Common Variant at 16p11.2 Conferring Risk of Psychosis

Stacy Steinberg, PhD, Simone de Jong, PhD, Manuel Mattheisen, MD, Javier Costas, PhD, Ditte Demontis, PhD, Stéphane Jamain, PhD, Olli P H Pietiläinen, PhD, Kuang Lin, PhD, Sergio Papio, PhD, Johanna Huttonlocher, BSc, Engilbert Sigurdsson, MD, Evangelos Vassos, PhD, Ina Giegling, PhD, René Breuer, MSc, Gillian Fraser, BA, Nicholas Walker, MD, Ingrid Melle, MD, Ph.D, Srdjan Djurovic, PhD, Ingrid Agart, MD, Ph.D, Annamari Tuuilo-Henriksson, PhD, Jaana Suvisaari, MD, Ph.D, Jouko Lönnqvist, MD, Ph.D, Tiina Paunio, MD, Ph.D, Line Olsen, Ph.D, Thomas Hansen, Ph.D, Andres Ingason, Ph.D, Matti Pirinen, Ph.D, Eric Strøngman, MSc, GROUP, David M Hougaard, MD, DM, Torben Ørntoft, MD, DM, Michael Didriksen, PhD, Mads V Hollegaard, PhD, Merete Nordentoft, MD, DM, Lilja Abramova, PhD, DrSc, Vasily Kaleda, PhD, Manuel Arrojo, MD, Julio Sanjuán, MD, Ph.D, Celso Arango, MD, Bruno Etain, MD, Frank Bellivier, MD, Ph.D, Frank Schürhoff, MD, Ph.D, Franck Schürhoff, MD, Ph.D, Andrei Szoke, MD, PhD, Michele Ribolzi, PhD, Valentina Magni, PhD, Alberto Siracusano, MD, Swetlana Sperling, BSc, Moritz Rossner, PhD, Claus Christiansen, MD, Lambertus A Kiemeney, PhD, Barbara Franke, PhD, Leonhard van den Berg, MD, Jan Veldink, MD, Sarah Curran, MD, PhD, Patrick Bolton, MD, PhD, Martin Poot, PhD, Wouter Staal, PhD, Karola Rehnstrom, PhD, Helena Kilpinen, PhD, Christine M Freitag, MD, Jobst Meyer, PhD, Pall Magnusson, MD, Evald Saemundsen, PhD, Igor Martensenkovsky, MD, Ph.D, Iana Bikshaieva, MD, Ph.D, Inna Martensenkovska, MD, Ph.D, Olesya Vashchenko, BSc, Marija Raleva, MD, PhD, Kamka Paketchieva, MD, Branislav Stefanovski, MD, Naser Durmishi, MD, Milica Pejovic Milovanovic, MD, PhD, Dusica Lecic Tosevski, MD, PhD, Teimuraz Silagadze, MD, Nino Naneishvili, MD, Nina Mikeladze, MD, Simon Surguladze, PhD, John B Vincent, PhD, Anne Farmer, MD, Philip B Mitchell, MD, Adam Wright, PhD, Peter R Schofield, PhD, DSc, Janice M Fullerton, PhD, Grant W Montgomery, PhD, Nicholas G Martin, PhD, I Alex Rubino, MD, Ruud van Winkel, MD, PhD, Gunter Kenis, PhD, Marc De Hert, MD, PhD, János M Réthelyi, MD, PhD, István Bitter, MD, Lars Tenerius, PhD, Erik G Jónsson, MD, PhD, Steven Bakker, MD, Jim van Os, MD, PhD, Assen Jablensky, MD, DM, MSc, Marion Leboyer, MD, PhD, Ina Giegling, PhD, Hannelore Ehrenreich, MD, DVM, Angel Carracedo, MD, Vera Golimbet, PhD, DrSc, Ole A Andreassen, MD, Ph.D, Anders D Borglum, MD, PhD, Ole Mors, MD, PhD, Preben B Mortensen, MD, DM, MSc, Thomas Verge, PhD, Roel A Ophoff, PhD, Markus M Nöthen, MD, PhD, Sarah Tosato, MD, PhD, Sven Cichon, PhD, Mirella Ruggeri, MD, Ph.D, supplemented information is available at Molecular Psychiatry’s website.

