

P (xt|Xj,Θ) ≈ N
(
Xj + f(xj−1, τj−1,Θ) · (M − j) · δ , g2(xj−1, τj−1,Θ) · (M − j) · δ

)
.

(3.18)

Then, it is possible to construct the approximate joint density of Xj and xt (con-

ditional upon xj−1) using the multivariate Normal conditioning results (Golightly and

Wilkinson (2007)) which yield

P (Xj, xt|Xj−1) ≈ N (µ,Σ) , (3.19)

where

µ =

(
xj−1 + f(xj−1, τj−1,Θ) · δ

xj−1 + f(xj−1, τj−1,Θ) · (M − j + 1) · δ

)
and

Σ =

(
g2(xj−1, τj−1,Θ) · δ g(xj−1, τj−1,Θ) ·

√
δ

g(xj−1, τj−1,Θ) ·
√
δ g2(xj−1, τj−1,Θ) · (M − j + 1) · δ

)
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Now, by conditioning Equation (3.19) on xt, P (Xj|xj−1, xt,Θ) can approximated

as

P (Xj|xj−1, xt,Θ) ≈ N

(
xj−1 + f̃(xj−1, τj−1,Θ) · δ , g2(xj−1, τj−1,Θ) · (M − j)

(M − j + 1)
δ

)
,

(3.20)

where f̃ is the same drift as mentioned in Equation (3.12). Again, using the Markov

property of the Euler’s approximation, the proposal density is given by

q(x1, · · · , xM−1) =
M∏
j=1

q(1)(τj−1, xj−1, τj, xj,Θ), (3.21)

with x0 = xs and xM = xt and where

q(1)(τj−1, xj−1, τj, xj,Θ) = N

(
xj−1 + f̃(xj−1, τj−1,Θ) · δ , g2(xj−1, τj−1,Θ) · (M − j)

(M − j + 1)
δ

)
of Equation (3.20).

Thus, p(M,K) of Equation (3.11) can now be evaluated where q(x1, · · · , xM−1) is now

given by Equation (3.21).

Note that, the MBB sampler is identical to the Brownian bridge sampler except

for the term (M−j)
(M−j+1)

in the diffusion coefficient. However, Durham and Gallant (2002)

argues that this difference makes MBB a more efficient sampler than the Brownian

bridge sampler. They point out that because of this extra term, for j = M , the vari-

ance of the MBB sampler is zero, making sure that the samples drawn using MBB will

never miss the observed data point xt. It is for this reason that, by using the MBB as

the proposal density the simulated likelihood method can be implemented with greater

computation efficiency using importance sampling.

The third importance sampler proposed by Durham and Gallant (2002) is the one

proposed by Elerian et al. (2001). It is also a discretised Gaussian density. The idea is
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to approximate the target density by a multivariate Gaussian density with mean and

variance based on a second-order Taylor expansion of the log target density around its

mode. The key feature of this sampler is that it draws paths in one shot, rather than

recursively. Please refer to Elerian et al. (2001) for details.

Finally, it is important to note that for the importance sampling methods to signif-

icantly improve efficiency, it is required that the tails of the proposal distribution are

not too thin. Also, as mentioned in Section 2.4.2, it is also required that the support of

the importance density contains the support of the target density. See Geweke (1989)

and Robert and Casella (2004) for details. Also, note that, it might be possible to im-

prove the accuracy of the simulated likelihood method by using the transition density

corresponding to higher order numerical methods such as , for example the Milstein

scheme; see for Durham and Gallant (2002) for details.

3.3.2 Hermite Polynomials expansion of the likelihood

Although, the simulated likelihood method described above is widely applicable and

easy to implement, it can be computationally expensive and does not provide a closed

form analytical approximation to the true transition density. Ait-Sahalia (2002) pro-

posed a method to approximate the transition density of a one dimensional diffusion

process using closed form analytical approximations obtained by constructing a con-

vergent series of Hermite polynomials.

Consider an one dimensional SDE of the same form as Equation (3.1). In addition

to assumption A 7, following assumption is needed.
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A 9 : f(x,Θ) and g(x,Θ) are three times continuously differentiable in Θ for all x ∈ <

and for all Θ ∈ Ξ.

The first step in implementing this method is to transform the diffusion process Xt

into a process Yt with a constant diffusion term using the Lamperti transform

Yt = h(Xt,Θ) =

∫ Yt

z

1

g(u,Θ)
du. (3.22)

Using, Itô’s formula, it can be seen that the process Yt solves the SDE

dYt = b(Yt,Θ)dt+ dWt, Y0 = y0

where

b(y,Θ) =
f(h−1(y),Θ)

g(h−1(y),Θ)
− 1

2
gx(h

−1(y),Θ),

where gx = dg(.)/dx.

This transformed process, needs to satisfy the following assumption:

A 10 : For all Θ ∈ Ξ, f(y,Θ) and its derivatives with respect to y and Θ have at

most polynomial growth near the boundaries and satisfies the specific boundary

conditions mentioned in assumption 2 of Ait-Sahalia (2002).

The next step is then to transform the process Yt into a process Zt, which for a

fixed ∆ is given as follows:

Z = ∆−1/2(Y − y0).

Ait-Sahalia (2002) shows that for a fixed ∆, Z defined above happens to be close

enough to a N(0, 1) variable to make it possible to create a convergent series of expan-

sions for its density pZ around a N(0, 1).
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Let PY (∆, y|y0,Θ) denote the conditional density of Yt+∆|Yt, and define the density

function of Z as

pZ(∆, z|y0,Θ) = ∆1/2pY (∆,∆1/2z + y0|y0,Θ). (3.23)

The density pZ can now be approximated using a Hermite series expansion as

follows. The classical Hermite polynomials can be expressed as a series

Hj(z) = ez
2/2 d

j

dzj
[e−z

2/2], j ≥ 0. (3.24)

Let φ(z) = e−z
2/2/ 2π denote the N(0, 1) density function. Then define

pJZ(∆, z|y0,Θ) = φ(z)
J∑
j=0

ηjz(∆, y0,Θ)Hj(z) (3.25)

as the Hermite expansion of the density function pZ for fixed ∆, y0, and Θ, and where

the coefficients ηjz are given by

ηjz(∆, y0,Θ)Hj(z) =
1

j!

∫ ∞
−∞

Hj(z)pZ(∆, z|y0,Θ) dz. (3.26)

Therefore, the sequence of approximations to PY is given by

pJY (∆, y|y0,Θ) = ∆−1/2 pJZ(∆,∆−1/2(y − y0).|y0,Θ) (3.27)

Finally, pY can be approximated using

pJY (∆, x|x0,Θ) = g(x,Θ)−1pJY (∆, h(x,Θ)|h(x0,Θ),Θ) (3.28)

Then, Ait-Sahalia (2002) proves that the following theorem holds.

Theorem 4 : Under assumptions A 7, A 9 and A 10, for every Θ ∈ Ξ and ∆ ∈

(0, ∆̄), (see Ait-Sahalia (2002) for definition of ∆̄ and other details):
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pJY (∆, x|x0,Θ)→ pY (∆, x|x0,Θ)

as j →∞. In addition, the convergence is uniform in Θ over Ξ.

Ait-Sahalia (2002) also study the properties of the sequence of the MLE’s obtained

using pJZ and provide conditions under which it converges to the true MLE. Further, he

also provides details on how to implement this method in practice and show empirically

that, often in practice, accurate approximations can be obtained by using very small

number (J = 2 or 3) of polynomials.

Though this method can provide very accurate inferences, however, implementing

this method for multivariate SDE’s may not often be possible because of the transfor-

mation of (3.21). Also, as Lacus (2008) points out, implementing this method can also

become computationally expensive for many models.

3.4 Estimating Functions

When the true transition density (and hence the likelihood) of the diffusion process

are explicitly known in closed form, the score function

Sn(Y,Θ) =
∂

∂θ
ln(Θ) =

n∑
i=1

∂

∂θ
log(p(ti−1, yi−1, ti, yiΘ))

can be used (by solving for Sn(Y,Θ) = 0 for Θ) to find the MLE. For most SDE

models, however, the likelihood is not available in closed form and so also is the score

function. The idea behind the estimating functions approach is to build a function

fn(Y,Θ) which, as Sorensen (2004) puts it, ’tries to mimic’ the score function Sn, so
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that the MLE can be approximated by solving fn(Y,Θ) = 0 for Θ.

In order for the corresponding estimator to have the desirable asymptotic properties,

it is crucial that the estimating function is unbiased and is able to distinguish the true

parameter value from other values of Θ:

EΘ0 [fn(Y,Θ)] = 0 if and only if Θ = Θ0. (3.29)

For a detailed review on estimating functions, please refer to Heyde (1997). Several

different estimating functions have been proposed, two important classes of estimating

functions are briefly reviewed below.

3.4.1 Martingale Estimating Functions

Martingale estimating functions are a popular class of estimating functions and their

general form can be expressed as (Lacus (2008)):

fn(Y,Θ) =
n∑
i=1

f(Yi−1, Yi,Θ),

such that the function fn satisfies the Martingale property:

EΘ[fn(Y,Θ)|Gn−1] = fn−1(Y,Θ),

with respect to the discrete-time filtration Gn.

As Sorensen (2004) points out, there are at least two good reasons for looking at

estimating functions that are martingales. Firstly, the score function is a martingale,

and secondly, theory for Martingales can be used to prove the asymptotic behaviour

of the estimators thus generated. Sorensen (1999) proves the asymptotic properties of
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the such estimators.

Nevertheless, evaluating Martingale estimating functions in practice usually in-

volves some integral of the transition density. These integrals are usually unknown

and some numerical procedure must be used in practice. Martingale estimating func-

tions therefore have the drawback of being time consuming (Kessler (2000)).

3.4.2 Simple Estimating Functions

Kessler (2000) proposed a different class of estimating functions, which do not involve

numerical evaluation of intergrals in practice and are therefore faster and easier to

implement than the Martingale estimating functions. These functions are known as

simple estimating functions.

A Simple estimating function can be defined as (see Sorensen (2004),Kessler (2000)

for e.g.) as an estimating function of the form

fn(Y,Θ) =
n∑
i=1

f(Yi−1,Θ),

where the function f takes only one state variable as argument, and satisfies the as-

sumption
∫
f(x,Θ) dπ(Θ) = 0, where π(Θ) is the invariant distribution of the ergodic

diffusion process Y .

For such estimating functions, the crucial condition (3.29) simplifies to

EΘ0 [f(x0,Θ)] = 0 if and only if Θ = Θ0.

As Kessler (2000) points out, in addition to the computational advantage, simple

estimating functions also have an advantage that they can be generated simply by
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choosing f = LΘ h, where LΘ is the infinitesimal generator of the ergodic diffusion

process given by

LΘ h(x,Θ) = f(x,Θ)hx(x,Θ) +
1

2
g2(x,Θ)hxx(x,Θ)

where h(x,Θ) is twice continuously differentiable function (w.r.t Y ) and hx and hxx

denote, respectively, its first and second derivatives. See Lacus (2008) for details re-

garding the implementation of this method.

However, Sorensen (2004) points out that simple estimating functions can not be

used on diffusion processes which are not ergodic, or for which the data has not yet

reached stationarity.

Many different kinds of estimating functions have been proposed, for example, es-

timating functions based on polynomials, or based on eigenfunctions, etc. Not all of

them are either Martingales or simple. For a detailed review on estimating functions

refer to Prakasa Rao (1999) and Lacus (2008).

3.5 Other Approaches

Several different approaches have been proposed to obtain inference on diffusion process

parameters using discretely observed data that have not been reviewed here. Princi-

pally among them are: approximating the true transition density by numerically solving

the Kolmogorov forward equations of the diffusion process, methods of indirect infer-

ence which try to approximate the inference by using an auxiliary model, and the

generalised method of moments which is a generalisation of the method of moments

that is based on matching of theoretical moments and sample moments. Finally, note

60



that there are also several methods proposed for the non-parametric inference.

The reader is referred to Prakasa Rao (1999), Lacus (2008) and Sorensen (2004) for

a detailed review of these methods.

