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Introduction 

 

The 2015 Irish Machine Vision and Image Processing Conference (IMVIP 2015) was hosted this year at 

Trinity College Dublin, the University of Dublin, under the organisation of the School of Computer Science 

and Statistics, and the Department of Electronic and Electrical Engineering. 

The IMVIP Conference is Ireland’s primary meeting for those researching in the fields of machine vision 

and image processing. The conference has been running since 1997 and provides a forum for the exchange 

of ideas and the presentation of research conducted both in Ireland and worldwide. 

IMVIP is a single track conference consisting of high quality previously unpublished contributed papers 

focussing on both theoretical research and practical experiences in all areas. After a rigorous review 

process, 19 papers were selected for the conference. We wish to sincerely thank the members of the 

Programme Committee for generously giving their time, effort and expertise in reviewing the submissions.  

Continuing the tradition of inviting high-profile speakers to IMVIP, we are delighted to have keynote 

presentations at IMVIP 2015 from Prof. Takeo Kanade (Carnegie Mellon University), Dr. Aljosa Smolic 

(Disney), Prof. Anil Kokaram (Youtube & Trinity College Dublin), Dr. John McDonald (Maynooth University) 

and Prof. Oscar Deniz Suarez (University of Castilla-La Mancha).  

  

IMVIP is run in association with the Irish Pattern Recognition & Classification Society (iprcs.org), a member 

organisation of the International Association for Pattern Recognition (IAPR) and the International 

Federation of Classification Society (IFCS). In addition to IPRCS, we would like to thank industry sponsors 

to IMVIP 2015 Movidius, Surewash, Daqri and Fotonation, as well as Trinity College and the Science Gallery 

for facilitating this conference.  

 

As a final note, many thanks to Seán Cronin, Mairéad Grogan, Seán Bruton and Abdullah Bulbul for their 

help organising IMVIP 2015 conference. 

 

Rozenn Dahyot, Gerard Lacey, Kenneth Dawson-Howe, François Pitié & David Moloney 

Trinity College Dublin 

Ireland 

August 2015 
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Keynote speaker: Takeo Kanade  

 Sponsored by  

 

 

Title: Smart Headlight: A new active augmented reality that improves how the reality appears to 

a human 

 

Abstract: A combination of computer vision and projector-based illumination opens the 

possibility for a new type of computer vision technologies. One of them is augmented reality: 

selectively illuminating the scene to improve or manipulate how the reality itself, rather than its 

display, appears to a human. One such example is the Smart Headlight being developed at 

Carnegie Mellon University's Robotics Institute. The project team has been working on a set of 

new capabilities for the headlight, such as making rain drops and snowflakes disappear, allowing 

for the high beams to always be on without glare, and enhancing the appearance of objects of 

interest. Using the Smart Headlight as an example, this talk will further discuss various ideas, 

concepts and possible applications of coaxial and non-coaxial projector-camera systems. 

 

About the speaker: Professor Takeo Kanade is the U. A. and Helen Whitaker University Professor 

of Computer Science and Robotics at Carnegie Mellon University. He received his Doctoral degree 

in Electrical Engineering from Kyoto University, Japan, in 1974. After holding a faculty position 

there, he joined Carnegie Mellon University in 1980. He was the Director of the Robotics Institute 

from 1992 to 2001. He also founded and directed the Digital Human Research Center in Tokyo 

from 2001 to 2010, and the Quality of Life Technology Center at Carnegie Mellon from 2006 to 

2012. Dr. Kanade works in multiple areas of robotics: computer vision, multi-media, 

manipulators, autonomous mobile robots, medical robotics and sensors, producing more than 

400 technical papers and more than 20 patents. Dr. Kanade has been elected to the National 

Academy of Engineering and the American Academy of Arts and Sciences. Awards he received 

include the Franklin Institute Medal and Bower Prize, ACM/AAAI Newell Award, Okawa Award, 

NEC Computer and Communication Award, Joseph Engelberger Award, IEEE Robotics and 

Automation Society Pioneer Award, and IEEE PAMI Azriel Rosenfeld Lifetime Accomplishment 

Award. 
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Keynote speaker: Aljoša Smolić  

 

Sponsored by   

 

 

 

 

 

Title: Thinking in Video Volumes 

 

Abstract: Video is typically represented as a temporal sequence of arrays of values. These values 

contain strong interconnections in spatial and temporal dimensions, which can be exploited for 

efficient processing. However, computational complexity and memory restrictions limited 

exploitation of temporal interconnections in the past. Today's computing power enables 

development of a new class of algorithms that operate on video volumes. FeatureFlow provides 

efficient solutions for classical problems in visual computing such as optical flow, disparity 

estimation, and data propagation. DuctTake is a novel approach for spatio-temporal video 

compositing. Temporally consistent tone mapping of HDR video is another application scenario 

of this principle, which will be covered in this talk. 

 

 

 

About the speaker: Dr. Aljoša Smolić joined Disney Research Zurich, Switzerland in 2009, where 

he is employed as Senior Research Scientist and Head of the Video of the Future group. He has 

been involved in several national and international research projects, where he conducted 

research in various fields of video processing, video coding, computer vision and computer 

graphics and published more than 90 referred papers in these fields. In current projects he is 

responsible for research in 2D video, 3D video and free viewpoint video processing and coding. 
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Keynote speaker: Anil Kokaram  
 

Sponsored by   

 

 

 

 

Title: Pushing Pixels at YouTube 

 

 

Abstract: The Video Infrastructure Division is concerned with the care, feeding and transport of 

pixels from ingested source material to the final display device. With more than 1 Billion users, 

300 hours of video uploaded per minute, and thousands of different output devices as targets, 

the technological challenges are significant. This talk exposes some of the technology behind the 

massively distributed transcoding and broadcast center that is YouTube. We consider in 

particular the difficulties caused by scale and highlight the importance of high level, automated 

"black box" control for many of the video processing tools which are considered standard today. 

 

 

About the speaker: Prof. Anil Kokaram is a Tech Lead in the Transcoding Group at 

YouTube/Google. He leads a small team responsible for video quality and develops video 

processing algorithms for quality improvement in various pipelines. He is also a Professor at 

Trinity College Dublin, Ireland and continues to supervise a small number of students at 

www.sigmedia.tv in the EE Dept there. His main expertise is in the broad areas of DSP for Video 

Processing. Bayesian Inference and motion estimation. He has published over 100 refereed 

papers in these areas. In 2007 he was awarded a Science and Engineering Academy Award for his 

work in video processing for post-production applications. He was founder of a company 

(GreenParrotPictures) producing video enhancement software that was acquired by Google in 

2011. He is currently an Associate Editor of the IEEE Transactions on CCts and Systems for Video 

Technology. 
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Keynote speakers: John McDonald  
Sponsored by   

 

 

 

 

  

Title: Visual SLAM: from sparse mapping to 3D perception 

 

 

Abstract: From fully autonomous vehicles to markerless AR, gaming to household robotics, recent 

progress in visual SLAM is providing such systems with the foundations for higher level scene 

interpretation, visualisation, and interaction. This talk will provide an overview of the visual SLAM 

problem in the context of two systems developed jointly between Maynooth University and MIT. 

The first system employs a feature based approach for multi-session visual mapping where 

multiple separate mapping sessions can be combined into a single globally consistent model of 

the environment. The second system, known as Kintinuous, provides a real-time dense SLAM 

system that allows globally consistent mesh based mapping over extended scales. Results will be 

presented for both systems using a number of different datasets. Finally the talk will present the 

application of Kintinuous to a number of robotic tasks demonstrating the benefits of the resulting 

dense representations for 3D perception. 

 

About the speaker: Dr. John McDonald has been a lecturer at the Department of Computer 

Science, NUI Maynooth since 1997 where he leads the Computer Vision Group. His primary 

research interest is computer vision, working in areas including visual simultaneous localisation 

and mapping (vSLAM), intelligent vehicle systems, vision based geotechnologies, face and 

gesture analysis, and digital holography. He has been a visiting scientist at the University of 

Connecticut, the National Centre for Geocomputation (NCG) at NUI Maynooth, and the 

Computer Science and Artificial Intelligence Lab (CSAIL) at the Massachussetts Institute of 

Technology. He is a member of the Callan Institute at NUI Maynooth. 
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Keynote speakers: Oscar Deniz Suarez  

Sponsored by   

 

 

 

 

 

 

Title: Project Eyes of Things 

 

Abstract: Vision, our richest sensor, allows inferring big data from reality. Arguably, to be “smart 

everywhere” we will need to have “eyes everywhere”. Currently, computer vision is rapidly 

moving beyond academic research and factory automation. The possibilities are endless in terms 

of wearable applications, augmented reality, surveillance, ambient-assisted living, etc. Vision is, 

however, the most demanding sensor in terms of power consumption and required processing 

power, which can explain the shortage of development platforms with low-cost mobile 

processing and IoT features. Our objective in this EU-funded innovation project running from 

2015 to 2017 is to build an optimized core vision platform that can work independently and also 

embedded into all types of artefacts. 

 

About the speaker: Prof. Oscar Deniz Suarez is an Associate Professor at University of Castilla-La 

Mancha. He is the author of more than 50 refereed papers in journals and conferences. He has 2 

patents and has also contributed to OpenCV, the well-known open source computer vision 

library. He is the author of 3 books on OpenCV and OpenCV programming for mobile devices. 

Oscar has also served as visiting researcher at Carnegie Mellon University (USA), Imperial College 

London (UK) and Leica Biosystems (Ireland). He is a Senior Member of IEEE and is affiliated with 

the AAAI, IAPR and The Computer Vision Foundation. He serves as an Academic Editor of Journal 

PLoS ONE and Associate Editor of IEEE Consumer Electronics. Currently, he is the Coordinator of 

EU Horizon 2020 "Eyes of Things" project and partner in FP7 AIDPATH Marie Curie Action. He 

serves as a reviewer/expert for EU programs such as Eurostars. 
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Dynamic Texture Classification using Combined Co-Occurrence
Matrices of Optical Flow

V. Andrearczyk & Paul F. Whelan

Centre for Image Processing and Analysis (CIPA), Dublin City University, Dublin 9, Ireland

Abstract

This paper presents a new approach to Dynamic Texture (DT) classification based on the spatiotemporal
analysis of the motion. The Grey Level Co-occurrence Matrix (GLCM) is modified to analyse the distri-
bution of the magnitude and the orientation of the Optical Flow which describes the motion. Our method
is therefore called Combined Co-occurrence Matrix of Optical Flow (CCMOF). The potential of a mul-
tiresolution analysis of the motion is revealed by experimentation. We also demonstrate the importance of
the analysis of motion in the spatiotemporal domain. Finally, we demonstrate that adding a spatiotemporal
motion analysis (CCMOF) to an appearance analysis (Local Binary Patterns on Three Orthogonal Planes
(LBP-TOP)) significantly improves the classification results.

Keywords: Dynamic Texture, classification, Optical Flow, co-occurrence, spatiotemporal

1 Introduction

Dynamic Texture (DT) is an extension of static texture in the temporal domain, introducing temporal variations
such as motion and deformation. Doretto et al. [6] describe a DT as a sequence of images of moving scenes
that exhibits certain stationary properties in time. Examples of natural DTs include smoke, clouds, trees and
waves. The analysis of DTs embraces several major problems including classification, segmentation, synthesis
and indexing for retrieval. Such analysis is essential for a large range of applications including surveillance,
medical image analysis and remote sensing. This paper focuses on the classification of DTs. However, the
developed algorithm and ideas can be used in other DT problem domains. The aim in DT classification is to
assign an unknown sequence to a set of DT classes.
The analysis of motion for DT classification is of particular interest due to both the logic of the approach and the
positive results obtained in the literature. Motion, along with shapes and color, is a key element in the analysis
of a scene by the human visual system [21]. Moreover, while watching a sequence of images, the human’s brain
interprets the succession of still frames as a dynamic moving scene [1]. Therefore, combining a motion and an
appearance analysis seems to be a natural way of dealing with dynamics. However, the literature either focuses
on the spatial distribution of the Optical Flow (OF) (motion based) or on the pixel intensities’ distribution in the
spatiotemporal domain (statistical and transforms). A significant amount of information is lost by neglecting
the evolution of the motion over time. In this paper, we present two new methods for DT classification which
explore the potential of the analysis of the motion in the spatiotemporal domain. We use a co-occurrence matrix
approach applied on the OF field in thespatiotemporal domain. We investigate the positive impact of a temporal
multiresolution analysis of the motion as well as the combination of motion and appearance analysis.
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2 State of the Art

The main methods developed for DT analysis can be classified in four categories, namely statistical, motion
based, model based and spatiotemporal transforms.
Statistical approaches mainly use standard texture analysis in a new manner to include the temporal dimen-
sion. The Grey Level Co-occurrence Matrix (GLCM) is used by Flores et al. [8] to extract a set of features on
each frames of the DT sequence. This is the most basic adaptation of a static texture analysis method to DT
analysis. Hu et al. [14] also use well-known spatial descriptors on each frame but combine them with GLCM
features calculated in the temporal domain to capture the correlation of neighbouring pixels in time. Boujiha
et al. describe in [2] a spatiotemporal co-occurrence matrix approach, extracting co-occurrence matrices on a
3D (x, y, t ) neighbourhood. In a similar manner, Zhao and Pietikäinen extend the Local Binary Pattern (LBP)
to DTs by creating the LBP Volume (LBP-V) [24] and the LBP on Three Orthogonal Planes (LBP-TOP) [23].
The latter extracts LBPs on three planes: XY which is the classic spatial texture LBP as well as XT and YT
which consider temporal variations of the pixel intensities.
Realising the limitations of only analysing a DT as a 3D image, motion based methods were developed. Ex-
tracting the motion between consecutive frames of the DT sequence can be achieved, among other methods,
by Normal Flow [16], OF [4, 7, 15], or Local Motion Pattern (LMP) [9]. Various statistical analyses have
been developed to extract features describing the spatial distribution of the motion field such as GLCM, Fourier
spectrum, difference statistics [16], histograms [4, 9, 15] and statistics on the derivatives of the OF [7]. These
motion features are often logically combined with features based on spatial statistical analyses.
Introduced by Saisan et al. in [20], model based methods aim at estimating the parameters of a Linear Dy-
namical System (LDS) using a system identification theory. This approach is designed for a synthesis problem.
However, the estimated parameters can be used for a classification task [6]. Positive results were obtained in
the learning and synthesis of temporal stationary sequences such as waves and clouds [6]. However, the model
based approach raises several difficulties such as the distance between models lying in a non-linear space and
the non-invariance to rotation and scale. Finally, it is not suitable for segmentation since it assumes stochastic
and segmented DTs. Ravichandran et al. [18] overcome the view-invariance problem using a Bag of dynamical
Systems (BoS) similar to a Bag of Features with LDSs as feature descriptors, obtaining precise results.
In the same manner as statistical methods, several transform approaches used in texture analysis were extended
to spatiotemporal transform for DT analysis. Derpanis and Wildes [5] use spacetime oriented filters extract-
ing interesting features which describe intrinsic properties of the DTs such as unstructured, static motion and
transparency. In [17], Qiao and Wang use 3D Dual Tree Complex Wavelet combining an appearance with a
dynamic analysis. Finally, Gonçalves et al. use spatiotemporal Gabor filters in [11].

3 Classification using Extended Plots and multiresolution

In this section, we develop a DT classification method based on the analysis of the OF. The idea of extracting the
history of motion on Extended Directional and Extended Magnitude Plots developed in [16] is further explored
in particular with a multiresolution analysis, different features and a rotation invariant method.

Co-occurrence matrix background The Grey Level Co-occurrence Matrix (GLCM) aims at describing the
relationships between neighbouring pixel intensities by analysing their joint probability function [12, 13]. The
GLCM summarizes the occurrence of pairs of pixels on a texture image. The (i , j )th entry of the matrix
represents the number of times a pixel with intensity value i is separated from another pixel with intensity
value j at a distance d in the direction θ. This matrix contains meaningful information about the distribution
of the pixel intensities as indicated by the 14 Haralick’s features [12, 13].
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Method description

magnitude value mapping
]3.555, 4] 0

]3.111 , 3.555] 31
]2.666 , 3.111] 63
]2.222 , 2.666] 95
]1.777 , 2.222] 127
]1.333 , 1.777] 159
]0.888 , 1.333] 191
]0.444 , 0.888] 223

[0 , 0.444] 255
Table 1: Magnitude mapping of

moving points.

OF extraction: The OF is calculated between every two consecutive
frames of the sequence using Black’s algorithm [22]. As suggested by
Sun et al. [16], most magnitudes being in the range zero to four pixels,
the flow vectors with magnitudes greater than four pixels are regarded as
noise and labelled stationary points. The other points are called moving
points.
Quantisation: Based on [16], the magnitude and the direction of the mov-
ing points are mapped into the Magnitude Plots and the Directional Plots.
The magnitude is arbitrarily mapped into nine grey levels shown in Table
1. Regions of darker grey in the Magnitude Plots correspond to regions
with larger normal flow magnitudes. The direction is mapped into nine
grey levels as shown in Figure 1.

Figure 1: Quantisation of normal flow direction into 16 grey levels. (figure extracted from [16])

Extended Plots: The Extended Magnitude Plots (EMPs) and Extended Directional Plots (EDPs) [16] are calcu-
lated in order to trace the motion history. τ Magnitude Plots ft are "superimposed" to construct an EMP, where
t ∈ [1,τ] is the position of the plot in the temporal domain. That is to say, the EMP F (i , j ) at pixel location i
and j takes the value of the last moving point in ft (i , j ). It takes the value 255 if f1(i , j ), f2(i , j ), . . . , fτ(i , j ) are
only stationary points. The EDP G(i , j ) is similarly calculated from τ Directional Plots g t (i , j ), resulting in 10
grey levels (9 directions and an extra level 255 for stationary points). Following the setup from [16], we choose
τ= 5.
Multiresolution: A basic multiresolution analysis is performed, with the purpose of demonstrating the potential
of this approach in a DT classification problem. The original sequences are decomposed into several temporal
resolutions by applying a Gaussian pyramid.
Dynamic Texture features: The co-occurrence matrices of the EMPs (9 by 9 matrices) and of the EDPs (10 by
10 matrices) are calculated and averaged over the whole sequence for each resolution. An angle θ = 0° and a
distance d = 1 pixel between the pixel neighbours are chosen in this experiment as a proof of concept. The final
features are composed of the raw mean co-occurrence matrices of each resolution vectorized and concatenated
in one single feature vector.
Rotation Invariance: In order to further estimate the robustness of the algorithm, rotation invariance is devel-
oped in the feature extraction process. The rows and columns of the co-occurrence matrices are re-organised
depending on the dominant orientation of the EDPs.This is similar to rotating the OF vectors so that the dom-
inant direction always points leftwards. Hence, similar features are extracted, for instance, from sequences of
cars moving in different directions.

Results and discussions The developed algorithm is tested on the Dyntex++ database [10]. It consists of 36
classes of 100 sequences of size 50*50*50. The experimental setup is similar to [10, 18, 19]. 50 sequences
are randomly selected from each class as the training set, and the other 50 sequences are used in testing.
This process is repeated 100 times to obtain the average classification rate. We use a linear Support Vector
Machine (SVM) classifier [3]. The classification results are summarised in Table 2 and compared to the state
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of the art in Table 3. The state of the art method which obtains the best results ([19]) uses PCA-cLBP (PCA
on the concatenated LBP), PI-LBP (Patch-Independent), PD-LBP (Patch-Dependent) and a super histogram
averaging the histograms across the sequence. Finally it uses a Radial Basis Function (RBF) SVM classifier.
Our experiment does not aim to maximise the classification results, but rather to demonstrate the importance of
the OF, the multiresolution analysis and the rotation invariance in a DT classification framework. It performs
only 2.7% worse than the state of the art on the Dyntex++ database. The multiresolution analysis greatly
improves the performance of our method from 74.8% to 89.7% with respectively one and four resolutions.
Moreover, one could expect the classification success rate to dramatically drop with the rotation invariance
since crucial information about the direction is lost. However, it is interesting to point out that we only measure
a drop of 2.3% and 1.6% with respectively four and one resolutions.

number of resolutions 1 2 3 4
normal 74.8% 84.4% 87.4% 89.7%

rotation invariant 73.2% 82.5% 85.6% 87.4%

Table 2: Global classification results of our method on Dyntex ++ using one to four resolution images (starting
from the original image and adding lower resolutions with the Gaussian pyramid).

