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Abstract

The complexities of modern software systems make their engineering costly and time

consuming. This thesis explores and develops techniques to improve software by au-

tomating re-design. Source code can be randomly modi�ed and subsequently tested for

correctness to search for improvements in existing software. By iteratively selecting use-

ful programs for modi�cation a randomised search of program variants can be guided

toward improved programs. Genetic Programming (GP) is a search algorithm which

crucially relies on selection to guide the evolution of programs. Applying GP to software

improvement represents a scalability challenge given the number of possible modi�cation

locations in even the smallest of programs.

The problem addressed in this thesis is locating performance improvements within

programs. By randomly modifying a location within a program and measuring the change

in performance and functionality we determine the probability of �nding a performance

improvement at that location under further modi�cation.

Locating performance improvements can be performed during GP as GP relies on

mutation. A probabilistic overlay of bias values for modi�cation emerges as GP progresses

and the software evolves. Measuring di�erent aspects of program change can �ne-tune

the GP algorithm to focus on code which is particularly relevant to the measured aspect.

Measuring execution cost reduction can indicate where an improvement is likely to exist

and increase the chances of �nding an improvement during GP.
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Chapter 1

Introduction

People, as software's chief maintainers currently, have a di�cult task in ensuring software

meets changing requirements. The complexity of contemporary software systems has lim-

ited the e�ectiveness of traditional engineering processes when applied to large software

projects motivating the emergence of more �exible development models. To support the

development process, many automated tools exist. As developer time and expertise are

costly, further automation in this area would bene�t the software engineering discipline

and industry.

Randomised search algorithms have been proposed for their potential to provide so-

lutions in the area of Software Engineering. Randomised algorithms are particularly

interesting for program improvement as they are not restricted by the type of program

modi�cations performed. While random modi�cation can generate programs which do

not compile, evaluating a wide range of program variants increases the chances that an

improved program will be found.

Search algorithms have been used for various SE tasks. In software testing search has

been used for the generation of test data [88]. Searching through the large number of pos-

sible compiler options to �nd a con�guration that produces a program of reduced size [28]

and to �nd a program with reduced execution cost [51,137] has also been demonstrated.

The use of a particular search algorithm, Genetic Programming (GP) [106], has been

proposed for [26, 44] and demonstrated on [108] software improvement tasks such as

1



bug-�xing [140] and performance improvement [73,146].

GP is an algorithm which relies on random modi�cation to search through many

variants of a program. Repeated random modi�cation produces program variants ranging

in performance and functionality. Even though programs are created by random, and

sometimes destructive modi�cations, the algorithm is not considered random search.

Program evaluation and selection is crucial to the progress of the algorithm toward more

improved programs. Provided programs can be evaluated and measured for �tness for

purpose, the best program variants can be selected to produce further program variants.

How programs are evaluated determines the direction of the overall search process during

GP. Over many generations of randomly modi�ed programs, selection provides guidance

as to which programs are considered more improved relative to others. Over time, the

algorithm is expected to increase the chances of �nding a more improved program variant.

Performance improvement of programs is the main concern of this work, and so the

number of operations executed [42] is used as performance measure.

1.1 Challenge

Scaling GP to larger programs poses a challenge. Larger programs provide an increased

number of possible places which can be modi�ed. As more modi�cation points are

possible in larger programs the search process is closer to random search due to the

increased number of possible variant programs [85]

1.2 Approach

The goal in much GP work is to navigate the program search space more e�ciently by

techniques designed to generate only programs which are more likely to be improved. It

is appropriate to think of scaling a problem down or �shaping� a problem so that progress

can be made in �nding a solution using a GP algorithm. To shape a problem we seek

to focus code modi�cations on locations within a program likely to produce improved

variants.
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Although program evaluation and selection provide guidance as to what programs

are modi�ed in canonical GP, there is no guidance for where within a program should be

modi�ed.

In canonical GP all nodes in a program are equally likely to be selected for modi�ca-

tion. To provide a more directed search, modi�cation can be focused on certain locations

in a program which are deemed interesting. Modi�cation can be focused by controlling

the probability of each location being selected. By attaching values to each node in the

program we can vary the probability of each location being selected [6].

Bias values can be changed dynamically during GP, or statically set before GP is

run. During GP, bias can be changed entirely at random [6], in response to program

evaluation [49] or derived from program measures such as size [53].

Program analysis techniques [29, 57] have been used to set bias statically before the

application of GP. Fault localisation techniques have been used to highlight the location

of bug �xes in software [140] and pro�ling techniques have been used to guide performance

improvement [73].

One example of the use of pro�ling is to vary the size of program input to observe

how the execution frequency of lines of code varies accordingly [73]. However, if a 100

line program starts by setting a variable which is subsequently read during a loop at

line 90 to determine how many iterations are performed, the cause of execution cost

of the loop is not at the same location as the loop itself. Although this example is

simplistic, it illustrates that applying change at the loop may not alleviate the problem.

The cause of an execution bottleneck in code may be due to complex code with many

interdependencies. Finding what code is most likely relevant (or contributes the most)

to execution cost is therefore not trivial.

1.3 Problem

The problem addressed in this thesis is locating performance improvements. We wish to

�nd the locations where modi�cation is likely to produce a program variant with reduced

3



execution cost.

Our problem can be posed as: How can the cause of execution be attributed to

locations in code. The cause of execution cost is di�cult to attribute to an exact location

(or multiple locations) in a program as all code executed contributes to the execution

cost of a program. Source code elements can embody interdependencies within a program

making it di�cult to de�nitively attribute execution cost directly to a code element.

1.4 Hypothesis

The central hypothesis in this work is that repeated modi�cation can indicate how likely

a performance improvement is to be found at each location in a program.

As GP makes many random modi�cations to generate variant programs, there is

a learning opportunity in how modi�cation e�ects a programs behaviour. By making

a modi�cation, we can associate the measurable change in program functionality and

performance with the location of that modi�cation, ignoring what the code modi�cation

was. We propose that these measurable changes can be used to highlight the location of

performance improvements.

Our hypothesis is based on the assumption that random modi�cation to a program

at a speci�c location will produce a variety of programs with characteristics which are

speci�c to that location in the program. If this is true, then modi�cation points in a

program should be uniquely distinguishable under modi�cation.

If the assumptions and hypothesis are correct, then repeated modi�cation to a pro-

gram should highlight the locations of performance improvements. We can perform

repeated modi�cation to allocate bias values to di�erent locations in a program. Once

bias values are found, they can be used statically to observe how they in�uence the GP

process. We should see improved program variants appearing earlier in the GP process

if the bias values highlight improvements.

As this approach relies on the same iterative modi�cation and evaluation mecha-

nism as GP, it should also be possible to learn about locations dynamically and have a
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bene�cial impact on solution �nding during the GP algorithm itself.

1.5 Self-Focusing Genetic Programming

Given an existing program, code elements within the program can be modi�ed at the

language level allowing variables, operators, expressions and statements to be modi�ed.

A modi�cation can be a deletion, clone or replacement from the set of elements in the

program. Compilable programs that result from this type of modi�cation can be tested

or �evaluated� for correctness and execution cost. Our proposed solution builds on the

iterative modi�cation and evaluation as performed during canonical GP.

The result of program modi�cation is used to infer information about the modi�cation

location in our solution. Based on how functionality and performance change, we can

increase or decrease the bias value at the location of code modi�cation which produced

the variant program.

Repeating this process eventually changes bias values for all nodes in a program.

This culminates in a learning process that gathers information from measuring the e�ect

of repeated random modi�cation of a program. The information gathered highlights to

which parts of a program more random modi�cation should be applied. Although there

is a random element to the selection of nodes for modi�cation, the random selection is

biased per the node values.

Initially, bias values are set to the maximum allowed value of one for each modi�able

node in a program. To produce a variant �child� program, a clone of the parent program

is modi�ed. When the parent is cloned, all bias values are cloned to the child. When the

child program is modi�ed bias values propagated depending on the type of modi�cation

performed. If code is replaced, then values for the replacement code are initialised to

one. If code is deleted, then the bias values are lost.

If modi�cation is performed at a location with value one, it is assumed that the

location has not been modi�ed before, and the value is reduced by default to less than

one. This means that bias values have the e�ect of forcing GP to explore at least one
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modi�cation for each location in a program.

After the cloned child program is modi�ed, the program is evaluated to ascertain

performance and correctness measures. Bias values for the location of modi�cation are

updated depending on how the performance and correctness di�er for the child program

in comparison to the parent program. Bias values are updated in both the parent and

child program as both have a chance of being modi�ed again in the evolutionary process.

We update bias values in a number of ways in response to the di�erent results at-

tainable when a program is evaluated. Bias is increased and decreased so that after the

initial modi�cation, it is always between zero and one. The bias value is increased by no

more than half the di�erence between the existing value and one. V = V + (1-V)/2 For

a decrease, the change is similarly, V = V - (V/2).

If a program variant does not compile, the value at the location of modi�cation

is reduced. If the program compiles, and the child program evaluates with a lower

functionality measure than the parent, the bias value at the location of modi�cation in

the parent is increased, and decreased in the child. The rational behind this update

strategy is that if we modify the program and it compiles then it is worth modifying

there again in the parent. If the functionality increases, then the chances of modifying

that location are reduced in the parent, and increased in the child.

The bias update rules are designed to focus change on exploring the functionality

variants of the program which have reduced functionality. Destructive modi�cations are

favoured, with a focus on exploration of variants. Modi�cation tends to focus where code

has broken before.

To achieve this, functionality decreases lead to bias value increase in the parent pro-

gram, and bias decrease in the child program. When the functionality measure increases

between parent and child, the bias is decreased in the parent and increased in the child.

The concept here, is to guide change toward exploration of the program in an attempt

to escape local optima, as provided by the original program.
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1.6 Research Question

Our research question is posed as follows:

• Can di�erences in functionality and performance measures caused by arbitrary

program modi�cations indicate the likelihood that further modi�cation will create

a program with reduced execution cost?

1.7 Evaluation

In this thesis we are interested in answering the research question to understand how

GP can be guided. The GP process is conducted with and without bias to observe the

e�ect bias has on the chances of �nding improved programs. We also seek to inspect

what change in �tness measures are particularly good indicators for improvements. Bias

allocation is also inspected in a static and dynamic context.

Static bias refers to bias values which are attached to a program before GP is started.

The values do not change during GP. Pro�ling techniques have been used to �nd this

bias. In this thesis we �nd a static bias by repeated mutation on a program which is to

be improved. Once this bias is found, it can be attached the seed and GP can be applied.

If the bias accurately highlights locations where an improvement exists, then GP should

�nd an improved version of the program more quickly. If mutation-derived bias can �nd

improvements in a program, then we should see GP runs �nding these improvements

more quickly. Where improvements are known to exist in a program we can observe the

bias values (and thus likelihood of a node being modi�ed) that is produced under various

bias schemes such as pro�ling and random bias updates.

During GP, modi�cations are performed on many variant programs which change from

one generation to the next with bias being inherited from parent programs. Dynamic

bias refers to repeat mutation and crossover on a number of programs which change over

time. Thus, dynamic bias is derived during the GP algorithm where bias is inherited

from parent to child programs. When used during GP, the range of programs in which
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bias is updated is more varied than when dealing with a single program. Although bias

is inherited, the number of modi�cations to any one program is less than when applied

to a single program. For this reason, we expect dynamic bias during GP to be less

speci�c to any one program and be somewhat general as it is updated in a number of

program variants, each providing a di�erent context for changing the bias. Although this

environment is noisy, we want to see if bias can be bene�cial to GP when allocated as a

by-product of mutation and crossover during GP. Although modi�cations are performed

on many di�erent programs during GP, we wish to see if there is still enough information

summarised in bias values to increase the chances of �nding improved program variants.

1.8 Findings

We apply GP to a number of sort algorithms and a Hu�man codebook algorithm. The

test programs are relatively small, with the largest containing 115 lines of code, and have

a very speci�c de�nition of functionality. We can characterise them as having a high level

of interdependencies between source code elements. Although these programs are small

they require a reasonable e�ort to evolve and improve given that any single change is

likely to degrade the program. Regardless of this search space GP can �nd improvements

in all of these programs

We repeatedly mutate a Bubble Sort algorithm to derive bias, and then apply GP

using this bias for modi�cation location selection. The static bias guides GP to an

improved version of this program more quickly than canonical GP which selects locations

for modi�cation with equal probability across all locations in a program.

We use a pro�ler to derive bias on the same problem and compare to the use of static

bias. Pro�ler derived bias increases the chances of �nding improved variants over the use

of mutation-derived bias on Bubble Sort.

We further compare pro�ler and mutation derived bias on a hand-modi�ed deceptive

version of Bubble Sort which introduces a redundant iteration over the whole Bubble

Sort algorithm. The idea in using this problem is to separate the location of a potential

8



improvement from code which is executed most frequently when the program is run.

The outer loop is only executed twice, while the swap function is executed many times

during execution. On this problem a pro�ler reduces the chances that GP will �nd both

possible improvements. Mutation-derived bias is not deceived in this case and improves

on canonical GP as well as the use of a pro�ling technique.

Dynamic bias is compared against canonical GP across a range of sort problems and

a Hu�man codebook generator problem to inspect generalisability of our approach. We

�nd that, while dynamic bias does not increase GP's chances on Bubble Sort, dynamic

bias increases the chances of �nding program improvements over canonical GP on 7 out

of 12 problems through a large number of generations, but is eventually overtaken by

canonical GP on 2 of these problems. This shows that there is a distinction between

static and dynamic derivation of bias, and also that the bias rule we have presented does

not generalise across all problems.

We compare dynamic mutation-derived bias with randomly modi�ed bias and �nd

that dynamic bias outperforms random bias on half of the problems. This provides

evidence that explicit credit assignment can be bene�cial during GP [6].

To understand why dynamic bias does not generalise across problems, an exhaustive

modi�cation of each of our test problems is performed. For each location in a program,

all possible single modi�cations are performed where modi�cation involves attempting to

replace each location with all other code elements in the program. This produces a large

number of program variants, of the order n2 - n, where n is the number of modi�cation

points in the program. Analysing the evaluation results for each location can indicate

the range of values likely to be encountered as locations are modi�ed. We �nd that the

evaluation results across many modi�cations are distinct for each location. Furthermore,

we �nd that summarising compilation count, functionality and performance change (as

opposed to using a single one of these measures) may be additionally useful in determining

the location of performance improvements.
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1.9 Contributions

In summary, the contributions of this thesis are:

a Propose repeated program modi�cation and evaluation as a program analysis tech-

nique for the location of performance improvements.

b Demonstrate that mutation derived bias can improve the chances that GP will �nd

performance improvements.

c Demonstrate that improvements can be found during GP.

d Demonstrate that pro�ler-derived bias can be deceived as to the location of perfor-

mance improvements on a hand-crafted deceptive problem.

e Demonstrate that mutation-derived bias (or explicit credit assignment) can improve

GP more quickly than randomly changing bias.

In terms of Software Engineering, our contribution could be stated as execution cause

localisation through the analysis of program output over many program variants. When

applied to GP, our contribution culminates in a learning mechanism during GP for per-

formance improvement of programs.

1.10 Reader's Guide

The next chapter begins with background in software improvement and moves towards

stochastic modi�cation of programs, in particular the use of GP. Attention turns to

how GP has been guided and subsequently to software analysis for locating performance

improvement. The theme throughout revolves around �nding where performance can be

improved. The chapter concludes with a brief summary and problem overview.

Chapter 3, �Design�, details the con�guration of our GP algorithm and the operation

of our bias mechanism. This chapter provides justi�cation for speci�c design decisions

such as individual node bias and bias allocation rules.
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Chapter 4, �Results�, describes the methodology by which we answer our research

questions and provides experimental results in support of these answers.

Chapter 5, �Conclusion�, summarises the �ndings of this thesis. The chapter looks at

what work can be explored immediately as a direct consequence of this thesis, as well as

broader concepts of interest. Chapter 5 and this thesis conclude with speculation on the

future of Software Engineering.
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Chapter 2

Related Work

This related work chapter begins with background on general performance improvement

techniques. We then introduce GP for improvement. We cover methods for guiding

GP, which have been proposed to scale the algorithm to larger programs. From general

methods of guiding GP, we look at program analysis techniques speci�cally for locating

performance improvements in code. Software analysis techniques for attributing exe-

cution cost to locations in a program have been used to guide GP for improvements

including performance and are particularly relevant.

2.1 Overview

We focus on performance improvement in the context of the reduction of execution cost

of a program. Execution cost can be measured in time taken to execute a program or

the number of operations performed in executing a program. Performance improvement

is di�cult to design for and is not recommended as a primary concern when building

software [63]. Program performance improvement requires a deep understanding of a pro-

gram, and much trial and error can be expended to understanding where an improvement

opportunity exists. Performance is implicit in program code, it is di�cult to understand

by simply looking at code. As GP is an algorithm which evaluates a large number of

possible program variants, it appears a good approach to exploring the broad range of
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subtle performance nuances in a program.

Much GP work addresses the creation (or �growing�) of programs in their entirety.Programs

are initially randomly generated from primitives which can be described as domain spe-

ci�c. For example, to evolve a sorting algorithm, a swap function may be speci�ed as a

primitive [61]. In these cases evolution may not operate over a Turing complete language.

Work in GP tends to address the generation of program functionality, as opposed to

any measure of execution performance. Functionality is problem speci�c and generally

measured as the correctness of the result returned after program execution. A speci�c

metric is usually designed to measure functionality on a graduated scale. For example,

the functionality of a sort algorithm could be measured by the number of items that have

been moved to their correct ordering.

GP is a randomised algorithm with little restriction on the code modi�cations that

can be made. Generating a wide variety of program variants means a wide range of

program improvements are possible. There is an opportunity to improve performance

where code is large and di�cult to understand.

Program improvement using GP is somewhat distinct in the GP literature as the

algorithm begins with an existing program. Much GP work starts from randomly gen-

erated programs of very low utility. Improving existing programs means GP is �seeded�

with a signi�cant portion of the solution [75]. Program improvement can be thought of as

improving a single aspect of an already mostly acceptable program. Attention is focused

on program improvement as a large amount of software is in existence and growing large

programs appears beyond the current ability of GP.

The terms �guided GP� and �software analysis� have emerged from di�erent research

origins, the �eld of GP (or more generally Evolutionary Computation), and the �eld of

SE. Though these areas have di�erent origins and thrusts, they have conceptual similar-

ities and di�erences which are mutually applicable. Both utilise the concept of program

inspection, potentially at runtime, for the purpose of generating information about par-

ticular locations in source code.

Approaches to guidance from the GP literature speed up the generation of programs
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from scratch [65]. Many approaches to guiding GP use general program characteristics,

such as code size, to guide the algorithm. In much of the literature the emphasis is on

the GP algorithm itself as opposed to being speci�c to any particular class of problems or

improvement types [130]. Guidance information can be generated as an integral part of

the GP algorithm, with modi�cation bias for programs emerging during the evolutionary

process [71] or �dynamically�.

Software analysis techniques from the Software Engineering literature have been used

to guide GP for speci�c instances of program improvement, namely bug �xing [142] and

performance improvement [73]. Where software analysis techniques have been used to

guide GP, they generally have been used prior to the application of GP [73, 141] or

�statically�. There is nothing preventing these analysis techniques being used continually

during a GP run, but it appears that this has been as yet unexplored.

This related work chapter tends toward a central theme of determining where to make

a modi�cation in a program to improve the chances of generating a program with a re-

duced number of execution operations. Specifying where to make a change tends toward

looser, more probabilistic methods as the discussion progresses. For example, pattern

matching is a deterministic method for �nding where to replace code in a program. Con-

versely, locations for modi�cation can be selected entirely at random even disregarding

typing information.

The next section introduces background to performance improvement and the appli-

cation of GP to this task.

2.2 Improving Performance

Performance improvement approaches seek to reduce the execution time or resource us-

age of a program. The reduction of execution generally requires the modi�cation of a

program to perform the same tasks or produce the same results using less or more e�cient

operations. When automating the improvement of software, ensuring improved programs

behave as expected puts a restriction on the program modi�cations or transforms that
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are allowed.

Performance improvement is traditionally done with a restricted set of code trans-

forms which are deemed safe or behaviour preserving in some sense. As performance

improvement requires modi�cation in some aspect of program behaviour, it is di�cult to

formally ensure a program transform will always produce an equivalent program capable

of returning the same values [16]. To preserve the correctness of programs in compiler

optimisation for example, great attention has been paid to the development of transforms

which are considered correct or safe to some degree [138].

If transforms are de�ned less rigorously, a wider range of program behaviour can be

generated [38]. Relaxing the restrictions on transformation type allowed means that

we increase the chances of producing defective programs on average. The ben�t of

unrestricted transformation is that it enables the generation of program variants which

are unlikely to be considered otherwise and have some small chance of being greatly

improved. Though searching through many program variants is expensive, especially

where unrestricted transformations are performed, there is less developer e�ort needed

to rigorously de�ne program transforms.

By way of introducing GP, we review how human-designed improvements are auto-

matically reused. We then move discussion toward methods where program modi�cation

or transformations are less rigorously de�ned. When using less restricted program trans-

forms, the e�ect of a transform is largely unknown until the transform has been applied

and the variant program has been tested for correctness.

2.2.1 Con�guration

A program can be designed in numerous ways to produce the same results. Multiple

implementations can be included in a program and selected between at runtime. A

program's operation may also be modi�ed by changing values outside of those which

are considered the program's input data. These �tunable� values can be hard coded in

a program's source code, or read in at runtime enabling the tuning of a program after

design and before runtime. In both these cases, it is expected that the program must
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be speci�cally designed to allow such post-design and pre-execution con�guration of a

program [136]. The location of program change is therefore manually de�ned.

The assumption is that con�guration options are in some sense �safe� for use in

that they have been previously designed to allow tuning of the program. Automated

approaches have used search to �nd the best con�guration options to use for performance

[99]. The approach assumes that con�guration options can be modularised and exposed

succinctly external to a program.

Program con�guration can be automated through the application of previously useful

con�guration changes to other observed programs. Replaying con�guration changes [125]

can improve the performance of a program. The source code of a program remains the

same in these cases, where improvement is achieved through modifying the input data

to a program in the form of con�guration changes. This does not constitute a re-design

of a program's code.

A change which �xed one machine is recorded and applied for similar problems on

di�erent machines [125]. The location of change which �xed a bug previously, can be

used to match against similar contexts and the �x can be replayed. This is also a good

example of automated code reuse and illustrates how the location of change can be found

using pattern matching.

The approach is interesting as it shows the requirement for semantics-preserving

transforms is relaxed. It is possible to produce programs with di�erent code through

con�guration but depends on these code variants being provided manually. Con�guration

also manually determines what program code is executed.

2.2.2 Compilers & Interpreters

Arguably the most widely used example of automated performance improvement can be

found in compilers and interpreters. The term �optimisation� is used in association with

the improvements performed by a compiler. While a broad review of optimisations in

these areas is out of scope for this thesis, we brie�y classify the type of optimisations

performed as behaviour preserving. To broadly classify the optimisation types used
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in both cases, we may say that optimisations are achieved by code transforms which

are required to only a�ect a narrow aspect of performance, and strive to have little or

no e�ect on program functionality. The application of optimisations is less speci�cally

de�ned within compilers and interpreters as they are applied through the use of various

heuristics [123]. While the type of code transform performed is rigorously de�ned, the

location is less so.

Due to the requirement that compiler optimisations maintain the behaviour of a

program, optimisation in this context fall short of program redesign [147]. Compiler

optimisations, whether guided or not, can be described as �program tuning� as opposed

to �algorithm tuning� [19]. While the di�erence between compiler optimisation and al-

gorithm redesign is not rigorously de�ned, we are interested in broadening the type of

program improvements which can be automated.

