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Abstract 

This study examines the relationship between the Maxima 

Dispersion Quotient (MDQ), a recently proposed measure of 

the tense-lax dimension of voice quality, and voice source pa-

rameters manually measured from glottal flow data, where 

there is linguistically and paralinguistically determined voice 

source modulation. MDQ was found to correlate most closely 

to the open quotient (OQ) and the RD parameter. The para-

linguistically varying data, which involved more extensive 

voice source modulation than the linguistic, also showed a 

higher degree of correlation with these parameters, and higher 

correlations overall with a range of voice source parameters. 

The high correlation with OQ and RD found in these analyses 

would suggest that MDQ can be a useful, additional parameter 

for the analysis of glottal source dynamics.  

Index Terms: Maxima Dispersion Quotient (MDQ), glottal 

source, voice source parameters, voice quality, voice prosody 

1. Introduction 

This paper looks at the correlation of the recently proposed 

voice parameter, the Maxima Dispersion Quotient (MDQ) 

with voice source parameters, measured from speech data 

where the voice source varies as a function of both linguistic 

and paralinguistic factors. The MDQ parameter was proposed 

by [1], and is suggested as a parameter that should yield a 

measure of the tense-lax dimension of voice quality. It is part 

of a system we are developing, GlóRí [2], which aims to in-

corporate more robust and accurate methods for voice source 

analysis [2-6]. 

Accurate analysis of voice source variation is essential to 

our study of the communicative functions of the voice – the 

‘voice prosody’. We aim to model within a single framework, 

both the linguistic (intonation-related) voice modulation [7-9], 

as well as the paralinguistic, affect-related modulation [10-12]. 

The linguistic voice modulations present in our view a base-

line voice prosody which is further perturbed or modified for 

paralinguistic signalling. The linguistically determined voice 

modulations, though considerable, are typically not extreme, 

and are heard not as shifts in voice quality per se, but rather as 

an inherent part of the prosody of the utterance. In contrast, 

paralinguistically relevant shifts can be quite extreme and tend 

to impinge on the listener’s consciousness as changes in voice 

quality – in layman terms, tone of voice. From this perspec-

tive, both aspects together constitute the voice prosody (of 

which intonation is a major aspect), essential to both the lin-

guistic and affective content of the message. It should be noted 

that, as voice prosody is realised relative to the individual 

speaker’s intrinsic voice quality, long term characteristics of 

the speaker’s voice also need to be taken account of. 

The biggest roadblock in describing voice prosody is the 

difficulty in obtaining accurate voice source measures, capable 

of capturing accurately even fine-grained modulations of the 

voice. In most of our studies to date, we have employed a two-

step procedure described in [13]: (i) inverse filtering of the 

speech pressure waveform, to yield the glottal flow wave, and 

(ii) measurement of voice source parameters, on the basis of a 

voice source model (the LF model [14]) matched to the deriva-

tive of the glottal flow.  

Automatic methods for inverse filtering and source para-

meter extraction tend to be inaccurate, especially for the analy-

sis of connected speech, and for non-modal qualities. For that 

reason our analyses mostly use an interactive procedure 

whereby manual pulse-by-pulse editing is carried out (for 

details, see [13]). Though this procedure yields greater accu-

racy, it has drawbacks: it requires a high degree of experi-

menter skill and is hugely time consuming, so that only limited 

quantities of data can thus be analysed. Furthermore, the in-

verse filtering technique requires stringently high standards in 

recording conditions, which are often not met. In this context, 

the MDQ parameter has been proposed as a voice measure that 

might be reasonably robust even in less-than-perfect recording 

conditions [1]. Developing more accurate and robust auto-

matic analysis is a major aim of the GlóRí system which is 

under development [2]: progress in this area would allow for 

analysis of large corpora, and will open up many fields of po-

tential application. 

The aims of the present pilot study is to examine (i) to what 

extent MDQ correlates with specific voice source measures, 

(ii) for which voice source parameters, the highest correlations 

are found, and (iii) whether the correlations are different in the 

linguistic and paralinguistic datasets, given that the ranges 

might differ for these. 

2. The MDQ parameter 

The Maxima Dispersion Quotient (MDQ) was recently put 

forward as a measure for capturing differences in voice quality 

[1]. Experiments showed that this parameter is effective in the 

discrimination and categorisation of voice qualities such as 

breathy, modal and tense voice.  

