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Abstract

In this thesis we explore the problem of video object segmentation and also propose tech-

niques that have better performances compared to other state-of-the -art techniques presented

to date. We define video object (VO) segmentation as the task of labelling the various regions

in an image sequence as belonging to a particular object. The main focus in this thesis is on two

categories of VO segmentation techniques we define as sparse trajectory segmentation techniques

and dense pixel segmentation techniques. A sparse trajectory segmentation approach labels a

sparse set of pixel points tracked over a sequence. Here tracking of sparse pixel locations from

frame to frame in a sequence generates feature point trajectories. Unlike a sparse segmentation

where only trajectories are labelled, a dense pixel segmentation process labels all the pixels in a

sequence as corresponding to the objects of interest in a sequence.

The major challenge in dense pixel segmentation is providing temporal and spatial consis-

tency from frame to frame in the segmentation produced for a sequence. The majority of previous

dense segmentation techniques fail to provide a robust solution to this problem. Hence we pro-

pose a dense segmentation Bayesian framework that utilizes long term trajectory (temporal)

information in order to introduce spatiotemporal consistency.

Our technique first classifies the sparse trajectories into sparsely defined objects in the sparse

trajectory segmentation step. Then the sparse object trajectories together with motion model

side information are used to generate a dense segmentation of each video frame. Unlike previous

work, we do not use the sparse trajectories only to propose motion models, but instead use their

position and motion throughout the sequence as part of the classification of pixels in the dense

segmentation. Furthermore, we introduce novel colour and motion priors that employ the sparse

trajectories to make explicit the spatiotemporal smoothness constraints.

We are mainly motivated to produce techniques that can be used in cinema post-production

applications. Semi-automated object segmentation is an important step in the cinema post-

production workflow. Hence, we have two adaptations of our general segmentation framework

that produce semi-automatic and automatic segmentations respectively. In the semi-automatic

segmentation process a user guides the segmentation process, while in the automatic process no

user information is required.

The long term tracking of sparse features in an image is important for many applications

other that VO segmentation, such as motion estimation and people surveillance. The majority

of existing tracking frameworks are based on some kind of prediction/correction idea. However,

given a careful selection of interest points throughout the sequence, the problem of tracking can

be solved with the Viterbi algorithm. We present in this thesis a novel approach to interest point

selection for tracking using the Mean Shift algorithm over short time windows. The resulting

points are then articulated within a Viterbi algorithm for creating very long term tracking data.

The tracks are shown to be more accurate than traditional KLT implementations and also do

not suffer from accumulation of error with time.
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1
Introduction

Video cameras have become ubiquitous items in most households since the early 2000s. The

majority of people living in developed countries own a mobile phone which usually has a video

camera. The availability of cameras to the general population has facilitated the generation of

an overwhelming amount of video content. People create videos for various requirements such as

documenting their lives, entertainment and social interactions. The internet acts as a catalyst

for video content production as video sharing sites such as youtube.com allow people to share

their content with a global audience.

Prior to the invention of video and audio capturing devices, civilizations recorded their knowl-

edge and history mostly through writing books, and indirectly by creating art and architecture.

Books are written in a language for which the basis unit of information is usually a word. With

the semantics of various languages understood, humans were then able to manipulate written

content, for the purpose of generating new content or transmitting already generated content.

We can consider video to be playing a similar role for the current human civilization as books

did for previous civilizations. Knowledge is increasingly being recorded in videos, and we must

in some way be able to decompose a video into some basic atomic units of information. That

is, find the equivalent for video content of what words are for written content. The popular

postulation in the video research community is that objects are the ‘words’ of video content.

Note that we are considering a video to be only a sequence of images with no corresponding

audio content.

A video is a sequence of 2D projections (images) of a 3D visual world. The concept of this

3D visual world being comprised of objects naturally applies to video. The task of identifying

3



4 Introduction

the various objects in a video is defined as video object segmentation. Once we are able to

identify the objects in some video content, we can then proceed to manipulating this content,

for generating new content or transmitting already existing content in more efficient ways.

This thesis is concerned with the problem of video object segmentation. We propose tech-

niques for extracting the objects in a video sequence. Some important modern application areas

for video object (VO) segmentation are video compression, visual surveillance, video composit-

ing, object detection, behaviour recognition. In the next section we will discuss how some of

these modern applications can benefit from using video object segmentation techniques.

1.1 Application Relevance

Videos in general contain a significant amount of redundant information. The background scene

may remain the same for several images in a sequence. Hence decomposing a video into a

collection of objects allows this redundancy to be identified. This redundancy manifests itself

as objects being repeated over several frames. The idea behind improving video compression

techniques is basically encoding a single object representation for all the respective repeated

objects. This saves vital video transmission bandwidth and disk storage space, which is important

for sharing video content online.

Surveillance using video cameras is an obvious way of facilitating the increasing need for

security in a ever growing population. Current visual surveillance systems usually have a human

in the loop who monitors several simultaneous video feeds, and he is required to identify improper

activities. This human is obviously going to make more errors as he becomes fatigued and also

when the number of video feeds increases. Hence there is an insatiable need for automated

visual surveillance systems. An essential requirement for these systems is being able to identify

objects, which can be done by utilizing a video object segmentation technique. Once objects of

interest are identified through object detection, we can proceed to analyzing the behaviour of

these objects. Behaviour recognition in some way involves constructing ‘sentences’ that describe

the activities in a scene in a ‘language’ in which the basis building blocks are ‘objects’.

Writing about something that did not occur in real life is called fictional writing, while

the opposite scenario is called non-fictional writing. In a similar fashion we may consider a

video of a scene that did occur in real life as being a non-fictional video. If the images in a

video are manufactured/synthesized in some way this video may be considered as a fictional

video. The art of creating fictional videos is defined as video compositing, which is used in

the movie and television industries to tell convincing visual stories. The majority of the objects

required to create fictional videos (some objects are computer generated) are extracted from

non-fictional videos using a video object (VO) segmentation technique. Hence the quality of

the video composites produced is directly related to the VO segmentation technique used.

Libraries for storing written content are possible because words can be indexed for searching

through the gross content available. The content of interest can be found by specifying some
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keywords. There is already a need for accessing video content in a similar way, by specifying

‘keyobjects’. This would be especially useful for allowing users to find content they are interested

in with more discrimination power. The success of such a video content search engine will depend

on a video object segmentation technique in order for objects to be identified and indexed.

The qualities of the video object segmentations required vary according to the application of

interest. Post production for example demands high quality segmentations, where the objects

of interest must be properly delineated. However, for surveillance a segmentation quality below

post production quality is usually acceptable. In surveillance applications we are more interested

in where the objects in a scene are generally located. Hence precise edge delineations are not

required. We aim at producing post production quality segmentations with the video object

segmentation techniques proposed in this thesis.

1.2 Thesis outline

The remainder of this thesis is organised as follows.

Chapter 2: Video Object Segmentation: A Review

A review of previous video object segmentation techniques is presented in this chapter. The main

focus in this review is on techniques that can be utilized in video compositing (post production

application). We discuss the major issues with producing high quality segmentations for video

sequences, and how the various approaches address these issues. At the end of this chapter,

we present a VO segmentation technique we proposed in 2008 [15] for a visual surveillance

application. Some of the ideas in this technique are used in the design of a VO segmentation

framework present later in this thesis.

Chapter 3: A Viterbi Tracker for Local Features

Previous VO segmentation techniques have reported improved segmentation performances by

utilizing long term sparse feature point trajectories. These trajectories were used to estimate

more accurate motion models with a lower computational cost compared to the conventional

method of using optical flow [53]. The most popular trajectories used are Kanade-Lucas-Tomasi

(KLT) tracks [55], which are trajectories of corner features tracked over several frames in a

sequence.

In this chapter we present a new local feature tracking framework that utilizes a Viterbi [90]

tracking strategy. We use this framework to track SIFT [73] features over an image sequence.

These SIFT [73] feature trajectories allow much more accurate motion models to be estimated

for a sequence compared to KLT trajectories. This conclusion is supported by the quantitative

analysis done at end of this chapter.
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Chapter 4: Sparse Trajectory Segmentation

In order to estimate motion models using feature point trajectories, these trajectories must be

grouped according to their 2D image motion. A set of trajectories are grouped together if they

have similar motion according to a define motion model. The task of identifying these groups is

defined as sparse trajectory segmentation.

A sparse trajectory segmentation technique is proposed in this chapter. This technique has

two main steps; a initialization and a refinement step. In the initialization step an rough

initial grouping of the trajectories is estimated using ideas from previous techniques. The final

refinement stage improves the initial grouping estimate by applying spatially and temporal

smoothness strategies.

This chapter and the next give details of the initialization and refinement step respectively.

Chapter 5: Sparse Trajectory Segmentation: Model Refinement with Spatial

Smoothness

This chapter is a continuation of the proposed sparse trajectory segmentation in the previous

chapter. Here we give details of the refinement step, where a Bayesian framework is presented

for labelling the trajectories as belonging to a particular motion group.

Chapter 6: Sparse Trajectory Segmentation Performance Evaluation

The performance of our sparse trajectory segmentation technique is assessed in this chapter. We

compare our segmentation results with five state-of-the-art 3D segmentation technique, and two

2D sparse segmentation techniques. All these techniques are discussed in the review chapter

(chapter 3). The two 2D segmentation technique are defined as J-Linkage and Region Growing

respectively.

We use the Hopkins dataset [117] of 155 sequences supplied with ground truth trajectories

segmentations to compare our segmentations with those of the 5 state-of-the-art 3D sparse

segmentation techniques and the J-Linkage technique. For the Region Growing technique a

quantitative analysis was not possible, so we conducted visual comparisons instead. We also did

visual comparisons for the J-Linkage technique as well.

At the end of this chapter we demonstrate that unlike previous techniques our sparse tra-

jectory segmentation technique produces satisfactory segmentations for real world sequences.

These real world sequences contain a significant amount of non-rigid articulated motions.

Chapter 7: Dense Pixel Segmentation

Unlike our sparse trajectory segmentation technique which assigns object labels to a sparse

set of pixel sites in a sequence, our dense pixel segmentation techniques label every pixel site

in a sequence. We propose two dense pixel segmentation techniques in this chapter, one is
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unsupervised (fully automatic) while the other is supervised (requires user assistance). Both

techniques however use the same general Bayesian framework, and utilize the segmentations

produced by sparse trajectory segmentation process.

The sparse trajectory segmentation step provides motion models (used in likelihood design)

for the objects in a sequence. We use these models along with the spatial locations of the trajec-

tories to introduce spatial and temporal smoothness strategies in our dense pixel segmentation

process.

Chapter 8: Dense Segmentation Performance Evaluation

The performances of our dense pixel segmentation techniques are evaluated in this chapter. We

compare our segmentations with those of three previous techniques that are discussed in the

review chapter (chapter 3). One these techniques is based the work of Kokaram [62] where

sequences are automatically segmented in foreground and background regions. The other two

techniques are referred to as Feature-Cut and Video SnapCut respectively. Both these techniques

presented in 2009 are state-of-the-art supervised techniques proposed by Ring [100] and Bai et

al. [12] respectively.

We assess the performance of these techniques quantitatively using manually segmented

ground truths for three sequence.

Chapter 9: Conclusions

The final chapter assesses the contributions of this thesis and outlines some directions for future

work.

Demonstration DVD

Videos of the results presented in this thesis are included in an accompanying DVD. Appendix E

gives details of how this DVD is organised.

1.3 Contributions of this thesis

The new work described in this thesis can be summarised by the following list:

• A Viterbi tracking framework for local features.

– SIFT tracker

– Outlier detection

• A sparse trajectory segmentation technique that enforces spatiotemporal smoothness.

– Extensive comparisons with previous work
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• A dense pixel segmentation framework for producing automatic and/or semi-automatic

video object segmentations.

– Occlusion detection

– Automatic segmentation of a sequence using geodesic distances

– Extensive comparisons with previous work

1.4 Publications

Portions of the work described in this thesis have appeared in the following publications:

• “Feature-based Object Modelling for Visual Surveillance” by Gary Baugh and Anil Kokaram,

in International Conference on Image Processing, San Diego, CA, USA, October 2008.

• “A Viterbi tracker for local features” by Gary Baugh and Anil Kokaram, in Proceedings of

SPIE Visual Communications and Image Processing, San Jose, CA, USA, January 2010.

• “Semi-Automatic Motion Based Segmentation using Long Term Motion Trajectories” by

Gary Baugh and Anil Kokaram, in International Conference on Image Processing, Hong

Kong, China, September 2010.



2
Video Object Segmentation: A Review

Video object (VO) segmentation is the task of selecting objects of interest from a sequence of

images. We define these objects as constituting the foreground of the image sequence. The

foreground is naturally composited into the sequence via the video/image capturing process.

Hence, a VO segmentation process is required to extract this foreground in some way. Generally

a segmentation process uses mattes (masks) to indicate which pixels in a sequence belong to the

foreground. These mattes are commonly referred to as alpha mattes in the VO segmentation

literature [27, 93,123,125].

The VO segmentation problem has received a great deal of attention in the literature as it is

important for many video applications, such as surveillance [15], tracking [51], action recognition

[8,36], object detection [72,96], scene reconstruction [14], and video matting [6,10,27,30,62,74,

125]. A robust solution remains elusive for segmenting sequences with dynamic scenes containing

both camera and multiple object motions, especially non-rigid motions.

In this chapter we will review previous video object segmentation techniques that are relevant

to our work. We are mainly interested in techniques that can be applied to the video matting

problem, which is important in the post production industry. We will also discuss some of the

main challenges in producing quality segmentations.

First, we introduce in the next section how a VO segmentation technique generally specifies

the set of foreground objects in an image sequence. This is important for future discussions.

9
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Figure 2.1: Example of alpha matte extraction and compositing of an image. Left: Image

(800× 563 pixels) from the training dataset provided by Rhemann [99]. Center: Alpha matte

computed with technique of Gastal [47]. Right: Composite of the extracted foreground on a

new background.

2.1 Mattes and Modelling

In a sense, all VO segmentation techniques consider that the observed image in each frame is

created by mixing different image layers. For clarity assume that there is just one foreground

image layer IFf (s) and a background image layer IBf (s) in frame f , where s = (x, y) is the spatial

coordinates of a pixel in this frame. Then the observed image If (s) is the result of the following

mixing or modelling equation.

If (s) = αf (s)I
F
f (s) + (1− αf (s)) I

B
f (s) (2.1)

The idea was first made explicit by Pentland [35, 87, 88] and Wang [127]. αf (s) is therefore

the value of the alpha matte for pixel site s at frame f in the sequence. αf (s) can be binary

(αf (s) ∈ {0, 1}) or a continuous value between 0 and 1 (real number in [0, 1]), depending on

the granularity of the VO segmentation process. A continuous alpha matte is required to do

a high quality composition of an extracted foreground onto a new background (application in

post production), especially for foreground objects that are translucent in some way (e.g. hairs,

thin fabrics). Most VO segmentation approaches first generate binary alpha mattes and then

use these mattes to create more refined continuous alpha mattes [12].

Fig. 2.1 shows an an image (left) segmented using a technique by Gastal [47] to produce

a continuous alpha matte. Here the alpha matte is shown in the center, where αf (s) = 1 and

αf (s) = 0 are coloured white and black respectively. The various shades of gray indicate values

of αf (s) between 0 and 1. Note that the majority of the ‘gray’ values of αf (s) correspond

to the hairs of the dolls in fig. 2.1. The colours of the pixels corresponding to the ends of

these hair strands are influenced by both the background and foreground colours. Hence a

fractional (gray) αf (s) here indicates how much the foreground colour influences site s. With

this continuous alpha matte (center of fig. 2.1), a high quality composition of the foreground on

to a new background (right) can be created.

Foreground and background are indicated in a binary alpha matte by having αf (s) = 1 and

αf (s) = 0 respectively. Fig. 2.2 shows examples of binary alpha mattes for frame 1 (left), 12
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Figure 2.2: Examples of the binary alpha mattes for frames 1 (left), 12 (center) and 25

(right) in the Calendar and Mobile sequence, where these frames are shown in the top row.

Third row: The alpha mattes considering the calendar, train and ball all constitute the

foreground. The foreground extracted with these mattes are shown in the second row. Here

the background is shaded in green. Bottom row: The alpha mattes considering only the

train and ball constitute the foreground. The foreground extracted with these mattes are shown

in the fourth row. A pixel site s coloured black or white in an alpha matte correspond to

αf (s) = 0 and αf (s) = 1 respectively.
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Figure 2.3: The heuristics used in generating video object segmentations. Motion (orange),

colour, texture and edge (purple) features are extracted from the pixel data (green). These

features are then utilized in finding spatially and temporally coherent motion (maroon red)

and appearance (pink) regions in the images of a sequence. These coherent regions are expected

to exclusively represent a single object (blue) in scene. As we move up (green arrow) this

heuristic pyramid we increase the number of image pixels that are grouped together.

(center) and 25 (right) in the well known Calendar and Mobile sequence. The third row shows

the mattes where the calendar, train and ball are all considered to constitute the foreground.

Also shown in the bottom row are the mattes where only the ball and the train are foreground.

The second and third rows (fig. 2.2) show the foregrounds extracted with the corresponding

mattes in the third and bottom rows respectively. Here the background in each image is shaded

green.

2.2 A Pyramid of Techniques

Previous VO segmentation techniques generally rely on motion and appearance cues in order

to generate the required segmentations. However, there are some techniques where only motion

or appearance information is used exclusively [23, 127]. All previous approaches in some way

generate heuristics from motion and appearance cues to facilitate the segmentation of an image

sequence.

Fig. 2.3 illustrates how different levels of heuristics are generated from motion and appearance

cues. The pyramid structure demonstrates the hierarchy of these heuristics. Representing a

sequence as a composition of objects (blue) is the highest level of semantic reasoning. To date
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there are no computer vision algorithms that can reason about real scenes at this level in a useful

way. Only human perception can be used to decompose a complex visual scene into objects.

The next level down from the objects in a scene (fig. 2.3) consists of spatially and temporally

coherent motion (maroon red) and appearance (pink) image regions. VO segmentation tech-

niques can be considered to operate at this level. These coherent regions can be identified in

a sequence using a combination of motion (orange), colour, texture and edge (purple) features.

These features are extracted from the raw video/image pixel data (green) at the lowest level.

All VO segmentation techniques can be considered to be estimating an alpha matte αf (s) for

image If (s), given a set of model parameters Θf (s). This task can be expressed in the Bayesian

framework below, where the solution to the segmentation problem is the Maximum a posteriori

(MAP) estimate of αf (s).

p(αf (s)|If (s),Θf (s), αf (∼ s)) ∝ pl(If (s),Θf (s)|αf (s))ps(αf (s)|αf (∼ s),Θf (s)) (2.2)

Where pl(If (s),Θf (s)|.) and ps(αf (s)|.) are the likelihood and prior distributions respectively.

αf (∼ s) are the labels in some defined neighbourhood of pixel site s at frame f . VO segmenta-

tion techniques generally differ in how they go about determining the various models and their

corresponding parameters Θf (s). These models are used to describe the coherent motion and

appearance regions in fig. 2.3. With the right parameters Θf (s), these models explain the ob-

served motion, colour, texture and edge features at the lower heuristics levels, which usually are

part of the likelihood design. The design of the prior ps(αf (s)|.) typically fulfills the requirement

for the coherent regions to be spatially and temporally smooth over a sequence.

In the case where all the object in an image sequence are rigid and consistent in appear-

ance and motion, there are VO segmentation techniques that will segment this sequence at the

‘objects’ level. That is, every object with unique motion and appearance can be completely

extracted from these sequences. However, real world sequences of interest do not fall into this

restricted category of sequences that comprise of only rigidly moving objects. Real world se-

quences usually contain articulated non-rigid objects that may have inconsistent motions and

appearances. There might be several coherent motion and appearance regions (fig. 2.3) associ-

ated with each of these objects. A human would be required to associate these coherent regions

with a particular object.

2.2.0.1 Technique Categories

The need for high quality segmentations of real world sequences has motivated a category of VO

segmentation techniques that we defined as supervised techniques. These supervised techniques

include a user in the segmentation loop, in order to handle difficult sequences. These techniques

emerged in the late 90s, where the technique proposed by Mitsunaga [76] in 1995 is an early

example of a supervised VO segmentation approach.

We define a VO segmentation technique where no user assistance is utilized as an unsupervised

technique. Three of the earliest examples of these techniques were proposed by Potter [92] in
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the in the late 70s, Adelson [3] and Thompson [110] in the early 80s. Since there is no human

in the segmentation loop, these techniques produce much lower quality segmentations compared

to supervised techniques.

In supervised VO segmentation techniques the user usually interacts with the system at

the ‘objects’ level (fig. 2.3). Here the user may supply reference alpha mattes for some of the

frames in a sequence and then allow the system to segment the remaining frames [11, 12, 100].

In these user supplied alpha mattes the objects of interest are specified to the system. These

object specifications at the ‘objects’ level in the heuristics pyramid (fig. 2.3), constrain the lower

level heuristics (coherent motion and appearance regions, etc). Hence the various heuristics are

constrained implicitly from the top (‘objects’) of the pyramid to the bottom (‘video/image pixel

data’). These constraints allow supervised systems to discriminate better between the features

(motion and appearance) of the various objects in a sequence.

Fig. 2.2 shows examples of user supplied alpha mattes for frame 1 (left), 12 (center) and

25 (right) for the Calendar and Mobile sequence. In the third row the user specifies that the

foreground consists of the calendar, train and ball. However, in the bottom row the foreground

consists of the ball and the train only. This user interactivity makes the supervised system more

useful in modern applications such as post production.

Unlike a supervised technique, an unsupervised technique has to gather the various heuristics

from the bottom (‘video/image pixel data’) of the pyramid (fig. 2.3) to the top (‘objects’). Since

these unsupervised systems have no notion of what constitutes an object, there are no guarantees

that the segmentations produced would be in some way useful.

2.2.0.2 Challenges of VO Segmentation Techniques

There are some fundamental issues which affect all video object segmentation techniques, irre-

spective of whether they are supervised or unsupervised. Perhaps the most important is main-

taining spatial and temporal consistency from frame to frame for the segmentation of an image

sequence. The human visual system is very sensitive to temporal inconsistencies that may occur

in an image sequence [122]. Segmenting the frames in a sequence independent of each other often

results in temporal incoherencies. Hence learnt heuristics at each frame must be propagated in

some way over a sequence. Typical video cameras only capture at 25 fps, thus the sampling rate

is too low for dealing with the motion of fast objects and often introduces motion blurs. Hence

building correspondence across frames and maintaining temporal coherence is very difficult in

this case.

Another issue which affects only supervised techniques is how to effectively use the informa-

tion supplied by the user in segmenting the sequence. Here the user may specify alpha mattes

for certain frames, and the design of the segmentation technique will determine which of these

mattes should influence the segmentation of a particular frame. Effective use of the user in-

formation is expected to reduce the amount of corrections that must be applied to the final
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segmentations.

We will discuss later how the various VO segmentation techniques handle these issues.

2.3 Unsupervised Techniques

As previously mentioned, unsupervised techniques do not utilize any user supplied information.

The majority of these techniques employ the idea of using ‘layers’ to represent the image regions

in a sequence. Here a ‘layer’ simply refers to an image region where all the pixels have similar

motion and/or appearance according to a specified model. For example, an Affine motion

model may be used for specifying motion layers. ‘Layers’ correspond to the coherent motion

and appearance regions in fig. 2.3 as discussed previously.

The idea of segmenting an image into layers was introduced by Wang [127] and Pentland

[35,87,88] during the early 90s. This idea become very popular because it is an intuitive way of

thinking about how images are structured.

Fig. 2.4 shows examples of typical layers for frames 1 (first row) and 25 (third row) in the

Calendar and Mobile sequence. Here the pixels for the background (left), calendar (left center),

train (right center) and ball (right) constitute the four layers shown respectively. The alpha

mattes of the layers for frames 1 and 25 are shown in the second and fourth rows respectively.

An image can be composited from a set of layers (specifically the image data) and the

corresponding alpha mattes for that image. Also the depth order of these layers must be specified.

Fig. 2.5 illustrates the composition of frame 1 in the Calendar and Mobile sequence from the

four layers for this frame (fig. 2.4).

2.3.1 Layer-based Techniques

With the introduction of the layer representation [35,87,88,127], researchers were given a plat-

form for integrating spatial and temporal smoothness strategies into the segmentation process.

In the original work of Wang, optical flow [53] between adjacent frame pairs was used to extract

motion layers. The use of only two frames at a time led to temporal inconsistency in the layers

extracted. Also no spatial smoothness schemes were utilized in assigning pixels to the various

layers. Hence there was room for improvement in this foundational work.

Some techniques were proposed for more robust extraction of motion layers, using sparse

feature point correspondences across frames [129,130], and deriving new motion features based

on subspace decomposition [60]. Jojic [58] presented a technique where a set of layers are

learned from a sequence using the Expectation Maximization (EM) algorithm [38], considering

both appearance (pixel intensity) and motion features (optical flow). These layers are defined as

‘flexible sprite’ in [58]. Each sprite changes its shape from frame to frame according to estimated

2D image transformations. Each frame in a sequence can then be synthesized from compositing

the various learnt sprites (layers). Temporal and spatial consistency is implicitly achieved in
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Figure 2.4: The layer representation of frames 1 (bottom left) and 25 (bottom right) in the

Calendar and Mobile sequence. Top and third rows: The layer images for the background,

calendar, train and ball for frame 1 and 25 respectively. Second and fourth rows: The alpha

mattes (α) for the corresponding images in the top and third rows. Here a pixel site s coloured

black or white correspond to αf (s) = 0 and αf (s) = 1 respectively.
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Figure 2.5: The composition of frame 1 in the Calendar and Mobile from the layer images

and the alpha mattes. The depth ordering determines how the pixels from the various layers

occlude each other.

this technique since the sprite maintains a consistent appearance throughout an image sequence.

However, this technique is only effective on sequences where the motion of the objects can be

approximated with parametric models.

Prior to Jojic [58], Ayer [9] and Sawhney [105] both presented techniques that also utilized

EM for determining motion layers using optical flow. Smith [109] identified that these EM based

approaches only work well when the motion of the objects in a sequence are very distinct. If the

motions of the objects are quite close, the EM algorithm may fail to converge when estimating

the layers. This non-convergence leads to the overall failure of the segmentation process. Also

most of these approaches are prone to local minima, namely those described in [32,58,105,116],

that use EM or variational methods for learning the parameters of the layers.

Another EM based approach was proposed by Weiss [128], where a Markov Random Field

[48] (MRF) model was used to encourage label smoothness in the assignment of pixel to the

layers. Employing MRFs for enforcing spatial smoothness is common in a lot of approaches

[34,40,64,79–81]. Boykov [25,135] provided a convenient way of finding the optimal solution to

MRF problems using graphs (Graphcuts). Hence researchers [30, 56, 131] in the 2000s started

formulating the layer segmentation problem in MAP-MRF frameworks which were then solved

with Graphcuts.

The work of Kumar [64] is similar in some ways to the approach of Jojic [58]. However,
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Kumar uses a MAP-MRF framework which is solved with loopy belief propagation. Also unlike

Jojic, Kumar has more tolerance for the change in motion and appearance of the layers over the

duration of a sequence (flexible sprites).

Criminisi [33] proposed a real-time layer-based technique that used a Conditional Random

Field (CRF) [65] and a second order Hidden Markov Model prior to enforce spatial and tem-

poral smoothness respectively. CRFs play a similar role to MRFs, except they are not prone

to the label bias problem [65]. Hence the use of CRFs instead of MRFs should provide better

segmentations. However the results of Criminisi [33] were not significantly better than previ-

ous layer-based techniques. This was probably because Criminisi’s approach had a real-time

constraint, where future frames are not available for the current segmentation.

2.3.1.1 Two Layers

Determining the optimal number of layers for a sequence is a challenging task. Hence some

techniques simply assume a two layer representation [16,34,62,82]. Here one layer represent the

background, and all other objects are assigned to the other layer (foreground). The motion of

the background layer is assumed to be the estimated global motion. All pixels which do not

follow the motion of the background, are assigned to the foreground layer.

The two layer technique by Kokaram [62] in 2005 is typical of these two layer approaches. It

has been implemented in a software package called NUKE developed by The Foundry [2]. The

algorithm is included in the MotionMatte plugin bundled into version 4.7 and all subsequent

versions of NUKE. We will use this technique as a baseline to compare performance later.

Kokaram [62] presented a Bayesian framework where the likelihood design was based on

motion compensated displaced frame differences (DFDs) for the current frame with respect

to multiple past and future frames. The corresponding past and future frames were motion

compensated with respect to the motion of the background layer. The motion of this layer was

assumed to be the global motion, and this motion was estimated with a technique in [63] which

disregards the motion of the foreground. The likelihood design here constrains the alpha value

αf (s) for pixel site s at frame f to be 1 (foreground) when the motion compensated DFDs for

this site are large in both future and past temporal directions. Spatial smoothness was injected

via an MRF prior. The MAP estimates for the binary alpha mattes were then generated using

the Iterated Conditional Modes (ICM) algorithm [17].

2.3.2 Region Merging and Hierarchical Clustering Techniques

Motion layers extraction using optical flow [53] can be erroneous at the boundaries of objects.

These undesired errors are inherited from use of optical flow. It is well known that incorrect

optical flow fields usually correspond to image regions that have been revealed or occluded.

These image regions naturally occur at the boundaries of objects, as these objects move at

relative depths to each other in the image plane.
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To overcome the errors at the boundaries of motion layers inherited from the use of optical

flow, some researchers have proposed other unsupervised techniques. Some of these techniques

can be placed into two categories, which we define as region merging and hierarchical clustering

techniques.

Region merging approaches [4, 39, 78] generally perform two separate motion and colour

segmentation [28] processes. It is assumed that the colour segments are almost always a subset

of motion segments. That is, the majority of the pixels in a colour segment usually correspond to

one motion segment. Unlike the boundaries between motion segments, the boundaries between

the colour segments are assumed to be more closely related to the actual object boundaries

in an image. Hence the colour segments are combined in a strategic way using the motion

segments as guides. These combined colour segments represent the final segmentation, in which

the boundaries of the objects are better defined compared to those in the motion segmentation

result.

Obviously region merging techniques fail when the foreground and background colours are

similar, since the colour segments would extend across both the foreground and background

image regions. There is also a dependence in these techniques on the quality of the motion

segmentation step. Here a poor motion segmentation will lead to a poor final segmentation.

2.3.2.1 Hierarchical Clustering

Hierarchical clustering techniques [50, 85, 86] treat an image sequence as a 3D spatiotemporal

volume [61], and typically use a variant of the Mean shift algorithm [28] for segmentation [37,

126] based on colour only. These techniques started to emerged in the early 2000s, with the

improvement in the amount of computational resources available in standard computers. These

approaches require a significant amount of memory since all the video data usually need to be

manipulated at once.

The approach presented by Grundmann [50] in 2010 is a typical example of a hierarchical

clustering technique. Grundmann [50] extended an image segmentation technique by Felzen-

szwalb [41] to handle the segmentation of videos. In the work of Felzenszwalb [41] an image is

segmented by using a graph-based clustering technique. The pixels in an image are the nodes in a

derived graph structure. In this graph each pixel site is connected to its 8 immediate neighbours

via edges. Edge weights are derived from per-pixel normalized colour differences. Subsequently,

pixels are merged into image regions by traversing the edges and evaluating whether the edge

weights are smaller than some estimated local thresholds. These thresholds are generated ac-

cording to local image texture. The final set of image regions constitute the segmentation.

Grundmann [50] applied the technique of Felzenszwalb [41] to image sequences by defining

a spatiotemporal neighbourhood for each pixel. The neighbourhood of each pixel is set to the

26 immediate neighbours in the spatial and temporal dimensions. In the temporal dimension,

the neighbours are located along motion trajectories obtained from optical flow [53]. The local
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Figure 2.6: Segmentation results taken the paper by Grundmann [50]. Shown are two frames

from four sequences with their corresponding segmentations. The coherent appearance regions

are coloured in a similar ways for the segmentations of each sequence. For example, the face

of the actor in the bottom row is coloured orange in both segmentations. Top and second

rows: A sequence of a water-skier and an America football game respectively. Third row:

A sequence from the movie Public Enemies, © 2009 Universal Pictures. Bottom row: A

sequence from the movie No Country for Old Men, © 2007 Miramax Films.

thresholds for merging are varied to produce a tree of various segmentation levels. Here small

conservative thresholds over segment the sequence, while large thresholds have the opposite ef-

fect. Therefore as we move down this tree the sequence become more segmented (over segmented

at the lowest level). The idea is that the user can then select the level of segmentation required

from those in the generated segmentation tree.

The implementation of Grundmann [50] is quite sophisticated in order to work around com-

putational memory issues. Fig. 2.6 shows the segmentations reported by Grundmann [50] on four

image sequences. Note here that only the segmentations at a selected level in the segmentation

tree are shown. From these segmentations it may be observed that the technique of Grundmann

does not provide good segmentation for some of the boundaries between the objects in these

four sequences. This technique is mainly dependent on appearance (colour) information, hence

it suffers from not utilizing motion information in a useful way.

Of course these ideas can be extended to exploit motion itself as a feature but memory then

becomes an even bigger issue.
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2.4 Supervised Techniques

As previously defined a supervised VO segmentation technique utilizes user supplied information

in order to generate high quality segmentations. The user may supply for some frames in a

sequence partially labelled mattes called trimaps, or fully segmented binary alpha mattes, which

we define as key frames. Also the user may just supply a few foreground and background paint

strokes on selected frames.

In a trimap, image regions of definite foreground (αf (s) = 1) and background (αf (s) = 0)

are labelled along with unknown regions (αf (s) = ?). The segmentation system is subsequently

required to generate alpha values for the pixels in these unknown region (αf (s) ∈ [0, 1]), thus pro-

ducing a continuous alpha matte. Note that binary and continuous alpha mattes are sometimes

referred to as ‘hard’ and ‘soft’ alpha mattes respectively in the literature. Also VO segmentation

techniques produce ‘soft’ alpha mattes for the frames in a sequence are called video matting tech-

niques. For the rest of this discussion it should be assumed that all VO segmentation techniques

mentioned produce binary (‘hard’) alpha mattes unless we specify otherwise.

2.4.1 Adaptation of Image Segmentation Techniques

Some supervised VO segmentation techniques [10, 27, 52] to date are simply adaptations of

successful interactive image (supervised) segmentation techniques [24,66,71,102,103,134] to the

problem of segmenting video sequences. Wang and Cohen [125] provide a comprehensive review

of these interactive image segmentation approaches.

Operating on each individual frame of a video independently using only an interactive image

segmentation (IIS) technique would create some undesired problems. These IIS techniques

[21, 26, 67, 71, 102, 103, 124, 134] usually require that the user supplies for an image a trimap or

paint foreground and background strokes. Doing this for every frame in a video would be a

tedious task. An additional problem is that slight differences in the extraction of the foreground

from frame to frame would lead to obvious temporal inconsistencies, especially along the edges

of the foreground.

Unlike still image segmentation techniques, VO segmentation techniques can exploit motion

information. Each video frame is temporally correlated with the nearby frames. Hence the

challenge for supervised VO segmentation techniques is to accurately identify foreground regions

with minimal user assistance by utilizing all available motion and appearance information.

Chuang et al. [27] in 2002 proposed a video matting technique based on a Bayesian image

matting technique [134] they presented earlier. In this technique [27] optical flow was used

to propagate a set of user drawn trimap to the unspecified frames in a sequence. A clean

background plate was estimated as well to assist in the segmentation process. With a trimap

propagated to every frame, the Bayesian image matting technique [134] which utilized this clean

plate for estimating background colours was then used to generate alpha mattes for each frame

in a sequence. The performance of this VO segmentation technique is limited by the accuracy of
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the optical flow estimation, which is often quite erroneous. Furthermore, the background plate

estimation assumes the background undergoes only planar-perspective transformation, which is

not true of most real world sequences of interest. This technique would fail if the objects in the

background are moving.

2.4.2 Propagation of Binary Mattes

A subcategory of supervised VO segmentation techniques [11, 12, 70, 100, 123] require the user

to supply fully segmented binary alpha mattes (key frames) for selected frames in a sequence.

The segmentation system then automatically produces binary alpha mattes for the remaining

frames in the sequence by propagating the labels in these key frame in some way. The binary

alpha mattes are then generally used to automatically generate trimaps for each frame in a

sequence. Once these trimaps are estimated, an image matting technique can then be used to

create continuous (‘soft’) alpha mattes. These VO segmentation techniques [11, 12, 70, 100, 123]

reduces the work load of the user, as trimaps do not have to be specified manually for every frame

in a sequence. Hence less user interactions are required compared to the previously discussed

approaches that are adaptations of image segmentation techniques.

Li et al. [70] in 2005 extended the pixel-level 3D Graph cut technique proposed by Boykov [26]

to better handle video sequences. They use three main steps in their technique, which are a 3D

Graph cut binary segmentation, tracking user defined local image windows for correcting the

binary segmentation, and extracting continuous alpha mattes with an image matting technique

[107]. The first two steps are used to produce accurate binary alpha mattes, from which trimaps

are generated for the final image matting step. The user initially supplies fully segmented binary

key frames for some of the frames in a sequence. These key frames are articulated in the 3D

Graph cut segmentation step, and the user then corrects any undesired segmentation errors.

In the next two sections we will discuss the Video SnapCut [12] and Feature-Cut [100]

techniques, as we compare our work to both techniques later in this thesis. Both techniques

proposed in 2009 are state of the art unsupervised VO segmentation techniques which propagate

user defined binary alpha mattes.

2.4.2.1 Video SnapCut

The Video SnapCut segmentation algorithm was proposed by Bai et al. [12]. An implementation

of this algorithm is bundled into Adobe After Effects CS5 [1] as a matting tool called Roto

Brush.

This algorithm uses local motion information to propagate appearance information from

a segmented frame t to the current unsegmented frame t + 1. This appearance information

is captured in overlapping rectangular windows of fixed sizes placed along the contour of the

foreground. These local windows are defined as local classifiers in the paper [12]. The top row

of fig. 2.7 shows examples of these local classifiers W t
k as yellow squares. The local classifiers
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Figure 2.7: This figure is taken from the paper by Bai et al. [12] which is an illustration of

the local classifiers proposed in the paper. (a): Overlapping classifiers (yellow squares) are

initialized at frame t along the contour of the foreground (red curve). (b): These classifiers

are then propagated onto the next frame using local motion information. (c): Each classifier

contains a local colour and shape model, which are initialized at frame t and refined if necessary

at frame t + 1. (d): Local foreground/background classification results are then combined to

generate a global likelihood for all the pixels in frame t + 1. (e): The final segmentation for

frame t+ 1. Video courtesy of Artbeats.

W t
k in frame t (left) and propagated to the current frame t+1 (right) using motion information

obtained from optical flow [53] and SIFT [73] feature matching. Here the local classifiers W t
k

(window) in frame t correspond to W t+1
k in frame t+1. In each local classifier colour and shape

models (middle row of fig. 2.7) are generated for the foreground/background image region inside

the corresponding window. These models are then used in the design of a posterior distribution

for the alpha labels for the current frame t + 1. Finally, a MAP estimate for the binary alpha

matte for this frame t+1 is generated using a Graph cut [135] solution. The bottom row of fig. 2.7

shows an example of the likelihood probability map on the left (d) for the frame segmented on

the right (e).

In the Video SnapCut segmentation approach [12], the user fully segments the first frame (1st
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Figure 2.8: This figure is taken from the paper [100] by Ring. This is an example of propagating

a user define alpha matte for frame 1 to the an unsegmented 5th frame in a sequence of a

Polo player. Using feature correspondences (green lines) between these frames, regions of the

known matte at frame 1 are ‘pushed’ into frame 5. Each of the blue and red circles represent

the neighbourhoods of the respective SIFT features that have been matched in both frames. The

partial matte in frame 5 is missing some foreground regions, but the subsequent optimization

process (MAP estimation for labels) usually is able to fill in these missing region.

key frame) in a sequence, and all subsequent frames are processed in the order 2 to T (where T

is the number of frames in the sequence). The user is allowed to correct any segmentation errors

generated for the current frame t+ 1, and by default these changes only affect the frames after

t + 1 (forward propagation), i.e. frames t + 2, . . . , T . However the user can make the current

frame t + 1 a key frame, and allow previous frames (2 to t) to be influenced by this key frame

(backward propagation).

It will be shown later in this thesis that this technique generally performs well. However,

it has some issues with distinguishing revealed background regions from legitimate foreground

regions.

2.4.2.2 Feature-Cut

The Feature-Cut segmentation algorithm proposed by Ring [100], uses SIFT features matches

between frames to propagate a collection of user key frames to the unsegmented frames in a

sequence. Feature matches are used to identify corresponding image regions between a key

frame and the current unsegmented frame of interest. These key frames contain foreground

(αf (s) = 1) and background labels (αf (s) = 0), and the image region correspondences are used

to propagate these labels to the unsegmented frames. Fig. 2.8 demonstrates this idea, using two
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frames from a sequence of a Polo player. Here the user supplies a binary alpha matte for frame

1 (left), and this mattes is ‘pushed’ into the unsegmented 5th frame (right). At each pixel site s

in the unsegmented frame f , votes are accumulated whether site s is foreground or background.

These votes are accumulated from all the user supplied alpha mattes within a temporal window

of the the current unsegmented frame f . These foreground/background votes for each pixel site

are utilized in the design of a likelihood distribution. Ring then proceeds to generate a MAP

estimate of the binary alpha matte for frame f , using a Graph cut solution, and a MRF prior

distribution.

This technique does not utilize appearance information in the traditional sense of colour

and/or shape modelling. The author use the intensity of matched pixels in SIFT neighbourhoods

to influence the foreground/background votes. Hence, this technique has some issues with

the temporal consistency of the segmentations produced from frame to frame. Also for image

sequences with low texture there are usually not enough SIFT feature matches between the

frames for effective matte propagations. Therefore poor segmentations are usually produced for

sequences with relatively low image texture.

2.5 Sparse Video Object Segmentation

The techniques discussed previously produce a label for every pixel in a sequence. We define

these techniques as producing a dense segmentation. However, there is another category of video

object segmentation techniques that only label a sparse set of pixel sites in a sequence. We define

these techniques as producing a sparse segmentation. In general, these sparse segmentation

techniques utilize feature point trajectories such as Kanade-Lucas-Tomasi (KLT) tracks [55] for

estimating the various coherent regions (layers) in a sequence. Hence these techniques explicitly

use only motion information.

Fig. 2.9 shows examples of dense (center) and sparse (right) segmentations for frame 5 in

the Calendar and Mobile sequence. The spatial locations of the trajectories at frame 5 are in-

dicated with coloured ‘dots’ in the sparse segmentation on the right. The motion history of the

trajectories are indicated with lines that extend from the corresponding ‘dots’. Both segmenta-

tions (dense and sparse) were produced with unsupervised techniques we will propose later in

this thesis. The dense segmentation is estimated from the sparse segmentation by associating

in some way the pixels in a sequence with the various trajectory groups (bundles). The corre-

sponding sparse and dense image regions are coloured in a similar way in both segmentations.

For example the pixels and trajectories for the calendar are coloured yellow in the dense and

sparse segmentations respectively.

Sparse VO segmentation techniques are usually used in applications where the objects in

a sequence do not have to be accurately delineated. Examples of these applications are visual

surveillance [5, 15, 89], human behaviour analysis [77] and video summarization [49, 108]. How-

ever, Wills et al. [129,130] in 2003 proposed a dense segmentation technique that first generates
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Figure 2.9: Examples of the dense (center) and sparse (right) segmentations of frame 5 (left)

in the Calendar and Mobile sequence. The dense segmentation is produced using the sparse

segmentation in a technique we will propose later in this thesis. Corresponding sparse and dense

segmentation regions are coloured in a similar way. Right: The sparse segmentation for frame

5, where the spatial location of the trajectories are indicated with coloured dots. The line that

extends from each dots show the motion history of the corresponding trajectory.

a sparse segmentation for ‘guiding’ this dense segmentation process. Here the objects in the

final dense segmentation were of a reasonable quality compared to other equivalent unsupervised

VO segmentations techniques. Wills et al. [129] were the first to propose this two step idea,

where a sparse and then a dense segmentation is performed.

For the technique of Wills et al. [129], the motion layers were estimated in the sparse seg-

mentation step, and subsequently the pixels in a sequence were assigned to these layers in the

final dense segmentation step. Feature point trajectories are generated for the sparse segmenta-

tion step by matching Förstner interest points [45] across adjacent frames in a sequence. These

trajectories were then clustered using a variant RANSAC algorithm [42], where each cluster

represents a specific motion layer. The motion models for the layers were proven to be more

reliable than those obtained with a technique that uses a dense optical flow field instead of sparse

point trajectories. This idea was supported by Xiao [56] in 2005, who presented a similar two

step (sparse then dense) approach.

2.5.1 Categories for Sparse Techniques

We define two categories for sparse VO segmentation techniques proposed to date, where these

categories are 2D and 3D segmentation techniques. In a sparse 3D segmentation technique the

feature point trajectories must be labelled according to the object that generated them. That is,

if there are N objects in a sequence, each trajectory takes a label n ∈ {1 : N} according to the

object it corresponds to. Hence all the trajectories with label n correspond to the same object.

Fig. 2.10 shows an ideal sparse 3D segmentation (center) for a sequence of a truck driving on a

road. The truck and background are the two objects in this sequence, and the trajectories for

both objects are labelled yellow and red respectively.



2.5. Sparse Video Object Segmentation 27

Figure 2.10: Left: A truck shown at frames 1 in a motion sequence from the Hopkins dataset

[117] available online. Some roughly planar surfaces on the truck are highlighted in red, green,

yellow, purple, and cyan. Center: The desired labels for a 3D segmentation technique. The

points along the trajectories for the background and truck are red and yellow dots respectively.

Right: The trajectory segmentation result produced by our proposed sparse segmentation

technique. Each trajectory bundle shown in a different colour roughly represents a single surface

of the truck.

A sparse 3D segmentation technique can be considered to group trajectories of similar 3D

motion. However, a 2D sparse segmentation technique groups trajectories of coherent 2D mo-

tion in the image plane, according to a defined motion model (e.g. Affine). The number of 2D

trajectory groups for a sequence may not correspond to the number of 3D objects. The illus-

tration on the right of fig. 2.10 shows the 2D segmentation for the ‘truck’ sequence produced

by a technique we will propose later in this thesis. Here each of the 10 trajectory group labels

is indicated with a different colour. The perspective of the scene with respect to the camera

causes different image regions to have varying 2D motion in the image plane. For example the

front of the truck moves faster than the side in the image plane.

2.5.2 Sparse 2D Segmentation Techniques

As previously mentioned, sparse 2D segmentation techniques group feature point trajectories

with coherent 2D motion in the image plane according to a specified motion model. The sparse

segmentation performed by Wills [129,130] discussed previously is the earliest example of these

techniques. Even though there were earlier techniques that segment feature point trajectories

in some way, we are only interested in techniques that are in some way applicable to the dense

segmentation problem. Therefore we will only discuss techniques that fit this criterion.

Two of these techniques were proposed by Pundlik [94,95] and Fradet [46] in 2007 and 2009

respectively. We will use these techniques as baselines for comparing the performance of our

proposed sparse segmentation technique later.
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2.5.2.1 Affine Region Growing

The approach proposed by Pundlik groups KLT [55] trajectories with coherent motion according

to Affine motion models. We define each group of trajectories with coherent motion as a trajec-

tory bundle. Each trajectory bundle represents a single motion layer. The segmentation system

of Pundlik is causal, therefore in his design the segmentation for the current frame depends only

on the trajectories that exist for the current frame f , and the previous frame f − 1.