2.2.3 Trading Functionality for Performance

For some program use cases we can trade functionality or allow the degradation of a

program for the sake of performance.

One way to improve program performance is to reduce the number of iterations in a

loop. While this approach is nearly guaranteed to improve performance, it is equally likely

to degrade functionality. �Loop Perforation� trades program functionality for execution

speed [118]. This is a direct approach to performance improvement where loops are

targeted in a program and modi�ed in such a way as to reduce the number of loop

iterations. Transforms are speci�cally targeted at loop constructs within code.

Variance in accuracy can also be tolerated for pixel shaders [101, 120]. Shader algo-

rithms adjust colour across an image. Shader simpli�cation [101] attempts to �nd many

�ne grained program variants which di�er by a small amount of performance. Code

can be modi�ed to explore the range and extent of functionality and performance trade-

o�s possible by applying prede�ned program modi�cations. The goal of this work is to

produce a range of program variants each one having a slightly di�erent performance

as evenly distributed across a scale as possible. Variant implementations which di�er
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slightly in terms of performance can be selected at runtime depending on system load

and execution context requirements.

Determining where best to make a a modi�cation in a program can be determined

by applying many changes at a location in the program, then selecting which one is

the best [101]. No prediction is made as to what modi�cation at what location is best

before the program is evaluated. This approach evaluates many programs to �nd what

modi�cation is best similar to the use of a hill-climber algorithm [90] or brood-selection

in GP [126]. The location of modi�cation is found by matching the location of loops. The

changes made to loops are prede�ned from a relatively small set of regex-like replacement

patterns which target loop modi�cations. The location and content of the change is pre-

written manually. The approach is manually guided but is not semantics-preserving in

its mutation of a program.

Relaxing restrictions on the transformation type further, shader simpli�cation can be

achieved by mutating a program using the existing lines of code within the program [120].

This automates the speci�cation of code which is used to modify a program essentially

leaving the speci�cation of transforms up to the original developer of the program. The

code which is used to improve the program was designed as part of the original program

and was not speci�cally created for the purposes of optimising the program. It appears

that performance improvements can be found by reordering and recombination of existing

code within a program. The location of reordering is random and the code modi�cation

type is speci�ed by the lines of code created when the program was written. This work

relaxes the speci�cation of what a code modi�cation consists of by reusing code from

within the existing program under modi�cation. The transform type is determined only

in passing by the code which was design to ful�ll functional requirements.

While performance improvement is possible if functionality can be sacri�ced, ideally

we would like to improve performance without loss of functionality. It is possible, though

rare, that randomly generated program variants have expected functionality.
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2.3 Genetic Improvement

Search algorithms have been applied to improve program performance by searching

through program compositions [79] and compiler con�guration options [124]. As these

works deal with searching through relatively safe program transforms which are expected

to be at least functionally correct, we turn attention toward search methods which pro-

duce a wider range of program variants. During the search process many program variants

do not compile.

The advantage of using randomised search algorithms to search through program vari-

ants is that a wide range of program transforms can be considered. Using unrestricted

transforms means that programs may vary more in behaviour. Although randomly mod-

ifying and evaluating programs is computationally expensive, there is no restriction on

the improvement type which can be found. The likelihood of a degraded program being

created is high, but the possibility of �nding an improved program is also enabled.

This section gives an overview of a particular search algorithm, Genetic Programming

(GP) [66,106], which is used to improve programs by directly modifying a program [105].

A number of important topics in GP are discussed here to give an intuition of how GP

works and what makes software di�cult to improve using this technique. As such, it

provides an introduction to terminology and context needed to frame our approach and

problem.

GP operates by iteratively creating variant programs using random modi�cation [106].

Variant programs are produced in batches referred to as �generations�. The programs in a

generation are selected and modi�ed to produce variant programs for the next generation.

Programs have di�erent chances of being selected for modi�cation. Typically programs

are measured for a certain characteristic and this ultimately decides each program's

chances of being selected from a generation. The higher a program measures on this

scale in comparison to other programs in the generation the more likely it is to be

selected. How programs are measured is vitally important to the operation of GP as a

measurement scale provides a mechanism by which programs can be di�erentiated. The
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algorithm uses this measurement scale to favour programs to modify on the assumption

that they are likely to produce even better programs. The measurement scale is referred

to as the ��tness function� in GP literature.

GP has been used to improve execution performance of existing program code [8,

72, 105, 146]. A general issue with the application of GP, is its ability to �nd improved

programs in large search spaces. In the remainder of this section we cover how the

various choices in applying GP to software improvement a�ect the range of program

variants produced and the chances of �nding performance improved program variants.

2.3.1 Representation

GP has been used on existing code at a range of representations from �ne grained low

level representations to high level representations. Bytecode [98] and assembler [114]

level modi�cations have been explored as well as higher level modularisations of code

such as line of code [140] and statement [73]. Even higher level changes have been made

using design patterns [25, 95, 119]. The most relevant representation to our discussion

is modi�cations which can be made at the language level, in particular for Java source

code [8, 146].

Work which seeks to uncover better understanding of the GP algorithm itself typically

evolves programs in functional languages leaving the evolution of imperative languages

less explored [18]. It is less likely that valid imperative programs will be produced during

GP than valid functional programs due to syntactic constraints [122]. It is interesting

in itself to understand how di�erent language paradigms make problems harder or easier

for the GP process [122,150]. The evolution of programs in imperative languages is also

of practical importance due to the widespread use of imperative languages throughout

industrial settings.

The more places there are to modify in a program, the ��ner� we can call the unit of

modi�cation. We di�erentiate representation from granularity as representation refers to

what form the program is in, such as source code, byte-code or design pattern. We work

under the assumption that the representation is �xed, but we can still choose how �ne
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the unit of modi�cation is during GP.

An alternative to directly modifying a program is to evolve a program modi�cation.

Program patches, as opposed to programs, are the subject of evolution. Each evolved

patch is applied to the original program and the resulting patched program is then

evaluated. This approach appears to have been initially developed as a solution to

memory issues related to modifying very large programs [72,77]. When modifying existing

programs, a modi�cation can be expected to be relatively small. The small size of a patch

can make it easily compared and guaranteed unique [72]. Evolving patches allow two

working patches to be merged in a single operation, whereas merging the same code

changes in tree-based GP would require a growing number of edits as the patch size

grows. If the resulting program from the merged patch does not compile, then the

contents of the two working patches may be dissected and recombined to see if there is

a combination of the two which will compile. As this is a relatively new approach, little

is known about how evolving patches in�uences GP search or compares with traditional

tree-based evolution.

2.3.2 Modi�cation

Modi�cation of programs during GP is performed under two schemes referred to as

mutation and crossover [149]. A node within a program is chosen for modi�cation which

yields an �o�spring� or �child� program. When nodes are modi�ed, it can be assumed all

nodes in the subtree are included in the modi�cation.

Under subtree mutation, a node (and its subtree) can be replaced by a node (or sub-

tree) of a similar type, deleted or cloned. The initial generation is created by repeatedly

applying mutation to the seed program.

Crossover operates with two programs and replaces a subtree in one program with a

subtree from the other.
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2.3.2.1 Reachability

If the representation chosen is a Turing complete language, then the sequence of language

elements which can be accepted as valid is governed by the syntax and semantics of that

language. If a non-Turing-complete representation is used, such as lines of code, then

the programs generated will be made of only some combination of allowed code lines.

Provided the lines allowed have the right structure, presumably requiring large numbers

of diverse lines, it is conceivable that evolving lines of code could be considered Turing

complete. We mention this because if the GP con�guration does not allow the generation

of programs in a Turing complete way then we are restricted in the programs that can be

generated. This intuitively means our GP system is searching through a restricted subset

of possible valid programs. We are unsure whether an improved program exists in this

set and if our GP con�guration is too limited then we may have entirely removed any

chance of �nding an improved program where an improved program is not �reachable�

given a particular GP con�guration.

The structure of software makes modi�cation di�cult where increasing interdepen-

dencies makes modi�cation less likely to result in valid programs [15, 31]. As some

programs are invalid, and thus can not be evaluated, they receive low �tness values. If

invalid programs must be modi�ed to reach a more improved program then it is unlikely

that those improved programs are practically reachable.

A single modi�cation to a program may produce an uncompilable program which may

be discarded during GP. If this discarded program is required to produce programs which

do compile then these programs may not be reachable. Where only single modi�cations

are applied before evaluation (and discarding of programs) the programs subsequent to a

non-compiling program may not be reachable. Such a problem has been labeled a �coding

trap� in a more general context [41].

This echoes the restrictiveness of behaviour-preserving transforms utilised in compil-

ers (as discussed in subsection 2.2.2). If the code modi�cations allowed are restricted

then it may be di�cult or impossible to create certain subsets of program variants.
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2.3.3 Fitness Functions

There are a wide range of program metrics from the SE literature [43], even for more

subjective measures such as �elegance� [119]. Software characteristics can be measured

in terms of functional or non-functional metrics. Metrics can be combined and used as a

�tness function. Similarly in the GP literature there are a wide range of measures which

are used as �tness functions.

In GP, it is important for the program measures to capture the characteristics of a

desired solution to ensure evolutionary pressure is towards the desired goals. Designing

a �tness function which gives a scale for how good a program is can be non-trivial

particularly when the scale relates to functionality [61]. The issue is how to ensure that

aspects of a programs operation that are important to a solution put that program at

the right place on the scale in comparison to other programs. In a sorting example,

a program which contains the code for swapping two values in a list to produce a less

sorted list would still be considered better than a program which doesn't change the list

at all. Additionally if an empty program is compared with a large program but a swap

is never performed then both programs may be given the same �tness even though one

contains code which makes it a better candidate for selection and mutation. The point

can be made that if a desired trait cannot be measured, or receives a value lower than it

should, then GP will not promote its use in the population.

2.3.3.1 Performance Measurement

The notion of program performance can be measured as wall clock time, number of CPU

cycles taken, number of method calls, number of lines executed or even as the energy

consumption of the program. These measures are clearly related though wall-clock time

or energy consumption may not correlate with discrete summation measures such as CPU

cycles, method calls or lines of code executed. Measuring time or energy of a program

may include measurements that can be attributed to the program as well as the execution

environment. A complex execution environment, where scheduling or arbitrary network

costs may exist, can introduce variance between individual measurement samples. An
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average across multiple samples can reduce the e�ect of such variance but increase the

evaluation cost of a program.

Each measure is particularly relevant for a di�erent purpose. By measuring perfor-

mance as part of a �tness function a parsimony pressure is put on the search which means

smaller, or less costly programs to execute will be favoured mitigating the issue of bloat

somewhat [121].

A typical measure of performance is wall-clock time. Wall clock time gives an overall

measure of the time the program took to run as well as how quickly the environment

can execute the program. Time may be useful when specialising an implementation to

a particular environment. Accurate execution time is di�cult to measure due to high

variability in execution environment conditions and complexity [70]. Measuring wall clock

time is subject to large amounts of variability. Although GP can tolerate a certain amount

of �noise� in the �tness function in terms of how deterministic it ranks di�erent programs

GP, noise may slow the evolutionary process. To get a more deterministic measure of

performance, the number of clock cycles, lines of code or instructions executed can be

counted.

Low level measures of program performance, such as time or hardware counters show

how the program interacts with it's execution environment. Estimates of execution cost

can also be used to evolve programs with respect to power consumption [148]. Perfor-

mance measures which count higher level operators executed ignore how code actually

performs in a particular environment.

These two measurement approaches provide a choice for what type of software im-

provement is sought. Meausurements which include environment time or energy are par-

ticularly suited to specialisation of a program to the environment, where any resulting

improved programs may perform well in the speci�c case, but are less likely to perform

as well in di�erent system con�gurations [24]. Where only high-level measurements are

taken ignoring environment speci�c interations only more general improvements will be

detected.

This distinction and separation of what we are measuring is useful to know as we may
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wish to choose what aspect of the code is to be improved. If we want to improve the code

at some general level, where it can reasonably be expected to perform better no matter

what environment it is run in then we can ignore measurements which are environment

speci�c in our �tness function. This would focus the evolutionary pressure on improving

the general design of the code without specialising the code to an environment.

2.3.3.2 Test Cases

When modifying code using random modi�cation a concern is maintaining functional cor-

rectness. When improving performance of a program through random change, the func-

tionality will frequently deteriorate. To maintain correctness, test cases can be used [8] as

part of the �tness function. In SE, test cases are widely used to check the functionality of

a program. Test cases are usually made of test input data and a known correct response

to this input data. A collection of these test cases forms a test suite which can be used to

check the functionality of many parts of a program. When improving the functionality

of programs using GP, the �tness of programs can determined by how many test cases

they pass [77]. The number of tests passed is summed and used as a �tness function.

As each test case returns a boolean value, a coarse �tness gradient may result especially

where a small number of test cases are used.

The choice of input data used in test cases in�uences evolutionary pressure. Where

a general algorithmic improvement is needed, a general representative set of input data

is desirable. This is similar to the generation of adequate test cases for general software

development. If we were to use input of a particular distribution, we should expect

solutions to be more specialised for that distribution [9].

Software is said to have high mutational robustness if random mutations to a program

show little change in test cases passed. A large percentage of the programs created during

random modi�cation may not compile or cannot be evaluated due to in�nite loops [115].

When programs do not compile, they are typically discarded [105,139].
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2.3.4 Code Reuse

A prominent characteristic of program improvement is the extensive reuse of existing

code. The extent of code reuse is a main distinguishing point in GP for source improve-

ment. Reusing code which already exists in the program prior to the application of GP

may seem a somewhat arbitrary choice of code, though it has been shown that reordering

and recombining code allows the knowledge and functionality embodied in existing code

to be made more widely applicable through small edits [76,120].

For GP to be successfully �grow� solutions outright, primitives which can be consid-

ered domain speci�c are commonly used. For example, the primitives used to evolve sort

algorithms could include a swap function [61]. It is questionable whether the resulting set

of primitives are Turing complete or are more in line with a Domain Speci�c Language

for the problem at hand. As more of the solution is provided to GP it becomes more

likely GP will �nd improved programs.

Part of the solution other than useful primitives can be manually provided, such as

program architecture [1]. Manual can also be used to re�ne the �tness function [119].

When existing code is reused the primitives and architecture are manually de�ned when

the original code is written. Though existing code is not written speci�cally with the

intent of aiding GP there exists useful material for improvement nonetheless.

When considering larger sized programs it appears di�cult to grow programs outright

and so the emphasis is placed on improving code [44]. If evolving existing working

code then we can expect it be already at least functionally correct to a high degree.

Provided the code is relevant, reusing existing code relieves the GP practitioner of hand-

crafting domain speci�c primitives for the problem. The larger the program, the higher

the chance that the required code already exists in some other part of the program.

This has been demonstrated very successfully for bug-�xing [76] as well as performance

improvement [104].

The concept of code reuse has also been applied during GP [83] and for the automatic

de�nition of functions [62,65]. Reusing code aids GP by providing partial solutions when

improving a program, but it doesn't specify where this code should be applied within a
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program. We distinguish the �with what� from the �where� for code modi�cations within

a program.

2.3.5 Operators

The way in which code is modi�ed can a�ect the solutions which are searched through.

For example, an operator may remove a FOR loop from a program, but leave the body

of the loop intact. An operator would have to be designed to do this in one edit to a

program. If using only basic tree edits such as delete, replace and clone, then it would

take two of these operations to replace a FOR loop with the body of the loop. In these

cases, domain speci�c operators may be of use [11]. In SE, code transforms such as those

classed as refactoring [25,119] can be used for improvement.

2.3.6 Search Space

The previous sections cover GP con�guration options which determine the search space

of programs created and evaluated during search. The chances of �nding an improvement

is in�uenced by the abstractions used as primitives in GP.

The size of the programs evolved a�ects the chances of �nding a solution.

In GP, a number of issues a�ect the probability of solving a programming problem.

The size of the required program, or program under improvement a�ects the search

space. Where GP is allowed produce programs of arbitrary size, there is a tendency for

programs to grow large, containing much super�uous code, referred to as �bloat� [85].

Approaches to alleviate this include simply bounding the size of programs allowed or

restricting code modi�cations to those that will not grow the program size [53, 86]. If

the unit of change in GP is particularly coarse, say only functions can be exchanged,

and the �tness function only allows compilable problems then the practical size of the

search space may be restricted. The size of a program can be measured in the number

of places where a modi�cation is allowed. The larger the program that is required to

solve a problem, and even if GP is seeded with a partial solution, the less likely better

solutions are to be found due to the size of the search space [81]. The size of a program
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can be o�set by using a coarse granularity of change but runs the risk of making some

solutions unlikely to be generated and evaluated as discussed in subsubsection 2.3.2.1.

A large program with few dependencies between code elements, may be di�cult

for GP to improve simply because of the large number of combinations of elements.

Conversely, a small program which has high dependence between code elements, means

any single change is highly likely to produce an uncompilable program. This problem is

di�cult in that many programs can not be evaluated and do not register on the �tness

gradient scale. We are essentially performing random search where all program variants

do not compile as there is no measurement gradient for guidance.

The issue of a large search space has been recognised [9,85].To tackle the problem, we

can try to scale down the problem by recommending what programs are worth evaluating

by making a more top-down choice as to what programs are likely to be relevant [137].

2.4 Guiding GP

Previous sections have shown how performance improvement can be automated. This

section turns attention toward how code modi�cation can be guided in GP to increase

changes of �nding an improved program. Although program selection provides guidance

during canonical GP, once a parent program is selected the choice of how a subsequent

o�spring program is generated is entirely random by design.

All nodes in a program are equally likely to be selected in canonical GP. Changing

the probability of modi�cation at these nodes is an opportunity to introduce search

bias [145]. By attaching values to each node in a tree, node selection can be biased [6].

Bias values can be set before the application of GP and has been used to great e�ect for

bug �xing [36] as well as performance improvement [74]. Biasing the selection of nodes

before applying GP has the advantage of introducing little overhead during the GP run.

As the population evolves, the bias values remain the same on the seed program. Biasing

modi�cation to speci�c locations in a program means that a certain section of the search

space will be more thoroughly sampled. The chances of �nding an improved program
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variant are increased if a solution lies within the chosen subset of the code under search.

Many di�erent approaches to updating bias values during GP have been proposed.

Furthermore, bias can be applied �globally� where bias applies the same to all programs,

or can be applied �individually�

When bias values are allowed to change during GP, we can divide mechanisms into two

approaches, which we term �global� [155] and �individual� based bias mechanisms [4,80].

The labels global and individual refer to how bias is summarised. Global mechanisms

summarise information which is used to guide program modi�cation across many pro-

grams, and assumes information found is generalisable to some degree across these pro-

grams. Individual bias refers to bias information which is more speci�c to a single pro-

gram. Individual bias learned with respect to each individual program is only transferred

between descendants or individuals which have some genetic interaction. As each unique

program is likely to be derived through a di�erent lineage [6], so too does individual bias.

We focus on individual bias in this thesis, but discuss global oriented bias for comparison

mechanisms of inferring bias.

In the next section we discuss general self-adaption techniques in GP. Many self-

adaption techniques attempt to �nd how or with what a change is made. In the sub-

sequent section we discuss how locations in programs can be highlighted, and for what

purpose they are used during the GP algorithm. Biasing locations can be thought of as

�nding where to make a change.

2.4.1 Self-Adaption

Self-adaptive GP refers to modifying or tuning parameters, or other parts of the GP

algorithm itself as the algorithm runs. In this section we note self adaption techniques

in GP and their purposepaying particular attention to how the adaption is driven.

2.4.1.1 Operator Adaption

A number of works have attempted to evolve GP operators. In the canonical case,

operators usually allow deletion, cloning or replacement of genetic material. Crossover
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operators allow entire subtrees or a node to be replaced. An evolved operator can be

expected to make more complicated operations as a single modi�cation to a program,

equivalent to repeated applications of simpler operators. The approach is intended to

discover any problem speci�c transforms, with the intention that these operators will be

able to more e�ectively navigate the search space. Evolved operators may be able to

make decisions about the structure of the code they are modifying [34,60,128,151].

This approach is considered global, as en evolved operator can be applied to any

program in the population. The selection of what operator to apply can also be adapted

[117] which may make operator application more local to the context which has been

selected for modi�cation. The selection of where to make a change is still random but

the decision for how to modify is biased.

2.4.1.2 Reusing Code

Many approaches to self-adaption have attempted to encapsulate and reuse code which

was evolved and found useful during GP [46,64,83,110]. The motivation for this approach

stems from the �building block hypothesis� that has been the subject of much discussion

in GP literature [7].

As nodes are selected for crossover, sub-trees are exchanged between programs. To

bias the use of sub-trees, the usefulness of each sub-tree can be stored in a central location

and updated as it occurs in new individuals [71]. The usefulness value can then be used to

bias the selection of sub-trees when generating new individuals. This approach updates

a single value for a sub-tree for each new individual it occurs in and takes into account

the resulting �tness of the new individual. This is a sub-tree centric approach which

recommends with what a change should be made at the global level. As a subtree-

centric approach, the emphasis is on what a code modi�cation is, as opposed to where

the modi�cation is applied. This work shows that code can be reused in other places and

information about a piece of code is relevant to some degree in other places supporting

the building block hypothesis. The information and code can be considered for transfer

to any other program or on a global basis.
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By assigning �tness to subtrees evolutionary search can be focused on subtrees which

have a low �tness measure [56]. Tracing the lineage of programs can be used to �nd useful

genetic material [112] and �tness reward propagation back through previous program

lineages [113] can achieve similar measures of code relevance.

Although not considered genetic, neural programming deserves a mention [129]. The

contribution that each node makes to the overall output is used to determine what nodes

are contributing the most and the least. Proposed in this work is internal reinforcement

with a credit-blame map for programs represented as graphs. In this way the nodes are

separated into �good� and �bad� nodes. Detailed tracking of internal state information

is attributed to each node in a neural program. The goal is to grow programs outright

with an appropriate goal to maximise the most important nodes and maintain bene�cial

code as �building blocks�.

Measuring the frequency of terminals in successful programs can be used to bias the

distribution of these terminals in subsequent programs [39]. This approach is concerned

with removing terminals super�uous to the problem at hand. It is unclear how this would

help in scenarios where the initial population is seeded with programs which presumably

contain mostly relevant terminals. Gene dominance is a similar approach which counts

the frequency which subtrees exist in programs [154].

2.4.1.3 Evolving Representation

Bias can be introduced at the grammar level to in�uence how new code segments are

generated [144]. Modifying the grammar used during GP changes typing of di�erent

program elements and what code is valid in certain contexts. The purpose of this work

is to in�uence the frequency that certain code constructs appear in programs. GP is

described as unsuited to developing recursive structures. The approach can evolve the

language itself so that it may be better suited to the problem at hand [145]. The approach

appears global as changes to the grammar a�ect all modi�cations in all programs.
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2.4.1.4 Learning Structure

A wide range of mechanisms which are extensions to GP or di�er so much as to be

named di�erently exist which reuse global information almost exclusively, instead of using

anything that could be termed �genetic�. One such approach evolves a single tree is by

repeatedly sampling from the tree. At each node in the tree there are a number of options

as to what code can be chosen. Through successive sampling and evaluation the options

and associated probabilities are updated. The probability value for each code section

are modi�ed in�uencing the chances of particular code being picked during subsequent

samplings. Essentially a probabilsitic model of a solution program is expected to emerge.