3.6 Bayesian Inference

The common theme underlying many of the methods developed thus far to obtain

Bayesian inference on discretely observed diffusions is to interpret the inference prob-

lem as that of a hidden Markov model where the unobserved Markov process forms the

set of latent variables. Most of these methods are Monte-Carlo based methods which

rely on drawing large number of samples of both the latent variables as well as the dif-

fusion process parameters. Many of these methods sample only the discretised paths of

the unobserved diffusion, whereas some others can sample the continuous paths. A lot

of research has focused on two main aspects: (i) developing Monte-Carlo algorithms

which get around the problem of dependency between the latent variables and the

diffusion parameters, and (ii) developing more efficient and more accurate proposals

for the latent variables which in turn results in more accurate and efficient inference

on the diffusion process parameters. This section provides a quick overview of some of

the important methods developed thus far.

The inference set-up used by Bayesian methods based on time discretisation is

very similar to the set-up used by the simulated likelihood methods described in sec-

tion 3.3.1. The diffusion process is observed at time points t0, t1, · · · , tn and Y =

{y0, y1, · · · , yn} denote these observations. M−1 latent variables are imputed between

every pair of consecutive observations. These latent variables are simulated using some
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simulation mechanism (for e.g. the Euler’s method). This is typically achieved by par-

titioning each interval [ti, ti+1] into M equal parts as ti = τ0i
< τ1i

< · · · < τMi
= ti+1,

such that τ(j+1)i
− τji = δτ is small enough for the simulation mechanism to be rea-

sonably accurate. This is illustrated in Figure 3.2. Equal spacing is not necessary

but has been used only to make the notation easier. Let X(i) = X1i
, X2i

, . . . , X(M−1)i

denote the latent variables corresponding to times τ1i
, τ2i

< · · · < τ(M−1)i
, between the

observations yi and yi+1 for i = 0, 1, · · · , n− 1.

3.6.1 MCMC based methods

One of the earliest MCMC based methods was proposed by Elerian et al. (2001) and

consists of the following the following Metropolis within Gibbs updating scheme.

Metropolis within Gibbs scheme of Elerian et al. (2001) :

Step 1: Initialise X = {X(0), · · · ,X(n−1)} and Θ.

Step 2: Update X(i) from P (X(i)|yi, yi+1,Θ) for i = 0, · · · , n− 1.

Step 3: Update Θ from P (Θ|X,Y).

Step 4: Repeat steps 2 and 3 until the chains satisfy a convergence criteria.

Elerian et al. (2001) proposed the use of Euler’s method for simulating the latent

variables X in Step 2 and argued that since the paths simulated using the Euler’s

method converge weakly to the true diffusion, by using a large M , the inference ob-

tained using this MCMC method would become more and more accurate. The proposal

density for X was obtained by approximating the target density at the mode using
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Figure 3.2: Latent data points between each pair of observed data.

a multivariate Gaussian or a multivariate t-distribution using the Newton-Raphson

method. The reader is referred to their paper for details. They also suggested updat-

ing X in blocks to improve efficiency. This method appears to be very intuitive and

appealing. Chib and Shephard (2002) proposed implementing this algorithm by using

the density of the modified Brownian bridge (MBB) construct proposed by Durham

and Gallant (2002) as a proposal distribution for the latent variables X.

However, Roberts and Stramer (2001) pointed out that the quadratic variation

of the process completely determines the diffusion coefficient (recall Equation (3.2)).

Therefore, as M →∞ the data augmentation scheme in Gibbs sampling based meth-

ods (such as that of Elerian et al. (2001)) is reducible; the imputed data merely confirm

the current value of the diffusion coefficient which then remains unaltered since it is in

turn determined by the quadratic variation of the sample path of X.

Roberts and Stramer (2001) proposed that this dependency problem can be avoided

by first transforming the SDE using the Lamperti transform to obtain the SDE with

a unit diffusion coefficient and then implementing the MCMC scheme on this trans-
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formed process. They also proposed using an independence sampler based either on

a Brownian bridge density or on the OU bridge density as a proposal density for X.

Though, this approach gets around the problem of dependency between X and the

diffusion coefficients, the required transformation may not be possible for many non-

linear multivariate SDEs (Golightly and Wilkinson (2007)).

Chib et al. (2006) proposed an innovative solution to eliminate the issue of depen-

dency. They suggested sampling the Wiener process components Wt instead of the

latent variables X and then constructing the X’s deterministically using the Euler ap-

proximation. Since the Wiener process is independent of the diffusion parameters σ,

there is no dependency and the MCMC scheme can now be used without the need of

any transformation.

Golightly and Wilkinson (2007) instead used the modified Brownian bridge (MBB)

construct of Section 3.3.1.1 to deterministically obtain X’s instead of using the Euler’s

method. The advantage of doing this, they argue, is that unlike the Euler’s method,

the paths generated by MBB do not miss the observations and hence this becomes a

more efficient method of reparameterizing the latent variables.

Re-parameterisation scheme of Golightly and Wilkinson (2007) :

Step 1: Initialise X = {X(0), · · · ,X(n−1)} and Θ.

Step 2: Update X(i) from P (X(i)|yi, yi+1,Θ) for i = 0, · · · , n− 1.

Step 3: Using the MBB of Equation (3.20) determine W (i) deterministically as

Wji−Wj−1i
=

(
g(xj−1, τj−1,Θ) ·

√
(M − j)

(M − j + 1)
δ

)−1

·
(

(Xji −Xj−1i
)− f̃(xj−1, τj−1,Θ) · δ

)
.
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Step 4: Update Θ from P (Θ|W,Y).

Step 5: Repeat steps 2, 3 and 4 until the chains satisfy a convergence criteria.

Both these methods claim to in fact improve with m rather than worsen. Though

these methods do get around the problem of dependency, it is at the cost of added

complexity to the existing MCMC algorithms and are as a result computationally ex-

pensive.

3.6.2 Other Bayesian Methods

Filtering based methods have also been proposed; see for e.g. Del Moral et al. (2002),

Golightly and Wilkinson (2006) and Sarkka and Sottinen (2008). These methods have

an advantage that the inference framework does not need to be restarted from scratch

as the new data becomes available. However, computation efficiency of such methods is

an ongoing research problem (Golightly and Wilkinson (2006)). Also, methods which

use a diffusion specific importance sampler (e.g Sarkka and Sottinen (2008)) are less

widely applicable than some of the methods described above.

Finally, it is important to note that methods which can simulate from the exact

density of the diffusion have been proposed (Beskos et al. (2006), Beskos et al. (2008),

and Fernhead et al. (2010)). These methods can be applied to a wide range (though,

not all) of diffusion processes. The advantage that these methods have over the time-

discretisation based methods described above is that these methods are free of the

discretisation error introduced by discretising the underlying continuous time process.
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3.6.3 Illustration of an MCMC method

This section illustrates the use of an MCMC method for SDE models using a toy prob-

lem. Results obtained using this MCMC scheme will serve as a benchmark against

which the results obtained using GaMBA can be compared, both in terms of the ac-

curacy as well as the computational efficiency.

A standard MCMC based method which can be used for SDE models has now

been described. It is mainly based on the method described in Chib and Shephard

(2002) which is an extension of the method proposed by Elerian et al. (2001). It is

a straightforward method which does not incorporate modifications suggested in Chib

et al. (2006) or Golightly and Wilkinson (2007) and this makes it simpler and compu-

tationally cheaper to implement than the modified methods. The issue of dependency

between the latent variables and the diffusion coefficient can be dealt with by trans-

forming the process as suggested by Roberts and Stramer (2001).

Consider the SDE of Equation (3.1). Assume that the diffusion coefficient is not con-

stant. Then in order to avoid the problem of dependence between the latent variables

and the diffusion coefficients , the process Xt is transformed into a process Yt = h(Xt)

with unitary diffusion coefficient using the Itô’s formula. This transformation is de-

scribed in Section 2.1.3. The new process is given by

dYt =

[
f(h−1(Yt), µ)

g(h−1(Yt), σ)
− 1

2
g′(h−1(Yt), σ)

]
dt+ dWt. (3.30)

After transforming the SDE an MCMC scheme based on Chib and Shephard (2002)

is implemented for a fixed M such that all the M−1 latent variables between every pair
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of consecutive observations are updated in one block. It is described below. Between

every pair of consecutive observations {Yi, Yi+1}, M −1 equally spaced latent variables

denoted by X(i) = {X1i
, · · · , X(M−1)i

} are imputed. The entire set of latent variables

for n+ 1 observations {Y0, Y1, · · · , Yn} is denoted by X = {X(i)}i=1,··· ,n−1 .

MCMC algorithm :

Step I: Initialize Ξ, and generate intial X’s using Modified Brownian Bridge density

PMBB(X(i)|Yi, Yi+1,Ξ)

Step II: For i = 0, 1, ..., (n− 1),

(a) Propose X(i)∗ using Modified Brownian Bridge density PMBB(X(i)∗|Yi, Yi+1,Ξ)

(b) Accept X(i)∗ with probability

α = min

([
PMBB(X(i)|Yi, Yi+1,Ξ) · PE(Yi+1|X(i)∗, Yi)

PMBB(X(i)∗|Yi, Yi+1,Ξ) · PE(Yi+1|X(i), Yi)

]
, 1

)
Step III: Propose Ξ∗ using a proposal density Q(Ξ→ Ξ∗) and accept Ξ∗ using

β = min

([
PE(X,Y|Ξ∗) · P (Ξ∗) ·Q(Ξ∗ → Ξ)

PE(X,Y|Ξ) · P (Ξ) ·Q(Ξ→ Ξ∗)

]
, 1

)
Step IV: Repeat steps II and III until the chains satisfy a convergence criteria.

PE refers to the density corresponding to the Euler approximation. The implemen-

tation of this MCMC algorithm is now illustrated by using the following toy example.

Example: Euro-Dollar interest rate data

The Cox-Ingersoll-Ross (CIR) Process is the solution to the stochastic differential

equation

dXt = (θ1 − θ2Xt) dt+ θ3

√
Xt dWt (3.31)
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with θ1, θ2, θ3 ∈ <+. The transition density for this process is known and is non-central

Chi-squared. This process is used in financial applications to model interest rates.

This process is now used to model the simulated Euro-Dollar interest rate data.

This data set of size 100 has been simulated using parameter values θ1 = 0.00036,

θ2 = 0.0047, θ3 = 0.012, m = 10, and Y0 = 8. These chosen parameter values are

the posterior means obtained by Roberts and Stramer (2001) after analysing a real-life

Euro-Dollar interest rate data. Figure 3.3 shows the simulated data.

Figure 3.3: Simulated Euro-Dollar interest rate data.

The CIR process can be transformed to a process Yt = 2
√
Xt/θ3. Using Itô’s

formula the new SDE has a constant diffusion coefficient and is given by

dYt =

[
(θ1 − θ2Xt)

√
Xt

θ3

− θ3X
−1/2
t

4

]
+ dWt. (3.32)
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Figure 3.4: MCMC chains for the Euro-Dollar interest rate data along with their Correlograms.

The MCMC algorithm can now be implemented. Visual check of the MCMC trace

plot along with the correlograms were used to assess stationarity. After discarding the

first 10, 000 samples as a ’burn-in’ period, the next 10, 000 samples were considered

to be correlated draws from the stationary distribution. Figure 3.4 shows the MCMC

chains along with their correlograms, and Figure 3.5 the marginal posteriors. The ver-

tical lines in Figure 3.5 indicate the true values used to simulated this data. Thus, it

can be seen that, after transforming the SDE, this basic MCMC based method yields

accurate results. However, this implementation (using MATLAB 7.5.0) takes about 14

minutes on a standard personal computer.

3.6.4 Need for a New Method

Thus, it can be seen that although the MCMC based methods can be used for accurate

Bayesian inference on SDE models, in general they are computationally expensive. In
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Figure 3.5: MCMC posteriors for the Euro-Dollar interest rate data - vertical lines indicating the

true value of the parameter.

fact, a simple application of an MCMC method on an SDE model can be very inef-

ficient and is not advisable. One option is to first transform the SDE before using a

Gibbs sampler based method. But such a transformation is usually not possible for

many multi-dimensional SDEs. The other option is to use some other form of reparam-

eterisation that gets around the dependency problem. However methods which use this

option are computationally very expensive and complicated to implement in practice.