Let there be T trajectories Xt, t ∈ {1 : T}, where Xt is a trajectory that exist at both the

current and previous frames at the minimum. Pundlik determines the neighbourhood structure

for these spare trajectories Xt by performing Delaunay triangulations on the spatial locations of

these trajectories at the previous frame f − 1. A trajectory bundle ( motion layer) is discovered

by first selecting a trajectory at random and examining if its motion is similar to the motion of its

neighbouring trajectories. This trajectory and its neighbours are grouped together if the defined

error for each trajectory using the Affine motion model is below a threshold. The group is then

allowed to expand until no more neighbouring trajectories can be placed in the group. When

the first group/bundle is completely discovered, another ungrouped trajectory Xt is selected at

random, and the process is repeated to discover the other bundles.

At every frame f ∈ {2 : F} trajectory bundles are discovered in the manner described above,

where F is the number of frames in a sequence. Pundlik tries to assign any new trajectories at

frame f to the bundles previously discovered in frame f−1 if this is possible, else new bundles are

formed. This ad hoc method of identifying trajectory bundles leads to temporal inconsistencies

in the motion layers discovered. Also just using motion information over two adjacent frame f

and f − 1 at a time does not allow this technique to discriminate well between the motions of

the various trajectory bundles (motion layers).

2.5.2.2 J-Linkage

Fradet [46] proposed a technique where Affine motion models were estimated for a sequence

using the J-Linkage algorithm [112]. The J-Linkage algorithm presented by Toldo [112] in 2008

is a model fitting algorithm similar to RANSAC [42], where the aim is to identify a set of models

that describe some given noisy data that may contain outliers.

Using the J-Linkage algorithm a set of random Affine motion models are generated from

the trajectories (KLT [55] trajectories are used for most sequences) with the longest duration

in a sequence. The models that best explain the observed trajectory data are kept. Each model

kept describes the motion of a particular trajectory bundle. Hence a trajectory Xt is assigned

to bundle n if the corresponding motion for bundle n describes the motion of trajectory Xt the

best out of all the bundles.

In this technique no spatial smoothness strategy is used in assigning the trajectories to the

bundles, which results in spatial inconsistencies. Also, the motion models are estimated using

the trajectories with the longest durations in a sequence, which means the motion of trajectories
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with short durations are not described well. These short trajectories usually correspond to non-

rigid objects. Hence, this technique may not provide motion layers that describe non-rigid

motions in a useful way.

2.5.3 Sparse 3D Segmentation Techniques

Sparse 3D segmentation techniques [59,97,119,132] group trajectories with coherent 3D motion.

In general these techniques derive a motion feature space by factorizing (usually with SVD) a

matrix formed from the spatial locations of the trajectories in a sequence. The idea is that

trajectories that have similar 3D motion reside in a low dimensional subspace in this derived

feature space. Hence the solution to the segmentation problem is locating each subspace cor-

responding to an independently moving 3D object. To locate these subspaces, a clustering or

polynomial fitting technique is usually applied to the trajectory points in the derived feature

space. Tron [117] provides a comprehensive review of these techniques.

These 3D segmentation techniques have limited applications, since they work only for se-

quences with rigidly moving objects. Also the quality of the segmentations produced by these

techniques deteriorate as the number of objects with different motions increases in a sequence.

To date, the state-of-the-art 3D segmentation techniques can successfully segment sequences

with a maximum of three independently moving objects. Another issue with these techniques

is that the number of objects in the sequence most be specified by a user.

2.5.4 Spatial Inference from Sparse Segmentations

It seems sensible that doing a sparse trajectory segmentation should be a powerful step in

a subsequent dense pixel segmentation of an image sequence. In 2008 we began to explore

this idea for a visual surveillance application [15] where inaccurate foreground delineation was

tolerable. We only wanted to detect if a new object had been introduced in an outdoor scene

of interest. Fig. 2.11 shows two sequences; Dumping Pedestrian (687 frames) and Dumping Car

(1099 frames) which are typical examples of the type of sequences we are interested in for this

surveillance application. In both sequences black garbage bags are placed into the respective

scenes. We are able to detect the presence of these new objects from the segmentations performed

by our technique.

First, the background is modelled as a collection of sparse SIFT features B learnt from a

sequence of training image, which is typically 100 frames of only the background scene. For a

frame f that occurs when the surveillance system is online and monitoring a scene, a set of SIFT

features Sf is extracted from this frame. The features for the foreground at frame f are assumed

to be those in Sf that do not have a matching feature in the learnt background feature set B.
The second row of fig. 2.12 shows the foreground (red ‘×’) and background (yellow ‘.’) features

detected for frames 283 (left), 529 (center) and 278 (right) in the Dumping Pedestrian sequence.

Here the background features are those in the extracted feature set Sf for frame f that have
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Figure 2.11: Example sequences our surveillance application is expected to segment. Top row:

Frames 1, 321 and 613 in the Dumping Pedestrian sequence of 687 frames. In this sequence a

pedestrian enters and exits the scene leaving a black garbage bag behind. Bottom row: Frames

1, 545 and 1097 in the Dumping Car sequence of 1099 frames. In this sequence a car enters

and exits the scene leaving a small black garbage bag behind.

matching features in the background model. The top row shows the corresponding frames for

the feature maps in the second row. Note that there are features classified as foreground that

actually correspond to background objects. These features are generated due to environmental

changes subsequent to the background modelling step. Hence these features are not included

in the background model. However, we design a foreground pseudo-likelihood map which helps

to identify legitimate foreground features from these new background features generated due to

environmental changes.

The pseudo-likelihood map generated for frame f considers the spatial locations of the fore-

ground and background features. The idea is that an image region is more likely to be foreground

if it has a high density of foreground features. Also this image region must have a low density of

background features as well. The foreground and background features are superimposed on these

foreground pseudo-likelihood maps in the second row of fig. 2.12. Here high and low foreground

likelihood values are coloured in bright orange and black respectively.

2.5.4.1 Tracking Foreground Regions

We apply a threshold to the pseudo-likelihood map in order to identify blobs of foreground pix-

els. These foreground blobs are then tracked using a Viterbi tracking strategy proposed by Pitie
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τ = 229 τ = 256 τ = 61

τ = 226 τ = 124

Figure 2.12: Top row: Frames 283 (left), 529 (center) and 278 (right) in the Dumping Pedes-

trian sequence. Second row: Foreground (×) and background (.) feature points superimposed

on a foreground pseudo-likelihood map, for the frames in the top row. In this pseudo-likelihood

map high and low foreground likelihoods are coloured bright orange and black respectively.

Third row: Blob sequences for the Dumping Pedestrian sequence, superimposed on the

frames in the top row. The background regions are shaded black, while the foreground is

extracted using the foreground/background matte obtained from applying a threshold to the

pseudo-likelihood map in the second row. The arrows indicate the transition of the centers of

the blobs for a blob trajectory which is τ frames long. The blobs shown (circled) occur at the

temporal middle frame in the respective blob trajectories, where the centers of the starting and

ending blobs in each trajectory are indicated with ×s and +s respectively. Bottom row: Blob

trajectories for the Dumping Car sequence.
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et al. [90]. Hence we obtain trajectories of foreground and background blobs from tracking with

the Viterbi algorithm. We are able to differentiate between foreground and background blob

trajectories based on their temporal durations. In general, unlike foreground trajectories, back-

ground trajectories do not exist for more than 20 frames. Hence a blob trajectory is considered

to correspond to a legitimate foreground object if it persists for more than 20 frames.

The third row of fig. 2.12 shows the generated foreground blob trajectories for the Dumping

Pedestrian sequence. Here the length in frames of each blob trajectory is τ . For example

τ = 229 for the blob trajectory corresponding to the pedestrian (left). The centers of the

starting and ending blobs in each trajectory are indicated with a green × and a yellow +

respectively. The red arrows indicate the displacement between the centers of the blobs in a

sequence from frame to frame. We correctly estimate trajectories for the pedestrian and the

garbage bag. However, a foreground blob trajectory was generated for a background image

region, because this region corresponded to a background object that was stationary during

background modelling, but subsequently started to move. This is an understandable result, and

some cues other than temporal duration would have to be used to distinguish this trajectory from

a legitimate foreground trajectory. For a sequence like the Dumping Car sequence (fig. 2.11)

where the background objects remain roughly stationary during background modelling and

online scene monitoring, we generate the correct number of foreground blob trajectories. The

bottom row of fig. 2.12 shows the two correctly detected foreground blob trajectories for the

Dumping Car sequence. These blob trajectories correspond to the car (left) and garbage bag

(right) respectively.

2.6 Summary

VO segmentation techniques proposed to date generally struggle to impose temporal and spatial

consistency in the segmentations produced. Previous work has shown that using long term

feature point trajectories can help to introduce spatiotemporal consistency into the segmentation

process. Hence our focus in this thesis is to design VO segmentation techniques with better

spatiotemporal consistency. Our sparse to dense segmentation technique applied to the problem

of visual surveillance, proved that the spatial locations of sparse features can be a reliable cue

for discerning the general vicinity of the objects in a scene. We therefore propose a technique

later that utilizes sparse point trajectories for estimating motion layers, and we design a new

likelihood term that considers the spatial locations of the trajectories in each frame. The spatial

locations of trajectories were never used in previous work to influence a dense segmentation

process.
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A Viterbi Tracker for Local Features

The long term tracking of sparse local features in an image is important for many applications

including video object segmentation, camera calibration for stereo applications, camera or global

motion estimation and people surveillance. The majority of existing tracking frameworks are

based on some kind of prediction/correction idea e.g. KLT [13] and Particle Filters [7]. However,

given a careful selection of interest points throughout the sequence, the problem of tracking can

be solved with the Viterbi algorithm.

This chapter introduces a novel approach to interest point selection for tracking using the

Mean Shift algorithm over short time windows. The resulting points are then articulated within

a Viterbi algorithm for creating very long term tracking data. The tracks are shown to be more

accurate than traditional KLT implementations and also do not suffer from accumulation of

error with time.

The tracking of local regions involves matching them in adjacent images throughout a se-

quence. It is widely accepted that the ideal is to generate long contiguous tracks. Such tracking

data can then be used for camera calibration, surveillance [15], and sparse to fine motion esti-

mation or segmentation [95]. Most point tracking systems are two step: first selecting interest

points and then tracking the image material around those points through the sequence. The

popular KLT tracker [13], and various Particle trackers [7] follow this idea. However, given

that it is possible to locate interest points in all the frames of the sequence, it is sensible to

constrain a tracker to match only that image material around those detected interest points.

Unfortunately, Mikolajczyk [75] reports that matching local descriptors is unreliable in terms of

recall vs precision, since they are only invariant to a few classes of image transformations (affine

33
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for example) encountered in practice. However that experiment was conducted using direct

SIFT [73] descriptor matching without any constraints about motion or local image appearance

information.

In this work we propose a strategy for selecting interest points more suitable for tracking,

and we design a more appropriate feature vector using a colour quantisation step. The idea is

first to process the existing interest points to generate a set of 3-frame long seed tracks of high

confidence, using a low cost process. The tracking problem is then to extend these seeds using

the available interest points. That is best solved with the Viterbi algorithm [43]. This idea

enables long term tracking and also is less prone to accumulation of tracking error with time.

We discuss track seed selection first, then present the feature vector design and finally construct

the elements of the Viterbi tracker.

3.1 Selecting seed tracks

We adopt the use of the SIFT interest point detector [73] for identifying interest points in each

frame of an image sequence. It is advantageous in any tracker to be able to select points which

are known to be trackable, before attempting to generate long term tracking data. This is

not attainable in practice, but what is achievable is to generate a set of short, high confidence

tracks before proceeding to long term tracking. To do this we make the interesting observation

that by tightly clustering SIFT descriptors (using a fast approximation to the Mean Shift (MS)

algorithm [91]) associated with the SIFT interest points over 3 frames, each cluster automatically

provides a seed path. The idea here is that by using a small kernel bandwidth (0.3), the SIFT

descriptors that are clustered together are so close in the feature space that they can potentially

arise from the same point in each of the three frames. In addition, points in the cluster should

come from different frames, and be separated by less than D pels hence enforcing a maximum

motion constraint. After MS clustering therefore, those clusters containing exactly 3 points and

where the points in the cluster are separated by less than D=50 pels in the image plane, are

selected as a seed track. In figure 3.1 a simplified view of the 128-dimensional SIFT descriptor

space is shown to illustrate the idea.

Seed tracks are generated initially using frame windows of 3 frames with an overlap of 1

frame. Hence the first two frame windows have image indexes of (1, 2, 3), and (3, 4, 5). Where

the end of one 3 frame path coincides with the start of the next 3 frame path, the paths are

collated into a new longer seed path. This is performed over the entire sequence resulting in seed

paths of arbitrary lengths. The next step is to extend the paths using more region information

as well as motion constraints. The appearance information is presented below.
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Figure 3.1: Simplified 2-dimensional illustration of the clustering of the descriptor space for the

image subsequence (f, f + 1, f + 2). The size of the clusters are determined by the Mean Shift

kernel bandwidth (radius of circle). Accepted clusters (1,3,8,9) contain only a single descriptor

from all three images f, f + 1 and f + 2.

3.2 The Feature Vector and Tracking Preliminaries

In order to describe the local region appearance, a feature vector v = (x, s, g, c) is associated

with each interest point. The vector contains the position of the point x = (x, y)T , scale and

dominant orientation from the SIFT descriptor, s = (σ o)T , the 128 point SIFT descriptor itself

g and an adaptively quantised colour vector c (discussed later).

The ith track, P i
f , that starts in frame f is now considered to be a sequence of matched

feature vectors vi
f . Figure 3.3 shows this situation for the seed tracks from the previous step.

The track P3
f , for instance, consists of the feature vectors

(
v3
f , v3

n+1, v3
n+2

)
.

3.2.1 Colour Feature

Colour information should be collected from a region around the interest point. The size of this

region should relate somehow to the influence that local image material has on the location of

the interest point. The region should be circular (with radius r) since the detector is based on

circularly symmetric Gaussians, but depending on the scale the size of the region of interest will

change. This relationship is approximately r ≈ 11.4811σ + 2.5419 (obtained from experimenta-

tion), where σ is the scale of the local region, obtained from the SIFT interest point detector.

With this approximation of r, a pixel at site (u, v) is defined to be in the neighbourhood of an
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Figure 3.2: Examples of local regions (‘dot’ indicate center of region (x y) ) and their corre-

sponding circular neighbourhoods. Note that only a few regions are shown at selected scales for

clarity of illustration.

interest point at (x, y) if (x− u)2 + (y − v)2 ≤ r2.

Figure 3.2 shows example local regions and their corresponding neighbourhoods. The colour

feature vector c is a normalized histogram of quantized colours in this neighbourhood, using the

YUV colour space. It is important to note that the quantization scheme is non-linear and is

discussed next. Note that spatiograms suggested by Birchfield [20] could be used as a simplified

alternative for creating this vector.

3.2.1.1 Colour Space Quantization

Figure 3.2 shows that the neighbourhoods of the local regions overlap substantially and the union

of these regions does not cover the whole image. Therefore some colours are more essential than

others in representing these regions. By assuming that the colour profile of a local neighbourhood

only changes slightly when tracked over a frame window, due to noise and photometric effects,

it is sensible to express the region colours using only the colours in the union of all these local

regions. Colours outside these regions are irrelevant. Furthermore, assuming that the colour

content does not change wildly over a shot, a compact colour representation derived from the

first few frames of the sequence would be sufficient to describe colour content over the subsequent

frames. This compact representation is achieved by adaptive colour space quantisation.

Colour space quantization is a well researched topic [54,84,106]. There are two steps: palette

design, in which a reduced number of palette colours is chosen, and pixel mapping in which each

colour pixel is assigned to one of the colours in the palette. In this work we first create palettes

for all local neighbourhoods, and then combine them to obtain a global palette, which is then

used to generate the colour feature vectors c. The first 3-frame window is used for quantisation

and the resulting quantised colour space is used for the whole sequence.
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Figure 3.3: Example of a trellis for local region tracking. Each node (circle) represents a feature

vector vα
β for a local region, where β is the image at which the region was detected, and α is the

track index. Three overlapping frame windows are shown (f, f + 1, f + 2),(f + 2, f + 3, f + 4),

and (f + 4, f + 5, f + 6).

Local palettes are created by modelling the spatiotemporal volume associated with each 3-

frame path P i
1 as a GMM (Gaussian Mixture Model). Because the neighbourhoods associated

with each vector in P i
1 is variable, a fixed number of pixel samples (5043) are drawn randomly

from these regions and that set is used for modelling. This allows a balance in computational

load for GMM parameter estimation. The p.d.f. of the colour samples ci generated from P i
1 is

therefore as follows.

f i
Ki

(ci) =

Ki∑

j=1

Πi
j N

(
ci; θ

i
j

)
(3.1)

Where θij consists of a mean µi
j , covarianceR

i
j , mixing weight Πi

j for each ofKi components of the

GMM. These parameters are estimated via Expectation Maximisation using an implementation

by Bouman [22], based on ideas from Redner [98] and the number of mixture components Ki is

estimated using the minimum description length (MDL) criteria of Rissanen [101]. The mean

components µi
j , {j = 1, 2, . . . ,Ki} of this GMM constitute the local palette for the tracked region

along path P i
1. Each track yields Ki mixture components

(
µi
1,R

i
1

)
,
(
µi
2,R

i
2

)
, . . . ,

(
µi
Ki
,Ri

Ki

)
.

The global palette is then extracted from the local palettes by MS clustering ([5 2 2] ker-

nel bandwidth (see section 4.1.3 for definition) for [Y U V ]) of all the local palettes. Each

of the resulting G clusters then contains a set of associated mixture components
(
µg
j ,R

g
j

)
:

j = {1, 2, . . . ,Kg}, where g = {1, 2, . . . , G}, and Kg is the number local palettes in each cluster.

This MS step in effect shows which of the local palettes are similar. Hence each of these clusters
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can be represented by a single Gaussian with parameters (µg,Rg) estimated as follows.

µg =
1

Kg

Kg∑

j=1

µg
j , Rg =

1

Kg

Kg∑

j=1

{
Rg

j + µg
jµ

g
j
T
}
− µgµg

T (3.2)

These G models now form the global palette. A global palette colour g is then defined as having

parameters θg = (µg,Rg).

Consider that a pixel site (x, y) has an observed colour vector ξ. An ML estimate for the

quantised colour g to be assigned to that site is generated by choosing g to maximize the log

energy eg (ξ) as follows.

eg (ξ) = −ln
{
(2π)3/2 |Rg|1/2

}
− 0.5 (ξ − µg)

T Rg
−1 (ξ − µg) (3.3)

Using all the global palette colours can produce very sparse colour vectors c, since only a

few of these colours occur in each local region. To further quantise this space, colours that are

not used often from this palette can be discarded, and the retained colour space is used for the

final quantised global palette. To do this, each spatiotemporal region associated with a path P i
1

votes for a single colour gi. That colour gi is the colour that best models the entire patch region,

i.e. gi minimises the sum of eg(ξ) over the whole patch. After all the paths are processed in this

way, all colours which have no votes are discarded.

We will report later our dense and sparse segmentation results for three sequence called

Triniman, Artbeats-SP128 and Calendar and Mobile sequences. The Triniman sequence is a

dynamic outdoor scene recorded with a hand-held camcorder. The Artbeats-SP128 sequence

is a scene from an American football game. The camera is static for this sequence. Calendar

and Mobile is a well known sequence which will be used extensively through out this thesis for

reporting our results.

Fig. 3.4 shows examples of quantised frames for these three sequences. The number of colours

in the global palettes for the Triniman, Artbeats-SP128 and Calendar and Mobile sequences are

241, 181 and 127 respectively.

3.2.2 Tracking

It is now required to extend the seed paths into long term tracks using the feature vectors

associated with each interest point. An adaptation of the Viterbi algorithm [43] proposed by

Pitie [90] is used here. Figure 3.3 shows an example of a typical initial Viterbi trellis at this

stage. The states in the Viterbi algorithm at each frame are all the feature vectors of the

detected interest points which include those that are already associated with paths. Note that,

it is required to extend the tracks both forward and backward temporally. This bi-directional

temporal extension is achieved by first extending all tracks forward in time, and then reversing

the Viterbi trellis and extend the tracks forward again. The discussion that follows is therefore

applicable to both directions.
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Figure 3.4: Examples of quantised frames from theTriniman,Artbeats-SP128 andCalendar

and Mobile sequences. Top and second rows: Frames 7, 57 and 91 from the Triniman

sequence, where the original and quantised versions of these frames are shown in the top and

second rows respectively. Third and fourth rows: Frames 20, 62 and 95 from the Artbeats-

SP128 sequence, where the original and quantised versions of these frames are shown in the

third and fourth rows respectively. Fifth and bottom rows: Frames 5, 13 and 23 from the

Calendar and Mobile sequence, where the original and quantised versions of these frames are

shown in the fifth and bottom rows respectively.
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The Viterbi algorithm solves the problem of finding the best paths (in a minimum energy

sense) connecting the states in the trellis i.e. solving our point tracking problem. The energy

associated with each state (or point) in each frame depends both on the feature vector itself

as well as an energy associated with the transition between states in consecutive frames. This

framework is well understood and more information can be found here [43]. The essential

requirement however is to define a transition energy between the last state (point) of the track

vi
τ , and the Nu candidate states vu

τ+1 : u = {1, 2, . . . , Nu}, in image τ + 1. Here Nu is the

number of candidate states in the next frame τ + 1. Only feature vectors that are at the start

of a track or not associated with any track are considered to be candidates in image τ +1. This

transition energy is defined as φi
τ,τ+1

(
vu
τ+1

)
, and is expressed below.

φi
τ,τ+1

(
vu
τ+1

)
= λM

(
vu
τ+1; v

i
τ−2,τ−1,τ

)
+O

(
vu
τ+1; v

i
τ−2,τ−1,τ

)
(3.4)

M
(
vu
τ+1; v

i
τ−2,τ−1,τ

)
is a motion smoothness constraint, and O

(
vu
τ+1; v

i
τ−2,τ−1,τ

)
is dependent

on the colour, scale, and descriptor information of the track. λ is a weighting between these

energy terms.

3.2.3 Motion smoothness

When estimating future state spatial locations, it is assumed that tracks in very close proximity

to each other change their speeds at the same rate. Hence some spatial smoothness constraint

is important. For a track P i
f , with the feature vector at the end of the track being vi

τ , the

last three feature vectors
{
vi
τ−2,v

i
τ−1,v

i
τ

}
are used to predict the next possible feature vector

in image τ + 1 to be added to the track. The motion constraint M
(
vc
τ+1; v

i
τ−2,τ−1,τ

)
in (3.4)

penalizes candidate spatial locations xu
τ+1 according to their distance from the predicted spatial

location x̃i
τ+1 of the track P i

f in image τ + 1. The predicted spatial location x̃i
τ+1, is estimated

using the last known location xi
τ , and displacement xi

τ − xi
τ−1 of track P i

f , as follows

x̃i
τ+1 = xi

τ +Ai
m

(
xi
τ − xi

τ−1

)
+ η (3.5)

Here Ai
m =

(
αm
x 0
0 αm

y

)
is a displacement magnitude gain matrix, and η ∼ N (0,Ri). The

displacement gain matrix and noise covariance are estimated by using the known seed paths up

to the current frame.

A candidate Aj is generated for each path Pj
f : j = {1, 2, . . . , J} that exist over the images

τ − 2, τ − 1, τ , where J is the number of such paths. A weighted least square estimate is used to

estimate αj
x and αj

y, which incorporates path information from neighbouring paths as follows.

αj
x =

∑
k

{
w2
(j,k)|xkτ−2 − xkτ−1||xkτ−1 − xkτ |

}

∑
k

{
w2
(j,k)|xkτ−2 − xkτ−1|

2
} , αj

y =

∑
k

{
w2
(j,k)|ykτ−2 − ykτ−1||ykτ−1 − ykτ |

}

∑
k

{
w2
(j,k)|ykτ−2 − ykτ−1|

2
} (3.6)

Where w(j,k) =
1√
2πσs

exp
(
−0.5 δT δ

2σ2
s

)
, δ =

(
xk
τ−2 + xk

τ−1 + xk
τ

)
/3−

(
xj
τ−2 + xj

τ−1 + xj
τ

)
/3, and

k = {1, 2, . . . , J}. A constant spatial variance σs = 50 is used.
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Every track is now associated with a particular Ai
m by choosing that Aj from amongst the

candidate set that minimises the prediction error defined as follows.

ǫj = |xj
τ−1 − xj

τ | −Aj |xj
τ−2 − xj

τ−1| (3.7)

The covariance matrix of those prediction errors is used as an estimate for Ri. Hence the motion

smoothness constraint can be written as

M
(
vu
τ+1; v

i
τ−2,τ−1,τ

)
= −ln

{
(2π) |Ri|1/2

}
− 0.5

(
xu
τ+1 − x̃i

τ+1

)T
Ri

−1
(
xu
τ+1 − x̃i

τ+1

)
(3.8)

We are more confident of our motion energy term when a track is moving at a constant speed.

Therefore, the motion constraint energy weighting λ in (3.4) is made to be inversely proportional

the maximum of the displacement gains αm
x and αm

y in both spatial dimensions.

3.2.4 Appearance constraint

The energy associated with the feature vector itself is an appearance energy that enforces the

constraint that the appearance of the region in the next frame should be similar to the appearance

of the regions along the previous frames in a path. By modelling the scale, SIFT descriptor and

colour distributions of the region as a Gaussian with variance RO and mean µ0, the appearance

energy is therefore as follows.

O
(
vc
τ+1; v

i
τ−2,τ−1,τ

)
= −ln

{
(2π)M/2 |RO|1/2

}
− 0.5 (κc − µO)

T RO
−1 (κc − µO) (3.9)

Q =



sτ−2 sτ−1 sτ

gτ−2 gτ−1 gτ

cτ−2 cτ−1 cτ


 , µO =

1

3




sτ−2 + sτ−1 + sτ

gτ−2 + gτ−1 + gτ

cτ−2 + cτ−1 + cτ


 , RO =

1

3
QQT − µOµO

T

Where the parameters RO and mean µ0 are measured using the values of the feature vector

along the path in the three previous frames, and κu =
(
svτ+1 g

v
τ+1 c

v
τ+1

)
, is the scale, SIFT

descriptor, and colour vector for the candidate state vu
τ+1. The off-diagonal elements of the

M ×M covariance matrix RO are set to zero, assuming independence amongst the rows of Q.

3.3 Viterbi SIFT Tracks

Recall that we estimate seed tracks by performing Mean shift clustering of the feature descriptors

over three frame windows. These seed tracks are then extended using the Viterbi algorithm,

where transition energies are based on motion and appearance constraints.

Figs 3.5, 3.6 and 3.7 show examples of the Viterbi tracks for the Triniman, Artbeats-SP128

and Calendar and Mobile sequences respectively. Here each track has a different colour, and the

spatial location at the current frame is indicated with a ‘dot’. The motion history of a track is

also shown as a line that extends from its ‘dot’. Note that this motion history is only shown

over 5 frames for clearer illustrations.
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In general it may be observed that for all three sequences, image regions with relatively low

textures do not contain any tracks. Recall that we are using SIFT features, and these features

can not be extracted from low texture image regions. Note that instead of SIFT, our tracking

framework could easily use Maximally Stable Extremal Region (MSER) [44] features in order

to produce tracks in low texture image regions.

The SIFT features are detected at various image scale. The scale of a feature determines

the pixels in its neighbourhood of influence. Some ‘large’ scale features may be influenced by

image material corresponding to both the foreground and background respectively. Hence the

centers (x, y) of these features may be located in the background, but the motion of the track

it belongs to is mainly influenced by the foreground. Examples of these tracks that follow the

motion of the foreground, but are located in the background are highlighted with the white ovals

in figs. 3.5, 3.6 and 3.7.

For the Artbeats-SP128 sequence the camera is static, hence the tracks corresponding to the

background (fig. 3.5) do not move away from their initial spatial positions (no motion history).

However the football players in the foreground have several non-stationary tracks associated

with them. The bottom row of fig. 3.5 shows a zoom on these tracks in the foreground image

regions. Here the tracks follow the local motion in the image plane of the foreground objects.

The Triniman sequence was recorded with a hand-held camera. Here the background tracks

(fig. 3.6) are influenced by the motion of the camera. The tracks for the face, upper body and

left arm of the actor in the foreground are influenced by the respective local motion of these

body parts.

The camera in the well known Calendar and Mobile is panning from left to right in the image

plane. The background tracks here (fig. 3.7) are also influenced by the motion of the camera.

A zoom on some of the tracks corresponding to the foreground are shown in the bottom row

of fig. 3.7. It may be observed that there are tracks that follow the motions of the toy train,

calendar and ball.

3.4 Performance Evaluation

The performance of our Viterbi tracker is compared to a standard KLT tracker implementation

[18] derived from the work of [55, 113]. For the KLT tracker, the maximum number of features

to track must be specified. Therefore, we use the total number of tracks in the first frame of the

Viterbi tracker to specify the maximum number of tracks for the KLT tracker. So both trackers

start with the same number of tracked features. Only the tracks from the first frame of each

sequence are used for analysis since they potentially exist over the entire sequence. Comparing

these tracks can reveal how tracking errors are propagated through time.

One natural sequence and three synthetic sequences of known affine transformations are used

for testing, and three frames of each are shown in figure 3.8.

Two criteria are used to assess tracking performance in the synthetic sequences. The syn-
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Figure 3.5: The feature tracks generated by the Viterbi tracker for frames 18 and 91 of the

Artbeats-SP128 sequence. Top row: All the tracks for both frames are shown. Bottom

row: A zoom on the tracks corresponding to the football players in the foreground motion. The

spatial locations of the tracks at frame f are indicated with coloured dots, where each track has

a different colour. The motion history of the tracks are shown as the lines that extend from these

dots. The white ovals highlight tracks for which their motion is determined by a foreground

object, but the points along this track are spatial located in the background.
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Figure 3.6: The feature tracks generated by the Viterbi tracker for frames 15 and 88 of the

Triniman sequence. Top row: All the tracks for both frames are shown. Bottom row: A

zoom on some of the tracks corresponding to the actor in the foreground. The spatial locations

of the tracks at frame f are indicated with coloured dots, where each track has a different colour.

The motion history of the tracks are shown as the lines that extend from these dots. The white

ovals highlight tracks for which their motion is determined by a foreground object, but the

points along this track are spatial located in the background.
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Figure 3.7: The feature tracks generated by the Viterbi tracker for frames 5 and 25 of the Cal-

endar and Mobile sequence. Top row: All the tracks for both frames are shown. Bottom

row: A zoom on some of the tracks corresponding to the ball, train and calendar in the fore-

ground. The spatial locations of the tracks at frame f are indicated with coloured dots, where

each track has a different colour. The motion history of the tracks are shown as the lines that

extend from these dots. The white ovals highlight tracks for which their motion is determined

by a foreground object, but the points along this track are spatial located in the background.

thetic sequences are generated using known affine transformations; zoom, rotation and transla-

tion. Then the spatial positions of the tracks xi
f , reported by both trackers are used to calculate

a least squares estimate for the affine transformation parameters. The errors in estimation of

these parameters provides one measure of the usefulness of the tracks. The second criterion used

is to compare the actual expected spatial locations of the tracks at frame f given their starting

locations xi
1, and the locations reported by the trackers xi

f . This is referred as the end point

error. The mean percentage end point error over all the tracks at frame f is defined as ǫpf .

The parameters used for the synthetic sequences (zoom zf , rotational θf , and translational
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Figure 3.8: The sequences used to compare the performance of the KLT and Viterbi trackers.

Top row: Frames 1, 11 and 19 in the graveyard (1920× 1080) sequence. This sequence is 19

frames of a natural outdoor scene. Second row: Frames 1, 46 and 208 in the Dock (416×220)

sequence. Third row: Frames 1, 115 and 202 in the clock (475 × 475) sequence. Bottom

row: Frames 1, 112 and 218 in the house (419× 419) sequence. The clock, house and dock

sequences are each 251 frames synthesized with known Affine transformations.

tf ) vary with time and are given below.

zf = 0.5 {1 + zmin + (1− zmin) cos (ω∆t (f − 1))} (3.10)

θf = (f − 1)ω∆t, tf =
(

sin(ω∆t(f−1)) 0
0 0

)
dmax (3.11)

Where zmin = 0.4 is the minimum zoom level, dmax = (50 0)T is the maximum translation,

∆t = 40ms, and ω = 0.6283rad/s.

Each sequence exhibits just one effect i.e. zoom for the clock, rotation for the house and

translation for the dock sequence. The corresponding least squares estimates are ẑf , θ̂f , t̂f and
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Parameter End point

KLT Viterbi KLT Viterbi

mean 0.79 0.04 2.22 0.77

std 0.28 0.01 3.24 0.32

Table 3.1: The overall parameter estimation and end point percentage errors for all three syn-

thetic sequence.

are derived in the usual manner using all the estimated feature point locations xi
1 and xi

f in

frames 1 and f respectively. These estimates are given below.

θ̂f = atan





∑

i

det
([
xi
1 x

i
f

])

∑

i

(
xi
1
T
xi
f

)





, (3.12)

ẑf =

∑

i

(
xi
1
T
xi
f

)

∑

i

(
xi
1
T
xi
1

) , (3.13)

t̂f =
1

P

P∑

i=1

(
xi
f − xi

1

)
(3.14)

Where det(A) is the determinant of the matrix A, and P is the number of tracks that exist at

frame f .

The percentage errors in the estimation of the zoom, rotation, and translation parameters

at frame f are defined as ǫz,zmin

f , ǫθf , and ǫtf respectively.

3.4.1 Results and Discussion

Figure 3.9 shows performance for both trackers using the synthetic sequences. The left column

plots the percentage error in estimating the global motion parameters for both trackers. In red

is the KLT while in black is our Viterbi tracker. The right column shows the corresponding

percentage end point error for each tracker. An overall summary of the performance of the

trackers for all three sequences in shown in table 3.1. These results show that the Viterbi

tracker produces much more accurate tracks in general. Lower end point errors are achieved, with

relatively smaller standard deviations for these errors. This indicates that the Viterbi tracks are

more dependable locally. Considering the rotational sequence (house), the standard deviations

of the end point errors for the KLT tracker increase with time. This indicates that there is

significant track drift for this tracker when the sequence undergoes rotational transformation.

The zoom sequence is the most challenging to track because of the significant loss of local

features due to scale changes with time. In our experiment the clock sequence was zoomed

from 100% to 40% and back to 100%. For this sequence, the KLT tracker had a mean end
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Figure 3.9: The left column shows the global performances of the trackers for the translational

(top), rotational (middle), and zoom (bottom) sequences. The corresponding local performances

(endpoint error) for these sequences is shown in the right column, where ǫpf± one standard

deviation is shown as K+sd and K-sd, V+sd and V-sd, for the KLT and Viterbi trackers respec-

tively.

point error of 1.92% with a std (standard deviation) of 0.82%. The corresponding error for

the Viterbi tracker was 1.38% with a std of 0.08%. This is a substantial improvement. In

addition, the average length of the tracks for each sequence shown in figure 3.8 using the KLT

tracker was 10, 68, 251, and 95 respectively, while for the Viterbi tracker it was 9, 33, 132,

and 179 respectively. Even though the KLT tracker maintains much longer tracks for the zoom

(clock) and rotation (house) sequences, the parameter and end point errors are relatively large
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Figure 3.10: Top and second rows: The tracks at frame 6 in the graveyard sequence produced

by the KLT (left) and Viterbi (right) trackers. The tracks are superimposed on a white

background in the second row. Third and bottom rows: Selected cropped image regions

from the images in the top row. The third and bottom rows are the tracks produced by the

KLT and Viterbi trackers respectively. Column 1: Trees - strong corner features. Column 2:

Tomb - edges in direction of motion and flat image regions. Column 3: Pavement - mostly flat

image region. Column 4: Grass - repetitive texture.

compared to the Viterbi tracker. In the case of the zoom sequence, where there are rapid local

image deformations, the average track lengths are expected to be shorter.

Figure 3.10 shows tracks estimated for the real sequence graveyard. It shows the Viterbi

tracker in general does well in maintaining accurate tracks in problematic areas such as the

pavement and tomb image regions. The KLT tracker produces more tracks in these areas, but

it is obvious that some of them are incorrect. In case of the tomb, the KLT tracker made
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errors probably because some of the edges are almost in the direction of motion, introducing

an aperture effect. For the pavement, the KLT tracker selected some very poor features to

track and eventually lost them on the smooth surface. Birchfield [19] identified that repetitive

textures can cause the tracking of a feature to be distracted by similar nearby texture patterns

when using a standard KLT tracker. This phenomenon is observed in the grass area for the

KLT tracker but not for the Viterbi tracker. The Viterbi tracker produces more tracks for the

grass since more interest points can be found this highly textured region. Where there are very

strong corner features in an image region, like the tree region (first column of fig. 3.10), the

performance of both trackers is roughly the same.

3.5 Summary

A new algorithm has been presented for tracking feature points over time. It is deterministic

and exploits the use of a novel feature selection process based on temporal pre-selection and

colour quantisation. Note that although we tracked SIFT feature in the experiments reported,

our framework can be adapted to track other local features.

The performance of our framework when tracking SIFT features is more reliable than [18].

It is encouraging that the system presented does not suffer from the drift issues as much as the

prediction/correction process of the KLT tracker. We expect this is due to the use of candidate

tracking points instead of continuous tracking. Future work will consider what aspects of this

process bring to the tracking problem. By changing the feature point detector to a Harris corner

detector for instance, we would be able to assess the impact of the detector with respect to the

KLT. Also unlike SIFT features, corner features are more localized in the image plane. That

is, corner correspond to small scale image regions, while SIFT features may correspond to large

scale image regions. Recall that we discussed this issue with SIFT features in section 3.3.

It is important to recognise that the Viterbi process itself is little more than a KLT with a

restriction to search at candidate points only. Thus the advantages of this process only express

when the candidates are unique and considerably fewer than the corners that might be used in

the KLT. In the results shown here there were on average 1747 feature per frame in the KLT as

compared to 1574 in our system. We shall explore these issues in future work.
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Sparse Trajectory Segmentation

Given trajectories generated by tracking feature points (e.g. as discussed in chapter 3). This

chapter addresses the task of labelling these trajectories according to their 2D image motion.

We define this process as sparse trajectory segmentation. Here, trajectories with the same label

are identified as having similar motion. A group of trajectories with the same label will be

referred to as a bundle. The major challenges of trajectory segmentation identified in previous

work are determining the number of bundles automatically for an arbitrary sequence, coping

with non-rigid motions, and also implementing effective spatial constraints on the trajectories

in each bundle.

The number of bundles that are required from the segmentation depends on the application

the user has in mind. Applications such as surveillance and human gesture recognition generally

require the number of bundles to be roughly the same as the number of objects in the scene.

Consider however the application of assigning object labels to the pixels in a video (dense

segmentation) by using trajectory bundles. Here, the dense segmentation process relies on

having the motion of the bundles accurately describing the local motion of the objects in a

scene. Therefore, the number of bundles required for this application is dependent on the

motion and nature of the objects. Fig. 4.1 illustrates the type of segmentation required for this

particular application. Non-rigid objects usually require several bundles to accurately describe

their local motions.

As discussed previously (Chapter 2), the sparse trajectory segmentation problem has received

some treatment by Fradet [46] and Pundlik [94]. However, there are no attempts in previous

work to enforce spatial constraints on the trajectories in each bundle. The trajectories an object

51



52 Sparse Trajectory Segmentation

Figure 4.1: The trajectories in the left column are segmented into the bundles in the right

column. The dot-line represents a trajectory showing the spatial location at the current frame

(dots) and the motion history of this trajectory. Each bundle is labelled with a different colour,

and contains trajectories that all obey a specific motion model. The top row shows a simple

case where the number of bundles and objects is the same due to the geometry, rigidity and

motion of the objects. The bottom row shows that non-rigid motion can generate several

bundles for each object, where each bundle describes some form of local motion.

creates throughout a sequence are quite obviously constrained by their spatial location relative to

this object. These constraints have been modelled as Markov Random Fields (MRF) in previous

work [34, 40, 48, 64, 79–81] when doing pixel based segmentations. However, no attempts have

been made at applying the MRF model to trajectory segmentation. The critical issue here is

how to define the neighbourhood structure for sparse trajectories of varying lengths.

The proposed trajectory segmentation technique improves on previous work by,

• Introducing spatial constraints on the trajectories in the bundles using a 3D MRF.

• Automatically determining the number of bundles that best represents the local motion

of the objects in a scene.
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Figure 4.2: The block diagram for the proposed trajectory segmentation technique. The main

stages of initialization and refinement of the trajectory label field are highlighted in green

and blue respectively.

• Improving the segmentation of sequences with non-rigid motions.

Fig. 4.2 show a block diagram for our sparse segmentation technique, with the main initialization

and refinement stages highlighted. The initialization stage uses ideas similar to previous work

to generate an initial guess for the labels of the trajectories. The trajectory motion data is first

expressed in a feature space that facilitates for the data to be clustered with Mean Shift [29].

We have found that clustering with MS provides robust and reliable trajectory bundles. To

avoid over segmentation the initial motion bundles are modelled with Affine transformations

and those with similar models are merged.

The techniques used in the initialization step are more effective on sequences with rigid

object motions. Hence our refinement step is geared towards improving the segmentation results

for sequences with non-rigid motions. Fig. 4.2 shows that this subsequent refinement stage

is iterative. We first construct a Bayesian framework (GC Optimization step) for labelling

trajectories given initialization from the previous step. Then the new label field is used to

update our knowledge about the motion models in each bundle (Model Relaxation). These two

steps iterate until there is no further label changes.

The Bayesian framework combines a motion likelihood with a spatial smoothness prior for

trajectory labels based on a 3D MRF. The motion likelihood has two parts. One part models

the ‘average’ motion of a bundle. The other models the sparseness of trajectories in each bundle.

The α-expansion Graphcut algorithm [26] is used to solve for the MAP estimate of the label

field.

In the model relaxation step (fig. 4.2), the new label field is examined to estimate refined

models for the bundles. In this step the merging of the bundles is again attempted as their

motions may be more coherent. Also a local region constraint is applied to the bundles to ensure

that each one exclusively represents a single local image region. For example, a bundle cannot
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contain trajectories for foreground and background regions - even though they may have similar

motion. This requirement is violated in the initial MS clustering step. The lack of spatial

constraints in the MS algorithm allows trajectories belonging to spatially separate regions with

similar motion to be placed in a single bundle. Those errors introduced in MS clustering are

actively corrected with this local region constraint.

In this chapter we will discuss the initialization stage, while chapter 5 discusses the refinement

stage (fig. 4.1).

4.1 Initialization: Motion Space Configuration and Clustering

The first problem to be solved in any segmentation technique is to estimate the number of labels

to be assigned. In this application, that implies the estimation of the number of motion models

in the sequence. A typical approach is to assume a certain number of models, but in this work

we address the situation of an arbitrary sequence. For such a sequence no assumptions can be

made about the number of trajectory bundles and the nature of their motions. However, previous

work has shown that technique based on clustering provides a reliable way of making an initial

guess of the segmentation. The Mean Shift algorithm is a convenient non-parametric technique

for clustering data points that does not require knowledge of the number of models. Once

each motion trajectory is expressed in an appropriate feature space, the Mean Shift algorithm

provides both an estimate of the number of motion objects (clusters) and an initial segmentation.

The design of the feature vector is important and here we use a combination of motion basis

functions and average velocity measurements. The feature vector has two components - one that

take advantage of previous work in identifying trajectories of similar motion, and the other that

improves the overall robustness of the clustering.

Fig. 4.3 shows the notation associated with each trajectory. Given a trajectory Xt that starts

and ends at frames at and bt respectively, and has spatial coordinates (xtf , y
t
f ) at frame f , it has
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(xt
f , ytf )

 (xt
f+1, ytf+1)

 (xt
f+2, ytf+2)

f
f

btat

Figure 4.3: The notation associated with trajectory Xt for f being the index of frames in a

sequence. The spatial locations (xtf , y
t
f ) of the points along the trajectory are shown in the left

illustration for a monotonically increasing sequence of frames. The illustration on the right

shows the start and end frames at and bt respectively for trajectory Xt.

a feature vector mt as follows,

mt =




pt

∆t
x

∆t
y

σt
x

σt
y

at




(4.1)

∆t
x =

(
1

bt − at + 1

) bt∑

f=at

(
xtf − xtat

)

σt
x
2
=

(
1

bt − at + 1

) bt∑

f=at

(
xtf − xtat

)2 −∆t
x
2

The statistics ∆t
y and σt

y are similarly defined with the coordinates ytf .

The projection vector pt of length 2F , is derived from projecting the trajectory data into an

orthogonal vector space, where F is the number of frames in the sequence. This orthogonal space

allows the clustering process to use a conservative bandwidth to group trajectories with similar

motion. The components ∆t
x,∆

t
y and σt

x,σ
t
y in the feature vector are the mean and standard

deviation of the displacements in both directions. They are included in the vector to provide

a reasonable segmentation when the projection vector pt is not very informative. The starting

frame at of the trajectory included in the feature vector encourages the clustering process to

form bundles with trajectories of roughly the same starts.
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4.1.1 Projection Vector Space

The projection vector pt for the tth trajectory is based on a space derived from previous work

by Costeira et al. [31]. Costeira has shown that point trajectory data can be partitioned into

groups of similar motion. This is done by manipulating the trajectory data projected into

an orthogonal vector space. Their work is based on ideas proposed by Tomasi for solving

the structure from motion problem [114]. Tomasi identified that the measurement matrix of

trajectory data W ∈ R
2F given below is highly rank deficient.

W =

[
X

Y

]
=







x11 . . . xT1
...

. . .
...

x1F . . . xTF







y11 . . . yT1
...

. . .
...

y1F . . . yTF







(4.2)

Where T is the number of trajectories in the sequence.

As a result of this rank deficiency, trajectories with similar motion exist in a low dimensional

manifold (2,3, or 4 dimensions) of the full R2F space of W. Locating these manifolds provides

a reasonable solution to the trajectory segmentation. The dimensions they occupy can be

identified from the factorization W = UDVT by performing singular value decomposition

(SVD). However, to make the factorization less sensitive to possibly large trajectory coordinates

(xtf , y
t
f ), Tomasi factorizes a normalized version of W, called the registered measurement matrix

W̃. Factorizing the matrix W̃ below provides basis vectors in Ũ for projecting the trajectory

data into an orthogonal vector space, since ŨT Ũ = I.

W̃ =

[
X̃

Ỹ

]
=







x11 − u1 . . . xT1 − u1
...

. . .
...

x1F − uF . . . xTF − uF







y11 − v1 . . . yT1 − v1
...

. . .
...

y1F − vF . . . yTF − vF







= ŨD̃ṼT (4.3)

Where uf =
1

T

T∑

t=1

xtf , vf =
1

T

T∑

t=1

ytf .

The projection of W̃ into the vector space defined by Ũ is P ∈ R
2F×T ,

P = ŨTW̃ (4.4)

It would be desirable that a number of trajectories undergoing the same translational motion,

would be mapped to the same point in this space. Unfortunately with W̃ defined as above, this
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is not the case and in fact those trajectories are mapped to a spread of points. This is discussed

more clearly in the next section.

For this work we propose a modification to W̃ that allows all trajectories undergoing the

same image translation to be projected to a single point in the orthogonal space. This modifi-

cation facilitates for a smaller MS bandwidth to be used in clustering trajectories with similar

translational motions. The modified W̃ is given as Ŵ below,

Ŵ =

[
X̂

Ŷ

]
=







x11 − u11 . . . xT1 − uT1
...

. . .
...

x1F − u1F . . . xTF − uTF







y11 − v11 . . . yT1 − vT1
...

. . .
...

y1F − v1F . . . yTF − vTF







(4.5)

For (utf , v
t
f ) =




(xtat , y

t
at), if f ≥ at

(0, 0) if f < at

Where trajectory Xt starts at frame f = at.