Estimation of Distribution (EDA) algorithms are of this type [22, 82, 107, 152, 152] as

is Probability Based Incremental Learning (PBIL) [96, 116] and Linkage Learning [20].

Linkage learning builds a probabilistic model of a solution [21] to discover building blocks

that are associated with each other through a grouping or clustering mechanisms [20].

Individual and global models are considered in this work [20] but no evidence as to

whether a distributed or centralised model seems to be better. The survey hypothesises

that a distributed model might have better scalability, in terms of at least processing

across many machines. This work makes no direct reference as to how global and dis-

tributed models di�er in terms of search space traversed by algorithms. The use of ��tness

only� measures to �nd linkages is non-optimal.

As a follow-on from internal reinforcement in neural programming, Reinforced Ge-

netic Programming (RGP) was introduced [33] with the goal of supporting Lamarckian

and Baldwinian evolution. Lamarckian evolution refers to characteristics learned during

a programs execution being passed on to o�spring via genetic material. Baldwinian evo-

lution refers to how information learned during a program execution a�ects the �tness

of that program without changing the genetic material. RGP adds nodes to a GP tree

which can be �ne-tuned over a number of evaluations of the tree. The tree can thus im-

prove its �tness over subsequent evaluations as local search is conducted at these special

nodes. RGP is used on maze navigation problems where the individual is a lisp tree.

Trees are evaluated at every step movement in the maze. Values are reinforced positively
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or negatively in response to good or bad movements in the maze. Hitting a wall at-

tributes a negative value whereas reaching a �goal� segment of the maze receives a large

positive value. The most successful node behaviour is then favoured during subsequent

evaluations. The rule used is to update the bias when the �tness increases. This assumes

the population starts from a low �tness, and any improvement in �tness is a good thing.

2.4.1.5 Cultural Algorithms

Cultural algorithms are relevant as they perform a type of reinforcement learning in the

form of a belief system. This belief system captures where, when and how a change should

be performed [109,155]. As such, Cultural Algorithms appear useful as a framework for

capturing general knowledge produced during a GP run for reuse.

The way beliefs are generated in cultural algorithms is based only on what is involved

in generating the best programs and can be used to determine a crossover point [155].

Particularly relevant here is information at the micro-evolutionary level of cultural

algorithms [27]. Information gathered consists of �behaviour traits� which pass between

generations using �socially motivated operators�. The micro-level links in with the global

macro-evolutionary layer or �belief space� which is accessible to all individuals. Cultural

additions a�ect the tournament selection of individuals only.

Cultural algorithms make use of information above what is used in GP in a number

of di�erent classes [102]. Normative knowledge covers the range of values which have

been found to be bene�cial. This assumes that the improvement of these values is single

peaked and contains a smooth gradient to the global optima.

Cultural algorithms appear to be a framework within which knowledge can be stored

and utilised to in�uence further evolution. The rules by which knowledge is captured and

reused can be created for the task at hand. The approach is global in that all programs

can reuse knowledge from a shared belief space. Information is included in this belief

space from programs of high �tness only.
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2.4.2 Location Learning

This section discusses self-adaption techniques which highlight locations in a program

where modi�cation should be applied.

In canonical GP, all nodes in a program are equally likely to be selected for modi-

�cation. Code is selected at random for modi�cation but it has been noted that some

places in code should not be modi�ed due to destructive e�ects [87]. As discussed in the

previous section, mechanisms have been used to maintain blocks of code which appear

useful as a unit. These works reuse code as exact blocks of code but a speci�c block of

code may not always be valid when placed in certain contexts [97]. By reusing functions

the generality for reuse is improved [111] as any variable of the same type can be used

(as opposed to a speci�c variable as referenced in a speci�c piece of code).

2.4.2.1 Local Search

One straightforward way to �nd where to modify a program is to make a range of possible

changes and discard all but the �ttest generated program [87,120,126]. Another similar

approach is to prune sub-trees from a program and evaluate the resulting e�ect on �tness

[49].

Local search falls short of being a learning technique as information gathered during

the process is not retained or summarised for subsequent use. There is no attempt to

predict where to change before modi�cation. This approach is performed per individual

program as opposed to on a global basis. An additional re-evaluation of the program is

needed to �nd the impact of each sub-tree pruned and provides an aggressive selection

mechanism which will only accept the best mutation. Adding local search to GP can

increase the computational cost of the algorithm due to the large number of re-evaluations

performed.

2.4.2.2 Program Size

Modi�cation can be restricted based on a program measure such as size [47]. The purpose

of this approach is to mitigate the e�ects of bloat [30,86] or reduce the number of inviable
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programs produced [54]. The size of genetic material or tree depth can be taken into

account when considering where code is to be exchanged between programs [87] with the

emphasis on reducing destructive code modi�cations. This can be considered a global

approach as the depth at which modi�cation is performed is tuned for all programs.

Although size is used to select location, the location of code is randomly selected in

one program and the size or depth of this subtree is then used to select a location in the

second program. This approach still relies on random node selection in the �rst case and

then selects what to exchange this node with based on size [87].

Locations for crossover can be chosen at the same places in both parent programs [37].

The initial selection of a node is random but the choice of node is at the same location

in both programs under homologous crossover.

2.4.2.3 Semantics

The internal operation or behaviour of a program can be used to guide search and is

referred to as the use of �semantics� [134]. By considering the data that is processed by a

particular subtree, similar locations in another program can be chosen. This means that

subtrees are selected (or locations in a program are selected) based on the similarity of

their behaviour [89,133]. Assuming sub-trees in code can be partially evaluated code can

be matched based on the return values produced [89]. Another approach is to perform

multiple trials to select crossover points which produce valid programs [133]. Crossover

points are initially selected randomly and the similarity of the subtree's result is used to

constrain what code is used to replace other code. Subtrees can be selected for exchange

if they return the same values. This work is appropriate when dealing with S-expression

from functional languages and may need to be technically redesigned to be applied to

Abstract Syntax Trees (AST).
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2.5 Dynamic Individual-level Node Selection Bias in GP

We have discussed self-adaptive GP techniques in subsection 2.4.1 and more speci�cally

techniques which can �nd program modi�cation locations in subsection 2.4.2. This fol-

lowing section discusses mechanisms which bias the location of modi�cation during GP

speci�c to individual programs.

2.5.1 Individual Level Adaption

The �tness of a program as quotient of the average �tness of the entire generation can be

used to tune crossover and mutation rates for individual programs [35]. The purpose is to

balance exploration (with mutation) and exploitation (with crossover) at di�erent stages

of the evolutionary process. Mutation is applied more frequently on more �t individuals,

with the more coarse modi�cation performed by crossover being applied to programs

which are less �t with respect to the total population. The approach appears to re�ne

�t programs and provide large changes to un�t programs. Nodes are selected at random

from each program in this approach.

2.5.2 Gaussian Bias

One of the earliest descriptions of node selection bias proposed the use of values for each

modi�cation point in a program tree [6].

In this work, node values are updated every time an o�spring program is created.

The values are updated by randomly applying Gaussian noise. Updating bias is achieved

by the addition of random noise to the parameters at each node. Attaching parameters

to every node in a program yields bias which can be unique to each program [6]. The

parameter tree is individual to each program in the population. When the parameter

tree is created, all values are the same.

The programs with the best �tness are more likely to propagate through the genera-

tions, and similarly the bias attached to these programs also propagates. Bias is shaped

by the selection of programs based on �tness. The values evolve with each program
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meaning a good set of values is maintained in the population if the values can maintain

good �tness in individuals. A bias which produces a �t program is more likely to remain

in the population. Bias emerges based on it being less destructive and more likely to

produce viable and �tter programs. As node probabilities are selected by the overall

individual selection process the bias is not explicitly shaped by any explicit rule and

instead is shaped by a more implicit evolutionary pressure. Useful bias is thus allowed

to emerge through standard evolutionary pressure.

As the GP algorithm progresses through generations the di�erence in values in the

parameter tree should grow more pronounced. When random noise is used to change the

values the only cumulative bias in how these values emerge is driven by the individual

selection mechanism. Selection favours �tter individuals and therefore their parameter

trees will also survive. Parameter trees that survive will likely continue to survive if

they continually provide good locations to apply operators. The mechanism they arrive

at providing good bias for node selection is through random modi�cation. The value

modi�cation mechanism, random noise, is disconnected with how well the existing value

has been in previously recommending good locations to apply operators. We regard the

use of random noise in this manner as a gentle or light pressure on the emergence of large

di�erences in parameter values, and hence a gentle guiding pressure on the overall GP

search algorithm. As the noise applied is essentially random it may take a reasonable

amount of time for useful bias to emerge.

As the values are arbitrarily changed it may happen that the values are changed in

the wrong direction or in the wrong place for an individual. This could mean that a

promising individual is subsequently changed in a less-than-optimal location in a non-

optimal direction due to arbitrary allocation of noise within the parameter tree. Where

noise is added which is not optimal the GP algorithm could brie�y perform worse than

a GP system without any node selection bias. As GP can tolerate a certain amount of

sampling noise this may have negligible e�ect on an evolutionary run.

This work attempts to create programs from a set of primitives, and does not start

with an existing partial solution. The authors propose that there is no need for explicit
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credit assignment for each node, and that evolutionary pressure is enough to allow a

useful bias emerge.

2.5.3 Node Selection Bias

A guided technique for choosing where to modify a program is to pick the largest subtree

from those in a tournament [48,52]. The purpose of this approach is to control program

size generated and reduce bloat. If larger trees are chosen for modi�cation the aver-

age e�ect on program size is neutral neither increasing or decreasing the average size.

This work does not require that subtree size be equivalent as is the case in Homologous

crossover [37].

2.5.4 Fitness Guided Node Selection

Node selection bias has been used to control program size during GP [131] by picking

the ��ttest� node with roulette wheel selection. Node �tness is measured by the amount

of �tness each node contributes to the overall �tness. This technique is applicable where

the results of parts of a program can be evaluated directly as per the �tness function.

When roulette wheel selection is used node selection is biased towards nodes with

higher values but lower value nodes still have a chance of being picked.

This work is distinct, as it does not perform local search to specify what nodes to

select in a program and uses �tness information to propose what node is selected.

Subtree �tness per individual is relatively straightforward when evolving functional

programming languages on certain problems provided that a subtree can be directly

evaluated by the �tness function. Measuring the contribution of partial results as they

are computed during program execution may not be applicable where state is stored in

temporary variables during program execution. Depending on the program it may not

always be possible to inspect partial solutions during the execution of a program.
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2.5.5 Summary

The approaches listed here have all addressed issues speci�c to GP and have not at-

tempted to utilise aspect speci�c to the domain of improvement.

2.6 Analysing Software

As discussed in the previous section, many techniques for determining what programs to

generate have been proposed to guide or navigate GP through the search space. When

modifying a program, we can consider where to modify a program and with what to

modify a program with. Modularisation and coding styles can make source code more

easily navigated by people. Analysis techniques such as pro�ling can guide developers

but can also be used to automatically expose where in code to modify.

In this section methods for analysing program execution are discussed. We can mea-

sure programs by their output or by analysing the operations performed in producing

the output. To observe variance in these measures we can modify program input or the

program code itself. Analysing program output after source code modi�cation is most

relevant for this thesis. The program analysis techniques covered here are speci�c to

performance improvement as more general software metrics do not appear to be suitable

for guiding GP [17].

One approach is to measure di�erences in �ne grained pro�ling information such as

execution path [57] or count of speci�c execution operations [45] along with di�erences in

program output to make inferences about locations in a program. Similarly, di�erences in

program behaviour can be observed amongst two slightly di�erent versions of a program

[45].

2.6.1 Pro�lers

This section discusses how program pro�ling techniques can be used to guide automati-

cally improving program execution cost.

Pro�ling generally refers to measuring the resources used by a program during exe-
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cution [12]. This may be in terms of memory, I/O, system calls or time spent executing.

Pro�ling information can show what parts of a program are using the most resources.

We are most interested in pro�ling for execution cost but other pro�ling techniques are

of interest for their measurement technique.

Pro�lers which focus on CPU or energy pro�ling are of particular relevance as they are

related to cost of execution [94]. Pro�lers are widely used to aid program understanding

when performance bottlenecks are observed [3].

The main execution pro�ling approaches can be broken into sampling, timing and

execution count. Sampling methods take note of what part of the program is executing

sporadically during execution [127]. This is a low cost way of �nd where in the program

the most time is being spent. A relatively small number of samples are needed to �nd

the most time-consuming segment of code. As such, it highlights the most problematic

code quickly, as opposed to attempting a measure of exactly how much time is spent in

di�erent sections of code.

Timing measures introduce relatively low-overhead also by measuring the time elapsed

or �wall-clock� time for various portions of a program. Measures are taken at certain

points of interest in the program, such as measuring duration of a functional call. Tim-

ing measures can also be useful to understand complex interactions with an execution

environment [69, 92]. Timing may be particularly relevant for program specialising or

tuning. Accurate timing of code can be di�cult to perform especially as computing

environments grow more complex, for example where there is some runtime interpreta-

tion and improvement performed [67]. Interpreted or semi-interpreted languages allow

a larger variance in time as frequently interpreted code can be improved in many ways

such as compiling to machine code [13]. The operating system and its con�guration play

a part in how a runtime environment behaves. Due to this, timing measurements must

be repeated to gain a dependable average measure but the variance can be expected to

be high.

For a more general understanding of a programs execution pro�le, an execution or

operation count may be used. Frequency of execution can be measured by instrumenting a
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program [14,78]. Instrumenting refers to adding information gathering code to a program.

An example would be the addition of logging before and after a function call. For

execution frequency measures a counter can be updated after every function or line of

code executed. For program inspection with a view to improving an algorithms operation

code can be instrumented at di�erent granularities [40] such as per statement or per line

of code. Instructions executed can be measured to give a deterministic value for execution

cost at the bytecode level [68].

Various advantages such as accuracy, repeatability, lack of bias, low overhead and

portability have been well described [42]. Counting lines or operations executed ignores

environment measures for how long any one operation took to perform. Such measures

capture a pro�le of how many times operations were performed as opposed to how long

they took. Measuring frequency of execution is somewhat general in that it doesn't

capture how long or how much resources a unit of execution takes up in any particular

environment. Thus environmental aspects of the programs execution are mostly ignored

and a more general �algorithmic� measurement is made. One potential issue with their

use is that instrumentation may a�ect the programs operation in some cases especially

where the program is complex, threaded or has a lot of external interaction (system

bu�ers, io).

Fine-grained approaches to program pro�ling involve the instrumentation of a pro-

gram at the level of instructions [59, 103]. At the lowest level, hardware measurements

of instructions called by a processor can be taken. A compilation step can be used to

instrument a program at the machine-language level [84].

Even at the �nest unit of measurement, there still remains the question of how variable

the actual time is for each operation performed. Not all bytecodes are the same. There is

an arbitrarily large amount of variance in the time it takes to execute any single bytecode.

Consider that a number of bytecodes may be executed before a particular system or

network operation is performed. The time it takes for these operations is signi�cant and

may be attributed to the last bytecode executed before the operation is invoked. This

saving one bytecode, may not be as signi�cant as saving some other bytecode. Due to
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this, bytecodes can be given di�erent weightings to provide a more accurate measure

of cost [13, 67]. An example may be where a small number of bytecode may reserve or

release a large amount of memory, triggering work for the garbage collector.

We cannot broadly expect all operations to be similar across many execution envi-

ronments. Not all operations are equal either. A number of operations may need to

be performed before a system call is made, but under the execution frequency measure

an earlier operation is counted the same as the �nal operation which invokes a remote

procedure or performs some disk I/O. Saving the execution of some operations may con-

stitute a negligible reduction in a programs runtime cost. Any signi�cant saving in terms

of operations is highly likely to yield similar savings in execution time and we can use it

as an estimate of performance [70].

Lightweight pro�ling techniques have been used to guide improvements at runtime, as

readily exempli�ed in prominent Java Virtual Machine (JVM) implementations. Pro�le-

based compiler optimisations rely on measures such as invocation count of functions,

branch instructions and basic blocks of code to guide which optimisations should be

applied. Pro�le information improves optimisation in relation to the execution environ-

ment and the input data range. Knowing what code is executed most frequently allows

the compiler to choose between con�icting optimisations for the likely usage scenario

of the program. The optimisations performed are widely depended on to be semantics-

preserving.

Pro�ling information has also been used to select between di�erent variants of code

which performs the same task. Where multiple pre-written function implementations

are available variouis combinations of these function calls can be evaluated. Pro�le

information is gathered and used as a measure for which code combinations produce the

most performant program [23]. How safe the manually written code is can vary and there

is little assurance that the code change represents a semantics preserving one. Similarly,

a manually written code change is unlikely to be an entirely random change.
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2.6.2 Performance Root-Cause Diagnosis

While pro�ling can attribute execution cost to certain parts of a program to �nd per-

formance bottlenecks, taint tracking has been used to �nd the cause of performance

issues [10]. This work attempts to move from the detection of performance bottlenecks,

that is the symptoms of performance issues, toward the diagnosis of what is causing these

bottlenecks. Diagnosing bottleneck cause is described in terms of program con�guration

and input data. Using this approach, performance issues are attributed to entities out-

side of the source code of the program. The point can be made that a bottleneck and

the cause of that bottleneck may not appear in the same location within code.

The approach taken to determine root-cause of performance issues is to measure

the program performance in respect to the execution environment in terms of program

instructions and system calls [10]. By tracing program input data through a program

it can be seen what system calls are associated. The time it takes to execute the code

and perform system calls is then attributed to the di�erent input data. Program input

in this context can be software con�guration read in a startup, or data passed to the

program during normal runtime. Taint tracking is performed by marking input data and

capturing a trace of resources used in processing input data. By comparing the cost of

many traces across di�ering input data, input data which causes the most cost can be

found.

The purpose of associating execution cost with input data is to help debug con�gu-

ration issues and understand why certain requests to a program cause radically di�erent

performance characteristics. Manually tracing the cause of a performance issue within a

program can be time-consuming and di�cult to perform especially in large systems. This

approach modi�es input data to the program as opposed to modifying the program itself

and uses the concept of comparing or di�erencing the change in execution on response

to change of input data.

The analysis is heavy-weight and is performed after recording of instrumented pro-

gram execution. This approach is applicable for performance issues which are caused by

problems extraneous to the source code. Access to source code is not necessary when
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tracing input data. The approach is particularly useful for con�guration of a program

without requiring a deep understanding of the internals of a program. Re-designing the

actual program code is not the focus of this work, nor is the focus to generate possible

con�guration �xes for performance issues (though it seems a plausible next step).

The approach assumes that a program is structured in a way which allows con�gu-

ration values to be modularised in con�g �les external to the program itself. The code

has to be written to be tunable, where con�icting program design decisions have already

been incorporated into the program. When appropriately designed, it is a matter of con-

�guration to select program behaviour. The approach is designed to operate on binary

programs. It does not go as far as recommending where in the source code a solution

should be applied and treats a program as a black-box in that regard. It is proposed as

a runtime con�guration tool as opposed to a design-time tool.

This form of performance cause diagnosis using taint analysis has not been used with

GP, although the approach appears that it could be useful in guiding GP.

2.6.3 Sensitivity Analysis

Varying input data has been used to determine bottleneck locations which are likely to

become more problematic as input data size increases [29, 73]. The execution frequency

of a �basic block� of code can be measured using di�erent input data sizes [29] and

can be alternatively described as �asymptotic analysis� [29] or �sensitivity analysis� [73].

For each di�erent input size over a range of sizes the program is pro�lied to get a line

count. For a number of di�erent input sizes each line of code in a program will have

a range of execution frequency counts. Observing how execution frequency changes for

each line gives it's sensitivity to the input size. For example, some lines may have a

quadratic or qubic response to input size [73]. Particularly costly lines may be described

as performance bugs which are can manifest as size increases.

Highlighting scalability-critical code extends the ability of execution pro�ling on input

of a �xed size. The approach can highlight code which scales poorly when input size is

increased and draws mutation to bottleneck code which contributes the most to program
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cost. Removing these bottlenecks improves the programs performance but also may guide

improvement of a program's stability under varying loads.

For performance, sensitivity analysis has been used to directly attribute bias to nodes

in a program as discussed in subsection 2.6.3 before the application of GP [73]. State-

ments which are executed exponentially more often as the input size increases are given

the highest bias. The bias that is allocated is �xed in magnitude manually with respect

to the exponent level to which their execution increases.

2.6.4 Program Spectra

Program Spectra refers to analysing changes in a programs execution [45, 50] using a

number of di�erent measures of execution. Analysis can be performed over measures or

�spectra� such as execution path, count or program output. A programs execution, and

as a consequence its spectra, is varied by providing di�erent input data to the program

or across a number of program variants. The approach is interesting for the concept

of analysing some measurable spectrum produced by either varying program input or

varying the program itself.

From the spectra measures mentioned [45], �output� spectra, or measures of the

programs output, were not found to be particularly relevant to fault localisation. This

work is very useful in framing the various ways program behaviour can be measured.

Although the work inspects two program variants, a correct and buggy version, the

variants are used to determine what program metrics highlight a bug most prominently.

The input is varied to observe the di�erence in measured spectra. The spectra that they

measure include internal traces of program execution such as which lines are executed

when the bug is measured for some input.

Other spectra appear similar in concept to measuring the semantics or behaviour of

a program over time. Getting an execution trace of a program is similar to measuring

semantics of a program [133].

Work on bug �xing [141] appears an example application of this concept to guide

GP, although it does not appear to have been investigated for highlighting potential
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performance improvements.

2.6.5 Mutation Analysis

Mutation analysis refers to modi�cation of a program repeatedly and analysing the re-

sulting e�ect on program behaviour. While mutation analysis is widely used to improve

software test suites, modi�cation or mutation of programs has been used to drive analy-

sis for fault localization [91, 100]. Programs are mutated using prede�ned rules and the

output of the program is analysed. Over a number of mutations, the analysis is able to

localise faults. A number of test cases, each of which is evaluated as true or false, are

used to �nd faults. The general notion is that faults produced by code mutations are

directly attributed to the locations of those code changes.

The localisation of faults has received plenty of attention in the related work, with

many advances being made in the area [57]. We include a brief discussion of fault

localisation to show that it is possible to accurately infer the location of improvements

in a program.

Fault localisation can be performed by executing a program with a range of input

data. The correctness of a program is measured with a number of test cases. The input

data which causes test cases to fail is likely to have a di�erent execution path than tests

which do not fail. The di�erence in test cases passed and execution paths is analysed to

show where a bug is likely to exist. Execution paths, and the associated code are thus

separated by the test cases passed. Those associated with positive test cases only are of

low �suspiciousness� for being faulty. Those associated with both negative and positive

test cases are medium. Most suspicious of all are portions of an execution path traversed

only by negative test cases.

The approach has been validated as accurate for bug �xing for a number of bugs

across a number of programs [139]. The fault localisation technique has been used to

apply probabilities to lines of code before GP is applied. This reduces the problem

of dealing with a solution space resulting from 20k lines of source code to one that is

orders of magnitude smaller, 34 to 3.8k lines of code in examples. Probabilities are
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set for each line of code through the use of multiple positive and negative test cases.

Code which is executed under positive test cases is less likely to be the cause of a bug.

Code executed by negative test cases, which test for the bug, are likely associated with

the bug. Probabilities are used to guide the GP operators to lines of code that have a

high chance of relevance to the bug. This work highlights the importance and impact

of �nding locations within source code. It is also interesting to note the granularity

that GP operates at. Lines of code are swapped as opposed to picking nodes at a �ner

granularity. This improves scalability, but decreases chances of �nding a solution given

that the number of possible solutions has been reduced through the use of a coarser

granularity. This approach is based on the assumption that the lines of code required

to �x a bug exist somewhere else within the program. In demostrated examples this

appears to be the case for certain bugs.