Method Classification rate
DL-PEGASOS [10] 63.7%

Extended Plots - 4 resolutions (our method) 89.7%
PCA-cLBP/PI-LBP/PD-LBP+super histogram + RBF SVM [19] 92.4%

Table 3: Classification results comparison with the state of the art on Dyntex++.

Finally, it should be noted that some sequences are misclassified into classes with very similar motion. For
instance, eight sequences of the class 27 "leaves on branches swaying with wind" are misclassified into the
class 33 ("branches swaying in wind (no leaves)". Adding a spatial analysis to this method would overcome
this issue.

4 Combined Co-occurrence Matrix of Optical Flow (CCMOF)

Introduction As shown in section 3, the co-occurrence matrix approach developed in [12, 13] can be used
to characterise the distribution of the OF. However, creating a co-occurrence matrix from a vector image is
not as straightforward as the classic GLCM extracted from pixel intensities. Indeed, the occurrence of two
values must be taken into account such as the x and y components of the flow vectors or their magnitudes
and directions. This is why the EDPs and EMPs were used in [16]. However, analysing the two components
separately gives rise to a loss of information carried by the joint distribution. Furthermore, the quantisation of
the magnitude is not as simple as the quantisation of a grey-scale image or an orientation image. Grey-scale
images and orientation images are respectively defined in the bounded intervals [0,255] and [-180,180], whereas
the magnitude is only limited by the size of the image. In [16] and section 3, flow vectors with a magnitude
larger than four pixels were considered as noise which is not the case in many DT sequences. Extending the
quantisation to the maximum magnitude that a correct flow vector can have (maximum magnitude of all the
sequences, up to 25 pixels length) is not a convenient solution either. In order to overcome these issues, a new
framework combining the magnitude and the orientation of the flow is developed using individual quantisation
levels of the magnitudes for each sequence.

Method description The framework of our CCMOF method is illustrated in Figure 2. The OF is calculated
between every two consecutive frames of the DT sequence, using the algorithm from [22]. A sequence of 100
frames thus results in 99 motion vector images. In the second block, the magnitude and the orientation of the OF
are calculated from the x and y values of the motion vectors. Subsequently, the magnitude and the orientation
are jointly quantised. As shown in Figure 3, eight bins of magnitude and eight bins of orientation are used,
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Figure 2: Feature extraction diagram of the CCMOF.

resulting in 64 bins spanning the OF vector values. For each sequence, the magnitude is linearly quantized
in eight bins in the ranges [0, Ms] ([0, 1

8 Ms], [ 1
8 Ms , 2

8 Ms], . . . , [ 7
8 Ms , Ms]), where Ms is the largest magnitude of

the sequence after removing large outliers which will not contribute to the CCMOFs, using Peirce’s criterion.
Finally, the co-occurrence of the neighbouring flow vectors is calculated, resulting in three 64 by 64 CCMOFs;
two for the spatial, one for the temporal domain. The matrices extracted in the space domain summarise
the occurrence of the pairs of neighbours on the x and y axes. This co-occurrence is calculated on every
frame, then summed over the entire sequence and normalised. In the time domain, the same process is applied
with neighbours on the temporal axis. These co-occurrence matrices differ from the classic GLCM as they
combine two dimensions. The definition of new features is necessary in order to extract the distributions of
the magnitude and of the orientation as well as their joint distribution. In total, 19 features are calculated
based on Haralick’s features [13]; 11 in the spatial domain and eight in the temporal domain: The Energy,
Contrast, Orientation Contrast, Magnitude Contrast, Correlation, Sum of Squares, Homogeneity and Entropy
are extracted from both the spatial and temporal CCMOFs. The Dominant Orientation, Dominant Magnitude
and Weighted Dominant Orientation are calculated only in the spatial domain. We need to slightly modify
the calculation of the Haralick’s features [13] regarding the difference n between neighbours. In Haralick’s
features, the difference between neighbours n is defined as Equation (1) and represents the variation in the
neighbours’ intensities.

n = |i − j |, n ∈ {q1, q2, . . . , qN }, (1)

where i , j ∈ {q1, q2, . . . , qN } represent the quantised values of the pair of neighbours and q1, q2, . . . , qN are the
N discrete grey levels of quantization. In our case, n is chosen as the Manhattan distance between neighbour
vectors (Equation (2)).

n = |M̂i − M̂ j |+ |Ôi −Ô j | mod 4, n ∈ {0;1;2; . . . ;11}, (2)

where M̂i , M̂ j are the quantised magnitudes of the neighbour vectors and Ôi ,Ô j their orientations. On Figure 3,
the distance between the two vectors is n = 2. Finally, it was observed that the smallest magnitudes in a vector
image are often due to noise on a static part of the DT. For instance, in a traffic DT, OF vectors are calculated on
the supposedly static road with magnitudes close to zero. Their orientation is therefore not relevant and reduces
the discriminative power of the features calculated from the CCMOFs. Therefore, the same 19 features are
calculated from the CCMOFs in which the bin corresponding to the smallest magnitudes is removed (resulting
in 7 by 8 matrices). A total of 38 features is thus extracted from each DT sequence.
DT recognition, as proposed in [19], should largely rely on appearance analysis as it contains the most discrim-
inative information. Therefore, we combine our motion features with LBP-TOP features [23]. Thus, we cover
the analysis of the motion (CCMOF) in the spatiotemporal domain as well as the pixel intensities’ distribution
(LBP-TOP) in the spatiotemporal domain.

Results and discussion A sequential feature selection is applied in order to determine those which discrim-
inate the best between classes and to remove irrelevant and redundant features.We use a K-Nearest Neighbors
(K-NN) classifier with K = 1. A distance d = 1 pixel between neighbours is chosen for the construction of the
co-occurrence matrices. For the testing of this method, a dataset is created using sequences from the Dyntex
database. The current benchmarks (Dyntex, Dyntex++, UCLA) suffer, in our point of view, several drawbacks.
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Figure 3: OF quantisation with two vector examples (M̂ = 7, Ô = 6 (left); M̂ = 6, Ô = 7 (right)).

We sought to rectify those by focusing on videos which exhibit only one DT and contain the same dynamic on
the entire space-time domain. We also select sequences which depict different scenes, from various viewpoints.
The resulting dataset contains 10 classes of DTs, each with 20 sequences of size 100*100*50. The experi-
mental setup is the same as in section 3. 10 sequences are randomly selected from each class for the training
set. The other 10 sequences are used for testing. The confusion matrix presenting the classification results
using the CCMOF features in combination with LBP-TOP is shown in Figure 4 and the overall classification
results are presented in Table 4. One can notice that the main misclassifications occur for very similar classes
("water"/"waves" and "foliage"/"trees") which share similar dynamics and spatial texture.

Figure 4: Confusion matrix of CCMOF + LBP-TOP on
the developed database.

Method Classification rate
CCMOF 68.0%

LBP-TOP [23] 81.7%
LBP-TOP + CCMOF 84.4%

Table 4: Classification results of CCMOF and
LBP-TOP on the developed database.

The motion analysis using the CCMOF approach significantly improves the classification of our dataset when
combined with the analysis of the spatiotemporal distribution of the pixel intensities (LBP-TOP). Solely analysing
the motion is not sufficient to obtain a classification as accurate as the literature. It confirms that a DT recogni-
tion system mostly relies on the spatial texture analysis [19] and the motion analysis provides complementary
information that can improve the performance.

5 Conclusion

In this paper, we investigated the analysis of the OF in the spatiotemporal domain and the combination with
complementary spatiotemporal features based on pixel intensities’ distribution. Section 3 showed a simple use
of the OF for DT classification with co-occurrence matrices as well as the potential of a temporal multiresolution
analysis of the motion. Section 4 presented good results obtained with our new method CCMOF. In particular
it showed the importance of the analysis of the motion in the spatiotemporal domain, the combination of an
appearance and motion analysis as well as the joint analysis of the magnitude and orientation of the motion.
Our CCMOF approach greatly improves the state of the art on the developed database when combined with
appearance analysis (LBP-TOP).
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Abstract
This paper investigated using lip movements as a behavioural biometric for person authentication. The

system was trained, evaluated and tested using the XM2VTS dataset, following the Lausanne Protocol
configuration II. Features were selected from the DCT coefficients of the greyscale lip image. This paper
investigated the number of DCT coefficients selected, the selection process, and static and dynamic feature
combinations. Using a Gaussian Mixture Model - Universal Background Model framework an Equal Error
Rate of 2.20% was achieved during evaluation and on an unseen test set a False Acceptance Rate of 1.7%
and False Rejection Rate of 3.0% was achieved. This compares favourably with face authentication results
on the same dataset whilst not being susceptible to spoofing attacks.

Keywords: Authentication, Biometrics, GMM-UBM, XM2VTS, DCT

1 Introduction

It is widely recognised that passwords are not enough to use as a sole means of authentication, which has been
made apparent by many high profile hacking cases. This has resulted in biometric authentication becoming
increasingly popular. Physiological-based biometric systems have been incorporated into the most common
mobile platforms, i.e. Android’s Face unlock and iPhones fingerprint scanner, and have been hacked using
replay attacks and spoofing [Racoma, 2012], [Kleinman, 2014]. Behavioural biometrics are potentially more
difficult to crack but are also more complex to capture, model and authenticate robustly.

In this area ’Speaker Verification’ is acknowledged as the ability to authenticate a person’s claimed identity
from their voice [Campbell, 1997]. Gaussian Mixture Model–Universal Background (GMM-UBM) systems are
commonly used with speaker verification systems, [Hautamäki et al., 2015]. The set up involves using creating
a GMM to model each individual, and another large GMM that represents the whole population – the UBM.
When authenticating a person’s claimed identity, a likelihood is calculated with respect to their individual model
and another with respect to the UBM. A resulting score can be calculated using these likelihoods.

[Cetingul et al., 2006] researched lip motion features for speaker and speech recognition using Hidden
Markov Models (HMMs). Features evaluated include dense motion features within a bounding box around
the lips, and features created from lip shape (contours) and motion. The MVGL-AVD database consisting of
50 individuals was used. The best recorded result for speaker recognition was found during the cross validation
of the system using motion features with an Equal Error Rate (EER) of 5.2%.

[Faraj and Bigun, 2006] investigated a combination of audio and visual features from the lips for person
authentication. Experiments used Gaussian Mixture Models (GMM), the XM2VTS database and the Lausanne
Protocol, configuration I. Results reported an EER of 22% on visual features alone.

Whilst lip features have shown promise in previous published work there has been no accompanying com-
parative results for other modalities on the same dataset, e.g. face. This paper investigates using the GMM-
UBM framework to model lip movements as a behavioural biometric. The XM2VTS dataset and the Lausanne
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Protocol, configuration II was followed [Luettin and Maître, 1998] in an attempt to rigorously benchmark this
system and allow for comparison. Discrete Cosine Transform (DCT) coefficients of greyscale lip images were
used as visual lip features. As with existing speaker verification systems a likelihood value was calculated using
both models of the claimed individual and the UBM.

2 DCT Features

Figure 1: Individual 0, Session 1, video 1, frame 1.
From left to right: Pre-processed cropped image, Grey
scale resized image, DCT coefficients of the frame with
both square and triangular mask

The DCT coefficients were chosen as they can cap-
ture lip appearance in a compact form. Investigating
gender recognition [Stewart et al., 2013] used DCT
coefficients as a feature, the positive results demon-
strate that they captured speaker specific appearance
and dynamics. However there has been no rigorous
investigation of DCT-based features for speaker au-
thentication which is the aim of this work.

Although we are aware that DCT coefficients can
be useful for modelling lip appearance, we do not
know how many DCT coefficients are required to effectively model identities and we do not know the rela-
tive utility of static DCT coefficients compared to their derivative features. Furthermore when extracting DCT
coefficients as features from the full DCT coefficient matrix, two common masks can be applied, square or
triangular. It has been shown for lip-based speech recognition that a triangular mask offers better performance,
[Stewart et al., 2013], and we will seek to establish if the same is true when modelling identities.

Figure 1 shows how the video data is processed during these experiments. The first image shows the
cropped Region Of Interest (ROI). Next each frame is converted to grey scale. After histogram equalisation the
frame is resized to a 16 by 16 pixel image, this is shown in the second image in figure 1. The third image shows
a visual representation of the 2D DCT coefficients of the frame overlaid with both square and triangular masks.

The masks were used to extract the required number of DCT coefficients, k. The extracted DCT coefficients
of the j th frame are represented by x j , a k £1 column vector. The frames are stacked to make a k £n matrix,
where n is the number of frames in a video, X= {x1,x2, ...,xn}. Normalisation was used to reduce the effects of
inter-session variability using:

xi
j =

(xi
j °µi )

æi
, (1)

where µi is the mean of the i th DCT coefficient across all frames, similarly æi is the standard deviation.
The resulting normalised feature for the entire video input is therefore: X= {x1,x2, ...,xn}. The same steps were
used to prepare the videos for all steps in the training, evaluation and testing.

3 GMM Modelling

GMMs were used to represent both the UBM and the individual models. During an attempted login the system
will test the input against the claimed individual model and against the UBM. Using X, we want to compute
how alike it is to the features that created a model, ∏. The likelihood p(X|∏), is calculated using:

p(X|∏) =
nY

j=1

MX

i=1
!i pi

°
x, j

¢
(2)

where M is the number of unimodal gaussians, n is the number of frames, x j is the normalised j th frame,
and the mixture weights, !i must satisfy the constraint

PM
i=1!i = 1. During training the objective is to max-

imise p(X|∏), where pi
°
x j

¢
is the likelihood of the j th frame to the i th unimodal gaussian, and the i th unimodal

gaussian is parameterised by a mean, µi , and a covariance matrix ßi as described in 3:
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4 Classification

We want to compute the likelihood that the feature extracted from the video input, X, was generated by the
claimed identity, and the likelihood that the feature was not generated by the claimed identity. If we denote
the likelihood of X being generated by the claimed identity as p(X |∏hy p ), where ∏hy p represents the mean
vector and covariance matrix parameters of the hypothesised Gaussian model, and the likelihood of X of being
generated by anybody else as p(X|∏U B M ), where ∏U B M represents the mean vector and covariance matrix
parameters of the UBM Gaussian model. Then a log-likelihood ratio can be calculated using equation 4:

§(X) = log p(X |∏hy p )° log p(X|∏U B M ) (4)

The log-likelihood generated from equation 4 can then be tested against the threshold and the identity
accepted or rejected as shown in the modular diagram in figure 2.

5 Experiments

The aim of these experiments was to investigate the feature representation that produced the lowest EER when
varying:

• The mask type used to select the number of DCT coefficients. The right most image in figure 1 shows
both triangular and square masks.

• The number of DCT coefficients. Square masks were tested from a 3 by 3 mask producing a feature
vector containing 9 DCT coefficients to a 7 by 7 mask producing 49 DCT coefficients. For the triangular
masks the range went from a 4 by 4 mask producing 10 DCT coefficients to a 9 by 9 mask producing 45
DCT coefficients.

• The ’type’ of feature, ie. Static / Dynamic. This work looked into the performance of static, dynamic and
combinations of both to help find the optimum feature representation.

The dynamic features included the first and second order derivatives of the static DCT coefficients with
respect to time, known as delta, ¢, and deltadelta, ¢¢, features. After testing the features separately, all
combinations of the 3 features were tested. The features are combined by concatenating the feature vectors.
For example if 15 DCT coefficients had been selected, when combining static and ¢, the ¢¢, DCT coefficients
were concatenated after the static making a total of 30 DCT coefficients.

5.1 System Overview

Figure 2: General Modular Diagram of the System

Figure 2 shows a modular diagram showing how the
system was used during testing. After a video was
read in the features were extracted and normalised
as described in section 2. The features are used to
get a log-likelihood from the claimed GMM and the
UBM as described in section 3, and a log-likelihood
ratio was obtained using equation 4. The ratio log-
likelihood will be either accepted or rejected based
on the threshold set during the evaluation stage. This is how the system would be used in deployment.
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5.2 Database and Protocol

Experiments were carried out on the XM2VTS [Messer et al., 1999]. The XM2VTS is a large audio-visual
database containing video recordings of 295 individuals during 4 sessions. Each session contains 2 videos
per person and the sessions were recorded over 4 months. For these experiments only digit sequences spoken
during recording sessions were used. Pre-processed video data was also used as the audio was removed and the
video was cropped to only contain mouth region, for preprocessing steps see [Seymour et al., 2008].

For these experiments the Lausanne Protocol [Luettin and Maître, 1998], configuration II was strictly fol-
lowed. The Lausanne Protocol is a closed-set verification protocol [Bourlai et al., 2005], because the population
of clients does not change the system does not need to account for new users in the evaluation and testing. As
shown in figure 3, the protocol divides the dataset into Training, Evaluation and Test data.

• The Training data consists of video from the first 2 sessions for 200 individuals.

• The Evaluation data consists of video data from the third session for the same 200 individuals. Plus all
video data for a separate 25 individuals not used in training. See section 5.4 for more details on how
these videos are used to represent returning clients and imposters.

• The Test data is made up of the 2 videos from the fourth session of the 200 individuals used for training,
plus all video data available for a separate 70 individuals not used in the training.

Data from 3 individuals was removed from our tests as some vidos were found to be corrupt. The IDs of the
individuals removed are 342, 272 and 313. Figure 3 shows the number of individuals used in these experiments
after the corrupt videos were removed.

Figure 3: Partitioning of the XM2VTS database according to the protocol Configuration II

5.3 Training

The UBM was trained with all the designated Training data as specified in figure 3, 796 videos from 4 individ-
uals. General guidelines for unconstrained speech suggest 512-2048 Mixtures for the UBM, where lower-order
mixtures are more common with constrained speech such as digits and fixed vocabulary [Bimbot et al., 2004].
For the experiments in this work all UBMs were trained with 256 mixtures as all video data contains dig-
its. Individual GMMs were created for each of the 199 individuals in the training data and each model was
created using 32 mixtures, likewise 32 mixtures has been used in speaker recognition for individual models,
[Stewart et al., 2013].

5.4 Evaluation

Evaluation was carried out in order to select a threshold before running the system on the unseen Test data, using
the Evaluation data specified in figure 3. All 598 videos were tested against all 199 individual models, producing
598£199 = 118,604 attempted logins, with 398 registered user attempts and 118,206 imposter attempts.

Kevin Murphy’s toolbox [Murphy, 2001] was used to create the GMM’s and retrieve the log-likelihoods.
System performance on the Evaluation data was measured by calculating the False Acceptance Rate (FAR-
Imposters who can login as another) and the False Rejection Rate (FRR - individuals who cannot in as them-
selves) and using this to calculate the EER. The EER is the point when the FAR = FRR. The threshold for this
system was set to the EER.
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Figure 4: Evaluation results for Static, ¢, ¢¢ features.

The graphs in figure 4 show the EER against the number of DCT coefficients. The graphs show the static,
¢ and ¢¢ features. It can be seen that the triangular feature selection outperforms the square feature selection.
All 3 graphs show that as the number of DCT coefficients increases the EER is reduced, and it appears that no
additional information is gained by using more than 28 DCT coefficients. It can also be seen that the Static
features produce the highest EER, and the ¢ features produced the lowest EER.

