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Summary

This thesis is concerned with the detection and characterization of acoustical sources

using array signal processing techniques. In particular this work is concerned with deter-

mining the number of sources present, and estimation of the Direction of Arrival (DOA)

of the signals received by the array.

Firstly the problem of DOA estimation using array processing techniques is intro-

duced and the possible applications of DOA estimation are discussed. The model of the

wavefront propagating from the source to the array is recalled.

Chapter 2 provides the mathematical basis for the rest of the thesis. The mathematical

estimation problem is introduced and the difficulties in finding an optimal estimator for

DOA estimation are discussed.

A unified explanation and review of classical array processing DOA estimation tech-

niques is then given. In particular the application of such techniques to the problem of

estimating the location of wideband sources is discussed. Recent developments in acous-

tical source localisation are then reviewed.

The initial step in any estimation scheme is to determine the number of sources present.

This process is called model order determination and classical model order determination

methods are unsuited to situations where the number of snapshots available is small,

however such situations frequently arise, particularly when dealing with non-stationary

sources. Based on the profile of the noise eigenvalues of the observed data correlation

matrix as introduced by Grouffaud et. al [1], a novel method of determining the number

of acoustical sources present is presented. The performance of the proposed method is

compared to classical model order determination techniques using both computer simula-

tions and experimental recordings. In particular the effect of reverberation is considered.

The proposed method is shown to outperform the classical methods while maintaining

low computational complexity.

As it is not possible to find an optimal estimator for the DOA estimation problem,

a sub-optimal estimator must instead be used. The choice of estimator depends on the

characteristics of both the source and environment of the given estimation problem. Three

of the most well known approaches to the DOA estimation problem are subspace-based

estimation, in this case we consider the Multiple Signal Classification(MUSIC) algorithm,

Maximum Likelihood (ML) estimation and Time-Delay Estimation (TDE) using the cross-

correlation method.

The performance of these three approaches are then compared using both computer
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simulations and experimental recordings. Analysis of the Mean Square Error (MSE)

of each of the estimators for decreasing SNR shows that all three estimators display a

threshold SNR below which the MSE increases rapidly. This threshold determines the

operational range of the estimators for the given estimation problem and is explained

by examination of the behaviour of the estimators as the SNR is decreased. The effect

of reverberation is considered by evaluating the performance of the methods for varying

Useful-to-Detrimental U25 values. Comparison of the results found from each estimator

allows some conclusions to be drawn on the suitability of these estimation approaches for

different localisation problems.

For any given localisation problem it is therefore of great practical importance to know

the best possible performance that can achieved. Such knowledge allows for a decision

to be made on whether or not starting from a given algorithm an improvement can be

made, or whether or not the system performance requirements can ever be met. It is of

particular importance to establish the threshold SNR value, as this value determines the

operational range.

In this thesis the best performance that can be achieved by an estimator is evaluated

using lower bounds on the Mean Square Error (MSE), allowing for prediction of the op-

erating range of an estimator in a given situation. The best known of these bounds is

the Cramér-Rao Bound (CRB). Its popularity can be attributed to both its simplicity of

calculation and the fact that asymptotically (high SNR and/or large number of samples)

it is reached by the ML estimator. However, the CRB only provides an accurate indica-

tion of achievable performance in the asymptotic (or small-error) region, as it does not

predict the threshold effect. The resulting performance characterization may therefore be

misleadingly optimistic.

For this reason the application of the Barankin Bound (BB), which is the greatest

lower bound on the MSE of an unbiased estimator, is instead considered. Unfortunately

however, it is generally not computable, and must therefore be approximated. In this

thesis a practical means of classification of BB approximations is proposed. This classifi-

cation scheme includes all previously existing approximation bounds, and highlights their

underlying assumptions.

Finally this formalism leads to the derivation of a new practical bound that is tighter

than existing bounds, particularly in the threshold region, while maintaining a comparable

computational complexity to that of the CRB.



Acknowledgments

Firstly, I would like to thank my supervisor, Prof. Frank Boland for placing his trust

in me to begin work in his new research group, and for his help throughout the course of

my PhD. It is thanks to your powers of persuasion that I decided to do a PhD, and for

this I am very grateful.

I would also like to express my gratitude to the examiners for the time and effort they

put into exmaining this thesis.

I am also very grateful to the Irish Research Council for Science Engineering and

Technology (IRCSET) for their generous funding of this work. In particular I would like

to thank Dawn Carroll and Vicky Garnett of IRCSET, for their rapid help on any matters

that arose throughout the course of my PhD.

I want to say a big thank you to the other post-graduate students and members of staff

in the Electronics department in Trinity College for their help and friendship throughout

the past few years. In particular I would like to thank Gavin, Deepti, Dennis and Damian

for all their help and Francis for answering all those very important questions at the end.

I also especially want to thank Claire for always helping me to see a funny side during

the darker days!

It is hard to know where to begin to express my gratitude to the people in the ENS

de Cachan, France. From the moment I arrived at the ENS you did all you could to make

me feel at home. Benoit, Christoph, Stephanie, Francois, Mark, Leila, Ana, Eric Vourch,

Ann, Dominique and the many many others. I can never express all that your friendship,

teaching, humour and patience means to me.

Alex, I especially want to thank you for your incredible generosity and willingness to

share your knowledge, your supervisor, and your very unique sense of humour - Thank

you!

Also a very special word to Eric Chaumette. I just can’t possibly thank you enough

for having the patience and energy to introduce me to the wonderful world of minimal

performance bounds, and for always being so generous with your time and support. Thank

you so very much.

Finally, Jean-Pierre and Pascal, it is you who made it possible for me to be at the

ENS, and you who made sure that the work got done (mais toujours comme je voulais!).

You have taught me so much about research, signal processing and of course French wine.

In your office you achieve a truly remarkable combination of team spirit, hard work and

fun, and I know how privileged I am to have been part of this.



v

I would like to thank F. Asano and his team at AIST, Tsukuba, Japan, who made

me so welcome during my time in Tsukuba. Thank you so much for your hospitality and

generosity.

I also want to say a big thanks to Zsolt, for the continuous advice and support, and

most of all for refusing to let me make excuses!

Finally I thank the people who have always been there for me, and without whom

none of this would be possible - my family. Your love, help, encouragement and humour

are a constant source of strength, Thank you.



Contents

Contents vi

List of Figures ix

List of Tables xii

List of Acronyms xiii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Array Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Journal Papers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Conference Papers: . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Estimation Using Array Processing Techniques 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Modelling the Received Data . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Complex Signal Representation . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Parametric Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Probability Density Function (pdf) of the Observed Data . . . . . . . . . . 14

2.6 Estimator Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Finding the Optimal Estimator . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7.1 Minimum Mean Square Error (MMSE) Estimator . . . . . . . . . . 17

2.7.2 Minimum Variance Unbiased (MVU) Estimator . . . . . . . . . . . 18

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Direction of Arrival (DOA) Estimation 23

vi



CONTENTS vii

3.1 Acoustic Source Localization . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Delay and Sum Beamformer . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Frequency Domain Beamforming . . . . . . . . . . . . . . . . . . . 26

3.2.3 Beamforming and Acoustical Source Localization . . . . . . . . . . 27

3.3 Subspace-Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Multiple Signal Classification (MUSIC) Algorithm . . . . . . . . . . 30

3.3.2 Root-MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Estimation of Signal Parameters via Rotational Invariance Tech-

nique (ESPRIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.4 Time Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Maximum Likelihood (ML) Estimation . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Expectation Maximization (EM) Algorithm . . . . . . . . . . . . . 39

3.5 Subspace Fitting Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Time Delay Estimation (TDE) . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Model Order Determination 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Principle of statistical tests based on eigenvalue profile . . . . . . . 50

4.2.2 Qualification of order estimation performance . . . . . . . . . . . . 50

4.3 Eigenvalue Profile Of The Correlation Matrix Under The Noise-Only As-

sumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 A Recursive Exponential Fitting Test (EFT) . . . . . . . . . . . . . . . . . 54

4.4.1 Test principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Computation of Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1 Using the empirical distribution of the noise-only eigenvalue profile 56

4.5.2 Selecting a threshold to ensure a pre-determined false alarm prob-

ability is observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Comparison with Classical Tests . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.1 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.2 Room Response Simulations . . . . . . . . . . . . . . . . . . . . . . 62

4.6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Comparison of Direction of Arrival Estimators 70

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



CONTENTS viii

5.1.1 Maximum Likelihood (ML) Estimator . . . . . . . . . . . . . . . . 71

5.1.2 Multiple Signal Classification (MUSIC) . . . . . . . . . . . . . . . . 72

5.1.3 Time Delay Estimation (TDE) . . . . . . . . . . . . . . . . . . . . 72

5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Single Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Multiple Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.3 Room Response Simulations . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Single Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.3 Multiple Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Lower Bounds on the Mean Square Error (MSE) of an Estimator 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Mean Square Error of an Estimator: an algebraic quantity . . . . . . . . . 92

6.3 Lower Bounds on the Mean Square Error (MSE) of an Estimator . . . . . 94

6.3.1 Derivation of the Barankin Bound . . . . . . . . . . . . . . . . . . . 96

6.4 Toward a Piecewise Approximation of the Barankin Bound . . . . . . . . . 98

6.4.1 An Alternative Look at Existing BB Approximations . . . . . . . . 100

6.4.2 A New Practical BB Approximation . . . . . . . . . . . . . . . . . 101

6.4.3 General lower bounds expressions . . . . . . . . . . . . . . . . . . . 102

6.5 DOA Estimation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5.1 General observation model . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusions 107

7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A Appendix 111

Bibliography 113



List of Figures

2.1 Source in the far field emitting a signal received by the array of microphones. 9

2.2 The wavefronts arriving at a Uniform Linear Array (ULA) with inter-

microphone spacing ∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 A Delay and Sum beamformer. . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Profile of the ordered eigenvalues under the noise-only assumption for 50

independent trials, with M=5 and various values of N. . . . . . . . . . . . 53

4.2 Profile of ordered noise eigenvalues in the presence of 2 sources, and 10

microphones. The ordered profile of the observed eigenvalue is seen to break

from the noise eigenvalue distribution, when there are sources present. . . 54

4.3 Profile of ordered noise eigenvalues for several realizations. The circles

through the centre show the mean value for each eigenvalue. The distance

between the upper and lower triangles is the spread of the eigenvalue and

the chosen threshold is equal to half this distance. . . . . . . . . . . . . . 57

4.4 Threshold computation for each step in the case where M = 5 and N = 10. 60

4.5 Results for the EFT, the MDL and the AIC. In this case the correct model

order is 2, the number of snapshots N = 6, and the number of microphones

M = 5. The EFT thresholds have been determined to result in Pfa = 1% . 61

4.6 Results for the EFT, the MDL and the AIC. In this case the correct model

order is 2, the number of samples N = 6, and the number of microphones

M = 5. The thresholds for the EFT have been determined to result in

Pfa = 10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Results for the EFT, the MDL and the AIC for simulated case of 2 speech

sources received in presence of complex Gaussian White Noise and no re-

verberation, for the case where N = 10 and M = 5. The thresholds for the

EFT have been determined to result in Pfa = 10% . . . . . . . . . . . . . . 63

4.8 Microphone and sound source positions. . . . . . . . . . . . . . . . . . . . 64

ix



LIST OF FIGURES x

4.9 Male source signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.10 Female source signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.11 Impulse responses from the sources to the centre microphone in the array.

These responses are found using EASETM acoustic simulation software.

The impulse responses are simulated for a given setup based on the acous-

tical properties of the venue and the geometrical configuration of the source

and microphone array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.12 Probability of false alarm for the EFT, the MDL and the AIC using room

simulator EASE, as the Useful-to-Detrimental Ratio, U25, is increased. . . . 66

5.1 Performance of MUSIC, MLE and TDE techniques, for a speech signal

arriving at an array of M = 5 microphones and window length N = 50

samples. Results are taken over 100 Monte Carlo trials for increasing SNR. 75

5.2 The normalised ML spatial spectrum for decreasing SNR (equation (5.1)).

The true DOA value is indicated by the arrow. . . . . . . . . . . . . . . . 76

5.3 The normalised MUSIC spatial spectrum for decreasing SNR (equation

(5.8)). The true DOA value is indicated by the arrow. . . . . . . . . . . . 77

5.4 The normalised TDE cross-correlation for decreasing SNR (equation (5.9)).

The true DOA value is indicated by the arrow. . . . . . . . . . . . . . . . 78

5.5 Performance of MUSIC, MLE and TDE techniques, when 2 speech signals

arrive at an array of M = 5 microphones, and window length N = 50

samples. The results are averaged over 100 Monte Carlo trials for increasing

SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Results of MUSIC, MLE and TDE techniques, for estimating the DOA

of 2 white noise sources arriving at an array of M = 5 microphones, and

window length N = 100 samples. The sources move toward each other in

steps of 10o, and the results are averaged over 100 Monte Carlo trials at

each position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Performance of MUSIC, MLE and TDE techniques, for the case of a single

speech signal arriving at an array of M = 5 microphones, with window

length N = 50 samples. The DOA is equal to 70o and the results are

shown for increasing U25, with averages taken over 100 Monte Carlo trials. 82

5.8 Performance of MUSIC, MLE and TDE techniques, for two speech signals

arriving at an array of M = 5 microphones, with window length N = 100

samples. The DOAs are equal to 70o and 110o, and the results shown here

are the average estimates taken over 100 Monte Carlo trials for increasing

U25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



LIST OF FIGURES xi

6.1 Three regions of operation observed for a non-linear estimator. . . . . . . . 91

6.2 Comparison of MSE lower bounds versus SNR when estimating the DOA

of a known signal. In this case a single snapshot is available, N = 1, and

the number of sensors M = 8. . . . . . . . . . . . . . . . . . . . . . . . . . 105



List of Tables

4.1 Results found by EFT, AIC and MDL tests using experimental recordings

of two different male speakers. . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Results found by EFT, AIC and MDL tests using experimental recordings

of two different female speakers. . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Results found by EFT, AIC and MDL tests using experimental recordings

of one male and one female speakers. . . . . . . . . . . . . . . . . . . . . . 68

5.1 Results found by MUSIC, ML and TDE for experimental recordings of a

white noise source with DOA = 120o. The results are averaged over 100

Monte Carlo trials using a window length of N = 100 samples. . . . . . . . 85

5.2 Results found by MUSIC, ML and TDE for experimental recordings of 2

white noise sources with DOAs of 90o and 120o. The results are averaged

over 100 Monte Carlo trials using a window length of N = 100 samples. . 86

5.3 Results found by MUSIC, ML and TDE for experimental recordings of 2

male speakers with DOAs of 70o and 110o. The results are averaged over

100 Monte Carlo trials using a window length of N = 100 samples. . . . . . 87

xii



List of Acronyms

DOA Direction Of Arrival

pdf Probability Density Function

MSE Mean Square Error

ML Maximum Likelihood

MUSIC MUltiple SIgnal Classification

TDE Time Delay Estimation

SNR Signal to Noise Ratio

MSE Mean Square Error

CRB Cramér Rao Bound

MSB McAulay Seidman Bound

BB Barankin Bound

HCRB Hammersley Chapman Robbins Bound

xiii



1
Introduction

1.1 Introduction

Array processing has been an active area of research for many years now, and originally

array processing techniques were developed for military applications. However, the dra-

matic increases in computing power which have taken place over the last number of years

have led to the widespread use of Digital Signal Processing (DSP) devices in consumer

electronics, for both business and entertainment purposes. The phenomenal growth of

this industry has provided many new and challenging problems for signal processing re-

searchers, as there is a constant demand for increased speed, accuracy and robustness,

while reducing price and size.

In particular the area of acoustical array processing has become an active research

topic. This interest can be attributed to the host of potential applications, for example:

sonar applications; medical applications such as lithotripsy; non-destructive testing and

human-computer interfacing; as well as a wide range of entertainment applications e.g.

tracking of acoustical sources during theatrical performances and acoustical ambiance

re-creation.

At its most basic, signal processing is concerned with transmission of a signal that

contains some desired information, and manipulation of this signal in order to extract this

1
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information. In array signal processing the signal or signals are emitted and/or received

by an array. By array, we mean a set of receivers, that are spatially distributed. This

separation of the receivers means that as well as the signal being temporally sampled, i.e.

a value is received at each time instant, it is also spatially sampled as a value is received

at each of the array elements. The advantage of using an array of receivers is this ability

to exploit both the spatial and temporal characteristics of the signal.

Acoustical array processing is concerned with detection and manipulation of signals

emitted by acoustical sources and has numerous applications in sonar, medicine, audio,

active noise control etc. When dealing with acoustic sources the signals are received by

an array of microphones.

1.2 Array Processing

For array signal processing purposes signals can be divided into two groups: those that

have a fixed behaviour, called deterministic signals, and those that change randomly,

called stochastic or random signals. Deterministic signals can be completely specified as

a function of time and therefore the signal can be predicted from a number of previous

time samples.

On the other hand stochastic or random signals cannot be easily characterised by a

mathematical expression, and instead use must be made of prior knowledge and proba-

bilities in order to analyse the signal behaviour, for example the use of a prior probability

of a parameter to estimated the current value.

The signals of interest can be further classified as narrow- or wideband. A narrowband

signal is one whose amplitude and phase vary slowly relative to the time taken for it to

propagate across the array. A broadband signal is then a signal that is not narrowband, or

a signal which has a relatively large frequency bandwidth compared to its centre frequency.

The source emitting the signal can be classified as near-field or far-field. Near-field

sources are located close enough to the array for the wavefront arriving at the array to be

spherical. On the other hand, the wavefronts arriving from a far-field source have been

propagating for long enough for the wavefronts to be planar, i.e in straight horizontal

lines as they arrive at the array.

As the signal travels through the propagating medium it will be perturbed by additive

noise and interfering signals. The presence of these signals change the properties of the

received signal and make it difficult to extract the desired information.

Additive noise is generated by sources in the same environment of the signal, and

is usually independent of the signals themselves. In signal processing, an assumption of
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white noise, that is noise with equal quantities of all frequencies, is often made. One reason

for making such an assumption is that it greatly simplifies the mathematics involved in

subsequent signal models. Fortunately, it is also a good approximation of the true noise

present in many cases.

In some situations, however, the noise present may not contain all frequencies, and

this noise is instead called coloured noise. In these situations, if the spectrum of the

coloured noise is known, a whitening filter is usually applied to whiten the noise. Once

this has been done, the characteristics of white noise can once again be exploited for any

mathematical modelling. However, this requires access to the noise signal separate from

the information signal and this is often not possible in practical situations.

Interference, on the other hand, will usually have similar characteristics to the desired

source signal, and may be generated by a similar source, e.g. people speaking in the

background when trying to extract a specific speech signal. Another type of interference

is due to reverberation or multi-path, when the desired signal is reflected off surfaces within

the propagation environment causing multiple delayed arrivals of the desired signal. The

degradation of the desired signal by interference and reverberation is usually very difficult

to deal with, as it becomes confused with the desired signal and therefore cannot be easily

identified or removed.

Once the signal has been received by the array, the objectives of any subsequent pro-

cessing steps can be categorised as either signal enhancement or field characterisation.

Signal enhancement occurs when the spatial characteristics of the array are used to im-

prove the SNR of the signal received. This can be done by steering the array so that it

receives signals from a certain direction only, thereby ignoring signals arriving from other

directions. This technique is called beamforming and in its simplest form is performed by

delaying the signals received at each of the array elements, and then adding these delayed

signals.

The delay applied corresponds to the time delay experienced by a signal originating

from the desired location, as it propagates across the array. Signals originating from other

locations will therefore be filtered out. This spatial filtering is very useful in situations

where the interfering and noise signals overlap the desired signal spatially or temporally,

making other types of filtering difficult.

Field characterisation is concerned with estimation of the spatial properties of the

source or sources. Before the location of the sources can be found the first step must

be to identify the number of sources present. This process can be called model order

determination.

The next step then is localisation of the sources present. For near-field sources emitting
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stationary signals the localisation step involves estimation of the range, asimuth and

elevation of the source. The number of parameters to be estimated is reduced for far-

field sources, as only the asimuth and elevation can be estimated. These parameters

are commonly further reduced by assuming the source and array are in the same plane,

i.e. at the same height, which reduces the localisation problem to that of estimating the

asimuth Direction of Arrival (DOA) of the signal only. In this thesis we are concerned

with the estimation of the DOA of signals arriving from a far-field source. Extension to

the situation where the source and array are not on the same plane, and the elevation

must also be estimated is straight-forward.

Estimation of the DOA of an arriving signal has been an active area of research for

many years now, and a vast number of algorithms and approaches exist. While many

of these methods were developed originally for narrowband signals, they may also be

applied to situations of broadband sources such as those encountered in acoustical array

processing. In order to apply narrowband localisation techniques the signals are first

broken down into narrowband bins, and localisation is then performed individually on

each bin. These individual results are then combined to give an overall DOA estimate.

Despite the many localisation techniques that have been developed, the problem of

DOA estimation continues to be a challenging problem. One of the difficulties lies in the

fact that there is no guaranteed way of finding the best or optimal method of estimation

for all situations. Instead sub-optimal methods must be used, and the most suitable

approach is selected by taking into account characteristics of the source and environment.

In order to determine the suitability of a proposed estimation method (i.e. the esti-

mator) its performance can be compared to the best possible performance. This allows

a decision to be reached on whether or not the estimator performance is satisfactory, or

if it can be improved upon. It can also be determined whether or not it will ever be

possible to achieve the required performance. One method of evaluating the best possible

performance is by the use of lower bounds on the Mean Square Error (MSE) bounds,

which provide a bound on the minimal MSE that can be achieved.

1.3 Thesis Organisation

In this thesis, the problems of detection and estimation of the DOA of far-field acoustical

sources using an array of microphones are considered. In chapter 2 array signal processing

techniques are introduced and a model for the data received by the array is proposed.

Estimation of the unknown parameters of the received signals is then reviewed, and the

individual steps in this process are explored, including specification of the Probability



1.3. Thesis Organisation 5

Density Function (pdf) and commonly applied assumptions. The selection of a suitable

estimator and the criteria used to evaluate estimator performance are then considered.

These criteria can then be applied in order to find the optimal estimator for a given esti-

mation problem. However, it is shown that it is not always possible to find an expression

for the optimal estimator, and that DOA estimation is an example of such a situation. We

can therefore conclude that for this problem it is instead necessary to select a sub-optimal

estimator that has desirable properties for the given situation. The commonly applied

sub-optimal DOA estimators are then considered in chapter 3 and the main contributions

to the area of DOA estimation are reviewed.

In chapter 4 the initial step in characterisation of the sources, that of model order

determination is discussed. Acoustical model order determination presents a challenging

problem due to both the wideband nature of the source and the fact that the amount

of data available for a given source location may be limited. Classical methods operate

well for determining the number of narrowband sources when large amounts of data are

available. However, they are unreliable for the difficult situation considered here.

To this end, a method for determining the number of acoustical sources is proposed

here. This method is based on the profile of the noise eigenvalues of the observed data

correlation matrix as introduced by Grouffaud et al. [1]. This method is suited to the

difficult operating scenarios encountered in acoustical source localisation. In particular

this method is shown to out-perform classical detection methods for the situations where

a small amount of data is available for a given source location.

This then leads to a study of three of the most well-known sub-optimal estimators,

in chapter 5. The performance of these estimators is compared using both simulations

and experimental recordings for a variety of source numbers and locations. The effects of

interference and additive noise on the estimators is considered, allowing us to draw some

conclusions on estimator behaviour, and the suitability of the estimators for different

localisation problems.

In chapter 6 the best possible performance that can be achieved by an estimator for

a given localisation problem is evaluated. This is done using lower bounds on the Mean

Square Error (MSE), which provide a bound on the minimum MSE that can possibly be

achieved.

Firstly, a new formalism that encompasses all previously derived lower MSE bounds is

proposed. This formalism provides a meaningful way of classifying these bounds based on

their underlying assumptions. Secondly, with the help of this formalism, a new practical

bound is derived, which, while maintaining low computational complexity is closer to the

true performance than existing bounds.
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Conclusions are drawn in chapter 7 by commenting on the results from the previous

chapters and finally, some proposals for future work are presented.