The fundamental difference between the W̃ of Tomasi and the one in this work is how

the origins of the coordinate system are selected. Tomasi uses the center of the frames as the

origin for all trajectories, while this work uses separate origins for each trajectory (the starting

coordinates).

4.1.2 The Projection Vector

The 2F dimensions of the projection space defined by the basis Ũ outlined in the previous

section is dependent on the length of the sequence. The trajectories however have varying

lengths in a sequence due to occlusion or tracking failures. These partial trajectories result in

the matrix W̃ containing empty entries for the frame in which those trajectories are not tracked.

In order for varying length trajectories to all have projection vectors of the same length 2F ,

the missing entries in the matrix Ŵ must be addressed. To solve the structure from motion

problem, Tomasi grows a full matrix from this initial sub matrix using an iterative procedure.

However, for segmentation this step is not required. Instead, we generate the basis matrix Û

using the measurement matrix obtained from using only the longest trajectories in a sequence.

By only depending on the longest trajectories to define the projection space, the missing entries

can be set to zeros. The projection matrix P̂ of the trajectory data is given below, where the

longest trajectories define the orthogonal space.

P̂ =
[
p1 · · · pT

]
= ÛTŴ (4.6)

Where the column vector pt is the projection vector of trajectory Xt. The basis ÛT is obtained

from doing SVD on a matrix derived from Ŵ that has only the columns for trajectories that
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Figure 4.4: The 9 × 9 mesh grid of points is translated (left), rotated (center), and zoomed

(right) for 8 frames. Frames 4, 6, and 8 are indicated by the red, green, and blue boxes. The

starting frame is indicated by the broken black box.

exist over the entire sequence. When a trajectory is not tracked at a frame the coordinates are

set to zero in the matrix Ŵ at that frame.

As a result of projecting with the basis ÛT , a complete trajectory that exists over the

entire sequence has a maximum of 4 non-zero entries in the projection matrix P̂. Ideally, if

this trajectory was created by translating a point for F frames, the maximum non-zeros entries

would be 1. Similarly, rotating and zooming a point for F frames, the maximum non-zero entries

would be 2 and 3 respectively. This remarkable result is discussed by Tron [117].

Partial/incomplete trajectories are projected into the orthogonal space by setting unknown

frame coordinates to zero. Subsequently for a partial trajectory, the maximum non-zero entries

in the projection matrix P̂ can exceed 4, the maximum for a complete trajectory. However,

partial trajectories with similar image motion will reside in a low dimensional manifold. For

example, if these partial trajectories were created by rotating a set of points for F frames, the

shape of the manifold would be a planar surface.

To demonstrate how the matrix Ŵ, and partial/incomplete trajectories affect the projection

matrix P̂, synthetic trajectory data is generated using a 9× 9 grid of points that is translated,

rotated and zoomed for 8 frames. Fig. 4.4 shows the synthesized trajectories with frames 4

and 6 highlighted for later illustrating the manifolds of incomplete trajectories. The projection

of incomplete trajectories is simulated by creating two groups of partial trajectories from the

full 8-frame trajectories. One group is created using the 8-frame trajectory data up to frame 4

only, and the matrix W̃4 is derived from this data, with the rows for the trajectory coordinates

at frames 5-8 all zeros. This simulates the scenario of having partial trajectories for frames

1-4 only, with frames 5-8 missing. Likewise, another group is formed by using the 8-frame

trajectory data up to frame 6 only, providing the matrix Ŵ6. The basis ÛT is obtained from

the matrix Ŵ derived from the the full 8-frame trajectory data. The projection matrices of the

4-frame, 6-frame and 8-frame trajectory data are P̂4 = ÛTŴ4, P̂6 = ÛTŴ6, and P̂ = ÛTŴ
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Figure 4.5: The projection of the trajectory data for the translation sequence, where only the

first three dimensions are illustrated. The red and green dots indicate the projection of the 4-

frame and 6-frame trajectories respectively, while the crosses indicate the 8-frame trajectories.

Row 1-3: Dimensions A vs B, A vs C, B vs C of the projection matrices respectively. Left

column: The projection obtained using our modified matrix Ŵ. Here, all trajectories with the

same translation are projected to a single point. Right column: The projection obtained using

the matrix W̃ of Tomasi. Note that using this matrix, the spatial locations of the trajectories

influence their projections.

respectively.

Denoting the first four elements of the projection vector pt as p̆t = [A B C D]T we plot

in fig. 4.5 three slices of the space for the translation sequence. The idea here is to show how

various trajectories map into the space. The top graph plots A vs B, middle A vs C and bottom
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Figure 4.6: The projection of the trajectory data for the rotation sequence, where only the

first three dimensions are illustrated. The red and green dots indicate the projection of the 4-

frame and 6-frame trajectories respectively, while the crosses indicate the 8-frame trajectories.

Row 1-3 : Dimensions A vs B, A vs C, B vs C of the projection matrices respectively. Left

column: The projection obtained using our modified matrix Ŵ. Here, all trajectories with the

same translation are projected to a single point. Right column: The projection obtained using

the matrix W̃ of Tomasi. Note that using this matrix, the spatial locations of the trajectories

influence their projections.

B vs C. The left graphs are the projections using our modified Ŵ, while the right graphs are

for the original W̃ of Tomasi.

Unlike Tomasi’s formulation, our projections lead to the complete trajectories for the trans-

lation sequence mapping onto a point [A 0 0 0] and is shown as a blue ‘×’ (left of fig. 4.5) . The

trajectories map to a spread of points for Tomasi’s approach. This is as expected.

The two incomplete trajectory sets Ŵ4 and Ŵ6 map onto different points indicated by red

and green ‘dots’ respectively using our approach. Nevertheless these points are nearby and

would be clustered together if required.

Even though all three groups have the same motion up to frame 4, in reality there is no

guarantee they would continue to move in a similar way for the duration of the sequence. So,
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Figure 4.7: The projection of the trajectory data for the zoom sequence, where only the first

three dimensions are illustrated. The red and green dots indicate the projection of the 4-

frame and 6-frame trajectories respectively, while the crosses indicate the 8-frame trajectories.

Row 1-3 : Dimensions A vs B, A vs C, B vs C of the projection matrices respectively. Left

column: The projection obtained using our modified matrix Ŵ. Here, all trajectories with the

same translation are projected to a single point. Right column: The projection obtained using

the matrix W̃ of Tomasi. Note that using this matrix, the spatial locations of the trajectories

influence their projections.

it is desirable for partial trajectories to be clustered into separate bundles, and they may later

be merged to longer bundles with spatial constraints in place. This is a crucial precaution in

segmenting sequences shot with a moving camera. If the foreground objects temporally become

static, the motion of the camera would generate similar trajectories on the foreground and

background objects. The spatial constraints on the bundles would in this case help to correctly

associate the partial trajectories to the respective foreground and background bundles.

The projections for the rotation and zoom sequences are shown in fig. 4.6 and fig. 4.7. Unlike

the projections for the translation sequence using our modified Ŵ, the spatial location of the

trajectories influence their projections. When zooming and rotating, the partial trajectories are

projected into manifolds that are planar surfaces. Note that using our modified Ŵ, the feature

point spread is less than that of Tomasi’s W̃. These ideas influence on bandwidth selection is
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discussed next.

4.1.3 Bandwidth Selection for Clustering

In Mean shift (MS) clustering the points in the d-dimensional feature space are treated as an

empirical probability distribution. Given D data points di ∈ R
d, the multivariate kernel density

estimate p(d) using a Gaussian kernel is given below.

p(d) =
1

Dhd

D∑

i=1

(
d− di

h

)2

(4.7)

Where h is termed the clustering bandwidth, which defines the radius of the Gaussian kernel.

When applied to our problem, the MS bandwidth controls the size of the trajectory bundles,

and the quality of the segmentation. If a relatively small bandwidth is used significant over

segmentation may occur. However, using too large a bandwidth may cause trajectories with

obviously different image motion to be placed in the same bundle. Fig. 4.6 and fig. 4.7 show

that the bandwidth required for clustering trajectories of similar motion varies according to their

temporal lengths. The manifolds for longer trajectories (8-frame) are less dense than those for

the shorter ones (4-frame and 6-frame). What is meant by the density of the projection here,

is the closeness of trajectories with similar motion in the vector space. Therefore, to cluster a

significant amount of the trajectories in the manifold into a bundle, a larger bandwidth must

be used for longer trajectories. Since the bandwidth for clustering depends on the length of the

trajectories, they are grouped according to these lengths. The MS clustering is then applied

to each group of trajectories with the same temporal lengths. The bandwidth used for each

group depends on the member trajectories. Separating the trajectories based on their lengths

for clustering is a important step. This is because clustering all the trajectories at once using

a large bandwidth for the longer trajectories, would result in a poor clustering of the shorter

trajectories. The shorter trajectories require a smaller bandwidth for distinguishing the motion

of the bundles.

The bandwidth for each group of trajectories with the same length is estimated from the

feature vectors in eq. 4.1. The gth group forms the feature matrix Mg given below. Clustering

the columns of the feature matrix provide the segmentation for this group.

Mg =
[
mα · · · mβ

]
=







pα

∆α
x

∆α
y

σα
x

σα
y

aα




· · ·




pβ

∆β
x

∆β
y

σβ
x

σβ
y

aβ







(4.8)

Where {α : β} are the set of indices for the trajectories in the group.
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Figure 4.8: The means ∆t
x,∆

t
y and standard deviations σt

x, σ
t
y of the trajectory displacements for

the zoom and rotation synthetic sequences in fig. 4.4. Top row: Plots for the zoom sequence.

Bottom row: Plots for the rotation sequence. The red and green dots indicate the plots of the

4-frame and 6-frame trajectories respectively, while the crosses indicate the 8-frame trajectories.

The bandwidths for the rows of the feature matrix Mg collate into the bandwidth vector bg.

The last element of the vector bg corresponds to bandwidth for the starts of the trajectories at.

To allow bundles (clusters) to contain trajectories that begin within ±2 frames of each other,

the bandwidth here is fixed to
√
8. The bandwidths for rows 1 : 2F of the feature matrix depend

on the density of the trajectory projections [pα · · · pβ ] in the orthogonal space. The standard

deviation along these rows is directly proportional to the density of the projections.

The density of the means and standard deviations of the trajectory displacements are illus-

trated in fig. 4.8, for the rotation and zoom sequences in fig. 4.4. Here, it can be observed that

the bandwidth required for the means ∆t
x,∆

t
y and standard deviations σt

x, σ
t
y of the trajectory

displacements varies in a similar way to the projection vectors. That is, the densities of the ∆t
x

vs. ∆t
y and σt

x vs. σt
y plots depend on the length of the trajectories. Therefore, the bandwidth
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for rows 1 : 2F + 4 of the feature matrix obeys the relationship below for the vector b̃g being

the standard deviation of the rows in the feature matrix Mg.

bg(1 : 2F + 4) ∝ b̃g(1 : 2F + 4) (4.9)

for b̃g(1 : 2F + 4) = std










pα

∆α
x

∆α
y

σα
x

σα
y




· · ·




pβ

∆α
x

∆α
y

σα
x

σα
y










Where std(A) is the standard deviation along the rows of the matrix A.

The bandwidth bg used for clustering the gth group of trajectories is approximated iteratively

using the standard deviation vector b̃g as an initial guess. For every iteration a MS segmentation

is performed until a convergence criteria is reached. The segmentation at the convergence point

is the final segmentation for the group. The first of the two criteria for convergence is that the

segmentation must remain constant for 5 consecutive iterations. The second criterion occurs

when 90% of the trajectories in the group have been clustered to a bundle with at least 3

trajectories. This criteria encourages each bundle to have at least 3 trajectories allowing the 6

parameters of the 2D Affine motion model to be estimated with least squares.

The bandwidths corresponding to the first 4 rows of the feature matrix are kept constant for

each iteration. These rows in the feature matrix contain the majority of the trajectory motion

information, so we are careful not to use a large bandwidth for these rows, which would lead to

a poor segmentation. Recall that the SVD factorization orders the vectors in the basis matrix

Û according to the their eigen values. The first 4 rows of the projection correspond to the 4

largest eigen values. Keeping the bandwidths for these rows to a conservative constant prevents

the merging of distinct trajectory bundles in the MS segmentation.

Dimensions 5 to 2F of the projection in the feature matrix correspond to significantly smaller

eigen values, which makes them less informative for clustering the trajectories. Since less precau-

tion can be taken in estimating the bandwidths for rows 5 : 2F+4, they are linearly increased for

each iteration. Linearly increasing these bandwidths reduces over segmentation caused by the

sensitivity to the noise in the trajectory data of the SVD factorization process. The bandwidth
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vector bi
g at iteration i is given as,

bi
g =




k1 0 0 0 · · · 0

0 k2 0 0 · · · 0

0 0 k3 0 · · · 0

0 0 0 k4
...

... 0 0 0
. . . 0

0 0 0 0 0 k2F+5




b̃g = Kb̃g (4.10)

for kn = 0.25i, n = {5 : 2F + 4}

Where the matrix K is a diagonal matrix with the proportionality constants for the relationship

defined in eq. 4.9. For all experiments reported, k1 = k2 = k3 = k4 = 0.25, and the entry for

the starts of the trajectories, k2F+5 = 1, where b̃g(2F + 5) =
√
8.

4.1.3.1 Example Using Calendar and Mobile Sequence

The Calendar and Mobile sequence is used to demonstrate the clustering for a group of trajec-

tories with the same length. This sequence contains four objects with distinct motions - the

background, a calendar, a toy train, and a ball. There are trajectories for the background, the

calendar and the toy train that exist over the entire 25 frames of the sequence, as shown in the

left column of fig. 4.9. The motion and texture of the ball however prevented it from having any

25-frame trajectories. The segmentation for this group of trajectories (25-frame group) is shown

in the right column of fig. 4.9. This segmentation took 34 iterations to cluster 1510 trajectories

into 145 bundles. There were 6 bundles with 3 or more trajectory, accounting for 1366 of all the

trajectories of length 25 frames. It may be observed that there are trajectory bundles associated

with the background, calendar, and train validating the credibility of the segmentation.

Figs. 4.10 and 4.11 show the clustering of the feature matrix Mg derived from the 25-frame

group of trajectories for the Calendar and Mobile sequence. The clusters are coloured similarly to

the corresponding trajectory bundles in fig. 4.9. For example, red and green for the background

and calendar trajectories respectively. In these figures all the trajectory feature matrix entries

are shown on the right so it can be seen how outliers from the main trajectory bundles are

isolated in the MS segmentation process. Outlier trajectories arise from feature tracking errors,

and the motion of some local regions of the objects. The local motion of an object can create

trajectories with motions significantly different from the global motion of that object. There are

not enough of these local trajectories to form a trajectory bundle with more than 3 members,

so they become isolated in the segmentation. For example, the wheels of the toy train have a

harmonic motion that differs from the global translational motion of the train. The conservative

bandwidth in the first 4 rows of the feature matrix prevents outlier trajectories from being
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Figure 4.9: The segmentation of the 25-frame group of trajectories for the Calendar and

Mobile sequence. Row 1: The trajectories superimposed on frame 12, with the history the

trajectories shown. Left - all the trajectories of length 25 frames, right - the segmentation of

these trajectories, where bundles having a single trajectory not shown for clarity. Row 2: The

trajectories in row 1 superimposed on a white background. The segmented trajectory bundles

are illustrated with different colours.

associated with the main trajectory bundles (background, calendar, and train). They may be

later be associated with a main bundle, or placed in a new bundle after the refinement stage.

4.2 Initialization: Motion Model Estimation and Merging

The final steps in the initialization stage involve modelling the motion of the trajectory bundles

obtained from MS clustering, and merging those with similar motion. The MS clustering process

primarily creates bundles of trajectories with similar translational motion. For other forms of

2D image motion, such as rotation and zoom, the trajectories undergoing these motions can
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Figure 4.10: Left column: The MS clustering of the projection vectors for the 25-frame group

of trajectories for the Calendar and Mobile sequence. Right column: The projections for

all the 25-frame trajectories. Row 1-3: Dimensions A vs B, A vs C, B vs C of the feature

vectors.
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Figure 4.11: Left column: The MS clustering of the means ∆t
x (top row) and standard devia-

tions σt
x (bottom row) of the trajectory displacements for the 25-frame group of trajectories for

the Calendar and Mobile sequence. Right column: The means and standard deviations for

all the 25-frame trajectories.

occupy a manifold that may extend significantly across the feature space. The conservative

clustering bandwidth will cause these trajectories to be placed into several sub-bundles, with

the motion of each sub-bundle being approximately translational. The MS clustering process

encourages these sub-bundles to have at least 3 trajectories, so their motions can be modelled

with a 6-parameter Affine model. Using these motion models, the sub-bundles with similar 2D

motion may be merged into a single bundle.

The merging of the bundles using the motion models also aims to combine bundles with

different trajectory lengths. For clustering, the trajectories are separated into groups according

to their lengths, where a different bandwidth is applied to each group. This grouping of the

trajectories is a critical step for clustering as discussed previously. However, it introduces an

unwanted level of segmentation that is reduced by merging the bundles based on their motion

models.

The bundle merging step involves assessing the motion similarity amongst all the bundles

using a defined metric. All the bundles that have been deemed to have similar motion are pooled

together. Each bundle votes for another bundle in the pool that it wants to merge with, and all
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bundles with at least one vote are merged into a new bundle. The merging of the new bundles

and the previously unmerged bundles is iteratively attempted until there are no more mergers.

4.2.1 The Motion Model

The motion of the bundles are modelled using a set of 2D Affine transformations. These trans-

formations represent the relationship between the spatial locations of the trajectories across

adjacent frame pairs. That is, given the spatial locations (xtf , y
t
f ) of the trajectories at frame

f , a linear transformation An
f,f+1 gives the locations (xtf+1, y

t
f+1) in the next frame f + 1. The

transformation An
f,f+1 from frame f to f +1 for the nth trajectory bundle defines this transfor-

mation for the member trajectories. Given the set of trajectories in the nth bundle is Bn. The

transformation between frames f and f + 1 for a member trajectory Xν , where ν ∈ Bn, is given

below.



xνf+1

yνf+1

1


 =

[
a1 a2 a3
a4 a5 a6
0 0 1

]

xνf

yνf

1


 = An

f,f+1



xνf

yνf

1


 (4.11)

Using a least squares fit, the transformation An
f,f+1 is estimated from the trajectories in the

bundle that exist at both frames f and f +1. Given trajectory Xk is one of these K trajectories

in bundle n that exists for both frames f and f + 1, the transformation An
f,f+1 is estimated as

follow.

An
f,f+1 =





[
X̃XT

(
XXT

)−1

0 0 1

]
, if K ≥ 3




1 0
1

K

∑

k

(
xkf+1 − xkf

)

0 1
1

K

∑

k

(
ykf+1 − ykf

)

0 0 1



, if K < 3

(4.12)

for X =



xαf · · · x

β
f

yαf · · · y
β
f

1 · · · 1


 , X̃ =

[
xαf+1 · · · x

β
f+1

yαf+1 · · · y
β
f+1

]

Where k ∈ {α : β} are the set of indices for the trajectories in the nth bundle, that exist at

both frames f and f + 1.

In eq. 4.12 above, the transformation An
f,f+1 is estimated with least squares once the bundle

has 3 or more trajectories (K ≥ 3) for the frame interval f to f + 1. This is the minimum

number of trajectories required for the rank of the 3 × 3 matrix XXT to be 3, so it can be
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Figure 4.12: The notation used for discussing the nth and hth trajectory bundles with similar

motion. Top: The trajectories in both bundles are shown, where the average errors are evaluated

in the frames ranging from f1 to f2. Bottom left: The transformations between adjacent frame

pairs for a monotonically increasing frame index f . Bottom right: The errors for the tth

trajectory evaluated with the transformations for both bundles.

inverted providing the solution for the 6 parameters of the transformation matrix. The 2 × 3

matrix X̃XT
(
XXT

)−1
are the first two rows of the transformation An

f,f+1. When there are

less than 3 trajectories (K < 3), the transformation is restricted to be translational, since the

matrix XXT is not invertible.

4.2.2 Similarity Metric for Model Merging

To facilitate merging, some metric of similarity between bundles must be estimated. Trajectory

bundles with similar image motion will have similar motion model transformations. Given the

nth and hth bundles are similar in motion, fig. 4.12 illustrates both bundles and the notation

that will be used to discuss them. The transformations for the nth bundle should be able to

predict the spatial locations of the trajectories in the hth bundle and vice versa. Small prediction

errors naturally allude to the similarity of the bundles. Here prediction errors combined into a

measurement vector along a motion path would help to build a similarity metric.
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4.2.3 Prediction Error

The prediction error ǫ
v,n
f at frame f for a trajectory Xv in the hth bundle with respect to the

nth trajectory bundle is given below.

ǫ
v,n
f =

∥∥∥∥∥∥∥
An

f,f+1



xvf

yvf

1


−



xvf+1

yvf+1

1




∥∥∥∥∥∥∥
(4.13)

Where ‖.‖ is the l2-norm.

By changing the transformation An
f,f+1 in eq. 4.13 above to the corresponding transformation

Ah
f,f+1 for the hth bundle, the reference error ǫv,hf for the trajectory is obtained. The reference

error is defined as the error of the trajectory with respect to the bundle it belongs to. If the nth

and hth bundles are similar in motion, then the error with respect to the other bundle ǫ
v,n
f is

approximately equal to the reference error ǫv,hf . Also in the reverse case of a trajectory Xk in the

nth bundle with the reference error being ǫ
k,n
f , the error similarity condition is ǫk,hf ≈ ǫ

k,n
f . Note

that we can only usefully calculate these errors where the trajectories overlap in time. Hence

ǫ
.,.
f is calculated for frames f1 to f2 only, i.e. the overlap duration. See fig. 4.12.

The transformations An
f,f+1 and Ah

f,f+1 may have been estimated with noisy or insufficient

trajectories causing these errors to significantly differ. Insufficient trajectories (K < 3) in one

bundle will automatically cause the transformations to be translational for this bundle, while

the other may be fully Affine. The transformation model differences here can cause the error

similarity condition to fail. To be more robust to these scenarios, another transformation AΩ
f,f+1

is estimated using the trajectories from the union of both bundles. Using this transformation

the error conditions ǫk,Ωf ≈ ǫ
k,n
f , and ǫ

v,Ω
f ≈ ǫ

v,h
f provide additional information on the similarity

of the bundles.

The transformationAΩ
f,f+1 is estimated from the trajectories of both bundles using a weighted

least squares solution. Consider that the nth and hth bundles have Kn and Kh trajectories that

exist at both frames f and f + 1. If Kn is much greater than Kh then a normal least square

solution would bias the combined transformation AΩ
f,f+1 towards An

f,f+1, and vice versa. By

weighting the trajectories from both bundles, the smaller contributing bundle will have a greater

influence on the combined transformation, unlike the situation where a normal least square so-

lution is utilized.

There areKΩ = Kn+Kh trajectories from both bundles available for estimating the combined

transformation, where trajectory Xj is one of these KΩ trajectories. The transformation AΩ
f,f+1
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is estimated as follows,

AΩ
f,f+1 =





[
X̃XT

(
XXT

)−1

0 0 1

]
, if KΩ ≥ 3




1 0
∑

j

wj

(
x
j
f+1 − x

j
f

)

0 1
∑

j

wj

(
y
j
f+1 − y

j
f

)

0 0 1



, if KΩ < 3

(4.14)

For X =



wαx

α
f · · · wβx

β
f

wαy
α
f · · · wβy

β
f

1 · · · 1


 , X̃ =

[
wαx

α
f+1 · · · wβx

β
f+1

wαy
α
f+1 · · · wβy

β
f+1

]

The weight wj =





1
2Kn

, if trajectoryXj is from the nth bundle.

1
2Kh

, if trajectoryXj is from the hth bundle.
(4.15)

Where j ∈ {α : β} are the set of indices for the KΩ trajectories from both bundles, that exist

in the frame interval f to f + 1.

4.2.4 The Similarity Matrix

We are now in a position to assemble errors from various points along the trajectory bundle

paths. Recall that we seek to test the merging of two bundles n and h. And further recall

that ǫ.,.f is only measured for frames f1 to f2. As illustrated in fig. 4.13, at each of these frames

there are 4 cross errors ǫk,hf ,ǫv,nf ,ǫv,Ωf ,ǫk,Ωf (black arrows) and 2 reference errors ǫk,nf ,ǫv,hf (coloured

arrows) generated using the three motion models.

At each time stamp we use the average error ǭ
.,.
f as an indication of similarity over all

trajectories in a bundle. For the trajectories Xv in the hth bundle, the average error over all

these trajectories with respect to the nth bundle is ǭv,nf . Given that the motion of the bundles

n and h are the same ǭ
v,n
f ≈ ǭ

v,h
f .

For both bundles having trajectories between frames f1 and f2, a similarity matrix Sn,h is

created using the average trajectory errors for these frames. Note that the trajectory error ǫt,nf
at frame f in eq. 4.13 requires that this trajectory exists at frame f + 1. Therefore frame f2

here is one frame before the temporal overlap of the bundles end, as illustrated in the bottom

right of fig. 4.12. The L× 4 similarity matrix Sn,h for the nth and hth bundles is given below,
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Figure 4.13: Summary of the prediction errors associated with the trajectories in bundles n and

h. Trajectory Xk and Xv belong to the bundles n and h respectively, and are indicated with

the circles. The squares represent the three motion models Ah
f,f+1, A

Ω
f,f+1 and An

f,f+1 used to

generate the errors. The prediction errors ǫ
.,.
f for the trajectories with respects to the motion

models are the arrow labels. The reference prediction errors are the coloured arrows.

where L = f2 − f1 + 1.

Sn,h =




Sn,h(1, 1) Sn,h(1, 2) · · · Sn,h(1, 4)

Sn,h(2, 1) Sn,h(2, 2) · · · Sn,h(2, 4)
...

...
. . .

...

Sn,h(L, 1) Sn,h(L, 2) · · · Sn,h(L, 4)



= Eo −Er

[
1 0 0 1

0 1 1 0

]
(4.16)

Eo =


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ǭ
v,n
f1

ǭ
k,h
f1

ǭ
v,Ω
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ǭ
k,Ω
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...
...

...
...

ǭ
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ǭ
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ǭ
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ǭ
k,Ω
f2


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, Er =




ǭ
k,n
f1

ǭ
v,h
f1

...
...

ǭ
k,n
f2

ǭ
v,h
f2




Given the nth and hth bundles having member trajectories Xk and Xv. The matrix Er is the

concatenation of the average reference errors over the frames f1 to f2. Also the matrix Eo is the

concatenation of the average errors for using the cross transformations.

The design of the similarity matrix Sn,h makes it approximately equal to the null matrix if

both bundles are similar in motion over all the frames f1 to f2. That is, the elements of the

similarity matrix Sn,h(i, j) ≈ 0. By finding the percentage of these elements Sn,h(i, j) that are

less than a threshold sτ , we derive a single scalar metric that describes the similarity of the
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bundles. The similarity metric ςn,h for the nth and hth bundle is defined as,

ςn,h =
1

4L

L∑

i=1

4∑

j=1

(Sn,h(i, j) ≤ sτ ) (4.17)

The threshold sτ controls what the acceptable average error differences should be for similar

bundles. For all sequences reported this threshold is set to a constant of sτ = 0.3.

Fig. 4.14 shows how the threshold sτ influences the merging of the trajectory bundles for

the Calendar and Mobile sequence. The unmerged trajectories bundles at frame 12 in this

sequence are shown in the top left. The illustrations clockwise from the top right show the

merged bundles using the thresholds sτ = 0.5, 0.3, 0.1 respectively. It may be here observed

that using the threshold sτ = 0.3 (bottom right) leads to the best merging result. For sτ = 0.5

(top right) the calendar and background bundles are undesirably merged together. Also for

sτ = 0.3 (bottom left) there is a significant amount of over segmentation for the trajectories

corresponding to the toy train.

When the similarity metric ςn,h = 1 there is maximum confidence that the bundles are

very similar and they should be merged. However, ςn,h = 0 means the bundles have absolutely

different motions. If both bundles do not have any trajectories that overlap in time, then the

similarity metric ςn,h is set to zero. Hence they are not merged.

Long-term bundles with absolutely different image motion can have similar motion over a

short window of time (1-3 frames). They would have a high metric ςn,h if the similarity analysis

coincided with this short window of time. To prevent high metrics being awarded to these

bundles there is a restriction on the analysis window size. So, the metric ςn,h = 0 if the overlap

period is less than 4 frames (f2 − f1 + 1 < 4).

4.2.5 Bundle Merge Pools

The nth and hth bundles are deemed similar if the metric ςn,h is greater than a threshold ςτ = 0.8.

This means that 80% of the measurements along the trajectory overlap duration satisfy the error

similarity constraint. All pairs of bundles are tested in this way.

The nth bundle may have several merge candidate bundles that satisfy ςn,. > ςτ . This

requires a method for deciding which candidates should be a part of the final merged bundle.

There are situations that commonly arise where not all the candidate are suitable for the final

bundle. For example, if a bundle is partially similar to two bundles that are absolutely different,

caution must be taken in the merging of these bundles. A decision must be taken about how to

merge these bundles while keeping the bundles with no similarity separate. A robust solution

to this problem is to make the candidate bundles vote for each other. A candidate bundle h1

votes for bundle h2 if ςh1,h2
> ςτ .

Fig. 4.15 shows examples of the similarity metrics ςn,h for 5 trajectory bundles. Since ςn,h =

ςh,n only the metrics ςn,h are shown, where n < h. In this example we are attempting to merge

bundles 2, 3 and 4 to bundle 1. Hence bundles 2, 3 and 4 are defined as the candidate bundles
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Figure 4.14: The merging of the trajectory bundles at frame 12 in the Calendar and Mobile

sequence. Top left: The bundles after Mean Shift clustering, this is the input to the merging

step. Clockwise from top right: The merging result using the thresholds on the elements of

the similarity matrix sτ = 0.5, 0.3, 0.1 respectively.

for bundle 1, since ς1,2 > ςτ , ς1,3 > ςτ and ς1,4 > ςτ . These metrics are highlighted in green in

fig. 4.15. Note that bundle 5 is not a candidate for bundle 1 since ς1,5 < ςτ . All metrics where

ςn,h < ςτ are highlighted in red.

The candidate bundles 2 and 4 both vote for each other since ς2,4 = ς4,2 > ςτ . However

bundle 3 does not receive a vote from either bundle 2 or 4 because ς2,3 < ςτ and ς2,4 < ςτ . Hence

only candidate bundles 2 and 4 are merged with bundle 1.

The final merged bundles along with the unmerged bundle at the current iteration are then

considered for merging at the next iteration. When there are no more mergers the bundle

merging step is complete.
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ς1,2 = 0.91 ς1,3 = 0.82 ς1,4 = 0.95 ς1,5 = 0.10

ς2,3 = 0.50 ς2,4 = 0.93 ς2,5 = 0.00

ς3,4 = 0.47 ς3,5 = 0.01

ς4,5 = 0.20

Figure 4.15: An example of the similarity metrics ςn,h among 5 bundles. Since ςn,h = ςh,n only

the metrics ςn,h are shown, where n < h. The metrics for which ςn,h > ςτ are coloured green,

otherwise they are coloured red.

4.3 Summary

This chapter introduced the general framework for our sparse trajectory segmentation technique.

The segmentation task is broken down into two stages; an initialization and a refinement stage.

The initialization stage is used to obtain a rough estimate of the trajectory segmentation, which

is subsequently improved in the refinement stage. The refinement stage introduces spatial and

temporal constraints on the trajectory bundles. This chapter discuss the initialization stage in

detail, while the details of the refinement stage are exposed in chapter 5.

In the initialization stage the trajectory data is expressed in a new feature space that allows

trajectories with similar motion to be clustered. We perform trajectory clustering in this space

using the Mean shift [29] algorithm. To reduce over segmentation introduced from the clustering

step, we then proceed to merge the trajectory bundles. We model the 2D motion of the trajectory

bundles using Affine transformations, and merge bundles that have similar motion models.
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The label field obtained from the initialization stage discussed in the previous chapter provides

a reasonable guess of trajectory segmentation. However, in this initial segmentation there are no

spatial constraints on the trajectories in each bundle. Hence fig. 5.1 shows an example from the

Calendar and Mobile sequence where the lack of these spatial constraints prevent the trajectories

in the bundles from being confined to specific image regions. For example, the area occupied by

the calendar is an image region where it is desired to have only green trajectories. In this region

there are unwanted background (red) and train (yellow) trajectories. Also we have unwanted

green trajectories in the background. The refinement stage discussed in this chapter, introduces

spatial constraints to make the bundles represent specific image regions.

The first step in the refinement stage involves relabelling the trajectories according to a

posterior defined on the label field. This posterior distribution uses a MRF prior for enforcing

spatial smoothness on the trajectory labels. The refined label field is then obtained as the MAP

estimate generated using the α-expansion Graphcut optimization algorithm [135].

A Model relaxation step follows the GC optimization. In this step another attempt is made

to merge the trajectory bundles, as their motions are more coherent. The framework for merging

is as outlined in section 4.2, with a change in the similarity metric. The new similarity metric

here is based on the separation of the trajectories in the bundles. This metric unlike the one

defined in section 4.2, facilitates for the merging of bundles generated by the motion of non-rigid

objects.

77
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Figure 5.1: The effect of no spatial constraints in the initialization stage are demonstrated with

frames 22 (left) and 25 (right) of the Calendar and Mobile sequence. Top row: The white

boxes highlight trajectories that lie outside the desired image regions of their corresponding

bundles. Here all trajectories with the same colour belong to a particular bundle. Bottom

row: The illustration in the top row displayed on a white background for clarity.

The MRF prior included in the posterior distribution design mentioned previously encourages

neighbouring trajectories to have the same label. The illustration on the left of fig. 5.2 shows

a set of trajectories that all belong to the same bundle. The MRF constraint correctly allows

these trajectories to have the same label in spatially separated groups. Each group is outlined

with a closed contour. Note that the groups are separated spatially by trajectories belonging to

other bundles. That is, there are trajectories belonging to other bundles that exist in the gaps

between these groups.

Even though having all these spatially separated groups of trajectories belonging to the

same bundle does not violate the MRF smoothness constraint, we require that every group be a

separate bundle. By doing this, we can fulfill the requirement that a bundle represents a single
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Figure 5.2: The local region constraint algorithm uses Delaunay triangulations to find net-

works of connected trajectories in the bundle on the left. The bundles in the center and right are

the two sets of connected trajectories obtained from this analysis. These two set of trajectories

are the new bundles generated by the algorithm.

image region.

We use a novel algorithm (local region constraint algorithm) that performs Delaunay trian-

gulations at every frame to identify each group of connected trajectories. The algorithm then

forms a new bundle from each group identified with more than three trajectories. The middle

and right illustrations in fig. 5.2 show the two groups of trajectories that are used to form new

bundles from the initial bundle on the left.

The merging of bundles and the formation of new bundles for new image regions in the Model

relaxation step updates the knowledge of the motion models. Therefore these models are then

reestimated and we iterate the GC optimization and Model relaxation steps until there are no

changes in the label field.

5.1 Graphcut Optimization

As outlined in the previous section, the GC optimization step relabels the trajectories by gener-

ating the MAP estimate for a distribution defined on the label field. Given there are N labels in

the initial label field, corresponding to the number of trajectory bundles. The tth trajectory has

a label Lt ∈ {1 : N} according to the bundle it belongs to. The posterior distribution p(Lt|.)
for the trajectory labels is given below.

p(Lt|X ,L∼t) ∝ px(Xt|Lt)ps(Lt|L∼t) (5.1)

Where L∼t are the neighbouring labels of trajectory Xt that has the label Lt, px(Xt|.) and ps(Lt|.)
are the likelihood and MRF prior distributions respectively. The likelihood distributions for the

N possible labels are dependent on the member trajectories in the bundles. The design of the

likelihood is motivated by observations about the behaviour of trajectories in a bundle. Firstly,

trajectories tend to follow the average motion in a bundle in some sense. Secondly, the spread

of the trajectories in the image plane tends to be consistent from frame to frame. This point

about the consistent spread of the trajectories in each bundle is illustrated in fig. 5.3 using four

trajectory bundles from the Calendar and Mobile sequence. It may be observed that the texture
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Figure 5.3: Illustrated in each row are the trajectory bundles for the four independently moving

objects in the Calendar and Mobile sequence. Each row shows the endpoints (dots) of the

trajectories in the bundles for frames 1,5,10,15 and 20. For every bundle, the spread of the

trajectories in the image plane tends to be consistent from frame to frame.

of the objects in the scene determines the spatial separation of the trajectories. And since the

texture of the objects changes slowly from frame to frame the spacing between the trajectories

in each bundle is approximately constant. The top row shows the trajectories for the ball. Even

though the ball is rotating the relative separation between a pair of these trajectories over their

paths is roughly constant.

As before, Affine transformation models An
f,f+1 for the bundles are used to generate a predic-

tion error for the spatial locations of the trajectories. Here the bundle label with the minimum

prediction error for a trajectory provides the maximum motion likelihood.

5.1.1 Likelihood Distribution

In this section the design of the likelihood distribution px(Xt|.) is discussed. Consider that the

nth trajectory bundle has the corresponding likelihood px(Xt|Lt = n). As illustrated in the top

row of fig. 5.4 the likelihood of a trajectory Xt belonging to a bundle can only be assessed if
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Figure 5.4: The notation used to discuss the derivation of the likelihood distribution. The top

row shows the temporal overlap between the tth trajectory and the nth bundle that starts at fa

and ends at fb. Also indicated with the blue dots are the starting points used to estimate the

motion model error at frame fǫ. The bottom row shows the minimum Euclidean distances δt,nf
of the tth trajectory to the reference trajectories {Xr}n in the nth bundle, where the frame

index f ∈ {fa : fb}. The trajectories {Xo}n in the bundle n are ignored in estimating these

distances as they do not confine to the object (yellow image regions) that bundle n represents.

they both overlap in time. That is, there are frames fa to fb for which the trajectory and the

bundle both exist. If they do not overlap the likelihood px(Xt|Lt = n) is zero.

Consider that the set of trajectories in the nth bundle is {X}n, and also the set of Affine

transformations for this bundle is An. The likelihood of trajectory Xt belonging to the nth

bundle is given as,

px(Xt|Lt = n) = pm(Xt|An)pe(Xt|{X}n) (5.2)

Where the distribution pm(Xt|.) is dependent on how well the average motion of the bundle
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describes the motion of the trajectory. The spatial spread distribution pe(Xt|.) models the

closeness in the image plane of the trajectory Xt to all the trajectories in the bundle.

5.1.2 Motion Likelihood Term

The likelihood term pm(Xt|.) defined previously in eq. 5.2 is a Gaussian distribution of the

prediction error for the tth trajectory with respect to the nth bundle. This prediction error ǫnt

is defined as,

ǫnt =

fb∑

f=fa+1

∥∥∥∥∥∥∥
An

fa,f



xtfa
ytfa
1


−



xtf

ytf

1




∥∥∥∥∥∥∥
(5.3)

Where An
fa,f =

fa∏

k=f−1

An
k,k+1 (5.4)

The Affine transformationAn
fa,f

above is the product of the chain of transformations between the

start frame fa and the current frame f . Using this transformation the current spatial location

of the trajectory at f is estimated given the starting point (xtfa , y
t
fa
). The prediction error is

the sum of all the estimation errors at the frames fa + 1 to fb.

The prediction error ǫnt is influenced by two features of trajectories. As desired it is influenced

by the motion difference between the trajectory and the Affine motion models. Secondly the

model estimation process itself is prone to errors. In other words, the trajectory motion may not

be well approximated by Affine motion in the first place. In addition the parameter estimation

process itself is inherently noisy.

In order to negate the influence of these effects due to the motion modelling process, we

subtract an expected (mean) error from the prediction error ǫnt for the trajectory. This mean

error is based on the motion model errors and is estimated from the trajectory in the nth bundle

that exist between frames fa to fb (fig. 5.4).

Since the prediction error for the tth trajectory is the sum of the error contributions from

several frames fa + 1 to fb, the counterbalancing error is the sum of mean motion model errors

for these frames. A mean motion model error µn
fǫ

is estimated at every frame fǫ ∈ {fa + 1 : fb}
using the trajectories in the nth bundle. This error µn

fǫ
accounts for the errors accumulated from

the motion transformations going from frame fa to the current frame fǫ. One of these frames

fǫ is highlighted in the top row of fig. 5.4. Given that the kth trajectory starts before frame fǫ

and is a member of the nth bundle, where there are K of these trajectories, the mean motion
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error µn
fǫ

is given as,

µn
fǫ =

1

K

∑

k

[ǫ̂nk ] (5.5)

Where ǫ̂nk =

∥∥∥∥∥∥∥
An

fs,fǫ



xkfs
ykfs
1


−



xkfǫ
ykfǫ
1




∥∥∥∥∥∥∥
,

fs = max(fa, ak), An
fs,fǫ =

fs∏

j=fǫ−1

An
j,j+1

The frame fs above corresponds to the frame at which the starting point for the kth trajectory

is defined. The starting points of the trajectories that contribute towards µn
fǫ

are indicated

with blue dots in fig. 5.4. Note here that we are using trajectories with varying starting points

to estimate the motion error at frame fǫ. Since the analysis is being done in the temporal

frame window fa to fb, if a trajectory starts outside this window the starting point used is the

spatial location at frame fa. Using the actual start ak of the trajectory would involve the use

of motion model transformations outside of this window, which do not influence the prediction

error for the tth trajectory. The focus here is only on the errors accumulated due to the model

transformations within the analysis window.

In a sense the sum of the mean motion errors µn
fǫ

over the frames fa + 1 to fb is a standard

error for a bundle introduced by the shortcomings in the motion modelling process itself. Hence

this is in effect the mean of the observed error ǫnt for a particular trajectory. We can think of

ǫnt to be distributed according to a Gaussian with non-zero mean and variance. But to simplify

the discussion we incorporate this mean and variance as a normalising step that follows.

The error difference ǫ̃nt between the prediction error and the mean error for the tth trajectory

with respect to the nth bundle is now defined as,

ǫ̃nt = ǫnt −
fb∑

fǫ=fa+1

[
µn
fǫ

]
(5.6)

Where the prediction error ǫnt was previously given in eq. 5.3.

The confidence we have that ǫ̃nt is mainly influenced by the difference in motion between the

tth trajectory and the motion models for the nth bundle is dependent on the variance in the

motion model errors. Given the variables previously defined for the mean motion model error,

the standard deviation σn
t of the error difference ǫ̃nt is approximated using the trajectories in the
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nth bundle as,

[σn
t ]

2 =

fb∑

fǫ=fa+1

[
σ̂n
fǫ

]
(5.7)

Where σ̂n
fǫ =

1

K

∑

k

[ǫ̂nk ]
2 −

[
µn
fǫ

]2

The standard deviation σn
t approaches zero when the motion of the trajectories in the nth bundle

are well described by the motion model for that bundle. A low σn
t means that there is a high

confidence in the motion models.

Hence the motion likelihood term pm(Xt|An) given the motion models An for the nth bundle

is a Gaussian distribution of the error difference ǫ̃nt with a mean of zero and standard deviation

of σn
t . The distribution for pm(Xt|.) is given below.

pm(Xt|An) =
1

σn
t

√
2π

exp

{
−0.5

[
ǫ̃nt
σn
t

]2}
(5.8)

5.1.3 Spatial Spread Likelihood Term

As expressed in eq. 5.2 the likelihood of a trajectory Xt belonging to bundle n is also proportional

to the spatial closeness of Xt to all the trajectories in this bundle. Here we define a reference

trajectory as a trajectory in bundle n for which the Euclidean distances of trajectory Xt is

compared. We define ‘closeness’ as related to the minimum Euclidean distance δt,nf of the points

along the tth trajectory to the points of the reference trajectories in bundle n. Note that not

all the trajectories in bundle n are used for estimating these distances, and we will discuss why

later. The bottom row of fig. 5.4 shows δt,nf between Xt and the reference trajectories in yellow.

The reference trajectories in a bundle are confined geometrically in the image plane by the

object that this bundle represents. Fig. 5.4 shows that there could be other trajectories {Xo}n

which are outside this object simply because of the lack of spatial constraints in initialization.

We need some mechanism therefore to select the reference trajectory set {Xr}n at each

iteration for each bundle n. This is discussed next.

5.1.4 Choosing Reference Trajectories

The top row of fig. 5.5 shows the trajectory bundles at frame 24 for the background and calendar

image regions in the Calendar and Mobile sequence after the initialization stage. The closed

yellow contours outline the regions where the reference trajectories {Xr}n in these bundles are

roughly desired to be. However because of the lack of spatial constraints in the initialization

stage as previously discussed, some trajectories lie outside of these desired regions, and they are

highlighted with white rectangular boxes. These outside trajectories {Xo}n (see bottom row of
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Figure 5.5: The selection of the spatial reference trajectories Xr for the background and calendar

bundles. Top row: The trajectories in these bundles after the initialization stage. The desired

reference trajectories are outlined with the closed yellow contours. Outside trajectories {Xo}n

are highlighted with white boxes. Middle and bottom rows: The reference trajectories for

the first and second iterations of the refinement stage.
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fig. 5.4, where outside trajectories are in orange regions) are not confined to the geometrical

shape of the corresponding objects.

Trajectories {Xo}n tend to be of shorter duration than {Xr}n. In this example the trajectories

{Xo}n were only 3 frames in duration (fig. 5.5). Hence for the 1st iteration of refinement, {Xr}n

is created by selecting the longest trajectories in the bundle. In the example of the 25-frame

sequence (Calendar and Mobile) in fig. 5.5, we select only trajectories of length 25 frames, as

the reference set.

The result of configuring {Xr}n in this way is shown in the middle row of fig. 5.5. As it can

be seen all the ‘outside’ trajectories have been removed and the remaining reference trajectories

{Xr}n are better related to the object extent.

However, after iteration 1 of GC optimization, spatial constraints will have been applied and

it is sensible to incorporate more trajectories in the reference set. In this case we select all

trajectories that are best described by the average motion in a bundle. The idea here is that if

the motion of trajectory Xq is better described by a bundle other than the one it belongs to it

is not a good candidate for a reference trajectory.

Hence trajectory Xq is selected as a reference trajectory Xr for bundle n if the motion

likelihood satisfies the condition pm(Xq|An) > pm(Xq|Ah), where Ah are the set of motion

models for the other bundles. Using this strategy, the reference trajectories selected for the

background and calendar bundles are shown in the bottom row of fig. 5.5. It can be observed

that these reference trajectories describe the geometry of the objects well. Also there are more

reference trajectories here than those obtained from the longest trajectory strategy for the 1st

iteration. With more reference trajectories there is a higher possibility that trajectory Xt will

have closer reference trajectories to it.

5.1.5 Spatial Spread Distribution

With the reference trajectories Xr for bundle n selected as described in the previous section,

we can now define the spatial spread distribution pe(Xt|.). This distribution is assumed to be a

Gaussian distribution of the average distance in the image plane of trajectory Xt to the reference

trajectories {Xr}n.
For the overlapping frames f ∈ {fa : fb} (fig. 5.4) of trajectory Xt and the nth bundle, the

tth trajectory has at each frame a minimum distance δ
t,n
f to the reference trajectories {Xr}n in

the nth bundle. Since there is a distance δ
t,n
f for every frame, the average of these minimum

distances represents the distance of the trajectory to the bundle. The average distance of the

tth trajectory to the nth bundle δnt is therefore defined as,

δnt =
1

fb − fa + 1

fb∑

f=fa

[
δ
t,n
f

]
(5.9)

The parameters of the Gaussian distribution pe(Xt|.) are estimated from the reference tra-

jectories {Xr}n. Consider that there are R reference trajectories. For every reference trajectory
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Xr we calculate the average distance δ̃nr to the other reference trajectories. Here the distance

δ̃nr is obtained in a similar way to the distance δnt calculated in eq. 5.9 for trajectory Xt. Hence

with these average distances for the reference trajectories, the mean δ̄n and standard deviation

σn of the distribution pe(Xt|.) are estimated as follows.