"Common Variant at 16p11.2 Conferring Risk of Psychosis"

Correspondence: Kari Stefansson, deCODE Genetics, Sturlugata 8, 101 Reykjavik, Iceland kstefansson@decode.is phone: +354-570-1900 fax: +354-570-1903.
†see Appendix
Conflict of interest. The authors declare no conflict of interest.
Supplementary information is available at Molecular Psychiatry’s website.
deCODE genetics, Reykjavik, Iceland Center for Neurobehavioral Genetics, UCLA, Los Angeles, California, USA Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA Institute for Genomic Mathematics, University of Bonn, Bonn, Germany Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany Galician Foundation of Genomic Medicine-SERGAS, Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain Department of Biomedicine, Human Genetics, and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH Fondation FondaMental, Créteil, France INSERM U 955, Psychiatrie Génétique, Créteil, France Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland Institute for Health and Welfare, Public Genomics Unit, Helsinki, Finland Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK Department of Neuroscience, NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King’s College, London, UK DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany Department of Medical Genetics, Institute of Human Genetics, University of Tübingen, Tübingen, Germany Department of Psychiatry, National University Hospital, Reykjavik, Iceland School of Medicine, University of Iceland, Reykjavik, Iceland Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King’s College, London, UK Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians University, Munich, Germany Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany Department of Mental Health, University of Aberdeen, Royal Cornhill Hospital, Aberdeen, UK Ravenscraig Hospital, Greenock, UK KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland Public Health Genomics Unit, National Institute for Health and Welfare THL, Helsinki, Finland Institute of Biological Psychiatry, Mental Health Centre Sct Hans & Copenhagen University, Roskilde, Denmark Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands Section of Neonatal Screening and Hormones, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark Department of Molecular Medicine, Aarhus University Hospital, Skejby, Aarhus, Denmark Synaptic transmission, H. Lundbeck A/S, Valby, Denmark Psychiatric Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, Russia Service of Psychiatry, Complexo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain Unit of Psychiatry, Faculty of Medicine, University of Valencia, Network Center of Biomedical Research on Mental Health (CIBERSAM), Valencia, Spain Hospital General Universitario Gregorio Marañón, IISGM, Universidad Complutense, CIBERSAM, Madrid, Spain AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil France Université Paris Est, Faculté de Médecine, Créteil, France Department of Neuroscience, Section of Psychiatry, University of Rome-Tor Vergata, Rome, Italy Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany Nordic Bioscience, Herlev, Denmark Department of Epidemiology and Biostatistics and Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands Rudolf Magnus Institute of Neuroscience and Department of
Neurology, University Medical Center, Utrecht, the Netherlands 47Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King’s College, London UK 48Department of Cognitive Neuroscience, Radboud University Nijmegen, Nijmegen, the Netherlands 49Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Frankfurt am Main, Frankfurt am Main, Germany 50Department of Neurobehavioural Genetics, University of Trier, Trier, Germany 51Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland 52State Diagnostic and Counseling Centre, Kopavogur, Iceland 53Department of Child, Adolescent Psychiatry and Medical-Social Rehabilitation, Ukrainian Research Institute of Social, Forensic Psychiatry and Drug Abuse, Kyiv, Ukraine 54Department of Child and Adolescent Psychiatry, University of Skopje, Skopje, Macedonia 55Institute of Mental Health, Belgrade, Serbia 56Medical Faculty, University of Belgrade, Belgrade, Serbia 57Department of Psychiatry and Drug Addiction, Tbilisi State Medical University (TSMU), Tbilisi, Georgia 58Social & Affective Neuroscience Lab, Ilia State University, Tbilisi, Georgia 59Molecular Neuropsychiatry and Development Laboratory, Centre for Addiction and Mental Health (CAMH), Toronto, Canada 60Black Dog Institute, Prince of Wales Hospital, Randwick, Australia 61School of Psychiatry, University of New South Wales, Sydney, Australia 62Neuroscience Research Australia, Barker Street, Randwick, Sydney, Australia 63School of Medical Sciences, University of New South Wales, Sydney, Australia 64Queensland Institute of Medical Research, Brisbane, Australia 65University Psychiatric Center, Catholic University Leuven, Kortenberg, Belgium 66Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, European Graduate School of Neuroscience (EURON), South Limburg Mental Health Research and Teaching Network (SEARCH), Maastricht University Medical Center, Maastricht, the Netherlands 67Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary 68Department of Clinical Neuroscience, HUBIN project, Karolinska Institutet and Hospital, Stockholm, Sweden 69Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center, Utrecht, the Netherlands 70Department of Psychiatry, Maastricht University Medical Centre, the Netherlands 71Centre for Clinical Research in Neuropsychiatry (CCRN), Graylands Hospital, the University of Western Australia, Perth, Australia 72Mental Health Sciences Unit and Institute of Cognitive Neuroscience, University College London, London, UK 73Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King’s College, London, UK 74Neuropsychiatric Genetics Research Group, School of Medicine, Trinity College, Dublin, Ireland 75Department of Psychiatry, Queens University, Belfast, UK 76Department of Human Genetics, Virginia Commonwealth University, Richmond, VA, USA 77Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA 78Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA 79MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK 80Genomic Medicine Group - Galician Foundation of Genomic Medicine-Biomedical Network Research Centre on Rare Diseases (CIBERER), University of Santiago de Compostela, Spain 81Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark 82National Centre for Register-based Research, Aarhus University, Aarhus, Denmark 83German Center for Neurodegenerative Disorders (DZNE), Bonn Germany 84Institute of Human Genetics, University of Bonn, Bonn, Germany 85Institute of Neurosciences and Medicine (INM-1), Juelich, Germany 86Section of Psychiatry, University of Verona, Verona, Italy 87Program in Medical and Population Genetics and Genetic Analysis Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA 88Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland 89Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany 90Eli Lilly and Co. Ltd, Erl Wood Manor, Windlesham, Surrey, UK