1.4 Contributions

The work done in the course of this thesis has led to the following papers:

1.4.1 Journal Papers:

1. A. Quinlan, J. P. Barbot, and P. Larzabal, “Automatic determination of the number

of targets present when using the time reversal operator (TRO),” Journal Acoustical

Society of America (JASA), vol.119, n.4, pp. 2220-2225, 2006.

2. A. Quinlan, J. P. Barbot, P. Larzabal, and M. Haardt, “Model order selection for

short data: An exponential fitting test (EFT),” EURASIP JASP (European Journal

Applied Signal Processing), Accepted for publication.

1.4.2 Conference Papers:

1. A.Quinlan and F. Boland, “Using the singer’s formant to reduce inaccuracies in

the location of a singer on stage,” in Proc. Irish Signals and Systems Conference

(ISSC), Belfast, Ireland, 2004.

2. A. Quinlan and F. Boland, “The effect of vibrato on singer localisation,” in Proc.

GSPx Conference, Santa Clara, CA, 2004.

3. A. Quinlan, E. Chaumette, and P. Larzabal, “A direct method to generate approxi-

mations of the Barankin bound,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal

Processing (ICASSP), Toulouse, France, 2006.

4. A. Quinlan, F. Boland, J. Barbot, and P. Larzabal, “Determination of the Number

of Wideband Acoustical Sources in a Reverberant Environment” In Proc. 14th

European Signal Processing Conference (EUSIPCO), Florence, Italy, 2006.



2
Estimation Using Array Processing

Techniques

2.1 Introduction

The use of array signal processing techniques for source localization has been an active

area of research for many years, however it remains a challenging problem. The work

presented in this thesis is concerned with localization of an acoustic source using an array

of microphones. In this chapter the mathematical background of estimation is recalled.

The terms defined here are then used throughout the thesis.

There are two possible approaches to the analysis of the data received by the micro-

phone array: parametric and non-parametric. Parametric techniques assign a mathemat-

ical model with a fixed number of parameters to the observed data, and the parameters

of the model are selected so that the observations fit this model. These techniques use

information that is known or assumed to be known about the observed data in order

to determine a suitable model. The accuracy of the method is therefore reliant on the

accuracy of the underlying model. In non-parametric techniques, on the other hand, no

model is imposed on the data.

The work presented here focuses on parametric methods, in which the required infor-

7
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mation is expressed as a parameter of the received signal [2]. This parameter is then be

estimated from the observations.

2.2 Modelling the Received Data

Firstly we consider the source, which can be classified as near-field or far-field depending

on its distance from the array. If the source is in the near-field then the wavefronts reaching

the array are spherical. For this type of source there is a vector of spatial parameters to

be estimated containing both bearing and range information.

As the source is moved farther from the array the wavefronts become planar and

parallel, as shown in figure 2.1. A source is considered to be in the far-field if:

R >
2L2

λ
, (2.1)

where R is the distance from the source to the array, L is the length of the array, and

λ is the wavelength of the arriving wave. When the source is in the far-field only the

bearing information, or Direction of Arrival (DOA), can be used to characterise the source

spatially [3]. This is the situation being investigated in this thesis. A common assumption

is that the source and array are in the same plane, thereby further reducing the spatial

parameters to be estimated, and the wavefronts arriving at consecutive microphones differ

only by an amplitude coefficient and a time-delay.

The scenario where there are P far-field sources present, and the emitted signals are

received by an arbitrary array of M microphones is now considered. The impulse response

of the mth microphone to a signal sp (t), emitted from the pth source is denoted hpm (t) .

This impulse response depends on the locations of both the source and the microphone,

the propagating medium, and any gain or attenuation introduced by the microphone itself.

The time delay of the pth signal arriving at the mth microphone is denoted τpm. The

output at the mth microphone can then be written as:

xm (t) =

P∑

p=1

hpm (t) ∗ sp (t− τ pm) + nm (t) , (2.2)

where (∗) denotes convolution and nm (t) is the additive noise signal received by the mth

microphone, it is assumed that nm (t) is independent of sp (t), and that P < M . The

array output can then be expressed as:
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Figure 2.1: Source in the far field emitting a signal received by the array of microphones.

x (t) =




x1 (t)

x2 (t)
...

xM (t)




=




∑P
p=1 hp1 (t) ∗ sp (t− τp1)∑P

p=1 hp2 (t) ∗ sp (t− τp2)
...∑P

p=1 hpM (t) ∗ sp (t− τpM)




+




n1 (t)

n2 (t)
...

nM (t)



. (2.3)

2.3 Complex Signal Representation

In array signal processing the complex representation of a signal is often used. This

representation is based on the assumption that the signal is narrowband. In many cases

this narrowband assumption does not hold, and in these situations the bandwidth of the

signal must be divided into smaller frequency bins so that the narrowband assumption

will hold across each frequency bin, and the following analysis will then hold for each bin.

The emitted signal sp (t) can be expressed in terms of a modulated centre frequency

ω:

sp (t) = αp (t) cos
[
ωt+ φp (t)

]
. (2.4)

Assuming that the signal is narrowband we can therefore say:
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αp (t− τ p) ≈ αp (t) , (2.5)

φp (t− τ p) ≈ φp (t) , (2.6)

which implies that:

sp (t− τ p) = αp (t− τp) cos
[
ω (t− τ p) + φp (t− τ p)

]
(2.7)

≈ αp (t) cos
[
ωt− ωτp + φp (t)

]
. (2.8)

The time-delay can now be modelled as a phase-shift of the carrier frequency. Following

from the assumption that the signal is narrowband, the impulse response can be taken

to be constant across the frequency band of interest. The stationary response of the mth

microphone to the signal sp (t) can therefore be expressed as:

rpm (t) = hpm (t) ∗ sp (t− τ pm) (2.9)

= hpm (t) ∗ αp (t) cos
[
ωt− ωτ pm + φp (t)

]
(2.10)

= Hpm (ω)αp (t) cos
[
ωt− ωτ pm + φp (t)

]
, (2.11)

where Hpm (ω) is the Fourier transform of the impulse response hpm (t). Expressing

Hpm (ω) in terms of its phase, argHpm (ω), and magnitude, |Hpm (ω)|, and letting βpm =

|Hpm (ω)|, (2.11) can be re-written as:

rpm (t) ⋍ βpm (ω)αp (t) cos
[
ωt− ωτpm + φp (t) + argHpm (ω)

]
, (2.12)

Using a complex signal representation of the received signal, the time-delay can then

be expressed as a multiplication by a complex number. Considering the case where there is

no noise present, the complex representation of the signal received by the mth microphone

is given by:

rpm (t) = xi
m (t) + jxq

m (t) (2.13)

= βpm (ω) e−jωτpmαp (t) ejφp(t) (2.14)

= βpm (ω) e−jωτpm s̃p (t) , (2.15)

where s̃p (t) is the complex envelope of the signal sp (t), and s̃p (t) = αp (t) ejφp(t). Then,

letting am (θp) = βpm (ω) e−jωτpm the array response vector can be defined:
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a (θp) =




βp1 (ω) e−jωτp1

βp2 (ω) e−jωτp2

...

βpM (ω) e−jωτpM

.




(2.16)

This complex vector describes the response of each microphone, including geometric

path differences, to a signal arriving at an angle of θp. Throughout the thesis this vector is

called the array response vector, however it can also be referred to as the steering vector,

the location vector or the transfer function vector.

The in-phase and quadrature components of xm (t), xi
m (t) and xq

m (t) respectively, are

given by:

xi
m (t) = |Hpm (ω)|αp (t) cos

[
φp (t) + argHpm (ω) − ωτpm

]
(2.17)

xq
m (t) = |Hpm (ω)|αp (t) sin

[
φp (t) + argHpm (ω) − ωτpm

]
. (2.18)

2.4 Parametric Signal Model

The required parameter for each source is the Direction of Arrival (DOA), θp, and the

DOA associated with the each of the P sources present must be estimated from the data

received by the array. In the case considered here the angle of elevation is assumed to be

zero, as the microphones and source are assumed to be the same height. However, the

results derived here can easily be extended to the general case, where both bearing and

elevation are unknown.

From equations (2.3) and (2.15), the parameterised data model for the pth source is

given by:

x (t) =




x1 (t)

x2 (t)
...

xM (t)




=
P∑

p=1




a1 (θp)

a2 (θp)
...

aM (θp)



s̃p (t) +




n1 (t)

n2 (t)
...

nM (t)




(2.19)

=

P∑

p=1

a (θp) s̃p (t) + n (t) . (2.20)

The received signal model for the case of P parameters can now be expressed as:
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x (t) = [a (θ1) , a (θ2) , . . . , a (θP )] [s̃1 (t) , . . . , s̃P (t)]T + n (t) . (2.21)

Then defining the M × P matrix A (θ) the columns of which are given by the array

response vectors associated with each of the P sources, equation (2.21) can be re-expressed

as:

x (t) = A (θ) s̃ (t) + n (t) , (2.22)

with:

θ =




θ1

θ2

...

θP



. (2.23)

This model is applicable to an array of arbitrarily located microphones assuming that

the sources are located in the far-field; that P < M ; and that the sources are non-coherent,

where two signals are coherent if one is a scaled and delayed version of the other [2]. A

Uniform Linear Array (ULA) is commonly used as it leads to simplification of the data

model. This is the array configuration considered here. However, the results found are

easily extended to other array configurations.

For a ULA with an inter-microphone spacing ∆, τ pm can be related to the DOA by

the following expression, as seen in figure (2.2):

cos (θp) =
vτ pm

∆
, (2.24)

where v is the speed of sound as it travels through air. Due to the far-field conditions

it can be assumed that βpm is constant for m = 1, . . . ,M , and ∀p = 1, . . . , P.. Then,

substituting for τpm in equation (2.16), the array response vector can now be expressed

as:

a (θp) = a1 (θp)




1

e−jω2∆
cos(θp)

v

...

e−j(M)ω∆
cos(θp)

v



. (2.25)

Now, assuming unit response of the first microphone and substituting for v = fλ, the

array response vector can be re-expressed as:
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Figure 2.2: The wavefronts arriving at a Uniform Linear Array (ULA) with inter-

microphone spacing ∆.

a (θp) =




1

e−j(2) 2π∆
λ

cos(θp)

...

e−j(M) 2π∆
λ

cos(θp)



. (2.26)

If ∆ > λ
2

then spatial aliasing can occur, i.e. there exists θ1, θ2 ∈ [0, π] such that for

θ1 6= θ2:

e−j 2π∆
λ

cos(θ1) = e−j 2π∆
λ

cos(θ2). (2.27)

Therefore, in order to avoid this problem, the array must be designed so that:

∆ ≤ λmin
2

, (2.28)

where λmin is the minimum wavelength of the received signal.
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2.5 Probability Density Function (pdf) of the Ob-

served Data

Due to the random nature of the observation vector the probability of correctly deter-

mining the required parameters will never be equal to 1. Instead the observed data can

be characterised by the Probability Density Function (pdf) denoted fθ (x) . As the pdf is

dependent on θ there is a different pdf associated with each different realisation of θ. The

accuracy of the estimator is directly linked to that of the pdf, the correct choice of pdf

will therefore greatly influence the performance of the estimator.

Estimation based solely on the pdf of the observed data is called classical estimation [4].

This is the estimation problem considered here and it is assumed throughout that no prior

information about the parameters is available. Alternatively Bayesian estimation can be

used if prior knowledge of the parameter values exists [4]. In this situation the parameter

to be estimated is viewed as a realization of the random variable θ.

In this work deterministic estimation is considered, and for the sake of simplicity

the case of estimating a single, i.e. P = 1, real, deterministic parameter is considered

initially. These results are then extended to include estimation of multiple deterministic

parameters.

In certain situations it may be more convenient to estimate a function of the required

parameter rather than the parameter itself. Therefore in the following the general case

of estimating a function g (θ) is considered, where g (θ) may or may not be equal to

θ. Correspondingly the estimator used to estimate the parameter value based on the

observations is denoted ĝ (θ) (x) .

For many practical estimation problems the pdf will not be known and must instead be

approximated. A random variable x is said to be Gaussian, with distribution N (mx, σx)

if its pdf has a Normal distribution. Assuming a Gaussian distribution, and letting P = 1

the pdf of the received data, as given in equation (2.21), is expressed as:

fθ (x) =
1

σx

√
2π
e−

1
2‖x−mx

σx
‖2

, (2.29)

where mx = E [x], and σ2
x is the variance of [x] .

A Gaussian distribution is commonly assumed due to the many convenient mathe-

matical properties of the Gaussian distribution, and also because this assumption is often

justifiable due to the Central Limit Theorem [5]. The central limit theorem states that

the distribution of the mean tends to be Normal, regardless of the distribution from which

the mean is computed.
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If x1, x2, . . . , xN are a set of independent random variables, with mean m and finite

variance σ2, then:

x1 + . . .+ xn + . . .+ xN

N
converges to distribution−−−−−−−−−−−−−−−−−−−−−→

N→∞

N
(
E [x] ,

√
σ2

x

N

)
, (2.30)

Therefore if we have N independent observations of the same random experiment,

x1, x2, . . . , xN , for sufficiently large N the estimator 1
N

∑
ĝ (θ) (x) will have a Gaussian

distribution:

N


E

[
ĝ (θ) (x)

]
,

√
σ2

dg(θ)

N


 , (2.31)

where σ2
dg(θ)

is the variance of the estimator ĝ (θ). We now need to find an estimator that

will assign an estimate to each set of observations x = [x [1] , x [2] , . . . x [N ]]. The quality

of such an estimator must be quantified in order to see if it meets requirements, and

ideally we wish to find the optimal estimator for a given situation. This naturally leads

to the question of what measurements are needed to evaluate the estimator performance,

and what criteria should be met in order for an estimator to be considered “optimal”.

2.6 Estimator Performance Evaluation

When evaluating the performance of an estimator the basic question that must be ad-

dressed is “How accurate are the results provided by this estimator?”, or put another way,

“How close will the resulting estimates be to the true values?”. The aim then is to select

the best possible estimator, but in order to do this the term “best” must be quantified.

The first factor to be considered is whether or not the mean or expected value of the

estimator is equal to the true parameter value, i.e. is:

E
[
ĝ (θ) (x)

]
= g (θ) . (2.32)

If this is true, then the estimator is said to be unbiased. If this is not the case, then the

estimator is biased, with bias given by:

Bias
(
ĝ (θ) (x)

)
= E

[
ĝ (θ) (x)

]
− g (θ) , (2.33)

A biased estimator is one that systematically introduces an error, resulting in the mean

or expected value of the estimator no longer being equal to the true parameter value.
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The effects of such an error therefore cannot be removed by averaging. While an unbi-

ased estimator is not necessarily a good estimator, a biased estimator is generally highly

undesirable [4].

The second measurement used to characterize the estimator performance is the vari-

ance, which measures the dispersion of the estimates around their expected value:

V ar
(
ĝ (θ) (x)

)
= E

{(
ĝ (θ) (x) − E

[
ĝ (θ) (x)

])2
}
. (2.34)

Clearly the more accurate the estimator, the smaller the variance will be [4].

The Mean Square Error (MSE) is commonly used as a measurement of the quality or

precision of an estimator. Defining Ω as the observation space, the MSE can be expressed

as:

MSE
[
ĝ (θ) (x)

]
= E

[(
ĝ (θ) (x) − g (θ)

)2
]

(2.35)

=

∫

Ω

(
ĝ (θ) (x) − g (θ)

)2

fθ (x) dx (2.36)

=
∥∥∥ĝ (θ) − g (θ)

∥∥∥
2

θ
. (2.37)

From equation (2.35) we can see that the MSE can also be expressed as:

MSE
[
ĝ (θ) (x)

]
= V ar

[
ĝ (θ) (x)

]
+Bias2

[
ĝ (θ) (x)

]
. (2.38)

Then for an unbiased estimator:

Bias
(
ĝ (θ) (x)

)
= E

[
ĝ (θ) (x)

]
− g (θ) = 0, (2.39)

=⇒ MSE
(
ĝ (θ) (x)

)
= V ar

(
ĝ (θ) (x)

)
. (2.40)

A final consideration when evaluating the performance of an estimator is the com-

plexity of the computations involved. While an estimator may provide highly accurate

results, it will be of little practical use if it cannot be quickly and easily implemented. In

such situations, an estimator with lower accuracy may in fact be preferable, particularly

if real-time estimation of the parameters is necessary.

2.7 Finding the Optimal Estimator

Unfortunately there is no straightforward minimisation scheme that is guaranteed always

to produce an expression for an optimal and realisable estimator, where we consider an
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estimator to be realisable if its definition does not rely on unknown or unobservable

quantities. There are however certain approaches that will, in some cases, produce a

closed form expression for such an estimator. The most well known of these approaches

are discussed here.

Using the MSE as a measurement of the estimator quality, we aim to find a realizable

estimator with the minimum MSE. The following questions therefore arise “does such an

estimator exist?” and if so, “how can such an estimator be found?”.

In the following the general case of estimating a vector of unknown parameters is

considered.

2.7.1 Minimum Mean Square Error (MMSE) Estimator

One approach [6] is to minimize the expression for the overall weighted MSE and find the

estimator that achieves this, i.e the aim is to find the optimal estimator for all values of

theta, called the optimal global estimator ĝ (θ) (x)glob

opt , with the minimum MSE.

The expression for the weighted MSE is given by [6]:

MSE
[
ĝ (θ) (x) , ∂

]
=

∫

Θ

MSE
[
ĝ (θ) (x)

]
∂ (θ) dθ (2.41)

=

∫

Θ

∫

Ω

(
ĝ (θ) (x) − g (θ)

)2

fθ (x) ∂ (θ) dxdθ, (2.42)

where ∂ (θ) is a strictly positive weighting function defined over Θ, such that
∫
Θ
∂ (θ) dθ=1.

The weighted MSE is introduced here in order to express the minimization in a form sim-

ilar to that of risk minimization in Bayesian estimation, allowing exploitation of results

previously established in this area [7]. From equation (2.41) it can be seen that in this

case ∂ (θ) is equivalent to the prior in Bayesian estimation theory. The MSE
[
ĝ (θ) (x) , ∂

]

can be re-expressed in certain cases as:

MSE
[
ĝ (θ) (x) , ∂

]
=

∫

Ω

∫

Θ

(
ĝ (θ) (x) − g (θ)

)2

∂ (θ) fθ (x) dθdx. (2.43)

Minimization of the MSE is therefore equivalent to minimization of the inner integral:

∫

Θ

ĝ (θ) (x) ∂ (θ) fθ (x) dθ −
∫

Θ

g (θ) ∂ (θ) fθ (x) dθ = 0, (2.44)

Then setting:

ĝ (θ) (x) = ĝ (θ) (x)glob

opt , (2.45)
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this gives:

ĝ (θ) (x)glob
opt =

∫
Θ
g (θ) ∂ (θ) fθ (x) dθ∫
Θ
∂ (θ) fθ (x) dθ

, (2.46)

where ĝ (θ) (x) is a realisable estimator as it is independent of theta. Unfortunately

however, calculation of this estimator is often impossible and there is no known method

for determining a suitable ∂ (θ), that will lead to the minimum MSE for all θ ∈ Θ [4].

As the strategy of minimizing the overall or global MSE does not necessarily pro-

duce a computable expression for the minimum MSE estimator, the MSE is minimized

instead for a given parameter value θ, in order to find a realizable ĝ (θ) (x)loc
opt, that is non-

trivial
(
ĝ (θ) (x)loc

opt 6= g (θ)
)
. While this approach is simpler than the global approach, as

ĝ (θ) (x)loc

opt is based on local optimization it is unlikely to produce a realizable estimator

that is not “clairvoyant” i.e. that does not depend on the unknown parameter value [6].

Minimization of the local MSE under non-bias constraints is discussed in detail in chap-

ter 6, when it is used for the calculation of the best possible performance of an estimator

using minimal performance bounds. It can therefore be concluded that the procedure

of minimizing the MSE is unlikely to produce a realizable estimator, and an alternative

strategy must be adopted.

2.7.2 Minimum Variance Unbiased (MVU) Estimator

An alternative approach is to search for the unbiased estimator with the minimum variance

for all possible values of θ. This Minimum Variance Unbiased (MVU) estimator does not

always exist, as it is common for different estimators to have minimum variance depending

on the value of θ.

The minimum possible variance that can be attained by an unbiased estimator is

characterised by the Cramer-Rao Bound (CRB) [8]. Therefore, if an estimator exists

whose variance equals the CRB for each value of θ, this must be the MVU, and taking

variance as a measure of optimality, the CRB can then be used to find an expression for

the optimal estimator. Any estimator that has variance equal to the CRB is called an

efficient estimator.

In order to derive the CRB, the following regularity condition is assumed to be met:

E

[
∂ ln fθ (x)

∂θ

]
= 0 ∀θ, (2.47)
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and an efficient estimator exists if (and only if) the following factorization can be made:

∂ ln fθ (x)

∂θ
= F (θ) (h (x) − g (θ)) , (2.48)

where ĝ (θ)
MV U

(x) = h (x) .

The variance of an efficient estimator is equal to the Cramer Rao Bound (CRB) and

can be expressed as follows (see chapter 6 for a full discussion on the derivation of the

minimal variance of an estimator and estimator performance bounds.)

C
dg(θ)

MV U
(x)

≥ −E
[
∂2 ln fθ (x)

∂θ∂θT

]−1

. (2.49)

When a linear model can be used to describe the data this approach yields a closed

form expression for the MVU estimator, and its variance is equal to the CRB. Using the

classical general linear model [4], the observed data can be described as:

x = Hθ + n (2.50)

where x is the (N × 1) observation vector and H is the known (N × P ) transfer function

matrix. In this case, H is a linear function of the (P × 1) vector of unknown parameters

θ = [θ1, θ2, . . . , θP ]T , and n is the (N × 1) noise vector with pdf N (0,C). The pdf of x

is:

fθ (x) =
1

(2π)
N
2

√
detC

exp

[
−1

2
(x −Hθ)T C−1 (x −Hθ)

]
, (2.51)

and so:

∂ ln fθ (x)

∂θ
=
(
HTC−1H

) (
ĝ (θ) (x) − g (θ)

)
, (2.52)

resulting in the efficient and MVU estimator, which is the weighted Least Squares (LS)

estimate:

ĝ (θ)
MV U

(x) =
(
HTC−1H

)−1
HTC−1x, (2.53)

with variance:

CRB
(
ĝ (θ)

)
=
(
HTC−1H

)−1
. (2.54)

It can therefore be seen that in the case of a linear data model it is always possible to

find a closed form expression for an efficient and therefore MVU estimator.
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However, in many situations it will not be appropriate to use a linear model to describe

the data, as arises when estimating the Direction of Arrival (DOA) of a source signal.

This situation is now considered, using the data model defined in equation (2.22) where

in this case n is White Gaussian Noise (WGN) with variance σ2. The pdf of the observed

data is given by:

fθ (x) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2
(x − A (θ) s)T (x − A (θ) s)

]
, (2.55)

leading to:

∂ ln fθ (x)

∂θ
=

s

2σ2

{(
∂A (θ)

∂θ

)T

(x −A (θ) s) + (x −A (θ) s)T

(
∂A (θ)

∂θ

)}
, (2.56)

where:

∂A (θ)

∂θ
=




∂A(θ1)
∂θ

∂A(θ2)
∂θ
...

∂A(θP )
∂θ




(2.57)

In this situation, factorisation as shown in equation (2.48) in order to find an expres-

sion for the MVU estimator is not possible. In fact, for non-linear data models efficient

estimators will only be found under asymptotic conditions (high SNR [9] and/or large

number of snapshots [8]). This is due to the fact that asymptotically the pdf becomes

more concentrated around the true parameter value θ, causing the estimates to lie in a

smaller interval about θ. In this case the estimator is said to be consistent. The relation-

ship is approximately linear in this region and observations rarely occur in the non-linear

region, resulting in asymptotic efficiency. (For a detailed discussion on the performance

of non-linear estimators, see chapter 6). Therefore unless operating under asymptotic

conditions it will not be possible to find an efficient estimator for DOA estimation.

