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Summary

This thesis is concerned with the detection and characteaion of acoustical sources
using array signal processing techniques. In particular isywork is concerned with deter-
mining the number of sources present, and estimation of theif@ction of Arrival (DOA)
of the signals received by the array.

Firstly the problem of DOA estimation using array processig techniques is intro-
duced and the possible applications of DOA estimation are stiussed. The model of the
wavefront propagating from the source to the array is recad.

Chapter 2 provides the mathematical basis for the rest of thbesis. The mathematical
estimation problem is introduced and the di culties in ndi ng an optimal estimator for
DOA estimation are discussed.

A uni ed explanation and review of classical array processij DOA estimation tech-
niques is then given. In particular the application of suchechniques to the problem of
estimating the location of wideband sources is discussededent developments in acous-
tical source localisation are then reviewed.

The initial step in any estimation scheme is to determine theaumber of sources present.
This process is called model order determination and clasail model order determination
methods are unsuited to situations where the number of sndpsts available is small,
however such situations frequently arise, particularly wén dealing with non-stationary
sources. Based on the prole of the noise eigenvalues of thieserved data correlation
matrix as introduced by Grou aud et. al [1], a novel method ofdetermining the number
of acoustical sources present is presented. The performaraf the proposed method is
compared to classical model order determination technigsi@ising both computer simula-
tions and experimental recordings. In particular the e ectof reverberation is considered.
The proposed method is shown to outperform the classical netds while maintaining
low computational complexity.

As it is not possible to nd an optimal estimator for the DOA egimation problem,
a sub-optimal estimator must instead be used. The choice oftenator depends on the
characteristics of both the source and environment of thewgn estimation problem. Three
of the most well known approaches to the DOA estimation probm are subspace-based
estimation, in this case we consider the Multiple Signal Cési cation(MUSIC) algorithm,
Maximum Likelihood (ML) estimation and Time-Delay Estimation (TDE) using the cross-
correlation method.

The performance of these three approaches are then comparesing both computer



simulations and experimental recordings. Analysis of the &n Square Error (MSE)
of each of the estimators for decreasing SNR shows that allrée estimators display a
threshold SNR below which the MSE increases rapidly. This thshold determines the
operational range of the estimators for the given estimatio problem and is explained
by examination of the behaviour of the estimators as the SNRs idecreased. The e ect
of reverberation is considered by evaluating the performaa of the methods for varying
Useful-to-Detrimental U,s values. Comparison of the results found from each estimator
allows some conclusions to be drawn on the suitability of tke estimation approaches for
di erent localisation problems.

For any given localisation problem it is therefore of greatnactical importance to know
the best possible performance that can achieved. Such knedge allows for a decision
to be made on whether or not starting from a given algorithm ammprovement can be
made, or whether or not the system performance requirementan ever be met. It is of
particular importance to establish the threshold SNR valueas this value determines the
operational range.

In this thesis the best performance that can be achieved by astimator is evaluated
using lower bounds on the Mean Square Error (MSE), allowingff prediction of the op-
erating range of an estimator in a given situation. The bestrown of these bounds is
the Craner-Rao Bound (CRB). Its popularity can be attribut ed to both its simplicity of
calculation and the fact that asymptotically (high SNR and/or large number of samples)
it is reached by the ML estimator. However, the CRB only prowdes an accurate indica-
tion of achievable performance in the asymptotic (or smaé¥ror) region, as it does not
predict the threshold e ect. The resulting performance chacterization may therefore be
misleadingly optimistic.

For this reason the application of the Barankin Bound (BB), vinich is the greatest
lower bound on the MSE of an unbiased estimator, is instead residered. Unfortunately
however, it is generally not computable, and must thereforbe approximated. In this
thesis a practical means of classi cation of BB approximatins is proposed. This classi -
cation scheme includes all previously existing approximian bounds, and highlights their
underlying assumptions.

Finally this formalism leads to the derivation of a new pradtal bound that is tighter
than existing bounds, particularly in the threshold regionwhile maintaining a comparable
computational complexity to that of the CRB.
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Introduction

1.1 Introduction

Array processing has been an active area of research for mamars now, and originally
array processing techniques were developed for military @lcations. However, the dra-
matic increases in computing power which have taken placeasvthe last number of years
have led to the widespread use of Digital Signal ProcessinD{P) devices in consumer
electronics, for both business and entertainment purposedhe phenomenal growth of
this industry has provided many new and challenging problesnfor signal processing re-
searchers, as there is a constant demand for increased spesxturacy and robustness,
while reducing price and size.

In particular the area of acoustical array processing has b@me an active research
topic. This interest can be attributed to the host of potental applications, for example:
sonar applications; medical applications such as lithopsy; non-destructive testing and
human-computer interfacing; as well as a wide range of entainment applications e.g.
tracking of acoustical sources during theatrical perfornmeces and acoustical ambiance
re-creation.

At its most basic, signal processing is concerned with tramsssion of a signal that
contains some desired information, and manipulation of thisignal in order to extract this
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information. In array signal processing the signal or sigit&are emitted and/or received
by an array. By array, we mean a set of receivers, that are spally distributed. This
separation of the receivers means that as well as the signaifig temporally sampled, i.e.
a value is received at each time instant, it is also spatiallgampled as a value is received
at each of the array elements. The advantage of using an array receivers is this ability
to exploit both the spatial and temporal characteristics othe signal.

Acoustical array processing is concerned with detection drmanipulation of signals
emitted by acoustical sources and has numerous applicat®m sonar, medicine, audio,
active noise control etc. When dealing with acoustic soursghe signals are received by
an array of microphones.

1.2 Array Processing

For array signal processing purposes signals can be dividetb two groups: those that
have a xed behaviour, called deterministic signals, and thse that change randomly,
called stochastic or random signals. Deterministic sigreacan be completely speci ed as
a function of time and therefore the signal can be predicteddm a number of previous
time samples.

On the other hand stochastic or random signals cannot be elgscharacterised by a
mathematical expression, and instead use must be made ofgrknowledge and proba-
bilities in order to analyse the signal behaviour, for exane the use of a prior probability
of a parameter to estimated the current value.

The signals of interest can be further classi ed as narrow+ avideband. A narrowband
signal is one whose amplitude and phase vary slowly relatite the time taken for it to
propagate across the array. A broadband signal is then a sggjrthat is not narrowband, or
a signal which has a relatively large frequency bandwidth nmpared to its centre frequency.

The source emitting the signal can be classi ed as near- eldr far- eld. Near- eld
sources are located close enough to the array for the wavetrarriving at the array to be
spherical. On the other hand, the wavefronts arriving from dar- eld source have been
propagating for long enough for the wavefronts to be planai,e in straight horizontal
lines as they arrive at the array.

As the signal travels through the propagating medium it willbe perturbed by additive
noise and interfering signals. The presence of these signaehange the properties of the
received signal and make it di cult to extract the desired information.

Additive noise is generated by sources in the same environmeof the signal, and
is usually independent of the signals themselves. In signalocessing, an assumption of
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white noise, that is noise with equal quantities of all fregencies, is often made. One reason
for making such an assumption is that it greatly simpli es tle mathematics involved in
subsequent signal models. Fortunately, it is also a good ajpgimation of the true noise
present in many cases.

In some situations, however, the noise present may not comaall frequencies, and
this noise is instead called coloured noise. In these situats, if the spectrum of the
coloured noise is known, a whitening Iter is usually applie¢ to whiten the noise. Once
this has been done, the characteristics of white noise cancenagain be exploited for any
mathematical modelling. However, this requires access thd noise signal separate from
the information signal and this is often not possible in pracal situations.