δ̄n =
1

R

∑

r

[
δ̃nr

]
(5.10)

σn =
1

R

∑

r

[
δ̃nr

]2
−
[
δ̄n
]2

(5.11)

The mean δ̄n and standard deviation σn above are global parameters that relate to the overall

separation of the trajectories in bundle n. However, the separation between the trajectories in

the bundle can vary according to local image texture. Therefore by design of the spatial spread

likelihood, the probability pe(Xt|.) only decreases as the distance δnt of trajectory Xt moves away

from the mean separation δ̄n (δnt > δ̄n). A trajectory is not penalized for being too close the

reference trajectories. Here ‘too close’ means that δnt ≤ δ̄n.

Hence the spatial spread likelihood pe(Xt|.) is given as,

pe(Xt|{X}n) =





1
σn

√
2π

exp

{
−0.5

[
δnt −δ̄n
σn

]2}
, if δnt > δ̄n

1
σn

√
2π
, if δnt ≤ δ̄n

(5.12)

5.1.6 The Prior

This section addresses the MRF prior ps(Lt|L∼t) used in the posterior distribution to enforce

smoothness on the label field. The use of a MRF prior to enforce spatial smoothness in 2D

segmentation at the pixel scale is well established [33, 68, 69]. However there has not been any

attempts at using a MRF for the segmentation of sparse trajectories. The major challenge here

specifying a neighbourhood system for the sparse trajectories.

The conventional use of a MRF to enforce label smoothness requires that a neighbourhood

be defined for each trajectory Xt. Here the label of trajectory Xt is influenced only by the labels

of the trajectories in this neighbourhood. Consider that trajectory Xt has a label Lt, the prior

on the trajectory belonging to bundle n given the labels L∼t in the neighbourhood, is defined

as ps(Lt = n|L∼t).

Recall that there are N trajectory bundles. This prior for the nth bundle ps(Lt = n|.) is

modelled as a Gibbs distribution given below.

ps(Lt = n|L∼t) =
1

Z
exp

{
−λL

∑

c

(n 6= Lc)v
c
t

}
(5.13)

Where Z above is the usual normalization constant. Also c is the index of a trajectory Xc in

the neighbourhood of trajectory Xt, and the set of all these trajectories is {Xc}t. The weight
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Figure 5.6: The Delaunay triangulations for frames 1 (left) and 25 (right) of the Calendar

and Mobile sequence. The top row shows the triangulation superimposed on the frames

themselves, while in the bottom row they are superimposed on a white background.

vct determines how much trajectory Xt is influenced by the neighbouring trajectory Xc. The

constant λL controls the weight this prior has in the MAP solution. For all experiments it was

found that setting the constant λL = 0.02 gave suitable results. The design of the weight vct will

be discussed later in this chapter.

The next section discusses how the neighbourhood trajectories {Xc}t are obtained.

5.1.7 Trajectory Neighbourhoods

Unlike image pixels which conform to a convenient rectangular lattice sthetructure, the points

along trajectories do not conform to a regular geometric structure. We therefore perform Delau-

nay triangulations [83] at every frame in a sequence to define a neighbourhood structure for the

trajectories. Fig. 5.6 shows the Delaunay triangulations for frames 1 and 25 of the Calendar and

Mobile sequence. At every frame over the duration of the trajectory Xt it may be connected to
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Figure 5.7: The neighbourhood structure for trajectory Xt (orange plus) on the calendar, where

the duration of this trajectory is 20 frames. The endpoints (dots) of each trajectory close to

Xt are illustrated as having the same colour from frame to frame. The neighbours of trajectory

Xt are connected to it with white lines. The top row shows the neighbourhood for frame 1-5,

while the bottom row corresponds to frames 16-20. The other rows show the intermediate

frame 6-15 in the order previously outlined.

various trajectories as the triangulations involving this trajectory change from frame to frame.

Therefore, the trajectories {Xc}t in the neighbourhood of trajectory Xt are defined as all the

trajectories connected to Xt via all these Delaunay triangulations.

An example of the neighbourhood for a trajectory Xt of length 20 frames is shown in fig. 5.7.

The points at each frame along this trajectory Xt are indicated with an orange ‘+’, while the

other trajectories close by are indicated with different coloured dots. Note that at each frame

shown in a different picture, the trajectories connected to Xt vary as they appear and disappear.

Trajectory Xt in fig. 5.7 is located on the calendar which determines the motion of Xt. Note

that not all of the neighbours of trajectory Xt are trajectories from the calendar. For example,

at frame 20 (bottom right picture of fig. 5.7) the trajectory Xt has a neighbouring trajectory from

the train, and this is highlighted with the yellow closed contour. We require that trajectories
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Trajectory Xt

Figure 5.8: The neighbourhood for trajectory Xt. All the trajectories in the neighbourhood that

are moving in the general direction of Xt form the trajectory set {Xp}t, and they are outlined in

yellow. Only these trajectories influence the prior defined on the label Lt for trajectory Xt. The

trajectories moving in a different direction to Xt are the members of the set {Xq}t, and they are

outlined in green. These trajectories are considered to lie across a motion boundary, therefore

they have no influence on the prior for Lt.

which lie across a motion boundary do not influence each other.

The next section discusses how the trajectories in the neighbourhood {Xc}t that have a

different motion to trajectory Xt are identified.

5.1.7.1 Trajectory Motion Boundaries

Trajectories in the neighbourhood of trajectory Xt moving in a different direction to Xt should

not influence the prior for the label Lt. Fig. 5.8 illustrates the idea of trajectory Xt having

neighbours that lie across a motion boundary. The neighbouring trajectories {Xq}t in the green

outline are moving in a different direction to trajectory Xt. Here we require that the label Lt

be only influenced by the trajectories {Xp}t that are in the same object as Xt, and they are

outlined in yellow.

The overall direction of a neighbouring trajectory Xc relative to Xt is determined from the

angles between the frame to frame displacements of both trajectories. Consider that both

trajectories overlap temporally between frames f1 to f2 + 1, as shown in the top row of fig. 5.9.

For trajectory Xt the displacement vector along the path between frames f and f +1 is defined
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Figure 5.9: The temporal overlap of trajectory Xt with a neighbouring trajectory Xc. Top row:

These trajectories overlap from frames f1 to f2+1, and the displacement vectors between adja-

cent frames are ẋt
f and ẋc

f respectively. Bottom row: The angle θt,cf between the displacement

vectors at frame f . The vectors of unit length along these displacement vectors are x̂t
f and x̂c

f .

as ẋt
f . This displacement vector ẋt

f is given below.

ẋt
f =

(
xtf+1

ytf+1

)
−
(
xtf

ytf

)
(5.14)

x̂t
f =

ẋt
f∥∥∥ẋt
f

∥∥∥

The vector x̂t
f is a unit vector in the direction of ẋt

f . The displacement x̂c
f and unit vectors ẋc

f

are similarly defined for the neighbouring trajectory Xc.

The dot product of the unit vectors x̂t
f and x̂c

f for both trajectories produces the cosine of

the angle θt,cf between the displacement vectors at frame f . This angle θt,cf is shown in the bottom

row of fig. 5.9. The trajectories Xt and Xc are considered to be moving in the same directions

at frame f if one of the following two conditions are satisfied.

• The angle θ
t,c
f between the displacement vectors is less than a threshold θT = 60◦.

• The displacement vectors ẋt
f =

(
0

0

)
and ẋc

f =

(
0

0

)
.
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The percentage of frames over the range f1 to f2 for which both trajectories Xt and Xc are

moving in the same direction according to the conditions above is now defined as ζt,c.

Recall that the trajectories {Xp}t are the only trajectories in the neighbourhood of Xt that

we require to influence the prior on the label Lt (see fig. 5.8). The metric ζt,c calculated for the

neighbouring trajectory Xc with respect to trajectory Xt is used to decide whether Xc a member

of the set {Xp}t. We require ζt,c to be greater than 60%, for trajectory Xc to be included in the

set {Xp}t. That is, trajectory Xt and Xc are deemed to be moving in the same direction for at

least 60% of the frame in their temporal overlap f1 to f2 + 1.

The next section discusses how the influence of the trajectories {Xp}t is quantified.

5.1.7.2 The Influence of Neighbouring Trajectories

Recall that {Xc}t is the set of all the trajectories in the neighbourhood of trajectory Xt. Further

recall that the influence of each neighbouring trajectory Xc on the prior ps(Lt = n|.) is controlled
by the weight vct in eq. 5.13.

The previous section discussed how the trajectories {Xc}t in the neighbourhood are parti-

tioned into two sets {Xp}t and {Xq}t. At this stage it is established that the trajectories {Xq}t

do not influence the label of trajectory Xt. Therefore for these trajectory the weight vqt is set to

zero.

The set of neighbouring trajectories {Xp}t are required to influence the prior for label Lt. We

make the influence of a trajectory Xp in this set proportional to the average Euclidean separation

of Xp to trajectory Xt in the image plane. Trajectories in {Xp}t that are ‘closer’ to trajectory

Xt have a greater influence on the prior for Lt.

Hence the weight vpt for a trajectory in {Xp}t is given below.

v
p
t = exp

{
−
[
δ̄t,p

De

]2}
(5.15)

δ̄t,p =
1

f2 − f1 + 1

f2∑

f=f1

[√
(xtf − x

p
f )

2
+ (ytf − y

p
f )

2
]

Where the normalizing factor above De =
√
200 for all experiments reported. This allows

trajectories within 200 pixels of Xt to have great influence.

5.2 Local Region Constraint

This section discusses how each trajectory bundle is constrained to represent a single coherent

image region. The spatial smoothness enforced on the trajectory labels by using a MRF prior

previously discussed, correctly allows neighbouring trajectories to have the same label. However,

the MRF does not offer any control over where these neighbouring trajectories bearing the same
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Figure 5.10: The trajectory labels for frames 12 (top row) and 25 (bottom row) of the

Calendar and Mobile sequence. Left column: The trajectory label field after solving the

MAP estimate of the posterior distribution for the 1st iteration of refinement. The white

closed contours highlight the trajectories in the cyan bundle. The closed contours represent the

sub-bundles of trajectories that all belong to the cyan bundle, and are spatially separated in

the image plane. Right column: The results of the local region constraint algorithm on

the label field. The refined cyan bundle as well as the new bundles formed from it and outlined

with white closed contours. The trajectories in the new bundles are uniquely coloured. Two

of these new bundles are subsequently merged with the calendar bundle in frame 12 (top), and

they are outlined with broken white contours.

label reside in the image plane. We require that all the trajectories belonging to each bundle

reside in a single confined image region.

The left column of fig. 5.10 shows the trajectory bundles after solving for the MAP estimate

(GC optimization) for the 1st iteration of the Calendar and Mobile sequence. Here frames 12

(top) and 25 (bottom) are shown, and the trajectories for the cyan bundle are outlined with white

closed contours. These closed contours highlight the spatially separated groups of trajectories
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belonging to the cyan bundle. We define each group as a sub-bundle. The trajectories in each

sub-bundle are all connected via their neighbourhoods. These neighbourhoods are derived from

Delaunay triangulations of the points along the trajectories as previously discussed.

We can observe that for the example of the cyan bundle on the left of fig. 5.10 that the sub-

bundles do not all represent a specific image region. Therefore, we decided that the trajectories

in the largest sub-bundle should represent the original bundle. Also, the smaller sub-bundles

with more than three trajectories should form new bundles. The algorithm for fulfilling this

task is defined as the local region constraint algorithm.

The results of the local region constraint on the bundles at frame 12 (top) and 25(bottom)

are shown in the right column of fig. 5.10. Here the cyan bundle along with the new bundles

formed are outlined with white contours. The trajectories in the new bundles are highlighted

with different colour. Note that two of the sub-bundles (for frame 20) from the original cyan

bundle of the left have been subsequently merged with the calendar bundle in yellow. These

sub-bundles are highlighted with broken white contours on frame 12 (top).

As can be seen for the two sub-bundles merged to the calendar bundle, splitting the trajec-

tories into sub-bundles makes the average motion of the bundles more coherent. The merging

of bundles is then better facilitated.

The next section discusses how image regions are sparsely represented by trajectory bundles.

5.2.1 Object Representation with Trajectory Bundles

As discussed in the previous section, the trajectories in a bundle after the GC optimization step,

can occupy image regions corresponding to different objects. We require that the trajectories in

each bundle occupy an image region corresponding to a single object. A mechanism is therefore

required to identify the image regions a bundle occupies.

The points along the trajectories generated by an object are spatially constrained according

to the relative location of the object in the image plane. The top right illustration in fig 5.11

shows the spatiotemporal volume of pixels in an object as they move through time. The tra-

jectories of the object shown top left, are constrained to occupy this spatiotemporal volume.

The nature of this spatial constraint causes these trajectories to have an important property of

forming a ‘closed 3D network’ of trajectory points.

The bottom illustration of fig. 5.11 will be used to explain the concept of a ‘closed 3D

network’ of trajectory points. Consider that a bundle has two sets of trajectories (sub-bundles)

that are separated in space and time. In fig. 5.11 these sub-bundle are identified as the hth

(black) and kth (green) sub-bundles, and they are separated by a spatiotemporal gap. This gap

between the sub-bundles is occupied by trajectories from other bundles.

The points (dots) along the trajectories in each sub-bundle are connected at each frame by

the defined neighbourhood obtained from the Delaunay triangulations as previously discussed.

These neighbourhood connections are defined as spatial links, and are indicated with cyan lines
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Figure 5.11: Top right: The spatiotemporal volume the pixels of an object occupy as they

move through a sequence. Top left: The spatiotemporal volume dictated by the movement

of an object constrains the trajectories of that object to reside within this volume. Bottom:

Examples of two sub-bundles h and k which both belong to the same bundle. The sub-bundles

are separated in space and time by a spatiotemporal gap that contains trajectories from other

bundles. The points xa and xb both belong to trajectories in sub-bundle h. These points are

connected by a set of links (spatial and temporal) outlined with the pink line. The point xc in

sub-bundle k however has no links to connect it to any point in sub-bundle h. Therefore, the

sub-bundles are defined as isolated 3D networks of trajectory points.
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between the trajectory points in fig. 5.11. The trajectories themselves provide links between the

points from frame to frame, and these links are defined as temporal links.

Considering the analogy of the points along the trajectories (dots) as nodes in a communica-

tion network, the spatial and temporal links are the channels by which these nodes communicate.

Now it may be observed that the design of the sub-bundles shown in fig. 5.11 causes each sub-

bundle to be an isolated/closed 3D network of points. That is, for two points xa and xb that

belong to sub-bundle h, there is a set of links (spatial and temporal) that allow these points to

be connected. An example of a set of links that connect xa to xb are outlined with the pink

line. However, for points xa and xc that reside on different sub-bundle there are no links that

allow these points to be connected.

Therefore, a sub-bundle is defined as a closed 3D network of trajectory points. The wire-

frame structure implicitly inferred by the links connecting the trajectory points is an approxi-

mation of a single image region as it moves through time.

The next section discusses how trajectory sub-bundles are identified for each bundle.

5.2.2 Locating Trajectory Sub-bundles

The previous section established the idea that a trajectory sub-bundle is a closed 3D network

of trajectory points (bottom row of fig. 5.11). The network for a sub-bundle is termed ‘closed’

since only trajectory points in the sub-bundle can be connected to each other. Furthermore

there are no links that exist to connect two points from separate sub-bundles.

We take advantage of the closed 3D network of each sub-bundle to identify them. The idea

here is if a trajectory point xr is chosen at random and given a unique ‘message’ which is then

propagated over the network, only the points in a single sub-bundle will receive the ‘message’.

This sub-bundle will be the sub-bundle that the random point xr belongs to. The other sub-

bundles are discovered in a similar way by choosing another random point xr that has not yet

been associated with a sub-bundle.

Sub-bundles with more than three trajectories are used as previously mentioned to form new

bundles. The sub-bundle with the most trajectories is assigned the label of the bundle it was

derived from.

Appendix C gives the details of how the trajectories in a bundle are assigned to a particular

sub-bundle. This may seem like a simple task, however designing an efficient algorithm requires

some through.

5.3 Trajectory Bundle Merging

We merge trajectory bundles in order to keep the number of bundles to a minimum, which

reduces modelling redundancy and improves computational efficiency. In section 4.2 (initial-

ization stage) we presented a framework for merging trajectory bundles by assessing motion
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Figure 5.12: Examples of which trajectory bundles are considered for merging. The nth (red)

and mth (purple) trajectory bundles are considered for merging since their combined bundle

forms a closed 3D network of points. The spatial links (cyan lines) highlighted with the broken

black closed contour facilitate ‘communication’ between the points in both bundle n and m.

However bundles h (blue) and k (green) are not considered for merging since both bundles are

separated by a spatiotemporal gap.

similarity based on Affine models. We used Affine motion models during the initialization stage

to facilitate the merging of trajectory bundles corresponding to rigidly moving objects. How-

ever this strategy was not effective for merging trajectory bundles corresponding to non-rigid

objects. Hence an alternative merging strategy is used during the refinement stage to facilitate

the merging of these bundles. We attempt to merge these bundles in the refinement stage after

spatiotemporal constraints on the bundles have been applied using the Bayesian framework.

The trajectory bundle merging strategy used during the refinement stage is defined as spatial

merging. First, we consider merging the nth and mth bundles if the trajectories in both bundles

will reside in a single coherent spatiotemporal volume. That is, the merged trajectory bundle

should represent a single image region throughout a sequence.

As previously discussed we assess whether a bundle represent a single image region by identi-

fying its sub-bundles. Recall that trajectory bundles with multiple sub-bundles do not represent

a single image region, so each sub-bundle is used to form a new bundle. Hence the idea is to
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consider the merging of bundles n and m if they can be combined into a single bundle. We then

merge these bundles if a second criterion based on the spatial separation of the trajectories in

the merged bundle is met. We will discuss this second criterion later.

Recall that the points along the trajectories are connected in some way by temporal and

spatial links as previously discussed. The trajectories themselves provide the temporal links,

while the spatial links are obtained from Delaunay triangulations of the points along the tra-

jectories. Fig. 5.12 shows examples of which trajectory bundles are considered for merging.

Here bundles n (red) and m (purple) are considered for merging since there are spatial links

(cyan lines) that connect both bundles. These links are highlighted with the broken black closed

contour. Hence the bundle obtained from combining bundles n and m forms a single sub-bundle

which is a closed 3D network of trajectory points. However, bundles h (blue) and k (green) are

not considered for merging since a spatiotemporal gap resides between both bundles. That is,

there are no spatial links that connect both bundles.

5.3.1 Trajectory Separation

Given bundles n and m are considered for merging based on their combined bundle forming

a close 3D network as previously discussed, we then proceed to the second step in the spatial

merging process. In this second step we assess how the Euclidean distances in the image plane

between the trajectories in both bundles change over a sequence. The idea is that we merge both

bundles if their trajectories maintain roughly constant distances to each other over a sequence.

This approach facilitates the merger of trajectory bundles corresponding to non-rigid objects.

We have observed from real world sequences that two non-rigid trajectory bundles with similar

motion usually maintain roughly constant Euclidean distances in the image plane amongst the

trajectories in both bundles.

Consider that trajectory Xr is one of the Tn trajectories belonging to bundle n, where r ∈
{1 : Tn}. Similarly, the mth bundle has Tm trajectories where Xs being one of these trajectories.

We evaluate how the Euclidean distances (spatial separations) between the trajectories Xr and

Xs change over a sequence in order to derive metrics for determining if bundles n and m should

be merged. For each trajectory Xr in bundle n we evaluate how its spatial separations with

respect to all the trajectories in bundle m are changing in time. As an simple example, the

top row of fig. 5.13 shows the current trajectory Xr in bundle n that is being evaluated with

respect to the four trajectories in bundle m. Here trajectory Xr and the four trajectories in

bundle m are represented as red and purple curved lines respectively extending across a set of

frames (dotted vertical lines) in a sequence. For clarity of later discussions we define two of the

trajectories in bundle m as Xs and Xu, where the spatial locations along these trajectories are

indicated with green and blue dots respectively.

We define Fr,s = [ar,s : br,s] as the set of frames for which both trajectories Xr and Xs exist in

time, where ar,s and br,s are the first and last frames in this range respectively. The frames ar,s
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Figure 5.13: Notations for the second step in the spatial merging process. Top row: The

trajectory Xr (red line) is a trajectory in bundle n for which the Euclidean distances d(r, s)f
are evaluated with respect to the trajectories in bundle m (purple lines). Both trajectories Xs

and Xu belong to bundle m, and their spatial locations at each frame are indicated with green

and yellow ‘dots’ respectively. The start frame ar,s and end frame br,s for which trajectories Xr

(red line) and Xs (green ‘dots’) overlap temporally are the labelled green dotted vertical lines.

Similarly the start ar,u and end ar,u frames are labelled for the overlap of trajectory Xr and

Xu. The Euclidean distances d(r, s)f between trajectories Xr and Xs are indicated with black

arrows. Second row: The Euclidean distances in the image plane between the points along

trajectory Xr (red ‘dots’) and the various points along the trajectories in bundle m (green, cyan,

yellow and blue ‘dots’). These distances are show for frames ar,s, f and br,s.
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and br,s are the labelled green dotted vertical lines in fig. 5.13. For a frame f ∈ Fr,s, we define

d(r, s)f given below as the Euclidean distance between trajectories Xr and Xs at this frame.

d(r, s)f =

∥∥∥∥∥

(
xrf

yrf

)
−
(
xsf

ysf

)∥∥∥∥∥ (5.16)

We define d̂(r, s)f below as the absolute change in the Euclidean distances between trajec-

tories Xr and Xs at frame f , given the current distance d(r, s)f and next distance d(r, s)f+1.

d̂(r, s)f = |d(r, s)f − d(r, s)f+1| , for f ∈ {ar,s : (br,s − 1)} (5.17)

The idea is that if the distances between trajectories Xr and Xs stay constant over a sequence,

then

br,s−1∑

f=ar,s

d̂(r, s)f ≈ 0. Hence we derive metrics for merging based on the mean and standard

deviation of the changes in the distances d̂(r, s)f between trajectory Xr and the trajectories in

bundle m. This mean d̄r along with the standard deviation ςr for trajectory Xr in bundle n are

given below.

d̄r =
1

Z

∑

o∈Or

br,o−1∑

f=ar,o

d̂(r, o)f (5.18)

ςr =


 1

Z

∑

o∈Or

br,o−1∑

f=ar,o

[
d̂(r, o)f

]2

−

[
d̄r
]2

(5.19)

Where Or is the set of trajectories in bundle m that overlap temporally with trajectory Xr for

more than two frames. As an example, all the trajectories in bundle m indicated with purple

lines in fig. 5.13 belong to the set Or except for the trajectory with cyan ‘dots’. This trajectory

does not overlap temporally with trajectory Xr (red line) for more than two frame so no distance

changes can be estimated here.

We define trajectory Xo as a trajectory in this set Or, i.e. o ∈ Or. Also, Z given below is

the number of distance changes d̂(r, o)f estimated for trajectory Xr with respect to the all the

trajectories Xo.

Z =
∑

o∈Or

br,o−1∑

f=ar,o

(1) (5.20)

5.3.1.1 Spatial Merging Metrics

We merge bundles n and m based on the percentage of the trajectories Xr in bundle n that

have means d̄r and standard deviations ςr below respective thresholds. We define Dn,m as

the percentage of trajectories Xr with means d̄r less than a threshold dτ . Similarly, Rn,m is

the percentage of trajectories with standard deviations ςr less than a threshold ςτ . For all
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experiment reported later the thresholds dτ and ςτ are set to 0.5pels and 1.0pels2 respectively,

unless specified otherwise.

Given that both Dn,m and Rn,m are high, this result indicates that the general consensus of

the trajectories is that the Euclidean distances between bundle n and m stay roughly constant

over a sequence. We define thresholds for the metrics Dn,m and Rn,m as Dτ and Rτ respectively.

We make these thresholds Dτ and Rτ be 80% and 70% respectively for all experiments reported

later, unless specified otherwise.

We always estimate the means and standard deviations of the changes in Euclidean distances

for the bundle with the most trajectories. Recall that the number of trajectories in bundles n

and m are R and S respectively. We define the bundle with the most trajectories as the reference

bundle. Hence bundle n is the reference bundle if R > S, otherwise bundle m is the reference

bundle. Using these means and standard deviations for the trajectories in the reference bundle

provide more robustness in estimating the merging metrics Dn,m and Rn,m considering that

there might be outlier trajectories in the bundles. Here an outlier trajectory is defined as a

trajectory that does not always follow the average motion of the bundle it belongs to. Since the

merging metrics are estimated through a trajectory voting process, outliers will have a smaller

effect on the these metrics when there are a lot more reliable trajectories in the reference bundle.

In the previous discussion we assumed to bundle n had more trajectories than bundle m.

However, if bundle m is the reference bundle then we estimate the merging metrics Dn,m and

Rn,m using the estimated means d̄s and standard deviations ςs for the trajectories Xs in bundle

m. The procedure for estimating d̄s and ςs is the same as previously discussed for d̄r and ςr,

however note that in this case we are estimating the changes in Euclidean distances for the

trajectories Xs in bundle m with respect to the trajectories in bundle n.

5.4 Graphcut Solution

The α-expansion Graphcut algorithm [135] is used to solve for the MAP estimate of the trajec-

tory bundle labels Lt. The posterior distribution for the trajectory labels Lt discussed previously

is repeated below.

p(Lt|X ,L∼t) ∝ px(Xt|Lt)ps(Lt|L∼t) (5.21)

Details of the adaptation of the Bayesian problem in eq. 5.21 above to this Graphcut solution

are exposed in appendix A. There are no major issues to raise as far as the Graphcut techniques

are concerned.

5.5 Summary

This chapter discusses the refinement stage in our sparse trajectory segmentation technique. This

stage follows the initialization stage discussed in chapter 4. In the refinement stage a Bayesian
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framework is used to enforce spatial and temporal smoothness on the trajectory bundle obtained

from the initialization stage.

In the refinement stage we utilize an algorithm we define as the local region constraint

algorithm to ensure that each trajectory bundle represent a single coherent image region. Also

in this stage we include a trajectory merging strategy that is effective for merging trajectory

bundles corresponding to non-rigid objects.



6
Sparse Trajectory Segmentation Performance

Evaluation

In this chapter the performance of the proposed algorithm is compared to previous methods.

Recall from the review in chapter 2 that sparse trajectory segmentation algorithms may be

categorized based on whether they provide a 2D or 3D segmentation.

A 3D segmentation approach aims to group all the trajectories belonging to a particular

object in 3D space. Each group of trajectories provided by a 3D segmentation is defined as a

3D trajectory bundle.

A 2D segmentation approach like our proposed technique, groups trajectories of coherent

2D image motion. To distinguish between the results of a 2D and 3D segmentation we define a

group of trajectories labelled as having similar 2D image motion as a 2D trajectory bundle.

The illustration in fig. 6.1 will be used to demonstrate the difference between the segmen-

tation results for both the 2D and 3D approaches. An important distinction between both

approaches is the level of segmentation produced. Understanding the nature of both segmenta-

tion results is necessary for establishing some grounds for comparing them.

The top row of fig. 6.1 shows a truck at two different frames in a motion sequence. Some

approximately planar surfaces on this truck are uniquely highlighted for illustration purposes in

red, green, cyan, purple, and yellow. Here matching surfaces across both frames are coloured in

a similar manner.

A 3D segmentation algorithm is required to identify all the trajectories generated by the

truck as belonging to a single object. The spatial locations of these trajectories are shown as

103
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Figure 6.1: Top row: A truck shown at frames 1 (left) and 24 (right) in a motion sequence

from the Hopkins dataset [117]. Some roughly planar surfaces on the truck are highlighted in

red, green, yellow, purple and cyan. The matching surfaces across both frames are coloured in a

similar manner. Bottom left: The desired labels for a 3D segmentation algorithm. The spatial

locations of the trajectories for the background and truck at the current frame are indicated

with red and yellow ‘dots’ respectively. Bottom right: The trajectory segmentation result

produced by our proposed technique. Each trajectory bundle shown in a different colour roughly

represents a single surface of the truck.

yellow ‘dots’ in the bottom left illustration of fig. 6.1. Note here that the 3D segmentation task

becomes more challenging when the object of interest is subjected to significant perspective

distortions.

The 2D motion in the image plane of each surface of the truck is dependent on the relative

perspective of the surface with respect to the camera. The red (side) and cyan (front) surfaces for

example will have relatively different 2D image motions due to their orientations and distances

from the camera.

A 2D segmentation algorithm groups the trajectories of the truck according to the planar
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surface they belong to. The bottom right of fig. 6.1 shows the segmentation produced by our

proposed technique. Note that each trajectory bundle roughly lies along a single planar surface.

We compared our 2D segmentation technique with five state-of-the-art 3D segmentation

approaches using the Hopkins dataset [117]. This dataset is a collection of 155 motion sequences

supplied with ground truth information. Our proposed algorithm significantly outperforms these

3D approaches as will be shown later in this chapter.

The only two published 2D trajectory segmentation approaches are by Fradet [46] and Pund-

lik [95]. These approaches were discussed in chapter 2 (review chapter). Fradet [46] proposed

an approach that uses clustering and Affine motion modelling. Pundlik models the motion of

the trajectories with Affine transformations and finds the optimal number of trajectory bundles

using a region growing strategy.

Fradet [46] has provided a quantitative analysis of his results using the Hopkins dataset.

However, Fradet only provides quantitative analysis on 51 sequences of the 155 sequences in

the dataset. For these 51 sequences we have lower trajectory misclassification errors. We also

visually compared our segmentation with that of Fradet for 4 sequences presented by the author.

These sequences do not have any ground truth information for a quantitative analysis.

Pundlik [95] provides no quantitative analysis of his results, so a visual comparison of the

respective segmentation results is done for 3 sequences presented by the author.

We now move on to discuss the comparisons in more detail.

6.1 Quantitative Analysis on the Hopkins Dataset

The performances of several 3D segmentation algorithms [59,97,119,132] have been traditionally

assessed using the Hopkins dataset [117]. The Hopkins dataset includes 104 indoor checkerboard

sequences, 38 outdoor traffic sequences, and 13 articulated/non-rigid sequences. Each sequence

has two or three independently moving objects.

There are 155 sequences Sh in the Hopkins dataset, i.e. h = 1 : 155. Each sequence is Fh

frames long. A ground truth trajectory set accompanies each sequence. These trajectories are all

of length Fh frames, i.e. there are no incomplete/partial trajectories. As an example the top two

rows of fig. 6.2 show three sequences from the Hopkins dataset. The top row shows the starting

frames for sample sequences in the checkerboard (left), traffic (middle), and articulated (right)

motion sequence categories. The second row shows the end frames for these sequences, where

Fh = 24, 22, 60 from left to right respectively. The ground truth trajectories are superimposed

on both the first and end frames.

The task of a 3D segmentation algorithm is to assign a label Lt ∈ {1 : Nh} to these trajecto-

ries, where Nh is the number of independently moving objects Nh in sequence Sh. The number

of objects is either 2 or 3 for the Hopkins dataset. For the example sequences in fig. 6.2 the

number of objects are Nh = 3, 2, 2 from left to right respectively.

The number of 2D trajectory bundles estimated by our technique for sequence Sh may not
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Figure 6.2: Three sample motion sequences from the Hopkins dataset. A indoor checkerboard

(left), outdoor traffic (middle), and articulated/non-rigid (right) sequence are shown. Top two

rows: The first and last frames in these sequences respectively. The ground truth trajectory

bundles are coloured red, yellow, and green in the first two rows. Third row: The 2D seg-

mentations provided by our proposed technique for the example sequences. Bottom row: The

segmentation results provided by one of the 3D segmentation algorithms being evaluated. All

misclassified trajectories are outlined with white boxes.

be equal to the number of objects Nh. As previously mentioned the number of 2D trajectory

bundles generated in an object depends the orientation and distance of this object as it moves

relative to the camera. The 2D trajectory bundles for the example sequences in fig. 6.2 are shown
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On

Om
On

Om

On
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Figure 6.3: A demonstration of how misclassified trajectories are identified. Top row: The

ground truth segmentation of the trajectories for objects On and Om. The trajectory endpoints

are red and green dots for both objects respectively. Bottom left: An example 3D segmentation

of the trajectories for both objects. The orange and cyan bundles represent objects On and Om

respectively. Bottom right: An example 2D segmentation of the object trajectories. The yellow

and blue bundles represent object On, whilst the purple and light green bundles represent object

Om. Misclassified trajectories are outlined with pink boxes.

in the third row. Here the number of bundles are 4, 17 and 7 for the sequences from left to

right respectively, where every bundle has a different colour. Note that unlike 3D segmentation

techniques, our 2D segmentation technique does not require a user to specify the number of

objects Nh in a sequence.

The number of 3D trajectory bundles is always equal to the number of objects Nh. All 3D

segmentation algorithms are told in advance how many objects are in the sequence. This is a

major issue with these algorithms which prevent them from being used on an arbitrary sequence

where Nh is unknown.

We compare the result of a 3D segmentation approach with our 2D segmentation by con-

sidering the trajectory misclassification rate. A trajectory Xt in bundle n is misclassified if it

belongs to an object Om when the majority of the trajectories in the bundle belong to object

On. Fig. 6.3 demonstrates how misclassified trajectories are identified.

The top row of fig. 6.3 shows the ground truth trajectory labels for two objects On and Om.

The trajectory endpoints are red and green dots for both objects respectively. The bottom left

illustration shows an example 3D segmentation of the trajectories for these objects. Here the

two 3D trajectory bundles are orange and cyan. The majority of the trajectories for object On

are in the orange bundle, so this bundle is deemed to represent object On. In a similar manner

object Om is represented by the cyan bundle. The misclassified trajectories are outlined with
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pink boxes. These trajectories belong to an object that is not represented by the bundle it

belongs to.

The bottom right illustration shows an example 2D segmentation of the trajectories for the

objects On and Om. The number of bundles here is not equal to the number of objects. However,

each bundle represents the object for which it has the most trajectories. For example, The blue

and yellow bundles both represent object On, whilst the purple and light green bundles represent

object Om. The misclassified trajectories here are also outlined with pink boxes.

The percentage misclassification rate Mh for sequence Sh is now defined as follow,

Mh =
#misclassified trajectories

Th
(6.1)

Where Th is the number of trajectories in sequence Sh.

The third row of fig. 6.2 shows the 2D segmentation of our technique for the example se-

quences in the figure. The misclassified trajectories are outlined with white boxes. The per-

centage misclassification rate for these sequences are Mh = 0.4%, 0.0%, 6.1% from left to right.

The fourth row shows the results provided by one of the 3D segmentation algorithms. Again

misclassified trajectories are outlined with white boxes. The percentage misclassification rate

for the example sequences are Mh = 0.6%, 0.0%, 6.1% from left to right respectively.

This section has illustrated a few results and how they are measured. We now go on to

present a complete analysis comparing with five 3D segmentation techniques and the technique

of Fradet [46].

6.1.1 Misclassification Results

We have compared the proposed algorithm with the five 3D segmentation approaches. These

approaches are titled Multistage Learning (MSL) [59],Generalized Principal Component Analysis

(GPCA) [118–121], Random Sample Consensus(RANSAC) [42, 115], Local Subspace Affinity

(LSA) [132] and Agglomerative Lossy Compression (ALC) [97,133].

In general most 3D segmentation algorithms do not perform well when the number of moving

object Nh in a sequence is more than two. Therefore the misclassification rates are reported

for sequences with two and three moving objects separately. Table 6.1 shows the number of

sequences (Nh), the mean number of trajectories (T̄h) and frames (F̄h) for the sequences with

two or three moving objects. There are 120 and 35 sequences with two and three moving objects

respectively.

Recall that the sequences in the Hopkins dataset are categorized into checkerboard, traffic,

and articulated/non-rigid sequences. Each category has different motion sequence characteris-

tics. The objects in the checkerboard sequences are physically controlled to have either rota-

tional, translational or stationary motion. However for the traffic and articulated sequences the

motions of the objects are not controlled.

Since the three categories in the Hopkins dataset all have different motion characteristics,

the misclassification rates are reported for each category. For our technique the number of
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Nh = 2 Nh = 3

#Seq. T̄h F̄h #Seq. T̄h F̄h

Checkerboard 78 291 28 26 437 28

Traffic 31 241 30 7 332 31

Articulated 11 155 40 2 122 31

All 120 266 30 35 398 29

Table 6.1: The number of sequences (#Seq.), the mean number of trajectories (T̄h) and frames

F̄h for the three categories in the Hopkins dataset. These statistics are shown for sequences with

two (Nh = 2) and three (Nh = 3) moving objects.
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Figure 6.4: The mean bundle ratios B̄ versus the mean misclassification rates M̄ for the 7

experiments outlined in table 6.2.

bundles bh produced per moving object for sequence Sh influences the misclassification rate Mh.

Consider that Bh is the ratio of the number of bundles bh to the number of moving objects Nh

defined as follows.

Bh =
bh

Nh
(6.2)

It is reasonable to expect that increasing the ratio Bh (more bundles per object) will cause

the misclassification rate Mh to decrease. Therefore we conducted 8 experiments on all 155

sequences where the parameters in the refinement stage of our technique were varied to control

the ratio Bh of bundles per moving object.

Table 6.2 shows the parameters used for the 8 experiments along with the corresponding
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Initialization Refinement

Affine Mer. MS Band. Separation Mer.

Experiment sn,m k1, k2, k3, k4 dτ , Dτ ςτ , Rτ B̄ M̄

0 0.001 0.5,0.5,0.5,0.5 0,∞ 0,∞ 5.65 0.69

1 0.001 0.5,0.5,0.5,0.5 0.5,0.80 1.0,0.70 3.78 0.68

2 0.001 0.5,0.5,0.5,0.5 1.0,0.70 2.0,0.50 3.00 0.93

3 0.001 0.5,0.5,0.5,0.5 1.0,0.60 2.0,0.40 2.48 1.20

4 0.001 0.5,0.5,0.5,0.5 1.0,0.60 3.0,0.40 2.29 1.29

5 0.001 0.5,0.5,0.5,0.5 1.0,0.50 3.0,0.30 2.19 1.44

6 0.001 0.5,0.5,0.5,0.5 1.0,0.40 3.0,0.20 2.07 1.63

7 0.001 0.5,0.5,0.5,0.5 1.2,0.35 5.0,0.15 1.81 3.46

Table 6.2: The parameters for 8 experiments conducted for the proposed algorithm on the 155

sequences in the Hopkins dataset. The parameters for the Affine merging sn,m (Affine Mer.)

and the Mean shift clustering bandwidth k1, k2, k3, k4 (MS Band.) in the initialization stage

were kept constant over all experiments. The trajectory separation merging parameters dτ , Dτ ,

ςτ and Rτ (Separation Mer.) in the refinement stage were varied so the bundle ratio Bh (6th

column)decreases monotonically from experiment 1-7. In experiment 0 the trajectory bundles

are not merged in the refinement stage. The mean misclassification rate M̄ for each experiment

is shown in the end column. The results Experiment 1 are used for comparison with other

segmentation methods. The row for this experiment is in bold text.

mean bundle ratios B̄ and mean misclassification rates M̄ over all 155 sequences. Note that

experiment 0 acts as a control where no merging of the trajectory bundles is allowed in the

refinement stage. The parameters for the Affine merging sn,m (Affine Mer.) and the Mean shift

clustering bandwidth k1, k2, k3, k4 (MS Band.) in the initialization stage were kept constant

over all experiments. However the trajectory separation merging parameters dτ , Dτ , ςτ and Rτ

(Separation Mer.) in the refinement stage were varied to control the bundle ratio Bh.

For experiments 1-7 the trajectory separation merging thresholds dτ , Dτ , ςτ and Rτ are

relaxed monotonically. That is, experiment 1 has the ‘tightest’ thresholds (0.5,0.8,1.0,0.70) to

deter the merging of the trajectory bundles, so this experiment has the highest bundle ratio B̄ =

3.78. The 7th experiment however has the ‘loosest’ thresholds (1.2,0.35,5.0,0.15) to encourage

more merging of the trajectory bundles. Hence this experiment has the lowest bundle ratio

B̄ = 1.81.

The mean bundle ratios B̄ versus the mean misclassification rates M̄ for the 8 experiments

are plotted in fig.6.4. As expected the mean misclassification rate M̄ decreases as the mean

number of bundles per moving object (B̄) increases. The plot in fig. 6.4 suggests that we can

not expect much more improvement in the mean misclassification rate M̄ by increasing the
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Checkerboard Proposed MSL GPCA RANSAC LSA ALC

Average 0.56% 2.13% 5.80% 6.05% 2.14% 2.24%

Median 0.00% 0.00% 1.03% 1.84% 0.27% 0.00%

Traffic Proposed MSL GPCA RANSAC LSA ALC

Average 0.05% 0.74% 8.01% 8.15% 9.51% 1.04%

Median 0.00% 0.00% 0.80% 0.52% 5.66% 0.00%

Articulated Proposed MSL GPCA RANSAC LSA ALC

Average 4.10% 1.90% 9.78% 10.17% 8.77% 6.69%

Median 0.00% 0.00% 5.56% 6.35% 5.33% 0.00%

All Proposed MSL GPCA RANSAC LSA ALC

Average 0.75% 1.75% 6.74% 6.97% 4.65% 2.34%

Median 0.00% 0.00% 1.32% 1.84% 0.89% 0.00%

Table 6.3: Misclassification rates for sequences with two object motions Nh = 2.

bundle ratio B̄ beyond 3.78. Therefore the results of experiment 1 are used later in this chapter

for the comparison with the other segmentation approaches. This experiment has the lowest

mean misclassification rate M̄ = 0.68, and is highlighted in bold text in table 6.2.

The next section reports the misclassification rates for the sequences with two moving objects.

6.1.2 Misclassification for Sequences with Two Moving Objects

For sequences with two moving objects (Nh = 2), our technique has the overall lowest mean

percentage misclassification rate of 0.75% as presented in the bottom row (All) of table 6.3. The

MSL algorithm provides the next best mean misclassification rate of 1.75%.

In table 6.3 the best misclassification average rates for the checkerboard, traffic, and artic-

ulated sequence categories are in bold text. The proposed algorithm has the lowest misclas-

sification rates for the checkerboard (0.56%) and traffic (0.05%) sequences. However the MSL

algorithm provides a lower rate for the articulated sequences. There are 11 articulated sequences

with two moving objects. Our technique has a misclassification rate of 28.57% for one of these

sequences called two cranes (discussed later). If this sequence is excluded when calculating the

mean misclassification rate, the proposed and MSL algorithms would have mean rates of 1.66%

and 2.09% respectively. Hence we would have a lower mean rate.

We can obtain a mean misclassification rate of zero for the two cranes sequence if a smaller

Mean shift clustering bandwidth is used during the initialization stage. The top row of fig. 6.5

shows the first (left) and last (last) frames for the two cranes sequence. The ground truth

trajectory bundles for both objects (cranes) are each shown as red and yellow dots.

Both cranes have trajectories that are approximately stationary in motion. Also the motion
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Figure 6.5: The first (left) and last (right) frames for the two cranes sequence in the Hopkins

dataset. Top row: The ground truth trajectories for both cranes are shown as red and yellow

dots. Middle row: The segmentation achieved by the proposed algorithm using the general

MS clustering bandwidth parameters specified for all the sequences in the experiment. Bottom

row: The final segmentation achieved using half of the general MS clustering bandwidth in the

initialization stage. Here the misclassification rate is zero, as the red, orange, and yellow bundles

all represent a single crane.

differences between both cranes are very subtle due to them being far away from the camera.

When using the general clustering parameters stipulated for all the sequences, our technique



6.1. Quantitative Analysis on the Hopkins Dataset 113

forms a bundle with some of the stationary trajectories corresponding to both cranes. The

middle row of fig. 6.5 shows the segmentation when using these general MS clustering parameters

for experiment 1. Here the yellow bundle contains roughly stationary trajectories corresponding

to both cranes. The misclassification rate for this segmentation is 28.57%.

Our technique can differentiate between the subtle motions of the cranes by using a smaller

MS clustering bandwidth during the initialization stage. By using half of the general clustering

bandwidth ((k1, k2, k3, k4) = (0.25, 0.25, 0.25, 0.25)) in initialization a misclassification rate of

zero is achieved. The bottom row of fig. 6.5 shows the segmentation result of our technique when

using this smaller MS clustering bandwidth. The 3 bundles coloured red, orange and yellow all

represent a single crane.

The graph at the top of fig. 6.6 shows a histogram of the percentage misclassification rates

Mh for all 120 sequences with two moving objects. The y-axis shows the percentage of the

120 sequences for which a particular range of misclassification rates occur. For example, our

technique (proposed) has a misclassification rate Mh between 0 and 5 for 95% (114 sequences)

for the 120 sequences. In this range 95 of the 114 sequences have misclassification rates of exactly

zero.

The GPCA, RANSAC, LSA, and ALC segmentation approaches unlike the proposed and

MSL algorithms have significant misclassification rates in the histogram bins centered on 5%-

45%.

6.1.3 Misclassification for Sequences with Three Moving Objects

For the 35 sequences with three moving objects (Nh = 3), our technique has the overall lowest

mean percentage misclassification rate of 0.43% as presented in the bottom row (All) of table

6.4. The MSL algorithm provides the next best mean misclassification rate of 6.35%.

In table 6.4 the best misclassification average rates for the checkerboard, traffic, and articu-

lated sequence categories are in bold text. Our technique has the lowest misclassification rates

for the all three categories; checkerboard (0.56%),traffic (0.05%) and articulated (2.66%).

The 3D segmentation approaches have much higher mean misclassification rates for the

sequences with three moving objects compared to the sequences with two moving objects. These

approaches generally try to fit motion models to trajectory points in some derived feature space.

For sequences with just two independently moving objects, the trajectory points usually reside

in two distinct non-overlapping clusters/bundles in the feature space.

However, increasing the number of moving objects leads to the trajectory feature space

becoming congested. This congestion causes the trajectory bundles for the objects to overlap in

the feature space, which makes it difficult to find meaningful segmentation boundaries between

the bundles. Hence the quality of 3D segmentation approaches deteriorate as the number of

moving object Nh is increased.

Recall that the initialization stage of our technique uses clustering in an orthogonal feature
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Figure 6.6: Misclassification rates for the proposed, MSL, GPCA, RANSAC, LSA and ALC

segmentation approaches. Top row: The histogram of the misclassification rates Mh for the

sequences in the Hopkins dataset with two moving objects. Bottom row: The histogram of the

misclassification rates Mh for the sequences in the Hopkins dataset with three moving objects.

space to find an initial set of trajectory bundles. Here the idea is similar to the 3D segmentation

approaches where we seek to identify trajectories of a particular object in a derived feature

space. We however have the advantage of using spatial information later on in the refinement

stage. The refinement stage uses 2D motion and spatial information to introduce important

constraints that significantly improves the final segmentation.

The graph at the bottom of fig. 6.6 shows a histogram of the percentage misclassification rates

Mh for all 35 sequences with three moving objects. Our algorithm has a misclassification rate
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Checkerboard Proposed MSL GPCA RANSAC LSA ALC

Average 0.30% 6.95% 44.89% 44.50% 43.21% 27.64%

Median 0.00% 1.48% 44.30% 43.87% 42.27% 25.58%

Traffic Proposed MSL GPCA RANSAC LSA ALC

Average 0.26% 3.17% 29.28% 29.28% 29.28% 10.18%

Median 0.00% 0.34% 21.48% 21.48% 21.48% 6.36%

Articulated Proposed MSL GPCA RANSAC LSA ALC

Average 2.66% 9.71% 47.41% 45.74% 47.08% 12.04%

Median 2.66% 9.71% 47.41% 45.74% 47.08% 12.04%

All Proposed MSL GPCA RANSAC LSA ALC

Average 0.43% 6.35% 41.91% 41.52% 40.64% 23.26%

Median 0.00% 1.33% 42.48% 42.26% 39.56% 23.40%

Table 6.4: Misclassification rates for sequences with three object motions Nh = 3.

