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Modern pathology laboratories and in particular high throughput laboratories such as
clinical chemistry have developed a reliable system for statistical process control (SPC).
Such a system is absent from the majority of molecular laboratories and where present is
confined to quantitative assays. As the inability to apply SPC to an assay is an obvious
disadvantage this study aimed to solve this problem by using a frequency estimate
coupled with a confidence interval calculation to detect deviations from an expected
mutation frequency. The results of this study demonstrate the strengths and weaknesses
of this approach and highlight minimum sample number requirements. Notably, assays
with low mutation frequencies and detection of small deviations from an expected value
require greater sample numbers to mitigate a protracted time to detection. Modeled
laboratory data was also used to highlight how this approach might be applied in a routine
molecular laboratory. This article is the first to describe the application of SPC to qualitative
laboratory data.
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INTRODUCTION
Within the field of molecular pathology and molecular diagnos-
tics, qualitative assays often suffer from a limited repertoire of
methods for monitoring process performance over time. This is
quite the opposite to high-throughput departments such as clini-
cal biochemistry which run controls throughout the day and plot
the performance of these controls on Levey-Jennings charts or
an equivalent form of monitoring chart in a process termed sta-
tistical process control (SPC) (Levey and Jennings, 1950). The
characteristics of clinical biochemistry that render it suitable for
SPC are twofold; firstly, the laboratories have the throughput
to generate statistically relevant data and can add run controls
to routine work; secondly, clinical biochemistry tends to gen-
erate quantitative data which lends itself to plotting on control
charts.

With the emergence of targeted therapies in hematological
malignancy and solid tumors, many molecular assays are now
processed in numbers sufficient to permit some form of SPC
and this has been achieved for quantitative molecular assays
(Liang et al., 2008). However, the literature regarding SPC or an
equivalent technique for qualitative molecular diagnostic assays
is scant and those wishing to apply statistically valid monitoring
to qualitative assays have a limited range of techniques to choose
from.

While some articles in the field of quality control do make
reference to qualitative observations (Spanos and Chen, 1997)
these approaches may be difficult to translate directly to the clin-
ical laboratory. A relatively simple approach that may be applied
to any laboratory with sufficient throughput is the monitoring

of mutation frequencies in tested samples. By combining point
estimates of mutation frequency with statistically informative
confidence intervals the laboratory can monitor process varia-
tions and performance relative to a known reference point over
time.

In this article we assess the applicability of SPC to quali-
tative molecular pathology assays. It is our contention that a
confidence interval of the observed mutation frequency may be
compared to an expected value to give a reliable indicator of pro-
cess performance. If a laboratory finds the mutation frequency
confidence interval to lie outside of an expected value or range
of values, this would trigger further investigative action and trou-
bleshooting and may permit earlier detection of assay or protocol
deviations that may be detrimental to patient care. By using
statistical models we highlight the strengths and weaknesses of
this approach and use modeled data to demonstrate how this
may be applied in a routine laboratory. Significantly, we are also
able to calculate minimum sample numbers necessary to apply
this technique in a given clinical scenario with clear implications
for laboratories seeking to implement high standards of process
control.

MATERIALS AND METHODS
MODELING FUNCTIONAL PROPERTIES OF STATISTICAL PROCESS
CONTROL
The approach taken for this analysis used a point estimate of
mutation frequency and a confidence interval to guide the inter-
pretation of the point frequency estimate relative to a prior fre-
quency estimate. Based on this approach, should the confidence
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limits of the point frequency estimate fail to overlap the prior
frequency estimate, this would act as a trigger for further inves-
tigative action. A confidence interval of 95% was chosen and
calculated using the Clopper-Pearson method (Clopper and
Pearson, 1934).

The Clopper–Pearson confidence interval estimate is used
to calculate binomial confidence intervals using the cumula-
tive probabilities of the binomial distribution. The calculation is
written in Equation (1) below.

