Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes†

A. Seral-Ascaso, a,b S. Metel, a,c A. Pokle, a,b C. Backes, a,b C. J. Zhang, a,c H. C. Nerl, a,b K. Rode, a,b N. C. Berner, a,c C. Downing, a,c N. McEvoy, a,c E. Muñoz, d A. Harvey, a,b Z. Gholamvand, a,b G. S. Duesberg, a,c J. N. Coleman, a,b and V. Nicolosi,* a,b,c

We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(III) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.

Introduction

During the past decades, one-dimensional (1D) nanostructures have greatly attracted the attention of the research community due to their exclusive properties arising from their small size and tubular shape, allowing promising applications from nanoelectronics to biomedicine.1−4

Following the interest generated by the first reports on carbon nanotubes,5 the field of 1D materials quickly expanded to the synthesis of the inorganic counterparts, including transition metal chalcogenides, oxides and halides, among others.5−12 Interesting enough, nanotubes of gallium oxide and gallium nitride exhibiting semiconducting properties were also reported.13,14

Different synthesis methods of inorganic nanotubes include high-temperature routes, such as chemical vapour deposition, laser ablation and atomic layer deposition,14−20 as well as low-temperature processes, i.e. hydrothermal and sol-gel methods (so-called soft-chemistry).21−25 The latter have also been extended to the synthesis of 1D nanostructures composed by organic and inorganic moieties, including long-chain amine-templated vanadium oxide,9 vanadium sulfide26 and copper sulfide nanotubes.27

Usually, long-chain amines are utilized as a template for the growth of hybrid nanotubes due to their ability for self-assembly, arising from the combination of a strongly-polar amino group and a non-polar long hydrocarbon chain.28 Aromatic and short-chain amines have been successfully utilized for the soft-chemistry preparation of different gallium chalcogenide superstructures, usually forming crystalline frameworks composed of layers, chains or even helical tubes with interesting properties such as high surface area, or ion exchange capability.29−33 However, to the best of our knowledge, the ability of long-chain amines to direct the growth of 1D nanostructures in the gallium/chalcogens system has never been studied and still remains an important challenge in the field.

Herein, we report the soft-chemistry synthesis of long-chain amine-templated gallium chalcogenide (sulfur, selenium) nanotubes, using a mixture of dodecylamine and hexadecylamine as a solvent and growth template (Scheme 1). The synthesis conditions were studied and optimized to produce high

Scheme 1. Illustration of the synthesis reaction of amine-templated gallium chalcogenide nanotubes.

†Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d
purity materials with a maximum yield of nanotubes up to 70%. Moreover, preliminary studies showed a promising performance of these materials when used as active constituents in electrodes for lithium ion batteries.

Results and discussion

Scanning electron microscopy (SEM) of the synthesized materials (Fig. 1a and b) shows the presence of hollow, tubular structures with lengths between 100 and 500 nm in the case of the amine-templated gallium sulfide nanotubes (AtGaS$_x$-NTs) and in the range of 100 nm to 2 μm for the amine-templated gallium selenide nanotubes (AtGaSe$_y$-NTs). Low-magnification transmission electron microscopy (TEM) shows single nanotubes and bundled nanotubes in both cases, with a multi-walled structure, usually with open caps and terminating in a circular shape (Fig. 1c–f). However, at this stage, it is unclear whether they consist of concentric tubes or scrolled sheets.

The observed interlayer distances between the parallel stacked walls of the nanotubes are 29.1 Å and 25.0 Å on average in the case of the sulfur- and selenium-based nanotubes, respectively (Fig. S1 in ESI†), significantly greater than the interlayer distances commonly found in inorganic nanotubes34,35 but similar to those observed in nanotubes with intercalated long-chain amines.28 This finding indicates that the amines used as solvent (hexadecylamine and dodecylamine) are effectively incorporated into the tube structure and most likely act as a template for structure growth, as previously reported for nanotubes of vanadium oxide, vanadium sulfide and metallophosphates.9,28,36 The tubes exhibit very poor crystallinity under high-resolution TEM (see selected area electron diffraction patterns in the insets in Fig. 1e and f). Their structure is damaged within seconds upon exposure to the electron beam and the nanotubes noticeably shrink.

