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Abstract

This thesis is concerned with handling transparency in digital video. We define transparency

as a mixture between two different distinctive layers. This thesis has three main contributions.

The first contribution is an approach for removing two common types of degradations on

Digital Video known as ‘Blotches’ and ‘Line Scratches’. Blotches are impulsive dark and bright

spots distributed randomly over an image sequence. Line scratches are temporally consistent

dark and bright vertical lines propagating through an image sequence. Current removal tech-

niques model such corruptions as an opaque foreground layer superimposed on the original

(background) ‘clean’ layer. This often generates restoration artifacts due to underestimation

and/or overestimation of the corruption region. We propose a removal technique which models

corruptions as a semi-transparent layer superimposed on the original ‘clean’ layer. Removal is

then achieved by estimating corruption opacity and the underlaying original data. We generate

a solution using a Bayesian framework and we use novel spatial and temporal priors. Restora-

tion results are compared against ground truth estimates. Ground truth estimates are derived

from IR scans of corruptions. Restoration results show that our restoration technique generates

more accurate estimation of the corruption borders over previous work. This generates better

removal despite texture and motion complexity.

The second contribution of this thesis is a technique for automated detection of reflections

in image sequences. Regions of reflections are common in video and they are often the result of

superimposing a semi-transparent foreground layer over a background layer. This phenomenon

causes many image processing techniques to fail as they assume the presence of one layer at

each examined site e.g. motion estimation and object recognition. This calls for the need of

an automated technique which detects such regions and assigns different treatments to them.

However, as reflections can result by mixing any two images, they can come in different forms and

colors. This makes their detection a hard problem that was not addressed before. We propose

a technique for automated detection of reflections by analyzing feature point trajectories. We

examine several spatial and temporal features. This generates a set of weak detectors. A strong

detector is generated by combining the weak detectors. We generate a solution using a Machine

Learning framework, impose spatial and temporal smoothness on the generated masks and our

results show high reflection detection rate with rejection to regions of complicated motion.

The third contribution of this thesis is a technique for multiple motion estimation in regions

of reflections. As such regions have two layers superimposed over each other, they usually have

two motions per pel, one for each layer. Most motion estimators assume the presence of one

motion per examined site, an assumption that is violated in reflections. Current multiple motion

estimators assume constant motion over at least three frames. As a result they can not handle

non-uniform motions as ones arising due to camera shake or motion acceleration. We present an

approach for multiple motion estimation based on the observation that the motion for a specific
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foreground/background layer can be used to temporally align this layer and then separate it from

the examined mixture. Based on this observation we model the correct motions of an examined

reflection as the ones generating the best reconstructions of the foreground and background

layers at the examined site. A solution is generated within a Bayesian framework and we use

novel temporal priors. Results show better multiple motion estimation over previous work with

handling of strong motion inconsistencies. However, our technique is only designed to handle

regions of reflections and hence generates erroneous measurements in regions not containing

reflections. We therefore show how to use reflection detection masks to weight out erroneous

measurements in regions not containing reflection. These masks are generated by our reflection

detection technique and results show rejection of regions not containing reflections from the final

motion estimates.
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and Dr. François Pitié for their (to name a few) continuous support, advice, inspiration and

encouragement throughout all the years I worked in image processing. I also would like to thank

my old Egyptian university, Cairo University, for introducing me to Digital Signal Processing.

Thanks to all past and present members of Sigmedia research group. I particularly wish to

thank Dr. Gary Baugh for sharing ideas (and for teaching me Jamaican, yaaa maaan), Ken

Sooknanan, Dr. David Corrigan, Kangyu Pan, Andrew Rankin, Craig Berry, Félix Raimbault,
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1
Introduction

Digital video and film manipulation has been the cornerstone of digital video broadcast and

digital cinema industry for some time now. One of the major new advances in recent years has

been a better understanding of images in sequences. This has allowed video processing tools to

be increasingly used for postproduction and consumer video applications e.g. restoration, object

cut out and frame rate conversion. However transparency in video still remains a challenge for

all video processing tools and prevents automated tools from being used ubiquitously for video

editing and inference. For example, in the vast literature on frame rate conversion [15, 92],

motion compensated interpolation is a key component. When faced with transparency however,

new frames cannot be built reliably using the usual assumption of only one moving object being

observed. Figure 1.1 shows such example of a reflection of a building against paper posters.

Archive restoration provides another good example. In that industry, automated dust busting

has become important for removing dirt and sparkle (missing data or blotches) from degraded

image sequences. Figures 1.2 and 1.3 show examples from degraded sequences exhibiting both

dirt and line scratches respectively. In this problem, the corruption is in fact transparent.

Traditional dust busting strategies tended to ignore this and that meant that errors in detecting

the degradation were very visible since hard rather than soft decisions were being taken at each

pixel site. Even motion estimation itself is affected by transparency, since the usual assumption

of one motion per pixel breaks down in the presence of reflections or shadows.

Traditionally problems due to transparency have been handled by allowing for some kind

of fallback or error mode in many video processing systems e.g. pathological motion detection

[11, 19, 63]. In this thesis however, we address the phenomenon of transparency explicitly. We

1



2 Introduction

Figure 1.1: In clockwise direction: Frames 1, 10, 20 from a sequence containing reflection of a

building superimposed on paper posters. In this sequence the building is moving to the left while

the posters are moving to the right. This generates two motions per pel.

first consider blotch and line removal using transparency as a corruption model and then we

move on to address the larger problems of transparency/reflection detection and multiple motion

handling. The connecting thread in this work is the model we employ to express transparency.

Given the examples in figures 1.1 and 1.2-1.3, we express image patches exhibiting transparency

as a mixture of two layers. For a site x, the resulting mixture M can be written as a linear

combination between the foreground F and background B layers as follows

M(x) = α(x)F (x) + (1 − α(x))B(x) (1.1)

Here α(x) denote the foreground visibility at site x. Complete obliteration of the background
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Figure 1.2: From top: Three consecutive corrupted frames. Blotches and line scratches are shown

in green and blue respectively. Botches are spatially and temporally impulsive events while line

scratches are temporally consistent events. Images Courtesy of Institut national de l’audiovisuel.
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Figure 1.3: Each row shows a different frame from a corrupted image sequence and its corre-

sponding IR scan of corruption in the middle column. The IR scan is bright in clean regions

and dark in corrupted regions. The last column shows the green areas zoomed on. Different IR

gray values for corruptions show that corruptions are semi-transparent dirt layers.
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layer is therefore represented by α(x) = 1. For blotch and line scratches removal α(x) represents

corruption opacity. α(x) estimation is an important step in layer separation. Layer separation

analysis of natural images is performed to infer the presence of multiple layers for the purpose

of reflection detection.

This thesis proposes automated approaches to handle transparency in digital video. In

the first main contribution of this thesis we use equation. 1.1 to model degradations as a

foreground corruption layer linearly mixed with the original ‘clean’ background layer. Re-

moval is then performed by reconstructing the underlying original data. This is done by

estimating the corruption opacity values α together with the original background data B.

The problem of estimating the opacity values for mixtures of natural images is well stud-

ied [8, 9, 17, 30, 31, 33, 36, 52, 58, 62, 64–66, 70, 76, 82, 90, 91, 96]. Here the name ‘Matte’ is used in

the literature to describe the estimated opacity values. Chuang et al. [17] proposed a Bayesian

solution for the matte extraction problem. Their technique solves for the background data

in an implicit form during the estimation of α. We use this approach to estimate the back-

ground original clean data B as well as the corruption opacity α. We generate a solution within

a Bayesian framework and we use novel spatial and temporal priors. Restoration results show

better estimation of the corruption borders and corruption removal robust to texture and motion

complexity.

The second contribution of this thesis is concerned with the detection of transparencies/reflections

in natural image sequences (see figure. 1.1). Reflections are modeled as a mixture between a

foreground layer superimposed on a background layer. Detection is achieved by analyzing fea-

ture point trajectories. Several weak detectors are proposed, some of which flag regions of

reflection as ones generating high motion discontinuities. Others flag reflections as regions

where the examined site can be separated into two different foreground and background layers.

Separation here is done by employing some ideas used in current reflection separation tech-

niques [12, 16, 22, 26, 39–42, 45, 53, 54, 71, 73, 74, 77, 94, 95, 97, 98]. Note that here we are not

interested in state of the art layer separation, instead we are just interested in separation that is

good enough for reflection detection. The final reflection detector is generated as a combination

of the weak detectors and results show high detection rate with rejection to complicated motion.

The final contribution of this thesis is to propose a technique to estimate the underlying

foreground and background motions in regions of reflections. This technique is based on Weiss

work on reflection separation [94] where he showed that one can extract the foreground or

the background layer of a reflection once this layer is temporally aligned through an image

sequence. Hence we model the correct motion of the background layer as the one generating the

best temporal alignment of this layer and hence generating the best background estimate. The

foreground motion is estimated using the same approach. Here feature point trajectories act as

pool of candidates for the motions. Unlike previous work on multiple motion estimation, our

technique is robust to temporal motion inconsistencies. As a final note we show how reflection

detection masks can be used to weight out erroneous motion estimates generated in regions
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not containing reflections. Those masks are generated from our proposed reflection detection

technique.

1.1 Thesis outline

A brief summary of each chapter is as follows.

Chapter 2 Handling Transparency in Natural Images: Related Work

This chapter discusses previous work that is related to the three main contributions of this

thesis. We discuss three main problems. The first is the extraction of opacity mattes in natural

images. Note however this thesis does not address the problem of matte extraction in an explicit

form. Instead, it just uses ideas from the matting problem. Hence in this chapter we focus on

discussing the matting technique of Chuang et al. [17] as it is used for the corruption removal

technique proposed in this thesis. The second problem addressed in this chapter is the sepa-

ration/reconstruction of the foreground and background layers from reflections. Again, as this

thesis does not address the problem of layer separation in an explicit form, we only focus on sep-

aration ideas that are used in the main contributions of this thesis. The last problem addressed

in this chapter is the estimation of the foreground and background motions for reflections. Here

we present a literature review of current multiple motion estimators.

Chapter 3: Blotch and Line Scratch Removal: A Review

This chapter describes previous work on removing blotches and line scratches. Current tech-

niques largely fall into two main categories. The first models corruptions as an opaque foreground

layer superimposed on the original background. Here the mixing opacity α in equation 1.1

takes only binary values where α = 1 represents complete obliteration of the background layer

while α = 0 represents uncorrupted region. The second category models corruptions as semi-

transparent layers superimposed on the original layer. Here the mixing opacity α in equation 1.1

takes non binary values.

Chapter 4: Bayesian Inference for Semi-transparent Blotch and Line Removal

This chapter proposes a new approach for removing blotches and line scratches from image

sequences. Here we model the corrupted frame as a mixture between the corruption layer and the

original layer. Chuang et al. [17] matte extraction technique is used to estimate the corruption

opacity as well as the original data. A solution is presented within a Bayesian framework and we

use novel spatial and temporal priors. The proposed blotch removal technique is called BTBR

short for Bayesian Transparent Blotch Remover while the proposed line removal technique is

called BTLR short for Bayesian Transparent Line Remover.
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Chapter 5 Infrared Analysis

This chapter shows experiments used to evaluate our blotch (BTBR) and line (BTLR) removal

techniques. Comparisons with ground truth estimates show that our restoration techniques

generate good removal despite motion and texture complexities. Here ground-truth estimates

are generated by transforming IR scans of corruptions from their original grayscale domain to

the corruption opacity domain. This generates ground-truth corruption opacities which are used

to weight out the effect of the corruptions and hence unveil the underlying original data.

Chapter 6: Reflection Detection in Images Sequences

This chapter proposes an approach for automated detection of reflections in natural image

sequences. This is done by analyzing feature point trajectories. A set of weak detectors is

generated. A strong detector is proposed by combining those weak detectors. We generate

a solution within a Machine Learning framework, use spatial and temporal information and

results show high reflection detection rate with rejection to regions of complicated motions.

The proposed detection technique is called FEAPARD, short for Feature Point Analyses for

Reflection Detection.

Chapter 7: Motion Estimation for Regions of Reflection

This chapter proposes an approach for multiple motion estimation for regions of reflections. It

models the correct motions as the ones generating the best foreground and background recon-

structions of the examined reflection. Feature point trajectories act as a pool of candidates for

the motions. We generate a solution within a Bayesian framework, use novel temporal priors and

results shows good motion estimation despite motion inconsistencies. We show how to weight

out erroneous motion estimates in regions not containing reflections. This is done using the

detection masks generated from FEAPARD, our reflection detection technique. The proposed

multiple motion estimator is called BIMS, short for Bayesian Inference for Multiple motion

estimation through layer Separation.

Chapter 8: Conclusions

The final chapter assesses the contributions of this thesis and outlines some directions for future

work.

1.2 Contributions of this thesis

Aspects of novelty in this thesis can be summarized as follows

❼ Incorporation of a model for semi-transparency into a Bayesian framework for blotch re-

moval.
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❼ A new analysis of corruption IR scans to create accurate ground truth for corruption

removal.

❼ Hybrid schemes for solution of the Bayesian corruption removal problem.

❼ A new technique for line scratch removal based on recursive filtering using the same

Bayesian framework of blotch removal.

❼ A technique for decomposing a color still image containing reflection into two images

containing the structures of the source layers. We do not claim that this technique could

be used to fully remove reflections from videos. What we claim is that the extracted layers

can be useful for reflection detection since on a block basis, reflection is reduced.

❼ Diagnostic tools for reflection detection based on analyzing feature point trajectories. This

generates a set of weak reflection detectors.

❼ A scheme for combining the weak detectors in one strong reflection detector using Ad-

aboost.

❼ The generation of dense reflection detection maps from sparse detections and using thresh-

olding by hysteresis to avoid selecting particular thresholds for the system parameters.

❼ Incorporating spatio-temporal information which reject spatially and temporally impulsive

reflection detections.

❼ A technique for multiple motion estimation for regions of reflections through layer separa-

tion.

❼ Incorporation of novel temporal priors.

❼ Using reflection masks to mask out erroneous motion estimates in regions not containing

reflections. These masks are generated from our reflection detection technique.

1.3 Publications

Portions of the work described in this thesis have appeared in the following publications:

❼ “Extraction of Non-Binary Blotch Mattes” by Mohamed Ahmed, Francois Pitie, and Anil

Kokaram, in Proceedings of the International Conference on Image Processing (ICIP ’09),

pages 2757-2760, Cairo, Egypt, November 2009.

❼ “Reflection Detection in Image Sequences” by Mohamed Ahmed, Francois Pitie, and Anil

Kokaram, in Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR ’11),

pages 705-712, Colorado, U.S.A, June 2011.
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❼ “Motion Estimation for Regions of Reflections Through Layer Separation” by Mohamed

Ahmed, Francois Pitie, and Anil Kokaram, To appear in the IEEE European Conference

on Visual Media Production (CVMP ’11), London, UK, November 2011.

❼ “Blotch and Scratch Removal in Archived Film Using a Semi-transparent Corruption

Model” by Mohamed Ahmed, Francois Pitie, and Anil Kokaram, Under review in the

International Journal of Computer Vision (IJCV).
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2
Handling Transparency in Natural Images: Related

work

Following from the introduction to this work, we seek to model transparency as a mixture

of two layers. The essential statement is repeated here for clarity as follows. The observed

image mixture M is modeled as a linear combination between the foreground layer F and the

background layer B as follows.

M(x) = α(x)F (x) + (1 − α(x))B(x) (2.1)

Here x denote the pels of the considered image while α is a parameter that measures the blend

between the foreground and background layers. α is called ‘opacity’ in the literature. α(x) = 1

represents complete obliteration of the background layer at pel x while α(x) = 0 represents

complete absence of the foreground layer at the examined site (see figure 2.1).

The important observation is that equation 2.1 is the same as the well known compositing

equation used for extracting object mattes (see figure 2.2, regions shown in red) as in [8,9,17,30,

31,33,36,52,58,62,64–66,70,76,82,90,91,96]. We will draw on this body of work in designing our

own algorithms so the first part of this review introduces the important ideas we require from

that literature. Note however in this thesis we do not address the problem of matte extraction

in an explicit form. Instead we just use ideas from the matting problem. Hence in this chapter

we do not present an overview of the matting techniques. However, we focus on discussing

the matting technique of Chuang et al. [17] as it is used extensively in the corruption removal

technique proposed in this thesis. We use the technique of Chuang et al. as it is the most

11
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Figure 2.1: Mixing the image of lenna (bottom left) with an image of a crowd of people (top

left) using equation 2.1 with different opacity values (α). Here the crowd of people is the

foreground while lenna is the background. Opacity values used (clockwise from top left) are

α = [1, 0.85, 0.5, 0.35, 0]. α is fixed over an entire mixture. α = 1 shows complete obliteration of

the background (lenna) while α = 0 shows complete absence of the foreground (the crowd)
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Figure 2.2: Transparency occurs around object boundaries (examples shown in red) where the

observed color is a mixture between the foreground and background object. The foreground object

for the left and right images are the chair and the toy respectively. The soft blend between the

foreground and background objects (shown in red) is called ‘Matte’.

popular matting technique that uses a Bayesian framework. The Bayesian framework is the

most general framework for solutions. This allows the Chuang et al. approach to be extended

to other problems.

There is no previous work on addressing reflection detection. However many work exists on

layer separation from natural image mixtures [12, 16, 22, 26, 39–42,45, 53, 54, 71, 73, 74, 77, 94, 95,

97, 98]. Again, we draw on that body of work to develop our reflection detection and multiple

motion estimation ideas and so the next part of the review considers these. However as this

thesis does not address the problem of layer separation in an explicit form, we focus more on

separation techniques that are used in the main contributions of this thesis.

Finally, several authors have considered the problem of multiple motion estimation, although

not many have attempted to assign the motion to the correct image layers [3,7,59,61,75,81,86,88].

Hence the final part of this chapter presents a review of current multiple motion estimators.

This chapter starts by a quick review of the matte extraction problem. We do not present

a literature review of the matting techniques. Instead, we mainly discuss the Chuang et al. [17]

approach as it is the only matting technique used in our contributions. The chapter then goes

on to discuss techniques for reflection separation. Here we discuss techniques designed for still

images as well as techniques designed for image sequences. Again, we mainly focus on separation

techniques that are used in our contributions. Last, previous techniques for estimating the

foreground and background motions in regions of reflections are discussed.
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2.1 Matte Extraction

Plenty of techniques exist for matte extraction [9, 17, 33, 52, 58, 62, 64, 70, 76, 82, 91]. Those

techniques take two main different approaches; 1) deterministic [9,52,58,62,76,82] and 2) prob-

abilistic [17, 33, 64, 70, 91]. Among the techniques that take probabilistic approaches, Chuang

et al. [17] were the first to formulate the matting problem within a Bayesian framework. The

Bayesian framework is the most general framework for solutions. This allows [17] to be extended

to other problems. In addition, more recent matting techniques that use a Bayesian framework

build on similar ideas from [17]. Due to those reasons we extensively use the technique of Chuang

et al. in our corruption removal techniques. Their technique is commonly known as ‘Bayesian

Matting’.

Bayesian Matting requires an initial segmentation of the observed image into three main

regions being: 1) definite foreground 2) definite background and 3) unknown. This segmentation

is called a ‘Trimap’ and can be manually supplied. Bayesian Matting then solves for the missing

parameters (α(x), B(x), F (x)) for every pel x in the unknown region using information from the

nearby definite foreground and background regions. We discuss this technique in more detail

next.

2.1.1 A Bayesian Approach for Digital Image Matting

The Chuang et al. approach [17] derives an estimate for the (α, F, B) for every pel x in the

unknown region from the posterior P (α, F, B|M) (where x is dropped for clarity). The posterior

is factorized in a Bayesian fashion as follows

P (α, F, B|M) = P (M |α, F, B)P (B)P (F ) (2.2)

The likelihood P (M |α, F, B) ensures that the estimated (α, F, B) generate the observed mixture

M while the priors P (B) and P (F ) enforces the estimated B and F to be close to the nearby

definite background-foreground data. This approach does not impose any prior information on

α.

2.1.1.1 Modeling the priors P (F ) and P (B)

For every pel in the unknown region, the foreground prior P (F ) is modeled as a mixture of Gaus-

sians. That mixture of Gaussians is estimated from the nearby definite foreground data. This

forces the reconstructed foreground data to be consistent with the surrounding pels. Foreground

samples are collected by extending a circular patch from the examined site until a minimum

number of definite foreground pels is included. The patch is then segmented into Mc color

clusters using a color quantization algorithm [60]. This yields a mixture of Mc Gaussians, each

with mean and covariance (F̄,RF ). The background prior P (B) is also modeled in a similar

way as a mixture of Mc Gaussians using samples from the nearby definite background region.

Note that for simplicity we used the same number of foreground and background color clusters.
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2.1.1.2 Solving for (α, F, B)

Given observation noise N (0, σ2
e) in the compositing model of equation. 2.1 and substituting

P (F ) and P (B) in equation 2.2, the Posterior for (α, F, B) for the jth background-foreground

color cluster pair is as follows

P (α, F, B|M) ∝

exp−

(

||M − αF − (1 − α)B||2

2σ2
e

+ (F − F̄j)
TRFj

(F − F̄j) + (B − B̄j)
TRBj

(B − B̄j)

)

(2.3)

Unfortunately, the priors for F and B are Gaussian mixtures and this makes it difficult to

propose a closed form solution. Instead, given Mc Gaussians in each cluster, a candidate

solution is generated for each possible cluster pair. There are M2
c possible cluster pairs, hence

this yields M2
c candidate solutions. Since each candidate solution is generated from only a pair

of Gaussians, the solution for each candidate is much more tractable. Then, having generated

the M2
c candidates, the set that maximizes the posterior above is selected as the required MAP

estimate.

The candidate generation step iterates between two closed form estimates for (F,B) and α.

Appendix A describes in more detail the process, but for the jth background-foreground cluster

pair, the system of equations yielding the estimates is as follows.
[

σ2
eR

−1
Fj

+ Iα2
j Iαj(1 − αj)

Iαj(1 − αj) σ2
eR

−1
Bj

+ I(1 − αj)
2

][

F

B

]

=

[

σ2
eR

−1
Fj

F̄j + αjM

σ2
eR

−1
Bj

B̄j + (1 − αj)M

]

(2.4)

αj =
(M − Bj)

T (F − Bj)

||F − Bj ||2
(2.5)

Here I is the 3 × 3 Identity matrix. The optimal (αj , Fj , Bj) estimates for the jth background-

foreground color cluster pair is calculated by iterating between equation 2.4 and equation 2.5.

The initial value for α is set to 0.5 and subsequent initial estimates for α use the mean of

previously calculated opacities.

Figure 2.3 shows the extracted matte for an image of a girl using this approach (our imple-

mentation). The soft blend between the foreground and background at the borders of the girl’s

hair is shown by the estimated non-binary opacity values. The estimated opacities are varying

smoothly from α = 0 near the background to α = 1 near the foreground.

2.2 Reflection Separation

Techniques for estimating the foreground and background layers of reflections largely fall into

two main categories. The first category is designed to separate mixtures of still images [12,16,22,

26,39–42,45,53,54,71,73,77,95,97,98] while the second category is designed to handle reflections

in image sequences [74, 94]. All separation techniques estimate the underlying layers up to a

scale. Most still image techniques require two mixtures of the same foreground and background
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Figure 2.3: Top: An image for a girl (from Chuang et al. [17]) and the corresponding trimap

(right). White, grey and black colors in the trimap represent definite foreground, unknown,

and definite background respectively. Here the girl is treated as the foreground object and scene

behind the girl is the background. Middle: Extracted matte using Chuang et al. Bayesian Matting

(our implementation). Bottom: Areas shown in green (in the second row) zoomed on with the

original image shown in left and the extracted opacities shown in right. The soft blend between

the foreground and background objects is shown by the estimated non-binary opacity values.
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layers under different mixing conditions. The two compositing equations for the two mixtures

M1 and M2 can be written as

M1(x) = α1F (x) + (1 − α1)B(x)

M2(x) = α2F (x) + (1 − α2)B(x) (2.6)

Here x denote the pels in the examined mixtures where [α1, α2] are the mixing parameters (see

figure 2.4). For layer separation to be achieved each layer should have definite structure (e.g.

none of the layers should be devoid of texture) and both layer structures should be different

from each other. The absence of the first assumption could make the observed mixture look like

a scaled version of the layer that has distinctive structure. This will cause separation techniques

to interpret the observed mixture as being just one layer since all separation techniques recover

layers up to a scale. The absence of the second assumption could make layers look similar and

hence hard to separate from each other.

Most separation techniques for still images solve for the underlying layers F and B in a way

such that the structural similarity between the estimated layers is minimized. Different still

image separation techniques use different approaches to impose structure dissimilarity between

the separated layers. Sarel et al. [73, 74] defined the structural similarity as the similarity

in the grayscale correlation of the separated layers. They introduced a measure named GNGC

(Generalized Normalized Grayscale Correlation) that measures the grayscale correlation between

the layers. This measure is robust to grayscale deformations and generates good separation

results [73]. Several authors imposed structural dissimilarity between the separate layers by

maximizing the sparseness of edges and corners in the separated layers [12, 22, 45, 53, 77, 97].

This is done by removing the edges/corners belonging to B from the estimated F layer, and

similarly removing the edges/corners belonging to F from the estimated B layer. Hence, F and

B are solved in a way such that the edges/corners do not occur in the same spatial location in

both layers i.e. separated layers have large structural dissimilarity.

Techniques for reflection separation for image sequences do not require two mixtures of the

same foreground and background layers. Instead, they require each one of the foreground and

background layers to be undergoing different illumination variations through time [74,94]. Here

separation is done separately for each layer. This is done by temporally integrating frames.

In the remaining part of this section we discuss layer separation techniques in more detail.

For still images we discuss separation using the GNGC measure of Sarel et al. [73] and by

maximizing sparseness of edges and corners in the separated layers. We then go on to address

layer separation for image sequences in more detail.

2.2.1 Separation Using GNGC

Sarel et al. [73] proposed an approach to estimate the foreground and background layers F and

B from two mixtures M1 and M2 by minimizing the grayscale correlation between the separated
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Figure 2.4: Two layers (top) mixed together to generate two different mixtures (bottom). Here

Lenna is the foreground layer while Oranges is the background. Mixing parameters used for

the mixtures (in the bottom) are, from Left, [α1, α2] = [0.5, 0.4]. Most still image separation

techniques seek to estimate the original layers (top) given at least two mixtures of the same

foreground and background layers (bottom).
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layers. They introduced a new measure named Generalized Normalized Gray-scale Correlation

(GNGC) for measuring the structural correlation between the separated layers. GNGC for two

layers F and B is defined as follows

GNGC(F,B) =

∑k
x=1 C2

x(F,B)
∑k

x=1 Vx(F ).Vx(B)
(2.7)

Here x indexes locations of the pels of the examined layers, while Cx and Vx are the covariance

and variance of a small image patch (typically 7 × 7) centered on the examined pel. Sarel et

al. [73] showed that GNGC is robust to spatially variant grayscale deformations on the examined

layers. This property makes GNGC suitable for layer separation in noisy measurements.

2.2.1.1 Information Layer Exchange

Assuming that F is more dominant than B in M1 and B is more dominant than F in M2, Sarel

et al. [73] proposed an approach for estimating the underling layers F and B named ‘Information

Layer Exchange’. The idea here is to exchange information between the two observed mixtures

M1 and M2 till the component of one of the layer (say B) disappears from one of the mixtures

(say M1) leaving behind the other layer (F in this case). Similarly, B can be estimated by

removing the component of F from M2.

Given equation 2.6 as the mixing model for the observed mixtures M1 and M2, there must

exist a scalar γ1 such that F̂ = M1 − γ1M2 contains only the structure of F (here F̂ is the

estimated F ). Hence the optimal value of γ1 is the one that minimizes the structural similarity

between F̂ and M2. Using GNGC to measure the structural similarity, the optimal estimate of

γ1 is

γ1 = argmin(GNGC(M2, M1 − γ1M2)) (2.8)

γ1 is estimated through an exhaustive search (typically in the range of [−1 : 0.1 : 1]). Given the

estimated value of γ1, the foreground layer is recovered (up to a scale) using F̂ = M1 − γ1M2.

Now B̂ can be estimated by removing the foreground component from M2. Hence B̂ is expressed

as B̂ = M2 − γ2F̂ where the optimal value of γ2 minimizes the structural similarity between B̂

and F̂ . γ2 is estimated through an exhaustive search by minimizing GNGC(F̂ , M2 − γF̂ ).

Sarel et al. [73] proposed to repeat the above optimization process a few times to obtain a

cleaner layer separation. At each iteration, the previously recovered layer F̂ and B̂ serve as the

new mixtures as follows

F̂ k+1 = F̂ k − γ1
kB̂k (2.9)

B̂k+1 = B̂k − γ2
kF̂ k+1 (2.10)

where k is the iteration number.

Figure 2.5 shows the result of estimating Lenna and Oranges of figure 2.4 (bottom) using

this approach. Here three iterations (k=2) are used. In the regions shown in red the remains
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of Lenna are reduced as more iterations are used. In comparison with the original mixtures

(figure 2.4, bottom), Oranges are removed significantly from the reconstructed Lenna (left) and

Lenna is removed significantly from the reconstructed Oranges (right). However, GNGC failed

to generate complete layer separation mainly in the reconstructed Lenna where some remains of

the Oranges still exist (shown in green, bottom). This is known as the ‘Ghost Effect’. The reason

for this effect goes back to the first iteration of this approach in estimating Lenna (see top, left).

In the first iteration the ghost effect of the Oranges helped in minimizing the GNGC between the

estimated Lenna (at this iteration) with M2. Hence, this reconstruction of Lenna was favored

over the rest. This reconstruction error propagated through the remaining iterations.