Interference, on the other hand, will usually have similarl@aracteristics to the desired
source signal, and may be generated by a similar source, egeople speaking in the
background when trying to extract a speci ¢ speech signal. Wother type of interference
is due to reverberation or multi-path, when the desired sigl is re ected o surfaces within
the propagation environment causing multiple delayed awals of the desired signal. The
degradation of the desired signal by interference and revwaration is usually very di cult
to deal with, as it becomes confused with the desired signalétherefore cannot be easily
identi ed or removed.

Once the signal has been received by the array, the objectvef any subsequent pro-
cessing steps can be categorised as either signal enhancéroe eld characterisation.
Signal enhancement occurs when the spatial characterigiof the array are used to im-
prove the SNR of the signal received. This can be done by stegy the array so that it
receives signals from a certain direction only, thereby igning signals arriving from other
directions. This technique is called beamforming and in itsimplest form is performed by
delaying the signals received at each of the array elemenggd then adding these delayed
signals.

The delay applied corresponds to the time delay experiencéyg a signal originating
from the desired location, as it propagates across the arragignals originating from other
locations will therefore be ltered out. This spatial ltering is very useful in situations
where the interfering and noise signals overlap the desirs@ynal spatially or temporally,
making other types of Itering di cult.

Field characterisation is concerned with estimation of thespatial properties of the
source or sources. Before the location of the sources can benfl the rst step must
be to identify the number of sources present. This processrcée called model order
determination.

The next step then is localisation of the sources present. Hoear- eld sources emitting
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stationary signals the localisation step involves estimain of the range, asimuth and
elevation of the source. The number of parameters to be estated is reduced for far-
eld sources, as only the asimuth and elevation can be estite@l. These parameters
are commonly further reduced by assuming the source and ayrare in the same plane,
i.e. at the same height, which reduces the localisation prigm to that of estimating the
asimuth Direction of Arrival (DOA) of the signal only. In thi s thesis we are concerned
with the estimation of the DOA of signals arriving from a far-eld source. Extension to
the situation where the source and array are not on the samegple, and the elevation
must also be estimated is straight-forward.

Estimation of the DOA of an arriving signal has been an activarea of research for
many years now, and a vast number of algorithms and approachexist. While many
of these methods were developed originally for narrowbandysals, they may also be
applied to situations of broadband sources such as those euantered in acoustical array
processing. In order to apply narrowband localisation teciiques the signals are rst
broken down into narrowband bins, and localisation is then grformed individually on
each bin. These individual results are then combined to given overall DOA estimate.

Despite the many localisation techniques that have been dsweped, the problem of
DOA estimation continues to be a challenging problem. One diie di culties lies in the
fact that there is no guaranteed way of nding the best or optnal method of estimation
for all situations. Instead sub-optimal methods must be uske and the most suitable
approach is selected by taking into account characterissof the source and environment.

In order to determine the suitability of a proposed estimatn method (i.e. the esti-
mator) its performance can be compared to the best possiblenformance. This allows
a decision to be reached on whether or not the estimator perfoance is satisfactory, or
if it can be improved upon. It can also be determined whetherranot it will ever be
possible to achieve the required performance. One methodevhluating the best possible
performance is by the use of lower bounds on the Mean Squarerdtr(MSE) bounds,
which provide a bound on the minimal MSE that can be achieved.

1.3 Thesis Organisation

In this thesis, the problems of detection and estimation ofie DOA of far- eld acoustical
sources using an array of microphones are considered. Iniea 2 array signal processing
techniques are introduced and a model for the data received Ithe array is proposed.
Estimation of the unknown parameters of the received sigrsais then reviewed, and the
individual steps in this process are explored, including spi cation of the Probability
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Density Function (pdf) and commonly applied assumptions. fie selection of a suitable
estimator and the criteria used to evaluate estimator perfmmance are then considered.
These criteria can then be applied in order to nd the optimalestimator for a given esti-
mation problem. However, it is shown that it is not always pasible to nd an expression
for the optimal estimator, and that DOA estimation is an exanple of such a situation. We
can therefore conclude that for this problem it is instead reessary to select a sub-optimal
estimator that has desirable properties for the given situeon. The commonly applied
sub-optimal DOA estimators are then considered in chapter &xd the main contributions
to the area of DOA estimation are reviewed.

In chapter 4 the initial step in characterisation of the soures, that of model order
determination is discussed. Acoustical model order detemation presents a challenging
problem due to both the wideband nature of the source and thedt that the amount
of data available for a given source location may be limitedClassical methods operate
well for determining the number of narrowband sources whearge amounts of data are
available. However, they are unreliable for the di cult situation considered here.

To this end, a method for determining the number of acousti¢aources is proposed
here. This method is based on the pro le of the noise eigenuals of the observed data
correlation matrix as introduced by Grou aud et al. [1]. This method is suited to the
di cult operating scenarios encountered in acoustical sawe localisation. In particular
this method is shown to out-perform classical detection miebds for the situations where
a small amount of data is available for a given source locatio

This then leads to a study of three of the most well-known subptimal estimators,
in chapter 5. The performance of these estimators is compdresing both simulations
and experimental recordings for a variety of source numbeasd locations. The e ects of
interference and additive noise on the estimators is consied, allowing us to draw some
conclusions on estimator behaviour, and the suitability othe estimators for di erent
localisation problems.

In chapter 6 the best possible performance that can be achesl/by an estimator for
a given localisation problem is evaluated. This is done ugjHower bounds on the Mean
Square Error (MSE), which provide a bound on the minimum MSEHat can possibly be
achieved.

Firstly, a new formalism that encompasses all previously deed lower MSE bounds is
proposed. This formalism provides a meaningful way of clafssng these bounds based on
their underlying assumptions. Secondly, with the help of tis formalism, a new practical
bound is derived, which, while maintaining low computatioal complexity is closer to the
true performance than existing bounds.
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Conclusions are drawn in chapter 7 by commenting on the ressilfrom the previous
chapters and nally, some proposals for future work are prested.

1.4 Contributions

The work done in the course of this thesis has led to the follavg papers:

1.4.1 Journal Papers:

1. A. Quinlan, J. P. Barbot, and P. Larzabal, \Automatic determination of the number
of targets present when using the time reversal operator (T®," Journal Acoustical
Society of America (JASA), vol.119, n.4, pp. 2220-2225, 280

2. A. Quinlan, J. P. Barbot, P. Larzabal, and M. Haardt, \Model order selection for
short data: An exponential tting test (EFT)," EURASIP JASP (European Journal
Applied Signal Processing), Accepted for publication.

1.4.2 Conference Papers:

1. A.Quinlan and F. Boland, \Using the singer's formant to reluce inaccuracies in
the location of a singer on stage,” in Proc. Irish Signals an8ystems Conference
(ISSC), Belfast, Ireland, 2004.

2. A. Quinlan and F. Boland, \The e ect of vibrato on singer localisation,” in Proc.
GSPx Conference, Santa Clara, CA, 2004.

3. A. Quinlan, E. Chaumette, and P. Larzabal, \A direct metha to generate approxi-
mations of the Barankin bound," in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing (ICASSP), Toulouse, France, 2006.

4. A. Quinlan, F. Boland, J. Barbot, and P. Larzabal, \Determnation of the Number
of Wideband Acoustical Sources in a Reverberant Environmg&nin Proc. 14th
European Signal Processing Conference (EUSIPCO), Florendtaly, 2006.