Abstract
Epidemiological and genetic data support the notion that schizophrenia and bipolar disorder share genetic risk factors. In our previous genome-wide association (GWA) study, meta-analysis and follow-up (totaling as many as 18,206 cases and 42,536 controls), we identified four loci showing genome-wide significant association with schizophrenia. Here we consider a mixed schizophrenia and bipolar disorder (psychosis) phenotype (addition of 7,469 bipolar disorder cases, 1,535 schizophrenia cases, 333 other psychosis cases, 808 unaffected family members and 46,160 controls). Combined analysis reveals a novel variant at 16p11.2 showing genome-wide significant association (rs4583255[T], OR = 1.08, \(P = 6.6 \times 10^{-11} \)). The new variant is located within a 593 kb region that substantially increases risk of psychosis when duplicated. In line with the association of the duplication with reduced body mass index (BMI), rs4583255[T] is also associated with lower BMI (\(P = 0.0039 \) in the public GIANT consortium dataset; \(P = 0.00047 \) in 22,651 additional Icelanders).

Keywords
schizophrenia; bipolar disorder; association; 16p11.2; cross-disorder

Introduction

Two structural variants, a balanced t(1;11) translocation interrupting the \textit{DISC1} gene and a microdeletion at 22q11.2, were the first genetic polymorphisms to show compelling evidence of association with schizophrenia\(^1,2\). More recently, additional microdeletions and microduplications conferring risk of schizophrenia and, in some cases, bipolar disorder have been uncovered\(^3-10\). These copy number variants (CNVs) confer high to moderate relative risk, however, because they typically change copy number of multiple genes, and may also affect regulation of genes at their margins, they do not generally implicate individual genes.

Common single nucleotide polymorphisms (SNPs) are currently, in addition to structural variants, convincing risk factors for schizophrenia and bipolar disorder, with alleles at more than 20 loci reported to show genome-wide significant association with at least one of the disorders\(^11-29\). None of these low-risk variants are located inside structural polymorphisms previously shown to be susceptibility factors for schizophrenia or bipolar disorder. Nevertheless, first principles and data from other disorders predict the existence of common variants conferring risk through the same genes as rare structural alleles\(^30\). The identification of common risk variants within CNV regions may aid in uncovering the causal gene or genes of a CNV, or help to elucidate other aspects of a CNV’s association with disease.

Two loci have been reported to harbor common alleles showing genome-wide significant association with both schizophrenia and bipolar disorder\(^13, 16, 23, 24\). In addition, several common variants initially displaying genome-wide significant association with one of the disorders have been shown, in subsequent studies, to confer risk of the other\(^31, 32\). Investigations considering schizophrenia and bipolar disorder as a single phenotype also support shared risk alleles\(^16, 19, 22\), and an overlapping polygenic component has been described by several studies\(^21, 28\). These genetic data are consistent with current epidemiological investigations, which predict shared genetic risk factors for schizophrenia and bipolar disorder\(^33\).