However, in situations where there is no efficient estimator, it is still possible that an

MVU estimator exists. The MVU estimator, if one exists, can be determined by finding a

minimal sufficient statistic to describe the observed data. A statistic is said to be sufficient

if the conditional pdf of the observations after the sufficient statistic has been observed

is independent of the parameter to be estimated [4]. A necessary statistic is one which

can be computed from any sufficient statistic, without reference to the original data, and

a minimal sufficient statistic is one which is both necessary and sufficient. This means
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that a minimal sufficient statistic is just as informative as the original data, but it can

be computed from any other sufficient statistic; no further compression of the data is

possible, without losing some information. If a sufficient statistic is found, then the MVU

estimator must be a function of this statistic.

Using the Neyman-Fisher factorization a sufficient statistic can be found directly from

the pdf, which is assumed to be known [4]:

fθ (x) = f (T (x) , θ) h (x) , (2.58)

where if θ is a p−dimensional vector, then the statistic T (x) is a p−dimensional

function, f is a function depending only on T and θ, and h is a function depending only

on the observations x. The difficulty however, arises in situations where this factorization

is not obvious, and in these cases it is possible that a sufficient statistic, other than the

observed data itself, does not exist.

If a sufficient statistic does exist, the Rao-Blackwell-Lehmann-Scheffe (RBLS) the-

orem can be applied in order to determine the corresponding estimator. Firstly, a

p−dimensional function f must be found such that:

E [f (T)] = θ. (2.59)

Then if f (T) is the only unbiased function of the sufficient statistic, the statistic is

said to be complete, and the MVU estimator is given by:

ĝ (θ) (x) = f (T) . (2.60)

This approach can be seen to provide a means of finding an expression for the MVU

estimator provided a minimal sufficient statistic exists. However, even in situations where

such a statistic does exist, verification of its completeness can be very difficult.

It can therefore be seen that there is no guaranteed way to find an expression for

an optimal estimator for the non-linear data models being considered here, and even if

such an estimator exists it is not guaranteed to be realisable, as it may require knowledge

of unknown parameters. Sub-optimal estimators must instead be considered in order to

select a suitable estimator for the given estimation problem.

2.8 Conclusion

The use of array processing to estimate one or more real deterministic parameters was

introduced in this chapter, and the steps involved in modelling the received data were
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discussed. The use of the pdf of the data to estimate the desired parameters was then

considered, and the criteria that can be used for estimator evaluation were developed and

used to define an “optimal estimator”.

The optimality criterion initially selected was the minimal MSE, however it was shown

that minimization of the MSE does not provide an expression for an optimal estimator.

The next optimality criterion considered was the variance, and it was seen that for some

estimation problems the CRB can be used to find a direct expression for an efficient

estimator, which is also the MVU estimator. However, for non-linear estimation problems

such as DOA estimation, it is not possible to find an efficient estimator. The fact that no

efficient estimator exists does not exclude the possibility that an MVU estimator exists,

and use can be made of sufficient statistics in order to determine the MVU estimator

in such a situation. However, determining the sufficient statistic involves factorization

of the pdf, which may not be obvious, and in many cases a minimal sufficient statistic

does not exist. Even if a minimal sufficient statistic is found, it must be checked for

completeness in order to result in an expression for the MVU estimator, and verification

of the completeness can be extremely difficult.

It is therefore clear that for the case of non-linear data models, as in the case of DOA

estimation, an optimal estimator cannot be easily determined, and instead use must be

made of sub-optimal estimators that have desirable characteristics for the problem under

consideration.



3
Direction of Arrival (DOA) Estimation

3.1 Acoustic Source Localization

Using a common problem specification, this chapter provides a unified explanation of

classical Direction of Arrival (DOA) estimation techniques. Moreover, the classical signal

processing techniques, which in many cases were developed for narrowband signal process-

ing, are treated in the context of localization of broadband sources. Recent developments

in the application of these classical techniques to acoustical array localisation are also

discussed.

3.2 Beamforming

The earliest development of spatial filtering or beamforming dates back to the Second

World War, when the conventional beamformer was developed. The aim of this beam-

former was to enhance the received signal by “steering” the array in the direction of

the desired source. This beamformer is simply an application of Fourier-based spectral

analysis to spatio-temporally sampled data [2, 10, 11].

The ability of the beamformer to enhance signals from a desired direction can also

be applied to the problem of DOA estimation. The output of the antenna is steered

23
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in each possible direction of interest, and the power of the array output is measured

for each direction. The values of θ, resulting in the maximum array output power are

then chosen as the DOA estimates. Narrowband beamformers assume that the incident

signal has a narrow bandwidth, centred at a particular frequency. If the incident signal is

broadband then it can be divided into narrow frequency bands, and a weighted average

of the DOA estimates found for each of these bands is then found (see section 3.3.1 for

further discussion on these techniques).

Using the data model introduced in the previous chapter the signal received by the

array at time t is given by:

x (t) = A (θ) s̃ (t) + n (t) , (3.1)

where n (t) is assumed to Gaussian noise. The steered output of the array is found

by linearly combining the spatially sampled data received at each sensor, and can be

expressed as:

y (t) = wHx (t) , (3.2)

where w is the complex weighting vector, and acts as a spatial filter applied to the

signal which results in one particular direction being emphasized. For the case where N

snapshots of the signal are available the output power of the array is given by:

P (θ) =
1

N

N∑

t=1

|y (t)|2 (3.3)

=
1

N

N∑

t=1

wHx (t)xH (t)w (3.4)

= wHR̂w, (3.5)

where R̂ is the estimate of the spatial correlation matrix of the signal x (t):

R̂ =
1

N

N∑

t=1

x (t)xH (t) (3.6)

The estimate of the DOA, θ̂, is then given by:

θ̂ = argmax
θ

{P (θ)} (3.7)

The type of beamformer used depends on the choice of weight vector w, and there are

two general categories of beamformers: data independent and statistically optimum [10].



3.2. Beamforming 25

As suggested by the name, the weights in a data independent beamformer are independent

of the observations, and are chosen to produce a specified response regardless of the data

received. On the other hand, the weights in a statistically optimum beamformer are

chosen to optimize the array response, based on the statistics of the array data.

3.2.1 Delay and Sum Beamformer

Figure 3.1: A Delay and Sum beamformer.

The Delay and Sum Beamformer (DSB) [10] is data independent, as it depends on

the array geometry not on the received signal, and it is the simplest type of beamformer.

Firstly the delay corresponding to a signal arriving from the direction θp is calculated for

each of the microphones in the array, and the signal received by each of the microphones

is then weighted by the appropriate delay. This results in constructive re-enforcement of

the signal arriving from the direction θp while signals arriving from other directions are

incoherently combined. The power of the array output corresponding to a signal arriving

from direction θp is given by:
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y (t) =
M∑

m=1

xm (t+ τ pm (θ)) , (3.8)

P (θ) =
1

N

N∑

t=1

|y (t)|2 (3.9)

=
1

N

N∑

t=1

∣∣∣∣∣
M∑

m=1

xm (t+ τpm)

∣∣∣∣∣

2

, (3.10)

where τ pm (θ) is defined in chapter 2 - section 2.2. The DOA estimates are then found by

searching for the P maxima of P (θ).

An advantage of this beamforming approach is that it can be applied directly to

broadband signals. However, the degree of resolution that can be achieved is strictly

limited by the temporal sampling frequency of the data as delay differences less than the

sampling rate cannot be resolved. Therefore in order to achieve higher resolution the

sampling frequency must be increased resulting in an increased need for storage space

and processing power.

3.2.2 Frequency Domain Beamforming

In order to increase the resolution that can be achieved without a corresponding increase

in the sampling frequency required, beamforming can instead be performed in the fre-

quency domain. Frequency domain beamforming is inherently narrowband, and therefore

broadband signals are divided into narrowband frequency bins centered on fc:

X (fc) = A (fc, θ)S (fc) + N (fc) . (3.11)

Assuming once again that the array is a ULA, the array response function A (fc, θ)

is a function of the incident angle only, and represents the response of the array to

P complex exponentials at frequency fc, which arrive at the array with angles of θ =

[θ1,θ2,...,θp]. The frequency domain representation of the steered output of the array is

found by linear combination of these frequency components after applying the appropriate

complex weights:

Y (fc) = WHX (fc) . (3.12)

where W is the weighting vector and is chosen so that the signals from the direction under

consideration, which is often called the look direction, are added coherently. Signals from
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all other directions are attenuated. The output Power Spectral Density (PSD) is given

by:

ΦY Y (fc) = Y (fc) Y
∗ (fc) (3.13)

= WH (fc) R̂XXW (fc) , (3.14)

where R̂XX is defined in 3.6. The DOA estimates are then found for each frequency band

θ̂ (fc) by selecting the P maxima of the output PSD:

θ̂ (fc) = argmax
θ

{ΦY Y (fc)} (3.15)

In order to produce a non-trivial solution of equation (3.7) the weight vector is chosen

so that |W| = 1, resulting in the following weight vector for a given direction θ at a given

frequency:

W (fc, θ) =
A (fc, θ)√

AH (fc, θ)A (fc, θ)
. (3.16)

Substitution of equation (3.16) into equation (3.14) produces the classical spatial spec-

trum:

ΦBF (fc) =
AH (fc, θ) R̂XXA (fc, θ)

AH (fc, θ)A (fc, θ)
. (3.17)

The conventional beamformer is an extension of the classical Fourier based spectral

analysis, and if the array in question is a ULA, then the resulting spatial spectrum in (3.17)

can be viewed as a spatial domain version of the classical time-series domain periodogram.

This similarity between the conventional beamformer and the time-series periodogram also

extends to the resolution threshold experienced in the periodogram, and the maximum

resolution that can be achieved for a ULA of M elements is:

∆ =

(
2π

M

)
rads. (3.18)

3.2.3 Beamforming and Acoustical Source Localization

While beamforming provides an optimal estimate of the source location, the need to

calculate the beamformer output for every possible value of θ makes the method com-

putationally prohibitive, particularly if high resolution localization is desired. Another

difficulty arises due to the fact that originally the main motivations in the development

of many beamforming applications were RADAR [12], and consequently such techniques
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may perform poorly when applied to the reverberant situations encountered in acoustical

source localization.

Several researchers have shown that the degradation of performance due to such effects

can be reduced by the use of any a priori information that may be available. In [13] the

nature (e.g. statistical non-stationarity, method of production, pitch, voicing, formant

structure, and source radiator model) of the speech signal being localized is modelled by

the “Dual Excitation Model”, providing a specific parameterization model which improves

upon the general spatial filtering approach. Information on the nature of the speech signal

is also used in [14] to distinguish between real sources and virtual sources arising due to

reverberation. A priori knowledge has also been used to reduce the computational load

of beamformer localization. In [15] the fact that the characteristic wavelengths of speech

are comparable to the dimensions of the space being searched is exploited, allowing for

the implementation of a coarse-to-fine search criterion in both the spatial and frequency

domain.

In [16] a beamformer-based source localization technique within a particle filtering

framework is proposed. The use of particle filters avoids the need for a comprehensive

search of the source location space, and therefore allows for a computationally efficient

beamforming scheme.

The similarity between the DSB and a Bayesian formulation was recently demonstrated

in [17]. It was shown that when considered from the point of view of maximizing the

likelihood the Bayesian formulation and Beamforming have been shown to be equal except

for an energy term weighting which will not effect the likelihood of localizing a stationary

signal, making the two methods identical in this case [17].

3.3 Subspace-Based Techniques

Subspace based DOA estimation methods exploit the geometrical properties of the cor-

relation matrix of the received signals. A narrowband signal model is assumed as the

signal subspace will differ for the different frequency bands in a broadband signal [18, 19].

Broadband incident signals are therefore transformed into the frequency domain, and di-

vided into narrowband frequency bins as described in the previous section. Operating

in the frequency domain, and assuming spatially white, zero-mean Gaussian noise, the

correlation matrix of the observed signal is given by:

R (fc) = E
{
X (fc)XH (fc)

}
(3.19)

= A (fc, θ)Rs (fc)A
H (fc, θ) + σ2I, (3.20)



3.3. Subspace-Based Techniques 29

where:

Rs (fc) = E
{
S (fc)S

H (fc)
}
, (3.21)

and Rs is assumed to be full rank. Once the matrix A (fc, θ) has full rank and assum-

ing P < M , the matrix A (fc, θ)Rs (fc)A
H (fc, θ) has rank P , where P is the number of

sources present. Furthermore, every vector in the range space of A (fc, θ)Rs (fc)A
H (fc, θ)

is an eigenvector of R, associated with eigenvalue λ. Consequently, using the eigende-

composition of the matrix, R can be re-expressed as:

R =
M∑

m=1

λmemeH
m. (3.22)

Arranging the eigenvectors in order of the decreasing size of their associated eigenval-

ues, the signal and noise eigenvectors can then be separated:

R =
∑P

m=1 λmemeH
m +

∑M

m=P+1 λmemeH
m (3.23)

= EsΛsE
H
s + σ2EnE

H
n , (3.24)

where Es and En are matrices containing respectively the signal and noise eigenvectors:

Es = [e1, . . . , eP ] (3.25)

En = [eP+1, . . . , eM ] , (3.26)

and Λs = diag [λ1, . . . λP ] are the eigenvalues associated with the signal eigenvectors.

Any vector orthogonal to A (fc, θ) is an eigenvector of R associated with an eigenvalue

σ2 [2]. Therefore En is orthogonal to A (fc, θ)Rs (fc)AH (fc, θ),

and as A (fc, θ)Rs (fc)A
H (fc, θ) is full rank, it follows that [2]:

R {Es} = R {A (fc, θ)} (3.27)

R {En} = R {Es}⊥ = R {A (fc, θ)}⊥ = N
{
AH (fc, θ)

}
(3.28)

where R {Es} is the subspace spanned by the range of Es, and N
{
AH (fc, θ)

}
is the null-

space of AH (fc, θ). Therefore, if the signal subspace is the subspace spanned by Es, and

the noise subspace is the subspace spanned by En, then we can see that the signal and

noise subspaces are orthogonal to each other. This relation is the basis for all subspace

based estimation techniques.

In practice the matrix R (fc) is unknown, and must be estimated from the observations:

R̂ (fc)=
1

N

N∑

t=1

X (fc)X
H (fc) , (3.29)
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where the number of observations N must be large enough to ensure that R̂ (fc) is full

rank (i.e. rank M). As N → ∞, R̂ (fc) → R (fc), however the fact that R̂ (fc) is

estimated using a finite number of samples can lead to errors in detecting the number of

sources present and estimating the associated angles of arrival.

3.3.1 Multiple Signal Classification (MUSIC) Algorithm

The best known of the subspace techniques is the Multiple Signal Classification (MUSIC)

algorithm [20, 21]. As with other subspace methods, the basis of the MUSIC algorithm is

that the noise eigenvectors are orthogonal to the steering vector or signal subspace.

From equation (3.28) the estimates of the DOAs are the values of θ that minimize the

projection of the steering vector, A (fc, θ), into the noise subspace.

The orthogonal projector onto the noise subspace is estimated as:

Π̂⊥ = EnE
H
n , (3.30)

and the MUSIC “spatial spectrum” is then defined as:

PMUSIC (θ) =
AH (fc, θ)A (fc, θ)

AH (fc, θ) Π̂⊥A (fc, θ)
. (3.31)

In order for the DOA estimates to be unique, the array is assumed to be unambiguous,

i.e. A (fc, θ1) 6= A (fc, θ2) unless θ1 = θ2, over the range of possible values of θ.

MUSIC offers a very large improvement in performance over traditional delay-and-sum

beamforming techniques as the number of calculations necessary is reduced.

It has also been shown that assuming asymptotic conditions (high SNR [9] and/or large

number of snapshots [8]) and uncorrelated signals, the MUSIC estimator is efficient, i.e. it

reaches the Cramer Rao Bound (CRB), as long as M is larger than P [22, 23]. Therefore,

unlike beamforming techniques, the MUSIC algorithm provides statistically consistent

estimates, i.e. the estimates converge to the true value as the number of snapshots goes

to infinity [2] [24].

However, like other spectral-based methods, MUSIC can show large bias in the case

of a finite number of snapshots and low SNR, leading to an inability to resolve closely

spaced sources. This is a serious difficulty when tracking a moving source, as the number

of snapshots will be small in order to continuously update the source position. These

resolution problems are even more serious when the received signals are highly correlated,

with the algorithm failing to yield consistent estimates in the presence of coherent sources

[22, 23]. Two sources are said to be coherent (or fully correlated) sources, if the signals

emitted by the sources are identical, except possibly for a multiplicative constant factor

[25].
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In reverberant environments, highly correlated and even coherent signals may arise due

to several replicas of the signal arriving by different paths. In the situation of coherent

signals, the signal covariance matrix, Rs, will be rank deficient. This rank deficiency

causes the divergence of a signal eigenvector into the noise subspace, with the result that

(3.28) no longer holds [2].

In the case of Uniform Linear Arrays (ULAs), a spatial smoothing method may be

applied in order to deal with the problem of coherent (or highly correlated) signals. This

method, introduced by [26] and later extended in [27–29], consists of splitting the original

array into overlapping sub-arrays. Assuming that the steering vector of each sub-array

is identical (up to a scaling), the sub-array covariance matrices can now be averaged.

This spatial smoothing results in a random phase modulation, which in turn leads to

decorrelation of the signals that were the cause of the rank deficiency.

While this spatial smoothing has been shown to allow for localization of coherent

sources using subspace methods [29], these techniques perform particularly poorly when

dealing with closely spaced sources [28]. Also, the fact that the use of spatial smoothing is

limited to a very restricted class of array geometries [2, 28], limits its practical application.

There are two approaches to combining the results found from the individual nar-

rowband frequency bins: Incoherent Wideband Processing [30]; and Coherent Wideband

Processing [31], with both approaches offering higher accuracy than the original MUSIC

algorithm when dealing with broadband sources.

In the incoherent case, the frequency range of the signal is divided into non-overlapping

frequency bins. The narrowband MUSIC algorithm is then applied to each bin, and an

incoherent average is taken over all the bins. This approach is very straightforward, and

provided that all frequency bins have sufficiently high SNR, performs very well, partic-

ularly for sources with highly peaked spectra, where it outperforms the coherent meth-

ods [30, 32]. However, the selection of the frequency bins to be included is an important

consideration, as outliers due to bins with low SNR reduce the source peaks and can also

lead to spurious peaks, resulting in incorrect estimates.

In [33], Asano et al. proposed an eigenvalue weighting of the frequency bins. This

method weights each frequency bin by the sum of the P largest eigenvalues of the covari-

ance matrix, which correspond to the energy of the signal in the signal subspace. The

average of the weighted MUSIC spectrum across all the frequency bins is then used to

find the DOA estimate [33, 34].

While the implementation of coherent broadband processing is more complex than

incoherent methods, the resulting accuracy is higher when the sources have relatively flat

spectra [30, 32]. The aim of coherent processing is to translate the signal spaces for all
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frequency bands into a common signal subspace.

One coherent approach, introduced in [18], is the use of focusing matrices. In this ap-

proach an initial DOA estimate is found by applying narrowband techniques at a selected

frequency. This initial estimation step will be unable to resolve closely spaced sources,

leading to the focusing step, where the information from all the frequency bands is used

to focus in on the initial estimate. The frequency averaging of the covariance matrices

increases the effective number of snapshots, and consequently the original narrowband es-

timate can be correctly resolved [18, 19]. The focusing matrix used can greatly influence

the statistical characteristics of the DOA estimates [31], and different variations of the

original coherent focusing matrix method have been proposed [19, 31, 35].

3.3.2 Root-MUSIC

The Root-MUSIC algorithm is a variation of the original MUSIC algorithm and can be

applied in situations where a Uniform Linear Array (ULA) is used.

While the classical MUSIC algorithm searches for the points at which the steering

vector is orthogonal to the noise subspace, in Root-MUSIC a polynomial is instead formed

using the noise eigenvectors [36]. The DOA estimates are then determined from the roots

of this polynomial.

The M-P polynomials corresponding to the noise eigenvectors can be defined as [37]:

Dk (z) =
M∑

m=1

emkz
−(m−1), k = [P + 1, . . . ,M, ] . (3.32)

where emk are the elements of En.

The roots of each of these polynomials, zp = e−j(2)π∆
λ

cos(θp), are the signal zeros. As

zp = |zp| ej arg(zp), it can be seen that:

arg (zp) = (2)
π∆

λ
cos (θp) , θp = cos−1

(
λ

2pi∆
arg (zP )

)
. (3.33)

Define the polynomial:

Q (z) =

M∑

k=P+1

Dk (z)D∗
k

(
1

z∗

)
. (3.34)

The roots of Q (z) are the same as those of Dk (z). The null spectrum is obtained

by evaluating Dk (z) on the unit circle and so there are M double roots lying on the

unit circle. These roots correspond to the actual incident signals, and other roots can be

ignored.
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Under asymptotic conditions this algorithm performs comparably to the original MU-

SIC algorithm. However, with Root-MUSIC higher resolution is also possible in situations

of low SNR or where a limited number of snapshots is available. One of the main advan-

tages of this approach is that it eliminates the need for a numerical search in order to find

the maxima of the MUSIC spectrum.

3.3.3 Estimation of Signal Parameters via Rotational Invariance

Technique (ESPRIT)

The Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT)

algorithm is a subspace based technique that can be applied when the array configuration

meets specific requirements, namely that it can be decomposed into two sub-arrays, such

that each microphone in the first sub-array has a corresponding microphone in the second

sub-array [38]. These microphone pairs are identical in every way, but are separated from

each other physically by a known displacement vector ∆, of magnitude △.

The received signal vectors for the sub-arrays can be expressed as:

x1 (t) = As (t) + n1 (t) (3.35)

x2 (t) = AΦs (t) + n2 (t) . (3.36)

where Φ is the rotation operator relating the measurements of the sub-arrays, and is

a diagonal matrix with elements Φpp = e−jω2∆
cos(θp)

v , for p = 1, . . . P and as before θp is

the angle associated with the pth source.

The response matrix of the overall array, A can be expressed as [2]:

A =

[
A

AΦ

]
, (3.37)

and this can be exploited to obtain the estimates of the diagonal elements of Φ. This

allows us to find the DOA estimates without knowing A itself. We can now define a

unique, non-singular matrix T, such that:

Es = AT, (3.38)

where Es is defined in (3.25).

The invariance structure of the array allows for decomposition of Es into EX1 ∈ CM×P ,

and EX2 ∈ CM×P :
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Es =

[
EX1

EX2

]
=

[
AT

AΦT

]
. (3.39)

Defining the unique matrix F ∈ C2P×P with rank P , such that F spans the null-space

of the matrix given by [EX1|EX2], we can say that [38]:

0 = [EX1|EX2]F

= EX1F1 + EX2F2 (3.40)

= ATF1 + AΦTF2. (3.41)

We now introduce the matrix Ψ ≡ −F1F
−1
2 , which combined with (3.40) gives:

ATΨ = AΦT ⇒ ATΨT−1 = AΦ, (3.42)

and then, as long as A is full rank, we can say:

TΨT−1 = Φ. (3.43)

The eigenvalues of Ψ, [λ1, . . . λP ] are equal to the diagonal elements of Φ, i.e. λp = ϕp.

The signal parameters can then be obtained as nonlinear functions of these eigenvalues,

and an estimate of the DOA is therefore given by:

θ̂p = cos−1

(
c

2πf0∆
arg
{
ϕp

})
. (3.44)

In practical situations, the effects of additive noise and finite samples, means that it

will not be possible to find a matrix Ψ that exactly meets the criteria EX1Ψ = EX2.

Instead an approximation is found, using either Least-Squares (LS-ESPRIT) or Total

Least-Squares (TLS-ESPRIT) methods [2].

