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Abstract

We investigate the use of Principal Component Analysis (PCA) for image-based volume rendering. We compute an eigenspace
using training images, pre-rendered using a standard raycaster, from a spherically distributed range of camera positions. Our
system is then able to synthesize novel views of the data set with minimal computation at run time. Results indicate that PCA
is able to sufficiently learn the full volumetric model through a finite number of training images and generalize the computed
eigenspace to produce high quality novel view images.

1. Background

The use of PCA for analyzing 3D objects has been well reported in
the last two decades in Computer Vision and Computer Graphics.
Gong et al. [GMC96] were the first to find the relationship between
the distribution of samples in the eigenspace and the actual pose
in an image of a human face. Nishino et al. [NSI99] suggested a
method, called Eigen-texture, to render a 3D model by interpolat-
ing its training samples scores in the eigenspace. They found that
partitioning samples into smaller cell-images before applying PCA
reduced blurry effects resulting from the standard PCA approach.

We investigate the use of PCA for volume rendering. We com-
pare results of standard PCA with those obtained from cell-image
PCA when applied to RGB images of a volume dataset. Given data
samples X = [x1 x2 · · ·xn] ∈ Rd×n, where each sample is in column
vector format, the covariance matrix is defined as
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xix
T
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We can find the optimal low-dimensional bases that cover most of
the data variance by extracting the most significant eigenvectors of
the covariance matrix C. Eigenvectors are extracted by solving the
following characteristic equation

(C−λI)v = 0; vT v = 1, (2)

where v ∈ Rd is the eigenvector and λ is its corresponding eigen-
value. Eigenvalues describe the variance maintained by the corre-
sponding eigenvectors. Hence, we are interested in the eigenvectors
that have the higher eigenvalues V = [x1 x2 · · ·xp]; p� n. Having
the most significant eigenvectors computed, we can encode a given
sample x using its p-dimensional projection values as follows

y =V T x. (3)

We can then reconstruct the sample as follows

xreconstructed =V y. (4)

One advantage of PCA is the low computational complexity when
it comes to encoding and reconstructing samples.

2. PCA for Volume Rendering

Figure 1: Final image reconstruction using PCA.

In the context of raycast volume rendering, where the final image
is highly dependent on the viewing angle, we assume a set of ren-
dered images as training samples. We can compute the eigenspace
of the volume dataset by applying PCA for a number of training im-
ages of uniformly distributed viewing angles. By interpolating the
scores of training samples in the eigenspace, we can synthesize test
samples from novel viewing angles using the interpolated scores.
Fig. 1 shows the steps for reconstructing and rendering a novel view
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image using PCA. In the case of cell-image PCA, the eigenspace
is computed for each cell image individually. Thus, we can encap-
sulate the whole 3D model using a small number of eigenimages.
This will reduce the size of the actual image in the eigenspace. Fur-
thermore, the computational complexity is reduced, since the final
image is a weighted sum of eigenimages, which are much fewer in
number than the average sampling rate in a ray caster.

3. Results and Findings

We applied PCA for rendering the Vismale head volume dataset †

with an RGB pixel space of resolution 300x300 pixels. We used
1,500 training images from uniformly-spaced viewing angles (3.6◦

spacing for the azimuthal angle and 12◦ spacing for the eleva-
tion angle) to compute the eigenspace. All training images were
acquired using a standard raycaster with sampling rate of 1,000
samples per ray. We then acquired test samples by applying 0.9◦

spacing for the azimuthal angle and 30◦ spacing for the elevation
angle leading to a total of 2,400 unique views.

We applied PCA in two different contexts. In the first con-
text, the eigenspace was computed for the full-size training images
(300x300 RGB pixel space). In the second context, we partitioned
each image into a number of equally-sized cell images (20x20 pix-
els). Then, we computed the eigenspace of each cell image indi-
vidually. For each unique view, we synthesize the corresponding
scores (projection values onto the first significant eigenvectors) by
interpolating the scores of the training samples using spline inter-
polation. We used 100 eigenvectors to represent the eigenspace.
Fig. 2 compares the reconstructed novel view images for both stan-
dard PCA (full-image PCA) and cell-image PCA. Clearly, the cell-
image PCA approach leads to much better quality results compared
to the full-image PCA, which results in somewhat blurry images
with the same distribution of training samples. This is consistent
with what was reported in the previous literature [NSI99]. One
problem with the cell-based PCA is that it results in subtle discon-
tinuity artefacts at the cell boundaries in the reconstructed images.
In terms of computational complexity, the PCA based methods re-
quire only 100 scalar-vector multiplications in the case of the test
scenario we presented. This is computationally much cheaper com-
pared to the operation required in the equivalent raycast rendering.
Furthermore, it should be noted that the cell-image technique has
the same computational complexity and memory footprint as the
direct-PCA technique as we essentially perform a larger number of
much smaller iterations.

4. Conclusion

In this poster, we presented a preliminary investigation of the use
of PCA for volume rendering. The cell-image PCA method was
able to reconstruct the volumetric model through a finite number of
training images and generalize the eigenspace to produce high qual-
ity novel view images. One limitation when using PCA for render-
ing is that a change in transfer function (material colors and opaci-
ties) requires a change in the whole eigenspace. One solution to this

† https://www.nlm.nih.gov/

Figure 2: Five novel views rendered using PCA.

could be be to combine eigenspaces of different materials (eigen-
flesh, eigenbone, etc). Despite the limitations, PCA appears to be
an interesting and viable alternative technique for image-based vol-
ume rendering. The benefits in terms of computational complexity
and compression of information may lead to potential advantages
in applications such as client-server visualization systems.

In future work, we plan to conduct perceptual studies to measure
the conspicuity of artefacts in both PCA approaches under different
viewing and training configurations and across different scales and
types of data sets. Based on these results, we plan to investigate
strategies to ameliorate the artefacts appearing in the cell boundary
regions.
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