2.2.2 Maximizing Layers Sparseness

Several authors have shown successful layer separation by maximizing the sparseness of edges

and corners in the estimated layers [12,22,45,53,77,97]. This is done by solving for F and B in

a way such that edges or corners do not occur in the same spatial location in the reconstructed

foreground and background layers. This imposes structural dissimilarity on the separated layers.

Diamantaras et al. [22] was the first to show that layers can be estimated up to a scale if the

examined layers are sparse in the sense that they have zero mean [22]. Bronstein et al. [12]

showed that image edges can generate such sparse representations for the layers. Later Souidene

et al. [77] generated successful separation by explicitly maximizing the sparseness of the edges

in the separated layers. Next we introduce the ideas of Diamantaras et al. [22] before going on

to illustrate the use of edges and corners as sparse image features for layer separation.

2.2.2.1 Diamantaras Separation Using Image Sparseness

Denote F̄(x) = α1F (x) and B̄(x) = (1 − α1)B(x), then the ratio of the image mixtures r(x) is

as follows

r(x) =
M2(x)

M1(x)
=

a1 + a2ry(x)

1 + ry(x)
(2.11)

where ry(x) = B̄(x)/F̄(x), a1 = α2/α1, a2 = (1 − α2)/(1 − α1). If a1 and a2 can be measured,

the underlying layers F and B can be estimated up to a scale as follows
[

F̄(x)

B̄(x)

]

=

[

1 1

a1 a2

]−1 [

M1(x)

M2(x)

]

(2.12)

where F̄ and B̄ are the scaled versions of F and B respectively. a1 and a2 can be estimated at

sites where ry(x) = 0 and ry(x) = ∞ as follows

r(x)|ry(x)=0 = a1 (2.13)

r(x)|ry(x)=∞ = a2 (2.14)

ry(x) = 0 implies that at site x F (x) 6= 0 and B(x) = 0 while ry(x) = ∞ implies that at x

F (x) = 0 and B(x) 6= 0. Hence, Diamantaras et al. states that one can estimate the mixing
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Figure 2.5: Estimating the source layers of the mixtures in figure 2.4 (bottom) using Layer

Exchange Information with GNGC [74]. Pictures are scaled by a factor of 7 (left column) and

1.25 (right column) for illustration clarity. Each row represents one iteration of the process

with the extracted foreground and background layer on the left and right respectively. Calculated

mixing parameters [γ1, γ2] are (from top) [0.9, 1], [0, 0.75] and [0, 0.2]. In comparison with the

original mixtures in figure 2.4 (bottom), this approach was able to reduce the mixing effect in the

final reconstructed layers (bottom). In the regions shown in red the remains of Lenna are reduced

as more iterations are used. However, some parts of the background Oranges still remain in the

reconstructed foreground Lenna (mainly shown in green).



22 Handling Transparency in Natural Images: Related work

parameters a1 and a2 and consequently the scaled versions of F and B if there at least one pel in

the observed mixtures where F vanishes and B remains (ry(x) = ∞), and another pel where B

vanishes and F remains (ry(x) = 0). These constraints are common if the examined layers are

processed in a zero-mean sparse representation instead of the original grayscale representation.

The image first order derivative is an example of a zero-mean sparse representation (see figure 2.6

top)

2.2.2.2 Layer Separation by Maximizing Edges Sparseness

Bronstein et al. [12] proposed the use of image edges as a zero-mean sparse representation for

the examined mixtures/layers. Sparse representations of the observed mixtures are generated

by applying the first order derivative T on M1 and M2 as follows

T (M1(x)) = T (α1F (x) + (1 − α1)B(x))

T (M2(x)) = T (α2F (x) + (1 − α2)B(x)) (2.15)

Due to the linearity of T one can rewrite equation 2.15 as follows

Md
1 (x) = α1F

d(x) + (1 − α1)B
d(x)

Md
2 (x) = α2F

d(x) + (1 − α2)B
d(x) (2.16)

where [Md
1 , Md

2 , F d, Bd] are the first order derivatives of [M1, M2, F, B] respectively. The mixing

parameters a1 and a2 of Diamantaras et al. [22] can now be estimated using the same approach

of Diamantaras but with processing [Md
1 , Md

2 , F d, Bd] instead of [M1, M2, F, B]. That is

rd(x)|rd
y(x)=0 = a1 (2.17)

rd(x)|rd
y(x)=∞ = a2 (2.18)

where rd = Md
2 /Md

1 and rd
y = (1−α1)Bd

α1F d . This approach imposes structural dissimilarity on the

separated layers in an implicit form as it assumes edges are not present in the same spatial

location in both separated layers.

Plotting Md
2 versus Md

1 generates two lines, with slopes a1 and a2 (see figure 2.6, (Bottom,

left)). Bronstein et al. [12] estimated the two dominant slopes [a1, a2] by looking for the two

highest peaks in the mixtures ratio histogram of every point in Md
2 versus Md

1 (see figure 2.6

bottom, right). Once a1 and a2 are estimated, scaled versions of F and B are calculated using

equation 2.12.

Figure 2.6 shows the process of estimating Lenna and Oranges of figure 2.4 (bottom) using

this approach of Bronstein et al. Recall the mixing parameters used to generate those mixtures

are α1 = 0.5 and α2 = 0.4. Hence, the ground truth estimates of a1 and a2 are 0.8 and 1.2

respectively. Figure 2.6 (bottom left) shows the plot of Md
2 versus Md

1 for the mixtures of

Lenna and Oranges in figure 2.6 (top). Most points in this plot lie along two lines as expected.
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Figure 2.6 (bottom right) shows the process of extracting a1 and a2 from the left graph. This

is done by first estimating the mixture ratio Md
2 /Md

1 for every point on the left graph and

then finding the two most common ratios. Figure 2.6 (bottom right) shows the histogram of

all mixture ratios for the left plot. The two peaks here correspond to the two dominant mixing

ratios i.e. a1 and a2. Estimated values for the mixing rations are a1 = 0.8 and a2 = 1.2.

The estimated values of a1 and a2 match the ground-truth estimates. Figure 2.7 shows the

reconstructed Lenna and Oranges using the estimated mixing parameters. As shown, both

layers are well reconstructed.

Later, Souidene et al. [77] used a similar layer separation approach to Bronestein et al. [12]

by explicitly maximizing the sparseness of the edges in the separated layers. Assuming that F

is more dominant than B in the observed original mixture M1, F is estimated by removing the

edges that correspond to B from M1. This is done by minimizing the strength of edges in M1.

Similarly, assuming that B is more dominant than F in the observed original mixture M2, B is

estimated by removing the edges that correspond to F from M2. Hence, given a set of F and

B candidates, the optimal F and B pair is selected as the one with minimum total strength of

image gradients i.e. edges in both layers are made more sparse.

2.2.2.3 Layer Separation by Maximizing Corner Sparseness

Levin et al. [54] proposed a separation approach that is similar to Souidene et al. [77] in the

sense that they both maximize the sparseness of specific image features in the separated layers.

However, instead of using edges for sparse features as in Souidene et al. [77], Levin et al. [54] uses

image corners. Levin et al. noted that due to the sparse nature of corners, the correct estimate

of the foreground and background layers would often have the minimum total number of corners

among other possible foreground-background pairs. Hence the correct F and B estimates are the

ones that maximize the sparseness of corners in the separated layer. Based on this observation

they proposed a separation technique that can estimate the foreground and background layers

given just one image mixture [54]. The mixture is processed in small blocks. For each block,

different foreground-background decompositions of M are selected from a database of natural

images. The foreground-background layer combination with minimum total number of corners

is selected as the correct estimate of the underling layers.

Figure 2.8 shows the reconstructed Lenna and Oranges of figure 2.4 (bottom) using Soudiene

et al. [77] and Levin et al. [54]. We are more interested in examining the ability of performing

layer separation though minimizing the sparseness of edges and corners in the separated layers

rather than examining the optimization methods proposed by those authors to estimate the

optimal mixing parameters. Therefore we use Sarel et al. [73] Layer Information Exchange as

an optimization scheme to find the optimal mixing parameters. For Soudien et al. F and B are

solved in a way such that the sum of strength of edges in the separated layers is minimized. Here

edges are extracted using a simple first order horizontal derivative. For Levin et al. F and B are
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Figure 2.6: Top: Horizontal first order derivative for the mixtures in figure 2.4 (bottom). Edges

hardly occur in the same spatial location in both Lenna and Oranges. For instance, the edges

shown in green belong mainly to Lenna’s hair and hat while the edges shown in red are mainly

the Oranges’. Bottom (left): The plot of Md
2 (top right) versus Md

1 (top left). Most points lie

across two lines. The slopes of those two lines can be calculated using Md
2 /Md

1 and correspond to

the mixing parameters a1 and a2. Bottom (right): The histogram of the mixture ratio Md
2 /Md

1

for every point on the left graph. The two highest peaks in the histogram correspond to the two

dominant mixture ratios Md
2 /Md

1 in the left plot i.e. correspond to a1 and a2.



2.2. Reflection Separation 25

Figure 2.7: Reconstructed Lenna and Oranges of figure 2.4 (bottom) using Bronestein et al.

separation approach. Pictures are scaled by a factor of 2 for illustration clarity. Results show

good reconstruction of Lenna and Oranges.

solved in a way such that the sum of corners in the separated layers is minimized. Here Harris

corners detector [35] is used to extract the corners [35]. Both approaches of Soudiene et al. and

Levin et al. generate the same reconstruction for Lenna and Oranges (see figure 2.8). However

the layers are much better separated from each other than when using GNGC (see figure 2.5,

bottom). The ‘Ghost Effect’ generated by GNGC (shown in green in figure 2.5, bottom) is

reduced significantly in figure 2.8.

2.2.3 Layer Separation For Image Sequences

There is relatively little published work that considers separating reflections in image sequences

[74, 94], however Weiss’ technique [94] is the most commonly cited. Although we are not inter-

ested in high quality layer separation in this thesis, the models employed in that work are of

course relevant to transparency handling in general. Hence we consider that background mate-

rial as part of this review. Weiss et al [94] assume that one of the two layers is moving, hence

the moving layer contains luminance variations along the non-motion compensated direction

because of the movement. Therefore, filtering in some way along the zero motion trajectory will

enhance the static layer and suppress the moving layer.

Weiss articulates these ideas in a probabilistic fashion by first assuming that the priors for

the foreground (moving layer) gradients [Fx, Fy] are Laplacian (with parameter ρ) as follows.

P (F i
x) ∝ exp−ρ|F i

x| ; P (F i
y) ∝ exp−ρ|F i

y | (2.19)

where F i
x is the gradient of the foreground layer in the horizontal direction in frame i (and

similarly for F i
y but gradients taken in vertical direction). In his work, Weiss proposes that
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Figure 2.8: Reconstructed Lenna and Oranges of figure 2.4 (bottom) using Soudiene et al. [77]

separation approach (our implementation). Here we used Sarel et al. Layer Exchange Informa-

tion optimization scheme however we solve for F and B in a way such that the sum of gradients

in the separated layers is minimized. Pictures are scaled by a factor of 2.5 (left column) and

2 (right column) for illustration clarity. The estimated mixing parameters [γ1, γ2] (see equa-

tion 2.8) are 0.75 and 0.8 for Lenna and Oranges respectively. Results show better separation of

Lenna and Oranges over using GNGC as in figure 2.5 (Bottom). Here we do not have a strong

ghost effect as the one in figure 2.5 (bottom, shown in green). The same reconstruction of Lenna

and Oranges is generated using Levin et al. [54] separation approach (our implementation). Here

we use Sarel et al. Layer Exchange Information optimization scheme however we solve for F

and B in a way such that the sum of the corners in the separated layers is minimized.

M = F + B. However, if we assume that we are only interested in scaled versions of F,B then

M = αF + (1−α)B in our model becomes M = F ′ + B′. Hence the Likelihood w.r.t. B′ across

T frames is then

P (M |Bi
x, Bi

y) ∝ exp

{

−ρ

T
∑

i=1

|M i
x − Bx| + |M i

y − By|

}

(2.20)

Therefore the ML estimate for the gradients of the background layer are given by the median

of the samples along T frames in the observed image M . Given those gradients, the actual

background layer can be recovered by inverting the gradient operation in the usual way [94].

This process showed interesting results on separating a static background from reflections

in image sequences. Sarel et al. [74] in 2005, extended the Weiss approach to separate moving

background layers. The idea here is to temporally align the background layer over a window of

frames. This however requires estimating the motion of the background layer, a problem that

is not straightforward for regions in reflections. Hence, Sarel et. al [74] restricted attention to
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Figure 2.9: Left, from top: Frames 1, 5 and 8 from a ten frame image sequence created by

mixing Lenna with Oranges with α = 0.5. The motion of both layers is constant through the

entire sequence and it is [0, 10] and [0,−10] for Lenna and Oranges respectively (shown in green

in the first row). To reconstruct Lenna and Oranges, the sequences must be stabilized over those

two layers separately. In the middle column the sequence is stabilized over Lenna while in the

third column the sequence is stabilized over Oranges.
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Figure 2.10: Reconstruction of Lenna and Oranges generated from using the Weiss et al. [94]

separation approach on the ten frame sequence in figure 2.9 (left column). Lenna is reconstructed

by applying the Weiss approach on the stabilized sequence over Lenna (shown in figure 2.9, middle

column). Oranges is reconstructed by applying the Weiss approach on the stabilized sequence over

Oranges (shown in figure 2.9, third column). The white parts of the orange skin (for example

see green rectangle, right) dominated the mixtures at their corresponding sites. This generated

slight visual artifacts during Lenna’s reconstruction (see blue rectangle, left). Pictures are scaled

by a factor of 2 (left) and 1.5 (right) for illustration clarity.

sequences with simple repetitive background motion. This motion was estimated by extracting

the periodic global motion of the sequence.

Using Weiss’ implementation1, figure 2.10 shows the separation results generated from ap-

plying Weiss et al. approach on the ten frame sequence shown in figure 2.9 (left column). To

reconstruct a specific layer, the sequence is first stabilized over the examined layer and then

Weiss is applied to this stabilized sequence. Figure 2.9 (middle and right columns) shows the

stabilized sequences over Lenna and Oranges respectively. Figure 2.11 shows the reconstructed

static background of a 30 frame real sequence using the Weiss et al. separation approach. As

shown the white reflections (shown in red, first row) are removed from the final background

reconstruction (last row).

2.3 Multiple Motion Estimation

Most motion estimators assume the presence of one motion vector per pel [37,48]. However, for

regions of reflections two motions exist, one for the foreground layer and one for the background

layer. Motion estimators for regions of reflections contain two main stages. The first estimates

the two motion vectors for each examined site in the observed mixture while the second assigns

1www.cs.huji.ac.il/ yweiss/
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Figure 2.11: Top, from left: Frames 1, 9, and 24 from a 30 frame sequence of a swinging glass

door. In the sequence different objects are reflected on the swinging glass door (such as the ones

shown in red) while there is a static background layer of brown bricks behind the door. The visual

impact of this set up is the mixing between the background layer with the different foreground

objects (shown in red) reflected on the glass door. Last row: Reconstructed background layer

generated from applying Weiss et al. [94] on the 30 frame sequence.

each vector to its layer. We call the second stage the ‘motion-layer labeling problem’.

A large body of work exists on estimating the multiple motion vectors [3,7,59,61,75,81,87,88]

while few authors extended their work to explicitly assign vectors to their corresponding layers

[7, 81, 87]. Algorithms for estimating the vectors are divided into two main categories, Optic

Flow and Fourier-Transform based. Both approaches treat reflections M as a linear combination

between the foreground and background layers F and B as follows

M = F + B (2.21)

Here the mixing parameters are assumed to be constant through the examined sequence and

hence F and B denote the scaled versions of the original foreground and background layers.

Using equation 2.21, Optic Flow approaches [3, 59, 75, 87] extend the brightness consistency

assumption of Horn et al. [37], also known as the Optical Flow Constraint Equation (OFCE), to

two motions. This approach however requires constant motion over three frames and can only

handle small displacements.

Fourier-Transform based approaches are based on expressing equation 2.21 in the Fourier

Domain. Using this approach Vernon [88] showed how to separate the two source layers and to

calculate their corresponding motions assuming constant motion over five frames. This approach
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was later extended by Stuke et. al [81] to estimate the two motion vectors of the source layers

assuming constant motion over three frames. Exhaustive search using Block Matching is used

to calculate the motion vectors. This approach however is not robust to temporal motion

inconsistencies and is computationally expensive.

Toro et. al [87] proposed an approach for assigning the calculated motions to their corre-

sponding layers by fitting two global motion models to the source layers. Later, Stuke et. al [81]

proposed to solve this problem through a Bayesian framework. Motion vectors are modeled as

MRFs and they are assigned to their layers in a way such that the local motion smoothness

within each layer is maximized. To generate temporally consistent results, they impose tem-

poral consistency on the motion vectors. Auvray et. al [7] extended this approach to handle

more than one motion model per layer. Interesting results are shown in both [7,81] however this

approach is not robust to temporal motion inconsistencies and can lead to error propagation

over time.

In the remaining part of this section we discuss the Optic Flow and Fourier-based approaches

for multiple motion estimation in more detail. We show results on processing real data and

illustrate the problems with both approaches.

2.3.1 Optic Flow Approaches

Optic Flow approaches use the well known Optical Flow Constraint Equation (OFCE) originally

proposed by Horn et. al [37]. For a single layer (say F ) moving u pels/frame, OFCE states that

dF

dt
= 0 (2.22)

This equation can be rewritten as follows

dF

dx

dx

dt
+

dF

dy

dy

dt
+

dF

dt
= uxFx + uyFy + Ft = 0 (2.23)

where [ux, uy] are the x and y motion components of u. This equation can be rewritten as

d(u)F (x, t) = 0 where d(u) = uxdx + uydy + dt. Solving for u directly from equation 2.23

generates very small estimates of the motion components as equation 2.23 assumes that u is close

to zero. Approaches for estimating the correct motion are mainly based on refining the estimates

of u in an iterative manner [48]. At each iteration the layer F is shifted with the updated motion

estimate. The updated motion is taken as the summation of the motion estimates up to the

current iteration. OFCE is then applied on the currently shifted image and motion is recalculated

and updated. This process is usually repeated several times until motion estimation error goes

below some value.

In order to extend equation 2.23 to multiple motions, we assume the examined image is a

mixture between two layers. For another layer (say B) moving with [vx, vy], its own OFCE is

d(v)B(x, t) = 0. As reflection M is expressed as an addition of two layers F and B, d(u) and d(v)
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can commute on F and B and hence the OFCE for two motions become d(u)d(v)M(x, t) = 0.

This simplifies to

uxvxMxx+uyvyMyy + Mtt + (uxvy + vxuy)Mxy+ (2.24)

(ux + vx)Mxt + (uy + vy)Myt = 0

Here the term Mtt = M1 − M2 − M3 and hence it implies that motion is assumed to be con-

stant over three frames. Some approaches [3,59,87] were proposed to solve equation 2.24. They

assume that motions are constant within an image patch and estimate [u, v] by minimizing the

left hand side of equation 2.24 within the examined patch. Aach et al. [3] estimates motions

by eigensystem analysis of suitably extended tensors, yielding so-called mixed-orientation pa-

rameters (MOPs). They show how to decompose the MOP vectors into the individual motions.

They show interesting results on mixtures formed by highly textured layers. Mota et al. [59]

split equation 2.24 into linear and non-linear parts. Similarly to Aach et al. [3], the linear part

is solved by eigenvalues analysis of a suitable structure tensor. A closed form solution is then

proposed to solve the non-linear part by expressing motions as complex numbers. They show

interesting motion estimation on one real sequence. Finally, Toro et al. [87] solve for the motions

by minimizing the residual of equation 2.24 using the Geman-McClure norm. Optic Flow ap-

proaches show interesting results on a limited number of real sequences. However, they assume

constant motion over three frames and hence cannot handle temporally active motions such as

those arising due to acceleration or camera shake. In addition, equation 2.24 used here is just

valid for small image displacements. Authors have solved this problem for single motion estima-

tion by iteratively refining motion estimates and shifting layers with the updated motions [48].

Hence for reflections we need to shift each layer by its own motion estimate. This however is not

an easy task as it requires estimating the examined foreground and background layers before we

can shift them separately. No author has addressed this problem and the vast majority of the

existing layer separation techniques cannot perform separation from just one image mixture as

required here.

Figure 2.12 (left column) shows the estimated motions using the Optic Flow approach for a

region containing a mixture between two different objects, each object moving with a different

motion. The foreground and background objects are shown in green and blue respectively.

Both the background and foreground objects are moving to the right however the background is

moving with a faster speed. The yellow and red vectors in figure 2.12 show the estimated motions

for the background and foreground objects respectively. Here we use the motion estimator of

Mota et al. [59] which uses the Optic Flow approach. Mota et al. estimates two motions per site

but does not assign each motion to its corresponding layer. Therefore we use Stuke et al. [81]

Motion-Layer labeling approach to assign the estimated vectors to their corresponding layers.

Using this technique motion estimates are shown in figure 2.12 (left column). As can be seen

the estimated motions are significantly smaller than the groundtruth. This is expected as the

Optic Flow approaches are based on equation 2.24 which requires the examined regions to be
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undergoing very small motions.

2.3.2 Fourier Transform Based Approaches

Fourier Transform Based approaches are based on transforming equation 2.21 to the Fourier

Domain. Assuming constant motions [u, v] for the source layers F and B respectively, the

examined mixture at time t and site x is expressed as follows

M(x, t) = F (x − tu) + B(x − tv) (2.25)

In the Fourier domain equation 2.25 becomes

M(ω, t) = (φf )tF(ω) + (φb)
tB(ω) (2.26)

where φf = exp−jωu is the phase shift for F at t = 1, ω is frequency, and [F ,B] are the Fourier

transform of F and B.

Vernon [88] solves for the phase shifts and the source layers by substituting t = [0 : 3]

in equation 2.26. This generates a linear system of four equations and four unknowns being

φf , φb, F(ω), B(ω). The Hough transform is then used to extract the motions [u, v] from the

estimated phase shifts. They show interesting motion estimation and layer separation results

on real sequences, however, their approach requires the motion of each layer to be constant over

five frames.

Stuke et al. [81] showed that it is possible to use the Fourier domain expression of the

problem to derive a recursive expression for the dependency between more than one frame. For

two motions the expression is

M2(X) + M0(X − u − v) − M1(X − u) − M2(X − v) = 0 (2.27)

Stuke et al. [81] and Auvray et al. [7] then solve for (u, v) by minimizing the left hand side

of equation 2.27 using exhaustive search through block matching. Here (u, v) are assumed to be

spatially constant within a small image patch. They show good motion estimation results on

synthetic and real sequences. However, one major drawback of this approach is that it assumes

constant motion over three frames and hence leads to error propagation in the case of temporally

active motion or temporal motion inconsistencies. In addition, it is computationally expensive

as N4 different combinations of (u, v) are examined if we search N possible displacements for

each motion component [ux, uy, vx, vy].

Figure 2.12 (right column) shows the estimated motions using the Fourier-Transform Based

approach for a region containing a mixture between two different objects. Here motions are

estimated using the Stuke et al. technique [81]. Stuke et al. estimates two motions per site

and assign each motion to its corresponding layer. However it requires each object/layer to

have a constant motion over a window of three frames. This however is not the case with the

examined sequence as it is shot with a hand camera and hence it is a bit shaky. This generated
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Figure 2.12: From top; Each column shows 5 consecutive frames from an image sequence con-

taining a reflection of a foreground object (shown in green) over a background object (show in

blue). The foreground here is a rectangular shaped object while the background is a picture of

a man-like drawing. The foreground is moving to the left while the background is moving to

the right. The scene is shot with a hand camera and hence it is a bit shaky. The yellow and

red vectors show the estimated motions for the background and foreground objects respectively as

calculated by Mota et al. [59] (left column) and Stuke et al. [81] (right column). All motions are

scaled by 5 for illustration clarity. It is clear that both approaches failed to estimate the correct

motions of the foreground and background objects.
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erroneous motion estimates in many forms. First, the estimated motions hardly point to the

correct directions of the motions. In addition, estimated motions for each layer are spatially

and temporally inconsistent. The main reason for this spatio-temporal inconsistency is due to

error propagation as the Stuke et al. approach imposes temporal consistency on the estimated

motions. Hence, motion errors propagated through frames as they were incorrectly estimated

at an earlier stage.

2.4 Conclusion

This chapter discussed previous work on handling transparency in natural images. Transparency

is often the result of mixing a foreground layer with a background layer. ‘Opacity’ is the term

used in the literature to describe the visibility degree of the foreground layer. Three main

problems were addressed in this chapter: 1) Matte Extraction 2) Layer Separation and 3)

Multiple Motion Estimation for Regions of reflections.

The term ‘Matte’ is given to the soft blend between the foreground and background objects

that exist between object borders. All matting approaches require an initial segmentation of

the examined image into three main regions being; 1) definite foreground 2) definite background

and 3) unknown. Matte extraction techniques solve for the opacity values in the unknown

region. We discussed Chuang et al. [17] Bayesian Matting in detail as it is used in our proposed

restoration technique. Unlike most of the other matting techniques, Bayesian Matting uses a

Bayesian Framework and hence it can be extended to other applications e.g. restoration.

For layer separation we discussed techniques designed for still images as well as image se-

quences. Most still image techniques require two mixtures of the same foreground and back-

ground layers. We discussed the Sarel et al. [73] ‘Layer Information Exchange’ optimization

approach which estimates the optimal mixing parameters. This approach exchanges informa-

tion between the reconstructed layers where optimal layer reconstruction is defined by the point

where the structural similarity between the reconstructed layers is minimized. Two main ap-

proaches for measuring the structural similarity between the separated layers were discussed.

The first is using GNGC of Sarel et al. [73] which measures the grayscale correlation between

the reconstructed layers. The second approach is to assess the sparseness of edges or corners

in the separated layers. Here the correct foreground-background candidate from a set of candi-

dates is defined as the one with minimum corners or edges. We showed how layer separation by

minimizing corners/edges sparseness could generate better separation than using GNGC. For

image sequence separation techniques, we discussed the Weiss et al. [94] approach. This tech-

nique reconstructs a static (background) layer that is undergoing illumination variation over

time. Illumination variations are due to the movement of different foreground layers over the

background.

The last part of this chapter discussed previous work on estimating the motions of the

foreground and background layers in regions of reflections. Two main approaches exist for
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motion estimation ‘Optic Flow’ and ‘Fourier-Transform Based’. Optic Flow approaches can only

estimate very small motions. In addition, both approaches assume each layer is moving with a

constant motion over at least three frames. Hence they cannot handle temporal inconsistencies

arising due to small camera shake or motion acceleration. This often leads to erroneous motion

estimates that propagate through time.
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3
Blotch and Line Scratch Removal: A Review

Blotches and line scratches are two common degradations on archived footage. Automated

removal of such corruptions is important in film restoration and typically involves a detection

followed by an interpolation step. Most of the current algorithms model the corruption as a

binary mixture between the original data and an opaque (dirt) field. Few algorithms however

treat corruption as a semi-transparent (dirt) layer. When a semi-transparent model is used,

interpolation becomes more robust to false alarms since clean data, if interpolated, remains less

disturbed than if an opaque correction model is used.

Define the intensity of the pixel at site x in the nth frame of the observed corrupted sequence

as Mn(x), and in the clean original sequence as Bn(x). Using the composting equation defined

in earlier chapters the corrupted frame Mn(x) at site x then becomes

Mn(x) = αn(x)Fn(x) + (1 − αn(x))Bn(x) (3.1)

Here F is the corruption (dirt) layer and α is the corruption opacity with α = 1 denoting

complete obliteration of the original data. The traditional class of corruption removal techniques

assume an opaque corruption layer, hence they only use binary values for the corruption opacity

αn. Thus the corrupted frame Mn(x) at site x for binary corruption model becomes

Mn(x) =







Bn(x) for αn(x) = 0

Fn(x) for αn(x) = 1

Some recent corruption removal techniques assume a semi-transparent corruption layer, they

allow α to take non-binary values. For both corruption models, restoration starts by detecting

37
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corruptions. Removal is then achieved by estimating the original data/background layer (B) for

the detected sites. This is done using ‘clean’ information from the current and nearby frames.

This chapter starts by discussing two common approaches for blotch and line detection.

However, as our thesis does not address the problem of corruption detection in an explicit form,

we discuss those two detection approaches to show how false detections can be generated. This

often leads to the generation of visual artifacts in clean regions when removal is performed using

an opaque corruption model. We then go on to discuss previous work on blotch and line removal

using opaque and semi-transparent corruption models.

3.1 Corruption Detection

3.1.1 Blotch Detection through Spike Detection Index

Kokaram [48] proposed the SDIp blotch detector. It detects blotches by looking for temporal

discontinuities through image sequences. This is based on the observation that blotches are

temporally impulsive events. Assume a clean pel x in the examined corrupted frame Mn(x)

undergoes a displacement of dn,n−1 from the previous frame. One can then relate Mn(x) with

Mn−1 as follows

Mn(x) = Mn−1(x + dn,n−1) + e(x) (3.2)

Here e(x) denotes the error in this simple motion model which is also known as the Displaced

Pixel Difference (DPD). However as blotches are temporally impulsive events, they violate this

motion model and generate large DPD values. In addition, as blotches do not propagate through

frames, they generate high DPDs for both forward and backward directions. SDIp blotch de-

tector of Kokaram et al. [48] is based on these observations and is stated as follows

α(x) =







1 When (|Eb| > Et) AND (|Ef | > Et) AND sign(Ef )=sign(Eb)

0 otherwise

Here Eb and Ef are the backward and forward DPD’s and Et is a user-defined detection thresh-

old. The last term of SDIp is based on the observation that blotches generate forward and

backward DPD’s of the same sign. This is based on the work of Storey [80] where he correctly

noted that blotches often occupy intensities well outside the intensity of the surrounding region.