Previously, we carried out a schizophrenia GWA study, SGENE-plus, followed by meta-analysis of the top 1500 results with data from the International Schizophrenia Consortium (ISC) and the Molecular Genetics of Schizophrenia (MGS) group\(^15\). Loci having \(P \) values less than \(1 \times 10^{-4} \) (covered by 39 SNPs located in 33 genomic regions) were followed up in a data set of up to 10,260 schizophrenia cases and 23,500 controls\(^14\). In this work, we
broaden our phenotype of interest to psychosis (schizophrenia, bipolar disorder and related psychoses), examining the same group of follow-up SNPs in a data set augmented by 7,469 bipolar disorder cases, 1,535 schizophrenia cases, 333 other psychosis cases, 808 unaffected family members and 46,160 controls.

Materials and methods

Samples

The genome-wide typed (“SGENE-plus”; 2,663 cases and 13,498 controls) and meta-analysis (“SGENE-plus+ISC+MGS”) samples (in total, 7,946 cases and 19,036 controls) used here were identical to those used in our previous schizophrenia GWA study and meta-analysis. The primary psychosis follow-up samples employed consisted of follow-up samples from our previous GWA follow-up study (9,246 schizophrenia cases and 22,356 controls), plus an additional 9,337 psychosis cases (1,535 schizophrenia, 7,469 bipolar disorder, 333 related psychoses) and 46,968 controls/unaffected family members. The primary follow-up samples were genotyped or imputed for all follow-up markers. The secondary follow-up samples consisted of 1,014 cases and 1,144 controls from the Göttingen Research Association for Schizophrenia (GRAS) study. These samples, which also had been used for secondary follow-up in our previous GWA follow-up study, were genotyped for SNPs that were genome-wide significant in the combined meta-analysis and primary follow-up samples. Table 1 summarizes the schizophrenia and psychosis datasets used in previous and current work, and Supplementary Table 1 includes details on the individual study groups. The autism samples (3,672 cases, 16,103 controls, 4,206 family members) derived from AGP, AGRE and nine European study groups. Further information on ascertainment and diagnosis for the psychosis and autism samples is provided in the Supplementary Material.

Genotyping and association analysis

Genotyping was carried out using Illumina and Affymetrix genome-wide arrays, Centaurus assays (Nanogen), Taqman assays, the Sequenom MassArray iPLEX genotyping system and the Roche LightCycler480 system (Supplementary Tables 1 and 2). Quality control and imputation were performed, by study group, as described in the Supplementary Methods. Case-control or family-based association analyses were carried out for each study group. For the case-control analyses, population stratification was controlled for using genomic control or principal components. Summary statistics from the various study groups were combined as described previously. BMI measurements were adjusted for age and sex, and inverse standard normal transformed. Analysis was carried out by regressing the adjusted, transformed data on rs4583255[T] count.

Expression Analysis

For the three brain data sets, expression levels were inverse normal transformed and regressed on the number of rs4583255-T alleles with gender, age at death, post-mortem interval, brain source, expression experiment batch, pH (Colantuoni et al only), sample expression level based on the total number of transcripts detected (Webster et al only) and Alzheimer’s disease patient status (Webster et al only) as covariates. To incorporate data from different brain regions (Gibbs et al) or different probes (KCTD13 in Colantuoni et al) derived from the same individual, a mixed-effects model with individual as a random effect was used. Results from the three data sets were combined using inverse-variance weighted meta-analysis. The Dutch whole blood data set included control samples from two studies. Analysis was performed using linear regression in Plink taking age and gender as covariates. The Icelandic blood data set has been described previously, and analysis was carried out as detailed in that work.

Mol Psychiatry. Author manuscript; available in PMC 2014 January 01.
Results

We assembled a psychosis (schizophrenia, bipolar disorder and related psychoses) primary follow-up dataset made up of 36 study groups containing a total of 18,583 cases, 68,516 controls and 808 unaffected family members (Supplementary Table 1). In each study group, allelic association analysis was carried out for 39 SNPs from 33 genomic regions (these SNPs covered \(P \) values less than \(1 \times 10^{-4} \) in the SGENE-plus+ISC+MGS meta-analysis at \(r^2 = 0.3 \)). Results from the various study groups were combined using inverse-variance weighted meta-analysis.