Estimation Using Array Processing
Techniques

2.1 Introduction

The use of array signal processing techniques for sourceadlmation has been an active
area of research for many years, however it remains a chafiéerg problem. The work
presented in this thesis is concerned with localization ohaacoustic source using an array
of microphones. In this chapter the mathematical backgrouhof estimation is recalled.
The terms de ned here are then used throughout the thesis.

There are two possible approaches to the analysis of the datceived by the micro-
phone array: parametric and non-parametric. Parametric ®hniques assign a mathemat-
ical model with a xed number of parameters to the observed da, and the parameters
of the model are selected so that the observations t this mad. These techniques use
information that is known or assumed to be known about the olesved data in order
to determine a suitable model. The accuracy of the method ishérefore reliant on the
accuracy of the underlying model. In non-parametric techgues, on the other hand, no
model is imposed on the data.

The work presented here focuses on parametric methods, iniahthe required infor-
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mation is expressed as a parameter of the received signal [Bhis parameter is then be
estimated from the observations.

2.2 Modelling the Received Data

Firstly we consider the source, which can be classi ed as meald or far- eld depending
on its distance from the array. If the source is in the near- lel then the wavefronts reaching
the array are spherical. For this type of source there is a vec of spatial parameters to
be estimated containing both bearing and range information

As the source is moved farther from the array the wavefrontsdeome planar and
parallel, as shown in gure 2.1. A source is considered to be the far- eld if:

R > 2—LZ; (2.1)
where R is the distance from the source to the arrayl. is the length of the array, and
is the wavelength of the arriving wave. When the source is irhé far- eld only the

bearing information, or Direction of Arrival (DOA), can be used to characterise the source
spatially [3]. This is the situation being investigated in his thesis. A common assumption
is that the source and array are in the same plane, thereby ther reducing the spatial
parameters to be estimated, and the wavefronts arriving aionisecutive microphones di er
only by an amplitude coe cient and a time-delay.

The scenario where there ar® far- eld sources present, and the emitted signals are
received by an arbitrary array ofM microphones is now considered. The impulse response
of the mth microphone to a signak,, (t), emitted from the pth source is denoted,, (t):
This impulse response depends on the locations of both theuste and the microphone,
the propagating medium, and any gain or attenuation introdaed by the microphone itself.
The time delay of the pth signal arriving at the mth microphone is denoted ,,. The
output at the mth microphone can then be written as:

X
Xm (1) = hpm (1) sp(t pm) + N (1) ; (2.2)
p=1

where () denotes convolution andn, (t) is the additive noise signal received by thenth
microphone, it is assumed thai, (t) is independent ofs, (t), and that P < M. The
array output can then be expressed as:
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Figure 2.1: Source in the far eld emitting a signal received by the arrapf microphones.
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2.3 Complex Signal Representation

In array signal processing the complex representation of &gsal is often used. This
representation is based on the assumption that the signal m&arrowband. In many cases
this narrowband assumption does not hold, and in these sittians the bandwidth of the
signal must be divided into smaller frequency bins so that th narrowband assumption
will hold across each frequency bin, and the following analig will then hold for each bin.
The emitted signals, (t) can be expressed in terms of a modulated centre frequency

Sp(t)= p(t)cos !t + (1) : (2.4)

Assuming that the signal is narrowband we can therefore say:
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p (t p) t p(1); (2.5)
ot p) (1) (2.6)
which implies that:
Sp (t p) = ot p)cos ! (t p)+t p(t n) (2.7)
t p(cos !t 1 ,+ (1) : (2.8)

The time-delay can now be modelled as a phase-shift of the gar frequency. Following
from the assumption that the signal is narrowband, the impwe response can be taken
to be constant across the frequency band of interest. The $tanary response of thanth
microphone to the signals, (t) can therefore be expressed as:

Iom (t) = hpm (t) Sp (t pm) (2.9)
= hpm (1) p (t) cos !t Dpm* (1) (2.10)
= Hpm (') p(Mcos'!t ! pm+ (1) ; (2.11)

where Hpn, (1) is the Fourier transform of the impulse responsény (t). Expressing
Hpm (! ) in terms of its phase, arddpm (! ), and magnitude, jHym (! )j, and letting ., =
jHpm (! )], (2.11) can be re-written as:

rom (W pn (M) p(cos!t ! pn+ () +argHpm () ; (2.12)

Using a complex signal representation of the received signtne time-delay can then
be expressed as a multiplication by a complex number. Consithg the case where there is

no noise present, the complex representation of the signakeived by themth microphone
is given by:

Fom (1) = X (1) + jx 7 (1) (2.13)
= m()el oty e (2.14)
= m)el mg(); (2.15)

where & (t) is the complex envelope of the signad, (t), and & (t) = ,(t)€ »®. Then,
letting an ( p) = pm(!')e I' e the array response vector can be de ned:
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2 _ 3
pl(!)ej! p1

a( @:E p2 (! ):e“ " é (2.16)

pM (!)ej! P

This complex vector describes the response of each micropépincluding geometric
path di erences, to a signal arriving at an angle of ,. Throughout the thesis this vector is
called the array response vector, however it can also be meéel to as the steering vector,
the location vector or the transfer function vector.

The in-phase and quadrature components of, (t), xi. (t) and x4 (t) respectively, are
given by:

JHpm (1)1 p(cos p(t)+argHpm (') ! pm (2.17)
Hom ()i p(®sin () +argHpm (1) ! pm - (2.18)

X, (1)
x3 (1)

2.4 Parametric Signal Model

The required parameter for each source is the Direction of Aval (DOA), ,; and the
DOA associated with the each of thd® sources present must be estimated from the data
received by the array. In the case considered here the angfestevation is assumed to be
zero, as the microphones and source are assumed to be the saeight. However, the
results derived here can easily be extended to the generakeawhere both bearing and
elevation are unknown.

From equations (2.3) and (2.15), the parameterised data metfor the pth source is
given by:

2 2 2
X1 (t) ay ( p) Ny (t)
x
X(t)_g A0 % E () % s E 0 % 019
Xm (t) aw ( p) Nm (t)
X
= a( p)Sp(t)+ n(t): (2.20)
p=1

The received signal model for the case &f parameters can now be expressed as:
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x()=[a( 1);a( 2);:5a( e)l[Bu(t);:58 (D] + n(b): (2.21)

Then de ning the M P matrix A ( ) the columns of which are given by the array
response vectors associated with each of tResources, equation (2.21) can be re-expressed
as:

x ()= A()e)+n(t); (2.22)

with: 2 3

= g :2 %: (2.23)

This model is applicable to an array of arbitrarily located ncrophones assuming that
the sources are located in the far- eld; thaP < M ; and that the sources are non-coherent,
where two signals are coherent if one is a scaled and delayedsion of the other [2]. A
Uniform Linear Array (ULA) is commonly used as it leads to simpli cation of the data
model. This is the array con guration considered here. Hower, the results found are
easily extended to other array con gurations.

For a ULA with an inter-microphone spacing , pm can be related to the DOA by
the following expression, as seen in gure (2.2):

cos(p) = v pm . (2.24)

wherev is the speed of sound as it travels through air. Due to the faeld conditions
it can be assumed that ., is constant form = 1;:::;M, and 8p = 1;:::;P: Then,
substituting for ,n, in equation (2.16), the array response vector can now be eggsed
as:

3

2
5 cos )
a( p)=a( p) ; (2.25)

e j(M)' COS p)

Now, assuming unit response of the rst microphone and subgiting for v=f |, the
array response vector can be re-expressed as:
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Figure 2.2: The wavefronts arriving at a Uniform Linear Array (ULA) with inter-
microphone spacing .