Equation 3.2 assumes simple motion between frames and hence it is violated in regions of

complicated motion. This often generates high false detection in such regions. Figure 3.1 shows

the result of running SDIp on two frames. Here Et is set to 5 for both frames. In the first

frame (see figure 3.1, top row) there is little motion between frames. This helped in generating

good blotch detection with low false detection rate. However in the second frame (see figure 3.1,

bottom row) the actors are moving quickly. This generates large Displaced Frame Difference

(DFD) in uncorrupted regions. The result is high false detection rate. In both frames, detection

of true blotches goes beyond the corruption borders. This flags clean regions around blotches as
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Figure 3.1: Left, from top: Frames 58 and 78 for a corrupted image sequences with blotches

shown in green. Right: Corresponding SDIp detections. Here Et is fixed to 5. For frame 78 the

actors are moving quickly. This generates high false blotch detection rate.

corrupted. Such examples of false detections will lead to the correction of uncorrupted regions

during the removal stage. This will generate unnecessary restoration artifacts in uncorrupted

regions.

3.1.2 Line Detection

Since this thesis is concerned with corruption removal rather than detection, we do not present

in this section a literature review of line detectors. However what we show here is that line

detection can have false alarms. We show that by discussing a commonly known line detector

developed by Kokaram [48]. False line detections will effect the removal step.

Kokaram Line Detector: The earliest work in line detection is by Kokaram [48]. It is

based on the observation that line scratches are near-vertical lines causing horizontal spatial

discontinuities (see figure 3.2, first row). A horizontal spatial derivative is first applied to the
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examined frame followed by simple thresholding. This generates a binary mask for potential line

scratches. We call the generated binary mask BM. Kokaram detects line scratches by looking for

near vertical lines in BM. This is done by using the Hough transform. This approach however

can misclassify true vertical lines.

Figure 3.2 shows examples on detecting line scratches using this approach. BM is generated

by applying a threshold of 2 on the filtered frame. In the left frame the line scratch is correctly

detected (shown in green, left column). It corresponds to the highest peak in the corresponding

[θ, r] space (last row, left, shown in green). However, in the other frame (right column) line

scratches exist (shown in green) as well as some true vertical lines (shown in red, first row).

Here the correct line scratch (shown in green, first row) represent the 4th strongest peak in the

[θ, r] space (see last row, right, shown in green). The three highest peaks however correspond

to three true vertical lines (shown in red, first row). This incorrectly classifies the true vertical

lines as scratches. In both frames it is hard to locate the borders of the line scratches. This

often makes detection of true scratches goes beyond the corruption borders. Such examples of

false detections will lead to the correction of uncorrupted regions during the removal stage. This

will generate unnecessary restoration artifacts in uncorrupted regions.

3.2 Restoration Using Opaque Corruption Model

Previous approaches for removing blotches and line scratches using an opaque corruption model

have largely fallen into three main categories: Image Inpainting based, Heuristics based and

Model based. All approaches estimate the original data in corrupted regions using clean infor-

mation from the examined and sometimes nearby frames.

Image Inpainting based approaches treat corruptions as missing holes in images [10, 21, 24,

25, 28, 43]. Those holes are filled using nearby spatio-temporal ‘clean’ data. Many inpainting

techniques are based on Efros et. al’s work for texture synthesis [25] and Bertalmio et al.’s work

on inpainting using total variation minimization [10]. However, as most of these techniques do

not address corruption removal in an explicit form, they do not incorporate any information

specific to the type of the examined corruption. Heuristic based approaches remove corruptions

by using median filters as they are robust to impulsive noise [4–6, 34, 51, 57, 80]. Model based

approaches explicitly model corruptions as an opaque layer superimposed on the original layer

[47–51]. In addition they use spatial and temporal priors specific to the type of the examined

corruption and the underlying original data.

This section starts by describing Efros et al.’s [25] Texture Synthesis technique in the context

of blotch removal. It then discusses state of the art blotch removal techniques using Heuristics

and explicit corruption modeling. Last, it outlines modifications for line removal.
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Figure 3.2: From top: Frames corrupted with lines scratches (shown in green); the corresponding

spatial horizontal gradient mask BM. This mask is obtained by flagging a spatial horizontal

derivate of more than 2 grayscale difference as possible corruption; [θ, r] space generated by

applying the line Hough transform for regions where BM = 1. In the first two rows green and

red represent correct and incorrect scratch detections respectively. In the last row the green and

red boxes correspond to the [θ, r] peaks of correct and false line detections respectively.
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3.2.1 Texture Synthesis for Blotch Removal

The technique of Efors et al. [25] can be used to remove blotches by filling the missing data one

pel at a time. The corrupted region is filled in an order such that the isophote lines arriving at

the blotch borders are connected inside the corrupted region. This filling order was proposed

by [10] and is shown to reduce reconstruction artifacts. To estimate the original value for a

corrupted pel, block matching is performed between the examined pel and the nearby ‘clean’

data. A block is centered on the examined pel and is matched with nearby blocks by minimizing

the SSD. Here block matching is only performed on the uncorrupted part of the blocks. The

center of the block generating the best match is then taken as the estimated value for the

examined pel. This process is performed over all sites detected as blotches. Bornard et al. [11]

was the first to apply similar texture synthesis ideas to restore archived footage. They estimated

the original data using clean data from nearby frames as well as clean data from the current

frame. They showed interesting results on removing blotches.

One major disadvantage with corruption removal using texture synthesis is the high compu-

tational complexity. Here block matching is performed for each pel detected as corrupted. This

could lead to explosion in computational time if the generated blotch detection masks give a

high false detection rate. In addition, the technique treats the whole blotch detection mask as

corrupted. As a result uncorrupted regions misclassified as corrupted will be processed. This

could generate unnecessary removal artifacts in uncorrupted regions.

Figure 3.3 shows examples of removing blotches using our implementation of Efros’s texture

synthesis technique. In our implementation we estimate the original data by examining the clean

data in the current, next and previous frames. Temporal information generates more candidates

for the original data and hence improves reconstruction. Figure 3.3 (left column) shows that

Efros can remove blotches successfully. However, figure 3.3 (right column) shows an example

where Efros generates restoration artifacts in uncorrupted regions misclassified as corrupted by

the blotch detector (shown in green).

3.2.2 Heuristics Based Approaches

Heuristic based approaches are based on the fact that blotches are impulsive events in space and

time. Storey [80] was the first to use this observation for blotch removal by using a 3-tap non-

motion compensated median filter. Alp and Arce [4–6] introduced a 3-D multilevel non-motion

compensated median filters (ML3D) for removing blotches. Alp et al. estimates the value of an

examined pel as the median of the output of three median filters. The filter masks for the three

median filters are shown in figure 3.4 (top). This technique was later modified by Kokaram et

al. [51] into ML3Dex by adding two more median filters (see figure 3.4, bottom).

Figure 3.5 shows the result of processing a frame with ML3Dex. The actors are moving fast

generating high false detection rates. Blotches are correctly removed (shown in green) however

restoration artifacts are generated due to processing uncorrupted regions detected as corrupted
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Figure 3.3: Removing blotches (shown in black boxes) from frames 62 (left column) and 83 (right

column) from an image sequence using our implementation of Efros et al. [25]. We use temporal

as well spatial information in the reconstruction process. From top: Corrupted frames; SDIp

masks generated with a threshold of 8 grayscale differences; Generated reconstruction. Blotches

in frame 62 (left) are removed successfully with hardly any noticeable reconstruction errors.

However, there are visible reconstruction artifacts in frame 83 (shown in green). Here the color

stripes on the actor’s shirt are nearly erased (compare the green box in the bottom row with

blue box at top row). This is due to processing uncorrupted regions misclassified as corrupted by

SDIp.
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ML3D

ML3Dex

Figure 3.4: Top: Filter masks for ML3D. Each column represent one of the three ML3D me-

dian filters and the masks for a filter are applied for the previous, examined and next frames

respectively. Bottom: The two extra filter masks of ML3Dex.

by SDIp (shown in blue).

3.2.3 Model Based Approaches

Model based approaches for blotch removal traditionally model blotches as an opaque corruption

layer superimposed on the original layer as follows

Mn(x) = αn(x)Fn(x) + (1 − αn(x))Bn(x) + µ(x) (3.3)

Here Mn(x) is the observed value for pel x at frame n, [B, F, α] are the corresponding original

data, blotch values and blotch opacity respectively and µ ∼ N (0, σ2
µ) is the observation model

noise. Here α is only allowed binary values. Kokaram et al. used this model to propose a

variety of Bayesian techniques for the joint solution of motion and degradation removal [47–

50]. Their techniques solve for motion as they noticed that performing a motion-compensation

stage for blotch removal improves removal quality significantly. This however comes with high

computational cost.

Motion information is estimated using the single motion model previously used for the SDIp

detection which is re-stated here as follows

Mn(x) = Mn−1(x + dn,n−1) + e(x) (3.4)

Here dn,n−1 is the motion between the examined frame and the previous frame for site x while

e ∼ N (0, σ2
µ) is the observation model noise. This model however fails when the observed motion

is pathological, e.g. very fast, containing motion blur, or periodic elements. In that case the

reconstruction process introduces more defects than it removes. This is a problem particularly

with the movement of people and clothing. Roosmalen, Rares, Bornard, Kent, Corrigan et
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Figure 3.5: Removing blotches from frame 67 of an image sequence using ML3Dex [51]. Top;

Original frame (left) with blotches shown in green and the corresponding SDIp mask (right). Here

a SDIp threshold of 8 grayscale differences is used. Bottom: ML3Dex reconstruction. Blotches

(shown in green, top) are removed however restoration artifacts are generated in uncorrupted

areas (shown in blue).

al. [11, 19, 44, 63, 68] introduced several mechanisms for dealing with such pathological motion

effects. Roosmalen concentrated on detecting failure in the motion estimator he used (based on

Phase Correlation) by simply turning off the blotch remover when the DFD was too high over

many consecutive frames. Kent et al [44] simply turned off the blotch remover in any moving

foreground region detected by a crude image object segmentation process based on motion. The

idea here was that motion estimation typically fails in foreground regions (if it fails at all) and

so this yielded a very conservative process. Bornard and Corrigan pushed Roosmalens ideas into

a Bayesian framework, eventually incorporating MRF priors for blotch smoothness in time that

allowed the blotch remover to implicitly disable itself when a blotch was being detected in more

than one frame consecutively. Rares used machine learning type ideas to detect picture material
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which was difficult for motion estimation, again turning off the process in difficult areas.

JONDI [47] is Kokaram’s latest technique for blotch removal. It uses most of the ideas

proposed in his earlier work and improves on them [48–50]. JONDI’s main aim is to address

the interactions between the three main stages of blotch removal. Those stages are Motion

Compensation, Detection, and Interpolation. Poor motion estimates generate poor (say SDIp)

detections. Poor detection generally leads to poor reconstruction since the detector is probably

flagging areas which cannot be properly reconstructed. JONDI is designed to reduce the effect of

motion estimation failure for blotch removal. Many motion errors arise due to object occlusion

and uncovering. JONDI addresses motion estimation failure for blotch removal by explicitly

incorporating models that allow for occlusion and uncovering. In addition it models [α,B] as

MRFs and imposes smoothness on the generated reconstructions.

3.2.3.1 Joint Noise, Detection and Interpolation: JONDI

To account for occlusion in motion estimation, a hidden field of binary variables is introduced

between the examined frame n and the previous and next frames n − 1 and n + 1 respectively.

Each pel in the examined frame is assigned to a state in the form of [α(x) Ob(x) Of (x)] as

follows

000 The pel is not corrupted and there is no occlusion

001 The pel is not corrupted and there is forward occlusion

010 The pel is not corrupted and there is backward occlusion

100 The pel is corrupted and there is no occlusion

101 The pel is corrupted and there is forward occlusion

110 The pel is corrupted and there is backward occlusion

The system then derives an estimate for [B, α, F, Of , Ob,dn,n−1,dn,n+1] for each pel x from

the posterior P (Bn, α, F,Of , Ob,dn,n−1,dn,n+1|Mn, Bn−1, Bn+1). The posterior is factorized in

a Bayesian fashion as follows (where x is dropped for clarity)

P (Bn, α, F,Of , Ob,dn,n−1,dn,n+1|Mn, Bn−1, Bn+1) ∝ P (Mn|Bn, Fn, α)

P (Bn(x)|Bn−1(x), Bn+1(x))P (Bn|B
N
n )

P (αn|α
N
n )P (Fn|F

N
n )P (Of |O

N
f )P (Ob|O

N
b )

P (dn,n−1|d
N
n,n−1)P (dn,n+1|d

N
n,n+1) (3.5)

The first term measures the error in the observation model of equation 3.3, the second term

measures the error in calculating the original data B, while the remaining terms impose spatial

smoothness on the estimated parameters for [B, α, F, Of , Ob, dn,n−1, dn,n+1]. N here is a local

spatial neighborhood from x on which smoothness is imposed.

Solving for the Missing Parameters: Motion estimates are initialized with simple block

matching while α are initialized with SDIp. The examined frame is scanned in the pel basis
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using the current motion and α estimates, generating an estimate for [B, Of , Ob]. A simple

way of configuring the occlusion fields is by flagging sites with high backward/forward DFD

as ones undergoing occlusion in the previous/next frames. A more complicated approach of

configuring the occlusion fields is by integrating out B and α from the posterior (equation 3.5)

and maximizing the resulting function with respect to all possible combinations of the occlusion

fields (see [47] for more details). Proceeding with solving for the missing parameters, given the

current estimates for [B, Of , Ob], motion estimates and α are refined. This process is iterated

until reasonable pictures are built. Here the quality of the reconstructed pictures is assessed by

evaluating the posterior of equation 3.5 at each iteration (see [47] for more detail).

Figure 3.6 shows the result of processing three consecutive corrupted frames with JONDI.

Here the actors are moving their hands very fast causing occlusion and uncovering of the guy’s

hand/shirt. JONDI removed most of the corruption successfully (shown in green). However, it

generated restoration artifacts in uncorrupted regions undergoing fast motion (shown in blue).

The main reason for such failure is that JONDI treats the whole corruption area as opaque and

hence processes clean data that is incorrectly detected as corrupted.

3.2.4 Modifications for Line Removal

Unlike blotches, line scratches have smaller width (in range of 3-7 pels) and they exist at the

same location in several frames. Due to their smaller width, blotch removal approaches that

use spatial information can be applied directly for line removal. As such techniques estimate

the original data using clean data close to the corrupted sites, they generate better removal

when corruptions span small areas as more clean information will be available. Line removal

techniques using image inpainting often fill the corrupted region in a way such that the isophote

lines arriving at the corruption borders are connected inside the corrupted region [28,84]. This

filling order was shown to improve image inpainting in general [10,21] and is a good application

to scratch removal due to their small width. Modifications for line removal then go on to extend

image inpainting techniques to use clean information from nearby frames [28, 84]. To estimate

the original value for a corrupted pel in frame n, a block is centered on that pel and is matched

with blocks in the previous and next frames by minimizing the SSD. Here block matching is

only performed on the uncorrupted part of the blocks. The center of the block generating the

best match is then taken as the estimated value for the examined pel.

Kokaram [46] proposed a line removal technique (JOMBEI) that estimates the original data

using spatial information from the examined frame. The algorithm generates a solution within a

Bayesian framework similar to the one used in JONDI [47]. The main difference between JONDI

and JOMBEI however is that JOMBEI mainly solves for the original data without using any

motion information. It does so by modeling the underlying original data as a 2D-AR process.

In the clean frame B the value of a pel x is modeled as a linear combination of nearby pels in
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Figure 3.6: Processing three consecutive corrupted frames (left) with JONDI. Reconstructions

are shown on the right. Blotches are shown in green on the left. As shown on the right all

blotches are successfully removed. However, restoration artifacts are introduced in uncorrupted

regions undergoing fast motion (shown in blue).
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the same frame, as follows

B(x) =
P
∑

k=1

ak(x)B(x + qk) + e(x) (3.6)

Here ak are weights and e ∼ N (0, σ2
e) is the observation model noise. The likelihood then

becomes

P (Mn|Bn, Fn, α) = exp−

(

e(x)2

2σ2
e

)

(3.7)

Spatial smoothness is imposed on the generated values for B through the 2D AR Model. The

solution is generated as a sample from the posterior using Gibbs Sampling [46].

Figure 3.7 shows reconstruction results using three different line removal techniques all using

spatial information only. Average filtering can generate blurred results as shown in figure 3.7

(a). Inpainting (Efros) can generate reconstruction artifacts in uncorrupted sites that are close

to the examined scratch as shown in figure 3.7 (b) (in blue). The 2D-AR image model used

in JOMBEI can generate blurred results as shown in figure 3.7 (c) (in blue). Here JOMBEI

generates restoration artifacts by blurring the left part of the letter M.

3.3 Corruption Removal using Semi-transparent Corruption

Hisho et al. [38] in 1999 were the first to introduce a non-binary index for measuring the level

of corruption for blotch removal in image sequences. Unlike opaque corruptions where a site

is assigned a binary corruption value (1 for corrupted, 0 for clean), Hisho et. al proposed the

assignment of a non-binary value instead. This value is a function of the temporal discontinuity

between the examined site and the nearby frames. The function is learned through a training

process [72]. Having calculated the corruption level for each site, the interpolated value is

then set to an intermediate value between the observed image brightness and the output of an

arbitrary spatio-temporal filter, depending on the corruption level. This is a simple process

attempting to capture the true nature of the problem which should arise from consideration of

equation 3.3 with non-binary opacity values as the degradation model.

Since the work of Hisho et al. [38] more researchers attempted to remove corruptions by

modeling them as semi-transparent layers [13,14,20,29,32,78,79]. Greenblatt et al. [32] assumed

that the original data hidden by the blotch was of a uniform color. They estimated that color

in a way to match the color of the clean surrounding regions. Hence the original data B is

estimated using the following equation

B(X) =

(

Med[M(X)].

(

M(X)

2 ∗ Med[M(X)]

)λ
)γ

(3.8)

where B(X) is the estimated original data for region X, λ and γ are fixed parameters and Med[.]

is the median operator. As a final stage edges are corrected using a localized smoothing function

which the author did not disclose in detail.
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(a) (b)

(c)

Figure 3.7: Removing line scratches in three frames with (in clockwise direction); Average spatial

filtering, Efros et al. [24] (our implementation) and JOMBEI respectively. For each technique we

show (from left); corrupted data, the scratch mask, the reconstructed data respectively. Average

filtering can blur the corruption, Inpainting can generate reconstruction errors such as the one

shown in blue in (b) and JOMBEI can blur the underlying original data (see blue in c).
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Some work attempted to remove corruptions by explicitly modeling them as a linear mixture

of original data and some corruption layer using equation 3.3 [13,14,20,29,78,79]. The corruption

layer F is set to 0 in most techniques as they mainly address the removal of dark corruptions.

Hence equation 3.3 for the examined frame becomes

M(x) = (1 − α(x))B(x) + µ(x) (3.9)

Bruni et al. [13,14] used this model to remove line scratches by reducing the defect intensity

till it is no longer visible. Here they use Weber’s law to calculate the attenuation factor. Stanco

et al. [78, 79] assumed a constant corruption opacity within a block of pels and estimated the

original data within this block using the mean and variance of nearby clean data. Gai et al. [29]

estimated the original data using clean data in the examined and nearby frames. Here they

introduced a data term to capture the semi-transparent nature of the corruption. This term

however does not relate the estimated opacity with the corruption model of equation 3.9. Instead,

it just biases the estimated corruption opacities to be far from α = 1 i.e. far from being opaque.

Crawford et al. [20] was the first to propose the use of equation 3.9 to explicitly calculate the

corruption opacity and the original data for each pel detected as corrupted. Their work focuses

on the removal of blotches on photographs due to moisture. They address the problem in the

HSV color space and generate a solution within a Bayesian framework.

3.3.1 Crawford et al. Semi-Transparent Corruption Removal

Crawford et al. [20] first restore chroma components using a simple texture synthesis technique

[25]. The luminance channel is then split into an over-complete wavelet representation. Wavelet

details are left unchanged in the case of perfect semi-transparency or attenuated whenever dirt

causes spurious edges. The approximation band is modeled as a linear mixture between dirt

and the original data using the matting equation as follows

Ml(x) = (1 − α)Bl(x) + e(x) (3.10)

Here Ml(x) is the observed luminance approximation band at point x, α(x) is the corruption

opacity, e ∼ N (0, σ2
e) is the observation model noise and Bl is the luminance approximation

band of the original data. Here the foreground corruption data F is set to 0 as the blotch in

examination is assumed to be fully dark. Crawford et al. solves for [Bl(x), α(x)] for every pel

using Bayesian Matting and generates the final reconstruction by combining the reconstructed

chroma and luminance components.

Bayesian approach: The system derives an estimate for [Bl(x), α(x)] from the posterior

P (Bl, α|Ml) (where x is dropped for clarity). This is factorized in a Bayesian fashion as follows

P (Bl, α|Ml) ∝ p(Ml|Bl, α)p(α|αN )p(Bl|B
N
l ) (3.11)

The first term ensures that the estimated [α,Bl] resemble the observed value of Ml while the

remaining terms impose spatial smoothness on the generated α and Bl. This is done by mod-
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eling pels as 8-connected MRFs in the usual way and imposing smoothness within the local

neighborhood N . The terms of equation 3.11 are expressed as follows

p(Ml|Bl, α) ∝ exp−

(

(Ml(x) − (1 − α)Bl(x))2

2σ2
e

)

P (Bl|B
N
l ) ∝ exp−

(

∑

k∈N
|Bl − Blk|

2
)

P (α|αN ) ∝ exp−
(

∑

k∈N
|α − αk|

2
)

(3.12)

Solving for [α,Bl]: The algorithm starts by initializing Bl with values from nearby clean data

and initializing α with the SDIp detection. [α,Bl] are then refined in an iterative manner using

ICM until convergence.

3.4 Scope for a new removal technique

Recent work has introduced semi-transparency into blotch corruption models but none of the

current semi-transparent removal techniques incorporate useful temporal information to esti-

mate corruption opacity on pel basis. This often generates inaccurate estimation of the cor-

ruption borders which leads to the correction of uncorrupted sites. In addition most of the

semi-transparency work has been directed at stills. Furthermore, current semitransparent re-

moval techniques are either very sensitive to noisy measurements (Gai’s [29]), cannot remove

highly opaque corruptions (Saito and Crawford techniques [20,72]), can only handle very simple

texture (Stanco, Greenblatt and Crawford [20, 32, 78, 79]) or require a detailed model of the

corruption profile (Bruni techniques [13, 14]). There is no corruption removal technique adopt-

ing a semi-transparent model which can handle restoration in image sequences and can handle

regions having complicated texture and undergoing fast motion. There is therefore a need for

an algorithm that acknowledges the true state of media i.e. an image sequence corrupted by

semi-transparent degradation.



4
Bayesian Inference for Semi-transparent Blotch and

Line Removal

This chapter presents a new approach for removing blotches and line scratches from image

sequences. Current removal techniques assume complete obliteration of the original data at the

corrupted sites. This often leads to the introduction of restoration artifacts during removal. Our

new technique is based on modeling corruption as a semitransparent layer. We define the opacity

of a corruption in frame n at site x as αn(x) and propose a new linear model of corruption as

follows

Mn(x) = αn(x)F (x) + (1 − αn(x))Bn(x) (4.1)

Here Mn(x) is the observed corrupted intensity at a pixel site x in frame n, Bn is the clean

original intensity at that site and F is a constant intensity representing the underlying corruption

color. In our work we will use F = 0 to model black or rather dark blotches/lines. Hence the

model implies that the observed data is a linear mixture between the clean original data and

a corruption color F . Unlike most current removal techniques, in our technique α takes non-

binary values where α = 0 in clean regions and α = 1 in sites where original data is completely

obliterated.

Equation 4.1 is clearly related to the image layer model used in the vast quantity of Matting

work (see Section. 2.1 for more details). In matte extraction an image is assumed to arise

as the result of a linear mixture of foreground F and background B elements. The image is

segmented into three regions being definite foreground, definite background and unknown. The

matte extraction techniques solve for α for every point in the unknown region. Chuang et al.’s

53
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Bayesian Matting (see Section. 2.1.1 for more details) solves for the F and B together with α.

In our corruption model of equation 4.1, the corruption layer is the foreground, the original layer

is the background, while the unknown region is the area detected as being corrupted. We use

SDIp with a threshold of 5 to detect blotches (see Section. 3.1.1 for more details) and we detect

line scratches manually as the examined lines are hard to detect using current line detection

techniques.

Corruption removal is achieved by estimating the original (background) data B at corrupted

sites. In our model F is known while [α,B] is unknown. We use Bayesian Matting to estimate

[α,B] for every pel detected as corrupted. We use spatial and temporal priors in a way which

maintains restoration integrity despite texture and motion complexity. We use a Bayesian

framework which is related to the one used in Crawford et al.’s [20] blotch remover. Note that

even though we do not address the problem of detection in an explicit form, the process of defect

matte extraction proposed by our technique can be thought of as a detection refinement step.

In the next section we propose our Bayesian framework for semi-transparent corruption

removal. We focus more on blotch removal. We then present modifications for line removal.

4.1 The Degradation Model

A corrupted pel M(x) is modeled as a linear combination between the original data (background

layer) B(x) and the corruption field F (x) (foreground layer) according to a blending factor α.

This matting model was discussed previously and repeated here for clarity.

M(x) = α(x)F (x) + (1 − α(x))B(x) (4.2)

Here α(x) is the mixing parameter where α = 1 represents complete obliteration of the underly-

ing data. In this work, dirt is assumed to be the source of the corruption and therefore F is fixed

to an RGB value of [0, 0, 0]. This model is illustrated in figure 4.1 (top row) with a synthetic

example. Note that we assume detection d(·) of the missing patches has already taken place, or

at least some kick start is available. We use SDIp here. Hence small patches of d(x) = 1 have

been delineated and the problem then is to estimate the values of the original data B in these

patches. There are therefore two unknown parameters at each corrupted pel being [α,B], and

in a sense estimation of α amounts to a refinement of the kick start detection field d(x).

4.2 Bayesian Framework

We estimate [α,B] for each corrupted pel from the posterior P (α,B|F,M0, ....MK , αN , BN )

(where x is dropped for clarity). Here [BN , αN ] are the unknown parameters within a local

neighborhood N from the examined site while Mn is the nth frame of the examined sequence

which contains K frames. The posterior is factorized in a Bayesian fashion as follows

P (α,B|F,M0, ....MK , αN , BN ) ∝ P (Mu|α,B, F )P (α,B|M0, ....MK , αN , BN , F ) (4.3)
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(a) (b) (c) (d)

Figure 4.1: First row: Illustrating the proposed corruption model. From left: Original image,

corrupted image, a synthetic corruption matte α and the corruption mask d(·). Second row:

matte and restoration using ‘Bayesian Blotch Matting’ and ‘BTBR-S’. Third row: matte and

restoration using BTBR-T and Spatio-temporal Fusion. Last row: zoomed area of the original

image (a) (shown in red) and its spatial, temporal and spatio-temporal reconstructions respec-

tively. BTBR-S generated sharp reconstruction of the blue edge while BTBR-T generated poor

reconstruction of the green edges. ‘Spatio-temporal Fusion’ (BTBR-F) was able to compensate

between those two artifacts.
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Here Mu denote the frame under examination. The likelihood P (Mu|α,B, F ) forces the es-

timated [α,B] to cause αF + (1 − α)B to be close to the observed image Mu. The prior

P (α,B|M0, ....MK , αN , BN , F ) enforces various smoothness constraints in space and time that

cause the reconstructed patch to resemble the nearby clean data.

4.3 Maximum Likelihood Estimate

By considering the process as a matting exercise, we derive our first algorithm called Bayesian

Blotch Matting i.e. BBM. Following Chuang et. al. [17], the clean image prior P (B|Mn) is

modeled as a mixture of Gaussians. That mixture is estimated from the nearby clean data in

the examined frame. This forces the reconstructed data to be consistent with these regions.

Clean samples are collected by extending a circular patch R from the examined site until a

minimum number of uncorrupted pels Wu (=100 in our case) is included. The patch is then

segmented into Wc color clusters (4 in our case) using a color quantization algorithm [60]. This

yields a mixture of Wc = 4 Gaussians, each with mean and co-variance [B̄j,RBj
]. This color

segmentation step is necessary in order to capture the richness of the clean data.

Given observation noise ∼ N (0, σ2
e) in the compositing/observation model of equation 4.2

the likelihood w.r.t. the jth color cluster is then expressed as follows

P (Mu|α,B, F ) ∝ exp−

(

Mu − αF + (1 − α)B

2σ2
e

+ (B − B̄j)
TR−1

Bj
(B − B̄j)

)

(4.4)

We use σ2
e = 1 for simplicity. The first term ensures that the estimated [α,B] reassemble

the observed image Mu. The last term in the expression constrains the image data to obey a

particular Gaussian color. This can also be thought of as a prior on that color. But because

our color prior is in a sense data driven, we lump the two terms together in this likelihood

expression.

4.3.1 Solving for [α, B]

Given four Gaussians in the mixture model, attempting to solve for [α,B] using all four at once

would lead in a sense to an average color constraint. Instead, we follow Chuang and choose to

solve for [α,B] using each color component separately. This then yields four candidate solutions

[αj , Bj ] and the candidate/component combination that maximizes the likelihood in equation 4.4

is selected as the solution at the examined pixel site.

We generate an estimate for Bj given αj by substituting the likelihood into Equation 4.3,

taking logarithms and differentiating wrt Bj in each color component separately. Given Bj we

do the same for estimating αj . This is the same optimization scheme used for deriving the MAP

estimate of Bayesian Matting (see Appendix A). However the problem here is simpler as the

foreground layer is already known (F = 0). Given [Bj , M, F ] are all 3-color vectors, the four
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equations to solve are as follows.