No. DCT coefficients
Features 15 21 28 36
Static 5.28 4.34 4.73 3.91
¢ 2.59 2.63 2.20 2.51
¢¢ 3.25 3.09 3.14 3.02
Static & ¢ 3.59 3.27 3.27 3.52
Static & ¢¢ 4.02 3.98 4.02 3.52
¢ & ¢¢ 3.10 3.52 2.94 3.27
Static, ¢ & ¢¢ 3.02 3.69 3.52 3.94

Table 1: Equal Error Rate (%) on Evaluation set: Showing highest performing number of DCT coefficients,
selected used a triangular mask.

Following this, experiments were then run to test combinations of static, ¢ and ¢¢ features using triangular
feature selection and 15, 21, 28 and 36 DCT coefficients. Combining the static and dynamic information did not
appear to add additional information to the features as the ¢ alone produced the lowest EER, 2.20%. Results
can be seen in table 1.

5.5 Testing

From the evaluation, the set up producing the lowest EER was found to be triangular features using 28 ¢ DCT
coefficients. The optimum threshold for this system was then calculated based on the EER and applied for
testing the unseen data. Before running the unseen Test data on the system using the threshold calculated,
practice dictates that the system is retrained using both the Training and Evaluation data [Hastie et al., 2009].
These experiments investigated both this practice and running the unseen Test data on the system without
retraining. In theory a system would be trained with all available data before deployment and a threshold
calculated based on the data it was trained on. If we retrain the models with the Evaluation data it would
be expected the threshold calculated in the evaluation would no longer be optimum therefore the unseen data
would be expected to not perform as well.

The 942 videos were tested against all the 199 individual models. This produced 942£ 199 = 187,458
attempted logins, with 398 registered user attempted logins and 187,060 imposter attacks. The results for this
set up can seen in the top row in table 2.
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FRR FAR
Models Not Retrained 3.02% 1.68%
Models Retrained 1.76% 4.21%

Table 2: False Rejection Rate (FRR) & False Acceptance Rate (FAR) for unseen test data.

Note the performance (in terms of both FAR and FRR) from evaluation for these same models with the
same operating threshold was 2.20%. As seen in table 2, a FRR of 3.02% and FAR of 1.67% was obtained.

On the bottom row of table 2 we can see the results for the Test data after evaluation, when the models have
been retrained to contain all the Training and Evaluation data. The table shows a FRR of 1.76% and a FAR of
4.21%.

Figure 5: Histogram showing the Client & Imposter Log Likelihoods. Left to right: Not retrained, Retrained

The image on the left in figure 5 shows a histogram of the normalised log-likelihoods of the Test data
and the threshold is marked on with a dashed line. There is small overlap in clients and imposters around the
threshold. We can see that no matter what threshold was chosen in this experimental setup there will always be
FAR or FRR, but the chosen threshold does appear to minimise both the FAR and FRR for unseen data. The
image on the right in the figure shows the normalised log-likelihoods for the retrained setup. By comparing the
histograms in figure 5 we can see how the threshold set for models trained with less data is no longer optimum
with increased training data. This means that if the model is retrained with more data a new threshold should
be calculated as in the evaluation stage of these experiments. The overlap of imposters and clients also appears
to have reduced in this histogram, indicating that the system improves with more Training data.

As the threshold was set during evaluation, the top row in table 2 shows the true results on unseen data
after training and evaluation. These results show even with limited Training data the system successfully
authenticated 96.98% of registered clients and successfully prevented access to 98.32% of the imposters.

These results compare very favourably with previous lip based authentication results even though some
were on much smaller datasets, [Cetingul et al., 2006]. On the Evaluation data we achieved an EER of 2.2%,
producing a predicted performance of 97.8%. This is an improvement on [Cetingul et al., 2006] et al who
recorded an error rate of 5.2%. Faraj et al [Faraj and Bigun, 2006] recorded a performance of 78% for the
visual features on their own. The EER was used to calculate a threshold which was used to test unseen Test
data, this gives a more accurate result on how the system would work in a deployment scenario. These tests
produced a FAR of 1.7% and a FRR of 3.0%.

The DCT-based features compare well with results recorded in [Bhattacharjee and Sarmah, 2012], where a
4.55% EER was achieved with a GMM-UBM system and audio features for authentication.

The performance of the system using these features also compares very well with the face recognition sys-
tem by [Brady et al., 2007] who recorded an error rate of 2.5% on the Evaluation data using the same database
and protocol, and the facial recognition system presented by IDIAP in [Messer et al., 2003]. IDIAP used a
GMM system and DCT features of the full face image and achieved an EER of 2.45% on the Evaluation data
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and on the Test set a FAR and FRR of 1.35% and 0.75% respectively.
Upon further analysis of the specific test cases which caused the FRR errors to occur. The 3.02% of FRR

errors equated to 12 attempted logins from only 9 individuals from the 199 registered individuals in the system.
Of these, only 3 individuals failed to be authenticated as themselves on both of their test videos. Therefore only
1.5% of individuals could not be authenticated successfully if at least two attempts were considered.

Figure 6 illustrates the data for the 3 problematic individuals. Upon close inspection, the most obvious
reason for individual 79 not being authenticated appears to be inconsistent registration of the lip ROI which led
to slight rotation of the Test dataset frames compared to the Training frames. Similarly, it is inconsistent ROI
extraction which appears to have caused the error for individual 264. In this case the individuals facial hair may
have caused the poor lip tracking. For individual 191 the error appears to be caused by a significant change in
facial hair prior to the test.

Figure 6: From top down, individual 79, 191, 264. From left to right: Frames 1-4 are from each video included
in model, Frames 5-6 are from each video that failed to login

6 Conclusion

This work provided a rigorous investigation of the effectiveness of DCT-based features for modelling speaker’s
lips within a GMM-UBM verification framework. In particular, we investigated the performance of different
numbers of DCT coefficients, different selection of masks and different DCT-based feature types. The types
included the static DCT coefficients and their first and second order derivatives known as ¢ and ¢¢ features.
The largest available dataset for such experiments was used, including 292 individuals, namely the XM2VTS
database along with the robust Lausanne Protocol configuration II. We showed for the first time that:

• ¢ features produced the best feature representation over static, ¢¢ and multiple combinations

• 28 DCT coefficients were found to be optimal for the feature

• Triangular mask used in feature selection is better than a square mask

On the Evaluation set an EER of 2.2% was obtained, producing a predicted performance of 97.8%. The
EER was used to calculate a threshold which was used to test unseen data, this gives amore accurate result on
how the system would work in a deployment scenario. These tests produced a FAR of 1.7% and a FRR of 3.0%.

These results compare very favourably with previous works in verification and authentication using alter-
native features and models, and compared to facial recognition systems using the same database and protocol.

Our analysis of the errors indicates that the system performance can be affected by poor and inconsistent
lip ROI tracking. We will be investigating this further in our future work.
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Abstract
Despite the recent advances in 3D reconstruction from images, the state of the art methods fail to ac-

curately reconstruct objects with reflective materials. The underlying reason for this inaccuracy is that the
detected image features belong to the reflected scene instead of the reconstructed object and do not lie on
the surface of the object. In this study, we propose a method to refine the 3D reconstruction of reflective
convex surfaces. This method utilizes the geometrical distortion of the reflected scenes behind a spherical
surface.

Keywords: 3D reconstruction, Shape from images, Hough Transform, Specular surface

1 Introduction

Figure 1: Walton Sculpture (Trinity college
Dublin Ireland).

Creating 3D worlds in the form of meshes that can be efficiently
manipulated by engines has found many applications from com-
puter games and virtual reality, to virtual museums visits. To
assist artists in the creation of 3D meshes of real existing ob-
jects, many software systems have been developed using RGB
or RGB-D images and videos.

In this paper we have created a dataset of images captured
around a sculpture made of specular material, which is com-
posed of several spherical elements (cf. Fig. 1). Using this
dataset we propose to infer a 3D model of the sculpture by us-
ing several image processing routines. First a 3D point cloud is
computed using the set of images. Each element of this point
cloud has vertex, colour RGB and normal information. From
this information we propose a Hough Transform like process
to infer the centers and radii of the spheres. Such compact
information allows us to easily generate a 3D representation
convenient to use in a virtual environment such as Metropo-
lis [O’Sullivan, 2010].

2 State of the Art

2.1 3D reconstruction

Reconstructing an unknown 3D geometry from multiple images is fundamentally based on finding correspond-
ing features in different images and solving the correspondence problem in 3D. This is what the human visual
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system does to perceive the world in 3D using triangulation based depth cues, e.g, stereo vision, motion paral-
lax. In computer graphics and vision literature this procedure is called Structure from Motion (SfM). An earlier
complete model of 3D reconstruction from unordered photos is given by Pollefeys et al. [Pollefeys et al., 2004].
In a well known study, Snavely et al. [Snavely et al., 2006] proposes a sparse 3D reconstruction method and im-
proves the methods proposed in [Brown and Lowe, 2005] and [Hartley and Zisserman, 2004]. Using the sparse
reconstruction output, Furukawa and Ponce generate dense 3D point clouds [Furukawa and Ponce, 2010]. An-
other similar study utilizes sparse 3D reconstructions to generate separate depth maps for each input image
[Goesele et al., 2007]. Then these depth maps are used for dense 3D reconstruction.

Recently SfM studies have advanced in terms of the employed parallelism [Agarwal et al., 2011], perfor-
mance [Frahm et al., 2010, Wu, 2013], which enables using a high number of input images, and symmetry de-
tection [Cohen et al., 2012, Ceylan et al., 2014] which improves the accuracy of the outputs. All of these stud-
ies rely on corresponding feature matches among multiple images to determine a point in the 3D environment.
However, for reflective surfaces these correspondences do not reside exactly on the surface of an object, which
causes incorrect 3D reconstructions around the reflective surfaces. In order to refine reconstruction of scenes in-
cluding planar reflective surfaces, Wanner and Goldluecke [Wanner and Goldluecke, 2013] propose a method
that uses images from a regular structure of viewpoints. Another group of studies that work on reconstruc-
tion of reflective objects uses specular flow information [Roth and Black, 2006, Sankaranarayanan et al., 2010,
Balzer et al., 2011]. In these studies, reflected objects are known and the way they are distorted is utilized
for estimating surface geometry. In our case, neither the viewpoints are distributed regularly nor the reflected
objects are known; therefore, none of these studies are directly applicable.

2.2 Sphere detection in point clouds

The Hough Transform is a standard popular technique for finding parametric shapes. It is a one-to-many map-
ping approach where each observation votes for multiple models (e.g. lines). This corresponds to computing a
histogram in the latent space of the parameters describing the shape, and the bins collecting the most votes are
deemed as potential candidate occurrences of the shape of interest. This technique can be difficult to use when
dealing with noisy data and for exploring high dimensional latent spaces. To find spheres in 3D images, Cao
et al have proposed a hierarchical Hough transform based technique by first finding circles in 2D image slices
[Cao et al., 2006]. A sphere is then inferred by correlating circle parameters.

To alleviate the discrete histogram formulation of the Hough Transform, Dahyot proposed smooth kernel
density estimates (KDE) to aggregate all votes for finding lines [Dahyot, 2009]. Moreover, when normal infor-
mation extracted from gradient direction information of images is available, it can also easily be encapsulated
in the KDE. However no extension of this KDE modeling to circle or sphere is available yet.

Schnabel et al. [Schnabel et al., 2007] proposed a many-to-one RANSAC based technique for finding multi-
ple shapes (plane, sphere, cylinder, cone, torus) in 3D point clouds containing vertices augmented with normals.
RANSAC is not designed to detect multiple occurrences of a shape and this limitation is overcome by using
localised sampling. We propose here a global Hough based approach for finding multiple spheres occurring in
noisy point clouds (vertices and normals) computed from images.

3 Geometry of Reflections in a Convex Surface

For a Lambertian surface, image features lie over the surface regardless of the viewer’s position. Thus, it is
possible to extract the 3D geometry of regions that show a Lambertian behaviour using multiple images taken
from different viewpoints. This convenient property does not hold for reflective surfaces. A planar mirror is the
simplest case of a reflective surface in which the reflected geometry is symmetrical over the surface. For curved
surfaces, however, the reflected geometry does not stay at a static location for different viewpoints. Assuming
a point p that is reflected over a convex surface, each pair of viewpoints indicates a different location for the
reflected point p ′ (Figure 2-a).
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Figure 2: (a) Pairwise matches p ′

i , j of a reflected point p among 3 different views. (b) Distortion of reflected
shape and normals. Reflection of a straight feature is curved behind the spherical surface and the normal lines
of the reflection converge.

Despite the lack of a stable reflection location, pairwise matches among viewpoints result in 3D reconstruc-
tions of the reflected geometry inside the sphere as shown in Figure 3. Having a pair of viewpoints, similarly
with stereoscopic vision, reflections of a scene over a spherical surface appear behind the surface of a sphere
and the geometry is curved (Figure 2-b ). The generated vertices are distributed between the sphere surface and
its focal distance (r /2) according to the actual distances of the reflected points.

(a) (b)
Figure 3: (a) A slice of the reconstructed point cloud belonging to the spherical surface shown on the left. (b)
The same point cloud with per-vertex normals. Point clouds are generated by visualSFM [Wu, 2013] and the
dense reconstruction method of [Furukawa and Ponce, 2010].

4 3D reconstruction from images

Our 3D reconstruction pipeline differs from a conventional one by including a sphere detection and refinement
step (Figure 4), which is especially useful in the presence of reflective spherical surfaces. The pipeline starts
with a sparse 3D reconstruction using the input images, including camera adjustments for each view. Then using
the sparse reconstruction results and camera parameters the reconstruction is densified and per-vertex normals
are estimated. Using the normal and position information, the resulting point cloud is refined by detecting and
correcting spherical surfaces.
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Figure 4: Overview of the proposed 3D reconstruction method.

4.1 Computation of the 3D point cloud

The proposed method works with an unordered set of images taken with a handheld camera or using the im-
ages from photo-sharing websites and social media. An SfM based method is used to generate a sparse 3D
reconstruction using SIFT feature matches. There are several methods for sparse reconstruction and bundle
adjustment such as the ones proposed by [Snavely et al., 2006, Lourakis and Argyros, 2009]. We have used
the sparse reconstruction implementation in VisualSFM [Wu, 2013], which is a publicly available tool for 3D
reconstruction.

Similarly, dense 3D reconstructions could be obtained by employing the methods of [Furukawa and Ponce, 2010]
or [Goesele et al., 2007]. Both of them gave high quality dense reconstructions in our trials and we have used
Furukawa and Ponce’s method. The resulting sparse and dense reconstructions can be seen in Figure 5.

(a) (b) (c)
Figure 5: (a) One of the 122 input images, (b) sparse reconstruction, (c) dense reconstruction

4.2 Extracting Spheres Using Normal Correspondances

Figure 6: Intersection of two
rays.

As explained in Section 3, per-vertex normals of a reconstructed spherical
region with a reflective surface have a high probability of intersecting at
locations inside the corresponding sphere. Therefore, we employ a special
type of Hough Transform to determine these intersection points.
Finding candidates. Assuming V is the set of all vertices in the point cloud,
each vertex vi ∈ V and its corresponding normal ni defines a line or ray in
3D space with the equation vi + t .ni where t is a number in R. Since it is
unlikely to have lines which intersect exactly in the 3D space (See Figure 6),
we expect the closest distance between a pair of lines to be smaller than a
small threshold ε (set to 1/1024 of the diameter of the whole point cloud’s
bounding box), to be classified as intersecting. The distance between two

Proceedings of the 17th Irish Machine Vision and Image Processing conference IMVIP 2015

August 26th-28th, 2015, Dublin, Ireland 22 ISBN 978-0-9934207-0-2



rays is calculated as follows:

di , j =
∣∣∣∣(vi − v j ).

ni ×n j

‖ni ×n j‖

∣∣∣∣ . (1)

Another key property of a valid intersection point ip is that the distances between ip and the related vertices
should be approximately the same, as indicated in Figure 2-b. Lastly, in order to avoid classifying very close and
parallel vertices, which are very common in dense reconstruction of planar surfaces, as valid intersection points;
a third rule is set. This rule enforces the valid line pairs to get closer to each other towards the intersection point.
Simply, the following equation must hold:

‖vi − v j‖ > k ε, (2)

where k is a parameter greater than 1 that adjusts the firmness of this rule. As we know that a valid intersection
point has di , j < ε, this rule ensures that we avoid parallel lines. A lower k value results in more candidate points
and decreases performance, while a high value causes eliminating good candidates. We have empirically set k
to 16. Combining these three rules, we define the set of all valid intersection points (I P) as follows:

I P =
{

(vi , v j ) ∈ V , ipi , j |
(
di , j < ε

)∧ (‖vi − v j‖ > k ε
)∧

(
0.9 <

‖vi − ipi , j‖
‖v j − ipi , j‖

< 1.1

)}
. (3)

Voting procedure. After determining the candidate points, a voting procedure is performed with them. For that
purpose, each line defined by vi and ni votes for a candidate point in I P if it passes through its ε proximity. The
intersection points with the most votes are selected as the valid candidate centers. The median of the distances
between an intersection point and all of its voters is assigned as the radius r (ip) of this intersection point ip

to be used in later steps. Figure 7 shows the set of intersection points and the selected intersections after the
applied Hough Transform.

(a) (b) (c)
Figure 7: (a) Initial dense point cloud. (b) Candidate intersection points, I P . (c) Selected intersections after the
voting procedure.

Merging close intersection points. As shown in Figures 2 and 3, there are multiple intersection points inside
of a sphere due to the specular nature of the sphere’s material. Normals belonging to different reflected objects
intersect at different positions. Therefore, these intersection points are merged to get the final sphere locations.
Two intersection points are merged if either of the intersection points lie inside the sphere formed by the other
intersection point and its radius. When merging two intersection points ipi and ip j ∈ I P , properties of the
merged intersection point ipm are assigned as follows.





ipm = wi ipi +w j ip j ,

r (ipm) = wi r (ipi )+w j r (ip j )

V (ipm) = V (ipi )∪V (ip j )
(4)
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where V (ip) is the set of vertices which voted for ip and wi and w j are the weights assigned proportional to the
sizes of V (ipi ) and V (ip j ) respectively. All selected intersection points conforming to the merging criteria are
successively merged resulting in the final set of spheres (See Figure 8-b).

(a) (b) (c)
Figure 8: (a) Selected intersections before merging, (b) Final intersection points, used as the sphere centers. (c)
Spheres with estimated radii.
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Figure 9: Each line corresponds to a different
sphere.

Estimating the radius. Figure 9 shows the distribution of
distances between a sphere center and the vertices belong-
ing to the corresponding spheres. Except for some outliers,
all of the vertices are expected to reside inside the sphere
or over its surface. Therefore, after eliminating the outliers,
determining the largest of the distances between a sphere
center and corresponding vertices gives a reliable radius es-
timation. As seen from Figure 9, the sorted distance curves
change smoothly up to a point that indicates the presence
of outliers. Assume that D is the descendingly sorted dis-
tances (outliers come first) and D ′ is its rate of change. The
first distance d ∈ D with d ′ < 2∗mean(D ′) is selected as the
radius. The resulting spheres are illustrated in Figure 8-c.
Refining point cloud. After detecting the spheres, all ver-
tices inside the spheres are projected onto the sphere sur-
face using the following formula.

v ′ = v + r (ip)
(v − ip)

‖v − ip‖
, (5)

where v ′ is the updated location of vertex v inside a sphere with center ip and radius r (ip). The resulting
positions could be kept as a point cloud or could be used for surface reconstruction. Figure 10 shows the
reconstructed surface using our method and presents its effectiveness.

