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Abstract

In this thesis, we propose a method to robustly estimate the parameters that controls the

mapping of a shape (model shape) onto another (target shape). The shapes of interest are

contours in the 2D space, surfaces in the 3D space and point clouds (either in 2D and

3D spaces). We propose to model the shapes using Gaussian Mixture Models (GMMs)

and estimate the transformation parameters by minimising a cost function based on the

Euclidean (L2) distance between the target and model GMMs. This strategy allows us to

avoid the need for the computation of one to one point correspondences that are required

by state of the art approaches making them sensitive to both outliers and the choice of

the starting guess in the algorithm used for optimisation.

Shapes are well represented by GMMs when careful consideration is given to the

design of the covariance matrices. Compared to isotropic covariance matrices, we show

how shape matching with L2 can be made more robust and accurate by using well chosen

non isotropic ones. Our framework offers a novel extension to L2 based cost functions by

allowing prior information about the parameters to be included. Our approach is therefore

fully Bayesian.

This Bayesian-L2 framework is tested successfully for estimating the affine trans-

formation between data sets, for fitting morphable models and fitting ellipses. Finally

we show how to extend this framework to shapes defined in higher dimensional feature

spaces in addition to the spatial domain.
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Chapter 1

Introduction

Human vision is a powerful perceptual system that allows us to understand the world.
This process of understanding is usually based on the classification and identification
of objects we can see. One of the attributes that most distinguishes an object from its
surroundings is its shape. It is well known and commonly accepted that the mechanism
underlying the human perception of shapes is innate. This innate human ability is so pow-
erful that objects that has been rotated, scaled or even occluded can be still be recognised.
A well known example is shown in Figure 1.1 where a room full of chairs is displayed.
There is no difficulty for humans to recognise the chair partially hidden behind the desk
or the small rotated version hanging from the ceiling.

Figure 1.1: Computer generated image of a room full of chairs [1]

In order to replicate the ability to see from a computer’s point of view it is necessary
to define the concept of shape from a mathematical and digital perspective. Once the
description of a reference shape is provided, any new shape can be identified by com-
parison. This comparison process should take into account all the transformations or
deformations that the new shape may be subject to. Those transformations can be math-
ematically modelled by a set of parameters. In this thesis we address the problem of
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a) b) c)

Figure 1.3: Example of the parameter estimation problems to be considered in this the-
sis. Figure a) shows two shapes (hand). The two shapes are aligned to each other and
displayed in Figure b). Figure c) shows the fitting process performed where one of shape
is deformed in order to represent the second shape as close as possible.

estimating those transformation parameters between shapes in order to achieve methods
for detecting and reconstructing them. In this thesis the focus will be on shapes that can
be represented either using a parametric expression or by a set of points (i.e point cloud,
meshes etc.). Examples of shapes are shown in Figure 1.2.

a) Ellipse b) Hand c) Face

Figure 1.2: Examples of three shapes. Figure a) shows a parametric curve (ellipse). Fig-
ure b) shows a 2D contour model of a hand and Figure c) shows a surface representation
of a human face (3D mesh).

1.1 Overview and motivation

Estimating the parameters of a shape is a problem that arises in different fields in com-
puter vision. The problem is usually classified according to the parameters to be esti-
mated, the knowledge or information about the shape and the kind of observation that is
being dealt with. Two general categories related to shape parameter estimation found in
the literature and that we will study are shape alignment and shape fitting.

Shape Alignment: The alignment process consists of estimating the affine transfor-
mation (rotation, translation and scaling) between the two shapes (cf. Figure 1.3b). This
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Figure 1.4: Point to point correspondence between shapes

process is commonly referred to as shape registration. Registration of shapes usually
involves a second process where point correspondence between the two shapes needs to
be computed (cf. Figure 1.4). The correspondence between shapes is not a trivial prob-
lem and usually introduces error when estimating parameters, in particular when the two
shapes are not defined using the same description.

Shape Fitting: A statistical shape model is deformed in order to fit a set of observa-
tions (cf. Figure 1.3c). Many state of the art methods solving this problem require the
model and the observation to be aligned. Additionally, the correspondences between the
two shapes need to be established. The need for correspondences imply that the fitting
algorithm depends directly on the previous step: registration. Any error in the correspon-
dences is directly reflected in the parameters estimated during the fitting process. This
makes fitting algorithms very sensitive, especially to outliers and noise in the data.

1.2 Current problems and scope of the present work

Shape fitting algorithms still depend on the accuracy of the correspondences. Indeed,
errors in the correspondence in between the model and the observations mislead the fitting
process. This implies the need for a registration algorithm that achieves better results.
Furthermore, the results need to be accurate even when outliers, noise and occlusions are
presents.

More recent registration algorithms based on the idea of distance between density
functions offer more promising alternatives for robust registration. However, little ef-
fort has been done yet in terms of modelling density functions tailored for representing
shapes. Moreover, robust methods are often more computationally intensive. Therefore
particular attention is also required for proposing density functions representing well and
efficiently the shapes to limit computations.

The goal is then to achieve a method for estimating shape parameters that could meet
the following criteria:

• Robust to outliers

• Achieve an accurate estimation of the parameters
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• Avoid point-to-point correspondence in order to be able to compare shapes that
have been sampled at different rates or acquired using different sensors.

• Have a computationally efficient algorithm

The question here is how to balance all those requirements by modelling suitable cost
functions to optimise. We study the robust inference for shape parameters estimation.
We explore, in particular, methods based on the L2 distance. We focus on the modelling
of the shape as a density function. Moreover, we use Gaussian Mixture Models and
analyse the role of the covariance matrices for achieving a robust, accurate and efficient
estimation.

1.3 Summary of contributions

We propose in this thesis to model shapes as probability density functions and to use the
concept of divergence as a measure of similarity between them. In particular, we con-
sider two Gaussian Mixture Models f and g defined for two shapes. The transformation
parameters between these shapes can then be estimated using the Euclidean distance be-
tween probability density functions also known as L2. The key contributions reported in
this thesis are:

1. We show that the robustness while estimating parameters using the L2 metric de-
pends directly on the modelling of the density functions (f and g). Furthermore,
the covariance associated to the density function modelled as GMM affects the
convergence of the optimisation algorithm and the accuracy of the estimation. This
leads to the need for modelling better suited GMM when representing shapes and
estimating their parameters (cf. Chapter 3).

2. We propose to define GMM for representing shapes that use non-isotropic covari-
ance matrices based on its geometry. We demonstrate that this modelling improves
the estimation results and it helps in achieving a more efficient optimisation algo-
rithm for estimating parameters (cf. Chapter 4).

3. We propose a Bayesian framework based on the L2 metric. This framework allow
us to include prior information about the parameters to estimate (cf. Chapter 4).

4. We explore the Bayesian-L2 framework proposed and tackle challenging problems
in computer vision such as the affine transformation (cf. Chapter 5), shape fitting
(cf. Chapter 6) and parametric curve estimation (cf. Chapter 7). The contribution
of these three Chapters is summarised as follows:
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(a) In Chapter 5 we propose a method for estimating the affine transformation
between data sets. A dedicated Mean Shift algorithm is implemented for
solving the optimisation problem when the bandwidths of the GMM are as-
sumed isotropic. When non-isotropic bandwidth are used a Newton algorithm
is proposed.

(b) In Chapter 6 a method for estimating the parameters of the morphable model
that best fits a set of observations is proposed. A dedicated Mean Shift algo-
rithm is used for solving the optimisation. The main advantage of this method
is that no correspondence is needed between data sets as in most shape fitting
algorithms.

(c) Chapter 7 presents a method for detecting multiples instance of an ellipse.
The parameters of the ellipse are estimated using the Bayesian framework
proposed previously.

1.4 Thesis outline

The work carried out in this thesis is structured in seven chapters (cf. Figure 1.5).
Chapter 2 summarises the state of the art in shape parameter estimation. It contains a
brief overview of shape representation and statistical inference. Additionally, the most
relevant algorithms for shape registration and fitting are reported along with a discussion
about the problems and challenges still remaining in the field. The following five chap-
ters contain the contribution of this thesis (Chapter 3 to Chapter 7). They are classified
in two parts. Part I includes Chapters 3 and 4. Here, we propose a new framework for
estimating parameters. We first introduce the L2 metric and discuss its advantages for
robust estimation. The L2 metric is a measure of similarity between density functions.
We show that its robustness depends on the modelling of these density functions (Chapter
3). In Chapter 4 we propose to include prior information when using the L2 metric. We
define a Bayesian framework where the data term is based on the L2 distance. We pro-
pose ways of modelling shapes as density functions and study the role of the covariance
matrices in the robustness and accuracy of the estimation process. In Part II of this thesis
we report the experiments and results obtained when using our proposed method to solve
challenging computer vision problems. We classify the experiments in three Chapters
depending on the shape parameters to be estimated. In Chapter 5 we address the affine
transformation between data sets. In Chapter 6 we analyse the performance of the pro-
posed Bayesian-L2 framework for fitting morphable models. We assume in this chapter
that a statistical shape model of the shape of interest is available. The usual limitations
given by correspondence are overcome making the algorithm suitable even for data sets
sub-sampled at different rates or with significant occlusion. In Chapter 7 we explore the
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Figure 1.5: Thesis outline.

advantages of modelling shapes as density functions and its suitability for including extra
information about the shape. We explore the use of multidimensional density functions
that model the contour of the shape as well as its curvature. We test this method when
detecting curves (ellipses). In addition, we propose a method for estimating multiple in-
stances of a shape from a class of interest. Finally the conclusion of the work carried out
in this thesis is summarised in Chapter 8. All the details of the algorithms proposed and
the mathematical expressions used in this thesis are reported in the Appendix A and B re-
spectively. Additional results of the experiments performed can be found in the Appendix
C.
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Chapter 2

Literature Review

In this chapter we present an overview of shape analysis and its uses in computer vision
applications. We first define different approaches for representing shapes in a digital
context (cf. Section 2.1). Following this, in Section 2.2, we present a brief review of
the basic concepts of statistical inference and density function modelling. Statistical
inference plays a key role in shape parameter estimation. In particular for applications
such as shape detection, classification and recognition. These applications and the most
relevant algorithms related to these problems are reviewed in Section 2.3.

2.1 Shape analysis

Any shape can be mathematically defined as the trajectory of a point in movement x(t).
with t the time and x the function describing the trajectory. Furthermore, in a computer
vision context, it can also be defined as all the geometrical information that remains
when location, scale and rotational effects are filtered out of an object [15]. Methods for
describing and representing shapes will be discussed in the following sections. Those
methods can be categorized depending on from where the structures that describe the
shape are extracted. Two groups are recognized: contour-based methods and region-

based methods. A full review of those methods can be found in [16]. In this thesis we
focus only on contour based methods.

2.1.1 Shape description

Contour-based methods for describing shapes are commonly classified as structural (dis-
crete) or global (continuous) approaches.

Structural Approaches: The structural approach breaks down the shape into boundary
segments called primitives. Several primitives have been reported in literature such as
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polygonal approximation, curvature decomposition and curve fitting [16]. Two examples
are shown in Figure 2.1. In (a) the horse shape have been decomposed using the smooth

curvature technique [2]. The information contained in each primitive corresponds to the
maximum curvature and orientation of the segment to be considered. In (b) the primitives
are described using a Syntactic Analysis. This approach is inspired by the composition
of language where sentences are built from phrases, phrases from words and words from
alphabets. Following this idea the shape is represented by a set of predefined primitives
as shown in Figure 2.1c.

a) b) c)

Figure 2.1: Structural shape representation. The shape is broken down in segments that
are represented individually. In a) we reprinted a horse shape that has been represented
using curvature and orientation reported in [2]. The structural description of a chromo-
some shape described in [2] is shown in b) and the primitives used are shown in c).

The main problem with structural methods is the generation of primitives. There is
no formal definition about the number of primitives required or the kind of primitives
necessary to properly represent the shape. A second drawback relies on its nature as a
local representation of the shape. The lack of a global definition of the shape or a topo-
logical integration between those segments affects the proper description of the shape.
The capture of a global shape feature is equally important for a proper representation.

Global approaches: Global approaches do not break the contour shape into subparts.
Instead, the whole boundary is used to describe the shape. For instance, a mathematical
description of the shape as the function x(t) in 2.2 is considered as a global method. Un-
fortunately, such description is usually not available for most of the shapes. However, it
inspires the concept of shape signature, as a function that can be derived from the shape
boundary points. Some of the exiting shape signatures include information such as cen-
troid profile, complex coordinates, centroid distance, tangent angle and curvature among
others. Shape descriptors are also common global methods for shape representation. The
simplest descriptors known as shape factors are: circularity (perimeter2/area), eccentric-
ity, major axis orientation and bending energy. However, they can usually only describe
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Figure 2.2: Global shape description. Figure in a) represents a shape contour that can be
defined using the one dimensional function shown in b) x(t) = cos(2t). The representa-
tion of the character M in c) can be described using its edge image d).

the general characteristics of the shape. For a more detailed description it is necessary
to include more distinctive shape features such as shape area, edges, corners or ridges
(cf. Figure 2.2 c and d). Shape context, for instance, is an example of a feature descrip-
tor. It is based on the selection of a set of points taken from the contour of the shape.
The key idea is to use the distribution of these points over relative positions as robust,
compact, and highly discriminative descriptor. Shape context has been used as a method
for estimating corespondence between shapes and for shape matching applications [17].
Descriptors are not only defined in the shape space but also in different domains such the
Fourier descriptors [18, 19, 20] or wavelets descriptors [21, 22].

2.1.2 Shape representation

To evaluate and manipulate shapes in a digital context it is necessary to look not only at
how accurate the shape is described but also how this description is represented.

String representation: Structural approaches for shape description are usually repre-
sented by encoding the information into a string S = s1, s2, s3, ..., sn. Each element si
corresponds to specific information (primitives) from the shape. For instance, the shape
of the chromosome shown in Figure 2.1 b) can be represented as a grammatical string
using the predefined letter of each segment as: S = dbabcbabdbabcbab.

Point Cloud and Mesh Representation: Common shape representation for global
methods are point clouds and meshes. The point cloud corresponds to a set of points,
usually specified by a 3-tuple, [x, y, z] defined on an orthogonal coordinate system. In
the case of 2D the points are usually extracted by sampling the edges of an image (cf.
Figure 2.3). Meshes on the other hand, correspond to a structured representation of the
point cloud. It is defined by a topology given by fitting polygons (i.e triangles) to the
points. The mesh is then described as a set of vertex, edge, normal and faces (cf. Figures
2.4 and 2.5).
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Figure 2.3: Point Cloud description by sampling the edge image.

Figure 2.4: Point Cloud description by sampling the edge image.

Figure 2.5: 3D mesh representation using different resolutions (increasing the number of
faces) [3].

2.2 Statistical inference theory

Probability theory plays an important role in the solution of pattern recognition and com-
puter vision problems. It provides a framework for inferring information from a set of
observations collected for a specific variable. The statistical inference relies on the mod-
elling of a probability density function that encodes the properties of the variable we
are trying to analyse. The parameters of the density function are inferred according to
the observations collected. Since this is a statistical modelling of the variable of inter-
est the error and uncertainty are explicitly acknowledged [23, 24]. We present in Section
2.2.1 two approaches for modelling statistical inference problems. In addition, we review
the well known EM algorithm and its extension as a self-organising map algorithm (cf.
Section 2.2.2).
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2.2.1 Statistical modelling

The modelling of an inference problem can be categorized in two groups: Parametric and
Non-parametric modelling.

Parametric modelling: In parametric modelling, the distribution of the density func-
tion is assumed to be known and governed by a set of parameters (such as mean and
variance for instance). As a result the problem is to infer the values of those parameters
that define the probability density function. In other words, given a set of n observation
{xk}k=1,··· ,n of the random variable x and assuming its underlying probability density
function as p(x|Θ). The problem is then to infer the parameters Θ that best represent
p(x|Θ) given the observations. A simple example that illustrates the concept of inference
using parametric models is shown in Figure 2.6.

When prior information about the parameters to estimate are available, the problem
can be solved in a Bayesian framework as follows:

p(Θ|x1,x2, ..xn) ∝ L(Θ|x1,x2, ..xn) p(Θ) (2.1)

Where,

• p(Θ) is the prior distribution of the parameter Θ. It quantifies the uncertainty about
Θ before taking the data into account. The priors can be categorized according to
how informative they are. Informative priors take into account previous informa-
tion related to the variable Θ. Weakly informative priors on the other hand, are
commonly used as regularization terms. It only helps in the stabilization of the op-
timization algorithms and prevent solutions that would contradict past knowledge.

• L(Θ|x1,x2, ..xn) is the likelihood function of Θ and it is expressed as a function
of the observations. When all the observations are considered independent to each
other, the likelihood can be computed as follows:

L(Θ|x1,x2, ..xn) = p(x1|Θ)p(x2|Θ)....p(xn|Θ) =
n∏
k=1

p(xk|Θ) (2.2)

• p(Θ|x1,x2, ..xn) is the posterior distribution that expresses uncertainty about the
parameter Θ after taking into account the prior p(Θ) and the likelihood function
L(Θ|x1,x2, ..xn). The parameters estimation problem can then be solved by max-
imising this posterior probability p(Θ|x1,x2, ..xn).

Θ̂ = arg max
Θ

L(Θ|x1,x2, ..xn) p(Θ) (2.3)
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Figure 2.6: Statistical inference using parametric modelling. In a) a set of observation
is shown as blue dots. In b) the estimated Gaussian Mixture (contour) is plotted as a
contour along with the observations. The density function is assumed to be a Gaussian
Mixture with three components. The optimisation is performed using a EM algorithm.

When there is no prior information available, the estimation of parameters can still be
performed using only the likelihood function. Those methods are commonly known as
EM-like algorithms (cf. Section 2.2.2). The success in the estimation relies on the as-
sumption that the number of observations is big enough. This ensures the convergence
towards the true density function. Unfortunately, this assumption is not always true for
real applications leading towards an erroneous solution. Furthermore, there are two ad-
ditional difficulties when inferring parameters from parametric models. The first one is
related to the assumption needed over the underlying probability density function. The
election of the type of density function to use biases the solution of the problem. The
second issue is the lack of resistance to outliers. As it is shown in Equation 2.2 the likeli-
hood is usually computed as the product of the probability of each observation given the
parameters Θ. This product is very sensitive to outliers and it affects the robustness of
the inference.

Non-parametric modelling: Non-parametric models for statistical inference are more
flexible than parametric modelling. They make fewer assumptions about the form of
the underlying probability density function. The parameters contained in these models
control the complexity of the distribution rather than its form. Non-parametric techniques
for density estimation are usually histograms and kernel functions. Histograms are the
simplest method for density estimation. It is a partition of the range of possible values of
the variable in intervals ”bins”. The probability density function is estimated according
to the number of samples falling in each interval (cf. Figure 2.7 top row).
In a Kernel Density Estimation (KDE) the density function is given by the contribution of
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Figure 2.7: This figure shows the two approaches in non-parametric modelling: His-
tograms and kernel density estimation. We model the density function given a set of
n = 30 observations. In the top row we present the histogram of the data set when using
a) 10 and b)20 bins. In the middle row the same data set is represented using a Gaussian
kernel for each point in the data set and using a bandwidth of h = 0.2 and h = 0.1
(Figures c and d respectively). Finally the density estimation using the kernels in c) and
d) are presented in e) and f) respectively.

a set of kernel functions centred over each sample. The density function is then computed
as the sum of the contribution of all the kernels as follows:

p̂(x) =
1

n

n∑
i=1

1

hD
K
(
‖x− xi‖

h

)
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Where h is the bandwidth of the kernel function and D the dimension where the density
function is defined. The kernel function K can be any function f(x) that meets the
following three criteria:

(a)
∫
f(x)dx = 1 (b)

∫
xf(x)dx = 0 (c)

∫
x2f(x)dx <∞

The election of the right bandwidth for modelling the kernels is very important in non-
parametric modelling since it directly affects the resulting density function. An example
of the impact of the bandwidth selection is shown in Figure 2.7(bottom). Several methods
have been proposed in literature for estimating the bandwidth [25, 26, 27]. The classical
methods are based on the minimization of a similarity criterion between the estimated
density function p̂(x) and its true but unknown density function p(x). However, a robust
estimation is still difficult to achieve. Some well known distance criterion proposed in
literature are: ∫

|p̂(x)− p(x)|dx Integrated absolute error∫
p̂(x) log p̂(x)/p(x)dx Kullback-Lieber distance∫
[p̂(x)

1
2 − p(x)

1
2 ]2dx Hellinger Distance∫

[p̂(x)− p(x)]2dx ISE: Integrated square error

2.2.2 Likelihood based estimation

In this section the Expectation Maximisation algorithm (EM) and the probabilistic self-
organising map (SOM) are reviewed. The EM algorithm is the base of several methods
for shape registration and it is the inspiration for the probabilistic self-organising map
that will be used in a section of this thesis.

Expectation maximisation algorithm

The EM algorithm is an efficient and iterative procedure to compute the Maximun Like-
lihood estimate in presence of missing or hidden data. It estimates the parameters of
the model for which the observation are the most likely. This algorithm consists of two
processes, the E-step (expectation) and the M-step (Maximisation).
Given a random vector x as the observations, the goal is to define an iterative algorithm
for finding the parameters Θ of the density function that best represent the observation.
We want to compute an update estimation such that after the nth iteration we have:

L(Θn−1) > L(Θn) (2.4)

With L(Θ) = lnP (x|Θ) the log likelihood function. Since ln(x) is a strictly increasing
function, the value of Θ that maximise P (x|Θ) also maximise L(Θ). Maximising L(Θ)
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is equivalent to maximise the difference:

L(Θ)− L(Θn) = ln p(x|Θ)− ln p(x|Θn) (2.5)

In order to consider unobserved data, a hidden vector Z is introduced. Now we write,

p(x|Θ) =
∑
z

p(x|z,Θ)p(z|Θ) (2.6)

Using Jensen inequality ln
∑

i λixi >=
∑

i λi ln xi and letting the constant λi be of the
form p(z|x,Θn) we can rewrite equation 2.5 as follows:

L(Θ)− L(Θn) =
∑
z

p(z|x,Θn) ln
p(x, z,Θ)p(z|Θ)

p(z|x,Θn)p(x|Θn)
(2.7)

L(Θ) = L(Θn) +
∑
z

p(z|x,Θn) ln
p(x, z,Θ)p(z|Θ)

p(z|x,Θn)p(x|Θn)
(2.8)

Defining l(Θ|Θn) = L(Θn) + ∆(Θ|Θn), we can rewrite as follows:

L(θ) > l(Θ|Θn) (2.9)

Maximising l(Θ|Θn) is then a way of optimising the log likelihood function since l(Θ|Θn)

is bounded above by the likelihood function.