The TEM energy dispersive X-ray spectroscopy (EDX) analysis of the nanotubes shows peaks at the characteristic energies of carbon, gallium and sulfur/selenium (Fig. S2 in ESI†). Oxygen is also detected in both samples; it constituted a small shoulder in the case of AtGaS$_x$-NTs and a more prominent peak in the AtGaSe$_y$-NTs. The presence of oxygen is likely due to the incorporation of this element during synthesis or a partial oxidation of the tubes when exposed to air during post-synthesis processing. Although nitrogen would be expected from the potentially incorporated amine solvent, EDX cannot unambiguously prove the presence of this element due to its intrinsic detection limits and mostly to the fact that the involved signals would overlap with the carbon and oxygen peaks. High resolution EDX mapping, performed in an aberration-corrected Nion UltraSTEM200 microscope, confirms that the parallel layers observed in the TEM are composed of gallium chalcogenides (Fig. 1g and h). The distribution of gallium (green) and sulfur/selenium (blue) clearly overlaps the region where the layers are observed in the high-angle annular dark-field (HAADF) images (black & white), acquired by scanning transmission electron microscopy (STEM) mode. The homogeneous distribution of the elements in the nanotubes and the uniform composition of the samples are confirmed by EDX mapping performed in SEM (Fig. 2a for the AtGaSe$_y$-NTs and S3 in ESI† for the AtGaS$_x$-NTs).

The powder-X-ray diffraction (XRD) patterns of the nanotubes resemble those of long-chain amine-intercalated layered structures,$^{37-39}$ showing multiple peaks due to the 00l reflections (Fig. 2b). The basis distance responsible for these harmonics is determined by plotting the inverse of the measured d-spacing for these peaks against the order of the harmonic,
\(n \), which leads to the calculation of the interlayer distance as the reciprocal of the slope of this plot.

The interlayer distances thus calculated are 34.1 Å for the \(\text{AtGaS}_x \)-NTs and 30.3 Å for the selenium-based counterparts, similar to that observed in materials containing interlayer hexadecylamine\(^{26,37} \) and slightly higher than that observed by the TEM (29.1 and 25.0 Å, respectively). The shrinkage observed when the tubes are exposed to the electron beam likely explains the difference in the interlayer distance measured by XRD and TEM.

Some broad peaks and shoulders are observed in the region of \(d \)-spacing of 3.7 to 4.6 Å in both samples, which can be ascribed to liquid crystal arrangement of the long-chain amines.\(^ {27,38} \) In the sulfur-based sample, a small, broad peak consistent with the poor crystalline quality suggested by TEM, is observed at a \(d \)-spacing of 3.05 Å, which is similar to the gallium–gallium distance found in other gallium sulfide structures\(^ {40} \) and may correspond to the interlayer distance of the gallium–gallium atoms in the nanotubes. In the \(\text{AtGaSe}_y \)-NTs sample, a similar peak is observed at a \(d \)-spacing of 3.20 Å. Moreover, a broad peak corresponding to a \(d \)-spacing of 2.00 Å is observed in the \(\text{AtGaSe}_y \)-NTs sample, which is similar to interatomic distances commonly reported for gallium–nitrogen bonding in amine-stabilized gallium chalcogenides.\(^ {41,42} \)

Fig. 2c shows a comparison of the Fourier transform infrared (FT-IR) spectra of the nanotubes and the neat amines, clearly indicating the presence of the latter in the tubes and providing interesting structural information. To simplify the data analysis, the bands are analyzed in two groups: vibrational modes involving the nitrogen atom of the amines and vibrational modes involving only the hydrocarbon backbone.

The spectra of both dodecylamine and hexadecylamine present three bands at 3333, 3258 and 3172 cm\(^{-1} \), attributed to the asymmetric and symmetric nitrogen–hydrogen stretching modes and to the symmetric stretching mode interacting with the amine group bending mode, respectively. A scissoring bending mode is observed at 1609 cm\(^{-1} \) and a nitrogen–hydrogen wagging band is observed in the region around 925 cm\(^{-1} \).\(^ {43,44} \)

In the FT-IR spectrum of the nanotubes, these vibrational modes are shifted to a lower wavenumber and broadened (both for stretching and scissoring vibrations) or are not observed (wagging), which points to a strong interaction between the amines and gallium chalcogenide structure through the amino group.\(^ {43-45} \)

Moreover, all the bands ascribed to vibrations of the hydrocarbon backbone, including methylene and methyl stretching in the region of 3954–3848 cm\(^{-1} \), the bending modes at 1467, 1386 and 1362 cm\(^{-1} \) and the methylene rocking vibration at 718 cm\(^{-1} \) (ref. 45) are at the same position in both the amines and nanotubes spectra (Fig. 2c).