1

2
e i(@2—CO3 p)
a( p) = : (2.26)

e 1(M)2—COS )

If > 5 then spatial aliasing can occur, i.e. there exists;, , 2 [0; ] such that for
16 5

Therefore, in order to avoid this problem, the array must be esigned so that:

min .
2.28
2 ) ( )

where in is the minimum wavelength of the received signal.
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2.5 Probability Density Function (pdf) of the Ob-
served Data

Due to the random nature of the observation vector the probality of correctly deter-
mining the required parameters will never be equal to 1. Insad the observed data can
be characterised by the Probability Density Function (pdf)denotedf (x): As the pdfis
dependent on there is a di erent pdf associated with each di erent realiation of . The
accuracy of the estimator is directly linked to that of the pd, the correct choice of pdf
will therefore greatly in uence the performance of the estnator.

Estimation based solely on the pdf of the observed data is tad classical estimation [4].
This is the estimation problem considered here and it is assied throughout that no prior
information about the parameters is available. Alternatiely Bayesian estimation can be
used if prior knowledge of the parameter values exists [4] this situation the parameter
to be estimated is viewed as a realization of the random valike .

In this work deterministic estimation is considered, and fothe sake of simplicity
the case of estimating a single, i.eP = 1, real, deterministic parameter is considered
initially. These results are then extended to include estiation of multiple deterministic
parameters.

In certain situations it may be more convenient to estimate &inction of the required
parameter rather than the parameter itself. Therefore in th following the general case
of estimating a function g( ) is considered, whergg( ) may or may not be equal to

Correspondingly the estimator used to estimate the parartexr value based on the
observations is denotec@?‘( ) (X):

For many practical estimation problems the pdf will not be kiown and must instead be
approximated. A random variablex is said to be Gaussian, with distributionN (my; &)
if its pdf has a Normal distribution. Assuming a Gaussian dtsibution, and letting P =1
the pdf of the received data, as given in equation (2.21), ixgessed as:

1l,x mx 2
f(x)= —p'}?e 2Kk (2.29)
X

wherem, = E [x], and 2 is the variance of X]:

A Gaussian distribution is commonly assumed due to the manyonvenient mathe-
matical properties of the Gaussian distribution, and also écause this assumption is often
justi able due to the Central Limit Theorem [5]. The central limit theorem states that
the distribution of the mean tends to be Normal, regardlesd ¢he distribution from which
the mean is computed.
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variance 2, then:

|
r
X1+ it Xp+ i+ X

N

(2.30)

!
, converges to distribution N E [x]; WX ;

N1

Therefore if we haveN independent observations of the same random experiment,

X1;X2; 111, XN, for su ciently large N the estimator Nl gjj( ) (x) will have a Gaussian
distribution:
0 S 1
h i g,(
NG@E ) i A (2.31)

where gt ) is the variance of the estimato@j( ). We now need to nd an estimator that

will assign an estimate to each set of observatios= [x [1]; X [2];:::X[N]]. The quality

of such an estimator must be quanti ed in order to see if it mde requirements, and
ideally we wish to nd the optimal estimator for a given situdaion. This naturally leads

to the question of what measurements are needed to evaluateetestimator performance,
and what criteria should be met in order for an estimator to be&onsidered \optimal”.

2.6 Estimator Performance Evaluation

When evaluating the performance of an estimator the basic gation that must be ad-
dressed is \How accurate are the results provided by this estator?", or put another way,
\How close will the resulting estimates be to the true valueés'. The aim then is to select
the best possible estimator, but in order to do this the term best" must be quanti ed.

The rst factor to be considered is whether or not the mean orx@ected value of the
estimator is equal to the true parameter value, i.e. is:

h i
E §()(x) =g(): (2.32)

If this is true, then the estimator is said to be unbiased. Ifhis is not the case, then the
estimator is biased, with bias given by:

h i
Bias d()(x) =E ()(x) g(); (2.33)

A biased estimator is one that systematically introduces aerror, resulting in the mean
or expected value of the estimator no longer being equal todhtrue parameter value.
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The e ects of such an error therefore cannot be removed by aaging. While an unbi-
ased estimator is not necessarily a good estimator, a biasestimator is generally highly
undesirable [4].

The second measurement used to characterize the estimatarformance is the vari-
ance, which measures the dispersion of the estimates arouhdir expected value:

h i
var ) =E dOm E O (2.34)

Clearly the more accurate the estimator, the smaller the vaance will be [4].

The Mean Square Error (MSE) is commonly used as a measuremeitthe quality or
precision of an estimator. De ning as the observation spae, the MSE can be expressed
as:

h i
MSE ) = E S0 o() (2.35)
z
= dOHx 9() f o (2.36)
= 4 o) (2.37)
From equation (2.35) we can see that the MSE can also be exmed as:
h i h i h i
MSE &()(x) = Var §( )(x) + Bias? ¢ )(x) : (2.38)
Then for an unbiased estimator:
h i
Bias f()(x) = E §)H(x) g()=0; (2.39)
=) MSE d()x) =Vvar §()(x) : (2.40)

A nal consideration when evaluating the performance of anstimator is the com-
plexity of the computations involved. While an estimator ma provide highly accurate
results, it will be of little practical use if it cannot be quickly and easily implemented. In
such situations, an estimator with lower accuracy may in fade preferable, particularly
if real-time estimation of the parameters is necessary.

2.7 Finding the Optimal Estimator

Unfortunately there is no straightforward minimisation stieme that is guaranteed always
to produce an expression for an optimal and realisable esttor, where we consider an
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estimator to be realisable if its de nition does not rely on nknown or unobservable

guantities. There are however certain approaches that wilin some cases, produce a
closed form expression for such an estimator. The most wetldwn of these approaches
are discussed here.

Using the MSE as a measurement of the estimator quality, weraito nd a realizable
estimator with the minimum MSE. The following questions theefore arise \does such an
estimator exist?" and if so, \how can such an estimator be fod?".

In the following the general case of estimating a vector of known parameters is
considered.

2.7.1 Minimum Mean Square Error (MMSE) Estimator

One approach [6] is to minimize the expression for the overaleighted MSE and nd the
estimator that achieves this, i.e the aim is to nd the optimd estimator for all values of
. . lob. . - ..

theta , called the optimal global estimatordy ) (X)gpt 5 With the minimum MSE.
The expression for the weighted MSE is given by [6]:

Z

h i
MSE () x) @ )d (2.41)
Z Z

h i
MSE () (x); @

) g() f @ )dxd; (2.42)

where@ ) is a strictly positive weighting function de ned over , su ch that R @ )d =1:
The weighted MSE is introduced here in order to express the mimization in a form sim-
ilar to that of risk minimization in Bayesian estimation, alowing exploitation of results
previously established in this area [7]. From equation (214 it can be segp that in thjs
case@ ) is equivalent to the prior in Bayesian estimation theory. he MSE dj( )(X); @
can be re-expressed in certain cases as:

h i ZZ 5
MSE 4()(x);:@ = ) g() @)f (x)d dx: (2.43)
Minimization of the MSE is therefore equivalent to minimizéion of the inner integral:
Z Z
@)t (x)d 9( )@ )f (x)d =0; (2.44)

Then setting:

) = §) )% (2.45)
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this gives:

R
8 ) ()9 = gH@ )f (x)d |

opt — T @ )f (x)d ' (2.46)

where @( ) (Xx) is a realisable estimator as it is independent aheta . Unfortunately
however, calculation of this estimator is often impossibland there is no known method
for determining a suitable@( ), that will lead to the minimum MSE for all 2 [4].

