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The Z-cone model, which provides an analytic approach to the estimation of the energy
of a foam for simple crystal structures, has been adapted to the important case of the
body-centred cubic (bec) foam. This involves defining two types of cones, corresponding
to the two sets of neighbouring bubbles that come into contact. We obtain results which
compare favourably with accurate computations using the Surface Evolver. The precise
dependence of energy on liquid fraction close to the loss of the (100) contacts remains
to be resolved.
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1. Introduction

In the physics of foams [1-3], the structure envisaged by Kelvin [4, 5] has played a
canonical role as a prototype, even though it is now known not to be the structure of
lowest energy for a monodisperse dry foam [6, 7], as originally thought. The Kelvin
structure consists of a body-centred cubic (bec) arrangement of bubbles, and is
stable with respect to small deformations for liquid volume fractions ¢ up to about
¢~ 0.11 [§].

Various authors have already applied Surface Evolver simulations [9] to the dry
Kelvin structure [8, 10-13]: in particular, Hohler et al. have used it when discussing
foam structure for finite liquid fraction [15].

In this paper we show that the recently introduced analytical Z-cone model [16,
17] can be extended to a more general cone model, applicable to this case. Various
approximations are involved in the new formulation, but no adjustable parameters.
Part of our motivation was directed towards the details of the variation of energy
close to the liquid fraction at which contact is lost with the six neighbours in the
(100) directions (i.e. the +x, £y and £z directions [18]). This may be expected
to be related to the non-analytic forms found at the wet limit in various previous
studies, including our previous Z-cone analysis [16, 17]. Such subtle questions are
difficult to pursue with Surface Evolver simulations, due to the high level of precision
required, and it was expected that the extended cone model would shed some light
on the matter. Among other things, it should bear on the precise position and nature
of the instability associated with the loss of (100) contacts.

It is worth recalling what Kelvin himself was able to do at the outset [19]. He
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Figure 1. (a) The bcce lattice. (b) A bubble in a dry bec foam takes the form of a Kelvin cell. The hexagonal
faces are slightly warped, and the square faces are planar with convex edges. (Produced using the Surface
Evolver [9]).

was concerned only with the dry foam (¢ = 0), for which he produced a remarkably
accurate description of the bubble shape: the Kelvin cell (Fig. 1). He recognised
the implications of crystal symmetry: that the quadrilateral faces are flat, while the
hexagonal ones are not, and applied Plateau’s rules for the angles of intersection of
faces, together with the requirement that the total curvature of the hexagonal faces
is everywhere zero. His numerical calculation by hand of the approximate form of
the hexagonal faces was a veritable tour de force.

But Kelvin did not proceed to estimate the surface area of his new structure, even
though this bore directly on the motivation for the work. It appears that this was
first evaluated one hundred years later, when Princen and Levinson [20] computed
the surface area by using a discretisation into flat segments.

The result was expressed both in terms of the relative surface area S/Sy, where Sy
is the surface area of a sphere with the same volume as the bubble. The computed
value of S/Sy for the Kelvin cell is 1.0970, a decrease from the value of 1.0990 for
the planar-faced truncated octahedron, which to Princen and Levinson appeared
“surprisingly small” [20]. A simple estimate, based on adjusting angles of the trun-
cated octahedron to conform with Plateau’s rules, gives S/Sp = 1.0968: details are
given in Appendix A.

Here we will express energies in terms of the dimensionless excess energy €, defined
as

5(¢)

5(¢):T0—1- (1)

At the dry limit, we have ¢g = 0.0970 (obtained from Surface Evolver simulations,
in agreement with [20]. At the wet limit, £(¢.) = 0.

One motivation for revisiting the bcc foam is that it is a well-defined structure
that can be used for the study of a general feature of foams: namely, the gain or
loss of a face at some critical liquid fraction. At the outset, it is not obvious that
the Z-cone model can be readily adapted to this case, in which all neighbours are
not equivalent; it turns out that this can indeed be achieved.

As mentioned earlier, for ¢ 2 0.11 the Kelvin foam becomes unstable, and close-
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Figure 2. Two examples of equilibrium bubble shape in a wet bcc foam, with centres of neighbouring
bubbles marked. (a) For liquid fraction ¢ < ¢* (¢ = 0.05 here) there are two sets of contacts, corresponding
to the (dry) hexagonal (111) and square (100) faces. (b) When ¢ exceeds ¢* (¢ = 0.15 here)the square
contacts are lost. (Produced using the Surface Evolver [9]).

packed structures have a lower energy. Nonetheless, here we discuss the energy of
a bec-ordered foam over the full range of liquid fraction, in ways that do not allow
instability.