In image processing, the maxima of the output signals pro-

duced from wavelet-based filtering have been found to be 

effective in the detection of edges, as these maxima tend to 

appear in the vicinity of edges. This property is exploited in 

the calculation of the MDQ parameter, which involves 

wavelet-based filtering of the glottal excitation signal, derived 

using autocorrelation LPC and inverse filtering. The assump-

tion is that if the main excitation produced by the glottal pulse 
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is very sharp and impulse-like, the maxima will appear near 

the time point of the excitation. This type of excitation would 

be expected for tense voice. Lax or breathy voice, however, 

involves less rapid change in the glottal airflow as the vocal 

folds close, resulting in a much less impulse-like excitation. 

For this type of excitation, one would therefore expect the 

maxima from the wavelet decomposition to be more dispersed. 

The calculation of the MDQ parameter is fully automatic. 

First, the time points of the main glottal excitations are deter-

mined using the GCI (Glottal Closure Instant) detection algo-

rithm SE-VQ [5]. The LPC residual is then derived using auto-

correlation LPC. This residual represents an estimate of the 

glottal source signal, which is subsequently processed by a 

dyadic wavelet transform. Here seven scaled versions of the 

wavelet function are used, which results in an octave band, 

zero-phase filter bank, with filter centre-frequencies of 125 

Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz and 8 kHz. 

For each glottal excitation found by the GCI detection algo-

rithm, a search interval is defined. The locations of the maxi-

ma are determined within this interval, and their distances 

(durations) from the time point of the excitation are measured. 

The mean of these durations is then calculated and, finally, the 

MDQ value is obtained by normalising this mean value to the 

glottal period. For further details, see [1].  

MDQ is essentially a measure linked to the sharpness of the 

glottal excitation. Of the voice source parameters we use, the 

ones which most directly capture specific characteristics of the 

glottal excitation are EE, RA and RK (see Section 3.2). There-

fore, one might expect to find strong correlations with these 

parameters. 

In [1], the MDQ parameter was evaluated in classification 

tests using data (isolated vowels, and voiced sentences) which 

had been produced with tense, modal and breathy voice quali-

ty. For the evaluation, these data were ‘screened’ by trained 

listeners, so that only utterances were selected where they 

agreed with a high degree of confidence that the voice quality 

was distinctly breathy, modal or tense. MDQ was found to 

yield good separation of these qualities for the isolated vowel 

data. Results were less clear-cut for the sentences. Note that in 

running speech (sentences) there is considerable prosodic 

modulation of the voice source, not found in steady state 

vowel productions. 

In the present study MDQ is correlated with voice source 

data, not elicited (or judged) in terms of intended (or 

perceived) voice quality as such. Rather, the data all involved 

continuous speech (sentences), where the voice was modulated 

as a function of varying linguistic or paralinguistic factors. 

3. Test data and parameters 

3.1. Speech data 

Two sets of data were examined, where the inverse filtering 

and source parameterisation were carried out using the manual 

interactive methodology mentioned above. The analysis pro-

cedures are fully described in [13]. In the first dataset, linguis-

tic prosody was varied (we term this the Linguistic dataset). 

The all-voiced sentence ‘WE WERE aWAY a YEAR ago’ 

was elicited so that in different repetitions, focus fell on one or 

other of the potentially accented syllables, shown in caps. 

Source modulations associated with focus are described in [7, 

8].  For this dataset, we recorded six male speakers with four 

focus conditions, and each was produced with either a falling 

(six speakers) or a rising (five speakers) intonation contour. 

Additionally, the utterance was elicited with broad focus and 

as deaccented (both with falling pitch pattern). The dataset 

comprised 56 utterances (6 speakers × 6 sentences × 1 falling 

intonation contour + 5 speakers × 4 utterances × 1 rising into-

nation contour) with a total of 5829 glottal pulses.  

The second dataset involved paralinguistic variation (the 

Paralinguistic dataset) recorded for a single speaker (one of the 

speakers recorded for the first dataset), and involved repeti-

tions of the same all-voiced sentence, ‘We were away a year 

ago’, produced so as to portray differing emotions/affective 

states. These portrayed emotions included angry, surprised, 

sad, bored as well as a neutral rendition. The different ‘emo-

tive’ renderings were strongly differentiated in terms of voice 

quality [10]. The dataset comprised 5 utterances totalling 649 

glottal pulses. Note that in comparing paralinguistic and lin-

guistic results, we limit ourselves to the single speaker for 

whom both datasets were available. 

3.2. Voice source parameters 

The analysis involved manual pulse-by-pulse inverse filtering 

and subsequent source parameterisation of the full utterances 

using the software systems described in [13, 15]. In addition to 

the fundamental frequency, f0, the following voice source 

parameters were extracted: 

EE (excitation strength), which is the negative amplitude of 

the differentiated glottal flow signal at the time point of 

maximum waveform discontinuity. The EE value is closely 

related to the overall strength of the glottal excitation.  