One of the main advantages of the ESPRIT algorithm is that it dramatically reduces

the computational and storage costs when compared to the MUSIC algorithm, as the

steering vector, A, need not be known and the search for the maxima of the spectrum

is eliminated. ESPRIT is also more robust to array imperfections than MUSIC, and

produces unbiased estimates, even in situations where the estimates from MUSIC show

some bias [38]. However, the variance of the ESPRIT estimates can be much larger than

the MUSIC variance due to the fact that less information about the array geometry is

used.
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3.3.4 Time Reversal

In recent years, the use of acoustic time reversal mirrors and the DORT method (French

acronym for decomposition of the time reversal operator) have been shown to be highly

accurate methods of focusing a sound field on either a single, or else multiple targets

(or scatterers) [39, 40]. The use of such techniques has been demonstrated in a wide

variety of applications, for example, underwater acoustics [41], focusing a sound field in

a reverberant room [42] and lithotripsy [43].

Iteration of the time reversal process has been shown to result in convergence on the

most reflective of the targets (or the source with the highest amplitude) [44]. However,

in situations where it is desirable to focus on less reflective targets, or on numerous tar-

gets simultaneously, the DORT technique, which is closely related to passive localization

techniques such as MUSIC, can be used [45–47]. The DORT method is based on eigende-

composition of the time reversal operator (TRO), and the first step in deriving the TRO

is to find the inter-element response matrix K (t). This matrix is measured by emitting a

short pulse from each array element in turn and measuring the resulting response across

the array. Then for transmit signal vector e (t), the output signal vector is r (t):

r (t) = K (t) ⊗ em (t) (3.45)

where ⊗ is the Kronecker operator.

Transforming equation (3.45) into the frequency domain, we get:

r (f) = K (f) e (f) (3.46)

r (f), K (f) and e (f) are now evaluated at a single frequency, usually the center frequency

of the transducers. For simplicity of notation, the K (f) will be denoted simply as K.

This leads to the definition of the time reversal operator (TRO) [48]:

TRO = KHK. (3.47)

The TRO can therefore be considered as an estimate, R̂K , of the covariance matrix

used in classical localisation techniques [48]. However, while these classical techniques such

as the MUSIC technique assume statistically uncorrelated sources and require averaging

of the measured data, the DORT method is active, (i.e. the elements of the array are

used to both transmit and receive), and deterministic [49, 50].

If the scatterers are assumed to be point-like, then the number of significant eigenvalues

of the TRO is equal to the number of scatterers present. The eigenvalue associated with

a target is proportional to the reflectivity of the scatterer and its position relative to
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the array [47]. The eigenvector vi, corresponding to the eigenvalue λi, gives the phase

information necessary to focus on the ith target. One of the main advantages of the

DORT method, is that, like all time-reversal processing techniques, it takes advantage of

environmental multi-path in order to increase the effective SNR [49], as the presence of

reverberation causes the effective array aperture to be increased.

The DORT method can be successfully applied in situations where the speed of sound

changes gradually as the signal travels through the propagation medium. However, one of

the basic assumptions underlying the time-reversal process is that the medium is lossless,

and the presence of absorption will lead to degradation of the resolution that can be

achieved. This has led to the introduction of amplitude compensation techniques [49],

which increase the effective SNR and consequently the resolution that can be achieved.

In [48] it was shown that the TRO can be regarded as a pseudo-covariance matrix,

and by using the TRO instead of the covariance matrix found in passive localization

techniques, methods such as MUSIC and ML can be applied to localization using an

active array. It was also shown when these techniques were used with the TRO, the

resolution achieved was higher than that achieved using the DORT method.

3.4 Maximum Likelihood (ML) Estimation

Parametric methods exploit the underlying data model of the received signal and offer an

alternative approach to the source localization problem. The Maximum Likelihood (ML)

technique is the best known and most frequently used of these approaches.

The principle of the ML approach is very simple, a search is performed across all the

possible DOAs to find the parameter, θ, that maximizes the likelihood function fx(θ)

where x is the observation vector. This effectively means we are searching to find the

parameter values that make the probability of the observations as large as possible. Since

fx(θ) depends on the observations, the ML is therefore a function of the observations.

The value of fx=x0(θ)dx gives the probability of observing x, in the region of volume dx

centered around x0, as a function of θ.

Using the signal model given in equation (3.11) and assuming the signal is received in

the presence of additive white complex Gaussian noise, the observation PDF at a given

frequency fc can be written as:

fx(η) =
1

(πσ2)M
e−

‖X(fc)−A(fc,θ)S(fc)‖2

σ2 , (3.48)

where η is the vector of unknown signal parameters, and η = [θ S σ2]
T
.
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As it is more convenient to find the ML estimate as a minimizing argument of the

negative log-likelihood function, the following expression is used:

Λ (Y; η) , − ln {fx (Y; η)} , (3.49)

Λ (Y; η) = M ln π +M ln σ2 +
1

σ2
‖X (fc) −A (fc, θ)S (fc)‖2 . (3.50)

The ML estimate of the parameters is then given by:

η̂ = arg min
θ,S,σ2

{
M lnσ2 +

1

σ2
‖X (fc) −A (fc, θ)S (fc)‖2

}
. (3.51)

An estimate of σ2 can be found using:

σ̂2 =
1

M

(∥∥∥X (fc) − A
(
fc, θ̂

)
Ŝ (fc)

∥∥∥
2
)
, (3.52)

which involves the non-linear least squares problem of minimising the following term in

θ and S:

‖X (fc) − A (fc, θ)S (fc)‖2 , (3.53)

This criterion is quadratic in relation to S, which can be estimated by:

S = A† (fc, θ)X (fc) . (3.54)

where: A† (θ) is the pseudo-inverse of A.

A† (fc, θ) =
(
AH (fc, θ)A (fc, θ)

)−1
A (fc, θ)H . (3.55)

Then, defining:

PA = A (fc, θ)A† (fc, θ) , (3.56)

P⊥
A = I −PA, (3.57)

the DOA estimate is given by:

θ̂ = argmin
θ

Tr
{
P⊥

AR̂
}

(3.58)

where:

R̂ = X (fc)X
H (fc) . (3.59)



3.4. Maximum Likelihood (ML) Estimation 38

One of the main advantages of the ML estimator is the fact that it is asymptotically

efficient, where asymptotic can mean high SNR [9] and/or large number of snapshots [8,

p. 500]. However, for practical localization schemes the number of snapshots available is

finite, and therefore in order to determine the conditions necessary for the ML estimator to

become unbiased and attain minimum variance the effect of the SNR is instead considered

[51, 52]. For the case of using the MLE to obtain a time delay estimation, it is shown

that the SNR necessary in order to attain the CRB is much larger than the kurtosis of

the expected signal’s energy spectrum [51]. In [52], it is also shown that for localization

of a source in range and depth in a shallow water waveguide, once the Signal to Additive

Noise Ratio (SANR) drops below 0dB the variance of the localization estimates obtained

by the ML estimator will be greatly underestimated by the CRB.

In order to calculate the deterministic ML estimates the non-linear P -dimensional

optimization problem in (3.58) must be solved. In order for the problem to converge

rapidly to the true solution the choice of initial value used is very important. If this value

is reasonably accurate, it is usually possible to find the true minimum quite rapidly using,

for example, a Gauss-Newton technique [53]. On the other hand though, if the initial

guess is not sufficiently accurate the optimization step may converge on a local minimum

and the desired global minimum may never be found.

In order to obtain a suitable initial DOA estimate, one of the computationally efficient

spectral-based methods discussed previously may be used. Choice of the method used,

will however, determine the type of situation that the overall estimation method can deal

with, e.g. if MUSIC is used to provide an initial estimate, then coherent signals will once

again cause problems. In source tracking, the estimate of the previous frame may be used

as the initial estimate of the next frame [54].

An alternative to using a multi-dimensional search is use of an alternating projection

method [11, 55]. This approach, which is discussed in detail in chapter 5, breaks down the

multidimensional parameter search into a sequence of signal source parameter searches,

resulting in fast convergence rates. The resulting localization method has also been shown

to demonstrate an improvement on previously proposed methods when applied to the case

of unknown or inaccurate sensor locations [11, 56].

While these optimization techniques increase the speed of the ML algorithm, the

computational time needed to search through each possible angle of arrival makes ML

estimation unsuited to most practical localization schemes. This is especially true when

operating in the frequency domain as the ML estimate must be found individually for

each frequency.
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3.4.1 Expectation Maximization (EM) Algorithm

The Expectation Maximization (EM) algorithm is a general method for solving ML esti-

mation problems. It was proposed as a source localisation method in [57] and [58], with

the objective of simplifying the computations involved in ML localization. This reduction

is achieved by decoupling the multi-dimensional search associated with the direct ML ap-

proach into searches in smaller-dimensional parameter subspaces, resulting in considerable

simplification of the computations involved [57–59].

The basis of the algorithm is to decompose the observed data into their signal compo-

nents and then individually estimate the parameters of each of these signal components.

These estimates are then used to improve the decomposition of the observations, and the

process is iterated until the algorithm converges to a stationary point of the likelihood

function, with each iteration improving the likelihood of the estimated parameters.

While the EM algorithm was originally developed for narrowband signals, extension

to broadband is performed by transforming the signals into the frequency domain as

described for the other narrowband algorithms [60, 61]. The received signal vector at time

t and frequency fc, x (fc, t) = [X1 (fc, t) , . . . ,XM (fc, t)]
T , is then modelled as before:

x (fc, t) = A (fc, θ) s (fc, t) + n (fc, t) , (3.60)

where:

s (fc, t) = [S1 (fc, t) , . . . , SP (fc, t)]
T (3.61)

n (fc, t) = [N1 (fc, t) , . . . ,NM (fc, t)]
T . (3.62)

Firstly, the received signal vector is decomposed into vectors corresponding to each

sound source yp (fc, t) as:

x (fc, t) =
P∑

p=1

yp (fc, t) = Hy (fc, t) , (3.63)

where yp (fc, t) = a (θp)S (fc, t) + np (fc, t) , and y (fc, t) =
[
y1 (fc, t)

T , . . . ,yP (fc, t)
T
]T
,

and H = [I, . . . , I] . The decomposition of the noise vector np (f, t) is an arbitrary decom-

position, satisfying
∑P

p=1 np (fc, t) = n (fc, t) , and E
[
np (fc, t)nH

p (fc, t)
]

= σ2

P
IM. The

complete data set is then defined as the set of decomposed received signal vectors:

Y (fc) = [y (fc, 1) , . . . ,y (fc, N)] . (3.64)

The term ”‘incomplete data”’ is used to describe the actual snapshots x (f, t).
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The log-likelihood of the complete data can now be expressed as:

Lc (θ,Ks;Y) =
P∑

p=1

[
−N log detKyp −

N∑

t=1

yH
p (fc, t)K

−1
yp yp (f, t)

]
, (3.65)

where Kyp denotes the true covariance of the observations:

Kyp = γpa (θp)a
H (θp) +

σ2

P
IM, (3.66)

and the sample covariance of the observations is defined as:

Cyp =
1

N

N∑

t=1

yp (fc, t)yH
p (fc, t) (3.67)

The EM algorithm finds the conditional expectation of Cyp in the E-step, and then

uses this to maximize the log likelihood in the M-step. The algorithm is implemented as

follows:

E-step:

Cq
yp ≡ E

[
Cyp|Cx; K̂

q
y

]
(3.68)

= K̂q
yp − K̂q

yp

(
K̂q

x

)−1

K̂q
yp + K̂q

yp

(
K̂q

x

)−1

Cx

(
K̂q

x

)−1

K̂q
yp, (3.69)

where the superscript q denotes the iteration number, and K̂q
x and K̂q

yp are the model

covariance estimations at iteration q, defined as:

K̂q
x =

P∑

p=1

K̂q
yp (3.70)

K̂q
yp = γ̂q

pa
(
θ̂

q

p

)
aH
(
θ̂

q

p

)
+
σ2

P
IM. (3.71)

M-step:

θ̂
q+1

p = argmax
θp

aH (θp)Cq
ypa (θp)

|a (θp)|2
(3.72)

(3.73)

γ̂q+1
p =

aH
(
θ̂

q+1

p

)
Cq

ypa
(
θ̂

q+1

p

)

∣∣∣a
(
θ̂

q+1

p

)∣∣∣
4 . (3.74)

As the EM algorithm is based on the ML estimator, it also has the attractive properties

of consistency, asymptotic unbiasedness and asymptotic minimum variance. It has been
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shown to provide accurate estimates in situations of small sample size, and/or low SNR

where other localization methods fail [58]. It has also been shown to be an accurate

method for estimation of the azimuth, elevation and range, of near-field unknown but

deterministic sources [59].

While the EM algorithm offers a clear improvement over the ML estimator in computa-

tional speed, the simultaneous update of all parameters can lead to slow convergence [62].

Difficulties may also arise with the maximization step of the EM algorithm when smooth-

ness penalties, which may be necessary with a very large parameter space, are used.

In [62], the Space-Alternating Generalized Expectation-Maximization (SAGE) Algo-

rithm is proposed, and an extension to the case of broadband signals is given in [63].

SAGE is a variant of the EM algorithm that involves sequential update of the parameters

thereby increasing the rate of asymptotic convergence. In order to update the parameters

sequentially, the algorithm alternates between several hidden-data spaces, updating a sub-

set of the parameter vector each time. The use of a separate hidden-data space for each

parameter, in this manner, automatically decouples the parameter updates, resulting in

a simpler maximization step, and eliminating problems when using smoothness penalties.

The SAGE algorithm has been shown numerically to result in improved convergence

rates when compared to the original EM algorithm [64, 65]. However, it has also been

demonstrated that SAGE may become unstable for low SNR and small number of snap-

shots. The sensitivity of the SAGE algorithm to initial estimates is also greater than the

sensitivity of the EM algorithm when estimating the direction of arrival of closely located

sources [64, 65].

3.5 Subspace Fitting Techniques

In recent years subspace fitting techniques have been developed, with the aim of combin-

ing the low computational complexity of subspace based techniques with the statistical

properties of the parametric approach [53, 66–68]. Once again these techniques can be

implemented in the frequency domain in the case of broadband signals, and as with all

subspace techniques they are based on the structure of the covariance matrix R [2]:

R = A (fc, θ)RsA
H (fc, θ) + σ2I. (3.75)

Then, as discussed in section 3.3, if there are P sources present, Rs has rank P , and

Es, defined in equation (3.25), spans the P -dimensional signal subspace. Therefore, the

(P × P ) matrix T must exist such that:
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Es = A (fc, θ)T. (3.76)

This equation forms the basis of the subspace fitting techniques. In practice R is

unknown and must be estimated, and the eigendecomposition of the estimated covariance

matrix R̂ is given by [69, 70]:

R̂ = ÊsΛsÊ
H
s + σ2

nÊnÊ
H
n . (3.77)

Because of this estimation, there is no value of θ which will result in an exact solution

to Ês = A (fc, θ)T. Instead, the estimates of θ and T are given by finding the least

squares solution of the following:

θ̂, T̂ = argmin
θ,T

∥∥∥Ês − A (fc, θ)T
∥∥∥

2

W
(3.78)

= argmin
θ,T

{[
Ês −A (fc, θ)T

]
W
[
Ês −A (fc, θ)T

]H}
, (3.79)

where W is a positive, semi-definite weighting matrix, with optimal value [67, 68]:

Wopt =
(
Λ̂s − σ̂2

nI
)2

Λ̂−1
s , (3.80)

and σ̂2
n is a consistent estimate of the noise variance.

From (3.78), it can be seen that the solution of the least squares problem results in

the following estimated values of T and θ:

T̂ = A† (fc, θ) Ês (3.81)

θ̂
SSF

= argmin
θ

VSSF (θ) , (3.82)

where:

VSSF (θ) =
∥∥∥Ês − A (fc, θ)A† (fc, θ) Ês

∥∥∥
2

W
(3.83)

=
∥∥∥P⊥

A (fc, θ) Ês

∥∥∥ (3.84)

= Tr
{
P⊥

A (fc, θ) ÊsWÊH
s

}
. (3.85)

The SSF (or Weighted Subspace Fitting (WSF)) estimate of θ is therefore the vector of

DOA values that results in the subspaces of Ês and A (fc, θ) being as close as possible.
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The second of the subspace fitting techniques is called Noise Subspace Fitting (NSF),

and is based on the MUSIC relation given in equation (3.28). The estimate of θ is then

given by:

θ̂
NSF

= arg min
θ

VNSF (θ) , (3.86)

where:

VNSF (θ) =
∥∥∥ÊH

n A (fc, θ)
∥∥∥

2

U
(3.87)

= Tr
{
ÊH

n A (fc, θ)UAH (fc, θ) Ên

}
(3.88)

= Tr
{
UAH (fc, θ) ÊnÊ

H
n A (fc, θ)

}
, (3.89)

and in this case U is the weighting matrix. As in the case of the MUSIC technique, this

method is not accurate in the presence of coherent signals.

In the special case of a ULA, the structure of the array can once again be used to

reduce the necessary computations when using SSF techniques. This approach is similar

to the Root-MUSIC algorithm; instead of parameterizing A, the null-space of AH is

parameterized, thereby once again eliminating the need for a numerical search.

3.6 Time Delay Estimation (TDE)

Time Delay Estimation (TDE) is an indirect approach to finding the location of a source,

based on a two stage algorithm. Firstly, the time delay associated with a signal arriving

at a pair of microphones is estimated. The delay estimates are converted to distances

and a Least Squares (LS) fit is then usually applied to find the source location. In this

approach, the time delays for different sensor pairs are estimated directly, making a search

over the entire source location space unnecessary.

TDE techniques are computationally far less demanding than beamforming or para-

metric techniques, a big advantage when designing practical localization systems. How-

ever, the resolution that can be achieved using TDE techniques is severely limited by

the temporal sampling frequency and the inter-microphone spacing. The advantages and

disadvantages of these techniques are discussed in full in chapter 5.

The most common method for estimating the Time Difference of Arrival (TDOA)

between a signal arriving arriving at two microphones, is by use of correlation-based

techniques, in particular the General Cross Correlation (GCC) method [71]. If x1 (t) and

x2 (t) are the signals received by microphones 1 and 2 of a microphone pair due to a source

p emitting a signal sp (t) then the received signals can be expressed as:
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x1 (t) = sp (t) + n1 (t) (3.90)

x2 (t) = αsp (t+ δτ p) + n2 (t) (3.91)

where: δτ p is the TDOA, n1 (t) , n2 (t) are the noise signals received by sensors 1 and 2

respectively, and are assumed to be jointly stationary, uncorrelated and also uncorrelated

with s (t) .

Defining X1 (ω) andX2 (ω) as the frequency transformations of x1 (t) and x2 (t) respec-

tively, the cross-correlation of the received signals Rx1,x2 (δτ ) is calculated as the inverse

Fourier transform of the received signal cross spectrum X1 (ω) and X∗
2 (ω), scaled by a

weighting function, W (ω). The weighting function is selected to compensate for signal

degradation arising from background noise or reverberation. The time delay estimate,

δ̂τ p is given by the lag value that maximises the cross-correlation between the x1 (t) and

x2 (t)

Rx1,x2 (δτp) = F−1 {W (ω)X1 (ω)X∗
2 (ω)} , (3.92)

where the weighting function W (ω) is selected in order to minimize performance

degradation due to background noise or reverberation depending on the environment in

question. The time-delay estimate is then the value that maximises the correlation:

δ̂τ p = argmaxδτp
[Rx1,x2 (δτ p)] , (3.93)

and the corresponding DOA estimate is given by:

θ̂TDE = cos−1

{
vδ̂τp

fs∆

}
. (3.94)

From equation (3.94) it can be seen that interpretation of the time delay as a DOA

estimate is reliant on knowledge of the propagation speed of the signal. While the propaga-

tion speed is usually assumed to be known [72] this is not always the case, and in recent

years, methods have been proposed for estimating the Time Delay of Arrival (TDOA)

when the propagation speed is unknown [73].

As discussed in section 3.2.1 one of the main disadvantages of this approach is the

severe limitation on the resolution achievable due to the fact that delay differences less

than the temporal sampling rate cannot be resolved. This quantization effect is especially

serious for arrays with small inter-microphone spacing as the true delays may be less than a

sample unless operating at high sampling frequencies. A possible approach for broadband
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signals is to increase the inter-microphone spacing, the maximum allowable distance before

phase-wrapping occurs depends on the fundamental frequency, the characteristics of the

incident signal and the levels of reverberation. In [74] it was shown that for certain singing

voices the modulating effects of vibrato result in the inter-microphone spacing being

determined by the low vibrato or modulating frequency as opposed to the fundamental

frequency of the note being sung.

In the presence of background noise a Maximum Likelihood (ML) weighting as given

in equation (3.95) is applied that uses estimates of the background noise present in order

to emphasize frequency components with higher SNR [71]. This method is called the

Generalized Cross-Correlation (GCC) method and is the most widely used TDE technique.

WML =
|X1 (ω)| |X2 (ω)|

|N1 (ω)|2 |X2 (ω)|2 + |N2 (ω)|2 |X1 (ω)|2
(3.95)

The GCC performs well in moderately noisy environments, however in the case of low

SNR the accuracy of the delay estimates will be significantly reduced [71].The performance

also rapidly degrades in the presence of reverberation as the mathematical model is based

on the assumption of free space propagation, and it relies on the spectral characteristics

of the received signal, which are modified by multipath propagation. One approach to

improving performance of the GCC filter, which has recently been investigated is the use

of any prior knowledge about the signal structure, such as the harmonic structure of the

speech signal [12] or the characteristics of a singing signal [75].

The phase correlation method (PHAT) reduces the effect of multi-path propagation by

flattening the magnitude spectrum and thereby de-emphasizing the frequency-dependent

weightings:

WPHAT =
1

|X1 (ω)X∗
2 (ω)| . (3.96)

This normalization weighting function places equal emphasis on each component of

the cross-spectrum phase [71] and results in improved accuracy under mildly reverberant

conditions [76], while also having the benefit of requiring no background noise estimate.

However, in highly reverberant environments, serious inaccuracies in the TDOA estimates

will still arise, as the reverberation produces spurious peaks that have greater amplitude

than the peak due to the true source. These effects are investigated in [77] and [78]. The

performance of the PHAT method is also poor in the presence of background noise due

to accentuation of components with poor SNR.

Previous attempts to improve the overall confidence level of TDOA estimates have in

some situations been successful. However, in highly reverberant or noisy environments

large errors in the delay estimates can be expected. By using three separate reliability
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criteria the confidence of every TDOA estimate is found in [79]. These reliability criteria

are based on both psycho-acoustic knowledge and properties of the GCC function itself,

and provide a practical analysis of the quality of the TDOA estimates achieved.

A technique called ”‘hemisphere sampling”’ which improves the robustness of TDE

techniques to reverberation and low SNR was recently proposed in [17, 80, 81]. The ini-

tial step in this approach consists of computing the cross-correlation, Rx1,x2 (δτp) (equa-

tion 3.92). For each microphone pair a hemisphere surrounding the microphones is then

mapped out from the source location corresponding to each value of the correlation. The

likelihood of a given source location is equal to the value of the correlation corresponding

to this location. The results from each microphone pair are mapped onto the hemisphere

in this manner and the estimate of the source location is given by the peak of the entire

hemisphere. As the decision on the source location is delayed and all the information

available is used, the resulting estimation technique is more robust than traditional delay

estimation techniques.



4
Model Order Determination

4.1 Introduction

The initial step in array processing is the determination of the number of sources present,

called the model order determination step. Once the number of sources, or the model

order, is known, estimation of the required parameters can be performed. While successful

determination of the number of sources is important for all DOA estimation schemes, it

is especially important in order to obtain good performance for high-resolution direction

finding estimators.

A lot of work has been published concerning the problem of model order selection.

Estimating the number of sources is traditionally thought of as being equivalent to the

determination of the number of eigenvalues of the covariance matrix that differ in value

from the smallest eigenvalue [82]. Such an approach leads to a rank reduction principle

in order to separate the noise from the signal eigenvalues [83]. Anderson [84] gave a

hypothesis testing procedure based on the confidence interval of the noise eigenvalue, in

which a threshold value must be assigned subjectively. He showed that the ratio of the

log-likelihood to the number of snapshots is asymptotic to a χ2 distribution. For a small

number of snapshots, James introduced the idea of “modified statistics” [85]. In [86],

Chen et al. proposed a method based on prior knowledge of the observation probability

47
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density function that detects the number of sources present by setting an upper bound

on the value of the eigenvalues.