Mh between 0 and 5% for 97.1% (34 sequences) for the 35 sequences. In this range 20 of the 34

sequences have misclassification rates of exactly zero. All the 3D segmentation technique with

the exception of MSL, have poor misclassification rates for these sequences with three motions.

We have more than twice the amount of misclassification rates between 0 and 5% compared to

the MSL technique. Hence we have a better overall mean rate of 0.43% compared to 6.35% for

MSL.

6.1.4 The Highest Misclassification Rate

The highest misclassification rate produced by our technique was 29.7% for a checkerboard

sequence called 2RT3RCR g23. The first and last frames for this sequence are shown in the

top row of fig. 6.7. The two moving objects in this sequence are a checkered beam and the

collective background objects moving according to the camera motion. The spatial locations

of the trajectory for the checkered beam and background are shown as green and red dots

respectively (top row of fig. 6.7).

For the 2RT3RCR g23 sequence the checkered beam moves very slowly relative to the motion

of camera. Hence the 2D motion of the trajectories for the beam are close to that of the

background trajectories. The resulting segmentation for this sequence using the parameters for

experiment 1 mentioned previously (table 6.2) is shown in the third row of fig. 6.7. Here the

misclassification rate for this segmentation is 29.7%.

Since the 2D motion of the beam and background are quite close, the initial (MS clustering)

segmentation of our technique created trajectory bundles that contained trajectories correspond-

ing to both the beam and the background. The largest of these bundles is shown on the right
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Figure 6.7: The first (left) and last(right) frames for the 2RT3RCR g23 sequence containing

two moving objects; a checkered beam and the collective background objects moving according to

the motion of the camera. Top row: The ground truth trajectory endpoints for the checkered

beam and background shown as green and red dots respectively. Second row: The final

segmentation of the proposed algorithm using a small Mean shift clustering bandwidth in the

initialization stage. Each trajectory bundle is shown with a different colour. The misclassified

trajectories are outlined with white closed contours. Third row: The segmentation of the

proposed algorithm using the parameters in experiment 1. The two bundles here are in red

and yellow. Bottom row: The segmentation result of the LSA algorithm for this sequence.
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Figure 6.8: Right: The trajectory bundle containing the majority of the trajectories for the

checkered beam in sequence 2RT3RCR g23. This bundle was produced from Mean shift

clustering using the parameters of experiment 1. The bundle also contains trajectories corre-

sponding to the background. Left: The ground truth trajectory endpoint labels for the purple

bundle on the right. Here the trajectory endpoints for the beam and background are shown as

green and red dots respectively.

of fig. 6.8, and the ground truth labels for the trajectories in this bundle are shown on the left.

The beam and background trajectory points are shown as green and red ‘dots’ respectively.

The majority of the trajectories for the beam resides in the purple bundle in fig. 6.8. Since

this bundle contains a significant amount of background trajectories, the average 2D motion

of this bundle is highly influenced by these background trajectories. Hence there are no 2D

motion models that best describe the motion of the beam exclusively, which results in the poor

segmentation obtained.

6.1.5 Improving the Misclassification Rate

We will discuss now how the segmentation for the 2RT3RCR g23 sequence may be improved

by creating better initial trajectory bundles in the Mean shift clustering step. The second row

of fig. 6.7 shows the improved segmentation for this sequence, where the misclassification rate

is now 2.9% (old rate was 29.7%). The misclassified trajectories are outlined with white closed

contours. Also show in the bottom row of the figure is the best result obtained from the 3D

segmentation approaches. This result was provided by the LSA algoritm and the misclassification

rate here is 1.7%.

Recall that every trajectory Xt is given a feature vector pt in the initialization stage. The

feature vectors are clustered using Mean shift (MS) to obtain the initial set of trajectory bundles.

The MS clustering bandwidth here influences how much the 2D motion of the trajectories in a

bundle can vary with respect to each other. Hence a ‘small’ bandwidth causes the resulting bun-
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Figure 6.9: Considering the first three elements of the feature vector pt for trajectory Xt are A,

B, and C. The slices of the feature vector space A versus B (top row), A versus C (middle

row), and B versus C (bottom row) for the trajectories in the 2RT3RCR g23 sequence. Left

column: The ground truth segmentation of the trajectory feature points, where the beam

and background points are shown as green and red dots respectively. Right column: The

segmentation of the Mean shift clustering step in the proposed algorithm. Here each trajectory

bundle is shown in a different colour. The closest feature points for the beam and background

are highlighted with black circles.

dles to have low variations in the 2D motion of the trajectories in it, whilst a ‘large’ bandwidth

caters for more variations in motion.
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Consider that the first three elements of the feature vector pt for trajectory Xt are A, B,

and C. Fig. 6.9 shows the slices of the feature vector space A versus B (top row), A versus C

(middle row), and B versus C (bottom row) for the trajectories in the 2RT3RCR g23 sequence.

The ground truth segmentation of the feature point are shown in the plots on the left, where

the beam and background points are in green and red respectively. The segmentation provided

by the Mean shift clustering process is shown in the right column. Here the feature points for

each trajectory bundle is shown in a different colour.

The purple feature points in fig. 6.9 correspond to the trajectory bundle in fig. 6.8. This

purple bundle contained the majority of the trajectories for the beam. It can be observed in

fig. 6.9 that this bundle contains feature points for the beam and background that are very close

the each other in the feature space. These feature points are highlighted with the black circles

in each plot. Now because of the MS clustering bandwidth used the inclusion of these beam and

background feature points into the same bundle is unavoidable.

Hence, if a smaller MS clustering bandwidth is used we can over segment the feature points

providing more bundles that represent the beam. These over segmented bundles can later

be merged in the refinement stage. Here the over segmentation guarantees that each bundle

exclusively represents either the beam or the background.

The improved segmentation of the proposed algorithm shown in the second row of fig. 6.7

was obtained by over segmenting the feature points using half of the bandwidth stipulated for

experiment 1. That is, (k1, k2, k3, k4) = (0.25, 0.25, 0.25, 0.25), where these parameters are listed

in table 6.2.

6.2 Comparison with Other 2D Algorithms: J Linkage

As discussed previously in 2009 Fradet [46] had presented a trajectory segmentation process

that exploits a robust clustering algorithm called ‘J Linkage’.

Fradet reports the performance of his technique on the traffic and articulated sequences

in the Hopkins dataset. Table 6.5 shows the misclassification rates our algorithm, along with

the MSL, GPCA, RANSAC, LSA, ALC, and Fradet’s algorithms. The misclassification rates

for the approach of Fradet shown in the last column of the table were taken directly from his

paper [46]. Note here that the misclassification rates for the MSL, GPCA, RANSAC, LSA

and ALC approaches were generated by using the implementation provided by the respective

authors. No implementation of the approach proposed by Fradet was available.

Fradet did not define the misclassification rate metric he used to report his result. Therefore

we assume Fradet uses the same misclassification rate Mh metric as used by many previous

authors. This misclassification rate Mh metric is repeated below.

Mh =
#misclassified trajectories

Th
(6.3)

Where Th is the number of trajectories in sequence Sh.
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Figure 6.10: The Cars sequence of 25 frames taken from the dataset provided by Sand [104].

Top row: Frames 1 (left) and 25 (right) for this sequence, where the two cars of interest are

moving from right to left in the image plane. Middle row: Our segmentation of the ‘parti-

cle’ trajectories accompanying the sequence in the dataset. There are four trajectory bundles

produced in this segmentation. The blue and purple bundles correspond to the background

trajectories exclusively. The yellow and green bundles contain trajectories for car #1, while the

orange bundle contains trajectories for car #2. Note here that all the trajectories in the dataset

provided for this sequence are used in this segmentation. Bottom row: The segmentation of

Fradet [46] for this sequence, where two bundles are produced. The blue and green bundles

correspond to the trajectories of the background and cars respectively. Not all the trajectories

in the dataset are used for this segmentation.
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Traffic [Nh = 2] Proposed MSL GPCA RANSAC LSA ALC Fradet [46]

Average 0.05% 0.74% 8.01% 8.15% 9.51% 1.04% 1.92%

Median 0.00% 0.00% 0.80% 0.52% 5.66% 0.00% 0.01%

Traffic [Nh = 3] Proposed MSL GPCA RANSAC LSA ALC Fradet [46]

Average 0.26% 3.17% 29.28% 29.28% 29.28% 10.18% 4.89%

Median 0.00% 0.34% 21.48% 21.48% 21.48% 6.36% 0.19%

Articulated [Nh = 2] Proposed MSL GPCA RANSAC LSA ALC Fradet [46]

Average 4.10% 1.90% 9.78% 10.17% 8.77% 6.69% 5.38%

Median 0.00% 0.00% 5.56% 6.35% 5.33% 0.00% 0.02%

Articulated [Nh = 3] Proposed MSL GPCA RANSAC LSA ALC Fradet [46]

Average 2.66% 9.71% 47.41% 45.74% 47.08% 12.04% 20.41%

Median 2.66% 9.71% 47.41% 45.74% 47.08% 12.04% 20.41%

All Proposed MSL GPCA RANSAC LSA ALC Fradet [46]

Average 1.06% 1.68% 12.86% 12.96% 13.53% 3.93% 3.80%

Table 6.5: Comparison with the work of Fradet [46] using the traffic and articulated sequences

in the Hopkins [117] dataset. The average and median misclassification rates are reported in the

following categories: Traffic with 2 (Nh = 2) and 3 (Nh = 3) moving objects, and Articulated

with 2 and 3 moving objects. The All category shows the average misclassification rates for all

the traffic and articulated sequences.

Tron [117] in his review of 3D segmentation approaches uses this misclassification rate metric

Mh to report his results. Now Fradet [46] reports the same misclassification rates as Tron [117]

for the MSL, LSA, and ALC approaches. Hence our assumption that Fradet is using the same

misclassification rate metric for comparing his results is justified.

The bottom row of table 6.5 shows that our algorithm has an overall misclassification rate

of 1.06% while Fradet [46] has an overall rate of 3.80%. Also in each category traffic [Nh = 2]

(0.05%), traffic [Nh = 3] (0.26%),articulated [Nh = 2] (4.10%), articulated [Nh = 3] (2.66%) we

have the lowest misclassification rates compared to Fradet [46].

6.2.1 Spatial Integrity

By visually observing the segmentation results of Fradet [46] it can be concluded that his ap-

proach suffers from a lack of spatial constraints on the trajectories in each trajectory bundle.

For example this lack of spatial constraints on the trajectory bundles may be observed from the

segmentation by Fradet for the Cars [104] sequence shown in the bottom row of fig. 6.10.

The first and last frames of the Cars sequence are shown in the top row of fig. 6.10. This

sequence along with an accompanying set of ‘particle’ trajectories are included in a dataset
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provided by Sand [104]. The ‘particle’ trajectories are similar to those produced by a KLT

tracker. That is, each ‘particle’ trajectory is a set of tracked image points over consecutive

frames. Unlike KLT trajectories however, the points along these ‘particle’ trajectories are more

densely packed in the image plane.

There are two trajectory bundles produced by the algorithm of Fradet for the Cars sequence.

The points for the trajectories in both bundle are coloured in blue and green respectively (See

the bottom row of fig. 6.10). The green bundle contains trajectories corresponding to two cars

that are spatially separated in the image plane, and both cars also have different image motions.

The middle row shows our segmentation of the Cars sequence, where four trajectory bundles

are produced. The purple and blue bundles contain trajectories that exclusively correspond to

the background. The yellow and green bundles contain the trajectories for car #1, while the

orange bundle contains the trajectories for car #2. Here the spatial constraints in our technique

allow us to differentiate between both cars unlike the approach of Fradet [46].

We also visually compared the segmentations of the carmap and coastguard sequence reported

by Fradet [46]. The carmap sequence is 36 frames of a car driving behind a road sign. The car

is occluded at several frames in this sequence. Frames 1,12, and 34 for this sequence are shown

in the top row of fig. 6.11 from left to right respectively. The coastguard sequence is 82 frames

of two boats passing each other travelling in opposing directions. Frames 1,41, and 81 for this

sequence are shown in the top row of fig. 6.12.

As previously mentioned the segmentation provided by Fradet does not have any spatial

constraints on the trajectories in each bundle. This is again evident in the segmentations for

the carmap and coastguard sequences, where these segmentations are shown in the bottom rows

of fig. 6.11 and fig. 6.12 respectively. The segmentations produced by our technique on both

sequences are shown in the middle rows of fig. 6.11 and fig. 6.12 respectively. Here it may be

observed that all our trajectory bundles are confined to a specific image region, due to the spatial

constraints imposed on the bundles.

For the carmap sequence we produce more trajectory bundles as the parameters of our

technique are tuned so we are more sensitive to different image motions that arise due to the

perspective of the camera.

6.2.2 Using all Trajectories

It may also be noted from fig. 6.10 that Fradet [46] does not use all of the ‘particle’ trajectories

included in the dataset for the Cars sequence. Fradet uses only the trajectories that are more

than 14 frames long. Fradet stated in his paper [46] that short trajectories are problematic

to correctly cluster with his approach. We however use all of the trajectories provided in the

dataset to produce our segmentation.

The Hand sequence also included in the dataset provided by Sand [104] is now used to

demonstrates how important it is not to discard ‘short’ trajectories. The first (left) and last
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Figure 6.11: Top row: Frames 1 (left), 12 (center), and 34 (right) in the carmap sequence.

Middle row: Our segmentation for this sequence where six trajectory bundles are produced.

The green bundle for the sign is a result of the image motion of the sign being different from

the background. Here the motion difference is caused by the relative orientation and distance of

the sign to the camera. Pundlik [95] has a separate bundle for the sign as well. Bottom row:

The segmentation for this sequence produced by Fradet [46]. The blue and green bundles here

contain the trajectories for the background and car respectively. Note that there are obvious

spatial errors in this segmentations.

(right) frames in this sequence are shown in the top row of fig. 6.13. For the Hand sequence

Fradet [46] uses the trajectories that are at least 20 frames long.

The segmentation of Fradet is shown in the bottom row of fig. 6.13, where two trajectory bun-

dles are produced. The green and blue bundles correspond to the trajectories of the background

and hand respectively. Note here that the misclassification errors at the tips of the fingers are

due to poor ‘particle’ trajectories and not the approach of Fradet. Some of the trajectories

at the tips of the fingers have significant tracking errors. At some frames the points for these

trajectories reside on the fingers, while at other frames they reside much further away from the
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Figure 6.12: Top row: Frames 1 (left),41 (center), and 81 (right) in the coastguard sequence.

Middle row: Our segmentation for this sequence where four trajectory bundles are produced.

The cyan and dark blue bundles contain the background trajectories, while the trajectories

for boat #1 and #2 are in the yellow and orange bundles respectively. Bottom row: The

segmentation for this sequence produced by Fradet [46]. The dark blue bundle here contains the

trajectories for the background, while the trajectories for boat #1 and #2 are in the green and

cyan bundles respectively. Note that there are obvious spatial errors in these segmentations.

fingers in the background regions.

The second and third rows of fig. 6.13 show our segmentation for the Hand sequence. The

bundles for which the majority of the trajectories in it correspond to the hand are shown in the

second row. The third row in a similar sense shows the trajectory bundles for the background.

Note here that the bundles either exclusively represent the background or the hand except for the

pink bundle for the fingers. The pink bundle contains a substantial amount of the trajectories

with significant tracking errors previously mentioned.
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Figure 6.13: The Hand sequence of 36 frames taken from the dataset provided by Sand [104].

Top row: Frames 1 (left) and 36 (right) for this sequence, where an arm is moving randomly in

the image plane while the fingers are flexed. Second and third rows: The trajectory bundles

corresponding to the arm and background respectively. Bottom row: The segmentation of

Fradet [46] for this sequence, where two bundles are produced. The green and blue bundles

correspond to the trajectories of the background and hand respectively. Not all the trajectories

in the dataset are used for this segmentation.
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Unlike the approach of Fradet, we used all of the sequence trajectories which allow us to

differentiate between the global motion of the arm, and the local motion of the fingers. There are

usually very ‘short’ trajectories in the image regions corresponding to non-rigid objects like the

fingers. Important bundles are formed from these ‘short’ trajectories. These bundles describe

the local non-rigid motion of the fingers. As an example, the maroon bundle describes the image

motion of the thumb.

6.3 Comparison with Other 2D Algorithms: Region Growing

Another alternative 2D trajectory segmentation technique was presented by Pundlik [94] in 2006.

As discussed before this method discovers trajectory bundles using a region growing strategy.

Pundlik [95] provides no quantitative analysis of his segmentation approach. Also he provides

very limited proof that his approach works on sequences. He only shows the segmentation for

a single frame from four sequences. Three of these sequences are called freethrow, carmap, and

calendar and mobile. The top row of fig. 6.14 shows frames 5, 8, and 25 for each of these three

sequences.

The freethrow sequence is 20 frames of a basketball player taking a free throw shot. Frames

1,12, and 20 in this sequence are shown in the top row of fig. 6.15. The carmap sequence has

been introduced in the previous section, where frames 1, 12, and 34 are shown in the top row of

fig. 6.11. Recall that Fradet [46] provides a segmentation for this sequence. The calendar and

mobile sequence is commonly used to report motion segmentation results and has been discussed

previously as well.

The bottom row of fig. 6.14 show the single frame segmentation provided by Pundlik [95]

for the three sequences. We also show in the middle row of fig. 6.14 our segmentation for these

frames. Note that Pundlik uses a KLT feature tracker to generate his trajectories, so we used

only KLT trajectories for these three sequences as well.

6.3.1 Non-rigid Objects

From the frames provided by Pundlik it may be observed that his segmentation is spatially

smooth unlike the segmentation of Fradet [46]. That is, all the trajectory bundles represent

a single coherent image region. Achieving spatially smooth segmentations for the carmap and

calendar and mobile sequences is much easier than for the freethrow sequence. The objects in

the carmap and calendar and mobile sequences are rigid and well behaved. The image motion of

these objects can be approximately well with 2D Affine models. However, the basketball player

in the freethrow sequence is non-rigid, therefore the image motion for each part of his body may

differ throughout the sequence.

Pundlik [95] states that for the freethrow sequence his segmentation approach only identified

two trajectory bundles. The points for the trajectories in these bundles are shown as red dots
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Figure 6.14: The three sequences used for comparing the our segmentation with the segmentation

of Pundlik [95]. Top row: Frames 5 (left), 8 (center), and 25 (right) for the freethrow,

carmap, and calendar and mobile sequences respectively. Middle and bottom rows: Our

segmentation and the segmentation of Pundlik [95] respectively for the frames in the top row.

and yellow triangles in the bottom left of fig. 6.14. However our segmentation over the entire 20

frames of the sequence (fig. 6.15) suggests that more than two trajectory bundles are required

to fully describe the motion of the non-rigid basketball player.

The bottom row of fig. 6.15 shows our segmentation for frames 1,12, and 20 in the freethrow

sequence. Here each bundle has a different colour. In general, the arms, chest, and face of

the basketball player each has a bundle associated with it. These parts of the body move in

different ways in the image plane throughout the sequence. At some instances of time however

the motion of some these body parts may be described with a single trajectory bundle. As an

example, in frame 1 (bottom left of fig. 6.15) to 5 (middle left of fig. 6.14) the head and shoulder

regions of the player dip causing these regions to have similar image motion. Hence the yellow

trajectory bundle describes the motion of both regions.

We have concluded that Pundlik discarded a lot of the trajectories associated with the bas-
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Figure 6.15: The freethrow sequence of a basketball player taking a free throw shot. Top row:

Frames 1 (left), 12 (center), and 20 (right) of this sequence from left to right. Bottom row:

Our segmentation for the frames in the top row. The points for the trajectories are shown as

dots. Each trajectory bundle has a different colour.

ketball player in order to avoid the complexities involved in providing a reasonable segmentation

for the player. Possibly he selected trajectories that had a minimum temporal length, which

would automatically discard the majority of the trajectories corresponding to the player. The

background image regions that are occluded at some instance throughout the sequence are void

of trajectories, which supports our idea of Pundlik using the ‘longest’ trajectories in the se-

quence. Background trajectories that are occluded are usually very ‘short’ in duration because

they are terminated prematurely. By observing our segmentation (bottom left of fig. 6.15) and

the segmentation of Pundlik (bottom left of fig. 6.15) the regions where trajectories are discarded

can be identified.

Recall that Fradet [46] as well discards trajectories based on temporal durations. Recall also

that the consequence of discarding ‘short’ trajectories is that the motion of non-rigid objects

can not by described fully. This is also the case for the segmentation of Pundlik [95] for the

basketball player in the freethrow sequence.

6.3.2 Rigid Objects

For the carmap and calendar and mobile sequence where the objects are well behaved our

segmentation and the segmentation of Pundlik are quite similar. See middle and bottom rows of

fig. 6.14. Note here we used a different version of the calendar and mobile sequence from the one

used by Pundlik. Our version had a spatial resolution of 720× 576 pels, while the version that
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Figure 6.16: The calendar and mobile sequence contains a moving calendar,ball, and toy train

with the camera panning from left to right. Top row: Frames 1,12, and 25 in this sequence

from left to right. Bottom row: Our segmentation for the corresponding frames in the top

row.

Pundlik made publicly available was 320 × 240 pels. This public version provided by Pundlik

had a significantly amount of noise and compression artifacts so we did not use it. The general

motion characteristics our version of the calendar and mobile sequence are the same as the

version of Pundlik. Hence we can reasonably compare our segmentation with the segmentation

of Pundlik for this sequence.

For the calendar and mobile sequence our segmentation produced 10 trajectory bundles. The

bottom row of fig. 6.16 shows our segmentation for frames 1,12, and 25 in this sequence. Note

that all the bundles either exclusively represent the background, calendar, ball or the train.

The dark and light green bundles contain background trajectories generated due to the shadow

casted by the moving ball. The orange bundle contains the trajectories corresponding to the

train. The shadow that the train casts on the background has roughly the same image motion as

the train itself. Therefore there are trajectories associated with this shadow that understandably

included in the orange bundle.

Again Pundlik only segments the ‘longest’ trajectories in the calendar and mobile sequence,

so he avoids segmenting the trajectories associated with the shadows. These shadow trajectories

are of a relatively short temporal duration.

Our segmentations for frames 1, 41 and 81 of the carmap sequence are shown in fig. 6.11. For

this sequence Pundlik can not just use the ‘longest’ trajectories because he would lose important

trajectories for the moving car. Recall that the car is occluded by the road sign at several frames



130 Sparse Trajectory Segmentation Performance Evaluation

in the sequence. Hence there are a significant number of ‘short’ trajectories associated with

the car. Pundlik seems to use all the trajectories for this sequence to avoid obtaining a poor

segmentation for the car. See our segmentation and the segmentation of Pundlik in the center

and bottom center of fig. 6.14 respectively. Here the density of his trajectory points in the image

plane for Pundlik’s segmentation is similar to ours.

For the carmap segmentation in fig. 6.11 both our segmentation and the segmentation of

Pundlik is roughly the same. The only difference is he has two blue and yellow trajectory

bundles for the background while we have only a cyan bundle. This result is understandable as

our algorithm would feasibly merge his yellow and blue bundles into one.

6.3.3 Summary

As far as alternative 2D processes are concerned our technique is overall better than the tech-

niques of Fradet [46] and Pundlik [95]. Our main advantage over Fradet seems to derive from

our spatial smoothness constraints. This means that there is good scope for incorporating these

constraints into the approach of Fradet as a second step. Pundlik unfortunately does not pro-

vide enough information to make a definitive statement, but our performance on sequences with

non-rigid objects is clearly better.

6.4 Real World Sequences

We will now discuss the trajectory segmentation of real world sequences. These sequences usually

contain objects with significant amounts of non-rigid motions. For example, people performing

articulated activities. Non-rigid motions along with occlusions give rise to the generation of

incomplete trajectories. We define incomplete trajectories as trajectories that do not exist over

the entire duration of a sequence from which they are generated.

Unfortunately the current 3D segmentation techniques discussed previously, can not be used

to segment real world sequences that contain trajectories that do not exist over the entire

duration (imcomplete trajectories) of these sequences. These techniques require the spatial

locations for each trajectory at every frame in a sequence. Since incomplete trajectories do

not exist at every frame, this requirement can not be fulfilled. Also 3D segmentation techniques

proposed to date must be told in advance how many moving objects are in a sequence. This may

be an issue when using an arbitrary sequence where the number of moving objects is unknown.

Consider the case also where a sequence contains objects with perpetual or random motions,

such as swaying tree branches, ocean waves, etc. For sequences with these characteristics even

a human would find it difficult to identify the exact number of moving objects.

Recall that our technique does a better job of segmenting incomplete trajectories compared

to the 2D approaches of Fradet [46] and Pundlik [95]. Our approach forms trajectory bundles

with incomplete trajectories, while Fradet [46] and Pundlik [95] usually discards them. Our
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Figure 6.17: Top row: Frames 3 (left),43 (center) and 98 (right) in the Triniman sequence.

Second row: Our segmentation for the frames in the top row. Here the trajectory points for

the background bundle are cyan dots. All the other trajectory bundles represent the actor in

the foreground. Third and bottom rows: A zoom on the trajectory bundles corresponding

to the actor. The third row shows the points of the trajectories at the current frames, while the

bottom row shows the motion history of each trajectory up to the current frames. For clarity

only the motion history over the last 5 frames is shown for each trajectory.
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Figure 6.18: Top row: Frames 3 (left), 57 (center) and 98 (right) in the Artbeats-SP128

sequence. This sequence is a scene from an American football game. The foreground objects

here are player #1 and #2 in red and white jerseys respectively. Second row: Our segmentation

for the frames in the top row. Here the trajectory points for the background bundles are cyan

and blue dots. All the other trajectory bundles represent player #1 and #2 in the foreground.

Third and bottom rows: A zoom on the trajectory bundles corresponding to the players.

The third row shows the points of the trajectories at the current frames, while the bottom row

shows the motion history of each trajectory up to the current frames. For clarity only the motion

history over the last 5 frames is shown for each trajectory.
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Resol. Fh L̄ Th #Bund. Mh

Triniman 720× 570 99 13 31501 10 0.32%

Artbeats-SP128 720× 576 99 16 21735 37 1.66%

Table 6.6: Tabulation for the number of frames (Fh), trajectories (Th) and bundles (#Bund.)

for the Triniman and Artbeats-SP128 sequences. The average duration L̄ in frames of the

trajectories and the misclassification rate (Mh) for each sequence is shown in the fourth and

last columns respectively. The spatial resolutions (Resol.) in pels for each sequence are shown

in the second column.

bundles with incomplete trajectories describe the local motion of non-rigid objects, which is

important for obtaining a thorough description of the motions in real world sequences.

The performance of our technique was evaluated using two real world sequences called Trin-

iman and Artbeats-SP128. Frames 3, 43 and 98 in the Triniman sequence are shown in the

top row of fig. 6.17. This sequence is a dynamic outdoor scene recorded with a hand-held cam-

corder. The challenge in producing a reasonable segmentation for Triniman is that there are

several non-rigid motions throughout this sequence. In the background there are swaying tree

branches and the foreground actor himself is non-rigid.

Frames 3,57 and 98 in the Artbeats-SP128 sequence are shown in the top row of fig. 6.18.

This sequence is a scene from an American football game. The foreground objects here are

player #1 and #2 (fig. 6.18) in red and white jerseys respectively. Both players are moving

and deforming very quickly from left to right in the image plane. Player #1 partially occludes

player #2 from frames 73-99. The challenges here are coping with the non-rigid motions and

maintaining exclusive trajectory bundles for both players.

The next sections discuss the performances of our technique on both sequences in more

detail.

6.4.1 Real World Segmentation

We will now discuss our segmentation for the Triniman and Artbeats-SP128 sequences. Ta-

ble 6.6 shows the number of trajectories (Th) and frames (Fh) for both sequences. Also shown

in this table is the number of trajectory bundles (#Bund.) our technique produces for both

sequences. The Artbeats-SP128 sequence has more rapid non-rigid motion compared to the

Triniman sequence. Hence the Artbeats-SP128 sequence has 37 trajectory bundles whereas the

Triniman sequence has 10 bundles.

Our segmentation for the Triniman sequence is shown in the second row of fig. 6.17. Here

all the background trajectories are in the cyan bundle, while all the other bundles contain the

trajectories for the actor in the foreground. See the zoom on the actor in the third and bottom

rows of fig. 6.17. The image motion of the head, torso and lower arms of the actor are all different
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throughout the sequence. Hence each of these body parts has a trajectory bundle associated

with it. For example, the yellow bundle describes the motion of the head. The motion difference

between the various parts of the body can be observed from the illustration in the bottom row

of fig. 6.17 where the motion history of trajectories in the bundles are shown.

The segmentation for the Artbeats-SP128 sequence is shown in the second row of fig. 6.18.

The background trajectory bundles are blue and cyan dots, while all the other bundles represent

the players in the foreground. Note here that the camera is static for this sequence unlike the

Triniman sequence. Hence the cyan and blue trajectory points are roughly in the same place

over the entire sequence when looking at the motion history of the trajectories (bottom row of

fig. 6.18).

See the zoom on the players in the third and bottom rows of fig. 6.17. It may be observed

that the foreground bundles either exclusively represent player #1 or #2. The legs of player #1

are the fastest moving objects in the sequence, and their image motions are well described by

various trajectory bundles.

6.4.2 Misclassification Rate for Real World Sequences

We evaluated the misclassification rates for the Triniman and Artbeats-SP128 sequence using

manually drawn ground truth mattes. Some of these ground truth mattes are shown in fig. 6.19.

These mattes label every pixel as belonging to a particular object. For example, the mattes

for the Artbeats-SP128 sequence (bottom row of fig. 6.19) label each pixel as either background

(green), player #1 (blue), or player #2 (red).

Recall that the nth trajectory bundle represents object Om if the majority of the trajectories

in bundle n correspond to object Om. Fig. 6.20 will be used to demonstrate how the objects the

bundles represent are identified. The trajectory bundles at frame 8 in the Triniman sequence

at shown in the top left of fig. 6.20. The two objects of interest in this sequence are the actor

and background which are coloured red and green respectively in the ground truth matte in

the top right of fig. 6.20. The actor is represented by the yellow, red, and light green bundles,

since majority the points for the trajectories in these bundles reside in the region of the matte

corresponding to the actor. In a similar sense the cyan bundle represents the background region

of the image. The bundles for the actor and background are shown in the bottom row of fig. 6.20.

A trajectory Xt in bundle n is defined as misclassified if all the points (xtf , y
t
f ) along this

trajectory reside outside the matte region for the object that bundle n represents. The top row

of fig. 6.21 shows the misclassified trajectory points at frame 8 in the Triniman sequence. The

illustrations on the left and right of fig. 6.21 (top row) show the trajectories in the bundles that

represent the actor and background respectively. The misclassified trajectory points are shown

as black dots in both cases. Note here that the misclassified trajectories generally reside close

to boundaries between the various object regions.

The misclassification rate for the Triniman and Artbeats-SP128 sequences are 0.32% and
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Figure 6.19: Ground truth mattes for the Triniman and Artbeats-SP128 sequences. Top

row: Frames 3 (left) ,43 (center) and 98 (right) in the Triniman sequence. Second row:

Ground truth mattes for the frames in the top row. The actor and background are coloured red

and green respectively. Third row: Frames 3 (left),57 (center) and 98 (right) in the Artbeats-

SP128 sequence. Bottom row: Ground truth mattes for the frames in the third row. The

background, player #1 and #2 are coloured green, blue, and red respectively.
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Figure 6.20: Top left: Our segmentation for frame 8 in the Triniman sequence. Top right:

The ground truth matte for frame 8. Bottom left: The trajectory bundles that represent the

actor in the foreground. The points for the trajectories in these bundles are yellow, red and

light green dots. Bottom right: The trajectory bundle that represents the background. The

points for the trajectories in this bundle are cyan dots.

1.66% respectively. These low misclassification rates confirm that our technique does create

trajectory bundles that exclusively represent a single object.

In general the majority of the misclassified trajectories are about 10 pixels outside the image

regions they are required to reside in. The middle row of fig. 6.21 shows how the misclassified

trajectories change as the matte for the actor in Triniman at frame 8 is dilated by 0 (left) ,4

(middle) and 6 (right) pixels respectively. For the dilations of 0, 4 and 6 pixels the number

of misclassified trajectories for the actor are 3,1, and 0 respectively. Similarly, the dilation of

the background matte by 0 (left), 4 (middle) and 6 (right) pixels in shown in the bottom row

of fig. 6.21. Here the number of misclassified trajectories for the background are 1,1, and 0

respectively.

Fig. 6.22 plots the percentage misclassification rate Mh versus the dilation d in pixels applied
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to object regions for both the Triniman and Artbeats-SP128 sequences. The plot for the these

sequences are in green and black respectively. It may be observed from these plots that more

than 50% of the misclassified trajectories are no more than 3 pixels away from their respective

object regions. These misclassified trajectories usually occur when the edge of an object Om

is tracked but the points for the trajectories fall just outside the image region for object Om.

See the top left illustration in fig. 6.21 where the three misclassified trajectories (black dots) are

examples of trajectories tracking an edge feature.

6.4.3 Summary

This chapter has analysed the performance of our technique in some detail. A wide variety of

experiments has shown that we are able to perform sparse segmentation better than several

previous techniques. It is interesting that our process seems robust to motion blur and difficult

motion in general. This is most likely due to the long term information used.

The main issue outstanding is that of computational complexity. We do not consider this

here but further comments are left for the final chapter.
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Figure 6.21: The trajectory points (dots) at frame 8 in the Triniman sequence, where mis-

classified points are shown as black dots. Top left: The trajectory points in the bundles that

represent the actor. The image region of the actor is coloured green and the trajectory points

that reside inside this region are yellow dots. Top right: The trajectory points for the bundle

that represent the background. The trajectory points here that reside inside the background

region are shown as red dots. Middle and bottom rows: The dilation of the actor and back-

ground image regions respectively. From left to right the dilations applied are 0,4 and 6 pixels

respectively. As the object regions are dilated the number of misclassified trajectories (black

dots) decreases.
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Figure 6.22: The plots of the percentage misclassification rates Mh versus the dilation d in pixels

applied to object regions for both the Triniman and Artbeats-SP128 sequences. The plot for the

both sequences are in green and black respectively.
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7
Dense Pixel Segmentation

Consider that a sequence of F frames has O objects we would like to segment. The task of a

dense pixel segmentation algorithm is to assign object labels Lf (s) to the pixel sites s = (x, y)

at every frame f = {1 : F} in the sequence.

Fig. 7.1 shows our aspirations for the resulting dense segmentations for frames 3 and 98

from the Triniman and Artbeats-SP128 sequences respectively. Note that for both sequences

the number of objects are O = 2 and O = 3 respectively. The object label fields Lf for the

frames in fig. 7.1 are shown in the right column. The pixel object labels are Lf (s) = {1 : 2}
(green and red) and Lf (s) = {1 : 3} (green, red and blue) for both sequences respectively.

There have been several previous dense pixel segmentation techniques [57,64,127]. The main

challenge for these techniques is establishing temporal consistency in the object label field Lf (s)

from frame to frame in a sequence. Unlike these previous approaches, we achieve temporal

consistency by using long term trajectory information to guide our dense segmentation process.

Recall that we presented a sparse trajectory segmentation algorithm in chapter 4 and 5. Our

dense segmentation algorithm uses the trajectory bundles obtained from the sparse trajectory

segmentation step to estimate motion and appearance likelihoods for the O objects. These

likelihoods along with a 2D Markov Random Field (MRF) prior are used to generate a maximum

a posteriori estimate of the object labels Lf (s) in a sequence. The posterior distribution for

the object labels Lf (s) at frame f given the pixel neighbourhoods Lf (∼ s), the feature point

trajectories (X ) and image data (I) is given below.

p(Lf (s)|X , I,Lf (∼ s)) ∝ px(X (f, s)|Lf (s))pi(If (s)|Lf (s))ps(Lf (s)|Lf (∼ s)) (7.1)

141
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Figure 7.1: Examples of the pixel labels required from a dense segmentation process. Top row:

Frame 3 from the Triniman sequence shown on the left, with the object labels for the pixels in

this frame shown on the right. Here the pixel labels for the two objects of interest are coloured

red (foreground actor) and green (background) respectively. Bottom row: Frame 98 from the

Artbeats-SP128 sequence shown on the left, with the object labels for the pixels in this frame

shown on the right. The objects of interest here are the background, player #1 and #2. The

pixels for each object are coloured green, blue, and red respectively.

Where px(X (f, s)|.) is the likelihood of the pixel site s at frame f following the motion X (f, s)

defined by a particular object label Lf (s). The appearance likelihood pi(If (s)|.) compares the

observed colour If (s) at pixel site (f, s) with a colour model for object Lf (s). Label smoothness

is injected through the MRF prior ps(.).

The α-expansion Graphcut algorithm [26] is used to solve for the MAP estimate of the object

label field Lf (s). The adaptation of the Bayesian problem in eq. 7.1 above to this Graphcut

solution will be discussed later.

We have two versions of our dense segmentation algorithm that are discussed in detail later.

One version is a fully automatic segmentation process, .i.e. no user intervention is required. To

produce this automatic segmentation we assume that every trajectory bundle represent a single

object. These bundles are obtained from our sparse trajectory segmentation process. Fig. 7.3

shows examples of the segmentation our automatic dense segmentation algorithm produces for

the Triniman sequence. Frames 8, 28 and 97 are shown in the left column, and our corresponding

segmentations for these frames are shown in the middle column. Note here that each trajectory
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Figure 7.2: Top left: Our sparse trajectory segmentation for frame 8 in the Triniman sequence.

Top right: The user defined matte for frame 8. Bottom left: The trajectory bundles that

represent the actor in the foreground. The points for the trajectories in these bundles are yellow,

red and light green dots. Bottom right: The trajectory bundle that represents the background.

The points for the trajectories in this bundle are cyan dots.

bundle shown in the right column represents a single object in the dense segmentation (middle

column).

The other version of our dense segmentation algorithm is a semi-automatic segmentation

process. In this process we use user segmented mattes at roughly every 10th frame in a sequence

to estimate the appearance likelihoods pi(If (s)|.) for the objects. We also determine from the

user defined mattes the trajectory bundles associated with each object. The trajectory bundles

for a particular object are used to estimate motion models that describe the image motion of

that object. These motion models are then used to evaluate the motion likelihood px(X (f, s)|.)
of the objects.

A user defined matte for frame 8 in the Triniman sequence is shown in the top right of

fig. 7.2. The trajectory bundles that exist this frame are also shown in the top left of fig. 7.2.

The objects for this sequence are the actor and the background. Both objects are coloured in

red and green respectively in the user defined matte. Consider this user defined matte at frame

f as a reference object label field Mf (s), i.e. Lf (s) = Mf (s) at frame f . The pixel site so

resides in the image region corresponding to object o if Mf (so) == o. We derive appearance

models for object o by modelling the colour information from the pixel sites so for this object.

The nth trajectory bundle represents object o if the majority of the trajectories in bundle
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Figure 7.3: Examples of the segmentation produced by our automatic dense segmentation algo-

rithm for the Triniman sequence. Left Column: Frames 8 (top), 28 (center), and 97 (bottom)

from this sequence. Middle column: Our dense segmentation for the corresponding frames on

the left. Right column: Our sparse trajectory segmentation of the trajectories that exist at the

corresponding frames in the left column. Here the trajectory bundles and their corresponding

image regions in the middle column are coloured in a similar manner. Each trajectory bundle

is assumed to represent a single object in our automatic dense segmentation.

n resides in the image region defined for object o. Hence if the nth bundle represents object o,

this bundle is used to model the image motion of object o. As an example, the yellow, red and

light green bundles in the bottom left of fig. 7.2 are used to model the motion of the actor in the

Triniman sequence. In a similar sense the background image motion is modelled by the cyan

trajectory bundle (bottom right of fig. 7.2).
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Figure 7.4: The estimation of the appearance models for the objects in a sequence using forward

and backward object label propagation steps. Top row: The propagation of the appearance

models Co
f−1,f for object o (green blob) in the forward direction from frame 1 : F . Bottom

row: The propagation of the appearance models Co
f+1,f for object o (green blob) in the back-

ward direction from frame F : 1. The appearance information is propagated from the key

frames (coloured lines) to the intermediate frames (black lines). The arrows having the

same colour as the key frames indicate which key frame is being propagated to the subsequent

intermediate frames.

7.1 Dense Segmentation Framework

The frameworks for both our semi-automatic and automatic dense segmentation algorithms are

the same. We have a set of ‘reference’ frames Mf from which we estimate the appearance

likelihoods for the objects. We define these ‘reference’ frames Mf as key frames. For the

semi-automatic dense segmentation these key frames Mf are user defined mattes. For the

automatic process the key frames are automatically derived from the trajectory bundles in a

process described later (See section 7.1.2). The top row of fig. 7.4 shows an illustration of a

sequence of F frames that contains three key frames. These key frames (coloured lines) are M1,

M8, and MF located at frames f = {1, 8 and F} respectively.

Now the frames between the key frames are defined as intermediate frames. In the top row of
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fig. 7.4 these intermediate frames (black lines) are frames f = {2, . . . , 7, 9, . . . , F−1}. The general
task now is to propagate the object labels from the key frames into the intermediate frames.

This involves generating the MAP estimate for the object label fields Lf for the intermediate

frames f . The posterior distribution used to estimate these object labels Lf was presented in

the previous section and repeated as follows.

p(Lf (s)|X , I,Lf (∼ s)) ∝ px(X (f, s)|Lf (s))pi(If (s)|Lf (s))ps(Lf (s)|Lf (∼ s)) (7.2)

When segmenting an intermediate frame f it is reasonable to gather appearance information

from the closest key frames to this frame f . We are using the closest key frames on both sides of

the intermediate frame f to gather appearance information. This helps to disambiguate image

occlusions. The pair of key frames on both sides of the intermediate frame f are defined as

border key frames. As an example, for the intermediate frame at frames f = {9, . . . , F − 1} (see

fig. 7.4) their border key frames are M8 (cyan line) and MF (yellow line).

In order to propagate appearance information from both border key frames to the inter-

mediate frame f , we perform forward and backward label propagation steps. For the forward

propagation step the frames in a sequence are processed in the frame order 1 to F . That is,

frame f − 1 is segmented before frame f can be segmented. Hence the segmentation at frame

f is dependent on the segmentation at frame f − 1. The object label field Lf−1 estimated at

frame f − 1 is used to generate appearance models for frame f . These appearance models are

used to evaluate the appearance likelihoods pi(If (s)|.) for frame f .

For the backward propagation step the processing is from frame F to 1. Here the segmen-

tation at frame f is dependent on the segmentation at frame f + 1. The object label field Lf+1

estimated at frame f + 1 is used to generate appearance models for frame f .

We now go on to discuss aspects of the design of the various probability distribution functions

(pdfs) first before presenting the actual segmentation process.

7.1.1 Propagation of Appearance Models

Consider that object o has an appearance model Co
α,β that is obtained from propagating ap-

pearance information from frame α to frame β. Here we use a collection of colour samples and

their spatial locations to construct the appearance model Co
α,β for object o. These samples are

obtained from the segmentation for object o at frame α. See section 7.1.7 for more details on

this appearance model.

For the forward label propagation step these appearance models are propagated from frame

α = f − 1 to frame β = f . Therefore the appearance models in this propagation step are of the

form Co
f−1,f . The pink arrows in the top row of fig. 7.4 indicate the direction of propagation

of the appearance models from the first (pink line M1) key frame to the intermediate frames

f = {2, . . . , 7}. Note here that the appearance models Co
1,2, Co

f−1,f , and Co
f,f+1 are labelled in

this illustration.
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For the backward propagation step the frames in a sequence are segmented in the frame

order F to 1. Here the segmentation at frame f is dependent on the segmentation at frame

f+1. Hence in the backward propagation step the appearance models Co
f+1,f for the objects are

propagated from frame f +1 to frame f . The cyan arrows in the bottom row of fig. 7.4 indicate

the direction of propagation of these appearance models from the key frame M8 (cyan line) to

the intermediate frames f = {7, . . . , 2}. Note here that the appearance models Co
8,7, Co

f+1,f , and

Co
f,f−1 are labelled in this illustration.

7.1.1.1 Appearance from Forward and Backward Segmentations

The forward and backward label propagation steps discussed previously are performed to obtain

appearance models for the objects in a sequence. The appearance likelihood term pi(If (s)|.) in
eq. 7.2 is different for both propagation steps. For the forward step we only have the object

appearance models Cf−1,f propagated from frame f − 1 to frame f when estimating the labels

Lf . Therefore the appearance likelihoods here pi(If (s)|.) are only dependent on these estimated

appearance models Cf−1,f . Similarly for the backward step we only have the object appearance

models Cf+1,f propagated from frame f+1 to frame f when estimating the labels Lf . Hence the

appearance likelihoods pi(If (s)|.) in this step are only dependent on the estimated appearance

models Cf+1,f .

After the appearance models Cf−1,f and Cf,f+1 have been estimated from the forward and

backward propagation steps respectively, we can proceed to doing the final segmentation. For

this final segmentation the appearance likelihood pi(If (s)|.) uses both appearance models Cf−1,f

and Cf,f+1. The various forms of the appearance likelihood pi(If (s)|.) used for the propagation

steps and the final segmentation are summarized in eq. 7.28 below.

pi(If (s)|Lf (s)) =





p(If (s)|Lf (s), Cf−1,f (s)), forward propagation

p(If (s)|Lf (s), Cf+1,f (s)), backward propagation

p(If (s)|Lf (s), Cf+1,f (s), Cf−1,f (s)), final segmentation

(7.3)

Note that the motion likelihoods px(X (f, s)|.) and the prior distributions ps(.) do not change

for both label propagation steps and the final segmentation.

7.1.2 Selecting Key Frames for Automatic Segmentation

For the semi-automatic dense segmentation the key frames are the user segmented mattes.

However for the automatic dense segmentation, we generate estimated key frames according

to the starts and ends of the trajectory bundles in a sequence. When a trajectory bundle

corresponding to object o starts at frame f , the object label o is a new label introduced at this

frame. Hence this label must be included in the list of possible labels that can be assigned in

the object label field Lf . Therefore a new key frame is required at this point. Similarly when a
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Figure 7.5: The generation of key frames for the automatic dense segmentation process, where

these key frames are refined from STEP A to STEP D. STEP A and STEP C are forward

propagation steps in which the frames are segmented in the order 1 : F . STEP B and STEP

D are backward propagation steps in which the frames are segmented in the order F : 1. The

trajectory bundles are represented by the curved coloured lines that extend across the frames.

In the forward propagation steps (STEP A and STEP C) frame f is selected as a key frame

(coloured lines) if a trajectory bundle starts at that frame f , or a bundle ended in the previous

frame f − 1. In the backward propagation steps (STEP B and STEP D) frame f is selected

as a key frame (coloured lines) if a trajectory bundle starts at that frame f , or a bundle ended

in the previous frame f + 1. The coloured arrows indicate how the key frames (Mf ,M̂f ) are

selected from the segmentations (Lf , L̂f ) at the previous propagation steps.
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trajectory bundle ends, we must remove the object label corresponding to this bundle from the

list of possible labels.

The top row of fig. 7.5 (STEP A) demonstrates the idea of how key frames are selected in

the automatic dense segmentation process. Here the estimated key frames (coloured lines) are

labelled M̂f . The trajectory bundles are represented by the coloured curved lines extending

across the frames. As an example shown in the top row of fig. 7.5, frame 7 (cyan line) is selected

as a key frame (M̂7) because the orange trajectory bundle ends at frame 6. From frames 7

to 9 the only object label is green. At frame 10 (purple line) the red trajectory bundle starts,

therefore another key frame (M̂10) is required here.