Thus, there is a need to evaluate if some non-MCMC based approach could be

applicable to a wide range of SDE models and used to obtain computationally efficient

but accurate inference on SDE models. This was the motivation behind this PhD re-

search. The methodology thus developed has been described in Chapter 4.
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Chapter 4

Efficient Bayesian Inference for

Stochastic Differential Equation

Models

4.1 Introduction

Stochastic differential equations (SDEs) and related theory have been reviewed in

Chapter 2. A broad overview of the statistical inference methods for SDE models

has been provided in Chapter 3. This is the main chapter of this thesis. It describes

the new method for statistical inference developed as part of this research work.

For the purposes of this chapter, the following has been assumed.

• It is assumed that a weak solution to Equation (3.1) exists. In particular, it is

assumed that the f(·) and g(·) satisfy the following:

A 1 : For any R > 0 and all x, y ∈ <p such that |x| < R, |y| < R, and t ∈ [0, T ],
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there exists a constant KR <∞ such that

|f(x, t)− f(y, t)|+ |g(x, t)− g(y, t)| < KR|x− y|,

A 2 : For all x, y ∈ <p and t ∈ [0, T ], there exists a constant C <∞ such that

|f(x, t)|+ |g(x, t)| < C(1 + |x|).

• It is also assumed that the following holds:

A 7 : (i) : f and g are time homogeneous, i.e. f(x, t,Θ) = f(x,Θ), and g(x, t,Θ)

= g(x,Θ).

(ii) : f(x,Θ) and g(x,Θ) are bounded with bounded derivatives of any or-

der.

(iii) : a(x,Θ) = g(x,Θ) · g(x,Θ)
′

is strongly positive definite, that is there

exists an ε(Θ) > 0 such that a(x,Θ)− ε(Θ) Ip is a non-negative definite for

all x ∈ <p.

The statistical interest in SDE modeling centers around the inference on the pa-

rameters which govern the drift and diffusion coefficients. To make this dependence

explicit, the general form of a one-dimensional SDE can be expressed as:

dXt = f(Xt, µ) dt+ g(Xt, σ) dWt, X(t0) = x0 (4.1)

where f : <×< → < is the drift of the SDE, g : <×< → < is the diffusion of the SDE,

and Wt is a one-dimensional process having independent scalar Wiener Process com-

ponents. The stochastic process {Xt(w)} defined on the probability space (Ω,Ft, P ),

which satisfies Equation (4.1) is called a (Itô) diffusion process. If such a process ex-

ists, then it is a continuous time Markov process with continuous sample paths a.s. Its

transition density is governed by the parameters Θ = {µ, σ} of the SDE. Note that µ
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and σ could be vector valued.

As attempts are being made to make models more realistic by introducing natural

inherent uncertainties, SDE models are being increasingly used to model real life phe-

nomena. However, not only are such models often non-trivial to solve, the statistical

inference on their parameters Θ is also not straightforward in most cases.

This chapter focuses on the Bayesian inference for diffusion process parameters.

This research area has already seen a lot of activity in the last few years which has

been reviewed in Section 3.6. But despite this research activity, there remains a sig-

nificant need for accurate but computationally cheaper methods. Proposed here is

a new method of approximate Bayesian inference for diffusion process parameters,

named as GaMBA (for ’Gaussian Modified Bridge Approximation’) and its extension

called GaMBA-I (for GaMBA-Importance sampling). The objective behind developing

these methods is to develop a method which is easy to implement and computationally

cheaper compared to the existing alternatives.

This chapter is organised as follows. Section 4.2 introduces the basic idea behind

GaMBA. Sections 4.3 and 4.4 describe in detail how this could be actually imple-

mented in practice. Section 4.5 describes the extension GaMBA-I, and describes the

conditions under which the posterior obtained using GaMBA-I would have the desir-

able convergence properties. While Section 4.6 provides some examples to illustrate

the use of GaMBA and GaMBA-I for Bayesian inference on standard SDE models, Sec-

tion 4.7 illustrates situations where GaMBA and GaMBA-I would not yield efficient

inference. Finally Section 4.8 discusses various practical aspects concerning GaMBA

and GaMBA-I including their limitations.
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4.2 GaMBA : The Basic Idea

For the purposes of this thesis, it is assumed that the diffusion process is observed only

at discrete points in time and that it is observed without error.

As described in Section 3.6 , the common theme underlying many of the methods

developed thus far to obtain Bayesian inference on discretely observed diffusions is to

interpret the inference problem as that of a hidden Markov model where the unob-

served Markov process forms the set of latent variables. GaMBA uses this very set-up.

As earlier described in section 3.6, under this setting, the observations are denoted

by Y = {y0, y1, · · · , yn}. M − 1 latent variables are imputed between every pair of

consecutive observations by partitioning each interval [ti, ti+1] into M equal parts as

ti = τ0i
< τ1i

< · · · < τMi
= ti+1, such that τ(j+1)i

− τji = δτ is as small as possible.

This is illustrated in Figure 3.2. Equal spacing is not necessary but has been used

only to make the notation easier. Let X(i) = {X1i
, X2i

, . . . , X(M−1)i
} denote the la-

tent variables corresponding to times τ1i
, τ2i

< · · · < τ(M−1)i
, between the observations

yi and yi+1 for i = 0, 1, · · · , n − 1. The entire set of latent variables is denoted by

X = {X(0),X(1), · · · ,X(n−1)}. As described in Section 4.1, the diffusion parameters

are denoted by Θ.

For such a set-up, the joint posterior can be expressed as:

P (X,Θ |Y) ∝ P (Y,X |Θ) · P (Θ), (4.2)

where P (Θ) is an appropriate prior distribution. The joint posterior can be factorised
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as:

P (X,Θ |Y) = P (X |Θ,Y) · P (Θ |Y). (4.3)

Thus, using Equations 4.2 and 4.3, the posterior P (Θ|Y) can be approximated, up

to the proportionality constant by using the following identity:

P (Θ|Y) ∝ P (Y,X|Θ) · P (Θ)

P (X|Θ,Y)
, (4.4)

valid for any X ∼ P (X|Θ,Y). Equation 4.4 can be used to obtain Bayesian infer-

ence on parameters Θ. However, evaluating Equation (4.4) analytically is usually too

complicated in practice.

Let Θ∗ be the (unknown) modal value of the posterior density P (Θ|Y), and Ξ∗ be

the subspace of the parameter space Ξ containing Θ∗ such that
∫

Ξ\Ξ∗ P (Θ|Y )dΘ ≈ 0.

If for a given value of Θ, say Θo, it is possible to compute the right hand side of Equa-

tion (4.4), then the posterior probability of Θo given the observed data Y can thus be

obtained up to a proportionality constant. Repeating this procedure for a large sample

of Θ values carefully sampled from the subspace Ξ∗ would thus give an approximation

to the unknown posterior density P (Θ|Y). One way to efficiently sample from Ξ∗ is by

using a grid-sampling method; i.e. by approximating the continuous Ξ∗ space using a

grid GΞ∗ consisting of finite number of points. This is the basic idea behind GaMBA.

This basic idea can be summarised in the following procedure.

GaMBA : Inference Procedure

1. Determine Ξ∗.

2. Define a discrete grid GΞ∗ on Ξ∗.
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3. For each point on the grid Θj ∈ GΞ∗ ,

• Sample X from P (X|Θj,Y),

• For this X evaluate

P (Θj|Y) ∝ P (Y,X|Θj) · P (Θj)

P (X|Θj,Y)

∣∣∣∣
X

.

4. Normalise to obtain P (Θ|Y) over GΞ∗ .

While trying to put this simple idea into practice though, following practical con-

siderations need to be made.

4.2.1 Identifying Ξ∗

In the implementation of GaMBA, identifying Ξ∗ is a very important non-trivial step.

This is because, if the support is not identified accurately, then the inference thus

obtained can not be correct. If there is credible prior information, then Ξ∗ can be

determined using this information. In the absence such information, one approach to

determine Ξ∗ can possibly be to first find the mode of Equation (4.4) using some nu-

merical method such as for example, Newton’s method, and then approximate P (Θ/Y)

using Laplace’s approximation around this mode by computing the Hessian. It is then

possible to determine Ξ∗ such that
∫

Ξ\Ξ∗ P (Θ|Y ) dΘ ≤ ε for some pre-determined small

value ε ≥ 0. Such a procedure has been used obtain Ξ∗ for latent GMRF models by

Rue et al. (2009). Note that, this is only one way to determine Ξ∗; there possibly

can not be just one ’right’ Ξ∗. Also note that, this method may not be suitable when

P (Θ/Y) is likely to be multi-modal.
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Identification of Ξ∗ is a very important research problem in itself, but this is not the

focus of this research work. The main aim of this research work is to explore how step

3 of the inference procedure mentioned above can be implemented for SDE models.

The key question that this thesis aims to answer is, how to evaluate P (Y,X|Θ) and

P (X|Θ,Y) either exactly or approximately? Further, if an approximation is possible,

then how its accuracy could be determined? Some possible answers to these questions

are suggested in the next section.

For the purposes of this thesis we assume that credible prior information is available

and that it is possible to identify Ξ∗ based on this information.

4.2.2 Evaluating P (Y,X|Θ)

The complete likelihood P (Y,X|Θ) can be factorised as

P (Y,X|Θ) = P (y0|Θ)·
n∏
i=1

P (yi|XM−1i−1
,Θ)·

n∏
i=1

P (X1i−1
|yi−1,Θ)·

n∏
i=1

M−1∏
j=2

P (Xji−1
|Xj−1i−1

,Θ).

(4.5)

Since, y0 is considered observed, P (y0|Θ) can be considered as constant and thus

P (Y,X|Θ) ∝
n∏
i=1

P (yi|XM−1i−1
,Θ) ·

n∏
i=1

P (X1i−1
|yi−1,Θ) ·

n∏
i=1

M−1∏
j=2

P (Xji−1
|Xj−1i−1

,Θ).

(4.6)

Equation (4.6) can be evaluated exactly if the exact transition density is known.

However in many cases, the exact transition density is not available, and in such cases,

Equation (4.6) can be approximated using Euler’s density up to the unknown constant
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P (y0|Θ) as

P (Y,X|Θ) ≈
n∏
i=1

PE(yi|XM−1i−1
,Θ)·

n∏
i=1

PE(X1i−1
|yi−1,Θ)·

n∏
i=1

M−1∏
j=2

PE(Xji−1
|Xj−1i−1

,Θ),

(4.7)

where PE is the Euler density of Equation (2.16). Section 2.3 describes the conditions

under which such an approximation is weakly convergent and also the rate of this con-

vergence.

4.2.3 Sampling X ∼ P (X|Θ,Y)

Equation 4.4 is valid for any X sampled from its full conditional distribution P (X|Θ,Y).

However, for most of the SDE models used in practice, P (X|Θ,Y) and P (Y,X|Θ) are

not known in closed form and need to be approximated. P (Y,X|Θ) can be approxi-

mated using the Euler approximation as described above. Section 4.3.1 will illustrate

why an approximation to P (X|Θ,Y) can not be obtained by conditioning the Euler

density and a completely different approximation (say PB) is required instead. Sam-

pling an X randomly from PB(X|Θ,Y) can make the inference unreliable in the sense

that repeating GaMBA on the same set of data and same Ξ∗ can yield different pos-

teriors. This is specially true when PB and PE do not have the same mode and also

if the tails of PB are not thicker than those of PE. Figure 4.1 provides a simplistic

illustration of this.
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Figure 4.1: Simplistic illustration of PE(line) and PB (dashed) densities with different modes.

The ratio PE(Y,X|Θ)/PB(X|Θ,Y) which determines the likelihood component of

the equation (4.4) will yield completely different values if the sampled X was (for

example) XA or XB or XC . Specifically, in this case the following would hold:

PE(Y,XA|Θ)

PB(XA|Θ,Y)
>
PE(Y,XB|Θ)

PB(XB|Θ,Y)
≈ 1 >

PE(Y,XC |Θ)

PB(XC |Θ,Y)
.