Some of the advantages of the EM algorithm are its conceptual simplicity, easy of
implement, and the fact that each iteration improves Θ. However, it can require many
iterations to converge towards the solution, and higher dimensionality can dramatically
slow down the process. Furthermore, the EM algorithm works better when the fraction
of missing information is small and the dimensionality of the data is not too large.

Self organising maps (SOM)

Self Organising Maps were first introduced by Kohonnen et al [28] and it is a data analysis
method that combines vector quantisation with topology preservation. Given an input
vector {xk}n=1,··· ,N and a set of nodes {us}s=1,··· ,S in a latent space with some specific
topology associated (i.e a grid defined by a neighborhood). Each node is defined with a
position on the latent space gs and a centre in the input vector space us. We associate a
winning node (r) for each point in the input vector x and update the position of the node
ur in the vector space according to the following expression:

ur =

∑N
n=1 hsnrxn∑N
n=1 hsnr

(2.10)
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Where hsnr is a neighbourhood function evaluated at r and the winning neuron sn for
that point in the input vector (xn).

hrs = exp(−λ||gr − gs||2) (2.11)

Figure 2.8 shows a scheme of the input vector (black dots), the nodes (green dots) and
the topology associated (red lines).

Figure 2.8: Scheme of SOM [4]

One of the limitations of the standard SOM algorithm is the method used for the assig-
nation of the winning neuron. It is mainly based on the Euclidean distance. This metric
is not always appropriate. Especially when the input data is not expressed as real-valued
vector. This introduces the question of which measure of dissimilarity would be most
appropriate and whether the centre of the neuron should be the same type of object than
the input data. A second limitation is that this algorithm cannot be expressed as a cost
function so it has no guarantee of convergence. In order to address those limitations Ver-
beek et al. [4] introduced the Self-Organizing mixture model which defines the standard
SOM algorithm as a EM optimization problem. This is done by adding constrain to the
EM algorithm according to a SOM strategy in order to enforce topology. The expression
for p(z|x,Θn) in equation 2.8 can be constrained by using the normalised neighbourhood
function as follows:

p(z|x,Θn) ∝ hr(s) = exp(−λ||gr − gs||2) (2.12)

With, ∑
s

hr(s) = 1

An example of the performance of the algorithm is presented in Figure 2.9 where a set of
nodes arranged as a curricular network are organized according to the input data (black
dots).
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Figure 2.9: Example of Self Organizing map for diferents iterations. The dots are the set
of observations. The grid is a set of connected nodes that are automatically organised to
represent the observations [4]

2.3 Shape inference applications

In this section we focus on specific applications for shape parameters estimation such as
point set registration, morphable model fitting and ellipse fitting.

2.3.1 Registration & correspondences

Point set registration is the task of assigning correspondences between two sets of points
and to recover the transformation that maps both sets of points (cf. Figure 2.10). Regis-
tration is the base for several applications [29, 30, 31, 32, 33, 34, 35]. There is a vast liter-
ature dedicated to algorithms that solve the registration problem. However, we will focus
here on the most relevant algorithms. They can be categorised as ICP-based algorithms
[36, 37] and probabilistic modelling for parameters estimation [38, 39, 40, 41, 42, 5].

Iterative Closest Point (ICP)

One popular method to perform registration between two point sets is the Iterative Clos-
est Point (ICP) algorithm [36, 37]. The ICP algorithm was introduced by Besl et al. [36]
and Zhang [37]. It is based on a point-to-point correspondence between the two data
sets performed using the nearest neighbour criteria. Once the correspondences have been
found the transformation is calculated. These two steps (correspondence-transformation)
are iterated until the convergence criterion is reached. It is one of the most used algo-
rithms for registration due to its simplicity and its low computational complexity. Many
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Figure 2.10: Point to point correspondence between data sets. [5]

improvements have been made to the basic ICP algorithm [43, 44, 45, 46, 47]. However,
they are still sensitive to outliers and initialisation. ICP requires the initial position of
the two point sets to be adequately close. This is usually achieved by matching manually
labelled points in both sets [48, 49]. An alternative to improve the initial guess of the
ICP algorithm is by using RANSAC [50]. RANSAC (Random Sample Consensus) is an
iterative algorithm inroduced by Fischler et al. [51]. It is used to estimate parameters
of a mathematical model from a set of observed data which contains outliers. The algo-
rithm consists in selecting iteratively a random subset of the original data to estimate the
parameters. The iterations are performed until the parameters estimated well explain the
observation [52]. The main disadvantage of this algorithm is there is no upper bound on
the number of iterations needed to compute the parameters. Moreover, RANSAC is not
always able to find the optimal solution even for moderately contaminated data sets and
it usually performs badly when the number of inliers in the data is less than 50%.

Probabilistic methods

In order to overcome the limitation of ICP based algorithms several probabilistic methods
have been reported. We categorise those algorithms in two groups: Methods based on
EM-like algorithms and those based on matching probability density functions.

EM-like algorithms: The registration problem can be redefined as a density estimation
problem. Gold et al. [53] proposed a Robust Point Matching algorithm (RPM) where one
of the data sets is used as a sample of the density function modelled with the reference
data set [54, 40, 41]. This modelling comes from the assumption that samples are uni-
formly distributed around points in the reference dataset. The problem can be solved as a
two-step optimisation (correspondence-transformation) but in an EM-like fashion where
the centroids of the density function are estimated with the transformation parameters.
Adding an extra kernel to model the outliers compensates the sensitivity to outliers of
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the EM algorithm. Several algorithms follow the strategy of modelling the registration
explicitly as a Maximum Likelihood problem. Some of them are Luo et al. [55], My-
ronenko et al. [5] and Ganger et al. [42]. McNeil et al. [56] converted a Procrustes
analysis into a maximum likelihood framework using the EM algorithm. The idea is to
improve the robustness of Procrustes to noise and clutter. The algorithm is used for shape
matching where the background is modelled using a Gaussian kernel in order to reduce
its sensitivity to outliers. Most of those methods use for simplicity isotropic covariance
matrices for modelling the GMMs. An improvement for those models was recently intro-
duced by Horaud et al. [57]. They use non-isotropic covariance matrices for modelling
the GMM and solve the estimation problem using an Expectation conditional Maximi-
sation algorithm. Luo et al.[58] proposed a unified framework to tackle the alignment
and correspondence problem simultaneouslly. The idea is to constrain the recovery of
pose parameters using relational constraints provided by the structural arrangement of
the points. Two density functions are defined modelling the errors of the correspondence
and the alignment respectively. Using a EM algorithm both density functions are linked
using interleaved iterative steps. The cross-entropy is used as a utility measure between
the two probability distributions.

EM-based algorithms have shown to be more robust to outliers than those based on
ICP. However, the main drawback of those algorithms is that they rely on the assumption
that a dense set of observations is available. This implies a many-to-one correspondence,
which is not true when the number of observations is roughly the same (or less) than the
number of points in the reference set.

Matching probability density functions: In this case, two probability density func-
tions are modelled; one for each data set. The estimation is then solved by minimising a
similarity metric between those density functions [59, 60]. Methods using this strategy
differ to each other depending on the modelling of the density functions and the metric
used for the estimation. Glaunes et al.[61], for instance, propose the case where two
discrete distributions are considered (weighted sums of Dirac measures). It is shown
to behave properly in limit of continuous distributions on sub-manifolds. As a conse-
quence, the algorithm may be applied to various matching problems, such as curve or
surface matching (via a sub-sampling), or mixings of landmark and curve data. Jian et
al.[39] propose the use of GMMs to model both data sets and to estimate parameters
by minimising the L2 distance between them. A similar approach is used by Wang et
al.[62] for aligning multiples shapes. The L2 distance is a divergence metric between
probability density functions. Other divergence metrics that have been used include the
Cauchy-Schwartz divergence [63], Shanon Divergence [64], Bregman divergence [65]
and Havrda-Charvt divergence [66].
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Tsin et al. [38], on the other hand, used the cross-correlation between the two density
functions as a measure of similarity. However, it can only solve the rigid registration
between shapes. Jian et al.[39] show that using the cross-correlation for solving the rigid
transformation is equivalent to use the L2 distance. Furthermore, the L2 distance has
the advantage of having a closed form solution when density functions are modelled as
Gaussian Mixtures. In practice, those methods use isotropic covariance when modelling
the GMMs. Furthermore, they usually solve the problem by approximating one of the
density functions by its empirical distribution. In this case the problem can be interpreted
as maximising the expected likelihood kernel since it is the expectation of one distribution
with respect to another [67] (We will discuss the implications of this approximation in
more detail in Chapter 3). An isotropic modelling for the GMM is also proposed by
Roy et al. [68]. They define an EM algorithm that is implemented for solving the non-
rigid transformation between shapes and uses the L2 distance as part of the optimisation.
However, the likelihood is modelled assuming one data set as samples of the density
function modelled using the second data set (as in most EM-like algorithms).

2.3.2 3D face reconstruction

Face reconstruction is a very attractive research area as it forms the basis of a wide range
of applications such as face animation [69, 48], human-computer interfaces, face recog-
nition [6, 70] and medical applications. Methods for reconstructing 3D faces can be
categorised depending on the nature of the input data and their applications. The most
accurate system to capture a 3D face is the laser scanner, which records a dense 3D map.
Unfortunately its high cost and the need for cooperation from the individual during the
acquisition process has limited its usage [71]. Some cheaper alternatives rely on the in-
ference of the 3D face geometry from RGB images, where multiple cues from images
or multiples views of the scene are used for inferring the 3D shape. A faster 3D capture
system can be achieved by using structured light. However, this technique is less accu-
rate than the 3D scanner and it requires the use of multiples images or post-processing
techniques to improve its performance [72, 73, 74]. We review as follows reconstruction
methods from RGB and RGB-D images.

3D face reconstruction RGB images

Inferring 3D face information from 2D images is a cheap, fast and non-invasive alter-
native. Approaches that attempt to solve the 3D face reconstruction problem from 2D
images can be classified in two groups: Analysis by synthesis and Shape from X. Anal-
ysis by synthesis techniques are based on parametric statistical modelling. They aim at
reconstructing 3D faces by finding the parameters of a generative face model that synthe-
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size the closest face to the input data [75].

Shape from X on the other hand, is a group of techniques that use some specific cue
(X) to infer the 3D shape. Examples of cues commonly used in 3D object reconstruction
that have been applied to face reconstruction are: Motion, Contour, Shading, Stereo and
Silhouette among others [76, 77, 78, 79]. Using an array of video cameras, Bradley et al.
[80] succeeds, however, in capturing 3D textured faces by combining multi-view stereo
with tracking techniques.

Analysis by synthesis on the other hand has proven to achieve better results due to
the use of prior information. It uses a morphable model of the face built over a set of
observations taken from a training database [75, 81, 82, 83]. The problem can then be
defined in a Bayesian framework where the parameters of the model that best fit the
observations are estimated by maximising its posterior probability given the input data.

Most optimisation algorithms used for fitting morphable models to RGB images are
based either on Stochastic Newton Optimization (SNO) [75], Linear Shape and Texture
Fitting (LiST) [70] or Inverse Compositional Image Analysis (ICIA) [84, 85]. The eval-
uation of these methods depends on their application. For instance, SNO is reported to
be more accurate but it lacks efficiency compared with ICIA [6]. Improvements to these
algorithms have been achieved by including additional information to the cost function.
This can be done by including multiple features from a single image [86] or using mul-
tiple images [87, 88, 89, 90]. This multiple feature/image strategy provides a fitting
algorithm more robust to local minima, perhaps due to the smoothness of the overall cost
function achieved by the extra information used. However, correspondences in between
the input images and the model are assumed known in order to match the extra features.
In practice, this correspondence is difficult to achieve and mismatches during the starting
of the fitting process affect the robustness and accuracy of the fitting algorithm.

3D face reconstruction from depth map

A popular alternative for capturing a 3D map is by using an RGB-D sensor. Two tech-
nologies of RBG-D sensors co-exist: time of flight cameras and structured light cameras.
Those sensors are usually cheaper than the 3D laser scanner. Both provide a noisy record-
ing of the 3D environment, however they have become a hot topic of research in recent
years as an alternative for 3D shape reconstruction. n particular, the availability of com-
mercial devices such as the Microsoft Kinect has triggered the development of many
algorithms for improving its performance. Its usage has been extended for many new
applications other than just video games, for which the Kinect was originally designed.

Scanning 3D faces with an RGB-D sensor does not provide accurate results. The
recorded data is very noisy and the depth map contains holes or missing data due the
limitations of the sensor. Two approaches have been recently explored in the literature
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for dealing with those problems. The first one relies on the use of multiple acquisitions
and combines them in order to obtain a high-resolution 3D shape. The second uses a 3D
face model that is fitted to the captured data. Results achieved when fitting shape models
performed better since they are capable of inferring details of the face such as the mouth
or eyes. These details are usually lost when inferring a 3D shape by averaging all the
registered depth scans.

The performance of most fitting algorithms depends on the initial correspondences
between the observed data and the shape model. For instance, the representation of a
particular feature observed (i.e tip of the nose) must be in correspondence with the ver-
tex representing the same feature in the shape model. As a consequence most fitting
algorithms depend on feature selection or landmarking. This is required for initialisa-
tion, limiting their automation and with that, their applications. 3D reconstruction using
structured light or Time-of-Flight cameras has been a hot research topic in the past few
years [91, 92, 93, 94, 95, 96]. If the quality of the recorded depth map is noisy and suf-
fers from missing data, it is still an attractive alternative for 3D reconstruction. Using a
Time-of-Flight camera, Cui et al. [97] propose to merge a set of depth maps to infer a
less noisy 3D shape. The key problem to solve is the alignment or registration of all the
captured depth scans. Similarly, using a turning table and a cheap Kinect camera, Ruttle
et al. infer a 3D shape of an object by merging several point clouds recorded from dif-
ferent viewpoints around that object [98]. The registration is performed by maximising a
cross-correlation between two pdfs. The accuracy achieved is shown to be similar to the
3D surface recorded with an expensive Laser scanner [99].

Newcombe et al. [100] propose the KinectFusion system for merging sequential
depth scans recorded with a Kinect camera and inferring a 3D mesh of a scene in real
time. The noise is reduced by filtering each scan before registration. Focusing on faces,
Hernandez et al. [101] extend the KinectFusion approach to infer laser scan quality
3D faces. However, small details are lost due to spatiotemporal smoothing used in the
process. Weise et al. [48] use kinect depth images to infer the facial expressions and dy-
namics of an actor to animate an avatar in real time. Their approach uses a user-specific
expression model that is fitted to the observed scans with the Iterative Closest Point (ICP)
algorithm. Similarly using a Kinect camera, Zollhofer et al. [69] propose an automatic
method for 3D face reconstruction using Morphable Models. Their algorithm relies on
feature landmarks that can be detected from the face (eyes, nose and chin).

Schneider et al. [102] proposed two algorithms based on the ICP framework for
registering laser scans of human heads. Holes may occur in the resulting mesh but these
can be filled in using a prior model for heads. Using a morphable model also helps for
efficiently resampling the inferred mesh.
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Figure 2.11: The shape correspondence concept of the 3D Morphable Model: The figure
illustrates how vertices are indexed in the parametrized domain. For instance, according
to Levine et al. [6], the tip of the nose will be assigned in the same position (k) in the
vector shape si in every scan, even though the coordinate x, y and z that represent its
position will change among individuals.

2.3.3 Morphable shape model

In 1995 Cootes et al.[103] proposed to build a shape model that can deform in order
to fit a data set or image. They argued that a model should only be able to deform in
ways characteristic of the class of objects it represents. The model is created by learning
patterns of variability from a training set of correctly annotated images. These models
can be used for an image search in an iterative refinement algorithm analogous to that
employed by Active Contour Models (Snakes). Since then, several improvements have
been made for building those models [104, 105, 106, 107] and many applications have
been reported [108, 109, 110]. We review as follows the 3D model of a human face since
it will be used in the experimental part of this thesis.

The 3D Morphable Model is a generative model for 3D face reconstruction introduced
in 1999 by Vetter and Blanz [75]. This model contains a low dimensional parametriza-
tion of face shape and texture. It is obtained by statistically capturing shape and texture
variability in a set of training faces. Recent contributions addressing the building process
of a Morphable Model have been made by Patel et al. [81], Paysan et al [82] and Basso
el at [83]. All of them describe the process in 4 steps: data acquisition, correspondence,
shape alignment and finally the statistical modelling.

3D face data acquisition of the training set usually involves 3D laser scan or a struc-
tured light system. The laser scan is more accurate but its long acquisition time is very
critical for capturing natural-looking faces. Once all individuals are scanned, the data set
is parametrized in a common domain to establish correspondence and alignment along
the faces. This ensures that all points such as eyes or mouth corners for instance share
the same position in the parameterized domain (cf. Figure 2.11). Correspondence can be
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achieved, for example, by using automatic techniques such as the Iterative Closest Point
algorithm (ICP)[36] or manually by labelling landmarks among the data set. The corre-
spondence and alignment steps effectively help in creating the shape (si) and texture (ti)
vector for each individual i:

si = [x1,i, y1,i, z1,i, x2,i, y2,i, z2,i, ......xn,i, yn,i, zn,i]

ti = [r1,i, g1,i, b1,i, r2,i, g2,i, b2,i, ......rn,i, gn,i, bn,i]

Using Principal Component Analysis, we can define any new shape as a function of the
mean shape S and a linear combination of q orthonormal bases:

snew = S +

q∑
i=1

αiSi + ε

Similarly, using the average texture T and taking the m orthonormal bases we can define
any new texture vector as follows:

tnew = T +
m∑
i=1

βiTi + ε

In both cases ε represent the error coming from the eigenvectors that are not used in the
linear representation. Assuming a Gaussian distribution for the error, we can estimate the
probability function of shape (α) and texture (β) as follows:

p(α) ∝ e
− 1

2

∑q
i=1

α2
i

σ2
s,i

p(β) ∝ e
− 1

2

∑m
i=1

β2
i

σ2
t,i

Those probability functions p(α) and p(β) represent the prior information for shape and
texture respectively. In this thesis, we use the Gaussian model for the shape developed
by Paysan et al [82] which is publicly available for research.

2.3.4 Ellipse fitting

Fitting ellipse to data is a challenging problem that arises in several fields. Some ex-
amples of applications are segmentation of cells [111] study of galaxies [112], medical
diagnostics [113], camera calibration and face detection among others [114, 115]. As
many applications as there are of fitting ellipses there are also a great number of algo-
rithms proposing solutions to this problem [116]. They are commonly classified in three
categories: Least Square based methods, Hough Transform based methods and the most
recent approach known as edge contour following methods.
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Least Square based methods are usually classified in two categories according to
the cost function to optimise. Those categories are: (1) methods minimising a geometric

error, and (2) methods minimising an algebraic error [117, 118, 119, 120]. The minimi-
sation of the geometric error corresponds to the Maximum Likelihood (ML) estimation
for the ellipse parameters. ML methods are regarded as the most accurate methods for
ellipse fitting and various computational schemes have been proposed [121]. However,
those methods have several drawbacks. They need several iterations for solving the non-
linear optimization problem and they are very sensitive to noise. Therefore, the conver-
gence of those methods is not guaranteed. Moreover, the convergence usually depends
on the accuracy of the initialisation.

Algebraic methods on the other hand are easier to implement and computationally
efficient. However, the main problem of those methods is that they do no guarantee
the result will be an ellipse. A normalization process is required in order to enforce
the solution [9, 122]. For instance, Szpak et al. [123] propose a penalty function that
guaranteed an ellipse when using the Sampson distance. However, the result is then
biased by the normalization scheme chosen. Algebraic methods are less robust with
respect to ML methods when the data is coming from a small segment of an ellipse.
Furthermore, accuracy of the results of those methods still depends on the initialisation
as in ML algorithms. A method for finding a reasonable starting guess for ML algorithm
is proposed in [124].

The Hough Transform is a well known approach to detect ellipses [125, 126, 127].
It is based on a voting system where each edge pixel of an image is considered. This
voting procedure is carried out in a parameter space, from which candidate ellipses are
obtained as local maxima in a accumulator space that is explicitly constructed based on
the parameters of the ellipse. Several algorithms have been proposed to improve per-
formance of the HT method [128, 14, 129]. Some approaches explore the inclusion of
additional information such as the directional property of the pixels [130, 131]. Unfor-
tunately, those methods are easily affected by possible noise in the image. A different
strategy that improves the computational complexity of the HT is to sub-sample the data
set. For instance, Kiryati et al. [132] used the Probabilistic Hough Transform (PHT)
where just a portion of the edge pixel of an image is used. Xu et al.[133] on the other
hand, proposed the Randomised Hough Transform (RHT) which used randomly chosen
n-tuples of data points. This method was originally designed for detecting circles but it
was extended to ellipses by McLaughlin et al.[13]. The Randomized Hough Transform
serves as a powerful variant of the standard Hough Transform that exploits the geomet-
ric properties of ellipses in order to speed up the detection process [134, 135]. Despite
its simplicity and efficiency, the RHT performs poorly if the target ellipses overlap (or
mutually-occlude) with each other.
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A general advantage of Hough Transform based methods is that they do not require
connectivity in between consecutive edge pixels. This makes these algorithms useful
when the observation is a sparse set of points. The main drawback is that they are very
sensitive to the choice of the quantisation of the parametric space. Incorrect quantisa-
tion leads to the detection of false ellipse or missing the true ellipse. Furthermore, the
performance of the HT algorithms deteriorate when the number of ellipses in the image
increase.

Edge following methods exploit the connectivity between edge pixels to detect el-
lipses [12, 11, 111, 10, 136]. The main strategy of these methods is to detect arcs and then
group them in order to detect the ellipses. Kim et al. [12] and Mai et al.[11] connect pix-
els by line fragments from where the arcs are computed. The grouping of arcs becomes
a critical process since errors in that stage would be propagated to the ellipse detection
step. Chia et al.[10] introduce some improvements by introducing a self-correction stage
where the grouping process is corrected using a feedback loop. In other words, low
confidence ellipses are replaced by a set of better hypothetical ellipses obtained by com-
bining arcs from different groups. Those methods are considered the most successful in
detecting multiples of ellipses in digital images. However, they only work when there is
connectivity along the edge pixels. If the observation is a sparse set of data points, this
methodology can not be implemented.