UP (peak glottal flow), which is a measure of the maximum 

glottal airflow rate of the glottal pulse. 

RA (return phase), which is the normalised effective dura-

tion of the return phase of the glottal pulse after the main 

excitation. The RA value relates to the source spectral slope, a 

higher RA value corresponding to a greater spectral slope.  

RG (normalised glottal frequency), which is a measure of 

the characteristic frequency of the glottal pulse (FG), normal-

ised to f0. RG mainly affects the relative amplitudes of the first 

couple of harmonics of the source spectrum.  

RK (glottal pulse symmetry), which is defined as the dura-

tion of the closing portion of the pulse normalised to the dura-

tion of the opening portion of the pulse. Thus, a smaller RK 

value means a more skewed glottal pulse, whereas a greater 

RK reflects a more symmetrical pulse.  

OQ (open quotient), which is a measure of the duration of 

the open phase (excluding the return phase) of the glottal pulse 

normalised to the glottal period. This definition of the open 

quotient is determined by RG and RK according to OQ = 

(1+RK)/(2RG). Therefore OQ tends to be positively correlated 

with RK and negatively correlated with RG. Mainly the 

amplitudes of the lower components of the source spectrum 

are affected by changes in OQ. 

RD, which is a global waveshape parameter that captures 

some of the main features of the glottal pulse in one single 

measure. It is derived from f0, EE and UP as follows: (1/0.11)× 

(f0·UP/EE), where UP/EE is equivalent to the glottal pulse 

declination time during the closing phase of the glottal cycle. 

The scale factor (0.11-1) makes the numerical value of RD 

equal to the declination time in milliseconds when f 0 is 

110 Hz. For further details, see [16-19, 13]. 
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3.3. MDQ estimation and statistical analysis 

For the correlation analysis, MDQ values were automatically 

estimated using the automatic component of the GlóRí system 

[2]. Prior to the correlation analyses, the data were smoothed 

by first applying median filtering, followed by moving average 

filtering (both filters spanned 5 pulses). 

Pearson product-moment correlation coefficients (Pearson’s 

r, two-tailed) were computed to explore the correlation be-

tween MDQ and the other parameters. 

4. Results: Correlations of MDQ and voice 

source parameters 

The r values for the Linguistic and Paralinguistic datasets are 

shown in Table 1. On the left are shown values for the entire 

linguistic dataset with six speakers. The two rightmost panels 

compare values for Linguistic and Paralinguistic data for the 

single speaker for whom both sets were available.  

Figure 1 shows for the six-speaker Linguistic dataset, the 

correlations for the individual voice source parameters. The 

highest correlations were found with the parameters OQ (r = 

0.72), RD (r = 0.67) and RG (r = –0.62). Our initial expecta-

tion that EE, RA and RK would be the highly correlated with 

MDQ was not borne out: these yielded moderate to relatively 

low correlations, EE (r = –0.49), RA (r = 0.47) and RK (r = 

0.27). Note that, even where the correlations are relatively 

weak, they are all significant. 

Table 1. Voice source parameter correlations with MDQ for 

the 6-speaker Linguistic dataset (left) and the 1-speaker Lin-

guistic and Paralinguistic datasets (two rightmost columns). 

*Correlations are significant at p< 0.01. 

Parameter 

Linguistic 

(6 speakers) 

Linguistic 

(1 speaker) 

Paralinguistic 

(1 speaker) 

Pearson’s r Pearson’s r Pearson’s r 

F0 (Hz) 0.40* 0.54* -0.27* 

EE (dB) -0.49* -0.48* -0.65* 

UP (dB) -0.46* -0.59*           -0.07 

RD 0.67* 0.69* 0.79* 

OQ (%) 0.72* 0.67* 0.79* 

RG (%) -0.62* -0.58* -0.73* 

RA (%) 0.47* 0.59* 0.58* 

RK (%) 0.27* 0.14* 0.64* 

 

Figure 2 shows MDQ correlations with source parameters 

for the Paralinguistic dataset (in red) superimposed on the 

Linguistic dataset (in green) for the single speaker. It is strik-

ing that correlations overall are higher in the Paralinguistic 

dataset. For OQ, r = 0.79 compared to 0.67 in the Linguistic 

dataset; for RD, r = 0.79 compared to 0.69; for RG, r = –0.73 

compared to –0.58. Furthermore, the parameters EE, RA and 

RK, which did not show strong correlations with MDQ in the 

Linguistic dataset, now show a relatively high degree of cor-

relation: for EE, r = –0.65 compared to –0.48; for RK, r = 0.64 

compared to 0.14. However, the correlation of MDQ with RA 

was rather similar for the two datasets: r = 0.58 (Paralinguistic 

dataset) compared to 0.59 (Linguistic dataset). As in the 

Linguistic dataset, all parameters in the paralinguistic data 

showed highly significant correlations with MDQ, with the 

striking exception of UP, which is not found to be correlated 

in the paralinguistic set: r = 0.07 (Paralinguistic dataset) 

compared to 0.59 (Linguistic dataset). 