[

σ2
eR

−1
Bj

+ I(1 − αj)
2
]

Bj =
[

σ2
eR

−1
Bj

B̄j + (1 − αj)M
]

(4.5)

αj =
(M − Bj)

T (F − Bj)

||F − Bj ||2
(4.6)

Here I is the 3 × 3 Identity matrix. The [αj , Bj ] pair for the background cluster j is calculated

by iterating between equation 4.5 and equation 4.6 using the mean of the previously calculated

opacity values as an initial α estimate. Performing this optimization for each color cluster

produces a set of Wc [α,B] candidates for each site. The candidate producing the highest

likelihood is then selected as the correct solution.

Figure 4.1 (second row, left) shows the generated corruption matte and the correction

of Figure 4.1(b) using this approach. Here, figure 4.1(d) shows the used corruption mask.

As shown the extracted mattes and original data are close to the ground-truth estimates of

figure 4.1(a) and (c). However the generated results are noisy due to the absence of a spatial

smoothness prior on the estimated [α, I].

Figure 4.2 shows the effect of using different (Wu,Wc) configurations on the generated

results. A small Wc value could fail to capture the richness of the clean data. The result could

be an averaging like effect in the reconstructed original data (see figure 4.2 (c)). A small Wu

value could fail to locate the correct original color if a large portion of this color is corrupted.

This will reduce the chance of estimating the correct original color in the reconstructed regions

(see figure 4.2 (d)).

BBM usually produces noisy results. This is because the maximum likelihood estimate does

not guarantee the selection of the correct original color. This problem is solved by imposing

spatial smoothness on the generated reconstruction as discussed next.

4.4 Spatial Priors

We now modify Bayesian Blotch Matting by imposing Spatial smoothness on [α,B]. We call this

the Bayesian Transparent Blotch Remover - Spatial algorithm i.e. BTBR-S. We use 8-connected

MRFs in the usual way as follows:

P (α|αN ) ∝ exp−
(

βa

∑

k∈N
λk|α − αk|

2
)

(4.7)

P (B|BN ) ∝ exp−
(

βb

∑

k∈N
λk||B − Bk||

2
)

(4.8)

Here (βa, βb) are weights which configure the importance of each energy term while λ are pa-

rameters representing the level of correlation between adjacent pels in the original image. We

use the crude assumption that λ = 1 at all sites. Even though crude, results (see Chapter 5)

show accurate reconstruction of the original data even at textured regions.
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(a) (b) (c) (d)

Figure 4.2: From left: Corruption mask in red, BBM reconstruction with [Wu,Wc] =

[100, 4], [100, 2], [20, 4] respectively. In comparison with (b); (c) small Wc could fail to capture

texture richness. The result is an averaging like effect in the generated reconstruction. (d) small

Wu could fail in locating the correct original color if a large portion of this color is obscured. In

the red rectangle shown, the light blue leaked into the light green as most of the light green is

obscured by the corruption and so was not located due to the small Wu value. A similar effect

is shown by the purple rectangle. Here the light green leaked into dark green as most of the dark

green is obscured and so was not located due to the small Wu value.

4.4.1 MAP Estimation With Spatial Priors

The posterior is optimized over two stages as follows.

1. For each segmented color cluster, its corresponding [α,B] estimate is calculated by iterating

between equation 4.5 and equation 4.6 using 0.5 as an initial opacity value. This iterative

process is performed until the absolute difference between the current likelihood and the

previous likelihood is small enough. A value of 0.1 is used in this work. Performing this

iterative process for each pel will generate a set of possible [α,B] candidates for each site.

2. The correct [α,B] candidate for each site is selected by finding the MAP estimate. This

is done by choosing between two candidates at a time using QPBO Graph-Cut [69]. The

winning candidate is then processed with the next solution candidate. This process is

iterated with the remaining candidates until all candidates are considered (see figure 4.3).

Figure 4.4(a-b) shows the generated corruption matte and the restoration of Figure 4.1(b)

using this approach (BTBR-S) with [βa, βb] = [20, 0]. As shown, an emphasis on the opacity
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Selection 1
Selection 2

Final Selection

Figure 4.3: The process of selecting the optimal [α,B] from a set of possible candidates. Two

candidates are processed at a time via QPBO Graph-Cut and the candidate optimizing the MAP

solution is selected.

(a) (b) (c) (d)

Figure 4.4: (a-b) Generated matte and background restoration of figure 4.1(b) using ‘BTBR-

S’ with [βa, βb] = [20, 0]. (c) Background restoration of figure 4.1(b) using ‘BTBR-S’ but with

[βa, βb] = [0, 1]. As shown, different configurations of [βa, βb] lead to different restorations. (d)

Median filtered image of the background reconstruction of ‘Bayesian Blotch Matting’ B. In here,

a 5× 5 median filter is applied on B̂ =
Br+Bg+Bb

3 , where [Br, Bg, Bb] are the red, green and blue

channels of B. This image is used to infer the texture complexity of the original image B.

smoothness could lead to matte oversmoothness. The visual impact could be severe reconstruc-

tion errors as shown in figure 4.4(b). Furthermore, figure 4.4(c) shows the generated background

reconstruction of figure 4.1(b) with [βa, βb] = [0, 1]. As shown, an emphasis on the background

smoothness could cause regions to bleed into its neighbors. To overcome reconstruction er-

rors due to inaccurate settings of these parameters, two different configurations of [βa, βb] are

used, these being [0.01, 0] and [0, 1]. The first configuration imposes spatial smoothness on the

generated mattes while the other emphasizes background smoothness. The examined frame is
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divided into 16 × 16 blocks and blocks with very low texture are assigned the configuration of

[βa, βb] = [0, 1] while the rest is assigned [0.01, 0]. This turns off background smoothness at

textured regions to prevent possible bleeding of regions into their neighbors. To segment the

examined frame into regions of strong and weak texture, we do the following. The ‘Bayesian

Blotch Matting’ reconstruction of the examined frame B is transformed into B̂ =
Br+Bg+Bb

3

where [Br, Bg, Bb] are the red, green and blue components of B. B̂ is then filtered by a 5 × 5

median filter. This generates a rough estimate of the underlying texture (see figure 4.4 (d)).

Image gradients are calculated by applying the ‘Roberts’ edge detector on B̂ where a pel is

flagged as edge if its spatial derivative exceeds 3 gray scale levels. The texture complexity of

each block is evaluated by calculating the L0 norm of this edge map. A block is treated as

textured if its L0 norm value exceeds a threshold value of T . High value of T may flag textured

regions as untextured. This may cause reconstruction oversmoothness in textured regions as a

high value of background smoothness will be assigned to these regions. To avoid this problem

we use a small of value T = 2. This value is fixed.

Figure 4.1 (second row, right) shows the generated matte and background reconstruction of

figure 4.1(b) using ‘BTBR-S’. In this example, the value of [βa, βb] = [0.01, 0] is used over the

whole image. As shown, ‘BTBR-S’ was able to eliminate the reconstruction noise generated in

‘Bayesian Blotch Matting’. This is mainly due to imposing spatial smoothness on the generated

results.

4.5 Temporal Priors

We can improve the background model P (B|Mn) using information from nearby frames, espe-

cially given that the corruption does not occur in the same place in consecutive frames. This

algorithm is called Bayesian Transparent Blotch Remover - Temporal i.e. BTBR-T.

The obscured original data in the current frame are estimated from previous and next frames

using a simple block matching search with a block size configured to include at least 100 un-

corrupted pels. For successful block matching the chosen block size should encompass texture

richness of the examined neighborhood. Hence the block size is related to Wu and is therefore

set to its value. This process is made robust to corruption by weighting out its effect with

the opacity values of the maximum likelihood solution of ‘BTBR-S’. The result is M̂n, a bi-

directional motion compensation of the current frame at the corrupted sites. The background

prior P (B|M̂n) is then calculated using clean samples from a 3 × 3 M̂n block that is centered

at the examined site. The prior is modeled as one multivariate normal distribution N (B̄,RB)

having the mean and covariance of the clean samples. This prior forces the reconstructed data

to be temporally consistent with the clean data in the nearby frames. Furthermore, the small

block size imposes spatial smoothness on the generated parameters as the content of these blocks

usually vary smoothly from one site to the other.
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4.5.1 MAP Estimation With Temporal Priors

The same optimization scheme of Bayesian Blotch Matting is used. However here there is only

one background color cluster.

Figure 4.1 (third row, left) shows the generated corruption matte and the restoration of

figure 4.1(b) using this approach (BTBR-T). A slightly shifted image of the clean frame (by 2

pels vertically) is used as an estimate of M̂n. As shown, the new prior P (B|M̂n) was able to

restore a good portion of the original data with no reconstruction noise as in ‘Bayesian Blotch

Matting’.

4.6 MAP Estimate Through Spatio-temporal Fusion

The quality of the temporal solution degrades as motion gets more complicated while the quality

of the spatial solution degrades as texture becomes more complex. Figure 4.1 (last row) outlines

this fact by comparing different reconstructions of the red region in Figure 4.1(a). As shown,

BTBR-S could lead to sharp edge reconstructions while BTBR-T often generates errors at

regions of high Displaced Frame Difference (around green edges in this example). This calls for

the generation of a final solution having minimum spatial and temporal reconstruction errors.

A spatio-temporal solution is generated by selecting between the spatial and temporal so-

lutions by including a prior favoring either temporal or spatial [α,B] candidates. Here we use

the QPBO Graph Cut as in BTBR-S. We call this the Bayesian Transparent Blotch Remover

- Fusion algorithm i.e. BTBR-F. To choose between the two solutions we alter the probability

P (α,B|·) as follows

P (α,B|M0, ....MK , αN , BN , F ) ∝ P (B)P (α|αN )P (B|BN ) (4.9)

where

P (B) ∝







exp−
(

(|DFD| − Q)2/2
)

for the spatial candidate

exp−βt

(

|DFD|2/2
)

for the temporal candidate
(4.10)

Here P (B) is a prior introduced to bias the solution toward a temporal solution when there is

good motion compensation between frames as measured by the DFDs. Q is a constant that

can be related to motion complexity and which is set to 30 grey scale levels. This constant has

the effect of favoring the temporal solution at sites of small motion errors where DFD < Q
2 ,

while favoring the spatial solution otherwise. In addition, βt is a parameter to configure the

effect of the temporal solution on the final reconstruction. βt is set to 1 in all frames except

in frames containing pathological motion. Such frames have large motion errors and hence

the temporal solution gets discarded from the final reconstruction by setting βt to ∞. In the

examined sequences we detect pathological motion manually. Alternatively, pathological motion

can be automatically detected using the Corrigan et. al technique [19].
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Dirty Movie

Restored Movie

SDIp BBM
      Motion 

Compensation

Previous Frame

Next Frame

Examined Frame

Detection

   Mask

BTBR-S BTBR-T

BTBR-F

Examined Frame

Figure 4.5: Main Components of the BTBR System. Here BBM reconstructions are used to con-

figure the [βa, βb] values for BTBR-S, BTBR-T and BTBR-F. The motion compensated frames

are used to configure P (B) as shown by equation 4.10.

Figure 4.1 (third row, right) shows the generated corruption matte and the restoration of

Figure 4.1(b) using this approach with [βa, βb] = [0.01, 0] and βt = 1 for the whole image. As

shown in Figure 4.1 (last row), Spatio-temporal BTBR-F was able to compensate between the

errors generated in both the spatial and temporal reconstructions.

Figure. 4.5 shows the main components of our Blotch Removal System. We call it Bayesian

Transparent Blotch Remover i.e. BTBR. Here the reconstructions of BBM are used to configure

the opacity and background smoothness parameters [βa, βb] of BTBR-S, BTBR-T and BTBR-

F as discussed in Section. 4.4.1. Furthermore, the motion compensated frames are used to

configure P (B) as shown by equation 4.10.
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4.7 Modifications for Line Removal

The background prior in BTBR-T is based on the assumption that corruption is temporally

discontinuous and so the clean obscured data can be well estimated from nearby frames. This

assumption is violated for line scratches as lines are temporally continuous events. Instead, for

line removal we can build a new background prior from nearby reconstructed frames, assuming

that at some point in the past and future the line does not appear in the original corrupted

frames. We call this technique ‘Bayesian Transparent Line Remover’ i.e. BTLR

A line sequence starting and terminating with two line-free frames (M0 and MN+1) is there-

fore restored temporally over three stages (see figure 4.6)

1. A solution is generated by reconstructing the first corrupted frame using BTBR-T and

propagating the reconstruction in the forward time direction. Reconstruction at n − 1

is used to estimate M̂n and the first corrupted frame is motion compensated using the

line-free frame M0. This will be referred to as ‘Recursive Forward Reconstruction’.

2. A similar solution is generated but by starting the reconstruction from the last corrupted

frame and propagating the solution in the backward direction. The main difference here is

that M̂n is estimated from the reconstruction at time n+1 and that the last corrupted frame

MN is motion compensated using MN+1. The resulting reconstruction will be referred to

as ‘Recursive Backward-time Reconstruction’.

3. An overall temporal reconstruction is generated by fusing the Forward and Backward Re-

constructions using the QPBO Graph Cut as in BTBR-S. In here background smoothness is

emphasized relative to opacity smoothness as the small line width will prevent background

oversmoothness. The resulting reconstruction will be referred to as ‘Bi-directional-time

Reconstruction’.

Figure 4.6 illustrates the proposed temporal line removal algorithm. As shown each method

will accumulate reconstruction errors in the direction of propagation. However, bidirectional-

time fusion is designed to minimize these errors in all frames. A final spatio-temporal solution

is then generated by fusing the temporal and the spatial solutions using the same framework

of section 4.6. For examined sequences we perform temporal propagation over (at maximum)

30 frames. Increasing the number of frames is expected to improve reconstruction because in

theory objects would then have more time to move away from the degradation. However, this

comes with an increased chance of motion estimation errors. Therefore this is a downfall which

can only be addressed in the field as it works. In fact as our algorithm operates offline, we can

take advantage of as many frames as is available.

Figure. 4.7 shows the main components of our Line Removal System. We call it Bayesian

Transparent Line Remover i.e. BTLR. The forward motion compensated frames are used to

configure the weights P (B) in the final spatio-temporal fusion step (discussed in section 4.6).

The stages of BBM, BTBR-S and BTBR-F used in BTLR are the same ones used in BTBR.
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Line Scratches

Corrupted Sequence

Recursive Forward-time Reconstruction

Recursive Backward-time Reconstruction

Bi-directional-time Reconstruction

Figure 4.6: Illustrating temporal restoration of a line sequence containing N corrupted frames.

A green object is moving through time and estimated motion vectors are shown in black ar-

rows. Reconstruction errors are represented with different degrees of ‘red’ ranging from ‘light’

for small errors to ‘dark’ for large errors. As shown, bidirectional fusion is designed to minimize

reconstruction errors in all frames.
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Figure 4.7: Main Components of the BTLR System. The forward motion compensated frames

are used to configure P (B) as shown by equation 4.10. The block named ‘Reverse Processing

Order’ in the blue region starts processing frame MN down to M1.
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4.8 Conclusion

This chapter has presented a new framework for removing dirt and lines from image sequences.

It addresses the issue of correcting uncorrupted regions when traditional blotch removers are

used and also allows the removal of semi-transparent damage in general from film sequences.

The novelty here is in using a semi-transparent corruption layer. Corruption removal is then

addressed as the problem of separating the corruption layer from the original background through

a variant of the matting problem. A Bayesian framework was presented exploiting both spatial

and temporal priors. Spatial and temporal information are used in a way such that restoration

quality is maintained despite motion and texture complexity. The algorithm is initialized with

rough binary corruption masks which are refined into a non-binary opacity mattes. These mattes

estimate the amount of dirt at each pixel and therefore discard clean regions from the correction

process.



5
Infrared Analysis

This chapter shows experiments used to evaluate our blotch (BTBR) and line (BTLR) removal

techniques. Results are evaluated by comparing the reconstructed corruption opacities and re-

constructed original data against ground truth estimates. Ground truth estimates are derived

from IR scans of corruptions. IR scans are traditionally used for corruption detection [23]

and hence they are commonly generated by some archive film holders e.g. Institut national de

l’audiovisuel . Our ground-truth generation technique first estimates ground-truth corruption

opacities by projecting the IR scans on to the corruption opacity space. Here we derive a trans-

formation which relates the IR scans grayscale values with corruption opacities. Ground-truth

estimates of the original data are then calculated by weighting out the effect of the corruption

using the estimated ground-truth opacities. Comparisons against ground-truth estimates show

that our corruption removal technique estimates corruption borders with much better accuracy

than current removal techniques. This avoids correcting uncorrupted sites.

This chapter starts by outlining the experiments used in evaluating our corruption removal

techniques. We then show how to exploit IR film scans for ground-truth estimates. We then

use the ground-truth estimates to evaluate our corruption removal techniques against real and

synthetic data.

5.1 Experimental Procedures

Test Sequences: Five standard definition (720×576) sequences are used in evaluating the per-

formance of the blotch removal processes: LabB1, ArtB1, DanceB1, DanceB2 and LadyDollB1

67
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with 100, 40, 100, 60 and 100. frames respectively. Most sequences undergo fast motion and

contain moderate texture. However LadyDollB1 contains moderate texture and undergoes slow

motion. Examples of frames from these sequences are shown in figure 5.1- 5.2. The IR scans of

the sequences are shown on the right. LabB1 is created by corrupting a clean sequence B using

the relation M(x) = (1 − α(x))B(x). Here α is the dirt opacity obtained from IR scans. The

process of getting the dirt opacity from the IR scans is discussed in details in section 5.2. The

other four sequences ArtB1, DanceB1, DanceB2 and LadyDollB1 show real archived footage

containing blotches. Similarly, four line sequences are used to evaluate the performance of line

scratch removal: LabL1, DanceL1, DanceL2 and DanceL3, with 25, 25, 18 and 15 frames respec-

tively. Again these show fast motion and contain moderate texture. LabL1 shows synthetic line

scratches created in the same way as LabB1 and the others contain real line scratches. Examples

of frames from DanceB1 and LabL1 are shown in figure 5.3.

Examined Algorithms: There are a large variety of blotch remover processes that have

been proposed, hence we compare our removal techniques with the JONDI estimator of Kokaram

et al [47], since that is the most general of the frameworks proposed in the past and it is the basis

of many commercial blotch removal processes. For line removal we compare the results against

JOMBEI which is in a sense a spatial version of JONDI for line removal [46]. We also compare

with one commercially available software suite called Furnace from The Foundry [2]. This uses

an implementation of ML3Dex [51] for removal. To illustrate the importance of the opacity

term in generating accurate reconstructions, we compare the results against an implementation

of BTBR which removes the effect of the opacity term i.e. α is replaced by a binary index. Here

the image compositing term (the first term) of the BBM likelihood is ignored (see equation 4.4).

This can be regarded as an approximation of Efros et al. texture synthesis technique [24, 25].

We call this implementation BTBR-AOFF. We also compare the results of BTBR and BTLR

against BBM.

To show the importance of using both spatial and temporal information in our restoration

technique, we compare the results of BTBR-F against BTBR-S and BTBR-T. Even though

BTBR does not address the problem of detection in an explicit form, the estimation of α is

a detection refinement step. We therefore show how the estimated α refines the SDIp detec-

tions. We also examine how BTBR performs on grayscale sequences. Finally we discuss the

computational load of our technique. To evaluate the original data reconstruction quality of the

examined restoration techniques we use the SSIM measure of Wang et al. [93]. This measures the

structural similarity between the generated reconstructions and the ground-truth estimates. The

SSIM measure takes values from 0 to 1 where 1 denotes an exact match with the ground-truth

estimate.

Ground truth Generation: Ground truth is traditionally hard to come by since it can

only generated by painstaking hand painting of missing patches. In this case, with a model that

considers semi-transparency that is even more difficult. However, we have acquired Infra Red

(IR) scans of film material which yield ground truth on real degraded sequences. IR scans are
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Figure 5.1: From top: Frames from LabB1, DanceB1 and DanceB2 and their corresponding IR

scans on the right. All Images except LabB1 are Courtesy of Institut national de l’audiovisuel.
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Figure 5.2: From top: Frames from ArtB and LadyDollB1 and their corresponding IR scans on

the right. Images Courtesy of Institut national de l’audiovisuel.

dark in corrupted sites and bright in clean regions (see figure 5.1-5.2, right). We project the

IR grayscale values into the corruption opacity domain α. This generates ground-truth opacity

estimates. These estimates are used to create LabB1 and LabL1 by corrupting a clean sequence

B using M(x) = (1 − α(x))B(x). Furthermore, ground-truth estimates of the original data are

then estimated by weighting out the effect of the corruption using the ground-truth opacities.

The next section discusses how ground truth is acquired in detail. We then go on to discuss

algorithm performance by examining different aspects of our technique.
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Figure 5.3: Frames from DanceL1 (left) and LabL1 (right). Line scratches are shown in blue.

DanceL1 contains blotches (shown in green) as well as lines.

5.2 Groundtruth from IR

Corrupted sites are detected using a simple threshold operation on the IR scans of the examined

sequences. The two real sequences Art and Dance are examined where Dance contains DanceB1,

DanceB2, DanceL1, DanceL2 and DanceL3. Threshold values of 210 and 180 are used for the

Art and Dance sequences respectively, where a pel is flagged as corrupted if it falls below the

threshold. This thresholding operation yields the ground truth binary corruption mask dτ for

each sequence. We extract the ground-truth opacities ατ for each sequence by relating the actual

grayscale value of the IR to the estimated opacities. Here we only examine sites denoted by dτ .

Corruption opacities are estimated using BTBR and figure 5.4 shows the IR/Corruption opacity

plot for the Art and Dance sequences. IR scans are spread over the range 0−1 for the simplicity

of illustration where 1 denotes a highly corrupted region. Three different fitting functions are

superimposed: y = xn, y = a.x2 +b.x+c and y = γ.exp(λx)+k. The fitting error ǫ for a specific

fitting function is defined as follows

ǫ =

√

√

√

√

∑M
i=1

∑Ni

j=1(α
f
i − αi,j)2

∑M
i=1 Ni

(5.1)

Here i indexes the IR range 0 − 1 with a step of 0.01, αf
i is the ith fitted value and αi,j is the

jth BTBR blotch opacity at the ith IR value. Table. 5.1 shows the fitting errors of the different

fitting functions for each examined sequence. Table. 5.1 shows that the function y = a.x2+b.x+c

gives the best fit in both Art and Dance sequences and hence we use this function to transform

the IR grayscale values to ground truth opacities.
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Figure 5.4: Corruption opacities α vs. IR values for the Art (left) and Dance sequences (right).

The red bars denote the standard deviations of α. Both y = a.x2 + b.x+ c and y = γ.exp(λx)+k

generate a good fit of the IR/Corruption opacity relation.

Art Dance

fP = xn
n 1.4087 1.6057

ǫ 0.0919 6.4773

fE = γ.exp(λx) + k

γ 0.2018 0.1056

λ 1.7227 2.2590

k -0.2036 -0.1083

ǫ 0.0076 0.0703

fQ = a.x2 + b.x + c

a 0.5666 0.6515

b 0.2780 0.1214

c -0.0020 0.0052

ǫ 0.0061 0.0833

Table 5.1: Different functions for estimating the ground-truth corruption opacities (see fP , fE

and fQ respectively) and their corresponding lack of fit ǫ with the BTBR opacities. fQ generates

the least lack of fit for both examined sequences

.

Figure 5.5-5.6 shows some blotches, their IR scans, the calculated dirt opacities using the

derived IR/Corruption relation and the corresponding original data reconstruction. The function

y = a.x2 + b.x + c is used as the IR/Corruption relation and reconstruction is achieved by

inverting the effect of the dirt using the matting equation directly. More explicitly the ground-
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Figure 5.5: Ground-truth opacities and reconstructions calculated using the method discussed

in section 5.2. From left; Corrupted Image, corresponding IR scan, estimate ground-truth cor-

ruption opacity and the corresponding reconstruction. As shown the reconstruction successfully

recovers the underlying original data.
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Figure 5.6: Ground-truth opacities and reconstructions calculated using the method discussed in

section 5.2. From left; Corrupted image, corresponding IR scan, estimate ground-truth corrup-

tion opacity and the corresponding reconstruction. The reconstruction successfully recovers the

underlying original in the first row however it failed to remove highly opaque corruptions in the

last row.

truth estimate of the original data Bτ given the ground-truth opacities ατ is calculated using

Bτ (x) =
M(x)

(1 − ατ (x))
(5.2)

where x denote the examined pels respectively and M is the corrupted frame. As shown in

figure 5.5-5.6 the ground-truth reconstructions in the last column reassemble the original data

correctly in most examples. However, the quality of reconstruction degrades as corruptions be-

come opaque. Figure 5.6 (last row) shows an example where the ground-truth reconstruction

fails to fully remove very dark corruption. For very dark corruptions the numerator and denom-

inator of equation 5.2 approach zero. As a result Bτ (x) approaches being undefined and hence

the reconstruction becomes meaningless.

5.3 Reconstruction Comparison

5.3.1 Comparison against Current Techniques

Figure 5.7-5.8 shows the original data reconstruction quality of LabB1, DanceB1, DanceB2 and

ArtB1 as generated by different blotch removers. Image sequence results can be found in the

accompanying DVD. Five techniques are examined being BTBR, JONDI, BBM, Furnace and

BTBR-AOFF. The graphs shows SSIM with ground-truth estimates for every examined frame.

These results are summarized in table 5.2. As shown in table. 5.2, BTBR outperforms the other

techniques in most of the examined sequences. The examined techniques remove blotches in most



5.3. Reconstruction Comparison 75

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Frame Number

SS
IM

 w
ith

 G
ro

un
d−

tru
th

 R
ec

on
st

ru
ct

io
n

BTBR−AOFF
Furnace
BBM

JONDI
BTBR

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Frame Number

SS
IM

 w
ith

 G
ro

un
d−

tru
th

 R
ec

on
st

ru
ct

io
n

BTBR−AOFF
Furnace
BBM

JONDI
BTBR

Figure 5.7: Reconstruction quality of LabB1 (top) and DanceB1 (bottom) with different blotch

removers. BTBR outperforms most of the other techniques.
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Figure 5.8: Reconstruction quality of DanceB2 (top) and ArtB1 (bottom) with different blotch

removers. BTBR outperforms most of the other techniques.
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LabB1 DanceB1 DanceB2 ArtB1

0.76±0.08 0.83±0.04 0.80±0.06 0.77±0.04

Furnace 0.44 0.64 0.64 0.69

0.93 0.98 0.89 0.98

0.98±0.01 0.94±0.01 0.90±0.02 0.98±0.00

JONDI 0.94 0.89 0.84 0.96

0.99 0.99 0.94 0.99

0.84±0.07 0.90±0.02 0.90±0.04 0.88±0.04

BTBR-AOFF 0.70 0.84 0.78 0.82

0.94 0.94 0.95 0.95

0.89±0.03 0.94±0.01 0.94±0.02 0.94±0.01

BBM 0.82 0.91 0.86 0.93

0.95 0.96 0.98 0.97

0.97±0.01 0.96±0.01 0.95±0.02 0.98±0.01

BTBR 0.93 0.93 0.89 0.97

0.99 0.98 0.98 0.99

Table 5.2: Reconstruction quality against ground truth for the examined blotch sequences. SSIM

(Structural Similarity Measure of [93]) is used here where SSIM of 1 denotes reconstruction

that is identical to the ground truth estimate. For each sequence the average, minimum and

maximum SSIM are shown respectively. The average and minimum SSIM shows that BTBR is

the best performing technique.

of the processed frames however they generate errors in clean regions which are misclassified as

corrupted. Furnace usually generates a temporal averaging effect in clean regions. This visual

effect is clearly visible in all examined frames in figure 5.9-5.11 and figure 5.13-5.15 (second

row, left). BBM often generates noisy reconstructions as it does not impose any smoothness on

the generated results. This is shown in figure 5.10 and figure 5.13-5.15 (third row, left, shown

in green). Using a corruption model with binary opacity values instead of non-binary values

generates large restoration artifacts in clean regions as shown in figure 5.9-5.10 and figure 5.14-

5.15 (second row, right, shown in red).

BTBR is more robust to complicated motions such as those arising due to pathological

motion or fast motion. Such motions violate the motion translational model used by SDIp and

hence generate large false SDIp detection rate. As JONDI treats corruption as an opaque layer it

usually passes regions incorrectly classified as blotches to the correction stage. However, thanks

to the semi-transparent corruption model we often discard false alarms from the correction stage.

