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Abstract

Playing video games is a common recreational activity of adolescents. Recent research associated frequent video game
playing with improvements in cognitive functions. Improvements in cognition have been related to grey matter changes in
prefrontal cortex. However, a fine-grained analysis of human brain structure in relation to video gaming is lacking. In
magnetic resonance imaging scans of 152 14-year old adolescents, FreeSurfer was used to estimate cortical thickness.
Cortical thickness across the whole cortical surface was correlated with self-reported duration of video gaming (hours per
week). A robust positive association between cortical thickness and video gaming duration was observed in left dorsolateral
prefrontal cortex (DLPFC) and left frontal eye fields (FEFs). No regions showed cortical thinning in association with video
gaming frequency. DLPFC is the core correlate of executive control and strategic planning which in turn are essential
cognitive domains for successful video gaming. The FEFs are a key region involved in visuo-motor integration important for
programming and execution of eye movements and allocation of visuo-spatial attention, processes engaged extensively in
video games. The results may represent the biological basis of previously reported cognitive improvements due to video
game play. Whether or not these results represent a-priori characteristics or consequences of video gaming should be
studied in future longitudinal investigations.
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Introduction

The rapid growth of video game popularity in adolescents has

generated concern among practitioners, parents, scholars and

politicians. For violent video games, detrimental effects have been

reported in social domains, namely increases in aggression and

reductions of empathy and prosocial behaviour [1,2]. But

favourable effects of frequent video game playing have also been

observed. It has been shown that action video game playing can

enhance probabilistic inferences [3], as well as visual skills related

to attention, memory and the spatial resolution of vision [4–7].

Furthermore, improvements in higher-level cognitive functions

such as task switching, working memory and reasoning have been

associated with improvements in a strategic video game [8].

Additionally, video games have been shown to enhance spatial

skills [9] and motor skills, such as endoscopic surgical performance

[10,11].

Brain mapping studies have established that extensive experi-

ence with certain skills can alter brain activity during performance
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of that skill [12,13] and enlarge brain structures typically engaged

by a given activity [14]. Variations in brain structure have been

associated with a broad spectrum of skills such as taxi driving [15],

juggling [16], studying for medical exams [17], keyboard typing

[18], morse-code [19] and musical skills [20].

Although behavioural studies have demonstrated effects on

visual and cognitive skills, research on the structural correlates of

frequent video game playing is still scarce. Of note is a study by

Lövden et al. [21], in which healthy younger and older men

performed a cognitively demanding computer game that required

spatial navigation within a virtual environment while walking on a

treadmill every other day over a period of 4 months. Structural

images were acquired before training, after 4 months of training

and 4 months after termination of training. The young and old

experimental group had stable hippocampal volumes that were

maintained 4 months after termination of training. In contrast, the

young and old control group that walked on the treadmill but did

not train with the spatial navigation task displayed volume

decrements consistent with longitudinal estimates of age-related

decline.

In a first structural study exploring the neural correlates of video

game playing on the same data set as the present study we used

voxel-based morphometry (VBM) to compare frequent (more than

9 h/week) with infrequent (less than 9 h/week) video game

playing adolescents [22]. We found increased left striatal grey

matter volume in frequent compared with infrequent video game

players accompanied by stronger brain activity in left striatum

during feedback of loss compared with no loss. Compared to

VBM, the method employed previously [22], cortical thickness has

been suggested to be a more sensitive parameter with a higher

signal-to-noise ratio [23-26]. Furthermore cortical thickness has

been shown to be associated with normal aging, cognitive

performance and mental disorders.

To explore the association between spontaneous video game

playing and cortical thickness, we analysed data from 152 14-year

old adolescents from the IMAGEN project [27] including a

questionnaire assessing video gaming frequency and high-resolu-

tion structural magnetic resonance imaging (MRI) scans.