The key frames (M̂f ) in STEP A (fig. 7.5) are for the forward propagation step. When

doing the backward propagation in STEP B the key frames here are shifted to the left by

one frame, as shown in the second row of fig. 7.5. Note that the key frames for the backward

propagation (STEP B) correspond to intermediate frames in the forward propagation step. For

these intermediate frames we have at this stage estimated object label fields L̂f from STEP A.

For example in fig. 7.5 the object labels L̂6 at frame 6 obtained from STEP A is used as the key

frame M̂6 in STEP B. The cyan arrow indicates this association. The key frames M̂9,M̂F−4,

and M̂F−1 for STEP B are selected in a similar way.

The key frames in STEP A are at the top of the estimation chain, since the key frames

in STEP B are derived from them. Hence we must obtain initial approximations to the key

frames in STEP A only. These estimated key frames for STEP A (fig. 7.5) are generated using

motion information and the geodesic distances [10,111] of the pixel sites to the spatial locations

of trajectories (discussed later). As a result of using motion information we cannot generate key

frames for the first (1) and last (F) frames in a sequence. For these frames there are no previous

and next frames respectively which are required to do motion estimation. Hence the first key

frames in the forward (STEP A) and backward (STEP B) propagation steps are at frame 2

and F − 1 respectively. See the top two rows of fig. 7.5.

7.1.3 Refining Key Frames for Automatic Segmentation

As mentioned in the previous section, the initial key frames (M̂f ) for the forward propagation

(STEP A) illustrated in the top row of fig. 7.5 are estimated naively using only motion in-

formation and geodesic distances (details are given later). Here the estimation of these initial

key frames does not take into account the ‘average’ appearance of the objects throughout the

sequence. Note here that the key frames for STEP A are intermediate frames in STEP B.

Hence we can obtain new key frames for the forward propagation step from the corresponding

labelled frames L̂f in STEP B.

The new forward propagation step that uses the estimated key frames from STEP B is

labelled ‘STEP C’ in third row of fig. 7.5. The coloured arrows indicate the intermediate

frames L̂f in STEP B that have been used as key frames in STEP C. Note here that the key
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Figure 7.6: Key frames for the automatic dense segmentation process. Top row: Frames 2 (left)

and 13 (right) in the Triniman sequence. Second row: Our sparse trajectory segmentation

for the frame in the top row. Here the points for the trajectories in the bundles are shown as

coloured dots. Third row: The key frames generated from motion information and geodesic

distances that are used in STEP A (See fig. 7.5). Bottom row: The refined key frames that

are used in the final forward propagation in STEP C. The trajectory bundles in the second

row and their corresponding image regions in the key frames are coloured in a similar manner.
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frames for both forward propagation steps STEP A and STEP C occur at the same frame

positions.

The third and bottom rows in fig. 7.6 show examples of the key frames in STEP A and

STEP C respectively for the Triniman sequence. The key frames at frames 2 and 13 are shown

in the left and right columns respectively. It may be observed that the key frames for STEP C

(bottom row) have better defined object boundaries than those for STEP A (third row).

Recall that the initial key frames for STEP A are generated using motion information and

geodesic distances. The second row of fig. 7.6 shows the sparse trajectory segmentation for

frames 2 and 13 from left to right respectively. The spatial locations of the trajectories directly

influence the key frames generated for STEP A. It may be observed that the object boundaries

are not well defined in these key frames. Hence it is reasonable to replace these ‘rough’ key

frames in the final forward propagation done in STEP C. The key frames in STEP C have

been influenced by the ‘average’ appearance of the objects during the backward propagation in

STEP B. Therefore the object boundaries in these key frames for STEP C mimic the natural

boundaries between the objects in the image. See the images for frames 2 (left) and 13 (right)

in the top row of fig. 7.6.

The final backward propagation step that follows STEP C is labelled ‘STEP D’ in the

bottom row of fig. 7.6. Recall that the aim of the forward and background propagation steps

in the segmentation framework is to obtain the appearance models Cf−1,f (forward) and Cf+1,f

(backward) for doing the final segmentation. These appearance models are obtained from the

final forward and backward propagation steps STEP C and STEP D respectively.

7.1.4 Key Frame Estimation via Geodesic Distances

The geodesic distance [111] between pixel sites s1 and s2 is defined as the minimum cost g(s1, s2)

between these sites given below.

g(s1, s2) = min
Γ∈Ps1,s2

∫ 1

0

√
‖Γ′(k)‖2 + γ(∇I(k) · u)2 dk, (7.4)

for Γ′(k) =
∂Γ(k)

∂k
, u =

Γ′(k)
‖Γ′(k)‖

Given Ps1,s2 is the set of all paths between the points s1 and s2, where Γ(k) is one such path

parametrized by k ∈ [0, 1]. The weight γ controls the contributions of the grayscale image

gradients ∇I and the spatial distances Γ′.

The idea behind using geodesic distances [111] to estimate the initial key frames for STEP

A (fig. 7.5) is that we want to assess the ‘closeness’ of the pixel sites to the trajectories in some

way that considers the topology of the objects in an image. By topology we mean the strength

of the edge features and their spatial locations relative to the points of the trajectories.

Fig. 7.7 will be used to discuss how the geodesic distance g(s1, s2) varies depending on the

relative locations of the pixel sites s1 and s2 in an image. Here fig. 7.7 shows a cartoonized
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Figure 7.7: A cartoonized version of frame 19 in the Triniman sequence. The edges in this

frame are represented by bold black lines. Seven pixel sites s1, . . . , s7 are shown as coloured

dots, and the paths between them are broken coloured lines. The paths are labelled with the

geodesic distances g(., .).

version of frame 19 in the Triniman sequence. The edges in this frame are represented by bold

black lines. Seven pixel sites s1, . . . , s7 are shown as coloured ‘dots’ in the illustration, and the

paths between them are broken coloured lines.

The geodesic distance g(s1, s2) between sites s1 (green) and s2 (blue) is less than the geodesic

distance g(s1, s4) between sites s1 and s4 (orange) (fig. 7.7). This is because there are no

edges between s1 and s2, whilst there is an edge between s1 and s4. Note that the Euclidean

distance between s1 and s4 is less than that of s1 and s2, however g(s1, s2) < g(s1, s4). Also

shown in fig. 7.7 are more examples of geodesic distance inequalities: g(s1, s2) < g(s1, s3),

g(s3, s5) < g(s5, s7) and g(s5, s6) < g(s5, s7).

The geodesic distance of the pixel site s at frame f to object o is defined as Go
f (s) given

below.

Go
f (s) = min

st
f

(g(s, stf )) (7.5)

Where stf = (xtf , y
t
f ) are points along the trajectories at frame f that are in a trajectory bundle

corresponding to object o.

Fig. 7.8 shows examples of the geodesic distance fields Go
f for four objects at frame 2 in the

Triniman sequence. The geodesic distance fields Go
f are shown in the middle and bottom rows

of fig. 7.8, where the points of the trajectories in the respective bundles are shown as yellow
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dots. It can be observed that the geodesic distances change rapidly when the edges in the image

(top left of fig. 7.8) are crossed. Hence geodesic distances provide a good approximation of the

image regions associated with each object given that they are separated by distinct edges.

7.1.4.1 Estimating Key Frames for Automatic Segmentation

For the automatic dense segmentation we have to estimate initial key frames for the first forward

propagation step as mentioned previously. Recall that these key frames (M̂f ) are generated

using motion information and geodesic distances. The posterior distribution for these estimated

key frame M̂f is given as follows.

p(M̂f (s)|X , I,M̂f (∼ s)) ∝ px(f, s|M̂f (s),X )pg(If (s)|M̂f (s))ps(M̂f (s)|M̂f (∼ s)) (7.6)

Where px(f, s|.) is the likelihood of the pixel site s at frame f following the motion model defined

by a particular object label M̂f (s). The geodesic distance likelihood pg(If (s)|.) compares the

geodesic distance of pixel site s to the trajectories locations in the bundle corresponding to

object label M̂f (s). Label smoothness is injected through the MRF prior ps(.).

The motion likelihood distribution px(f, s|M̂f (s)) used here is the same as the motion like-

lihood px(f, s|Lf (s)) for the general framework previously defined in eq. 7.1. Note that in this

case we are only using a different notation for the object label field M̂f (s) instead of Lf (s).

Also the prior distribution ps(.) is the same as the one for the general framework.

7.1.4.2 Geodesic Distance Likelihood

We previously defined the geodesic distance of a pixel site s to object o as Go
f (s) (equ. 7.5).

See fig. 7.8 for examples of the geodesic distance fields Go
f for four objects in frame 2 of the

Triniman sequence.

The geodesic likelihood pg(If (s)|M̂f (s)) for pixel site s with respect to the object label

M̂f (s) = o is a Gaussian distribution of the geodesic distance Go
f (s). This distribution is given

below.

pg(If (s)|M̂f (s)) =
1

σf (s)
√
2π

exp


−0.5

[
Go

f (s)− Ḡf (s)

σf (s)

]2
 (7.7)

Where Ḡf (s) and σf (s) are the mean and standard deviation of the distribution respectively.

These parameters Ḡf (s) and σf (s) are defined as follows.

Ḡf (s) = min
o

(
Go

f (s)
)
, [σf (s)]

2 =
1

9

∑

p∈Ns

[
Ḡf (p)

]2
(7.8)

Where Ns is the 3× 3 neighbourhood of pixel site s including s.
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Figure 7.8: The geodesic distances to the objects in frame 2 of the Triniman sequence. Top

row: Frame 2 (left) in the Triniman sequence, and our sparse trajectory segmentation (right)

for this frame. The points for the trajectories shown as coloured dots. The four trajectory

bundles are coloured cyan (background), pink (face), red (body) and blue (hand) respectively.

Clockwise from middle left: The geodesic distance to the hand, face, background and body

objects respectively. The respective points of the trajectories are superimposed on the geodesic

distance fields as yellow dots. The values for the geodesic distances are represented in gray

scale, where black and white are minimum and maximum values respectively.
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Figure 7.9: The parameters for the geodesic distance likelihood at frame 2 in the Triniman

sequence. Top row: Frame 2 (left) in the Triniman sequence, and our sparse segmentation

(right) for this frame. The points for the trajectories are shown as coloured dots. The yellow

oval highlights an image region bounded by strong edges. There are no trajectory points inside

this region. Bottom row: The mean Ḡf (left) and standard deviations σf (right) fields for the

geodesic distance likelihood at frame 2. The values for these parameter fields are represented in

gray scale, where black and white are minimum and maximum values respectively.

The examples of the mean Ḡf (left) and standard deviation σf (right) fields for frame 2 in

the Triniman sequence shown in the bottom row of fig. 7.9 will be used to explain the choice

of the parameters in eq. 7.7. In these parameter fields the numeric values are represented on a

gray scale, where black and white are the minimum and maximum values respectively.

The top row of the fig. 7.9 shows frame 2 (left) in the Triniman sequence and our sparse

trajectory segmentation (right) for this frame. Now the yellow oval superimposed on the sparse

segmentation (top right) highlights an image region bounded by strong edges. Note also that

there are no trajectory points inside this image region. Hence the minimum geodesic distances
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min
o

(
Go

f (s)
)
of the pixels in this region are relatively large (i.e. min

o

(
Go

f (s)
)
>> 0). This region

is highlighted in the mean Ḡf = min
o

(
Go

f (s)
)
field (bottom left) also using a yellow oval. It may

be observed that the minimum geodesic distances for the pixels in this region are larger than

the majority of the pixels in the field. Therefore we vary the parameters Ḡf (s) and σf (s) of the

geodesic likelihood pg(If (s)|.) according to the minimum geodesic distance at site s.

It is reasonable to center the distribution pg(If (s)|.) on the minimum geodesic min
o

(
Go

f (s)
)

so that we are guaranteed that the object with smallest geodesic distance to site s will have

the largest likelihood. We have a low confidence in labelling site s when the minimum geodesic

distance at this site is relatively large. This indicates that there are not many trajectory points

close to site s. Hence we designed the standard deviation σf (s) at site s to be proportional to

the square of the minimum geodesic distance in the 3× 3 neighbourhood of site s (See eq. 7.8).

The yellow oval in bottom right of fig. 7.9 highlights the standard deviations σf (s) for the pixels

in the mean field (bottom left) that are also outlined with the yellow oval. Here the standard

deviations are large (white) for the pixels with large minimum geodesic distances.

7.1.5 Motion Likelihood

The motion likelihood px(X (f, s)|.) measures how well the motion models corresponding to the

object labels Lf (s) describe the motion of pixel site s at frame f . This measurement is based on

displaced frame differences (DFDs) with respect to the current frame f . The DFD at pixel site s

in frame f is simply a difference between that pixel and its motion compensated counterpart in

some other frame. The idea is that a low DFD given a particular motion model is indicative of

the presence of an object moving with that motion. In our work we measure DFDs (with respect

to a single motion model) over ±k frames from the current frame. The top row of fig. 7.10 shows

the frames If−k, . . . , If−1 and If+1, . . . , If+k centered around the current frames If that are used

to estimate the DFDs for frame f . These frames If−k, . . . , If−1 and If+1, . . . , If+k are defined

as the window frames for the current frame If .

The problem is that an object will contain several different motion bundles. Hence to asso-

ciate a single DFD measurement at a site with a particular object means combining the DFD

information from all the motion (trajectory) bundles in that object in some way. We will de-

scribe later exactly how DFDs over several frames are generated. For now we assume that for an

object label Lf (s) = o, we have several measurements of DFD based on each motion (trajectory)

bundle ‘n’ inside object o. This DFD is defined as Λn
f (s). To combine these DFDs to select one

measurement representation of the object, we simply take the minimum and hence,

δof (s) = min
n∈Bo

Λn
f (s) (7.9)

Where δof (s) is our new combined measurement, and Bo is the set of trajectory (motion) bundles

associated with object o.

Hence we can define our motion likelihood px(X (f, s)|.) for site (f, s) with respect to object
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Î
n
f,f+k

ˆˆ

I
m
f,f−1 IfI

m
f,f−k Î
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Figure 7.10: A sequence with a red and a green object that are represented by similarly colour

trajectory bundles. The trajectory bundles are illustrated as the coloured lines that extend

across the frames. Top row: The window frames If,j are used to estimate the DFD for the

current frame If , where j = {f−k, . . . , f−1, f+1, . . . , f+k}. Middle and bottom row: The

motion compensated window frames Îmf,j and Înf,j obtained from compensating with respect to

the motion of the green and red trajectory bundles respectively.

o as a Gaussian distribution of the DFD δof (s). This distribution is given below.

px(X (f, s)|Lf (s)) =
1

σδ
f (s)

√
2π

exp


−0.5

[
δof (s)− δ̄f (s)

σδ
f (s)

]2
 (7.10)

Where δ̄f (s) and σδ
f (s) are the mean and standard deviation of the distribution respectively.

These parameters δ̄f (s) and σδ
f (s) are defined as follows.

δ̄f (s) = min
o

(
δof (s)

)
,
[
σδ
f (s)

]2
=

1

9

∑

p∈Ns

[
δ̄f (p)

]2
(7.11)

Where Ns is the 3× 3 neighbourhood of pixel site s including s.

Note that the parameters δ̄f (s) and σδ
f (s) in eq. 7.11 are defined in a similar manner to the

parameters for the geodesic distance likelihood Ḡf (s) and σf (s) in section 7.1.4.2. The reasoning

here is the same. We center the distribution px(X (f, s)|.) on the minimum DFD min
o

(
δof (s)

)
over

all the objects. Also the standard deviation σδ
f (s) is proportional the square of the minimum

DFD for the sites in the 3× 3 neighbourhood of site s.
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7.1.6 DFDs for the Trajectory Bundles

Recall from chapter 4 that the motion models for the nth trajectory bundle is a set of 2D affine

transformations. These transformations represent the relationship between the spatial locations

of the trajectories across adjacent frame pairs. That is, given the spatial locations (xtf , y
t
f ) of

the trajectories at frame f , a linear transformation An
f,f+1 gives the locations (xtf+1, y

t
f+1) in

the next frame f + 1.

In order to estimate the DFD Λn
f (s) for bundle n we must motion compensate the window

frames using the motion models for this bundle. Given the motion models An
f,f+1 for bundle n,

the motion compensated version of a window frame Ij with respect to the current frame f is

defined as Înf,j . Here j = {f − k, . . . , f − 1, f + 1, . . . , f + k} is the index of the window frames.

The motion compensated pixel Înf,j(s) is calculated from An
f,f+1 as shown below.

Înf,j(s) = Ij(sc), (7.12)

for sc = An
f,j

(
s

1

)

Where An
f,j is the transformation between the current frame f and the window frame j. Note

that the pixel site s = (x, y)T in eq. 7.12 above.

The transformation An
f,j is given as follows where f 6= j.

An
f,j =








f−1∏

h=j

An
h,h+1




−1

, j < f




j−1∏

h=f

An
h,h+1




−1

, j > f

(7.13)

The middle and bottom row of fig. 7.10 show an illustration of the motion compensated

window frames Îmf,j and Înf,j for the mth and nth trajectory bundles respectively. The nth

trajectory bundle is represented by a red line that extends across the frames. This bundle

represents the object illustrated with red bars. Note that the non-motion compensated frames

Ij are shown in the top row of fig. 7.10.

It may be observed that the red object is aligned across the motion compensated frames Înf,j
as shown in the third row of fig. 7.10. Here the red object exists in the current frame at the pixel

sites (f, s) = (f, (x, y)), and these sites correspond to the pixel sites (j, s) = (j, (x, y)) in the

jth window frame. Similarly the middle row of fig. 7.10 shows the motion compensated window

frames Îmf,j for the mth trajectory bundle. This trajectory bundle is represented by a green line,

and the object associated with this bundle is a green bar.

Examples of motion compensated window frames Înf,j for the Triniman sequence are shown

in fig. 7.11. The top row shows the current frame I20 with square spatial markers coloured in

yellow (background), cyan (face), green (teeth) and red (body) depending on their locations
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Figure 7.11: Motion compensated frames in the Triniman sequence. Top row: The current

frame I20 with square spatial markers coloured in yellow (background), cyan (face), green (teeth)

and red (body) depending on the features they correspond to in the image. Middle row: The

motion compensated frames În20,17 (left) and În20,23 (right), where these frames are compensated

with respect to the background trajectory bundle. Bottom row: The motion compensated

frames În20,17 (left) and În20,23 (right), where these frames are compensated with respect to the

trajectory bundle corresponding to the face of the actor.
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in the image. The middle row shows the motion compensated frames În20,17 (left) and În20,23
(right), where these frames are compensated with respect to the background trajectory bundle.

It may be observed that the corresponding image features inside the yellow (background) spatial

markers are roughly the same in both motion compensated frames and the current frame I20 (top

row). That is, the background features are aligned across the window frames and the current

frame. Similarly, the bottom row of fig. 7.11 shows the motion compensated frames În20,17 (left)

and În20,23 (right), where these frames are compensated with respect to the trajectory bundle

corresponding to the face of the actor. The features in the cyan and green spatial markers are

aligned in both these motion compensated frames and the current frame.

We now have 2k motion compensated window frames Înf,j available to estimate the DFD Λn
f

for current frame f . The displaced frame differences between these 2k window frames Înf,j and

the current frame If produce 2k DFDs ∆n
f,j . The DFD ∆n

f,j(s) between the site s at the current

frame f and the motion compensated site in the j window frame is given below.

∆n
f,j(s) = |If (s)− Înf,j(s)| (7.14)

Where If and Înf,j are the grayscale versions of If and Înf,j respectively.

The task at this stage is to combine these 2k DFDs ∆n
f,j(s) into a single DFD Λn

f (s) for the

nth trajectory bundle. The next section discusses how this is done.

7.1.6.1 Combining Window Frame DFDs

The DFD Λn
f (s) at frame f for the nth trajectory bundle is a weighted sum of the 2k DFDs

∆n
f,j(s) obtained from the window frames. This DFD Λn

f (s) is given below.

Λn
f (s) =

f+k∑

j=f−k

[
wn
f,j(s)∆

n
f,j(s)

]

f+k∑

j=f−k

[
wn
f,j(s)

]
, j 6= f (7.15)

Where the weight for the DFD ∆n
f,j(s) is w

n
f,j ∈ {0, 1}.

The weight wn
f,j for the DFD ∆n

f,j(s) is zero if pixel site s is deemed to be occluded at

window frame j. The weight wn
f,j = 1 if no occlusion occurs at (j, s). Here we assume that the

DFD ∆n
f,j(s) is ‘high’ when an occlusion occurs at the site (j, s). We therefore use an auxiliary

optimization process to label the DFDs ∆n
f,j(s) at site (j, s) as being generated from occlusion

(‘high’ DFD) or not (‘low’ DFD). We define the occlusion label for the DFD ∆n
f,j(s) as Dn

f,j(s),

where Dn
f,j(s) = 0 and Dn

f,j(s) = 1 signify that ∆n
f,j(s) has a ‘low’ and a ‘high’ DFD value

respectively.

The bottom row of fig. 7.12 shows the DFDs ∆n
f,f−k, . . . ,∆

n
f,f−1 and ∆n

f,f+1, . . . ,∆
n
f,f+k

on the left and right of the current frame If respectively. For each DFD ∆n
f,j , low and high

DFD values are coloured cyan and brown respectively. The pixel sites in the window frames
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Figure 7.12: A sequence with a red and a green object that are represented by similarly colour

trajectory bundles. The trajectory bundles are illustrated as the coloured lines that extend

across the frames. Top row: The motion compensated window frames Înf,j obtained from

compensating with respect to the red trajectory bundles, where j = {f − k, . . . , f − 1, f +

1, . . . , f + k}. The corresponding non-motion compensated frames Ij are shown in top row of

fig. 7.10. Bottom row: The window DFDs ∆n
f,j for the motion compensated frames Înf,j in

the top row. Here ‘high’ and ‘low’ DFD values are coloured in brown and cyan respectively.

The pixel site s = (f, s0), (f, s1) and (f, s2) are white squares in the current frame If , and

their corresponding sites in the window frames are indicated with broken coloured lines. The

occlusion labels for the DFDs Dn
f,j = 0 and Dn

f,j = 1 are indicated with yellow and purple

squares respectively.

corresponding to the sites (f, s0), (f, s1) and (f, s2) at the current frame If are indicated with

the light green, pink and blue dotted lines respectively. These corresponding sites (j, s0), (j, s1)

and (j, s2) in the window frames have DFD labels Dn
f,j(s) = 0 and Dn

f,j(s) = 1 that are indicated

with yellow and purple squares respectively.

For the illustration in the bottom row of fig. 7.12 we would like to encourage the pixel site

(f, s1) and (f, s2) to take the label (red) for bundle n. These sites belong to the red object that

bundle n represents at the current frame If . Therefore we require the DFDs Λn
f (s1) and Λn

f (s2)

to be as ‘low’ as possible. So in this case we give the ‘low’ (Dn
f,j(s) = 0) and ‘high’ (Dn

f,j(s) = 1)

DFDs the weights wn
f,j = 1 and wn

f,j = 0 respectively.

However we want to discourage the pixel site (f, s0) from obtaining the red object label.
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Hence we require the DFD Λn
f (s0) to be as ‘high’ as possible. In this case we want the final

DFD Λn
f to be influenced by the ‘high’ DFDs (Dn

f,j(s) = 1) only. Hence the ‘low’ (Dn
f,j(s) = 0)

and ‘high’ (Dn
f,j(s) = 1) DFDs are given the weights wn

f,j = 0 and wn
f,j = 1 respectively.

The idea here is that we only encourage the site (f, s) to take the label for bundle n if either

the closest forward (Dn
f,f+1(s) = 0) or backward (Dn

f,f−1(s) = 0) DFD is a ‘low’ value. Sites

that have ‘high’ DFDs in both directions are discouraged from taking the label of bundle n.

A decision must be made whether a pixel site (f, s) should be encouraged or discouraged from

taking the label for a particular bundle. We define a discouragement label dnf (s) for pixel site

(f, s), where dnf (s) = 0 and dnf (s) = 1 mean that the site must be encouraged and discouraged

respectively. Note that for the examples in the bottom row of fig. 7.12, the discouragement

labels are dnf (s1) = 0, dnf (s2) = 0 and dnf (s0) = 1. The weights wn
f,j for the DFDs ∆n

f,j(s) are

determined from the discouragement label dnf (s) as follows.

wn
f,j =




1, if dnf (s) = Dn

f,j(s)

0, else
(7.16)

The discouragement labels dnf (s) are estimated only from the DFD labels Df,f+1(s) and

Df,f−1(s). These labels dnf (s) are defined as follows.

dnf (s) = Df,f+1(s)×Df,f−1(s) (7.17)

The next section discusses how we derive the occlusion labels Df,j(s) for the DFDs. Complete

details are found in appendix D.

7.1.6.2 The DFD Occlusion Labels

We enforce spatial and temporal smoothness on the occlusion labels Df,j(s) for the DFDs by

generating a MAP estimate for these labels. Consider that Dn
f (s) is a label vector formed from

the concatenation of the DFD labels Df,j(s) where Dn
f (s) is defined as follows.

Dn
f (s) =

[
Dn

f,f−k(s), . . . ,Dn
f,f−1(s),Dn

f,f+1(s), . . . ,Dn
f,f+k(s)

]
(7.18)

As an example the occlusion label vectors for the sites (f, s0), (f, s1) and (f, s2) in the bottom

row of fig. 7.12 are Dn
f (s0) = [1 1 1 1 1 1], Dn

f (s1) = [0 0 0 1 1 1] and Dn
f (s2) = [0 0 0 0 0 0]

respectively.

We define the posterior distribution for the occlusion vector label Dn
f (s) given the DFDs

∆n
f,j(s) at the window frames and the neighbouring labels Dn

f (∼ s) as follows.

p(Dn
f (s)|∆n

f,j(s),D
n
f (∼ s)) = pd(∆

n
f,j(s)|Dn

f (s))pl(D
n
f (s)|Dn

f (∼ s)) (7.19)

Where pd(∆
n
f,j(s)|.) is the likelihood that the pixel site (f, s) takes the occlusion vector label

Dn
f (s). Label smoothness is injected through the MRF prior pl(.).
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The design of the distributions for prior and likelihood are exposed in detail in appendix D.

The MAP estimation is found using a Graphcut technique. Note however, that the number of

possible vectors labels Dn
f (s) is very large (22k). This would be a prohibitive number of labels in

the Graphcut process. Hence we determine a smaller set of candidate labels by extracting local

conditional models from a maximum likelihood examination in patches over the image. These

candidate D̂n,c
f are then used as the labels in the Graphcut process.

At the end of this process, we are able to create the discourage labels defined in eq. 7.17.

We are also able to determine the weights wn
f,j in eq. 7.16 for creating the DFD measurement

in the motion likelihood px(X (f, s)|.).

7.1.7 Appearance Likelihood

Colour information is traditionally modelled as Gaussian mixture models (GMMs). However

when the colour samples being modelled follow a non-Gaussian distribution, GMMs are not be

very informative. Hence, in order to handle arbitrary distributions, we introduce a crude but

novel colour model for the design of the appearance likelihood pi(If (s)|.).
Consider that the colour at pixel site (f, s) is If (s) = [Rf (s) Gf (s) Bf (s)], whereRf (s), Gf (s)

and Bf (s) are the values for the red, green and blue channels in the RGB colour space.

This colour space is divided into 13 rank ordered partitions. A partition is defined in terms

of the sorting of the colour components, e.g. Rf (s) > Gf (s) > Bf (s) defines partition 1,

Rf (s) > Gf (s) = Bf (s) defines partition 2 and so on. We define Pf (s) as the colour space

partition label for pixel (f, s). This partition label Pf (s) for site (f, s) given its quantized RGB

channel values Rf (s), Gf (s) and Bf (s) is defined as follows.

Pf (s) =





1, Rf (s) > Gf (s) > Bf (s)

2, Rf (s) > Gf (s) = Bf (s)

3, Rf (s) > Bf (s) > Gf (s)

4, Gf (s) > Rf (s) > Bf (s)

5, Gf (s) > Rf (s) = Bf (s)

6, Gf (s) > Bf (s) > Rf (s)

7, Bf (s) > Rf (s) > Gf (s)

8, Bf (s) > Rf (s) = Bf (s)

9, Bf (s) > Gf (s) > Rf (s)

10, Rf (s) = Gf (s) = Bf (s)

11, Rf (s) = Gf (s) > Bf (s)

12, Rf (s) = Bf (s) > Gf (s)

13, Gf (s) = Bf (s) > Rf (s)

(7.20)
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Pf (s)

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 7.13: Top row: Frames 1, 54 and 99 in the Triniman sequence. Middle row: The

colour partition labels Pf for the frames in the top row. Bottom row: The legend which

shows the colours that represent the partition labels Pf (s) = {1 : 13}.

Where each colour channel is quantized to 256 levels (8-bits), i.e. Rf (s) ∈ {0 : 255} etc. The

inequalities in (7.20) above compare the quantized levels of the three channels in order to decide

the partition memberships. The pixels for an object are therefore clustered according to their

membership in these 13 partitions.

The middle row of fig. 7.13 shows the partition labels Pf for frames 1 (left), 54 (middle)

and 99 (right) for the Triniman sequence. Here frame 1, 54 and 99 are shown in the top row

of fig. 7.13. The legend in the bottom row indicates the colours that represent the partition

label Pf (s) = {1 : 13}. Note that our partitioning of the RGB colour space provides an implicit

segmentation for each frame. It may be observed that the majority of the colours for the actor

belong to the colour space partition Pf (s) = 3, (Rf (s) > Bf (s) > Gf (s)). This partition label is

coloured pink in the bottom row of fig. 7.13. Here the colours for the actor have higher values in

the red channels compared to the other colour channels. For the background, the majority of the

colours belong to the maroon red colour partition (Pf (s) = 4). The colours for the background

have higher values in the green channel compared to the other colour channels.

The next section discusses how the colour space partitions are used in the design of the

appearance likelihood.
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7.1.7.1 Appearance Likelihood based on Partitioned Colour Space

The appearance likelihoods pi(If (s)|.) for the current frame f are derived directly from the

previously segmented frame β. For the forward and backward label propagation steps, frame β

is frame f − 1 and f + 1 respectively.

The appearance likelihood pi(If (s)|.) can be factored into two components as follows.

pi(If (s)|Lf (s)) = pc(If (s)|Lf (s))pr(If (s)|Lf (s)) (7.21)

Where pc(If (s)|.) is the likelihood of the colour If (s) at pixel site s in frame f belonging to

the object with label Lf (s). Also, pr(If (s)|.) is the likelihood of the site (f, s) belonging to the

object labelled Lf (s) given the spatial locations of the colours for object Lf (s). We can consider

the likelihood component pc(If (s)|.) as a global constraint in the RGB colour space on the

allowable colours for an object Lf (s). However the likelihood component pr(If (s)|.) introduces
local geometric constraints in the image plane which dictate where certain colours are expected

for a particular object.

Each appearance likelihood is built from colour appearance models derived from previous

and next frames. This allows the likelihood to depend on the previous as well as next key frames

eventually.

We use the segmentation in frame β to define the RGB space component of the colour model

in the current frame. Hence the colour space appearance model for frame f depends on the

estimated colour in frame β = f − 1, in the forward label propagation step. Similarly in frame

f depends on the estimated labels in frame β = f + 1, in the backward label propagation step.

The other model (pr(If (s)|.)) is sensitive to position and for that we need to propagate

colour partition labels (in fig. 7.14) in frame f − 1 (forward) and f + 1 (backward) into frame

f . Fig. 7.14 shows two sets of trajectories corresponding to a red labelled object. To propagate

the label at site s̃o into the current frame f we simply use the motion of the cyan trajectory.

This process applied to all sites in frame β yields a set of partition labels P̂β,f (s) in frame f

corresponding to object o.

In fig. 7.14 if the red object was labelled Lβ(s̃o) = o then P̂β,f (s) would ideally cover all of

the red object in frame f . Of course that is not the case and there are likely to be holes in the

motion compensated label field P̂β,f (s). These issues are resolved in the design of the model

discussed next.

The next section discusses how the propagated label field and the colour samples for the

various objects are used to derive appearance models.

7.1.7.2 Appearance Models

Recall that we gather appearance information by doing forward and backward object label

propagation steps as previously discussed. For the forward and backward steps we estimate the

appearance models Cf−1,f (s) and Cf+1,f (s) respectively. Here Cf−1,f (s) represents appearance
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s̃o
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d
o

Figure 7.14: The notation used for discussing the propagation of the colour partition labels

from frame β to the current frame f for object o. Here object o is represented by the non-rigid

orange blob that is changing its shape from frame to frame. The trajectories associated with

this object are shown as the curved lines that extend across the frames. The pixel site ŝo (white

square) belongs to object o in frame β, and this site corresponds to site s (white square) in

the current frame f . The motion vector between these sites is δŝo, which is represented by the

arrow. The ‘closest’ trajectory Xp to site ŝo in frame β is the cyan trajectory. This trajectory

Xp is used to estimate the motion vector do. Top row: In the forward label propagation step,

frame β is frame f − 1. The motion vector δŝo is directed from frame f − 1 to the current frame

f . Bottom row: In the backward label propagation step, frame β is frame f + 1. Here the

motion vector do is directed from frame f + 1 to the current frame f .

information propagated from frame f − 1 to the current frame f , while Cf+1,f (s) represents

appearance propagated from frame f + 1 to frame f .

We define Co
β,f (s) as the appearance model for pixel site (f, s) with respect to the object

label Lf (s) = o. This model has two components, one is used in the likelihood term pc(If (s)|.)
that considers the similarity between the colour If (s) at site (f, s), and the colours of object

o. The other component of Co
β,f (s) is used in the likelihood term pp(If (s)|.). This component

is based on the nearest pixel site (f, ŝo) to site (f, s) in the image plane, that has the same

colour partition label as (f, s). Here we are using the propagated colour partition label field

P̂o
f,β (discussed in previous section) for object o to find the site (f, ŝo).

For the colour If (s) at site (f, s), the nearest neighbour colour to If (s) is defined as Co
β(s),

where Co
β(s) is a colour sample Iβ(s̃o) belonging to object o in frame β. We constrain this

nearest neighbour search by requiring that the colour partition label for the closest colour Co
β(s)
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Figure 7.15: An illustration of the two components ĉof,β(s) and rof,β(s) of the appearance model

Co
β,f (s) for pixel site (f, s), with respect to object o. Left: The colour If (s) at site (f, s) is

indicated with a red dot, while the other coloured dots represent colour samples for object o.

The cyan dot indicates the colour sample Co
β(s), which is the closest to If (s) in the RGB colour

space. The Euclidean distance between If (s) and Co
β(s) is defined as ĉof,β(s). This distance is

illustrated as the dotted line. Right: The site (f, s) in the colour partition label field P̂o
f,β is

indicated with a red square, while the other sites in this field having the partition label Pf (s)

are indicated by the green, cyan and yellow squares. Here the partition label field P̂o
f,β is

propagated from frame β to the current frame f using the trajectory for object o. Note that

the pink closed contour simulates an object boundary. The site (f, ŝo) (yellow square) is the

closest point to site (f, s) in the field P̂o
f,β = Pf (s). The Euclidean distance between sites (f, s)

and (f, ŝo) is defined as rof,β(s). This distance is illustrated as the dotted line.

be the same as the partition label for site (f, s).

The illustration on the left of fig. 7.15 shows the colour If (s) for site (f, s) and the closest

colour Co
β(s) sample from object o as red and cyan dots respectively in RGB colour space.

The green and yellow coloured dots represent other colour samples for object o that have the

same partition label as site (f, s). The Euclidean distance between If (s) and Co
β(s) is defined

as ĉof,β(s). This distance ĉof,β(s) is shown as the dotted line in the illustration on the left of

fig. 7.15. We now define the first component of the appearance model Co
β,f (s) for pixel site (f, s)

as the distance ĉof,β(s) which is given as follows.

ĉof,β(s) =
∥∥If (s)−Co

β(s)
∥∥ (7.22)

The illustration on the right of fig. 7.15 shows the propagated colour partition label field P̂o
f,β

for object o. The red square is spatially located at site (f, s), and the other sites in the field P̂o
f,β
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that have the partition label Pf (s) are indicated with green, cyan and yellow squares. Recall

that the partition label for site (f, s) is Pf (s). We are interested in finding the closest point to

site (f, s) for which P̂o
f,β = Pf (s). This closest point (f, ŝo) is indicated on the right of fig. 7.15

as a yellow square. The Euclidean distance between site (f, s) and the closest point (f, ŝo) is

defined as rof,β(s). We now define the second component of the appearance model Co
β,f (s) for

pixel site (f, s) as the distance rof,β(s).

Note that the colour sample Co
β(s) that is the closest to If (s) in the colour space may not

provide the smallest partition label distance rof,β(s). The colour samples on the left of fig. 7.15

and their corresponding site in the partition label field P̂o
f,β on the right are coloured in a similar

manner to emphasize this idea. The cyan colour sample is the closest to If (s) in the colour

space, while in the partition label field the yellow site is the closest to site (f, s).

The next section discusses how the appearance models Co
β,f (s) are utilized in the design of

appearance likelihood distributions.

7.1.7.3 Appearance Likelihood Distribution

Recall that the appearance likelihood pi(If (s)|.) takes different forms for the forward and back-

ward propagation, as well as for the final segmentation. These different forms of the appearance

likelihood pi(If (s)|.) which were previously discussed are repeated below.

pi(If (s)|Lf (s)) =





p(If (s)|Lf (s), Cf−1,f (s)), forward propagation

p(If (s)|Lf (s), Cf+1,f (s)), backward propagation

p(If (s)|Lf (s), Cf+1,f (s), Cf−1,f (s)), final segmentation

(7.23)

We introduced the two components of the appearance likelihood pi(If (s)|.) in eq. 7.21 as

pc(If (s)|.) and pp(If (s)|.).
The likelihood term pc(If (s)|.) for pixel site (f, s) is the product of weighted Gaussian dis-

tributions of the colour distances ĉof,f−1(s) and ĉof,f+1(s). These colour distances ĉof,f−1(s) and

ĉof,f+1(s) are components of the appearance models Co
f−1,f (s) and Co

f+1,f (s) for site (f, s) ob-

tained from the forward and backward label propagation steps respectively. The distribution

pc(If (s)|.) is given below.

pc(If (s)|Lf (s)) =
1

S
×

exp



−0.5


λF

f

[
ĉof,f−1(s)− c̄f,f−1(s)

σc
f,f−1(s)

]2
+ λB

f

[
ĉof,f+1(s)− c̄f,f+1(s)

σc
f,f+1(s)

]2



 (7.24)

Where λF
f and λB

f are weights on the forward and backward appearance models respectively at

the current frame f . Recall that we only have the appearance models Co
f−1,f (s) and Co

f+1,f (s)

available for the forward and backward propagation steps respectively. Hence we use the weights

(λF
f = 1, λB

f = 0) and (λF
f = 0, λB

f = 1) for both steps respectively when evaluating the

appearance likelihoods pi(If (s)|.).
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f
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f
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f

Figure 7.16: An illustration of the border key frames for the current frame f . Here key frames

are indicated with coloured lines. Border key frames are the closest key frames on both sides

of the current frame f . For the current frame f (dotted line), the border key frames are f1

(orange) and f2 (cyan).

The parameters for the forward and backward Gaussian distributions are (c̄f,f−1(s),σ
c
f,f−1(s))

and (c̄f,f+1(s), σ
c
f,f+1(s)) respectively. The derivation of these parameters is discussed later. The

weight S is the usual normalizing constant, which takes the forms outlined below for the forward

and backward label propagation steps and the final segmentation.

S =





√
2πσc

f,f−1(s), forward propagation
√
2πσc

f,f+1(s), backward propagation

2πσc
f,f−1(s)σ

c
f,f+1(s), final segmentation

(7.25)

For the final segmentation we have both appearance models Co
f−1,f (s) and Co

f+1,f (s) available.

In this case we vary the weights λF
f and λB

f according to how far away the current frame f is

from the border key frames. Recall that the border key frames are the closest key frames on

both sides of the current frame f . The illustration in fig. 7.16 shows the border key frames for

the current frame ‘f ’ that are labelled ‘f1’ (orange) and ‘f2’ (cyan). Given that f1 and f2 are

the border key frames for the current frame f , the weights λF
f and λB

f are defined as follows.

λF
f =

f2 − f

f2 − f1
, (7.26)

λB
f = 1− λF

f

The second likelihood term pr(If (s)|.) (equ. 7.21) is defined in a similar way to pc(If (s)|.).
This distribution is the product of weighted Gaussian distributions of the partition label dis-

tances rof,f−1(s) and rof,f+1(s). These partition label distances are components of the appearance

models Co
f−1,f (s) and Co

f+1,f (s) for site (f, s), which were discussed in the previous section. The

distribution pr(If (s)|.) is given below.
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pr(If (s)|Lf (s)) =
1

U
×

exp



−0.5


λF

f

[
rof,f−1(s)− r̄f,f−1(s)

σr
f,f−1(s)

]2
+ λB

f

[
rof,f+1(s)− r̄f,f+1(s)

σr
f,f+1(s)

]2



 (7.27)

Where the parameters for the forward and backward distributions are (r̄f,f−1(s), σ
r
f,f−1(s))

and (r̄f,f+1(s), σ
r
f,f+1(s)) respectively. The weight U is the usual normalizing constant, which

takes the forms outlined below for the forward and backward label propagation steps and the

final segmentation.

U =





√
2πσr

f,f−1(s), forward propagation
√
2πσr

f,f+1(s), backward propagation

2πσr
f,f−1(s)σ

r
f,f+1(s), final segmentation

(7.28)

The next section outlines the derivations of the parameters for the appearance likelihood

distribution.

7.1.7.4 Appearance Likelihood Distribution Parameters

The parameters for the appearance likelihood are defined as follows.

c̄f,f−1(s) = min
o

(
ĉof,f−1(s)

)
,
[
σc
f,f−1(s)

]2
=

1

9

∑

m∈Ns

[c̄f,f−1(m)]2 (7.29)

c̄f,f+1(s) = min
o

(
ĉof,f+1(s)

)
,
[
σc
f,f+1(s)

]2
=

1

9

∑

m∈Ns

[c̄f,f+1(m)]2

r̄f,f−1(s) = min
o

(
rof,f−1(s)

)
,
[
σr
f,f−1(s)

]2
=

1

9

∑

m∈Ns

[r̄f,f−1(m)]2

r̄f,f+1(s) = min
o

(
rof,f+1(s)

)
,
[
σr
f,f+1(s)

]2
=

1

9

∑

m∈Ns

[r̄f,f+1(m)]2

Where Ns is the 3× 3 neighbourhood of pixel site s including s.

Note that these parameters in eq. 7.29 are defined in a similar manner to the parameters for

the geodesic distance likelihood in section 7.1.4.2. The reasoning here is the same. We center

the distributions pc(If (s)|.) and pr(If (s)|.) on the minimum colour and partition label distances

respectively. Also the standard deviations are proportional the square of the minimum distances

for the sites in the 3× 3 neighbourhood of site s.
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7.1.8 The Prior

The prior ps(Lf (s)|Lf (∼ s)) at site (f, s) for the object label Lf (s) given the neighbouring labels

Lf (∼ s) is a Gibbs distribution defined as follows.

ps(Lf (s)|Lf (∼ s)) =
1

Z
exp

{
−λL

∑

c∈Ns

[Lf (s) 6= Lf (c)]G(s, c)

}
(7.30)

The neighbourhood of pixel site (f, s) is defined as Ns, where Ns is the set of pixel sites surround-

ing (f, s) in a 4-connected structure. The weight Z above in eq. 7.30 is the usual normalization

constant. The constant λD controls the weight the prior has in the MAP solution. For all exper-

iments it was found that setting λL = 0.01 gave suitable results. The weight G(s, c) determines

how much the label Lf (s) for site (f, s) is influenced by the neighbouring label Lf (c) for site

(f, c). We designed the weight G(s, c) to allow neighbouring pixels to influence each other if

they have similar intensities. This weight G(s, c) is defined as follows.

G(s, c) =




1− δIf (s,c)

λI
, if δIf (s, c) < λI

0, else
(7.31)

for δIf (s, c) = |If (s)− If (c)|

Where If (s) is the gray scale version of the colour If (s) at site (f, s). The constant λI is

the intensity difference above which no neighbouring influence is required. For all experiment

reported later we set λI = 20.

7.2 Graphcut Solution

The α-expansion Graphcut algorithm [135] is used to solve for the MAP estimate of the object

label field Lf for the current frame f . The posterior distribution for the object labels Lf (s)

discussed previously is repeated below.

p(Lf (s)|X , I,Lf (∼ s)) ∝ px(X (f, s)|Lf (s))pi(If (s)|Lf (s))ps(Lf (s)|Lf (∼ s)) (7.32)

Details of the adaptation of the Bayesian problem in eq. 7.32 above to this Graphcut solution

are exposed in appendix B. There are no major issues to raise as far as the Graphcut techniques

are concerned.

7.3 Summary

In this chapter we presented two dense pixel segmentation techniques. One technique is semi-

automatic, while the other segments a sequence automatically. However both techniques utilize
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the same general segmentation framework. The major difference between both techniques is that

a user supplies a set of segmented reference mattes called key frames for the semi-automatic

process, while we estimate these key frames in the automatic process. These key frames for

the automatic segmentation process are estimated using motion and geodesic distance [10, 111]

information.

The general segmentation framework uses the trajectory bundles generated from our sparse

trajectory segmentation (chapter 4) to introduce long term motion and spatial information into

the dense segmentation process. These bundles are used to estimate motion models over several

frames that are used in our likelihood designs. Also the trajectories in the bundles are used

to propagate appearance information. For the automatic segmentation process, the spatial

locations of the trajectories are used to estimate geodesic distances which are then used to

generate key frames.



8
Dense Segmentation Performance Evaluation

In this chapter the performances of both our automatic (Geodesic) and semi-automatic (Semi-

Auto) dense segmentation technique, along with three previous method [12,62,100] are compared

using the Triniman, Artbeats-SP128, and Calendar and Mobile sequences. The nature of these

sequences was previously discussed in chapter 6 where we presented the sparse trajectory seg-

mentation for all three sequences.

Recall that Triniman and Artbeats-SP128 are real world sequences, that contain significant

amounts of non-rigid object motions. The top and middle rows of fig. 8.1 show frames 7,57,91

and 20,62,95 for the Triniman and Artbeats-SP128 sequences respectively. For both sequences

there are one and two non-rigid foreground objects respectively.

The Triniman sequence is 99 frames (720 × 540 pels) of a dynamic outdoor scene recorded

with a hand-held camcorder. The challenge in producing a reasonable segmentation for Triniman

is that there are several non-rigid motions throughout this sequence. In the background there

are swaying tree branches and the foreground actor himself is non-rigid. Also we have to cope

with the global motion of the camera as well.

The Artbeats-SP128 sequence is 99 frames (720 × 576 pels) of a scene from an American

football game. The foreground objects here are player #1 and #2 (fig 8.1) in red and white

jerseys respectively. Both players are moving and deforming very quickly from left to right in

the image plane. Player #1 partially occludes player #2 from frames 73-99. The challenges here

are coping with the non-rigid motions and segmenting both foreground objects (players #1 and

#2) separately. For this sequence the camera is static, hence there is no global camera motion.

However the people in the background are moving, and this introduces another challenge in

173
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Figure 8.1: Example frames for the three sequences used to assess the performance of our dense

segmentation techniques. Top row: Frames 7, 57 and 91 in the Triniman sequence. Middle

row: Frames 20, 62 and 95 in the Artbeats-SP128 sequence. Bottom row: Frames 5, 13

and 23 in the Calendar and Mobile sequence.

producing a reasonable segmentation.