As the strategy of minimizing the overall or global MSE doesat necessarily pro-
duce a computable expression for the minimum MSE estimatothe MSE is minimized

instead for a given parameter value, in order to nd a realizable gﬂ( )(x)'(?;t, that is non-

trivial gjj( )(x)'cf’[f’t 6 g( ) : While this approach is simpler than the global approach, as

dj( )(X)Ic?p():t is based on local optimization it is unlikely to produce a rdeable estimator
that is not \ clairvoyant” i.e. that does not depend on the unknown parameter value [6].
Minimization of the local MSE under non-bias constraints igliscussed in detail in chap-
ter 6, when it is used for the calculation of the best possibjgerformance of an estimator
using minimal performance bounds. It can therefore be conded that the procedure
of minimizing the MSE is unlikely to produce a realizable eshator, and an alternative

strategy must be adopted.

2.7.2 Minimum Variance Unbiased (MVU) Estimator

An alternative approach is to search for the unbiased estirt@ with the minimum variance
for all possible values of . This Minimum Variance Unbiased (MVU) estimator does not
always exist, as it is common for di erent estimators to haveninimum variance depending
on the value of :

The minimum possible variance that can be attained by an unbsed estimator is
characterised by the Cramer-Rao Bound (CRB) [8]. Thereforaf an estimator exists
whose variance equals the CRB for each value of this must be the MVU, and taking
variance as a measure of optimality, the CRB can then be used tnd an expression for
the optimal estimator. Any estimator that has variance equk to the CRB is called an
e cient estimator.

In order to derive the CRB, the following regularity conditon is assumed to be met:

@nf (x)

E
Q@

=0 8; (2.47)
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and an e cient estimator exists if (and only if) the following factorization can be made:

%: FO)he) gl ) (2.48)

whereg )" (x) = h(x):

The variance of an e cient estimator is equal to the Cramer Ra Bound (CRB) and
can be expressed as follows (see chapter 6 for a full discussbn the derivation of the
minimal variance of an estimator and estimator performancbounds.)

@mnf (x) *

Cyq v, E 25 (2.49)

When a linear model can be used to describe the data this appiah yields a closed
form expression for the MVU estimator, and its variance is e@l to the CRB. Using the
classical general linear model [4], the observed data can described as:

X=H +n (2.50)

wherex is the (N 1) observation vector andH is the known (N P) transfer function
matrix. In this case, H is a linear function of the @ 1) vector of unknown parameters
=[ 1; 2;:::; p]", andnis the (N 1) noise vector with pdfN (0;C). The pdf of x

1 1 T 1 )
f = — H C H X 2.51
(0= b S HTC I H) (2.51)
and so:
—@”Z@(X)= HTC 'H )0 g() ; (2.52)

resulting in the e cient and MVU estimator, which is the weighted Least Squares (LS)
estimate:

1

éj( )MVU (X): HTC 1H HTC 1X; (253)

with variance:
1 .

CRB ¢{) = H'C H (2.54)

It can therefore be seen that in the case of a linear data modelis always possible to
nd a closed form expression for an e cient and therefore MVUestimator.
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However, in many situations it will not be appropriate to usea linear model to describe
the data, as arises when estimating the Direction of Arriva(DOA) of a source signal.
This situation is now considered, using the data model de rkin equation (2.22) where
in this casen is White Gaussian Noise (WGN) with variance 2: The pdf of the observed
data is given by:

f (x)= %exp iz(x A()S) (x A()S9 ; (2.55)
2 2): 2
leading to:
@nf (x) s( () ' @ ()

— T .
—a "3 —@ x A()s)+(x A()Ss @ (2.56)
where:

2 @ (1) 3
@\@(Dz)
%:g @ % (2.57)
@\(p)
@

In this situation, factorisation as shown in equation (2.4B8in order to nd an expres-
sion for the MVU estimator is not possible. In fact, for nonihear data models e cient
estimators will only be found under asymptotic conditions ifigh SNR [9] and/or large
number of snapshots [8]). This is due to the fact that asymptally the pdf becomes
more concentrated around the true parameter value, causing the estimates to lie in a
smaller interval about . In this case the estimator is said to be consistent. The relan-
ship is approximately linear in this region and observatianrarely occur in the non-linear
region, resulting in asymptotic e ciency. (For a detailed dscussion on the performance
of non-linear estimators, see chapter 6). Therefore unlesperating under asymptotic
conditions it will not be possible to nd an e cient estimato r for DOA estimation.

However, in situations where there is no e cient estimatorit is still possible that an
MVU estimator exists. The MVU estimator, if one exists, can b determined by nding a
minimal su cient statistic to describe the observed data. Astatistic is said to be su cient
if the conditional pdf of the observations after the su ciert statistic has been observed
is independent of the parameter to be estimated [4]. A necesg statistic is one which
can be computed from any su cient statistic, without reference to the original data, and
a minimal su cient statistic is one which is both necessary ad su cient. This means
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that a minimal su cient statistic is just as informative as t he original data, but it can
be computed from any other su cient statistic; no further canpression of the data is
possible, without losing some information. If a su cient satistic is found, then the MVU
estimator must be a function of this statistic.

Using the Neyman-Fisher factorization a su cient statistic can be found directly from
the pdf, which is assumed to be known [4]:

fO)=1(TK&); )h(x); (2.58)

where if is a p dimensional vector, then the statisticT (x) is a p dimensional
function, f is a function depending only oril and , and h is a function depending only
on the observations<. The di culty however, arises in situations where this facbrization
IS not obvious, and in these cases it is possible that a su am statistic, other than the
observed data itself, does not exist.

If a sucient statistic does exist, the Rao-Blackwell-Lehnmann-Sche e (RBLS) the-
orem can be applied in order to determine the correspondingstenator. Firstly, a
p dimensional functionf must be found such that:

E[f(T)]= : (2.59)

Then if f (T) is the only unbiased function of the su cient statistic, the statistic is
said to be complete, and the MVU estimator is given by:

FOHr)=f(T). (2.60)

This approach can be seen to provide a means of nding an expston for the MVU
estimator provided a minimal su cient statistic exists. However, even in situations where
such a statistic does exist, veri cation of its completenascan be very di cult.

It can therefore be seen that there is no guaranteed way to ndn expression for
an optimal estimator for the non-linear data models being ecsidered here, and even if
such an estimator exists it is not guaranteed to be realisahlas it may require knowledge
of unknown parameters. Sub-optimal estimators must instelabe considered in order to
select a suitable estimator for the given estimation probie.

2.8 Conclusion

The use of array processing to estimate one or more real detenistic parameters was
introduced in this chapter, and the steps involved in modetig the received data were
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discussed. The use of the pdf of the data to estimate the dexir parameters was then
considered, and the criteria that can be used for estimatovaluation were developed and
used to de ne an \optimal estimator".