Materials and Methods

Participants
152 healthy 14-year old adolescents (mean = 14.4, SD = 0.03

years; 72 males, 80 females) were participants of the IMAGEN

project, a European multi-centre genetic-neuroimaging study in

adolescence [27]. Data from this project is stored on a data server

operated according to European data protection law. The data

access and overall scientific direction is regulated by a Project

Executive Committee (PEC) chaired by the Scientific Co-

ordinator (Gunter Schumann, IOP London). Written informed

consent was obtained from all legal guardians and assent was

obtained from the adolescents. All adolescents were recruited from

secondary schools in Berlin. The study was approved by the ethics

committee of the Medical Department of the University of

Heidelberg. Participants with serious medical conditions such as

brain tumours, neurological disorders like epilepsy or mental-

health disorders were excluded. Mental health of all participants

was assessed by means of self-rating and two external ratings (by

their parents and a psychiatrist specialized in paediatrics) based on

ICD-10 as well as DSM-IV (The Development and Well-Being

Assessment Interview, DAWBA, [28]). None of the participants

included in the present study received a psychiatric diagnosis.

Scanning Sequence
For logistical reasons, structural images were collected on two

scanners - a General Electric Signa Excite 3 T scanner

(Milwaukee WI, USA) and a Siemens Verio 3 T (Erlangen,

Germany). The participants scanned on the GE and Siemens

scanners consisted, respectively, of 63 participants who played

14.4 hours per week on average (SD = 13.9) and 89 participants

playing 11.4 hours per week on average (SD = 12.2); this

difference was not significant (t(150) = 1.4, p = 0.16). The images

were obtained using a three-dimensional T1-weighted magnetiza-

tion prepared gradient-echo sequence (MPRAGE) based on the

ADNI protocol (www.adni-info.org; GE scanner: repetition time

= 7.16 msec; echo time = 3.02 msec; flip angle = 8u;
25662566166 matrix, 1.161.161.1 mm voxel size; Siemens

scanner: repetition time = 6.9 msec; echo time = 2.93 msec; flip

angle = 9u; 24062566160 matrix, 1.161.161.1 mm voxel size).

Questionnaire
We administered a questionnaire assessing computer gaming

behaviour (CSV-S, [29]) comprising of the questions: ‘‘How many

hours do you play video games on average on a weekday?’’ and

‘‘How many hours do you play video games on average on a day

during the weekend?’’. Based on the hours indicated, we

calculated the weekly hours spent playing video games. Moreover

we categorized the participants according to the CSV-S score that

defines excessive video game playing with a cut-off of a score of 4

and addiction with a cut-off of 7. This questionnaire was

administered only in the Berlin sample of the IMAGEN study.

Data Analysis
Cortical thickness was estimated from the structural magnetic

resonance images using FreeSurfer software (http://surfer.nmr.

mgh.harvard.edu/, [30]), a set of automated tools for reconstruc-

tion of brain cortical surface [31].

First, we used the T1-weighted images to segment white matter

and to estimate the grey-white matter interface. This estimate of

grey-white matter interface was used as the starting point of a

deformable surface algorithm searching for the pial surface. The

whole cerebral cortex of each participant was visually inspected for

inaccuracies, only participants with no segmentation errors were

included in the present data set (n = 6 additional subjects were

excluded from further analysis, due to errors in segmentation at

the transition between temporal lobe and insula). Local cortical

thickness was estimated based on the difference between the

position of equivalent vertices in the pial surface and grey-white

matter interface. The surface of the grey-white matter border was

inflated and differences between participants in the depth of gyri

and sulci were normalized. Each participant’s reconstructed brain

was morphed and registered to an average spherical surface. In

order to obtain difference maps of cortical thickness, the data were

smoothed on the level of the sphere using a Gaussian smoothing

kernel with a full-width half maximum of 15 mm. We used a

multiple regression approach to explore the association between

cortical thickness and self-reported average video gaming hours

per week. To control for the effects of age, sex and scanner these

variables were entered as additional regressors of no interest in the

whole cortical surface multiple regression analysis. The resulting

maps were initially thresholded with p,0.001. Then we performed

Monte Carlo simulation cluster analysis in FreeSurfer qdec

comprising the synthesis of white Gaussian noise on the estimated

surface, smoothing and clustering to correct for multiple compar-

isons using a cluster threshold of p,0.01. Only clusters that

survived this correction for multiple comparisons are reported.