{
∅|P [Bin(n; ∅) ≤ X | >

∅
2

}
∩

{
∅|P [Bin (n; ∅) ≥ X | >

∅
2

}
(1)

Where; X is the number of successes observed in the sample,
Bin(n; ∅) is a binomial random variable with n trials and

probability of success ∅
All statistical calculations were performed using Matlab ver-

sion 2014a (The Mathworks Inc, Natick, MA). The “samp-
sizepwr” function from the Statistics toolbox was used for sample

size estimations using the binomial distribution. Sample numbers
from 10 to 2000 per annum were used for model building with a
statistical power of 0.8 and a default confidence interval of 0.95.
Matlab scripts used for all calculations have been made available
in the supplementary data file.

To describe how the time to detection of a deviation from
a prior frequency estimate might be affected by deviation size
and the value of the prior frequency estimate, statistical power
calculations were performed for a range of deviation sizes (10,
20, 30, and 40%) and prior frequency estimates (5, 10, 20, 30,
40, and 50%). Calculations were performed using the parame-
ters specified above for all combinations of the deviation size and
prior frequency estimates. The relationship between deviation
size and mutation frequency was plotted using a series of subplots
(Figure 1), and minimum recommended sample numbers were
summarized using a quick reference table (Table 1).

MODELING FREQUENCY DATA
A theoretical laboratory was modeled that processes 624 cases of
KRAS per annum each with a prior frequency estimate of 44%.

FIGURE 1 | Statistical process control sample number requirements.

Each of the four subplots demonstrate the sample numbers required to
detect deviations of 10, 20, 30, and 40% for a range of prior frequency
estimates ranging from 5 to 50%. This figure illustrates the non-linear

relationship between sample number and applicability of the calculations to
laboratory monitoring. The figure highlights the clear requirement for greater
sample numbers to detect deviations where the prior frequency estimate is
lower or the required detection level is lower.
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For this assay a sample requirement of 242 samples (21 weeks) to
detect a deviation of 20% or more and 104 samples (9 weeks) to
detect a deviation of 30% or more (Table 1). A uniform sampling
interval was determined (assuming equal sample distribution
throughout a year) and this was applied in a non-overlapping
schema to 105 weeks of modeled data.

Data were modeled to simulate a true mutation frequency of
44% for the first 52 weeks followed by a linear decline over 13
weeks to a mutation rate of 30%. To demonstrate the robust-
ness of the process to random variation, data were modeled
using a binomial distribution and random number generation
routine (makedist) in Matlab®. This function models the vari-
ability inherent in a sample of a particular size (in this case
12 tests per week) is likely to vary about a given mean fre-
quency Data from the statistical model were plotted using control
charts at both 20 and 30% detection levels using Microsoft®
Excel (Figure 2), for each time frame the point frequency esti-
mate was plotted with its associated confidence interval and
compared to the prior frequency estimate of 44% (or its equiv-
alent proportion of 0.44). For ease of interpretation data from
the different time stages of the model are color coded within
Figure 2 with green data representing those data with a mean
frequency of 44%, orange representing the decline in posi-
tivity and red representing a new stable mutation frequency
of 30%.

RESULTS
SPC REQUIRES ADEQUATE THROUGHPUT
Analysis of the modeled data for sample throughput, propor-
tional deviation from the expected mutation frequency and num-
ber of samples per annum shows that as sample numbers increase
the time taken to identify a deviation of a particular magnitude
decreases, often markedly (Figure 1). Moving in increments of
200 samples, the most pronounced decrease in time is noted at
the lower end of the scale i.e., increasing from 200 to 400 patients
vs. increasing from 1600 to 1800 patients.

The size of the deviation too has a definite effect on the ability
to detect the deviation and the time taken to do so. For example,

Table 1 | Estimates of sample numbers required to detect deviations

from an expected cut-off.

Percentage deviation

from expected
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c
y 5% 59,788 14,974 3803 1697

10% 28,383 7024 1782 810

15% 17,810 4417 1127 497

20% 12,637 3166 793 360

25% 9429 2379 581 266

30% 7383 1851 474 203

35% 5857 1472 371 157

40% 4768 1174 301 127

45% 3861 956 242 104

50% 3176 790 194 86

by comparing the subplots of Figure 1, it is evident that the iden-
tification of a deviation of 10 percent would require much greater
sample numbers than one would require to detect a deviation of
40 percent. This observation holds true for all prior frequency
estimates tested with this model.