GaMBA posterior obtained using (say) XA would be very different from the one ob-

tained using (say) XB and so on. Therefore, as a practical consideration, it is desirable

to identify a mechanism of sampling X which results in reliable inference using GaMBA.

This thesis explores two possible ways in which this could be achieved. The first

approach of doing this as described in Section 4.4 is to choose the X which maximises

PB(X|Θ,Y) over X, i.e. the modal value X∗ of the density PB(X|Θ,Y). Not only is

this approach computationally cheaper than the second approach, but it also has an

additional advantage that when choosing not to ’integrate out’ the X’s, it is intuitively

appealing to instead evaluate the expressions at the modal value of PB(X|Y,Θ) rather

than at any random X. The reader is referred to Rue et al. (2009) where this approach

has been successfully used.
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The second approach considered in this thesis is to sample several (say K) X’s

instead of just one and then approximate the likelihood using the average

1

K

K∑
k=1

PE(Y,Xk|Θ)

PB(Xk|Θ,Y)
.

This approach is referred to as GaMBA-I and is described in Section 4.5 where its link

with importance sampling is also established. Though this approach is computationally

less efficient compared to the first one, it is possible to prove the consistency proper-

ties of GaMBA-I if certain conditions are met. Note that GaMBA-I is a stochastic

approach unlike GaMBA which is deterministic.

4.3 Evaluating P (X|Θ,Y)

Because of the Markovian nature of a diffusion process, each observation is condi-

tionally independent to other observations given its previous observation. Thus when

concerned with the distribution of P (X|Y,Θ), one is in fact dealing with n indepen-

dent discretised diffusion bridges, each conditioned only on the corresponding pair of

successive observations {yi, yi+1}. Using these discretised bridges, P (X|Θ,Y) can be

factorised as

P (X|Y,Θ) =
n−1∏
i=0

P (X(i)|yi, yi+1,Θ). (4.8)

Since the SDE is assumed be time-homogeneous, each of the (X(i)|yi, yi+1,Θ) are

also identically distributed. Therefore, without loss of generality and for notational

ease, only the variables corresponding to the second diffusion bridge will be considered

here for the deliberation on how to approximate P (X|Θ,Y). While {y1, y2} are the

observations corresponding to this bridge, {X1, · · · , XM−1} denote the corresponding
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missing variables of the discretised diffusion bridge with X0 = y1 and XM = y2 (see

Figure 4.2). Thus, the question ’how to evaluate P (X|Θ,Y) in Equation 4.4?’ will be

answered by elaborating how possibly P (X1, · · · , XM−1|y1, y2,Θ) can be evaluated.

Note that using the Markovian property of the diffusion process P (X1, · · · , XM−1|y1, y2,Θ)

can be written as

P (X1, · · · , XM−1|y1, y2,Θ) = P (X1|y1, y2,Θ) · P (X2|X1, y2,Θ) · · ·P (XM−1|XM−2, y2,Θ).

(4.9)

It is important to note that the above simplification is possible because the data

have been assumed to be observed without error. Such simplification may not be pos-

sible if the data were observed with errors. In that case the dependence structure

between the errors and their distributional assumptions would also have to be taken in

to account. However, this case has not been considered in this thesis and it is assumed

that the data have been observed without error.

Note that Equation (4.9) can be written as

P (X1, · · · , XM−1|y1, y2,Θ) =
M−1∏
j=1

P (Xj|Xj−1, XM ,Θ) (4.10)

whereX0 = y1 andXM = y2. In order to implement GaMBA, P (X1, · · · , XM−1|y1, y2,Θ)

needs to be evaluated either exactly or approximately. However, note that this also

involves sampling (simulating) Xj from P (Xj|Xj−1, XM ,Θ) for every j.

There might be different ways in which this could be achieved. It would be ideal

to have a diffusion bridge construct, which will be easy to implement, be applicable to

a wider class of diffusion processes, computationally not too expensive and be reason-

ably accurate as well. With these objectives in mind, the currently available options
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Figure 4.2: Second discretised diffusion bridge.

of simulating a diffusion bridge are reviewed below.

4.3.1 Constructing a bridge based on Euler’s approximation

Since paths simulated using Euler’s method converge in distribution to the true diffu-

sion, as M →∞ (δτ → 0), a natural option to approximate P (X1, · · · , XM−1|Y1, Y2,Θ)

is by using a density obtained by conditioning Euler’s paths.

For every j, P (Xj|Xj−1, XM ,Θ) can be expressed as

P (Xj|Xj−1, XM ,Θ) =
P (XM |Xj, Xj−1,Θ) · P (Xj|Xj−1,Θ)

P (XM |Xj−1,Θ)

=
P (XM |Xj,Θ) · P (Xj|Xj−1,Θ)

P (XM |Xj−1,Θ)
. (4.11)

Now, XM is observed, and while sampling Xj, Xj−1 has already been sampled, and

hence known, so P (XM |Xj−1,Θ) is a constant, and therefore

P (Xj|Xj−1, XM ,Θ) ∝ P (XM |Xj,Θ) · P (Xj|Xj−1,Θ) (4.12)
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Using an Euler approximation for time lag δτ , P (Xj|Xj−1,Θ) can be approximated

as

P (Xj|Xj−1,Θ) ≈ NXj
(Xj−1 + f(Xj−1, µ) · δτ , {g(Xj−1, σ) ·

√
δτ}2), (4.13)

where NXj
denotes that random variable Xj has a Gaussian distribution with the mean

and variance specified between the brackets.

Similarly, considering a time lag of (M − j)δτ , P (XM |Xj,Θ) can be approximated

as

P (XM |Xj,Θ) ≈ NXM
(Xj + f(Xj, µ) · (M − j)δτ , {g(Xj, σ) ·

√
(M − j)δτ}2). (4.14)

and therefore, P (Xj|Xj−1, XM ,Θ) can be approximated using PEB(Xj|Xj−1, XM ,Θ),

where

PEB(Xj|Xj−1, XM ,Θ) ∝ NXM
(Xj + f(Xj, µ) · (M − j)δτ , {g(Xj, σ) ·

√
(M − j)δτ}2)

·NXj
(Xj−1 + f(Xj−1, µ) · δτ , {g(Xj−1, σ) ·

√
δτ}2)

(4.15)

where the subscript EB has been used to denote the bridge based on Euler’s ap-

proximation. For Equation (4.15) to be used as a diffusion bridge construct, it needs

to be simplified into a known closed form distribution from which Xj’s can be sampled.

Limitations of EB : This approximation has two major drawbacks. Firstly, note

that in the approximation of Equation (4.14), even as M →∞ (i.e δτ → 0), (M−j)δτ -

the time-gap between XM and Xj remains a constant and therefore this approximation

would not assymptotically converge to the true conditional distribution P (XM |Xj,Θ).

As a result the approximation PEB(Xj|Xj−1, XM ,Θ) would not converge to the desired

conditional distribution P (Xj|Xj−1, XM ,Θ) even as M → ∞. Secondly, except for a

linear SDE with a constant diffusion term (such as a 2 parameter OU process), it would

83



not be possible to simplify Equation (4.15) into a known closed form distribution from

which Xj’s could be easily sampled.

Therefore this approach does not seem promising and is not further pursued.

4.3.2 Modified Brownian Bridge (MBB)

The next diffusion bridge considered here is called the Modified Brownian Bridge, a

construct proposed by Durham and Gallant (2002). MBB has been discussed and de-

rived in Section 3.3.1.

Using the above notation, P (Xj|Xj−1, XM ,Θ) can be approximated using the MBB

as

PMBB(Xj|Xj−1, XM ,Θ) ≈ NXj

Xj−1 +

(
XM −Xj−1

τM − τj−1

)
δτ ,

{
g(Xj−1, σ)

√(
M − j

M − j + 1

)
δτ

}2


(4.16)

where the subscript MBB has been used to denote the density corresponding to the

MBB.

Just like the EB construct discussed in the previous section, the MBB construct does

not have the desirable asymptotic properties; i.e the approximation PMBB(Xj|Xj−1, XM ,Θ)

would not converge to the desired conditional distribution P (Xj|Xj−1, XM ,Θ) even as

M → ∞. However, unlike the EB, it is widely applicable and has been successfully

used as a proposal distribution for sampling diffusion bridges (Durham and Gallant

(2002),Chib et al. (2006),and Golightly and Wilkinson (2007)). MBB can be applied

to all one dimensional SDE’s and extensions to multivariate SDEs is possible.
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For the purposes of implementing GaMBA, MBB density can be used to approxi-

mate Equation (4.10) as

P (X1, · · · , XM−1|y1, y2,Θ) ≈
M−1∏
j=1

PMBB(Xj|Xj−1, XM ,Θ) (4.17)

where PMBB is the density of Equation (4.16). To ensure reliable inference (as de-

scribed in Section 4.2.3), Xj can also be chosen to be X∗j – the modal value of

PMBB(Xj|Xj−1, XM ,Θ).

It is important to note that because the mean of the MBB construct is just the

linear interpolation between the two points, the posterior obtained using GaMBA may

not be very accurate for non-linear processes. This is a limitation of GaMBA and will

be illustrated in Section 4.7 using appropriate examples.

4.3.3 Other Approaches

Beskos et al. (2008) proposed an MCMC approach for generating paths of nonlinear

diffusion bridges. This method is applicable to a wide class, but not all, of diffusions

and compliments the current research work in the area of MCMC methods for high

dimensional diffusions. Although this method produces exact diffusion bridges with-

out even the discretisation error, being an MCMC based method, it is not suitable to

be used within the GaMBA framework to sample diffusion bridges, as the aim is to

develop a method which is much faster than the MCMC based methods.

More recently, Bladt and Sorensen (2010) proposed a method which relies on the

time reversibility property of the ergodic diffusion processes and essentially consists
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of simulating two paths of a diffusion process, one forward in time and another one

moving backward in time. If the two trajectories intersect, then the combined path

is a realisation of the bridge. The bridge generated using this method will have the

distribution which will be close to the distribution of the true diffusion bridge. This

is essentially a rejection sampling algorithm, which is very easy to implement and is

available for all one dimensional ergodic diffusions. As the authors note however, the

quality of approximation depends on the probability (denoted by π in the paper) that

the bridge under consideration is hit by an independent diffusion process (the SDE

under consideration).

Using this method within the GaMBA framework to simulate diffusion bridges

does not appear to be attractive for two reasons. Firstly, determining π is not straight-

forward and its value depends on the unknown parameters which we wish to infer.

Secondly, as described in the paper, even when π is close to one, the rejection rate

could still be high making it a rather inefficient method to be used within the GaMBA

framework.

4.4 Implementing GaMBA

This section summarises the discussion on diffusion bridge approximations provided

in the last section and then provides and algorithm that can be used in practice to

implement Bayesian inference on SDE models using GaMBA.

Even though, constructing a diffusion bridge approximation by conditioning Eu-

ler’s path (EB) may seem attractive; as seen in Section 4.3.1, such an approximation

would not have the desirable asymptotic properties. Also for most of the SDE models,

it would not be possible to obtain a closed form solution to such an approximation,
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severely limiting its usability. Therefore the EB construct is not a very attractive al-

ternative.

As noted in Section 4.3.2 using MBB instead to simulate discretised diffusion bridges

seems a good option. However, it is important to note that the MBB construct does

not have the desirable asymptotic properties as well. Further, if the strategy of choos-

ing the modal value of PMBB(Xj|Xj−1, XM ,Θ) is adopted instead of sampling from it,

then the resulting bridge turns out to be the linear interpolation between two observed

points. Therefore this strategy has to be used with caution since it may not be yield

accurate inference for non-linear SDE models.

There is a clear advantage of using the GaMBA framework, which is that it gets

around the problem of dependency between the latent variables and the diffusion coef-

ficients. This is because it only involves sampling from P (X|Θ,Y) — that too using a

fixed set of Θ values sampled using the grid GΞ∗ on parameter space Ξ∗. Unlike MCMC

based methods, GaMBA does not involve sampling from P (Θ|X,Y), thus avoiding the

reducibility problem due to the dependency between X and Θ.

There are other methods available to simulate diffusion bridges, some of which have

been briefly reviewed in Section 4.3.3. However, these methods are computationally

expensive compared to both the EB and the MBB approaches. Therefore, there does

not seem much computational advantage in using these methods within the GaMBA

framework.