For thirty years, Information Theoretic Criteria (ITC) approaches have been widely

suggested for detection of multiple sources [87]. The best known of this test family

are the Akaike Information Criterion (AIC) [88] and the Minimum Description Length

(MDL) [69, 89, 90].

These tests are based on a decomposition of the correlation matrix Rx into two or-

thogonal components, the signal and noise subspaces, and are used here as benchmarks.

The aim of the AIC method is to determine the order of a model using information

theory. Using the expression given in [69] for the AIC, the number of sources is the integer

P̂ which, for m ∈ {0, 1, . . . ,M − 1}, minimizes the following quantity:

AIC(m) = −N(M −m) log

(
g(m)

a(m)

)
+m(2M −m), (4.1)

where g(m) and a(m) are respectively the geometric and arithmetic means of the (M−m)

smallest eigenvalues of the covariance matrix of the observation. The first term is the log-

likelihood residual error, while the second is a penalty for overfitting. This criterion does

not correctly estimate the number of sources with a probability of one, even with an

infinite number of samples.

The MDL approach is also based on information theoretic arguments, and the selected

model order is the one which minimizes the following expression:

MDL(m) = −N(M −m) log

(
g(m)

a(m)

)
+

1

2
m(2M −m) logN. (4.2)

The form of the MDL used here is that given in [69]. The difference between the AIC and

the MDL methods is in the penalty term which has been modified in the MDL to yield

asymptotic consistency.

The AIC is not consistent and tends to over-estimate the number of sources present,

even at high Signal to Noise Ratio (SNR) values. While the MDL method is asymptotically

consistent, it tends to under-estimate the number of sources at low and moderate SNR.

In [91] a theoretical evaluation is given of the probability of over- and under-estimation of

source detection methods such as the AIC and MDL, under the assumption of asymptotic

conditions.

In an effort to moderate the behaviour of the AIC and MDL methods, Wong et

al. proposed a modified ITC approach in [92], in which an alternative to the likelihood

function used in the AIC and MDL approaches is proposed. This approach is based on

the observation that the eigenvectors are irrelevant in determining the number of sources
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present and instead the necessary information is contained in the eigenvalues. This leads

to the use of the marginal pdf of the observed eigenvalues as the log-likelihood function.

In [82] a general ITC is proposed in which the first term of the criterion can be selected

from a set of suitable functions. Based on this method Wu and Fuhrmann then proposed

a parametric technique as an alternative method of defining the first term of this criterion.

Using Bayesian methodology Djurić then proposed an alternative to the AIC and MDL

methods [93, 94] in which the penalty against over-parameterization was no longer inde-

pendent of the data. Some authors have also investigated the possible use of eigenvectors

for model order selection [95, 96], but they generally suffer from the need to introduce prior

knowledge. More recently, Wu et al. [97] proposed two ways of estimating the number of

sources by drawing Gerschgorin radii.

These algorithms work correctly when the noise eigenvalues are similar or closely

clustered. However for a small sample size, where a sample is defined as small when the

number of snapshots is of the same order as the number of microphones, this condition

is no longer valid and the profile of noise eigenvalues arranged in decreasing order can

instead be seen to have an approximately exponential profile.

Recently this problem of detecting multiple sources was re-addressed by looking di-

rectly for a gap between the noise and signal eigenvalues [98]. In this way - and as an

alternative to the traditional approaches - a method of obtaining an estimate of the model

order based on the profile of the ordered noise eigenvalues was proposed in [1]. Based on

this test a method of determining the number of significant targets (or reflective sources)

in time reversal imaging was proposed in [99]. Assuming that the smallest eigenvalue is

a noise eigenvalue, the exponential profile of the ordered noise eigenvalues can be used

to find the theoretical profile of the noise-only eigenvalues. Starting with the smallest

eigenvalue a recursive algorithm is then applied in order to detect a mismatch greater

than a threshold value between each observed eigenvalue and the corresponding theoreti-

cal eigenvalue. The index where such a mismatch first occurs is taken to equal the number

of sources present.

The test proposed in [99] uses thresholds obtained from the empirical dispersion of

ordered noise eigenvalues as discussed in section 4.5.1. An alternative method of deter-

mining the corresponding thresholds for a pre-defined false alarm probability as discussed

in section 4.5.2 was then proposed in [70], and the improvement of the proposed method

compared to some of the classical tests was demonstrated. In [100] the proposed method

was seen to perform significantly better than the classical tests when determining the

number of wideband acoustical sources using experimental results taken in a reverberant

environment.
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4.2 Problem Formulation

4.2.1 Principle of statistical tests based on eigenvalue profile

Using the signal model given in equation (2.22), the noiseless observations r(t) are defined

as a linear combination of a(θ1), ..., a(θP ). Assuming independent source amplitudes s(t),

the random vector r(t) spans the whole subspace generated by the steering vectors. As

discussed in chapter 3 this is the “signal subspace”. Assuming P < M and no antenna

ambiguity, the signal subspace dimension is P . Consequently the number of non-zero

eigenvalues of Rr is equal to the number of sources P , with (M − P ) eigenvalues being

zero.

Now, in the presence of white noise, according to (3.20), Rx has the same eigenvectors

as Rr, with eigenvalues λx = λr + σ2; and σ2 is a degenerate order (M − P ) eigenvalue.

Then, from the spectrum of Rx with eigenvalues in decreasing order, it becomes easy to

discriminate between signal or noise eigenvalues and determination of the model order

would be an easy task.

In practice, Rx is unknown and must instead be estimated using:

R̂x =
1

N

N∑

t=1

x(t)x(t)H , (4.3)

where N is the number of snapshots available. R̂x involves averaging over the number

of snapshots available and therefore R̂x → Rx, as N → ∞, resulting in all the noise

eigenvalues being equal to σ2. However, when taken over a finite number of snapshots, the

sample matrix R̂x 6= Rx. In the spectrum of ordered eigenvalues, the “signal eigenvalues”

are still identified as the P largest ones. But, the noise eigenvalues are no longer equal to

each other, and the separation between the signal and noise eigenvalues is not clear (except

in the case of high SNR, when a large separation can be observed between signal and noise

eigenvalues), making discrimination between signal and noise eigenvalues a difficult task.

4.2.2 Qualification of order estimation performance

Letting P equal the number of sources and P̂ the estimated model order, three mutually

exclusive propositions and their corresponding probabilities are considered:

P̂ = P : correct detection, Pd = Prob
[
P̂ = P

]

P̂ > P : over-estimation, Pfa = Prob
[
P̂ > P

]

P̂ < P : under-estimation, Pnd = Prob
[
P̂ < P

] (4.4)



4.3. Eigenvalue Profile Of The Correlation Matrix Under The Noise-Only

Assumption 51

Various methods can now be compared on the basis of Pd and Pfa values for various

numbers of sources, locations, and numbers of snapshots.

Usually, a detection threshold may be adjusted to provide the best compromise be-

tween detection and false alarm. In such situations, a common practice is to set the

threshold for a given value of Pfa (1% for instance) and to compare the corresponding

values of Pd for different methods. The probabilities Pd and Pfa will be estimated from

statistical occurrence rates by Monte Carlo simulations.

4.3 Eigenvalue Profile Of The Correlation Matrix Un-

der The Noise-Only Assumption

As the noise eigenvalues are no longer equal for a small sample size it is necessary to

identify the mean profile of the decreasing noise eigenvalues. The eigenvalue profile of the

sample covariance matrix for the noise-only situation R̂n = 1
N

∑N

t=1n (t) .n (t)H is therefore

considered. The distribution of the matrix R̂n is a Wishart distribution [101] with N

degrees of freedom. This distribution can be seen as a multivariate generalization of the

χ2 distribution. It depends on N , M and σ2 and is sometimes denoted by WM (N, σ2I).

In order to establish the mean profile of the ordered eigenvalues (denoted as λ1, ..., λM)

the joint probability of an ordered M-tuplet has to be known. The joint distribution of

the ordered eigenvalues is then [101]

p (λ1, ..., λM) = α

(
− 1

2σ2

M∑

i=1

λi

)(
M∏

i=1

λi

) 1
2
(N−M−1) M∏

i>j

(λj − λi) , (4.5)

where α is a normalization coefficient. The distribution of each eigenvalue can be found

[102], but this requires zonal polynomials and appears to produce unusable results.

Instead an alternative approach is used which consists of finding an approximation of

this profile by conserving the first two moments of the trace of the error covariance matrix

defined by:

Ψ = R̂n − Rn = R̂n − E
{
R̂n

}
= R̂n − σ2I. (4.6)

It follows from E {tr [Ψ]} = 0, that

Mσ2 =
M∑

i=1

λi (4.7)

Note that Ψij = 1
N

N∑
t=1

ni(t).n
∗
j (t) − σ2δij. It is easy to show that E

{
‖Ψij‖2} = σ4

N
in

the case of white Gaussian complex circular noise. Since the trace of a matrix remains
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unchanged when the base changes, it follows that

E

{
tr
(
R̂n − Rn

)2
}

=
∑

i,j

E
{
‖Ψij‖2} = M2σ

4

N
=

M∑

i=1

(
λi − σ2

)2
(4.8)

The decreasing model retained for the approximation is:

λi = λ1r
i−1
M,N , (4.9)

with 0 < rM,N < 1. Of course, rM,N depends on M and N , but is denoted by r for

simplicity. From equation (4.7) it can be seen that:

λ1 = M
1 − r

1 − rM
σ2 = MJMσ

2, (4.10)

where

JM =
1 − r

1 − rM
. (4.11)

Considering that (λi − σ2) = (MJMr
i−1 − 1) σ2, the relation (4.8) gives

M +N

MN
=

(1 − r)
(
1 + rM

)

(1 − rM) (1 + r)
. (4.12)

From both simulation results shown in figure 4.1, and experimental results reported in

literature (for example see [103]) the decreasing model of the noise-only eigenvalues can be

seen to be approximately exponential. Setting r = e−2a (a > 0) (4.10) can be re-expressed

as:
M. tanh (a) − tanh (Ma)

M. tanh (Ma)
=

1

N
, (4.13)

where tanh is the hyperbolic tangent function. An order-4 expansion gives the following

bi-quadratic equation in a:

a4 − 15

M2 + 2
a2 +

45M

N (M2 + 1) (M2 + 2)
= 0 (4.14)

for which the positive solution is given by

a(M,N) =

√√√√1

2

{
15

M2 + 2
−
√

225

(M2 + 2)2
− 180M

N (M2 − 1) (M2 + 2)

}
. (4.15)

As the calculation of the noise-only eigenvalue profile takes into account the number

of snapshots N , this profile is valid for all sample sizes, with the exponential tending to

a horizontal profile as N → ∞ and the noise eigenvalues become equal.
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(a) M = 5, N = 5
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(b) M = 5, N = 20
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(c) M = 5, N = 100
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(d) M = 5, N = 1000

Figure 4.1: Profile of the ordered eigenvalues under the noise-only assumption for 50

independent trials, with M=5 and various values of N.
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Figure 4.2: Profile of ordered noise eigenvalues in the presence of 2 sources, and 10

microphones. The ordered profile of the observed eigenvalue is seen to break from the

noise eigenvalue distribution, when there are sources present.

4.4 A Recursive Exponential Fitting Test (EFT)

4.4.1 Test principle

The expressions for the noise-only eigenvalue profile can now be extended to the case

where the observations consist of P non-coherent sources corrupted by additive noise.

Under these conditions the covariance matrix can be broken down into two complementary

subspaces: the source subspace Es of dimension P , and the noise subspace En of dimension

Q = M − P . Consequently, the profile established in the previous section still holds for

the Q noise eigenvalues, and the theoretical noise eigenvalues can be found by replacing

M with Q in the previous expressions for the noise-only eigenvalue profile.

The proposed test then finds the highest dimension dn of the candidate noise subspace,

such that the profile of these dn candidate noise eigenvalues is compatible with the theo-

retical noise eigenvalue profile. The main idea of the test is to detect the eigenvalue index

at which a break occurs between the profile of the observed eigenvalues and the theoretical

noise eigenvalue profile provided by the exponential model. Figure 4.2 shows how a break

point appears between the signal eigenvalues and the theoretical noise eigenvalue profile,

while the observed noise eigenvalues are seen to fit the theoretical profile.
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Firstly, an eigen-decomposition of the sample covariance matrix is performed and the

resulting eigenvalues λ1, . . . , λM , called the observed eigenvalues in the following discus-

sion, are arranged in order of decreasing size. Beginning with the smallest observed

eigenvalue λM , this is assumed to be a noise eigenvalue, giving the initial candidate noise

subspace dimension dn = 1. Then using λM , dn = 1 and the prediction equations (4.10)

the next eigenvalue of the theoretical noise eigenvalue profile λ̂M−1 can be found [1]:

λ̂M−dn
= (dn + 1)Jdn+1σ̂

2, (4.16)

with Jdn+1 =
1 − rdn+1,N

1 − (rdn+1,N)dn+1
, (4.17)

and σ̂2 =
1

dn + 1

dn∑

i=0

λM−i. (4.18)

Now taking both λM and λ̂M−1 to be noise eigenvalues, corresponding to a candidate

noise subspace dimension dn = 2, equations (4.16)-(4.18) are applied again to predict

λ̂M−2.

These steps are then repeated, and for each step the candidate noise subspace dimen-

sion dn is increased by one. Then taking all the previously estimated noise eigenvalues, the

next noise eigenvalue in the theoretical profile λ̂M−dn
is found. this process is continued

until dn = M − 1, and the M eigenvalues of the theoretical noise-only profile, λ̂1, . . . , λ̂M

have been calculated, (where λ̂M = λM).

The following two hypotheses are defined:

Hdn+1 : λM−dn
is a noise eigenvalue. (4.19)

Hdn+1 : λM−dn
is a signal eigenvalue. (4.20)

Then, starting with the smallest eigenvalue pair (that are not equal) λ̂M−1 and λM−1,

the relative distance between each of the theoretical noise eigenvalues and the corre-

sponding observed eigenvalue is found, and compared to the threshold, ηdn
found for that

eigenvalue index, equations (4.21) and (4.22). Selection of a suitable threshold is discussed

in sections 4.5.

Hdn+1 :

∣∣∣∣∣
λM−dn

− λ̂M−dn

λ̂M−dn

∣∣∣∣∣ ≤ ηdn
(4.21)

Hdn+1 :

∣∣∣∣∣
λM−dn

− λ̂M−dn

λ̂M−dn

∣∣∣∣∣ > ηdn
(4.22)
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If the relative difference between the theoretical noise eigenvalue and the observed eigen-

value is less than (or equal to) the corresponding threshold the observed eigenvalue

matches the theoretical noise-only eigenvalue profile, and so it is deemed to be a noise

eigenvalue, which is the case shown by equation (4.21).

The next eigenvalues λ̂M−2 and λM−2 are then compared in the same manner. This

process continues until a pair of eigenvalues λ̂M−dn
and λM−dn

, whose relative difference

is greater than the corresponding threshold as shown in equation (4.22), is found.

4.4.1.1 Note on the complexity

The proposed EFT method requires calculation of the sample correlation matrix for each

set of observations. An eigenvalue decomposition of this matrix must then be performed

and the smallest of the observed eigenvalues is used to predict the theoretical noise-only

eigenvalue profile. The computational cost of the EFT method is therefore of the same

order as that of the AIC and MDL tests.

4.5 Computation of Thresholds

4.5.1 Using the empirical distribution of the noise-only eigen-

value profile

In many situations a practical approach to selecting a suitable threshold ηdn
for each

step, is to consider the empirical distribution of the noise-only eigenvalue profile. This

is emphasized in figure 4.3, where the large dots denote the mean value of each ordered

eigenvalue empirically obtained over 10000 realizations. Assuming a normal distribution

for each ordered eigenvalue, this figure reports the width corresponding to a six standard

deviation truncation. For clarity of presentation, the figure only shows a few realizations,

linking the corresponding eigenvalues. The threshold for each step, dn, is chosen as half

the width of the corresponding eigenvalue in the noise-only distribution. It should be

noted that these relative ηdn
are independent of the noise power.

4.5.2 Selecting a threshold to ensure a pre-determined false

alarm probability is observed

Alternatively it may be desirable to determine the thresholds to ensure that a preset

probability of false alarm Pfa is observed. From the definition of Pfa given in equation

(4.4) the expression for the Pfa in the noise-only case can be decomposed as follows:
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Figure 4.3: Profile of ordered noise eigenvalues for several realizations. The circles

through the centre show the mean value for each eigenvalue. The distance between the

upper and lower triangles is the spread of the eigenvalue and the chosen threshold is equal

to half this distance.
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Pfa = Pr
[
P̂ > P0|P = P0

]
for P0 = 0, 1, 2, ...,M − 1. (4.23)

For the noise-only case P0 = 0, and the expression for Pfa can be decomposed as follows:

Pfa = Pr
[
P̂ > P0|P = P0

]
(4.24)

=

M−1∑

i=1

Pr
[
P̂ = i|P = 0

]
(4.25)

=
M−1∑

dn=1

P
(dn)
fa , (4.26)

where P
(dn)
fa = Pr

[
P̂ = M − dn|P = 0

]
is the contribution of the dnth step to the total

false alarm.

Re-expressing equations (4.21) and (4.22) results in:

Hdn+1 : Q(dn) =

∣∣∣∣∣
λM−dn∑M
i=M−dn

λi

∣∣∣∣∣ ≤
(
ηdn

+ 1
)
Jdn+1 (4.27)

H̄dn+1 : Q(dn) =

∣∣∣∣∣
λM−dn∑M

i=M−dn
λi

∣∣∣∣∣ >
(
ηdn

+ 1
)
Jdn+1, (4.28)

resulting in the following expression for P
(dn)
fa in the noise-only situation:

P
(dn)
fa = Pr

[
Q (dn) >

(
ηdn

+ 1
)
Jdn+1|P = 0

]
. (4.29)

Then, denoting the distribution of Q (dn) as fdn
(q) and the threshold ηdn

is defined by

the following integral equation:

P
(M−dn)
fa =

∫ +∞

Jdn+1(ηdn
+1)

fdn
(q) dq. (4.30)

Solution of this equation in order to find ηdn
is reliant on knowledge of the distribution

fdn
(q) . For dn = M and dn = M − 1 the distribution is known and is given in [69], but

is unusable in this application. It appears that this statistical distribution is not known

for other values of dn. Hence, numerical methods must instead be used in order to solve

for ηdn
.

4.5.2.1 Threshold determination by Monte Carlo Methods

Using I = P
(M−dn)
fa for the sake of notational simplicity, equation (4.29) can be rewritten

as:

I =

∫

D

p (λ1, ..., λM)
M∏

i=1

dλi = E [1D] (4.31)
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where D is the domain of integration defined as follows

D =
{
0 < λM < ... < λ1 <∞|Q (dn) > Jdn+1

(
ηdn

+ 1
)}
, (4.32)

and 1D (λ1, ..., λM) is the indicator function over the domain D. Its value is unity if the

eigenvalues belong to D and zero otherwise. E [1D] is the expected value of the indicator

function. Equation (4.31) can then be estimated by Monte Carlo simulation, in which the

steps are:

• Generation of q noise-only sample correlation matrices, where q is the number of

the Monte Carlo trials to be run,

• Computation of the ordered eigenvalues for each of these q matrices: (λ1,j, ..., λM,j)

1 ≤ j ≤ q,

• Estimation of I by Î = 1
q

∑q

j=1 1D (λ1,j, ..., λM,j) .

As the Pfa is usually very small, q must be statistically determined in order to obtain

a pre-defined precision for the estimation of I. Because of the Central Limit Theorem

Î follows a Gaussian law. Consequently, denoting the standard deviation of Î as σ, the

following is true: Pr
[√

q

σ

∣∣∣I − Î
∣∣∣ < 1.96

]
= 0.95, where Pr[x < y] is the probability that

x < y. σ2 = E
[
(1D (.))2]− I2 = I − I2, and as I − I2 ≈ I, we can say that σ =

√
I.

4.5.2.2 Application

For M = 5 microphones and a false alarm probability of 1%, identically distributed over

the M − 1 steps of the test, I = P
(M−dn)1≤dn≤4
fa = 0.01

4
= 0.0025.

Then, with a probability of 95%, we want to estimate Îpfa with an accuracy of 10%,

i.e. we want to find Îpfa such that Ipfa − Îpfa = 0.1 (Ipfa) , where 0.10.1 (Ipfa) = σ2

q
.

Solving for q in this situation, we see that q = 160000 Monte Carlo trials are needed. In

figure 4.4 the P
(M−dn)
fa versus ηdn

is plotted. From this ηdn
is selected for each dn and for

a given Pfa.

4.6 Comparison with Classical Tests

4.6.1 Simulation Examples

Initially, in order to evaluate the test performance in white Gaussian complex noise, com-

puted simulations have been performed for a uniform linear array of five omnidirectional
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Figure 4.4: Threshold computation for each step in the case where M = 5 and N = 10.
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microphones. Six snapshots are used for the covariance estimation. Two random sources,

of the same power, impinge on the array at 0◦ and +10◦. The SNR is defined as:

SNR = 10. log10

(
σ2

s

σ2

)
, (4.33)

where σ2
s is the power of one of the sources, and σ2 is the noise power.
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Figure 4.5: Results for the EFT, the MDL and the AIC. In this case the correct model

order is 2, the number of snapshots N = 6, and the number of microphones M = 5. The

EFT thresholds have been determined to result in Pfa = 1%

Unlike AIC and MDL, the proposed test provides a way for controlling overestimation

if necessary, through the appropriate choice of thresholds. Direct comparison is difficult

because AIC and MDL have a higher uncontrollable false alarm rate than the proposed

test, which is initially set at 1 %. From figures 4.5 it can also be seen that the proposed

algorithm has a far higher probability of correctly detecting the number of sources present

for SNR values greater than around 0dB, even though the Pfa is constrained to be 1%

and as such is much lower than those of the other tests.

The threshold for the EFT test is then recalculated to allow for a false alarm probability

of 10%, as shown in 4.6. Even though the allowable false alarm has been increased

the probability of false alarm for the EFT remains significantly lower than that of the

other tests as can be seen in figure 4.6. Determining the threshold to observe a very

low false alarm probability may lead to non-detection of sources. For many acoustical

array processing problems non-detection of sources is undesirable and for this reason the

threshold is determined to observe a Pfa of 10% for all the following tests.
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Figure 4.6: Results for the EFT, the MDL and the AIC. In this case the correct model

order is 2, the number of samples N = 6, and the number of microphones M = 5. The

thresholds for the EFT have been determined to result in Pfa = 10%

Next the performance of the three tests for simulations of the case of two male speak-

ers is evaluated. The speech signals are received by an antenna of 5 microphones in the

presence of Complex White Gaussian Noise and the frame length of 6 samples (0.375ms)

is used for the covariance estimation. In order to establish the threshold for the EFT,

the relative difference between the noise-only eigenvalue distribution and the predicted

distribution is considered for 16000 Monte Carlo trials, where the number of trials neces-

sary was found as described in section (4.5.2.1). In figure 4.7(a) it can be seen that for

this situation that the EFT outperforms the AIC and MDL methods, and as the SNR

increases detects the correct number of sources with a probability of 1. From figure 4.7(b)

it can be seen that as expected the Pfa for the EFT is around 10%, while that of the

other tests is significantly greater.

4.6.2 Room Response Simulations

The previous simulations do not take into the consideration the presence of reverberation,

and therefore do not give an accurate indication of the performance that can be expected

in a practical situation. Simulations of the following experimental situation using room

Enhanced Acoustic Simulator for Engineers (EASETM ) simulation software are there-

fore considered. This software models the transmission of the signals from the specified

sources to the microphone array, taking into account the dimensions and other acoustic

characteristics of the room.
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Figure 4.7: Results for the EFT, the MDL and the AIC for simulated case of 2 speech

sources received in presence of complex Gaussian White Noise and no reverberation, for

the case where N = 10 and M = 5. The thresholds for the EFT have been determined

to result in Pfa = 10%

A microphone array of 5 omni-directional microphones arranged in a Uniform Linear

Array (ULA) was simulated with inter-microphone spacing of 3.4cm. In order to ensure

that ∆ ≤ λmin, where ∆ is the distance between the microphones, the signals were

filtered to ensure a maximum frequency of 5kHz. A model of a medium sized classroom

or meeting room with dimensions 5.38m× 6.9m× 2.44m, containing desks, chairs and a

white board at the top wall was used.