SPC PARAMETERS CAN BE USED TO ESTIMATE
OPTIMAL/SUBOPTIMAL SERVICE SIZE
In order to forecast the required number of samples necessary
to allow a laboratory to detect a deviation of a given percent-
age from an expected mutation frequency (also referred to as a
prior frequency estimate), a quick reference chart was generated.
This chart compares the expected frequency of a mutation with
a percentage deviation cut-off to suggest the number of samples
that might be required to detect this deviation with a power of

FIGURE 2 | Detection of mutation frequency deviations using

frequency plots. For each time point specified in the sampling schedule,
the mean and 95% confidence interval as calculated using a
Clopper-Pearson estimate was plotted along with a bar representing a prior
frequency estimate. The modeled data used as described in the materials
and methods is highlighted in the color bands along the lower boundary of
each plot. The data within the green areas have a mean frequency of 44%,
the data in the orange area are the data that are linearly decreasing and the
data in the red area are stable at a lower frequency of 30%. The upper
graph (A) is designed to detect smaller deviations of 20% but requires
greater sample numbers. The lower graph (B) can detect deviations of
approximately 30% or greater and requires fewer samples per time point.
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0.8 (Table 1). It is also possible to use this table to calculate the
number of individuals likely to be unnecessarily affected by under
or over treatment as a result of suboptimal service capacity. For
example if Laboratory A examines 157 samples per annum it is
likely to be able to detect a deviation of 30% from a prior fre-
quency estimate of 35% i.e., an increase in mutation frequency
from 35 to 45.5% of samples tested or a decrease from 35 to
24.5%. In the case of an increase from 35 to 45.5% this might
potentially result in over treatment of 16 patients per annum. The
laboratory would be able to detect a similar level of under treat-
ment if the mutation detection frequency decreased. Laboratory
B examines 371 samples per annum. It can detect the same
30% deviation within 5 months. Laboratory B can also detect a
20% deviation from expected values and identify a clinical risk
that would not be detected by Laboratory A through annual
review.

APPLICATION OF SPC TO MODELED DATA
The applicability of point frequency estimates with control data
to monitoring and detection of laboratory processes is illustrated
in Figure 2. The modeled data used for this chart show the type
of variability one might expect from a process that is in control
i.e., not subject to special cause variation. The ability of each plot
(20 and 30%) to detect the commencement and continuation of
a decrease from 44 to 30 percent mutation frequency is illustrated
in Figure 2.

The plots also highlight the shorter time intervals and greater
confidence intervals of the 30% deviation chart relative to the
20% deviation chart. From the figure it can be noted that the
30% deviation chart would be the first chart to detect the devi-
ation from the prior frequency estimate although the 20% devi-
ation chart may have the ability to detect deviations of lesser
magnitude.

DISCUSSION
The utility of SPC is hard to deny, it permits a broad overview of
an entire analytical process. In the context of molecular pathology
and molecular oncology this means that assay deviations lead-
ing to over or under treatment of patients can be identified and
any process faults may be corrected within a clinically relevant
time frame. As a quality control technique SPC is in common
use in many laboratories but a lack of suitable methods to apply
it to qualitative data have meant that it is more often applied to
quantitative methods.

Using a characteristic such as a point estimate of the muta-
tion frequency for comparison to an expected frequency gives an
estimate of the performance of a clinical laboratory testing pro-
cess. However, calculations such as this are fraught with scope for
mis-interpretation or inappropriate usage. For example, should
one calculate such a figure with too few samples it would not be
reflective of the true frequency in the population being tested.
Similarly, a failure to calculate confidence intervals would give
the observant little room to qualify a deviation from normal
as being clinically or analytically relevant. The opposite effect
might also be observed if one used too many samples for the
calculation and thus delayed an opportunity to detect a process
deviation.