2.4 Summary

In this chapter we have reviewed the theoretical base that will be used in this thesis. We
first presented an overview of shape analysis and statistical inference. The application of
parameter estimation techniques for solving computer vision problems was illustrated in
three challenging problems: registration, shape fitting for object reconstruction (a human
face in particular) and curve fitting (ellipse). The literature suggests pending problems
to solve in order to achieve a method for estimating parameters that can be accurate, ro-
bust, easy to implement and hopefully computationally efficient. Fitting algorithms for
instance, depend on the correspondence between the model and the observation. This cor-
respondence, usually achieved through registration algorithms, is still difficult to obtain.
Registration algorithms have been improved thanks to the use of probabilistic methods.
However, those methods are limited by the modelling of the density function and there-
fore, the modelling of the cost function to implement. For instance, EM-like algorithms
are based on a likelihood function that is very sensitive to outliers. Many robust tech-
niques based on statistical inference have been applied, for instance, matching density
function for parameter estimation. However, their implementation is generic and does
not include any particular information related to the shape for which the parameters are
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being estimated. In the remainder of this thesis we aim to model a method for shape
parameter estimation based on robust statistical techniques to include more information
related to the shape when modelling the cost function.
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Part I

Method: Inference with Bayesian L2
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Chapter 3

Inference with L2 and L2E

The L2 distance between probability density functions has been recently used as a metric
for shape registration (cf. Section 2.3.1). However, in practice, L2 is often approximated
by another metric called L2E. In this chapter, we analyse the implications of using
the L2E distance for parameter estimation and its performance in terms of accuracy and
robustness. In Section 3.1 we present a brief review of the concept of divergence between
probability density function and the definition of the L2 distance. In Section 3.2 we
introduce L2E and analyse the assumptions made when using this metric for parameter
estimation. We discuss, in particular, the work proposed by Jian and Vermuri [39] where
the L2 distance is used as a cost function for point cloud registration (cf. Section 3.3). A
set of experiments are performed in order to illustrate the performance of L2E and how
it relates to robust estimation. The results obtained motivate us to explore the use of the
full L2 distance between density functions as a general framework for shape parameters
estimation.

3.1 Divergence between probability density functions

The divergence between probability density functions is a measure of similarity. A pop-
ular family of divergence is the power density divergence. Given two densities functions
f(x) and g(x), the power density divergence can be expressed as follows [137, 138, 139]:

dα(g, f) =

∫ {
1

α
g1+α(x)− 1 + α

α
g(x)fα(x) + f 1+α(x)

}
dx (3.1)

For α > 0. When α = 0 this expression becomes the Kullback-Leibler divergence [140]:

d0(g, f) = lim
α→0

dα(g, f) =

∫
g(x) log

{
g(x)

f(x)

}
dx (3.2)
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When α = 1, this divergence becomes the Euclidean distance between the two probabil-
ity functions, f(x) and g(x):

d1(g, f) =

∫ {
g2(x)− 2 g(x) f(x) + f 2(x)

}
dx (3.3)

The Euclidean distance d1 between density functions is commonly known in statistical
inference as L2 distance. This metric has been used as a quality of fit criteria for sta-
tistical inference when using non-parametric models and also as distance criterion for
bandwidth selection (integrated square error [141, 27]). It has been shown to be a robust
approach compared to other power divergences (α 6= 1 in Equation 3.1) [60, 137, 139].
Furthermore, Jian et al.[39] have demonstrated the superiority of using L2 with respect
to the log-likelihood (LME) for estimating transformation parameters. In this thesis, we
will use L2 for shape registration and fitting. In the next paragraphs additional arguments
in favour of L2 are presented.

3.1.1 Closed form solution of L2

Let us consider two probability density functions f and g that are Gaussian mixtures:

g(x) =

ng∑
i=1

wgi N (x;µgi ,Σ
g
i )

and

f(x) =

nf∑
i=1

wfi N (x;µfi ,Σ
f
i )

whereN (x;µ∗i ,Σ
∗
i ) is the normal probability density function of mean µ∗i and covariance

Σ∗i , and 0 ≤ w∗i ≤ 1 is its weight in the mixture (with ∗ = f, g) such that
∑n∗

i=1 w
∗
i = 1.

For x ∈ R, L2 can then be computed explicitly using the following result:∫
N (x;µ1, σ

2
1) N (x;µ2, σ

2
2) dx = N (µ1 − µ2; 0, σ2

1 + σ2
2) (3.4)

For more details and the formula for higher dimensions of x, see Appendix A.1. The L2

has a closed form solution for Gaussian mixtures. Gaussian Mixtures Models (GMM) are
a family of density functions that can approximate any probability density functions well
when one is not limited by the number of components (ng and nf ). However, when using
GMM for representing shapes a parsimonious description should also be considered. In
the following Chapter (cf. Chapter 4) a method for a parsimonius representation of shapes
using GMM is discussed. The bandwiths are modelled as non-isotropic in order to reduce
the number of components needed in the Gaussian Mixture.
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3.1.2 Inference with L2

Consider that g depends on a parameter Θ such that g(x|Θ) is a family of probability
density functions (model), and f is a target distribution. L2 can be used for inferring Θ

such that g(x|Θ) is close to f(x) as follows:

Θ̂ = arg min
Θ

{
L2(Θ) = ‖f − g‖2

}
(3.5)

This approach can be used for finding parameters of a GMM (model g) fitting a distribu-
tion (target f ) that can be estimated (f̂ ) from a set of observations [141]. Choosing f̂ as
a GMM means that L2(Θ) is available in closed form.

This global modelling for estimating parameters has two main advantages. First, it
avoids the need for correspondence between the target distribution and the observations.
Secondly, a global modelling improves its robustness to missing data and noise. The
disadvantage is that the model can be pulled away from an optimal fit by outliers and
noise. However, we propose in Chapter 4 a method that ameliorate the effects of noise
and outliers by manipulating the bandwiths of the GMM representing the shapes.

3.1.3 L2E approximation

Let us consider a set of observations {xi}i=1,··· ,nf . The empirical probability density
function provides a simple estimate f̂ for the target f :

f̂(x) =
1

nf

nf∑
i=1

δ(x− xi) (3.6)

where δ corresponds to the delta Dirac function (a.k.a. normal distribution with zero
valued variance). The parameters Θ can then be estimated by minimising the L2 as
follows:

Θ̂ = arg min
Θ

{
L2(Θ) =

∫
{g2(x|Θ)− 2 g(x|Θ) f̂(x) + f̂ 2(x) } dx

}
(3.7)

The last term in the integral does not depend on the latent variable Θ so it can be discarded
from the cost function leading to the L2E approximation [141]:

Θ̂ = arg min
Θ

{
L2E(Θ) =

∫
g2(x|Θ)dx− 2

∫
g(x|Θ) f̂(x) dx

}
(3.8)

The second term can be interpreted as the correlation between the two density functions.
Since one density function is the empirical distribution, this cross correlation term can be
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computed as the expectation of g(x|Θ), given the observations. We denote this term as:

CE(Θ) =

∫
g(x|Θ) f̂(x) dx =

1

nf

nf∑
i=1

g(xi|Θ) (3.9)

CE is only valid as long as the empirical density function f̂ is a good approximation of
f . Next, we explore experimentally the performance of L2E for parameter estimation.

3.2 L2E parameter estimation

The empirical distribution is a good approximation of the true density function only if it
meets the following criteria [141]:

• The number of observations nf is large.

• The samples (observations) have been randomly collected from f(x).

Both requirements may not be met in practice. Furthermore, the samples cannot be con-
sidered as randomly collected from f(x) when occlusion or outliers are present.

3.2.1 Sample size

In this experiment, we evaluate how well the empirical distribution approximates the
true density function for different sample sizes. Lets assume we have a model g(x|Θ =

(µ, σ)) defined as a normal distribution (cf. Figure 3.1 a). A set of observations are
generated from g(x|Θ = (µ = 2, σ = 2)) and used to estimate f̂ (cf. Figures 3.1 b and
c).

g
(x
|Θ

)

−2 0 2 4 6
0

0.1

0.2

0.3

0.4

g
(x
|Θ

)

−2 0 2 4 6
0

0.1

0.2

0.3

0.4

f
(x

)

−2 0 2 4 6
0

0.1

0.2

0.3

0.4

x x x

a) g(x|Θ) b) Observations c) f̂(x)
(black dots)

Figure 3.1: Example: a) Normal distribution g(x|Θ = (µ = 2, σ = 2)). Figure b) shows
a set of observations sampled from g (black dots) and Figure c) shows the empirical
distribution f̂ associated with the observations. The empirical distribution is represented
by a delta Dirac function centred in each observation.

Using L2E we estimate the parameters µ and σ. We run 100 experiments for each
sample size of nf = 5, 10, 50, 100, 1000 and 10000, respectively. The error between the
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ground truth (µ = 2, σ = 2) and their estimated values are reported in Figure 3.2 with
respect to the sample size nf . The 95% confidence interval is also reported (computed
with the 100 runs). The estimated values (µ̂ and σ̂) better converge to the ground truth as
the sample size used for the estimation increases. Furthermore, the confidence interval
gets narrower when increasing the sample size, indicating that the estimates are all closer
to each other in all runs. We have verified that as more observations become available
estimates become more accurate and reliable.
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a) Average error µ̂− 2 w.r.t. nf b) Average error σ̂ − 2 w.r.t. nf

Figure 3.2: Results obtained when running 100 experiments for samples sizes of
5, 10, 50, 100, 1000 and 10000 reported on the abscissa. The figure shows the average
error between the ground truth and the estimates with a 95% confidence interval for the
mean in a) and standard deviation in b). In both cases the error decreased when increasing
the number of samples nf .

3.2.2 Robustness to outliers

In a second experiment outliers have been added to evaluate robustness of L2E for pa-
rameters estimation (cf. Figure 3.3). We used the same data sets generated in the previous
experiment but added extra samples (outliers) generated from a different normal distri-
bution (N (x;µ = 7, σ = 3)).

We ran 100 experiments for each sample size (5, 10, 50, 100, 1000 and 10000) using
5 levels of outliers percentages (5%, 10%, 20%, 30% and 50%). The mean and standard
deviation obtained for the estimated µ̂ and σ̂ are reported in Table 3.1. In Figure 3.4,
we plot the average error obtained in the estimation of µ and σ when sample size are
n = 5 and n = 10000. The confidence in the estimation is higher when increasing the
sample size. However, the resistance to outliers deteriorates steadily as the proportion of
outliers increases when both the mean and standard deviation are estimated with L2E.
The average error is over 5% in both cases (µ and σ) when the percentage of outliers is
larger than 10%.
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Figure 3.3: The figure shows a set of samples taken from the true density function
g(x|Θ = (µ = 2, σ = 2)), and a few outliers drawn from a different density function (in
red dash line).

Figure 3.5 shows a plot of the estimated solutions for different sample sizes without
outliers. When the sample size increases, the standard error associated with the estimates
decreased. However, the estimates get further away to the ground truth as more outliers
are present (cf. Figure 3.6).

3.2.3 Estimation with fixed bandwidth

As we have shown, L2E is sensitive to outliers for estimating µ and σ simultaneously.
However, an arbitrary selection for the bandwidth can also affect the estimated solution
for µ. This is illustrated with the following example: let us consider that we collected
n = 5 samples from the density function g(x|Θ) and added two outliers. The cost
function to optimise given by L2E for different choices of bandwidth is displayed in
Figure 3.7. For small bandwidths (σ = 1 (red line) and σ = 2 (blue dashed line)) the cost
function shows multiple local minima. The estimated solution will then depend on the
starting position of the optimisation algorithm. On the contrary, if the bandwidth is large
(σ = 5) the cost function becomes smooth. In this case, it has a single global solution
but could be shifted because of outliers. Therefore, this solution may not truly represent
the ground truth.

In Table 3.2 we reported the value corresponding to the minimum of the cost function
for each fixed bandwidth (σ) along with its respective estimated value for µ̂. Note also
that due to the approximation of L2 by L2E, the value of the cost function L2E is no
longer positive (as one would expect when using the Euclidean distance L2).
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Figure 3.4: Average error (between ground truth and estimates) with 95% confidence
intervals with sample size nf = 5 (top row) and nf = 10000 (bottom row).

3.3 Point cloud registration with L2E

Jian and Vermuri [39] have recently proposed the use of the L2 distance between prob-
ability density functions for point cloud registration. The rigid parameters Θ to be es-
timated are rotation and translation between shapes. The scaling between shapes is not
discussed. The main goal of Jian’s algorithm is to find correspondences between data
sets. They represent the two discrete point sets by continuous density functions (Gaus-
sian Mixtures). One point set is used to model g(x|Θ) and the other models the target
distribution f(x). These density functions are explicitly modelled using the following
settings:

1. The number of Gaussian components is the number of points in the point sets and
all components are weighted equally.

2. For each component, the mean vector is given by the spatial location of each point.
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Ground truth: µ = 2 σ = 2 Outliers: µ = 7 σ = 3

Outlier n = 5 n = 10 n = 50 n = 100 n = 1000 n = 10000

0% µ̂ : 2.06± 1.26 2.13± 0.87 1.95± 0.34 1.99± 0.22 2.01± 0.07 2.00± 0.02

σ̂ : 1.29± 0.90 1.58± 0.67 1.93± 0.28 1.98± 0.21 1.99± 0.06 2.00± 0.01

5% µ̂ : 2.06± 1.53 2.11± 0.86 2.08± 0.29 2.00± 0.23 2.04± 0.07 2.05± 0.02

σ̂ : 1.35± 0.92 1.73± 0.68 2.07± 0.28 2.04± 0.18 2.06± 0.06 2.07± 0.01

10% µ̂ : 2.23± 1.18 2.26± 0.88 2.14± 0.35 2.13± 0.22 2.11± 0.07 2.10± 0.02

σ̂ : 1.76± 1.05 1.86± 0.68 2.09± 0.26 2.11± 0.19 2.14± 0.05 2.13± 0.02

20% µ̂ : 2.45± 1.16 2.33± 0.98 2.22± 0.35 2.24± 0.22 2.23± 0.07 2.23± 0.02

σ̂ : 1.48± 0.95 1.97± 0.65 2.23± 0.31 2.29± 0.20 2.28± 0.06 2.29± 0.02

30% µ̂ : 2.52± 1.22 2.47± 0.91 2.41± 0.34 2.37± 0.24 2.38± 0.08 2.38± 0.02

σ̂ : 2.01± 1.07 2.27± 0.75 2.15± 0.35 2.37± 0.24 2.48± 0.07 2.44± 0.02

50% µ̂ : 2.88± 1.29 2.71± 0.85 2.65± 0.33 2.68± 0.24 2.70± 0.07 2.70± 0.02

σ̂ : 2.15± 1.19 2.40± 0.85 2.68± 0.32 2.69± 0.25 2.72± 0.06 2.73± 0.02

Table 3.1: Average estimates of the mean and standard deviation with their confidence
intervals (100 runs) with varying proportions of outliers and sample size.

Fixed Bandwidth (σ) Cost Function (L2E) Estimated (µ̂)
1.0 0.0072 3
1.5 0.0312 1
3.0 -0.0984 2 (correct solution)
5.0 -0.3693 3

Table 3.2: The global minimum depends on the selected fixed bandwidth σ.

3. All components share the same spherical covariance matrix (identical fixed band-
width).

Settings in (1) and (2) can be understood as modelling the density functions using Kernel
Density Estimates (cf. section 2.2.1). The complexity of computing the cost function
is proportional to the number of kernels used (O(max{n2

f , nfng, n
2
g})). This represen-

tation of the density function affects the computational efficiency of the algorithm when
working with large data sets.
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Figure 3.5: Estimates (100 experiments) with mean µ̂ reported in absissa and σ̂ on the
y-axis (0% outliers). The ground truth (µ, σ) = (2, 2) is plotted in black, estimates with
nf = 100 (blue) and estimates with nf = 10000 (red).
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Figure 3.6: Estimates (100 experiments) for nf = 10000 with mean µ̂ reported in abscissa
and σ̂ on the y-axis. The ground truth (µ, σ) = (2, 2) is plotted in black. The estimates
without outliers are shown in red, the estimated with 20% of outliers are shown in purple
and the green one correspond to the estimated using 50% of outliers.

The selection of the bandwidths are critical as they control how well the kernel Den-
sity Estimate (KDE) represents the true density functions in particular when observations
are sparse. Moreover, the bandwidths give the user the ability to tailor the density func-
tions such that they accurately represent the shapes of interest, as described by the data
sets. Setting (3), mentioned above, considers the same spherical covariance matrix for
all kernels. In this case the cost function (for the rigid transformation) is in fact equiva-
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Figure 3.7: Cost function (L2E(µ)) for a sample size nf = 5 with two outliers. The red
line corresponds to σ = 1, blue dashed (σ = 1.5), green dots (σ = 3) and black dash-dot
(σ = 5). The figure shows the impact of the bandwidth on the estimation of µ using the
L2E approximation.

lent to L2E (i.e. using the empirical probability density estimate to approximate f ) (cf.
Appendix A.2).

In general, the use of L2E for parameters estimation presents the following issues:

• Trade-off between accuracy and efficiency: L2E is a good approximation to L2

only if the number of samples is large enough. However, a large sample size im-
plies a reduction of computational efficiency when estimating the parameters. This
trade-off between accuracy and efficiency limits the applicability of the algorithm.

• Bandwidth selection and robustness: we have previously shown that robustness
of L2E deteriorates when estimating the bandwidth. The robustness of L2E is only
achieved when the bandwidth is fixed. However, the selection of the bandwidth
influences the results of the estimation. Furthermore, the key idea of modelling data
sets as density functions is to approximate a shape that is inherently a continuous
function. From this point of view, the bandwidth associated with each Gaussian
should play a better role in modelling the shape to fill in the gap between the
observations.

The assumptions made in the modelling of the density functions favour the pair of point
sets of similar sample rates. The L2E registration approach can perform poorly in cases
where the two point sets to be registered are captured from different sensors at different
resolutions, missing data (e.g. holes) or outliers (e.g. occlusion) (cf. Section 5.1).
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3.4 Conclusion

In this chapter, the concept of power divergence between probability density functions
and its use as a cost function for shape parameter estimation was introduced. We have
presented the L2 metric and its approximation L2E. The L2 distance has been used for
the registration of shapes in the form of point clouds [39]. The density functions are
modelled as KDEs. This representation affects efficiency of the estimation algorithm.
Furthermore, the selection of the bandwidth affects the representation of the shape in the
density function. In the case of rigid registration, the cost function is equivalent to L2E.
The approximation made in L2E relies heavily on hypotheses that may not be true in
practice affecting accuracy, robustness and efficiency of this method.

As an alternative, to overcome these limitations with L2E, we propose to use L2 for
the more general problem of shape fitting. Using L2 implies modelling Gaussian Mixture
models well suited for shape representation. Moreover, we extend L2 to include prior
information about the latent variable of interest making the whole framework Bayesian
(cf. Chapter 4). The idea is to be able to deal with a vast number of problems such as
shape registration, fitting and detection. This thesis explores the role of covariances (or
bandwidths) in the modelling of the density functions used in L2 as it is thought to play
an important role not only in the robustness of the optimisation algorithm but also in the
efficiency of the algorithm used for optimisation. We will show in the following chapters
that GMMs have the potential for encoding all the information needed for representing
shapes efficiently and accurately leading to an effective Bayesian L2-based framework
for their inference.

40



Chapter 4

Bayesian L2 for Shape Inference

In this chapter we propose a Bayesian framework for estimating shape parameters. It
is based on the L2 distance between density functions. Hence, the observations and the
class of shape of interest are modelled as density functions. In Section 4.1 we present the
general framework and the shape estimation problems to solve in this thesis. We propose
to model the density function of the shapes as Gaussian Mixtures (GMM) and discuss
the role of the covariance matrices for a proper and efficient representation of shapes (cf.
Section 4.2). Finally, in Section 4.3, we augment the dimension of the GMM in order to
include additional information about the shape of interest. We show an example where
the curvature of the shape is considered.

4.1 Bayesian L2

Let us consider two probability density functions f(x) (the target function) and g(x|Θ)

(the model) defined for a random variable x ∈ RD. The probability density function g is
indexed by a parameter Θ that has a prior distribution pΘ(Θ). The metric L2 or Euclidean
distance d (Equation 4.1) computed between the two density functions f and g are close
to zero when g is similar to f , and on the contrary far from 0 if g is very dissimilar to f .

d(Θ) =

(∫
RD

{
g2(x|Θ)− 2 g(x|Θ) f(x) + f 2(x)

}
dx

) 1
2

(4.1)

Θ can be estimated by minimising d (or L2) and this can be translated into the following
equation:

d(Θ) = ε ∼ pε(ε) (4.2)
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where the random quantity d(Θ) is interpreted as the error between two density functions
f and g. The error has a probability density function pε that is chosen such that:

Θ̂ = arg max
Θ

pε(d(Θ)) = arg min
Θ

d(Θ) (4.3)

The inference of Θ using Equation 4.3 does not take into account any prior pΘ about the
latent quantity Θ that may be available. In order to have an inferential framework that is
fully Bayesian, we introduce an auxiliary random variable λ and augment Equation 4.2
as follows:

λ+ d(Θ) = ε ∼ pε(ε) (4.4)

Equation 4.4 is equivalent to Equation 4.2 when λ = 0. In other words, problem 4.2
is a particular case of the problem 4.4. This reformulation allows us to identify the
conditional probability density function of λ given Θ as pλ|Θ(λ|Θ) = pε(λ + d(Θ))

verifying: ∫
R
pλ|Θ(λ|Θ) dλ =

∫
R
pε(λ+ d(Θ)) dλ = 1 (4.5)

and this result is independent of the choice of the probability density function pε. The
probability of the random variable Θ given λ can then be expressed using Bayes law as
follows:

pΘ|λ(Θ|λ) =
pε(λ+ d(Θ)) pΘ(Θ)∫
pε(λ+ d(Θ)) pΘ(Θ) dΘ

(4.6)

Since we are interested in estimating Θ when λ = 0, we propose to estimate Θ by
maximising pΘ|λ(Θ|λ = 0):

Θ̂ = arg max
Θ

pΘ|λ(Θ|λ = 0) = arg max
Θ

 pε(d(Θ))︸ ︷︷ ︸
“Likelihood”

pΘ(Θ)︸ ︷︷ ︸
Prior

 (4.7)

This expression allows us to include prior information when estimating parameters using
the Euclidean distance d between probability functions. The density function pε(d(Θ))

can be interpreted as a sort of likelihood where the target function f has been taken into
account and matched against the model g using the divergence d.

In this thesis, we are going to show how this Bayesian framework can be successfully
used for inference of shapes under the following assumptions:

• Both f(x) and g(x|Θ) are modelled using Gaussian Mixtures. As shown in Chap-
ter 3, an explicit expression of L2(Θ) (or d(Θ)) is available when using Gaussian
mixtures. We present in Section 4.2 how shapes can be well represented using
Gaussian mixture models.