5 Conclusion

We have proposed a new modelling technique which allows for the reconstruction of 3D specular spherical
surfaces using structure from motion software and a Hough Transform like procedure. Currently, the method
is only applicable to spherical surfaces without any irregular structure such as concave indents and cracks over
the surface. Future work will extend this method to enable the reconstruction of other reflective surfaces such
as windows, which can also be semi transparent. Ultimately combining all of these techniques will allow us to
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Figure 10: Comparison with the state of the art pipeline (left) using VisualSFM [Wu, 2013] for point cloud
generation followed by Poisson Surface Reconstruction [Kazhdan et al., 2006]. On the right, the result of our
reconstruction by adding our reflective spherical surface refinement step after point cloud generation.

recreate a more realistic 3D model using images captured from multiple sources (e.g. social media images or
drone footage).
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Abstract

We present a method for filtering noisy point clouds, specifically those constructed from merged depth
maps as obtained from a range scanner or multiple view stereo (MVS), applying techniques that have pre-
viously been used in finding outliers in clustered data, but not in MVS or range scanning. We estimate the
probability density function (PDF) over the space of observed points via a technique called kernel density
estimation. We utilize Mahalanobis distance and a variable bandwidth for weighting kernels accordingly,
based on the nature of neighbouring points. Further, we incorporate a distance metric called the Reachability
Distance that, as we show in our results, gives better discrimination than a classical Mahalanobis distance-
based metric. With the addition of this nearest neighbour metric, we can produce results that are ready for
meshing without any post-processing of the cloud. We mesh our filtered point clouds using a traditional
surface fitting technique that is unequipped to deal with noise to demonstrate the efficacy of our method.

1 Introduction
Following a renaissance in energy-based MVS methods in the literature, there has been a return to methods
that merge depth maps from multiple views to generate a representative point cloud. This change in method-
ology can be traced back to the work of [Goesele et al., 2006], whose simple method generated depth maps
for each camera using adjacent views, and then merged those depth maps using third-party software de-
signed to merge range images into a complex model. Prior to this, the MVS literature was dominated by
methods that evaluated photo-consistency over a dense grid and then used an energy minimization technique
to extract a representative surface, which is often the minimal surface.

A cursory glance at recent results on the Middlebury multi-view stereo data sets [Goesele et al., 2006]
indicates incredible improvement of modern stereo matching algorithms over their predecessors. Such ad-
vancements are possible because of the improvements in disparity map generation like ordering constraints,
bi-directional image matching, etc. That said, merging multiple depth maps and fitting a surface to the re-
sultant point cloud remains a challenging endeavour, at least partially because of the presence of outliers
and the general location of these outliers. These outliers can be very difficult to filter, as outlier clusters
can occur both near to and far away from the true surface. Mahalanobis distance-based density estimation
cannot correctly identify points that are close to the center of these outlier clusters as not being part of the
surface.

The goal of this paper is to demonstrate that it is possible to fit a surface to a point cloud with very large
quantity of outliers (a ratio of 5:1 outliers to inliers), by filtering using anisotropic kernel density estimation
with variable bandwidth, and subsequently fitting a surface to this filtered cloud using standard surface
meshing software [Cignoni et al., 2008]. We take clean, merged point clouds and populate them with noise.
This way, we know the ground truth and can thus quantify this method’s ability to discriminate inliers from
outliers with the Receiver Operating Characteristic (ROC) curves [Provost and Fawcett, 2001].

Our method uses a process called kernel density estimation to construct a probability density function
over the space of discrete data that we obtain from measured data. The target application is filtering point
clouds obtained from MVS data. [Xi et al., 2009] and [Schall et al., 2005] utilize a similar process, but our
method differs from theirs in that we use a variable bandwidth based on the nearest neighbour of each point
that contributes to a density estimate, as inspired by [Latecki et al., 2007, Loftsgaarden and Quesenberry, 1965,
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Terrell and Scott, 1992]. These works utilize variable bandwidths in finding outliers in clustered data. Our
key observation is that these metrics are also very effective in filtering MVS and range scan data. Ma-
halanobis distance works well for discrimination of points near the true surface, in our experience better
than Euclidean distance-based methods, but is prone to accept false positives near the center of a cluster of
outliers. [Xi et al., 2009] note that, when necessary, they apply their filter repeatedly apply their filter until
they get a result that is visually acceptable. Our method provides sufficient discriminatory ability such that
it can be applied to a noisy point cloud once and the result can be meshed as is. We quantify our results
and compare the discriminatory ability of our method with the Mahalanobis distance-based method used in
[Xi et al., 2009].

2 Previous Work
[Lu et al., 2005] utilize tensor voting (TV) with a minimal surface-based fitting scheme to reconstruct sur-
faces from highly noisy (1:1 signal-to-noise ratio) point clouds. They use the level set formulation of
[Zhao et al., 2000] to evolve an initial implicit surface to fit the points, but add an extra term to influence the
motion in the direction of the tensor.

When working with noisy data, one way to deal with outliers is to average them out. This is the method
utilized by [Goesele et al., 2006]. The software they use, VRIP, converts each depth map into a signed dis-
tance function (SDF), and then merges these SDFs using a weighted averaging based on the angle between
the observed points and the sensor in each depth map. The area over which a point can be averaged with an-
other point is referred to as its “ramp". Such a method results in smoothing of observations, and subsequent
depth based methods that explicitly filter out a subset of the point cloud construct a surface from actual,
unsmoothed observations.

[Li et al., 2010] identify “tracks", matched features that are found in at least three different views of an
object, and then use bundle adjustment to recover the 3D point. If the reprojection error is above a certain
threshold in one of the images, the point in question is discarded.

[Campbell et al., 2008] keep multiple hypotheses for prospective matches, and then use a spatial con-
sistency measure in a Markov Random Field minimization scheme to recover better matches. If a point’s
hypotheses are not spatially consistent with its neighbours, it is discarded. [Bradley et al., 2008] construct
point clouds using multi-scale matching and then use an iterative filtering method for outlier detection on
the resultant point cloud. They compute the projection of a point and its neighbours to a plane and then
evaluate the fit using a density function.

[Xi et al., 2009] is the reference point for this work. They merge depth maps constructed from multiple
views and use an anisotropic kernel density estimation method combined with a projected line search to
obtain the maximum along each normal to find the maximum area of density on each normals path. We
forego the use of reprojection error and “ramps" and instead use a density estimator to determine the quality
of an observation. [Schall et al., 2005] also use an anisotropic kernel for filtering. Their method is similar
to [Xi et al., 2009] in that they use an iterative method to move points along the normal direction to areas
of maximal density. Further, they eliminate noise from high quality scans, and generate smooth surfaces
from very high quality scans. Our focus is somewhat different, in that we study the circumstance where the
quantity of outliers equals or exceeds the number of inliers, testing the ability to discern between inliers and
the types of outliers that we see in photometric stereo, i.e. those that are both clustered near and far from the
true surface. Further, we wish to simply filter the point cloud, as opposed to iteratively shifting the points to
the area of highest density along the normal.

We assert that if a slightly better density estimator is used, one that uses both Mahalanobis distance, an
adaptive bandwidth and the reachability distance [Breunig et al., 2000], we can mesh resultant point clouds
without any further complication. We use a more advanced nearest neighbour metric, point clouds from
range scans and MVS can be filtered without the projected line search while yielding an output cloud that
can be meshed using an off-the-shelf method without any other pre-processing.

3 Obtaining a Probability Density Function from Measured Data
The easiest way to construct a probability density function from a set of points is a binning approach,
similar to the construction of a histogram. Consider the problem in 1D: Say we have a set of measured data
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X = [x1, x2, . . . , xn] where each data point xi is a scalar-valued observation. If we construct a set of k bins
and simply count the number of items that fall within each bin, we can easily construct a histogram.

A number of questions arise:

• How many bins should we use?
• Where should our bins start and end?
• How does this strategy scale in higher dimensions, i.e., how do we determine the orientation of the

bins in multiple dimensions?

The next section introduces a better method for constructing a PDF.

3.1 Kernel Density Functions
Kernel density functions propose to solve the problem of obtaining a probability density function in a dif-
ferent way. Instead of creating arbitrary bins of data, the density is instead evaluated at each point, using
the distance to neighbouring points as input to a kernel function, the most commonly used of which is the
Gaussian kernel [Xi et al., 2009]

K (x) = 1

(2π)d
exp

(
−x

2

)
, (1)

where d is the dimension. This is referred to as the Parzen Window technique [Parzen, 1962]. For each
point xi ∈ X , we rely on all points within a predefined radius to calculate the density of xi using the kernel
K (x)

f (xi ) = Ck,d

n ·h

n∑

j=1
K

(
||xi −x j ||2

h

)
, (2)

where the points x j are the n neighbouring points of xi within radius r , Ck,d is a weight constant and h is
the bandwidth.

Intuitively, f (xi ) will be close to 1 if the sum of distances between xi and its neighbouring points is
small compared to the bandwidth. In other words, areas that contain a large number of points inside of their
radius will yield a large density estimate and thus are more likely to be considered inliers than outliers.

3.2 Mahalanobis Distance
[Xi et al., 2009] utilize a more advanced method for filtering, based on the observation that the distribution
of noise in point clouds tends to be anisotropic in nature. Thus, they evaluate an anisotropic kernel f of fixed
radius r and shape at each point x to estimate its density utilizing its neighbouring points within distance
r . Instead of using the L2 distance between points within r , they find the distance to the center of mass by
making use of

f (x) = Ck,d

n

n∑

i=1
K (dΣ(x, xi )), (3)

where the kernel K is as defined previously. dΣ(·, ·) is the Mahalanobis distance, which is defined as

dΣ(x, xi ) = (
(x −xi )T H−1(x −xi )

)1/2
,

where the covariance matrix
H = DDT ,

can be constructed using
D = (x1 −x, x2 −x, · · · , xn −x).

They find the location of highest density within the neighbourhood (r ) and then use the distance to this
point as the distance for the kernel to evaluate. This method discriminates between inliers and outliers when
near the “true" surface much more robustly than the basic kernel density estimation method that we defined
in Equation (2). We found that this method still had good discriminatory power when the signal-to-noise
ratio was 1:10, i.e. we added 10 randomly generated outliers for each inlier in the point cloud’s bounding
volume. Their method is prone to errors when there are clusters of outliers in a small area, a common
occurrence.

This method isn’t new, it has been used in outlier estimation when dealing with clusters of data in the
past. Likewise, our work is based on well-founded principles that are known in the literature. It hasn’t been
applied to this domain, and its discriminatory ability is notable.
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3.3 Local Bandwidth Estimation
The idea to use a local estimate of bandwidth h(xi ) comes from [Latecki et al., 2007] who applied it to
detecting outliers in clusters of data. It effectively unweights points whose n-th nearest neighbour is any
larger than a very small distance from the point itself. Applying this to surface fitting makes a lot of sense,
as points that lay near the true surface should have a neighbour in its very near vicinity.

4 Methodology

(a) Bunny. (b) Bunny, noise added.

Figure 1: The Bunny point cloud with 5:1 ratio of noise to inliers added.

We attempt to remove outliers via a method that differs from the previously described one in two ways.
Based on the density of the nearest neighbour, we can weight each kernel accordingly. In other words, if a
neighbouring point xi itself has a low density, the bandwidth h(xi ) will be lower and thus the contribution
to the magnitude of f (x) will be smaller than an equally distant point that exists in an area of higher density.

f (xi ) = 1

n

n∑

j=1

1

h(x j )d
K

(
dΣ(x j , xi )

h(x j )

)
(4)

The bandwidth is the distance of the nearest neighbour to xi , the dimension d is 3, n = si ze(N N (xi ), where
N N (·) is the set containing the nearest neighbours of xi , the points within the radius r . The Gaussian kernel
is as defined previously. The bandwidth,

h(x j ) = min(dΣ(x j , xk ))

where xk ∈ N N (x j ), i.e. xk is the nearest neighbour to x j , when Mahalanobis distance is used to determine
the “closeness" of two points. This method differs from the anisotropic kernel density method described in
the previous section in that the density of a point relies on the density of its neighbouring points. In other
words, we could have a point xi and its nearest k points, and in the previous method, its kernel density
estimate q(xi ) would be the same irrespective of the points surrounding these neighbours.

4.1 Reachability Distance
We can extend this idea further by replacing the numerator of Equation (4) with a more robust metric called
the reachability distance, where

rd(xi , x j ) = max(dΣ(x j , xi ),dΣ(xk , x j )). (5)

This yields

f (xi ) = 1

n

n∑

j=1

1

h(x j )d
K

(
rd(xi , x j )

h(x j )

)
, (6)

and is thus composed of both the distance from xi to its neighbours x j , and distances of neighbouring points

x j to their nearest neighbour (xk ). If r d(xi , x j ) = dΣ(xi , x j ) then the inside of K is − dΣ(xi ,x j )
2dΣ(x j ,xk ) where the
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numerator is greater than the denominator, and thus yields an increasingly smaller value as this difference
increases when evaluated by the exponential. If r d(xi , x j ) = dΣ(x j , xk ) then the inside of the exponential is
− 1

2 and thus gives the minimal value.
If this neighbour x j ’s nearest neighbour is quite far away, i.e., xk is a somewhat “isolated" point, it gives

us very little information about the nature of point xi , as being in the same neighbourhood as a likely outlier
is not a great clue that xi is an inlier. If, however, the distance to x j is larger than the distance to x j ’s nearest
neighbour, we can say that having such a point in the neighbourhood is good evidence, and it is thus more
likely that xi is indeed an inlier!

5 Kernel Density Filtering on Data with Additive Noise
We approach it first using anisotropic kernel density estimation, where we evaluate the density of the data
within a set radius of each data point. (3) evaluates the contribution of each point within this area, and takes
into account the local density of each of these points as well.

We filter the signal by removing points whose density are below some threshold τ ∈ [0,1]. The method
struggles with clusters of outliers though, and a substantial percentage of inliers are removed before the
outliers fall below τ.

Interestingly, when we use the nearest-neighbour kernel density estimate, even in conjunction with the
less discriminative L2-norm, we still recover a much more accurate signal. That said, the performance of the
anisotropic kernel density near the signal is better.

(a) Buddha statue. (b) Statue with noise added.

Figure 2: The Buddha point cloud with 5:1 ratio of noise to inliers added.

6 Results
We test our algorithm on the Bunny and Buddha data sets from Stanford and add random noise of varying
quantities to determine the ability of our density-based method to discriminate between inliers and outliers.
To quantify the filter’s ability to discriminate between an inlier, i.e. a member of the normal class (“NC”)
and an outlier (“C”), we generate a ROC curve, which plots the detection rate (rD ) versus the false alarm
rate (rF A)

rD = TP
TP+FN (7)

rF A = FP
FP+TN (8)

where TP is the number of true positives, FN is the number of false negatives, and FP is the number of
false positives and TN is the number of true negatives. The nature of these terms is explained the confusion
matrix seen in Table 1. A perfect ROC curve has an area of one beneath said curve.
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Figure 3: ROC curve for anisotropic filters on the Bunny point cloud with 5:1 noise. The reachability dis-
tance/adaptive method is in red.
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Figure 4: ROC curve for anisotropic filters on the Buddha point cloud with 5:1 noise. The reachability dis-
tance/adaptive method is in red.

As can be seen from the ROC curves in Figures 4 and 3, our method offers excellent discrimination
between inliers and outliers in both circumstances. When one uses a strictly Mahalanobis-based density
estimator on the Bunny data, a substantial portion of outliers remain. To make this more clear, we display
the remaining points in the resultant cloud in Figure 5. There are far too many outliers in Figure 5(b) to
allow for the fitting of a surface points, and true surface points are being thresholded as we remove more
outliers. In Figure 5(a), a few outliers remain, but they occur in such low densities that they do not interfere
with the subsequent surface fitting. We meshed the points from Figure 5(a) in Figure 5(c) with the ball
pivoting algorithm [Bernardini et al., 1999].

Likewise, we see that our method works extremely well on the Buddha data set. Most impressive is its
ability to handle the thin part of the statue above the head. As we see in Figure 6, despite the addition of 5:1
noise, we can still perform an accurate reconstruction of the surface with our method.

We also experimented with using the k nearest neighbours of xi for estimation of the Mahalanobis
distance in the above examples, but we found that the slight increase in discrimination was not worth the
added time complexity.

Adjusting the area of support, r , has an effect on the nature of the filtering. If the algorithm is having
trouble removing outliers near the surface, it may be useful to decrease the radius of the points that contribute
to the density estimate. Increasing r will include more points with a larger distance to a point xi if it is an
outlier, but it will do the same for an inlier. The radius should be large enough to contain a sufficient number
of points (for our purposes, ≥ 50), but small enough that the density estimates are excessively “smooth".
Ideally, the estimation of f for any outlier near the surface will include a large sampling of inliers (i.e.
actual surface points) to weight the center of mass correctly, yielding a small distance to points on the
surface, and a large distance to outliers. Further, if there are thin areas on the surface, a small r can be useful
to ensure that a density estimate at x is only influenced by its neighbours on the surface, not close by points
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(a) Reachability distance. (b) Fixed Mahalanobis. (c), Bunny, meshed.

Figure 5: The Bunny point cloud with 5:1 noise, filtered. It was meshed with the ball pivoting method.

Predicted Predicted
Outlier Normal

Class (C) Class (NC)
Actual True False

Outliers Positive Negative
Actual False True
Normal Positive Negative
Class

Table 1: Confusion matrix describing the different classifications of inliers and outliers.

that belong to a different part of the surface.

7 Conclusions and Future Work
We have demonstrated that our filtering method performs well on challenging data sets, even when the point
cloud to which we apply our method is corrupted by large amount of noise. In reality, point clouds obtained
from MVS or range scanning are not even near as noisy as our two corrupted point clouds. That said, the
nature of the noise may be such that noise resides near the true surface, and it will thus be more difficult for
the method to decipher whether a point is an inlier or an outlier.

In in future, we would like to automate the process of fitting a surface to our filtered cloud, possibly
by including our density estimate in a surface evolution scheme, similar to the level set-based method of
[Zhao et al., 2000], with an extra term for density. It might be effective to include the confidence measure
of each point in the point cloud from the stereo matching process. In the end, the goal is to obtain extremely
accurate multi-view surface reconstructions of objects from multiple views, and a filtering method like the
one we’ve presented is a step in that direction.
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Abstract

In this paper, we present a multiscale “squiral" (square spiral) image processing (SIP) framework. An
efficient spiral addressing scheme is deployed for standard pixel based square images to facilitate fast image
processing. A SIP-based convolution technique is developed by simulating the “eye tremor" phenomenon of
the human visual system. The multiscale SIP operators are constructed by converting existing square image
operators according to the SIP addressing scheme. The results of edge detection based on three-layer SIP
images and SIP operator at four different scales demonstrate the efficiency of the proposed framework by
comparison with standard 2D convolution.

Keywords: spiral addressing scheme, multiscale operator, fast image processing, edge detection

1 Introduction

The spiral architecture [10] has been employed as an efficient addressing scheme in hexagonal image processing
(HIP) [6], whereby the image pixel indices can be stored in a one-dimensional vector that enables fast image
processing. Inspired by the spiral architecture for HIP, a spiral addressing scheme has been proposed for
standard rectangular pixel based images, which is referred as “squiral" (square-spiral) image processing (SIP)
[3]. The results of application of SIP based on Sobel edge detection demonstrate the efficiency of the proposed
SIP framework. In this work, we aim to extend the SIP-based approach to multiscale operators.