The bottom row of fig 8.1 shows frames 5,13 and 23 in the well known Calendar and Mobile

sequence. This sequence is 25 frames (720 × 576 pels) of a scene with four rigidly moving

objects. The four objects are the background, along with three foreground objects; a calendar,

a toy train, and a ball. For this sequence the camera is panning from left to right. There are

several shadows casted by the foreground objects which are challenging to segment correctly.

The results of the our techniques on the three sequences are compared to that of a movie

compositing software package called NUKE developed by The Foundry [2]. The motion segmen-

tation algorithm of NUKE in the MotionMatte plugin is based on a traditional unsupervised

dense motion segmentation algorithm using two motion models [62]. Each of these motion

models describe the motion of the background and foreground objects respectively.
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Figure 8.2: Examples of the ground truth mattes for Triniman, Artbeats-SP128 and Cal-

endar and Mobile sequences. Top row: Frames 43, 57 and 23 from the three sequences

respectively. Bottom row: The ground truth mattes for the frames in the top row.

We also compared our semi-automatic technique with two state-of-the-art supervised dense

segmentation techniques called FeatureCut and SnapCut proposed by Ring [100] and Bai et

al. [12] respectively. Both these techniques are discussed in the review done in chapter 2.

We have manually segmented ground truth mattes for all three sequences. The bottom row

of fig. 8.2 shows examples of these mattes for the Triniman (left), Artbeats-SP128 (center) and

Calendar and Mobile (right) sequences. The frames these mattes correspond to are shown in

the top row of fig. 8.2.

We will refer to our automatic and semi-automatic dense segmentation approaches asGeodesic

and Semi-Auto respectively. Using the ground truth mattes, we compared the recall and false

alarm rates for both our approaches along with the NUKE segmentations. We also compared

our semi-automatic technique with FeatureCut and SnapCut using recall and false alarm rate.

It will be demonstrated later in this chapter that our Semi-Auto segmentation technique

provides the best overall recall and false alarm rates for the three sequences. Also our Geodesic

segmentation technique has better rates than the NUKE technique.

In the next section we will outline how we compare the segmentations of our Geodesic, Semi-

Auto and the NUKE technique. Comparisons with FeatureCut and SnapCut are done later in

this chapter.
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Figure 8.3: An illustration of different levels of segmentation. First column: Frame 57 in

the Triniman sequence. Second column: A foreground/background level segmentation of

frame 57, where the background and foreground are labelled green and red respectively. Third

column: A object level segmentation of frame 57, where each foreground object is labelled

separately. That is, the background, player #1 and #2 are labelled green, red and blue

respectively. End column: A image region level segmentation of frame 57, where various

image regions for a particular object are labelled separately. Here the lower and upper body of

player #1 are labelled yellow and red respectively. Also the lower and upper body of player

#2 are labelled pink and blue respectively.

8.1 Levels of Segmentation

Our Semi-Auto segmentation approach segments a sequences according to the object descrip-

tions supplied in the user defined key frames. Fig. 8.3 shows examples of three user defined

mattes that dictate different levels of segmentation. The matte in the second column specifies

a foreground/background segmentation, where the foreground and background objects are

coloured in red and green respectively (two labels). However, the matte in the third column

requires that the two objects in the foreground be labelled red and blue. Hence a pixel site can

be labelled green (background), red (player #1) or blue (player #2). This desired segmentation

is defined as an object level segmentation. The user defined matte in the last column of fig. 8.3

specifies that various image regions corresponding to a particular object should be labelled sep-

arately. As an example, the lower and upper body of player #2 are labelled pink and blue

respectively. This desired segmentation is defined as an image region level segmentation.

For all the three sequences we conducted object level segmentation using our Semi-Auto

segmentation approach. Recall that the Geodesic segmentation approach labels the pixels in

a sequence as belonging to a specific trajectory bundle. These bundles are obtained from our

sparse trajectory segmentation process. Here each bundle represents a specific image region,

hence the Geodesic segmentation approach produces image region level segmentations.

However, NUKE produces a foreground/background level segmentation. Hence, in or-

der to compare the segmentation of all three algorithms, we must first express them as fore-

ground/background level segmentations. With this level of segmentation we can then proceed

to comparing foreground recall and false alarm rates using our ground truth segmentations.
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Figure 8.4: An illustration using an example frame from the Artbeats-SP128 sequence show-

ing how foreground/background level segmentations are determined for our Semi-Auto and

Geodesic segmentation techniques. We use the ground truth matte to express the object (mid-

dle row) and image region (bottom row) level segmentations as foreground/background

level segmentations (top row). The ground truth segmentation is supplied as an object level

segmentation which is shown in the center of the last column. Here the background, player #1

and #2 are coloured in green, red and blue respectively. All the labels that are not green con-

stitute the foreground. Hence the we obtain the foreground/background level segmentation

for the ground truth, which is shown in the top right picture. We simply label a segment from

the object or image region level segmentation as foreground if the majority of the pixels for

this segment correspond to the foreground region in the ground truth. The arrows indicate the

transitions between the various levels of segmentation. Each column shows the segmentations

for the Geodesic, Semi-Auto and NUKE approaches as well as the supplied Ground Truth.

In the next section we will discuss how we determine the foreground/background level

segmentation for our Semi-Auto and Geodesic segmentation approaches.

8.1.1 Foreground/Background Segmentation

Fig. 8.4 illustrates the different levels of segmentation for the three techniques using an example

frame from the Artbeats-SP128 sequence. The ground truth segmentation shown in the center

of the last column is supplied as an object level segmentation. Here the background, player #1

and #2 are coloured in green, red and blue respectively. All the objects that are not green consti-
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tute the foreground. Hence we can reexpress the ground truth as a foreground/background

segmentation which is shown in the top right of fig. 8.4.

We use the foreground/background level ground truth segmentation (top right of fig. 8.4)

to assess the foreground/background level segmentation for the Semi-Auto and Geodesic ap-

proaches. We simply label a segment from the object (Semi-Auto) or image region (Geodesic)

level segmentation as foreground if the majority of the pixels for this segment corresponds to the

foreground region in the ground truth. The arrows in fig. 8.4 indicate the transitions between

the levels of segmentation for the Geodesic, Semi-Auto and ground truth segmentations. The

required foreground/background level segmentations are shown in the top row of fig. 8.4.

8.2 Segmentation of the Three Sequences

In general our Semi-Auto and Geodesic approaches produce good segmentations for all three

sequences. However, the NUKE approach only produces similar segmentations for the Artbeats-

SP128 sequence. The quality of the NUKE segmentations seems to deteriorate whenever there is

some sort of global camera motion. With global motion present, the task of detecting foreground

motion becomes more difficult. Our segmentation techniques do not have these shortcomings.

In the next three sections we will discuss the segmentation for the three sequences.

8.2.1 Triniman

Fig. 8.5 shows the segmentations for frames 7, 57 and 91 in the Triniman sequence. These

frames are shown in the top row. The second, third and bottom rows show the segmentations

produced by our Semi-Auto, Geodesic and the NUKE approaches respectively. Recall that

the segmentations produced by the Semi-Auto, Geodesic and NUKE approaches are object,

image region and foreground/background level segmentations respectively as mentioned

previously. Note in fig. 8.5 the different levels of segmentation produced by these three tech-

niques. For our Semi-Auto segmentation approach we used 12 user segmented mattes and the

remaining 87 frames in this sequence were estimated in the segmentation process.

It may be observed that our Semi-Auto approach produces the best segmentation, followed by

our Geodesic approach. Both of these approaches produce temporally consistent segmentations.

However, the NUKE approach produces a poorer quality segmentation which is not temporally

consistent. The swaying tree branches are incorrectly identified as foreground.

Fig. 8.6 shows the equivalent foreground/background level segmentations for the seg-

mentations shown in fig. 8.5 for the Triniman sequence. Here the foregrounds are extracted

using the corresponding foreground/background level segmentations and the backgrounds

are shaded in green. This level of segmentation is used to compare the segmentations of the

three techniques quantitatively, as previously discussed. This quantitative analyses for all three

sequences are presented later.
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Figure 8.5: The segmentations for three frames in the Triniman sequence. Top row: Frames

7 (left), 57 (center) and 91 (right) in this sequence. Second row: The object level segmenta-

tions for the frames in the top row produced by our Semi-Auto approach. Since there is only

one foreground object, this segmentation is the same as a foreground/background segmenta-

tion. The background and actor are coloured yellow and cyan respectively. Third row: The

image region level segmentations for the frames in the top row produced by our Geodesic

approach. The background is coloured in cyan. The various image regions corresponding the

actor are coloured pink (face), green (right arm), maroon red (torso), red (upper left hand),

and orange (lower left arm). Bottom row: The foreground/background level segmenta-

tions of the frames in the top row produced by NUKE. The background and foreground are

coloured yellow and purple respectively.
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Figure 8.6: The foreground/background level segmentations for three frames in the Trin-

iman sequence. The foregrounds are extracted using the respective segmentations and the

backgrounds are shaded in green. Top row: Frames 7, 57 and 91 in this sequence. Second,

third and bottom rows: The segmentations for the frames in the top row produced by our

Semi-Auto, Geodesic and the NUKE approaches respectively.
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8.2.2 Artbeats-SP128

Fig. 8.7 shows the segmentations for frames 20, 62 and 95 in the Artbeats-SP128 sequence. The

equivalent foreground/background level segmentations are shown in fig. 8.8. The second,

third and bottom rows in both fig. 8.7 and fig. 8.8 show the segmentations produced by the

Semi-Auto, Geodesic and NUKE approaches respectively. For the Semi-Auto segmentation

approach we used 18 user segmented mattes and the remaining 81 frames in this sequence were

estimated in the segmentation process.

Again our Semi-Auto approach provides the best segmentation for the Artbeats-SP128 se-

quence. The NUKE segmentations are slightly better then those for the Geodesic approach.

Here the Geodesic approach suffers from a lack of image texture on the legs of both players

(players are wearing plain tights). Hence there are not much feature point trajectories on the

legs of the players, which are required to produce a good segmentation using our Geodesic ap-

proach. Also the static camera for the Artbeats-SP128 sequence means that NUKE does not

have to do any background motion compensation. Therefore the task of detecting foreground

motion is simplified in this case.

8.2.3 Calendar and Mobile

Fig. 8.9 shows the segmentations for frames 5, 13 and 23 in the Calendar and Mobile sequence.

The equivalent foreground/background level segmentations are shown in fig. 8.10. The sec-

ond, third and bottom rows in both figs. 8.9 and 8.10 show the segmentations produced by our

Semi-Auto, Geodesic and the NUKE approaches respectively. For our Semi-Auto segmentation

approach we used 6 user segmented mattes and the remaining 19 frames in this sequence were

estimated in the segmentation process.

Our Semi-Auto technique also produces the best segmentations for this sequence, followed

by our Geodesic technique. The NUKE segmentation approach generally fails to differentiate

between the subtle motions of the calendar and the background. Hence the majority of the upper

half of the calendar is labelled as being part of the background. In both our Semi-Auto and

Geodesic approaches, we benefit from using appearance information and the spatial locations of

the trajectories in order to produce the desired segmentations for this sequence.

8.3 Quantitative Analysis

By expressing the segmentations produced by our Semi-Auto and Geodesic approaches as fore-

ground/background level segmentations we can then proceed to comparing these segmenta-

tions with those produced by NUKE. Here we use the usual quantitative measures of foreground

recall and false alarm rates as the basis for our comparisons. The recall and false alarm rates
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Figure 8.7: The segmentations for three frames in the Artbeats-SP128 sequence. Top row:

Frames 20, 62 and 95 in this sequence. Second row: The object level segmentations for the

frames in the top row produced by our Semi-Auto approach. The background, player #1 and

#2 are coloured yellow, cyan and pink respectively. Third row: The image region level

segmentations for the frames in the top row produced by our Geodesic approach. The back-

ground is coloured in white and dark blue (in frame on the right). The various image regions

corresponding the players are in different colours, where corresponding regions are coloured sim-

ilarly across the frames. Bottom row: The foreground/background level segmentations of

the frames in the top row produced by NUKE. The background and foreground are coloured

yellow and purple respectively.
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Figure 8.8: The foreground/background level segmentations for three frames in the

Artbeats-SP128 sequence. The foregrounds are extracted using the respective segmentations

and the backgrounds are shaded in green. Top row: Frames 20, 62 and 95 in this sequence.

Second, third and bottom rows: The segmentations for the frames in the top row produced

by our Semi-Auto, Geodesic and the NUKE approaches respectively.



184 Dense Segmentation Performance Evaluation

Figure 8.9: The segmentations for three frames in the Calendar and Mobile sequence. Top

row: Frames 5, 13 and 23 in this sequence. Second row: The object level segmentations for

the frames in the top row produced by our Semi-Auto approach. The background, toy train,

calendar and ball are coloured yellow, cyan, pink and maroon red respectively. Third row:

The image region level segmentations for the frames in the top row produced by our Geodesic

approach. The background, toy train, calendar and ball are coloured cyan, pink, green and

brown respectively. Bottom row: The foreground/background level segmentations of the

frames in the top row produced byNUKE. The background and foreground are coloured yellow

and purple respectively.
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Figure 8.10: The foreground/background level segmentations for three frames in the Calen-

dar and Mobile sequence. The foregrounds are extracted using the respective segmentations

and the backgrounds are shaded in green. Top row: Frames 5, 13 and 23 in this sequence.

Second, third and bottom rows: The segmentations for the frames in the top row produced

by our Semi-Auto, Geodesic and the NUKE approaches respectively.
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Mattes

Sequence #Frames #User Supplied #Estimated

Triniman 99 12 87

Artbeats-SP128 99 18 81

Calendar and Mobile 25 6 19

All 223 36 187

Table 8.1: The number of frames (#Frames), user supplied mattes (#User Supplied) and esti-

mated mattes (#Estimated) for the Triniman, Artbeats-SP128 and Calendar and Mobile

sequences.

are defined as follows.

Recall =
#correct foreground pixels

#foreground pixels
× 100%, (8.1)

False alarm =
#incorrect foreground pixels

#background pixels
× 100%

Where the foreground and background pixels are identified using the ground truth segmentations.

A high recall rate with a corresponding low false alarm rate is indicative of a good segmentation.

Recall that we do forward and backward label propagation steps in both our Semi-Auto and

Geodesic segmentations approaches in order to gather appearance information. The forward and

backward steps involve processing a sequence from frame 1 : F and F : 1 respectively. Hence

we obtain two sets of segmented frames in this process, i.e. for each frame f we have a forward

and backward segmentation. Both these segmentations for frame f are combined in some way

(described in chapter 7) to produce the final segmentation for this frame.

We define the forward and backward segmentation processes for our Semi-Auto approach

as Semi-Auto(F) and Semi-Auto(B) respectively. Also the forward and backward segmentation

processes for our Geodesic approach are defined as Geodesic(F) and Geodesic(B) respectively.

We will show later that our final Semi-Auto segmentations are improved by utilizing both the

Semi-Auto(F) and Semi-Auto(B) segmentations. Since the general framework is the same, it is

reasonable to assume that our final Geodesic segmentations are also improved by utilizing both

the Geodesic(F) and Geodesic(B) segmentations. To avoid redundancy we only consider the

case for the Semi-Auto approach only.

The qualities of our Semi-Auto segmentations are obviously related to the number of user

defined mattes used in this process. We will demonstrate later that we can reduce the number

of user supplied mattes without significantly compromising the integrity of our segmentations.

Table 8.1 summaries the number of user supplied and estimated mattes for the three sequences.

For the 223 frames in all three sequences 83.86% are estimated in the Semi-Auto segmentation
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Triniman Semi-Auto(F) Semi-Auto(B) Semi-Auto Geodesic NUKE

Average 99.65% 99.62% 99.69% 98.60% 91.66%

Median 99.68% 99.70% 99.69% 98.81% 94.16%

Artbeats SP128 Semi-Auto(F) Semi-Auto(B) Semi-Auto Geodesic NUKE

Average 97.56% 97.86% 98.09% 90.97% 95.80%

Median 97.98% 98.15% 98.33% 92.00% 96.90%

Calendar & Mobile Semi-Auto(F) Semi-Auto(B) Semi-Auto Geodesic NUKE

Average 99.36% 99.42% 99.53% 97.34% 52.25%

Median 99.39% 99.48% 99.54% 97.38% 50.83%

All Semi-Auto(F) Semi-Auto(B) Semi-Auto Geodesic NUKE

Average 98.86% 98.97% 99.10% 95.64% 79.90%

Table 8.2: The average and median recall rates for the Triniman, Artbeats-SP128 and

Calendar and Mobile sequences. The segmentation approaches shown are Semi-Auto(F),

Semi-Auto(B), Semi-Auto, Geodesic and NUKE. The bottom row shows the average

rates over all the three sequences.

process. We will show later in this chapter that we can increase the number of estimated mattes

to 95.07% and still maintain better recall and false alarm rates than both NUKE and our

Geodesic approaches.

The next two sections will discuss the recall and false alarm rates for the three segmentation

techniques. Note that the results for our Semi-Auto approach are based on us estimating 83.86%

(See the breakdown in table 8.1) of the mattes for the three sequences.

8.3.1 Recall Rates

Table 8.2 show the recall rates for the Semi-Auto(F), Semi-Auto(B), Semi-Auto, Geodesic and

NUKE segmentations. Here the average and median rates over all the frames in each of the

three sequences are shown.

Our Semi-Auto approach has the best recall rates for the Triniman (99.69%), Artbeats-SP128

(98.09%) and Calendar and Mobile (99.53%) sequences. The Geodesic approach has better recall

rates for the Triniman and Calendar and Mobile sequences compared to NUKE. However NUKE

has a better recall rate for the Artbeats-SP128 sequence. As previously mentioned, the Geodesic

approach produces poorer segmentations for this sequence because of the lack of image texture

on the legs of the players.

It may be observed from the recall rates in table 8.2 that the overall final Semi-Auto seg-

mentations are always better than either the Semi-Auto(F) or Semi-Auto(B) segmentations.

Hence doing forward and backward segmentation steps improves the recall rates for our final
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Triniman Semi-Auto(F) Semi-Auto(B) Semi-Auto Geodesic NUKE

Average 0.25% 0.21% 0.21% 0.17% 12.48%

Median 0.23% 0.20% 0.19% 0.14% 4.49%

Artbeats SP128 Semi-Auto(F) Semi-Auto(B) Semi-Auto Geodesic NUKE

Average 0.68% 0.69% 0.60% 0.61% 1.53%

Median 0.74% 0.73% 0.63% 0.57% 1.67%

Calendar & Mobile Semi-Auto(F) Semi-Auto(B) Semi-Auto Geodesic NUKE

Average 0.34% 0.40% 0.31% 1.17% 4.26%

Median 0.34% 0.40% 0.31% 1.17% 4.00%

All Semi-Auto(F) Semi-Auto(B) Semi-Auto Geodesic NUKE

Average 0.42% 0.43% 0.37% 0.65% 6.09%

Table 8.3: The average and median false alarm rates for the Triniman, Artbeats-SP128 and

Calendar and Mobile sequences. The segmentation approaches shown are Semi-Auto(F),

Semi-Auto(B), Semi-Auto, Geodesic and NUKE. The bottom row shows the average

rates over all the three sequences.

segmentations.

Recall that for the Calendar and Mobile sequence, NUKE consistently failed to segment the

majority of the calendar as foreground (See fig. 8.10). Hence this approach has a relatively low

average recall rate of 52.25%.

Overall, considering all three sequence our Semi-Auto approach has the best recall rate

(99.10%), followed by our Geodesic approach (95.64%). The overall recall rate for NUKE is

79.90%.

8.3.2 False Alarm Rates

Table 8.3 show the false rates for the Semi-Auto(F), Semi-Auto(B), Semi-Auto, Geodesic and

NUKE segmentations. Our Semi-Auto approach has the best false alarm for the Artbeats-

SP128 (0.60%) and Calendar and Mobile (0.31%) sequences. Our Geodesic approach has a

slightly better rate (0.17%) than the Semi-Auto approach (0.21%) for the Triniman sequence.

Both approaches are by far much better than NUKE in term of false alarm rates.

For the Triniman sequence, NUKE has problems differentiating between the motions of

the actor (foreground) and the swaying tree branches in the background (See fig. 8.6). Hence

the tree branches are consistently being classified as foreground, which is reflected in the high

false alarm rate of 12.48%. Both our segmentation approaches correctly identify that the tree

branches are not apart of the foreground, and this is confirmed by the corresponding low false

alarm rates (0.21% and 0.17%).
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Figure 8.11: Plots of the recall (Recall[%]) and false alarm (False Alarm[%]) rates per frame (f)

for the Triniman sequence. Top row: The recall (left) and false alarm (right) rates for the

Semi-Auto(F) (red), Semi-Auto(B) (green) and Semi-Auto (black) segmentations. The

frame locations of the key frames are indicated with cyan dots. Bottom row: The recall (left)

and false alarm (right) rates for the Geodesic (yellow), NUKE (purple plots) and Semi-Auto

(black) segmentations.

The false alarm rates in table 8.3 suggest that the final Semi-Auto segmentations are always

better than either the Semi-Auto(F) or Semi-Auto(B) segmentations. Again, as suggested by

the recall rates in the previous section, doing forward and backward segmentation steps improves

our final segmentations. Hence we can conclude that both segmentation steps contribute towards

a better final segmentation.

Overall, considering all three sequence our Semi-Auto approach has the best false alarm rate

(0.37%), followed by our Geodesic approach (0.65%). The overall recall rate for NUKE is 6.09%.

8.3.3 Recall and False Alarm Rates per Frame

Recall and false alarm rates for each frame in the three sequences, allows us to see how the

frame locations of the user supplied mattes affect these rates. Also we can assess the temporal

consistency in term of the qualities of the segmentations for the three segmentation algorithms.

Figs. 8.11, 8.12 and 8.13 show plots of the recall and false alarm rates for the Triniman,
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Figure 8.12: Plots of the recall (Recall[%]) and false alarm (False Alarm[%]) rates per frame (f)

for the Artbeats-SP128 sequence. Top row: The recall (left) and false alarm (right) rates for

the Semi-Auto(F) (red), Semi-Auto(B) (green) and Semi-Auto (black) segmentations. The

frame locations of the key frames are indicated with cyan dots. Bottom row: The recall (left)

and false alarm (right) rates for the Geodesic (yellow), NUKE (purple plots) and Semi-Auto

(black) segmentations.

Artbeats-SP128 and Calendar and Mobile sequences respectively. The top rows of these figures

show plots of the rates for the Semi-Auto(B) (green), Semi-Auto(F) (red) and Semi-Auto (black)

segmentations. Here the recall rates (Recall[%]) versus frame index f are on the left, and the

false alarm rates (False Alarm[%]) versus frame index f are on the right. The frame positions

of the user supplied mattes (Key frames) are indicated with cyan dots. The bottom rows of

figs. 8.11, 8.12 and 8.13 show plots of the rates for the Geodesic (yellow), NUKE (purple) and

Semi-Auto (black) segmentations. Here the recall and false alarm plots are shown on the left

and right respectively of the bottom rows. These plots are separated from those in the top rows

for clarity of illustration.
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8.3.3.1 Semi-Auto Segmentation

In our Semi-Auto segmentation approach, we expect poorer recall and false alarm rates due to

the accumulation of segmentation errors, as we move away from the key frames (user supplied

mattes). Recall that for the forward (Semi-Auto(F)) and backward (Semi-Auto(B)) segmenta-

tion steps the frames are processed in the order 1 : F and F : 1 respectively. Hence, for the

Semi-Auto(F) segmentations we expect the rates for frame f to be poorer than those for f − 1

(given frame f − 1 is not a key frame). Also for the Semi-Auto(B) segmentations we expect the

rates for frame f to be poorer than those for f + 1 (given frame f + 1 is not a key frame).

From the plot in the top rows of figs. 8.11, 8.12 and 8.13, we may observe our expectations

of the recall and false alarm rates getting poorer for the Semi-Auto(F) (red plots) and Semi-

Auto(B) (green plots) segmentations, as we move away from the key frames. Note that the

segmentation at frame f is influenced only by the key frame (cyan dot) to the left and right of

frame f , for the Semi-Auto(F) and Semi-Auto(B) segmentation steps respectively.

Recall that the final segmentations for our Semi-Auto approach are dependent on weighted

combinations of the appearance models obtained from both the Semi-Auto(F) and Semi-Auto(B)

segmentations. Here these combination weights are dependent on temporal distances from the

key frames in the forward and backward directions. Hence, we can consider the final segmenta-

tions as combinations of the ‘best’ segmentations from both the Semi-Auto(F) and Semi-Auto(B)

segmentations.

It may be observed in the top rows of figs. 8.11, 8.12 and 8.13 that the recall and false

alarms for the Semi-Auto segmentations (black plots) are closer to those for the Semi-Auto(F)

(red plots) and Semi-Auto(B) (green plots) segmentations depending on the temporal distances

from the key frames (cyan dots). Effectively, by utilizing the ‘best’ segmentations from both

the forward and backward segmentations we obtain better recall and false alarm rates for our

final segmentations. These better rates are indicative of better segmentations.

8.3.3.2 Consistency of Segmentation

The bottom rows of figs. 8.11, 8.12 and 8.13 show the plots of the recall and false rates for the

Triniman, Artbeats-SP128 and Calendar and Mobile sequences respectively. Here temporally

consistent segmentations for a sequence are reflected in these plots as roughly constant recall

and false alarm rates from frame to frame.

The lack of temporal consistency in the segmentations for NUKE (purple plots) are reflected

in the fluctuating recall and false alarm rates. Our Semi-Auto approach produced the most

temporally consistent segmentations, which is reflected in the plots as relatively low fluctuations

in the recall and false alarm rates from frame to frame. The Geodesic approach only produces

temporally consistent segmentations for the Triniman and Calendar and Mobile sequences. For

Artbeats-SP128, this approach suffers from a lack of image texture on the legs of the players as

previously mentioned.
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Figure 8.13: Plots of the recall (Recall[%]) and false alarm (False Alarm[%]) rates per frame

(f) for the Calendar and Mobile sequence. Top row: The recall (left) and false alarm

(right) rates for the Semi-Auto(F) (red), Semi-Auto(B) (green) and Semi-Auto (black)

segmentations. The frame locations of the key frames are indicated with cyan dots. Bottom

row: The recall (left) and false alarm (right) rates for the Geodesic (yellow), NUKE (purple)

and Semi-Auto (black) segmentations.

From the plots in figs. 8.11, 8.12 and 8.13 it may be observed that our Semi-Auto (black

plots) technique consistently produced high quality segmentation for every frame in all three

sequences. These high quality segmentations correspond to high recall rates and low false alarm

rates for every frame (very close to ground truth segmentations). Our Geodesic (yellow plots)

approach produced the next most consistent segmentations in terms of quality.

Although our Semi-Auto approach can not be used for applications requiring fully auto-

matic segmentations, this approach would appeal to the post-production industry. Currently in

post-production houses an Artist manually draws several mattes in order to extract foreground

objects. Our technique would significantly reduce to number of mattes that have to be drawn.

There is also some merit in allowing the user the control the segmentation process. He can

according to his desired standards, actively control the final segmentation.

Recall that we are estimating 83.86% of the mattes in the three sequences. In the next
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Figure 8.14: The recall (left) and false alarm (right) rates versus the number of key

frames (#Key frames) used in the Semi-Auto segmentations of the Triniman (green plots),

Artbeats-SP128 (red plots) and Calendar and Mobile (blue plots) sequences.

section we will show that we can estimate 95.07% of these mattes in our Semi-Auto approach

and still produce the best segmentations out of all three approaches.

8.4 User Supplied Mattes for Semi-Auto Segmentation

The number of user supplied mattes in our Semi-Auto segmentation technique understandably

affects the recall and false alarm rates. We conducted three segmentation experiments for each

sequence where we vary the number of key frames (user supplied mattes). In general a frame

is chosen to be a key frame if at this frame a significant amount of image material becomes

occluded or revealed. Also, the frames for which a new object enters or leaves a scene are

selected as key frames.

Fig. 8.14 shows the plots of the average recall (left) and false alarm (right) rates for these

three experiments. Here the plots for the Triniman, Artbeats-SP128 and Calendar and Mobile

sequences are coloured green, red and blue respectively.

For the Triniman sequence the number of key frames used for the three experiments are 4,

7 and 12. The recall and false alarm rates (fig. 8.14) for this sequence stay relatively constant

for all three experiments. For the Artbeats-SP128 and Calendar and Mobile sequences where

the number of key frames are 7,11,18 and 2,4,6 respectively, the changes in their corresponding

rates were within acceptable limits. That is, using the minimum number of key frames (7 and

2) for both sequences still produced quality segmentations.

For the Triniman, Artbeats-SP128 and Calendar and Mobile sequences the minimum number

of key frames used in a segmentation experiment were 4, 7 and 2 respectively. The average recall

and false alarm rates for all three sequences using these minimum number of key frames are

98.33% and 0.58% respectively. Here these rates are better those for the automatic approaches

(see tables 8.2 and 8.3); Geodesic (95.64%,0.65%) and NUKE (79.90%,6.09%).
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Note that we estimated 95.07% of the mattes for the three sequences when using the minimum

number of key frames.

8.5 Comparison with Other Matte Propagation Algorithms: Fea-

tureCut

The FeatureCut segmentation algorithm proposed by Ring [100], uses SIFT features matches to

propagate a collection of user defined mattes (key frames) to the unsegmented frames (inter-

mediate frames) in a sequence. Here feature matches are used to identify corresponding image

regions between a reference key frame and the current intermediate frame of interest. These

key frames contain foreground/background labels, and the image region correspondences are

used to propagation these labels to the intermediate frames. At each pixel site s in an interme-

diate frame f , votes are accumulated whether site s is foreground or background. The author

then proceeds to generate a MAP estimate of the label field for intermediate frame f , using a

Graphcut solution.

The author of the FeatureCut approach provides an implementation of this algorithm as

a NUKE [2] plugin. In order to compare our Semi-Auto approach with FeatureCut, we used

this plugin to segment the Artbeats-SP128 sequence only. We did not attempt to segment any

other sequences (Triniman, Calendar and Mobile) with the FeatureCut plugin because it was

quite difficult to find the right combination of tweakable parameters (a total of 36 tweakable

parameters) in order to produce a reasonable segmentation. Using the default parameter values

produces very poor segmentations.

For our comparison with FeatureCut on the Artbeats-SP128 sequence, we supplied both our

Semi-Auto and the FeatureCut approaches with the same set of key frames (user defined mattes).

The number of key frames used was 18, and they are located at frames 1,5,11,25,26,31,34,38,41,46,50,

56,68,74,80,85,90 and 99 (same as presented previously for comparison with NUKE ).

Fig. 8.15 shows the segmentations produced by FeatureCut and our Semi-Auto approach

for frames 12, 61 and 95 in the Artbeats-SP128 sequence. Our segmentations are shown in the

second and third rows, while those for FeatureCut are shown in the fourth and bottom rows.

It may be observed that we produce better segmentations for this sequence compared to the

FeatureCut approach. We will show later that we have better recall false alarm rates for this

sequence.

8.5.1 Reliance on Feature Matches

The general approach of the FeatureCut technique is similar to our Semi-Auto segmentation

technique. We both use feature point correspondences for propagating label information. How-

ever, unlike FeatureCut, our Semi-Auto approach utilizes appearance information. Recall that

we model the colour and shape of the objects in a sequence. Also our sparse trajectory seg-
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Figure 8.15: The segmentations for three frames in the Artbeats-SP128 sequence. Top row:

Frames 12, 61 and 95 in this sequence. Second row: The object level segmentations produced

by our Semi-Auto approach. The background, player #1 and #2 are coloured yellow, cyan

and pink respectively. Third and bottom rows: The foreground/background level seg-

mentations produced by our Semi-Auto and the FeatureCut approaches respectively. The

foregrounds are extracted using the respective segmentations and the backgrounds are shaded

in green. Fourth row: The foreground/background level segmentations produced by the

FeatureCut algorithm. The background and foreground are coloured yellow and purple re-

spectively.
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Figure 8.16: Plots of the recall (Recall[%]) and false alarm (False Alarm[%]) rates per frame

(f) for the Artbeats-SP128 sequence. The recall (left) and false alarm (right) rates for the

FeatureCut (green) and our Semi-Auto (black) segmentations. The frame locations of the

key frames are indicated with cyan dots.

mentation step guarantees that our feature point correspondences are temporally and spatially

smooth. However, the equivalent SIFT feature matching step for FeatureCut that is used to

generate feature correspondences is not temporally and spatially smooth.

Our utilization of appearance information and better feature correspondences in a robust

framework allows us to produce more temporally consistent and accurate segmentations for

the Artbeats-SP128 sequence (fig. 8.15) compared to the FeatureCut approach. The main issue

with the FeatureCut approach identified by the author is that the quality of the segmentations is

highly dependent on the feature matches between frames. If the current frame to be segmented is

temporally far away from any of the user supplied key frames, there will not be sufficient feature

matches for doing reliable label propagations. Also there will not be any feature matches in low

texture image regions.

The segmentation of frame 61 (last two rows of the middle column in fig. 8.15) in the

Artbeats-SP128 sequence is an example where FeatureCut fails because of unreliable feature

matching. Here this approach failed to correctly segment player #1 because of a relatively low

number of feature matches. Our Semi-Auto approach (second and third rows of the middle

column in fig. 8.15) does not have these shortcomings. While FeatureCut uses only SIFT feature

correspondences, we are using both KLT and SIFT feature correspondences. Hence we have

more feature point correspondences available in our framework.

8.5.2 Recall and False Alarm Rates

Our average recall and false alarm rates for the Artbeats-SP128 sequence are 98.09% and 0.60%

respectively (see tables 8.3 and 8.2). The corresponding rates for FeatureCut are 90.93% and

0.99% respectively. Our recall and false alarm rates are better than those for FeatureCut, which
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is indicative of our overall segmentations being better for this sequence.

Fig. 8.16 shows the recall (left) and false alarm (right) rates per frame for the Artbeats-SP128

sequence. The plots for the FeatureCut and our Semi-Auto approach are coloured in green and

black respectively.

The FeatureCut approach produces its lowest recall rate of 53.16% for the segmentation of

frame 61. The segmentation for this frame is shown is the middle column of fig. 8.15. We

discussed previously that this poor segmentation for frame 61 is the result of unreliable feature

correspondences between the key frames and this frame.

The temporal inconsistency of the FeatureCut segmentations are reflected in the significant

fluctuations in the recall and false alarm rates (fig. 8.16) over the sequence. The rates for

our Semi-Auto approach are relatively constant over the entire sequence, which is indicative of

temporal consistency in the segmentations produced.

8.6 Comparison with Other Matte Propagation Algorithms: Snap-

Cut

The SnapCut segmentation algorithm proposed by Bai et al. [12] uses optical flow to propa-

gate appearance information from a segmented frame f − 1 to the current unsegmented frame

f (intermediate frame). This appearance information consists of colour and shape models for

the foreground image regions. These models are used in the design of a posterior distribution

for the labels at the current frame f . The author generates a MAP estimate for the fore-

ground/background labels for this frame using a Graphcut optimization solution.

For the SnapCut segmentation approach, the user fully segments the first frame (1st key

frame) in a sequence, and all subsequent frames are processed in the order 2 to F (where F is

the number of frames in the sequence). The user is allowed to correct any segmentations errors

generated for the current frame f , and by default these changes only affect the frames after f

(forward propagation), i.e. frames f + 1, . . . , F . However the user can make the current frame

f a key frame (reference segmentation), and allow previous intermediate frames (2 to f − 1) to

be influenced by this key frame (backward propagation). Recall that we defined an intermediate

frame as a frame to be labelled in the segmentation process.

An implementation of the SnapCut algorithm is bundled into Adobe After Effects CS5 [1]

as a matting tool called Roto Brush. Fig. 8.17 shows a screenshot of After Effects with

the Roto Brush tool active. In this screenshot, we are segmenting the Calendar and Mobile

sequence, and the user supplied key frames (orange markers along the time line) are highlighted

with white ovals. The frames in between these key frames are the intermediate frames, and the

SnapCut algorithm is required to generate segmentations for these frames. The segmentation

shown currently in fig. 8.17 is for the second frame in the Calendar and Mobile sequence.

To make comparisons of our Semi-Auto approach to the SnapCut approach we used the
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Figure 8.17: A screenshot of the workspace in Adobe After Effects CS5 when using the

Roto Brush tool on the Calendar and Mobile sequence. The user defined key frames

(orange markers on time line) are highlighted with white ovals.

#Key frames Locations

Triniman 12
01 06 13 20 31 42

53 63 79 85 90 99

Artbeats-SP128 18

01 05 11 25 26 31

34 38 41 46 50 56

68 74 80 85 90 99

Calendar & Mobile 6 01 06 11 17 21 25

Table 8.4: The number of key frames (#Key frames) and their locations for the Triniman,

Artbeats-SP128 and Calendar and Mobile sequences.

Triniman, Artbeats-SP128 and Calendar and Mobile sequences. We supply both approaches

with the same set of key frames for all three sequences. The locations of these key frames for

each sequence is shown in the last column of table. 8.4. The second column shows the total

number of key frames for each sequence.

We will show later that our Semi-Auto approach has better overall recall and false alarm

rates for the three sequences, compared to the SnapCut approach. Our approach also produces

more temporally consistent segmentations.
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Recall False Alarm

Triniman SnapCut Semi-Auto SnapCut Semi-Auto

Average 99.76% 99.69% 0.40% 0.21%

Median 99.78% 99.69% 0.26% 0.19%

Artbeats-SP128 SnapCut Semi-Auto SnapCut Semi-Auto

Average 96.57% 98.09% 1.45% 0.60%

Median 97.59% 98.33% 1.12% 0.63%

Calendar & Mobile SnapCut Semi-Auto SnapCut Semi-Auto

Average 99.42% 99.53% 1.18% 0.31%

Median 99.50% 99.54% 1.14% 0.31%

All SnapCut Semi-Auto SnapCut Semi-Auto

Average 98.58% 99.10% 1.01% 0.37%

Table 8.5: The average and median recall and false alarm rates for the Triniman, Artbeats-

SP128 and Calendar and Mobile sequences. The segmentation approaches shown are Snap-

Cut and Semi-Auto. The bottom row shows the average rates over all the three sequences.

8.6.1 Recall and False Alarm Rates

Table 8.5 shows the recall and false alarm rates for the segmentations produced by our Semi-

Auto and the SnapCut approaches on the Triniman, Artbeats-SP128 and Calendar and Mobile

sequences. Considering all three sequence, our approach has the best overall recall (99.10%) and

false alarm (0.37%) rates. The corresponding rates for SnapCut are 98.58% and 1.01% (bottom

row of table 8.5).

The average recall rate (99.76%) for the segmentations of the Triniman sequence produced by

SnapCut is fractionally better than our Semi-Auto approach (99.69%). However our false alarm

rate (0.21%) for this sequence is better than the corresponding rate for SnapCut (0.40%). Hence

we may conclude that both approaches produce roughly the same high quality segmentations

for this sequence. We will visually compare the segmentations for both approaches later.

The Artbeats-SP128 sequence is the most challenging of the three sequences. This sequence

contains significantly faster moving objects (motion blur), and the foreground and background

colours are not well separated in the colour space. Both our recall (98.09%) and false alarm

(0.60%) rates are better than those for SnapCut (96.57%,1.45%).

In general, SnapCut produces good segmentations when the foreground and background have

different colours. If this is the case, the SnapCut approach identifies that the foreground and

background are well separated in the colour space, and assigns a higher weight to its colour

likelihood compared to its shape (geometry) likelihood. For the Triniman sequence this is the

case, where the foreground is predominantly red and brown, while the background is green.
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However, for the Artbeats-SP128 sequence, the colour likelihood is less reliable, so there

is more dependence on the shape likelihood. This shape likelihood is directly dependent on

inaccurate optical flow estimations. The design of the shape likelihood is based on the idea of

generating an estimated shape for the current frame by propagating the previous segmentation

via motion vectors obtained from optical flow. In most cases (especially for non-rigid objects),

this estimated shape will differ significantly from the true foreground shape in the current frame.

The author of the SnapCut approach has identified this issue and has given examples (using

Artbeats-SP128 ) of this shape misalignment in his paper [12].

Hence, whenever the SnapCut approach places significantly more weight on its shape likeli-

hood, the quality of the segmentations produced deteriorates. This is the case for the Artbeats-

SP128 sequence. Unlike the SnapCut approach which utilizes only appearance likelihoods

(colour and shape), our Semi-Auto approach use both appearance and motion likelihoods. Hence

we have more information available which allows us to produce higher quality segmentations. It

will be shown later that our segmentations for the Artbeats-SP128 sequence are visually better

than those for SnapCut.

Our Semi-Auto approach performs better on the Calendar and Mobile sequence compared to

SnapCut. The recall and false alarm rates for our approach are 99.53% and 0.31% respectively.

The corresponding rates for SnapCut are 99.42% and 1.18% respectively. The significantly

higher false alarm rate for SnapCut was due to the shadows casted by the ball and the toy train

throughout the sequence were consistently being segmented as foreground. Our approach did

not have these shortcomings.

8.6.2 Visual Comparison of Segmentations

Fig. 8.18 shows plots of the recall and false alarm rates per frame for the Triniman, Artbeats-

SP128 and Calendar and Mobile sequences. The plots for the SnapCut and our Semi-Auto

approaches are coloured in green and black respectively. Using these plots we identify segmen-

tations with relatively low recall or high false alarm rates for doing visual comparisons. As an

example, the maximum false alarm rate (2.193%) for a segmentation produced SnapCut occurs

at frame 52 in the Triniman sequence (top right in fig. 8.18). Hence we select the segmenta-

tions for this frame produced by our Semi-Auto and the SnapCut approaches for doing visual

comparisons.

Table 8.6 shows the frames selected (second column) for visual comparisons in each of three

sequences. Also shown are the recall and false alarm rates for the segmentations of these frames

produced by our Semi-Auto and the SnapCut approaches. Here we select two frames for each

sequence that have either relatively poor recall or false alarm rates. These poor rates are shown

in red text. Also we select a third frame for which both segmentation approaches produce

roughly the same corresponding rates. The rows in table 8.6 corresponding to these frames are

in green text. See fig. 8.18 for more verification of the selection of the frames in table 8.6.
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Figure 8.18: Plots of the recall (Recall[%]) and false alarm (False Alarm[%]) rates per frame

(f) for the Triniman (top row), Artbeats-SP128 (middle row) and Calendar and Mo-

bile (bottom row) sequences. The recall and false alarm rates are shown in the left and

right columns respectively. The plots for the SnapCut and our Semi-Auto segmentations are

coloured green and black respectively. The frame locations of the key frames are indicated

with cyan dots.
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Figure 8.19: The segmentations for three frames in the Triniman sequence. Top row: Frames

44, 52 and 86 in this sequence. Second row: The object level segmentations produced by our

Semi-Auto approach. The background, player #1 and #2 are coloured yellow, cyan and pink

respectively. Third and bottom rows: The foreground/background level segmentations

produced by our Semi-Auto and the SnapCut approaches respectively. The foregrounds are

extracted using the respective segmentations and the backgrounds are shaded in green. Fourth

row: The foreground/background level segmentations produced by the SnapCut algorithm.

The background and foreground are coloured yellow and purple respectively.
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Recall False Alarm

Frame SnapCut Semi-Auto SnapCut Semi-Auto

Triniman

44 99.66% 98.98% 0.78% 0.36%

52 99.84% 98.75% 2.19% 0.19%

86 99.88% 98.80% 0.27% 0.26%

Artbeats-SP128

30 89.40% 90.96% 1.02% 0.49%

75 86.19% 97.94% 1.10% 0.69%

91 98.66% 98.92% 0.84% 0.51%

Calendar & Mobile

5 99.21% 99.57% 1.19% 0.31%

14 99.50% 99.50% 1.67% 0.35%

24 99.73% 99.34% 1.04% 0.37%

Table 8.6: The recall and false alarm rates of the frames selected for visual comparisons from the

Triniman, Artbeats-SP128 and Calendar and Mobile sequences. Relatively poor recall

or false alarm rates are coloured in red. The frame selected in each sequence for which the

corresponding rates for both our Semi-Auto and the SnapCut approaches are roughly same

are coloured in green.

8.6.2.1 Triniman

Fig. 8.19 shows the segmentations produced by the SnapCut and our Semi-Auto approach for

frames 44, 52 and 86 in the Triniman sequence. Our segmentations are shown in the second and

third rows, while those for SnapCut are shown in the fourth and bottom rows.

Our recall rate (98.98%) for frame 44 (left column) is less than that of SnapCut (99.66%)

because we failed to segment the right index finger of the actor as foreground. This is an

understandable result as this finger is relatively thin and it is moving very quickly (significant

motion blur) in the image plane. Although SnapCut correctly labelled the finger as foreground,

there is some of the background (on left of the face of the actor) which is incorrectly labelled as

foreground. Hence SnapCut has a higher false alarm rate (0.78%) for the segmentation of this

frame compared to our approach (0.36%).

Both approaches produce roughly the same segmentations for frame 86 shown in the last

column of fig. 8.19. This frame represents an example of a frame where the foreground object

is moving slowly in the image plane. Since the foreground and background colours are well

separated in the colour space, both approaches have reliable appearance likelihoods in order to

produce high quality segmentations.

Colour Model Design: The segmentation for frame 52 (middle column of fig. 8.19) reveals an

issue with the SnapCut approach. This issue is the inability of SnapCut to correctly segment

background regions that has been quickly revealed (unoccluded). That is, when a foreground ob-
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Figure 8.20: Frames 47 (left), 52 (middle) and 57 (right) in the Triniman sequence. In the

frames 47 to 57, the actor in the foreground is moving his upper body quickly from left to right

in the image plane.

ject moves relatively quickly in the image plane, there is a significant amount of the background

that becomes revealed. In this case where we have a fast moving foreground object, SnapCut

can not discriminate well between new background colours and those for the foreground. This

is because of the way that SnapCut models the colours of the foreground and background.

The SnapCut approach models only some of the colours in the foreground image region and

a few background colours on the boundary of the foreground. Also, colour models are generated

for a finite set of local image patches (rectangular windows of size 80×80 pels) along the contour

of the foreground. In each local patch it is assumed that the foreground colours remain roughly

the same from frame to frame. However the background colour are continuously changing as

the foreground moves over the background. Hence these local colour models are quite naive

as to which colours constitute the background, and this reduces the ability of this approach to

discriminate between foreground and background.

The segmentation for frame 52 (bottom two rows of the middle column in fig. 8.19) produced

by SnapCut suffers from this colour modelling issue. For this segmentation some of the back-

ground that was previously occluded by the foreground is incorrectly labelled as foreground. We

show the 5th frame before (47) and after (57) frame 52 in fig. 8.20, where we can observe the

background regions that are being revealed as the actor moves in the foreground.

Unlike SnapCut which models only the colours along the contour of the foreground, we model

all the colours of the foreground and background. Hence we can identify new background colour

revealed in unoccluded image region if these colours occur somewhere else in the background.

In a sense our colour models combine both local and global colour information. Recall also that

we obtain colour models from forward and background segmentation steps. This provides us

with more information for disambiguating occlusions. The motion likelihood in our approach

as well contributes to a better final segmentation. Revealed background image regions in most

cases follow the motion of the background.

The segmentation for frame 52 produced by our approach is shown in the second and third

rows of the middle column in fig. 8.19. Unlike SnapCut, our approach successfully recovers the
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occluded background regions in this frame.

8.6.2.2 Artbeats-SP128

Fig. 8.21 shows the segmentations produced by the SnapCut and our Semi-Auto approach for

frames 30, 75 and 91 in the Artbeats-SP128 sequence. Our segmentations are shown in the

second and third rows, while those for SnapCut are shown in the fourth and bottom rows.