The core method in this work, named Tarantula [57], ignores the number of times a

section of code has been run which is �tting when considering fault localisation.

Ideally we would like a similar mechanism which can accurately �nd the location

of code elements which cause performance problems in programs. Developers typically

�backtrack until the fault is found� [57] when using localisation techniques. This high-

lights the di�erence between where the fault manifests, occurs or is exposed and where

the cause of the fault is.

There does not seem to be any work on the use of software mutation or the analysis

of many program variants for attributing runtime cost to source code.

2.7 Summary

Traditionally, GP has been used to evolve functions. Advances in the size of programs

generated with this approach have not materialised. As a result, attention has turned

to the improvement of existing programs using randomised algorithms such as GP. GP

search becomes less e�ective as more modi�cation points in an existing program are

considered.
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Even when GP is used on a partial solution which contains most of the required

genetic material, there is still an opportunity to further guide GP in searching through

program variants.

Approaches to guiding GP have sought to learn information about a problem during

the GP algorithm. Learning what building blocks are relevant to a problem is not of

upmost importance where the majority of a solution and structure has been provided.

When building blocks can be ascertained as relevant for a problem, they can be considered

globally relevant for all program variants which are considered as solutions. Where

improvement is possible by only a small number of code edits, learning where to make

program modi�cations can be bene�cial. Learning where to modify a program has been

performed during GP for purposes speci�c to traits of the GP algorithm, such as bloat.

Knowing where best to modify a speci�c program may not be generally applicable across

a wide variety of variant programs. Learning where to modify existing code speci�cally

for performance improvement has not been examined on an individual program basis.

Pro�ling is bene�cial for focusing search where bottlenecks manifest. Taint analysis

has been used to attribute the cause of performance issues to input data extraneous to

source code. Neither approach has been used during GP. In both cases, program analysis

has generally been performed by observing the e�ect of varying input data to a program.

As a taxonomy of program analysis, program spectra is a good model to distinguish

the di�erent ways of analysing measurable aspects of a program at runtime. Spectra is

any measurable aspect of a program at runtime. To create a varying spectra at runtime,

we can vary either change the program input or the program itself. Changing the input

has been used for bug �xing as well as performance analysis of bottlenecks and the cause

of bottlenecks in input data. Changing the code itself for indicating the location of

performance improvements has not been rigorously evaluated.

Finding the cause of a performance bottleneck is di�cult to analyse as the cause and

bottleneck are not necessarily at the same location in code. Determining the cause of a

performance bottleneck or where a performance is likely to exist is di�cult as there are

complex interdependencies between code elements in a program and all code elements
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executed in a program contribute in some way to the execution cost. The performance of

a program is a single summed value of all operations performed during program execution

which does not appear to directly expose the cause of performance improvements.

Our problem is guiding GP speci�cally for the purpose of performance improvement.

From our coverage of the related work, and as far as we know, the derivation of individual

bias from program mutation, speci�cally for performance improvement during GP has

not been proposed.
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Chapter 3

Self-Focusing GP for Software

Performance Improvement

To evaluate the e�ect of bias on GP, we use a reference GP con�guration which we refer

to as �canonical GP� and its extension with mutation-derived bias. Canonical GP is

designed primarily to support inspection of our hypothesis about bias in GP. We use a

baseline experimental setup where our GP system was able to �nd improvements in all

problems we considered. Canonical GP is designed using concepts from the related work,

but the implementation was developed for this thesis. Although our GP system could be

improved by more rigorous typing to prevent wasted evaluations [18], we scope out the

consideration of complex GP additions which may distract from the research questions

of interest.

Our solution lies at the intersection of dynamically guided GP and performance anal-

ysis of software. The core design concept is that bias is allocated to nodes based on

measuring the e�ect code modi�cations have on program �tness during the evolutionary

process. If performance improvements can be highlighted through analysing the e�ects

of random modi�cation then GP should have increased chances of �nding those improve-

ments. If the chances of �nding improvements increases then improvements should be

observed earlier in the GP process.
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Improvement analysis through mutation-derived bias allocation is performed by the

same mechanisms that GP relies on. The use of mutation-derived bias is a�ected by

the generational nature of GP, where bias is allocated to many programs variants. Bias

allocation can alternatively be performed on a single program without being part of GP.

Our proposed approach, Self-Focusing GP, speci�es biasing node selection for modi�ca-

tion during the GP process. The iterative process of measuring change to guide further

change is an additional learning mechanism which extends the canonical GP algorithm.

We propose the use of di�erences in program function measure to increase bias values

of nodes which have been modi�ed. Increased values directly increase chances of selection

when functionality is reduced through modi�cation. Measuring a reduction of function-

ality is bounded by the requirement that the program be amenable to evaluation. The

program must compile for evaluation to take place. If the program does not compile,

bias can not increase.

We experiment with GP and bias design as implemented in a GP system which

modi�es, compiles and evaluates java code named �locoGP� (more details can be found

in Appendix A).

3.1 Design Rationale

We use GP as it is a randomised search algorithm with little restriction on the pro-

gram modi�cation possible, and subsequently little restriction on the functionality or

performance of programs generated. As generating substantial programs from scratch is

currently beyond the practical ability of GP, we focus on improvement of existing code.

We seek to improve GP's chances of �nding improved programs by adding additional

selection mechanisms to GP. As GP is a computationally expensive process which relies

on program modi�cation, it would be bene�cial if the result of program modi�cation

can be reused to instruct subsequent modi�cation. Modi�cation is performed as part

of GP and so we seek additional information generated from modi�cation that can be

instructive to search.
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Adding values to locations in a program allows the algorithm to distinguish between

locations in a program when attempting modi�cation. We are generally of the opinion

that such mechanisms should have some randomised element. We use tournament se-

lection which allows values to be selected which are not the highest. This avoids the

algorithm repeatedly selecting the same node every time in a program.

We choose an individual bias mechanism as opposed to some centralised global store of

information. Summarising information in a central location assumes that the information

is generally applicable and reusable across many programs. A global store of code appears

useful when considering reuse of common code elements. For example, a sort algorithm

is likely useful in many programs. It is less clear how information about a particular

location in a program may be relevant in di�erent programs. We argue that knowledge

speci�c to the current individual which is distilled through its unique lineage will be more

accurate for modifying this speci�c individual than a general sub-tree �tness mechanism.

A guidance mechanism which updates during the search progresses can evolve with the

population of individuals and be more sensitive to each individual in the population [122].

This approach may be useful where there is a large amount of diversity in the population.

We inspect the use of rule-based or 'explicit' credit assignment in comparison to

allowing bias to change randomly [6]. The overall approach is still somewhat randomised

due to the selection mechanism. A rule-based bias update mechanism allows information

gathered during GP be directly used to update bias values.

The performance or execution cost of a program is measured as a single scalar value

which increases and decreases as input data size and distribution changes. We assume

there is little variance in execution path through a program apart from the frequency

of execution. In comparison with bug �xing, functionality is measured as a factor of

binary values. By changing input data, binary values in this vector change and can be

attributed to di�ering execution paths taken through a program. Performance on the

other hand cannot be readily inspected by observing di�erent execution paths through a

program under di�erent input data.

As our �tness function is comprised of performance and functionality measures, we
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have a number of ways of constructing a rule for updating bias. A number of design

decisions are presented, the �tness, functionality or performance values can move up

or down when a child program is produced. We want to see if mutation can indicate

performance improvements as there is a �uctuation in evaluation values when a program

is modi�ed.

As we are starting from an existing functioning program, we are starting at a local

optima which the search must �escape�. When compilable programs are created by ran-

dom modi�cations at random locations in a program, there is a trend toward degraded

functionality and increased performance measures. The canonical example is of an empty

program which does not have any function yet has an excellent measure of performance.

We use our GP system to inspect the use of functionality change as a factor in

highlighting performance improvements. We choose functionality as it has shown more

relevance to performance improvements under initial application to problems. We eval-

uate how useful functionality is at highlighting performance improvements in chapter 4.

As we experiment with changes in functionality to control bias, it may seem counter-

intuitive for changes in functionality to be used to infer locations relevant to perfor-

mance.Additionally, modi�cations which have not been tried before have no information

associated with them and are thus worth attempting to modify at least once [71].

As real-world software may have multiple requirements and only a single one is re-

quired to change the portion of the code which needs to be modi�ed can be expected

to be small [73, 140]. We modify programs represented as Abstract Syntax Trees (AST)

which gives the ability to modify a program at a �ne-grained level (a Turing complete

language) and includes typing and syntax information.

Contrary to the goals of much of the GP literature, we are less interested in preserv-

ing building blocks but �nding modi�cations to existing blocks. Because of this guiding

random change suits our purposes better than mechanisms for preserving or cultivating

building blocks. To improve software, you need to break it �rst. In terms of the schema

or building block hypothesis we ignore whether we think these can be used as blocks and

instead focusing on change. We argue that there is no one perfect modularisation and
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that attempting to reuse rigorously de�ned chunks of code may be counter-productive

for improvement. Generally the larger and more general a block of code is the more

opportunity exists within it for specialising it to be part of a larger composition of code.

Our philosophy, in the context of GP for program improvement, is that we should shape

the application of modi�cation as opposed to modularising functionality. In biological

systems, modi�cation is focused at the boundary of natures building blocks but modi-

�cation also occurs throughout genetic code albeit at a reduced rate [93]. As there is

some contention about the importance of building blocks we may leave the de�nition

and reuse of a building block to evolutionary pressure as its explicit encapsulation may

hinder search.

3.2 Genetic Programming Con�guration

The settings and operation of our baseline reference GP con�guration are summarised in

Table 3.1. The representation and GP parameters are chosen to support the modi�cation

of code in the Java language. The elitism we use is the most non-standard part of

our canonical GP algorithm. Technical and implementation details can be found in

Appendix A.

The initial population of individuals is generated by taking the program to be evolved

as the seed individual and mutating it. Code elements that exist within the seed program

are taken as the primitives used by the GP system. New generations of individuals are

created by the application of mutation and crossover operators.

In more theoretical work dealing with the understanding of GP as an algorithm the

initial generation is populated with randomly created programs. As we are interested in

the improvement of existing programs the initial generation consists of variants of the

original program [9]. When starting GP from a correct seed program �tness improvements

are rare. Most changes to the seed will degrade the �tness and few will increase �tness.

It is highly likely that any single modi�cation to the program will degrade the program's

functionality. It is likely that the seed can be considered a local optima which must be
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Table 3.1: Baseline GP Con�guration Summary

Parameter Value

Representation Java AST

Node Selection Random with AST typing

Operators Crossover, Mutation

Crossover Rate 0.9

Mutation Rate 0.3

Fitness function
F =

ExectionCountindividual
ExecutionCountseed

+ 100 · Errormax − Errorindividual
Errormax

Individual Selection Tournament (2)

Initialisation Method Mutated Seed

Max Operator Applications 100

Population Size 250

Generations 100

Elitism 30% of unique �ttest

escaped. Using single modi�cations means the �tness must �rst get worse before it can

get better.

When creating a new individual a parent program is cloned and then modi�ed as per

the operators. For each crossover or mutation operator application only one o�spring

individual program is generated.

3.2.1 Representation

We convert source code to an Abstract Syntax Tree (AST) for modi�cation. This gives us

a tree devoid of source code artifacts such as parentheses and line terminators. It provides

us with a tree which can nonetheless be modi�ed to produce semantically incorrect

programs which do not compile. The number of discarded programs created due to

compilation errors is relatively high. The representation used is for the most part de�ned

by the operation of the java AST library used [132].

Operators are not leaf nodes in the AST representation. We workaround this by
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selecting leaf nodes when their containing expression is selected for modi�cation. When

an expression is selected, a further choice is made as to what part of the expression is

modi�ed giving operators the chance of being selected. Such idiosyncrasies are common

when dealing with the Java AST library [132].

3.2.2 Node Selection

Our node selection mechanism is based on the typing provided by the AST representation.

The probability of node selection is uniform with no distinction between internal or leaf

nodes in the tree (as is sometimes contended in the GP literature [5]). Such a distinction

may be an arbitrary focus on certain elements as the representation is an AST.

3.2.2.1 Node Typing

The typing used to restrict node compatibility is based directly on the java language

syntax. This is also supported by the AST library we use. Typing and object inheritance

determine how elements can be changed. When a node such as an expression is chosen

it can be be replaced with another expression. Where a statement is selected, it may be

replaced by another statement, or statement subtype such as an IF or WHILE statement.

While the use of typing prevents some invalid code replacement, such as replacing

an operator with a variable, it does not prevent all syntax errors and programs can be

generated which do not compile.

3.2.3 Operators

Once a node is selected, it and the whole AST subtree is subject to replacement, deletion

or cloning depending on the node type. A replacement node can be a whole subtree, e.g.

in the case of a statement replacement. In this case, the node which is the root of the

subtree is of concern. Deletion is only applied to statements which can include blocks

of code as sub-trees, for example the body of a loop. If we pick a block, we clone some

other random line of code into the block.

56



A new distinct child program is produced by the application of mutation and/or

crossover. Crossover is applied at a rate of 30% and mutation is applied at a rate of 90%.

It is also possible for two code edits to be made in generating a single child program

where crossover and mutation happen to be selected together.

3.2.3.1 Crossover

Crossover is applied on a pair of programs. A node is selected in both programs, and

one is replaced with the other to produce a new program.

Crossover is limited to the exchange of a subtree in one program with a cloned subtree

from another. Leaf nodes may not be involved in this process. The idea behind crossover

is the exchange of useful code sequences between programs. The modi�cation of a single

element in a program would be classi�ed as mutation. As such, our crossover operator

only allows the exchange of statement and expression node types.

Crossover is repeatedly attempted until a compilable program is produced, or a max-

imum of 100 attempts have been made.

3.2.3.2 Mutation

Mutation involves applying change to a single individual program in the form of cloning,

deletion or replacement of nodes. It is used exclusively to generate the initial population

of programs and in conjunction with crossover for subsequent generations.

How mutation is performed is dependent on the node that is selected within an

individual. A node can be deleted, replaced or cloned. If the node is a block statement,

then a statement is inserted, with no choice for deletion or modi�cation of the contents

of the block. If the node is a particular expression, such as in�x or post�x, then the

operator is changed for a di�erent one. If the node is a statement, it's contents may be

modi�ed or the statement can be deleted. If the node is of another type, such as variable,

then it can only be replaced and deletion is not an option due to syntax constraints.
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3.2.4 Fitness Function

A performance measure is used to put evolutionary pressure toward improving perfor-

mance. A measure of functionality is also used to maintain the evolution of correct

implementations. While we can use a general measure for performance, functionality

measures are currently problem speci�c.

Programs that compile and �nish executing without error within a speci�c time can

be evaluated for their �tness. Programs that do not compile are discarded. Programs

which exhibit runtime errors or do not �nish within a certain timeframe are given the

worst �tness values possible.

The �tness function is a weighted sum of a performance and (100 times the) func-

tionality error as shown in Figure 3.1. Measures of performance (individual instruction

count over seed instruction count) and functionality score (test case error over max test

case score) are normalised against measures for the seed program. If a program is con-

sidered correct, evaluation will give a value of zero for functionality error. Two correct

programs (or programs which score the same functionality error) are then comparable

by performance only. A program variant which returns the same values as the (assumed

�correct�) seed and executes the same number of bytecodes will receive a �tness value

of one. The weighting of 100 for functionality errors means that semi-functional pro-

grams are �binned� or grouped roughly by their functionality and programs with the

same functionality are di�erentiated only on performance measures. In our experiments

we are trying to minimise these values and so programs with a value less than one can

be considered improved with regard to execution cost 1.

F =
ExectionCountindividual
ExecutionCountseed

+ 100 · Errormax − Errorindividual
Errormax

(3.1)

Fig. 3.1: Fitness Function

1We do not consider the possibility of program variants which are functionally better than the seed for

our experimental problems as they are very unlikely to occur. This may become an issue as improvement

is applied to further problem programs.
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3.2.4.1 Performance

The type of improvement that can be expected is related to the measures of software used

during GP. For improving performance di�erent measures of time or operation execution

can be used to search for di�erent types of performance improvement.

We search for program improvements which reduce the number of operations per-

formed during program execution regardless of the platform-speci�c costs associated

with executing of each operation.

We measure code operations executed speci�cally by counting bytecodes executed

in Java [68]. Measuring bytecode provides an evolutionary pressure towards programs

which cause less operations to be executed and so there is an in-built parsimony pressure

toward smaller programs.

Our measure of performance is not solely an implementation issue. The evaluation

mechanism and how performance is measured a�ects the type of program improvement

that is likely to be found. Measuring operations performed ignores platform speci�c

di�erences in performance, and means the GP algorithm di�erentiates programs only on

their ability to reduce execution count. This is expected to promote search for general

code improvements. Our intent is to improve programs at a high-level, which can be

considered program re-design at a general level.

Counting bytecodes executed gives a measure which does not vary between runs and

can be expected to be portable [68].

3.2.4.2 Functionality

Measuring functionality at a detailed level is not trivial and requires careful consideration

to get the ordering of functionality improvements correct [61]. For example, a sort

algorithm which swaps two identical numbers in a list is still considered better than a

program which does nothing to the list at all. Such edge cases are not captured by a

general count of correct ordering of values and have to be speci�cally assigned a value

on the functionality gradient.

The way functionality is measured during GP can be thought of as a �variable� test

59



case. In SE work a test case usually returns a binary true or false value. The test cases

we use attempt to provide a measure of how much of the functionality is provided. This

gives the GP algorithm a way of distinguishing functional programs and a gradient along

which improvement can be biased toward.

We provide a number of input test values which are passed to variant programs. The

results of which are compared with known correct answers derived from the seed program

which is considered our �oracle� implementation [36].

The error count returned for all test cases is summed. This value is subtracted from

the error count value for the seed program and divided by the seed error count as can

be seen in Figure 3.2. Functionality is calculated as the di�erence between new program

error and the seed error scores divided by the seed error score. If the program error count

is the same as the seed, the functionality score is zero.

FunctionalityScore =
Errorseed − Errorindividual

Errorseed
(3.2)

Fig. 3.2: Functionality Score

For a sort algorithm, we construct a measure for how �sorted� a list of numbers are

by counting how far each number is away from where it should be in the correctly sorted

list. This is calculated by summing up �errors�. If a value is in the right location, the

error count is incremented by one. If the value is not in its correct place but also not

in the place it originally was, then it has been moved and error count is incremented by

two. If the value has not moved at all then error count is incremented by three. This

approach measures when a value does not move and allocates the highest error value

to these events. At least when a value has been moved, albeit to the wrong place, the

program is exhibiting functionality which is more desirable than not moving the value at

all. A number of �xed test arrays are used to inspect variant sort programs. The sort

algorithm in the Java library is used as an oracle to check correct answers.

We also experiment with a Hu�man codebook problem and have written a function

which checks if the result returned is a valid set of pre�x codes. A valid set of pre�x
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codes is a set of codewords where no codeword forms a pre�x or the initial part of any

other codeword.The functionality error is a sum of a number of problems encountered in

pre�x codebooks.

A pre�x codebook should have the same number of codes as there are di�erent char-

acters in the input data. We count the number of extra or missing codes and add them

to the error.

We count the number of pre�x violations and add them to the error count. A pre�x

violation occurs when a codeword forms the pre�x of any other codeword.

As the goal of pre�x code algorithms is to reduce the overall length of valid codewords

for a particular input, we sum the length of each codeword and add this to the error.

If either a codebook length or pre�x violation error is found the error count is further

penalised by the addition of the length of all codewords in the oracle codebook answer

to the error count. As codebook length and pre�x violations may be small we must

ensure that a program which has either of these errors does not get a better score than

the oracle answer. If a single pre�x error is detected the value of one may be added to

the error even though the codeword length is smaller than the oracle answer. Without

penalising such cases a program with pre�x errors would appear better than a correct

oracle answer.

3.2.5 Selection

The lower the �tness value for a program, the �better� it is considered, and the more

likely the program will be selected to create a new program for the next generation. A

program is selected to be modi�ed by initially picking two (or more) programs at random,

with the �ttest program being selected. This is referred to as �tournament� selection in

the GP literature [106].

3.2.6 Elitism

GP is a randomised algorithm which can be destructive when modifying programs, gener-

ations can be created consisting of less �t individuals than their ancestors. To ensure the
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best �tness in each generation does not drop, elitism promotes the best programs from

the parents generation to the children's. Typically the worst programs in the children's

generation are replaced by the best of their parents.

As program modi�cation is highly destructive elitism rates used for program improve-

ment tend to be high. Some approaches do not replace low �tness individuals at all and

simply delete the lower 50% of programs ranked by �tness [36]. Existing programs are

assumed to have relatively high �tness to begin with. In this scenario elitism is use-

ful for removing defective programs which have poor �tness as opposed to propagating

high-�tness programs.

We use a form of elitism at the rate of 30% which we term �diverse elitism�. When

gathering the elite programs from the previous generation the decimal part of �tness

value is ignored. We then take a program for the top 30% unique �tness values. Ignoring

the decimal place means we are largely ignoring performance and only distinguishing

on functionality. For each whole number �tness value we select only one program. The

e�ect of this is that we do not select similar programs which have the same functionality.

This approach prevents any one program from dominating the generation. The least �t

30% of the new generation by �tness value is replaced by these diverse elite programs.

3.3 Self-focusing Genetic Programming

When a program modi�cation is performed a change in the �tness value is likely to be

produced. The change in �tness is used to attribute information to the location of the

modi�cation. As more modi�cations are performed using the same program to produce

more variants further information is attributed to locations within the program. Over

time repeated modi�cations di�erentiate the di�erent locations in a program. Further-

more, we speci�cally inspect the use of the functionality measure as a key factor in

highlighting the location of performance improvements in code.

The canonical GP con�guration as described in the previous section is extended in

this section. Our solution takes the form of a number of additions to the GP algorithm.
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3.3.1 Design Methodology

Our design methodology used known optimisations in Bubble Sort to test whether our

bias allocation mechanism was highlighting the best locations. A variety of bias allo-

cation rules were investigated and the most promising is used for our evaluation. The

experimental work which was used to derive the evaluated bias allocation rule can be

found in Appendix C.

3.3.2 Bias Values

To allow nodes to be biased each node in a program AST has a value attached. The bias

value determines the likelyhood that a node is selected to be modi�ed by an operator [6].

3.3.3 Value Initialisation

Initially all nodes are given a value of one, the highest allowed value, which promotes

exploration. All nodes are modi�ed at least once [71]. There is signi�cance to the value

of one as it can be taken to mean that the node has not been changed before. If the node

is changed and the bias updated then the bias value will never be set to one again due to

the way bias is updated. Any node which has been modi�ed will have a value less than

one. If the location of that change is found to have a value of one after a code change

the bias value is immediately set to 0.9 before bias update is applied.

3.3.4 Modi�cation

When a program is modi�ed an o�spring or child program is produced. Bias values at

the location of modi�cation are changed in the parent as well as the child program. The

amount that bias value are changed by is dependant on the �tness change.

The assumption within our approach is that bias values will be changed in the parent

program as it is likely to be selected again in the generation of a new program. For

every time the program is modi�ed bias values are updated and also passed along to, or

�inherited� by, the o�spring program. Bias is updated in di�erent ways depending on the
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o�spring program's �tness.

3.3.4.1 Decay

When programs do not compile or timeout the bias value is decreased or subject to decay

at the location which produce the degraded program in the parent program. Uncom-

pilable o�spring programs are discarded when created. Decay is only applied to parent

programs in this scenario.