GaMBA can thus be summarised into the following procedure.
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GaMBA algorithm :

1. Identify Ξ∗ (as described in Section 4.2.1.)

2. Define a discrete grid GΞ∗ on Ξ∗.

3. For each point on the grid Θj ∈ GΞ∗ ,

(a) Sample X ∼ PMBB(X|Θj,Y) or choose X to be X∗ = arg maxX(PMBB(X|Θj,Y))

as described in Section 4.3.2

(b) For this X evaluate

PGaMBA(Θj|Y) ∝ PE(Y,X∗|Θj) · P (Θj)

PMBB(X∗|Θj,Y)

.

4. Normalise to obtain P (Θ|Y) over GΞ∗ .

where:

• PE(Y,X|Θj) is the Euler’s density as in Equation (4.7);

• P (Θj) a suitable prior density;

• PMBB(X|Y,Θj) is the MBB density as in Equation (4.17).

Note that, the posterior thus obtained will be a ’discretised’ approximation to the

true continuous posterior. If desired, a continuous looking posterior can be obtained by

using standard kernal smoothing techniques which are easily available in any statistical

package.
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4.5 Link to Importance Sampling

This thesis is concerned with inference on parameters Θ of an SDE model given time-

discrete observations Y = {y0, y1, · · · , yn}. If the transition densities were known, one

would find the posterior simply as

P (Θ|Y) = P (Y|Θ) · P (Θ)

where log(P (Y|Θ)) is the log likelihood ln(Θ) of Equation 3.5. But transition den-

sities are unavailable for all but a few standard SDE models. As described earlier,

many inference methods get around this problem by introducing latent variables X so

that the transition densities could be approximated by densities corresponding some

numerical approximation(such as Euler’s). Once these latent variables have been in-

troduced several different approaches could lead to the likelihood based inference on Θ.

The approach taken by simulated likelihood methods, as described in Section 3.3.1

is to obtain the likelihood by integrating out the latent variables from the complete

likelihood, i.e

P (Y|Θ) =

∫
P (Y,X |Θ) dX, (4.18)

where Equation 4.18 is usually solved using Monte-Carlo integration.

The approach taken by MCMC based methods, as described in section 3.6 is to

interpret the problem as that of a hidden Markov model and employ Metropolis within

Gibbs type of methods which alternately sample P (X|Y,Θ) and P (Θ|Y,X) respec-

tively. This usually involves some form of reparameterisation to avoid the dependency

problem.
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On the other hand, the approach taken by GaMBA is to approximate the likelihood

as

P (Y|Θ) ≈ PE(Y,X|Θ)

PMBB(X|Y,Θ)
(4.19)

and then to evaluate Equation 4.19 at X∗ = arg maxX PMBB(X|Y,Θ) for a given value

of Θ. This procedure is then repeated for large number of Θ’s deterministically chosen

from the support Ξ∗.

However, it is possible to show that there is a link between the approach taken

by GaMBA and the one taken by simulated likelihood method. In fact, it can be

shown that GaMBA can be easily extended so as to be interpreted as a grid based

implementation of simulated likelihood method using importance sampling. This can

be shown as follows.

4.5.1 GaMBA-I (GaMBA with Importance Sampling)

Consider the GaMBA algorithm described in Section 4.4. In step 3 of the algorithm

an approximation to P (Y|Θ) is evaluated using Equation 4.19 for every predetermined

value of Θ, by sampling (or choosing) X once from PMBB(X|Y,Θ). Instead, a better

approximation, could possibly be obtained by sampling multiple (say K) values of X

for every predetermined value of Θ, and then evaluating

P (Y|Θ) ≈ 1

K

K∑
k=1

PE(Y,Xk|Θ)

PMBB(Xk|Y,Θ)
. (4.20)

GaMBA algorithm can be extended using this modification. This extended algo-

rithm is as follows:

GaMBA-I algorithm :
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1. Identify Ξ∗ (as described in Section 4.2.1.)

2. Define a discrete grid GΞ∗ on Ξ∗.

3. For each point on the grid Θj ∈ GΞ∗

(a) for k = 1, · · · , K,

Sample Xk ∼ PMBB(Xk|Θj,Y) as described in Section 4.3.2

(b) Evaluate

PGaMBA−I(Θj|Y) ∝ 1

K

K∑
k=1

PE(Y,Xk|Θj) · P (Θj)

PMBB(Xk|Θj,Y)

.

4. Normalise to obtain P (Θ|Y) over GΞ∗ .

where:

• PE(Y,X|Θj) is the Euler’s density as in Equation (4.7);

• P (Θj) a suitable prior density;

• PMBB(X|Y,Θj) is the MBB density as in Equation (4.17).

Again, note that the posterior thus obtained will be a ’discretised’ approximation

to the true continuous posterior. If desired, a continuous looking posterior can be ob-

tained by using standard kernal smoothing techniques.

Note that the approximation in Equation (4.20) is same as the one used in Equation

(3.11) where MBB density of Equation (3.20) has been used as the proposal density

q(.). Thus, GaMBA-I (GaMBA - Importance sampling) can be seen as the novel imple-

mentation of the simulated likelihood method proposed by Durham and Gallant (2002)

used in the Bayesian context. The novelty being that the parameter space is explored
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using a predetermined set of points chosen using a grid over Ξ∗. On the other hand the

approach taken so far (Pedersen (1995b),Santa-Clara (1995),Brandt and Santa-Clara

(2002) and Durham and Gallant (2002)) has been to explore the parameter space using

numerical optimisation methods such as a Newton-Raphson method, for example.

The advantage of interpreting GaMBA-I as a novel implementation of the simulated

likelihood method is that statements regarding the asymptotic behaviour of GaMBA-I

posterior can now be made using the results already known.

4.5.2 Convergence of GaMBA-I

By establishing link with the Importance sampling, GaMBA-I creates a possibility for

exploring its consistency properties.

Some consistency properties are already known. Recall the notations pM(Θ), pM,K(Θ),

l
(M)
n (Θ) and ln(Θ) from Section 3.3.1. Note that PGaMBA−I(Θj|Y) can be expressed as

PGaMBA−I(Θj|Y) =
n−1∏
i=0

pM,K(ti−1, yi−1, ti, yi,Θj) · P (Θj) (4.21)

Stramer and Yan (2007) have shown that for SDE’s with unit diffusion, under the

assumptions A 1, A 2, A 7 and A 8 that

1. pM,K converges weakly to a non-centered Gaussian random variable implying that

the variability associated with the Importance sampling estimate is uniformly

bounded in M , and

2. the total error in this estimation is of the order O(1/M) +O(1/
√
K).

Based on the results above, Stramer and Yan (2007) suggest choosing K = M2 as

an asymptotically optimal choice. Since most one dimensional SDEs with non-constant
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diffusion coefficients could be transformed using the Lamperti transform (Section 3.6.2)

into SDEs with unit diffusion coefficient, the result above is applicable to such SDEs as

well. However, they point out that these asymptotic results depend on how closely the

data are observed. They also illustrate that in practice, these results may take effect

only for very high values of M .

For SDEs which can not be transformed into ones with unit diffusion coefficients,

Stramer and Yan (2007) argue that it would be difficult to prove a general result such

as the one above and that such results would need to be proved on a case to case basis.

Though, this thesis does not aim to prove this convergence for any particular model,

it is shown empirically in the next section that the marginal posteriors obtained using

GaMBA-I do appear to become more accurate for the parameters of the un-transformed

CIR process. These results are consistent with the results obtained by Stramer and

Yan (2007) on the un-transformed CIR process.

Further, Section 4.7 empirically shows the examples where the 95% probability

interval obtained using PE and PMBB do not overlap - indicating that GaMBA and

GaMBA-I would not yield efficient and accurate inference for certain SDEs when the

data are too sparsely observed. These examples further illustrate the point made by

Stramer and Yan (2007).
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Figure 4.3: Simulated data for GBM process.

4.6 Examples

4.6.1 Geometric Brownian Motion (GBM) Process

Geometric Brownian Motion process is the solution to the stochastic differential equa-

tion,

dXt = θ1Xt dt+ θ2Xt dWt (4.22)

with θ1 ∈ <, and θ2 ∈ <+. This process is also known as the Black-Scholes-Merton

model after its introduction in the financial context to model asset prices where θ1 is in-

terpreted as the constant interest rate while θ2 as the volatility of risky activity. For this

process, the MBB density can be used to approximate P (X|Θ,Y) in step 3 of GaMBA.

A dataset of 500 observations was simulated using parameter values θ1 = 0.005,

θ2 = 0.05 and starting value of Y0 = 1. This dataset was simulated using Euler’s

method with M = 10 and δtau = 0.1 (i.e ∆t = 1). Figure 4.3 shows the simulated
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data. The parameter space Ξ∗ = Ξ∗1 × Ξ∗2 was chosen based on prior knowledge as

Ξ∗ = [−0.05, 0.08] × [0.01, 0.1], and a grid GΞ∗ was considered with ∆Ξ1 = 0.002 and

∆Ξ2 = 0.002. GaMBA was implemented on the 3036 points thus sampled from Ξ∗ and

marginal posteriors distributions were obtained.

For this process, the true transition density P (Yt+∆t |Yt,Θ) is log-normal with log-

mean and log-variance given by,

µGBM = log(Yt) +

(
θ1 −

1

2
θ2

2

)
·∆t

σ2
GBM = θ2

2 ·∆t

Therefore, it is possible to evaluate the true posterior inference on GΞ∗ . This true

posterior and the GaMBA posterior computed for M = 5 were plotted together along

with the true parameter values used in simulating the data. Figure 4.4 shows the results

where the vertical lines denote the true parameter values. Posteriors obtained using

GaMBA have smaller variance than the true posteriors, however their modes closely

match with the true parameter value. In this example, Uniform priors were used for

both GaMBA and the exact method.

Thus, it can be said that in this example GaMBA has correctly captured the mean

but not the variance of the marginal posteriors.

4.6.2 Ornstein-Uhlenbeck (O-U) Process

This process was introduced in Section 2.2.2. When the first parameter θ1 = 0, the

process is mean reverting around 0, the rate of mean-reversion being controlled by the
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Figure 4.4: GBM: Marginal True posterior (line) vs. posterior using GaMBA M = 5 (dotted line).

Vertical lines denote the true values θ1 = 0.005 and θ2 = 0.05.

parameter θ2. A smaller absolute value of θ2 means that the process will revert back

to 0 less often, while a large absolute value of θ2 implies that the process will revert

back to 0 more often.

This two parameter Ornstein-Uhlenbeck process is the solution to the stochastic

differential equation,

dXt = −θ2Xt dt+ θ3 dWt X0 = x0 (4.23)

with θ2 ∈ <, and θ3 ∈ <+.

As described in Section 2.2.2, the transition density for this process is Gaussian and

hence true posterior distribution can be determined. The exact solution of the above

SDE is given by

Xt = x0e
−θ2t + θ3

∫ t

0

e−θ2(t−u) du. (4.24)
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A dataset of 500 observations was simulated using parameter values θ2 = 0.1,

θ3 = 0.25 and starting value of Y0 = 0. This dataset was simulated using Euler’s

method with M = 10 and δtau = 0.1 (i.e ∆t = 1). Figure 4.5 shows the simulated

data. The parameter space Ξ∗ = Ξ∗2 × Ξ∗3 was chosen based on prior knowledge as

Ξ∗ = [−0.1, 0.3] × [0.1, 0.4], and a grid GΞ∗ was considered with ∆Ξ2 = 0.01 and

∆Ξ3 = 0.01. GaMBA was implemented on the 1271 points thus sampled from Ξ∗ and

marginal posteriors distributions were obtained.

Figure 4.5: Simulated data for O-U process.

In addition, GaMBA-I was also implemented on the same GΞ∗ as above for var-

ious M and K. Table 4.1 lists the mean squared error (MSE) obtained for each of

the parameters using different methods for inference. Asymptotic properties of the

GaMBA-I posterior can be seen. Figure 4.6 plots the marginal posteriors obtained us-

ing GaMBA-I (for [M = 5,K = 10] and [M = 10,K = 20]) along with those obtained
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Figure 4.6: O-U: Marginal True posterior (line) vs. posterior using GaMBA M = 5 (dotted line).