It is well known that the edges of images are captured in the visual context of mammals at different resolu-
tion levels [11]. Therefore, the detection of image features in a multiscale sense is more appropriate than based
on a single scale. A multiscale approach is desirable to achieve good results for detection and localisation.
One of the most popular ways of applying edge detection operators at multiple scales is through the use of
image pyramids [4], which applies the same operator (a smoothing function) to images being down-sampled
to different scales. Alternatively, a multiscale representation of an image can be obtained by convolution of
the image with a two-dimensional smoothing function defined at different scales. Studies on multiscale im-
ages have been carried out to enhance the performance of image processing [2, 5, 8, 12]. For example, since a
multiscale Canny edge detection is equivalent to finding the local maxima of a wavelet transform, [5] studied
the properties of multiscale edges through the wavelet theory. They show that the evolution of wavelet local
maxima across scales characterise the local shape of irregular structures. In medical cell image analysis [12],
differential wavelet transforms were deployed to facilitate the extraction of multiscale geometric features of
chromosome images. In [8], an efficient scaling edge detector is developed by incorporating the image integral
to achieve a fast image processing.

The objective of this study is to extend the SIP-based framework for use with multiscale operators. In
this paper we first explain the SIP addressing scheme and conversion to SIP from rectangular images. We
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then give details of SIP-based convolution by simulating “eye tremor" in the human vision system, followed
by development of multiscale SIP operators to be used in SIP based convolution. For illustration we use the
application of edge detection. The preliminary results for performance evaluation based on three-layer SIP
images and SIP operator at four different scales demonstrate the efficiency of the proposed approach.

2 Method

2.1 Spiral Addressing Scheme for Square Images

The spiral indexing schemes are illustrated in Fig. 1 for (a) hexagonal images and (b) square images. It can be
seen that the hexagonal image can be considered as a layer-λ cluster comprising 7λ pixels, and a square image
consists of 9λ pixels. In Fig. 1, only the first three layers are shown, corresponding to λ = 0, 1 and 2. The SIP
structure facilitates the use of base 9 numbering to address each pixel within the image. For example, the pixels
in layer-1 are labelled from 0 to 8, indexed in a clockwise direction. The base 9 indexing continues into each
layer, e.g. layer-2 starts from 10, 11, 12, ..., and finishes at 88. Subsequent layers are structured recursively.
The converted SIP image is stored in a one-dimensional vector according to the spiral addresses.

(a) (b)

Figure 1: Spiral addressing scheme for (a) hexagonal image and (b) square image (only the central part of the
image is shown).

2.2 SIP Conversion

Due to existing hardware for capturing and displaying images being based on a rectangular architecture, HIP
conversion requires preprocessing using a resampling scheme to match the location and value of points in
an original rectangular pixel-based image to location and value in a hexagonal lattice [6]. Unlike HIP, SIP
conversion directly uses the original lattice of a square image. For a rectangular image of size M × N , the
number of SIP layers λ can be found by λ= (l og M + log N )/log 9; then the length of the one-dimensional SIP
image is 9λ. Based on the spiral addressing scheme, a SIP address can be represented as:

an an−1...a1 =
n∑

i=1
ai ×10i−1 (1)

where 0 ≤ ai < 9 and
∑

denotes Spiral Addition and × indicates Spiral Multiplication [6]. To locate a SIP
address corresponding to Cartesian coordinates (x,y), if the location of the centre of the image is defined as
L(0) = (0,0), then L(1) = (-1,0), L(2) = (-1,1), L(3) = (0,1), L(4) = (1,1), L(5) = (1,0), L(6) = (1,-1), L(7) = (0,-1)
and L(8) = (-1,-1). Based on the SIP addressing scheme shown in Fig.1 (b), the points in a higher SIP layer can
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be located by calculating the shift required from the centre point to the target point by

L(ai ×10i−1) = 3i−1 ×L(ai ) (2)

For example, a point at L(4536) can be located by L(4536) = L(4000)+L(500)+L(30)+L(6) = 33 ×L(4)+32 ×
L(5)+3×L(3)+L(6) = (37,29). Hence the point L(4536) can be found by shifting the start point from (0,0) to
(37,29). After conversion from a 2D image, the 1D SIP image is stored as a vector for further processing.

The SIP conversion starts from the centre of the image and the converted SIP is based on a square image
that corresponds in size to layer-λ, which can be slightly smaller than the original image size. Hence a border
region beyond that may not be processed. This is not a significant restriction, as in most image applications the
elements of interest are unlikely to be at the periphery of the image. Alternatively, if it is required to cover all
pixels, we may extend the image size to the next SIP layer by padding zeros to the boundary pixels.

2.3 Simulation of Eye Tremor

When using a standard 2D addressing scheme on an image, the addresses of a pixel’s neighbours can be de-
termined easily. However, determining a pixel’s neighbours in a one-dimensional addressing scheme is not
straightforward and requires significant computation. Inspired by [7,9], an eye tremor based framework for SIP
is developed to help to determine a pixel’s neighbours in a one-dimensional addressing scheme. An example of
the pixel offsets for nine offset images in a layer-1 eye tremor are illustrated in Fig. 2.

Figure 2: Pixel offsets for the eight offset images used in layer-1 eye tremor.

Consider I0 as a “base" SIP image; eight additional images I j , j = 0,1,2...,8 are obtained by shifting I0

by one pixel in the image plane along the spiral addressing scheme. The “centre" of each image I j is located
at a pixel within the layer-1 neighbourhood centred at image I0. Each image is stored as a vector after being
converted from the 2D image structure. Similar to layer-1, a layer-2 eye tremor can be created based on the SIP
addressing scheme containing eighty one eye tremor images, which is required for operators at higher scales.

2.4 SIP Convolution

For a given image I0, convolution of a SIP operator (denoted as Hλ where λ denotes the SIP operator layer)
across the entire image plane is achieved by applying the operator sparsely to each of the 9λ eye tremor images
I j , and then combining the resultant outputs. For example, a SIP convolution using a layer-1 operator needs
nine eye tremor images; for layer-2 operators, eighty one eye tremor images are needed.

Based on the eye tremor framework, for each image I j , we apply the operator Hλ only when centred at
those pixels with spiral address 0(mod9λ), hence achieving non-overlapping convolution. The convolution of
the image I j with an operator Hλ can be represented as,

G j
λ

(s0) =
∑

s∈Nλ(s0)
Hλ(s)× I j (s), (3)

where ∀s0 ∈ {s|s = 0(mod9λ))} and Nλ(s0) denotes the λ-neighbourhood centred on the pixel with spiral address
s0 in image I j . Take a layer-1 operator H1 as an example, the matrix implementation of convolution with I0 in
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Eq. (3) can be written as:



G0
1(0)

G0
1(10)

...
G0

1(k)



=




I0(0) I0(1) ... I0(8)
I0(10) I0(11) ... I0(18)

...
...

. . .
...

I0(k) I0(k +1) ... I0(k +8)







H1(0)
H1(1)

...
H1(8)




(4)

where k = 0,10,20,30, .... We can apply the same process to the remaining eight images (I1, ..., I8); each is an
image created by shifting the origin by one pixel from I0. The process is illustrated in Fig. 3. The outcome can
be obtained by assembling the values of G j

1 into a vector with the following arrangement:



G0
1(0) G1

1(0) · · · G8
1(0)

G0
1(10) G1

1(10) · · · G8
1(10)

...
...

. . .
...

G0
1(k) G1

1(k) · · · G8
1(k)




(5)

The final outcome in a SIP format is obtained by rearranging each row of the matrix in Eq.(5) into a vector,

[G0
1(0)G1

1(0)...G8
1(0)G0

1(10)G1
1(10)...G8

1(10)...G0
1(k)G1

1(k)...G8
1(k)] (6)

This assembly within the one-dimensional vector achieves the same outcome as standard 2D convolution. How-
ever, since all processing is executed in vector form, computation is significantly faster than standard convolu-
tion.

Figure 3: Assembly of the one-dimensional vectors for SIP-based convolution.

2.5 Multiscale SIP Operators

To obtain a multiscale representation of an image, a popular approach is the use of image pyramids [4], in
which the same operator is applied to down sampled images at different scales. Here we present an alternative
approach of applying a SIP operator at different scales.

Unlike HIP-based feature extraction, which requires x- and y-components of a hexagonal operator to be
designed accordingly [1], the SIP-based approach supports direct convolution of standard image processing
operators after converting the square operators into a SIP operator (a one dimensional vector). Fig. 4 presents
the index addressing for the elements of multiscale SIP operators.

It can be seen that an operator of size 3× 3 can be converted into a layer-1 SIP vector. For SIP based
convolution Eq. (3), the length of the SIP operator Hλ matches the required number of eye tremor images. The
operators of size 5×5 and 7×7 are converted into a layer-2 SIP vector by padding zeros to extend them to size
9×9. This process enables SIP convolution to be applied with operators at different scales.
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Figure 4: Index addresses for multiscale SIP operators: (a) 3×3; (b) 5×5; (c) 7×7 and (d) 9×9.

3 Experimental Results

3.1 Edge Detection

We first evaluated the performance of SIP edge detection for different image sizes using the Sobel edge detector
(3×3) as a feature detector. In the experiment, we used three test images: lena, peppers and coins, with image
sizes of 100× 100, 384× 520 and 738× 900 respectively. Each image was converted into a SIP image, and
in which the number of SIP layers for each are: layer-4 (81 × 81), layer-5 (243 × 243) and layer-6 (729 ×
729), respectively. We compare the SIP approach to standard 2D convolution. Implementation of standard 2D
convolution involves use of four for-loops that moves the kernel along each row and column of the input image
and then computes the weighted sum over the neighbourhood.

Figure 5: Comparison of edge results from standard 2D convolution and SIP-based convolution for layer-4
(lena), layer-5 (pepper) and layer-6 (coins) SIP images.

The results of edge maps are shown in Fig. 5. The top row shows the results from the standard 2D
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convolution and the bottom row shows the results from the SIP approach. As SIP and standard convolution
differ only in the approaches used for pixel indexing and image storage, the results of convolution are the same
for both methods, which is clearly shown in Fig. 5.

3.2 Multiscale Operators

To implement the SIP multiscale operators for edge detection, we used the Canny edge detector to generate
four operators with size 3×3, 5×5, 7×7 and 9×9, which were then converted to SIP operators as described in
Section 2.5. The operators were generated based on first derivatives of 2D Gaussian and the standard deviation
of the Gaussian functions was set as the square root of the filter size.

SIP convolution produces the same edge maps as the standard 2D convolution approach, and some examples
are shown in Fig. 5. We show only the results from multiscale SIP operators here, where Fig. 6 presents
gradient outputs and Fig. 7 presents the thresholded edge maps. In terms of quantitative analysis, the correlation
coefficients between the edge maps from the SIP-based and standard 2D convolution approaches are all equal
to 1 (as evaluated in [3]). These results demonstrate that the SIP-based approach to operator implementation
can be used successfully at multiple scales.

Figure 6: The edge maps from SIP-based method based on multiscale operators.

Figure 7: The edge results from SIP-based method based on multiscale operators after applying threshold.

3.3 Comparison of Run Time

To demonstrate the efficiency of the SIP based approach, the run-times are computed for the application of edge
detection on the Lena, peppers and coins images using both standard convolution and the SIP based method.
The same image size as the SIP image is used in each case. The results of run times based on averages over
100 runs are given in Fig. 8. From the results, we can see that for all cases, SIP is faster than standard 2D
convolution. For the standard method, the computational cost increases as the sizes of images and operators
increase. For the SIP-based approach, run time slightly increases with the image size, but time used for 5×5,
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7×7 and 9×9 remains similar as they are all based on a layer-2 operator 9×9. The results demonstrate the
efficiency of the proposed multiscale SIP framework.

Figure 8: Comparison of run times for standard and SIP-based methods using multiscale operators.

4 Conclusion

In this paper, we present a novel framework developed for a multiscale SIP based convolution. The SIP-based
approach enables fast feature detection by use of a spiral architecture in conjunction with eye tremor and non-
overlapping convolution. The multiscale SIP operators can be formed by converting existing square image
operators according to the SIP addressing scheme. Extending a layer-1 SIP operator to layer-2 level enables
multiscale operators to be applied in the SIP framework. The results based on multiscale operators demonstrate
the efficiency of the proposed method. The research outcomes facilitate the further development of the SIP
based key-point detection, which will be conducted in the future work.
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Abstract

Hand hygiene is the most effective way in preventing the health care-associated infection. In this work,
we propose to investigate the automatic recognition of the hand hygiene poses with RGB-D videos. Dif-
ferent classifiers are experimented with the Histogram of Oriented Gradient (HOG) features extracted from
the hand regions. With a frame-level classification rate of more than 95%, and with 100% video-level clas-
sification rate, we demonstrate the effectiveness of our method for recognizing these hand hygiene poses.
Also, we demonstrate that using the temporal information, and combining the color with depth information
can improve the recognition accuracy.

Keywords: Hand Hygiene, Poses Recognition, RGB-D

1 Introduction

According to the World Health Organization (WHO), hands are the main pathways of germ transmission in
health care-associated infections (HCAI), which causes thousands of people deaths and billions of money losses
each year. Hand hygiene plays a crucial role in the prevention of HCAI, which is usually achieved by rubbing
hands with an alcohol-based formulation. In the WHO Guideline book of hand hygiene [WHO, 2009], rou-
tine gestures for hand hygiene with alcohol-based hand-rub formulation or soap1 have been suggested. More
specifically, some hand gestures of interest in the hand hygiene procedure are illustrated in Figure 1.

Figure 1: Hand hygiene Poses suggested by WHO. (1) : Rub hands palm to palm, (2) : Right palm over left
dorsum with interlaced fingers and vice versa, (3) : Palm to palm with fingers interlaced, (4) : Backs of fingers
to opposing palms with fingers interlocked, (5) : Rotational rubbing of left thumb clasped in right palm and
vice versa, (6) : Rotational rubbing with clasped fingers of right hand in left palm and vice versa.

In the following, we first briefly review the vision based approaches for hand pose recognition with high-
lights on hand-washing poses recognition (section 2), and then present our own approach (section 3). Exper-
imental results (section 4) show the effectiveness of the proposed approach in this hand hygiene recognition
task, as well as the benefit of combining depth and color information, and using the temporal information.
Finally, section 5 draws some conclusions of this work.

1Soaps are suggested when the hands are visibly soiled. If not, the alcohol-based hand-rub formulation is suggested to be used
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2 State of the Art

Hand pose has attracted active research in computer vision domain, either for the hand pose estimation task
which aims at the reconstruction of hand posture [Supancic III et al., 2015], or for the hand pose classifica-
tion task which aims at recognizing a set of predefined hand gestures [Suarez and Murphy, 2012]. Concern-
ing hand pose classification, it usually involves an early stage of hand localization in the video frames, fol-
lowed by a machine learning stage which applies classifiers on extracted features to finally predict the pose
[Suarez and Murphy, 2012, Sarkar et al., 2013]. For hand localization, various hand segmentation methods
were proposed in consideration of the skin-color maps [Ibraheem et al., 2013]. These methods are claimed
to suffer greatly from light changes, even with an illumination-invariant color schemes. In recent years, with
the spread of commodity depth cameras, more and more works use simply a depth threshold to isolate the
hands [Suarez and Murphy, 2012]. This type of method usually works with the presence of a single hand,
which is also required to be the closest object to the camera. Ghobadi et al. [Ghobadi et al., 2007] explored
the combination of the color and depth information for hand segmentation, in a pixel level clustering scheme.
In the following machine learning stage, the hands are first represented by relevant features, such as color
features [Llorca et al., 2011], shape features [Keskin et al., 2012, Suryanarayan et al., 2010], volume features
[Suryanarayan et al., 2010], and temporal motion features [Elmezain et al., 2009]. The features are then fed to
classifiers to predict the pose label, such as the Hidden Markov Model (HMM) [Kurakin et al., 2012], the Neu-
ral Networks [Hasan and Abdul-Kareem, 2014], the Support Vector Machine [Llorca et al., 2011], the Random
Forest [Keskin et al., 2012], and the Linear Discriminant Analysis (LDA) [Wang and Zhang, 2013], etc.

Many applications have been derived from the related research, which mainly fall in the areas of human
computer interaction (HCI) [Rautaray and Agrawal, 2015], robot control [Khan and Ibraheem, 2012] and hu-
man sign language recognition [Slama et al., 2014]. Concerning hand washing poses recognition, only a few
works have been issued with videos from standard RGB cameras. In [Llorca et al., 2007, Llorca et al., 2011],
researchers proposed to use a set of 21 binary SVM classifiers for recognizing the 6 hand washing gestures sug-
gested in [RCN, 2005], together with another hand pose class defined as not belonging to any of the 6 poses.
Prior statistics of skin/non-skin color, and motion information between frames are required in their method for
hand segmentation. In both works, the videos were manually filtered and labeled by human experts on each
frame. In [Hoey et al., 2010], a vision based system is proposed to assist people with difficulties in washing
their hands. As far as we know, the depth information has not been investigated yet for this specific task.

3 Hand Hygiene Poses Recognition

We propose a computer vision system for recognizing these poses in RGB-D video streams of hands (cf.
Figure 2). With a set of RGB-D hand hygiene videos, we first perform hand region segmentation on each
frame with the Expectation Maximization technique working on the Gaussian Mixture Model. Then we extract
the Histogram of Oriented Gradient (HOG) features on the hand regions, which are later processed with the
Principal Component Analysis (PCA) for dimensionality reduction. The PCA transformed features are then
used for training and testing, with different classifiers. Section 3.1 presents our strategy for hand segmentation.
Features and classifiers are presented in section 3.2.

3.1 EM-based hands segmentation

To analyze the behavior of the hands in the videos, we are required to separate the hands from the background.
To this end, for each pair of RGB and depth images, we first transformed the RGB image into the HSV color
space, then constructed a feature vector (Fp) on each valid pixel using the Hue (h) and Saturation (s) infor-
mation, together with the depth (d) information from the depth image. Formally, it means Fp={h,s,d}, with
h, s, and d as integers in the scale of [0,255]. With these pixel-level features, we explored the Expectation
Maximization (EM) technique with the Gaussian Mixture Models representation of the image features for hand
segmentation. The Gaussian Mixture represents each segment of the features by a parametric Gaussian Distri-
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Figure 2: Overview of the proposed hand hygiene poses recognition pipeline.

bution. The Expectation Maximization (EM) technique then searches for the best parameters of the Gaussian
models, which produce a maximum likelihood estimation with the given features. In the output of EM, each
pixel is labeled with the Gaussian model with the highest probability to produce this pixel. It has been reported
in [Ghobadi et al., 2007] that effective hand segmentation can be achieved using the EM technique and the
Gaussian Mixture Models, based on the depth and color information. In our work, We find 4 Gaussian kernels
provide the most accurate segmentation of hands in visual observation.

Figure 3: Illustration of segmentation output for 12 hand hygiene poses. (1) : Rub hands palm to palm; (2) :
Rub interlaced fingers; (3) and (4) : Left palm over right dorsum with interlaced fingers and vice-versa; (5) and
(6) : Rotational rubbing, backwards and forwards with clasped fingers of right hand in left palm and vice versa;
(7) and (8) : Backs of right fingers to left palm with fingers interlocked and vice versa; (9) and (10) : Rotational
rubbing of left thumb clasped in right palm and vice versa; (11) and (12) : Rotational rubbing left wrist clasped
in right hand and vice versa.