At 31 of the 33 loci, ORs in the psychosis follow-up group were in the same direction as in the discovery data set (SGENE-plus+ISC+MGS) (Supplementary Table 3). A similar pattern had been observed in the schizophrenia follow-up set—ORs were in the same direction at 30 of the 33 loci\(^\text{14}\). These results indicate that the set of variants chosen for follow-up was enriched for risk alleles (\(P = 7.0 \times 10^{-7} \) for schizophrenia, and \(P = 6.5 \times 10^{-8} \) for psychosis).

Next, we performed a joint analysis of the discovery and psychosis follow-up sets. To account for testing two phenotypes (schizophrenia and psychosis), the genome-wide significance threshold was set at \(P < (5 \times 10^{-8})/2 \), or 2.5 \(\times 10^{-8} \). Five SNPs, residing at three loci, exceeded this threshold (Supplementary Table 3). Two of the loci—the MHC region and 11q21.2 near \(NRGN \)—had been genome-wide significant in the previous schizophrenia analysis; a third locus, in \(TAOK2 \) at 16p11.2, was novel (Supplementary Table 3). Following the addition of data from a further 1,014 schizophrenia cases and 1,144 controls, the variant at the novel locus, rs4583255[T], was associated with psychosis with increased significance (OR = 1.08, \(P = 6.6 \times 10^{-11} \), Table 1). rs4583255[T]'s association with psychosis fit the multiplicative model (\(P = 0.42 \)), and there was no evidence of OR heterogeneity (\(P = 0.71 \), \(I^2 = 0 \), Supplementary Table 4).

In examination of the follow-up samples by diagnosis, the novel variant, rs4583255[T], showed significant association with both schizophrenia and bipolar disorder (\(P = 0.0011 \) and 0.00026), with OR of 1.06 and 1.08, respectively (independent controls were used for the two analyses; see Supplementary Table 5). We also investigated association with bipolar disorder for variants that had shown genome-wide significant association with schizophrenia in our previous study\(^\text{14}\). Following correction for eight tests, rs12807809[T], near \(NRGN \), was significantly associated with bipolar disorder (\(P = 0.0023 \)) with an OR identical to that of the schizophrenia follow-up samples (OR = 1.09). The remaining schizophrenia susceptibility variants did not show nominally-significant association with bipolar disorder —yet OR confidence intervals for the two disorders overlapped for at least some variants at all loci (Supplementary Table 5).

Intriguingly, the newly-identified SNP is located in a nearly 600 kb region that confers risk of schizophrenia and bipolar disorder when duplicated\(^5, 6, 28\). Copy number gain of the region also is associated with autism\(^6, 43-45\), reduced head circumference\(^46, 47\), and low BMI\(^47\). We obtained large data sets to examine association of rs4583255[T] with both autism and BMI. Based on 3,672 cases, 16,103 controls and 4,206 unaffected family members from the Autism Genetic Resource Exchange (AGRE), the Autism Genome Project (AGP) and nine European study groups (Supplementary Table 2), we found no evidence of association with autism spectrum disorder (ASD), strict autism or multiplex ASD (ASD, OR = 1.00, \(P = 0.98 \); strict autism, OR = 1.02, \(P = 0.66 \); multiplex ASD, OR = 1.07, \(P = 0.22 \); Supplementary Table 6), although power to detect association at the OR found in the follow-up psychosis samples was modest (at a 0.05 significance level, power was about 57% for ASD, 42% for strict autism, and 23% for multiplex ASD). In contrast,
we found significant association of rs4583255[T] with low BMI in the published GIANT consortium GWAS dataset of 123,865 individuals (P = 0.0039) and in 22,651 Icelanders who were not included in the GIANT study (P = 0.00047).

Recently, a study examining the effect of altered expression of 16p11.2 CNV region genes on zebrafish head size identified KCTD13 as the major driver of head size change, with MAPK3 and MVP named as possible modifiers. These results motivated us to examine association of rs4583255[T] with expression of KCTD13, MAPK3, and MVP in human brain. Using data from three publicly-available data sets with at least 50 European-ancestry adult brains each (total N = 565), we found that rs4583255[T] was significantly associated with expression of MAPK3 (effect = 0.12 s.d., P = 0.011), but not significantly associated with expression of KCTD13 or MVP (Supplementary Table 7). We also investigated association of rs4583255[T] with gene expression in blood using data sets from Iceland (N = 972) and the Netherlands (N = 437). Consistent with the brain results, rs4583255[T] was significantly associated with higher expression of MAPK3 (for Iceland, P = 9.4 × 10^{-15}; for the Netherlands, P = 0.014 for probe 3870601, and P = 0.042 for probe 234040), but not significantly associated with expression of KCTD13 or MVP.