Association of Video Gaming with Cortical Thickness
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Results

On average the participants reported playing video games for

an average of 12.6 (SD = 12.9, range = 63) hours during a typical

week. There was a significant difference in hours of video game

playing between males and females, with females playing less

frequently (t(150) = 5.03, p,0.001). Participants indicating that

they do not play video games during an average week were

exclusively female. The group of participants reporting video game

playing consisted of 54 females and 72 males. According to the

CSV-S scoring schema 6 participants were classified as addicted

and 13 as excessive users.

Cortical thickness differed between scanners (DLPFC:

t(150) = 4.56, p,0.001; FEF: t(150) = 5.07, p,0.001); on the GE

scanner cortical thickness values were higher compared to

Siemens, therefore scanner was entered as a covariate of no

interest in the main analysis.

When computing the main whole brain analysis to explore

brain regions in which cortical thickness varied with hours per

week of video gaming (controlling for age, sex and scanner), we

found that the time playing video games correlated positively with

cortical thickness in the left dorsolateral prefrontal cortex in left

middle frontal gyrus extending into left superior frontal gyrus

(DLPFC 240 40 24, according to [32]; BA 9 and 46, rostral

middle frontal according to [33]; total surface area 710 mm2; total

grey matter volume 2415 mm3) and left frontal eye fields (FEF,

219 22 51; BA6, superior frontal area; total surface area

592 mm3; total grey matter volume 2089 mm3; [34,35] (Figure 1).

To illustrate the observed effects, and to exclude the possibility

that outliers were driving the effects, a scatterplot is shown in

Figure 2. There were no regions of significant negative correlation

between cortical thickness and video game playing per week.

To explore the effects of the nuisance variables age, sex and

scanner we computed the associations between these variables

with cortical thickness extracted from the clusters in DLPFC and

FEF. Age was only marginally associated with cortical thickness

(DLPFC: r(152) = 20.123, p = 0.13; FEF: r(152) = 20.15,

p = 0.065), whereas no significant difference was observed between

female and male participants (DLPFC: t(150) = 20.32, p = 0.749;

FEF: t(150) = 20.20, p = 0.839).

We compared cortical thickness in participants that were

classified as excessive (n = 13) or addicted (n = 6) video gamers to

the remaining participants in a post-hoc comparison. We found a

significant difference in DLPFC (F(1,118) = 6.36, p,0.05; partial

eta square: g2 = 0.051) when controlling for sex, age and scanner,

but no significant effect in FEF (F(1,118) = 0.54, p = 0.464).

Socioeconomic background, approximated by means of the

highest education of the parents, did not influence the association

between video gaming hours per week and cortical thickness in

DLFPC and FEF; when partialing out parental education the

correlations were still significant (DLPFC: r(149) = 0.317, p,0.001;

FEF: r(149) = 0.289, p,0.001).

Although one might be tempted to assume a positive association

between body mass index (BMI) and video gaming, we did not find

an association between self-reported video game hours at age 14

and BMI at age 16 (r(74) = 20.007, p = 0.95). However, we did not

assess BMI at age 14 and can therefore not report results of

concurrent video game behaviour and BMI.Figure 1. Significant clusters of the cortical thickness correla-
tion with hours of video gaming per week in the left
dorsolateral prefrontal cortex (DLPFC) and left frontal eye
fields (FEF) (multiple comparison corrected, p,0.01).
doi:10.1371/journal.pone.0091506.g001

Figure 2. Scatter plot of the association between cortical
thickness in left dorsolateral prefrontal cortex (DLPFC, top)
and frontal eye fields (FEF, bottom) and hours of video gaming
per week. Correlation coefficients are not reported since the brain
regions are defined based on a whole brain analysis and applying
statistics on these regions could be considered ‘‘double dipping’’
(Kriegeskorte et al., 2009).
doi:10.1371/journal.pone.0091506.g002
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Discussion

Within the scope of the present study we investigated the

structural correlates of video gaming frequency in a sample of 152

adolescents and found a positive correlation between self-reported

hours of video gaming per week and cortical thickness in the left

DLPFC and left FEF (also when controlling for sex, age, scanner

and socioeconomic status). Reductions in cortical thickness

associated with video gaming frequency were not observed.