Vertical lines denote the true values θ2 = 0.1 and θ3 = 0.25.

used GaMBA and the true likelihood. It shows that for θ2, GaMBA-I works much

better than GaMBA, and also that as M and K increases posteriors obtained using

GaMBA-I become more accurate for θ2, but this effect is not seen for θ3.

Thus, it can be said that though the marginal posteriors obtained using GaMBA-I

contain the true parameter values for both θ2 and θ3, the spread of these distributions

does not match very closely with the true marginal posterior distributions, specially

for θ3.

4.6.3 Cox-Ingersoll-Ross (CIR) Process

This process was introduced in Section 3.6.3. This process is also non-linear and it is

important to see how accurate the posteriors obtained using GaMBA and GaMBA-I
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Table 4.1: O-U: MSE obtained for θ2 & θ3 for the posteriors obtained using different

methods
Method M K MSE MSE

θ2 θ3

TrueLikelihood - - 0.004851 0.000356
GaMBA 5 - 0.006775 0.000158

GaMBA− I 5 10 0.001102 8.88 ×10−5

GaMBA− I 5 20 0.000987 7.93 ×10−5

GaMBA− I 10 10 0.001052 8.01 ×10−5

GaMBA− I 10 20 0.000826 6.86 ×10−5

are for this process.

A dataset of 100 observations was simulated using parameter values θ1 = 1, θ2 = 0.5,

θ3 = 0.2 and starting value of y0 = 2.5. This dataset was simulated using Euler’s

method with M = 10 and δtau = 0.1 (i.e ∆t = 1). Figure 4.7 shows the simulated

data. The parameter space Ξ∗ = Ξ∗1 × Ξ∗2 × Ξ∗3 was chosen based on prior knowledge

as Ξ∗ = [0.1, 1.9]× [0.1, 0.8]× [0.1, 0.3], and a grid GΞ∗ was considered with ∆Ξ1 = 0.1,

∆Ξ2 = 0.05 and ∆Ξ3 = 0.02. GaMBA was implemented on the 3135 points thus sam-

pled from Ξ∗ and marginal posteriors distributions were obtained.

Table 4.2: CIR: MSE obtained for θ1, θ2 & θ3 for the posteriors obtained using different

methods
Method M K MSE MSE MSE

θ1 θ2 θ3

GaMBA 5 - 0.11623 0.034306 0.000576
GaMBA− I 5 5 0.05767 0.01799 0.000575
GaMBA− I 5 20 0.04538 0.015 0.000405
GaMBA− I 10 5 0.0455 0.01394 0.000401
GaMBA− I 10 20 0.0421 0.01312 0.000378
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Figure 4.7: Simulated data for CIR process.

Figure 4.8: CIR: Marginal posterior using GaMBA for M = 5 vs. posteriors obtained using GaMBA-

I for [M = 5,K = 5], [M = 5,K = 20] and [M = 10,K = 20] respectively. Vertical lines denote the

true values θ1 = 1, θ2 = 0.5 and θ3 = 0.2.

Table 4.2 lists the mean squared error (MSE) obtained for each of the parameters
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using different methods for inference. Asymptotic properties of the GaMBA-I posterior

can be seen. Posteriors obtained using GaMBA are not accurate for the CIR process.

GaMBA-I does provide better approximation and that these approximations become

more accurate as M and K increase. Figure 4.8 plots some of these posteriors.

Example: Euro-Dollar interest rate data

Recall the Euro-Dollar interest rate data analysed using the MCMC method in

Section 3.6.3. This data is now analysed using GaMBA-I with M = 5 and K = 10.

The parameter space Ξ∗ = Ξ∗1 × Ξ∗2 × Ξ∗3 was chosen based on prior knowledge as

Ξ∗ = [0.00001, 0.00401] × [0.00002, 0.02] × [0.001, 0.0181], and a grid GΞ∗ was consid-

ered with ∆Ξ1 = 0.0003, ∆Ξ2 = 0.003 and ∆Ξ3 = 0.001. GaMBA was implemented

on the 1764 points thus sampled from Ξ∗ and marginal posteriors distributions were

obtained.
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Figure 4.9: Euro-Dollar data: Marginal posteriors using MCMC vs. posteriors obtained using

GaMBA-I for [M = 5,K = 10]. Vertical lines denote the true values θ1 = 00036, θ2 = 0.0047 and

θ3 = 0.012.

Figure 4.9 shows the GaMBA-I posterior thus obtained plotted over the MCMC

posterior of Figure 3.5 obtained in Section 3.6.3. It can be seen that the marginal pos-

teriors using these two methods for θ1 and θ2 are quite close. For θ3, posterior obtained

using GaMBA-I has much smaller variance than the one obtained using MCMC, but it

still covers the true value of the parameters. GaMBA-I takes only 6 minutes to imple-

ment in this case, and as described in the Section 4.8, this time can be further reduced

multi-fold by using multiple parallel processing computing units. Further as seen in

the earlier example, if desired, accuracy of GaMBA-I can be improved by increasing

M and K.
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4.7 Where GaMBA and GaMBA-I do not work

As described earlier, the mean of the MBB density is the linear interpolation between

the two observed points. As a consequence GaMBA and GaMBA-I would yield effi-

cient and accurate inference when the data are observed close enough so that the path

taken by the process between any two consecutive observations can be considered to

be approximately linear.

Let ∆t denote the time difference between the consecutive data points. For all the

examples considered in Section 4.6, the data was observed at every unit time interval,

i.e ∆t = 1. In this section, it is illustrated using simulated examples that in the ex-

treme cases where ∆t >> 1, the 95% probability interval for PE(yt, yt+∆t ,X|Θ) and

PMBB(X|yt, yt+∆t ,Θ), where yt and yt+∆t are the observed data, do not overlap for

processes with highly non-linear paths. These examples illustrate that for processes

with highly non-linear paths and where the data is sparsely observed, GaMBA and

GaMBA-I would not yield an efficient and accurate inference.

4.7.1 GBM process

The GBM process models exponential growth the rate of which is determined by pa-

rameter θ1. A smaller value for θ1 would indicate a slower rate of growth.
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Figure 4.10: Median and 95% probability intervals based on a set of simulations, for GBM with

θ1 = 0.05 and θ2 = 0.05 using PMBB (dashed lines) vs. PE (lines) for ∆t = 1 (left) and ∆t = 10

(right). Observed data are denoted by the asterisk.

Consider a GBM process with a slower rate of growth, θ1 = 0.05. Figure 4.10

shows that even when ∆t = 10, the 95% probability interval for PE(yt, yt+∆t ,X|Θ)

and PMBB(X|yt, yt+∆t ,Θ) do overlap, as they do when ∆t = 1. However, for a GBM

process with a faster rate of growth θ1 = 0.25, Figure 4.11 shows that if ∆t = 10, then

the 95% probability interval for PE(yt, yt+∆t ,X|Θ) and PMBB(X|yt, yt+∆t ,Θ) do not

overlap. Note that, this is not the case when ∆t = 1.

4.7.2 OU process

As described earlier, OU process is a mean-reverting process with the rate of reversion

controlled by the parameter θ2. A larger value of θ2 implies that the process will revert

back more often.
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Figure 4.11: Median and 95% probability intervals based on a set of simulations, for GBM with

θ1 = 0.25 and θ2 = 0.05 using PMBB (dashed lines) vs. PE (lines) for ∆t = 1 (left) and ∆t = 10

(right). Observed data are denoted by the asterisk.
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Figure 4.12: Median and 95% probability intervals based on a set of simulations, for OU with

θ1 = 1, θ2 = 1 and θ3 = 0.05 using PMBB (dashed lines) vs. PE (lines) for ∆t = 1 (left) and ∆t = 10

(right). Observed data are denoted by the asterisk.

Consider an OU process with a rate of reversion, θ2 = 1. Figure 4.12 shows

that even when ∆t = 10, the 95% probability interval for PE(yt, yt+∆t ,X|Θ) and

PMBB(X|yt, yt+∆t ,Θ) do overlap, as they do when ∆t = 1. However, for an OU process

with a much slower rate of reversion θ2 = 0.1, Figure 4.13 shows that if ∆t = 10, then

the 95% probability interval for PE(yt, yt+∆t ,X|Θ) and PMBB(X|yt, yt+∆t ,Θ) do not

overlap. Note that, this is not the case when ∆t = 1.

4.7.3 CIR process

The CIR process also has a mean-reverting property with the rate of reversion con-

trolled by the parameter θ2. A larger value of θ2 implies that the process will revert

back more often.
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Figure 4.13: Median and 95% probability intervals based on a set of simulations, for OU with

θ1 = 1, θ2 = 0.1 and θ3 = 0.05 using PMBB (dashed lines) vs. PE (lines) for ∆t = 1 (left) and

∆t = 10 (right). Observed data are denoted by the asterisk.
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Figure 4.14: Median and 95% probability intervals based on a set of simulations, for CIR with

θ1 = 1, θ2 = 1 and θ3 = 0.05 using PMBB (dashed lines) vs. PE (lines) for ∆t = 1 (left) and ∆t = 10

(right).Observed data are denoted by the asterisk.

Consider a CIR process with a rate of reversion, θ2 = 1. Figure 4.14 shows

that even when ∆t = 10, the 95% probability interval for PE(yt, yt+∆t ,X|Θ) and

PMBB(X|yt, yt+∆t ,Θ) do overlap, as they do when ∆t = 1. However, for a CIR process

with a much slower rate of reversion θ2 = 0.25, Figure 4.15 shows that if ∆t = 10,

then the 95% probability interval for PE(yt, yt+∆t ,X|Θ) and PMBB(X|yt, yt+∆t ,Θ) do

not overlap. Note that, this is not the case when ∆t = 1.

Remark: Non-linearity of the paths is also governed by the diffusion coefficient.

The illustrations shown above have been selected as extreme cases with very small dif-

fusion coefficients (0.05). A larger diffusion coefficient will yield wider 95% probability

intervals for both PE and PMBB and thus will likely increase the efficiency of GaMBA-I

on sparse data.

108



Figure 4.15: Median and 95% probability intervals based on a set of simulations, for CIR with

θ1 = 1, θ2 = 0.25 and θ3 = 0.05 using PMBB (dashed lines) vs. PE (lines) for ∆t = 1 (left) and

∆t = 10 (right). Observed data are denoted by the asterisk.

4.8 Discussion

Two algorithms have been introduced in this chapter to obtain computationally ef-

ficient Bayesian inference on SDE models. Various aspects of these algorithms are

discussed below.

4.8.1 Which is more appropriate: GaMBA or GaMBA-I?

Both these methods use the MBB density to sample the latent variables X. However

while GaMBA is a deterministic approach, GaMBA-I is stochastic. There are also

important differences between them regarding the computatinal efficienty, consistency
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and applicability of these two methods. Some guidelines are provided here to help the

practitioner decide which method is more appropriate.

The advantage that GaMBA has over GaMBA-I is that, in principle, GaMBA is K

times faster than GaMBA-I, because it simply chooses the modal value of the MBB

transition density at each time point unlike GaMBA-I which draws K samples of X

instead.

GaMBA-I has two clear advantages over GaMBA: firstly, unlike GaMBA, GaMBA-

I provides the possibility to study the consistency properties of its posterior. Some

consistency results are already available for GaMBA-I as discussed in Section 4.5.2

and illustrated in Section 4.6. Secondly, from the illustrations in Section 4.7 it is clear

that if the data are sparsely observed then GaMBA-I will provide better inference than

GaMBA and is therefore more widely applicable.

Therefore to summarise, it would be advisable to use GaMBA only if data are fairly

closely observed so that ∆t ≤ 1, and when the computational resources are scarce. In

all other circumstances GaMBA-I would be more preferable than GaMBA. Illustrations

in Section 4.7 can be used to decide the if the data are too sparsely observed for the

concerned process for GaMBA-I to be no longer efficient.