The responses were then found for 2 sources with DOAs of 70o and 110o, as shown in

figure 4.8. The horizontal distance between the array and the sources was 1.5m, allowing

for the far-field assumption to be made. The height of the microphone array and the

sources were equal. The environmental noise came from a room fan located in the ceiling,

traffic noise from outside the window and reverberation (reverberation time T60 ≈ 0.5s).

The experiment was repeated for two (different) male speakers, two (different) female

speakers, and finally one male and one female speaker.

The sampling frequency used was fs = 16kHz, and the number of samples used to

determine the model order was N = 100, (6.25ms), with a 50% overlap between frames.

In order to establish the thresholds recordings were taken of the background noise in

order to find the distribution of the noise only eigenvalues. The threshold is then selected

from this distribution, in order to observe a false alarm probability over the entire test,

as described in section 4.5. In this case the allowable false alarm was set at 10%.
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Figure 4.9: Male source signals
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Figure 4.10: Female source signals
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Figure 4.11: Impulse responses from the sources to the centre microphone in the array.

These responses are found using EASETM acoustic simulation software. The impulse

responses are simulated for a given setup based on the acoustical properties of the venue

and the geometrical configuration of the source and microphone array.
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The impulse responses produced by this software give a good indication of the effect

of reverberation on the test, although they usually simulate higher reverberation levels

than those encountered experimentally. The source signals used are two male speakers,

and the additive background noise is simulated complex White Gaussian Noise, as in the

previous case.

The performance of the tests is evaluated as the Useful-to-detrimental ratio is in-

creased. The Useful-to-detrimental ratio is a measure of the strength of the beneficial

early-arriving reflections, to the later arriving sounds and the background noise [104].

The cut-off time between the beneficial and detrimental reflections depends on the room

impulse response, and for rooms such as offices or meeting rooms has been shown to lie

between 25 − 30ms [105]. Here, the energy of the first 25ms of the impulse response is

used to compute the energy of the early arrivals E, and the energy of the impulse re-

sponse from 25ms to 500ms (T60) is the energy of the late arrivals L. The power of the

background noise present is N , and the Useful-to-detrimental ratio, U25 is defined as:

U25 = 10 log

{
E

L+N

}
dB. (4.34)

For this case the thresholds are established as described in section 4.5.2, however this

time instead of using simulated white noise, recordings were taken in the room when there

were no sources present. These recordings are then used to find the eigenvalue distribution

in the noise-only case.
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Figure 4.12: Probability of false alarm for the EFT, the MDL and the AIC using room

simulator EASE, as the Useful-to-Detrimental Ratio, U25, is increased.

From the results, shown in figure 4.12 it can be seen that the introduction of the
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Pd (%) Pfa (%) Pnd (%)

EFT 87.32 0 12.68

AIC 0.88 99.12 0

MDL 2.36 97.64 0

Table 4.1: Results found by EFT, AIC and MDL tests using experimental recordings of

two different male speakers.

Pd (%) Pfa (%) Pnd (%)

EFT 65.96 0 34.04

AIC 0 100 0

MDL 2.46 97.54 0

Table 4.2: Results found by EFT, AIC and MDL tests using experimental recordings of

two different female speakers.

reverberation causes a serious deterioration in the accuracy of the AIC and MDL tests.

While the probability of detection of the EFT is reduced slightly it is much higher than

that of the other tests in this case, while the probability of false alarm remains much

lower. The results of the AIC and MDL vary only slightly with increasing U25, and it is

clear that both these tests are highly unsuitable in the presence of reverberation.

4.6.3 Experimental Results

In this section the results of the EFT, the MDL and the AIC are compared for the physical

environment modelled in the previous section. Firstly the case of two male speakers is

considered, then the case of the two female speakers and finally the case of one male and

one female speaker. Once again the thresholds are found using recordings taken in the

absence of a source, and observe a pre-defined false alarm probability of 10%. Tables 4.1-

4.3 respectively, show the results for the cases of: two male speakers, two female speakers,

and one male and one female speaker.

The results from the experimental recordings confirm those of the simulated room

response. Once again the AIC and MDL methods perform very poorly in the presence
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Pd (%) Pfa (%) Pnd (%)

EFT 74.48 0.59 24.93

AIC 0.59 99.41 0

MDL 3.56 96.44 0

Table 4.3: Results found by EFT, AIC and MDL tests using experimental recordings of

one male and one female speakers.

of reverberation, and they over-estimate the true number of sources. The EFT greatly

outperforms the other two methods, showing its suitability for determining the number

of speakers in such an environment.

The robustness of the EFT to the effects of reverberation can be attributed to the fact

that the threshold is selected using recordings taken in the room when there is no source

present. The selection of the threshold then acts as a training step for the test taking the

room impulse response into account. This initial training step makes the EFT less likely

to mistakenly classify a reflection as a source. However, on the other hand the AIC and

MDL methods have no such training step and therefore mis-classify reflections as sources.

4.7 Conclusion

In any source localization scheme, accurate knowledge of the number of sources is essential.

As well as being necessary for accurate localization, such information may also be used

for noise cancellation. In this chapter, a new test for model order selection based on the

geometrical profile of noise-only eigenvalues, has been proposed. The noise eigenvalues for

white Gaussian noise have been shown to fit an exponential law whose parameters have

been predicted. Contrary to traditional algorithms, this test performs well when there is

a small number of snapshots used for the estimation of the correlation matrix. Another

important advantage over classical tests is that the false alarm probability observed can

be controlled through selection of the threshold. Moreover, the computational cost of the

proposed method is of the same order as those of the AIC and MDL.

The performance of the proposed test was then compared to that of the AIC and MDL

tests for the problem of determining the number of speakers in a moderately reverberant

environment. It has been shown that in the absence of reverberation, all three tests

perform well in the presence of white Gaussian noise for SNR levels of higher than 5dB.
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Using EASETM (Enhanced Acoustic Simulator for Engineers) room simulation software,

it has then been shown that once reverberation is introduced the performance of all three

tests is reduced, and the EFT greatly outperforms the AIC and MDL methods, both of

which overestimate the number of sources present. These results were then confirmed

using experimental recordings.

The novel contributions made in this chapter include the application of the test orig-

inally proposed in [1] to model order determination in the acoustic context. The perfor-

mance of this model order determination method was then compared to that of the AIC

and MDL tests using both computer simulations and experimental recordings, which take

into account the effect of both SNR and the presence of reverberation on the performance

of the model order determination methods.



5
Comparison of Direction of Arrival

Estimators

5.1 Introduction

In chapter 2 it was shown that there is no standard technique guaranteed to produce an

optimal estimator for DOA estimation, and instead a suitable sub-optimal estimator must

be selected. In order to select a suitable estimator from the large number of sub-optimal

estimators that exist, the properties of both the signal and the surrounding environment

must be considered. For difficult estimation problems, e.g. low SNR and/or small number

of samples, it may be necessary to use any available a priori knowledge of the signal or

environment in order to improve the estimator performance [75].

In this chapter, we consider three of the commonly used DOA estimation schemes:

Maximum Likelihood (ML) Estimation (section 3.4), the Multiple Signal Classification

(MUSIC) technique (section 3.3.1) and Time-Delay Estimation (TDE) (section 3.6). The

characteristics of these methods are examined and the advantages and disadvantages

pertaining to each are established. We then evaluate the performance of the algorithms

for various localization situations, and comparisons are made using results from both

simulations and experimental recordings. In all cases, we assume the number of sources

70
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Ns is known. A full discussion of estimating Ns is given in chapter 4.

5.1.1 Maximum Likelihood (ML) Estimator

As discussed in chapter 3 the Maximum Likelihood (ML) estimates are calculated as the

values of the unknown parameters that maximize the likelihood function, or put another

way ML estimators select the set of parameters that make the observed data most likely.

Using the expression given in equation (3.58) an estimate θ̂ is found for each individ-

ual frequency component within the range of interest. The estimate for each frequency

component is then weighted by the magnitude of the singular values at this frequency [33],

and the overall ML estimate θ̂ML is then given by:

θ̂ML (f) = argmin
θ
Tr
{
ψ (f)P⊥

A (f, θ) R̂XX (f)
}
, (5.1)

where, ψ (f) is the weighting found from the trace of the estimated covariance matrix:

ψ (f) =

P∑

i=1

λi (f) . (5.2)

The resolution that can be achieved using ML techniques depends on the grid, or range

of values of θ, over which equations (5.1) are calculated. This makes the ML approach

computationally very expensive, in particular for the case of P > 1 sources, which results

in a P−dimensional search as discussed in chapter (3). In the following the Alternating

Projection (AP) algorithm is used in order to break the multi-dimensional parameter

search into a sequence of single-parameter searches, resulting in faster convergence rates

than iterative methods. Defining the ML ambiguity function:

J (θ) = Tr
{
ψ (f)P⊥

A (f, θ) R̂XX (f)
}
, (5.3)

the steps of the algorithm are as follows for the case of two sources [106]:

1. Estimate the DOA of the stronger source using a single source grid, (i.e. in the

same manner as when a single source is present)

θ̂
(0)

1 = argmin
θ1

{J (θ1)} . (5.4)

2. Estimate the DOA of the weaker source on a single-source grid under the assumption

of a two-source model while keeping the first source location estimate from Step 1

constant

θ̂
(0)

2 = argmin
θ2

{J ([θ1, θ2])} . (5.5)
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3. A grid search is then performed to find the DOA of the first source while keeping

the estimate of the second source DOA from Step 2 constant

θ̂
(i)

1 = argmin
θ1

{J ([θ1, θ2])} . (5.6)

4. Holding the estimate of the first source DOA found in Step 3 constant, a grid search

is then performed to find the next estimate of the second source DOA.

θ̂
(i)

2 = argmin
θ2

{J ([θ1, θ2])} . (5.7)

These steps are then repeated until convergence.

5.1.2 Multiple Signal Classification (MUSIC)

Multiple Signal Classification or MUSIC [21] is the best known of the subspace estimation

algorithms, as discussed in section 3.3.1. The DOA estimate is found by maximizing the

weighted MUSIC ambiguity function often referred to as the MUSIC “spatial spectrum”:

θ̂MUSIC (f) = argmax
θ

{ψ (f)PMUSIC (f, θ)} , (5.8)

where ψ (f) is given by (5.2) PMUSIC is defined in (3.31).

This method is easily extended to the case of P sources, by selecting the P values of

θ that maximize equation (5.8), and therefore the presence of multiple sources does not

significantly increase the computational complexity of the algorithm.

The performance of the MUSIC algorithm approaches that of the ML method as the

number of snapshots increases to infinity, and for uncorrelated signals the MUSIC estima-

tor is efficient as long as M is also large [22, 23]. The advantage of the MUSIC technique

is that it offers significant computational savings when compared to the ML estimator,

and a large increase in resolution when compared with TDE techniques. Unfortunately

however, MUSIC can show large bias in the case of a finite number of samples and low

SNR, leading to an inability to resolve closely spaced sources. The performance of the

method degrades when the signals are correlated, and fails when the signals are coherent.

For a more detailed discussion on the characteristics of MUSIC see chapter 3.

5.1.3 Time Delay Estimation (TDE)

As discussed in section 3.6, Time Delay Estimation (TDE) techniques provide a compu-

tationally inexpensive method of estimating the location of a source, based on estimation
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of the time delay between the signal arriving at a pair of microphones, and this approach

is directly applicable to broadband signals.

This chapter considers the performance of the Phase-Correlation or PHAT technique

defined in equation (3.96).

The estimate of the Time Difference of Arrival (TDOA) for each microphone pair is

given by equation (3.93), and for a Uniform Linear Array (ULA) the TDOA will be the

same for each microphone pair. The overall TDOA estimate is then found, by adding the

weighted correlation for each microphone pair and selecting the delay value that maximises

the sum of these individual correlations:

δ̂τ = argmaxδτ

[
M−1∑

m=1

RXm,Xm+1 (δτ)

]
(5.9)

This delay estimate is then substituted into equation (3.94) to find the corresponding

DOA estimate.

Multiple sources will result in separate peaks in the cross-correlation function, and

therefore the technique is easily extended to the multiple source case. However for the case

of multiple sources cross-correlation based techniques do not allow for distinction between

multiple sources with similar delay values, as the presence of several close impulses leads

to a spread in the peak of the correlation function.

The biggest disadvantage of TDE techniques is that the resolution is strictly limited

by the temporal sampling frequency and the microphone spacing. The delays found can

only be equal to an integer number of samples, therefore the maximum resolution that

can be obtained is equivalent to the number of degrees corresponding to one sample:

θ̂RES = cos−1

{
v

fs∆

}
. (5.10)

This quantization effect results in a severe limitation on the resolution achievable at lower

sampling frequencies, in particular when the inter-microphone spacing ∆ is small. This

effect becomes more pronounced as the DOA increases, as will be seen in section 5.2.

5.2 Simulation Results

Initially, the performance of the three localization methods are compared using simulations

of the scenario of a uniform linear array of five omnidirectional microphones. The distance

between the microphones is 3.4cm, which is equal to half the minimum wavelength (taking

the maximum frequency fmax = 5kHz). The sampling frequency used is fs = 16kHz,
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the speed of sound is taken to be v = 340m/s and the number of samples is N = 100,

(6.25ms), with a 50% overlap between frames.

5.2.1 Single Source

Initially the situation of single source emitting a speech signal is considered. The source

is located at i) 20o, ii) 70o and iii) 90o, for SNR increasing from −10dB to 30dB. For

each SNR, 100 Monte Carlo trials are run and the average DOA estimate and the MSE

are found. These results are shown in figure 5.1.

From the results it can be seen that for SNR values of above 0dB the results from the

estimators do not change, and the MSE is constant for increasing SNR. However, below

the threshold point of 0dB the MSE increases rapidly with decreasing SNR.

The MSE is greatest for DOA = 20o and smallest for DOA = 90o. This is due to

the fact that sources perpendicular to the array are easiest to locate and as the angle

decreases localisation becomes more difficult. The true angle of arrival can therefore be

seen to have an effect on the estimator performance. This is a characteristic of a ULA

and is not the case for a circular array where the minimum variance that can be achieved

is independent of the DOA [106].

For all SNR values above the threshold SNR, the MUSIC and ML estimators both

estimate the true DOA. As these methods are not based on an initial time delay estimate,

an arbitrary accuracy can be achieved and is dependent only on the number of samples

being sufficiently large, and the signal model sufficiently accurate. The performance of

these two estimators is similar, with the ML method having slightly lower MSE, which

is expected as MUSIC is known to have the same large sample accuracy as the ML

estimator [22, 107].

The TDE results can be seen to be limited by the temporal sampling frequency fs,

and the inter-microphone spacing. This is because the time delay can only be estimated

to within an accuracy of one sample (equation (5.10)) corresponding in this case to an

angle of 51.32o. The introduction of this quantization error means that even for the cases

when the time-delay is correctly estimated, it is only possible to convert this to a precise

DOA estimate if the DOA happens to fall on one of the quantized delay values. However,

the low computational cost of TDE make it an attractive approach for situations where

a rough location estimate is sufficient.

In figures 5.2 - 5.4 the spatial spectra (cf. chapter 3) of the three estimators at different

SNR levels is examined. In each case the arrows indicate the true DOA estimate. It can

be seen that for SNR = 30dB the spatial spectra show clear global maxima (or a global

minimum in the case of the MLE). All the estimators will find the true DOA value at this
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(a) DOA estimates, DOA = 20o.
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(c) DOA estimates, DOA = 70o.
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(d) Mean Square Error, DOA = 70o.
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(e) DOA estimates, DOA = 90o.
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(f) Mean Square Error, DOA = 90o.

Figure 5.1: Performance of MUSIC, MLE and TDE techniques, for a speech signal

arriving at an array of M = 5 microphones and window length N = 50 samples. Results

are taken over 100 Monte Carlo trials for increasing SNR.
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Figure 5.2: The normalised ML spatial spectrum for decreasing SNR (equation (5.1)).

The true DOA value is indicated by the arrow.

SNR. When the SNR is decreased to 0dB, the width of the mainlobe increases, and the

magnitude of the sidelobes can be seen to begin to increase. However, the mainlobe still

lies close to the true DOA value and the estimates will accordingly be close to the true

value, and operation can be said to be in the small-error region as the MSE will be small

(see chapter 6 for a full discussion on regions of operation). However, when the SNR is

reduced to −10dB the magnitude of the sidelobes increase while the mainlobe decreases.

The DOA estimates from all three estimators will no longer be close to the true DOA

value and we can see that this corresponds to the area of larger MSE seen for SNR values

below the threshold point of 0dB in figure 5.1.
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Figure 5.3: The normalised MUSIC spatial spectrum for decreasing SNR (equation

(5.8)). The true DOA value is indicated by the arrow.
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(c) SNR = −10dB

Figure 5.4: The normalised TDE cross-correlation for decreasing SNR (equation (5.9)).

The true DOA value is indicated by the arrow.
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5.2.2 Multiple Sources

The situation of a two stationary sources emitting speech signals is now considered. The

sources are located at 70o and 110o and the SNR is increased from −10dB to 30dB. For

each SNR 100 Monte Carlo trials are run and the average DOA estimate and the MSE

are found. These results are shown in figure 5.5. Once again we can see from the results

that, for high SNR, the MUSIC and ML techniques accurately estimate the DOA, while

the accuracy of the TDE results is reduced due to resolution problems. In this case it can

be seen that the threshold SNR is higher than for the case of a single source. This is due

to the fact that as the SNR decreases the peaks become less distinct from each other as

the lobes around the true values become wider.

The ability of the estimators to correctly estimate the DOA as the sources approach

each other is now investigated. In this case the SNR is held constant at 10dB. To begin

with, the sources are located at 5o and 1800, and then they are moved towards each other

simultaneously in steps of 10o (i.e. the sources are 20o closer after each step), until they

are a minimum distance of 15o from each other. The results of the three methods are

shown in figures (5.6). As the sources move closer together, the advantage of the MUSIC

and ML methods becomes obvious, as at higher SNR levels and for sources with large

angle DOAs, these methods continue to accurately estimate the true DOA even when the

sources are separated by only 15o. However, when the SNR is reduced the ability of all

the techniques to accurately resolve the sources is reduced as the spectral peaks become

broader and merge together. Once again it can be seen that sources located at small

angles to the array are more difficult to estimate.

5.2.3 Room Response Simulations

The performance of the estimators in the presence of reverberation is considered using

simulated impulse responses found from Enhanced Acoustic Simulator for EngineersTM

(EASE) simulation software. The response is found for a room with dimensions 5.38m×
6.9m×2.44m, containing desks, chairs and a white board at the top wall. We compare the

results of the estimators over 100 Monte Carlo trials as the Useful-to-detrimental ratio,

U25 (as defined in equation (4.34)), is increased.

The results are shown in figure 5.7 for the case of a single source emitting a white noise

signal with DOA = 70o. The presence of reverberation can be seen to lead to a slight

reduction in accuracy of the MUSIC and ML estimators compared to the earlier cases. In

particular, the MUSIC algorithm can be seen to suffer from the presence of reverberation

and does not find the exact source location. The TDE results, above the threshold point
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(a) DOA estimates, DOA = 70o.
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(b) Mean Square Error, DOA = 70o.
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(c) DOA estimates, DOA = 110o
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(d) Mean Square Error, DOA = 110o

Figure 5.5: Performance of MUSIC, MLE and TDE techniques, when 2 speech signals

arrive at an array of M = 5 microphones, and window length N = 50 samples. The

results are averaged over 100 Monte Carlo trials for increasing SNR.
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Figure 5.6: Results of MUSIC, MLE and TDE techniques, for estimating the DOA of

2 white noise sources arriving at an array of M = 5 microphones, and window length

N = 100 samples. The sources move toward each other in steps of 10o, and the results

are averaged over 100 Monte Carlo trials at each position.
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Figure 5.7: Performance of MUSIC, MLE and TDE techniques, for the case of a single

speech signal arriving at an array of M = 5 microphones, with window length N = 50

samples. The DOA is equal to 70o and the results are shown for increasing U25, with

averages taken over 100 Monte Carlo trials.

of U25 = 0dB, are similar to those in the non-reverberant case. Once again, the main

cause of the reduction in accuracy of the TDE approach is due to the limited resolution as

a result of the low sampling frequency and the short distance between the microphones.

Next the performance of the estimators is examined when there are two sources present.

The results are shown in figures (5.8). It can be seen that the presence of reverberation

leads to a large degradation in the performance of the estimators when compared to the

case of additive noise only, shown in figure 5.5. From comparison with the results for

the case of a single source, shown in (5.7), it can be seen that the presence of a second

source only results in a small reduction in accuracy, with the MUSIC algorithm showing

the greatest deterioration in performance. This can be attributed to the early arriving

reflections (in this case reflections arriving in the first 25ms) causing spreading of the

mainlobe.

5.3 Experimental Results

5.3.1 Experimental Setup

A microphone array of 5 omni-directional Rhode microphones were arranged in a Uniform

Linear Array (ULA) with inter-microphone spacing of 3.4cm. The experimental setup is

the same as was modelled by the room simulation software in the previous section, with

environmental noise coming from a room fan located in the ceiling and traffic noise from
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(c) DOA estimates, DOA=110o
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Figure 5.8: Performance of MUSIC, MLE and TDE techniques, for two speech signals

arriving at an array of M = 5 microphones, with window length N = 100 samples. The

DOAs are equal to 70o and 110o, and the results shown here are the average estimates

taken over 100 Monte Carlo trials for increasing U25.
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outside the window. Once again the reverberation time T60 ≈ 0.5s. For all cases the

height of the microphone array and the sources were equal, and the horizontal distance

between the sources and the array is sufficient to allow for the sources to be considered

far-field, resulting in planar wavefronts arriving at the array as discussed in chapter (2).

5.3.2 Single Source

We consider the case of a single source emitting white noise, located at a distance of 2.5m

from the microphone array, with and DOAs 90o and 120o. The DOA estimation results,

using a window length of N = 100 samples, are shown in tables (5.1(a)) and (5.1(b)). It

can be seen that all three methods perform well for a DOA of 90o, with the TDE approach

performing the best, as it correctly estimates the true DOA value for each window. This

corresponds to the earlier simulations where it was seen that the accuracy achieved by the

estimators was dependent on the true DOA value, and the highest accuracy was achieved

for DOA = 90o.

The performance of all three estimators deteriorates for DOA = 120o, as seen in table

5.1(b). In particular the average result of the MUSIC algorithm is seen to differ from

the true DOA by approximately 20o. The ML estimator is seen to have minimum bias.

While the TDE average result is farther from the true DOA than that of the ML, the low

MSE of the TDE results indicate that the difference between the true DOA value and the

results is mainly due to the limited resolution capabilities of the TDE approach.

From these results it can be seen that for situations where a robust estimate is re-

quired from each data window, the TDE approach is the most appropriate, provided high

resolution is not required. For situations where high resolution results are crucial, the ML

method is more suitable. However, the computational time required by the ML method,

and the need to average over a number of estimates makes it undesirable for most practical

applications.

5.3.3 Multiple Sources

We now consider the performance of the estimators using experimental recordings for the

situation of two stationary sources. Firstly, using the same experimental set-up as for the

single source case we consider the case of two uncorrelated white noise sources located at

90o and 120o. The results are shown in table (5.2).

