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Abstract
One area of microtonal research is concerned with 
digitally re-defining musical spectra so that bespoke 
microtonal scales can be paired so that new instruments 
capable of coherently performing exotic scales can be 
realised. In this field of timbre-matched microtonal 
scales, sensory dissonance perception models can 
provide invaluable information about the way that the 
human ear reacts to the spectra of musical instruments. 
This paper sets out to: survey the sensory dissonance 
models (Plomp and Levelt, Vassilakis, Hutchinson and 
Knopoff, Parncutt et al.), to assess the relative merits of 
these,  and to demonstrate some tuning and tuning/timbre 
musical examples which have been implemented by the 
author in the Pure Data audio development package. 
The proof-of-concept examples of microtonal scale-
timbre pairs that have been created in the software 
utilise the data from sensory dissonance models to 
permit the use of scales that would be unusable on 
conventional instruments.

1. Introduction 

Considerable confusion is created by the fact that the 
terms used to describe phenomena and effects  in the 
field of dissonance perception are also used to describe 
properties of intervals and chords in traditional harmony.  
This terminological woolliness is not aided by the 
plethora of models that the newcomer to this area must 
contend with. So initially, the nomenclature and the 
philosophies must be assessed. Notable commentator 
James Tenney examines the ways in which the terms 
consonance and dissonance have been used,  and he 
describes the following types of dissonance: Melodic 
dissonance, Polyphonic dissonance, Contrapuntal 
dissonance, Functional dissonance and Psychoacoustic 
dissonance. 1 For the purposes of this paper,  only the last 
category, psychoacoustic dissonance, will be considered, 
specifically sensory dissonance or roughness, and also 
distonalness. Vassilakis maintains that roughness is a 
dimension of the sensation of dissonance.2

2. Aspects of Sensory Dissonance

2.1 Roughness: the path from Helmholtz

Most listeners will be familiar with the sensorial effect 
of what Kameoka and Kuriyagawa call ‘turbidity’ - the 
rough, disruptive sensation caused by two tones close in 

pitch sounding simultaneously.3  The fact that this 
sensation  magically disappears and is replaced by  a 
sensation of ‘clearness’ when the unison or the octave is 
achieved is the genesis of both the Periodicity and the 
Frequency Ratios theories. Theories based on  frequency 
ratios state that intervals with small frequency ratios 
sound more consonant than those with large frequency 
ratios. Theories based on periodicity agree with this 
since they observe that intervals with small repeat 
periods sound more consonant. Since the repeat period 
for a small ratio is short, the two theories agree. The 
mechanism for the perception of complex tones  is seen 
as an extension of the one used for simple tones and we 
will examine the implication of this below. 

The Helmholtzian assumption is that the ear acts as a 
type of organic frequency or spectrum analyser - 
decomposing complex timbres into simpler components 
as they transmit through the cochlear windows and 
agitate the elements of the cochlear partition. One 
consequence of such a decomposition is creation of 
spectral data for processing by the neural system. In 
order to accomplish this task it needs to separate out the 
spectrum into divisions by using audio bandpass filters. 
These were identified by Fletcher in subjects by playing 
tones and then masking the tones with noise, sharply 
defined narrow-band noise - and given the name ‘critical 
bands’.4 The width of the masking noise revealed the 
width of the critical bands. Each has a bandwidth, or a 
range of frequencies that it is responsible for processing, 
and a clearly defined boundary or a critical point, the 
traversal of which results in excitation of the adjacent 
critical band. So the term critical band refers both to a 
conceptual frequency range, and to a physical locus on 
the basilar membrane. 