Prefrontal cortex has been described as the substrate of

executive control [36,37]. DLPFC tends to be prominently

involved in manipulating decision relevant information and during

decisions involving conscious deliberation [38]. Extensive research

has implicated DLPFC in working memory, a cognitive require-

ment for maintaining decision goals, considering options and

integrating both to predict future outcomes [39–41]. Several

studies indicate a general trend towards a lateralization in function

of DLPFC: right DLPFC seems to be implicated when novel

information requires responses that are drawn from memory,

whereas left DLPFC is implicated when responses draw upon

environmental evidence [42]. In a neuroimaging study on

inductive inferences, the left DLPFC was more strongly involved

during ambiguity resolution, in which explicit contextual cues

guided decision-making, whereas right DLPFC was more prom-

inently activated during memory-based retrieval of criterions for

decisions [43]. In line with this prefrontal lateralization, studies on

visual perceptual decision-making in monkeys [44] as well as

humans [45] have reported activity in left DLPFC associated with

the representation of differential output from neuronal populations

representing different stimulus alternatives. The notion that the

left DLPFC comprises a decision-making module is supported by

the fact that its involvement is independent of the modality of

perceptual input and independent of the response modality that

participants use to communicate the outcome of their decision.

The independence of left DLPFC activity from response modality

has been demonstrated by comparing visual motion discrimination

to which participants had to respond by means of button presses or

saccadic eye movements [46]. Both conditions involved activation

of left posterior DLPFC independent of the motor system that

participants used to express their decision. The association

between DLPFC and perceptual decision-making is further

supported by a study on monkeys with lesions in the posterior

DLPFC, which displayed impairments in discrimination tasks

[47].

Interestingly, the FEFs have also been implicated in perceptual

decision-making studies on monkeys [44] and humans [46].

Heekeren and colleagues [46] asked humans to make direction-of-

motion judgements on random-dot stimuli. During the decision

formation phase they found high correlations between the strength

of the motion signal of the stimulus and activation in the FEF.

Importantly, the FEFs are involved in visuo-motor integration

relevant for the programming and execution of eye movements

[34]; by means of intracranial stimulation within FEF saccades can

be elicited [48]. Furthermore the FEFs are associated with the

allocation of visuo-spatial attention, a process that is important in

the majority of video games.

Although our approach to explore the structural basis of video

gaming was purely exploratory in nature, the fact that we found

higher cortical thickness jointly in left DLPFC and left FEF could

suggest that these morphometric correlates are related to training

effects in perceptual decision-making and allocation of attention.