Figure 5.9-5.12 (shown in blue) shows examples where the examined regions are undergoing

complicated motion and hence have a high false detection rate. JONDI generates clearly visible

artifacts in these regions while our technique maintains the original information. In addition to
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JONDI’s failure in handling complicated motion, sometimes it misclassifies very dark corruptions

as being clean and hence does not remove them. Figure 5.13 (third row, right, shown in blue)

shows an example where JONDI misclassifies a dark corruption as being a clean region. The

result here is incomplete blotch removal.
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(a) Original (b) Detection

(c) Furnace (d) BTBR-AOFF

(e) BBM (f) JONDI

(g) BTBR

Figure 5.9: In clockwise direction: Frame 67 of DanceB1, its SDIp mask and reconstruction using

different techniques. Blotches are shown in black boxes. BTBR-AOFF and JONDI generate

reconstruction errors in uncorrupted regions (shown in red and blue respectively).
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(a) Original (b) Detection

(c) Furnace (d) BTBR-AOFF

(e) BBM (f) JONDI

(g) BTBR

Figure 5.10: In clockwise direction: Frame 76 of DanceB1, its SDIp mask and reconstruction

using different techniques. Blotches are shown in black boxes. BBM generates noisy results

(shown in green) while BTBR-AOFF and JONDI generate reconstruction errors in uncorrupted

regions (shown in red and blue respectively).
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(a) Original (b) Detection

(c) Furnace (d) BTBR-AOFF

(e) BBM (f) JONDI

(g) BTBR

Figure 5.11: In clockwise direction: Frame 77 of DanceB1, its SDIp mask and reconstruction

using different techniques. Blotches are shown in black boxes. JONDI generate reconstruction

errors in regions misclassified as corrupted (shown in blue).
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Figure 5.12: From top; Frame 190 (left column) and 191 (right column) of DanceB2; SDIp

masks, JONDI reconstruction, BTBR reconstruction. Blotches are shown in black boxes. JONDI

generates large reconstruction errors in regions misclassified as corrupted (shown in blue).
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(a) Original (b) Detection

(c) Furnace (d) BTBR-AOFF

(e) BBM (f) JONDI

(g) BTBR

Figure 5.13: In clockwise direction: Frame 32 of ArtB1, its SDIp mask and reconstruction using

different techniques. Blotches are shown in black boxes. JONDI failed in removing a very dark

corruption (shown in blue) while BBM generates noisy results (shown in green).
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(a) Original (b) Detection

(c) Furnace (d) BTBR-AOFF

(e) BBM (f) JONDI

(g) BTBR

Figure 5.14: In clockwise direction: Frame 28 of LabB1, its SDIp mask and reconstruction using

different techniques. Blotches are shown in black boxes. BBM generates noisy results (shown in

green) while BTBR-AOFF generates large reconstruction errors in uncorrupted regions (shown

in red).
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(a) Original (b) Detection

(c) Furnace (d) BTBR-AOFF

(e) BBM (f) JONDI

(g) BTBR

Figure 5.15: In clockwise direction: Frame 64 of LabB1, its SDIp mask and reconstruction using

different techniques. Blotches are shown in black boxes. BBM generates noisy results (shown

in green) while BTBR-AOFF generates large reconstruction errors in regions misclassified as

corrupted (shown in red).
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LabL1 DanceL1 DanceL2 DanceL3

0.92±0.04 0.85±0.05 0.88±0.03 0.92±0.03

Furnace 0.85 0.75 0.83 0.85

0.97 0.92 0.93 0.95

0.95±0.01 0.92±0.02 0.91±0.02 0.95±0.02

JOMBEI 0.93 0.88 0.87 0.89

0.97 0.96 0.96 0.96

0.94±0.02 0.90±0.03 0.91±0.03 0.92±0.03

BTBR-AOFF 0.87 0.85 0.88 0.85

0.97 0.96 0.96 0.96

0.94±0.03 0.91±0.02 0.90±0.02 0.92±0.02

BBM 0.88 0.85 0.85 0.89

0.98 0.84 0.9 0.94

0.96±0.02 0.92±0.02 0.94±0.02 0.95±0.02

BTLR 0.93 0.87 0.90 0.90

0.98 0.96 0.96 0.96

Table 5.3: Reconstruction quality against ground truth for the examined line sequences. SSIM

[93] is used here where SSIM of 1 denotes reconstruction that is identical to the ground truth

estimate. For each sequence the average, minimum and maximum SSIM are shown respectively.

The average and minimum SSIM shows that BTLR is the best performing technique.

Figure 5.16-5.17 shows the original data reconstruction quality of LabL1, DanceL1, DanceL2

and DanceL3 as generated by different line removers. Image sequence results can be found in the

accompanying DVD. Five techniques are examined being BTLR, JOMBEI, BBM, Furnace and

BTBR-AOFF. The graphs show SSIM with ground-truth estimates for every examined frame.

These results are summarized in table 5.3. As shown in table 5.3, BTLR outperforms the other

techniques in most of the examined sequences. Figure 5.18 shows the BTLR reconstruction of

three consecutive frames from LabL1. The Line scratch (shown in blue) is removed successfully

from the examined frames. Figure 5.19 zooms in on the first frame of figure 5.18 and compares

the BTLR reconstruction with BTBR-AOFF, Furnace, JOMBEI and BBM. JOMBEI often blurs

the corruption (see blue box A & C). BTBR-AOFF generates artifacts in clean regions due to

the absence of a non-binary opacity term (box C & D). Furnace generates incomplete removal

(box A) and BBM generates noisy reconstruction as expected (box B). Figure 5.20 shows three

frames of LabL1 and its BBM and BTLR reconstruction. Its clear that BBM generates noisy

results due to the absence of spatial reconstruction smoothness (see blue boxes). This noise

manifests as flickering during video playback.

Figure 5.21 shows line and blotch removal from the Dance sequence using our corruption

removal techniques. Blotches and lines are removed separately and both restorations are then
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Figure 5.16: Reconstruction quality of LabL1 (top) and DanceL1 (bottom) with different line

removers. BTLR outperforms most of the other techniques in most of the examined frames.
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Figure 5.17: Reconstruction quality of DanceL2 (top) and DanceL3 (bottom) with different line

removers. BTLR outperforms most of the other techniques in most of the examined frames.
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Figure 5.18: From top: Frames 19, 20 and 21 from LabL1 (left column) and line removal results

of BTLR on the right. Line scratches (shown in blue) are successfully removed by BTLR.
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A

B

C

D

Figure 5.19: From left; frame 19 of LabL1 and its restoration using BTBR-AOFF, Furnace,

JOMBEI, BBM and BTLR respectively. BTBR-AOFF corrupts clean regions (box C & D),

Furnace produces incomplete removal (box A), JOMBEI often blurs the corruption (box A & C)

and BBM generates noisy reconstruction (box B). BTLR however generated the best restoration

(compare the restorations shown in blue boxes).

assembled to form the final restored sequence. The Dance sequence in figure 5.21 contains the

line scratch of DanceL1 (shown in blue, left side of the corrupted frame) and the line scratch of

DanceL2 (shown in blue, around the center of the corrupted frame). It also contains blotches

from DanceB1 (shown in green). As shown in figure 5.21 our corruption removal techniques

were able to remove both lines and blotches successfully.
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Figure 5.20: From left; frame 18, 23 and 28 of LabL1 and its BBM and BTLR reconstruction

respectively. BTLR often generates smoother results than BBM due to the incorporation of a

reconstruction smoothness term (see blue boxes). The noisy restoration of BBM manifests as

flickering during video playback.
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Figure 5.21: Line and blotch removal from the Dance sequence using BTBR and BTLR. Lines

and blotches are shown in the corrupted frames on the left column in blue and green respectively.

Restoration results are on the right column.
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LabdyDollB1 DanceB1

0.89±0.04 0.95±0.01

BTBR-S 0.97 0.92

0.77 0.97

0.92±0.03 0.90±0.03

BTBR-T 0.82 0.82

0.97 0.96

0.94±0.03 0.96±0.01

BTBR-F 0.82 0.93

0.98 0.98

Table 5.4: Reconstruction quality against ground truth for DanceB1 and LadyDollB1. SSIM [93]

is used here where an SSIM of 1 denotes reconstruction that is identical to the ground truth esti-

mate. For each sequence the average, minimum and maximum SSIM are shown respectively. The

average and minimum SSIM shows that BTBR-F fuses the spatial and temporal reconstructions

in a way such that restoration is maintained despite motion and texture complexity.

5.3.2 The Importance of Spatial and Temporal Information in BTBR

Figure 5.22 shows the original data reconstruction of DanceB1 and LadyDollB1 using BTBR-

S, BTBR-T and BTBR-F. These results are summarized in table. 5.4. DanceB1 undergoes

complicated motion. As a result the temporal restoration (BTBR-T) generates more errors

than the spatial restoration (BTBR-S). Here BTBR-F favors the spatial restoration of BTBR-S

over the temporal restoration of BTBR-T. Examples of temporal reconstruction errors are shown

in blue in figure 5.23-5.24. LadyDollB1 contains simple motion between frames and therefore

its temporal restoration generates fewer errors than the spatial restoration (see table. 5.4 and

figure 5.22). Hence this time BTBR-F favors the restoration of BTBR-T over the restoration of

BTBR-S. Example of spatial restoration failure is shown in figure 5.25 in blue. The BTBR-F

results of DanceB1 and LadyDollB1 show that our corruption removal technique BTBR uses

both spatial and temporal information in a way such that restoration is maintained despite

motion and texture complexity.
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Figure 5.22: Reconstruction quality of DanceB1 (top) and LadyDollB1 (bottom) as generated by

BTBR-S, BTBR-T and BTBR-F. BTBR-F fuses the spatial and temporal reconstructions in a

way such that restoration is maintained despite motion and texture complexity.
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Figure 5.23: In clockwise direction: Frame 76 of DanceB1 with blotches (shown in black boxes);

SDIp detection; BTBR-T restoration; BTBR-F restoration; BTBR-S restoration. Regions shown

in blue undergo fast motion and hence generate restoration artifacts in the BTBR-T reconstruc-

tion. BTBR-F however favors the spatial restoration for these regions.
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Figure 5.24: In clockwise direction: Frame 77 of DanceB1; SDIp detection; BTBR-T restoration;

BTBR-F restoration; BTBR-S restoration. Regions shown in blue undergo fast motion and hence

generate restoration artifacts in the BTBR-T reconstruction. BTBR-F however favors the spatial

restoration for these regions.



5.3. Reconstruction Comparison 97

Figure 5.25: In clockwise direction: Frame 76 of LadyDollB1 with blotches (shown in black

boxes); SDIp detection; BTBR-T restoration; BTBR-F restoration; BTBR-S restoration. Spatial

removal of BTBR-S failed to fully remove the dark blotch (see blue box). However, BTBR-T

removes it successfully using clean information from nearby frames. BTBR-F here favors the

BTBR-T reconstruction.
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5.4 Detection Comparison

The estimation of corruption opacity can be regarded as a detection refinement step. Figure 5.26-

5.27 show the estimated mattes for some blotches and their corresponding reconstruction using

BTBR. The calculated mattes (fourth row) reassemble IR scans of corruptions (third row). This

is more evident by examining the regions shown in blue. IR scans here are projected on the

opacity corruption domain as previously discussed in section. 5.2. This is done for illustration

clarity. As shown in figure 5.26-5.27 (fourth row) the extracted mattes often estimate corruption

borders correctly and hence they reject false SDIp detections from the correction step. Note

that in figure 5.26 (first column) BTBR misclassifies the region shown in red as being clean.

This region lies on a dark clean background and hence BTBR failed to distinguish the dark

corruption from the dark original data. The result here is that BTBR did not fully remove this

blotch. However the visual impact in the final reconstruction is quiet acceptable as the blotch

is consistent in color with the surrounding dark clean regions (see figure 5.26, last row, shown

in red).

Figure 5.28 shows the ROC of LabB1 and DanceB1 as generated by SDIp and BTBR. IR

sites with less than 20 grayscale values are regarded as ground-truth corrupted locations. A

false blotch detection rate of 0.1 is often regarded as a large false alarm rate. As shown in both

ROCs BTBR does not reach such high false detection rate. In LabB1 BTBR was able to reduce

the false rate of SDIp from 0.16 to around 0.05 while maintaining the correct detection rate of

0.86 (see the last black circled marker in both SDIp and BTBR plots). That is more than 68%

reduction in the SDIp false detection rate. In DanceB1 BTBR was able to reduce the false rate

of SDIp from 0.16 to around 0.04 while maintaining the correct detection rate of 0.94 (see the

last black circled marker in both SDIp and BTBR plots). That is around 75% reduction in the

SDIp false detection rate.

Figure 5.29-5.30 shows how BTBR refines SDIp detection masks. Each figure shows two

consecutive frames from DanceB1 with blotches shown in blue. In both figures the girl is

moving fast and hence she generates a large SDIp false detection rate. BTBR rejects most of

this false detection (shown in green, middle row) and correctly detects blotches (shown in white,

middle row). Some false detections (shown in red, middle row) are passed to the correction

stage. However BTBR correctly estimates the original data in the sites of those false detections

(see last row).

5.5 Performance on Grayscale Data

Many real corrupted sequences are old footage and hence they are usually not colored. This

section examines how BTBR perform on grayscale data. We generated LabB1G and DanceB1G

by projecting LabB1 and DanceB1 on the grayscale domain. Regions that look different in color

look less different in grayscale. This often generates more restoration artifacts in grayscale than
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Figure 5.26: From top: Corrupted data, SDIp masks, IR scans, Corrupted mattes as estimated

by BTBR, Corresponding reconstruction. Estimated mattes reassemble the IR scans as shown

in blue. BTBR does not remove a dark blotch that is surrounded by dark clean regions (shown

in red). This however does not affect the final reconstruction (last row, shown in red).
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Figure 5.27: From top: Corrupted data, SDIp masks, IR scans, Corrupted mattes as estimated

by BTBR, Corresponding reconstruction. Estimated mattes reassemble the IR scans as shown

in blue.
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Figure 5.28: ROC of BTBR and SDIp on LabB1 (Top) and DanceB1 (Bottom). The black

circled markers denote the different SDIp thresholds used in ROC evaluation. Here we use 8

SDIp thresholds being [5:2.5:22.5]. Its clear that the refined detections of BTBR have fewer false

alarms than SDIp.
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Figure 5.29: From top: Frame 94 (left) and 95 (right) of DanceB1 with blotches shown in blue;

Rejected false SDIp detections (by BTBR) shown in green, correct blotch detections (shown in

white) and false BTBR detections (shown in red); Final BTBR reconstruction. BTBR removes

blotches and maintains the original data in regions incorrectly classified as corrupted.
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Figure 5.30: From top: Frame 96 (left) and 97 (right) of DanceB1 with blotch shown in blue;

Rejected false SDIp detections (by BTBR) shown in green, correct blotch detections (shown in

white) and false BTBR detections (shown in red); Final BTBR reconstruction. BTBR removes

blotches and maintains the original data in regions incorrectly classified as corrupted.



104 Infrared Analysis

in color as grayscale provides less information than color.

Figure 5.31 shows the original data reconstruction quality of LabB1G and DanceB1G as

generated by BTBR. Here we compare the grayscale reconstruction (shown in blue) with the

color reconstruction (shown in red). As shown BTBR grayscale reconstruction is a bit worse

than the color reconstruction. Figure 5.32 shows reconstruction examples of LabB1G and LabB1.

BTBR successfully removed blotches (shown in green) from both grayscale and color sequences

(middle and last row respectively). However BTBR generated some noticeable artifacts in

LabB1G (shown in red). Here the amount of spatial smoothness imposed on the generated

reconstruction was too strong to the point it caused the surrounding white/gray region to bleed

into the black clean region. This problem also exists in some cases of color reconstructions (see

figure 5.33 left column, shown in blue). However, lowering the level of reconstruction smoothness

could lead to incomplete blotch removal as shown in figure 5.33 (right column, shown in green).
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Figure 5.31: Reconstruction quality of LabB1 (top) and DanceB1 (bottom) as generated by BTBR

for both color and grayscale representation (shown in red and blue respectively). As shown color

reconstruction is usually better than grayscale reconstruction.
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Figure 5.32: From top; Frame 65 (left column) and 67 (right column) of LabB1G; Grayscale

reconstruction using BTBR; Color reconstruction using BTBR. Both grayscale and color re-

constructions remove blotches (shown in green). However BTBR generates some restoration

artifacts in LabB1G as shown in red.
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Figure 5.33: Examples of BTBR failure on color sequences. From top: Corrupted frames with

blotches (shown in black boxes); BTBR reconstructions. Strong reconstruction smoothness could

cause regions to bleed into their neighbors. In the region shown in blue (see left column) the pink

region bled into the region of corruption. This problem can be solved by lowering the smoothness

level. However, weak smoothness may generate incomplete corruption removal as shown in green

(right column).

5.6 Computational Complexity

Estimation of the set of solution candidates [α,B] for each pel is the most computationally

intensive aspect of BTBR, amounting to about 90% of the execution time. The estimation of

these candidates is an iterative process which terminates when convergence is reached and so

consumes a lot of time. This process is repeated C times where C is the number of solution

candidates per pel. Therefore, for a corruption mask of P pels, the number of operations

required to generate the solution candidates is P×C×Q where Q is average number of iterations

to generate one solution candidate. The second most computationally intensive part of the
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algorithm is the use of QPBO Graph Cut for optimizing the MAP function.

The average time for processing one colored standard definition frame with BTBR on a

2.33 GHz Quad Core Processor and with an unoptimized MATLAB code is 25.4 seconds. This

is taken as the average of processing 50 frames with SDIp masks of threshold 7.5 and with 5

solution candidates (4 spatial and 1 temporal). QPBO is implemented efficiently by using C++

and by processing only the regions of SDIp masks. The average time for processing one colored

standard definition frame with JONDI written in an optimized C++ code is around 10 seconds.

Hence BTBR is nearly as fast as JONDI. Further reduction in computation for BTCR is possible

by reducing the size of corruption mask and reducing the number of solution candidates. By

reducing the number of solution candidates from 5 to 3, the the average time for processing one

frame dropped from 24.5 to 16.7 seconds. This however has a direct impact on the reconstruction

quality especially in textured regions.

5.7 Conclusion

This chapter showed different experiments used in evaluating our corruption removal techniques

(BTBR and BTLR). We evaluated our removal techniques against ground-truth estimates of the

original data. We presented a technique for generating such ground truth estimates. A relation

between dirt opacity and its IR scan is derived. This relation is then used to estimate the

amount of corruption/dirt represented by IR scans through the means of a non-binary opacity

matte. Results showed that the original underlying data can be estimated by inverting the effect

of this matte. The estimated data are a near ground-truth estimate of the original data.

We compared the performance of our corruption removal techniques against four blotch

removal techniques (Furnace, BTBR-AOFF, JONDI and BBM) and four line removal techniques

(Furnace, BTBR-AOFF, JOMEI and BBM). Reconstruction quality was evaluated against the

ground-truth estimates generated from IR scans. Results showed that our techniques generate

better reconstruction over all the examined blotch and line removal techniques. This confirms

that our dark corruption model used is valid enough. We examined the two main stages of

Crawford et al. blotch removal technique [20]. The first stage removes the chroma corrupted

component using texture synthesis while the second restores the grayscale channel using a semi-

transparent corruption model. We showed that texture synthesis (approximated by BTBR-

AOFF) could generate large restoration artifacts in clean regions. We also showed that a semi-

transparent grayscale corruption model generates poorer results than a semi-transparent color

model. Results show that our algorithms can remove the extremities of blotches very well,

in comparison to existing techniques. This brings more robustness to the pathological motion

problem.

A limiting factor of our technique is the inability to estimate the exact required amount

of background smoothness for optimal reconstruction. This sometimes has an impact on the

reconstruction quality as too much smoothness could cause neighboring regions to interfere with
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each other while too little smoothness could lead to incomplete removal. It is clear that we

could incorporate our model directly into the detection/reconstruction problem along the lines

of JONDI [48]. That would imply estimation of texture parameters alongside detection and

motion information. Although this might seem a daunting task it provides much potential for

future work.
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6
Reflection Detection in Image Sequences

This chapter presents a technique for detecting reflections in image sequences. Reflections are

often the result of superimposing different semi-transparent layers over each other. As a result

the captured image is a mixture between the reflecting surface (background layer) and the

reflected image (foreground) (see figure 6.1).

Detecting reflections can be done by looking for characteristics that are specific to reflections.

However as reflections can arise by mixing any two images, they come in many shapes and colors

(figure 6.1). This makes it difficult to define characteristics that are specific to reflections. In

addition, one should be careful when using motion information from reflections. Most motion

estimators assume the presence of one motion per pel but in regions of reflections there are two

layers moving differently. Hence traditional motion estimators fail in these regions. For these

reasons the problem of reflection detection is hard and was not examined before in an explicit

form.

Reflections are mixtures of images and therefore they often have low image contrast and

poor temporal match of feature points. In addition reflections cannot be described by a physical

model as they come in a large variety of shapes and colors. However, they can be described

by a number of physical characteristics. In this chapter we present a technique for detect-

ing reflections based on analyzing the spatio-temporal profiles of KLT (Kanade-Lucas-Tomasi)

feature points trajectories [56, 85]. We propose that one can detect reflections by examining

three main characteristics. The first characteristic is that reflections can be decomposed into

two different layers and the second is that they have low image sharpness/contrast. The final

characteristic is that regions of reflections often have poor temporal match of feature points.
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Figure 6.1: Examples of reflections (shown in green). Reflections come in different forms and

colors. This makes their detection a hard problem.

For layer separation analysis we present and use a separation technique that can operate on

a single still image. Most current layer separation techniques either require two mixtures of

the same layers under two different mixing conditions [12, 16, 22, 26, 73] or assume a repetitive

background motion [74, 83, 94]. These assumptions are often not valid for reflections in real

image sequences. However, we noticed empirically that in many real reflections at least one

of the layers is more dominant than the other layer in either the red or the blue channel (see

figure 6.2 for examples). On the other hand, the green channel often contains a strong blend

between the underlying layers as this channel usually contains most of the energy of an image.

Hence the source foreground and background layers (F and B) can be estimated by exchanging

information between the red and blue channels until the mutual independence between both

channels is maximized. Based on this we propose to model the underlying layers as a mixture

between the red and blue channels of the observed mixture. We then use the Sarel et al. [73]

Layer Information Exchange approach to estimate the underlying layers. We do not claim that
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Figure 6.2: From top: Color image and the red and blue channels respectively. Left; The woman

(shown in blue) is the background layer while the reflection on the car window is the foreground

layer. Here the foreground layer is more dominant than the background in the blue channel.

Right: A foreground layer containing people walking on the street (shown in blue) reflected on a

(background) shop indoor. Here the background layer is more dominant than the foreground in

the red channel.
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our reflection separation technique could be used to fully remove reflections from videos or to

compete against existing separation techniques. What we claim is that the reconstructed layers

can be useful for reflection detection since reflection is reduced in those layers.

We propose several weak reflection detectors based on analyzing the three main character-

istics of reflections previously discussed. A final strong detector is generated by combining the

weak detectors. The problem is formulated within a Machine Learning framework and spatio-

temporal information are used in a way to reject false alarms and to generate detections that are

consistent in both space and time. We also show how to detect missed reflections via minimal

manual intervention. This is important in a user interactive environment e.g. post-production,

to correct for areas containing few feature point trajectories. Several sequences are processed

and results show high detection rates with rejection of complicated motion patterns e.g. motion

blur, occlusion, fast motion.

In the next section we propose our layer separation technique. We then present our reflection

detection technique followed by results.

6.1 Layer Separation through Color Independence

The foreground (F ) and background (B) layers of an examined image mixture (reflection) M is

modeled as a linear combination between the red and blue channels of M as follows

F = a11Mr + a12Mb

B = a21Mr + a22Mb (6.1)

Here [a11, a12, a21, a22] are the mixing parameters while Mr and Mb are the red and blue channels

of M respectively. We estimate the source layers [F,B] up to a scale by exchanging information

between the red and blue channels of M until the mutual independence between both channels

is maximized. The estimated layers are not color images, instead they are images containing the

structures of the underlying foreground and background. We estimate [F,B] using Sarel et al.’s

‘Layer Information Exchange technique’. This technique was discussed in detail in section 2.2.1.1

and is reformulated for our problem as follows

F̂ = Mr − γ1Mb

B̂ = Mb − γ2Mr (6.2)

Here [F̂ , B̂] are the estimates of [F,B] while [γ1, γ2] are the separation parameters to be esti-

mated. Note that in equation 6.2 we assume that F is more dominant than B in Mr while B is

more dominant than F in Mb.

Images are processed in 50 × 50 blocks. For each block an exhaustive search for [γ1, γ2]

is performed. We first solve for the γ1 that generates the best F estimate and then solve for

the γ2 that generates the best B estimate. Motivated by the work of Levin et al. on layer
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separation [54], the best separated layer is selected as the one with the lowest cornerness value.

The Harris corner operator is used here. A minimum texture is imposed on the separated layers

by discarding layers with a variance less than Tx. For an 8-bit image, Tx is set to 2. The removal

of this constraint can generate empty/null meaningless layers.

6.1.1 Results

6600 image mixtures of size 50 × 50 pels were created by mixing real natural images using the

image compositing equation which is re-stated here as follows

M = αF + (1 − α)B (6.3)

Here M is the mixture generated by [F,B] while α is the mixing parameter. [F,B] are 50 × 50

image patches randomly selected from a database of natural images. Most natural images used

here are of size 576 × 720 pels. For each layer pair [F,B] we generate 11 different mixtures

using α = [0 : 0.1 : 1]. We call this database SynRef1. Examples from this database are

in Appendix B (see figure 10.1). The artificially created mixtures are processed by our layer

separation technique and the reconstruction error ξ for a mixture M is calculated as follows

ξ = min(ξF , ξB) (6.4)

ξF = MSE(F̂ , a11Mr + a12Mb) (6.5)

ξB = MSE(B̂, a21Mr + a22Mb) (6.6)

Here [ξF , ξB] is the reconstruction mean squared error (MSE) of [F̂ , B̂] respectively. As our

technique estimates [F,B] up to a scale, [a11, a12, a21, a22] are estimated in a way such that ξF

and ξB are minimized. This is done using the standard MATLAB function lsqnonlin.

Figure 6.3 shows the reconstruction MSE averaged over the 6600 examined synthetic mix-

tures. For comparison we use the Layer Information Exchange technique using three features

being GNGC, edges and corners. We also show the recorded MSE obtained with no separation.

No separation implies that the estimated layers are set to the red and blue channels of the ex-

amined mixtures. Results show our separation technique reduces reflections/image mixing. In

addition, minimizing corners in the separated layers generates better separation than minimizing

edges or GNGC.

Figures 6.4-6.5 show separation results generated by the proposed technique on real data.

Note that because extracted layers are a combination of the red and blue channels they will

never resemble the ‘true’ visible light layers. However we ask the reader to recall that this layer

extraction exercise is only a step that will eventually allow us to generate a model-based type

feature to be used in reflection detection. Blocking artifacts are due to processing images in

50× 50 blocks. These artifacts are irrelevant to reflection detection. We show either F or B for

each examined mixture as we will only use the best separated layer in our reflection detection

technique. Figure 6.4-6.5 show that reflections (shown in blue) are reduced in the separated

layers.
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Figure 6.3: Reconstruction MSE averaged over 6600 synthetic mixtures. The first bar shows MSE

with no separation. The other three bars shows separation results by minimizing GNGC, edges

and corners in the separated layers. Our technique (Corners) generates the lowest reconstruction

error.
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Figure 6.4: Reducing reflections using the proposed layer separation technique. Color images

are the original images with reflections (shown in blue). The uncolored images represent one

source layer (calculated by our technique) with reflections reduced. Blocking artifacts are due to

processing images in blocks of 50 × 50.
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Figure 6.5: Reducing reflections using the proposed layer separation technique. Color images

are the original images with reflections (shown in blue). The uncolored images represent one

source layer (calculated by our technique) with reflections reduced. Blocking artifacts are due to

processing images in blocks of 50 × 50.
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6.2 Inference for Reflection Detection

The goal of the algorithm is to find regions in image sequences that contain reflections. This is

achieved by examining trajectories of feature points. Trajectories are generated using the KLT

feature point tracker [56,85]. We use KLT trajectories as they are fast to calculate. Denote P i
n

as the feature point of the ith track in frame n and Ωi
n as the 50 × 50 image patch centered on

P i
n. For each P i

n, analyses are carried out over a frame window. Based on the outcome, a binary

label field lin is assigned to each patch Ωi
n. lin is set to 1 for reflection and 0 otherwise.

The problem is formulated in a Machine Learning framework. We estimate l based on

information extracted from Ω using several weak detectors. Those detectors are combined using

an Adaboost framework to yield a strong detector. The final decision rule at each patch is derived

from a consensus among three detectors, one of which is the Adaboost output. In a Bayesian

mindset we would have combined measurements at each patch Ω with our prior knowledge of l.

With that in mind we take the output of the Machine Learning process and incorporate spatial

and temporal smoothness in post-processing steps.

We now describe each stage of our technique in detail. In the next section we discuss the weak

detectors D1 − D9. We then go to describe our combined detector. We show how to improve

detection by imposing various spatial and temporal smoothness constraints on the generated

labels l. Finally, we show how to detect missed detections by very slight manual intervention.

6.2.1 Feature Point Analyses for Reflection Detection

We detect reflections by examining three main characteristics. The first characteristic is that

reflections can be decomposed into two independent layers and the second is that they have

low image sharpness/contrast. The final characteristic is that regions of reflections often have

poor temporal match of feature points. In this section we present 9 weak reflection detectors,

each detector measures one of the three main reflection characteristics. Analyses are performed

on every point along every KLT trajectory. To avoid classifying pathological motion as being

reflection, all analyses are performed on feature point trajectories of length more than 4 frames.

We use the structural similarity measure SSIM [93] in some of our weak detectors. The SSIM

between two examined images [I1, I2] is denoted by SSIM(I1, I2). SSIM returns a value between

0−1 where 1 denotes identical similarity between the examined images. In this chapter SSIM is

often used to assess the quality of separated layers. However as all layer separation techniques

estimate layers up to a scale, we only compare the structures of the examined images. This is

done by turning off the luminance component of SSIM wherever it is used in this section.

We evaluate the performance of each weak detector by processing a database of synthetically

created reflections. We call this database SynRef2. SynRef2 consists of four image sequences

each containing 50 frames of size 576 × 720 pels. For each sequence regions of reflections are

created by mixing two different reflection-free sequences using the compositing equation (see

equation 6.3). We set the blending factor α to 0.4 in the four artificially created sequences.
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SynRef2 contains 89393 feature point patches. 35966 out of those patches contain artificially

created reflections. Frames from SynRef2 are in Appendix B (figure 10.2). We now describe

each weak detector in detail.

6.2.1.1 Layer Separation through Color Independence (Detector D1)

Our separation technique (presented in section 6.1) is used to decompose the examined image

patch Ωi
n into two (foreground and background) layers F i

n and Bi
n. Patches containing reflection

are defined as ones with lower temporal discontinuity after separation than before separation.