As expected from the results in the case of a single source (tables 5.1(a) and 5.1(b))

we see that all three estimators accurately estimate the source with DOA = 90o, with

the MUSIC algorithm showing just a very slight deterioration. However, the source with
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Estimator Mean DOA Estimate Root Mean Square Error

DOA = 90o (RMSE)

MUSIC 89.81o 0.5o

ML 91.29o 3.7o

TDE 90o -

(a) DOA = 90o

Estimator Mean DOA Estimate Root Mean Square Error

DOA = 120o (RMSE)

MUSIC 101.64o 11.64o

ML 116.24o 35.46o

TDE 128.68o 38.68o

(b) DOA = 120o

Table 5.1: Results found by MUSIC, ML and TDE for experimental recordings of a

white noise source with DOA = 120o. The results are averaged over 100 Monte Carlo

trials using a window length of N = 100 samples.
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Estimator Mean Estimate Mean Estimate Root Mean Root Mean

Square Error Square Error

(RMSE) (RMSE)

DOA = 90o DOA = 120o DOA = 90o DOA = 120o

MUSIC 89.20o 92.62o 1.45o 27.35o

ML 88.28o 113.92o 21.03o 23.33o

TDE 90o 128.68o 0o 8.68o

Table 5.2: Results found by MUSIC, ML and TDE for experimental recordings of 2

white noise sources with DOAs of 90o and 120o. The results are averaged over 100 Monte

Carlo trials using a window length of N = 100 samples.

DOA = 120o proves more problematic for the MUSIC algorithm, and the accuracy of

the DOA estimates for this source are seen to be further reduced by the presence of the

second source. Compared to the results for the single source, the ML method shows the

greatest deterioration due to the presence of the second source. The TDE estimates are

again very close to the true DOA values, and the source with DOA = 90o is correctly

estimated for each window. The error in the estimates of the source with DOA = 120o is

due to the restricted resolution that is characteristic of the TDE approach.

Then 2 speech sources (two different male speakers) were placed at angles of 70o and

110o from the array. The results in table 5.3 show that the accuracy of all three of the

estimators is reduced for this case.

The estimates of the MUSIC algorithm indicate that it continuously fails to discrim-

inate between the sources, which can be attributed to the spreading of the peaks corre-

sponding to each of the sources in the MUSIC spatial spectrum.

While the ML method shows better discrimination between the sources, the accuracy

of the mean estimate is significantly lower than that of the previous case. However, the

total MSE is approximately the same for both cases. The TDE method is clearly the

most suited to this situation as the estimates remain close to the true DOA values for

both sources.
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Estimator Mean Estimate Mean Estimate Root Mean Root Mean

Square Error Square Error

(RMSE) (RMSE)

DOA = 70o DOA = 110o DOA = 70o DOA = 110o

MUSIC 85.47o 92.1o 16.06o 17.01o

ML 73.51o 109.85o 9.17o 7.81o

TDE 74.24o 114.75o 19.46o 19.58o

Table 5.3: Results found by MUSIC, ML and TDE for experimental recordings of 2 male

speakers with DOAs of 70o and 110o. The results are averaged over 100 Monte Carlo trials

using a window length of N = 100 samples.

5.4 Conclusions

We have considered three of the most well-known approaches, MUSIC, ML and TDE, for

estimation of the DOA of one or more sources. The performance of these methods was

compared using both computer simulations and experimental recordings, allowing us to

draw several conclusions on the comparative behaviour of these estimators. Firstly it was

seen that once the SNR decreases below a threshold point the MSE increases dramatically.

The SNR value of this threshold point was shown to depend on the number of sources,

and the true value of the DOA. Examination of the spatial spectra of the three estimators

showed that once the SNR decreases below the threshold level, the sidelobes can be greater

than the mainlobe, and the width of all lobes increases.

From the results of the different simulations it could be seen that the resolution achiev-

able by the ML and MUSIC methods is much greater than that of the TDE approach.

However, the TDE approach was shown to be more robust to reverberation and the

number of samples available, while also being computationally far less demanding. This

makes it suitable for situations where the estimator must be robust to moderate levels of

reverberation and low SNR, and a rough estimate of the DOA is sufficient, where rough

means that the DOA can only be estimated to within a certain range determined by the

temporal sampling frequency. The ML algorithm has the advantage of much higher res-

olution capabilities than the TDE method, and is seen to achieve higher accuracy than
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the MUSIC algorithm in the presence of reverberation. However, the disadvantage here

is the large number of calculations needed, particularly for the case of multiple sources.

The MUSIC algorithm also has the advantage of high resolution capabilities without the

computational expense of the ML method. Unfortunately however, its performance has

been seen to deteriorate significantly in the presence of reverberation, particularly for

smaller window lengths when there are multiple sources present.

The novel contributions made in this chapter include the comparison of the perfor-

mance of three of the classical DOA estimation methods for a number of different situa-

tions using both computer simulations and experimental recordings. These comparisons

considered the effects of both varying SNR and Useful-to-Detrimental ratio on the per-

formance of the estimators.



6
Lower Bounds on the Mean Square Error

(MSE) of an Estimator

6.1 Introduction

For any acoustic source loclisation scheme, knowledge of the best possible performance

that can be achieved by the estimator is very important. This knowledge can be used to

determine the operating range of the estimator and therefore to establish whether or not it

is possible to meet operational requirements, thus making it a crucial step in localisation

feasibility studies. Comparison of the best possible performance with the performance of

a proposed estimator can also be used to see if, starting from a particular algorithm, an

improvement in performance is possible. Lower bounds on the Mean Square Error (MSE)

allow for calculation of the best performance that can be achieved in the MSE sense, when

estimating a parameter of a signal corrupted by noise.

Historically the first MSE lower bound for deterministic parameters to be derived was

the Cramér Rao Bound (CRB) [8, 108] and since then it has remained by far the most

widely used for evaluation of acoustical estimator performance [106, 109]. Its popularity

is largely due to its computational simplicity (in comparison to other lower bounds); the

fact that in many cases it can be achieved asymptotically (high SNR [110] and/or large

89
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number of snapshots [8]) by the ML estimator [7]; and last but not least, its noticeable

property of being the lowest bound on the MSE of unbiased estimators. This last property

is due to the fact that the CRB derives from the weakest formulation of unbiasedness,

that is, non-bias local to (i.e. in the vicinity of) the true value of the parameter to be

estimated [111–113].

However, at low Signal to Noise Ratio (SNR), DOA estimators, such as those discussed

in chapter 5, suffer from severe ambiguity problems. This is because the ambiguous

peaks in the estimator ambiguity function (or estimator spectrum - equations (3.31,5.3),

which are located far from the true location, become larger as the SNR decreases (as

seen in figures 5.2-5.4). When the estimator can no longer distinguish between these

ambiguous peaks and the peak at the true source location, the MSE deviates rapidly

from the CRB [114], and therefore the CRB no longer provides a meaningful performance

bound. The SNR value at which this deviation occurs is called the SNR threshold, and

this threshold is clearly visible in the results presented in chapter 5.

The initial characterization of locally unbiased estimators given by the CRB was firstly

improved by Bhattacharyya’s works [7, 111, 115] which refined the characterization of local

unbiasedness, and significantly generalized by Barankin’s works [111], who established the

general form of the greatest lower bound of any absolute moment of an unbiased estimator.

In the particular case of MSE, Barankin’s work allows the derivation of the greatest lower

bound on MSE since it takes into account the strongest formulation of unbiasedness,

that is to say unbiasedness over a continuous interval of parameter values including the

true parameter value. Unfortunately, however the Barankin Bound (BB) is generally not

computable [116].

Therefore, since then, numerous works [112, 113, 117, 118] have been devoted to deriv-

ing computable approximations of the BB. These works have shown that in non-linear

estimation problems, such as DOA estimation, three distinct regions of operation can

be observed as seen in figure 6.1. In the asymptotic region, the MSE is small and, in

many cases, close to the Small-Error bounds (CRB). In the a priori, or maximum MSE

performance region where the number of independent snapshots and/or the SNR are very

low, the observations provide little information and the MSE is close to that obtained

from the prior knowledge of the problem. Between these two extremes, there is an ad-

ditional ambiguity region, called the transition region. In this region, the MSE of ML

estimation results usually deteriorates rapidly with respect to Small-Error bounds and

exhibits a threshold behavior corresponding to a “performance breakdown” highlighted

by Large-Error bounds (BB) [113, 118, 119], and seen in experimental results (chapter 5).

However, when compared to estimators such as the ML estimator, it can be seen that
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Figure 6.1: Three regions of operation observed for a non-linear estimator.

the performance characterisation provided by existing approximations of the BB differs

considerably from the true estimator performance, particularly in prediction of the SNR

threshold. Therefore the search for an easily computable approximation of the BB, that

is closer to the true performance achievable, is still a subject worth investigation. Indeed,

from a theoretical standpoint, the accurate knowledge of the BB should allow a better

prediction of the SNR value at the start of the transition region and avoid misleadingly

optimistic conclusions on achievable performance being drawn from the computation of

the CRB at low SNR. Moreover, from a practical standpoint, it is also the SNR value at

which estimator performance will “break down”.

In this chapter, a new formalism is presented that allows not only the derivation of a

general class of Barankin Bound approximations, but also gives a clear and straightforward

interpretation of these approximations. Firstly, it will be shown that this formalism

includes all previously derived bounds, and provides a meaningful way to classify these

bounds. Secondly, with the help of this formalism a new practical approximation of the

BB is derived, whose computational complexity is comparable to that of the CRB.

The new BB approximation is then applied to the problem of estimating the DOA

of a single source emitting a signal that is received by a Uniform Linear Array (ULA)

of microphones. From the results it can be seen that the bound produced by this new

BB approximation provides a much closer prediction of the threshold SNR than existing

approximations [112, 113, 115, 118]. However, the results also show that in the Maximum
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MSE Region, the performance indicated by the new BB approximation is much worse

than that achieved by the estimator, suggesting that deterministic Large Error bounds are

not suitable for characterisation of the estimator performance below the SNR threshold.

Instead, their use is limited to prediction of the SNR threshold.

6.2 Mean Square Error of an Estimator: an algebraic

quantity

In the following, unless otherwise stated, x denotes the random observations vector and Ω

is the observation space, where x consists of a signal source function of a single unknown

deterministic real parameter θ and embedded in a nuisance signal (generally Gaussian

noise). fθ (x) denotes the Probability Density Function (pdf) of observations depending

on θ ∈ Θ, where Θ denotes the parameter space.

First let us recall that, if ĝ (θ0) (x) is an unbiased estimator of g (θ0) where g ( ) is a real

function and θ0 is a selected value of θ, then MSEθ0

[
ĝ (θ0)

]
= V ar

[
ĝ (θ0)

]
, as discussed

previously in chapter (2), and therefore finding the lower bound on the MSE is equivalent

to finding the lower bound on the estimator variance. Secondly, it is worth noting that

the MSE is an algebraic quantity, in the sense that it can always be interpreted as a norm

associated with a scalar product, where the MSE can be expressed as:

MSEθ0

[
ĝ (θ0)

]
= Eθ0

[(
ĝ (θ0) (x) − g (θ0)

)2
]

(6.1)

=

∫

Ω

(
ĝ (θ0) (x) − g (θ0)

)2

fθ0
(x) dx (6.2)

=
∥∥∥ĝ (θ0) (x) − g (θ0)

∥∥∥
2

θ0

, (6.3)

and the scalar product is given by:

〈g (x) |h (x)〉θ0
= Eθ0

[g (x) h (x)] =

∫

Ω

[g (x) h (x)] fθ0
(x) dx. (6.4)

Among the many results established on vector spaces with a scalar product, two fun-

damental results are especially important in the search for a lower bound on the MSE:

the generalization of the Cauchy-Schwartz inequality to Gram matrices [8, 108, 118, 120]

and the minimization of a norm under linear constraints [116, 117].

Generalized Cauchy-Schwartz inequality
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Let U be a Euclidean vector space of any dimension (finite or infinite) on the field of

real numbers R which has a scalar product 〈 | 〉.
The Gram matrix G

(
u

[1,N]
, c

[1,K]

)
∈ RK×N , associated with the two vector families

u
[1,N]

= (u1,u2, . . . ,uN) and c
[1,K]

= (c1, c2, . . . , cK) of U is then defined by [121]:

G
(
u

[1,N]
, c

[1,K]

)
n,k

= 〈uk | cn〉 =




〈u1 | c1〉 〈u2 | c1〉 . . . 〈uN | c1〉
〈u1 | c2〉 〈u2 | c2〉 . . . 〈uN | cK〉

...
... . . .

...

〈u1 | cK〉 〈u2 | cK〉 . . . 〈uN | cK〉




(6.5)

and if G
(
c

[1,K]
, c

[1,K]

)
is invertible, i.e. if c

[1,K]
is a free family, the following inequality

holds [6]:

G
(
u

[1,N]
,u

[1,N]

)
≥ G

(
u

[1,N]
, c

[1,K]

)T

G
(
c

[1,K]
, c

[1,K]

)−1

G
(
u

[1,N]
, c

[1,K]

)
(6.6)

Moreover, if (u1, . . . ,uN , c1, . . . , cK) forms a free family of U, then the inequality (6.6)

is a strict inequality. The Cauchy-Schwartz inequality is a special case of (6.6) in the

form:

G (u1,u1) ≥ G (u1, c1)G (c1, c1)
−1 G (u1, c1)

T ⇔ ‖u1‖2 ≥ 〈u1 | c1〉2

‖c1‖2 (6.7)

When the scalar product 〈 | 〉 corresponds to an expectation, as is the case for the MSE

(6.3), then the inequality (6.6) is generally referred to as the “covariance inequality“ [118,

120].

Norm minimization under linear constraints

Let c
[1,K]

be a free family of K vectors of U and v = (v1, . . . , vK)T a vector of RK . The

problem of the minimization of ‖u‖2 ∀u ∈ U under the K linear constraints 〈u | ck〉 = vk,

k ∈ [1, K] then has the solution [116, 117]:

min
u

{
‖u‖2} = vTG

(
c

[1,K]
, c

[1,K]

)−1

v, with the unique minimizer uopt =
K∑

k=1

αkck

(6.8)

(α1, . . . , αK)T = α = G
(
c

[1,K]
, c

[1,K]

)−1

v (6.9)
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Equivalence

Although discussed independently in the open literature, the results given by equations

(6.6) and (6.8) may be considered equivalent. Consider the following minimization prob-

lem for any λ ∈ RN ,λ 6= 0:

min
u

[1,N]





∥∥∥∥∥
Z∑

z=1

λnun

∥∥∥∥∥

2


 under G

(
u

[1,N]
, c

[1,K]

)
= V (6.10)

This is equivalent to:

min





∥∥∥∥∥
Z∑

z=1

λnun

∥∥∥∥∥

2


 under G

(
u

[1,N]
, c

[1,K]

)
λ = G

(
Z∑

z=1

λnun, c[1,K]

)
= Vλ (6.11)

and thus satisfies according to (6.8):

∥∥∥∥∥
Z∑

z=1

λnun

∥∥∥∥∥

2

= λTG
(
u

[1,N]
,u

[1,N]

)
λ ≥ (Vλ)T G

(
c

[1,K]
, c

[1,K]

)−1

(Vλ) (6.12)

or equivalently:

λTG
(
u

[1,N]
,u

[1,N]

)
λ ≥ λT

(
VTG

(
c

[1,K]
, c

[1,K]

)−1

V

)
λ (6.13)

which is precisely the inequality (6.6).

In the following the form (6.8) is preferred, as its use provides a better understanding of the

hypotheses associated with the different lower bounds of the MSE. Indeed, formulation of

the minimal MSE performance bounds can be seen as a result of minimizing a norm (MSE)

under the non-bias constraints associated with the given bound. The main advantage of

this formulation is that it explicitly raises the problem of formulating the relevant non-bias

constraints, which then determine the value of the lower bound of the norm.

6.3 Lower Bounds on the Mean Square Error (MSE)

of an Estimator

As stated earlier, the most commonly used of the lower bounds on MSE is the CRB [8, 108].

The fact that the CRB is the lowest bound on the MSE of unbiased estimators is a result

of the non-bias constraint that it imposes on the minimization of the MSE, which is the
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weakest possible formulation of non-bias, i.e. that the estimator be non-biased at the true

parameter value θ0, and in its vicinity θ0 + dθ [122]:

lim
dθ→0





Eθ0

[
ĝ (θ0) (x)

]
= g (θ0)

Eθ0+dθ

[
ĝ (θ0) (x)

]
= g (θ0 + dθ)

(6.14)

which defines the constraint of “local non-bias”:

Eθ0+dθ

[
ĝ (θ0) (x)

]
= g (θ0 + dθ) +O (dθ) = g (θ0) +

∂g(θ0)

∂θ
dθ +O (dθ) , (6.15)

where O (dθ) is used to describe the error term in the approximation of the non-bias

constraint.

Equivalently, by uniqueness of series expansion of g (θ0 + dθ) and fθ0+dθ (x):





Eθ0

[
ĝ (θ0) (x)

]
= g (θ0)

Eθ0

[
ĝ (θ0) (x)

∂fθ0
(x)

∂θ

]
= ∂g(θ0)

∂θ

⇔





Eθ0

[
ĝ (θ0) (x) − g (θ0)

]
= 0

Eθ0

[(
ĝ (θ0) (x) − g (θ0)

)
∂fθ0

(x)

∂θ

]
= ∂g(θ0)

∂θ

(6.16)

Then a direct application of (6.8) under (6.16) leads to the CRB.

Bhattacharyya extended the 1rst order “locally non-bias” constraint of the CRB (6.15)

to the Lth order in the vicinity of the true parameter value by looking for estimators

satisfying [7, 111, 115, 117, 122]:

Eθ0+dθ

[
ĝ (θ0) (x)

]
= g (θ0 + dθ) +O

(
dθL
)

(6.17)

The higher the order of differentiation, L, the closer the approximation of the non-bias

constraint is to the BB non-bias constraint, and accordingly the smaller O
(
dθL
)
. The

resulting bound is therefore greater than the CRB, but practical results have shown

that values of L for which there is a noticeable difference requires a huge increase in

computational complexity.

Barankin then introduced arguably one of the most significant characterizations of es-

timator performance, the Barankin Bound (BB) [111], which is the greatest possible lower

bound on any absolute moment of order k for an unbiased estimator. The lower bound

on the MSE is then a particular case of the general Barankin Bound, where k = 2, and

the resulting bound can be seen to include the initial characterizations of MSE estimator

performance provided by Cramér-Rao and Bhattacharyya. The Barankin Bound is the
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result of imposing the strongest possible formulation of non-bias, that is non-bias across

the entire parameter interval, on the norm minimization (6.3):

Eθ0+dθ

[
ĝ (θ0) (x)

]
= g (θ0 + dθ) , ∀θ0 + dθ ∈ Θ. (6.18)

Unfortunately the Barankin Bound is the solution of an integral equation [116, 123] , which

generally does not have a computable analytic solution. Therefore, since its introduction,

numerous works [112–114, 117, 118, 124] have been devoted to deriving computable ap-

proximations of the Barankin Bound and have shown that the CRB and Barankin bound

(BB) can be regarded as key representatives of two general classes of bounds, respectively

the Small-Error bounds and the Large-Error bounds.

6.3.1 Derivation of the Barankin Bound

In the previous section we saw that the Barankin Bound corresponds to the minimization

problem:

min
{
MSEθ0

[
ĝ (θ0)

]}
under Eθ

[
ĝ (θ0) (x)

]
= g (θ) , ∀θ ∈ Θ (6.19)

where the expectation is taken over the entire parameter range.

Therefore, any unbiased estimator satisfying this Barankin non-bias constraint will

satisfy:

Eθz

[
ĝ (θ0) (x)

]
= g (θz) =

∫

Ω

ĝ (θ0) (x) fθz
(x) dx, ∀θz ∈ Θ. (6.20)

Consequently, for 1 ≤ z ≤ Z and ∀w = [w1, . . . , wZ ]T ∈ RZ :

Z∑

z=1

wzEθz

[
ĝ (θ0) (x) − g (θ0)

]
=

Z∑

z=1

wz (g (θz) − g (θ0)) (6.21)

or alternatively:

Eθ0

[(
ĝ (θ0) (x) − g (θ0)

)( Z∑

z=1

wz

fθz
(x)

fθ0 (x)

)]
=

Z∑

z=1

wz (g (θz) − g (θ0)) (6.22)

Then, according to (6.8), the minimization of MSEθ0

[
ĝ (θ0)

]
under the constraint

(6.22) leads to [111]:

MSEθ0

[
ĝ (θ0)

]
≥

[
Z∑

z=1

wz (g (θz) − g (θ0))

]2

Eθ0

[(
Z∑

z=1

wz
fθz (x)

fθ0
(x)

)2
] (6.23)
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The inequality (6.23) is valid for any subset of test points {θz}[1,Z] of Θ considered

and ∀w ∈ RZ . From this, Barankin deduced that, if ĝ (θ0) (x) is an unbiased estimator

of g (θ0), then its MSE is bounded by:

MSEθ0

[
ĝ (θ0)

]
≥ lim

Z−→∞
sup

w,{θz}[1,Z]





[
Z∑

z=1

wz (g (θz) − g (θ0))

]2

Eθ0

[(
Z∑

z=1

wz
fθz (x)

fθ0
(x)

)2
]





(6.24)

A more concise form can nevertheless be found by noting that [113]:

[
Z∑

z=1

wz (g (θz) − g (θ0))

]2

Eθ0

[(
Z∑

z=1

wz
fθz (x)

fθ0
(x)

)2
] =

(
wT∆g

)2

wTRw
, (6.25)

Rz,y =

∫

Ω

fθz
(x) fθy

(x)

fθ0 (x)
dx, ∆gz = g (θz) − g (θ0) (6.26)

In fact,
(wT ∆g)

2

wT Rw
is maximal for w = λR−1∆g and its value is then ∆gTR−1∆g.

Consequently another expression of (6.23) is:

MSEθ0

[
ĝ (θ0)

]
≥ ∆gTR−1∆g (6.27)

leading to the “reduced” form of the Barankin bound:

MSEθ0

[
ĝ (θ0)

]
≥ lim

Z−→∞
sup

{θz}[1,Z]

{
∆gTR−1∆g

}
(6.28)

Note that (6.27) is also the solution of the minimization problem:

min
{
MSEθ0

[
ĝ (θ0)

]}
under Eθz

[
ĝ (θ0) (x)

]
= g (θz) , {θz}[1,Z] ∈ Θ (6.29)

which proves that the greatest lower bound of the MSE for a finite number of test points

{θz}[1,Z] is obtained by simply expressing the “unbiased” constraint at the test points [113].

Finally, the unbiased and locally optimal estimator in the MSE sense ĝ (θ0)
loc

opt (x), i.e.

the estimator that has the lowest MSE for estimation of the given parameter θ0, satisfies

(6.27):
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lim
Z−→∞





Rwλ−1 = ∆g

ĝ (θ0)
loc

opt (x) − g (θ0) =
Z∑

z=1

wz

λ

fθz (x)

fθ0
(x)

MSEθ0

[
ĝ (θ0)

]
≥ ∆gTR−1∆g = λ−1∆g

T
w

(6.30)

that leads to, defining 1
λ

= dθ = θz+1 − θz, [116, 123]:

∫

Θ

K (θ, θ′)w (θ′) dθ′ = g (θ) − g (θ0) , (6.31a)

K (θ, θ′) =

∫

Ω

fθ (x) fθ′ (x)

fθ0 (x)
dx (6.31b)

ĝ (θ0)
loc

opt (x) − g (θ0) =

∫

Θ

fθ (x)

fθ0 (x)
w (θ) dθ (6.31c)

MSEθ0

[
ĝ (θ0)

]
≥

∫

Θ

(g (θ) − g (θ0))w (θ) dθ (6.31d)

Unfortunately, as discussed previously in section 2.7.1, in most practical cases, it is im-

possible to find an analytical solution of (6.31a) and to obtain an explicit form of ĝ (θ0)opt

and of the lower bound of the MSE, which somewhat limits its interest. However, while

this discretization of the continuous constraint does not provide an analytical solution

of the Barankin bound, its interest lies elsewhere, in the fact that it provides a general

approach for approximating the Barankin Bound.

6.4 Toward a Piecewise Approximation of the Barankin

Bound

So far, all previous works dedicated to assessing the true behavior of the BB at low

SNR (Large-Error bounds) [112, 113, 116–118] can be reduced to the exploitation of the

norm minimization lemma (6.8) associated with a basic discretization (6.29) of Barankin

unbiasedness definition (6.18) and possibly including the search for a supremum (6.28).