Thermogravimetric analysis (TGA) reveals a weight loss of 70.8% and 78.1% for the \(\text{AtGaS}_x \)-NTs and \(\text{AtGaSe}_y \)-NTs, respectively, when the sample was heated up to 850 °C under air atmosphere (Fig. S4 in ESI\(^ \dagger \)). The analysis of the TGA residues by EDX (SEM) and XRD (Fig. S5 in ESI\(^ \dagger \)) proves that the amines and the sulfur/selenium were removed and only gallium remains as gallium(III) oxide, which allows the estimation of the gallium content in the nanotubes as 21.7% and 16.3% in weight, respectively. Furthermore, the gallium to...
chalcogen ratios are calculated using the proportion between the concentrations of the elements obtained by total-reflection X-ray fluorescence (TXRF), based on the signal relative to cobalt, used as an internal standard (Fig. S6 in ESI†), which yields an approximate weight content of the chalcogens in the nanotubes of 12.7% sulfur and 27.6% selenium.

X-ray photoelectron spectroscopy (XPS) survey spectra of the nanotubes are shown in Fig. S7 (ESI†). In both cases, the nitrogen peak is observed at binding energies typical of amines (399.9 eV), and a small contribution from protonated amines is also detected in the A,GaSe₇-NTs, at binding energies of 401.1 eV (ref. 46) (Fig. S8a in ESI†). In order to study the chemical-bonding environment of gallium and chalcogens, the Ga 3d, S 2p and Se 3d core-level regions were acquired at high resolution. The Ga 3d peak was fitted with two doublets in both samples (Fig. S8b in ESI†), whose binding energies are 18.8 eV and 20.6 eV in the sulfur-based sample and 19.9 eV and 20.4 eV in the selenium-based sample. All these components have a full width at half maximum (FWHM) significantly higher than the resolution of the XPS system, which suggests that each of them comprises a variety of slightly different chemical species. The main components at lower binding energies are most likely associated with gallium bonding to the respective chalcogen,47 whereas the smaller binding energies are most likely associated with gallium di

component lies in the binding energy region which is typical for gallium oxides.48 Due to the surface sensitivity of XPS, it is not unlikely that the surface of the A,GaSe₇-NTs oxidizes during the processing or sample preparation, thus also indicates that the A,GaSe₇-NTs sample is more sensitive to ambient factors than the sulfur-based counterpart.

In the A,GaS₅-NTs, the S 2p core-level line shows a significant overlap with the Ga 3s peak, which made the fitting process more challenging. The S 2p and Ga 3s region yield a good fit for only one discernible sulfur component associated with Ga₅S₅ species, although with a high FWHM similar to the corresponding Ga 3d component (Fig. S8c in ESI†). Furthermore, the Se 3d region in the A,GaSe₇-NTs shows interesting features, such as a broad peak which was fitted to two doublets with binding energies of 53.9 eV and 54.4 eV. The first doublet is most probably related to Ga₅Se₅ species, while the second one is associated with edge effects or the presence of selenium-enriched regions in sample surface (Fig. S8d in ESI†).

The chemistry of amine-stabilized gallium chalcogenides has been extensively studied during the last decades. These compounds usually present an open-framework structure with Ga₅S₅ units.31-34,49 Further studies to fully characterize the ageing of both materials are currently ongoing.

Optical properties of the nanotubes

To gain insights in the optical properties of the inorganic nanotubes, the dispersions were subjected to absorbance and photoluminescence (PL) spectroscopy. The absorbance spectra were measured using an integrating sphere and are presented on the energy scale in Fig. 3a and b. Typically, UV-vis extinction spectra are recorded in transmission mode. However, due to the scattering of nanomaterial dispersions, these can mask faint features, as illustrated in Fig. 3a and b, which show absorbance, extinction and scattering spectra of the samples.