Discussion

In this study, we uncovered a novel variant at 16p11.2, rs4583255[T], showing genome-wide significant association with psychosis (OR = 1.08, P = 6.6 × 10^{-11}). In follow-up samples, ORs were similar for schizophrenia and bipolar disorder (OR = 1.06 and 1.08, respectively), and association was significant for both (P = 0.0011 and P = 0.00026, respectively). Thus, rs4583255[T] is a compelling example of a genetic variant that confers risk across traditional diagnostic boundaries.

Among the variants that showed genome-wide significant association with schizophrenia in our previous study, only rs12807809[T] showed significant association with bipolar disorder in the current work. Nevertheless, OR confidence intervals for schizophrenia and bipolar disorder overlapped for most risk alleles. Very large data sets will be necessary to establish conclusively where these variants fall on the spectrum of conferring risk of one disorder, exclusively, to conferring equal risk of either.

To our knowledge, this is the first case in which a common risk allele showing genome-wide significant association with psychosis has turned out to be located within a CNV that had been previously associated with psychosis. Both copy number gain and loss of the 16p11.2 region are associated with multiple phenotypes. Duplication is associated with psychosis, both copy number gain and loss are associated with autism and developmental delay, and duplication and deletion lead to reduction and enlargement, respectively, of head circumference and BMI.

In this work, we found that rs4583255[T] also confers risk of reduced BMI (P = 0.0039 in GIANT, P = 0.00047 in additional Icelanders). This result supports the suggestion, made previously, that the duplication’s effects on psychosis and BMI have a single origin, presumably in the brain. We did not find evidence of association of rs4583255[T] with autism, although we were somewhat underpowered to detect an effect of the same size as in psychosis, especially for sub-phenotypes.

We found that rs4583255[T] was associated with increased expression in adult brain and blood of MAPK3, one of the 16p11.2 genes identified as involved in causing head circumference changes in zebrafish. Caution is required in interpretation of this result, however, as the significance in brain is marginal, and, furthermore, gene expression in the...
pre-adult brain may be most relevant for the development of psychosis. Data from only extremely small numbers of European-ancestry brains at pre-adult stages were available; thus, investigation of the association of rs4583255[T] with gene expression at these stages was precluded.

In conclusion, in this work, we broadened our phenotype of interest to psychosis, identifying a new common risk allele, rs4583255[T], with similar ORs for schizophrenia and bipolar disorder. The novel variant is located within a duplication previously associated with psychosis, and, in line with the duplication's effects, also confers risk of low BMI. In the future, knowledge of this common variant association may prove useful to studies aimed at further understanding the mechanism through which the duplication exerts its effects on neurodevelopmental and anthropomorphic phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank the subjects, their families and the recruitment centre staff. We would also like to acknowledge the help of Maria Dolores Molto (Genetics Department, Valencia University, CIBERSAM), Eduardo Paz and Ramón Ramos-Ríos (Complexo Hospitalario de Santiago), and the contribution of Fundación Botín.