• For simplicity, we have used the following Gaussian prior for Θ in all our applica-
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tions:

pΘ(Θ) ∝ exp

(
−

J∑
j=1

(θj − µθj)2

2σ2
j

)
(4.8)

with Θ = [θ1, θ2....θJ ]. Using very large variances allows us to diminish the in-
fluence of the prior when needed and leads back to inference without a prior (cf.
Equation 4.3).

• For simplicity and to be compliant with condition 4.3, we chose pε(ε) also as a
Gaussian distribution:

pε(ε) ∝ exp

(
− ε2

2τ 2

)
(4.9)

The bandwidth τ represents the tolerance given by the user for the model g to
deviate from the target f and it can be used as a regulation term. It also allows
for the compensation of the influence of the prior in the cost function. Choosing
both pε and pΘ as Gaussian distributions has the advantage of simplifying the cost
function and using the log transformation, the estimation 4.7 is performed by:

Θ̂ = arg min
Θ

{
C(Θ) =

L2(Θ)

τ 2
+

J∑
j=1

(θj − µθj)2

σ2
j

}
(4.10)

with L2(Θ) = (d(Θ))2.

To compute L2(Θ), we propose to use a GMM g defined as:

g(x|Θ) =

ng∑
i=1

wgi N (x;µgi (Θ),Σg
i ) (4.11)

and the target GMM f as follows:

f(x) =

nf∑
i=1

wfi N (x;µfi ,Σ
f
i ) (4.12)

As a consequence, the term L2 in the objective function in Equation 4.10 depends on the
parameters of these mixtures:

L2(Θ) = L2

(
{(µfi ,Σ

f
i , w

f
i )}i=1,··· ,nf , {(µ

g
i (Θ),Σg

i , w
g
i )}i=1,··· ,ng

)
(4.13)

Note how only the means of the model depend on Θ and not its covariances and weights.
This simplifies the algorithms used to find the optimum, even more so when µgi (Θ) is
linear. We will discuss in more detail the choice of the parameters in the GMMs f and g
in Section 4.2. For clarity, we next present various functions µgi (Θ) used in this thesis.
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4.1.1 Application to affine registration

The affine transformation between shapes is defined by three basic transformations: ro-
tation, translation and scaling. In the case of 2D shapes for instance, the latent variable
to estimate can be defined by the following parameters:

Θ = [sx, sy, φ, tx, ty]

Where sx and sy are the scaling parameters in both direction (x and y), φ is the angle of
rotation between shapes and t = [tx, ty] is the translation vector. The relation µi(Θ) is
then written as:

µgi (Θ) =

(
sx cosφ − sinφ

sinφ sy cosφ

)
µ0
i + t (4.14)

with a given µ0
i . µ

g
i (Θ) is not linear in Θ.

4.1.2 Application to morphable shape model fitting

Shape models are obtained by capturing the shape statistical variability from a set of
training examples (cf. Section 2.3.3). We use morphable models computed with Principal
Component Analysis (PCA). It provides parameters (vi, T1i, · · · , Tqi) such that:

µgi (Θ) = vi +

q∑
j=1

αj Tji (4.15)

The latent variable to estimate Θ corresponds to

Θ = [α1, α2, α3, ....αq]

and µgi (Θ) is linear w.r.t. Θ.

4.1.3 Combining affine registration and morphable shape fitting

Both models (Sections 4.1.2 and 4.1.1) can be combined to simultaneously register and
fit a target shape using:

µgi (Θ) =

(
sx cosφ − sinφ

sinφ sy cosφ

)(
vi +

q∑
j=1

αj Tji

)
+ t (4.16)

with
Θ = [sx, sy, φ, tx, ty, α1, α2, α3, ....αq]

and for given morphable model parameters (vi, T1i, · · · , Tqi).
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4.1.4 Application to ellipse fitting

A point on an ellipse (i.e. at a given ti ∈ [0; 2π]) can be created with the following
equation:

µgi (Θ) =

(
a cos ti

b sin ti

)(
cos γ − sin γ

sin γ cos γ

)
+

(
xo

yo

)
(4.17)

The latent variables to estimate are the parameters that define the curve

Θ = [γ, a, b, xo, yo].

where (xo, yo) is the centre of the ellipse, a and b the semi-minor and semi-major lengths
respectively and γ the angle of rotation of the ellipse with respect to the horizontal axis.
µgi (Θ) is nonlinear w.r.t. Θ.

4.2 Modelling curves and surfaces with GMMs

Curves and surfaces may be described by continuous parametric functions, t ∈ R →
x(t) ∈ R2 and (t1, t2) ∈ R2 → x(t1, t2) ∈ R3, and they can be easily discretised to be
fitted with a GMM. More often, shapes are directly available in discrete forms such as:
a set of points (i.e. vertices), a set of points with their normal vectors (i.e. vertices and
normals), a discrete set of connected points (i.e. vertices and edges in 2D, or vertices
and faces in 3D). Note that we use the same terminology (vertex, edge, normal, face) as
defined in the PLY computer file format (Polygon File Format) for meshes.

We denote {ui}i=1,··· ,n the vertices available to describe a discretised curve or a sur-
face. If only the vertices are known (i.e. point cloud), then a GMM with isotropic band-
width is fitted with:

µi = ui , Σi = hI and wi =
1

n
(4.18)

where I is the identity matrix and h a scalar or bandwidth that can be tuned by the user.
This representation is valid in R2 and R3 (i.e. for curves and surfaces).

4.2.1 Using non-isotropic covariances

When more information is available, non-isotropic covariance matrices can be proposed
(cf. Figure 4.1):

• For curves in R2, if edges are also given between vertices, for instance if ui is
connected to ui+1, then the mean is chosen as their barycentre:

µi =
ui + ui+1

2
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a) Isotropic kernel b) Non-Isotropic kernel

Figure 4.1: Modelling when using isotropic covariance matrices.

The covariance matrix which is by definition semi-positive, is written in the form
Σi = QΛQT . The rotation matrix Q is defined as:

Q = [~n1i|~n2i]

where ~n1i = ui+1−ui
‖ui+1−ui‖ is the tangent vector and ~n2i is the normal vector defined

such that ‖~n2i‖ = 1 and ~nT2i~n1i = 0.

The matrix Λ is the diagonal matrix defined as:

Λ =

(
‖ui+1 − ui‖ht 0

0 h

)

The bandwidth ht controls the fuzziness in the tangent direction, whereas h con-
trols the fuzziness in the normal direction to the curve. The weights are chosen as
a function of the covariance matrices in order to achieve a uniform value along the
ridge of the surface defined by the GMM (cf. Figure 4.2):

wi ∝
√
|Σi|

such that
∑

iwi = 1.

• For surfaces in R3, if faces are given such that for instance (ui, ui+1, ui+2) defines
a triangular face, then the mean is defined as the barycentre:

µi =
ui + ui+1 + ui+2

3

The covariance matrix Σi = QΛQT has a rotation matrix Q defined as:

Q = [~n1i|~n2i|~n3i]
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a) Proportional weight b) Uniform weight

Figure 4.2: Effects of choosing a) proportional weight for the Gaussians instead of b)
uniform weights. The ridge in a) has a similar value along the shape while in b) the ridge
changes value along the shape.

where ~n1i and ~n2i are the tangent unit vectors while ~n3i is the unit normal vector to
the triangular face (cf. Figure 4.3). These are computed as the eigenvectors of the
positive definite matrix (i.e. PCA is applied to the three vertices):

(ui − µi|ui+1 − µi|ui+2 − µi) (ui − µi|ui+1 − µi|ui+2 − µi)T

The normal vector ~n3i is the eigenvector associated with the zero eigenvalue. The
eigenvalues ht1 and ht2 associated with ~n1i and ~n2i are used to define the diagonal
matrix Λ:

Λ =

 ht1 0 0

0 ht2 0

0 0 h


The bandwidths ht1 and ht2 control the fuzziness in the tangent direction. h con-
trols the fuzziness in the normal direction to the surface and is set by the user. The
weights are set to:

wi ∝
√
|Σi|

subject to
∑

iwi = 1.

As can be noticed, curves and surfaces are treated in a similar fashion and we refer to
the following expression for this method:

(µi,Σi, wi) (4.19)

where µi, Σi and wi are computed as indicated in this section.
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Figure 4.3: Scheme of the principal directions of the covariance matrix extracted from a
given 3D mesh

4.2.2 GMM from shapes in images

Curves are not always directly available as a set of vertices in our applications. The curve
of interest may come from the edges extracted from an image I(x). The vertices {ui}
correspond then to the edge pixel locations as found by an edge detector (e.g. Canny
[142]). In addition, the gradient of the image∇I = (Ix, Iy)

T is also available and can be
used to augment the vertices with their corresponding normals ~n2i = ∇I(xi,yi)

‖∇I(xi,yi)‖ . We also
define the tangent vector at location ui = (xi, yi):

~n1i =
1

‖∇I(xi, yi)‖

(
Iy(xi, yi)

−Ix(xi, yi)

)
(4.20)

The mean µi can be chosen as the vertices ui and the covariance Σi = QΛQT is computed
with Q = [~n1i|~n2i] and the diagonal matrix Λ is:

Λ =

(
ht 0

0 h

)

where ht can be chosen proportional to the width of the pixel. h controls the fuzziness
in the normal direction to the curve and is set by the user. The weights are computed as
wi ∝

√
|Σi| subject to

∑
iwi = 1.

4.2.3 Role of h in Bayesian L2 shape inference

The only free parameter to set when computing L2 is the bandwidth h. This param-
eter plays two important roles in the proposed estimation framework. First, it affects
the description of the shape. It controls the fuzziness in the normal direction to the
curve/surface (cf. Figure 4.6). Secondly, it affects the convexity of the cost function.
Moreover, the cost function in Equation 4.10 can be expressed as a function of h as
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follows:

Θ̂ = arg min
Θ

{
C(Θ) =

L2(Θ, h)

τ 2
+

J∑
j=1

(θj − µθj)2

σ2
j

}
(4.21)

The optimisation is performed using Gradient Ascent (GA) algorithms depending on
the choice of the initial guess Θ(0), the orthogonal bandwidth h and the bandwidth τ

associated to L2.
Θ̂← GA

(
C(Θ),Θ(0), h, τ

)
We have shown in Section 3.2.3 that the larger the value for h the smoother the cost
function. Therefore, to make our approach not sensitive to the initial guess Θ(0), we will
use a simulated annealing framework. We use the orthogonal bandwidth h as a tempera-
ture (decreased with a geometric rate) to solve the optimisation of the cost function C(Θ)

defined in Equation (4.21).

The use of simulated annealing helps in converging to the global solution. However,
this is not guaranteed since it depends on how the rate of the bandwith is decreased.
The use of this scheme helps in achieving a better solution but involves a reduction in
efficiency of the algorithm. However, we will show in Chapter 5 that when using non-
isotropic modelling for the GMM the cost function becomes more robust and the conver-
gence to the global solution is often achieved without the need of an annealing strategy.

The bandwidth τ , on the other hand, controls the influence of the prior in the cost
function. A strong influence of the prior could lead the convergence of the optimisation
algorithm towards the mean values µj ∀j. On the other hand, if the influence of the
prior is too weak the results may not truly represent the class of shape we are aiming
at estimating. We found experimentally that the bandwidth τ can be set proportional to
L2(Θ, h) as follows:

τ = γ

√
L2(Θ, h)

J
(4.22)

We use γ = 0.5 for all the experiments performed in this thesis. The bandwidth τ is
updated along with the bandwidth h according to the simulated annealing strategy. The
optimisation scheme is summarised in Algorithm 1.

4.2.4 Complexity reduction for parsimonious representation

Sub-sampling the number of vertices before modelling a GMM is a useful approach to
reduce the number of Gaussians and the computation complexity involved when minimis-
ing L2. This can be done in a naive way by randomly selecting a subset of the vertices
but the resulting GMM may no longer represent the shape properly. We propose here
smart ways to downsample GMMs such that curves and surfaces remain well encoded.
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Algorithm 1 Annealing framework: the final estimate Θ̂ does not depend on the choice
of Θ(0)

Input: hmax, hmin,β and Θ(0)

Init h = hmax and Θ̂ = Θ(0)

repeat

τ ← γ

√
L2(Θ̂,h)

J

Θ̂← GA
(
C(Θ), Θ̂, h, τ

)
h← β × h

until h = hmin
Output: Θ̂

2D Representation

In the case of shape described using connected points in 2D, the selection of the num-
ber of Gaussians to use can be easily done by the user. The only caution is to group
vertices with a similar behaviour (in the case where shapes are deforming for instance)
or represent a similar description of the shape. The goal is to reduce redundancy in the
description of the shape. An example of using a hand is shown in Figure 4.4).

Figure 4.4: Reduction of the number of Gaussians in the mixture to represent the shape.

The effect on the density function when reducing the number of Gaussians is shown
in Figure 4.6. In the top row as reference we compute the density functions using non-
isotropic covariance matrices and consider all the vertices of the model (72 vertices, 71

Gaussians). The density function is computed for different bandwidths h = 30, 20, 10

and 5. From the second row to the bottom, we show the density functions computed
when using 56, 39 and 31 Gaussians respectively (for bandwidths of 30, 20, 10 and 5).
All density functions where modelled using the same hand shape. In order to evaluate
how similar the shapes are we compute the Euclidean distance between them. We use
as reference the shape modelled using all vertices (second row in Figure 4.6). Results
in Figure 4.5 show the distance between the shapes when the GMM is computed using
56 (blue line), 38 (green dash-dot) and 31 (black dash) Gaussians. For comparison we
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Figure 4.5: Similarity between shapes (Euclidean distance) when modelling the GM us-
ing non-isotropic covariance matrices and different numbers of Gaussians in the mixture.

include the case where all vertices are used but the GMM is computed using isometric
covariance matrices (red dots). For large bandwidths the difference between the shapes
is not significant. However, for smaller bandwidths even the shape modelled using 31
vertices is closer to the reference shape than when it is modelled with all the vertex (72)
using isotropic covariance matrices.

3D representation

In the case of 3D data, the selection of vertices for reducing the number of Gaussians may
not be trivial. There are a vast number of meshing algorithms in the literature as well as
software specialising in data processing that can solve the problem more efficiently (cf.
Figure 4.7). However, the main disadvantage of these software programs is that the
reduction of the number of vertices is limited. Holes may appear in the mesh when the
reduction of a vertex is too extreme. As an alternative, we propose to use Self-Organising
Maps (SOM) as a meshing algorithms to reduce the number of Gaussians in the mixture.

Figure 4.7: Example of a portion of the mesh of a face when described using a different
number of vertices. As more vertices are used (left) a more accurate representation is
produced.

SOM is a type of artificial neural network that was originally used for clustering and
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a) h = 30 b) h = 20 c) h = 10 d) h = 5

Figure 4.6: Density functions computed from the hand model when using non-isotropic
Gaussians (with n = 71, n = 56, n = 39 and n = 31 kernels from top to bottom
respectively).
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classification of data (cf. Section 2.2.2). However, we take advantage of the topology
involved in its definition and apply it for meshing purposes. We base our algorithm on
the statistical self-organising method proposed by Verbeek [4]. It estimates the modes of
a Gaussian mixture while preserving the spatial relationship between them. The resulting
modes are used as vertices from where the final Gaussian Mixture is computed using non-
isotropic covariance matrices as presented previously.

An example of the results given by the algorithm is shown in Figure 4.8. An addi-
tional advantage of this method is that the original representation of the shape does not
need to already be a mesh. Any set of non-structured data points can be used as well (any
point cloud).

a) b) c)

Figure 4.8: Example of the meshing process using SOM. Figure a) shows the original
3D point cloud (blue dots) and the starting position of the mesh (red). Figures b) and c)
show the final solution for different numbers of vertices (100 and 400, respectively).

4.2.5 Optimising GMM from images

In this case, we do not have any information about the shape contained in the image.
Hence, the reduction in the number of Gaussians to use in the GMM is performed by
sub-sampling the data using a uniform rate. Two strategies can be implemented:

1. Sub-sampling the image: This can be done either by directly reducing the resolu-
tion of the image or by sampling it at a uniform sampling rate. An example of the
reduction in the data points is illustrated in Figure 4.9b. The effect in the density
function modelled from the sub-sampled data is illustrated in Figure 4.10.

2. Sub-sampling the edge map: A smarter alternative is to sub-sample the edge map.
In this case we select the connected edges automatically using a standard image
processing algorithm in matlab (bwboundaries). The data can then be sub-sampled
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a) No sampling b) Sampling the image c) Sampling the edge
n = 746 n = 123 n = 115

Figure 4.9: Example of reduction of data by sub-sampling. Figure a) shows the original
point cloud extracted from the edge map of Figure 4.11 a). Figure b) shows the data when
sub-sampling the image while in c) when sub-sampling the connected edges.

h
=

7
h

=
4

h
=

1

a) n = 746, 100% b) n = 526, 70% c) n = 376, 50%

Figure 4.10: 2D view of the density function computed for Figure 4.11a. In the first
column we show the density functions when using all data (764 points) for bandwidths
of 7, 4 and 1 respectively. The second column shows the density functions of the ob-
servations with a resolution of 70% and in the last column with resolution of 50%. The
number of Gaussians used to define the density functions are 526 and 372 respectively.
In the three cases, the rows shows the 2D views when different bandwidths are used. At
the top h = 7, in the middle row h = 4 and in the bottom row h = 1.

using a uniform rate along the connected edges in the edge map. An example of the
resulting sub-sampling when applied to Figure 4.9b is illustrated in Figure 4.9c.
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4.3 Extension to shape representation with GMM

In this section we show how to consider additional information about the shape of interest
by augmenting the dimensionality of the density functions (f and g). We illustrate the
case where the vertices and the curvature of the shape are considered. In the case of
images, for instance, the means of the GMM are the vertices that correspond to the edge
pixel locations and their curvatures µi = {(ui, ψi)}i=1··· ,n. The curvature for each vertex
can be computed using the gradient of the image as follows:

ψi = arctan

(
Iy(xi, yi)

Ix(xi, yi)

)
(4.23)

The covariance matrix Σi = QΛQT is similar to the one defined in Section 4.2.2 but
augmented in one dimension such as Q:

Q =

(
~n1i|~n2i BT

B 1

)

with B = [0, 0]. The diagonal matrix of bandwidths Λ is defined as follows:

Λ =

 ht 0 0

0 h 0

0 0 hψ


where hψ is the bandwidth associated with the curvature of the shape that has been in-
cluded as an extra dimension. An example of the data extracted from an image is shown
in Figure 4.11. We have shown here that the domain of the density functions f and g is not
limited to the spatial domain. It can be augmented by including extra information about
the shape of interest. Increasing the dimension of the GMM can increase the amount of
information about the shape to encode. However, it does not affect the complexity of the
cost function. The computational complexity depends on the number of Gaussians used
and not on their dimensionality. We have illustrated a simple example using curvature as
additional information. However, it can be extended to any other information about the
shape such as colour, illumination, gradient, or motion among others.

4.4 Conclusion

We have presented a Bayesian framework for shape parameter estimation. The data term
in the Bayesian expression is considered as a sort of likelihood defined using the L2

distance between two density functions f and g. Where f and g are modelled using
GMMs representing the target shape (observation) and the model shape respectively. We
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a) Original image b) Normal map c) Observation

Figure 4.11: The set of observations are extracted from the image a). We use the edge
map and the gradient of the image to compute the position and curvature of the points of
interest. In b) we show the map of the normal vector associated to the edge map. In c)
we show the computed observation {(ui, ψi)}i=1··· ,n ∈ R3.

have also shown in this Chapter alternative modellings of the GMMs according to the
information available about the shape (curve, surface and images). When some struc-
ture is provided (e.g connected vertices) non-isometric covariance matrices can be used
for modelling the GMM. The non-isometric modelling achieves a more representative
description of the shape (as density function) and allows us to reduce the number of
Gaussians in the mixture without compromising the representation of the shape. We
have briefly introduced the shape estimation problems to be explored in the remaining
Chapters of this thesis. The experiments performed and results obtained when applying
the proposed Bayesian L2 framework are presented in the following Chapters (Part II).
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Part II

Experiments and Results
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Chapter 5

Affine Transformation Estimation with
Bayesian-L2

In this chapter we address the estimation of the affine transformation between point
clouds (rotation, translation and scaling). We tackle the problem by solving the rigid
transformation separately (cf. Section 5.1) and the scaling (cf. Section 5.2). We show in
Section 5.1.1 that when modelling the GMMs with isotropic covariance matrices and as-
suming a Gaussian prior with large bandwidth, the cost function is comparable to the one
used by Jain and Vermury [39] and to the Kernel Correlation registration [38]. However,
in this case, a dedicated Mean Shift algorithm is implemented using an annealing strat-
egy. The resulting algorithm is shown to improve the estimation results when comparing
with state of the art algorithms [39, 38, 5]. Furthermore, in Section 5.1.2, we demonstrate
that modelling non-isotropic covariance matrices in the GMM improves the transforma-
tion estimation. Moreover, it shows better performance when estimating transformation
between data sets sampled at different rates.

Finally, in Section 5.3, we analyse two applications of the proposed Mean Shift al-
gorithm. The first application, corresponds to a method for reconstructing objects from
multi-view images captured using a depth sensor (Microsoft Kinect). The second ap-
plication shows the performance of the algorithm when aligning data obtained from a
Simultaneous Localization and Mapping system (SLAM). The results obtained in both
applications show the robustness of the algorithm when aiming to recover the transfor-
mation between data sets.