3.3.4.2 Functionality Change

The rule by which we update or decrease bias values is based on changes in functionality

between parent and child program. If the o�spring functionality is less than the parent,

the parent location of modi�cation is increased and the child location of modi�cation is

decreased. If the o�spring functionality is more than the parent, then the parent location

is decreased and the o�spring location increased

3.3.4.3 Bias Update Magnitude

The amount by which bias is updated at each node is �xed. The change does not depend

on the magnitude of functionality change. Bias updates are however made with respect

to the bias existing value. Updating bias is done as a quotiant of the current value. An

increase or decrease in bias is performed so that values may never be smaller than zero or

larger than one. If the bias value is 0.6 and we want to increase it, we may only increase

it by a an amount which will not set the value to one or above.

Bias values are increased by a quarter of the di�erence between the existing value

and one. If the bias value is 0.6, then an increase would result in a bias value of 0.7.

Decreases can not set the bias value to zero or less. Existing values are decreased by

0.05 times that value. A bias value of 0.6, would decrease to 0.57.

The magnitude chosen must adequately tell apart nodes in a program. What is

important is the node ranking produced as opposed to the magnitude of bias of any

node.
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We have experimented brie�y with making the magnitude of bias change related to

the change in �tness observed but were unable to yield any interesting results. Rules

which allocate magnitude of bias in response to magnitude of �tness change are noted in

Appendix C.

3.3.5 Updating Node Bias During GP

The previous description can be used on a single program without being part of GP. We

term this �static� bias allocation which is performed to observe the bias produced in a

more controlled environment on the same program.

Dynamic bias updates can be performed during GP. As many programs are created

during GP and GP is a randomised algorithm it is more di�cult to observe bias allocation.

Bias is updated in the parent program which was cloned as well as in the new child

program. In the case of crossover, the �tness of the second parent which provided genetic

material is also compared to the child and bias is updated in the child a second time.

It is likely that there is no one rule which can �nd out all improvements in a program.

Similar work in fault localisation has recently proved that such a rule does not exist for

fault localisation [153].

3.3.5.1 Node Selection

Node selection is performed by tournament selection although any selection mechanism

which takes into account bias could be used [48]. The tournament size is set to 20% of

the number of nodes in the program.

3.3.5.2 Bias Inheritance

When a new program is generated during GP all the parent values are copied to the

o�spring program. When nodes are replaced during crossover the replacement node

takes the bias value of the original node. The values of the nodes in the rest of the

subtree maintain their original values.
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Under mutation the root node is given the bias value of the node it replaces. All other

nodes in the subtree are initialised to one. If this program is selected for modi�cation

subsequently these new nodes will have a high likelyhood of being selected. In this way,

we ensure that the bias update mechanism gathers information about all nodes in the

program so it can make more informed modi�cations to the program.

Bias propagates through generations during GP in this manner as well as by moving

individuals from one generation to the next during elitism. Inheritance happens before

program evaluation and bias update.

3.4 Gaussian Bias

We compare the use of dynamic bias during GP to the use of randomly modi�ed bias [6].

The distribution used for random bias is Gaussian. Bias is randomly changed after every

modi�cation but normalised within the bounds of zero and one.

3.5 Summary

We have detailed our baseline GP system and its extension with mutation-derived bias

which is performed dynamically during GP. We also identify a technique which randomly

modi�es bias from the state of the art which will be be used for comparison.
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Chapter 4

Evaluation

In this section program modi�cation is evaluated as a mechanism to indicate locations

of performance improvements in code.

4.1 Overview

We begin by showing how GP performs on our problem set as a baseline for further

experiments and to characterise the operation of GP in the context of program improve-

ment.

We know the improvements that can be found in each of our test problems and what

code needs to change to produce these improvements. By setting the bias appropriately

for an improvement in one of these problems, Bubble Sort, we can observe the optimal

e�ect that bias can have on GP in a static context. We do this to validate the approach

of using bias to a�ect GP. We then use a program pro�ling technique and our mutation-

based bias allocation technique to similarly apply bias statically and compare.

Hand-made bias for Bubble Sort is e�ective at increasing GP's chances of �nding

known improvements. We test pro�ler-derived bias on Bubble Sort and a variant which

includes an extra redundant loop of the whole algorithm. The purpose of this problem

is to inspect whether a pro�ler can be deceived as to the location of a performance

improvement. While the use of pro�ler derived bias increases the chances of �nding an
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improvement during GP greatly, the pro�ler technique is far less e�ective on the deceptive

problem and is out-performed by GP without bias in later generations.

We then generate bias by repeatedly modifying the seed program and evaluating the

e�ect this bias has on GP. Mutation-derived bias greatly improves GP on Bubble Sort

and outperforms a pro�ler on the deceptive problem. This shows the ability of mutation-

derived bias to �nd improvements in code. Mutation-derived bias is also not as deceived

as the use of a pro�ler.

Although program improvements can be highlighted statically with mutation-derived

bias, the process is computationally expensive to perform. As the derivation of bias is

distributed across a wider range of program variants when performed dynamically during

GP we inspect the e�ect of dynamic bias on the GP process. If improvements can still

be found then we know mutation-derived bias is possible in a dynamic context.

On our Bubble Sort problem, dynamic bias allocation increases chances of �nding

an improvement in early generations, but is eventually overtaken by GP without bias.

We apply GP with dynamic bias to a range of sort algorithms and a Hu�man codebook

generation algorithm to observe the generality of this approach. Dynamic bias shows an

advantage in improving the chances of �nding improvements on 7 out of the 12 problems,

but is eventually overtaken by GP without bias on 2 of these problems.

Bias can also be changed entirely at random per a Gaussian distribution. The bias

is shaped by the evolutionary pressure of �tness selection in GP. Fitter programs and

their associated bias values are propagated through the population. We �nd that this

approach improves GP on 7 out of 12 problems. Gaussian bias is better on 6 of the 12

problems when directly compared with dynamic mutation-derived bias.

While our results so far are somewhat inconclusive as to what method is unanimously

better than others, we can say that di�erent approaches are more useful on some problems

that other approaches. A pro�ler can be expected useful where improvement opportuni-

ties are co-located with bottlenecks in code. We can explain the ability of Gaussian bias

by considering that Gaussian bias is shaped by the evolutionary pressure of GP which is

dependent on the selection of �t programs. Programs with high �tness and appropriate
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bias which lead to high �tness o�spring will propagate. Bias which produces high �tness

programs will thus propagate. We can say that Gaussian bias performs well where the

sequence of variant programs required are all of high �tness. To validate this hypothesis,

further analysis is required which is left to future work. By elimination we can say that

mutation-derived bias can �nd improvements which are not colocated with bottlenecks

and have a sequence of lower-�tness variant programs which must be created to reach an

improved program. Again, this hypothesis would require further work.

Our �nal analysis is to perform every valid edit (per AST typing) to a test problem

with every possible replacement code element as found in the test problem. This requires

n2 - n evaluations of a program, where n is the number of AST nodes in the program.

The purpose of this analysis is to see if there is an overall di�erence in the �tness values

created when modifying nodes which are known to be part of an improvement. If these

nodes can be separated from other nodes then we can validate that mutation-derived

bias can �nd these improvements during GP. We �nd that on 8 out of 12 problems nodes

which are required to change for an improvement to be found compiled more often under

modi�cation. This analysis suggests that magnitude of performance change may also be

used as a factor in highlighting improvement opportunities. This work has the potential

to aid further design of bias update rules and is left to future work.

The core �nding from this work is that locations, which compile when modi�ed, are

where search can be focused to �nd improvements. Further to this, spectrum analysis

suggests that modi�cations which reduce performance values the least are worth focusing

modi�cation on. The results shown support these claims on the majority of programs

inspected though do not generalise across all problems tested.

4.2 Improving Programs with GP

The results of our instantiation of �canonical� GP are introduced in this section to provide

understanding of the process and characterise the search performed. We begin by showing

the results of a successful run on one of our test problems. The only part of this setup
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that may not be termed �traditional� is the elitism mechanism which is geared towards

maintaining diverse programs as per their functionality score. The purpose of this section

is to establish a baseline for how GP is applied to our problem set.

We introduce our basic experiment on a naive form of Bubble Sort 1. Bubble Sort

is of little use practically due to it being relatively ine�cient when compared with other

sort algorithms. Bubble Sort is however an ideal candidate for improvement as a simple

algorithm where improvement is easy to understand.

1 class Sort1Problem {

2 public static void sort( Integer[] a, Integer length){

3 for (int i=0; i < length; i++) {

4 for (int j=0; j < length - 1; j++) {

5 if (a[j] > a[j + 1]) {

6 int k=a[j];

7 a[j]=a[j + 1];

8 a[j + 1]=k;

9 }

10 }

11 }

12 return a;

13 }

14 }

Listing 1: Naive Bubble Sort implementation [146]

There are a number of ways of producing a functionally equivalent improvement

in bytecode execution. We know of one edit which improves the code in Listing 1 by

reducing the number of bytecodes executed [146]. The improvement involves replacing

`` i++'' on line 3, with `` length−−'' as compared in Listing 2.
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3 for (int i=0; i < length; i++) for (int i=0; i < length; length--)

Listing 2: Bubble Sort Outer-Loop Improvement

4 for (int j=0; j < length - 1; j++) for (int j=0; j < length - 1 - i; j++)

Listing 3: Bubble Sort Inner-Loop Improvement

During the course of our experiments another equivalent improvement was found

where `` length − 1'' on line 4 is changed to `` length − 1 − i'' as compared in Listing 3.

Both these code changes improve the Bubble Sort by skipping iterations over portions

of the array which have already been sorted. As Bubble Sort iterates over an array,

elements are sorted from the end of the array forward. The number of sorted elements

at the end of the array grows with each iteration and does not need to be iterated over

again.

Figure 4.1 shows the �tness values for all individuals in each generation and the

average �tness per generation of an example GP run on Bubble Sort. Each dot in the

graph is the �tness of a single individual program. The line shows the average �tness

of each generation. Crossover begins to operate (the �rst generation is created with

mutation only) within the �rst number of generations. On average, there is a reasonable

spread of functionality created during the initial generations. In following generations

elitism favours better programs which become more numerous. Many variants of the

better programs are created and begin to dominate in subsequent generations. In later

generations there is a greater chance that a new individual will have a higher �tness.

Of note is the modality of the distribution. Few individuals evaluate to some regions of

the �tness gradient. This can be seen in the grouping of individual �tness values into

rows in Figure 4.1. This may be because our multiplication of 100 of the functionality

provides spacing between functionality levels which the performance variability is not
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Fig. 4.1: Fitness Scatter and Average for GP on Bubble Sort
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large enough to �ll in. The variability of performance is low enough that it does not

�ll in the gap between functionality �levels�. Although the tournament size of 2 we use

is a light pressure on the population �tness, the elitism rate of 30% is more aggressive

and this can be seen as the algorithm progresses where the worst individuals are being

replaced faster than they are being created.

Considering that improvements in �tness are rare it may seemingly appear that im-

proved programs are found more or less at random and the genetic nature of the GP

algorithm does not give much advantage over random search for the problem of program

improvement. Although there is the temptation to classify this search process as being

more �random� than it is �genetic�, GP on subsequent problems show that genetic op-

erators are advantageous for delivering even a single �tness improvement. Even though

there is no �tness improvement on the seed program, the search process is busy exploring

lineages of programs which are necessary to reach an improved variant.
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The search starts at a local optima when using a seed program. This optima must be

�escaped� before an improvement can be made. In a sense, we need to break the program

before it can be improved. This is especially the case when using programming languages

which have complicated syntax and semantics.

In improved programs we see both the reuse of existing code and the modi�cation of

code at a �ne level. Only a small number of edits are required to improve some programs.

On others, it is necessary for a �block� of code to be reused and subsequently modi�ed to

produce a variant program. In either case a strict or rigid de�nition of a building block

may be overly restrictive. If a building block preserving GP extension were to be used it

would have to allow the modi�cation of the contents of a building block.

Fig. 4.2: Best individual programs for GP on Bubble Sort
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Figure 4.2 shows the �ttest (i.e lowest value) individual from each generation in

Figure 4.1. The particular GP run we picked shows a single distinct jump to 0.6. This

represents a saving of 40% of the execution cost of this algorithm in terms of bytecodes
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executed (note this does not equate to 40% wall-clock time saving). The graph presented

here demonstrates a typical GP run. Many runs on these problems produce a small

number of stepped improvements which is in contrast with traditional GP graphs which

show many �ner improvement steps. Of the GP runs that do �nd an improvement,

many show a single step to an improved version of the program. The graph shown

here is largely representative of improvements on this problem. We could however have

included more interesting graphs showing more steps of improvement. It is rare to �nd

a problem and GP setup that will give a very smooth gradient from seed to an improved

version of a program such is the makeup of the �tness landscape. Once the improvement

is found super�uous code can sometimes be removed in subsequent generations resulting

in a number of visually distinct improvement steps.

The best �tness individuals from each generation in a single run are shown in Fig-

ure 4.2. When using GP on existing software the algorithm is starting from a local optima

and is attempting to �nd one of very few improvements. The best �tness does not show

incremental improvements and the graph remains �at for the majority of the search pro-

cess. Where GP is able to grow a program outright better programs can be found in

almost every generation of the GP run. When GP frequently �nds improvements the

resulting graph is smooth as opposed to a sudden step improvement as seen in Figure 4.2.

This comparison can distinguish between the scale of the problem and the jaggedness

of the search space where a smooth gradient of program improvement is not possible.

Visually, what we see in Figure 4.2 looks like what we would see if we zoomed in on the

tail end portion of a GP run which had began with random programs. GP may make

a better program in every generation when starting from randomly generated programs

as opposed to a seed program which is already considered highly �t. We think of GP on

existing software as attempting to �nd one of a very few �nal improvements. The graph

of best programs during GP on existing software can be thought of as a �zoomed in� view

on the �nal portion of a GP which is creating a solution from scratch.
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4.2.1 Problem Set

We apply GP to sort algorithms and a Hu�man codebook generating algorithm. The sort

implementations were taken mostly unmodi�ed from online sources [135]. The Hu�man

codebook algorithm was written to include one of our sort algorithms as a subfunction

as listed in Appendix B and characterised in Table 4.1. An improved version of each

program was found for all test programs in our problem set.

These programs consist of common algorithms that are well studied. There are many

versions in existence and there is reasonable interest in their improvement. They are

relative small but their size is large enough that we can assume GP is unlikely to generate

these programs from scratch without being given domain speci�c primitives [2]. They

are big enough to pose as di�cult problems for GP to improve but small enough that any

improvements may be understood. The problems are neither too easy or prohibitively

di�cult for GP, and as such, are su�cient to measure the di�erence bias makes on the

search process for program improvement.

We create a further sort problem by modifying Bubble Sort to contain an extra outer

loop over the entire algorithm. This adds extra locations in the code which can be

modi�ed and greatly increases the execution cost of the algorithm. The extra outer loop

is executed twice but almost doubles the execution cost of the entire program. This

problem, termed �BubbleLoops�, is used as a deceptive problem in subsection 4.4.2.

The �Hu�man codebook� problem introduces a new �tness function and associated

candidate solution for improvement. The Bubble Sort algorithm is embedded in the

candidate solution as we are familiar with the improvements which exist. We inspect

only one candidate solution for pre�x codebook generation as that is all that is needed

to show our ruleset does not scale well to a larger program. Until we can understand

why our rules are not advantageous on this problem, or until we can �nd a rule that

does work on this problem, we do not gain much further information about dynamic bias

allocation by applying rules to larger problems.

We use related problems so that we may control the experiments and make step-wise

inferences. If we use programs that are too di�erent, it is more di�cult to make inferences
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about the di�ering results. We can see this when we try our approach on Hu�man. Our

approach does not show the same improvements as it does on our sort programs. The

Hu�man codebook problem, although incorporating Bubble Sort (and in turn the same

improvement opportunities), has a di�erent �tness function, larger seed program size,

and is broken into a number of methods.

Problem Name AST Nodes LOC Best Fitness % Discarded

Insertion Sort 60 13 0.91 73.3

Bubble Sort 62 13 0.55 71.4

BubbleLoops 72 14 0.29 71.8

Selection Sort 2 72 16 0.99 70.9

Selection Sort 73 18 0.98 71.2

Shell Sort 85 23 0.95 71.4

Radix Sort 100 23 0.99 80.5

Quick Sort 116 31 0.46 72.7

Cocktail Sort 126 30 0.85 73.7

Merge Sort 216 51 0.95 73.2

Heap Sort 246 62 0.59 71.1

Hu�man Codebook 411 115 0.57 83.8

Table 4.1: Problem improvement overview

Table 4.1 shows the improvements found in our test problems when GP was ap-

plied. This shows that for a number of common algorithm implementations GP can

�nd a modi�cation which reduces execution count. Sort implementations were taken

�o�-the-shelf� from various sources [135] as reproduced in Appendix B. Of the sort im-

plementations which were taken without modi�cation, and which we can assume were

not written speci�cally to be ine�cient, a reduction in bytecode executed was found. A

count of the AST nodes available for modi�cation in each program shows the number of

modi�cations points which can be chosen during the application of GP. Lines of code are
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counted including those containing braces [143]. The number of discarded programs is a

ratio of the number of programs which do not make it into each generation over the total

number of programs produced. Discarded programs include those which do not compile

and intermediate programs generated where mutation and crossover are applied together.

This is di�erent to software mutational robustness [115] which measures how the number

of modi�cations which leave a program's behaviour unchanged. In our experiments, a

minuscule number of programs, certainly less than 1%, show no behavioural change when

modi�ed. This may be a result of our GP con�guration which has built-in parsimony.

Super�uous code is less likely to be present under this setup. Bloat is not an issue and

we are operating on relatively small programs throughout the GP process.

4.3 Statistical Comparison

In the following sections the e�ect of bias on the GP process is graphed for GP with and

without bias as two separate data series. The GP process is repeated 100 times. Data

points for each GP con�guration are derived by resampling the 100 GP runs. For each

generation 100 mean values were calculated from 1000 samples (with replacement) and

used to surround data points with grey bands showing quantiles at 97.5 and 2.5 to give

an estimated 95% con�dence interval. Separate data series lines for GP with and without

bias can be seen in Figure 4.3.

In subsequent graphs, starting with Figure 4.6, we graph the di�erence between two

data series to observe at what generations during the GP process there is a statistically

signi�cant di�erence. Quantiles at 97.5 and 2.5 are drawn surrounding these di�erenced

values to give an estimated 95% con�dence interval around the di�erence using sampling

with replacement 1000 times. When the con�dence interval bands intersect the x-axis we

can say that there is no statistically signi�cant di�erence between GP with and without

bias. The power of this test is dependent on the di�erence between the means for GP

with and without bias. The di�erence between the two data series lines in Figure 4.6 is

shown as a single di�erence line in Figure 4.6.
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4.4 Static Bias

This section introduces the application of bias to the initial program before the applica-

tion of GP. By �static bias� we are referring to node bias which is not updated or modi�ed

in magnitude during a GP run. Bias is applied to the seed program before running GP.

The bias a�ects the probability that certain nodes are chosen for modi�cation. The op-

timal e�ect that bias can have in a static context is shown through the application of

hand-made bias values which match the locations of known improvements. Here we show

that static bias can improve GP on our Bubble Sort example.

4.4.1 Hand-Made Bias

To observe the e�ect of biasing locations in a program we manually set bias high for

locations in Bubble Sort which we know can be changed to produce an improved version of

the program. This hand-made bias represents an ideal focus of GP change for optimising

Bubble Sort and represents what we aspire to produce automatically. We set values to

1 for each node in the program which needs to change separately for both the known

improvements in Bubble Sort.

We take known improvements in Bubble Sort as shown in Listing 2 and Listing 3 and

hand-craft bias values which would be bene�cial for guiding random mutation toward

the improvement. This provides us with an indicator for what the optimal impact bias

can have on the GP process in ideal conditions.

The rate at which both improvements are found with GP is demonstrated to show

di�ering improvements are more di�cult, depending on the edits required for each im-

provement as well as the �tness of individuals along this edit path. An improvement

requiring more changes is going to take more individuals to �nd using GP.

Figure 4.3 shows how GP is improved when bias is set to 1 for nodes involved in the

second improvement as shown in Listing 2 ( `` i++'' replaced with `` length−−'' on line

3). The rate of improvement appears the same as in standard GP but the improvement

found by both approaches is di�erent. Even though the overall rate of improvement
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Fig. 4.3: GP with Hand-Made Outer-Loop Bias on Bubble Sort
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is roughly the same, GP with bias in this �gure �nds an improvement which is more

�obscure� in that it is more di�cult to �nd.

Data points in Figure 4.3 are derived by resampling 100 GP runs as described in

section 4.3. For each generation 100 mean values were calculated from 1000 samples

(with replacement) and used to surround data points with grey bands showing quantiles

at 97.5 and 2.5 to give an estimated 95% con�dence interval.

Figure 4.4 shows how a GP run has a higher chance of optimising Bubble Sort when

bias is set high for the simpler of the two improvements ( `` length − 1'' replaced with

`` length − i' ' on line 4) Listing 3. As this is the simplest improvement it can be expected

that our unbiased GP run will �nd this improvement more often than the more complex.

Considering both these graphs gives insight into what makes program improvement

di�cult. There are a number of ways of achieving the same improvement even if the

measurable improvement is the same overall. These di�erent cases show what is meant
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Fig. 4.4: GP with Hand-made Inner-Loop Bias on Bubble Sort
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by problem di�culty. The length of lineage required to produce a particular improved

program variant in�uences the chances of �nding that improvement. The �tness of the

program variants along this lineage also a�ects how likely the programs are to be selected

for subsequent modi�cation and how likely the lineage is to be traversed.

Of the improved programs found when using standard GP the simpler improvement

(Inner Loop Listing 3) is found 96% of the time and the more complex version (Outer

Loop Listing 2) is found 4% of the time. When the inner loop is highlighted and an

improvement found as shown in Figure 4.4, the inner loop improvement is found 94% of

the time and the outer loop 6% of the time. When the outer loop is highlighted and an

improvement is found as shown in Figure 4.3, the outer loop improvement is found 88%

of the time and the easier improvement being found 12% of the time. We distinguish

between these di�erent improvements only in passing and scope our work to the rate

of improvement of a program which GP is capable of. We could use the distinction of

these improvements to assess the complexity of improvement that a bias technique is
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likely to uncover. This raises the point that although we may not be able to make GP

�nd improvements more quickly on all problems, we may be able to a�ect the diversity

of the solutions which GP may �nd. It may be useful to discover di�erent variants of

an improvement which may have di�erent applications in di�erent contexts but this is

limited to future work. Our �tness function does not capture the di�erent improvements

found.

Our problem is the automated generation of an �optimal� bias which can guide soft-

ware change with respect to a program measure.

4.4.2 Pro�ler-Derived Bias

We show how a bias derived using pro�ler techniques compares to optimal bias. Tech-

niques for pro�ling have been used previously to apply bias to large programs [73]. We

investigate the e�ects of pro�ling in a static context before GP is applied.

When pro�ling is used a program is instrumented to count the number of times a

line of code is executed when run. Pro�ling provides an execution pro�le for all lines of

code in a program. The execution frequency can be used to bias locations in a program.

Pro�ling a program is shown to improve GP almost as good as a hand-made optimal

bias but can however be deceived when the location of an improvement is di�erent to

the location of a heavily executed line of code. The deceptive problem used is a variant

Bubble Sort problem where an extra redundant outer loop is added to the program.

