As survival rates from breast cancer increase, attention has become focused on long-term effects of radiation therapy and improved cosmetic outcome. Modulated treatments can reduce the dose received by non-target organs, decreasing late toxicity including telangiectasia, radiation pneumonitis and cardiac damage. It has also been shown that the incidence of moist desquamation is reduced with the use of modulated techniques. Forward planned field-in-field (FIF) has been chosen as our modulated approach it provides good dose homogeneity, avoids patient specific quality assurance and the shortened delivery time allows the possibility to include deep-inspiration-breath-hold. Twelve patients were identified, they were treated with plans consisting of open wedged tangents combined with FIF shielding. The volume of the 95% isodose of these plans ranged from 344.8 to 1594.6 cm³ (mean 959.4 cm³), with patient separations ranging from 18 cm to 26 cm. Subsequently forward planned FIF plans were generated for these patients with both Varian Eclipse (V10) and Oncentra Masterplan (V4.1). Additionally, 5 patients whose original treatment included nodal irradiation to the supraclavicular area were selected for the investigation of a mono-isocentric treatment approach in combination with FIF tangents. The FIF approach delivered similar coverage of the target in comparison with the treated plans but with reduced monitor units. The mean heart dose was significantly lower for the Eclipse FIF approach than with the standard approach for both the 2-field and mono-isocentric plans. FIF breast planning is easily implementable and leads to the possibility of further technological advancement with the use of breath control techniques.