3.2 Features Extraction and Machine Learning

With the segmented frames, we cut out the hand region, by removing the pixels below the row where the two
arms are joined. The remaining part is then re-sized to a unified resolution of 80×80, for extraction of the His-
togram of Oriented Gradient (HOG) features [Dalal and Triggs, 2005]. The HOG features are later explored
in pose classification with different classifiers, namely the linear-kernel SVM classifier [Chang and Lin, 2011],
the Linear Discriminant Analysis (LDA) classifier [Scholkopft and Mullert, 1999], and the Random Forest clas-
sifier [Breiman, 2001].
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4 Experimental Results

4.1 Video Dataset and experimental design

We collected 72 RGB videos and 72 corresponding depth videos from 6 different subjects using the SoftKi-
netic DS325 camera. Each subject performs 12 different hand hygiene poses above a planar table, with the
camera projecting vertically downwards. Each video lasts 2-4 seconds. With a frame rate of 25 per second,
it results in 42-110 frames in each video. As there is misalignment between the images from RGB and depth
sensors due to different sensor positions, we warped each color frame to the corresponding depth frame with
the warping matrix provided by the camera system. In Figure 4, we illustrate an episode of a depth video and
the corresponding RGB color video after warping.

Figure 4: Example of an RGB Video and the corresponding Depth Video
We use the Leave-One-Person-Out (LOPO) subject-independent cross-validation protocol in evaluating the

performance of the pose classification method, where each subject is used for the testing step once, with the
remaining subjects used in the training step. This protocol enables the largest number of instances in training
step, with the requirement that no subjects should enroll in both training and testing steps at the same round.
Under this protocol, we explore the usage of the RGB channel (using the corresponding grayscale values), and
the depth channel separately, in hand hygiene poses recognition. To address the high dimensionality of the HOG
features (2916 dimensions), in each round of the cross-validation, the original HOG features are projected in
lower dimensional subspace using the Principal Component Analysis (PCA). We note here that, in each round,
the projection matrix of PCA is learned on the training set alone.

4.2 Frame-level Pose recognition

Figure 5 shows the pose classification results when recognizing on each frame of the videos. The x-axis shows
the dimensionality of the PCA-based feature subspace, and the y-axis shows the average recognition rate over
all the frames, for different classifiers. In Figure 5, for both the color and depth channels, the LDA classifier
outperforms the Linear-SVM classifier, and further outperforms the Random Forest classifier. In Figure 5
(a), with 75 dimensions of the PCA-based features, the the LDA classifier achieves 94.80% pose recognition
rate. The corresponding results for the Linear-SVM is 93.17%, and is 91.87% for Random Forest. With the
depth information, as shown in Figure 5 (b), the LDA classifier achieves 92.35% classification rate using 100
dimensions of the PCA-based features. Correspondingly, the Linear-SVM classifier achieves 89.75%, and the
Random Forest classifier reaches 87.97%. These results demonstrate the effectiveness of our hand hygiene pose
recognition approach, as well as the stability of the PCA projections in different rounds of the cross-validation.
Additionally, the color channel generally outperforms the Depth channel. We assume that, apart from the
data modality differences, the low quality of the depth data provided by the camera also accounts for this.
In Table 1, we show the average time consumption for classifying each frame, concerning the above results,
generated by an Intel Core i7 CPU 3.70 GHZ with 16GB of RAM, in Matlab implementation. Again, the LDA
classifier demonstrates significant merit over the Linear-SVM. Notably, the Random Forest classifier results in
the smallest time consumption. Considering both the recognition rate and time consumption, we choose the
results from the LDA classifier for further analysis.

Proceedings of the 17th Irish Machine Vision and Image Processing conference IMVIP 2015

August 26th-28th, 2015, Dublin, Ireland 46 ISBN 978-0-9934207-0-2



Figure 5: Frame by Frame Pose recognition Results

LDA Random Forest Linear-SVM
Color 0.0100 ms 0.0077 ms 0.6774 ms
Depth 0.0139 ms 0.0086 ms 0.8372 ms

Table 1: Time Consumption for classifying each frame (millisecond).

Apart from the above, another perspective of the results is the confusion matrix, which shows the interaction
of different classes during classification. Thus, we show in Table 2 and Table 3 the confusion matrices of the
recognition results from the LDA classifier, with the color frames and with the depth frames, respectively. In
the two tables, the ground truth goes with the row labels, and the pose estimation result goes with the column
labels. In both confusion matrices, the diagonal parts have the dominant accumulation of the data. Very few
instances are confused, as shown in the off-diagonal parts of the matrices (blanks mean 0). It means that our
pose recognition approach is not biased to particular poses.

The closest work to ours in the state of the art is presented in [Llorca et al., 2011], in which the researchers
performed the recognition of 7 types of hand poses with the RGB videos. With manually filtered and labeled
frames in 6 videos for training and frames of another 2 videos used for testing, they achieved 82.29% correctness
over the 7 pose classes, using 21 binary SVM classifiers. No cross-validation scheme was issued in their work.
In comparison, as shown in Figure 5 (a) and Table 2, we have achieved a more promising classification rate of
94.80% over 12 hand pose classes in subject-independent cross-validation, with a single LDA classifier which
also works much faster than SVM as shown in Table 1. In addition, Figure 5 (b) and Table 3 also make the first
published results for hand hygiene gesture recognition using the depth information.

4.3 Video-level Pose recognition results

Although the frame-level pose recognition has demonstrated its effectiveness, the temporal evolution informa-
tion of the video frames has been omitted. We are motivated to explore the usage of the temporal relationship
of video frames. With this concern, we switch from recognizing the pose in the frames, to recognizing the
pose in the episodes. By applying the sliding-window technique on the temporal frames, we formatted a set of
video episodes. The poses in these episodes are recognized as the majority voting results of the results from
the containing frames. As the window size controls the length of the episode (number of frames), it further
influences the recognition accuracy. Thus, we show in Figure 6 the relationship between the window size and
the recognition rate. To combine the contributions from both channels, we also propose a fusion scheme which
performs majority voting on frames of both the color and the depth channels within each episode. For the
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E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12
G1 315 1 2 1 4 6
G2 308 1
G3 8 377 8
G4 1 395
G5 2 5 337 2 4 12 22
G6 406 8 6
G7 434 31 1
G8 4 349 14
G9 10 1 382 31
G10 2 7 2 1 369 9 1
G11 1 4 1 2 1 379
G12 3 21 324

Table 2: Confusion matrix of pose recognition with color frames. G: Ground truth, E: Estimated label

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12
G1 307 1 21
G2 307 2
G3 2 362 26 3
G4 1 394 1
G5 10 2 2 316 7 12 2 20 4 9
G6 413 1 3 3
G7 1 433 17 4 11
G8 19 300 47 1
G9 13 4 2 385 20
G10 1 1 5 8 9 3 356 4 4
G11 26 1 1 13 347
G12 3 3 342

Table 3: Confusion matrix of pose recognition with depth frames. G: Ground truth, E: Estimated label

majority voting procedures, we use the same frame-level results as for the previous confusion matrices.
In Figure 6, we observe that, for both the color and the depth channels, the larger the sliding window size,

the higher the pose recognition rate. With a window size of 10, we achieve 98.99% and 97.86% recognition rate
for color and depth channels, respectively. With window size growing to 20, the corresponding recognition rates
reach 99.38% and 98.31%. These results outperform significantly the corresponding frame-level results, which
were 94.80% in the color channel and 92.35% for the depth channel. Apart from this, when we take each video
as one episode (not shown in the Figure), both the color and depth channels achieve 100% classification rate.
These results demonstrate that the temporal information gives enhancement to this pose recognition problem.
Also, the fusion scheme obviously outperforms each single channel. With window size of 10, we achieve
99.17% pose classification rate. It demonstrates that the combination of the color and the depth channels also
enhances the pose recognition performance.

5 Conclusion

In this work, we proposed a computer vision framework to recognize the hand hygiene poses from RGB-D
videos. Using the LDA classifier on PCA-projected HOG features, we achieve >95% frame-level recognition
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Figure 6: Pose recognition rates with different sliding window size

rate, and 100% video-level classification rate. It demonstrates the capability of the proposed method in discrim-
inating the hand-hygiene poses. In addition, the temporal information further improves the performance of our
system. We also show that the fusion of color and depth channels is beneficial to the recognition performance.
The resulted system could be applied in hand hygiene monitoring, education, and also could be extended to
more constrained scenarios, such as in surgery preparation where additional hand hygiene poses are required.
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Abstract

We present an architecture for recognizing stacked box objects for a robotic picking system where robots
pick up an object in a warehouse. To pick up an object, a robot should recognize the object’s position and
pose. Additionally, there is a need to identify whether each object is a target object or not. In a common
warehouse, most of the products are box objects. However, it is difficult to recognize the objects when they
are neatly arranged on a shelf. In that case, poor 3D surface data such as that of a flat surface are obtained.
Thus, conventional 3D object shape matching methods such as iterative closest points (ICP) and 3D point
feature histogram (PFH) cannot be applied. In addition to the problem, a segmentation problem in which
two boxes are recognized as one box can occur. Moreover, the robot has to put aside other boxes on a target
object when the target object is placed under other boxes. Therefore, all positions and poses of boxes should
be recognized. To solve the above mentioned problems, the labels that are attached to most of the boxes
in warehouse are focused on. As a first step, all labels are detected by using color classification. Then, the
box front face regions are estimated on the basis of the label’s positions with the object classification. As a
second step, the object’s position and pose are estimated by using both the color and depth data of the box’s
front face regions including the labels. To show the effectiveness of our approach, we show the results of
recognizing stacked boxes on a shelf and demonstrate a robotic picking system to which our recognition
architecture is applied.

Keywords: Robot Vision, Robot Picking, Object Recognition, Automated Warehousing System

1 Introduction

New automated warehousing robot systems that include picking and conveying items have been brought to pub-
lic attention. These systems are different from traditional automated warehousing systems, which are designed
for specific and high-volume manufacturing such as automated storage and retrieval systems. The new systems
deal with a lot of various kinds of products. The purpose of the systems is productive efficiency and flexibility
corresponding to the seesaw between supply and demand.

Kiva Systems, owned by the Amazon group [kiv, 2015], is famous for demonstrating a new type of au-
tomated warehousing robot system that uses multiple automatic guided vehicles (AGVs). Amazon aims to
promote the efficiency of warehouse work and downsize surplus manpower. Indeed, each AGV carries a shelf
to a worker in a picking station, so the system reduces personnel cost. However, this is not a sufficient goal
in the pursuit of efficiency. Amazon also says automated item picking is an important skill for many robot
applications including warehousing, manufacturing, and service robotics. The goal of robotic automation is an
alternative robot system for human picking work in which workers pick only required products. The “Amazon
picking challenge” [ama, 2015] is a competition aimed to garner methods for creating such a picking system.

A robot cannot pick up a target object without details on the object’s position and pose. Additionally,
identification of objects is also needed to confirm whether the picked object is the target object or not. A variety
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of object recognition methods are proposed such as using texture (RGB or gray) image base, depth image base,
or both.

In a texture image base, descriptors of feature points and edge features are used. Key point descriptor base
methods are suitable for texture objects. Scale-invariant feature transform (SIFT) [Lowe, 1999] is the most
popular descriptor for object detection. In the case of texture-less objects, edge feature is preferred for object
boundaries. A detection and tracking method for 3D texture-less objects that uses a particle filtering framework
in real time [Choi et al., 2013] is proposed.

Recently, low-cost RGB-D cameras such as Kinect and Xtion have been used for many robotic and vision
applications. These devices can get the color and depth data of a scene. Compared with 2D images, 3D data
are more invariant to geometric changes. The iterative closest point (ICP) algorithm [Besl et al., 1992] is often
used to register 3D point clouds. Moreover, the fast point feature histogram (FPFH) [Rusu et al., 2009] and
viewpoint feature histogram (VFH) [Rusu et al., 2010] are proposed to be extended for geometry-based shape
descriptors. There have also been numerous papers on using RGB-D data [Choi et al., 2012, Bo et al., 2011,
Wnag et al., 2014, Tang et al., 2012]. These methods are proposed for bulk item picking with distinctive
surfaces and colors.

The above mentioned methods are effective with objects that have rich variations in surface normals. More-
over, color features are used for enhancing the accuracy of target recognition. In a warehouse, box-type items
such as cardboard boxes account for a substantial fraction of the products. That is, it is hard to obtain rich
3D surface data, though the face data of boxes can be obtained. Therefore, methods that need to have rich
variations in surface normals are not suited for the box-shape objects.

In this paper, an architecture for recognizing neatly stacked box objects for robot picking is presented.
Many shelf board spaces are stacked with some boxes that have the same shape and size but that differ in type
from each other. In such cases, a segmentation problem with object recognition occurs when using a depth
camera. This is because the camera position of a picking robot is needed to be set in front of a shelf. A shoe
box is a typical example. Even the same kinds of boxes have different colors and sizes with respect to each
manufacturer. Therefore, if a target box is put in the space between other boxes, there is a need to remove the
distractions for the robot picking. Therefore, all objects that are in the camera frame need to be recognized.

1.1 Related Work

Many studies have been made on recognition methods with depth data. A point pair feature (PPF) that uses
two points on surfaces and their normals with depth data is proposed [Drost et al., 2010]. This approach has
been recently enhanced by incorporating the visibility context [Kim et al., 2011] or considering better boundary
information [Woodford et al., 2014]. The surface point pair feature is efficient for objects that have rich varia-
tions in surface normals. However, simple surfaces like planar objects are not suited to recognition because a
lot of different point pairs fall into the same hash slot.

Most of the effective studies have focused on recognition in cluttered spaces with a RGB-D sensor. There
have also been numerous papers on using RGB-D data. An object recognition method that does not rely on
assumption [Choi et al. 2012]. It can estimate the pose of a target object in a heavily cluttered scene. Bo et
al. [Bo et al., 2011] also presented novel five depth kernel descriptors to capture different object cues including
size, shape, and edge. Wang et al. [Wang et al., 2014] presented a novel framework consisting of a global
object descriptor viewpoint oriented color-shape histogram, which combines color and shape information for
both object recognition and highly accurate object pose retrieval. Tang et al. [Tang et al., 2012] presented an
end-to-end instance recognition approach for textured objects. These studies also assume that the camera is set
at the upper right positions in a clutter scene.

1.2 Contributions

The contributions of this work are the following. First, a box object recognition architecture is proposed for
robot picking in which box objects are stacked on a shelf and a camera position is set in front of the shelf.
Second, we demonstrate robot picking applied with our object recognition architecture.
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Figure 1: Proposed recognition architecture

2 Recognition Architecture for Stacked Box Objects

The purpose of the recognition is to identify whether detected objects are the target object or not and to estimate
a box object’s position and pose for robot picking. In a warehouse, most box-type items are labeled with
merchandise information. Therefore, the labels are used as an effective way to recognize box objects placed on
a shelf.

The proposed recognition architecture is illustrated in Figure 1. The proposed recognition architecture has
a learning phase and execution phase. In the learning phase, label and box face color features are extracted and
learned for obtaining the feature distribution and parameters of color classification for the object identification.
In the execution phase, labels of box objects are first detected from a scene color frame. Next, the objects are
identified and the box faces are estimated on the basis of the label positions. Finally, the object position and
pose are estimated.

2.1 Learning Phase of Color Classification

In the learning phase, a principal component analysis (PCA) and support vector machine (SVM) are applied to
the color classification. Previously, scene images of target objects are prepared. The scene images are obtained
in different lighting conditions so that the color classification is robust to changes in lighting conditions. As
color coordinate systems, RGB and HLS (hue, lightness, and saturation) are used for the learning of classifi-
cation. HLS is the most common cylindrical-coordinate representation of points in an RGB color model. This
coordinate system is more intuitive and perceptually relevant than an RGB cube. Therefore, the data dimension
is six dimensional coordinates.

To reduce dimensionality and bring out a strong pattern of the data, the PCA is applied to the learning data
represented in 6D color. The learning data include statistically redundant components. Therefore, dimensional-
ity reduction means obtaining compact, accurate, and well represented data. PCA is a basis transformation for
diagonalizing an estimate of the covariance matrix of the sample data p f ,i , i = 1, ...,6, p f ,i ∈ ℜ6,

∑6
i=1 p f ,i = 0

defined as

S = 1

N

6∑

i=1
p f ,i pT

f ,i . (1)

An eigen problem has to be solved,
Sv =λv , (2)

where the eigenvalues λ≥ 0 and eigenvectors v ∈ℜ6. The number of dimensions is reduced from six to two-four
by considering a cumulative contribution ratio of over 90%.

The object color is classified by using a soft-margin SVM [Bishop, 2006]. SVM is one of the major super-
vised learning algorithms for solving class separation problems. The basic form of an SVM classifier can be
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expressed as
g (x) =ωTφ(x)+b, (3)

where the input vector x ∈ℜN andω is a normal vector of a separating hyper-plane in the feature space produced
from the mapping of a function φ(x). The sign of g (x) indicates whether vector x is classified as label color or
other, e.g., such as the color of the shelf board, or box colors. The training of SVM is defined as a constrained
optimization problem:

min Q(ω,b,ξ) = 1

2
||ω||2 +C

N∑

i=1
ξi

s.t . yi (ωTφ(xi )+b) ≥ 1−ξi , ξi ≥ 0,∀i ,

(4)

where C is a trade-off parameter that controls the relative importance of minimizing the norm of ω and satis-
fying the margin constraint for each data point. In this paper, radial basis function (RBF) kernel is used as the
feature classifier. The C value is set to 45.0, and the gamma value of the kernel is set to 5.0 in empirical basis.
Parameters obtained by the above processing are applied to the color classification in the execution phase.

2.2 Execution Phase of Identification and Pose Estimation

The process of the execution phase is the following steps (cf. Figure 2).

Step 1 Extract label candidate regions by judging labels’ color (white) and region size
Step 2 Confirm whether the region is labeled or not and perform four direction judgment by template matching
Step 3 Classify the object’s color around the labels by using PCA and SVM
Step 4 Estimate the box object position with corresponding front face corners on the basis of the label corners

and depth data
Step 5 Calculate homography matrix H to estimate the object’s x, y , and r ol l angle
Step 6 Calculate the center of front face’s depth data to estimate z (depth)
Step 7 Calculate the normal vector of the box front face to estimate the pi tch and y aw angle
Step 8 Overlay the object 3D shape model on the estimated position and pose
Step 9 Send the recognized data to the motion planning function for picking the target object

As a first step, label regions are detected with color classification and region size from a camera frame image.
The image is masked by the depth data, assuming that the distance between a robot and the objects on a shelf
is from 300 to 700 mm. The corner positions of a label candidate region are automatically numbered as Figure

Step1: Label candidate extraction Step2: Confirmation of labels and direction  Step3:  Object identification 

a0 a3 

a2 a1 

a3 a2 

a1 a0 

a2 a1 

a0 a3 

a1 a0 

a3 a2 

p0 p3 

p2 p1 

p0 p3 

p2 p1 

Detected Label 

Step4: Box position estimation Step7: Calculate the normal vector n  

            for more accurate pitch & yaw angle 

 

Step8: Estimated results with 

            Augmented Reality mapping 
Step9:  Robot picking 

             based on the recognized data 

Step6: Calculate more 

             accurate z (depth) 

 

H 

Step5: Calculate homography H 

n 

p3 

p2 

p1 

Figure 2: Identification and 6-DOF pose estimation of stacked box objects on a shelf
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2 (Step 2, left). Therefore, the direction of a label candidate region is judged by template matching, that is,
zero-mean normalized cross-correlation (ZNCC), for confirming the corresponding corners between pi and
ai (i = 0, ..3). Next, the detected objects are identified with the color classification around the label region.

In pose estimation, RGB-D(depth) data are used. A box object’s position and pose are estimated after ob-
taining the corner positions of the box’s front face on the basis of the label’s corner positions on a camera image,
In this paper, the color data are used to estimate the object’s position and pose with homography estimation. A
perspective transformation between reference image points M and scene image points m on a target plane is
related by a homography H with the following equation.

sm̃ = H M̃ (5)

H is calculated with RANSAC [Fischler and Bolles, 1981]. Then, H is decomposed to the rotation vector r
and translation vector t .