5.1 Rigid parameter estimation

In this section we aim to solve the rigid transformation problem between point sets. We
consider the cost function given by the Bayesian-L2 framework previously proposed (cf.
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Equation 4.21) and rewrite it as follows:

Θ̂ = arg min
Θ

{
C(Θ) =

L2(Θ, h)

τ 2
+

J∑
j=1

(θj − µj)2

σ2
j

}

The latent variable to estimate corresponds to the parameters defining the rotation and
translation between the point sets Θ = [φ, tx, ty]. We made the assumption that the prior
the latent variable is modelled using a Gaussian distribution with a large bandwidth. In
other words, we assume all the possible solutions have almost the same probability of
occurrence. Under this assumption, the estimation problem is equivalent to minimising
the L2(Θ) distance between those two density functions as follows:

Θ̂ = arg min
Θ

{
L2(Θ, h) =

∫
{g2(x|Θ)− 2 g(x|Θ) f(x) + f 2(x) } dx

}
(5.1)

The terms
∫
{g2(x|Θ) } dx and

∫
{f 2(x) } dx do not affect the optimisation (the former

is constant due the rigid transformation and the latter does not depend on Θ). Hence, the
problem is equivalent to:

Θ̂ = arg max
Θ

{∫
{ g(x|Θ) f(x) } dx

}
(5.2)

In Section 5.1.1 we analyse the case where all Gaussians in the mixture are modelled
using isotropic covariance matrices (cf. Equation 4.18). The cost function in 5.2 is
similar to the one used for Jian and Vermuri [39] and Tsin et al. [38]. However, in both
cases they model one density function g(x|Θ) and assume the other data set corresponds
to a set of samples of the same density function. In other words, they approximate the
second sets by its empirical distribution. In fact, they solve the L2E distance instead of
L2 (cf. Section 3.1.3). However, when all Gaussians have the same bandwidth (isotropic
covariance) to model the L2 using a bandwidth h is equivalent to model L2E with a
bandwidth h

√
2 (cf. Appendix A.2). Moreover, the bandwidth plays an important role

not only in the description of the shape but also in the optimisation algorithm defined for
solving the estimation problem (cf. Section 3.2.3). Hence, we propose here a dedicated
Mean Shift algorithm for solving the rigid transformation. We included an annealing
strategy that helps the convergence of the algorithm to the global solution. Algorithms
2 and 3 summarised the method used. For a more detailed explanation please refer to
Appendix B.1.

In Section 5.1.2, on the other hand, additional information related to the structure of
the points cloud is assumed. In this case, non-isotropic modelling is considered for one of
the point sets. We evaluate the effects in the estimation results achieved when comparing
with the case where isotropic covariance matrices are used.
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Algorithm 2 Estimation of Θ.
Input: t = 0,Θ(0), e, M

repeat
δ̂Θ = arg maxδΘ C(δΘ,Θ(t)) (algorithm 3)
Θ(t+1) = Θ(t) + δ̂Θ
t← t+ 1

until ‖Θ(t+1) −Θ(t)‖ ≤ e or t > M
Output: Θ̂ = Θ(t)

Algorithm 3 Estimation of δΘ.
Input: s = 0,Θ(t), δΘ(0) = 0, e, N

repeat
δΘ(s+1) = A(δΘ(s),Θ(t)) b(δΘ(s),Θ(t))
s← s+ 1

until ‖δΘ(s+1) − δΘ(s)‖ ≤ e or s > N

Output: δ̂Θ = δΘ(s)

Case a)
Methods Distance d Error Er Bandwith h

Jian [39] 9.73 · 10−10 ≈ 0 2.28 · 10−5 Fixed
Proposed 3.2850 · 10−7 ≈ 0 3.285 · 10−4 Fixed

Table 5.1: Numerical assessment of the experiments displayed in Figure 5.1a. In this
case we set both algorithms to use the same parameters.

5.1.1 Using isotropic covariance

Figure 5.1 show examples of the performance of our proposed algorithm compared to
Jian’s. We first compare in Figure 5.1a the performance of our MS algorithm when using
the same settings used in Jian and Vermuri’s algorithm (equal bandwidths for all gaus-
sians in the two density functions). We compute the error between the ground truth and
the estimated parameters. Results are approximately zero in both cases. For comparison
we also compute the Euclidean distance d between the two density functions, which is
close to zero in both cases since the sets are perfectly aligned (see Table 5.1). When
the data sets (observation and reference sets) are not the same set of points (which is the
standard scenario in real applications) Jian’s algorithm is more likely to get stuck in local
solutions. However, our algorithm converges to the global solution thanks to the anneal-
ing strategy implemented. Examples are shown in Figure 5.1b and c. For each data set
we have chosen a non-uniform sub-sample. The settings used and results are reported in
Tables 5.2 and 5.3.

As follows we test the performance of the algorithm under different scenarios (noise
and outliers) and evaluate the efficiency of the algorithm when compared with kernel
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(a) Fish: 50o (b) Contour: 80o (c) Character: 50o

Figure 5.1: 2D data sets: alignment obtained when testing the 2D data sets Fish, Contour
and a Chinese Character: Reference point set (blue circles), observation (red asterisk)
and estimated solution (green cross). The top row of the figure shows results obtained
using Jian and Vermuri’s algorithm while in the bottom row we show the convergence
obtained using our proposed MS algorithm.

Case b)
Methods Distance d Error Er Bandwidth h

Jian [39] 0.3698 2.75 Fixed
Proposed 0.1629 1.3291 · 10−4 ≈ 0 Annealing (hmax = 2, hmin = 0.01)

Table 5.2: Numerical assessment of the experiments displayed in Figure 5.1b. In this
case we include the annealing strategy for improving convergence of the Mean Shift
Algorithm.

Case c)
Methods Distance d Error Er Bandwidth h

Jian [39] 0.074 0.0454 Fixed
Proposed 0.02 2.3799 · 10−5 ≈ 0 Annealing (hmax = 2, hmin = 0.01)

Table 5.3: Numerical assessment of the experiments displayed in Figure 5.1c. This case
is similar to the previous one (case b) where the annealing strategy is included in the
Mean Shift Algorithm.
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Correlation and the ICP algorithms [38, 36, 143].

Sensitivity to noise: We generate 100 random 2D data sets containing 30 points each
(cf. Figure 5.2a top left (red circles). For each data set, a second one is created by rotating
it by an angle of φGT and perturbing it with Gaussian noise (cf. Figure 5.2a) top left (Blue
crosses). We repeat the experiment using 5 different levels of Gaussian noise (from 0 to
0.2). Examples of the results obtained when estimating the rigid transformation is shown
at the top right of Figure 5.2a and b. For comparison we also show the results obtained
using the Kernel Correlation registration and the ICP registration (bottom left ad right
respectively [38, 36]).

We evaluate the rate of convergence of the 100 data sets generated at the different
noise levels. We consider that the algorithm has converged to the right solution when the
error between the estimated φ̂ angle and the ground truth (φGT ) is±1o. Results show that
our algorithm has a better convergence rate than KC (cf. Figure 5.3).

The mean of the error (ε = ||φ̂−φGT ||) between our estimated φ̂ and the ground truth
φGT is reported in Figure 5.4 with its 95% confidence interval. For the KC algorithm
we use the setting proposed by the authors (h = 2) [38]. The bandwidths used in our
proposed algorithm are hmax = 3 and hmin = 0.2. Our algorithm outperform KC reg-
istrations for all levels of noise. Additional results can be found in the Appendix C.1.1.

Robustness to outliers: Here we use the road data from [38] and generate the reference
data set by adding 20% of outliers uniformly distributed. The second data set is also
corrupted with 20% of outliers and rotated by an angle φGT . Examples of the data sets
and the results obtained for rotation angles of φGT = 20 and φGT = 90 are reported in
Figure 5.5 and Figure 5.6 respectively. In both cases the starting position is displayed
at the top left and the results obtained when applying our proposed algorithm at the top
right. Results for KC registration and ICP registration are shown at the bottom of each
figure.

We evaluate the rate of convergence towards the right solution of our proposed al-
gorithm. As in the previous experiment, we consider the estimated φ̂ to have con-
verged to the ground truth φGT when the error between them is less than one degree
(‖φ̂ − φGT‖ < 1o). Results obtained when running the experiment 100 times (100 dif-
ferent data sets) are reported in Table 5.4. For comparison we also report the results
obtained when using KC and ICP algorithms. In all the cases evaluated (φGT = 20o, 30o

and 90o), our proposed algorithm outperforms both competitors. The only parameters to
set in these experiments are the bandwidth (proposed algorithm and KC) and the thresh-
old in the case of ICP. For our MS algorithm we use hmax = 7 and hmin = 2. The KC
algorithm is used using h = 5 which is the value proposed for this data set by the authors.
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a) Example for φGT = 30o and without noise
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b) Example for φGT = 30o and noise level of 0.2.

Figure 5.2: Examples of the experiment performed for an angle of rotation of φGT = 30o.
Results are displayed for our proposed algorithm, KC registration and ICP registration.
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Figure 5.3: Convergence rate (%) of the estimated solution (y-axis) when perturbing the
data with different noise levels (x-axis) using our proposed algorithm (red line) and when
using the Kernel Correlation algorithm (blue dot-dash line). In a) we show the results for
a rotation angle of φGT = 20o and in b) φGT = 30o
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Figure 5.4: Error mean with 95% of confidence of the estimated rotation when data is
perturbed using different levels of noise (from 0 to 0.2). In a) we show the target angle
or rotation is φGT = 20o and in b) φGT = 30o
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Figure 5.5: Examples when both sets are rotated by 20o.
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Figure 5.6: Examples when both sets are rotated by 90o.
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Figure 5.7: The error obtained for 100 experiments when using our proposed algorithm
(red line) and the KC algorithm (blue dots). The mean of the error for the 100 runs when
using our proposed algorithm is 0.0186 (degrees) and the standard deviation is 0.1105.
In the case of the KC algorithm the mean and standard deviation are 0.5024 and 0.4842
respectively.

In the case of the ICP algorithm the threshold is not that trivial to set. However, we use
the same parameters used in the experiments performed by [38] for the same data set.

Angle (degrees) Proposed method KC Registration ICP Registration

20o 100% 91% 77%

30o 100% 86% 29%

90o 100% 98% 0%

Table 5.4: Rate of convergence towards the ground truth when considering an error of
±10

Figure 5.7 shows the error obtained for the 100 experiments when the data sets are
rotated by φGT = 30o. The red line corresponds to our proposed algorithm and the blue
dots to the KC registration algorithm.

Run-time performance: The use of annealing in the MS algorithm increases conver-
gence towards the global solution but also increases the time needed for estimating the
parameters. The computational complexity of the algorithm will depend then on the
bandwidth used and the number of Gaussians in each mixture (f and g).

As reference for the performance of the proposed algorithm, we report the time in
seconds in Table 5.5 that was needed for convergence to the correct solution. The time
increases considerably as the number of points in the set increases. The ICP algorithm is
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the most efficient (fast). However, its convergence toward the right solution is not always
achieved. We explore as follows a non-isotropic modelling for the GMM and its effect in
the efficiency of the optimisation algorithm.

no Points (nfxng) Proposed method KC Registration ICP Registration
5x5 0.051 0.094 0.002
10x10 0.216 0.129 0.001
30x30 2.089 0.310 0.004
50x50 6.311 0.432 0.007
100x100 31.602 0.971 0.024
500x500 630.388 4.025 0.458

Table 5.5: Run-time performance of the algorithm measured as the time it takes the
algorithm to converge (in seconds).

Proposed method KC Registration ICP Registration
max{n2

f , nfng, n
2
g} nfng nf + ng

Table 5.6: Computational complexity of the algorithm.

This comparison may not be fair since the implementation of the algorithms are not
necessarily done with the same degree of optimisation. Our implementations were done
using Matlab and no special effort was made on reducing the running time. A more
fair comparison is to evaluate the computational complexity instead of the running time.
Table 5.6 shows the order of complexity of each method.

5.1.2 Using non-isotropic covariance

We assume here that one of the data sets is a connected set of points. Therefore, non-
isotropic covariance matrices can be modelled for its GMM. The second data set, on the
other hand, is modelled using isotropic covariance matrices since there is no knowledge
about its structure. Let us consider the example in Figure 5.8. Figure 5.8a shows, in
blue, the data sets considered as observations nf = 2421. Figure 5.8b shows the full
model of the same class of shape (ng = 72) and in c) a sub-sampled version of the model
(ng = 13).
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a) Observations b) Full model c) Sampled model

Figure 5.8: Example of a set of observations a) and model of the hand b) used for es-
timating the rigid transformation when modelling GMM using non-isotropic covariance
matrices. In c) we show a sub-sampled version of the hand model.

We rotate the observation with respect to the hand model by φGT = 30o and evaluate
the effect on the cost function when using different modellings for the GMM and when
sub-sampling the data sets. The first modelling corresponds to the case where both GMM
(f and g) are defined using isotropic covariance matrices. The second one corresponds to
the case where one of the data sets is modelled using non-isotropic covariance matrices
(hand model). Figure 5.9 shows the resulting cost functions computed for angles in be-
tween 0o to 90o for a bandwidth h = 10. The blue dash-line corresponds to the isotropic
modelling and the red line to the non-isotropic modelling. Figure 5.9a shows the cost
functions when all points are used for modelling the GMM. Figure 5.9b shows, on the
other hand, the cost functions for a sub-sampled version of the observations (green dots
in Figure 5.8 a) and a sub-sampled version of the hand model (cf. Figure 5.8 c). The
total number of Gaussians evaluated are then nf × ng = 38 × 13 which correspond to a
small fraction of the original data sets (nf × ng = 2421 × 72). However, the resulting
cost function of the sub-sampled data when modelling using non-isotropic covariance
matrices preserves its convexity. On the contrary, when both GMM are computed using
isotropic covariance matrices, the cost function shows an increment of local solutions
which may affect the convergence of the algorithm to the global solution. We evaluate
the convergence of the algorithm when running 100 experiments using different initialisa-
tions for the optimisation algorithm (randomly generated in the range [0o, 60o]). We use
the same settings for both modellings for the bandwidth (h = 10). Note that we do not
use annealing for this experiment. Results of the convergence of the algorithm towards
the ground truth is reported in Table 5.7 for different samples taken randomly from the
observation (nf = 120, 80 and 38). For this experiment we use a sub-sampled version of
the hand model ng = 13 (cf. Figure 5.8c). Results show that the non-isotropic modelling
helps in the convergence of the algorithm. Moreover, when using a small set of samples
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Figure 5.9: Cost function computed when both GMMs are modelled using isotropic co-
variance matrices (blue dash line) and when one of them is modelled using non-isotropic
modelling (red line).
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Method nf = 120 nf = 80 nf = 38

Isotropic 0% 0% 0%
Non-Isotropic 98% 95% 97%

Avg. Time 54sec 25sec 15sec

Table 5.7: A comparison of the convergence of isotropic versus non-isotropic modellings
for drastically sub-sampled data sets.

from the observations (randomly chosen) the non-isotropic modelling shows a better per-
formance than when modelling both GMMs using isotropic covariance matrices. Figure
5.10 shows two examples of the results obtained in this experiment.

Figure 5.10: An example of results obtained when sub-sampling the data sets and when
using isotropic (green dash line) and non-isotropic modelling (red line). The blue dots
correspond to the full observation.

5.2 Scaling parameter estimation

We use here the cost function proposed in Equation 4.21 and rewrite it as follows:

Θ̂ = arg min
Θ

{
C(Θ) =

L2(Θ, h)

τ 2
+

J∑
j=1

(θj − µj)2

σ2
j

}

The latent variable only considers the scaling parameters in both directions Θ = [sx, sy].
We evaluate the performance of the estimation algorithm when using a non-informative
prior and when using a Gaussian distribution as a prior for the parameters to estimate.

5.2.1 Non informative prior

In this section we consider a Gaussian distribution with a large bandwidth as prior for
the latent variable. Under this assumption the estimation problem can be interpreted as
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minimising the L2 distance. Moreover, in this case, all the solutions are equally probable.
To test the algorithm we use the Fish data set and evaluate the following cases:

1. Sensitivity to noise: The data set is perturbed using two levels of noise generated
by a Gaussian distribution with zero mean and standard deviation of 0.01 and 0.03

respectively. An example of such a data set is shown in Figure 5.11 a and b.

2. Robustness to outliers: In this case we add 20% of outliers uniformly distributed
as shown in Figure 5.11 c.

3. Occlusion: The occluded data set is generated by discarding the points in the tail of
the Fish. We also add in this experiment outliers as in the previous case (cf. Figure
5.11 d).

a) Noise σ = 0.01 b) Noise σ = 0.03 c) Outliers d) Occlusion

Figure 5.11: Examples of the data set used for testing

For each case, we scale the data sets in both directions. Each scaling parameter consid-
ered as ground truth sxGT and syGT is generated from the following distributionN (x;µ =

1, σ = 0.5). We run 100 experiments for each case and evaluate the convergence towards
the ground truth. The settings for all the experiments are hmax = 1 and hmin = 0.01. The
results obtained using our proposed algorithm when evaluating the scaling of the original
data set (without noise or outliers) and the other 4 cases described above are reported in
Table 5.8. The algorithm shows a high rate of convergence towards the ground truth for
the original data and when perturbed with noise and outliers. However, results obtained
when occluded data is considered shows only 85% convergence for the scaling parameter
associated with the y−axis. This is mainly due to the fact that the shape remaining (Fish
without a tail) can either fit the body of the fish or the tail. Furthermore, solutions where
the shape is partially fitted as it is shown in Figure 5.12 c, are often reached, since it is a
valid solution of the algorithm but not necessarily the correct solution. Figure 5.12 show
several results. Additional results are presented in Appendix C.1.3.
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Scale Original Noise (0.01) Noise (0.03) Outliers Occlusion & Outliers

sx 100% 100% 99% 100% 100%
sy 100% 100% 97% 100% 85%

Table 5.8: The rate of convergence towards the ground truth when considering error
of 5%. We evaluate the cases where: no changes are made in the data (original), data is
perturbed with noise (levels: 0.01 and 0.03), data is perturbed with outliers, and occluded
data. In all cases 100 experiments were run and the number of successes are reported in
the table.

5.2.2 Gaussian Prior

In this section, we assume that an informative prior for the latent variable is available,
such as:

sx ∼ N (sx;µsx , σsx) (5.3)

sy ∼ N (sy;µsy , σsy) (5.4)

We test the robustness of the algorithm for the case of the occluded data. Two different
occlusions are considered for the Fish data set. Results of the estimation of 100 experi-
ments are reported in Table 5.9. In this case there are three parameters to set: hmax, hmin
and the bandwidth associated with the likelihood τ (cf. Equation 4.10). This parameter
controls the trade-off between the likelihood and the prior distribution.

Scale Occlusion 1 Occl. & Outliers 1 Occlusion 2 Occl. & Outliers 2

sx 100% 84% 100% 95%
sy 100% 100 100% 93%

Table 5.9: The rate of convergence towards the ground truth when considering an error of
10% and 5%. The bandwidth for this experiment was set to hmax = 0.5 and hmin = 0.01.

5.3 3D reconstruction applications

We present two applications in this section for the rigid transformation algorithm dis-
cussed in Section 5.1 but extended to 3D data sets. In the first application we aim at
improving the 3D shape reconstruction when capturing data using the Kinect sensor. In
the second application, we use data captured using a Lidar.
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Figure 5.12: Examples of the results obtained when testing our algorithm under different
conditions.
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5.3.1 Multi-view reconstruction

The goal in this experiment is to recover an accurate 3D reconstruction of an object
captured using a Kinect sensor. The Kinect sensor is based on structured light technology
(cf. Section 2.3.2). Therefore, the resulting 3D object is quite noisy. We use an algorithm
that uses a multi-view strategy to estimate the 3D shape by accumulating the information
of a sequence of depth images captured from multiple viewpoints (see experiment setup
in Figure 5.13). No prior information is available about the object in view. All the
different views are aligned with each other using a extension in 3D of the algorithm
discussed in Section 5.1 and presented in Appendix B.1.

Figure 5.13: Experiment setup. The object to be scanned is placed as close as possible to
the Kinect sensor (approximately 50 cm). The object (here a head) is rotated in order to
capture different points of view.

We test our approach with different objects: Gnome (height 32cm), Duck (height
26cm) and two human faces (assumed to be rigid in this experiment). In the case of the
human faces, the experiment was done according to the setup displayed in Figure 5.13,
while for the other objects a turntable was used. The distance between the object and the
Kinect sensor is approximately 50−60cm (the minimum distance allowed by the sensor).
For comparison, a 3D Minolta vivid 700 laser scanner was used for acquiring a reference
3D shape of the objects.

After estimating the rigid parameters between views the final point cloud is computed
(it corresponds to all views aligned altogether). This point cloud can be presented as
a mesh using Rapidform XOR. In Figure 5.14, several 3D reconstructions of one face
(profile view) are presented. The first reconstruction (left) has been generated from one
depth image from the Kinect sensor. The following 3D reconstructions have merged
several point clouds (n = 4, 6, 9 views are merged). We can visually appreciate how the
noise present in a single capture by the Kinect sensor can be reduced when more point
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Figure 5.14: Results obtained when aligning different views captured using the Kinect
sensor. The noise is reduced as the number of views n merged increase. A laser scanner
acquisition is also shown for visual comparison purposes

Figure 5.15: Kinect scan alignment for a face. The top row shows a sequence of images
captured from different points of view. Bottom row: Mesh created from a) a single
acquisition, b) multiples views and c) face captured using a laser scanner.

clouds are merged together. For comparison, the 3D reconstruction from a single scan
recorded with a 3D scanner is also shown (right).

Similar results are shown for a face in Figure 5.15. The final reconstruction of the
face compares with the laser scanner acquisition (average error of 1.02mm). In Figure
5.16, we shows some results obtained for the Duck and Gnome. We quantify the average
distance between the ground truth (scanner) and the Kinect reconstruction after merging
a set acquisition. The average noise is reduced from 2.25mm (for a single acquisition) to
1.54mm (for multiples views). In addition to noise reduction, the multi-view strategy
also allows us to recover parts of the shape that are hidden in some specific views but
seen in others.

5.3.2 Simultaneous localization and mapping

Simultaneous Localization and Mapping (SLAM) is a technique that aims at reconstruct-
ing 3D maps of unknown environments. A set of point clouds are captured by using
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(A) Duck (B) Gnome

Figure 5.16: a) the picture of the object (Duck) and d) laser scan respectively (ground
truth). In b) the reconstruction with one acquisition using the Kinect sensor and e) its
error w.r.t. the laser scan has an average of 2.25mm. When merging 15 views together c)
the average error f) is reduced to 1.54mm. Details of the Gnome face the average error
of the reconstructed shape when four images are merged is 1.7mm.

robots and autonomous vehicles equipped with 3D scanners. Each scan (as a point cloud)
is captured in a local coordinate framework given by the position of the scanner at that
time (robot/vehicle position). In order to build the global map, all the scans must be
matched on a general coordinate framework. A well known strategy for solving this
problem is to treat every consecutive pair of scans independently and then to calculate
the transformation between them by using points registration techniques.

In this section we test our algorithm for rigid transformation as an alternative to solv-
ing the registration problem between consecutive scans captured using SLAM. We use
the Hannover1 database1 for all our experiments in this section. It contains 468 3D scans,
each of them with approximately 20000 data points. In addition to the scans it also con-
tains the position estimates for each scan in a common reference frame. We use these
estimated positions as a reference for comparison and validation of our algorithm.