![Fig. 3](image-url)
Application of the nanotubes in energy storage

To test the future application of the as-synthesized nanotubes in energy storage devices, the nanotubes were processed into composite electrodes and used for lithium ion batteries anodes. Due to the semiconducting nature of the synthesized nanotubes, single-walled carbon nanotubes (SWCNT) were added to improve the conductivity of the electrodes. The composites prepared are denoted as AtGaS$_2$-NTs/SWCNT and AtGaSe$_2$-NTs/SWCNT, respectively.

The electrochemical performances were evaluated through galvanostatic charge/discharge tests (the curves obtained at 10 mA g$^{-1}$ for both composites are shown in Fig. 4a and b). The initial discharge capacities of AtGaS$_2$-NTs/SWCNT and AtGaSe$_2$-NTs/SWCNT composites are 190 and 164 mA h g$^{-1}$, respectively. However, in the AtGaS$_2$-NTs/SWCNT, the capacities substantially decrease to 113 mA h g$^{-1}$ at the fifth cycle (Fig. 4a). The apparent capacity loss after the initial several cycles could be attributed to the irreversible formation of solid-electrolyte interphase layer, which caused the consumption of electrolyte, forming a passive layer and lowering down the coulombic efficiency. Similar results were found in the AtGaSe$_2$-NTs/SWCNT (Fig. 4b). Since the amine-templated...
gallium chalcogenide nanotubes were homogeneously distributed onto the conductive SWCNT scaffold, as shown in Fig. 4b (inset), the as-formed void space as well as the open channels in the tubes greatly shortened the Li\(^+\) diffusion into the active sites.

Fig. 4c shows the rate performances of the A\(_{x}\)GaS\(_{2}\)-NTs/SWCNT and A\(_{x}\)GaSe\(_{2}\)-NTs/SWCNT at various current densities. Generally, the capacities of composite films were much higher than SWCNT and amine electrodes at all current densities.

In order to quantitatively determine the specific capacities of the gallium chalcogenide species in the composite electrodes, we subtracted the contribution of SWCNT and amine from the composite, obtaining 317 mA h g\(^{-1}\) and 251 mA h g\(^{-1}\) at 10 mA g\(^{-1}\) for the A\(_{x}\)GaS\(_{2}\)-NTs/SWCNT and A\(_{x}\)GaSe\(_{2}\)-NTs/SWCNT, respectively. Even at 400 mA g\(^{-1}\), the A\(_{x}\)GaSe\(_{2}\)-NTs/SWCNT reached 124 mA h g\(^{-1}\), higher than A\(_{x}\)GaS\(_{2}\)-NTs/SWCNT (63 mA h g\(^{-1}\)). The authors are aware that these results are below the performance reported for gallium sulfide doped long-chain amine-stabilized gallium chalcogenide frameworks with 1D structure and outstanding functionalities.

Methods

Materials

Gallium(III) acetylacetonate (Ga(acac)\(_{3}\)) (99.999%), sulfur (99.99%), selenium (99.5%), hexadecylamine (90%, technical grade), dodecylamine (98%), toluene (99.8%, anhydrous) and isopropyl alcohol (99.5%, anhydrous) were purchased from Sigma Aldrich and stored in a moisture-free atmosphere until use. Single-walled carbon nanotubes were purchased from Carbon Solutions Inc. and used as received.

Synthesis of the nanotubes

The synthesis conditions of the amine-templated gallium chalcogenide nanotubes, such as temperature, chalcogenide to gallium starting molar ratio, reaction time and type of chalcogenide precursor, were optimized (see section 1 in ESI†) and are described below: 1 mmol of Ga(acac)\(_{3}\) and 2 mmol of sulfur (or 1.5 mmol of selenium) were added to a two-neck 100 cm\(^3\) flask containing a degassed mixture of 100 mmol of hexadecylamine and 20 mmol of dodecylamine. The mixture was heated to 150 °C under nitrogen atmosphere for 1 h. The temperature was then increased to 200 °C and the reaction was carried out for 72 h.

After the reaction, the system was naturally cooled down and 10 cm\(^3\) of toluene were added into the reaction flask to facilitate the washing of the obtained precipitate, which was performed by using 80 cm\(^3\) of anhydrous isopropyl alcohol previously heated to 70 °C, followed by centrifugation (425 g, 5 min), repeated three times. The solid was re-dispersed in 100 cm\(^3\) of isopropyl alcohol by mild sonication and filtered to remove impurities, and then centrifuged (1700g, 5 min) to precipitate the white solid.