4.8.2 Practical Considerations

Because of its asymptotic properties, and wider applicability GaMBA-I is the preferred

algorithm and is therefore the focus of the following discussion. However, unless oth-

erwise stated, the same discussion is applicable to GaMBA as well.
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Sparsely observed data: Stramer and Yan (2007) have illustrated that their con-

vergence results take effect only for a large value of M even for ∆t = 1. All the

datasets analysed in Section 4.6 were simulated with ∆t = 1. Further in Section

4.7 it has been effectively illustrated why GaMBA-I could become very inefficient

(depending on the non-linearity of the process) for sparsely observed data where

∆t = 10. Also, as stated above, it would be advisable to use GaMBA only if data

are fairly closely observed so that ∆t ≤ 1, and when the computational resources

are scarce.

Choosing M : Section 4.6 has illustrated that reasonably accurate results could

be obtained for values of M as small as 5 or 10. However, in many inference

problems, the accuracy achieved in Section 4.6 may not be enough and higher M

will have to be used to get better results.

Choosing K : Stramer and Yan (2007) prove that K = M2 is the computationally

optimal value for SDEs with unit diffusion coefficient. As can be seen from

the examples considered in Section 4.6, a smaller value of K (between 5 and

20) is often enough to provide efficient inference. The results obtained for un-

transformed CIR process are in line with those obtained for Stramer and Yan

(2007). However, in many inference problems, the accuracy achieved in Section

4.6 may not be enough and higher K will have to be used to get better results.

Choosing ∆Ξ : ∆Ξ governs how fine (or coarse) the grid constructed on the support

Ξ∗ is. Because GaMBA-I produces discretised posteriors, a smaller ∆Ξ implies a

finer grid and a better approximation to the true continuous posterior. As illus-

trated in the examples, ∆Ξ will be different for every parameter, and its value

will depend on the length of the support for that parameter. As a rule-of-thumb,
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∆Ξ should be small enough so that the grid selects at least 10 values from the

support for each parameter. This means if there are 3 parameters, |GΞ∗ | > 1000.

It is very important to note that this rule-of-thumb strategy advised above is ap-

plicable only to symmetric uni-modal posterior distributions. If there are reasons

to believe that the posterior distribution may be highly skewed or multi-modal

in at least one of the dimensions then much finer GΞ∗ might be required.

No dependency between X and Θ : As described in Section 4.4, GaMBA (and

also GaMBA-I) get around the problem of dependency between the latent process

X and the parameters Θ. This means that there is no need to re-parameterise an

SDE before inference and thus GaMBA can be applied to a wider class of SDE

models; for example: to multivariate SDE’s.

Ease of Implementation : Unlike the MCMC based methods, GaMBA-I does

not need the SDE to be re-parameterised – this is illustrated from the results

obtained for un-transformed CIR process in Section 4.6. Further unlike the sim-

ulated likelihood methods, GaMBA-I does not involve use of numerical methods.

This makes GaMBA-I both mathematically as well as computationally simpler

to implement and more widely applicable.

4.8.3 Computational Efficiency

• Computational effort required for implementing the MCMC based method de-

scribed in Section 3.6.2 is directly proportional to M and the number (R) of the

samples needed to be drawn using the Markov chains. Computational effort re-

quired for implementing GaMBA-I is directly proportional to M , the cardinality

of GΞ∗ and K.
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• Computational effort required by GaMBA-I (with K = 1) for one value of Θ is

only slightly smaller than the effort required by MCMC method specified. This

slight advantage is due to the fact that unlike MCMC (which samples new Θ

from P (·|X,Y) ), GAMBA-I takes selects Θ from a pre-determined set of values.

• Let TM and TGI be the computational time required by the MCMC method

and GaMBA-I respectively. Then, ignoring the small difference mentioned in

the previous point, and assuming that same M is used for both MCMC and

GaMBA-I, the computational advantage that GaMBA-I has over MCMC is

TM − TGI ∝ R− |GΞ∗| ×K.

• As seen from the Euro-Dollar data example, accurate inference using MCMC

requires a large R. Further, a smaller M might be sufficient for inference using

GaMBA-I, as seen in that example. Thus the computational advantage men-

tioned above is expected to be significant for many SDE models.

• In addition to the above computational advantage, the computational effort re-

quired for GaMBA-I can be reduced multi-fold using multiple parallel processing

computing units. Because multi-core processors have now become a standard

in personal computers, this does not require the user to have access to external

servers. As discussed in Section 2.4.3.6, it is not straightforward to implement

MCMC based methods using parallel-processing capabilities.

• Computational effort required for GaMBA is same as the computational effort

required for GaMBA-I with K = 1.

Note that parallel processing has not been implemented in any of the examples

mentioned in this thesis. However, because this technology has a significant potential

to improve the computational efficienty of GaMBA-I, presented below is the algorithm
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of how it could be implemented.

Algorithm for parallel processing of GaMBA-I:

Assume that P parallel processing units are available.

1. Identify Ξ∗ (as described in Section 4.2.1.)

2. Define a discrete grid GΞ∗ on Ξ∗.

3. Divide the total number of points on GΞ∗ on Ξ∗ into P subsets (mutually exclusive

and exhaustive) and assign each subset to a different parallel processing unit.

4. For each of the subsets, say G(p)
Ξ∗ , for p = 1, · · · , P , implement the following steps

5(a) and 5(b) simultaneously (using the parallel processing units) for each of the

subsets

5. For each point on the subset Θj ∈ G(p)
Ξ∗

(a) for k = 1, · · · , K,

Sample Xk ∼ PMBB(Xk|Θj,Y) as described in Section 4.3.2

(b) Evaluate

PGaMBA−I(Θj|Y) ∝ 1

K

K∑
k=1

PE(Y,Xk|Θj) · P (Θj)

PMBB(Xk|Θj,Y)

.

6. Normalise to obtain P (Θ|Y) over GΞ∗ .

where:

• PE(Y,X|Θj) is the Euler’s density as in Equation (4.7);
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• P (Θj) a suitable prior density;

• PMBB(X|Y,Θj) is the MBB density as in Equation (4.17).

When GaMBA-I is implemented using parallel processing, it is expected that its

computational advantage over the MCMC would be

TM − TGI ∝ R− |GΞ∗ | ×K
P

.

4.8.4 Limitations

Ξ∗ is not known : In its present form, GaMBA-I assumes that the support Ξ∗ is

known due to prior knowledge or otherwise. This is a very important limitation,

since this assumption may not be valid for many practical modeling problems.

As mentioned in Section 4.2.1, it may be possible to develop a methodology to

objectively identify Ξ∗, however this is a separate research problem in itself at

present remains a open problem.

Dimensionality of the parameter space Ξ : While implementing GaMBA-I,

the parameter values are sampled from the space Ξ∗ by constructing a regular

grid on this space. Though this may possibly be the simplest way to sample,

it may not be the most efficient one. The grid sampling method works well

when the parameter space is five-dimensional or less, but beyond that it very

rapidly becomes computationally too expensive. Thus, GaMBA-I may not be

computationally efficient for SDE models with five or more parameters.

Sparsely observed data : Section 4.7 illustrates that GaMBA-I will not be efficient

when data are too sparsely observed. Further, how closely the data need to
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observed also depends on the non-linearity of the process. In general, if the data

are not observed closely enough, larger M and K would be required to obtain

accurate inference and GaMBA-I may not be as computationally efficient in this

case. This clearly limits the potential of GaMBA-I to be applicable in situations

where the data is sparsely observed.
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Chapter 5

Modeling Dynamic Force using

Stochastic Differential Equations

This Ph.D project was motivated by the need to develop stochastic process models to

understand the dynamics of the accumulation of damage to a road surface. The factors

which cause this degradation are the forces exerted by the vehicles, weather conditions

and the materials used to construct the road. The extent of degradation at a given

point in time also varies spatially. Eventually, given a road surface, it would be desired

to be able to predict the distribution of its time to failure. Further it is also hoped that

resulting statistical modeling will provide a better understanding of the uncertainties

involved at various stages and thus will eventually also help in building better roads.

The dynamic force exerted by vehicles on the road surface is a very important fac-

tor in road degradation, and investigating the relationship between the force exerted

by the vehicle and the mass of the vehicle is known as the Weight-in-Motion (WIM)

problem in the engineering literature. Typically the force sensors are placed in the road

surface on a small patch of the road, and the forces exerted by each axle of the vehicle

are measured as the vehicle travels over these sensors at the usual speed. The problem
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is then to estimate the mass of each of the vehicle axles using the corresponding set of

measured forces.

In the statistics literature, a hierarchical Bayesian model was used to model these

dynamics and the Bayesian inference was implemented using the standard MCMC

methods by Wilson et al. (2008). The existing engineering models used to capture

these dynamics are differential equation models based on Newton’s second law. One

such model is briefly reviewed in Section 5.1. The motivation behind this work was to

check if better models could be built by using stochastic differential equations (SDE)

instead, where the inference can be derived using Bayesian methodology. Since the

SDE models capture the inherent uncertainty associated with physical processes, it

was desired to investigate if an SDE model based on a simpler engineering model, can

sufficiently capture these dynamics.

This work is in collaboration with Prof. Eugene O’Brien of the School of Architec-

ture Landscape and Civil Engineering at University College Dublin. The engineering

models used in this research are provided by Prof. O’Brien’s team.

5.1 Background

This section provides a brief description of a few concepts necessary to model the

damage to the road surface. A detailed background could be found in Tedesco et al.

(1999), Cebon (1999),Harris (2007), and Tegegn (2007).
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5.1.1 Spatial Repeatability (SR)

One of the principal factors that causes road damage is the dynamic force imposed on

the road surface by heavy vehicles, principally trucks. It has been observed both exper-

imentally, as well as numerically (Ervin (1983),Mitchell (1987),Huhtala et al. (1992)),

that the pattern of dynamic tyre forces applied by the truck axles to a road surface

is similar for repeated runs at similar speeds. This phenomenon is called Spatial Re-

peatability (SR). This basically implies that a road surface is likely to be affected more

at particular areas and less affected at others along its length.

5.1.1.1 Statistical Spatial Repeatability (SSR)

This is an extension to the concept of spatial repeatability. SSR states that the mean

of many patterns of dynamic tyre forces applied to a pavement surface is similar for

a fleet of trucks of a given type. It has been shown experimentally (O’Connor et al.

(2000)) that the mean pattern of the forces exerted is similar for many trucks of the

same type.

5.1.2 Models capturing Road-Vehicle interaction

Existing engineering models used to capture the road-vehicle dynamics are based on

Newton’s second law whereby the resulting force F is described as

F = m · a

F = m · u′′ (5.1)

where m is the mass, a is the acceleration, u is the displacement, and u′′ is its second

derivative with respect to time t. In general, if there are multiple forces (say k different
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forces), then we have

F1 + F2 + · · ·+ Fk = m · u′′. (5.2)

The number of masses considered in a model determine the ’degree of freedom’ (DOF)

for that model. The higher the degree of freedom, the more accurately does the model

capture the true dynamics. However, such models also become increasingly more com-

plicated. Here, only the simplest model has been considered.

5.1.2.1 Single DOF model

This is the most basic of the model. It represents the vehicle as a system consisting

of a single mass, a spring and a viscous damping on a fixed road surface. It does not

perfectly capture the dynamics of the force exerted by a vehicle, but is very easy to

evaluate. Figure 5.1 illustrates the Model.

Figure 5.1: Single DOF Model

The vehicle is excited by the pavement roughness r(t) measured in terms of road
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elavation. The equations of motion for a one DOF model are given by (Tedesco et al.

(1999), pg. 129)

m · u′′(t) + c · (u′(t)− r′(t)) + k · (u(t)− r(t)) = 0 (5.3)

where u′(t) and u′′(t) represent the first and the second derivatives of the vertical

displacement u(t), and r′(t) represents the first derivative of the external excitation

(road surface) at t.

Note that, Equation (5.3) can be written as

m · u′′(t) = −(G(t) + F (t)), (5.4)

where

G(t) = c · (u′(t)− r′(t)) (5.5)

is the (absorbed) force due to damping c, and

F (t) = k · (u(t)− r(t)) (5.6)

is the resulting dynamic force exerted on the road surface.