Similarly to the Kinect application, we consider two consecutive scans Sz and Sz+1.
Using one of them as a reference, we aim at estimating the parameters (rotation and
translation) that align them. For all the experiments we consider an isotropic modelling
of the density functions (cf. Section 4.18). The bandwidth for all the Gaussians of the
two density functions are identical (h = hi = hk, ∀ i ∈ n′ and ∀ k ∈ n). We choose
an initial value of hmax = 100cm. This value is decreased iteratively until hmin = 1cm

thanks to the annealing strategy.

1Captured by Oliver Wulf from the Leibniz University and available at http://kos.
informatik.uni-osnabrueck.de/3Dscans/.
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To define the weight of each Gaussian (wi) a more careful inspection of the data
contained on the scans must be done. Figure 5.17 shows two scans from different points
of view. The distribution of the points captured around the sensor is more dense than the
points captured along the full scene. If we analyse the amount of points in this area (in
particular on the ground) we observe that they represent a significant percentage of the
full data set (approximately 40.6%).

Figure 5.17: Two scans displayed from different viewpoints

The annealing strategy implemented in our algorithm helps in the convergence to
the global solution. However, the two shapes (Szand Sz+1) are not exactly the same (they
offer different points of view of the environment captured). Then, the global solution may
not necessarily be the right solution we are looking for. For instance, since the ground
represents an important percentage of the full data and is already aligned between the
scan (all shapes by default are centered at the robot/sensor position), an equally weighted
modelling for the density function may converge to zero for the rotation and translation.
However, this can be avoided by modelling the weight of each kernel in the density
functions according to the structures or shape we are interested in being aligned.

In this particular case (the hanover1 data base) we are interested in aligning the build-
ing in the scene. This suggests a weighting strategy that gives more importance to the
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points corresponding to walls and reduces the weight to points on the ground. A simple
implementation is to set all the weights of the points on the ground to zero (wi = 0 ∀i ∈
ground of Sz and wk = 0 ∀k ∈ ground of Sz+1). This modelling of the density function
helps us to ensure a convergence of the algorithm to the right solution and it also re-
duces the total computation needed (the computation time is proportional to the number
of points on the data set).

Figure 5.18: A set of examples of the alignment between scans. (a) two consecutive
scans (input data), (b) the two scans after removing the ground, (c) the two scans aligned
according to the transformation parameters estimated with our proposed algorithm and
(d) is the estimated transformation applied to the full scan.

An example of the results obtained are shown in Figure 5.18. In the first two columns
(a and b), four examples of pairs of consecutive scans are displayed. The two scans using
the full data points are shown in a) while in b) we present the data on the scans after
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Figure 5.19: A set of scans aligned together. The figure on the left shows a set of 6 con-
secutive scans. The middle figure shows the results after estimating the transformation
parameters between the scans. The same result from another point of view is displayed
in the right figure

Figure 5.20: The distance between the shape when aligned using the proposed method
(blue line) and when aligned using the ground truth (red line). Results obtained when
modelling the density function using isotropic bandwidth h = 7, 14, 21 and 35.

removing the points on the ground (setting their weights to zero). The alignment of the
two scans after compensating the transformation by our estimated parameters is shown in
column c). Similar results are shown in d) by applying the estimated transformation to the
full scans (using all data points). As can be seen in the examples, the pair of scans have
been successfully aligned to each other. Similar results can be seen in Figure 5.19, where
the alignment between a set of 6 scans after estimating consecutively the transformation
between pair of scans is shown. Different views of the reconstructed environment are
displayed in the middle and on the right side of the figure.

A quantitative evaluation of the results is performed by comparing with the alignment
provided by authors of the data base (ground truth). We use the Euclidean distance be-
tween density functions as a measure of similarity between the consecutive scans (as a
measure of the error). The smaller the distance between the density functions, the better
the alignment between them. We run the experiment for 92 pairs of scans. The density
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function of each scan is modelled using the same bandwidth (h) for all the Gaussian
kernels centred on each point on the data set. Using the same modelling we compute
the distance between the density functions of the scans aligned using the transformation
given by the authors of the database.

In Figure 5.20 we compare the results using different bandwidths on the modelling
of the density function (h = 7, 14, 21 and 35cm). The blue curve corresponds to the
Euclidean distance calculated between the scans aligned using our proposed method,
while the red curve was computed using the alignment provided from the database. For
all the bandwidths modelled, the distance between the scans using our proposed method
is in general smaller than the reference we are comparing with. These results suggest a
better performance of our aligning algorithm.

In order to demonstrate the significance of these results we perform a paired differ-
ence test. We are interested in testing the hypothesis that the distance between the scans
when the reference transformation is applied is greater than when transformation is esti-
mated using our proposed method (with a confidence of 99.9%, α = 0.001). Using the
computed distance between the density functions of the pair of scans shown in Figure
5.20 (for the 92 pairs of scans) we calculate d as the difference between the distance cal-
culated with the reference alignment and our method. Then, we state our hypothesis as
follows:

Ho : µd = 0
H1 : µd > 0

Table 5.10 shows the values obtained for the mean d̄ and standard deviation σd calcu-
lated from the n = 92 samples for different bandwidths. We compute the t-value for each
experiment as t = d̄−0

σd/
√
n

. The critical p-value for α = 0.001 and 91 degrees of freedom
is 3.182.

For all the sets of experiments performed, t > 3.182 (see Table 5.10) so we reject
Ho. This allows us to claim with 99% confidence that our proposed algorithm performs
better than the aligning provided as reference by the authors of the database. This result
validates our algorithm as an alternative for SLAM reconstruction. A graphical example
of these results is shown in Figure 5.21 where a close zoom over the two scans shows the
errors in alignment given by the reference parameters (right) compared with the result
obtained with our method (left).
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Table 5.10: Paired difference test: The table shows the value for the mean (d̄), standard
deviation (σd), number of samples (no) and the t-value calculated as t = d̄−0

σd/
√
n

Value h = 7cm h = 14cm h = 21cm h = 35cm

d̄ 3.31E−07 3.45E−07 3.55E−07 3.67E−07

σd 4.29E−07 3.66E−07 3.59E−07 3.60E−07

no 92 92 92 92
t 7.385 9.037 9.475 9.778
no 92 92 92 92

Ho : False False False False

(a) (b)

Figure 5.21: Details of the alignment between buildings. a) using our proposed algorithm
for aligning the scans and b) using ground truth.

5.4 Conclusion

We have proposed a method based on the Bayesian-L2 framework for estimating affine
transformation parameters between data sets. We solve the rigid transformation and scal-
ing. When modelling the GMM using isotropic covariance matrices with identical band-
widths the problem to solve becomes similar to two state-of-the-art algorithms: Jian and
Vermuri [39] and Kernel correlation registration [38]. However, in this case we imple-
ment a MS algorithm that uses an annealing strategy that makes the algorithm less sensi-
tive to the starting guess. This strategy is shown to outperform the competitors, including
the well known ICP algorithm. Additionally we show that the bandwidth used to model
the GMM does matter. It plays an important role in the convergence of the algorithm and
it helps to improve the efficiency of the optimisation method. It allows us to sub-sample
the data sets without altering the convergence towards the right solution. The setting of
the bandwidth hmax can be arbitrarily chosen as a large value. The minimum bandwidth
hmin on the other hand, is chosen according to the error one is willing to tolerate in the
optimisation. The algorithm is also tested using two real applications in computer vision:
Multi-view object reconstruction and Lidar scan alignment.
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One of the limitations of the algorithm is that the global solution may not necessarily
represent the right solution. This may occur when there is not enough distinctiveness
in the data sets (as a shape descriptor). This problem can be reduced when using non-
isotropic modelling. However, some information about the structure of the shape from
which the data sets were obtained needs to be available.

In the next Chapter the non-affine transformation is addressed. We explore the case
where a shape model is available and the parameters that fit the model to a set of obser-
vations are estimated.
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Chapter 6

Morphable Shape Fitting with
Bayesian-L2 and Gaussian Prior

We propose in this Chapter to use our methodology to fit a morphable model to a set
of observations. A morphable model provides a way to reconstruct any shape of a class
of interest as a linear combination of specific components computed using PCA on a
training set (cf. Section 2.3.3). The estimation is based on the general cost function:

Θ̂ = arg min
Θ

{
C(Θ) =

L2(Θ, h)

τ 2
+

J∑
j=1

(θj − µj)2

σ2
j

}

with the prior term (means and variances) given by the PCA model. We solve the op-
timisation problem using a dedicated Mean Shift algorithm (cf. Appendix B.2). The
shape model and the observations are first aligned with each other using the algorithm
proposed in the previous chapter (cf. Chapter 5). We analyse in Section 6.1 the effects
of the prior model and the covariance matrices chosen in the robustness and efficiency of
the algorithm. In addition, we present in Section 6.2 an application of the algorithm for
reconstructing 3D faces from data captured using an RGB-D sensor.

6.1 2D morphable hand model fitting

Let us assume we have a set of observations describing the contour of a specific class of
shape for which a shape model is known. The goal is then to estimate the parameters of
the model that best fit the observations. The full pipeline of the problem is described in
Figure 6.1. Once the data is acquired a) it is processed in order to extract the contours
b). From here, two estimation processes take place. First, the data is aligned to the shape
model c) and then the parameters of the model are estimated. In this chapter we only
discuss the fitting process since the alignment has already been discussed in the previous
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chapter.

a) Acquisition b) Preprocessing c) Alignment d) Fitting

2D Image {ui}i=1,··· ,n Θ̂ = [s,R, t] Θ̂ = [α]

Figure 6.1: Overview of the shape estimation process using a shape model as prior infor-
mation. The observation as a point cloud {ui}i=1,··· ,n in b) is obtained after preprocessing
the image a) captured by a 2D camera sensor. The parameter estimation is then divided
into two steps: c) shape alignment Θ = [s,R, t] and d) shape fitting Θ = [α].

We consider the cost function given by our Bayesian-L2 framework (cf. Equation
4.21). The latent variable to estimate corresponds to the parameters defining the shape
model Θ = [α1, α2, α3, ....αq] (cf. Section 4.1.2). In this case, we have the following
additional information:

1. The prior for the latent variable is assumed Gaussian centred on zero and with vari-
ances given by the eigenvalues computed for the PCA model (cf. Section 2.3.3).

2. The structure of the points on the shape model is known so a non-isotropic mod-
elling for the density function g(x|Θ) can be implemented (cf. Equation 4.19).

3. There is no knowledge about the structure of the observation. Therefore, f(x)

is modelled using isotropic covariance matrices for the Gaussian Mixture. (cf.
Equation 4.18)

We propose to solve the optimisation problem using a dedicated Mean Shift algo-
rithm (cf. Appendix B.2). We use a 2D hand model for all the experiments in this section.
This model has been trained using the annotated data sets of 18 hands provided by Tim
Cootes1. Here we report a set of experiments performed to evaluate the proposed algo-
rithm. We discuss the role of the prior information in the convergence of the algorithm
and the impact of the non-isotropic modelling for the Gaussian Mixture.

1http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/
hand_data.html
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6.1.1 Role of the prior

We generated 100 random shapes from the hand model using J = 10 eigenvectors. Start-
ing from an initial guess α(o) our algorithm converged systematically towards the correct
shapes (cf. Figure 6.2a). The same results are obtained when adding outliers normally
distributed on the shape space (cf. Figure 6.2b). The use of the prior in our modelling
provides the information needed for preserving the shape of the object during the optimi-
sation. When it is not used (the cost function becomes the L2 distance) the structure of
the shape is lost and the algorithm does not converge to the correct solution (Figure 6.2c
and d).

a) b)

c) d)

Figure 6.2: Results obtained when using synthetic hands generated from the model a)
and when adding random noise b). Figures c) and d) show the estimated shape when the
prior information is not considered in the algorithm. In all figures: observations (blue
dots), initial guess (green dash) and estimated solution (red line). Setting: hmax = 50,
hmin = 5.

Similar results are obtained when fitting the 2D hand model to point clouds obtained
from images (see Figure 6.3). The number of points on each observed hand are 2421 (top
hand) and 2329 (bottom hand). The 2D hand model only contains 72 vertices. Since there
is no need for one-to-one correspondence between the data sets, all the observations are
considered during optimisation. Figure 6.3 (column c) shows our estimated hands (red
dash) and the observations (blue dots). An additional experiment was performed using
the algorithm without prior (cf. Figure 6.3 column d). In this case the algorithm does not
converge to the correct solution. It converges to a solution that misrepresents the shape
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contained in the data set.

d = 3.84 · 10−4 d = 5.25 · 10−4

d = 3.71 · 10−4 d = 5.89 · 10−4

a) Image b) Edge Map c) Results d) Results
with prior without prior

Figure 6.3: Hand model fitting to a point cloud obtained from 2D images. Column a)
and b) show the colour image and edge map used for the experiments. In column c)
the estimated hands (red dash) and in d) the solution when the prior is not used in the
algorithm. For the two experiments we compute the Euclidean distance d between the
model and the observations. When using the prior information the algorithm minimises
the Euclidean distance better (results in c) than when the prior is not used d).

6.1.2 Using isotropic and non-isotropic covariance matrices

We show in this section the advantage of using non-isotropic covariance matrices when
modelling the GMM for the shape model. We use as observations the image displayed in
Figure 6.3 (top left). The data set contains nf = 2421 points. We take four groups with
100 data sets each sampled randomly from the observations. The number of samples to
consider in each set of the four groups are nf = 50, 100, 300 and 1000 respectively. We
run the algorithm for the 100 data sets in each group using non-isotropic modelling for
the GMM corresponding to the shape model (cf. Section 4.19). The setting used for the
bandwidths in all experiments are: hmax = 20 and hmin = 5. We use for this experiment
all the vertices in the hand model (ng = 71). We initialise τ using Θo and h = hmax

(cf. Equation 4.22). Once the algorithm converges for Θ̂ we update τ according to the
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no Points (nf ) Non-Isotropic Isotropic
50 83% 0%
100 92% 0%
300 100% 78%
1000 100% 97%

Table 6.1: Comparison of the convergence rate between isotropic and non-isotropic mod-
elling

new values for h and Θo = Θ̂ (cf. Appendix B.2). An example of the data set used in
each group is shown in Figure 6.4. Note that the number of points in each set are not
necessarily the same. Moreover, there is no need for correspondences in between points
in both data sets (shape model and observation). The estimation results obtained (in per-
centage) for each group are reported in Table 6.1. For comparison, the same experiments
are run using isotropic modelling for the GMM corresponding to the shape model (cf.
Equation 4.18). Results show that the convergence towards the ground truth is better
achieved when the GMM is defined using non-isotropic covariance matrices. Further-
more, the non-isotropic modelling performs better when the data considered is a small
subset sampled from the original observation.

nf = 50 nf = 100

nf = 300 nf = 1000

Figure 6.4: Examples of observations when randomly sub-sampling the original data set.

Figure 6.5 shows two examples of the result of the estimation achieved when the ob-
servations consist of 100 points randomly sampled from the original data set. Additional
results are reported in Appendix C.3.

Non-isotropic modelling not only helps in improving convergence of the algorithm
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a) b) c)

Figure 6.5: Examples of results obtained when using non-isotropic covariance matrices
for the GMM that represent the hand model. Column a) shows the data used as obser-
vations (100 samples from the original data set). Column b) and c) show the results
obtained (red line) superimposed with the observation used b). Results using the full data
set are displayed in c).

when the observation is a small data set of points but also allows the reduction of the
number of vertices used in the GMM. Figure 6.6 shows results when reducing the number
of vertices to use in the GMM of the shape model (ng). The estimation when using non-
isotropic covariance matrices with ng = 71, 54 and 43 converge towards the correct
solution in all cases (cf. Figure 6.6 top row). However, when using isotropic covariance
matrices, the estimation degenerates when reducing ng (cf. Figure 6.6 bottom row).

6.2 3D morphable face model fitting

In this section we show a fully automatic method for fitting a morphable model of the
face to data captured using the Kinect sensor. The algorithm is based on the affine trans-
formation proposed in Section 5.1 and shape fitting proposed in Section 6.1 (cf. Sec-
tion 4.1.3). Our algorithm is assessed with the 3D morphable shape face model pro-
vided by Basel University [82] (truncated to keep only the face region). This model has
been computed using PCA on 3D meshes of neutral faces (100 males, 100 females)
captured with a high-end 3D scanner, and it provides users with a mean mesh face
and all eigenmeshes with their eigenvalues. The coordinates α on these eigenmeshes
are estimated with our algorithm (as well as the rotation and translation for alignment
Θ = [φxy, φz, tx, ty, tz, α1, α2, α3, ....αq]) and it is assumed here that any neutral face can
be well reconstructed with this model. Our approach is tested on synthetic data generated
from the model (Section 6.2.1) and experiments using real data captured using the Kinect

88



ng = 71 ng = 54 ng = 43

Figure 6.6: Examples of results obtained when reducing the number of Gaussians for
the shape model (ng). Top row shows results of the estimation when using non-isotropic
covariance matrices. The bottom row shows results when using isotropic covariance
matrices. In all examples, the red line corresponds to the estimate while the blue dots to
the observations.

sensor are reported in Section 6.2.2 (note that in this case, the target faces are different
from the faces used to compute the PCA model).

6.2.1 Fitting 3D face model to synthetic data

A set of synthetic target faces are created from the model by randomly generating a set of
parameters αs using J = 10 eigenvectors (these constitute the ground truth parameters
αGT ). The rotation and translation between the model and the target is known and only
the parameters α are estimated. In this experiment, the covariance matrices are chosen
to be isotropic because the two point clouds have been generated from the same syn-
thetic 3D model in this experiment (cf. Section 4.18). This is not the case when we use
the Kinect camera to capture the observations for which we will use adaptive variable
covariance matrices (cf. Section 6.2.2) as explained in Section 4.19.

Figure 6.7 shows several results of 3D face reconstruction. We can visually recognise
that the estimated face using the fitting algorithm is similar to the target face in all four
examples.
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Figure 6.7: Fitting synthetic faces: target face (observations, top row), random starting
guess for initialising the algorithm (middle row) and estimated face with our algorithm
(bottom row).

Figure 6.8 shows the error surface between the target and the estimated reconstruc-
tion. Note that we use a truncated model: neck and ears areas have not been matched.
The errors on the face (in light blue) correspond to areas that are not well captured in the
J = 10 eigenvectors that we have used for reconstruction in this experiment.

Target Starting Result Error Surf.

Figure 6.8: Surface error computed between the target face and our reconstruction.

Convergence of the algorithm to the optimal solution is tested by running experiments
with different starting points (randomly chosen) and the error is computed between the
estimated α and the ground truth. In all the experiments the estimates converge to the
ground truth with a root mean square error smaller than 0.0054.
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6.2.2 Fitting 3D face model to Kinect data

We have just shown that the algorithm converges well in controlled conditions. In real
applications however, the observations originate from a different process than the model
and more care needs to be given to modelling the covariance matrices. When the data are
not uniformly sampled (or are sparse), the covariance matrices cannot be chosen to be
isotropic but need to be chosen such that the pdfs well approximate the surface shapes.
Covariance matrices are next set as explained in Equation 4.19. The number of Gaussians
in the mixture are reduced as described in Section 4.2.4.

Data capture and preprocessing

The Microsoft Kinect sensor provides a depth map and a colour image of the scene with a
resolution 480×640 pixels. The field of view captured is within a range of approximately
50cm and 4m. To obtain the point cloud of the face, we first select the region of the image
within a range of 50cm to 120cm from the sensor (cf. Figure 6.9b). The face region is
then detected and converted to a point cloud by using a face and skin detector (cf. Figure
6.9c).

(a) depth map (b) selected region (c)

Figure 6.9: Preprocessing for generating the points cloud of the face (target): depth map
(a) as captured by the RGB-D sensor, selection of the scene (b) in close range (between
0.5m and 1.2m from the sensor), extracted face and skin region (c).

Kinect point cloud alignment

A crude estimate of the translation between the target and the model point clouds is
computed by matching their barycenters in the 3D space. This estimation is used as a
starting guess for our algorithm for rigid transformation.

The settings used for h in the optimisation are hmax = 1cm and hmin = 5mm.
Both datasets are downsampled with a ratio of 1 : 10 in order to reduce the number of
Gaussians in the density functions and to speed up the optimisation process.
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Figure 6.10 shows an example of the alignment process: before alignment (bottom
row) and after alignment (top row). We evaluate numerically the performance of the

Figure 6.10: Shape alignment: different views of the point clouds (model (grey) and
observations (red)) after alignment (top row). Same point clouds displayed before align-
ment (bottom row).

alignment by comparing the error between the observed point cloud and the average
shape before and after the alignment. The error is computed as the Euclidean distance of
each point in the observed data set to its closest triangle in the mesh of the average shape.
Figure 6.11 shows the histogram of the error of the aligned shape (red line) and before
alignment (blue dash). Note the number of pixels closer to the shape model (error close
to 0) increases after alignment.

3D morphable shape fitting on Kinect point clouds

Once the target face is aligned to the shape model, the αs are estimated using aver-
age shape (cf. Figure 6.12) as a starting guess in our algorithm (e.g. αj = 0, ∀j ∈
{1, · · · , J}) and with the following settings: hmax = 1.5cm, hmin = 5mm and J = 20.
Figure 6.13 shows the reconstructed faces for several people (none were used to train the
morphable model). The last two faces (F5 and F6) correspond to the same person ap-
pearing behind occluding objects. The general shape of the faces is well recovered while
some detailed areas are sometimes not accurate (e.g. eyes or mouths). Some areas may
not be well described by the first J = 20 eigenvectors for these people in this experiment.

Figure 6.14 compares the reconstruction of F5 with a capture using a more accurate
laser scanner (Minolta Vivid 700). As can be seen, the laser scan is not perfect either and
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Figure 6.11: Histogram of the errors between the observations to the average shape:
before alignment (blue) and after (red). The sum of the absolute error is 6.3456 × 106

(after alignment) compared with 1.7054× 107 (before alignment).

Figure 6.12: Average shape used as initial guess.

the reconstruction with the model has the advantage of recovering a full mesh without
any holes.

The Euclidean distance (error) between each point in the target to its closest triangle
in the reconstructed shape is computed and the histogram of these errors is shown in
Figure 6.15. In all the experiments, the error is significantly reduced after the fitting:
the variance of the distribution of the error is smaller for the data computed using the
reconstructed face. In both cases, the 90% of observations are within a distance of 3mm

after the fitting is done (compared with 50% before the fitting is done, see Figure 6.16).

Figure 6.17 shows the estimated J = 20 coordinates normalised with the eigenvalues
for faces F1 to F6 (cf. Figure 6.13). We can note that the estimates for F5 and F6 are
close to each other, corroborating the fact that the same person appears in both captures.
Despite the occlusions, the algorithm converges towards the same solution for F5 and F6.