Characterization techniques

SEM images were acquired using a Zeiss Ultra Plus field-emission microscope equipped with a Gemini\(^{\text{®}}\) column and a secondary electron detector, working at acceleration voltages in the range of 2–5 kV. TEM images were taken using a FEI Titan microscope operated at accelerating voltages of 80 kV. STEM analysis was performed using a NION Ultra STEM 200 operating at 200 kV with a Bruker windowless EDX detector. EDX analyses were performed with the microscopes operating at 15 kV (SEM), 80 kV (TEM) and 200 kV (Nion) and analyzed with INCA and TIA softwares, respectively.

XRD was performed in a Siemens D500 X-ray diffractometer equipped with a Cu K\(_{\alpha}\) emission source (\(\lambda = 1.5418\) Å) in the

Conclusion

The synthesis of long-chain amine-templated gallium chalcogenide (sulfur, selenium) nanotubes was demonstrated and optimized. The nanotubes were prepared by a soft-chemical route, producing high purity nanotubes with yields as high as 70%.

These new materials belong to the family of amine-stabilized gallium chalcogenides and have a proposed structure composed of alternating layers of long-chain amines and polymeric gallium sulfide/selenide, conforming to a multi-walled tubular structure.

The aspect ratio of the nanotubes is high, with maximum lengths of up to 500 nm for A\(_{x}\)GaS\(_{2}\)-NTs and 2 \(\mu\)m for the A\(_{x}\)GaSe\(_{2}\)-NTs counterparts. Optical characterization indicates that the materials can be tentatively classified as direct large band gap semiconductors, with excitonic transitions in the UV region, which makes them promising for electro-optical applications and studies of quantum effects in semiconducting materials.

The performance of the nanotubes as active material for lithium ion batteries anodes was tested. Results showed values in the range of 251–317 mA h g\(^{-1}\) at 10 mA g\(^{-1}\) based on the gallium chalcogenide content.

It is envisaged that the versatile soft-chemistry route described here may enable the synthesis of hybrid metal(n)-doped long-chain amine-stabilized gallium chalcogenide frameworks with 1D structure and outstanding functionalities.
Bragg–Breentano configuration (2θ angle from 2–60 degrees, step 0.02 degrees). To avoid sample decomposition, the A1GaSe2–NTs were coated with a very thin film of paraffin to protect them from oxygen and moisture. TXRF analysis was performed with a S2 PicoFox TXRF spectrometer from Bruker Nano GmbH, equipped with a molybdenum X-ray source working at 50 kV and 600 μA, a multilayer monochromator with 80% of reflectivity at 17.5 keV (Mo Kα), a XFlash SDD detector with an effective area of 30 mm2 and an energy resolution better than 150 eV for Mn Kα. Cobalt was used as an internal standard. XPS spectra were taken using monochromated Al Kα X-rays from an Omicron XM1000 MKII X-ray source and an Omicron EA125 energy analyzer. The analyzer pass energies were 15 eV for the core-level spectra and 100 eV for the survey spectra. An Omicron CN10 electron flood gun was used for charge compensation. After subtraction of a Shirley background, the core-level spectra were fitted with Gaussian–Lorentzian line shapes using the software CasaXPS.

Optical absorbance was measured from 220 to 800 nm on a Perkin Elmer 650 spectrometer in quartz cuvettes, with a path length of 0.4 cm. Prior to the measurements, the sample was dispersed in isopropyl alcohol by mild sonication. As nano-material dispersions typically show scattering, in addition to absorbance, the optical absorbance was measured in an integrating sphere. A home-built sample holder was used to place the transparent cuvette in the centre of the sphere. The absorbance spectrum was obtained from measurements inside the sphere, where all the scattered light is collected. This procedure was necessary to reveal subtle and faint features in the spectra that could be masked by the scattering background. A second measurement was conducted in transmission outside the integrating sphere to obtain the extinction spectrum. The scattering spectrum was calculated from both measurements by subtracting the absorbance from the extinction spectrum.

PL of the sample was measured in quartz cuvettes using an Edinburgh Instruments FS920 PL spectrometer equipped with a xenon lamp (450 W) and a S900 photomultiplier tube detector. The contour plot was measured at room temperature using single monochromators to record the excitation and emission. The bandwidth was 5 nm, and the acquisition time was 0.3 s. To avoid dispersion artefacts caused by scattering of the nanomaterial, a 395 nm cut-off filter was placed on the emission side. The excitation was corrected for the light intensity.