Improved versions of the program can be attained by modifying the outer loop. The

problem is deceptive for a pro�ler as this outer loop is only executed twice which means

the pro�ler technique ranks this code as having among the lowest execution count.

Table 4.2 shows the line count for each line of code when the program is executed

over 20 calls. For every AST node in each line we set the bias the same in relation to

the number of times the line is executed. Bias is set to 1 where the execution count is

highest with bias being allocated as a fraction of this maximum value for other nodes.

Figure 4.5 shows how a pro�le-derived bias a�ects GP. GP is able to �nd a more

improved version of the program more quickly. The chance of �nding the inner or outer
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Line Count Bias Value Rank

for (int i=0; i < length; i++) 284 0.5 3

for (int j=0; j < length − 1; j++) 5894 1.0 1

if (a[ j ]. compareTo(a[j + 1])<0) 5630 0.95 2

int k=a[j] 793 0.13 4

a[ j]=a[j + 1] 793 0.13 4

a[ j + 1]=k 793 0.13 4

Table 4.2: Pro�ler-Derived Bias Values for Bubble Sort
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Fig. 4.5: GP with Pro�ler-Derived Bias on Bubble Sort

loop improvement was equal.

We redraw the results of Figure 4.5 in Figure 4.6 to show the di�erence between 100

values for GP with and without bias as previously described in section 4.3. Quantiles
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Fig. 4.6: Pro�ler-Derived Bias Di�erence on Bubble Sort

at 97.5 and 2.5 are drawn around these di�erenced values to give an estimated 95%

con�dence interval around the di�erence using sampling with replacement 1000 times.

When the con�dence interval bands intersect the x-axis we can say that there is no

statistically signi�cant di�erence between GP with and without bias. The power of this

test is dependent on the di�erence between the means for GP with and without bias.

An improvement is more likely to be found up until the 90th generation when stan-

dard GP is then more likely to �nd an improvement. This may be due to static bias

becoming less e�ective as the search progresses and the population becomes more diverse

in comparison to the seed program. Pro�le-derived bias provides an advantage to the

GP process on this problem.

4.4.2.1 Deceptive Problem

Pro�ling techniques can show where a problem manifests in a program and can be used

to guide GP. In this section we show that a pro�ler can be deceived as to the location
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of improvements. The location of a bottleneck is not always the same as where change

should be applied to improve a program. Where a performance bottleneck manifests is

not always the same as where the code should be changed to reduce the execution cost

of a program.
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Fig. 4.7: GP with Pro�ler-Derived Bias Di�erence on Deceptive Bubble Sort

By modifying Bubble Sort to include more redundant iterations a deceptive problem

is created. When a pro�ler is used on this problem lines of code which are executed most

frequently are highlighted. The extra outer loop which causes the redundant iterations

is given the lowest bias ranking when attributed with a pro�ler. Figure 4.7 shows the

di�erence between Pro�ler derived bias and canonical GP. Pro�le-derived bias is only

equivalent to GP between the 20th and 30th generations but presents a net disadvantage

to the process on this problem. When analysed we �nd that the use of a pro�ler �nds

the most improved version of the program half as often as standard GP.

A pro�ler is particularly useful where an improvement exists at the same location as

costly code. How often an improvement is co-located with costly code would require a
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broad review of software and is considered out of scope of this thesis. When the location

of a bottleneck is not the same as the location of an improvement opportunity a pro�ler

will highlight the bottleneck. Focusing change on the bottleneck will draw search e�ort

away from the improvement and toward the bottleneck, slowing the search process.

4.4.3 Mutation-Derived Bias

We attribute bias to locations in a program in response to the measurable di�erence

between an original program and its modi�ed variant. By repeatedly modifying a pro-

gram and attributing bias to the modi�ed locations, bias values for all locations in the

program can be built up. We term this process �mutation-derived� bias. The purpose of

mutation-derived bias is to �nd locations in a program which show some hint relevant to

to program improvement when modi�ed. GP can be guided to locations in the program

which have shown hints of being particularly relevant to improvement opportunities.

Mutation-derived bias can guide GP on Bubble Sort and is not misdirected on deceptive

Bubble Sort. Although the bias generated is accurate, it is costly to analyse software in

this way. We create mutation-derived bias in a static context before the application of

GP, but as mutation-derived bias through the same cycle of modi�cation and evaluation

as in GP, we can derived bias during the GP process, and is so termed �Dynamic Bias�.

This section shows the bias overlay that mutation produces on our bubble sort exam-

ple program. The bias values and ranking of nodes in a program due to these values is

shown in Table 4.3. Nodes which must change to produce an improved version of Bubble

Sort are highlighted in this table.
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Rank Absolute Node Node Node Subtree
Value Number

15 0.920865 1 for (int i=0; i < length; i++) { for (int j=0; j <
length - 1; j++) { if (a[j] > a[j + 1]) { int k=a[j];
a[j]=a[j + 1]; a[j + 1]=k; } }}

12 0 .921351 2 int i=0

22 0.919202 3 i=0

26 0.918849 4 i

41 0.917408 5 0

6 0.926602 6 i < length

8 0.923221 7 i

9 0.922238 8 length

1 0.942054 9 i++

7 0.923594 10 i

18 0.920286 11 { for (int j=0; j < length - 1; j++) { if (a[j] > a[j
+ 1]) { int k=a[j]; a[j]=a[j + 1]; a[j + 1]=k; } }}

49 0.916529 12 for (int j=0; j < length - 1; j++) { if (a[j] > a[j +
1]) { int k=a[j]; a[j]=a[j + 1]; a[j + 1]=k; }}

4 0.939287 13 int j=0

59 0.914065 14 j=0

60 0.913459 15 j

42 0.917401 16 0

3 0.939547 17 j < length - 1

52 0.916287 18 j

58 0.914073 19 length - 1

54 0.916139 20 length

56 0.915849 21 1

57 0.915054 22 j++

36 0.91798 23 j

51 0.916346 24 { if (a[j] > a[j + 1]) { int k=a[j]; a[j]=a[j + 1];
a[j + 1]=k; }}

44 0.917204 25 if (a[j] > a[j + 1]) { int k=a[j]; a[j]=a[j + 1];
a[j + 1]=k;}

2 0.940164 26 a[j] > a[j + 1]

27 0.918658 27 a[j]

14 0.920887 28 a

37 0.917949 29 j

24 0.918934 30 a[j + 1]

13 0.921169 31 a

46 0.917115 32 j + 1

34 0.918134 33 j

86



25 0.918873 34 1

31 0.918354 35 { int k=a[j]; a[j]=a[j + 1]; a[j + 1]=k;}

5 0.939187 36 int k=a[j];

50 0.916511 37 k=a[j]

61 0.913347 38 k

39 0.917689 39 a[j]

17 0.920663 40 a

32 0.918266 41 j

19 0.919975 42 a[j]=a[j + 1];

40 0.917664 43 a[j]=a[j + 1]

16 0.92072 44 a[j]

11 0.921573 45 a

23 0.919057 46 j

21 0.919381 47 a[j + 1]

10 0.922172 48 a

43 0.91738 49 j + 1

48 0.916938 50 j

47 0.91711 51 1

33 0.918226 52 a[j + 1]=k;

55 0.915924 53 a[j + 1]=k

28 0.91863 54 a[j + 1]

20 0.91945 55 a

53 0.916264 56 j + 1

45 0.917116 57 j

38 0.917846 58 1

35 0.918028 59 k

30 0.918483 60 return a;

29 0.91853 61 a

Table 4.3: Mutation-derived Node Rankings for Bubble Sort

As bias mechanisms from the related work have been applied statically, we compare

the bias produced by our mutation-based technique for software improvement in this

context. Though expensive, we generate bias by creating program variants of a seed

program and updating bias until bias values �stabilise� or converge on particular values.

Bias is then applied to the seed before running GP.

When the bias from Table 4.3 is applied to Bubble Sort the resulting rate of improve-
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ment can be seen in Figure 4.8. 250 generations of 5 individuals were created to produce

this node ranking. When an improvement was found the inner loop improvement was

found 8% of the time while the outer loop improvement was found 92% of the time. We

would interpret this result as mutation-derived bias being able to improve the program

quickly while �nding the more di�cult of the two improvements. Whether this approach

is particularly bene�cial for �nding more di�cult-to-�nd improvements would require

further investigation.
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Fig. 4.8: GP with Mutation-Derived Bias on Deceptive Bubble Sort

4.4.3.1 Deceptive Problem

We apply the same approach of repeatedly mutating the deceptive Bubble Sort problem as

seed to produce a bias overlay to see how it compares to the use of a pro�ler. Although

mutation-derived bias does not increase the chances of �nding an improvement over

canonical GP, the use of mutation to derive bias is not as deceived as pro�ler-derived
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bias on this problem as shown in Figure 4.9.
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Fig. 4.9: Pro�ler and Mutation-Derived Bias Di�erence on Deceptive Bubble Sort

This provides an example where the performance analysis approach of pro�ling shows

where a problem manifests as opposed to where a solution is likely to exist.

4.5 Dynamic Bias

The last section showed us that a pro�ler technique is good for �nding out where a prob-

lem manifests but can be deceived where the cause of a bottleneck is not co-located with

code that takes the most amount of execution time. The location where a performance

bottleneck problem manifests may not always be the same location as an improvement

which can alleviate the bottleneck. In short, the location of the problem may not be

where the solution should be applied. We also showed that mutation-derived bias in a

static context is less in�uenced by deceptive problems.
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We are interested in using mutation-derived bias dynamically during GP as deriving

bias in this way is an expensive analysis technique. As GP performs mutation as part of

the algorithm the cost can be o�set when used as part of GP to localise mutation and

search for solutions through the same process.

Deriving bias dynamically during GP means that bias is attributed to a wider range

of program variants. During GP the program being modi�ed can change and the number

of modi�cations to any one program may be less than the number of modi�cations made

by repeated modi�cation of a single seed program. As modi�cation is spread out among

a population of programs and applied less frequently to each individual program there is

only partial information for each location within a program. In this section we show how

mutation-derived bias can improve GP when used as an integral part of the algorithm.

It is possible to in�uence GP through bias allocation to �nd improvements more quickly,

even though bias is allocated over a range of program variants.

We show dynamic mutation-derived bias across a number of sort and Hu�man code-

book algorithms and �nd that although we can derive bene�cial bias on some problems,

the approach does not generalise. In Figure 4.10 dynamic bias in GP is compared to

canonical GP, showing dynamic bias marginally outperforms standard GP until the 70th

generation.

On the Hu�man codebook problem our dynamic bias does not focus GP toward a

known improvement. This is curious as the �Hu�book� problem contains the Bubble Sort

implementation. This indicates that either the �tness function or the implementation

of Hu�book is obscuring the patterns required to �nd the improvement. The same

improvement was found in Bubble Sort previously so the �tness function and the program

have changed in such a way to prevent the improvement being measured. We tested all

of the rule-sets but none highlighted the improvement. Thus it would appear that our

approach is limited due to some programs not exposing the location of improvements. If

the nodes in a program cannot be measured as di�erent then the bias mechanism may

focus on other nodes reducing the chances of �nding an improvement. This is dependent

on the program being modi�ed and the structure of the �tness function being used.
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Fig. 4.10: GP with Dynamic Bias Allocation on Bubble Sort

Further work would be required to fully understand why this problem is resistant to any

bias allocation rules. In short, if there are no distinguishable patterns produced when

nodes are modi�ed bias allocation will not improve GP.

4.5.1 Static VS Dynamic

We compare mutation-derived bias in both static and dynamic contexts. This compares

the improvement found by making bias allocation part of the GP algorithm. Mutation-

derived bias applied statically is bene�cial and we show here that the same bene�t can

be made to GP through the use of mutation-based bias allocation as part of the GP

algorithm.

When we allocate bias statically, it is with respect to one seed program. The vast bulk

of program variants generated from this seed, will have lower �tness values. Throughout

this process the seed program does not change and the bias allocated to it can be more
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speci�c to that program. When bias is allocated �dynamically� as part of GP the �tness

di�erences between parent and child program will include increases and decreases of

�tness.

Deriving bias during GP is outperformed by static bias as compared in Figure 4.11.

Dynamic bias on Bubble Sort �nds the inner loop improvement 97% of the time. This

is a curious result as the opposite is true when mutation-derived bias is used in a static

context, the outer loop improvement is found most often (96%). The discrepancy in

the operation of mutation-derived bias when applied statically and dynamically may be

due to the range of program variants which bias is applied to during GP. When bias is

allocated dynamically during GP the number of opportunities to update bias for each

individual is less.

We pick generation 100 to compare as this gives enough generations for the GP

approaches to separated with regard to their e�ect on the GP process.
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Fig. 4.11: Dynamic and Static Derived Bias Di�erence on Bubble Sort

92



4.5.2 Deceptive Problem

In Figure 4.12 the improvement pace made by dynamic rule-based bias allocation is

shown over canonical GP on the deceptive loops problem. Although bias is bene�cial in

the early generations canonical GP catches up. The use of dynamic mutation-derived

bias is better than mutation-derived bias applied statically on this problem. Dynamic

bias (as well as mutation-derived bias applied statically) is not as deceived as the use of

a pro�ler statically on this particular problem.
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Fig. 4.12: GP with Dynamic Bias Allocation on Deceptive Bubble Sort

Dynamic bias allocation appears to be the best of the three bias mechanisms for this

type of problem. The deceptive Bubble Sort requires a change in two separate places to

�nd the known improvement. The changes can be made independent of each other so a

static bias which accurately highlights both of these locations should be more e�ective

on this problem.
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4.5.3 Generality of Dynamic Bias

In this section we run GP with dynamic bias allocation across all our test problems to

inspect generality. We compare dynamic bias with canonical GP in these tests to see

if dynamic bias can �nd performance improvements even over the range of programs

created during GP. Where a single seed program is repeatedly mutated to derive a static

bias many variant programs are mutated to derive bias when mutation-derived bias is

used during GP. In this section, we also look for trends across the problem set which

may in�uence the operation of dynamic bias.

Figure 4.13 shows the results of dynamic bias against canonical GP on all problems.

We show all problems on a single graph to observe on which of our problems bias improves

the GP process. GP with dynamic bias increases the chances of �nding an improvement

over canonical GP in 7 out of the 12 problems up until about generation 90. After

generation 90 Canonical GP is better on 7 out of the 12 generations. As dynamic bias

is better during some generations, but not others, it is necessary to show results across

all generations on all problems. Because of this variance it is di�cult to pick any one

generation as being representative for comparison. Of course a radical change in the

improvements found could happen after generation 100, but this is unlikely given that

GP tends to converge after a number of generations. This view is also supported by

scatter graphs of all �tness values in a generation, which in our experiments, reduces

over time as exempli�ed in Figure 4.1. We could also analyse the time taken for GP

to �nd a known improvement, but the issue is that some runs may not converge on the

known improved version of a program regardless of how much time is allowed.

These results are encouraging as they show that on some problems dynamic bias is

capable of highlighting the location of improvements. We continue our analysis to see if

the positive e�ects of dynamic bias are correlated with problem characteristics such as

program size or improvement size.
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4.5.4 Trend Analysis

In Table 4.4 a number of program characteristics are listed. We measure these charac-

teristics to see if, for example, the bene�t of dynamic bias is correlated with program

size. We want to see if general program characteristics can predict how well dynamic

bias can be expected to perform on a problem. Program size is listed in terms of number

of AST nodes in a problem. �Tree-edits� is a count of the minimum number of tree edits

required to �nd an improved version of the problem. Although a number of edits are

possible the minimum required is sometimes less where multiple equivalent improvements

are possible.

Dividing the number of edits required by the program size give �Edits / Nodes�. This

is a measure of the portion of the problem which has to change for an improved version

to be found. We use this as a rough measure of the breadth of search which must be

undertaken. The lower the number of nodes which must be �found� and the larger the

program is, the harder these improvements can be expected to be found.

The percentage of programs discarded during the GP process is also shown. This

gives an idea of how di�cult the problems are to modify using the GP operators. Cer-

tain problems are more di�cult to modify, and we can say that these problems are more

complex or have more interdependencies, as more of the programs have to be discarded.

We take the comparison of dynamic bias and canonical bias at generation 100 across

all problems and order the results per the measures shown in Table 4.4.

Figure 4.14 shows the di�erence between Canonical GP and Dynamic Bias in the

last generation of all problems. This diagram provides an overview for how many prob-

lems dynamic bias was able to improve the chances of �nding improved programs. The

ordering of problems is in increasing size in terms of program size measured in AST

nodes. We show this graph here to inspect any trends that may be visible as the program

size increases. From the diagram there is no obvious trend when considering program

size. Dynamic bias slows down the GP process on a number of problems. Our choice

of generation 100 is somewhat arbitrary and does not provide a de�nitive answer to any
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Problem Name AST Nodes Tree-Edits Edits / Nodes % Discarded

Insertion Sort 60 3 .05 73.3

Bubble Sort 62 2 .032 71.4

Deceptive Bubble Sort 72 4 .055 71.8

Selection Sort 2 72 1 .0138 70.9

Selection Sort 73 1 .0137 71.2

Shell Sort 85 3 .035 71.4

Radix Sort 100 3 .03 80.5

Quick Sort 116 2 .0172 72.7

Cocktail Sort 126 1 .0079 73.7

Merge Sort 216 1 .0079 73.2

Heap Sort 246 2 .0081 71.1

Hu�man Codebook 411 2 .0048 83.8

Table 4.4: Size of Program and Minimum Change Required for Improvement

questions about trend. As the operation of dynamic bias on these problems varies over

time it is di�cult to pick the correct generation to compare values over. From Quicksort

onwards the e�ect of dynamic bias appears to decrease. Up to Quicksort, the range of

nodes is from 60 to 100. From Quicksort onwards the range is from 116 to 411. Applying

dynamic bias to larger programs is of particular interest for future work. The ordering

of problems in Figure 4.14 is the only one that shows any hint of a correlation.

In Figure 4.15 the ordering is based on the minimum number of tree edits required to

produce an improved program. We refer to this as the �Improvement Size�. If the size of

the improvement determines how di�cult an improvement is to �nd then potentially the

use of bias is a�ected by the number of nodes which must change to produce an improved

variant. The more nodes which must change the longer the �tree-edit distance� or lineage

of programs between the seed and the improved program. As this lineage grows longer

a longer sequence of edits must be performed. As more edits are required the higher the
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chance that some of these edits have poor �tness. The longer the lineage of edits and

the poorer the �tness of program variants along the lineage, the less likely it is that GP

will be able to traverse this lineage. There does not appear to be any noticeable trend

under this ordering.

In Figure 4.16 results are ordered by the improvement size over the program size. This

measure of problem di�culty seeks to capture the size of the changes we are searching

for over all possible changes. Figuratively, we are measuring the size of the needle in

comparison to the haystack.

In Figure 4.17 results are ordered by the number of programs discarded. The concept

behind this ordering is that more complex programs which are more tightly knit or have

a larger number of interdependencies between code elements will produce more degraded

programs when modi�ed randomly. This ordering does not show any correlation either.

A larger problem set may show correlations more clearly but is left to future work.

There may also be further explanatory variables which have yet to be identi�ed. Such

analysis is left to future work and further discussed in subsection 5.4.3.
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Fig. 4.14: Dynamic Mutation-Derived Bias Ordered by Problem Size
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Fig. 4.15: Dynamic Mutation-Derived Bias Ordered by Improvement Size
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Fig. 4.16: Dynamic Mutation-Derived Bias Ordered by Improvement Size over Problem Size
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Fig. 4.17: Dynamic Mutation-Derived Bias Ordered by Programs Discarded
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4.5.5 Gaussian Bias

Bias can also be allowed to emerge by randomly modifying bias values during the GP

algorithm [6]. Bias is shaped through the selection of programs as per their �tness.

Programs with higher �tness are likely to have whatever bias they contain propagated.

Bias is subject to shaping under the standard evolutionary pressure is implicit as opposed

to being directly modi�ed per any deterministic ruleset. In this analysis we inspect

whether explicit bias allocation, due to �xed update rules, is necessary to �nd program

improvements [6]. Our �ndings are that explicit bias allocation outperforms the use of

random bias allocation on half the problems tested. From these results we can say that

both allocation methods target di�erent improvement types.

Figure 4.18 shows the comparison of canonical GP and GP with random bias alloca-

tion drawn from a Gaussian distribution as described in [6]. Random bias increases the

chances of �nding an improvement on 7 out of 12 of the test problems.

In Figure 4.19 we compare random bias with dynamic mutation-derived bias. We

�nd that dynamic bias is an improvement over random bias on half of the problems we

inspect.

A possible explanation for these results is that improvement locations are the same

as locations which produce high �tness individuals when modi�ed. This would indicate

that variant programs along the lineage between seed and improved variant programs

have relatively high �tness. If this were the case then random bias should be better on

problems where the �tness along seed to improved variant lineage is high. Dynamic bias

promotes changes which allow the program to compile and reduces the functionality. As

such, it should produce programs which are of average lower �tness than random bias

or canonical GP. The average �tness should be lower when dynamic bias is used. It

focuses on the modi�cations which degrade �tness. As dynamic bias is subject to the

same evolutionary pressure as random bias we can speculate that dynamic bias provides

large bias changes than evolutionary pressure.

It is claimed in the literature that there is no need for explicit credit assignment [6].

Our results show that in certain cases explicit bias can be advantageous in the context
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of improving existing software when compared with randomly perturbed bias.

4.6 Mutation Spectrum Analysis

Experiments so far have shown the e�ect of bias on the chance that GP will �nd im-

provements in our problem set. As these results are somewhat mixed, we more closely

inspect the range of functionality and performance measures possible when mutating at

di�erent locations in a program.

We address the assumption that nodes can be told apart by analysing random mod-

i�cation. We �nd that exhaustive modi�cation at each node produces program variants

which evaluate with unique sequence of functionality and performance measures. To

a high degree this is true for locations of program improvements. We show that for

most improvements in most problems, whether a program compiles and how it a�ects

the performance metric are both factors which highlight potential improvements in the

programs.

Our previous ruleset for mutation-derive bias allocates bias where the functionality

produced through modi�cation is decreased. To evaluate functionality the program must

compile. As 70% of program modi�cations are destructive, when a program is modi�ed

and still compiles there is a high likelihood that the modi�cation reduced the functional-

ity. This is the basis of the bias allocation rule tested in previous sections of this chapter.

Further to our bias rule the �ndings of this section suggest that measuring performance

changes is also an important factor in highlighting program improvements.

4.6.1 Exhaustive Modi�cation

To observe the range of program variant �tness values that can be generated from a

program we take every modi�able node in a program and make all possible modi�cations

to that node. The range of possible modi�cations is determined by the other nodes in

the program which are taken as the set of replacement nodes. We attempt to replace

every node in the program with every other node in the program. A variant program is
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produced for each node replacement performed. The variant programs are then evaluated

with the relevant �tness function.

While this appears a formidably large search problem the set of evaluated programs is

reduced considerably due to node typing and the semantics of the programming language

that we use. Many nodes are only replaceable by a small number of other nodes from the

original program. Replacing some nodes may lead to programs which do not compile.

This excludes a very large number of programs from being evaluated for �tness. Thus the

search space produce by a single edit can be considered �sparse� having many inviable

programs. While we utilise typing in our experiments we do not attempt to enforce

semantic constraints. Even though a large number of generated programs do not compile

the search process is not adversely a�ected as non-compiling programs do not require

costly execution during evaluation. Compilation and evaluation time are the most costly

events during our GP search.