As we increase ¢ from 0 to its maximum value of ¢., at which bubbles are spheres
(b = 1 —/37/8 ~ 0.32), the square contacts corresponding to (100) neighbours
shrink, and disappear at a liquid fraction ¢*: see Fig. 2. The association of this
loss with instability dates back to some incidental remarks of [21], inspired by the
instability of bcc metals.

2. The wet foam

Here we present an approximation, based on a generalisation of the recently in-
troduced Z-cone model, and compare our results to accurate simulations using the
Surface Evolver. The latter were carried out using symmetry considerations, similar
to those in [22]: a fuller description of the simulations is presented in Appendix B.

2.1. The cone model applied to the Kelvin foam

The Z-cone model is an analytically tractable model that allows for the estimation
of the energy of a foam consisting of identical bubbles with Z nearest neighbours [16,
17]. In the original Z-cone model each bubble is segmented into Z equivalent pieces
which are then approximated as circular cones. Upon deformation (corresponding
to the compressed packing of bubbles in a foam) the initially spherical caps of the
cones become increasingly flattened. Their surface area is minimised subject to a
specified cone volume. The result is an analytic parametric expression for the excess
energy € of a bubble in terms of liquid fraction ¢ which contains no free parameters
and depends only on the number of contacts. For full mathematical details see our
previous papers [16, 17].

In order to deal with the Kelvin cell we have extended the Z-cone model to
comprise two different types of cones: see Fig. 3. Eight identical cones of specified
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(a) (b)

Figure 3. (a) A bubble in a Kelvin foam (represented here as a sphere) has eight (11 1) neighbours (hexag-
onal faces) and six (100) neighbours (square faces). (b) We associate with each neighbour a cone, as shown
here for a spherical bubble. In the cone model, each of these is approximated as a circular cone. The total
surface area of the caps of the cones is minimised subject to appropriate constraints, including a fixed total
volume when bubbles are brought into contact and become distorted.

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Surface Evolver
Cone model - ,

Excess energy €

s
‘¢conel‘1¢* ‘

0 0.05 0.1 015 02 025 0.3
Liquid fraction ¢

Figure 4. Variation of dimensionless excess energy ¢ (as defined in Eq. (1)) with liquid fraction ¢ for the
Kelvin structure, obtained from Surface Evolver calculations (solid line), and its approximation using the
generalised cone model (dashed line). The values in the dry limit (¢ = 0) are eg = 0.0970 from the Surface
Evolver and €¢,c = 0.0980 from the cone model. Increasing ¢ leads to the loss of the six square faces. This
takes place at ¢* = 0.108 for Surface Evolver simulations, and at ¢},,. = 0.092 in the cone model: see
dashed vertical lines on plot. The inset shows the normalised difference ((¢) — €cone(®))/c0.

opening angle correspond to the eight hexagonal faces and six identical cones, with a
different opening angle, correspond to the six square faces. Appropriate constraints
relate the solutions for the two types of cone, to ensure that they match appro-
priately at boundaries. For a detailed description of the extended cone model see
Appendix C.
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Figure 5. Variation of the areas of hexagonal and square contacts with liquid fraction, obtained from the
Surface Evolver and the cone model. The areas are normalised by R(Z), where the bubble volume is 4/37Ro>.

2.2. Results

Fig. 4 shows the variation of the dimensionless excess energy &(¢) with liquid frac-
tion, obtained from both Surface Evolver and the cone model — a surprisingly good
estimation of the excess energy over the entire range of ¢, with the difference not
exceeding one percent of £g = £(0). It is worth noting that we see better agreement
here than in the fcc case of the original Z-cone model [16]. This is due to the fact
that we approximate the contacts as circles: the square and hexagonal contacts in a
bcee foam are more rotationally symmetric than the rhombuses of an fcc foam. Sim-
ilarly, for Z = 12 in the original Z-cone model we saw much better agreement with
simulation for a pentagonal dodecahedron than the rhombic dodecahedron [16].

The value of ¢ at which the square (100) contacts vanish is given as ¢* = 0.108
by the Surface Evolver, and ¢},,, = 0.092 by the cone model. (It is worth noting
that Weaire et al. [21] arrived at a remarkably accurate early estimate of ¢* ~ 0.11
by a crude argument based on ratios of Plateau border widths.) The critical liquid
fraction for the wet limit is ¢. = 0.320 for the Kelvin foam; the cone model arrives
at a good approximation ¢ cone = 0.319.