The optimality criterion initially selected was the minima MSE, however it was shown
that minimization of the MSE does not provide an expressiorof an optimal estimator.
The next optimality criterion considered was the varianceand it was seen that for some
estimation problems the CRB can be used to nd a direct expre®n for an e cient
estimator, which is also the MVU estimator. However, for noiinear estimation problems
such as DOA estimation, it is not possible to nd an e cient edimator. The fact that no
e cient estimator exists does not exclude the possibility hat an MVU estimator exists,
and use can be made of su cient statistics in order to deternme the MVU estimator
in such a situation. However, determining the su cient staistic involves factorization
of the pdf, which may not be obvious, and in many cases a minimsau cient statistic
does not exist. Even if a minimal su cient statistic is found, it must be checked for
completeness in order to result in an expression for the MVstmator, and veri cation
of the completeness can be extremely di cult.

It is therefore clear that for the case of non-linear data maads, as in the case of DOA
estimation, an optimal estimator cannot be easily determed, and instead use must be
made of sub-optimal estimators that have desirable charaaistics for the problem under
consideration.



Direction of Arrival (DOA) Estimation

3.1 Acoustic Source Localization

Using a common problem speci cation, this chapter providea uni ed explanation of
classical Direction of Arrival (DOA) estimation techniques. Moreover, the classical signal
processing techniques, which in many cases were develogedarrowband signal process-
ing, are treated in the context of localization of broadbandources. Recent developments
in the application of these classical techniques to acousti array localisation are also
discussed.

3.2 Beamforming

The earliest development of spatial Itering or beamformig dates back to the Second
World War, when the conventional beamformer was developedlhe aim of this beam-
former was to enhance the received signal by \steering" therray in the direction of
the desired source. This beamformer is simply an applicaticof Fourier-based spectral
analysis to spatio-temporally sampled data [2, 10, 11].

The ability of the beamformer to enhance signals from a destt direction can also
be applied to the problem of DOA estimation. The output of theantenna is steered

23
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in each possible direction of interest, and the power of therray output is measured
for each direction. The values of , resulting in the maximum array output power are
then chosen as the DOA estimates. Narrowband beamformerssasie that the incident
signal has a narrow bandwidth, centred at a particular fregency. If the incident signal is
broadband then it can be divided into narrow frequency bandsind a weighted average
of the DOA estimates found for each of these bands is then falifsee section 3.3.1 for
further discussion on these techniques).

Using the data model introduced in the previous chapter theignal received by the
array at time t is given by:

x(®)=A()s(®)+n(t); (3.1)

where n (t) is assumed to Gaussian noise. The steered output of the arrés found
by linearly combining the spatially sampled data receivedtaeach sensor, and can be
expressed as:

y (1) = wx (1); (3.2)

wherew is the complex weighting vector, and acts as a spatial lter gplied to the
signal which results in one particular direction being emmsized. For the case wherHl
snapshots of the signal are available the output power of trearay is given by:

X

P() = o P (3.3)
t=1

= Ni wx (1) x™ (t)w (3.4)
t=1

= wHRw; (3.5)

where R is the estimate of the spatial correlation matrix of the sigal x (t):
X
R=— x(t)x" (t) (3.6)

t=1

The estimate of the DOA, b, is then given by:

b =argmaxfP ( )g (3.7)

The type of beamformer used depends on the choice of weighttee w, and there are
two general categories of beamformers: data independentdastatistically optimum [10].
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As suggested by the name, the weights in a data independentdmeformer are independent
of the observations, and are chosen to produce a speci ed pesse regardless of the data
received. On the other hand, the weights in a statistically gtimum beamformer are
chosen to optimize the array response, based on the stattstiof the array data.

3.2.1 Delay and Sum Beamformer

OB
WO ¢,

Figure 3.1: A Delay and Sum beamformer.
The Delay and Sum Beamformer (DSB) [10] is data independeras it depends on

the array geometry not on the received signal, and it is thersiplest type of beamformer.
Firstly the delay corresponding to a signal arriving from tle direction , is calculated for

each of the microphones in the array, and the signal receivég each of the microphones
is then weighted by the appropriate delay. This results in awstructive re-enforcement of
the signal arriving from the direction , while signals arriving from other directions are
incoherently combined. The power of the array output corrgmnding to a signal arriving

from direction | is given by:
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W
y(t) = Xm (t+ pm (1)) (3.8)
m=1
1 X
P() = § yi (3.9)
t=1
T ?
= o Xm (t+ pm) | (3.10)
t=1 m=1

where ,m () is de ned in chapter 2 - section 2.2. The DOA estimates are #n found by
searching for theP maxima of P ( ).

An advantage of this beamforming approach is that it can be gbied directly to
broadband signals. However, the degree of resolution thaarc be achieved is strictly
limited by the temporal sampling frequency of the data as day di erences less than the
sampling rate cannot be resolved. Therefore in order to aelve higher resolution the
sampling frequency must be increased resulting in an incied need for storage space
and processing power.

3.2.2 Frequency Domain Beamforming

In order to increase the resolution that can be achieved withut a corresponding increase
in the sampling frequency required, beamforming can instéebe performed in the fre-
guency domain. Frequency domain beamforming is inherentharrowband, and therefore
broadband signals are divided into narrowband frequency s centered orf .:

X(fo)= A(fe; )S(fo)+ N (fo): (3.11)

Assuming once again that the array is a ULA, the array respoesfunction A (f¢; )
is a function of the incident angle only, and represents theesponse of the array to
P complex exponentials at frequency., which arrive at the array with angles of =
[ 1. 2.: p]. The frequency domain representation of the steered outpof the array is
found by linear combination of these frequency componentfier applying the appropriate
complex weights:

Y (fo) = WHX (fo): (3.12)

whereW is the weighting vector and is chosen so that the signals frotine direction under
consideration, which is often called the look direction, @radded coherently. Signals from
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all other directions are attenuated. The output Power Specal Density (PSD) is given
by:

vy (fe) = Y)Y (fo) (3.13)
WH (o) Rxx W (fo); (3.14)

whereRyx is de ned in 3.6. The DOA estimates are then found for each fgeency band
b (f.) by selecting theP maxima of the output PSD:

b(t,) =argmaxf vy (fo)g (3.15)

In order to produce a non-trivial solution of equation (3.7)he weight vector is chosen
so that jW j = 1, resulting in the following weight vector for a given diretion at a given
frequency:

n A(fe ) :
P .
AR (fe YA (fe; )

Substitution of equation (3.16) into equation (3.14) produaes the classical spatial spec-
trum:

W (fe; )=

(3.16)

e (fy = AT YR A (i)
A (fe YA (fer )

The conventional beamformer is an extension of the clasdid@aurier based spectral
analysis, and if the array in question is a ULA, then the restihg spatial spectrum in (3.17)
can be viewed as a spatial domain version of the classical &meries domain periodogram.
This similarity between the conventional beamformer and th time-series periodogram also
extends to the resolution threshold experienced in the pedogram, and the maximum
resolution that can be achieved for a ULA oM elements is:

(3.17)

2
= — ds: 3.18
M rads ( )

3.2.3 Beamforming and Acoustical Source Localization

While beamforming provides an optimal estimate of the soueclocation, the need to
calculate the beamformer output for every possible value of makes the method com-
putationally prohibitive, particularly if high resolutio n localization is desired. Another
di culty arises due to the fact that originally the main moti vations in the development
of many beamforming applications were RADAR [12], and congeently such techniques
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may perform poorly when applied to the reverberant situatios encountered in acoustical
source localization.