To enhance the accuracies of the z position, pitch, and yaw angles, the depth data are used for the estimation.
The normal orientation is calculated with singular value decomposition (SVD). The best-fit plane minimizes
the sum of the squared distances. Thus, the best-fit plane achieves

min
‖n‖=1

m∑

i=1
‖pT

i n −d1‖2, (6)

where pi = (xi , yi , zi )T (i = 1, ...,m), n = (a,b,c)T , |d | is the distance from the box object to the camera, and 1
is a vector of m ones. Finally, the recognition data are sent to the motion planning, and then, the robot picks up
the items.

3 Robot Picking

In this section, the method for the one type of robot picking is indicated. As mentioned above, in a warehouse, a
lot of boxes are neatly stored on shelves. If these boxes are tightly arranged, finger type grippers are unsuitable
for the grasping because the fingers hit the other box objects. Therefore, adsorption-type grippers are suitable
in this case. Moreover, dual-arm manipulation is effective at picking up an object.

Now, how does the robot grasp the boxes? One arm that has the absorption type gripper is moved following
the vector perpendicular to the box’s front plane as shown in Figure 3. Another arm is moved under the box for
support to keep the balance of the box. Hence, object recognition of 6-DOF pose estimation is desired to get
the center position of the box’s front face and normal vectors for vertically adsorbing onto the face.

4 Experiments

To verify the effectiveness of the proposed recognition architecture applied to a robot system, the following
experiments were conducted in a simulated warehouse. First, the recognition performance of the proposed
architecture for stacked rectangular objects was verified to be applicable to a robotic picking demonstration.
Second, the robustness of the proposed recognition architecture was confirmed in changing lighting conditions.
Finally, by applying the recognition architecture to the picking robot, the effectiveness of the robot system,
which includes the recognition and how the robot picking is performed, was verified.

Figure 3: Method for robot picking with double manipulation
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4.1 Experimental Conditions

The experiments were conducted with a robot picking system implemented with the proposed recognition
architecture on a laptop PC with an Intel Core i7-4700MQ 2.4-GHz processor and 8.00 GB RAM. However, two
CPU cores (four threads) were used in consideration of other robot functions. DepthSense325 from Softkinetic,
which supports 25 fps, was used as a RGB-D camera. The color and depth resolutions were set at 640 × 480
and 320 × 240, respectively.

In object recognition experiments, stacked boxes on a shelf board were identified, and the position and pose
were estimated. The RGB-D camera was attached to the robot manipulator, and the camera shooting position
was set in front of the shelf. The distance between the camera and rectangular objects was around the 500 mm.
Shoe boxes stored in up to three rows were used. There were two kinds of boxes.

4.2 Results and Discussion

Figure 4 shows examples of the recognition results with the AR technique. For reasons of internal company
security, the colors of the boxes in this and the following figures were manually changed in the figures only.
Two kinds of box objects were used, but the number of object kinds was able to be increased. As a result,
the box objects placed on the shelf were detected even if the 3D shape data could not be obtained. Not only
neatly stacked objects but also arbitrarily stacked objects whose pose was changed were able to be recognized.
However, pitch angle errors sometimes varied widely. The cause of the errors is considered to be due to the lid
of the shoe box protruding. The recognition misses for the box was due to the depth data being masked.

Table 1 indicates the recognition rate and time. The recognition rate was over 97[%]. It took 675 [msec]. on
average to recognize the box objects. As for the position and pose estimation, the box objects were recognized
in error range of less than ±10 [mm], ±5 [deg.], which is the acceptable error range when an adsorption gripper
is used and the boxes are placed within ± 30 [deg.] rotation of yaw angle against to the camera direction. The
position and pose error was calculated when the box objects were neatly stacked in front of the camera.

Next, the results of object recognition in changing illumination conditions are shown in Figure 5. In this
experiment, six kinds of illumination changes were tried, considering any warehouse’s lighting conditions. As
a result, the proposed recognition architecture was able to recognize the box objects in the conditions.

Finally, the results of the robot picking demonstration with our recognition architecture applied to the robot
are shown in Figure 6. Figure 6 shows the sequence of the robot picking. First, the robot took scene camera
frame data. Then, the recognition process was conducted. After the recognition results were received, the
box that was at the highest position in the vertical direction (y direction) was picked up by the double arms.

Figure 4: Recognition results of box objects

Table 1: Recognition rate and time
Recognition rate (Ave.) Recognition time (Ave.)

97.4[%] 675 [msec.]
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Figure 5: Recognition results in variety of lighting conditions

Figure 6: Results of robot picking sequence with object recognition architecture

The top of the absorption gripper, which was attached to one of the manipulators, was moved to the normal
vector of the recognized box. Another manipulator, which had a board, was moved under the box. In this
demonstration, the posture parameters (rotation of pi tch, y aw , and r ol l ) were set to zero for safe movement,
but these recognition accuracies meet the performance required to be able to do the picking.

5 Conclusion

We presented an architecture for recognizing stacked box objects for automated warehousing robot systems
with RGB-D camera data. Our approach learns each box object color and label color. In experiments, ob-
ject identification and pose estimation were able to be conducted when box-type objects were neatly arranged
on a shelf. Moreover, robot picking by double arm manipulation was demonstrated and successfully accom-
plished with our recognition approach. Hence, the effectiveness of the proposed recognition architecture was
confirmed.

In future work, we will develop a method for recognizing multiple kinds of products in a warehouse. In
addition to the recognition function, we will also develop a function for judging grasping positions depending
on the application of the finger type grippers.
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Abstract

Transformation voting is a general paradigm to symmetry detection based on the concept of accumu-
lating evidence or votes to the existence of transformations between symmetrical elements. However im-
plementing this paradigm involves a number of important design decisions which greatly influence per-
formance. In this paper we articulate these design decisions and subsequently propose an implementation
which makes a number of contributions. These include the first consideration and solution to the issues pre-
sented by transformation direction; the characterization of transformations in terms of their origin location
which results in the detection of more meaningful symmetries; and, an effective measure of transformation
similarity. Using symmetry detection as a platform, we also propose a method capable of detecting regu-
lar and irregular patterns of repeating structures where the problem is posed in terms of finding maximum
cliques in a graph.

Keywords: Symmetry Detection, Transformation Voting, Graph Clustering.

1 Introduction

Figure 1: Symmetries and repeating geometrical struc-
tures are exhibited.

Symmetry is a ubiquitous phenomena exhibited in al-
most all man-made and natural environments. Con-
sequently symmetry detection in geometrical models
has become an important component in many appli-
cations including model completion, model manipu-
lation, model synthesis and shape classification [Mi-
tra et al., 2013]. An object may exhibit both within
and between object symmetries. For example con-
sider Figure 1 which contains the model of a cat in
three different poses. Consider the pair of cats at
the back of the figure. The cat on the right exhibits
a within object symmetry between its left and right
sides. That is, each side is related to the other by a
reflection. The pairs of cats in this figure also exhibit a between object symmetry between their heads. That
is, each head is related to the other by a rigid body transformation. Formally a symmetry contained in a model
M may be defined as follows. Let the elements of {si , s j } be subsets of M . A symmetry exists between these
two elements if si = Ti j (s j ) for some transformation Ti j . A model may contain more than a single symmetry
as is the case in the above example. A symmetry can be classified in terms of the group the corresponding
transformation belongs to such as the Euclidean [Mitra et al., 2006], or reflection [Podolak et al., 2006] groups.

In this work we focus on detecting symmetries where the corresponding transformations belong to the
Euclidean group generated by translations, rotations, and uniform scaling. A number of authors have proposed
methods for detecting other types of symmetries. For example [Podolak et al., 2006] proposed a method
for detecting reflection symmetries. For an overview of the different types of symmetries and corresponding
methods for detecting them please see [Mitra et al., 2013]. Mitra et al. [Mitra et al., 2013] provides a detailed
summary of existing methods for symmetry detection in 3D models and groups them into different general
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paradigms. One of these paradigms, which Mitra et al. [Mitra et al., 2013] refers to as transformation space
voting, attempts to accumulate evidence to the existence of transformations corresponding to symmetries. This
paradigm represents a natural extension of the above standard definition of symmetry and, as such, there exist
a number of corresponding implementations of it. However implementing this paradigm involves a number
of important design decisions which greatly influence performance. In this paper we articulate these design
decisions and subsequently propose an implementation which overcomes a number of limitations associated
with existing implementations. The implementation in question detects symmetries where the corresponding
transformations belong to the Euclidean group.

A super-class of symmetries are repeating structures. For example in Figure 1 the cat’s head corresponds
to a repeating structure which occurs three times. Similar to symmetry detection, repeating structure detection
has many applications including shape classification and object discovery. Formally a repeating structure in a
model M may be defined as follows. Let R be the set {r1,r2, . . . ,rn} such that ri ⊂ M for all i . R corresponds
to a repeating structure if ri = Ti j (r j ) for all i , j where Ti j is a transformation. That is, a symmetry exists
between all pairs of elements of R. In this work we also propose a method for detecting repeating structures
which builds upon the proposed method for detecting symmetries.

The layout of this paper is as follows. Section 2 describes in detail our implementation of the transformation
voting paradigm toward symmetry detection. Section 3 describes our proposed method for detecting repeating
structures. In sections 4 and 5 we present results and draw conclusions respectively.

2 Symmetry Detection

The first implementation of the transformation space voting paradigm was proposed by Mitra et al. [Mitra
et al., 2006].Pauly et al. [Pauly et al., 2008] subsequently used a slight variation of this method as a platform
for detecting regular repeating structures. On a conceptual level methods belonging to this paradigm operate
as follows. Keypoints are first detected and matched. Each such match generates a transformation between
keypoints which in turn provides some evidence (referred to as a vote by Mitra et al. [Mitra et al., 2013]) to the
existence of a corresponding symmetry. This evidence exists in the transformation space and it is necessary to
perform some type grouping or clustering of this evidence to infer the existence of corresponding symmetries.

We will now describe the various steps involved in our implementation of the transformation voting paradigm
towards symmetry detection. In particular we articulate the design decisions involved in implementing each of
these steps and subsequently propose an implementation which overcomes a number of limitations associated
with existing implementations.

2.1 Keypoint detection

Keypoints are defined as prominent points according to a particular definition of saliency and therefore are
good candidates for repeated detection and subsequent matching [Tombari et al., 2013]. A number of authors
have performed in-depth evaluations of existing keypoint detection methods for 3D meshes [Dutagaci et al.,
2012, Tombari et al., 2013]. Also of note is the fact that many keypoint detection methods associate to each
detected point a characteristic local scale which can be used in subsequent analysis such a feature description
[Darom and Keller, 2012]. The symmetry detection methods of [Mitra et al., 2006] and [Pauly et al., 2008] do
not perform keypoint detection. Instead Mitra et al. [Mitra et al., 2006] performs a random sampling of points
while Pauly et al. [Pauly et al., 2008] performs a uniform sampling such that the average spacing between
points is constant. The disadvantage of not having a keypoint detection stage is that points sampled may not be
distinctive and, in turn, it may not be possible to subsequently reliably find correct matches.

In the proposed symmetry detection method we detect keypoints and a corresponding local scale using the
method of Darom et al. [Darom and Keller, 2012] which detects keypoints as local maxima of the Difference
of Gaussians (DoG) in scale and space. This method is an extension of the method by Lowe [Lowe, 2004], for
detecting keypoints and a corresponding local scale in 2D images, to 3D meshes.
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2.2 Keypoint description and matching

Following keypoint detection it is necessary to discover a set of matching keypoint pairs K = {(a1,b1), . . . (am ,bm)}
such that for each pair the corresponding local neighborhoods have a similar shape. The matching of keypoints
is made difficult by the fact that the local neighborhood of matching pairs may have slightly different shapes,
be at different scales and orientated differently. To overcome these issues, for each keypoint, a descriptor is
typically computed which is invariant to such changes, while still preserving discriminability between non-
matching keypoints [Darom and Keller, 2012]. An indepth evaluation of existing point descriptor methods can
be found in [Heider et al., 2012]. The symmetry detection methods of Mitra et al. [Mitra et al., 2006] and Pauly
et al. [Pauly et al., 2008] both use point descriptors which are a function of principles curvatures approximated
at the point in question. In the proposed symmetry detection method we use the keypoint descriptor proposed
by Darom et al. [Darom and Keller, 2012] which is an extension of the 2D image SIFT descriptor [Lowe, 2004]
to 3D meshes.

Once keypoints and their descriptors have been computed, the next step is to establish matches between
keypoint pairs. Different matching strategies can be used to perform this task; an overview of these can be
found in [Szeliski, 2011]. In the symmetry detection method of Mitra et al. [Mitra et al., 2006] the authors
establish matches between all keypoint pairs within a given distance of each other defined using a suitable
metric. Pauly et al. [Pauly et al., 2008] use a bag of words model and establishes matches between all keypoints
pairs assigned to the same word. This approach is also used in the symmetry detection method proposed in this
work. Specifically, codewords are generated using k-means clustering with k is set equal to 10% of the dataset
size; the works of Knopp et al. [Knopp et al., 2010,Knopp et al., 2011] generate codewords in a similar manner.

2.3 Pose estimation and representation

A transformation T in the Euclidean group acting on a point x can be represented as a sequence of three
transformations using Equation 1 where Tr represents a rotation transformation, Ts a scaling transformation
and Tt a translation transformation.

T (x) = Tt (Ts(Tr (x))) (1)

In the proposed symmetry detection method we compute and represent keypoint poses as follows. The
position of each keypoint is computed to be the x, y and z coordinates of the point in question and this is
represented by a three dimensional vector. The scale of each keypoint is computed using the method of Darom
et al. [Darom and Keller, 2012] described in section 2.1 and is represented using a real number. The orientation
is computed such that the z axis is assigned to the surface normal, the x axis is assigned to the cross product
of the z axis and the eigenvector associated with the largest eigenvalue, and the y axis is assigned to the cross
product of the x axis and the z axis. The eigenvalues and eigenvectors for each point are calculated in a
neighborhood of size equal to the local scale estimated above. This method for assigning an orientation was
shown by Petrelli et al. [Petrelli and Di Stefano, 2011] to perform well relative to other methods in terms
of robustness (in their article Petrelli et al. [Petrelli and Di Stefano, 2011] refer to this method as EM). The
orientation of each Keypoint is represented using a unit quaternion [Kuipers, 2002].

2.4 Transformation direction consideration

A single symmetry can be represented by two distinct transformations. For example consider Figure 2(a) which
contains a symmetry between two triangles corresponding to a translation by n units in the x direction. This
symmetry may be represented by a transformation from the left triangle to the right triangle (a translation
vector of (n,0) ), or by a transformation from the right triangle to the left triangle (a translation vector of
(−n,0) ). Therefore any pair of matching keypoints (a,b) resulting from an underlying symmetry corresponds
to two distinct transformation directions. That is, a transformation from a to b and a transformation from b
to a. In the context of implementing the transformation voting paradigm to symmetry detection this property
presents some challenges which must be considered. On one extreme, since each symmetry is represented by
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two transformations this evidence may be divided amongst two distinct locations in the transformation space
and result in a missed detection. On the other extreme, a naive analysis of the evidence may result in a double
detection of a single symmetry.

(a)

(b)

Figure 2: A symmetry corresponding to a translation in
the x direction is depicted in (a). For each matching
pair of keypoints in (b) a single equal transformation
direction, represented by arrows, is assigned.

Our solution to this problem involves defining
a method which for a given symmetry consistently
chooses a single transformation direction, which we
refer to as the dominant transformation direction, be-
tween all corresponding matching keypoints. For ex-
ample consider Figure 2(b) where three pairs of key-
points, corresponding to triangle corners, have been
matched. In this case the same transformation di-
rection, corresponding to positive translation in the
x direction, has been assigned to each match. Sym-
metries can subsequent be detected, while avoiding
the issues above, by applying a standard clustering
method to the transformation space. This solution is
inspired by keypoint detection techniques which as-
sign a dominant orientation to each keypoint [Lowe,
2004]. The symmetry detection method of Mitra et al. [Mitra et al., 2006] does not consider the issues trans-
formation direction presents.

2.5 Transformation representation

Every transformation between matched keypoint pairs provides some evidence (referred to a as vote by [Mi-
tra et al., 2013]) to the existence of a corresponding symmetry. Therefore the grouping or clustering of such
transformations allows one to accumulate such evidence. However due to the nature of biological growth, man-
ufacturing imprecision, stochastic process or sensor noise, symmetries are generally approximate as opposed to
exact. Even if they were exact, slight inaccuracies in the keypoint pose estimation would result in a symmetry
generating a set of similar but unequal transformations. Therefore it is important to represent transformations in
a manner which subsequently allows an accurate measure of similarity to be defined. In the symmetry detection
method of Mitra et al. [Mitra et al., 2006], the authors represent a given transformation by seven dimensional
vector containing a scaling element, three translation elements and three rotation elements. The rotation el-
ements in question correspond to Euler angles. The major drawback of this representation is that the values
of the Euler angles depend on the order of rotations about the three principle axes. That is, it depends on a
representation that is not unique [Huynh, 2009]. In the symmetry detection method of Pauly et al. [Pauly et al.,
2008] the authors represent represent transformations in a similar manner to Mitra et al. [Mitra et al., 2006] ex-
cept that rotations are represented using a rotation axis and angle. This representation is rarely used in practice;
Dunn et al. [Dunn and Parberry, 2011] refers to it as a “conceptual tool” that “gets relatively little direct use
compared to the other formats”.

In this work we represent a transformation between a keypoint pair (a,b), where a and b are the origin and
destination of the transformation respectively, as follows. The representation contains rotation, scaling, trans-
lation and origin components which we discuss in turn. Let qa and qb be the unit quaternion representing the
orientations of the keypoints a and b respectively. We represent the rotation component of the transformation
from a to b as a unit quaternion tq which is computed using Equation 2 where a−1

b is the inverse of quaternion
ab . As stated by Horn [Horn, 1986], unit quaternions provide a “representation such that the space of rotations
allows a metric to be defined on it”. As such, they provide an effective platform for defining the similarity
between transformation rotations.

tq = bq a−1
b (2)

Let as and bs be real numbers representing the local scale values for keypoints a and b respectively (see
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section 2.1). We represent the scaling component of the transformation from a to b as a real number ts which
is computed using Equation 3.

ts =
as

bs
(3)

Let al and bl be three dimensional vectors representing the spatial locations of a and b respectively. We
represent the translation component of the transformation from a to b as a vector tt which is computed using
Equation 4 where tq bl t−1

q represents the rotation of bl by tq [Kuipers, 2002].

tt =
(
tq bl t−1

q

)
ts −al (4)

We define an additional transformation component corresponding to the origin of the transformation from
a to b as a vector to which is computed using Equation 5.

to = al (5)

2.6 Transformation similarity measure

Towards clustering transformations it is necessary to define a measure of transformation similarity. In the sym-
metry detection method of Mitra et al. [Mitra et al., 2006], the authors represent a transformation using a seven
dimensional vector. A norm is defined for this vector and used to measure the similarity of two transformations.
Pauly et al. [Pauly et al., 2008] uses a decision tree approach to determining transformation similarity.

In the proposed work a transformation is represented by the four components tq , ts , tt and to defined
in section 2.5. In order to combine these components into a single distance value we define a metric over
each and combine the corresponding individual distances using a probabilistic interpretation. Let t x

q and t y
q be

quaternions corresponding to the rotation components of two transformation x and y as defined by Equation 2.
The angular distance between these quaternions is represented by the term d x,y

q and is computed by Equation
6; this measure of distance has been proven to be a metric [Huynh, 2009].

d x,y
q = 2arccos

(|x · y |) (6)

Similarly we define the metrics d x,y
s , d x,y

t and d x,y
o on the transformation components ts , tt and to respec-

tively to be the Euclidean distance. We combine the above metrics using Equation 7 where κ is the Gaussian
kernel defined in Equation 8, and σq , σs , σt and σo are corresponding Gaussian scale parameters for each
metric.

d x,y = κ
(
d x,y

q ,σq

)
κ

(
d x,y

s ,σs
)
κ

(
d x,y

t ,σt
)
κ

(
d x,y

o ,σo
)

(7)

κ (d ,σ) = exp

(−d 2

2σ2

)
(8)

The kernel κ returns a value in the interval [0,1] and can be interpreted as the probability that the corre-
sponding components of the transformations x and y are equal. Consequently the value d x,y lies in the interval
[0,1] and can be interpreted as the probability that transformations x and y are equal.