  

  

 

Figure 1: Correlations of MDQ and selected voice source 

parameters in the Linguistic dataset. 

5. Discussion 

Overall, the strongest correlations with MDQ were observed 

for the OQ and RD parameters, with RG also showing a high 

correlation. The initial expectation that those parameters most 

closely relating to the sharpness of the glottal excitation, i.e. 

EE, RA and RK, would be strongly correlated with MDQ was 

not clearly borne out, at least not for the Linguistic dataset. 

One reason for this could be it is the combined contribution of 

these parameters that determine the overall sharpness of the 

excitation and that the individual parameters are capturing 

only part of this. Both OQ and RD capture multiple aspects of 

the glottal pulse (see Section 3.2), which could partly explain 

the high correlation values obtained for these parameters. 

It is also striking in Figure 2 and Table 1 that the correla-

tions are higher for the Paralinguistic dataset. In this dataset, it 

is also clear from Figure 2 that the range of voice source mod-

ulation is greater. Note in Figure 2 that RD, OQ and RK val-

ues extend to lower values, while RG values go higher. These 

changes suggest particularly more use of tenser voice in the 

Paralinguistic dataset. This shows up equally in the extended 

lower end of the MDQ values for this dataset. 

In addition to the extension of the parameter ranges in the 

paralinguistic data, there are differences in the distribution of 

values relative to what is found in the Linguistic dataset. 

Figure 3 illustrates for the linguistic vs. paralinguistic single-

speaker datasets the distribution of values for OQ and RG, the 

two parameters for which the differences were most striking. 

The histograms have been superimposed to facilitate compari-

son. Note that whereas for the Linguistic dataset there is a 

compact distribution around the mean, in the Paralinguistic 

dataset, there is a greater use of the extreme ends of the range. 
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Figure 2: Correlations of MDQ and selected voice source 

parameters in the linguistic dataset (green) in comparison to 

the paralinguistic dataset (red).  

  

Figure 3: Histograms of the OQ and RG parameters in the 

Linguistic (green) and Paralinguistic (red) datasets. 

As was mentioned earlier, paralinguistic modulations tend to 

be consciously heard as voice quality shifts (tone of voice 

changes) on the part of the speaker, while the modulations 

associated with linguistic prosody are simply heard as part of 

the prosody, signalling in this case, information structure. 

These observed correlations do indicate that the MDQ meas-

ure is indeed picking up on voice quality differences, particu-

larly when they involve the rather larger effects associated 

with paralinguistic signalling of emotion and affect. 

In Table 1, we note a further striking difference in the cor-

relations for the two datasets. In the Linguistic dataset, there is 

a strong significant positive correlation of MDQ with f0. 

Broadly speaking, this would appear to suggest that, on the 

whole, higher f0 is associated with a laxer voice quality. For 

the Paralinguistic dataset, there is a much weaker, negative 

correlation, suggesting that there is less linkage of f0 and voice 

quality, and that insofar as they are correlated, higher pitch is 

correlated with a tenser voice quality. 

In some ways, it seems intuitively right that the linguistic 

prosody should be more closely coupled to f0 modulation. 

After all, virtually all linguistic research on linguistic prosody 

is focussed on pitch variation. Although the f0 modulation does 

not predict voice source modulation as such, it makes sense 

that they would be rather more closely correlated. It is 

interesting that for the paralinguistically varying data, such a 

correlation no longer holds, and that the polarity is different. 

We would tentatively suggest, on the basis of these findings 

that the voice source modulation in linguistic prosody works 

synergistically with intonation structure, whereas for para-

linguistic prosody there is a large degree of decoupling of the 

intonational and voice quality dimensions of the voice.  

6. Conclusions 

This study found that the voice parameter MDQ correlated 

particularly with the OQ and RD voice source parameters. Re-

sults also indicate that the correlation is stronger when there is 

more extensive variation in the voice source, as with the Para-

linguistic dataset analysed here. Overall, these results are en-

couraging, and suggest that MDQ is likely to prove useful in-

sights into the behaviour of the glottal source signal. The fact 

that correlations are less good with the more limited Linguistic 

dataset does nonetheless suggest that for now, one must pro-

ceed with caution. Further analyses will ascertain to what ex-

tent it may capture the finer details of voice source dynamics. 
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