The difference in temporal discontinuity in the examined layer L (either foreground or back-

ground) before and after separation is denoted by d1 and is defined as follows

d1 = max(SSIM(Gi
n,Gi

n−1),SSIM(Gi
n,Gi

n+1)) − max(SSIM(Li
n,Li

n−1),SSIM(Li
n,Li

n+1)) (6.7)

where

SSIM(Li
n,Li

n−1) = max(SSIM(F i
n,F i

n−1),SSIM(Bi
n,Bi

n−1))) (6.8)

SSIM(Li
n,Li

n+1) = max(SSIM(F i
n,F i

n+1),SSIM(Bi
n,Bi

n+1))

Here G = 0.1Ωr + 0.7Ωg + 0.2Ωb where [Ωr, Ωg,Ωb] are the red, green and blue components of Ω

respectively. The detector discussed here is named D1 and flags a regions as reflection if d1 is

less than a threshold T1. More explicitly, D1 is defined as follows

D1 = d1 < T1. (6.9)

Figure 6.6 shows the ROC of D1 as generated from processing SynRef2. Here D1 is evaluated

at T1 = [−0.2044 : 0.003 : 0].

6.2.1.2 Intrinsic Layer Extraction (Detector D2)

Let Γi denote the (static) (either foreground or background) layer extracted by processing the

50× 50 ith track using the Yair separation technique [94]. In the case of reflection the structure

similarity d2 between the observed mixture at the examined patch Ωi
n and Γi should be low. d2

is defined as follows

d2 = SSIM(Ωi
n,Γi) (6.10)

where SSIM is the structural similarity measure [93] with the luminance component turned off.

The detector discussed here is named D2 and flags Ωi
n as containing reflection if

D2 = d2 < T2 (6.11)

where T2 is a threshold. Figure 6.6 shows the ROC of D2 as generated from processing SynRef2.

Here D2 is evaluated at T2 = [0.32 : 0.01 : 1].
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Figure 6.6: ROC for D1−9 and Ds. The Adaboost detector Ds outperforms all other detectors

and D1 is the second best detector.

6.2.1.3 Color Channel Independence (Detector D3)

This detector is based on the observation that in regions of reflections one layer is usually more

dominant than the other in either the red or the blue channel. Hence this detector flags the

examined Ωi
n as containing reflection if its red and blue channels have low structural correlation.

Structural correlation is measured using the Generalized Normalized Cross Correlation (GNGC)

of Sarel et al. [73]. GNGC takes values between 0 and 1 where 1 denotes a perfect match between

the red and blue channels and hence no reflection. The detector presented here is named D3
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and is expressed as follows (where n and i are dropped for clarity)

D3 = GNGC(Ωr,Ωb) < T3 (6.12)

Here [Ωr,Ωb] are the red and blue channels of the examined Ωi
n and T3 is a threshold. Figure 6.6

shows the ROC of D3 as generated from processing SynRef2. Here D3 is evaluated at T3 =

[0.38 : 0.01 : 1].

6.2.1.4 Image Sharpness (Detectors D4 and D5)

As reflections are mixtures of different layers they often have low image contrast/sharpness.

Two detectors measuring image sharpness are proposed. The first, D4, estimates the first order

derivatives for the examined patch Ωi
n and flags it as containing reflection if the mean of the

gradient norm within the examined patch is < T4 where T4 is a threshold. The second detector

D5 estimates image sharpness with the metric of Ferzil et. al. [27] and flags a patch as reflection

if its sharpness value is < T5. This sharpness metric [27] is a perceptual-based metric that

is appropriate for human decisions. It takes values between 0 (weak sharpness) and 1 (strong

sharpness).

Figure 6.6 shows the ROC of D4 and D5 as generated from processing SynRef2. Here D4

and D5 are evaluated at T4 = [2.0 : 0.1 : 36.7] and T5 = [0.05 : 0.01 : 1] respectively.

6.2.1.5 SIFT Temporal Profile (Detector D6)

In regions of reflections, feature points in successive frames do not match well. The detector

presented here (D6) flags the examined patch Ωi
n as reflection if its SIFT features [55] exhibit

high temporal mismatch. Lowe [55] assigns a vector p = [x, s,g] to every SIFT point in Ωi
n. The

vector contains the position of the examined point x= [x, y], scale and dominant orientation from

the SIFT descriptor, s = [δ, o], and the 128 point SIFT descriptor g. SIFT points are matched

with the neighboring frames using [55]. The average distance d6 between the matched vectors

is defined as follows (where n and i are dropped for clarity)

d6 =
1

K

K
∑

j=1

min(‖pj
n − pj

n−1‖, ‖p
j
n − pj

n+1‖) (6.13)

Here K is the number of SIFT features in the examined patch, pj
n−1 is the SIFT feature in frame

n − 1 matched with the jth SIFT feature in the examined frame. pj
n+1 is defined similarly. D6

flags the examined patch Ω as containing reflection if

D6 = d6 > T6 (6.14)

where T6 is a threshold. Figure 6.6 shows the ROC of D6 as generated from processing SynRef2.

Here D6 is evaluated at T6 = [0.0038 : 0.005 : 0.5888].
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6.2.1.6 Grayscale Temporal Profile (Detector D7)

Reflections often have poor temporal match between frames. The detector presented here (D7)

flags the examined image patch Ωi
n as reflection if its grayscale profile does not change smoothly

through time. The temporal grayscale change d7 is defined as follows

d7 = min(‖Ci
n − Ci

n−1‖, ‖C
i
n − Ci

n+1‖) (6.15)

Here Ci
n is the mean value for Gi

n, the grayscale representation of Ωi
n. D7 flags Ωi

n as reflection

if d7 is more than a threshold T7. More explicitly D7 is defined as

D7 = d7 > T7 (6.16)

Figure 6.6 shows the ROC of D7 as generated from processing SynRef2. Here D7 is evaluated

at T7 = [0.0952 : 0.1 : 13.1952].

6.2.1.7 AutoCorrelation Temporal Change (Detector D8)

D8 flags the image patch Ωi
n as reflection if its grayscale (Gi

n) autocorrelation is undergoing large

temporal change. The temporal change in the autocorrelation d8 is defined as follows

d8 =

√

min(
1

N
‖Ai

n −Ai
n−1‖

2,
1

N
‖Ai

n −Ai
n+1‖

2) (6.17)

Ai
n is a vector containing the autocorrelation of Gi

n while N is the number of pels in Ai
n. D8

flags Ωi
n as reflection if

D8 = d8 > T8 (6.18)

where T8 is a threshold. Figure 6.6 shows the ROC of D8 as generated from processing SynRef2.

Here D8 is evaluated at T8 = [4.9038 × 10−6 : 10−5 : 6.3490 × 10−4].

6.2.1.8 Motion Field Divergence (Detector D9)

The motion field divergence d9 for the examined patch Ωi
n is defined here as follows

d9 = DFD(x,y) × (‖div(Sn(x, y))‖ + ‖div(Sn+1(x, y))‖) /2 (6.19)

where

div(S(·)(x, y)) =
∂S(·)(x, y)

∂x
+

∂S(·)(x, y)

∂y
(6.20)

Here Sn(x, y) is the horizontal and vertical motion components of Ωi
n while Sn+1(x, y) is the

horizontal and vertical motion components of Ωi
n+1. Motions are calculated using a simple single

motion block matching. DFD is the motion compensated Displaced Frame Difference for Ωi
n.

DFD is set to the minimum of the forward and backward DFDs. div(S(·)(x, y)) at the examined

frame is set to the minimum of the forward and backward divergence. We use the average of

div(Sn) and div(Sn+1) to reject possible motion blur generated by unsteady camera motion.
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DFD and div(·) take high values in regions containing reflections as single motion estimators

fail in such regions. Hence, the reflection detector D9 proposed here flags a region as reflection

if

D9 = d9 > T9 (6.21)

where T9 is a threshold. Figure 6.6 shows the ROC of D9 as generated from processing SynRef2.

Here D9 is evaluated at T9 = [0 : 1 : 139]. As shown in figure 6.6, [D1, D6, D9] are the three best

performing detectors among the 9 presented weak detectors.

6.2.2 Strong Detector Generation with Adaboost (Ds)

The strong detector Ds is expressed as a linear combination of several weak classifiers. The

weak classifiers are obtained from D2−8 where each weak classifier operates at a threshold T .

This means Ds can contain several weak classifiers from (say) D2, however each one will operate

at a different threshold. We found that not including [D1,D9] in Ds generates better detection

results than when included. The strong detector Ds operates at threshold Ts and is expressed

as follows

Ds =

(

N
∑

k=1

W(V (k),Tk)D(V (k),Tk)

)

> Ts (6.22)

where

D(V (k),Tk) =







dV (k) < Tk for V (k) = 2,3,4,5

dV (k) > Tk for V (k) = 6,7,8

Here N is the number of weak classifiers used in forming Ds and V (k) is a function which

returns a value between 2 − 8 to indicate which detectors from D2−8 are used. k indexes the

weak classifiers in order of their importance as defined by the weights W while Tk is the operating

threshold of the kth weak classifier. W and Tk are learned through Adaboost [89] by training

Ds on the artificially created database SynRef2.

Figure 6.7 shows the reflection classification error of Ds as generated from processing Syn-

Ref2. The classification error ǫ is defined as follows

ǫ =
∑

i

wi|τi − hi| (6.23)

Here i indexes the training samples. Ground-truth detection labels are denoted by τ where

τi = 1 denotes reflection in sample i while τi = 0 denotes the absence of reflection. h is the

detection generated by Adaboost which is defined in a similar way to τ . wi are weights generated

by Adaboost [89]. As shown in figure 6.7 the classification error reduces as more weak classifiers

are used in generating Ds. The classification error starts to saturate after using 15 classifiers.

Hence we use 15 weak classifiers in forming Ds. Table 6.1 shows W and T of the weak classifiers

used in generating Ds. W of the 15th detector is close to zero which shows any more detectors

will not provide much useful information in the detection process. Figure 6.6 shows the ROC
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Figure 6.7: Reflection classification error of Ds. Classification error reduces as more weak

classifiers are used in generating Ds. The red vertical bar denotes the point where 15 weak

classifiers are used in generating Ds.

of Ds as generated from processing SynRef2. Here Ds is evaluated at Ts = [0 : 0.01 : 5.2]. As

shown Ds outperforms all the weak detectors D1−9.

D6 D5 D8 D4 D3 D7 D5 D2 D4 D4 D8 D4 D5 D2 D4

W 1.15 0.71 0.48 0.53 0.38 0.26 0.2 0.22 0.17 0.17 0.2 0.1 0.12 0.09 0.1

T 0.31 0.33 0.49e-5 6.2 0.96 2.2 0.07 0.63 8.1 2.1 4.9e-6 2.2 0.48 0.37 10.1

Table 6.1: Weights W and operating thresholds T for the weak classifiers used in generating Ds.

6.2.3 Combined Detection (Dc)

The final combined detector Dc is formed by consensus among the three detectors [D1, Ds, D9]

as follows

Dc = (D1 < T1) × (Ds > Ts) × (D9 > T9) (6.24)
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Here [T1, Ts, T9] are parameters set to [0, 3.15, 10] in all examined sequences. This configuration

was found empirically by processing several sequences.

Figure 6.8 (first row) shows reflection detection on three consecutive frames as generated

by Dc. We call this approach Feature Point Analyses for Reflection Detection algorithm i.e.

FEAPARD. The actor in figure 6.8 is moving his hands quickly generating pathological motion.

The right and left picture frames (shown in yellow and white respectively) contain reflections

while correct detections are shown in green. FEAPARD was able to detect some of the reflections

in the right picture frame (shown in yellow). However, detections are not temporally consistent,

the full picture frame is not detected and false alarms are generated (shown in red) near the

actor’s hand. In addition, FEAPARD failed to detect the reflection on the left picture frame

(shown in white) as there are few KLT trajectories there. This rarely happens in most of the

examined sequences.

In the next section we show how to reject false detections by imposing spatial smoothness

on the generated results. We then show how to generate temporally consistent detection by

incorporating temporal smoothness in the solution. Last, we show how to detect possible missed

reflections by slight manual intervention in regions where there are few KLT trajectories.

6.2.4 Incorporating Spatial Smoothness

We reject false detections in FEAPARD by imposing spatial smoothness on the generated de-

tection mask. We call this Feature Point Analyses for Reflection Detection - Spatial algorithm

i.e. FEAPARD-S. We use thresholding by hysteresis. The idea here is that we start detection

at high values of [T1, Ts, T9]. This generates detection points with high confidence. We then

gradually reduce the thresholds and reject new detections that are spatially far from the earlier

detections. We repeat this process until we reach a low value of [T1, Ts, T9]. We divide this

process into two main stages. The first initializes the detection maps while the second refines

the detection maps. We discuss each stage in detail next.

6.2.4.1 Detection Map Initialization

1. Let TH = [−0.4, 3.15, 10] denote the highest configuration for [T1, Ts, T9].

2. Set the system thresholds T to TH .

3. Estimate the FEAPARD solution of equation 6.24 using TH . Denote the detected points

by Mh.

4. For every point in Mh, calculate its euclidean distance ∆euc with every other point.

5. For every point in Mh, calculate its geodesic distance ∆geo with every other point.

Geodesic distance has been used in image processing for some time now [67]. Unlike
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Figure 6.8: From top; Reflection detection using FEAPARD, FEAPARD-S and FEAPARD-S

with no Geodesic Distance. Ground truth reflections are shown in yellow and white (top row),

correct detection shown in green and false detection is shown in red. Here FEAPARD failed to

detect the region shown in white (in the left picture frame, first row) as it contains few feature

point trajectories.
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the Euclidean distance, the geodesic distance takes into account the topology of the im-

age. Points that are within the same flat region are close to each other while points that

are separated by strong image gradients are far away. Points that lie on reflections have

low geodesic distance between each other as reflections are areas of low gradients. For

computational speed we resize the image by a factor of 50. Even though this removes

many image details, results show that the geodesic distance improves detections.

6. A point in Mh is flagged as detected if the sum of ∆geo and ∆euc between the two closest

points is less than 0.0025 and 4 respectively. Those values are set empirically and are

fixed in the examined sequences. If there is only one point close to the examined point,

we discard the examined point from the detection mask.

7. Flag a trajectory point as reflection if it lies in a region (indicated by Ω) that is detected

as reflection. This extends correct detection in space which generates spatially consistent

detections.

The detection map generated from Steps 1-7 is denoted by Mi.

6.2.4.2 Detection Map Refinement

1. Let TL = [0, 3.15, 10] denote the lowest configuration for [T1, Ts, T9].

2. Set T = T − [−0.01, 0, 0].

3. Estimate the FEAPARD solution of equation 6.24 using T . Denote the detected points

by Mh.

4. For every detection point that exists in Mh and does not exist in Mi, calculate its euclidean

distance ∆euc and geodesic distance ∆geo with every detection point in Mi. Again we resize

the examined images by a factor of 50 for computational speed.

5. Flag a point in Mh as correct detection if the sum of its geodesic and euclidean distance

with the two closest points in Mi is less than 0.0025 and 4 respectively. This generates

new detections that are spatially consistent with the earlier detection Mi.

6. Perform steps 2-5 from the ‘Detection Map Initialization’ stage on the points of Mh that

are not flagged as correct detections. This keeps new correct detection points that are not

spatially consistent with Mi and discards all the remaining points from the detection map

Mh.

7. Set Mi to Mh.

8. Repeat steps 2-7 until T reaches TL.
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Figure 6.9 shows intermediate results of FEAPARD-S as T reaches three different configu-

rations. The configurations used in figure 6.9 are (from top) [−0.15, 3.15, 10], [−0.09, 3.15, 10]

and [−0.07, 3.15, 10]. Detection becomes more spatially consistent as T is lowered. Figure 6.8

(second row) shows the final detection of FEAPARD-S. False alarms of FEAPARD (shown in

red, first row) are correctly removed. In addition, detection of the right picture frame (shown in

yellow, first row) is now more spatially consistent than the detection of FEAPARD. Figure 6.8

(third row) shows the importance of the geodesic distance in rejecting false detections. Here we

ignore the geodesic distance from the spatial smoothness and use only the euclidean distance

to reject false detections. Figure 6.8 (third row) shows that ignoring the geodesic distance from

the spatial smoothness leads to the generation of false detections (shown in red).

FEAPARD-S (see figure 6.8, second row) generates incomplete detections of the right picture

frame (shown in yellow, first row). In the next section we show how to improve this detection

by imposing temporal smoothness on FEAPARD-S.

6.2.5 Incorporating Temporal Smoothness

We impose temporal smoothness on the generated detections by adding an extra step after step

(7) in the ‘Detection Map Initialization’ stage of FEAPARD-S. Step (7) extends the correct

detections in space only. In the extra step we extend the correct detections in time as well.

Basically if a point along a trajectory is detected as reflection (lin = 1), all feature points

lying along this trajectory i are then flagged as reflection (l = 1). We call this step temporal

dilation and we call the final detection algorithm with spatio-temporal smoothness Feature Point

Analyses for Reflection Detection - Final algorithm i.e. FEAPARD-F. For future reference we

call the detection algorithm with only temporal smoothness (without spatial smoothness) Feature

Point Analyses for Reflection Detection - Temporal algorithm i.e. FEAPARD-T. Figure 6.10

(first row) shows the result of FEAPARD-F. Reflection detections in the right picture frame (on

the wall) are now more consistent in both space and time than the FEAPARD-S detection (see

figure 6.10, second row).

6.2.5.1 An optional Key Mask Propagation Step

To increase spatio-temporal consistency further, an optional temporal refinement step is per-

formed to fill missed detection holes as the one shown in yellow in figure 6.10 (first row). The

idea is to combine detection information from a frame where the reflection is completely detected

with detection in the current frame. A key detection frame K is set to the largest connected

detection mask in the examined sequence. We propagate this mask to the remaining frames of

the examined sequence. The motion between the key frame K and a frame f in the examined

sequence is modeled by a 2D affine transformation. A pel [xk, yk] in the key frame where l = 1
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Figure 6.9: From top; Three intermediate stages of FEAPARD-S at T = [−0.15, 3.15, 10],

[−0.09, 3.15, 10] and [−0.07, 3.15, 10] respectively. Correct detection are shown in green. De-

tection becomes more dense as T is lowered. Here no false detections are generated.
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Figure 6.10: First two rows; Correct reflection detection (shown in green) using (from top)

FEAPARD-F and FEAPARD-F with Key-Mask propagation. Last row; Recovering missed de-

tections (shown in red, second row) using slight manual intervention. The user-supplied detection

mask used here is shown in figure 6.12
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is mapped to pel [xf , yf ] in frame f using the following relation
[

xf

yf

]

=

[

a11 a12

a21 a22

][

xk

yk

]

+

[

a13

a23

]

(6.25)

Here [a11, a12, a13, a31, a32, a33] are the 2D affine transformation parameters to be estimated.

[xk, yk, xf , yf ] are obtained from the KLT trajectories and the affine parameters are estimated

using least square fitting. The key mask is propagated to frame f using the estimated motion

parameters.

A pel in frame f is flagged as reflection if it is detected as reflection by FEAPARD-F

and if it coincides spatially with the key mask which is temporally propagated from frame K.

This ensures the removal of false detections from the FEAPARD-F estimate (if any) but may

however cause some true reflection sites to be missed. To solve that problem we apply ‘temporal

dilation’ on the generated detections as explained in Section 6.2.5. This generates denser maps

and detects missed sites. Figure 6.10 (second row) shows the final detection with this key mask

propagation step. The region shown in yellow (first row) is now detected. Figure 6.11 shows the

main components of our reflection detection technique.

FEAPARD-F failed to detect regions that have few feature point trajectories (see figure 6.10

second row, shown in red). We propose to detect such regions (if necessary) using slight manual

intervention.

6.2.6 Slight Manual Intervention for Detecting Missed Sites

Detecting regions that contain few feature points requires slight manual intervention. The user

supplies rough hand-drawn masks for the missed regions. In the examined sequences an average

of 4 user masks are supplied for every 50 frames. Those masks should encompass as much of the

missed reflections in the examined frame (see figure 6.12). All feature points encompassed in

the supplied masks are flagged as reflection. Labels are then extended in space and time using

the temporal dilation stage discussed in section. 6.2.5. We do not perform any further spatial or

temporal refinement. Figure 6.10 (bottom line) shows the ability of recovering missed detections

using this slight manual intervention. For the examined sequence we supply an average of one

hand-drawn reflection mask every ten frames. The mask used for the three consecutive frames

of figure 6.10 is shown in figure 6.12.

6.3 Results

17 sequences altogether containing 1012 frames of size 576 × 720 are examined (see figure 6.13-

6.16). Some of the examined sequences contain pathological motion and/or occlusion. No

author has attempted to detect reflections in an explicit form, hence we compare our technique

FEAPARD-F against two straightforward reflection detectors named DFD and SHARPNESS.

DFD flags a region as reflection if its motion compensated DFD is higher than a certain threshold
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Spatial and Temporal Smoothness
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Key-Mask Temporal Propagation

Re�ection Detections 

Figure 6.11: Main Components of the FEAPARD-F System.
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Figure 6.12: User supplied detection mask (shown in blue) for the reflection shown in red in

figure 6.10 (second row).

while SHARPNESS flags regions with low image contrast as reflection. Image sharpness is

calculated using the Ferzil et al. approach [27] as before and both detectors process frames in

blocks of 50 × 50 pels. DFD and SHARPNESS are easy to implement and hence they can be

a popular alternative to our technique FEAPARD-F. In addition their evaluation allows the

assessment of using spatial and temporal information for reflection detection. We also examine

the importance of D1−9 and Ds in generating the FEAPARD-F detection. Last, we examine in

more detail the importance of incorporating spatial and temporal information in FEAPARD-F.

Results show that the geodesic distance used in the spatial information helps in rejecting false

detections. In all experiments we use ground-truth detections to assess the performance of the

examined techniques. Ground-truth estimates are generated by manually selecting regions of

reflections.

6.3.1 Comparison with other techniques

Figure 6.17-6.22 shows detection results of FEAPARD-F, SHARPNESS and DFD on 5 out of

the 17 sequences. Results for more sequences are in Appendix C (see figure 11.1-11.9). Image

sequence results can be found in the accompanying DVD. In figure 6.17-6.19 and figure 6.22 the

actor generates pathological motion by moving his hands quickly. Occlusion is shown in yellow

in figure 6.20 (first row). We use 0.1 and 6 as threshold values for SHARPNESS and DFD

respectively. SHARPNESS misclassifies flat areas as reflection and misses many sites of true

reflections. DFD detects many regions containing reflections however it misclassifies regions of

pathological motion and occlusion as reflection. FEAPARD-F detects reflections correctly and

rejects flat areas and regions containing complicated motion. FEAPARD-F does not detect the

left picture frame shown in white in figure 6.22 (first row) as this region contains few feature point

trajectories. We detect this region using slight manual intervention as discussed earlier. In this
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Figure 6.13: First row; Frames 9, 10, 11 from PortraitP. Second row; Frames 13, 14, 15

from SelimC. Third row; Frames 8, 9, 10 from SelimH. Fourth row; Frames 11, 13, 15 from

PortraitA. Fifth row; Frames 8, 12, 16 from BuildOnWind1. Reflections are shown in green.

In the first three sequences the actor is creating pathological motion by moving his hands quickly.
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Figure 6.14: First row; Frames 30, 40, 50 from BuildOnWind2. Second row; Frames 23, 24,

25 from SelimK1. Third row; Frames 28, 29, 30 from SelimK2. Fourth row; Frames 25, 35,

45 from Bus. Fifth row; Frames 8, 16, 30 from Bulb. Reflections are shown in green. In the

the second and third sequences the actor is creating pathological motion by moving his hands

quickly. The motion of the bus in the fourth sequence creates a projective distortion.
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Figure 6.15: First row; Frames 10, 20, 30 from BuildOnWind3. Second row; Frames 15, 25,

35 from BluWind. Third row; Frames 10, 30, 50 from GirlRef. Fourth row; Frames 50, 55,

60 from RedPPL. Fifth row; Frames 3, 7, 11 from ManWalking. Reflections are shown in

green.
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Figure 6.16: First row; Frames 30, 31, 32 from CarRef. Reflection of CarRef (shown in green)

contain few feature points trajectories. Second row; Frames 13, 16, 29 from GirlShadow. The

fast pathological motion of the girl generates shadow (shown in green).

examined sequence we supply one manual detection mask every 10 frames. The user-supplied

detections are shown in figure 6.21.

Figure 6.23 shows the ROC for FEAPARD-F, SHARPNESS and DFD for PortraitP and

PortraitA. FEAPARD-F is evaluated at T1 = [−0.22 : 0.01 : 0] while [Ts, T9] are fixed to

[3.15, 10]. SHARPNESS and DFD are evaluated at T = [0 : 0.01 : 1] and T = [0 : 1 :

20] respectively. ROCs for more sequences are shown in Appendix C (see figure 11.10-11.12).

Figure 6.23 shows that FEAPARD-F generates a massive increase in the correct detection rate

over SHARPNESS and DFD.
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Figure 6.17: Reflection detection on PortraitP using, from top; FEAPARD-F, SHARPNESS

and DFD respectively. Correct detections are shown in green while false detections are shown

in red. The pathological motion generated by the actor’s hands is rejected by FEAPARD-F but

detected by DFD.
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Figure 6.18: Reflection detection on SelimC using, from top; FEAPARD-F, SHARPNESS and

DFD respectively. Correct detections are shown in green while false detections are shown in red.

The pathological motion generated by the actor’s hands is rejected by FEAPARD-F but detected

by DFD.
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Figure 6.19: Reflection detection on SelimH using, from top; FEAPARD-F, SHARPNESS and

DFD respectively. Correct detections are shown in green while false detections are shown in red.

The pathological motion generated by the actor’s hands is rejected by FEAPARD-F but detected

by DFD.
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Figure 6.20: Reflection detection on PortraitA using, from top; FEAPARD-F, SHARPNESS

and DFD respectively. Correct detections are shown in green while false detections are shown

in blue. Some false detections are shown by blue circles (in the last row) for illustration clarity.

SHARPNESS misclassifies flat areas as reflections and DFD misclassifies regions of occlusion

(shown in yellow, first row) as reflections. FEAPARD-F however rejects flat areas and regions

of occlusion.



6.3. Results 143

Figure 6.21: Detection masks (shown in blue) generated manually for SelimK1. Those masks

are used to detect the left picture frame in SelimK1 (see figure 6.22, first row, shown in white).

SelimK1 contains 51 frames. Masks here are supplied at frames (in clockwise direction) 1, 10,

20 and 30 respectively.
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Figure 6.22: Reflection detection on SelimK1 using, from top; FEAPARD-F, SHARPNESS

and DFD respectively. Correct detections are shown in green while false detections are shown

in blue. FEAPARD-F rejects pathological motion generated by the actor’s hand. This motion

however is detected by DFD. The picture frame on the left (shown in white, first row) is detected

using manually supplied detection masks (see figure 6.21)

.
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Figure 6.23: ROC of FEAPARD-F, SHARPNESS and DFD for (from left); PortraitP, and

PortraitA respectively. Our technique outperforms the other detectors with a massive increase

in correct detection rate.



146 Reflection Detection in Image Sequences

6.3.2 Investigating the Main Components of FEAPARD-F

Figure 6.24 (first row) shows the ROC of D1−9 and Ds for PortraitP and PortraitA. The two

main detectors used in FEAPARD-F [D1, Ds] outperform most of the remaining detectors in

both sequences. ROCs for more sequences are shown in Appendix C (see figure 11.13-11.14). Fig-

ure 6.24 (second row) compares the performance Ds, D1 and D9 against the FEAPARD-F detec-

tion. Here however we generate the D1 detection by removing Ds and D9 from the FEAPARD-F

technique. Detection results for Ds and D9 are generated in a similar way. FEAPARD-F and

D1 are evaluated at T1 = [−0.22 : 0.01 : 0]. We fix [Ts, T9] to [3.15, 10] in FEAPARD-F. Ds and

D9 are evaluated at Ts = [1.6 : 0.2 : 5] and T9 = [0 : 10 : 250] respectively. Figure 6.24 (second

row) shows that the performance of Ds, D1 and D9 could differ from one sequence to another.

However FEAPARD-F combines Ds, D1 and D9 in a way which optimizes detection. ROCs for

more sequences are shown in Appendix C (see figure 11.15-11.16).

Figure 6.25 compares the FEAPARD-F detections of PortraitP and PortraitA against

FEAPARD, FEAPARD-S and FEAPARD-T. In addition we show the FEAPARD-F detection

but with ignoring the effect of the geodesic distance from the spatial smoothness. We call

this technique FEAPARD-NoGeo. All techniques are evaluated at T1 = [−0.22 : 0.01 : 0]

while [Ts, T9] are fixed to [3.15, 10]. ROCs for more sequences are shown in Appendix C (see

figure 11.17-11.18). Figure 6.25 shows that FEAPARD-S generates lower false alarm rate than

FEAPARD while maintaining the same correct detection rate. Imposing temporal smoothness

on FEAPARD generates denser detections (see FEAPARD-T) which produce higher correct

detection rate than FEAPARD (see figure 6.25). This however comes with the expense of higher

false detection rate. Figure 6.25 shows that FEAPARD-F combines both spatial and temporal

information of FEAPARD-S and FEAPARD-T for optimal detection. Last, figure 6.25 shows

that removing the geodesic distance from FEAPARD-F (see FEAPARD-NoGeo) increases the

FEAPARD-F false detection rate. This shows that the geodesic distance used in the spatial

smoothness is critical in rejecting false detections.