Fig. 5 shows the variation in area of both square and hexagonal faces (recall that
it is the loss of the former that corresponds to ¢*). When ¢ is very slightly less than
¢* we encounter problems in accurately modelling the surface using the Surface
Evolver, due to difficulties in allowing the area of facets to go to zero.

We now give closer attention to the two critical points, ¢7,,, and ¢ cone. In doing
so, results are clearer when viewed in terms of derivatives. We show in Fig. 6 the vari-
ation of the derivative de/d¢ with liquid fraction as obtained from the cone model.
The asymptotic behaviour of de/d¢ near the wet limit ¢ = ¢ cone, as obtained
from differentiating the result from the original Z-cone model [16], and keeping the
highest-order term:

% a ¢c,cone - ¢
d¢ 1Og(¢c,cone - gb)’

(2)
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where a is a constant [16]. This describes the present data well, as one might expect:
see Fig. 6(b).

For de/d¢ at ¢ = ¢ . we did not succeed in finding an analytical expression
from our new cone model, on account of the numerical procedures involved (see
Appendix C). The following empirical expression is a reasonably good description
of the data near ¢ = ¢}, (see Fig. 6(c)):

ey 4 b2
do ' (108(Prone — 0))2

with two parameters b; < 0 and by > 0.

There is a discontinuity of the slope of de/d¢ at ¢ = ¢}, Which is clearly visible
in Fig. 6(c).

Of note is the presence of logarithmic terms in both expressions, a feature known
from various studies of bubble-bubble interactions [23, 24]. The discrepancy between
the two forms (2) and (3) suggests that results from bubble-bubble interactions do
not directly apply to all contact losses away from the wet limit, but we have no
explanation for this difference.

It has been argued that the limit of mechanical stability of the Kelvin structure is
directly attributable to the loss of the square faces [25]. A bce crystal of interacting
points is well known to require second-nearest-neighbour interactions to stabilise it
when simple pairwise potentials are applied. [26, 27].

This appeared indeed supported by Phelan et al. [8], who found a negative elastic
constant at values of ¢ > 0.11, i.e. very close to the value of ¢ = 0.11 & 0.005 that
these authors identified for the face loss. New preliminary Surface Evolver calcula-
tions by us are in accord with this — however, such an analysis is complicated by
the anomalous variation of energy at this critical point; this requires to be examined
more closely.

(3)

3. Conclusions

We have successfully extended the Z-cone model to the Kelvin foam, where not all
contacts are equivalent. The energy computed from this model agrees very well with
Surface Evolver simulations over the entire range of liquid fractions.

We have examined two distinct contact losses: the loss of the hexagonal (111)
faces at the wet limit, ¢., and of the square (100) faces away from the wet limit at
¢*, resulting in two distinctly different variations of energy with liquid fraction. We
previously derived an expansion for de/d¢ near ¢ = ¢, which revealed a logarithmic
dependence; we now have an empirical expression for the same derivative near ¢ =
¢* which, too, features a logarithmic term.

Using the cone model, we have also computed the variation of the areas of the
hexagonal and square faces close to ¢. and ¢* respectively: numerical noise hinders
these calculations using the Surface Evolver.

Acknowledgements

This publication has emanated from research supported in part by a research grant
from Science Foundation Ireland (SFI) under Grant 13/IA/1926. We also acknowl-



November 6, 2015

Philosophical Magazine kelvin'cone philmag

¢c,cone}
)

. !
9" cone :
A .

0 005 01 015 02 025 03 035
Liquid fraction ¢

(a)

-2

0 -0.214 T T : T
-0.0005 © -0.215 ¢ ;H+++++++++=,
-0.216 ; ]
-0.001 ¢ 0217 |
< 3
- -0.0015 - -0.218 -
© ©
-0.002 | -0.219
-0.22
-0.0025 1 s -0.221 .
¢c,cone: = ¢ cone :
-0.003 : ' ' — -0.222 . . - -
0.31 0.312 0.314 0.316 0.318 0.32 0.092 0.0922 0.0924 0.0926 0.0928
Liquid fraction ¢ Liquid fraction ¢

(b) (©)

Figure 6. (a) The derivative of excess energy with respect to liquid fraction, de/d¢, computed numerically
from the cone model. There is a discontinuity of slope at ¢ = ¢5 . ~ 0.092, i.e. the point of next-nearest
neighbour contact formation/loss (square faces). (b) Near ¢ = ¢c cone (the wet limit), the variation of the
derivative de/d¢ (points) is well approximated by the form in Eq. (2) (continuous line), obtained from
the simple Z-cone model. (c) Near ¢ = ¢}, (loss of square faces), the variation is quite different, and is
reasonably well approximated by the proposed empirical form of Eq. (3) (continuous line).
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Appendix A. Estimating the energy of the dry Kelvin foam

In the course of this work, we have noticed that the energy of the dry Kelvin foam
can be well estimated in a very elementary way, which may have applications to
other cases.