We have computed the Mahalanobis distance (with Λ diagonal matrix of the eigen-
values):

di,j =
√

(α̂Fi − α̂Fj)TΛ(α̂Fi − α̂Fj)
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Figure 6.13: Estimated reconstructed faces (labelled F1 (top), to F6 (bottom)) from 3
viewpoints shown with the colour image captured with the Kinect (left).

for all faces F1 to F6. The results are shown in Table 6.2. The distance di,j is smaller
when the parameters correspond to the same individual (e.g. F5 and F6, d5,6 = 0.0888)
than when considering different people (e.g. F1 and F2, d1,2 = 0.3596). Although these
experiments are preliminary and require further analysis, they suggest the feasibility of
robust identification using noisy depth sensors.
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Figure 6.14: At the top, profile view of F5: laser scan (left), reconstruction (middle) and
Kinect point cloud (right). At the bottom, frontal view of F5: reconstruction (left) and
laser scan (right).
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Figure 6.15: Histograms of the errors between the observations and the reconstructed
face (red line) and the observations and the average shape of the model (blue dash) for
F1 (left) and F2 (right).

Table 6.2: Malahanobis distance di,j between the estimated parameters of faces F1 to F6
(Figure 6.13).

Faces F1 F2 F3 F4 F5 F6

F1 0 0.3596 0.5374 0.6925 0.7609 0.7815
F2 0 0.3396 0.5041 0.6141 0.6286
F3 0 0.3885 0.4978 0.5155
F4 0 0.5508 0.5475
F5 0 0.0888
F6 0
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Figure 6.16: Percentage of observations below a distance between 1 and 5mm (reported
on the absissa) for F1 (left) and F2 (right), before fitting (blue dash) and after fitting (red
line).
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Figure 6.17: Values of the J = 20 coordinates of parameter α normalised with the
eigenvalues computed for faces F1 to F6.

6.3 Conclusion

We have shown in this chapter the use of the Bayesian-L2 framework to estimate the
parameters of statistical shape models when fitting to a set of observations. This method
allows us to include prior information over the parameters to estimate. Unlike other shape
fitting methods, ours does not need any correspondence between data sets to estimate
parameters. The only parameters to set are the bandwidth associated with the modelling
of the shapes as GMMs and the bandwidth associated with the L2 distance. The latter
controls the weight of the prior in the cost function and is set proportional to the initial
value of L2. We solve the optimisation problem using a dedicated Mean Shift algorithm.
We tested the role of the covariance matrices when modelling the GMMs. Results show
that the non-isotropic covariance matrices can be used for modelling GMMs that best
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suit the shape. Therefore, the convergence of the algorithm towards the correct solution
is better achieved under this modelling. The algorithm is validated for 2D and 3D model
fitting.

The main disadvantage of the fitting algorithm is that the shape model will only de-
form according to the data that was used for its training. This is a common problem for
all learning based methods. In the next Chapter we explore our framework for estimating
parameters of a parametric curve such as the ellipse. We will show that GMMs can be
used for encoding not only the contour of a shape but also any other relevant information.
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Chapter 7

Extensions of Bayesian-L2 framework

In this chapter we explore two extensions of our Bayesian-L2 framework. First, we
propose a method for estimating multiple instances of a shape of interest in a set of ob-
servations (Section 7.1). Secondly, we explore the use of the multidimensional modelling
for the density functions and apply it to the estimation of parametric curves (cf. Section
7.2). We discuss the particular case where the curve corresponds to an ellipse. We test
our proposed algorithm when detecting multiple occluded ellipses in a benchmark data
set and compare the results with the state of the art algorithms.

7.1 Detecting multiple instances

In the previous two chapters we have explored the Bayesian-L2 framework in applica-
tions where the shape of interest only occurs once in the observations. In this section we
explore the case where more than one instance of the shape of interest are considered (i.e
multiples coins in Figure 7.1).

a) b)

Figure 7.1: Example of detection of multiples instance (i.e coins).

The cost function of our Bayesian-L2 proposed in 4.21 allows us to estimate the shape
that best fits the observation. Furthermore, the annealing strategy implemented makes the
algorithm converge towards the global solution (cf. Algorithm 1, Section 4.2.3). In this
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section, the goal is not only to estimate the global solution. We aim to estimate a set of
shapes S = {Θ̂1, ...., Θ̂s} that represent all the instances (s) of the shape of interest in the
observation.

Let us consider a set of observations {ui}i=1,··· ,n ∈ RD. We propose an iterative
algorithm based on the following steps:

1. Shape parameters estimation: This step estimates the parameters of the shape Θ̂

given a set of observations by minimising the cost function proposed in Equation
4.21. The general algorithm that solves this problem is described in Section 4.2.3
(cf. Algorithm 1).

2. Observations update: Once an instance of the shape is detected Θ̂ all the obser-
vations associated with that shape are removed. The remaining observations are
then used to detect the following instances of the shape. The updated observation
can be expressed as follows:

µi ∈ {µupdated} If
p(µi|Θ̂)∑n
i=1 p(µi|Θ̂)

< t1

Where, t1 is a threshold defined by the user and p(µi|Θ̂) is the probability of the
observation µi being part of the detected shape Θ̂. All observations for which
normalised probability of being part of the selected shape is above the threshold t1
are discarded. The remaining observations are considered for estimating the next
instance of the shape of interest.

Those two steps are iterated until all instances of the shape are found. We consider the
algorithm has found all the shapes if the observations remaining are less than a given
threshold t2 (cf. Algorithm 4). The values for the threshold t1 and t2 are usually set
as 0.3 and 0.1(The algorithm will stop when the remaining observations are less than
10% of the original data). An illustration of the iterations of the algorithm are shown in
Figures 7.2 and 7.3. Figure 7.2 shows the observations (blue) and detected coin (red) in
each step. Note that the observations associated with the detected shape do not appear
in the next iteration. Figure 7.3 shows the probability (normalised) of each observation
being part of the detected coin.
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Algorithm 4 Estimating parameters of multiples instances of shape
Input: t1, t2, {ui}i=1,··· ,n, β and Θ(0)

Init h = hmax and Θ̂ = Θ(0)

{usi}i=1,··· ,ns = {ui}i=1,··· ,n
repeat

Init h = hmax and Θ̂ = Θ(0)

Θ̂← Estimate
(
C(Θ), Θ̂, h, τ, β

)
(cf. Algorithm 1, Section 4.2.3)

Θ̂s = Θ̂
s++

{usi}i=1,··· ,ns ← Update
(
{us−1

i }i=1,··· ,ns−1 , Θ̂s, t1

)
until n−ns

n
< t2

Output: Ŝ = {Θ̂1, ...Θ̂s}

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Iteration 5 Iteration 6

Figure 7.2: Illustration of the iteration of the proposed method for detecting multiple
instances of a shape.
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Figure 7.3: Normalised probability of each point of being part of the detected shape.

7.2 Application to ellipse detection

In this section we tackle the problem of estimating the parameters of a known curve
given a set of observations. We explore the particular case when the curve corresponds
to ellipses and circles. The parameters to estimate are the centre of the ellipse (xo, yo),
the semi-minor and semi-major lengths a and b respectively and γ the angle of rotation
of the ellipse with respect to the horizontal axis (Θ = [γ, a, b, xo, yo]). In section 7.2.1 we
explore the case where the ellipse is fitted to a point cloud. In section 7.2.2 we explore the
problem of detecting multiples ellipses in images. The GMM is modelled using the edge
map of the images (position) and its curvature as described in section 4.3. We applied
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in this section the multiple instance detection algorithm proposed in Section 7.1. Results
in both sections are compared with standard algorithms demonstrating the feasibility and
competitiveness of our algorithm for ellipse detection.

7.2.1 Fitting one ellipse to noisy observations

In this section we solve the cost function proposed in 4.21 for the ellipse fitting problem.
The GMM representing the observation f is modelled using isotropic covariance matrices
as described in section 4.18. In the case of the reference set given by the parametric
equation of the ellipse a non-isotropic model is implemented as described in section 4.19.
In this case we use 20 samples of the ellipse to define the GMM for g (cf. Figure 7.4).
We do consider all solutions equally probable. Hence, a prior Gaussian distribution is
modelled for the latent variable using a large bandwidth. A gradient ascendant algorithm
is implemented to solve the optimisation problem (cf. Appendix B.3). As follows we
report two experiments designed for testing the sensitivity of the algorithm to noise and
outliers.

Sensitivity to noise

We define for this experiment a target ellipse (ground truth) centred at the origin and
without rotation. The semi-major length equal to 5 and semi-minor length equal to 3.
The ellipse is corrupted using five level of Gaussian noise with standard deviation from
0.1 to 0.5. For each level of noise we take 50 points from the ellipse. For each level of
noise we generate 50 data sets to perform the experiments. Figure 7.5 shows three data
sets (used as observation) using level of noise 0.1, 0.3 and 0.5 respectively.

We run our algorithm using the following settings: hmax = 0.9, hmin = 0.2 and
the geometric decreasing rate for the bandwidth β = 0.8. The initialisation for all the
experiments is Θo = [0, 1, 1, 0, 0], which is basically a circle centred on the origin with
radio equal to 1. We compute the error between the estimated ellipse (given by Θ̂) and
the target (observation) using the normalized area of the symmetric difference [7]. This
metric for error between the true ellipse Et and the fitted ellipse Ef is defined as follows:

Error =
SEt∪Ef − SEt∩Ef

2SEt
(7.1)

Where SEt∪Ef − SEt∩Ef is the area of the symmetric difference and SEt denotes the area
of the true ellipse (cf. Figure 7.6). In order to compute this error rate, we use the function
phantom in Matlab to create an image containing an ellipse. The image is represented by
assigning a value equal 1 to all pixels inside the ellipse and zero otherwise. One image It
is created using the parameters of the target ellipse (observation). The second image If is
created using an estimated ellipse. The symmetric difference between those two ellipses
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a) Ellipse representing the shape model using 20 samples from the curve.

b) Bandwidth h = 0.2 c) Bandwidth h = 0.4 d) Bandwidth h = 0.6

Figure 7.4: Example of the GMM of the ellipse computed using different bandwidths.

a) noise σ2 = 0.1 b) noise σ2 = 0.3 c) noise σ2 = 0.5

Figure 7.5: Figure shows three examples of observation used in the experiments. The
ellipses were computed using the target ellipse for which the parameters are Θ =
[γ, a, b, xo, yo] = [0, 3, 5, 0, 0] corrupted using Gaussian noise with standard deviation
σ2 equal to 0.1, 0.3 and 0.5 respectively

is computed as a function of the number of pixels with a value equal to 1 after adding the
two images. The error rate in equation 7.1 is then redefined as follows:

Error rate =
pixel(It + If == 1)

2 pixel(It == 1)
(7.2)
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a) b)

Figure 7.6: Example of computing the error rate. Figure a) shows in blue the true ellipse
(observation) and in red dots the estimated one. The black region in figure b) represents
the area of the symmetric difference in between the two ellipses.

The results obtained for all the data sets are reported in Figure 7.7. In the left plot a)
we compare the results obtained using our proposed method (green start) and the method
proposed by Yu et al.[7]. On the right hand side of Figure 7.7b) we compare it with the
Non Linear Least squares (geometric best fit) and using the direct ellipse fitting algorithm
(algebraic best fit). In both cases the error between the estimated ellipse and the true
ellipse is better minimised using our proposed method. The standard deviation of the
error is also reported in Figure 7.8. Additional results are reported in the appendix C.26.

Robustness to Outliers

A second experiment is performed to evaluate the robustness of the algorithm to outliers.
We use the same data as in the previous experiment (for all level of noise) but adding
10% of extra points randomly distributed. As it is shown in the Figure 7.9, our proposed
method does maintain its performance. On the contrary, the error obtained using the
direct fitting and the Least Square methods increase [8, 9]. Those methods are very
sensitive to outliers while our proposed method keeps its robustness. Examples of the
data used in the trial and the estimated ellipses are shown in Figure 7.10. The results are
similar when the outliers correspond to another ellipse presented in the data. Examples
of this case are shown in Figure 7.11. The mean error for our proposed method when
50 trials are tested is 0.0133 with a standard deviation of 0.0012. Those values are in
correspondence with the values obtained when no outliers at all are presents in the data
set. This shows the robustness of the proposed algorithm for fitting ellipses to noise data
sets.
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Figure 7.7: Mean Error obtained for the data sets perturbed with 5 different standard
deviation of noise (σ from 0.1 to 0.5). In a) we compare the proposed method (green star)
versus a recent robust ellipse fitting algorithm reported by Yu et al. [7] (blue square).
In b) our proposed method (green start) is compared with two standard ellipse fitting
algorithms. The red triangle represents the algorithm which cost function minimises the
algebraic distance while the blue dot is the well known Least Square method that is based
on the minimisation of a geometric distance
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Figure 7.8: Figure shows a detail of the error of each method including its 95% of confi-
dence interval.
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Figure 7.9: Results of the mean error compared with standard fitting ellipse methods for
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a) b) c)

Figure 7.11: Results compared two ellipses. For our method we run a trial of 50 examples
obtaining a mean error of 0.0133 with a standard deviation of 0.0012. When perturbed
using σ = 0.1. In all the figures the red dots correspond to the observation. In a) we
show the results obtained using the direct fit algorithm, in b) Least Square method and in
c) our proposed method.
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Figure 7.10: Examples of the experiments performed. For all cases, the red dot is the
observation. The estimated ellipse for the Least square method (Blue), Direct fit (black)
and the proposed method (green).
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7.2.2 Detecting Multiples ellipses

In this section we explore the problem of detecting multiple ellipses in digital images.
We use the position and curvature of the edge map of the images as information µi =

{(ui, ψi)}i=1··· ,n. This information is encoded in a multidimensional density function
(as described in section 4.3). The details of the optimisation algorithm implemented is
described in Appendix B.4.

We use the benchmark data set provided by Chia et al.[10] for testing. This data
contain 6 sets of synthetic images. Each set is created using a different number ν of
occluded ellipses ( with ν = 4, 8, 12, 16, 20 and 24). Each set contains 50 images with
a resolution of 300x300 pixels. An example of the images contained in the data base is
shown in Figure 7.12. In the same Figure the information extracted from the images and
used as observation is also displayed (input data) for our proposed algorithm. This data
is computed using the edge detector of Matlab (canny) used with the default parameters.
The normal vectors are computed using the convolution function with default parameters
and applied in both directions of the image (x− y).

The detection evaluation is performed using the overlap error. This error is computed
using the detected ellipse Ed and the true ellipse Et as follows:

OverlapError(Ed, Et) = 1− Area(Et) ∩ Area(Ed)

Area(Et) ∪ Area(Ed)
(7.3)

An ellipse is considered detected when the overlap error is less that 0.05. A common
index for detector evaluation is the F-measure. The F-measure combines the precision
and recall of the detector. Precision is defined as follows:

P =
Number of correctly detected ellipses

Total Number of ellipses detected
(7.4)

and the Recall is:

R =
Number of correctly detected ellipses

Total Number of ellipses present in the test image
(7.5)

One of the advantages of our algorithm is its simplicity in terms of parameter setting.
The only relevant value to set is the bandwidths used for the density function (hmax = 7

and hmin = 1) and the threshold used for updating the observation t1 = 0.3 and t2 = 0.1

(cf. Section 7.1). We define the covariance matrices as described in section 4.19. In
order to optimise the efficiency of the algorithm the number of Gaussians in the mixture
representing the observation is reduced as described in section 4.2.5.
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4 Ellipses 8 Ellipses 12 Ellipses

16 Ellipses 20 Ellipses 24 Ellipses

Figure 7.12: This Figure shows an example of the data set used for testing the algorithm.
This data set was published by [10] and it contains 6 sets of 50 images. Each set contains
a different number of occluded ellipses from 4 to 24. In the first and third row the original
images are displayed while in the second and forth the observations extracted are shown
as a map of normal vector corresponding to the edge points in the original image.

Figure 7.13 shows the results obtained when applying our algorithm to images con-
taining 4 occluded ellipses. In these cases all the instances of the ellipses are detected.
However, when increasing the number of ellipses in the image the results deteriorate. An
example is shown in Figure 7.14 where the white and black image correspond to the input
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image (first and third row). The blue dots correspond to the observations taken from the
input image. The red ellipses are the ellipses correctly detected while the green ellipses
are detections that do not properly represent the observation. When more than 20 ellipses
are present, the proportion of correctly detected ellipses is very small.

Figure 7.13: Example of the results obtained when applying our proposed algorithm for
detecting multiples ellipses. On the top row the original images and at the bottom the
detected ellipses (red) and the observations (blue).

We analyse the metrics of recall and precision when evaluating all images in the data
set. The results are reported in Figure 7.15 (performance of state of the art algorithms
are also reported for comparison [10, 11, 12, 14, 13]). Figure 7.15 suggests that our
method outperforms methods based on the Hough Transform [14, 13]. Methods based
on connected edges, on the other hand, show better performance than our algorithm. The
algorithm proposed by Chia et al. [10] shows outstanding performance and it is able to
detect a high number of ellipses. However, it only works when the observations are a set
of connected edges. In contrast, our algorithm does not have any limitation and it can
still be used when the observation is a sparse data set of points.

Additionally in Figure 7.16 we show the performance of the detector when relaxing
the overlap error in between the detected ellipse and the true ellipse. This experiment
was performed using the set of images containing 4 occluded ellipses. Additional advan-
tages of our proposed method are its feasibility for including prior information about the
parameters to estimate and the fact that it allows us to include any information related to
the the shape of interest. Any extra information can be added as an additional dimension
of the GMM. Figure 7.17 shows an example where a prior was used for detecting coins
in an image.
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a) 4 Ellipses b) 8 Ellipses c) 12 Ellipses

a) 16 Ellipses b) 20 Ellipses c) 24 Ellipses

Figure 7.14: Example of the results obtained when applying our algorithm to data sets
containing 4,8,12,16,20 and 24 occluded ellipses respectively.
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Figure 7.15: Testing on synthetic images containing occluded images. In Figure a) we
report the values obtained for the Recall while in b) the results for precision. Each set
(from 4 to 24) was evaluated using 50 images. For comparison we report the results
obtained using the approaches proposed by Chia et al.[10], Mai et al. [11], Kim et al
[12] and the Hough transform based methods RHT and SHT proposed by [13] and [14]
respectively.
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Figure 7.16: Testing our algorithm on 50 synthetic images each containing four 4 ellipses
occluded as overlap error is varied from 0.05 to 0.55.

Figure 7.17: Examples of detecting ellipses in RGB images.
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7.3 Conclusion

In this Chapter we have shown two extensions to the Bayesian-L2 framework. The first
one corresponds to a method to iteratively estimate multiple instances of a shape. The
second one, corresponds to the estimation of parametric curves (ellipse). In this case we
use multidimensional modelling for the GMM where the position of the contour pixels
and its curvature are considered. We used both extensions to detect multiple ellipses in
a benchmark data set. Results compared with state of the art shows the promising per-
formance of our algorithm. The feasibility of using prior information makes our method
very attractive for solving particular detection problems where some knowledge about
the parameters to estimate is available.

We have proposed here a bottom-up greedy approach to multiple instance detection.
This strategy was chosen due the fact we assume there is no information about the number
of instances the shape appears in the image. However, when such information is available
it could be included in the model by fixing the number of parameters to estimate.

We have shown in this Chapter an evaluation of the proposed method using bench-
mark data sets. This allowed us to achieve a fairness comparison with state of the art
techniques. However, the performance of the algorithm when using real data depends on
the characteristics of the data sets, the amount of outliers and the information chosen for
describing the shape (i.e edge position, color, curvature, etc.).
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Chapter 8

Conclusion

Estimating the parameters of shapes is a crucial task for many applications in computer
vision. For this reason many methods have been proposed in literature. The most recent
approaches have been based on robust statistical inference methods. We have explored
in this thesis the use of the divergence between probability density functions as a robust
metric for shape parameters inference. We have studied in particular the L2 metric and
proposed a framework for including prior information when estimating shape parameters.
We have described shapes as GMMs and studied the role of the bandwidth in their mod-
elling. The main results and conclusions obtained in this thesis and the future perspective
of the work carried out are summarised as follows.

8.1 Summary

We have proposed in this thesis a method for solving the estimation of shape parameters.
The main contributions of this method are reviewed here:

1. Bayesian framework based on the divergence metric L2 for shape parameters
estimation: We have presented a Bayesian framework for shape parameter estima-
tion. The data term in the Bayesian expression is considered as a sort of likelihood
defined using the L2 distance between two density functions f and g. These den-
sity functions f and g are modelled using GMMs and represent the target shape
(observation) and the model shape respectively.

2. Modelling GMMs better suited for representing shapes: We have shown that
the bandwidth plays a key role in statistical inference for estimating parameters
and in particular when using divergence metrics such as the L2 distance. We pro-
posed to model GMMs for representing shapes (curve, surface and images) using
non-isotropic covariance matrices. Non-isotropic covariance matrices allow us to
include information about the structure of the shape and its geometry. This rep-
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resentation not only helps in the shape description but also in the convergence of
the optimisation algorithm used for the estimation. Additionally, the non-isotropic
representation allows us to reduce the number of Gaussians in the mixture with-
out compromising the representation of the shape. Hence, the efficiency of the
optimisation algorithm is improved.

3. GMMs as a method for encoding relevant information from shapes We have
shown that the dimensionality of GMMs can be increased by adding extra infor-
mation about the shape of interest (rather than just the contour). Increasing the
dimensionality of the GMM improves the convergence of the optimisation algo-
rithm without affecting its efficiency.

We have tested and explored the performance of the proposed framework when deal-
ing with challenging parameter estimation problems. The main results obtained can be
summarised as follows:

1. Method for computing the affine transformation: We solve the rigid transfor-
mation and the scaling between data sets. We propose a Mean Shift algorithm to
solve the optimisation when the modelling of the GMM is defined as isotropic.
This particular case is comparable to state of the art registration algorithms. How-
ever, thanks to the annealing strategy implemented, our algorithm achieves better
performance and it has been shown to be less sensitive to the starting guess. Addi-
tionally, we have demonstrated the advantage of using non-isotropic modelling for
the GMMs. The estimation algorithm, in this case, shows better performance and
it allows for the tackling of problems where two data sets are sampled differently
(strongly sub-sampled data or with occlusions).