Exhaustive modi�cation is not a fully accurate deterministic view of what happens

within mutation-derived bias. When mutation-derived bias is used modi�cations are

made at random. The same modi�cations can be made multiple times meaning that the

bias is updated cumulatively. In this experiment we control exactly how many times

each node is modi�ed. Over time mutation-derived bias should equate roughly to the

exact values. When dynamic bias is used during GP bias �uctuation is more uncertain

as multiple programs are considered and bias is inherited between programs. By making

all possible modi�cations to all locations in a program exactly once we hope to gain a

clearer and less �noisy� view of the range of values which can be observed when modifying

a program.

4.6.2 Fitness Analysis

We consider here the most prominent improved program variants from our GP search

results. By comparing these improved variants with seed programs we �nd the nodes

which need to be modi�ed to produce the improved variants. We rank all program

nodes by averaging the set of �tness values produced through modi�cation at each node.
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The median of rank values is taken for the set of �improvement nodes�. The purpose of

using median ranking is to see if improvement nodes can be separated from a reasonable

proportion of the total number of nodes in a program. If they can be separated by

the �tness measures produced, either positively or negatively, then we can ignore the

modi�cation of irrelevant nodes during the GP process by updating bias as per these

�tness measures. If we can e�ectively rule out a set of program nodes as irrelevant to

improvement we can reduce the search space.

4.6.3 Results

Table 4.5 provides a summary of the evaluation measures for locations of improvements

under modi�cation in our test problems. The number of variants which are syntactically

correct and compile along with measures of functionality error and performance values

are shown.

In 8 out of 12 of the problems the median compiled % rank for the set of improvement

locations were ranked in the top 50% of nodes which compile. Based on this it appears

that on a majority of the problems we could half the number of nodes which should be

modi�ed during GP search. This should increase GP's chances of �nding improvements

on these problems.

One design concept that comes from this analysis is the use of not just a single

bias value but maintaining a running summary of the number of times program vari-

ants compile, the functionality change average and the performance change average.

When selection is performed the highest value from these 3 metrics could be taken for

comparison during tournament selection. Future work on bias update rule design is in

subsection 5.4.2.
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Problem # Opt Nodes Median Compiled % Rank Median Func % Rank Median Perf % Rank % Unique

Insertion 3 61.6 78.3 36.6 84.1

Bubble 5 74.2 61.3 82.3 73.5

BubbleLoops 8 51.4 76.0 8.9 75.5

Selection2 1 58.3 63.3 59.7 74.6

Selection 1 67.1 32.9 69.8 72.2

Shell 3 35.3 50.6 47.1 80.3

Radix 3 32 27 48 77.4

Quick 2 55.2 44.4 45.3 97.4

Cocktail 1 61.1 31 50.1 84.4

Merge 1 42.1 85.6 28.7 89.1

Heap 2 43.5 51.8 33.9 64.8

Hu�Book 5 85.6 77.5 34.8 78.9

Table 4.5: Average Ranking for Improvement Nodes when Modi�ed
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# Opt Nodes refers to the number of nodes in the program which need to be modi�ed

to produce an improved variant of the original program. For example, 5 node modi�ca-

tions are needed to produce an improve Bubble Sort.

Median Compiled % Rank is the median rank for the number of times improvement

nodes produced compilable programs when modi�ed. This is calculated by taking a count

of successful compiles for each of the improvement nodes. Then the percentage rank for

each of those nodes is created. Finally we then get the median of these percentage rank

values. The trend on this measure is that nodes which compile more often are generally

more likely involved in a program improvement. For example, on Bubble Sort at least

half of the improvements nodes, have compile counts higher than 74.2% of the other

nodes.

Median Fun % Rank is the median rank of averaged functionality values for improve-

ment nodes. A lower Functionality % Rank means that more of the other nodes had an

average functionality measure higher than the current one. When a program is modi�ed

it generally tends to have a higher functionality error measure than its parent (as pro-

gram functionality generally degrades under modi�cation). It is likely that modi�cation

will degrade the which will yield a a higher functionality error.

Median Perf % Rank is the median rank of improvement nodes in terms of perfor-

mance measure. We rank the performance values for each location. A higher Performance

% Rank means that more of the other nodes had an average performance measure higher

than the current one. This is deliberately the opposite of functionality % Rank as the

trend is toward lower performance under modi�cation. Programs which compile after

modi�cation tend to have degraded functionality and although not functionally correct,

will have reduce execution cost. A prominent example of this is an empty program, which

has greatly reduced execution cost, but a large functionality error count. The �nding

from Median Performance % Rank is that improvement nodes generally produce variants

with a smaller amount of execution cost reduction. For these nodes execution count is

reduced but reduces less than other nodes in the program.

% Unique is the percent of nodes which can be uniquely identi�ed with a combination
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of compilation, in�nite loops, performance and functionality measures.

4.7 Threats to validity

External Threats include issues which a�ect the ability to generalise our results. The

problem set contains a relatively small number of programs which can be evaluated

with only two di�erent functionality measures. How the results found generalise beyond

these problem types would require a wider consideration of programs and their respective

functionality measures.

We use a deceptive problem to di�erentiate between pro�ler-derived and mutation-

derived bias, yet we do not know how prevalent such deceptive problems are. It may

transpire that our deceptive problem is somewhat arti�cial and unlikely to occur in

practice. Our deceptive problem introduces ine�ciencies for the sake of our experiments.

With no other purpose for such a blatant ine�ciency it seems unlikely that any developer

would create such a program. In short, it is unlikely for such an ine�ciency to be present

without it having some desirable purpose.

In addition, the size of any one of problems is relatively small. The ability to uniquely

identify nodes may dissipate as more nodes are available to modify though we do not see

this trend in results so far. In general we can say that the problem set is not as broad

as we would like though is nonetheless varied enough to show the limits of dynamic bias

allocation.

Internal Threats include considerations for our �tness functions. Measures of func-

tionality and performance have been cross-checked numerous times during evaluation and

have repeatedly shown to be deterministic. Functionality measures have been tested on

known working programs, especially in the case of sort algorithms, where multiple sort

implementations have been used as oracles including the sort implementation from the

Java core library.

When measuring functionality, the test data used is potentially an issue. Although

a number of di�erent test cases are used the data in each of these test cases is �xed
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throughout experiments. There is a chances that programs can over�t to the �xed data,

although enough test cases are used to make the chances of this occurring slight. Even

though this may be possible we have not encountered any improved program which over�t

to the test cases.

All of our samples have been taken with at least 100 GP runs, and so we are content

that our experiments have been run enough to separate the e�ects of bias with statistical

con�dence. The variance can be seen in graphs such as Figure 4.15

4.8 Summary

In this chapter we have shown that mutation-derived bias can improve the chances of

�nding an improved program variant when used with GP. It outperforms canonical GP

and pro�ler-derived GP on a deceptive problem particularly where an improvement is

not at the same location as code which can be considered a �bottleneck�.

Further to this, we show that deriving bias during GP can increase the chances of

�nding improvements in certain problems. On these problems dynamic bias outperforms

canonical GP and GP with random bias. The results show that each of these approaches

increase the chances of �nding improvements on certain problems.

A subsequent analysis of the spectrum produced under exhaustive program mutation

produces values which could be used to isolate the locations of performance improvements

from other locations in code.

The core take-away from this work is that while pro�ling programs can guide ran-

dom change, mutation derived-bias is capable of highlighting di�erent improvements in

programs. We �nd that explicit credit assignment can be bene�cial in improving the GP

process on some problems. We also �nd that using random bias shaped by evolutionary

pressure alone is also bene�cial on the remaining problems.
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Chapter 5

Conclusion

In this thesis we have further explored the use of GP for automated support for software

engineering. We scope our work to the improvement of existing source code in terms of

execution cost measured in Java bytecode executed.

In related work GP is shown to have scaling issues when applied to large problems.

A common solution approach is to prune the search space by focusing change where it

is most likely to improve the software and ignore locations that are irrelevant. Finding

locations likely to yield an improved version of a program when modi�ed is the challenge

we are faced with. Most GP literature describes growing programs outright as opposed

to improving existing programs. Many of the bias mechanisms in GP are geared toward

outright improvement. We compare our bias allocation mechanism with random bias

modi�cation.

In particular we inspect whether �tness changes which result from program mutation

can highlight performance improvements. Our hypothesis is that the measurable e�ects

of change on a programs performance and functionality can be used to highlight potential

locations of improvement. We provide evidence that mutation analysis can be used as

an integral part of GP to improve its operation for certain problems.

We �nd where in a program is relevant by observing changes in the �tness as a

program is modi�ed. This is based on the assumption that modi�cations at di�erent

locations in a program produce di�erent �tness values. This assumes that even when
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a node is replaced by nodes which break the program, a�ecting the �tness drastically,

the nodes where improvement is possible show a di�erent pattern when modi�ed than

do other locations irrelevant to improving a program. If the locations can be told apart

from these �tness values GP can focus change on these locations and ultimately increase

the probability of �nding an improvement. Our work attempts to validate the existence

of these patterns and that these patterns can be exploited by GP for speci�c problems.

To validate our claims we applied GP to a range of sort algorithms as well as a pre�x

code-book algorithm. We compare canonical GP with self-focusing GP across problems.

We also perform repeated mutations of the sort and pre�x code-book programs to observe

how bias in�uences the ranking of nodes. We can localise improvement opportunities by

modifying the initial program repeatedly. We inspect a range of bias allocation rules

to understand what parts of our �tness function are the best at �nding improvement

opportunities.

We compare our approach to the use of a pro�ler. A pro�ler is very e�ective if the

location where a performance bottleneck manifests can be alleviated by modifying the

same code. We show that it is possible for a pro�ler to focus on the symptoms of poor

performance but that the changes required to alleviate the symptoms may be located

elsewhere in the program. Due to the interdepencies in imperative code it is possible for

a pro�ler to be �deceived� as to the location of an improvement. When used with GP to

focus modi�cation, change being focused on locations which will not reduce execution of

bottleneck code.

5.1 Review of the Research Question

Our central research question is:

• Can di�erences in functionality and performance measures caused by arbitrary

program modi�cations indicate the likelihood that further modi�cation will create

a program with reduced execution cost?

From this question we have a follow-on question:
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• What change in the �tness function is particularly telling about a possible improve-

ment?

When we consider these in terms of GP we get a GP-speci�c question:

• Can updating bias during GP increase the chances of �nding a code improvement?

5.2 Overview of the Evidence

Nodes can be told apart by their e�ect on �tness. The production of di�erent �tness

patterns has been demonstrated by repeatedly modifying the original sort programs and

observing how the �tness changes. As more modi�cations are performed bias is updated

in response to �tness changes. The bias associated with each node can be used to rank

the nodes in order of likelihood of being modi�ed again. Taking an average of the node

ranking throughout this process shows us that some nodes get a higher rank than others

and we can tell the nodes apart as seen in Table 4.5.

Highlighting certain nodes can improve GP. We can see that a hand-made optimal

bias can improve GP's ability to �nd an improvement in Bubble Sort as seen in subsec-

tion 4.4.1. We then observe how the bias produced by our rule-sets also increases the

chances of �nding an improvement with GP. We then show that a rule-set can be used as

part of GP, �rst on Bubble Sort and then on subsequent sort variants. The rules which

we developed for Bubble Sort also worked for improving some other sort programs. This

tells us that rule-sets are not generally applicable across all sort problems, but shows

that there is at least some common characteristic shared amongst some of the programs

which our rule-set is able to capture.

Modi�cation-derived bias can improve certain programs that a pro�ler can not. We

use a pro�ler to count the frequency of execution of lines of code. The line count is

used as bias for the program when GP is applied. The results show that using a pro�ler

on this problem will allow GP to �nd an improved version of Bubble Sort quicker. We

then repeat the same process using a modi�ed version of Bubble Sort which introduces

a redundant outer loop which causes an additional iteration through the whole Bubble
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Sort algorithm. The idea here is to introduce some code which makes the program

perform worse but is not itself executed at a high frequency and thus is not highlighted

by a pro�ler. The execution count of the introduced code is very low in comparison

to the core Bubble Sort algorithm meaning that GP is slowed down by focusing on the

location of the problem instead of where the solution actually lies. This provides evidence

that a pro�ler is good at focusing on where the problem manifests with the caveat that

where the problem manifests may not always be the same as where a solution lies. The

rami�cations of this when using a pro�ler to bias GP change is that a pro�ler may draw

attention away from relevant locations if the location of the problem and the solution

do not overlap in terms of execution count per line of code. In this context, our bias

allocation rules are less in�uenced by this �deceptive� problem �nding the improvement

quicker than the bias produced from a pro�ling technique as seen in Figure 4.9. The

approaches of dynamic bias allocation and using pro�ler techniques do not appear to be

at odds with each other and could be used in conjunction.

Explicit credit assignment can improve chances of �nding improvements. Explicitly

assigning credit or increasing bias can in some cases outperform randomly modifying

bias after every program variant is generated. On half the problems tested evolutionary

pressure alone did not produce the highest change of performance improvement. This

shows that explicit credit assignment can be useful as observed in subsection 4.5.5.

Functionality and Performance measures could be used to highlight performance im-

provements. Each problem is exhaustively modi�ed to observe the variance in perfor-

mance and functionality measures for each modi�cation point in a program. We �nd

that the vast majority of nodes can be uniquely distinguished by unique combinations

of compilation, performance and functionality measures. The measures for improvement

locations in programs are observed for their di�erence to other locations. We �nd that

if a range of these values were to be used we should be able to di�erentiate more clearly

the location of performance improvements as can be seen in Table 4.5.

GP as a useful approach for improving programs All programs we applied GP to

were improved in terms of bytecode executed as listed in Table 4.1. The test programs
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were taken from a programming chrestomathy collection [135] and as such are exemplary

implementations of common algorithms. This is however a weak claim given that we

don't know how representative these programs are of software in general.

5.3 Review of Contributions

In summary, the contributions of this thesis are:

• Provide evidence that modifying a program produces �tness patterns which dif-

ferentiate nodes. Nodes which are required to change to improve a program show

a di�erent pattern to other nodes. Using these patterns we can attribute �tness

changes to locations in a program and subsequently direct code modi�cation to

improve a program quicker using GP

• Provide evidence for the utility of explicit credit assignment in Genetic Program-

ming

• Show a pro�ler approach can be deceived and that mutation-derived bias is less

deceived on a speci�c problem

• A GP system for evolving Java code.

The system by which we evolve code has been demonstrated. It's purpose was to

inspect bias on java code.

• Further demonstrate the evolution of programs using GP for performance improve-

ment.

5.4 Future Work

A number of items have been identi�ed throughout the course of this thesis which are

listed here before moving discussion on towards future work in a broader scope.
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5.4.1 Analysis

During the experimental work in this thesis a large amount of data was been produced.

Work can be done to analyse some of this information further.

Immediate work which could be performed is to test whether Gaussian bias �nds

improvements where the lineage of individuals between seed and improved variant has

high �tness as mentioned in section 4.1. Similarly, the improvements for which dynamic

bias is bene�cial to GP can be analysed to see if the variant programs have lower �tness

on average. This would go some way to explaining why Gaussian and dynamic bias are

better on some problems than they are on others. Why some improvements have lower

or higher �tness lineages is unknown.

Due to the exploratory nature of this thesis, our contributions and claims could bene�t

from an extended analysis of the data produced during experimentation.

Our �tness values for program improvement normalised against an original seed pro-

gram does not produce a smooth graph. This is due to the use of functionality as part

of the �tness function where each discrete functionality �score� represents the state of

a program. Where programs are di�erent, but give the same answer, the di�erence in

the programs cannot be measured using our functionality metric. We have looked at the

use of Kaplan-Meir or �survival� curves [58] to model �tness improvement of the seed

program disregarding programs worse than the seed. Survival curves capture then prob-

ability of being in one of two states but does not capture a multi-state system. A hidden

Markov multi-state model with discrete time intervals [55] appears appropriate for fur-

ther analysis of our results. Our analysis so far considers improvement as an absolute and

does not consider the di�erent possible programs which are equivalent in performance.

Understanding what improvement types are more likely at an in-depth level may be pos-

sible by the application of a multi-state model and be interesting in itself in the area of

statistics.
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5.4.2 Bias Update Rules

As mentioned in section 4.1 further factors, such as performance change between parent

and o�spring program, may also be used to expose the location of performance improve-

ments. Such �ndings encourage the further design of more e�ective bias update rules.

In subsection 4.6.3 �ndings suggest that maintaining a count of the number of times

a node modi�cation resulted in a compilable program, the functionality change and per-

formance change could all be maintained per modi�able node. This would be represented

by three summary values per node in a program and could be used during the selection

of nodes during tournaments.

Additional experimentation could also be performed to dissect what parts of our bias

update rules are useful. We employ bias decay, inheritance and updates in the parent

and o�spring programs. As GP is a complex and dynamic environment it is unknown

speci�cally how much each of these contributes to the accurate generation of bias.

As general software metrics do not appear suitable for guiding GP [17] program

spectra or other measures speci�c to the program domain may be useful metrics [45]. Our

approach uses black-box measurements to evaluate the �tness of a program. By adding

more information about a programs internal state and operations, the �semantics� of a

program can be traced and used to provide even more accurate information about the

e�ects of a code change.

Another possible avenue of further work could inspect whether the unique signatures

generated through random modi�cation of a node could be used to identify similar nodes

in other programs. If these nodes can be uniquely identi�ed across problems we may

be able to �nd similar improvement opportunities across problems. As such this would

represent a signature-based method of searching for similar code.

5.4.3 Problem Set

New implementations of sorting algorithms can be easily added to our experiments.

Addition �tness functions would allow programs for other purposes to be tested under

this system. Having a wider range of software to test our system on would provide better
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information regarding in what circumstances bias allocation is particularly useful.

As mentioned in section 4.5.4 inspecting the e�ect of bias on larger programs is of

importance. Finding where to change in particularly large programs is an important

ability when improving real-world programs and would more comprehensively explore

any scaling advantages for GP.

5.4.4 Broader Work

A range of broader follow on work can be conducted. We experiment in this thesis with

the use of GP. A number of modi�cations could be made to the algorithm to restrict the

type of program that can be generated to prevent uncompilable programs [18] or repeat

evaluation of the same programs [32].

We evolve programs represented as an AST. Another approach which aids GP's appli-

cability to larger programs is the evolution of code patches [73]. It is unclear how evolving

patches e�ects the search process but the approach appears useful when modifying larger

programs. A patch-centric approach also puts emphasis on what is to be changed in a

program. When dealing with software improvement this is a more appropriate model for

designing code enhancement techniques where the portion of code which must change in

a program is relatively small, on the order of 1%. It is appealing conceptually at least,

as it draws attention to the evolution of software change.

Our experiments allow a single mutation and/or a single crossover to be performed in

the generation of programs. This could be extended to allow multiple modi�cations at the

same time to produce more varied programs and aid reachability (subsubsection 2.3.2.1).

Using patches as the unit of evolution may support this.

It is unclear how a program and its execution environment can expose improvements

under modi�cation. As certain programming languages are more suited to evolution

with GP perhaps certain programming languages are more likely to expose performance

improvements through modi�cation.
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5.4.5 Open Questions

Although we have made progress in describing bias allocation we do not have a general

way to �nd potential improvements in a program. The problem of localising modi�cation

for performance improvement in the general case remains an open problem.

Why a program exposes performance improvements is not known. Perhaps there is

some programming language whose semantics particularly expose performance improve-

ments. The nature of the language used in this case and why di�erent modi�cations

produce largely unique program spectra is not known.

5.5 Closing Remarks

At the core of our work is the ability to inspect code by measuring the e�ect of change

on a programs behaviour. Applying modi�cation randomly throughout a program can

produce a range of behaviour which can be analysed to understand that code. Further

investigation into the plausibility of this concept is worth pursuing in our opinion espe-

cially if it can be generalised. The goal is that it may then be more practically used as

an additional program analysis technique for software engineers.

More broadly, the �eld of Search Based Software Engineering appears appropriately

poised to have a further impact on the discipline of Software Engineering. Given that

a huge amount of code exists and is readily accessible there is great potential for reuse.

As the cost of computing reduces, leading to more comprehensive software management

environments such as test and build infrastructure, it appears a logical next step to

automate the reuse of code. If quality can be maintained, and the cost of distributed

program evaluation reduces, then randomised search may be widely practical as a �trail-

and-error� approach to the nuanced reuse of existing software for improvement.
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Appendix A

Implementation: locoGP

To inspect our research questions we use a GP system developed speci�cally for this thesis

named �locoGP�. locoGP is a Genetic Programming (GP) [66] system written in Java for

improving program performance using a Java source code representation. locoGP utilises

many of the mechanisms from the related work such as seeding and modi�cation at the

language level. The main distinction between the related work and locoGP is the use

of Java source code. locoGP is seeded with compilable and fully functional source code

which is modi�ed at the Java language level. The system performs the cycle of parsing,

compilation, instrumentation and execution of programs in memory. Though relatively

expensive, this process of software evolution is manageable on modern hardware. Logging

is written to disk periodically.

Java source code is hard-coded as a string in locoGP or can be read in from �les.

The system operates by parsing Java source text to an Abstract Syntax Tree (AST)

representation using the Eclipse Java Development Tools [132] which speci�es the typing

of nodes and structure of a program in the Java language. An AST gives us a represen-

tation devoid of source code artifacts such as parentheses and line terminators. The Java

language syntax is enforced by the AST and is used to restrict node compatibility. These

tools provide methods for cloning, traversing and modifying program trees. We use these

tools to gather statements, expressions and variables from a program. The primitive set

in GP is de�ned by Java language elements which exist in the program to be improved
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and may include statements, expressions, variable names or operators.

Code elements in an AST are selected randomly or with a weighting and can be

modi�ed as per the GP operators. Where a node such as an expression is chosen, it

is possible that the node can be replaced with another expression or a variable name.

Where a statement is selected, it may be replaced by another statement, or statement

sub-type such as an IF or WHILE statement. A replacement node can be a whole sub-tree,

e.g. in the case of a statement replacement. In this case, the node which is the root of

the sub-tree is of concern. If we pick a block, we clone some other random line of code

as an addition to the block. Node selection is not uniform in an AST as each node is not

represented in the same way within an AST. For example, Java language operators do

not exist as nodes in an AST but are attributes of expression nodes.

After modi�cation, the modi�ed AST representation is converted back to source code

text and compiled to bytecode. While typing prevents some invalid code replacement,

such as replacing an operator with a variable, the AST can nonetheless be modi�ed to

produce syntactically incorrect programs which do not compile. Due to this, the number

of discarded programs created due to compilation errors is relatively high.

Bytecode is instrumented using a bytecode counting library [68]. Instrumentation

adds extra code to the program to count the bytecodes that are executed when the code

is run. Counting bytecodes executed gives a measure which does not vary between runs,

and can be expected to be portable. The instrumented bytecode is executed in a separate

thread. Although the locoGP implementation is multi-threaded, the bytecode counting

library relies on static methods to update execution counters, limiting the program ex-

ecution phase of evaluation to serial execution. The counting results are collected after

execution and are used as a performance measure.

If the code (and thread) does not �nish executing within a certain time (30 seconds is

adequate), the thread is stopped. Assuming a program halts within the timeout period,

counting and test case results can be collected. The bytecode is executed numerous times

with various test input data and the returned values are compared with known correct

values. Program results (return values) are measured for correctness with a problem-
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speci�c function by counting functionality errors. Programs which compile and execute,

but exhibit runtime errors or do not �nish within the time bounds are given the worst

�tness values possible and are very unlikely to be selected again for modi�cation during

GP.

The evaluation mechanism, and how performance is measured a�ects the type of

program improvement that is likely to be found. Measuring operations performed ignores

platform speci�c di�erences in performance, and means the GP algorithm di�erentiates

programs only on their ability to reduce execution count. This is expected to promote

search for general code improvements.