Several researchers have shown that the degradation of menhance due to such e ects
can be reduced by the use of ang priori information that may be available. In [13] the
nature (e.g. statistical non-stationarity, method of prodiction, pitch, voicing, formant
structure, and source radiator model) of the speech signakimg localized is modelled by
the \Dual Excitation Model", providing a speci ¢ parameterization model which improves
upon the general spatial Itering approach. Information orthe nature of the speech signal
is also used in [14] to distinguish between real sources anduwal sources arising due to
reverberation. A priori knowledge has also been used to reduce the computationaldoa
of beamformer localization. In [15] the fact that the charaeristic wavelengths of speech
are comparable to the dimensions of the space being searcle@xploited, allowing for
the implementation of a coarse-to- ne search criterion in &th the spatial and frequency
domain.

In [16] a beamformer-based source localization techniquetivin a particle Itering
framework is proposed. The use of particle Iters avoids thaeeed for a comprehensive
search of the source location space, and therefore allows #iocomputationally e cient
beamforming scheme.

The similarity between the DSB and a Bayesian formulation warecently demonstrated
in [17]. It was shown that when considered from the point of gw of maximizing the
likelihood the Bayesian formulation and Beamforming haveden shown to be equal except
for an energy term weighting which will not e ect the likelihood of localizing a stationary
signal, making the two methods identical in this case [17].

3.3 Subspace-Based Techniques

Subspace based DOA estimation methods exploit the geomesl properties of the cor-
relation matrix of the received signals. A narrowband sigianodel is assumed as the
signal subspace will di er for the di erent frequency bandsn a broadband signal [18, 19].
Broadband incident signals are therefore transformed intthe frequency domain, and di-
vided into narrowband frequency bins as described in the pri@us section. Operating
in the frequency domain, and assuming spatially white, zemmean Gaussian noise, the
correlation matrix of the observed signal is given by:

R (fc) E X (fo) X" (fo) (3.19)

A(fe YRs(F)A™ (fe; )+ 213 (3.20)
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where:
Rs(fo)= E S(fo)S" (fo) ; (3.21)

and R¢ is assumed to be full rank. Once the matriA (f.; ) has full rank and assum-
ing P <M, the matrix A (f; )Rs(fo)AH (f¢; ) has rankP, whereP is the number of
sources present. Furthermore, every vector in the range seofA (f.; )Rs(fo) AM (fe; )
is an eigenvector ofR, associated with eigenvalue . Consequently, using the eigende-
composition of the matrix, R can be re-expressed as:

w
R = mEmeh (3.22)
m=1

Arranging the eigenvectors in order of the decreasing sizktbeir associated eigenval-
ues, the signal and noise eigenvectors can then be separated

P

P
_ P H M
R = m=1 m€m€n +

m=p+1 mEmER (3.23)
= Ey EH+ 2E,EM; (3.24)

whereE¢ and E,, are matrices containing respectively the signal and noisgenvectors:

Es = [e1;:::;ep] (3.25)
En = [eps1;iiiiem]; (3.26)
and ¢ = diag[ 1;::: p] are the eigenvalues associated with the signal eigenvesto

Any vector orthogonal toA (f¢; ) is an eigenvector oR associated with an eigenvalue
2 [2]. ThereforeE, is orthogonal toA (f.; )Rs(fo) A (fe; ),
and asA (f¢; )Rs(fo) AM (f¢; ) is full rank, it follows that [2]:

RfEsQg RfA (fe; )g (3.27)
RfE,g = RfEsg = RfA (f¢; )g° = N A" (fo; ) (3.28)

whereR f E¢g is the subspace spanned by the range Bf, andN A" (f.; ) is the null-
space ofA" (f.; ). Therefore, if the signal subspace is the subspace spanigdEs, and
the noise subspace is the subspace spannedHyy, then we can see that the signal and
noise subspaces are orthogonal to each other. This relatienthe basis for all subspace
based estimation techniques.
In practice the matrix R (f ) is unknown, and must be estimated from the observations:
X
R(fg=r X (X" (fo); (3:29)

t=1
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where the number of observation§ must be large enough to ensure thaR (f.) is full

rank (i.,e. rank M). As N !'1 | R (fo) ' R (fo), however the fact that R (fo) is

estimated using a nite number of samples can lead to errora detecting the number of
sources present and estimating the associated angles of\atir

3.3.1 Multiple Signal Classi cation (MUSIC) Algorithm

The best known of the subspace techniques is the Multiple 8@ Classi cation (MUSIC)
algorithm [20, 21]. As with other subspace methods, the basof the MUSIC algorithm is
that the noise eigenvectors are orthogonal to the steeringgetor or signal subspace.
From equation (3.28) the estimates of the DOAs are the valueg that minimize the
projection of the steering vectorA (f¢; ), into the noise subspace.
The orthogonal projector onto the noise subspace is estineat as:

b? = g EM; (3.30)

and the MUSIC \spatial spectrum” is then de ned as:

AR (fe VA (fe )
AH(fe; )P7A (fe; )

In order for the DOA estimates to be unique, the array is assuaa to be unambiguous,
i.e. A(fe; 1) 6 A(fe; 2) unless 1 = 5, over the range of possible values of.

MUSIC o ers a very large improvement in performance over trditional delay-and-sum
beamforming techniques as the number of calculations nesasy is reduced.

It has also been shown that assuming asymptotic conditionkigh SNR [9] and/or large
number of snapshots [8]) and uncorrelated signals, the MUSEstimator is e cient, i.e. it
reaches the Cramer Rao Bound (CRB), as long &8 is larger thanP [22, 23]. Therefore,
unlike beamforming techniques, the MUSIC algorithm provids statistically consistent
estimates, i.e. the estimates converge to the true value dset number of snapshots goes
to in nity [2] [24].

However, like other spectral-based methods, MUSIC can shdarge bias in the case
of a nite number of snapshots and low SNR, leading to an inaliy to resolve closely
spaced sources. This is a serious di culty when tracking a nming source, as the number
of snapshots will be small in order to continuously update # source position. These
resolution problems are even more serious when the receiggéghals are highly correlated,
with the algorithm failing to yield consistent estimates inthe presence of coherent sources
[22,23]. Two sources are said to be coherent (or fully come&dd) sources, if the signals
emitted by the sources are identical, except possibly for auttiplicative constant factor
[25].

Puwusic ()= (3.31)
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In reverberant environments, highly correlated and even berent signals may arise due
to several replicas of the signal arriving by di erent paths In the situation of coherent
signals, the signal covariance matrixRs, will be rank de cient. This rank de ciency
causes the divergence of a signal eigenvector into the nassdbspace, with the result that
(3.28) no longer holds [2].

In the case of Uniform Linear Arrays (ULAS), a spatial smootimg method may be
applied in order to deal with the problem of coherent (or higly correlated) signals. This
method, introduced by [26] and later extended in [27{29], osists of splitting the original
array into overlapping sub-arrays. Assuming that the ste@mng vector of each sub-array
is identical (up to a scaling), the sub-array covariance mates can now be averaged.
This spatial smoothing results in a random phase modulatiorwhich in turn leads to
decorrelation of the signals that were the cause of the ranlediency.

While this spatial smoothing has been shown to allow for lotaation of coherent
sources using subspace methods [29], these techniquesoperiparticularly poorly when
dealing with closely spaced sources [28]. Also, the fact tithe use of spatial smoothing is
limited to a very restricted class of array geometries [2, 28imits its practical application.

There are two approaches to combining the results found froie individual nar-
rowband frequency bins: Incoherent Wideband Processingd]3and Coherent Wideband
Processing [31], with both approaches o ering higher acary than the original MUSIC
algorithm when dealing with broadband sources.