This study makes use of seven external, publicly-available datasets. First, it makes use of data generated by the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project whose principal investigators were Jeffrey A. Lieberman, M.D., T. Scott Stroup, M.D., M.P.H., and Joseph P. McEvoy, M.D.. The CATIE trial was funded by a grant from the National Institute of Mental Health (N01 MH00001 along with MH074027 (PI PF Sullivan). Genotyping was provided by Eli Lilly and Company. Second, the GAIN/BiGs datasets used in this work were obtained from the database of Genotypes and Phenotypes (dbGaP) found at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000017.v3.p1. Third, the study uses samples genotyped using the Illumina 550K platform by the Pritzker Consortium, supported by the Pritzker Neuropsychiatric Disorders Research Fund L.L.C. The Pritzker Consortium includes scientists at the University of Michigan (H. Akil and S. J. Watson, Site Directors, and Michael Boehnke, lead on bipolar genotyping effort); Stanford University (Rick Myers and Alan Schatzberg, Site Directors); the University of California at Davis (Ted Jones, Site Director); the University of California at Irvine (William Bunney, Site Director); and the Weill Medical College of Cornell University (Jack Barchas, Site Director). Fourth, the work uses data from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) project, led by Gary Sachs, M.D., and coordinated by Massachusetts General Hospital in Boston, MA (NIMH grant number was 2N01MH080001-001). Fifth, this study makes use of data generated by the Wellcome Trust Case-Control Consortium. A full list of the investigators who contributed to the generation of the data is available from www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 076113 and 085475. Sixth, we gratefully acknowledge the resources provided by the Autism Genetic Resource Exchange (AGRE) Consortium and the participating AGRE families. The Autism Genetic Resource Exchange is a program of Autism Speaks and is supported, in part, by grant U24MH081810 from the National Institute of Mental Health to Clara M. Lajonchere (PI). Seventh, the Autism Genome Project (AGP) data sets used for the analysis in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000267.v1.p1. Submission of the data to dbGaP was provided by Dr. Bernie Devlin on behalf of the Autism Genome Project (AGP). Collection and submission of the data to dbGaP were supported by a grant from the Medical Research Council (G0601030) and the Wellcome Trust (075491/Z/04), Anthony P. Monaco, P.I., University of Oxford.

This study was also supported by the European Union (grant numbers LSHM-CT-2006-037761 (Project SGENE), PIAP-GA-2008-218251 (Project PsychGene), HEALTH-F2-2009-223423 (Project PsychCNVs), HEALTH-F4-2009-242257 (Project ADAMS), JMI-JU-NewMeds); the National Genome Research Network of the German Federal Ministry of Education and Research (BMBF) [grant numbers 01GS08144 (MooDS-Net), 01GS08147 (NGFNplus)]; the National Institute of Mental Health [R01 MH078075, and N01 MH900001, MH074027 to the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project]; the Centre of Excellence for Complex Disease Genetics of the Academy of Finland (grant numbers 213506, 129680); the Biozentrum Helsinki Foundation and Research Program for Molecular Medicine, Faculty of Medicine, University of Helsinki; the Stanley Medical Research Institute; the Danish Council for Strategic Research (grant number 2101-07-0059); H. Lundbeck A/S; the Research Council of Norway (grant number 163070/V50); the Danish Medical Research Council; the South-East Norway Health Authority (grant number 2004-123); the Medical Research Council; Ministerio de Sanidad y Consumo, Spain (grant number PI081522 to J.C.); Xunta de Galicia (grant number 08CSA005208PR to A.}

Mol Psychiatry. Author manuscript; available in PMC 2014 January 01.
Appendix

Genetic Risk and Outcome in Psychosis (GROUP)

René S. Kahn¹, Don H. Linszen², Jim van Os³, Durk Wiersma⁴, Richard Bruggeman⁴, Wiepke Cahn¹, Lieuwe de Haan², Lydia Krabbendam³, & Inez Myin-Germeys³

¹Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Postbus 85060, Utrecht, the Netherlands

²Academic Medical Centre University of Amsterdam, Department of Psychiatry, Amsterdam, NL326 Groot-Amsterdam, the Netherlands

³Maastricht University Medical Centre, South Limburg Mental Health Research and Teaching Network, 6229 HX Maastricht, the Netherlands

⁴University Medical Center Groningen, Department of Psychiatry, University of Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands

Wellcome Trust Case Control Consortium 2

Management Committee

Peter Donnelly (Chair)¹,², Ines Barroso (Deputy Chair)³, Jenefer M Blackwell⁴,⁵, Elvira Bramon⁶, Matthew A Brown⁷, Juan P Casas⁸, Aiden Corvin⁹, Panos Deloukas³, Audrey Duncanson¹⁰, Janusz Jankowski¹¹, Hugh S Markus¹², Christopher G Mathew¹³, Colin NA Palmer¹⁴, Robert Plomin¹⁵, Anna Rautanen¹, Stephen J Sawcer¹⁶, Richard C Trembath¹³, Ananth C Viswanathan¹⁷, Nicholas W Wood¹⁸

Data and Analysis Group

Chris C A Spencer¹, Gavin Band¹, Céline Bellenguez¹, Colin Freeman¹, Garrett Hellenthal¹, Eleni Giannoulatou¹, Matti Pirinen¹, Richard Pearson¹, Amy Strange¹, Zhan Su¹, Damjan Vukcevic¹, Peter Donnelly¹,²

DNA, Genotyping, Data QC and Informatics Group

Cordelia Langford³, Sarah E Hunt³, Sarah Edkins³, Rhian Gwilliam³, Hannah Blackburn³, Suzannah J Bumpstead³, Serge Drnov⁴, Matthew Gillman³, Emma Gray³, Naomi Hammond³, Alagurevathi Jayakumar³, Owen T McCann³, Jennifer Liddle³, Simon C Potter³, Radhi Ravindrarajah³, Michelle Ricketts³, Matthew Waller³, Paul Weston³, Sara Widaa³, Pamela Whittaker³, Ines Barroso³, Panos Deloukas³.