The natural first approximation to the Kelvin cell is the Voronoi cell of the bcc
lattice: the truncated octahedron, with fourteen flat faces which are planes equidis-
tant from first and second neighbour bubbles. The angles between these planes do
not conform to Plateau’s equilibrium rules, that is, they are not 120°. The equilib-
rium structure therefore has slightly lower energy. Our objective is to estimate the
reduction in energy when the Voronoi structure is relaxed.

We first note that the Voronoi structure can be held in equilibrium by applying
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Figure Al. If a surface tension is associated with the faces of the truncated octahedron, it is not in
equilibrium. This sketch shows the forces due to surface tension o acting at an edge between a quadrilateral
face and two hexagons. Note that in the unrelaxed truncated octahedron 26 is simply the dihedral angle of
a regular octahedron, i.e. 20 = arccos(—1/3) &~ 109.47°.

additional external forces at the edges of the quadrilateral faces, to compensate for
the mismatch of surface tensions (see Figure Al).

We then proceed to estimate the (negative) work done by these fictitious forces
as they are continuously reduced to zero. For each increment of such a change, the
work is simply force times displacement. To incorporate the latter, we approximate
the curved edges of the square faces as parabolic, and the force as conforming to
Hooke’s law. An elementary calculation then gives S/Sy = 1.0968.

Kusner and Sullivan sketch the computation of a lower bound for the energy of
a Kelvin cell in [11] using similar arguments as above, resulting in S/Sy > 1.0954.
The full details appear to be unpublished.

Appendix B. The bcc structure and the Surface Evolver

Fig. Bl(a) shows the conventional bce cell for a foam. The Kelvin foam consists of
repeated translated copies of this cell. However, for simplicity we can exploit some
of the symmetries of the conventional cell: namely, reflectional symmetry in the z, y
and z directions (Brakke and Sullivan [22] exploit even more symmetries to yield a
minimal representation of the fully dry Kelvin foam). Hence we arrive at a reduced
cell (Fig. B1(b)), which has one eighth of the volume of the conventional cell, and
is composed of a cube containing one eighth of a bubble at each of two opposite
corners. This increases the speed of computation considerably.

We begin with a very roughly triangulated approximation of the configuration in
Fig. B1(b), with appropriate film edges constrained to lie within the faces of the
cube, i.e. planes of reflection. Minimisation of energy results in films meeting the
faces of the cube at 90°, which ensures that the resulting foam structure is smooth.
We note that in order to faithfully represent the full foam, films which lie within
these planes (in this case, the blue (100) faces) are given half of their ‘real’ surface
tension. Hence we give the red (111) contact face a tension of 2 and all other facets
a tension of 1. Iterated mesh refinements and gradient-descent minimisations yield
the configuration shown in Fig. B1(b): the same surface is visualised as a single
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Figure B1. (a) The equilibrium structure for a Kelvin foam, including all surfaces within the conventional
cell (e.f. Fig. 2 which shows the surfaces of a single bubble). The (111) contact faces are shown in red, and
the (100) faces in blue. (b) We exploit reflectional symmetries to obtain a representative cell one eighth
the size of (a). The full foam can be built from reflected and translated copies of the representative cell.

bubble in Fig. 2(a).

Appendix C. The cone model applied to bcc

Modelling the Kelvin cell with the cone model may be regarded as a first step in
extending this approach to more general ordered foam structures in which not all
of the contacts are equivalent. The presence of two different types of contacts in
the bce structure adds a geometric complexity to the cone model which means that
several simplifying statements in the definition of the original model no longer hold.
The goal of this section is to give some details of how these additional complications
are incorporated.

While the total volume of the bubble, V), is constant, the volume of each of the
cones is no longer required to be constant. The constraint on the individual cone
volumes is now given by

8V +6Vs = Vo,

where Vs and V}, denote the volumes of the cones associated with square and hexag-
onal bubble contact areas, respectively.