2. Method for fitting shape models: We have shown the possibility of using the
Bayesian-L2 framework for fitting morphable models to data sets. We have pro-
posed a Mean Shift algorithm to solve the optimisation problem. We have shown
that a morphable model can be successfully fitted even when the observation is a
sparse set of points. This method has the advantage that it does not need any cor-
respondence between the morphable model and the observations. Additionally, we
have shown the advantage of the non-isotropic modelling for reducing complexity
of the optimisation algorithm and improving robustness in the estimation.

3. Method for fitting parametric curves: We have shown that the Bayesian-L2

framework proposed is suitable for estimating parametric curves. We have pro-
posed a method for fitting and detecting ellipses in images. The algorithm allows
for the inclusion of relevant information about the shape such as the curvature. This
information is included by adding an extra dimension to the GMMs.
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4. Method for estimating multiple instances of a shape: We have proposed an ex-
tension of our framework to detect multiples instance of a shape. It is based on
using our algorithm iterativelly such that the observation set is updated to allow
the detection of a new instance. We applied this algorithm for detecting multi-
ples ellipses in digital images achieving results comparable to the state of the art
techniques.

8.2 Limitations and future perspectives

We have shown here a global method for solving the estimation of parameters between
data sets. As a top-down method some inherent limitations have been identified:

• The global solution given by the cost function proposed may not necesarily repre-
sent the right solution. This may occur when the proportion of outliers is too big
or when there is not enough distinctiveness in the data sets (as a shape descriptor).
However, this problem can be reduced when using the non-isotropic modelling for
the GMM (cf. Chapter 5).

• When using the algorithm for fitting morphable models we face the same disad-
vantages of any learning method. The shape model will only deform according to
the data used for its training (cf. Chapter 6).

• When detecting multiple intances of a shape the precision and recall rates depend
on the first few detections. If any error occurs in the first few detections this is
propagated affecting the final result 7. This problem is due the elimination of the
observations along each iteration.

The results obtained from the work carried out in this thesis and the limitation identified
suggest to further explore the following lines of research:

Including more information in the density function: We have shown in this thesis
that GMMs allow for the encoding of relevant information about the shape of interest. We
have used contour as the main descriptor of shape as well as the its curvature. However,
depending of the estimation problem to solve, a more detailed description of the shape
can be included in the GMM. It seems that adding more information such as colour
and local texture (e.g SURF or SIFT descriptor) would lead to more powerful GMMs.
Adding dimensions to the GMM is not computationally expensive compared to adding
new observations.
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Augmenting morphable shape models: An inherent limitation of morphable shape
models is that they encode only variabilities that were present in the training set of shapes
used for learning (this is a standard limitation of all learning techniques). Hence, new
shapes (from the same class) may not be well represented by the morphable model. This
limitation could be overcome by augmenting the morphable model each time that a new
shape is fitted. This can be done by exploring our framework when relaxing the prior
term. New constraints and prior can be explored and defined directly over the modelling
of the GMM.

Speed-up: We have paid attention to the computational cost of our technique from the
point of view of modelling an efficient cost function. However, the computational cost
can be further reduced by a more suitable implementation of the optimisation algorithm.
This could be an interesting direction for future work where strategies such as parallel
programming can be explored.

117



Appendix A

Mathematical Expressions

A.1 Closed form solution for L2

Given the two Gaussian distributions over the random variable x in RD :

N (x;u,Σu) =
1

(2π)
D
2

√
|Σu|

exp

(
−1

2
(x− u)TΣ−1

u (x− u)

)
(A.1)

N (x; v,Σv) =
1

(2π)
D
2

√
|Σv|

exp

(
−1

2
(x− v)TΣ−1

v (x− v)

)
(A.2)

The integral over the random variable x of the product of the two density functions is
expressed in terms of their means and covariance matrices as follows [141, 144]:∫

Rdx
N (x;u,Σu) N (x; v,Σv)dx =

1

(2π)
D
2

√
|Σu + Σv|

exp

(
−q(u, v)

2

)
(A.3)

where,
q(u, v) = uTΣ−1

u u+ vTΣ−1
v v − µTΣ−1µ

Σ−1 = Σ−1
u + Σ

′−1
v

µ = Σ (Σ−1
u u+ Σ−1

v v)

A.2 L2 and L2E using isotropic covariance matrices

Let us consider two sets of points modelled as density functions with the same covariance
matrices Σg

i = Σf
i = h2I ∀i, as follows:

g(x|Θ) =

ng∑
i=1

wgi N (x;µgi (Θ),Σg
i )
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f(x) =

nf∑
i=1

wfi N (x;µfi ,Σ
f
i )

When considering a rigid transformation between the two sets, the cost function is:

Θ̂ = arg max
Θ

{
C(Θ) =

∫
{ g(x|Θ) f(x) } dx

}

C(Θ) =

ng∑
i=1

nf∑
j=1

wgiw
f
j

(2π)
D
2

√
2(h)2

exp

(
−‖µfj − µ

g
i (Θ)‖2

4 h2

)
Let us consider now the case where the reference data set is modelled as a Gaus-

sian Mixture using isotropic covariance matrices Σg
i = H2I ∀i. The observation is

considered as the empirical distribution such as:

f(x) =
1

nf

nf∑
i=1

δ(x− µfi )

The cost function becomes:

C(Θ) =

ng∑
i=1

nf∑
j=1

wgiw
f
j

(2π)
D
2

√
(H)2

exp

(
−‖µfj − µ

g
i (Θ)‖2

2 H2

)

It is easy to see that those expression are equivalent when H =
√

2h.

119



Appendix B

Algorithms

B.1 Mean Shift algorithm for rigid transformation

We define a dedicated Mean Shift algorithm for estimating the transformation parameters
(rotation R and translation t) that maximise the cost function C(Θ). In other words,
making the two density function f(x) and g(x|Θ), corresponding to the observations
and reference data sets respectively, be as close as possible. The two density functions
are modeled using isotropic covariance matrices and expressed as follows:

g(x|Θ) =

ng∑
i=1

wgi N (x;µgi (Θ), (hgi )
2I)

f(x) =

nf∑
i=1

wfi N (x;µfi , (h
f
i )

2I)

The cost function can then be expressed as follows:

C(Θ) =

ng∑
i=1

nf∑
j=1

wgiw
f
j

(2π)
D
2

√
(hgi )

2 + (hfj )
2

exp

(
−‖µfj −B(Θ)‖2

2 ((hgi )
2 + (hfj )

2)

)
︸ ︷︷ ︸

E(Θ)

With,

B(Θ) =

(
cosφ − sinφ

sinφ cosφ

)
︸ ︷︷ ︸

R

µg + t (B.1)

The expression E is not linear w.r.t. Θ as it needed for defining a Mean Shift algorithm.
The function B(Θ) = Rµg + t is defined for Θ ∈ [−π; π] × R2 to B(Θ) ∈ R2. The
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Taylor expansion of this vector valued function around Θ(0) is:

B(Θ) = B(Θ(0)) +DB(Θ(0)) (Θ−Θ(0))︸ ︷︷ ︸
δΘ︸ ︷︷ ︸

B(δΘ,Θ(0),µg)

+h.o.t

where DB(Θ(0), µg) corresponds to the 2 × 3 matrix of the partial derivatives of B
computed at Θ(0) (for the point µg = (µgx, µ

g
y)):

DB(Θ(0), µg) =

(
−µgx sinφ(0) − µgy cosφ(0) 1 0

µgx cosφ(0) − µgy sinφ(0) 0 1

)
(B.2)

The first order approximation B(δΘ,Θ(0), µg) is now linear w.r.t. δΘ and the expression
E is modified as follow:

Eij(δΘ,Θ
(0)) =

wgiw
f
j

2π
√

(hgi )
2 + (hfj )

2

× exp

(
−‖µfj −B(δΘ,Θ(0), µgi )‖2

2 ((hgi )
2 + (hfj )

2)

)
(B.3)

The modified cost function to maximise is now defined near Θ(0) by:

C(δΘ,Θ(0)) =

nf∑
j=1

ng∑
i=1

Eij(δΘ,Θ
(0)) (B.4)

and the estimation of Θ is done iteratively by maximising C w.r.t δΘ (see algorithm 5).

Algorithm 5 Estimation of Θ.
Input: t = 0,Θ(0), e, M

repeat
δ̂Θ = arg maxδΘ C(δΘ,Θ(t)) (algorithm 6)
Θ(t+1) = Θ(t) + δ̂Θ
t← t+ 1

until ‖Θ(t+1) −Θ(t)‖ ≤ e or t > M
Output: Θ̂ = Θ(t)

Algorithm 6 Estimation of δΘ.
Input: s = 0,Θ(t), δΘ(0) = 0, e, N

repeat
δΘ(s+1) = A(δΘ(s),Θ(t)) b(δΘ(s),Θ(t))
s← s+ 1

until ‖δΘ(s+1) − δΘ(s)‖ ≤ e or s > N

Output: δ̂Θ = δΘ(s)

An iterative Mean Shift algorithm can then be calculated to optimise the cost function C
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in (B.4) w.r.t. δΘ (algorithm 6). The 3× 3 matrix A is defined as:

A(δΘ(s),Θ(t)) =

(
nf∑
j=1

ng∑
i=1

Eji(δΘ
(s),Θ(t))

2((hgi )
2 + (hfj )

2)
DB(Θ(t), µgi )

TDB(Θ(t), µgi )

)(−1)

(B.5)

The vector b is defined as:

b(δΘ(s),Θ(t)) =

nf∑
j=1

ng∑
i=1

Eji(δΘ
(s),Θ(t))

2((hgi )
2 + (hfj )

2)
DB(Θ(t), µgi )

T (µfj −B(0,Θ(t), µgi )) (B.6)

In order to avoid algorithm 5 to be dependent on the initial guess Θ(0) and to prevent
the estimate of Θ to be trapped in a local maximum, an annealing strategy is implemented
using the bandwidths as a temperature [145]. Starting with large bandwidths, these are
decreased iteratively using a geometric rate up to a minimum value (algorithm 7). The
limits for the bandwidths, {lhgi , lh

f
j }, can be set automatically using nearest neighbours

or manually chosen.

Algorithm 7 Estimation of Θ with simulated annealing.

Input: Θ(0), {hgi , h
f
j } large ∀(i, j), 0 < β < 1

repeat
Θ̂ = arg maxΘ C(Θ) (algorithm 5)
for j = 1→ nf do

if hfj > lhfj then
hfj ← β hfj

end if
end for
for i = 1→ m do

if hgi > lhgi then
hgi ← β hgi

end if
end for

until hgi < lhgi ∀i and hfj < lhfj ∀j
Output: Θ̂

B.2 Mean Shift algorithm for shape fitting

We rewrite the cost function in Expression 4.7 as function of the parameters to estimate
Θ = [α1, α2, α3, ....αq] and according to the prior information given by the a morphable
model as follows:

α̂ = arg min
α

{
C(α) =

L2(α)

τ 2
+

J∑
j=1

α2
j

σ2
j

}
(B.7)
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Table B.1: Expressions for computing L(j,s) and b(j)

L(j,s)

= 2
ng∑
k=1

nf∑
i=1

Eki
2 (T T

jk
∑−1

k − T T

jk
∑−1

k

∑−1T
(ki)

∑−1T
k )Tsk −

ng∑
k=1

ng∑
p=1

Ekp
3 (T T

jk
∑−1

k Tsk + T T
jp

∑−1
p Tsp)

+
ng∑
k=1

ng∑
p=1

Ekp
3 (T T

jk
∑−1

k + T T
jp

∑−1
p )

∑−1T
(kp)

∑−1T
p Tsp +

ng∑
k=1

ng∑
p=1

Ekp
3 (T T

jk
∑−1

k + T T
jp

∑−1
p )

∑−1T
(kp)

∑−1T
k Tsk

b(j)

= −2
ng∑
k=1

nf∑
i=1

Eik
2 (vT

k
∑−1

k )Tjk +2
ng∑
k=1

ng∑
i=1

Eik
2 ((µgT

i
∑′−1

i + vT

k
∑−1

k )
∑−1

k

∑−1T
c(ki)

)Tjk

−
ng∑
k=1

ng∑
p=1

Ekp
3 (vT

k
∑−1

k + vT

p
∑−1T

p )
∑−1T

c(kp)

∑−1T
k Tjk −

ng∑
k=1

ng∑
p=1

Ekp
3 (vT

k
∑−1

k + vT

p
∑−1T

p )
∑−1T

c(kp)

∑−1T
p Tjp

+
ng∑
k=1

ng∑
p=1

Ekp
3 (vT

k
∑−1

k Tjk + vT

p
∑−1T

p Tjp)

The term L2(α) comes from the density functions modelled using the two data sets; the
observations

{
µgj
}
j=1,...,nf

the model:

µgi (α) = vi +

q∑
j=1

αj Tji ∀i = 1, ...ng (B.8)

and the observations: The term τ is computed according to Expression 4.22 in section
4.2.3. The cost function C(α) can then be written according to the closed form solution
for the product of Gaussians as follows (cf. Appendix A.1):

C(α) =
nf∑
k=1

nf∑
p=1

E1(ufk , u
f
p)− 2

ng∑
i=1

nf∑
k=1

E2(µgi (α), ufk)

+
ng∑
i=1

ng∑
p=1

E3(µgi (α), µgp(α)) + τ 2
J∑
j=1

α2
j

σ2
j

(B.9)

The Mean Shift Algorithm is computed by differentiating the cost function C(α) with
respect to α and equalling the result to zero. Starting from an initial guess α(t), the update
is computed by:

α(t+1) = A(α(t))−1b(α(t)) (B.10)

with A a J × J matrix defined as:

Aj,s(α) =

Lj,s(α), if j 6= s

Lj,s(α) + τ2

σ2
j
, if j = s

(B.11)

The expression for L and b are presented in Table B.1. For simplicity E2(µgi (α), ufk)

and E3(µgi (α), µgp(α)) are expressed as Eik
2 and Eip

3 respectively. The parameter v cor-
responds to the average shape of the model v = ug(α = 0) and the covariance matrices∑

(ki) are computed for each pair of distributions (k, i) as it was illustrated in Appendix
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A.1. The Mean Shift algorithm is presented in Algorithm 8 with its annealing strategy.
Starting from a maximum value hmax, the bandwidth is decreased using a geometric rate
β until the minimum value hmin is reached. Note that the covariance matrix of each
Gaussian in the density function of the model is updated at each iteration.

Algorithm 8 Estimation of α

Input: α(0)
j = 0,∀j, hmin, hmax, γ = 0.5 and β = 0.8

h = hmax
repeat
τ = γ

√
L2(Θ,h)

J

repeat
Compute A(α(t)) and b(α(t))
α(t+1) = A(α(t))−1b(α(t))
Compute ∑

k ∀k
until |α(t+1) − α(t)| ≤ eo
h← βh

until h ≤ hmin

B.3 Ellipse fitting

We have implemented an optimization algorithm for finding the parameters Θ that min-
imise the cost function in Equation 4.7. A point on an ellipse (i.e. at a given ti ∈ [0; 2π])
can be created with the following equation:

µgi (Θ) =

(
a cos ti

b sin ti

)(
cos γ − sin γ

sin γ cos γ

)
+

(
xo

yo

)
(B.12)

Defined by the latent variable to estimate: Θ = [γ, a, b, xo, yo] We solve the optimisation
problem using a standard Newton Algorithm provided by Matlab combined with an an-
nealing strategy. It is initialised using a big enough bandwidth hmax and then reduced
using a geometric rate β until reach a minimum value hmin. In each iteration we compute
the density function of the ellipse g(Θ) by updating the new sets of points µgi (Θ̂) sampled
from the estimated ellipse. The algorithm implemented is summarised as follows:

B.4 Detecting ellipses in images

Here we summarise the algorithm used for detecting multiples ellipses in digital im-
ages. It is based on the Algorithm 9 and Algorithm 4 from Section 7.1. It uses a multi-
resolution strategy in order to improve its efficiency. We define a set of different levels of
sampling (or image resolution) R = [ro, ..., rz] and apply them to the image. Where ro
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Algorithm 9 Estimation of Θ.
Input: hmax, hmin, m, Θ(t=0), e and β

h = hmax
Compute µgi (Θ

(t))
Compute g(Θ(t))
repeat

repeat
Θ(t+1) = arg minΘ C(Θ(t))
update µgi (Θ

(t+1))
update g(Θ(t+1))

until ‖Θ(t+1) −Θ(t)‖ ≤ e
h = βh

until h > hmin
Output: Θ̂ = Θ(t)

represent a very low resolution image (highly sub-sampled) and rz is the high resolution
image. From this sub-sampled images the observation are computed. The algorithm es-
timate first the set of ellipses using the low resolution image and then uses that solution
as starting guess for the next step where the observation is computed using the image
with an increased resolution. The algorithm is iterated until the last step of resolution is
computed. The number of steps in the algorithm (different resolutions) is defined by the
user. In the case of the synthetic data set analysed in Section 7.2.2 we only have used
two step. The general scheme of the algorithm is shown in Algorithm 10. The main
differences in between Algorithm 4 and Algorithm 11 is that the first one uses random
starting guess while the second one uses the solution given by the previous step of the
general algorithm.

Algorithm 10 Multi-resolution for detecting multiples ellipses S = {Θ1, ...Θs}.
Input: I=Image, R = [r0, ..., rz],hmax, hmin, Θ(t=0),t1,t2 and β
{µfi } ← extract observation(I, R0)
Ŝ(k) ← EstimateEllipses1({µfi }, t1, t2, β, hmax, hmin,Θ(t=0)) Algorithm 4
repeat
{µfi } ← update observation(I, Rk)
Ŝ(k+1) ← EstimateEllipses2({µfi }, t1, t2, β, hmax, hmin, S(k)) Algorithm 11
k++

until k > s
Output: Ŝ = Ŝ(k)
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Algorithm 11 Estimating parameters of multiples instances of shape given a starting
guess

Input: t1, t2, {ui}i=1,··· ,n, hmin,hmax, β and S(o) = {Θ(o)
1 , ...Θ

(o)
s }

Init {usi}i=1,··· ,ns = {ui}i=1,··· ,n
repeat

Init h = hmax and Θ̂ = Θ
(0)
k

Θ̂← Estimate
(
C(Θ), Θ̂, h, τ, β

)
(cf. Algorithm 1, Section 4.2.3)

Θ̂s = Θ̂
k++

{usi}i=1,··· ,ns ← Update
(
{us−1

i }i=1,··· ,ns−1 , Θ̂s, t1

)
until n−ns

n
< t2

Output: Ŝ = Ŝ(k)
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Appendix C

Additional Results

C.1 Affine transformation

C.1.1 Sensitivity to noise
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Figure C.1: Example 1 of results obtained for noise level 1 and angle of rotation 30o
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Figure C.2: Example 2 of results obtained for noise level 5 and angle of rotation 30o

0 2 4

0

2

4

6

Starting position

0 2 4 6
0

2

4

6

Result Proposed Method

0 2 4 6
0

2

4

6

KC registration result

0 2 4 6
0

2

4

6

ICP registration result

Figure C.3: Example 3 of results obtained for noise level 1 and angle of rotation 30o
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Figure C.4: Example 4 of results obtained for noise level 5 and angle of rotation 30o
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Figure C.5: Example 5 of results obtained for noise level 1 and angle of rotation 90o
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C.1.2 Robustness to outliers
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Figure C.6: Example 6 of results obtained when both sets are rotated in 45o

C.1.3 Scaling estimation
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Figure C.7: Example 1 scaling
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Figure C.8: Example 2 scaling
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Figure C.9: Example 3 scaling
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Figure C.10: Example 4 scaling
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Figure C.11: Top: Results for s1, estimated (blue line) and ground truth (red square).
Bottom shows the results for s2. The experiments where performed using the same data
sets scaled using a normal distribution for both parameters. We run 100 experiments and
all of them converge to the ground truth.
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Figure C.12: Top: Results for s1, estimated (blue line) and ground truth(red square). Bot-
tom shows the results for s2. The experiments where performed using the same data set
but adding noise. The scaling is performed using a normal distribution for both parame-
ters.
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Figure C.13: Example scaling with outliers in the data set
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Figure C.14: Example 1 scaling with outliers in the data set
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Figure C.15: Example 2 scaling with occlusion in the data set
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Figure C.16: Example 3 scaling with occlusion in the data set
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Figure C.17: Top: Results for s1, estimated (blue line) and ground truth(red square).
Bottom shows the results for s2. The experiments where performed using the occluded
data set which was scaled using a normal distribution for both parameters.
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Figure C.18: Example 4 scaling with noisy data set
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Figure C.19: Example 5 scaling with noisy data set

0 0.5 1

0

0.5

1

1.5
Starting position

0 0.5 1

0

0.5

1

1.5
Result Proposed Method

Figure C.20: Example 6 scaling with noisy data set

137



S
1

0 20 40 60 80 100
−1

0

1

2

Experiments

Figure C.21: Example 7 scaling with noisy data set (S1)
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Figure C.23: Example 1 Occlusion (25%) and Outliers (20%) Examples (using prior)
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Figure C.24: Example 2 Occlusion (25%) and Outliers (20%) Examples (using prior)
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Figure C.22: Example 8 scaling with noisy data set (S2)
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Figure C.25: Example 3 Occlusion (25%) and Outliers (20%) Results for S1 and S2 (with
prior)
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C.2 Ellipse fitting
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Figure C.26: Results of the parameters estimated using our proposed method.
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C.3 Shape fitting

The performance of the algorithm is assessed when reducing the number of kernels in
the shape models. Figure C.3 shows the estimated shapes using the isotropic and non-
isotropic shape models with 71, 54 and 43 kernels. its solution is closer to the observa-
tions. As the number of kernels decrease, the isotropic shape model loses robustness.

We compute the Euclidean distance between the estimated shapes and the observa-
tions as a quantitative measure for similarity in between the shapes. Results are reported
in figure C.28.

(a) (b)

Figure C.27: Estimated shapes (in red solid line) using the isotropic shape model (a) and
the non-isotropic shape model (b). The observations are shown as blue dots.

L
2

Number of kernels used

Figure C.28: The green line correspond to the non-isotropic model and the blue dots
when using the isotropic model. The abscissa corresponds to number of kernels used in
the model.

141



71 kernels

54 kernels

43 kernels

142



Bibliography

[1] R. Blake and R. Sekuler, Perception. Boston: mcGraw-Hill, 2006.

[2] T. Pavlidis, “Algorithms for graphics and image processing,” Computer Science

Press, Rockville, no. 1, p. 143, 1982.

[3] N. Stefanoski and J. Ostermann, “Spatially and temporally scalable compression
of animated 3d meshes with mpeg-4/famc,” in IEEE International Conference on

Image Processing, 2008.

[4] J. J. Verbeek, N. Vlassis, and B. J. A. Kröse, “Self-organizing mixture models,”
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