Such a basic discretization is sub-optimal in the scope of BB approximation tightness.

Indeed, there is a set H of functions h (θ) of various behaviours that take the same values

for a given set of test points
(
h (θz) = g (θz) , {θz}[1,z]

)
, but may differ greatly from g (θ)

at other points on the parameter interval. Therefore, the lower bound provided by such a
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discretization (6.29) may not be a tight BB approximation since it is not a lower bound

for the whole set of functions H, except when the number of test points θz tends to

infinity as H tends to reduce to g (θ) only. As discussed previously, the rate at which H
reduces to g (θ) is not known, and the computational complexity is greatly increased as the

number of test points increases. Consequently, in order to reduce the set H and thereby

increase the tightness, it seems intuitively more efficient to resort to more discriminating

constraints, such as Lth order derivative constraints. This leads to a straightforward, but

novel method of approximating the BB [125].

The development of this method requires that both fθ (x) and g (θ) can be approxi-

mated by piecewise series expansions of order Lz, that is to say the parameter space Θ

can be partitioned in Z real sub-intervals Iz over which, for ∀θz + dθ ∈ Iz:

g(θz + dθ) = g(θz) +

Lz∑

l=1

∂lg(θz)

∂lθ

dθl

l!
+O

(
dθLz

)
(6.32)

fθz+dθ (x) = fθz
(x) +

Lz∑

l=1

∂lfθz
(x)

∂lθ

dθl

l!
+ ox

(
dθLz

)
(6.33)

We implicitly assume that the integrals

∫ (
∂lfθ(x)

∂lθ

)2
1

fθ(x)
dx converge and define piecewise

continuous functions of θ on Θ, for all θ ∈ Θ, to allow order of integration and differenti-

ation interchange [118]. The terms o
(
dθLz

)
and ox

(
dθLz

)
are the differences between the

true function values on each sub-interval and the polynomial approximations. It is clear

from this term that the higher the order of the expansion, the closer the approximation

is to the true function.

Then, on every sub-interval Iz, a possible general discretization of Barankin unbiased-

ness definition (6.18) is:

Eθz+dθ

[
ĝ (θ0) (x)

]
= g (θz + dθ) +O

(
dθLz

)
(6.34)

which, by uniqueness of any series expansion, can be expressed in terms of the Lz + 1

following linear constraints:

∫
ĝ (θ0) (x)

∂lfθz
(x)

∂lθ
dx =

∂lg(θz)

∂lθ
, l ∈ [0, Lz] (6.35)

or equivalently:

Eθ0

[(
ĝ (θ0) (x) − g (θ0)

) ∂lfθz (x)

∂lθ

fθ0 (x)

]
=

[
∂l (g(θ) − g(θ0))

∂lθ

]

θz

(6.36)
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Thus, the set of
Z∑

z=1

(Lz + 1) constraints (6.36) deriving from the Z piecewise discretization

of (6.18) defines a given approximation of the BB denoted by B̂B
I1,...,IZ

L1,...,LZ
(6.8):

B̂B
I1,...,IZ

L1,...,LZ
= vTG−1v, v =




v1

...

vZ


 , G = Eθ0

[
ccT
]
, c =




c1

...

cZ


 (6.37)

(6.38)

vz =

[
g(θz) − g(θ0),

∂g(θz)

∂θ
, ...,

∂Lzg(θz)

∂Lzθ

]T

(6.39)

cz =

[
fθz

(x) ,
∂fθz

(x)

∂θ
, ...,

∂Lzfθz
(x)

∂Lzθ

]T

(6.40)

Moreover, if min {L1, ..., LZ} tends to infinity, a straightforward exercise in mean square

convergence establishes that B̂B
I1,...,IZ

L1,...,LZ
converges in mean-square to the BB. An immediate

generalization of expression (6.37), similar to that used in the HCRB [112] and the hybrid

bound proposed by Abel [118], consists of taking its supremum over existing degrees of

freedom (sub-interval definitions and series expansion orders).

6.4.1 An Alternative Look at Existing BB Approximations

The formalism proposed in the previous section allows exploration of the unbiasedness

assumption from its weakest to its strongest formulation, and therefore encompasses all

previously derived BB approximations, which we designate:

• Z-piecewise BB approximation of homogeneous order L, if on all sub-intervals Iz the

series expansions are of the same order L,

• Z-piecewise BB approximation of heterogeneous orders {L1, ..., LZ}, if otherwise.

The proposed formalism can now be used to provide a new look at the previously derived

MSE lower bounds:

• the CRB [8] is a 1-piecewise BB approximation of homogeneous order 1, since the

constraints are:

Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ0

[
ĝ (θ0) (x)

∂fθ0
(x)

∂θ

fθ0 (x)

]
=
∂g (θ0)

∂θ
(6.41)

• the Bhattacharyya bound [7] of order L is a 1-piecewise BB approximation of homoge-
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neous order L, since the constraints, for l = 1, . . . , L, are:

Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ0

[
ĝ (θ0) (x)

∂lfθ0
(x)

∂lθ

fθ0 (x)

]
=
∂lg (θ0)

∂lθ
. (6.42)

• the Hammersley-Chapman-Robbins bound (HCRB) [112] is the supremum of a 2-

piecewise BB approximation of homogeneous order 0, over a set of constraints of type:

Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ1

[
ĝ (θ0) (x)

]
= g (θ1) (6.43)

• the McAulay-Seidman bound (MSBZ) [113] with Z test points is an Z+1-piecewise BB

approximation of homogeneous order 0, since the constraints, for z = 1, . . . , Z, are:

Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθz

[
ĝ (θ0) (x)

]
= g (θz), (6.44)

• the McAulay-Hofstetter bound (MHBZ) [126] is an Z + 1-piecewise BB approximation

of heterogeneous order {1, 0, ..., 0}, since the constraints, for z = 1, . . . , Z, are:





Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ0

[
ĝ (θ0) (x)

∂fθ0
(x)

∂θ

fθ0
(x)

]
= ∂g(θ0)

∂θ

Eθz

[
ĝ (θ0) (x)

]
= g (θz) ,

. (6.45)

• the Hybrid Barankin-Bhattacharyya bound (HBBL,Z) [118] is an Z + 1-piecewise BB

approximation of heterogeneous order {L, 0, ..., 0}, since the constraints, for z = 1, . . . , Z

and l = 1, . . . , L, are:





Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ0

[
ĝ (θ0) (x)

∂lfθ0
(x)

∂lθ

fθ0
(x)

]
= ∂lg(θ0)

∂lθ

Eθz

[
ĝ (θ0) (x)

]
= g (θz)

(6.46)

Note that MHBZ = HBB1,Z , i.e. the Hybrid Barankin-Bhattacharyya bound is a gener-

alization of the McAulay-Hofstetter bound.

6.4.2 A New Practical BB Approximation

The proposed formalism not only provides a new look at previous BB approximations,

it also suggests a very straightforward and practical new BB approximation, which we
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denote B̂B
Z

1 in the following: the Z+1-piecewise BB approximation of homogeneous order

1 characterized by the set of constraints, for z = 1, . . . , Z:




Eθ0

[
ĝ (θ0) (x)

]
= g (θ0) , Eθ0

[
ĝ (θ0) (x)

∂fθ0
(x)

∂θ

fθ0
(x)

]
= ∂g(θ0)

∂θ

Eθz

[
ĝ (θ0) (x)

]
= g (θz) , Eθz

[
ĝ (θ0) (x)

∂fθz
(x)

∂θ

fθz (x)

]
= ∂g(θz)

∂θ

(6.47)

Indeed it appears to be the generalization of the CRB when the parameter space is

partitioned in more than one sub-interval, as well as the generalization of the usual BB

approximation used in the open literature, i.e. the McAulay-Seidman form of the BB.

Therefore its computational complexity does not exceed that of these two bounds.

6.4.3 General lower bounds expressions

For any set of Z + 1 test points {θz}[1,Z+1], among the existing lower bounds, only the

MSBZ and the HBB1,Z (MHBZ) are of a complexity comparable with B̂B
Z

1 . Nevertheless,

the CRB and the HCRB are included in the comparison as they are respectively the

simplest representative of Small and Large Error bounds. All mentioned lower bounds

can be computed from the components of B̂B
Z

1 - (6.37 ) (6.47) with rearrangement -:

B̂B
Z

1 = vTG−1v, v =

[
∆gT ,

(
. . . ,

∂g(θz)

∂θ
, . . .

)T
]T

, G =

[
MSM CM

CMT PFIM

]
.

(6.48)

where MSM stands for the McAulay-Seidman Matrix, PFIM stands for the Pseudo

Fisher Information Matrix and CM stands for the Cross Matrix:

MSMz,y = Eθ0

[(
fθz

(x)

fθ0(x)

)(
fθy

(x)

fθ0(x)

)]
(6.49)

(6.50)

PFIMz,y = Eθ0

[(
∂fθz

(x)

∂θ

1

fθ0
(x)

)(
∂fθy

(x)

∂θ

1

fθ0
(x)

)]
(6.51)

(6.52)

CMz,y = Eθ0

[(
fθz

(x)

fθ0(x)

)(
∂fθy

(x)

∂θ

1

fθ0(x)

)]
(6.53)

Noting that:

fθz
(x)fθy

(x)

fθ0(x)
= e2s2 Re{[a(θz)−a(θ0)]

H [a(θy)−a(θ0)]}f(x), f(x) =
e−‖x−s[a(θz)+a(θy)−a(θ0)]‖2

πM

(6.54)
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then MSM, PFIM, CM matrices are given by:

MSMz,y = e2s2 Re{[a(θz)−a(θ0)]
H [a(θy)−a(θ0)]}

CMz,y = 2s2 (MSMz,y)Re

{
[a (θz) − a (θ0)]

H ∂a (θy)

∂θ

}

PFIMz,y = 2s2 (MSMz,y)Re



{

∂a(θy)H

∂θ
E
[
(x−sa (θy)) (x−sa (θz))

T
]

∂a(θz)∗

∂θ

}
+{

∂a(θy)H

∂θ
E
[
(x−sa (θy)) (x−sa (θz))

H
]

∂a(θz)
∂θ

}



where, (see Appendix A):

E [x] = s [a (θz) + a (θy) − a (θ0)] (6.55)

E
[
xxT

]
= E [x]E [x]T (6.56)

E
[
xxH

]
= I + E [x]E [x]H (6.57)

E
[
(x−sa (θy)) (x−sa (θz))

T
]

= E
[
xxT

]
− sE [x] a (θz)

T (6.58)

−sa (θy)E [x]T + s2a (θy)a (θz)
T (6.59)

E
[
(x−sa (θy)) (x−sa (θz))

H
]

= E
[
xxH

]
− sE [x] a (θz)

H (6.60)

−sa (θy)E [x]H + s2a (θy)a (θz)
H (6.61)

6.5 DOA Estimation Analysis

6.5.1 General observation model

The work presented here is primarily concerned with estimation of the DOA of signals

emitted by an acoustic source and received by an array of microphones. In this framework

two different signal models can be considered: the deterministic and the stochastic signal

models. The discussed signal models are Gaussian and the unknown parameters are

connected with the expectation value in the deterministic case and with the covariance

matrix in the stochastic one [95]. In the following we focus on the deterministic signal

model, although the proposed bound could also be applied to the stochastic signal model.

For the sake of simplicity the case of estimating the DOA of a single source using

a single snapshot is considered. This situation corresponds to the signal model given

in equation (2.22) for the case where P = 1, and N = 1. It also corresponds to the

signal model in equation (3.11), for the case where estimation is performed using a single

frequency bin only. In most situations it is necessary to use a larger number of snapshots

or frequency bins in order to achieve reliable estimates, however some algorithms estimate
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the DOA using a single snapshot only [127, 128]. The complex observation vector model

x is modelled by:

x = sa(θ0) + n (6.62)

where θ0 is the unknown DOA to be estimated, s2 is the SNR (s > 0) and n is complex

circular Gaussian noise, with zero mean and a known covariance matrix Cn.

Without any loss of generality, and in order to simplify the resulting expressions it

is assumed that the observation vector has been whitened. This is possible as the noise

covariance matrix, Cn, is known. Then Cn = LnL
H
n and x → L−1

n x is the whitened

observation model, which is equivalent to the original observation model but now Cn = I.

As σ2 = 1, the SNR is now equal to s2 (s > 0), and the expression for the pdf given in

equation (2.29) can be re-written as:

fθ(x) =
e−‖x−sa(θ)‖2

πM
(6.63)

From equation (2.26), the response vector is expressed as:

a (θ) =
[

1, e−j(2) 2π∆
λ

cos(θ), . . . , e−j(M) 2π∆
λ

cos(θ)
]T
. (6.64)

and
∂a (θ)

∂θ
=

(
j (M)

2π∆

λ
sin (θ)

)
a (θ) . (6.65)

Then, setting ∆
λ

= 1, the possible values of the possible values of θ are limited to

]600, 1200[, in order to avoid the problem of ambiguous steering vectors as discussed in

chapter (2).

For the case under consideration, the vector v is given by:

v = [θ0 − θ0, . . . , θZ−1 − θ0, 1, . . . , 1]T (6.66)

In order to provide a fair comparison with the HCRB, the MSBZ , HBB1,Z , B̂B
Z

1 are

computed as suprema over the possible values of {θz}[1,Z+1]. For the sake of simplicity

{θz}[1,Z+1] = {0, dθ,−dθ}. In figure 6.2, the evolution of the various bounds as a function

of SNR in the case of M = 8, P = 1 and N = 1.

The variance of the ML estimator is also shown in order to compare the threshold

behaviour of the bounds, and it can be seen that the proposed approximation bound

allows for a closer prediction of the threshold SNR.

For practical localisation schemes it is desirable to have the estimator operate at

all times in the asymptotic region. This makes knowledge of the threshold SNR very
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Figure 6.2: Comparison of MSE lower bounds versus SNR when estimating the DOA

of a known signal. In this case a single snapshot is available, N = 1, and the number of

sensors M = 8.

important as it allows the operating range of the estimator to be determined for a given

situation. The proposed approximation bound is therefore suitable for source localisation

feasibility studies as it can be used to predict the possible operating range that can

be achieved. Knowledge of the possible operating range can also be used for comparison

purposes with any proposed localisation algorithms, and in this sense the proposed bound

can be used as a tool for evaluation of proposed estimators.

A large difference can be seen between the proposed approximation and the perfor-

mance of the ML estimator below the threshold SNR, and it is clear that the Large-Error

deterministic bounds are not suitable for evaluation of the estimator performance below

the threshold SNR. This may be attributed to the fact that as the SNR decreases, the

ML estimator may become heavily biased [117, 126], and in fact, under non-asymptotic

conditions the ML estimator is not the most accurate estimator [23].

While it is common to evaluate estimator performance with respect to decreasing

SNR [114, 129], in many situations of localising an acoustic source, the SNR will not

be known. Therefore, future work will focus on evaluation of the proposed bound as a

function of varying M , N and θ.
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6.6 Conclusions

For design and evaluation of localisation schemes, knowledge of the best possible perfor-

mance that can be achieved is very useful. This information can be found using lower

bounds on the Mean Square Error (MSE). The greatest of these lower bounds is the

Barankin Bound (BB), however it is generally not computable and must instead be ap-

proximated.

The difference seen between the ML estimator variance and the proposed approxi-

mation in the large error region shows that while the ML estimator is optimal under

asymptotic conditions this is not the case as the SNR and/or number of samples de-

creases below the threshold values. Additionally, the present results suggest that the

true value of the BB may be significantly underestimated by existing approximations,

questioning previously drawn conclusions on prediction of the ML estimator variance by

Deterministic Large Error Bounds.

The novel contributions made to this area of research include a new formalism for

classification of Lower MSE bounds, which provides a clear explanation of the constraints

imposed by these bounds, and their relationship to the BB. The proposed formalism

leads to the derivation of a new approximation bound, B̂B
Z

1 , which provides a closer

approximation of the BB than existing bounds, allowing for a better prediction of the

SNR threshold.



7
Conclusions

7.1 Summary and Conclusions

The work presented here concerns model order determination, and characterisation of

DOA estimators in the acoustic context. Firstly the problem of DOA estimation using

array processing techniques is introduced and the possible applications of DOA estimation

are discussed. Then, chapter 2 provides the mathematical basis for the rest of the thesis.

The model of the wavefront propagating from the source to the array is recalled and the

mathematical estimation problem is introduced. The possible approaches to finding an

optimal estimator and the difficulties in finding such an estimator for DOA estimation

are then discussed.

Chapter 3 provides a unified explanation and discussion of the classical array pro-

cessing DOA estimation techniques. Most of these techniques are based on an initial

assumption that the signal of interest is narrowband. This assumption is not valid for

acoustic source localisation and the application of these classical techniques to the locali-

sation of wideband signals is discussed, and recent developments in this area are reviewed.

Based on the profile of the noise eigenvalues of the correlation matrix as introduced

by Grouffaud et. al [1], a novel method for determining the number of acoustical sources

present is presented in chapter 4. This approach is based on the profile of the correlation

107
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matrix eigenvalues in the absence of a source, which is seen to be exponential. The

presence of a source is then detected by looking for a break in this profile. This method

does not make the assumption that all noise eigenvalues are equal making it more robust

to the effects of small data size than classical methods.

The novel work done in this area includes a discussion on the selection of suitable

threshold values, and also the application of the method, called the Exponential Fitting

Test (EFT), to the area of determining the number of wideband acoustic sources present.

The performance of the test was then analysed for this situation using both computer

simulations and experimental recordings. In particular the effects of reverberation were

considered, and it was shown that the EFT is far more robust to the effects of rever-

beration. This is due to the fact that the threshold is selected using recordings taken in

the room when there is no source present. The selection of the threshold then acts as

a training step allowing the room impulse response to be taken into consideration. In

the presence of reverberation the classical tests mistakenly classify reflections as sources,

however the initial training step for the EFT makes it more robust to the presence of such

phantom sources. A further advantage of the EFT is that this increase in accuracy does

not come at the price of increased computational complexity.

In chapter 5 the performance of three of the most well known localisation approaches

are compared: Multiple Signal Classification (MUSIC), Maximum Likelihood (ML) es-

timation and Time Delay Estimation (TDE). Using the criteria established in chapter

2 the performance of these three estimators was then analysed and the results for the

cases of single and multiple sources were compared for both computer simulations and

experimental recordings. The novel work done in this area includes the investigation of

the effects of reverberation on the tests using the Useful-to-Detrimental ratio, and also

the experimental results which confirmed these simulation results.

The results found show that for SNR values above a certain “threshold” level the

results found by the estimators are close to the true DOA and the MSE is low, with the

MSE of the MUSIC and ML methods being lower than that of the TDE method, due to

the severely limited resolution capabilities of the TDE method. The resolution achievable

when using the MUSIC and ML were also shown to be dependent on both the SNR and

number of samples available as well as the true DOA value.

However, once the SNR decreases below this threshold value, all the estimators expe-

rienced a sharp increase in the MSE. Each of these estimators involves a maximisation of

the estimator ambiguity function, or the“spatial spectra” of the estimators, although it

should be noted that they are not spectra in any real sense. Analysis of these spectra was

then used to explain the performance of the estimators. It was seen that at high SNR the
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spectra have sharp mainlobes centred on the true DOA value, resulting in all estimates

being very close or equal to the true value. As the SNR decreased to the threshold level

it was shown that the sidelobes begin to increase and the mainlobe becomes broader. For

SNR levels below the threshold value both the sidelobes and mainlobe are now very broad

and the sidelobes are of equal or greater magnitude than the mainlobe, causing the sharp

increase in MSE experienced in the results.

The effects of reverberation on the estimator performance were also considered in

chapter 5, using both room response simulations and experimental recordings. From the

results it was seen that the TDE approach is more robust to the effects of reverberation

than the MUSIC and ML methods. For larger sample sizes, the accuracy of both the

ML and MUSIC methods increased, with MUSIC being the most sensitive to sample

size. However, the ML approach is computationally expensive. This is especially true for

the case of P > 1, where a P -dimensional search must be implemented. In this work,

the need for a multi-dimensional search was avoided by implementing an Alternating

Projection (AP) algorithm which instead de-couples the estimates into P 1-dimensional

searches. However, the method remains computationally burdensome, particularly when

implemented for broadband sources, as the calculations must be repeated across each of

the frequency bands of interest.

The novel contributions made in chapter 5 include the evaluation of the estimators

using both computer simulations and experimental recordings, for a range of estimation

situations. The effect of reverberation on the estimators’ performances was also considered

by evaluation of the results for increasing values of the Useful-to-Detrimental ratio.

In chapter 6 lower bounds on the MSE are used to predict the best possible perfor-

mance of an estimator for a given estimation problem. The most commonly used minimal

performance bound is the Cramer-Rao Bound (CRB). However, for non-linear estimators

the possible performance indicated by the CRB is far too optimistic, and it gives no indi-

cation of the threshold value witnessed in chapter 5. Knowledge of this threshold value is

of great importance as operation below this point is highly undesirable, as operation be-

low this threshold point leads to very high MSE. Lower bounds on the MSE can therefore

be used to predict the SNR threshold for a given estimation problem and thereby define

the estimator operating range.

We therefore consider the Barankin Bound (BB), which is the greatest lower bound

on the MSE. However, it is generally not computable and therefore must instead be

approximated. In chapter 6 we propose a new formalism that allows for classification

of BB approximations which also gives a clear interpretation of these approximations.

It is shown that existing minimal bounds can be classified using this formalism. This
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analysis then leads to the introduction of a new practical method of approximating the

BB, which while appearing closer to the BB than existing approximations, does not exceed

the computational complexity of the CRB.

The proposed bound is then applied to the DOA estimation problem, for the case of

P = 1, N = 1 and M = 8. Comparison of the performance characterisation given by

the proposed bound and previous approximation bounds show that the proposed bound

allows for closer approximation of the SNR threshold for the ML estimator. This makes

it a useful tool for prediction of the SNR threshold for DOA estimation problems.

7.2 Future Work

The analysis of DOA estimator performance can be extended to include the situation

where the sources lie in the near-field and the assumption of planar wavefronts no longer

holds. Prior knowledge of the signal characteristics can also be applied to improve the

estimator performance in situations of low SNR and/or high reverberation.

The work in chapter 4 can be extended to include further analysis of the effects of

reverberation on the proposed model order determination method. The presence of re-

verberation means that the assumption of white noise can no longer be applied. For

moderate levels of reverberation, it was shown that the approximation of the noise as

white is possible and the proposed method continues to work under such circumstances.

However, for higher levels of reverberation this approximation is no longer possible and

future work will focus on revising the model for prediction of the noise eigenvalue profile,

in order to take this into account.

An extension of the work in chapter (6) is the generalisation of the proposed bound

to simultaneous estimation of several functions of multiple parameters. Also the case for

N > 1 will also be considered.

Another extension is the selection of suitable test points. By removing the supremum

from the expression for the proposed bound, the calculational complexity is reduced and

this is particularly important for the multiple parameter case in order to avoid the need

for a multi-dimensional optimization. This approach can then be used to evaluate the

effects of experimental modelling errors. Similarly the proposed practical bound can then

be used as a design tool for choosing the optimal array geometry for a given situation.
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Derivation of equation (6.55:6.61)
As we assume a Gaussian distribution the pdf can be expressed as follows:

fθ(x) =
e−‖x−mx‖2

πM
. (A.1)

The expected value of x is then given by:

E [x] = mx. (A.2)

Then:

E
[
(x −mx) (x −mx)T

]
= 0 = E

[
xxT

]
− E [x]E [x]T , (A.3)

⇒ E
[
xxT

]
= E [x]E [x]T , (A.4)

and:

E
[
(x − mx) (x −mx)H

]
= Cx = Id, (A.5)

E
[
(x − mx) (x − mx)

H
]

= E
[
xxH

]
− E [x]E [x]H . (A.6)

We can therefore say that:

Id = E
[
xxH

]
−E [x]E [x]H , (A.7)

resulting in:

E
[
xxH

]
= Id + E [x]E [x]H . (A.8)
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