5.2 Modeling Dynamic Forces

A small patch of the road (a few meters in length), is fitted with sensors which can

measure the force exerted by every vehicle as it traverses over the sensors. Thus, if

there are p sensors, then for every vehicle, the forces are measured at p different loca-

tions. Figure 5.2 illustrates how sensors are located. Thus data consists of the observed

forces captured using these sensors.
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Figure 5.2: Sensors to measure the force

Consider Equation (5.3) corresponding to the single DOF model, which provides the

relationship between the vertical displacement u(t) of an axle and the known pavement

roughness r(t). The solution of this differential equation is the vertical displacement

u(t). However what can be observed in practice, are the forces F (t) and not the dis-

placements u(t). In order to use this model to model dynamic forces, the model needs

to be reparameterised, so that the solution of the model is now the dynamic force F (t)

instead.

5.2.1 Single DOF model for dynamic force

This force F (t) can be expressed using Equation (5.6), and we have

u(t) = F (t)/k + r(t) (5.7)

u′(t) = F ′(t)/k + r′(t) (5.8)

u′′(t) = F ′′(t)/k + r′′(t). (5.9)

Substituting Equations (5.7), (5.8) and (5.9) in Equation (5.3), results in the fol-
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lowing differential equation

m · F ′′(t) + c · F ′(t) + k · F (t) = −m · r′′(t) · k. (5.10)

whose solution is the force F (t). Equation (5.10) can now be used to model the

dynamic forces measured using the sensors. The road excitation r(t) are known.

5.2.2 Building an SDE model

The equation of Force obtained by solving this single DOF model is given by (Tedesco

et al. (1999), pg. 152)

F (t) = F0(t) · [1− exp−µωnt(cos(ωdt) +
µ√

(1− µ2)
sin(ωdt))] (5.11)

where F0(t) = −m · r′′(t) · k, ωn =
√
k/m, cr = 2

√
m/k, µ = c/k

cr
, and ωd =

ωn
√

(1− µ2).

Equation (5.11) provides a deterministic solution for the dynamic force. It is pos-

sible to use this equation to build a stochastic differential equation (SDE) model for

this dynamic force.

Such a model will have the general form

dF (t) = F ′(t) dt+ g(·, t) dW (t) (5.12)

where

F ′(t) =
dF (t)

dt

and g(·, t) is some function which is believed to capture the uncertainty in the process.
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The objective of this chapter is to explore if an SDE based model such as Equation

(5.12) could be used to model the dynamic force exerted by the vehicles. However

for such a modeling exercise to be meaningful, there has to be enough justification

to believe that the vehicle-force interaction is indeed stochastic in nature. After dis-

cussions with the collaborators, it emerged that though they believe this interaction

to be largely deterministic, but the uncertainty could stem from the spring stiffness

coefficient k.

It could be possible to capture this uncertainty in the SDE model using a suitable

diffusion term g(·, t). One way to do this is to define g as a linear function of the spring

stiffness coefficient k. Thus, we have

g(·, t) = θ · k. (5.13)

Using Equations (5.12) and (5.13), the SDE for the dynamic force is given by

dF (t) = F ′(t) dt+ θ · k dW (t). (5.14)

Note that, Equation (5.14) provides one way of modeling the force exerted by the

vehicles on the road surface using an SDE. Also note that, the above SDE is linear and

both its drift and diffusion coefficients are deterministic - the randomness only comes

from the Wiener process components. Thus, this is not a particularly challenging SDE

to infer and infering this process using GaMBA and MCMC is mainly of academic

interest.
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Figure 5.3: Simulated data: Observed (*) and unobserved (+)

5.3 SDE Modeling for the Simulated Data

The aim of this exercise was to infer vehicle properties — namely the mass and the stiff-

ness of the vehicle — having observed the forces exerted by it on a given road surface.

The SDE of Equation (5.14) was used to model the relationship between the force and

the vehicle properties. It was assumed that a weak solution to Equation (5.14) exists.

The inference on the parameters of Equation (5.14) would be done using the Bayesian

methodology. Both MCMC and GaMBA were used to implement Bayesian inference

on these parameters to compare the speed and the accuracy of these two methods.

The data were simulated using the Q-C model (a higher order deterministic differ-

ential equation model) with added Gaussian noise. The road surface was 24.5 meters

in length and sensors were placed at every 1.5 meters; thus there were 17 data points

(one corresponding to each sensor) in all. As shown in Figure 5.3, the first 12 data

points were considered as ’observed’, and the last 5 were used to check the accuracy of

the prediction intervals.
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Figure 5.4: Posterior distributions obtained using GaMBA along with the true values for k and m

shown by the vertical lines.

Among all vehicular traffic, the main contributor to the road degradation are the

fully loaded large trucks (averaging in weight at about 40 tonnes each). The axle used

in the above set-up belonged to a 5-axle truck of this type. Therefore, it was possible

and reasonable to use an informative prior for the mass. This prior was chosen to be

a Gaussian distribution with mean 8000 Kg and the standard deviation of 400, i.e.

N(8000, 400). Similarly, it is possible to choose an informative prior on the stiffness k,

and was chosen as N(550×103, 15×103). However, there is no background information

on θ, and therefore the prior for θ was chosen to be U(0.01, 0.31).

Based on this prior knowledge, the parameter space was chosen as Ξ∗ = [6000, 9000]×

[400×103, 600×103]× [0.01, 0.31]. The grid GΞ∗ was constructed with ∆Ξ1 = 20×103,

∆Ξ2 = 100 and ∆Ξ3 = 0.1. GaMBA was implemented on the 1, 367 points thus sam-

pled from Ξ∗ and marginal posteriors distributions were obtained.
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Figure 5.4 shows the marginal posterior distributions obtained using GaMBA. The

true values of the parameters were later revealed to be m = 7524, and k = 500 × 103

and are depicted using vertical lines. Note that there is no true value for θ, and that

it has been used as a nuisance parameter to capture the uncertainty regarding the true

track of travel.

Sampling the parameter values from the joint posterior distribution, and then sim-

ulating the SDE forward in time lends the posterior predictive distribution for the

’unobserved’ (data points 13 through 17) sensors. Figure 5.5 shows the 95% bounds

for this predictive distribution and also its median. It can be seen that both the ob-

served as well as the unobserved data compare well against the median of the predictive

distribution indicating a good fit of the model.

The MCMC described in Section 3.6 was implemented on this data. Visual check

of the MCMC trace plot along with the correlograms were used to assess stationar-

ity. First 5, 000 samples were discarded as the ’burn-in’ period, and the next 5, 000

samples were chosen as the correlated draws from the stationary distribution. Figure

5.6 shows the MCMC trace plots along with the correlograms. The MCMC posteriors

were plotted along with the GaMBA posteriors and are shown in Figure 5.7, where the

vertical lines depict the true values of stiffness k and mass m. In order to assess how

closely the results from GaMBA agree with those obtained using MCMC, the posterior

distribution functions (CDFs) obtained using the two methods were plotted together

and are shown in Figure 5.8.
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Figure 5.5: Simulated data with 95% Prediction intervals and the median prediction level using

GaMBA.

Figure 5.9 shows the prediction plot obtained using MCMC posteriors. It can be

seen that GaMBA posteriors correctly identify the true value - however the dispersion

of GaMBA posteriors is considerably different from those obtained using MCMC. But

while GaMBA takes 30 seconds, MCMC takes more than 4 minutes.

Thus, GaMBA turns out to be nearly 8 times faster compared to a standard MCMC

scheme in this case.
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Figure 5.6: MCMC trace plots along with their correlograms.

Figure 5.7: MCMC posteriors (–) plotted over GaMBA posteriors (line) along with the true values

for k and m shown by the vertical lines.
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Figure 5.8: Distribution functions using MCMC(red) plotted over GaMBA(blue) for (a) k and (b)

m.

Figure 5.9: Simulated data with 95% Prediction intervals and the median prediction level using

MCMC.
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5.4 Discussion

This Ph.D. work was motivated by the need to develop better understanding of the

dynamic relationship between the vehicle properties and their effect on a road surface.

Specifically the purpose was to achieve better statistical inference on vehicle properties

such as mass and stiffness having observed the forces exerted by the vehicle on the

road surface.

This chapter first reviews the necessary engineering concepts, then develops a

stochastic differential equation model to model the relationship between the vehicle

properties and the force exerted by the vehicles. The authors are not aware of any

other work where SDE’s have been used to model this relationship. This model build-

ing process has been exploratory in nature and the model built is mainly of academic

interest only. It is however shown, that inference on this SDE model can be obtained

at 8 times less computational cost using GaMBA.
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Chapter 6

Conclusions & Further Work

6.1 Conclusions

A new approach for Bayesian inference on stochastic differential equation (SDE) models

has been proposed. This approach is not MCMC based and is inspired from the work of

Rue et al. (2009) on the Integrated Nested Laplace Approximation (INLA) for Gaus-

sian Markov Random Field (GMRF) models. This thesis introduces two new methods

to implement this approach. These methods have been named as the Gaussian Modi-

fied Bridge Approximation (GaMBA) and its extension GaMBA- Importance sampling

(GaMBA-I). This thesis provides an easy to use algorithm for both these methods, dis-

cusses their consistency properties, describes examples where these methods provide

efficient inference and also illustrates situations where these methods would not yield

efficient and accurate inference.

More importantly, this thesis provides a general framework that can be used for

Bayesian inference on SDE models rather than using the MCMC based methods. As the

research progresses and better diffusion bridge approximations become available, better

computational methods are discovered, they can be incorporated into this framework
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to make feasible efficient Bayesian inference for a wider class of SDE models. Further,

since this approach is computationally cheaper than the MCMC based methods, its use

has the potential to make possible the inference on several highly complex processes

using SDE models.

This research has also attempted to model the dynamic force exerted by the vehicles

on the road surface using SDE models. As far as the author and the collaborators are

aware, this has not been done so far. An SDE model based on one of the existing

differential equation models was used to fit a simulated force data using GaMBA. This

was considered as a ’proof of concept’ work to investigate if the SDE modeling of this

problem is feasible.

6.2 Further Work

While developing GaMBA, several questions and several new ideas emerged leading to

following possible areas for future research.

1. There remains the need to develop a diffusion bridge construct which would be

easy to implement, applicable on a wide range of SDE models, computationally

cheaper but whose paths would converge in distribution to the true diffusion. As

discussed in Chapter 4, the MBB density though easy to use, is not very useful

when data are too sparsely observed.

One approach to overcoming the limitations induced by MBB might be to develop

a diffusion bridge construct with an inflated variance and this option needs to be

explored.

2. It is needed to develop more objective and widely applicable methods for choosing

Ξ∗. For all the examples carried out in this thesis, Ξ∗ was chosen based on prior
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knowledge, which can be subjective. It might be possible to develop a method

to do this based on Rue et al. (2009). This and other options need to be further

explored.

3. In its current form, the parameter values are sampled from the space Ξ∗ by

constructing a regular grid on this space. Though this may possibly be the

simplest way to sample, it may not be the most efficient one. The grid sampling

method works well when the parameter space is five-dimensional or less, but

beyond that it very rapidly becomes computationally too expensive.

By developing more efficient methods to sample from Ξ∗, it might be possible to

get an even faster inference using GaMBA. Also, it might allow GaMBA to be

used on SDE models with more unknown parameters.

4. Another possible extension could be to devise efficient ways to implement GaMBA

on models such as the stochastic volatility model, where there is a sequential

dependence between the different SDEs. Efficient methods for sampling from Ξ∗

may also need to be used in conjunction.

5. So far, GaMBA has been developed assuming that the data has been observed

without error. It is desirable to extend GaMBA to include the cases when the

data are observed with errors.

6. Finally, it is important to note that diffusion processes and diffusion bridges are

continuous in both state space and time. Since GaMBA is based on a set-up

which involves discretising the time between the two observed data points, even

when a diffusion bridge with the desirable asymptotic convergence properties is

used, it will still be subject to the discretisation error. Exact methods which

sample continuous diffusion bridges (see for example, Beskos et al. (2008)) are

already available, but involve MCMC based methods.
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Since the objective was to develop a method computationally much cheaper than

the MCMC based methods, it is not immediately clear if these exact methods

could be used within the GaMBA framework, and if yes, then how. Therefore,

this remains an area open for further work.
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