Both approaches have relatively low recall rates for the segmentations of frames 27 to 30

(fig. 8.18) because player #2 (object in foreground) starts to enter the scene in these frames. The

motion and appearance of this new foreground object is changing rapidly as it enters the frame

from the left of the image plane. Hence both approaches understandable struggle to correctly

predict the motion and appearance of this new object.

The left column of fig. 8.21 shows the segmentations for frame 30 which has the lowest

corresponding recall rates in the set of frames for which player #2 enters the scene. The

recall rates for this frame produced by our Semi-Auto and the SnapCut approach are 90.96%

and 89.40% respectively (see table 8.6). Here it may be observed that both approaches failed

to segment as foreground the majority of the helmet for player #2. For player #1 which

is completely in the scene at frame 30, both approaches correctly segmented this player as

foreground.

The segmentation produced by SnapCut for frame 75 is shown in the bottom two rows of

the middle column in fig. 8.21. Here the majority of the right leg of player #2 is incorrectly

labelled background by this approach. SnapCut probably produced a poor segmentation for

this frame because the colour of the pants for both player #2 and the referee in the background

are quite similar (both wearing white pants). Recall that in this case since the colour likelihood

corresponding to the player #2’s legs is not very reliable, SnapCut places a higher weight on

its shape likelihood. As discussed previously, a greater reliance on this shape likelihood usually

leads to poor segmentations. Therefore the poor segmentation for the legs of player #2 could

be directly related to an unreliable shape likelihood.

The segmentation produced by our Semi-Auto approach for frame 75 is shown in the second

and third rows of the middle column in fig. 8.21. Unlike SnapCut, we segmented the right leg

of player #2 correctly.

The end column of fig. 8.21 shows the segmentations for frame 91 produced by both ap-

proaches. Here both approaches produce roughly the same segmentations for this frame. How-

ever, SnapCut again segmented a small part of the referee’s pants as foreground. The reasons

here are similar to those for the segmentation of frame 75 previously mentioned.

8.6.2.3 Calendar and Mobile

Fig. 8.22 shows the segmentations produced by the SnapCut and our Semi-Auto approach for

frames 5, 14 and 24 in the Calendar and Mobile sequence. Our segmentations are shown in the
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Figure 8.21: The segmentations for three frames in the Artbeats-SP128 sequence. Top row:

Frames 30, 75 and 91 in this sequence. Second row: The object level segmentations pro-

duced by our Semi-Auto approach. The background, player #1 and #2 are coloured yellow,

cyan and pink respectively. Third and bottom rows: The foreground/background level

segmentations produced by our Semi-Auto and the SnapCut approaches respectively. The

foregrounds are extracted using the respective segmentations and the backgrounds are shaded

in green. Fourth row: The foreground/background level segmentations produced by the

SnapCut algorithm. The background and foreground are coloured yellow and purple respec-

tively.
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second and third rows, while those for SnapCut are shown in the fourth and bottom rows.

For frames 5 and 14 (first and middle columns), SnapCut produced segmentations with false

alarm rates that are more than twice the rates corresponding to our approach (table 8.6). This

is because in these frames SnapCut consistently segmented the gap between the ball and the toy

train as foreground. Throughout the sequence, the train casted a shadow in this gap. Hence it

is difficult to estimate a reliable colour likelihood in this darkened gap between the ball and the

train.

Unlikely SnapCut, our approach correctly segmented the gap between the ball and train as

background for frame 5 and 14. These segmentations are shown in the second and third rows

of the first two columns in fig. 8.22. The segmentation of these frames demonstrate that our

approach can produce robust segmentations in the presence of shadows.

For frame 24 (end column in fig. 8.22) the gap between the ball and the toy train is much

wider then in frames 5 and 14 previously discussed. Hence SnapCut correctly labels this gap as

background. However, the false alarm rate (1.04%) for the segmentation produced by SnapCut

is greater than the corresponding rate for our approach (0.37%).

Overall, we produced better segmentation for all three frames shown in fig. 8.22 for the

Calendar and Mobile sequence.

8.7 Summary

In this chapter we compared the performances of both our semi-automatic and automatic dense

segmentation techniques with three previous techniques [12, 62, 100]. These previous technique

are referred to as NUKE [62], FeatureCut [100] and SnapCut. Recall from chapter 2 that the

NUKE approach is unsupervised, while the FeatureCut and SnapCut approaches are supervised.

For these supervised techniques, a user is required to supplied fully segmented mattes for some

of the frames in a sequence. However, for the unsupervised techniques no user assistance is

required.

In order to perform quantitative comparisons, we manually generated ground truth seg-

mentations for three sequences called Triniman (99 frames), Artbeats-SP128 (99 frames) and

Calendar and Mobile (25 frames). We compared both our semi-automatic and automatic tech-

niques with NUKE by looking at recall and false alarm rates for the three sequences. Also we

made visual comparisons for selected frames in each sequence. Both our techniques in general

produced higher quality segmentations for the three sequences compared to NUKE.

We also compared our supervised (semi-automatic) technique with FeatureCut and Snap-

Cut since these techniques are all supervised. Again, our technique out performed both these

techniques.
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Figure 8.22: The segmentations for three frames in the Calendar and Mobile sequence. Top

row: Frames 5, 14 and 24 in this sequence. Second row: The object level segmentations pro-

duced by our Semi-Auto approach. The background, player #1 and #2 are coloured yellow,

cyan and pink respectively. Third and bottom rows: The foreground/background level

segmentations produced by our Semi-Auto and the SnapCut approaches respectively. The

foregrounds are extracted using the respective segmentations and the backgrounds are shaded

in green. Fourth row: The foreground/background level segmentations produced by the

SnapCut algorithm. The background and foreground are coloured yellow and purple respec-

tively.
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Conclusion

This thesis presents my contribution to the development of high quality video object segmentation

techniques. We proposed a technique for sparse trajectory segmentation, where the feature point

trajectories in a sequence are grouped according to their 2D image motions. We define a group

of trajectories with similar 2D motion as a trajectory bundle. The trajectory bundles produced

by our sparse segmentation technique in general represent a single coherent image region, as we

enforce spatial and temporal smoothness on these bundles using a Bayesian framework along

with a local region constraint algorithm. This local region constraint algorithm uses Delaunay

triangulations to locate groups of connected trajectories in each bundle, and then forms new

bundles from the disconnected groups identified. The local motions in a sequence are better

described when each trajectory bundle represents a single image region moving through time.

This is important for handling the motions of non-rigid objects.

We define a dense pixel segmentation as the task of labelling every pixel in a sequence

as belonging to a particular object. The major challenge of dense segmentation techniques

is producing segmentations that are spatially and temporally consistent over a sequence. An

effective way of introducing spatiotemporal smoothness into a dense segmentation process is to

utilize long term motion information provided by feature point trajectories. Hence our proposed

dense pixel segmentation framework utilizes the trajectory bundles obtained from our sparse

segmentation to influence the pixel segmentations. We concluded from the review of previous

work in chapter 2 that utilizing long term feature point trajectory information leads to improved

segmentations for video sequences. Although some techniques [129,130] prior to our work used

trajectories for estimating motion models, we are the first to use the spatial locations of these

209
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trajectories to influence the dense pixel segmentation process. We use the spatial locations of

the trajectories to propagate appearance information over a sequence.

Since we have long term motion models for the objects in a sequence obtained from the

sparse trajectory segmentation step, we can estimate the motion of these objects over several

frames. We therefore have a very informative motion likelihood, that considers object occlusions

at the various frames in a sequence.

Estimating accurate motion models using feature point trajectories is an important step in

our segmentation framework. Hence we propose a framework for tracking local image feature

points using the Viterbi [90] algorithm. Our Viterbi tracking framework allows more accurate

motion models to be estimated compared to a traditional KLT tracker [13].

Our general dense segmentation framework was modified so a sequence could be segmented

automatically or semi-automatically. The semi-automatic technique uses user defined mattes

(key frame) for some frames in a sequence to estimate appearance models that are then used for

segmenting the remaining frames. Hence the user can specify exacted how a sequence should be

segmented. However for the automatic segmentation technique no user information is utilized.

We therefore estimate mattes for selected key frames in a sequence using geodesic distances [111].

Given these estimated key frames, we then use our general dense segmentation framework to

segment the remaining frames in a sequence.

Our semi-automatic dense segmentation technique may be used for post production appli-

cations where high quality segmentations are required. Traditionally an artist would manually

segment a sequence to ensure high quality segmentations. Our semi-automatic technique would

reduce the number of mattes that would have to be manually segmented, which leads in an

increase in productivity.

9.1 Comparisons with State-of-the-art Techniques

Note that we provide an accompanying DVD with videos of the results presented in this thesis.

See appendix E for information on how this DVD is organised.

Our proposed sparse and dense segmentation techniques perform better than previous state-

of-the-art techniques, which is proven with thorough quantitative analyses. We compared our

dense pixel segmentation techniques with techniques implemented in commercial products. One

of these techniques is SnapCut by Bai et al. [12], which is implemented in Adobe After Effect CS5

[1] as a tool called Roto Brush. The other technique proposed by Kokaram [62] is implemented

in a software package called NUKE. NUKE is the leading compositing software package used in

the post production industry.

Our sparse trajectory segmentation technique produced the best performance on the Hopkins

dataset [117] compared to the other state-of-the-art segmentation techniques considered. Pro-

viding a quantitative analysis using this dataset is the most popular way the authors of sparse

trajectory segmentation techniques report their performances. We could not do a quantitative
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analysis for the Region Growing technique proposed by Pundlik [94], so we did visual compar-

isons of both our segmentations. Our segmentations were shown to be better, especially for

sequences with non-rigid articulated objects.

We also demonstrated that our sparse technique could use different types of feature point

trajectories. For the majority of the experiments conducted we used KLT [55] and/or SIFT [73]

feature point trajectories. However we used particle video trajectories provided by Sand [104]

when we visually compared our segmentations with those of Fradet [46]. We did our visual

comparisons based on two sequences, where one had roughly rigidly moving objects and the

other had significant amounts of non-rigid motions. Our technique was able to improve on the

foundational work of Fradet [46] by being able to estimate motion models that describe the

motions of the non-rigid objects. Also, the spatiotemporal smoothness strategy included in our

technique allowed us to produce better segmentations for sequences with rigidly moving objects

compared to the technique of Fradet.

In chapter 3 we presented a new framework for tracking local features using a Viterbi [90]

tracking strategy. This general framework allows any type of local image features to be tracked

over a sequence, given they can be detected/extracted in every frame. We chose to track

SIFT [73] features, and compare the trajectories generated with KLT [55] trajectories. These

SIFT trajectories allowed more accurate motion models to be estimated for a sequence compared

to KLT trajectories. Accurate motion models are important for generating informative motion

likelihoods which are typically used video object segmentation techniques. The improved accu-

racy of the motion models estimated from SIFT [73] trajectories reflects the effectiveness of the

proposed Viterbi tracking framework.

9.2 Future Work

For both our sparse and dense segmentation steps combined, the average overall computation

time is 10 frames per hour in MATLAB. Future work will address developing more computation-

ally efficient implementations of our video object segmentation techniques. Although we obtain

better segmentations compared to previous technique we did not address the computational

efficiency of our techniques. All our techniques were implemented in MATLAB, which made it

difficult to assess the speed of these techniques.

We would also like to investigate how different types of trajectories influence the final dense

segmentations. We usually used a mixture of KLT and SIFT trajectories in our segmentation

framework. This allows us to cover the majority of the image plane with trajectories which leads

to a better description of the local motion in a sequence. However, it would be interesting to

know if only KLT or SIFT could be used. Although SIFT trajectories provide more accurate

motion models, they are more computationally costly to generate compared to KLT trajectories.

Hence, we would like to know what is the performance penalty for using only KLT trajectories.
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9.2.1 User Interaction

In order for our segmentation techniques to be used in real world applications (such as post

production) we would require an implementation with a graphical user interface (GUI). This

interface should allow the user to specify key frames (fully segmented frames) and make correc-

tions to both dense (pixel) and sparse (trajectory) segmentations produced by our techniques.

Also incorporating an image segmentation technique such as Grabcut [102] to assist the user

in generating key frames will be required in the segmentation pipeline. The idea is that utiliz-

ing an image segmentation technique reduces the workload of user as he simply has to specify

foreground and background paint strokes.

The implementations of our techniques would have to be optimized so the GUI is always

responsive to the user. The majority of the computational operations in our techniques are

for likelihood estimations. Fortunately, we can reduce the computational time these operations

require by executing them in parallel. Modern computers with multicore CPUs/GPUs provide

a great platform for implementing these parallel execution strategies.

To make our segmentation system more useful, we would require some sort of performance

self-assessment. That is, assess the quality of the segmentations generated and indicate to the

user whether his assistance is required. This self-assessment may involve examining if the various

likelihoods are informative in some way. For example, given the respective object likelihoods

for a segmentation are similar, this may indicate that the resulting segmentation may contain

errors.

9.2.2 Stereo 3D Video Object Segmentation

The current popularity in stereo 3D cinema has demanded video segmentation techniques that

can handle stereo sequences. Video object segmentations are required for compositing and/or

modifying stereo sequences. Segmenting stereo sequences is challenging because the segmenta-

tions must be consistent spatially, temporally and also across all camera views. Inconsistencies

across camera views will be quite obvious as they break the 3D illusion.

In order for our current segmentation framework to be able to segment stereo sequences, we

would have to incorporate more constraints by defining new likelihood terms. For example, a

likelihood term based on the depth of objects would be an useful addition to our framework.

9.3 Final Remarks

Although we can perform semi-automatic segmentations for cinema post-production applica-

tions, there are other applications such as video compression, video object indexing and visual

surveillance that require a fully automatic segmentation process. Therefore in order for auto-

matic techniques to be successfully employed in these applications, common problems in video

such as motion blurs, sudden illumination changes (camera flashes) and compression artifacts
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must be explicitly addressed. A semi-automatic segmentation technique can also benefit from

robust solutions that combat these problems. Even though a user can identify when the segmen-

tation process fails and make the necessary corrections, by handling these problems properly in

the segmentation framework the user would be required to make less corrections. This leads to

an increase in productivity.

The use of long term trajectory information in our segmentation framework implicitly helps

us to cope with relatively small amounts of motion blur and compression artifacts. However the

tracking of sparse local features would fail for sequences with sudden illumination changes (such

as camera flashes). These illumination changes can be considered to be temporal discontinuities.

Hence our current segmentation framework would have to be modified to successfully handle

these temporal discontinuities. That is, make correct associations of local feature information

before and after these discontinuities. Directly tackling these problems common to video in

order to improve the efficiency of the segmentation process can be explored in future work.
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A
Graphcut Solution for MAP Estimation: Sparse

Trajectory Segmentation

The α-expansion Graphcut algorithm [135] is used to solve for the MAP estimate of the trajec-

tory bundle labels Lt. The posterior distribution for the trajectory labels Lt discussed previously

in chapter 5 is repeated below.

p(Lt|X ,L∼t) ∝ px(Xt|Lt)ps(Lt|L∼t) (A.1)

The adaptation of the Bayesian problem in eq. A.1 above to this Graphcut solution will be

discussed in this section.

The structure of the graph used to generate the MAP estimate for the trajectory bundle

labels Lt is illustrated in the top row of fig. A.1. Note that for this illustrated example the

number of bundle labels N = 2. Hence the bundle labels are Lt = 0 (cyan) and Lt = 1

(pink). The trajectories are nodes in a Graphcut problem, and they are represented by the

coloured dots. To do a Graphcut optimization we must specify ‘t-link ’ and ‘n-link ’ weights for

the nodes/trajectories. A t-link weight is the cost for assigning a node a particular label without

considering the interactions of neighbouring labels. The t-links for assigning the labels Lt = 0

and Lt = 1 are represented by the cyan and pink arrows (fig. A.1) respectively. The cost we

place on these t-links are derived from the motion likelihoods.

The cost cnt on the t-link for the trajectory Xt with respect to bundle n is defined as follows.

cnt = − log [px(Xt|Lt = n)] (A.2)

215



216 Graphcut Solution for MAP Estimation: Sparse Trajectory Segmentation

λL
v
c
tλ
Lv

b t Xc

Xt

Xb

Xa

λLv
a
t

Xd

λLv d
t

0

0

Xu

Xw

Xc

Xt

Xb

Xa
Xd

Xu

Xw

0

0

0

0

λ L
v
u

t

λ
Lv

w t

c0t = − log [px(Xt|Lt =0)]

c1t = − log [px(Xt|Lt =1)]

L
t =0

L
t =1

Figure A.1: The Graphcut solution for generating the MAP estimate for the trajectory bundle

labels Lt. Top row: An example of a graph for two bundle labels Lt = 0 (cyan) and Lt =

1 (pink). The nodes/trajectories are represented by the coloured dots on the grid. The t-

links costs cnt for assigning the labels Lt = 0 and Lt = 1 are represented by the cyan and

pink arrows respectively. The n-links costs n(Xt,Xr) are represented by the lines connecting

the nodes/trajectories. Bottom row: The neighbourhood structure (obtained by Delaunay

triangulations) for the current trajectory Xt, where the neighbouring trajectories are Xa, Xb, Xc,

Xd, Xu and Xw. The left and right illustrations shows the various n-link costs n(Xt,Xr) when

the bundle label for trajectory Xt is Lt = 0 (cyan dot) and Lt = 1 (pink dot) respectively.

Where px(Xt|Lt = n) is the motion likelihood for trajectory Xt assuming the nth bundle label.

The t-link costs in a Graphcut optimization must be greater than or equal to zero, hence cnt is

the negative natural logarithm of the likelihood. Here a ‘high’ likelihood correspond to a ‘low’
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t-link cost cnt .

The n-link weights control the costs associated with the label configurations in the local

trajectory neighbourhoods. Hence our n-link weights are based on the MRF smoothness prior

ps(.). The n-links are represented in fig. A.1 by the lines connecting the nodes/pixel sites. The

bottom row of fig. A.1 illustrates the Delaunay neighbourhood structure used in our Graphcut

solution. The neighbours for the current trajectory Xt are trajectories Xa, Xb, Xc, Xd, Xu and

Xw. Recall from the definition of the prior distribution ps(.) in eq. 5.13 that there is a penalty

of λLvct if the current label Lt differs from the neighbouring label Lc. The n-link cost η(Xt,Xc)

between trajectory Xt and the neighbouring trajectory Xc is defined as follows.

η(Xt,Xc) =





λLvct , if Lt 6= Lc

0, else
(A.3)

The left and right of the bottom row of fig. A.1 illustrate the n-link costs η(Xt,Xc) when the

trajectory Xt has the bundle label Lt = 0 and Lt = 1 respectively. Here the neighbouring

trajectory labels are La = 0, Lb = 0, Lc = 0, Ld = 0, Lu = 1 and Lw = 1.
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B
Graphcut Solution for MAP Estimation: Dense Pixel

Segmentation

The α-expansion Graphcut algorithm [135] is used to solve for the MAP estimate of the object

label field Lf for the current frame f . The posterior distribution for the object labels Lf (s)

discussed previously is repeated below.

p(Lf (s)|X , I,Lf (∼ s)) ∝ px(X (f, s)|Lf (s))pi(If (s)|Lf (s))ps(Lf (s)|Lf (∼ s)) (B.1)

The adaptation of the Bayesian problem in eq. B.1 above to this Graphcut solution will be

discussed in this section.

The structure of the graph used to generate the MAP estimate for the label field Lf is

illustrated in the top row of fig. B.1. Note that for this illustrated example the number of

object labels N = 2. Hence the object labels are Lf (s) = 1 (cyan) and Lf (s) = 0 (pink). The

pixel sites are nodes in a Graphcut problem, and they are represented by the coloured dots. To

do a Graphcut optimization we must specify ‘t-link ’ and ‘n-link ’ weights for the nodes/pixel

sites. A t-link weight is the cost for assigning a node a particular label without considering the

interactions of neighbouring labels. The t-links for assigning the labels Lf (s) = 1 and Lf (s) = 0

are represented by the cyan and pink arrows respectively. The cost we place on these t-links are

derived from the motion and appearance likelihoods.

The cost tof (s) on the t-link for the pixel site (f, s) with respect to object o is defined as

follows.

tof (s) = −{log [px(X (f, s)|Lf (s) = o)] + log [pi(If (s)|Lf (s) = o)]} (B.2)
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Figure B.1: The Graphcut solution for generating the MAP estimate for the object label field

Lf . Top row: An example of a graph for two object labels Lf (s) = 0 (cyan) and Lf (s) = 1

(pink). The nodes/pixel sites are the coloured dots on the grid. The t-links costs tof (s) for

assigning the labels Lf (s) = 0 and Lf (s) = 1 are represented by the cyan and pink arrows

respectively. The n-links costs nf (s, c) are represented by the lines connecting the nodes/pixel

sites. Bottom row: The 4-connected neighbourhood structure for the current site s, where

the neighbouring sites are c1, c2, c3 and c4. The left and right illustrations shows the various

n-link costs nf (s, c) when the object label for site s is Lf (s) = 0 (cyan dot) and Lf (s) = 1

(pink dot) respectively.

Where px(X (f, s)|Lf (s) = o) and pi(If (s)|Lf (s) = o) are the motion and appearance likelihoods

for site (f, s) respectively. The t-link costs in a Graphcut optimization must be greater than

or equal to zero, hence tof (s) is the negative natural logarithm of the likelihoods. Here ‘high’

likelihoods correspond to ‘low’ t-link costs tof (s).
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The n-link weights control the costs associated with the label configurations in the local pixel

neighbourhoods. Hence our n-link weights are based on the MRF smoothness prior ps(.). The

n-link are represented in fig. B.1 by the lines connecting the nodes/pixel sites. The bottom row

of fig. B.1 illustrates the 4-connected neighbourhood structure used in our Graphcut solution.

The neighbours for the current site s are sites c1, c2, c3 and c4. Recall from the definition of the

prior distribution ps(.) in eq. 7.30 that there is a penalty of λLG(s, c) if the current label Lf (s)

differs from the neighbouring label Lf (c). The n-link cost nf (s, c) between pixel site (f, s) and

the neighbouring site (f, c) is defined as follows.

nf (s, c) =





λLG(s, c), if Lf (s) 6= Lf (c)

0, else
(B.3)

The left and right of the bottom row of fig. B.1 illustrate the n-link costs nf (s, c) when the site s

has the object label Lf (s) = 0 and Lf (s) = 1 respectively. Here the neighbouring object labels

are Lf (c1) = 1, Lf (c2) = 0, Lf (c3) = 0 and Lf (c4) = 1.
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C
Propagating Trajectory Sub-bundle Labels

Consider that there are Sn trajectory sub-bundles in bundle n. Every trajectory Xt in bundle

n is given a label St ∈ {0 : Sn} according to the sub-bundle it belongs to. The bottom row of

fig. C.1 shows 3 sub-bundles where their trajectories have sub-bundle labels St = 1 (red), St = 3

(purple), and St = 0 (yellow).

Here a trajectory Xt has label St = 0 if Xt is a member of a sub-bundle with less than three

trajectories. The yellow trajectory in the bottom row of fig. C.1 has a label St = 0 since it is

the only trajectory in its sub-bundle. Trajectories with sub-bundle label St = 0 are not used to

form new bundles since they reside in a sub-bundle with less that three trajectories.

The trajectories are labelled in a forward and backward label propagation process. We first

label the trajectories in the forward direction going from the starting frame of the bundle an to

the end frame bn as shown in the top row of fig. C.1. For this example, the sub-bundle labels

at the starting frame an are St = 1 (red) and St = 2 (green), corresponding to the number of

groups of connected trajectory points. These groups are outlined with black ellipses.

For a new sub-bundle (purple) discovered at frame fs, the sub-bundle label is 3. This label

is one more than the maximum label (2) up to frame fs. All new sub-bundles discovered going

through the frame sequence are assigned labels in this manner.

We require that at least two trajectory points are connected at the starting frame fs of a

sub-bundle for this sub-bundle to get a label. If this is not the case, the trajectories in the

sub-bundle at frame fs are labelled St = 0 as previously discussed.

An example of a sub-bundle with less than two trajectories is highlighted with a purple

closed contour in the top row of fig. C.1. This sub-bundle has a single trajectory which later

223



224 Propagating Trajectory Sub-bundle Labels

Forward Label Propagation

Backward Label Propagation

fjfs

bnfan

St = 0 St = 1 St = 2 St = 3

Spatial link

Figure C.1: The propagation of the 3 sub-bundle labels to the trajectories in a particular bundle.

For a trajectory Xt the sub-bundle labels is defined as St. Top row: The propagation of the

labels in the forward direction from the starting frame an to the end frame bn. The groups

of connected trajectory points at frame an determines the initial number of sub-bundles, and

these groups are outlined with black ellipses. The 3rd sub-bundle (purple) starts at frame fs.

At frame fj the green and red sub-bundles are joined by the spatial links (cyan lines) and the

connection is outlined with a black box. Bottom row: The propagation of the sub-bundle

labels in the backward direction (frame bn to an), performed after the forward propagation step.

The trajectory outlined with the orange closed contour is correctly labelled as belonging to the

red sub-bundle in this step.



C.1. Spatial Connections of Trajectory Points 225

joins with sub-bundle 1 (red).

The sub-bundle labels are propagated from frame to frame by the temporal links of the

trajectories. Note that at a junction frame like fj the trajectory points with various sub-bundle

labels (1,2) are all connected by the spatial links (outlined with black box). At this frame fj ,

the two sub-bundles that emerged from the start frame an are now merged at fj . Therefore

the new label propagated by the trajectories in the merged sub-bundle is the minimum of the

non-zero labels at the junction frame fj . This minimum label is St = 1 (red).

The labels discovered from the previous forward propagation are at this stage propagated

backward as shown in the bottom row of fig. C.1. The purpose of this backward propagation

step is to correctly assign sub-bundle labels to trajectories that ended before a junction frame.

An example is outlined with an orange closed contour in fig. C.1.

The number of sub-bundles Sn in bundle n is the number of unique bundle labels that

remain after the final backward label propagation step. For the example in fig. C.1 the number

of bundles is 2, and the unique labels are St = 1 and St = 3. Each trajectory Xt in bundle n

after the backward label propagation step has a label St according to the sub-bundle it belongs

to.

Fig. C.2 shows four bundles at frame 12 in the Calendar and Mobile sequence, where each

sub-bundle is indicated with a different colour. The background, calendar, and train bundles at

this frame all have one sub-bundle (red trajectory points only). The background bundle (top

left) has two sets of trajectories on the left and right of the calendar that are connected by

spatial links at some frames in the sequence. The locations of these spatial links are generally

in the image region outlined with the white contour.

The bundle shown in the bottom left of fig. C.2 contains trajectories corresponding to the

background and calendar image regions. The 7 sub-bundles however all represent separate

regions as required.

The next section discusses how the groups of connected trajectory points at each frame are

identified.

C.1 Spatial Connections of Trajectory Points

The left illustration in the top row of fig. C.3 shows the trajectory points belonging to bundle

n as orange dots, while the trajectory points for other bundles as dark blue dots. The spatial

links (black lines) between these points are obtained from Delaunay triangulations.

The trajectory points (orange) in bundle n can be observed to form spatially separated

groups of connected points. The connections between these points are defined by the spatial

links (Delaunay triangulations). The right illustration in the top row shows each group of

connected points with a different colour. Here, the yellow points signify isolated trajectory

points. Isolated points are not considered as a group, so therefore for this example there are 3

groups of connected trajectory points.
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Figure C.2: Four bundles that exist at frame 12 in the Calendar and Mobile sequence. All

the trajectory points (dots) belonging to a particular sub-bundle share the same colour. Top

left: The background bundle has only one sub-bundle even though it has two sets of spatially

separated trajectories on both sides of the calendar. At some frames in the sequence both

set of trajectories are connected by spatial links in the general location outlined by the white

closed contour. Bottom left: This bundle has a mixture of trajectories in the background and

calendar image regions. The 7 sub-bundles however represent separate image regions. Right

column: The calendar (top) and train (bottom) bundles both have a single sub-bundle (red).

Consider that there are Cn
f groups of connected trajectory points at frame f for the tra-

jectories in bundle n. We require that trajectory Xt in bundle n be given a connection label

Ct
f ∈ {0 : Cn

f } according to the group of connected points it belongs to. The connection label

Ct
f = 0 means that the trajectory point (xt

f , y
t
f ) is isolated as previously mentioned (yellow point

in fig. C.3). Hence if trajectories Xa and Xb both belong to bundle n and have points at frame

f , they are in the same group if Ca
f = Cb

f 6= 0.

In the example (fig. C.3) the trajectory points have connection labels Ct
f = 1 (green), Ct

f = 2
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Figure C.3: Top left: Examples of trajectory points in bundle n indicated by orange dots.

The dark blue dots are trajectory points belonging to other bundles. The spatial links (black

lines) between the points are obtained from Delaunay triangulations. Top right: The 3 groups

of connected points in green, red and pink. A trajectory Xt has a connection label Ct
f at frame

f , according to the group it belongs to. The yellow points (Ct
f = 0) are isolated points that are

not connected spatially to any other point in the bundle. Bottom row: The propagation of

the connection label Ct
f = 3 to the pink group of connected points. At step 1, a point is selected

at random (pink point), and it passes the connection label to the other points in the group via

the network of spatial links (steps 2-5).
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Figure C.4: The connection labels for four bundles at frame 12 in the Calendar and Mobile

sequence. The trajectory points that have connection labels Ct
f = 0 (isolated point), Ct

f = 1, and

Ct
f = 2 are coloured yellow, red, and light green. Bottom left: This bundle has a mixture of

trajectory points corresponding to the background and calendar image regions. However the 8

groups of connected trajectories indicated by different colours represent separate image regions.

(red) and Ct
f = 3 (pink).

We locate a group of connected points by randomly selecting a point xr from the set of

trajectory points and iteratively propagate a unique ‘message’ through the network of spatial

links. Here, only the points in the same group as xr will receive the ‘message’. We then assign

all these points in the same group as xr a connection label Ct
f = c + 1, where c is the number

of groups discovered so far. The other groups are discovered in a similar manner, by choosing

a random point xr from the remaining unlabelled points. Recall that if the point xr is isolated

it is given a connection label of zero. The bottom row of fig. C.3 demonstrates an example of

a random point xr being selected from the 3rd group of connected points (pink). The point xr

is identified at step 1 as a pink dot, while the unlabelled points are orange dots. The label is
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propagated to the other points in the group via the spatial links (neighbourhoods) in steps 2-5.

Fig. C.4 shows the groups of connected trajectory points at frame 12 for the four bundles

in fig. C.2 ( Calendar and Mobile sequence). In these illustrations trajectory points that have

connection labels Ct
f = 0 (isolated point), Ct

f = 1, Ct
f = 2 are coloured yellow, red, and light green

respectively. The trajectory points belonging to other bundles are shown as dark blue points.

The background has two groups of connected points Ct
f = 1 (red) and Ct

f = 2 (light green)

on both sides of the calendar as expected. The trajectories in both these groups however are

members of a single sub-bundle as previously illustrated in fig. C.2. They are connected by a

set of spatial links at some other frames.
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D
Pixel Occlusion Labels

This appendix is a detailed discussion of ideas presented in chapter 7. See this chapter for the

definitions of the various notations that will be subsequently used here.

We enforce spatial and temporal smoothness on the occlusion labels Df,j(s) for the DFDs

by generating a MAP estimate for these labels. Consider that Dn
f (s) is a label vector formed

from the concatenation of the DFD labels Df,j(s) where Dn
f (s) is defined as follows.

Dn
f (s) =

[
Dn

f,f−k(s), . . . ,Dn
f,f−1(s),Dn

f,f+1(s), . . . ,Dn
f,f+k(s)

]
(D.1)

As an example the occlusion label vectors for the sites (f, s0), (f, s1) and (f, s2) in the bottom

row of fig. 7.12 are Dn
f (s0) = [1 1 1 1 1 1], Dn

f (s1) = [0 0 0 1 1 1] and Dn
f (s2) = [0 0 0 0 0 0]

respectively.

We define the posterior distribution for the occlusion vector label Dn
f (s) given the DFDs

∆n
f,j(s) at the window frames and the neighbouring labels Dn

f (∼ s) as follows.

p(Dn
f (s)|∆n

f,j(s),D
n
f (∼ s)) = pd(∆

n
f,j(s)|Dn

f (s))pl(D
n
f (s)|Dn

f (∼ s)) (D.2)

Where pd(∆
n
f,j(s)|.) is the likelihood that the pixel site (f, s) takes the occlusion vector label

Dn
f (s). Label smoothness is injected through the MRF prior pl(.).

Note that the number of possible vector labels Dn
f (s) is 22k, where 2k is the number of

window frames. We reduce the number of possible labels to a smaller set of candidate labels

D̂n,c
f in a selection process discussed later. Here c = {1 : C} where C < 22k is the number of

candidate vector labels.
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D.1 Occlusion Label Likelihood

The likelihood pd(∆
n
f,j(s)|.) involves evaluating the probability of the candidate vector label D̂n,c

f

describing the observed DFDs for pixel site (f, s). This likelihood is defined as follows.

pd(∆
n
f,j(s)|Dn

f (s)) =

f+k∏

j=f−k

pe(Dn
f,j(s) = D̂n,c

f,j |∆n
f,j(s)), j 6= f (D.3)

Here the likelihood pd(∆
n
f,j(s)|.) in eq. D.3 is dependent on a data driven distribution pe(Dn

f,j(s) =

D̂n,c
f,j |.). Since the candidate occlusion label D̂n,c

f,j ∈ {0, 1}, the two forms of the prior pe(Dn
f,j(s) =

D̂n,c
f,j |.) are pe(Dn

f,j(s) = 0|.) and pe(Dn
f,j(s) = 1|.) for D̂n,c

f,j = 0 and D̂n,c
f,j = 1 respectively.

Hence the distribution pe(Dn
f,j(s) = D̂n,c

f,j |.) for pixel site (j, s) in window frame j, is a Gamma

distribution of the DFD ∆n
f,j(s) at this site.

p(Dn
f,j(s) = D̂n,c

f,j |∆n
f,j(s)) =

[
∆n

f,j(s)
]h−1

exp
[
−∆n

f,j(s)/θ
]

θh−1Γ(h)
(D.4)

Where the parameters (θ, h) for the Gamma distribution in eq. D.4 are (θnf,0, h
n
f,0) and (θnf,1, h

n
f,1)

for pe(Dn
f,j(s) = 0|.) and pe(Dn

f,j(s) = 1|.) respectively. From observation of DFDs for real

sequences we found that the distribution is long tailed with heavier tails than a Gaussian. The

estimation of the parameters (θnf,0, h
n
f,0) and (θnf,1, h

n
f,1) is discussed later.

Fig. D.1 will now be used to explain when maximum likelihood is achieved given the occlusion

vector labels Dn
f (s). The illustration in fig. D.1 shows the DFDs ∆n

f,j (top row) for the motion

compensated window frames Înf,j (middle row), where j = {f − k, . . . , f − 1, f + 1, . . . , f + k}.
These frames are motion compensated with the nth trajectory bundle which represents the red

object. The green object occludes the red object at frames {f − k, . . . , f + 1}. The bottom row

shows a zoom on the current frame If with the pixel sites in the 10×10 grid indexed x = {1 : 10}
and y = {1 : 10}. Pixel sites s = (5, 6) and s = (5, 7) for the red object are occluded in the

current frame If . ‘High’ (Dn
f,j(s) = 1) and ‘low’ (Dn

f,j(s) = 0) DFDs in the top row are indicated

with purple and cyan squares respectively.

In fig. D.1 the pixel sites s = (6, 4), (6, 5), (6, 6), and (6, 7) have maximum likelihoods

pd(∆
n
f,j(s)|.) when Dn

f (s) = [0 0 0 0 0 0]. For sites s = (5, 4) and (5, 5) maximum likelihoods for

these sites occur when Dn
f (s) = [1 1 0 0 0 0] and Dn

f (s) = [0 1 1 0 0 0] respectively. For all the

other sites in the 10× 10 grid we achieve maximum likelihood when Dn
f (s) = [1 1 1 1 1 1].

The next section discusses how the candidate labels D̂n,c
f,j are selected.

D.1.1 Candidate Occlusion Labels

We use the maximum likelihood estimates of occlusion for all the H × W pixel sites (f, s) to

determine the candidate labels D̂n,c
f . Here H and W are the height and width of the frame If

respectively. We make the candidate vector labels D̂n,c
f simply be the most frequently occurring
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Figure D.1: The DFDs ∆n
f,j (top row) for the motion compensated window frames Înf,j (middle

row), where j = {f −k, . . . , f −1, f +1, . . . , f +k}. These frames are motion compensated with

the nth trajectory bundle which represents the red object. The green object occludes the red

object at frames f − k, . . . , f + 1. ‘High’ (Dn
f,j(s) = 1) and ‘low’ (Dn

f,j(s) = 0) DFDs in the top

row are indicated with purple and cyan squares respectively. Bottom row: A zoom on the

current frame If with the pixel sites in the 10× 10 grid indexed x = {1 : 10} and y = {1 : 10}.

maximum likelihood labels. Consider that the vector label D̃n
f (s) provides maximum likelihood

for the pixel site (f, s). This vector label D̃n
f (s) is given below.

D̃n
f (s) = argmax

Dn
f
(s)

(
pd(∆

n
f,j(s)|Dn

f (s))
)

(D.5)

The elements in the maximum likelihood vector label are defined as follows.

D̃n
f (s) =

[
D̃n

f,f−k(s), . . . , D̃n
f,f−1(s), D̃n

f,f+1(s), . . . , D̃n
f,f+k(s)

]
(D.6)

Where D̃n
f,j(s) is the maximum likelihood label at site (j, s) in the jth window frame, and

j = {f − k, . . . , f − 1, f + 1, . . . , f + k}.
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The value of the maximum likelihood label D̃n
f,j(s) at site (j, s) is determined from the

distribution pe(Dn
f,j(s) = D̂n,c

f,j |.) in eq. D.4 as follows.

D̃n
f,j(s) =




1, if pe(Dn

f,j(s) = 1|.) > pe(Dn
f,j(s) = 0|.)

0, else
(D.7)

A maximum likelihood label D̃n
f (s) is selected as a candidate label D̂n,c

f if this label D̃n
f (s) occurs

for more than 10 pixel sites. For k = 3 the number of candidate labels C is usually about 10,

which is less than the 22k = 64 possible labels.

The next section discusses how the parameters for the distribution pe(Dn
f,j(s) = D̂n,c

f,j |.) are
derived.

D.1.2 Parameters for the Gamma Distribution

As mentioned in a previous section, the parameters (θ, h) for the distribution pe(Dn
f,j(s) = D̂n,c

f,j |.)
in eq. D.4 are (θnf,0, h

n
f,0) and (θnf,1, h

n
f,1) for pe(Dn

f,j(s) = 0|.) and pe(Dn
f,j(s) = 1|.) respectively.

We first estimate the parameters (θnf,0, h
n
f,0) and then proceed to estimate (θnf,1, h

n
f,1). We

found from observation of DFDs for real sequences that we can safely assume that a pixel site

(f, s) is not occluded at the corresponding sites (j, s) if the variance and mean of the DFDs

∆n
f,j(s) is low. Recall that j = {f − k, . . . , f − 1, f + 1, . . . , f + k} is the index of the window

frames for the current frame f . Hence a pixel site (f, s) is automatically given a DFD occlusion

vector label of all zeros (Dn
f (s) = [0 . . . 0 0 . . . 0]) if the variance V n

f (s) and mean Mn
f (s) of

the DFDs ∆n
f,j(s) is below a threshold of 10 and 20 respectively. This mean V n

f (s) and variance

V n
f (s) is given below.

Mn
f (s) =

1

2k

f+k∑

j=f−k

[
∆n

f,j(s)
]
, V n

f (s) =
1

2k

f+k∑

j=f−k

[
∆n

f,j(s)
]2 −

[
Mn

f (s)
]2

(D.8)

We now define s̃ as a pixel site at frame f for which the variance V n
f (s) < 10 and mean Mn

f (s) <

20. We make the reasonable assumption that the DFD ∆n
f,j(s̃) is a sample drawn from the

distribution pe(Dn
f,j(s) = 0|.). Hence the parameters (θnf,0, h

n
f,0) are obtained from fitting the

model of the Gamma distribution to these DFD samples ∆n
f,j(s̃).

The parameters (θnf,1, h
n
f,1) for pe(Dn

f,j(s) = 1|.) are estimated in a similar manner to (θnf,0, h
n
f,0).

However we use the parameters (θnf,0, h
n
f,0) to select DFD samples for estimating (θnf,1, h

n
f,1). We

now define ŝ as a pixel site at frame f for which the variance V n
f (s) ≥ 10 and mean Mn

f (s) ≥ 20.

The DFD ∆n
f,j(ŝ) is selected as a sample to estimate the parameters (θnf,1, h

n
f,1) if ∆n

f,j(ŝ) >

φn
f , where φn

f is a predetermined threshold. This threshold is selected so that pe(Dn
f,j(s) =

0|∆n
f,j(s) < φn

f ) = 0.95, i.e. 95% of the ‘low’ DFDs are below the threshold φn
f . Using this

threshold we can gather all the ‘high’ DFDs samples for estimating the parameters (θnf,1, h
n
f,1)

for pe(Dn
f,j(s) = 1|.). The threshold φn

f is estimated from the parameters (θnf,0, h
n
f,0) as follows.

φn
f = θnf,0

(
hnf,0 + 2

√
hnf,0

)
(D.9)
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Figure D.2: The typical shapes of the distributions pe(Dn
f,j(s) = 0|∆n

f,j(s)) and pe(Dn
f,j(s) =

1|∆n
f,j(s)) are shown as the green and red plots respectively. The threshold φn

f is also high-

lighted.

Examples of the typical distributions pe(Dn
f,j(s) = 0|.) and pe(Dn

f,j(s) = 1|.) are shown as

the green and red plots in fig. D.2 respectively. Also shown in fig. D.2 is the relative location of

the threshold φn
f in eq. D.9 with respect to these distributions.

D.2 The Occlusion Label Prior

The prior pl(D
n
f (s)|Dn

f (∼ s)) at site (f, s) for the occlusion label Dn
f (s) given the neighbouring

labels Dn
f (∼ s) is a Gibbs distribution defined as follows.

pl(D
n
f (s)|Dn

f (∼ s)) =
1

Z
exp



−λD

2k

∑

c∈Ns




f+k∑

j=f−k

[
Dn

f,j(c) 6= Dn
f,j(s)

]




 , j 6= f (D.10)

The neighbourhood of pixel site (f, s) is defined as Ns, where Ns is the set of 3 × 3 pixel sites

surrounding (f, s). The weight Z above in eq. D.10 is the usual normalization constant. The

constant λD controls the weight the prior has in the MAP solution. For all experiments it was

found that setting λD = 0.01 gave suitable results.

The operation Dn
f,j(c) 6= Dn

f,j(s) in the prior distribution encourages neighbouring pixels

(f, s) and (f, c) to have the same occlusion labels Dn
f,j(s) at the window frame sites (j, s).
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E
Demonstration DVD

Our demonstration DVD contains videos of the results presented in this thesis. The top row of

fig. E.1 shows the main menu for this DVD. The links on this menu are:

• Dense Pixel Segmentation - Link to the Dense Pixel Segmentation menu shown in the

bottom left of fig. E.1. We will discuss this menu later.

• Sparse Trajectory Segmentation - Link to the Sparse Trajectory Segmentation menu shown

in the bottom right of fig. E.1. We will discuss this menu later.

• Visual Surveillance - Demonstrates the tracking of foreground objects in three sequences

that were used for our visual surveillance application [15] discussed in section 2.5.4 (chap-

ter 2). Each foreground object trajectory is shown in a different colour.

• Viterbi Tracker - The video results for chapter 3, which discusses our Viterbi tracking

framework. The tracking of SIFT [73] features for the Triniman, Artbeats-SP128, Calendar

and Mobile and Graveyard sequences are shown in this video. Also demonstrated are

tracking comparisons with a standard KLT tracker [13] on the Graveyard sequence.

• Bonus - The story behind the Triniman sequence.

E.1 Dense Pixel Segmentation Menu

The bottom left of fig. E.1 shows this menu. On this menu there are links to the dense seg-

mentation results for the Triniman, Artbeats-SP128 and Calendar and Mobile sequences. These
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Figure E.1: The main (top row), Dense Pixel Segmentation (bottom left), Sparse Trajec-

tory Segmentation (bottom right) menus on our demonstration DVD.

results were presented in chapter 8. In this chapter we compared our proposed dense segmen-

tation techniques with three other techniques; NUKE [62], FeatureCut [100] and SnapCut [12].

We proposed a semi-automatic and an automatic segmentation technique which we defined as

Semi-Auto and Geodesic respectively. See chapter 8 for a detailed description of these tech-

niques.

The results in the videos for the dense segmentations are labelled NUKE, FeatureCut, Snap-

Cut, Semi-Auto and Geodesic according to the technique that generated them. Our Semi-Auto

technique, along with the FeatureCut and SnapCut techniques are supervised. That is, for these

techniques a user supplies segmentations for some of the frames in a sequence. These user de-

fined frames are defined as key frames. In all videos demonstrated, key frames are marked with

black squares in the top right corners of these frames. Fig. E.2 shows the key frame for frame 1

in the Calendar and Mobile sequence. The left of fig. E.2 shows the foreground extracted with

the user key frame on the right. Note that both these illustrations have the black squares to

indicate that they are key frames.
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Figure E.2: The key frame for frame 1 in the Calendar and Mobile sequence. The foreground

on the left is extracted using the key frame on the right where foregound is any colour that is

not yellow (bakcground). Both these representations are indicated as key frames by the black

squares in the top right corners.

E.1.1 Varying Key Frames for Semi-Auto Approach

This link on the Dense Pixel Segmentation menu shows the results when the number of key

frames supplied to our Semi-Auto technique is varied for the Triniman, Artbeats-SP128 and

Calendar and Mobile sequences. Recall that these experiments were discussed in section 8.4

(chapter 8). Fig. E.3 demonstrates how we indicate the number of key frames (# key frames),

the mean recall (RR) and false alarm (FA) rates for each sequence in our video demonstration.

E.2 Sparse Trajectory Segmentation

The bottom right of fig. E.1 shows this menu. On this menu there are links to the sparse

segmentation results for the 11 sequences discussed throughout chapter 6. Also there is a link

to a video showing our segmentations for the 155 sequences in the Hopkins dataset [117]. In

this dataset ground truth segmentations are supplied so we can evaluate misclassification rates

for the segmentation produced by various techniques. See chapter 6 for more details.

Our sparse trajectory segmentation technique produced the overall lowest misclassification

rates for the sequences in the Hopkins dataset compared to the other techniques investigated.

Out of the all the other techniques investigated the MSL [59] technique produced the lowest

overall rates. Hence in the video for the Hopkins dataset we show the ground truth segmen-

tations, our segmentations and the MSL segmentations only for each sequence. Note that this

video is 22 minutes long. Fig. E.4 demonstrates how we indicate the segmentation technique

([Our] or [MSL]) for a sequence in the Hopkins dataset. The corresponding misclassification
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Figure E.3: The segmentation produced by our Semi-Auto technique for a frame in the Cal-

endar and Mobile sequence where 6 key frames are supplied to our technique. The text

sumperimposed on the frame indicate the number of key frames (# key frames), the mean

recall (RR) and false alarm (FA) rates for this sequence. The illustration on the right is a zoom

on this text shown in the left frame.

Figure E.4: Left: Our sparse segmentation ([Our])for a frame in the 2R3RTCRT-g13 se-

quence. Right: The MSL sparse segmentation ([MSL])for a frame in the 2R3RTCRT-g13

sequence. The misclassification rates for our technique and the MSL technique are indicated as

MR = 0% and MR = 21% respectively on the corresponding frames.

rates are indicated as ‘MR =’.
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