FT-IR spectra were recorded in the range of 750–3500 cm⁻¹ using a Perkin Elmer Spectrum 100 FT-IR spectrometer. Measurements were carried out by the diffuse reflectance method on the neat samples directly. TGA were carried out using a Perkin Elmer Pyris 1 TGA, which had previously been calibrated with nickel and iron standards, by heating 10 mg of finely ground powder of the sample to 850 °C (rate 10 °C min⁻¹) under air atmosphere.

Electrochemical measurements

Preparation of the electrodes. 12 mg of amine-templated gallium chalcogenide nanotubes were dispersed in anhydrous isopropyl alcohol by sonication in a bath for 30 min, and then mixed with 26 cm³ of a homogeneous dispersion of 0.1 mg cm⁻² SWCNT in anhydrous isopropyl alcohol. To allow the complete mixing of the materials, the sample was bath sonicated for an additional 5 min. Following this, the sample was vacuum-filtered through a Celgard K2045 membrane (Coated PP, Celgard LLC, Charlotte, NC) and dried overnight at 100 °C in a vacuum oven, to produce a conductive, free-standing electrode (inset in Fig. 4a).

For the purpose of comparison, a mixture of hexadecylamine and dodecylamine powder (1.0 mmol + 0.2 mmol, respectively) was rolled into film electrode using the traditional method, mixing with conductive agent and polyvinylidene fluoride in N-methyl pyrrolidinone. After pestling for 10 min, the homogeneous slurry was gently casted onto the copper foil. The amine film was dried under vacuum and punched into an electrode with a diameter of 12 mm and thickness of 20 μm (excluding the thickness of copper). The electrodes were then transferred to the glove box ready for further use. The SWCNT electrodes were prepared similarly to the composite.

Cell assembly. After an overnight vacuum heating in the oven, the composites were cut into square stripes with a size of 0.7 × 0.7 cm. The thickness and mass of each electrode was 10 μm and 0.6 mg, respectively. CR2032 coin-type cells were assembled using the composite as the working electrode and lithium metal foil as the counter and reference electrode. A porous polypropylene membrane (Celgard K2045) was used as the separator. The electrolyte was 1 M lithium hexafluorophosphate/ethylene carbonate/diethyl carbonate. The cells were assembled in an argon filled glovebox.

Electrochemical characterization. The galvanostatic charge–discharge tests were carried out on an Arbin Potentiostat (BT2145, USA) between 0.01–2 V (vs. Li/Li⁺) at different current densities, ranging from 10 mA g⁻¹ to 500 mA g⁻¹. The cell was cycled 5 times under each current density and the discharge capacity at the fifth cycle was taken as the stable value. Similarly, galvanostatic charge–discharge tests were also conducted on the SWCNT and amine only.

Abbreviations

A1GaSe2–NTs	Amine-templated gallium sulfide nanotubes
A1GaSe2–NTs | Amine-templated gallium selenide nanotubes
SEM | Scanning electron microscopy
TEM | Transmission electron microscopy
EDX | Energy dispersive X-ray spectroscopy
HAADF | High-angle annular dark-field
STEM | Scanning transmission electron microscopy
XRD | X-ray diffraction
TXRF | Total-reflection X-ray fluorescence
XPS | X-ray photoelectron spectroscopy
FWHM | Full width at half maximum
PL | Photoluminescence
FT-IR | Fourier transform infrared
Acknowledgements

This study was been supported by Science Foundation Ireland (SFI) under grant number SFI/12/RC/2278. VN would like to acknowledge the following funding support: SFI AMBER, SFI PIYRA, ERC StG 2DNanoCaps, ERC PoC 2DUSD, ERC PoC 2DInk, EU MC IITN MoWSeS, EU NMP Co-Pilot. NMcE was supported by SFI under 14/TIDA/2329, and NCB and GSD under SFI PL_10/IN.1/I3030. The authors would like to thank Michael Finneran, Trevor Woods and Manuel Ruether from Trinity College Dublin, all the technical staff at the Advanced Microscopy Laboratory in CRANN TCD, and Ramón Fernández-Ruiz and Josué Friedrich from Universidad Autónoma de Madrid, for their support.

References