In the incoherent case, the frequency range of the signal isided into non-overlapping
frequency bins. The narrowband MUSIC algorithm is then appd to each bin, and an
incoherent average is taken over all the bins. This approadh very straightforward, and
provided that all frequency bins have su ciently high SNR, performs very well, partic-
ularly for sources with highly peaked spectra, where it ougrforms the coherent meth-
ods [30, 32]. However, the selection of the frequency binsle included is an important
consideration, as outliers due to bins with low SNR reduce ¢éhsource peaks and can also
lead to spurious peaks, resulting in incorrect estimates.

In [33], Asano et al. proposed an eigenvalue weighting of thieequency bins. This
method weights each frequency bin by the sum of th largest eigenvalues of the covari-
ance matrix, which correspond to the energy of the signal irhé signal subspace. The
average of the weighted MUSIC spectrum across all the frequey bins is then used to
nd the DOA estimate [33, 34].

While the implementation of coherent broadband processing more complex than
incoherent methods, the resulting accuracy is higher whehé sources have relatively at
spectra [30,32]. The aim of coherent processing is to traatd the signal spaces for all
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frequency bands into a common signal subspace.

One coherent approach, introduced in [18], is the use of feioig matrices. In this ap-
proach an initial DOA estimate is found by applying narrowbad techniques at a selected
frequency. This initial estimation step will be unable to reolve closely spaced sources,
leading to the focusing step, where the information from athe frequency bands is used
to focus in on the initial estimate. The frequency averagin@f the covariance matrices
increases the e ective number of snapshots, and consequgrhe original narrowband es-
timate can be correctly resolved [18,19]. The focusing matrused can greatly in uence
the statistical characteristics of the DOA estimates [31]and di erent variations of the
original coherent focusing matrix method have been propas¢l9, 31, 35].

3.3.2 Root-MUSIC

The Root-MUSIC algorithm is a variation of the original MUSIC algorithm and can be
applied in situations where a Uniform Linear Array (ULA) is wsed.

While the classical MUSIC algorithm searches for the pointat which the steering
vector is orthogonal to the noise subspace, in Root-MUSIC afynomial is instead formed
using the noise eigenvectors [36]. The DOA estimates are théetermined from the roots
of this polynomial.

The M-P polynomials corresponding to the noise eigenvectocan be de ned as [37]:

X
Dy (2) = ez ™ V:k=[P+1;:::;M;]: (3.32)
m=1
whereey are the elements ot,.
The roots of each of these polynomialg, = e 1@ —C9% %) gre the signal zeros. As

z, = jz,j € 3'9®) it can be seen that:

arg(z,) =(2) —cos(,); p= cos 1 ﬁarg (zp) : (3.33)

De ne the polynomial:

X 1
Q@)= D@Dy - : (3.34)
k=P+1
The roots of Q (z) are the same as those dDy (z). The null spectrum is obtained
by evaluating Dy (z) on the unit circle and so there are M double roots lying on the
unit circle. These roots correspond to the actual incidentignals, and other roots can be
ignored.
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Under asymptotic conditions this algorithm performs compably to the original MU-
SIC algorithm. However, with Root-MUSIC higher resolutionis also possible in situations
of low SNR or where a limited number of snapshots is availabl®ne of the main advan-
tages of this approach is that it eliminates the need for a nuemical search in order to nd
the maxima of the MUSIC spectrum.

3.3.3 Estimation of Signal Parameters via Rotational Invar lance
Technique (ESPRIT)

The Estimation of Signal Parameters via Rotational Invariace Technique (ESPRIT)
algorithm is a subspace based technique that can be applietien the array con guration
meets speci ¢ requirements, namely that it can be decompaseto two sub-arrays, such
that each microphone in the rst sub-array has a correspondg microphone in the second
sub-array [38]. These microphone pairs are identical in eyeway, but are separated from
each other physically by a known displacement vector , of magnitude4 .

The received signal vectors for the sub-arrays can be exmed as:

As (t) + nq(t) (3.35)
A s(t)+ ny(t): (3.36)

X1 (1)
X2 (t)

where is the rotation operator relating the measurements bthe sub-arrays, and is

o co
a diagonal matrix with elements ,, = e ' 2 : . for p=1;:::P and as before , is

the angle associated with theoth source.
The response matrix of the overall arrayA can be expressed as [2]:
n #
A

A= (3.37)

and this can be exploited to obtain the estimates of the diagal elements of . This
allows us to nd the DOA estimates without knowing A itself. We can now de ne a
unique, non-singular matrixT , such that:

whereEg is de ned in (3.25).
The invariance structure of the array allows for decomposiin of Eg into Ex; 2 CM P,
andEyx,2 CM P:
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E AT
Es= ' = : (3.39)
Ex> AT
De ning the unique matrix F 2 C? P with rank P, such that F spans the null-space

of the matrix given by [Ex 1jEx ], we can say that [38]:

0 = [ExiJEx:]F
= Ex1F1+ Ex2F2 (340)
= ATF 1+ A TF,: (3.41)
We now introduce the matrix F1F,*, which combined with (3.40) gives:
AT =A T) ATT '=A; (3.42)

and then, as long asA is full rank, we can say:

TT 1= (3.43)

The eigenvalues of , [ 1;::: p] are equal to the diagonal elements of ,i.e. , =" .
The signal parameters can then be obtained as nonlinear fuimns of these eigenvalues,
and an estimate of the DOA is therefore given by:

b =cos?! —° arg " ; 3.44
In practical situations, the e ects of additive noise and nte samples, means that it
will not be possible to nd a matrix that exactly meets the criteriaEx; = Exo.

Instead an approximation is found, using either Least-Sques (LS-ESPRIT) or Total
Least-Squares (TLS-ESPRIT) methods [2].

One of the main advantages of the ESPRIT algorithm is that it damatically reduces
the computational and storage costs when compared to the MU algorithm, as the
steering vector,A, need not be known and the search for the maxima of the speatnu
is eliminated. ESPRIT is also more robust to array imperfeadns than MUSIC, and
produces unbiased estimates, even in situations where thetimates from MUSIC show
some bias [38]. However, the variance of the ESPRIT estimatean be much larger than
the MUSIC variance due to the fact that less information abauthe array geometry is
used.
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3.3.4 Time Reversal

In recent years, the use of acoustic time reversal mirrors drthe DORT method (French
acronym for decomposition of the time reversal operator) ka been shown to be highly
accurate methods of focusing a sound eld on either a singler else multiple targets
(or scatterers) [39,40]. The use of such techniques has bedmonstrated in a wide
variety of applications, for example, underwater acoustic[41], focusing a sound eld in
a reverberant room [42] and lithotripsy [43].

Iteration of the time reversal process has been shown to réisin convergence on the
most re ective of the targets (or the source with the highesamplitude) [44]. However,
in situations where it is desirable to focus on less re ectvtargets, or on numerous tar-
gets simultaneously, the DORT technique, which is closel\elated to passive localization
techniques such as MUSIC, can be used [45{47]. The DORT meth based on eigende-
composition of the time reversal operator (TRO), and the r$ step in deriving the TRO
is to nd the inter-element response matrixK (t). This matrix is measured by emitting a
short pulse from each array element in turn and measuring thesulting response across
the array. Then for transmit signal vectore (t), the output signal vector isr (t):

F)= K@) en(t) (3.45)

wher