6.4 Conclusion

This chapter has presented a technique for detecting reflections in image sequences. This problem

was not addressed before. Our technique performs several analyses on feature point trajectories

and generates a strong detector by combining these analyses. We generate detections that are

consistent in space and time by imposing spatial and temporal smoothness on the detection

field. Results show major improvement over techniques which measure image sharpness and

temporal discontinuity. Our technique generates high correct detection rate with rejection of

regions containing pathological motion and occlusion. The technique is fully automated for the

vast majority of the examined sequences. However it may need slight manual intervention to

detect missed regions that have few feature point trajectories.
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Figure 6.24: Top; ROC of D1−9 and Ds for (from left); PortraitP and PortraitA. Either D1

or Ds outperform most of the remaining detectors in both examined sequences. Bottom; ROC of

D1, Ds, D9, and FEAPARD-F as generated for (from left); PortraitP and PortraitA. Here

the detection of D1 is obtained by removing Ds and D9 from the FEAPARD-F technique. The

detections of Ds, D9 are obtained in a similar way. FEAPARD-F combines D1, Ds, D9 for

optimal reflection detection.
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Figure 6.25: ROC of different implementations of FEAPARD-F generated for (from left); Por-

traitP and PortraitA. In FEAPARD-NoGeo we remove the geodesic distance from the spatial

information of FEAPARD-F. Results show that the geodesic distance helps in rejecting false de-

tections and that FEAPARD-F uses both spatial and temporal information for optimal detection.



7
Motion Estimation for Regions of Reflection

Motion estimation is important in cinema post-production for many fundamental tools e.g. dust

busting, frame rate conversion, tracking and many more. Most motion estimators [48] assume

that there is only one motion at a pixel site and then use the brightness consistency assumption

introduced by Horn et. al [37]. Hence image brightness is assumed constant over time given

small image displacement. This one motion per site idea is violated in many everyday situations

e.g. shadows cast on a moving object or reflections from shiny surfaces. In those situations

standard motion estimators fail and cause strange effects when the frames are compensated

regardless of the application. This is because there are now at least two semi-transparent layers

moving over each other generating two motion vectors per pel (see figure 7.1).

Several motion estimators have been designed to cope with these situations and traditionally

there are two stages. The first stage [3,7,59,61,75,81,86,88] estimates the two motion vectors for

each examined site while the second stage (motion-layer labeling) performs motion assignment

to two layers [7, 81, 86]. The key issue here though, is that previous work did not explicitly

involve a mixing model that explains the transparency or reflection. In Toro et al [86] the layers

actually were support regions associated with each motion parameter. So for example in Toro et

al [86], considering angiogram sequences, if there were four motions applicable to a patch, each

model is associated with a separate support map indicating picture areas which were inliers and

outliers with respect to the relevant optical flow equation. In Stuke et al [81] the layers referred

to a classification that determined whether there were one or two motions at a site but did not

actually extract the layers involved. In Vernon [88] layers are estimated however they are not

used to infer motion estimates.

149
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Figure 7.1: From left: Frames 1, 10, 20 from a sequence containing reflection of a building

superimposed on paper posters. In this sequence the building is moving to the left while the

posters are moving to the right. This generates two motions per pel.

Current multiple motion estimators can be classified into two main approaches. The first

extends the optical flow approaches to two motions [3,59,61,75,86] while the second is based on

the Fourier phase shift relationship [7,81,86,88]. Both approaches assume constant motion over

at least three frames. Vernon [88] assumes constant motion over five frames. As a result current

techniques cannot handle temporally active motions arising due to camera shake or acceleration.

In addition, optical flow approaches can only handle small image displacements.

This chapter takes a more complete approach to the multiple motion estimation problem.

We take the novel approach of exploiting a model for the observed image which is a mixture

of two layers that each move according to some motion trajectory over several frames. The

multiple motion estimation problem is articulated as a joint motion and layer separation problem

through a Bayesian framework. Unlike Vernon [88], we use the estimated layers to infer the

underlying motions. Our technique does not assume constant motion over a block of frames. The

computational burden of the joint MAP solution for layers and motion is eased by generating

candidates for motion (using KLT tracks [85]) and layers (using [94]) by pre-processing the

observed sequence. These candidates are then evaluated within the probabilistic framework to

select the best motion estimates.

In the next section we propose our Bayesian framework and solution. We will employ the

usual model for an observed image M (for mixture) showing a reflection or transparency as

a linear combination between the (hidden and underlying) source foreground and background

layer images F and B as follows

M = F + B (7.1)
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The complete problem is that of estimating the motions that F and B exhibit as well as estimating

F and B themselves, even though we are not necessarily interested in F and B. In this work

we use u to denote the foreground motion and v to denote the background motion. Results

show that our technique outperforms current multiple motion estimators, can handle large image

displacements and temporally active motions and is more computationally efficient than current

competing multiple motion estimators. Our technique however generates false motion estimates

in regions not containing reflection. We therefore show how to reject such erroneous estimates

by discarding regions not containing reflections from the final motion estimates. These regions

are detected using the FEAPARD-F algorithm that was presented in chapter 6.

7.1 Bayesian Inference for Multiple Motion Estimation

Our goal is to estimate the two motions in the two layers, [u,v], given M, a suitable window

of observed frames (in our experiments we use 5 frames) including the current one. Clearly this

is best achieved by manipulating p(u,v|M). However [u,v] are related to M through L (the

hidden foreground and background layers) in a non-trivial fashion. This means that the normal

route of marginalization over L is difficult. In other words to manipulate p(u,v|M) we would

normally have to perform the marginalization exercise as follows.

p(u,v,L|M) =

∫

p(u,v,L|M)dL (7.2)

This would be computationally unattractive. Instead, we choose to take the more pragmatic

approach of treating L as an auxiliary variable in the estimation of [u,v]. This also allows us to

exploit conditional independence in the sense that given L, [u,v] are independent of M. Hence

we manipulate p(u,v,L|M) as follows.

p(u,v,L|M) ∝ p(M|u,v,L)p(u)p(v)p(L) (7.3)

Each of the likelihoods and priors are now more readily defined and overall yield a more compu-

tationally attractive algorithm. Note again that we are interested in motion and not necessarily

in good hidden layer estimation, hence the quality of the estimates for the auxiliary variable L

is less important to us.

7.1.1 Preamble

To give a preamble to our algorithmic strategy, we observe that feature point tracking on image

patches showing reflections inevitably results in tracks that follow one or the other layer through

the 5 frame window in this case. This means that for each examined site, motion candidates for

each layer can be derived from nearby KLT trajectories [85] of length more than four frames.

ML
0:4 for the examined motion candidate can then be taken as the five image patches centered

along the examined trajectory at t=0:4. Using the work of Weiss [94] which was presented
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previously in chapter 2, each motion candidate then can be used to generate an estimate for

either F or B. This therefore yields candidates for both the auxiliary variables and the motion.

Therefore, our strategy is to evaluate each of these candidates according to expression 7.3 and

hence generate an optimal estimate for [u,v].

7.1.2 Inference for motion

Assume that at each site in the image we can propose candidates for motion and layer images.

Furthermore assume that we have already estimated a number of feature point trajectories.

Then inference for [u,v] over the examined patch can proceed as follows

P (u,v, F, B|M, T ) = P (M |u,v, T , F, B) × P (u|U , T , F )P (v|V, T , B)P (F,B) (7.4)

Here T are the estimated feature point trajectories, P (M |u,v, T , F, B) is the likelihood of

generating the observed image given the motion and associated layers, p(u,v|·) imposes spatial

and temporal smoothness on the generated motion and P (F,B) are priors constraining the

appearance of the hidden layers. [U ,V] are local 8 connected motion neighborhoods in the

examined block. The next step is to propose suitable expressions for the likelihood and priors.

This is discussed in the following sections.

7.1.2.1 Likelihood

The likelihood of observing M given the layers [F,B] is independent of [u,v] and the trajec-

tory information T . Hence we express P (M |u,v, T , F, B) using a modified version of Weiss’s

likelihood term as follows

P (ML
n:n+4|L) ∝ exp−

λw

5

(

n+4
∑

i=n

1 − SSIM(L, ML
i )

)

(7.5)

Here λw is a weight to configure the importance of the likelihood and L is the intrinsic/reflectance

layer (either foreground or background) extracted by processing ML
n:n+4 with the Weiss approach

[94]. λw is fixed to 1 in all experiments. This expression is similar to the likelihood term of Weiss’

layer separation algorithm [94] however instead of using gradients we use the structure part of

the SSIM [93]. The likelihood therefore measures the error in estimating L (either foreground

or background) using Weiss’ technique. We use the SSIM here because it is a dimensionless

quantity having a range between 0 and 1. Furthermore using the structural component of the

SSIM encourages confidence that this likelihood constrains the appearance of the layer in some

useful perceptual way independent of illumination. As Weiss’ technique estimates layers up to a

constant, we turn off the luminance component of the SSIM wherever it is used in this chapter.
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7.1.3 Priors

We can factorize the priors on the motion [u,v] into a spatial component Ps(·) and a temporal

component Pt(·). Hence

P (u|U , T , F )P (v|V, T , B) = Ps(u|U)Pt(u|T )Ps(v|V)Pt(v|T ) (7.6)

where Ps(·) and Pt(·) are independent of F and B. The prior Ps(·) encourages spatial smoothness

through using a Gibbs distribution as follows

Ps(u|U) ∝ exp−λs

(

∑

k∈N

(||u − uk||
2)

)

(7.7)

and similarly for v. The neighborhood N indexes the 8 neighboring blocks around the examined

block and λs is the spatial smoothness strength set to 0.02 in most experiments. More details

about the different values used for λs will be discussed in the results section.

To understand the design of the temporal prior, note that each motion trajectory from T

proposes a motion candidate for the underlying layers. The motion candidate is taken as the

difference between the point positions of the examined trajectory along the current and next

frames. Mean shift clustering is then used to group trajectories with similar motions together.

Each cluster now proposes one motion candidate for the underlying layers and is associated

with a weight W . This weight is set to the ratio between the number of vectors assigned to the

examined cluster and the total number of vectors derived from the examined KLT trajectories

T . Hence the temporal prior for the examined motion candidate (say u) is

Pt(u|T ) ∝ exp−λt (1 − W ) (7.8)

This therefore biases motion estimates towards more confident trajectories. λt is a weight to

configure the importance of this term and set to 1 in all experiments.

The priors for the underlying foreground and background layers L contain 2 components. A

distribution Pdl, encouraging the layers to be different, and Ptl encouraging the layers to be

temporally smooth in time.

P (F,B) ∝ Pdl(F,B)Ptl(F )Ptl(B)

∝ exp−

[

λdl (SSIM(F,B)) + λtl (1 − SSIM(Fn, Fn−1)) + λtl (1 − SSIM(Bn, Bn−1))

]

(7.9)

Again we use the SSIM as proxy for measuring image similarity (only structural) and the first

term encourages the structural similarity between the two images to be low. The second and

third terms simply measure the similarity of consecutive image frames in each layer and hence

encourage that to be high for good temporal smoothness. Once more [λdl, λtl] are various

smoothness weights where λdl and λdt are fixed to 10 in all experiments.
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7.1.4 Motion Candidates

Each frame is examined in blocks of 50 × 50 pels. For each block, all KLT trajectories T

[85] within 150 pels from the examined block center and of length more than four frames are

selected. Denote the position of the ith trajectory in the examined frame n by [xi
n, yi

n], the

motion candidate [sx, sy] proposed by this trajectory is taken as

sx = xi
n+1 − xi

n (7.10)

sy = yi
n+1 − yi

n (7.11)

[sx, sy] proposes a forward motion candidate for one of the underlying layers. To group together

trajectories corresponding to the same layer, all trajectories T are collected into coherent clusters

by mean shift clustering using the corresponding motion candidates [sx, sy] as feature vectors.

Here mean shift clustering [18] is used with a bandwidth of 2 pels. The four clusters containing

most of the examined trajectories are used to generate 4 candidates for u and v. Each candidate

is estimated as the mean motion vector under each cluster.

7.1.5 Layer Candidates

Consider ML
n−n+4 to be the five 50 × 50 image patches centered along frames n : n + 4. Each

one of those images contains a constant layer L undergoing varying illumination through time.

L corresponds to one of the underlying layers at the examined block (either the foreground or

the background) and it is estimated using Weiss’ [94] technique. Recall that the modified layer

separation technique of Sarel et al. [74] (see section 2.2.3 for more details) motion compensates

the sequence according to one motion, and then the layer extraction step rejects the moving

layer in favor of the effectively stationary layer. Therefore, given four motion candidates, we

use Sarel et al. approach to generate four layers from each examined block. As each one of

those four layers can be assigned to either F or B, there are 24 = 16 possible combinations of

[F,B]. Each layer combination is then used to correspond to a candidate for the motion pair

[u,v]. Ultimately, the motion pair corresponding to the best estimates of [F,B] are treated as

the motions of the observed mixture.

Figure 7.2 gives some idea on how this works in practice. Here a synthetic sequence is

created by mixing Lenna with an image of Oranges using the additive mixing model previously

introduced (see equation 7.1). Lenna undergoes a motion with [ux, uy] = [5, 0] while the Oranges

undergo motion with [vx, vy] = [−5, 0]. The image on the top right of figure 7.2 shows the feature

points and associated trajectories. The middle row shows an example of ML
n:n+4 in the region

bounded by the green square (shown in the first row, left). Here the sequence has been motion

compensated using the first motion candidate, which in this case was [5, 0]. As can be seen,

this has the effect of keeping Lenna stationary, while the Oranges are moving to the left. When

Weiss’ algorithm is applied to this set of blocks, the extracted image is shown as the leftmost
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Figure 7.2: Experiments on a synthetic sequence created by mixing Lenna with Oranges. Top

row: First frame from the sequence (left) showing a patch to be considered (shown in green rect-

angle) and the associated support patch (shown in black rectangle) from which motion candidates

(derived from T ) are drawn; the corresponding trajectories T for the 10th frame (right). Each

trajectory starts with a blue cross and has a different color. Lenna and Oranges are moving with

constant velocities of [ux, uy] = [5, 0] and [vx, vy] = [−5, 0] respectively. Middle row: ML
n:n+4 for

the considered patch (shown in green top) using the first motion candidate. Bottom row: Layers

extracted with Weiss’ technique for each motion candidate. Motion candidates are (from left)

[5, 0], [−5, 0], [3, 3] and [5,−7] respectively. As shown, the best layer estimates manifest in the

first two images and these correspond to the correct motions of the layers.
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Figure 7.3: The process of selecting the optimal motion candidate pair from a set of 16 possible

candidates. Two candidates are processed at a time via QPBO Graph-Cut and the candidate

optimizing the MAP solution is selected.

image in the last row. As can be seen it corresponds more closely to the image of Lenna than the

image of Oranges. The layers resulting from the use of the other 3 motion candidates in this case,

are shown as the other images in the bottom row of that figure. The best layer estimates can

be visually seen to be the first and second pictures in that row and these do indeed correspond

to the correct motions for the examined block.

7.1.6 Final Solution with GraphCuts

Given four candidates for motion and layers above, there are 16 possible [u,v] combinations.

The MAP estimate for the motions requires maximization of p(u,v,L|M) w.r.t [u,v]. This is

done by choosing between two [u,v] candidates at a time using QPBO Graph Cuts [69]. The

winning candidate is then processed with the next solution candidate. This process is iterated

with the remaining candidates until all 16 candidate pairs are considered (see figure 7.3). All

blocks for each frame are processed. To process the first frame at n = 0 the temporal part of

equation 7.9 is not considered.

Figure 7.4 shows the main components of our multiple motion estimator. We call our tech-

nique Bayesian Inference for Multiple motion estimation through layer Separation i.e. BIMS.

7.2 Results

7.2.1 Our implementation of competing methods

To compare with previous work, we implemented two versions of competing methods; one re-

lating to optic flow and the other to the Fourier transform. For the optical flow approach we

assume motion is constant within a block of 50 × 50 pels. We then estimate the motion by
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Figure 7.4: Main Components of the BIMS System.

solving the OFCE using least square fitting. Note that none of the previous optical flow ap-

proaches attempted to solve the motion-layer labeling problem. However in our implementation

of the optical flow approach we solve the motion-layer labeling by imposing spatial smoothness

on the generated motions as discussed by equation 7.7. Here we have 2 motion candidates per

examined block, one for each layer. This generates 4 motion combinations per block. We impose

temporal smoothness on the generated motions and we call this technique OPTIC.

For the Transform-Based approach we implement the technique of Stuke et. al [81]. Their

technique solves the motion-layer labeling problem using MRFs, imposes temporal smoothness

on the generated motions, and uses ICM to maximize the maximum-a-posteriori solution. We
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implement this approach using Graph Cuts. For each block, we estimate [u,v] using block

matching. For each motion component we search displacements -8:2:8 (MATLAB notation).

This generates 94 = 6561 possible motion combinations of [ux, uy, vx, vy] for each block. The

16 motion combinations/pairs optimizing the maximum likelihood solution the most are treated

as a pool of motion candidates for the examined block. We call this technique FTRANS. For

an examined sequence, the spatial energy weight λs (see equation 7.7) have the same value in

BIMS, OPTIC and FTRANS.

7.2.2 Experimental Procedures

We test our technique on synthetic and real sequences. In an experiment a synthetic sequence

of 53 frames is created by mixing an image of Lenna with an image of Oranges using the

additive mixing model (see figure 7.8 first row, left). We call this sequence LennaOranges. A

repetitive motion model with strong temporal inconsistencies is applied to each layer to examine

the robustness of BIMS to camera shake. Lenna is moving with un = [0, 2], un+1 = [−2,−3]

and un+2 = [2, 3] at [n, n + 1, n + 2] respectively while Oranges is moving with vn = [0,−2],

vn+1 = [2, 3] and vn+2 = [−2,−3]. This motion pattern repeats itself at [n + 3, n + 4, n + 5] till

the end of the sequence.

We also examine our technique on 8 real sequences containing 329 frames of size 576 × 720.

Frames from the examined real sequences are shown in figure 7.5-7.6. All real sequences contain

a foreground reflection layer superimposed on a background layer. Sequences are shot with

handheld cameras at a distance close to the background layer. As a result in most sequences

the background layer is moving with a faster speed than the foreground.

7.2.3 Ground-truth

Motions as estimated by the examined techniques are compared against ground-truth estimates.

For real sequences we generate ground-truth estimates manually. We estimate one dominant

motion for each layer. For each layer we manually track one strong feature point through time

and set the motion of the examined layer to the motion of examined/tracked feature point. For

one frame, the error ǫ between the estimated and ground-truth motions is defined as follows.

ǫ =
1

2

(

1/N
∑

i∈R

‖u(i) − τu(i)‖ + 1/N
∑

i∈R

‖v(i) − τv(i)‖

)

(7.12)

Here [u(i),v(i)] are the calculated (2 component) foreground and background motions at site i

while [τu(i), τv(i)] are the corresponding ground-truth estimates. R is the examined region and

N is the number of examined sites/blocks in this region. For the sake of accuracy we manually

define R for each frame. As we are just interested in evaluating our technique in regions where

single motion estimators fail, we define regions of reflections as ones having two distinctive

semi-transparent layers moving over each other.
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Figure 7.5: Examined real sequences with regions of interest/reflection R shown in blue. From

top; Frames 5, 15, 25 from SelimK2; Frames 15, 30, 45 from PicRef. Frames 5 15, 25 from

Bulb; Frames 10, 30, 45 from WindRefNoShk. SelimK2 contains motion acceleration and

PicRef contains camera shake. We generate strong temporal motion discontinuities in Bulb by

dropping every third frame from the original sequence.
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Figure 7.6: Examined real sequences with regions of interest/reflection R shown in blue. From

top; Frames 5, 15, 25 from WindRefShk; Frames 5, 10, 15 from WindOnBuild3; Frames 1,

15, 30 from PortraitA2; Frames 33, 38, 40 from RedBack.
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Figure 7.7: Mean absolute motion estimation error as generated from processing LennaOranges

with BIMS, FTRANS and OPTIC. As shown, BIMS outperforms FTRANS and OPTIC.

7.2.4 Synthetic Data

Figure 7.7 shows the motion estimation errors generated from processing LennaOranges with

BIMS, OPTIC and FTRANS. Here λs = 0.5. As shown, OPTIC and FTRANS generated large

motion errors as they assume constant motion over three frames, an assumption that is violated

in the examined sequence. However, our technique was able to handle this motion behavior as

BIMS does not assume constant motion over any frame window. In addition, unlike previous

techniques such as Stuke et al. [81], BIMS imposes temporal smoothness on the separated

layers not on the generated motions. This generated motion-layer labeling that is temporally

consistent.

Figure 7.8 shows the estimated motions for frame 11 (left column) and 12 (right column)

for the synthetic sequence using (from top) BIMS, FTRANS and OPTIC. Groundtruth motions

are un = [−2,−3] and un+1 = [2, 3] for Lenna and vn = [2, 3], and vn+1 = [−2,−3] for Oranges.

As shown, the motion-layer labeling generated by BIMS (first row) is temporally and spatially

consistent. However, both FTRANS (second row) and OPTIC (last row) generated large motion

errors as the examined motions undergo strong temporal motion discontinuities. In addition,

OPTIC generated small motion estimates. Such behavior is expected for optical flow approaches

as the OFCE is only valid given small image displacements. Single motion estimators overcame

this assumption by iteratively refining motion estimates and shifting the examined frame with

the updated motions [48]. However none of the optical flow multiple motion estimators pro-

posed to iteratively refine motion estimates. One should note that for reflections this is not an

easy problem as it requires shifting each layer with its estimated motion. This will require an

intermediate stage that performs layer separation, a problem that requires motions to be known

beforehand.
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Figure 7.8: Multiple motions for frame 11 (left column) and frame 12 (right column) as es-

timated by (from top), BIMS, FTRANS and OPTIC. Red and yellow vectors represent the

estimated motions of Lenna (foreground) and Oranges (background) respectively. Here we scale

the estimated motions by a factor of 5 and show the grayscale representation of the image mix-

tures for illustration clarity. BIMS motion estimates for the two frames are un = [−2,−3],

vn = [2, 3], un+1 = [2, 3] and vn+1 = [−2,−3] respectively. These match the ground-truth esti-

mates. In addition, BIMS generated motion-layer labeling that is temporally consistent despite

the strong temporal motion discontinuities in the examined sequence. However, FTRANS and

OPTIC failed to handle the strong temporal motion discontinuities. BIMS usually outperforms

FTRANS and OPTIC given good enough KLT tracks are available.
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7.2.4.1 BIMS Parameters Configuration

To illustrate the importance of the likelihood in equation 7.5 and the priors in equation 7.7-7.9,

we change the values of their weights (denoted by λ) and reprocess frame 12 of LennaOranges.

Figure 7.9 (first row, left column) shows the result of switching OFF the temporal consistency

term of equation 7.9 by setting λtl = 0. This generated motion-layer labeling that is temporally

inconsistent with frame 11 (in figure 7.8, first row, left). More explicitly, the background motion

at frame 11 (shown in yellow) got assigned to the foreground layer in frame 12 (shown in yellow).

Similarly, the foreground motion at frame 11 (shown in red) got assigned to the background layer

in frame 12 (shown in red). To illustrate the importance of the layer structural independence

term, we switch OFF its term by setting λdl = 0. The result is that the same vector got assigned

to both layers as shown in figure 7.9 (first row, right column). The reason for this result is that

equation 7.5 now assigns the same separated layer to both F and B. Last, figure 7.9 (last row)

shows the result of switching OFF the motion spatial smoothness term by setting λs = 0. This

generates motion-layer labeling that is spatially inconsistent as shown in the purple boxes.

7.2.5 Real Data

Figure 7.10-7.11 shows the motion estimation errors generated from processing eight real se-

quences with BIMS, FTRANS and OPTIC. Image sequence results can be found in the accom-

panying DVD. Table 7.1 summarizes the motion errors. As shown our technique outperforms

FTRANS and OPTIC in all sequences and in most of the examined frames.

Figure 7.12-7.14 shows motion results on some frames from the examined sequences. Here

we show the grayscale representation of the examined sequences for illustration clarity. BIMS

handled well the camera shake/motion acceleration in SelimK2, PicRef , Bulb and WindRef-

Shk (see figure 7.12-7.13). FTRANS and OPTIC however generated large motion errors in those

sequences (see figures and table 7.1). In all sequences BIMS generates smoother results than

FTRANS and OPTIC. In PortraitA2 (see figure 7.14, left) FTRANS generates large motion

estimation errors especially for the purple region. In this region the vertical white bar is moving

to the left and hence generates an aperture effect. FTRANS failed to handle this effect as it

does not incorporate enough global information. However BIMS handled this effect successfully

as KLT trajectories near this region capture global motion information that are good enough to

recover the motion of the white vertical bar. More results can be found in Appendix D.

7.2.6 Reflection Detection for Multiple Motion Estimation

Processing an entire sequence with BIMS may generate false estimations in regions where there

is no reflection. Figure 7.12 (first row, shown in purple) shows an example of this scenario.

Here the actor is moving his hands quickly generating pathological motion. Processing the

actor’s hands with BIMS generates erroneous measurements. Hence it is required to mask out

this region from the BIMS motion estimates. An approach to do so is by manually selecting
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Figure 7.9: Examining the effect of the likelihood and priors (of equation 7.5 and equation 7.7-

7.9) by processing frame 12 of LennaOranges. Top row, left: Turning OFF the layer temporal

consistency term from BIMS generates motion-layer labeling that is temporally inconsistent with

motion estimates of frame 11 (see figure 7.8 first row, left); Top row, right: Turning OFF the

layer structural independence term from BIMS assigns the same motion vector to both layers;

Last row: Turning OFF the motion spatial smoothness term from BIMS generates motion-layer

labeling that is spatially inconsistent (see the purple boxes)

the regions of interest/reflections R as shown in blue in figure 7.12. This however requires

large manual intervention. Instead we use our reflection detection technique FEAPARD-F (see

Chapter 6) to estimate the regions of interest. Figure 7.15-7.16 shows reflection masks for four

real sequences generated by our FEAPARD-F. Those masks are used to weight the motion

estimates in regions not containing reflection. In figure 7.15 (first column) the pathological

motion of the actor’s hands is successfully discarded from the final motion estimates. In the

examined four sequences FEAPARD-F was able to discard regions not containing reflections

from the final BIMS estimates.



7.2. Results 165

0 10 20 30 40 50
0

2

4

6

8

10

12

Frame Number

M
o
ti
o
n
 E

s
ti
m

a
ti
o
n
 E

rr
o
r

OPTIC

FTRANS

BIMS

No Re�ection No Re�ection

(a) SelimK2

0 10 20 30 40 50
0

5

10

15

20

25

30

Frame Number

M
o

ti
o

n
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

OPTIC

FTRANS

BIMS

(b) PicRef

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Frame Number

M
o
ti
o
n
 E

s
ti
m

a
ti
o
n
 E

rr
o
r

OPTIC

FTRANS

BIMS
No Re�ection No Re�ectionNo Re�ection

(c) Bulb

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

Frame Number

M
o

ti
o

n
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

OPTIC

FTRANS

BIMS

(d) WindRefNoShk

Figure 7.10: Mean absolute motion estimation errors generated from processing four real se-

quences with different motion estimators. λs is set here to (in clockwise direction); 0.05, 0.01,

0.2 and 0.01 respectively. Some frames in SelimK2 and Bulb do not have reflections and

hence they do not have motion estimates (see the black dashed boxes). Our technique BIMS

outperforms FTRANS and OPTIC in all sequences.
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(c) PortraitA2
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Figure 7.11: Mean absolute motion estimation errors generated from processing real sequences

with different motion estimators. λs is set here to (in clockwise direction); 0.02, 0.02, 0, 05 and

0.05 respectively. Our technique BIMS outperforms FTRANS and OPTIC in all sequences.
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(e) SelimK2, frame 44 (f) PicRef , frame 27

Figure 7.12: Motion estimation results for two sequences as generated by (from top); BIMS,

FTRANS and OPTIC respectively. Background and foreground motion are shown in yellow and

red respectively. Motions are scaled by a factor of 5 (left) and 2 (right) for illustration clarity.

Regions of interest R are shown in blue. BIMS was able to handle motion acceleration and

camera shake in both sequences. However it generated large errors in regions of pathological

motion (shown in purple). We discard this region from the final motion estimation using our

reflection detection technique (see section 7.2.6).
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(e) Bulb, frame 6 (f) WindRefNoShk, frame 32

Figure 7.13: Motion estimation results for two sequences as generated by (from top); BIMS,

FTRANS and OPTIC respectively. Background and foreground motions are shown in yellow

and red respectively. Motions are scaled by a factor of 2 (left) and 3 (right) for illustration

clarity. Regions of interest R are shown in blue. BIMS was able to handle the strong camera

shake in Bulb however FTRANS and OPTIC generated large errors in this sequence. BIMS

generated smoother results in WindRefShk than the other techniques.
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BIMS FTRANS OPTIC

1.8±0.5 4.5±1.1 7.2±1.9

SelimK2 1.1 2.5 2.8

3.1 6.5 11.3

2.2±0.8 16.4±8.7 14.8±9.1

Bulb 0.8 3.7 4.9

4.2 31.1 28.9

2.15±1 10.4±3.6 12.8±4.7

PicRef 0.7 4.7 4.3

5.7 23.0 25.8

1.3±0.4 3.7±0.8 5.9±1.2

WindRefNoShk 0.4 1.8 3.5

2.3 5.6 9.0

1.4±0.3 5.5±2.1 5.2±3.1

WindRefShk 0.32 2.6 2.0

6.7 10.6 10.6

1.8±0.7 2.2±0.7 4.3±1.6

BuildOnWind3 1.0 1.3 2.0

3.8 4.0 7.0

2.8±0.8 6.1±1.7 5.4±1.5

PortraitA2 1.5 2.5 2.5

4.3 9.4 8.1

1.2±0.4 2.4±1.2 5.1±1.8

RedBack 0.5 0.6 2.1

2.4 5.2 9.2

Table 7.1: Mean absolute motion estimation errors for OPTIC, FTRANS and BIMS on 8 real

sequences. For each technique we show the mean, minimum and maximum error over the frames

of the examined sequence. As shown our technique BIMS generates the least error in all examined

sequences.