Modifying programs in Java is highly likely to produce disfunctional programs which

are ultimately given low �tness or non-compilable which are simply discarded. We end

up with many programs which are close to the seed due to selection, and many programs

which have very poor �tness due to destructive modi�cations. A timeout is used to halt

longer running programs. To balance out the distribution of programs along the �tness

scale, we use elitism.

locoGP can be readily extended to further Java improvement problems or used as a

comparison point with other code improvement systems. New sort and pre�x code classes

could be added easily as functionality measures are implemented. Adding additional

problems (other than sort and pre�x codebook) requires writing a functionality function

and adding relevant test data. There is ample room for improvement of locoGP itself in

terms of implementation1

1The notion of using locoGP to improve locoGP poses an enticing challenge.

142



Appendix B

Code Listings

We list here the programs that make up our problem set. The programs have been taken

from online sources [135] with minimal modi�cations to interfaces. For each problem

listed, possible improvements are noted as comments within the code.

B.1 Bubble Sort

1 class Sort1Problem {

2 public static void sort( Integer[] a, Integer length){

3 // ``i=0'' -> ``i=1'' or ``i++'' -> ``length--''

4 for (int i=0; i < length; i++) {

5 // ``length - 1'' -> ``length - i - 1''

6 for (int j=0; j < length - 1; j++) {

7 if (a[j] > a[j + 1]) {

8 int k=a[j];

9 a[j]=a[j + 1];

10 a[j + 1]=k;

11 }

12 }
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13 }

14 return a;

15 }

16 }

Listing 4: Bubblesort implementation [146]

B.2 Shell Sort

1 public class Sort1Shell {

2 public static Integer[] sort( Integer[] a, Integer length){

3 int increment=length / 2;

4 while (increment > 0) {

5 for (int i=increment; i < length; i++) {

6 int j=i;

7 int temp=a[i];

8 while (j >= increment && a[j - increment] > temp) {

9 a[j]=a[j - increment];

10 j=j - increment;

11 }

12 a[j]=temp;

13 }

14 if (increment == 2) {

15 // ``='' -> ``-=''

16 increment=1;

17 }

18 else {

19 increment*=(5.0 / 11);

20 }
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21 }

22 return a;

23 }

24 }

Listing 5: Shell Sort Implementation [135]

B.3 Selection Sort

1 public class Sort1SelectionProblem {

2 public static Integer[] sort( Integer[] a, Integer length){

3 for (int currentPlace=0; currentPlace < length - 1; currentPlace++) {

4 int smallest=Integer.MAX_VALUE;

5 // ``currentPlace + 1'' -> ``currentPlace''

6 int smallestAt=currentPlace + 1;

7 for (int check=currentPlace; check < length; check++) {

8 if (a[check] < smallest) {

9 smallestAt=check;

10 smallest=a[check];

11 }

12 }

13 int temp=a[currentPlace];

14 a[currentPlace]=a[smallestAt];

15 a[smallestAt]=temp;

16 }

17 return a;

18 }

19 }
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Listing 6: Selection Sort Implementation [135]

B.4 Selection Sort 2

1 public class Sort1Selection2Problem {

2 public static Integer[] sort( Integer[] a, Integer length){

3 double p=0;

4 int k=0;

5 // ``0'' -> ``k''

6 for (int i=0; i < length - 1; i++) {

7 k=i;

8 for (int j=i + 1; j < length; j++) {

9 if (a[j] < a[k]) k=j;

10 }

11 p=a[i];

12 a[i]=a[k];

13 a[k]=(int)p;

14 }

15 return a;

16 }

17 }

Listing 7: Selection Sort 2 Implementation [135]

B.5 Radix Sort

1 public class Sort1Radix {

2 public static Integer[] sort( Integer[] a, Integer length){
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3 // "Integer.SIZE - 1" -> "0" and "shift > -1" -> "shift == 0"

4 for (int shift=Integer.SIZE - 1; shift > -1; shift--) {

5 Integer[] tmp=new Integer[a.length];

6 int j=0;

7 for (int i=0; i < length; i++) {

8 boolean move=a[i] << shift >= 0;

9 if (shift == 0 ? !move : move) {

10 tmp[j]=a[i];

11 j++;

12 }

13 else {

14 a[i - j]=a[i];

15 }

16 }

17 for (int i=j; i < tmp.length; i++) {

18 tmp[i]=a[i - j];

19 }

20 a=tmp;

21 }

22 return a;

23 }

24 }

Listing 8: Radix Sort Implementation [135]

B.6 Quick Sort

1 public class Sort1Quick {

2 public static Integer[] sort( Integer[] a, Integer length){
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3 return sort(a,0,length - 1);

4 }

5 public static Integer[] sort( Integer[] a, Integer p, Integer r){

6 if (p < r) {

7 int q=0;

8 int x=a[p];

9 int i=p - 1;

10 int j=r + 1;

11 while (true) {

12 i++;

13 // "r" -> "j"

14 while (i < r && a[i] < x) i++;

15 j--;

16 // "j > p && a[j]" -> "a[j]"

17 while (j > p && a[j] > x) j--;

18 if (i < j) {

19 int temp=a[i];

20 a[i]=a[j];

21 a[j]=temp;

22 }

23 else {

24 q=j;

25 break;

26 }

27 }

28 sort(a,p,q);

29 sort(a,q + 1,r);

30 }

31 return a;
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32 }

33 }

Listing 9: Quick Sort Implementation [135]

B.7 Merge Sort

1 public class Sort1Merge {

2 public static Integer[] sort( Integer[] a, Integer length){

3 mergesort_r(0,length,a);

4 return a;

5 }

6 public static Integer[] merge( Integer[] a, int left_start, int left_end,

7 int right_start, int right_end){

8 int left_length=left_end - left_start;

9 int right_length=right_end - right_start;

10 int[] left_half=new int[left_length];

11 int[] right_half=new int[right_length];

12 int r=0;

13 int l=0;

14 int i=0;

15 for (i=left_start; i < left_end; i++, l++) {

16 left_half[l]=a[i];

17 }

18 for (i=right_start; i < right_end; i++, r++) {

19 right_half[r]=a[i];

20 }

21 for (i=left_start, r=0, l=0; l < left_length && r < right_length; i++) {

22 if (left_half[l] < right_half[r]) {

149



23 a[i]=left_half[l++];

24 }

25 else {

26 a[i]=right_half[r++];

27 }

28 }

29 for (; l < left_length; i++, l++) {

30 a[i]=left_half[l];

31 }

32 // replace whole for statement with "i=left_start"

33 for (; r < right_length; i++, r++) { //

34 a[i]=right_half[r]; //

35 } //

36 return a;

37 }

38 public static Integer[] mergesort_r( int left, int right, Integer[] a){

39 if (right - left <= 1) {

40 return a;

41 }

42 else {

43 }

44 int left_start=left;

45 int left_end=(left + right) / 2;

46 int right_start=left_end;

47 int right_end=right;

48 mergesort_r(left_start,left_end,a);

49 mergesort_r(right_start,right_end,a);

50 merge(a,left_start,left_end,right_start,right_end);

51 return a;
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52 }

53 }

Listing 10: Merge Sort Implementation [135]

B.8 Deceptive Bubble Sort

1 public class Sort1Loops1Problem {

2 public static Integer[] sort( Integer[] a, Integer length){

3 // "2" -> "1" or "0" to "1"

4 for (int h=2; h > 0; h--) {

5 // clone the inner loop, then delete the whole outer loop

6 // "0" -> "1" or "i++" to "length--"

7 for (int i=0; i < length; i++) {

8 // "length - 1" -> "length - i - 1"

9 for (int j=0; j < length - 1; j++) {

10 if (a[j] > a[j + 1]) {

11 int k=a[j];

12 a[j]=a[j + 1];

13 a[j + 1]=k;

14 }

15 }

16 }

17 }

18 return a;

19 }

20 }

Listing 11: Deceptive Bubble Sort Implementation (BubbleLoops)
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B.9 Insertion Sort

1 public class Sort1Insertion {

2 public static Integer[] sort( Integer[] a, Integer array_size){

3 int i, j, index;

4 // "=" -> "+="

5 for (i=1; i < array_size; ++i) {

6 // clone inside this loop to above

7 index=a[i];

8 for (j=i; j > 0 && a[j - 1] > index; j--) {

9 // in cloned version, "j - 1" -> "1 - 1"

10 a[j]=a[j - 1];

11 }

12 a[j]=index;

13 }

14 return a;

15 }

16 }

Listing 12: Insertion Sort Implementation [135]

B.10 Heap Sort

1 public class Sort1HeapProblem {

2 public static Integer[] sort( Integer[] a, Integer array_size){

3 int i;

4 // "/" -> "+"

5 for (i=(array_size / 2 - 1); i >= 0; --i) {

6 int maxchild, temp, child, root=i, bottom=array_size - 1;
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7 while (root * 2 < bottom) {

8 child=root * 2 + 1;

9 if (child == bottom) {

10 maxchild=child;

11 }

12 else {

13 if (a[child] > a[child + 1]) {

14 maxchild=child;

15 }

16 else {

17 maxchild=child + 1;

18 }

19 }

20 if (a[root] < a[maxchild]) {

21 temp=a[root];

22 a[root]=a[maxchild];

23 a[maxchild]=temp;

24 }

25 else {

26 break;

27 }

28 root=maxchild;

29 }

30 }

31 for (i=array_size - 1; i >= 0; --i) {

32 int temp;

33 temp=a[i];

34 a[i]=a[0];

35 a[0]=temp;
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36 int maxchild, child, root=0, bottom=i - 1;

37 while (root * 2 < bottom) {

38 child=root * 2 + 1;

39 if (child == bottom) {

40 maxchild=child;

41 }

42 else {

43 if (a[child] > a[child + 1]) {

44 maxchild=child;

45 }

46 else {

47 maxchild=child + 1;

48 }

49 }

50 if (a[root] < a[maxchild]) {

51 // delete

52 temp=a[root];

53 a[root]=a[maxchild];

54 a[maxchild]=temp;

55 }

56 else {

57 break;

58 }

59 root=maxchild;

60 }

61 }

62 return a;

63 }

64 }
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Listing 13: Heap Sort Implementation [135]

B.11 Cocktail Sort

1 public class Sort1Cocktail {

2 public static Integer[] sort( Integer[] a, Integer length){

3 boolean swapped;

4 do {

5 swapped=false;

6 for (int i=0; i <= length - 2; i++) {

7 if (a[i] > a[i + 1]) {

8 int temp=a[i];

9 a[i]=a[i + 1];

10 a[i + 1]=temp;

11 swapped=true;

12 }

13 }

14 if (!swapped) {

15 break;

16 }

17 swapped=false;

18 for (int i=length - 2; i >= 0; i--) {

19 if (a[i] > a[i + 1]) {

20 int temp=a[i];

21 a[i]=a[i + 1];

22 a[i + 1]=temp;

23 swapped=true;

24 }
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25 }

26 }

27 while (swapped);

28 return a;

29 }

30 }

Listing 14: Cocktail Sort Implementation [135]

B.12 Hu�man Codebook Generator

Improvements are the same as for Bubblesort.

1 package huffmanCodeTable;

2 public class BasicHuffman {

3 public static String[] getCodeBook( Byte[] bytes){

4 BubbleSort.sort(bytes,bytes.length);

5 Byte[] uniqueChars=getUniqueChars(bytes);

6 huffmanNode[] freqTable=getCharFreq(bytes,uniqueChars);

7 huffmanNode huffTree=buildTree(freqTable);

8 String[] codeBook=new String[0];

9 codeBook=getCodes(huffTree,"",codeBook);

10 return codeBook;

11 }

12 private static String[] getCodes( huffmanNode huffTree, String prefix,

13 String[] codeBook){

14 if (huffTree.uniqueChar != null) {

15 codeBook=addString(prefix,codeBook);

16 }

17 else {
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18 codeBook=getCodes(huffTree.left,prefix + "1",codeBook);

19 codeBook=getCodes(huffTree.right,prefix + "0",codeBook);

20 }

21 return codeBook;

22 }

23 private static String[] addString( String aStr, String[] otherStrings){

24 String[] newStrings=new String[otherStrings.length + 1];

25 for (int i=0; i < otherStrings.length; i++) {

26 newStrings[i]=otherStrings[i];

27 }

28 newStrings[newStrings.length - 1]=aStr;

29 return newStrings;

30 }

31 private static huffmanNode buildTree( huffmanNode[] freqTable){

32 BubbleSort.sort(freqTable,freqTable.length);

33 huffmanNode aRight=freqTable[freqTable.length - 1];

34 huffmanNode aLeft=freqTable[freqTable.length - 2];

35 huffmanNode newNode=new huffmanNode(aRight.getFreq() +

36 aLeft.getFreq(),aRight,aLeft);

37 huffmanNode[] newList=new huffmanNode[freqTable.length - 1];

38 for (int i=0; i < newList.length; i++) {

39 newList[i]=freqTable[i];

40 }

41 newList[newList.length - 1]=newNode;

42 if (newList.length == 1) {

43 return newList[0];

44 }

45 else {

46 return buildTree(newList);
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47 }

48 }

49 private static huffmanNode[] getCharFreq( Byte[] bytes, Byte[] uniqueChars){

50 int[] freqInts=new int[uniqueChars.length];

51 int charIndex=0;

52 for (int i=0; i < bytes.length; i++) {

53 if (bytes[i].compareTo(uniqueChars[charIndex]) == 0) {

54 freqInts[charIndex]++;

55 }

56 else {

57 charIndex++;

58 freqInts[charIndex]++;

59 }

60 }

61 huffmanNode[] freqTable=new huffmanNode[uniqueChars.length];

62 for (int i=0; i < uniqueChars.length; i++) {

63 freqTable[i]=new huffmanNode(uniqueChars[i],freqInts[i]);

64 }

65 return freqTable;

66 }

67 private static Byte[] getUniqueChars( Byte[] bytes){

68 Byte[] returnChars=new Byte[1];

69 returnChars[0]=bytes[0];

70 for (int i=0; i < bytes.length; i++) {

71 if (returnChars[returnChars.length - 1].compareTo(bytes[i]) != 0) {

72 Byte[] tempChars=returnChars;

73 returnChars=new Byte[tempChars.length + 1];

74 for (int j=0; j < tempChars.length; j++) {

75 returnChars[j]=tempChars[j];
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76 }

77 returnChars[returnChars.length - 1]=bytes[i];

78 }

79 }

80 return returnChars;

81 }

82 }

83

84 package huffmanCodeTable;

85 public class BubbleSort {

86 public static <T extends Comparable<? super T>>void sort( T[] a,

87 Integer length){

88 for (int i=0; i < length; i++) {

89 for (int j=0; j < length - 1; j++) {

90 if (a[j].compareTo(a[j + 1]) < 0) {

91 T k=a[j];

92 a[j]=a[j + 1];

93 a[j + 1]=k;

94 }

95 }

96 }

97 }

98 }

99

100 package huffmanCodeTable;

101 public class huffmanNode implements Comparable {

102 Byte uniqueChar=null;

103 int freq=0;

104 huffmanNode left, right;
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105 public int getFreq(){

106 return freq;

107 }

108 huffmanNode( byte aChar, int freq){

109 uniqueChar=aChar;

110 this.freq=freq;

111 }

112 huffmanNode( int freq, huffmanNode left, huffmanNode right){

113 this.freq=freq;

114 this.right=right;

115 this.left=left;

116 }

117 @Override public int compareTo( Object hN){

118 return this.freq - ((huffmanNode)hN).freq;

119 }

120 }

Listing 15: Hu�man Codebook Implementation
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Appendix C

Bias Rules

During the course of this thesis a number of bias update mechanisms were inspected.

Performance and functionality were tested for ability to highlight performance improve-

ments. The magnitude of bias attributed during an update was also tested. The most

appealing predictor was chosen to be functionality at a �xed magnitude update, which

was used in the body of this thesis.

C.0.1 Bias Allocation Rules

We measure bias derived from rules on a seed program as an indicator for how the rules

may perform when applied during a GP run. To illustrate this di�erence. We use bias

generated on a seed program as an indicator of bias's success. The best bias allocation

rules may not be best across static and dynamic instances.

The emergence of bias during a GP run is particularly resistant to simple observation

as the bias generated is di�erent for each program in the population, and the e�ect of

bias on a GP run is an aggregate of the di�erent programs, �tnesses and even program

lineage. Two programs derived from di�erent lineages of programs may have di�erent

bias values. Thus it is not easy to inspect the e�ectiveness and operation of bias during

GP.

We inspect a range of rules for allocating bias to locations in a program. We use
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bubblesort to inspect how rules allocate bias. The seed program is repeatedly modi�ed

and the bias updated per our rules. The bias in the seed program is noted for every 5

individuals successfully generated to show how bias emerges. Tracing the bias updates

can show how often interesting nodes in bubblesort or ranked highest per their node

values, and in turn their likelihood of being selected for modi�cation.

Table C.1 shows the results of a number of rules which were tested. The test involved

randomly modifying bubblesort and updating bias values over the creation of 2500 pro-

gram variants. An average rank of each node was determined, and ranking nodes which

are required to change to improve the program are noted.

�% top nodes� - The percentage of time improvement nodes were ranked in the top

5.

�# inter nodes top� - The number of times the improvement nodes were ranked in

the top 5.

�last ind #� - Showing the number of variant programs which were attempted but did

not compile. 2500 programs were evaluated, but this count shows the number evaluated

and number which didn't compile.

�# most inster top� - This distinguishes between nodes that could be involved in

improvement, and those which are de�nitely involved in improvement. It is a smaller set

of nodes. �# top changes� - The number of times the nodes in the top 5 changed.

�# uniq int top� - The number of interesting nodes which were top at any point in

the process. This gauges the churn of interesting nodes at the top.

�# uniq top nodes� - The number of nodes which made it to the top 5. This is a

rough gauge of churn.

�R15� is the ruleset which was �nally used in the evaluation of this thesis. This was

because it ranked improvement nodes relatively high (17% of the time) and performed

well on other problems in early trials. Other rules with higher rankings of improvement

nodes had other issues, such as creating a large number of program variants (R26 series)

or performing poorly in subsequent tests during GP. The use of exhaustive modi�cation

of a program as shown in section 4.6 should be used to instruct rule design before the
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use of extensive bias accumulation using GP as shown in this appendix. These results

are included here brie�y to show how the experimental ruleset was chosen for the thesis.

It can also be noted that this approach is not very accurate at predicting what rule will

work well during GP.
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% top nodes # inter nodes top last ind # # most inster top # top changes # uniq int top # uniq top nodes % uniq nodes inter

R4 0 0 2700.42 0 1 0 1 0

R4rr 0 0 2252.66 0 1 0 1 0

R5 0 0 2278 0 1 0 1 0

R7 0 0 2338 0 1 0 1 0

R21 0 0 4440 0 83.4 0 6.2 0

R3 0 0 3656.8 0 23.2 0 3 0

R3rr 0 0 4098.6 0 21 0 3.8 0

R4 0 0 3348.2 0 96.4 0 8.8 0

R7 0 0 2895 0 4.07142 0 1.6428 0

R8 0 0 3398.25 0 1 0 1 0

R9 0 0 3327.5 0 1 0 1 0

R22 0.0024 0.6 4383.8 0.6 77.6 0.2 6.6 0.0303

R17 0.0024 0.6 4353.2 0.6 55.4 0.4 11 0.0363

R18 0.0032 0.8 2689.4 0.8 74.8 0.2 7.8 0.0256

R23 0.0056 1.4 3679.4 1.2 43.6 0.6 7.8 0.0769

R20 0.0104 2.6 4323 1.6 51.2 1.4 11.4 0.1228

R25 0.022 5.5 4199.5 4.75 72 2 31.5 0.0634

R3 0.035 8.75 2385.29 8.75 2.25 0.0833 1.7916 0.0465

R24 0.0368 9.2 4135.2 7 62.6 2.8 26.8 0.1044

R13 0.045 11.25 3553.25 11.25 58 0.75 9 0.0833

R3rr 0.0472 11.8 3306.4 11.8 6.8 0.2 3.2 0.0625

R14 0.077 19.25 2605 0 41.75 0.75 6.25 0.12

R12 0.077 19.25 2484.75 0 55.75 1 6.75 0.148

R11 0.09 22.5 2598 0 53 1 7.25 0.1379

R25 0.10145 25.363 3987.272 18.9090 104.636 3.4545 44.3636 0.0778

R10 0.114 28.5 2610 0 45.5 1 8.25 0.1212

R5 0.12 30 2383.6 0 60.8 1 7.6 0.1315

R6 0.13 32.5 6372 25 63.75 2 10.75 0.1860

R19 0.1304 32.6 3991.2 19.6 156.6 4.6 53.4 0.0861

R4rr 0.1648 41.2 2757.2 0 87 1 9.6 0.1041

R26tinyDecay 0.166 41.5 12910.5 12.5 170.5 2 9.5 0.2105

R15 0.172 43 3403.8 38.4 133.2 3 44.6 0.0672

R26 0.1792 44.8 3970 30.8 169.4 4.8 53 0.0905
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R9 0.186 46.5 2635.75 0 2.5 0.25 1.25 0.2

R26 0.208 52 3740.75 38.75 145.5 4 50.75 0.0788

R16 0.2344 58.6 3919.2 58.6 48.6 0.6 9.4 0.0638

R8 0.325 81.25 2667.5 0 2.75 0.5 1.25 0.4

R26 0.4355 108.888 5230.833 96.222 183.5 4.2222 46.83 0.09015

R6 0.444 111 10261.25 93.5 98 2 8.75 0.2285

R26smallDecay 0.5843 146.0795 12516.2045 130.011 136.3295 2.0909 10.3636 0.2017

R26noDecay 0.6636 165.9183 12908.469 165.918 1.5714 1 1.571 0.6363

Table C.1: Rulesets and the Movement of Top Ranked Nodes
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Appendix D

Absolute Values for Dynamic Bias

The majority of graphs in this thesis show a measure of the di�erence between GP with

and without bias to observe at what points during the GP process there is a statistically

signi�cant di�erence. This section contains graphs for each problem showing separate

data series for the absolute values of canonical GP and dynamic bias. The GP process is

repeated 100 times. Data points for each GP con�guration are derived by resampling the

100 GP runs. For each generation 100 mean values were calculated from 1000 samples

(with replacement) and used to surround data points with grey bands showing quantiles

at 97.5 and 2.5 to give an estimated 95% con�dence interval.
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D.1 Insertion Sort
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Fig. D.1: GP with Dynamic mutation-derived bias on Insertion Sort
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D.2 Heap Sort
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Fig. D.2: GP with Dynamic mutation-derived bias on Heap Sort
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D.3 Merge Sort
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Fig. D.3: GP with Dynamic mutation-derived bias on Merge Sort
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D.4 Radix Sort
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Fig. D.4: GP with Dynamic mutation-derived bias on Radix Sort
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D.5 Selection Sort
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Fig. D.5: GP with Dynamic mutation-derived bias on Selection Sort
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D.6 Selection Sort 2
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Fig. D.6: GP with Dynamic mutation-derived bias on Selection Sort 2
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D.7 Shell Sort
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Fig. D.7: GP with Dynamic mutation-derived bias on Shell Sort
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D.8 Quick Sort
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Fig. D.8: GP with Dynamic mutation-derived bias on Quick Sort
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D.9 Cocktail Sort
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Fig. D.9: GP with Dynamic mutation-derived bias on Cocktail Sort
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D.10 Hu�man Codebook
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Fig. D.10: GP with Dynamic mutation-derived bias on Hu�man Pre�x Codebook
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