Perceptual decision-making involves different processes, namely

the intake and accumulation of sensory evidence, subsequent

categorization and decision-making based on this input and

subsequent actions [49]. Video gaming may likewise engage

cognitive processes related to perceptual decision-making. In most

games, visual stimuli on the screen need to be processed in order to

decide which action is required to reach the overall goal. Although

the demonstrated association between hours of weekly video game

playing with cortical thickness in left DLPFC and left FEF does not

allow the conclusion that these morphometric alterations are

caused by video game playing and in particular perceptual

decision-making within the latter, there is behavioural evidence

that implies causality. A study by Green and colleagues [3] has

demonstrated more efficient use of sensory evidence in participants

with extensive action video game experience. Importantly, action

video game training (50 hours) led to qualitatively similar results in

a group of participants that did not habitually play action video

games in their spare time. These improvements were not restricted

to the visual modality, but appeared in the auditory modality as

well. The findings by Green and colleagues establish a causal

relationship between action video game experience and improved

probabilistic inference. Using a neural network, they successfully

simulated the improved performance of frequent video game

players by means of enhancing the connection strength between

the layer providing sensory evidence that would be localized in

lower perceptual brain regions (e.g. V5/MT (middle temporal) in

a motion discrimination tasks) and the layer that integrates

evidence that could be located in higher-level brain regions such as

left DLPFC or FEFs. The fact that video gamers perform better in

perceptual decision-making is appealing because it provides a

mechanism to explain why video game training improves

participants’ performance in such seemingly different tasks as

contrast detection, visual search, multiple object tracking, letter

recognition with flankers, and decision-making [4,5,7,50]. How-

ever, such an improvement may have wider implications; it could

be that frequent video game players perform better because they

learn a better model of the stimuli and therefore decide more

accurately (Law and Gold 2008). This would be in line with

theories of perceptual learning proposing that learning occurs by

means of template matching via reweighting the connections

between the stages of sensory processing and decision-making

[51,52]. Improvements of probabilistic inference may explain the

broad transfer effects resulting from training with video games, e.g.

[11,53] in comparison to the majority of classical cognitive

training studies showing only limited transfer with other, even

closely related tasks [54,55].

The presented findings complement previous VBM results on a

similar sample in which we have shown that frequent (.9 h/week)

compared with infrequent (,9 h/week) video gamers have higher

grey matter volume in the left ventral striatum [22]. Furthermore

we found higher reward task-related brain activity during feedback

of loss compared with feedback of no loss in frequent video

gamers. Furthermore we found a negative correlation between

deliberation time in a betting task and grey matter volume in the

ventral striatum. Taken together results were interpreted in the

light of alterations in the reward system and a potential neural

correlate for gambling-related decision making. The cortical

thickness finding presented in the present analysis broadens this

perspective and extends the observed neural correlates to brain

regions associated with perceptual decision-making.

Moreover, the observed results fit well to our recent finding of

training-related grey matter volume increases in the right DLPFC

[56]. A sample of video game-naı̈ve subjects was asked to play the

platformer game Super Mario 64 30 min/day for a period of two

month. VBM comparing grey matter before and after this

intervention revealed significant grey matter growth in right

DLPFC, right hippocampus and the cerebellum. Why the

Association of Video Gaming with Cortical Thickness
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observed training effects are right-lateralized, whereas the

structural correlates of video gaming hours per week are left-

lateralized needs further exploration. Potentially the different

lateralization may be due to the fact that the participants in the

present study did not only play games such as the platformer we

used in the training study.

The fact that we found a significant difference of DLPFC

cortical thickness between gamers classified as excessive or

addicted gamers based on the CSV-S score, argues in favour of

an effect that sets in once a certain intensity of video gaming is

reached. For studies aiming to use video games as a tool for

training, the present study may be seen as an indication that a

considerable amount of training is needed to potentially detect

structural effects, provided that the effects observed are a cause of

the video gaming. Interestingly, previous research on online

gaming addiction in an adolescent sample has shown decreases of

cortical thickness in lateral orbitofrontal cortex among other

regions [57]. More research is needed to explore the different

degrees of addiction to video games.

Future research may focus on the direct assessment of the

relationship between cortical thickness in left DLPFC and FEF

and perceptual decision-making as well as its association with the

different video game genres such as action video games, strategy

games, platformers etc., Moreover it would have been interesting

to know which game genres the adolescents played most, since in

particular action video games have been associated with improve-

ments in cognitive performance; therefore future studies should

carefully screen how many hours per week are devoted to which

type of video game. Likewise, longitudinal studies should be

conducted to elucidate the causal effects of video gaming on

cortical thickness in DLPFC and FEF. Furthermore, it would be

interesting to assess structural correlates of cumulative video

gaming hours over the lifetime instead of current video game

frequency and the additional assessment of physical activity and

BMI.
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