Experimental data reveals the frequency coordinates on 
the basilar membrane - high frequencies are processed 
near the basal portion of the structure (the end adjacent 
to the cochlear windows) and low frequencies are 
processed by the part near the apex of the cochlea. A 
frequency map of the basilar membrane been plotted - 
and Zwicker has assigned a 24-unit critical band scale 
covering the canonical 20Hz - 20kHz range of human 
hearing - the unit is named Bark and there are 24 Barks 
in the audio pitch range.5 Tonotopic or ‘place’ theories of 
roughness perception rely upon this research.
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The important finding for dissonance calculation is 
Plomp and Levelt’s assertion that if two tones lie within 
the same critical band they are perceived as being 
dissonant. The term roughness is sometimes used so that 
confusion with the term dissonance  as it is used in 
harmony is avoided. It might be more accurate to 
describe the sensation created by a dyad of pure tones or  
sine waves falling on the same critical band as 
‘roughness’, and the feeling experienced when a dyad of 
complex tones falls on a critical band as ‘dissonant’.   

To return now to the perception of complex tones - in 
this model, a dyad of complex tones will have the 
respective timbres decomposed and then the ear will 
process the spectral data. If many of the partials of the 
two tones settle upon common critical bands, and they 
do not cohere, then dissonance will be experienced. 

2.2 Resonator...or Travelling Wave?

In marked contrast to the critical band ‘resonator’ model 
of Helmholtz et al, albeit still a tonotopic theory, is the 
Travelling Wave model first proposed by Georg Békésy.6 
His precise experiments on animal and human cochleas  
from recently deceased subjects led to the creation of 
this model. He found that pitches channeled into the 
cochlea via the stapes created a wavelike crest that 
would travel down the length of the basilar membrane. 
Most importantly,  this wave would peak at different loci 
for different frequencies - and Békésy postulated that it 
was at this peak point that the frequency was registered. 
Each position has a characteristic frequency and this was 
later encapsulated in a formula by Donald Greenwood. 

Greenwood’s Function: 

describes mathematically the ‘place-frequency map’ of 
the basilar membrane.7 

The main criticism of this theory is that it does not 
explain the fine frequency discrimination of the ear - the 
fact that trained listeners can perceive pitch accurately to 
within a few cents. The physically broad profile of 
Békésy’s wave shape is physically incapable of a narrow 
enough profile to permit such accurate pitch detection, 
though it has been proposed that the process may work 
in conjunction with a type of neuronal data filtering at 
the ganglial level.  
A contemporary survey reveals that the cochlear 
partition is viewed as an active, bio-mechanical structure 
- the model of the cochlear partition as a series of  tuned 
active resonators, as proposed by Gold and Pumphrey in 
1948, would seem to prevail.8  Recent research (Nilsen 
and Russell) reveals complex shearing forces at work in 
the basilar membrane and these, coupled with the 
interplay between the outer hair cells and the inner hair 
cells could explain the mechanics of the active 
amplification process at play on and below the surface of 
the Basilar membrane.9 

2.3 Tonalness 

The combination of data from research into the  
physiology of the cochlea with research of a 
psychological nature has resulted in a body of work 
which sees the neural apprehension, assessment, and 
processing  of spectral data as only part of a larger 
picture which involves higher-level brain functions such 
as learning. This model, proposed by Terhardt, views the 
cochlear frequency-mapping device as a component of a 
larger perceptual apparatus.10  Diagrammed in his 
landmark 1973 paper, ‘Pitch, consonance, and harmony’, 
as a neural-net type structure - the model includes 
provisions for cognitive feedback so that ‘learned’ 
patterns can  affect the system.11 This theory accounts 
for the influence of culture, and ties in Gestalt principles 
with the introduction of the concept of virtual pitch. The 
analysis and synthesis  of tones is differentiated - 
Terhardt considers that the pitch assigned to a complex 
tone by a listener is a virtual one and not only is this 
pitch a construct of the perceptual system, it is also a 
product of learning.  
This model and its extensions (Parncutt, MacCallum) 
have the potential to yield the most useful algorithms for 
the microtonalist due to the inclusion of provisions for 
inharmonic scales and compensation for masking. 