By pre-defining an optimal sample number and prior fre-
quency estimate for a given mutation detection assay, it is possible
to use mutation frequency calculations coupled with confidence
interval estimates to assess whether a process is performing as
expected. The modeled data presented in Figure 2 demonstrate
how a laboratory may graph mutation frequency relative to a
prior frequency estimate; the estimate in this case being 44%.
The modeled deviation from the “normal” mutation frequency
which begins after week 52 is easily detected by the short interval
of the 30% deviation chart. The 20% deviation chart by contrast
takes longer to detect the deviation as the proportion of pos-
itive results across the longer time frame was not sufficient to
draw the limits of normal outside of the prior frequency esti-
mate. While this modeled data illustrates but a single example
it should be robust to changes in mutation frequency and devi-
ation size, provided sample numbers are sufficiently large. This
highlights prior determination of sample size as a necessary com-
ponent of this system and quick estimates of sample size can be
determined using Table 1 although a more complete calculation
may be required depending on circumstances.

The implications of this work are clear for laboratories pro-
cessing smaller sample numbers or those laboratories testing for
rare mutations. In each case the time to detect a process or assay
deviation is increased, thus, in such cases measures should be
taken to either increase sample throughput, or to increase the
relative mutation frequency within the population being submit-
ted for testing. It should also be of note that swelling numbers
by broadening testing guidelines would have a detrimental effect
on the ability of SPC to detect a deviation from a prior frequency
estimate as it may decrease the relative frequency of mutations
within the sample cohort. An amalgamation of test frequencies
can render this approach far less informative, thus, each assay
should be treated separately for the purposes of process con-
trol. Failure to do so may result in multiple deviations canceling
one another out or deviations in an assay for a single marker
being missed when combined with data from more numerous
markers.

It must be noted that not all assays will have the ability to
scale to the numbers required to implement SPC in a clini-
cally relevant time frame. As an example, pediatric cancers may
occur at an incidence of 130 to 160 cases per million chil-
dren (Kaatsch, 2010). This would mean that molecular testing
of childhood cancers may be too infrequent to generate a suffi-
cient volume of data to implement this form of SPC. Thus, one
should consider these guideline numbers for use when possible
and realize that where assays do not fulfill sizing requirements
additional EQA or confirmatory assays may be necessary to cir-
cumvent this limitation. However, guidelines for mitigating small
sample numbers are absent from the literature so such miti-
gation would require careful implementation and possibly peer
review to ensure optimal quality. If one compares pediatric can-
cers to colorectal cancer which have an incidence of 400 cases
per million in the USA (Haggar and Boushey, 2009), and a
bias toward particular predictive biomarkers such as KRAS or
NRAS mutation (Douillard et al., 2013) the feasibility of apply-
ing this technique to colorectal and other common cancers is
clear.
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As modeled data was chosen to circumvent limitations with
data availability application to historic or prospective labora-
tory data will be necessary to further test the method. Future
work to test the utility of this assay in routine practice will be
conducted by our laboratory and modification of certain param-
eters may be required to further optimize the system for routine
use. For example, modification of the study power and chosen
confidence interval may better suit some applications. Plotting
of mutation frequency may lend itself to trend analysis simi-
lar to Westgard rules (Westgard et al., 1981), and depending on
interpretation, a particular laboratory may favor different param-
eters on the X-axis e.g., sample number rather than time in
weeks. The ability of SPC to act in concert with EQA schemes
to provide process rather than assay control is a future consid-
eration and any laboratory that seeks to optimize quality will
require a considered approach to get an optimal return from both
methodologies.

Within a modern clinical chemistry laboratory it would be
surprising to find SPC absent from the daily workflow. The
benefits of routine SPC are so apparent that it has seen near-
universal adoption. While features such as test volume, low
control to sample ratio and quantitative assays lend them-
selves to this process, we have established that SPC can also
be applied to qualitative tests. To our knowledge this is the
first report of SPC being described for use with qualitative
molecular assays so it would be reasonable to expect some
modifications to this system in the future which may result
in improved applicability to the routine laboratory. Based on
the data from our study and the obvious benefits of SPC we
feel that SPC for qualitative assays should be implemented in
routine practice where possible. Additionally, while our descrip-
tions have focussed on qualitative molecular assays in cancer
this approach should be broadly applicable across a range of
qualitative assays.
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