The second additional complication is the determination of the opening angles 6,
and 65 of each type of cone (see Fig. C1). We choose to retain the values of the solid
angles subtended by each type of face in the “dry” Kelvin structure. This ensures
that the sum of the solid angles subtended by the eight hexagonal and six square
faces is equal to the 47 steradian solid angle of our bubble.

Two cones which meet each other are required to have a common slant height
(see Fig. C1) so that their curved caps match. In the original Z-cone model (with
identical cones) we required each of the curved caps to meet their respective cones
at right angles. In the case of the bce bubble, this is more subtle. As can be seen in
Fig. 3, a square cone joins only with four hexagonal cones (with corresponding angle
vs), whereas a hexagonal cone joins with three square cones and three hexagonal
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Figure Cl. In the extended cone model we deal with two types of cones: (a) for the hexagonal (111)
contacts and (b) for the square (100). They share a common slant height rs. The ratio §/r(0) = ps (where
0 is the radius of the contact, and r(0) the maximum width of the cone, as shown) features in the derivation
of the cone model expressions.

(with corresponding angles 7,5 and 7,y respectively). Smoothness requires vy, =
/2, and that

Vs + Yhs =T (Cl)

The cone model requires a single angle, ~;,, which we define as an average v, =
(Ynh + Yhs)/2. Hence we can rewrite (C1) as

3
29+ s = o

Similarly to the generalised volume condition above, the angles v, and ~5 are no
longer fixed, as in the Z-cone model. We can make use of the following constraints
to uniquely determine V4, 0 and «;, for any given liquid fraction ¢.

The first constraint we impose is that the ratio v of cone heights is constant with
respect to liquid fraction. Adopting the solid angles from the dry Kelvin structure,
and requiring that cone slant heights match, fixes this ratio:

_ Hp _ cost
" H, cosf,

v = 0.8644. (C2)

Note that for a real Kelvin foam the corresponding ratio is v/3/2 ~ 0.866.

The final constraint on our problem is that the internal pressure p in each of
the neighbouring cones should be equal. This is simply the statement that pressure
does not depend on the position in the bubble. The internal pressure of a bubble
is responsible for the curvature of its surface and, by considering the work done
to increase the volume of each cone by a small amount AV;, while keeping the
size of the contact constant (i.e. blowing it up slightly), we arrive at the following
expression for the internal pressure of a cone,

AE; Arg,
p; = TVZ* — 27T, COS 7y; COS giA:/{:" (C3)

where Arg, is the slant height change of a cone, AFE; is the surface energy change

10
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and AV* the change in the volume associated with the curved surface of the bubble.
The first term represents the work necessary to increase the free surface of the cone
by an amount AV;*, while the second is the work done by the surface tension o in
changing the surface energy of the cone to account for the increase in slant height.
It can be thought of in terms of reduction of curvature:

We, = 2mrs, Arg, cos 6; cos ;.

The above constraints are sufficient to determine all of the variables in our problem
and to write the excess surface energy ¢ for the Kelvin cone model as

8An(ps,,0n, Lnyan) + 6As(ps,, 05, s,
£(psys 6.+ 00,05, T, sy g, gs) = (ps, g )47T o(P5,,95,Vs:4s) _ 4

Here, the area of each face is given by

» :
Ai(ps..0;,Ti,q;) = TR2 ’ 2 1921 - p2)K(ps.,T;
(p5,70 yLiyq ) WRO <3J(p617rz) + cot 02> [:051 + ( p(;l) (pisla )] ’

and the angles I'y, and I's are related to v, and v via

T
Fi:'71+9i_§-

The quantities g5 and ¢, are fractions of the total volume V|, taken up by any one
of the square or hexagonal cones:

V%
QS_%7 Qh—‘/ov

and ps is given by the ratio of lengths §/7(0) as shown in Fig. Cl(a).
The liquid fraction can be similarly expressed in these terms as

3J(p5h, ') + cot O

79 7987 F ) = 1 -
$(ps., On b n) 2qn, [I(ps, ') + cot Hh]3 (4 tan? 0y, (%) + tan? 95)

The elliptic integrals are given explicitly by:

1
I(ps,T;) = / sinT; ($2 — pgl) f(z,ps,, ) dz,
Ps;

1
J(ps, ;) = / sin T2 (a:2 - Pgi) f(z, ps,, ') dx, and
Ps;

1
K(ps.Ty) = / 2 (. s, T) da.
Ps;

with

11
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f(z,ps,, 1) = x2(1 — ,ogi)2 — sinI‘? (Jc2 — 91251')2} 2

For a more detailed derivation of the original Z-cone model, see [17].
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