3. Measuring Roughness

3.1 Models and metrics

Models for dissonance curve calculation begin with 
Plomp and Levelt’s contour for two pure tones. This 
algorithm has parameters for the frequencies of the two 
waves and the respective amplitudes and from these 
inputs a ‘dissonance’ figure can be returned for any 
given interval.  Here is the original Plomp and Levelt 
dissonance curve:12 

Essentially they tie the dissonance maximum to the 
critical bandwidth of the ear. This basic dissonance 
calculator has been extended to include complex 
timbres. Spectral decomposition is necessary as each 
individual sinusoid in the complex timbre must have a 
separate dissonance calculation carried out on it w.r.t.  the 
other components. The sum of all of these operations 
yields the total dissonance curve for the two timbres. 
When implementing routines for describing these 
curves,  the critical band factor, derived  from 

Fig 1. Roughness Curve for two pure sine tones



experimental data, is most important. Also, the 
descendants of Plomp and Levelt’s curve calculators are 
more appropriate in that they take into account partials 
o f d i ffe ren t ampl i tudes . Here i s Se tha res ’ 
parameterisation of Plomp and Levelt’s curve:13

3.2 Additive nature of dissonance

Terhardt attributes the sensation of roughness directly to 
temporal fluctuations in amplitude when they appear 
within the ‘spectral regions’ known as critical bands 
(CBs). His theory takes account of the additive nature of 
roughness perception: the roughness created across all of 
the CBs is summed to give an overall roughness effect. 
This confirms the assumption that, for a pair of timbres, 
adjacent partials of each timbre that lie within the same 
CB will contribute to the overall sensation of roughness.    
He also posits that roughness is greatest for spectrally 
coherent sounds lying within the same CB, and that the 
roughness effect can be ameliorated by randomising the 
amplitudes and phases of the components (he points out 
that reverberation can provide a randomising effect).

Terhardt’s ideas were extended by Parncutt, who applied 
them to common practice music and to 12-tone Equal 
Tempered music. He also implemented an extended 
version of Hutchinson and Knopoff’s roughness 
algorithm, represented by this equation:

3.3 Inclusion of roughness

It could be said that the emancipation of roughness 
became complete with the publication of Vasilakis’ pan-
musical interdisciplinary dissertation in 2001.14   He 
makes the case that roughness, often suppressed by the 
builders of instruments designed to play western 12-tone 
Equal Tempered musical material, is an integral sonic 
attribute of  the  sound of many non-western musical 
instruments. The confusion surrounding amplitude 
fluctuation and amplitude modulation depth is clarified, 
and as well as this a compensating equation is proposed 
which corrects Eq. 2 by accounting for amplitude 
fluctuations: 

4. Implementations in pure data

4.1 Bohlen-Pierce scale in Pd       

The Bohlen-Pierce (B-P) scale is a non-octave scale with 
13 steps and it repeats every 12th (an octave + a fifth). 
This 3:1 repetition interval is called the tritave. The scale 
was independently proposed by Heinz Bohlen in 1978, 
and by John R. Pierce in 1984.15 16   Bohlen’s original B-
P scale was a Just Intonation (JI) scale with the 
following ratios:  

1/1, 27/25, 25/21, 9/7, 7/5, 75/49, 5/3, 9/5, 49/25, 15/7, 7/3, 63/25, 25/9, 3/1. 

J. R. Pierce’s scale is a 13-tone Equal Tempered scale 
where: 

The scale is based on the 3:5:7:9 tetrachord and consists     
of 13 steps in the chromatic version. 

4.2 Implementation of the B-P scale in Pd       

The B-P scale was implemented in Pd and controlled by 
a repurposed MIDI keyboard. The keyboard provides a 
‘front end’ for an additive synthesis instrument 
implemented in Pure Data. The current version of the 
instrument contains a polyphonic voice engine and 
additive synthesis voices consisting of twenty partials. 
The partials have high resolution frequency and 
amplitude controls, and there are individual amplitude 
envelopes on each partial. 