Publications Committee

Christopher G Mathew (Chair)¹³, Jenefer M Blackwell⁴,⁵, Matthew A Brown⁷, Aiden Corvin⁹, Chris C A Spencer¹

For further acknowledgements, see the Supplementary Material.
References

Mol Psychiatry. Author manuscript; available in PMC 2014 January 01.

Figure 1.
Association results and structure of the 16p11.2 region. Bars on the x-axis indicate segmental duplications (brown) and recombination hotspots (pink). Association results are illustrated for SGENE-plus (black), SGENE-plus+MGS+ISC (green), SGENE-plus+MGS+ISC plus the primary psychosis follow-up (blue), and SGENE-plus+MGS+ISC plus the primary psychosis and secondary schizophrenia follow-up (red). RefSeq genes in the region are shown below the plot.
Table 1

Relevant datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>case phenotype</th>
<th>markers examined</th>
<th>cases</th>
<th>controls + family members</th>
<th>initial use</th>
<th>overlap with other sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGENE-plus GWAS</td>
<td>SZ</td>
<td>314,868</td>
<td>2,663</td>
<td>13,498</td>
<td>Stefansson(^1)</td>
<td>no</td>
</tr>
<tr>
<td>SGENE-plus+ISC+MGS</td>
<td>SZ</td>
<td>1,500</td>
<td>7,946</td>
<td>19,036</td>
<td>Stefansson(^1)</td>
<td>includes SGENE-plus GWAS</td>
</tr>
<tr>
<td>primary schizophrenia follow-up</td>
<td>SZ</td>
<td>39</td>
<td>9,246</td>
<td>22,356</td>
<td>Steinberg(^1)</td>
<td>no</td>
</tr>
<tr>
<td>primary psychosis follow-up</td>
<td>SZ, BP, rel</td>
<td>39</td>
<td>18,583</td>
<td>69,324</td>
<td>this work</td>
<td>includes primary schizophrenia follow-up</td>
</tr>
<tr>
<td>secondary follow-up</td>
<td>SZ</td>
<td>8; 1(^1)</td>
<td>1,014</td>
<td>1,144</td>
<td>Steinberg(^1)</td>
<td>no</td>
</tr>
</tbody>
</table>

SZ, schizophrenia; BP, bipolar disorder; rel, related psychoses

\(^1\)eight markers were examined in this set in the previous work; an additional marker is genotyped in the current work.
Table 2
Genome-wide association of rs4583255[T] with psychosis

<table>
<thead>
<tr>
<th>study group</th>
<th>N</th>
<th>cases</th>
<th>controls</th>
<th>family members</th>
<th>OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGENE-plus+ISC+MGS (SZ)</td>
<td>7,946</td>
<td>19,036</td>
<td>0</td>
<td>0</td>
<td>1.10 (1.05, 1.15)</td>
<td>2.5×10^{-5}</td>
</tr>
<tr>
<td>primary psychosis follow-up (SZ,BP,rel)</td>
<td>18,583</td>
<td>68,516</td>
<td>808</td>
<td></td>
<td>1.07 (1.04, 1.10)</td>
<td>9.2×10^{-7}</td>
</tr>
<tr>
<td>secondary follow-up (SZ)</td>
<td>1,014</td>
<td>1,144</td>
<td>0</td>
<td>0</td>
<td>1.10 (0.97, 1.24)</td>
<td>0.14</td>
</tr>
<tr>
<td>combined</td>
<td>27,543</td>
<td>88,696</td>
<td>808</td>
<td></td>
<td>1.08 (1.05, 1.10)</td>
<td>6.6×10^{-11}</td>
</tr>
</tbody>
</table>

SZ, schizophrenia; BP, bipolar disorder; rel, related psychoses; OR, odds ratio; CI, confidence interval