7.2.7 Layer Separation

Figure 7.17 shows layer separation examples generated from BIMS. Figure 7.17 shows that

BIMS reduces reflections in the extracted layers. In figure 7.17 (first row), the foreground layer

(white bulb) is well separated from the red background. In figure 7.17 (second row), the white

foreground layer is well separated from the (background) yellow writing. Please note that for

motion estimation we are not interested in perfect layer separation, instead we are just interested

in separation that is good enough for motion estimation. However improving layer separation
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(c) PortraitA2, frame 19

Figure 7.14: Motion estimation results of PortraitA2 as generated by (in clockwise direction);

BIMS, FTRANS and OPTIC respectively. Background and foreground motions are shown in

yellow and red respectively. Motions are scaled by a factor of 3 for illustration clarity. Regions of

interest R are shown in blue. BIMS handled the aperture effect well (shown in purple). FTRANS

and OPTIC failed to handle this effect as they do not include enough global information.

will improve motion estimation. This is left for future research.

7.2.8 Computational Complexity

Our technique consists of three main stages. KLT trajectories extraction, Layer Separation

using Weiss [94] and MAP optimization using QPBO Graph-cuts. A C++ implementation of

KLT trajectories extraction is used [1]. This takes ≈ 1 second to process one frame of size

576 × 720 pels. A C++ implementation of QPBO Graph-Cuts is also available. This stage

is computationally efficient as it is applied on a block basis not on pel-basis. For a frame in

standard definition and blocks of size 50 × 50 pels, there are 11 × 14 blocks/sites examined
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(a) frame 44 (b) frame 8

(c) frame 45 (d) frame 14

(e) SelimK2, frame 46 (f) Bulb, frame 26

Figure 7.15: Motion estimation of BIMS with automated generated reflection detection masks

(shown in green). Yellow and red vectors show the background and foreground motions re-

spectively. Reflection detection masks are generated using our reflection detection technique

FEAPARD-F (for more details see Chapter 6). Detection masks are used to weight out erro-

neous measurements in regions not containing reflections. Ground-truth region of reflections are

shown in blue. FEAPARD-F was able to discard the pathological motion of actor’s hands (shown

in purple) from the final BIMS estimates.
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(a) frame 20 (b) frame 12

(c) frame 21 (d) frame 15

(e) PortraitA2, frame 22 (f) BuildOnWind3, frame 22

Figure 7.16: Motion estimation of BIMS with automated generated reflection detection masks

(shown in green). Yellow and red vectors show the background and foreground motions re-

spectively. Reflection detection masks are generated using our reflection detection technique

FEAPARD-F (for more details see Chapter 6). Detection masks are used to weight out erro-

neous measurements in regions not containing reflections. Ground-truth region of reflections are

shown in blue. FEAPARD-F was able to discard the regions not containing reflections from the

final BIMS estimates.
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Figure 7.17: Left column, from top; Frames from Bulb, RedBack and PicRef. Last two

columns; Extracted foreground (middle) and background (last) layers using BIMS. As shown

BIMS reduces reflection in the extracted layers.

by QPBO. The most computationally expensive stage in BIMS is layer extraction using Weiss

approach. To calculate the layer for one motion candidate, it requires 4 × 5 spatial derivatives,

2 × 5 fast fourier transforms operators and 2 × 5 inverse fast fourier transforms operators. For

one examined site and 4 motion candidates, the Weiss approach requires 80 spatial derivatives,

40 FFTs and 40 IFFTs.

Optical flow approaches are computationally fast as closed-form solutions exist. However

they generate poor motion estimates. Transform-Based approaches mainly use block matching

to solve for motions. For an examined site, K4 block matching operations are required if one

searches K possible displacements for each motion component. Hence there are 6561 and 83521

block matching operations for K = 9 and K = 17 respectively. Note in this technique there is

an explosion in computational complexity in return for motion estimation accuracy. Searching a
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small range of motions reduces computational load but increases the chance of motion estimation

errors. This problem does not exist in BIMS as motion candidates are proposed by the KLT

trajectories.

The average time for processing one standard definition frame with BIMS and FTRANS is

≈ 1.3 and ≈ 3.2 minutes respectively. Here we use K = 9 for FTRANS and the average time is

taken over a sequence of 50 frames. Both approaches are implemented using MATLAB and on

the same processor. By setting K = 17 the average processing time for one frame with FTRANS

is ≈ 28 minutes. Note the explosion in computational load.

7.3 Conclusion

We have presented a Bayesian framework for multiple motion estimation in regions of reflection.

By articulating the problem using layers as auxiliary variables we are able to impose new con-

straints on the estimated motions through the layers that have been extracted. A key advance is

to encourage motions to be estimated in a way which improves the plausibility of the extracted

layers. This allows our technique to be robust to temporal motion activity and to give improved

motion fields as compared to existing approaches. We also proposed a novel motion candidate

selection scheme based on KLT trajectories which allows the joint problem to admit a tractable

solution. This makes our multiple motion estimator computationally more efficient than cur-

rent competing techniques. We showed examples where automated reflection detection can be

used to weight out erroneous motion estimates in regions not containing reflection. However,

our motion estimator does require distinctive foreground and background layers. The develop-

ment of an interactive scheme to circumvent this issue would help the tool to be useful in the

post-production industry.



8
Conclusion

This thesis focused on handling transparency on digital image sequences. It has three main

contributions. The first is a technique for blotch and line scratch removal from image sequences

by modeling these degradations a a semi-transparent layer superimposed on the original clean

layer. The second contribution is a technique for detecting reflections in image sequences and

the last contribution is a technique for multiple motion estimation in regions of reflections. The

following sections give a brief review of the work presented in this thesis and propose some ideas

for future work in these areas.

8.1 Blotch and Line Removal

Chapter 3 presented an overview of current blotch and line removal techniques. Most of the

existing techniques model corruptions as an opaque layer superimposed on the original data.

This often leads to overestimation of the corruption borders which introduces more restoration

artifacts in clean regions than being removed. The algorithms of JONDI and JOMBEI of

Kokaram et al. [46, 47] are the most general framework for blotch and line removal using an

opaque corruption model. They are the basis of many commercial software packages.

Few authors have attempted to reduce restoration artifacts in clean regions by using a semi-

transparent corruption model instead of an opaque model [14, 20, 32, 79]. Crawford et al. [20]

modeled the corrupted data as a linear mixture between the original data and dirt/corruption

layer. They achieved removal by estimating the corruption opacities and original data using

Bayesian Matting. Bayesian Matting was discussed in detail in Chapter 2. Crawford et al.
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however did not work on video and did not take full advantage of the RGB color channels.

Instead their matting solution is formulated on the grayscale channel only. In addition they

use an inpainting technique with an opaque corruption model to restore the chroma channels.

As a result their technique does not handle textured regions well. Last, their technique is not

initialized with an automated step for detection.

In Chapter 4 we presented a new technique for blotch removal with an aim to reduce restora-

tion artifacts generated in clean regions during the removal step. Similarly to Crawford et al.

we model the corruption as a semi-transparent layer superimposed on the original data. Re-

moval is also achieved using Bayesian Matting. The main difference with Crawford’s technique

however is that we use temporal priors and we formulate the matting solution on the three RGB

color channels. This proved to give better handling of highly textured regions over Crawford’s

technique. We then extended our blotch removal technique to line scratch removal. Here we

modified the temporal priors to cope with the temporally consistent nature of lines. In both

blotch and line removal techniques we fuse temporal and spatial priors in a way to maintain

reconstruction integrity despite motion and texture complexity. We initialized our blotch re-

mover with an automated step for detection and results show that our technique is capable of

discarding a high false detection rate from the removal step.

In Chapter 5 we compared our removal techniques against JONDI and JOMBEI and other

current removal techniques. We generated ground-truth estimates using IR scans of corruptions.

Here we derived a relation that estimates the corruption opacities from IR scans. We then used

the estimated opacities to weight out the blotches/lines from the corrupted sequences. Results

show that our removal techniques outperform the existing techniques.

8.2 Reflection Detection in Image Sequences

Chapter 6 presented a technique for detecting regions of reflection in image sequences. Regions

of reflections contain two semi-transparent layers moving over each other. As a result they

cause most of the current image processing techniques to fail as they assume the presence of one

layer per pel i.e. motion estimation, object recognition. We presented a technique for detecting

reflections that can be used as a preprocessing step in many video applications. The idea here

is to detect regions of failure and then the user can perform a special treatment for the detected

regions depending on the application.

As reflections can result by mixing any two layers they come in many shapes and colors.

This makes their detection a hard problem that was not addressed before. We detect reflections

by analyzing KLT feature point trajectories. Three main characteristics are analyzed 1) layer

separability, 2) temporal behavior and 3) image sharpness. We define reflections as regions with

low image sharpness and bad temporal match of feature points. In addition, we define reflections

as regions that can be decomposed into two distinctive foreground and background layers. We

proposed a technique that performs layer separation on a single still image. Even though we are
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not interested in the quality of separation itself, results show that the separated layers provide

valuable information for reflection detection.

We presented 9 weak detectors analyzing the three main features of reflections. We then

generated a strong reflection detector by combining the 9 weak detectors. We imposed spatial

and temporal smoothness on the detection fields and we proposed an automated approach for

system parameter configuration. Results show detection of several forms of reflections with

rejection to pathological motion i.e. motion blur, occlusion.

8.3 Multiple Motion Estimation for Regions of Reflections

Chapter 7 presented a technique for estimating the foreground and background motions in

regions of reflections. Most of the existing motion estimators assume the presence of one motion

per pel. Current existing multiple motion estimators assume constant motion over at least three

frames. In addition they impose temporal consistency on the generated motions. As a result

they cannot handle temporally active motion arising due to slight camera shake or acceleration.

We presented a novel approach for multiple motion estimation by treating the problem as

a joint layer-motion estimation. This is based on Sarel et al. work [74] which showed that the

motion of one layer can be used to temporally align this layer over the other moving layer. The

static layer is then extracted using the Weiss et al. approach [94]. Hence we modeled motions

of the underlying background/foreground layers as the ones generating the best reconstruction

of those layers. We overcame the computational burden of this approach by generating motion

candidates from the KLT tracks of the examined reflection. We generated a solution within

a Bayesian framework. Unlike current techniques we imposed temporal consistency on the

generated layers not on the generated motions.

Ground-truth comparisons showed that our approach handles temporally active motions

better than current techniques. In addition it is computationally more efficient than existing

techniques. Our technique however generates false estimates in regions not containing reflections.

We showed how to discard such regions from the final motion estimates using masks generated

from our reflection detection technique.

8.4 Future Work

8.4.1 Corruption Removal

A main issue that remains in the proposed corruption removal techniques is how to combine both

spatial and temporal reconstruction for optimal missing data reconstruction. Spatial reconstruc-

tion should be favored in regions undergoing complicated motion while temporal reconstruction

should be favored in regions undergoing simple motion. This spatio-temporal fusion scheme is

controlled by few (four) main system parameters some of which were configured automatically
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and others were fixed throughout the examined data. Results however showed that incorrect

settings of those parameters could lead to severe reconstruction errors. With a massive database

of archived footage being available, a large variety of material can be processed with our tech-

niques. This may require a better approach for spatio-temporal fusion. An approach to do so is

by using non-binary fusion instead of binary fusion. Our technique assigns either a spatial or a

temporal solution for each examined pel i.e. binary spatio-temporal mixing. Hence future work

will explore the possibility of improving reconstruction quality by generating a final solution

that is a linear mixture between the spatial and temporal solutions i.e. non-binary mixing.

Generating more accurate motion estimates will make our removal techniques more robust

to complicated motions. Motion estimation is a classical image processing problem [37, 48].

Pathological motion however still remains a major problem that prevents motion information

to be used ubiquitously for video editing. Pathological motion comes in many forms e.g. occlu-

sion, uncovering, motion blur [19]. Kokaram’s blotch remover JONDI [47] attempted to bring

more robustness to motion errors by incorporating fields that explicitly describe occlusion and

uncovering. Future work will aim to improve our removal techniques by incorporating similar

occlusion fields in our system.

8.4.2 Reflection Detection in Image Sequences

Reflection detection in image sequences is a new research area with the first technique presented

in this thesis. We showed that layer separability can be used as a strong cue for reflection

detection. Future work will aim to improve detection by improving layer separation quality.

However as plenty of work already exists on layer separation from multiple images, future work

will focus on layer separation from a single still image. More attention will be given to improving

our still image layer separation technique.

So far our detection technique is trained over artificially created data. However as reflections

come in a large variety of shapes and colors, future work will aim to generate better detection by

training our technique over a large database of real data. This however will require painstaking

manual ground-truth reflection detection. A further line of research is to improve the computa-

tional complexity of our reflection detector. This can be done by discarding the weak cues from

the detection process.

Since our reflection detector is used as a preprocessing tool to detect regions of failure

in current video processing techniques, lots of research can be carried out on improving the

robustness of current video processing techniques to regions of reflections. Future work will

focus on improving object recognition and motion estimation in regions of reflections.

8.4.3 Multiple Motion Estimation for Regions of Reflections

We showed that multiple motion estimation can be formulated as the joint problem of layer-

motion estimation. Future work will aim to generate more accurate motion estimates by improv-
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ing the quality of layer separation. Recall that we generated motion candidates from KLT tracks.

Future work will investigate the possibility of generating motion candidates using an exhaustive

search. This is expected to improve motion estimates however will increase computational com-

plexity and may require modification of the energy terms. A joint reflection detection/motion

estimation system can then be developed given good layer separation is generated.

One promising application to our multiple motion estimator is denoising regions of reflections.

We will first extract the underlying layers and their motions using our motion estimator. Each

layer will then be denoised separately. The noise-reduced sequence will then be generated

by combining the denoised layers back together using the estimated motion vectors. Another

application to our multiple motion estimator is enhancing the contrast of the layer of interest

in medical images i.e. X-ray, MRI scans [7]. Such images often have multiple semi-transparent

layers over each other. Hence the layer of interest can be extracted from the observed image

mixture by temporally registering this layer using our motion estimator followed by temporal

median filtering.
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Appendix A: MAP Estimate of Bayesian Matting

The posterior for Bayesian Matting is as follows

P (α, F, B|M) ∝ exp−

(

||M − αF − (1 − α)B||2

2σ2
e

+ (F − F̄)TRF (F − F̄) + (B − B̄)TRB(B − B̄)

)

(9.1)

Recall [F̄,RF ] and [B̄,RB] are the mean and covariance of the examined foreground and

background color distributions respectively. σ2
e is the variance of the error in the observation

model and [α, F, B] are the unknown opacity, foreground and background colors respectively for

the examined pel. The MAP estimate of [α, F, B] is calculated over three main stages: 1) B

given [F, α] is estimated by differentiating equation 9.1 w.r.t B and equating to 0 2) F given

[B, α] is estimated by differentiating equation 9.1 w.r.t F and equating to 0 and finally 3) α given

[F,B] is estimated by differentiating equation 9.1 w.r.t α and equating to 0. We discuss each

stage in more details here. Note that for every examined site the parameters [σ2
e , F̄,RF , B̄,RB]

are already known and hence are constants. All calculations are performed in the RGB color

space

9.0.3.1 Estimating F given [B, α]

∂
∂F

P (α, F, B|M) can be simplified into three separate derivative operations as follows

∂

∂F
P (α, F, B|M) ∝

∂

∂F

||M − αF − (1 − α)B||2

2σ2
e

+
∂

∂F
(F − F̄)TRF (F − F̄) +

∂

∂B
(B − B̄)TRB(B − B̄) (9.2)
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Here the last derivate is 0 as B is constant w.r.t to F.

For one color channel, ∂
∂F

||M−αF−(1−α)B||2

2σ2
e

becomes

∂

∂F

||M − αF − (1 − α)B||2

2σ2
e

= (α2F + α(1 − α)B − αM)/σ2
e (9.3)

To calculate ∂
∂F

(F − F̄)TRF (F − F̄) we do the following simplifications. Denote RF by

RF =







arr arg arb

agr agg agb

abr abg abb






(9.4)

where a(.) are the coefficients of the covariance matrix RF and (r, g, b) denote the red, green

and blue channels respectively. Hence we have

∂

∂F
(F − F̄)TRF (F − F̄)

=
∂

∂F

[

Fr − F̄r Fg − F̄g Fb − F̄b

]







arr arg arb

agr agg agb

abr abg abb













FR − F̄R

FG − F̄G

FB − F̄B







=
[

Fr − F̄r Fg − F̄g Fb − F̄b

]







(Fr − F̄r)arr + (Fg − F̄g)arg + (Fb − F̄b)arb

(Fr − F̄r)agr + (Fg − F̄g)agg + (Fb − F̄b)agb

(Fr − F̄r)abr + (Fg − F̄g)abg + (Fb − F̄b)abb






(9.5)

Multiplying the two vectors of equation 9.5 together, differentiating w.r.t the red, green and

blue channels of F and grouping similar terms together, ∂
∂F

(F − F̄)TRF (F − F̄) becomes

∂

∂Fr
(F − F̄)TRF (F − F̄) = (Fr − F̄r)a11 + (Fg − F̄g)a12 + (Fb − F̄b)a13 (9.6)

∂

∂Fg
(F − F̄)TRF (F − F̄) = (Fr − F̄r)a21 + (Fg − F̄g)a22 + (Fb − F̄b)a23 (9.7)

∂

∂Fr
(F − F̄)TRF (F − F̄) = (Fr − F̄r)a31 + (Fg − F̄g)a32 + (Fb − F̄b)a33 (9.8)

Adding every equation from equations 9.6-9.8 with its corresponding color component of equa-

tion. 9.3 and equating the final expressions to zero to maximize P (F |α,B,M) w.r.t F , we get

[

σ2
eR

−1
F + Iα2 Iα(1 − α)

]

[

F

B

]

=
[

σ2
eR

−1
F F̄ + αM

]

(9.9)

Here I is the 3 × 3 Identity matrix. That is a system of three equations and three unknowns

being the RGB channels of F . This system solves for the optimal value of F given [B, α].

9.0.3.2 Estimating B given [F, α]

∂
∂B

P (α, F, B|M) is obtained in a similar way to ∂
∂F

P (α, F, B|M). By analogy, ∂
∂B

P (α, F, B|M)

is obtained by substituting every F and α in equation 9.9 with B and 1 − α respectively. This
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generates
[

Iα(1 − α) σ2
eR

−1
B + I(1 − α)2

]

[

F

B

]

=
[

σ2
eR

−1
B B̄ + (1 − α)M

]

(9.10)

where I is the 3× 3 Identity matrix. This system solves for the optimal value of B given [F, α].

9.0.3.3 Estimating α given [F,B]

Differentiating P (α, F, B|M) w.r.t to α amounts to differentiating just the first term of equa-

tion 9.1 as the last two terms derivatives w.r.t α are 0. To calculate ∂
∂α

||M−αF−(1−α)B||2

2σ2
e

we first

expand ||M−αF−(1−α)B||2

2σ2
e

as follows

||M − αF − (1 − α)B||2

2σ2
e

= ((Mr − αFr − (1 − α)Br)
2+

(Mg − αFg − (1 − α)Bg)
2 + (Mb − αFb − (1 − α)Bb)

2)/2σ2
e (9.11)

where [r, g, b] are the red, green and blue components respectively. To maximize P (α, F, B|M)

w.r.t to α we differentiate the right hand side of equation 9.11 w.r.t to α and equate the resulting

expression to 0. This leads to

α((Fr − Br)
2 + (Fg − Bg)

2 + (Fb − Bb)
2) = (Fr − Br)(Mr − Br)

+ (Fg − Bg)(Mg − Bg) + (Fg − Bg)(Mg − Bg)

(9.12)

Grouping α in one side we get

α =
(M − B)T (F − B)

||F − B||2
(9.13)

Equation. 9.13 solves for the optimal value of α given [F,B].

The final set of equation in Bayesian Matting are Equations 9.9,9.10,9.13 which are grouped

together for clarity as follows

[

σ2
eR

−1
F + Iα2 Iα(1 − α)

Iα(1 − α) σ2
eR

−1
B + I(1 − α)2

][

F

B

]

=

[

σ2
eR

−1
F F̄ + αM

σ2
eR

−1
B B̄ + (1 − α)M

]

(9.14)

α =
(M − B)T (F − B)

||F − B||2
(9.15)
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Appendix B: Artificial Reflection Databases
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Figure 10.1: (a) Frames from the database SynRef1. Such frames are used to create artificial

reflections. (b) Examples of artificially created reflections from SynRef1.
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Figure 10.2: Frames from the database SynRef2. Artificially created reflections are shown in

blue
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Appendix C: Reflection Detection Results

Figure 11.1: Detection masks (shown in blue) generated manually for SelimK2. Those masks

are used to detect the left picture frame in SelimK2 (see figure 11.2, first row, shown in purple).

SelimK2 contains 99 frames. Masks here are supplied at frames (in clockwise direction) 1, 30,

42, 75 and 85 respectively.
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Figure 11.2: Reflection detection on SelimK2 using, from top; FEAPARD-F, SHARPNESS

and DFD respectively. Correct detections are shown in green while false detections are shown

in blue. FEAPARD-F rejects pathological motion generated by the actor’s hands. This motion

however is detected by DFD. The picture frame on the left (first row, shown in purple) is detected

using the manually supplied detection masks (see figure. 11.1).
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Figure 11.3: Reflection detection on BuildOnWind1 using, from top; FEAPARD-F, SHARP-

NESS and DFD respectively. Correct detections are shown in green while false detections are

shown in red. SHARPNESS misclassifies flat areas as reflection.
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Figure 11.4: Reflection detection on BuildOnWind2 using, from top; FEAPARD-F, SHARP-

NESS and DFD respectively. Correct detections are shown in green while false detections are

shown in red. SHARPNESS misclassifies flat areas as reflections and DFD misclassifies regions

of occlusion (first row, shown in yellow) as reflection. FEAPARD-F however rejects flat areas

and regions of occlusion.
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Figure 11.5: Reflection detection on Bus using, from top; FEAPARD-F, SHARPNESS and

DFD respectively. Correct detections are shown in green while false detections are shown in red.

SHARPNESS incorrectly flags flat areas as reflections and DFD generates some false alarms.

FEAPARD-F however does not generate noticeable false detections.
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Figure 11.6: Reflection detection on Bulb using, from top; FEAPARD-F, SHARPNESS and

DFD respectively. Correct detections are shown in green while false detections are shown in

blue. SHARPNESS incorrectly flags flat areas as reflection.
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Figure 11.7: Reflection detection on BuildOnWind3 using, from top; FEAPARD-F, SHARP-

NESS and DFD respectively. Correct detections are shown in green while false detections are

shown in red. SHARPNESS incorrectly flags flat areas as reflection.
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Figure 11.8: Three frames of FEAPARD-F detection for, from top; BluWind, GirlRef and

RedPPL. Correct detections are shown in green.
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Figure 11.9: Three frames of FEAPARD-F detection for, from top; ManWalking, CarRef

and GirlShadow. Correct detections are shown in green.
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Figure 11.10: ROC of FEAPARD-F, SHARPNESS and DFD for (in clockwise direction); Se-

limH, SelimC, BuildOnWind2 and BuildOnWind1 respectively. Our technique outper-

forms the other detectors with a massive increase in correct detection rate.
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Figure 11.11: ROC of FEAPARD-F, SHARPNESS and DFD for (from left); SelimK1 and Se-

limK2 respectively. FEAPARD-F outperforms DFD and SHARPNESS with a massive increase

in correct detection rate.
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Figure 11.12: ROC of FEAPARD-F, SHARPNESS and DFD for (in clockwise direction); Bus,

Bulb and BuildOnWind3 respectively. Our technique outperforms the other detectors.
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Figure 11.13: ROC of D1−9 and Ds for (in clockwise direction); SelimC, SelimH, BuildOn-

Wind2 and BuildOnWind1. Either D1 or Ds outperform most of the remaining detectors in

the examined sequences.
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Figure 11.14: ROC of D1−9 and Ds for (from left); SelimK2 and SelimK1. Ds outperform

most of the remaining detectors in both sequences.
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Figure 11.15: ROC of D1, Ds, D9, and FEAPARD-F as generated for (in clockwise direction);

SelimH, SelimC, BuildOnWind2 and BuildOnWind1. Here the detection of D1 is ob-

tained by removing Ds and D9 from the FEAPARD-F technique. The detections of Ds and D9

are obtained in a similar way. FEAPARD-F combines D1, Ds and D9 for optimal reflection

detection.
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Figure 11.16: ROC of D1, Ds, D9, and FEAPARD-F as generated for (from left); SelimK2 and

SelimK1 respectively. Here the detection of D1 is obtained by removing Ds and D9 from the

FEAPARD-F technique. The detections of Ds and D9 are obtained in a similar way. FEAPARD-

F combines D1, Ds and D9 for optimal reflection detection.
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Figure 11.17: ROC of different techniques generated for (in clockwise direction); SelimH,

SelimC, BuildOnWind2 and BuildOnWind1. FEAPARD is reflection detection without

incorporating any spatial or temporal smoothness, while FEAPARD-S and FEAPARD-T is

reflection detection but with incorporating only spatial and only temporal smoothness respec-

tively. In FEAPARD-NoGeo we remove the geodesic distance from the spatial information of

FEAPARD-F. The geodesic distance helps in rejecting false detections of FEAPARD. In addi-

tion, FEAPARD-F combines both spatial and temporal information for optimal detection.
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Figure 11.18: ROC of different techniques generated for (from left); SelimK2 and SelimK1.

FEAPARD is reflection detection without incorporating any spatial or temporal smoothness,

while FEAPARD-S and FEAPARD-T is reflection detection but with incorporating only spa-

tial and only temporal smoothness respectively. In FEAPARD-NoGeo we remove the geodesic

distance from the spatial information of FEAPARD-F. The geodesic distance helps in rejecting

false detections of FEAPARD. In addition, FEAPARD-F combines both spatial and temporal

information for optimal detection.
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Figure 12.1: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

44 (left) and 45 (right) of SelimK2. Yellow and red vectors show the background and foreground

motions respectively. Vectors are scaled by a factor of 5 for illustration clarity. Regions of

interest/reflections are shown in blue.
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Figure 12.2: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

46 (left) and 47 (right) of SelimK2. Yellow and red vectors show the background and foreground

motions respectively. Vectors are scaled by a factor of 5 for illustration clarity. Regions of

interest/reflections are shown in blue.
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Figure 12.3: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

27 (left) and 28 (right) of PicRef. Yellow and red vectors show the background and foreground

motions respectively. Vectors are scaled by a factor of 2 for illustration clarity. Regions of

interest/reflections are shown in blue.
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Figure 12.4: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

29 (left) and 30 (right) of PicRef. Yellow and red vectors show the background and foreground

motions respectively. Vectors are scaled by a factor of 2 for illustration clarity. Regions of

interest/reflections are shown in blue.
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Figure 12.5: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

5 (left) and 6 (right) of Bulb. Yellow and red vectors show the background and foreground

motions respectively. Vectors are scaled by a factor of 2 for illustration clarity. Regions of

interest/reflections are shown in blue.
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Figure 12.6: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

7 (left) and 8 (right) of Bulb. Yellow and red vectors show the background and foreground

motions respectively. Vectors are scaled by a factor of 2 for illustration clarity. Regions of

interest/reflections are shown in blue.
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Figure 12.7: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

32 (left) and 33 (right) of WindRefNoShk. Yellow and red vectors show the background and

foreground motions respectively. Vectors are scaled by a factor of 3 for illustration clarity.

Regions of interest/reflections are shown in blue.
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Figure 12.8: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

34 (left) and 35 (right) of WindRefNoShk. Yellow and red vectors show the background and

foreground motions respectively. Vectors are scaled by a factor of 3 for illustration clarity.

Regions of interest/reflections are shown in blue.
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Figure 12.9: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

9 (left) and 10 (right) of WindRefShk. Yellow and red vectors show the background and

foreground motions respectively. Vectors are scaled by a factor of 3 for illustration clarity.

Regions of interest/reflections are shown in blue.
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Figure 12.10: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

11 (left) and 12 (right) of WindRefShk. Yellow and red vectors show the background and

foreground motions respectively. Vectors are scaled by a factor of 3 for illustration clarity.

Regions of interest/reflections are shown in blue.
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Figure 12.11: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

12 (left) and 13 (right) of BuildOnWind3. Yellow and red vectors show the background and

foreground motions respectively. Vectors are scaled by a factor of 4 for illustration clarity.

Regions of interest/reflections are shown in blue.
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Figure 12.12: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

14 (left) and 15 (right) of BuildOnWind3. Yellow and red vectors show the background and

foreground motions respectively. Vectors are scaled by a factor of 4 for illustration clarity.

Regions of interest/reflections are shown in blue.
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Figure 12.13: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

19 (left) and 20 (right) of PortraitA2. Yellow and red vectors show the background and fore-

ground motions respectively. Vectors are scaled by a factor of 3 for illustration clarity. Regions

of interest/reflections are shown in blue. The region shown in purple undergoes an aperture

effect.
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Figure 12.14: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

21 (left) and 22 (right) of PortraitA2. Yellow and red vectors show the background and fore-

ground motions respectively. Vectors are scaled by a factor of 3 for illustration clarity. Regions

of interest/reflections are shown in blue. The region shown in purple undergoes an aperture

effect.
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Figure 12.15: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

36 (left) and 37 (right) of RedBack. Yellow and red vectors show the background and foreground

motions respectively. Vectors are scaled by a factor of 3 for illustration clarity. Regions of

interest/reflections are shown in blue.
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Figure 12.16: Motion estimates generated by (from top) BIMS, FTRANS and OPTIC for frames

38 (left) and 39 (right) of RedBack. Yellow and red vectors show the background and foreground

motions respectively. Vectors are scaled by a factor of 3 for illustration clarity. Regions of

interest/reflections are shown in blue.
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