The B-P scale does not sit well on the physical key 
arrangement of the 12-TET keyboard, so, following 
from Elaine Walker (and from Heinz Bohlen),  a pair of 
standard Roland PC-70 MIDI keyboard controllers were 
fashioned into a single controller with a key layout that 
complements the popular ‘Lambda’  B-P mode.  In this 
implementation the base pitch is situated on the key 
formerly called low C, and the white keys are assigned 
the diatonic B-P scale ascending:     

1/1, 25/21, 9/7, 7/5, 5/3, 9/5, 15/7, 7/3, 25/9, 3/1

The ratios corresponding to the chromatic notes are 
mapped to the reconfigured black keys. The short white 
keys are not used for note values but may be used for 
controller messages and used to switch timbres or 
actuate other processes. The messages are accepted into 
Pd using a standard MIDI port, however, only parts of 
the MIDI protocol are used as intended by the creators. 
The Velocity message is used to control dynamic, but the    
frequency values ascribed to the MIDI note numbers are 
not used. Instead,  each unique MIDI note ID is re-
assigned to trigger scale maps created within the Pd 
patch itself.  



The Pd patch allows the user to select either 13-TET B-
P or JI B-P scales. The 13 TET scale is derived by using 
the formula:     

and this is coded into an expression in Pd. The B-P JI 
scales are calculated by sequentially routing the B-P 
ratios through an expression, and storing the results of 
the calculations for each ratio in an array - this then is 
used to create the scale map.  

4.3 Spectra related to the B-P scale 

 Since all of the B-P scale intervals are based on 
frequency ratios derived from odd integers, it follows 
that the B-P scale has maximum relatedness to a timbre 
possessing only the odd-numbered partials. It is true that 
a B-P scale will perform admirably with a square wave 
or a triangle wave timbre. There has, however, been a 
substantial amount of success with timbres possessing 
both even and odd partials - and so an opportunity for  
B-P spectrum-scale  matching became apparent. The 
principle of coinciding partials is manipulated via a 
method described by Sethares: the symbolic 
computation of spectra.17   When considering roughness 
curves for spectra, it is found that many of the points of 
minimum roughness can be found at points where 
partials coincide, and this effect is called the principle of 
coinciding partials. This is encapsulated by the 
formula18: 

 

By using this principle, a spectrum related to the B-P 
scale can be created in which the ratios between the 
spectral components are equal to intervals between the 
scale steps. To simplify this fairly unwieldy process, 
Sethares uses an organisational device called an O-plus 

Fig 2. Repurposed MIDI keyboard suitable for B-P Lambda mode

table to codify all of the permissible intervals,  i.e., those 
that result in legal scale steps. Fig. 2  shows how 
Sethares method was adapted for use with the non-
octave B-P scale: 

Fig 2. O-plus table showing legal intervals for B-P scale. Symbol * denotes 
result that is not a scale interval. 

The presence of a large number of * symbols foretells 
that the choice of partials will be quite restricted. 
However, there is always the option to space conflicting 
partials widely, thereby essentially nullifying the 
roughness effect. Now this table is used to construct the 
symbolic spectrum table: 

Fig 3. Symbolic spectrum table derived from O-table in Fig. 2. 

This table gives us our partial frequency values 
expressed as exponents of JI ratios. The four intervals 
present in the B-P scale are: 

27/25, 625/527, 49/45, 375/343, 

so, by simply carrying out the JI math, a set of partials 
suitable for the B-P scale can be found. This particular 
spectrum is not perfect, note the presence of * symbols. 
The effect of the scale is intriguing: bittersweet yet with  
enough coherence to realise B-P tonalities. The partial 
frequencies derived from this process were imported into 
Pd as octave-adjusted JI ratios by applying the 
corresponding exponential values, then they were 
converted to floating point values and sent to the 
precision partial frequency controls. The amplitudes 
were initially set to amplitudes 1/n where n = partial 
number, and then adjusted by ear.  
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