2.7 Symmetry detection via clustering

In this section we describe the approach used to detect groups or clusters of similar transformations correspond-
ing to symmetries. The symmetry detection methods of [Mitra et al., 2006] and [Pauly et al., 2008] perform
clustering using mean-shift clustering. In this work we use a graph clustering, also known as community de-
tection, method to perform clustering. The aim of graph clustering is to detect highly connected sub-graphs or
clusters contained in a given graph. A detailed review of graph clustering can be found in [Fortunato, 2010]. We
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perform graph clustering in two steps. Firstly we construct an undirected unweighted graph Gs = (Vs ,Es). Here
Vs is a set of vertices representing transformations between matched keypoint pairs (see section 2.5) and Es is
a set of edges between these vertices where the corresponding transformations are deemed similar (see section
2.6). Two transformations x and y are deemed similar if d x,y , as defined in Equation 7, is above a threshold
ts . Clusters are detected in the graph Gs using the graph clustering method of [Lancichinetti et al., 2011]. This
method detects clusters which are statistically significant with respect to a random null model, specifically the
configuration model. This method is capable of detecting overlapping clusters. Although this method returns a
hierarchy of clusters, in this work we only consider the lowest level of the hierarchy.

Each cluster detected by the above algorithm corresponds to a set of transformations and in turn a symme-
try. We represent the i th detected symmetry as a two element set {p i

1, p i
2} where one element, say p i

1, is the
corresponding set of transformation origin keypoints and the other element, say p i

2, is the corresponding set of
transformation destination keypoints. We define P to be the set representing each of the n detected clusters;
that is P = {{p1

1, p1
2}, . . . , {pn

1 , pn
2 }}. Mitra et al. [Mitra et al., 2013] describes a number of alternative ways to

representing detected symmetries such as segmentations.

3 Repeating structure detection

Figure 3: Symmetries and repeating geometrical struc-
tures are exhibited.

The task of repeating structure detection is to detect a
set R = {r1,r2, . . . ,rn} such that ri = Ti j (r j ) for all i , j
where Ti j is a transformation. That is, a symmetry
exists between all pairs of elements of R. For exam-
ple consider Figure 3. For each pair of squares or tri-
angles a symmetry exists and is represented by a set
of arrows pointing in a single direction. This implies
that the square and triangle are repeating structures.
Repeating structures can be classified as regular or ir-
regular. Regular repeating structures occur when the
symmetries between elements of R exhibit a regular structure in the transformation space. Pauly et al. [Pauly
et al., 2008] developed a method for detecting such regular repeating structures. Irregular repeating structures
occur when the symmetries between elements of R do not exhibit a regular structure in the transformation
space.

In this work we propose a general method capable of detecting both regular and irregular repeating struc-
tures. We pose the problem of detecting repeating structures as one of finding maximum cliques in a graph.
Let P be the representation of symmetries defined in section 2.7 and bi

j be the axis-aligned minimum bounding
box of the keypoint locations p i

j . We construct an unweighted undirected graph Gr = (Vr ,Er ) such that each

element p i
j of P is assigned to a single vertex v ∈Vr . Two elements p i

j and pk
l are assigned to the same vertex

if their corresponding bounding boxes intersect; that is, if bi
j ∩bk

l 6= ;. For each {p i
1, p i

2} ∈ P an edge e ∈ Er is
constructed between the pair of vertices in Gr to which p i

1 and p i
2 are assigned. However attempting to discover

exact cliques in Gr will result in a detection method which is not robust to failures in detecting all corresponding
symmetries. We therefore extract approximate cliques as connected components in the graph Gr .

4 Results

In this section we demonstrate the effectiveness of the proposed symmetry and repeating structure detection
methods. We applied the proposed methods to meshes generated using the TOSCA high-resolution dataset
[Bronstein et al., 2008]. This dataset contains nine different articulated objects in a variety of poses. We
chose this dataset because the keypoint detection and description techniques used within our methods were
shown to perform well on it in the context of a number of applications including object retrieval. We created
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test datasets by selecting a number of different objects in different poses and integrated by placing them on
a level surface. Let us define an object part as a connected subset of an object which is rigid under changes
in pose. Using this definition the proposed symmetry detection method will detect pairs of matching object
parts and proposed repeating structure detection method will detect sets of matching object parts. Although
Mitra et al. [Mitra et al., 2006] applied their symmetry detection method to an object, specifically a horse,
in two different poses, the authors constrained keypoint matches to be between the different poses. That is,
they reduced the complexity of the problem by exploiting a given object segmentation. In our work we do
not assume any object segmentation and allow both within and between object matching keypoints. Suitable
parameter values for our proposed symmetry and repeating structure detection methods were determined by
trial and error where visual inspection of corresponding results was performed.

Figure 4(a) shows one test dataset used in our evaluation which contains the model of a cat in three different
poses and the model of a wolf in two different poses. This mesh contains a total of 92,370 vertices. Applying the
proposed symmetry detection method resulted in the detection of 28 symmetries. One such symmetry which
exists between the cat’s head is displayed in Figure 4(b) where keypoints belonging to each element of the
symmetry are represented by a unique color. The remaining detected symmetries corresponded to symmetries
between the wolf’s head, the cat’s head, the wolf’s feet, the cats feet, the wolf’s tail and the cat’s tail. All
detected symmetries were meaningful. Applying the proposed repeating structure detection method resulted in
the detection of 9 repeating structures. Two such repeating structures which correspond to the cats’s head and
left feet are, where each occurrence of a reoccurring structure is represented by a unique color, are displayed
in Figure 4(c) and Figure 4(d) respectively. The remaining detected repeating structures were all meaningful
corresponded to the wolf’s head, the cat’s left right feet, the wolf’s four individual feet and the wolf’s tail. The
proposed symmetry detection method does not detect symmetries corresponding to reflection transformations.
The detection of two distinct repeating structures corresponding to the left and right cat’s feet can be attributed
to this fact. It is important to note that no symmetry or repeating structure corresponding to the cat’s or wolf’s
torso was detected. This can be attributed to the fact that these regions are very smooth and not salient at a
small scale.

5 Conclusions

This paper presents a state of the art implementation of the transformation voting paradigm to symmetry detec-
tion and a subsequent application of this to repeating structure detection. Relative to existing works the research
presented in this paper makes the following four major contributions:

1. It represents the first work to consider and provide a solution to the issues presented by transformation
direction.

2. It proposes a more suitable keypoint pose representation which allows transformations between keypoints
to be more effectively represented and compared. It also characterizes transformations in terms their
origin which allows for more meaningful symmetry detection.

3. It proposes a novel method for detecting regular and irregular repeating structures which poses the task
as a problem of finding maximum cliques in a graph.

Despite these advances a number of challenges and possible future research directions remains. Some of
the more pressing of these include the following. As discussed in the results section of this paper the proposed
symmetry detection method fails to detect symmetries between regions which do not contain small scale salient
features. This is a fundamental limitation of current implementations of the transformation voting paradigm
which use matching keypoints to define transformations. To overcome this issue it is necessary to incorporate
more global features such as segments or contours.
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Abstract

The Bayer patterned colour filter array is commonly used with single chip cameras, with bilinear in-
terpolation commonly used to demosaic the raw image to form a full colour image. When skip mode is
used for sensor readout, the pixels are read out in 2×2 blocks. This requires modifying the interpolation
weights. Several linear and bilinear interpolation schemes are compared. It is shown that with the output
pixels located in the corners of the 2×2 Bayer blocks (for a half resolution output image) produces the best
reconstruction in terms of PSNR, and output pixels located in the centre of the Bayer blocks gives the best
visual reconstruction.

Keywords: CMOS camera, Bayer interpolation, Skipping mode, Demosaicing, Artefacts

1 Introduction

Most low cost colour cameras use a single chip where each pixel captures only a single colour channel of the
colour image. This is achieved by integrating an array of colour filters, one for each pixel, when the sensor is
fabricated. The most commonly used colour filter array is the Bayer pattern [Bayer, 1976] although other filter
patterns are possible [Parulski, 1985]. The Bayer pattern, shown in Figure 1, has half green pixels, quarter blue
pixels and quarter red pixels. To form a full colour image, it is necessary to interpolate the missing components
from those that are available. This interpolation process is also known as demosaicing.

Figure 1: Colour filter array for the Bayer pattern

There is a trade-off between computational complexity and the quality of accuracy of the results. Three
types of artefacts are commonly encountered from demosaicing:

• Blurring. The reduced sampling of channels results in a loss of fine details. Recovering the missing
details by interpolating across edges will blur those edges.

• Colour bleeding. The samples for the different channels are in different locations. Interpolating them
independently can result in the different colour channels being interpolated differently, resulting in un-
natural colours, particularly visible around edges.

• Zipper effect. The alternating rows and columns within the colour filter array pattern can result in an
alternating colour pattern most visible around edges and lines. This alternating pattern looks a little like
a zipper.
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The simplest interpolation approach is nearest neighbour interpolation. This uses a 2×2 window to copy
the value from the nearest previously available pixel for a given colour channel. Since each colour channel is
shifted slightly differently, this results can result in colour bleeding around edges.

The next simplest approach is bilinear interpolation, which averages the pixels on each side of the unknown
channels using a 3×3 window. This gives significantly better results than nearest neighbour interpolation,
while still being relatively simple to implement. However the quincunx sampling of the green channel is quite
different from that of the red and blue, giving zipper artefacts around edges.

A simple improvement over basic bilinear interpolation is to detect the predominant orientation of any edges
within the green channel (by taking the difference at red and blue pixels between the horizontally adjacent and
vertically adjacent green pixels), and interpolating along the edges rather than across the edge. This removes
much of the zipper artefact, and can reduce the blurring. For this reason, edge directed bilinear interpolation
has probably become one of the most commonly used demosaicing algorithms.

There is a wide range of more advanced methods (see [Lu and Tan, 2003, Gunturk et al., 2002, Hsia, 2004,
Li et al., 2008, Li and Randhawa, 2009]), which aim to improve the quality by reducing the artefacts. These
generally require a larger window size, and result in increased computational complexity.

1.1 Camera Readout Modes

Low cost cameras are usually made using CMOS fabrication technology, and can result in quite large resolution
sensors being available at relatively low cost. Since the pixels within a CMOS sensor are potentially individ-
ually addressable, sensor manufacturers have introduced a number of readout modes which enable a subset of
the pixels to be read. This has the potential of reducing the resolution of the output image with the advantage
of increasing the frame rate of the camera.

Windowing reads out only a rectangular subset of the pixels within the camera, directly reducing the image
resolution. Only the pixels with a small portion of the complete field of view are read out. To read out the same
field of view as before, a significantly shorter focal length lens must be used. Such short focal length lenses are
prone to lens distortion.

Another readout mode available is skip mode [Fossum, 1997] where every second (or third, etc) pixel and
row is read out. Such subsampling reduces the resolution without affecting the field of view, enabling the
existing lens to be used. For single chip colour sensors, however, the skipping pattern has to take into account
the pattern associated with the colour filter array. Taking every second pixel on every second row will only
output a single colour channel. Therefore, for colour sensors the skip mode operates at a granularity of a 2×2
block rather than individual pixels [Micron, 2006]. The corresponding readout pattern is shown in Figure 2.

Figure 2: Pixel access pattern when accessing every second pixel in skip mode, with pale pixels not read out

When interpolating an image with skipping, the bilinear interpolation weights have to be adjusted to give
evenly spaced output pixels. The best approach for accomplishing this has not been discussed before in the
research literature. Different approaches for demosaicing with skipping every second pixel will be investigated
and compared within this paper. Section 2 outlines the different interpolation strategies that will be considered.
The methodology for comparing the different schemes is described in Section 3. The results are analysed in
Section 4 before drawing conclusions in Section 5.
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2 Bayer Interpolation Strategies

Using standard bilinear interpolation without skipping is clearly inappropriate because even rows and even
columns are offset by 1 input pixel (or half an output pixel). The weights of the input pixels will clearly need to
be adjusted. The fist question is where, relative to the input samples, should the output pixels be located. The
most obvious choice is pixel centred, with the output aligned with one of the pixels (see the left pattern in Figure
2). Alternatively, the pixels could be aligned with the corners of the input pixels. Here there are two possible
configurations or strategies (see Figure 2). The pixels can either be centred on the centre of a 2×2 block, or on
the corners of the block. Other configurations are possible, but lack symmetry so will not be considered.

Figure 3: Positioning of the output samples. Black dots show the centres of the output pixels. From the left:
pixel-centred, block-centred, and block-cornered configurations

The performance of each of these configurations will be considered. The grouping of pixels in blocks means
that to access all of the neighbouring pixels required for bilinear interpolation, a 4×4 window in the input image
is needed (or 5×5 for the block-cornered method). For the red and blue channels, the pixels are available on a
regular grid, making bilinear interpolation straight-forward to estimate the value at arbitrary locations. For the
green channel, there are two such grids. The grid with a pixel closer to the output position will generally give
the better interpolation results. In some cases this is not clear (in particular with the block-cornered scheme),
so the interpolation results from the two grids are averaged.

2.1 Pixel-centred

The weights for the pixel-centred configuration for the three colour channels for each of the output pixel samples
are shown in Figure 4. Of the four pixels within the 2×2 block to align the output image to, we have chosen
the green pixel on the first row of the block. This was chosen because there are twice as many green pixels as
red and blue. Selecting the other green pixel would give similar results because of symmetry. Selecting either
the red or blue, while possible, lacks symmetry in that the red and blue channels would require different sets of
weights. In the results, this scheme is labelled PC.

Note that for the green channel, in the second and third column, there are simpler horizontal and vertical
averages available as shown in Figure 5 (labelled PCL), interpolating using the nearest pixel gives a lower error.
An alternative to consider using the nearest green is interpolating linearly along the diagonals, as shown Figure
5. This method is labelled PCD.

2.2 Block-centred

The weights for the block-centred configuration are shown in Figure 6. For the green channel, averages are
taken between the nearest two green pixels. For the red and blue channels, the weights of the four adjacent
input pixels are determined using bilinear interpolation. In the results, this scheme is labelled BC.

For the red and blue pixels in the centre of the block, it is also possible to interpolate simply along the
diagonal as shown in Figure 7. The effect of this simplification will also be considered, and is labelled BCD.

2.3 Block-cornered

The final configuration considered is the block-cornered configuration, with the weights shown in Figure 8. In
the results, this scheme is labelled BN.
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Figure 4: Weights for the pixel-centred scheme (PC)

Figure 5: Alternative weights for the pixel-centred green channel (upper row: PCL, lower row: PCD)

For some of the outputs, a diagonal linear interpolation is also possible. The corresponding weights for
these are shown on the left of Figure 9. Applying this to the green channel is labelled BND1G in the results,
while extending it to the red and blue channels as well is labelled BND1. For the other green output pixels, it is
also possible to make use of symmetry to perform a diagonal interpolation, as shown in the right of Figure 9.
This is labelled BND2G.

3 Comparison Framework

To be able to objectively assess the accuracy of the demosaicing, it is necessary to have ground truth data.
An image dataset commonly used for testing demosaicing algorithms is the Kodak photo CD image set. This
is a set of full colour images [Kodak, 1991] of a range of scenes with varying amounts of fine detail and
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Figure 6: Weights for the block-centred scheme (BC)

Figure 7: Alternative weights for the block-centred red and blue channels for diagonal interpolation (BCD)

Figure 8: Weights for the block-cornered scheme (BN)
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Figure 9: Alternative weights for the block-cornered scheme using diagonal interpolation (left BND1G and
BND1, right BND2G )

structure. From these, image capture by a single chip sensor can be simulated. Since the unsensed colour
channels are available in the original image, the demosaiced image can be compared with the original, and the
error objectively determined. Let I be the original input image, downsampled by the skip factor, and R be the
reconstructed image after demosaicing, then

ERMS =
√

1

N

N∑
(R − I )2 (1)

where N is the number of pixels in the image. From this, the PSN R in dB can be derived

PSN R = 20log10

(
255

ERMS

)
(2)

One limitation of the PSNR is that it does not always agree with subjective visual assessment. For this
reason, the results of the different interpolation schemes will also be assessed visually.

For the block centred and block cornered schemes, the output pixel grid is offset from the input by half a
pixel horizontally and vertically. For this, the ground truth image was estimated by averaging 2×2 blocks of
the input image before downsampling.

4 Results and Discussion

The different interpolation schemes are applied to each of the 24 images in the test set, with the average PSNR
over the set calculated. The results are listed in Table 1. For all of the schemes, using the diagonal interpola-
tion gives a small drop in the average PSNR (although for some images there may be a slight improvement).
However, with the small dataset used, this drop is not statistically significant.

The block-centred scheme gave a significant improvement in PSNR over the pixel-centred scheme. The
block-cornered scheme gave a small but statistically significant improvement over the block-centred scheme in
terms of PSNR. As with the other methods, using diagonal interpolation did not improve the results on average
(although BND1G gave the best PSNR for about one quarter of the images tested). However the difference in
average PSNR between BN and BND1G is not statistically significant.

One new artefact resulting from using skip mode is a level of blockiness or jumping along diagonal lines
and edges. This can be clearly seen in Figure 10, especially along the mast regions. This is most noticeable
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Scheme Average PSNR Number best PSNR for Figure 10 image
PC 24.714 dB 0 26.405 dB

PCL 24.411 dB 0 26.107 dB
PCD 24.604 dB 0 26.350 dB
BC 26.269 dB 1 27.733 dB

BCD 26.226 dB 0 27.700 dB
BN 26.605 dB 17 28.061 dB

BND1G 26.601 dB 6 28.087 dB
BND1 26.331 dB 0 27.889 dB

BND2G 26.455 dB 0 27.905 dB

Table 1: PSNR averaged over 24 images of the Kodak image set, and for the image in Figure 10.

ground truth pixel-centred (PC) block-centred (BC) block-cornered (BN)

Figure 10: Example image showing the different demosaicing schemes

within the pixel-centred interpolation, but is also apparent with the other schemes. This is an inevitable result
of the 2×2 block based sampling. Also apparent from Figure 10 is a significant blurring and loss of fine detail.
This is primarily a consequence of using bilinear interpolation, and could perhaps be improved by using more
advanced interpolation methods.

ground truth PC PCD PCL BC BN BND1G

Figure 11: Detail from the mast region and number regions

To facilitate visual assessment, part of the mast region if Figure 10 is expanded in Figure 11. The pixel-
centred scheme (PC) has quite significant zipper artefacts. These can be almost completely eliminated by using
the simpler horizontal and vertical averaging (PCL), although this is at the expense of increased blurring and
colour bleed. Visually, using diagonal interpolation (PCD) is indistinguishable from the (PC) method.

Block-centred interpolation (BC) gives significant visual improvement of both colour bleed and geometric
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distortion over the PC method, and appears to be free of zipper artefacts.
The block-cornered method appears to have slightly less colour bleeding than the other methods. The

slight blurring makes the geometric distortion visually less noticeable. It does, however, have moderate zipper
artefacts. In terms of visual quality, there is no noticeable difference between BN and BND1G.

Overall, in terms of visual evaluation, if the zipper artefact is deemed objectionable, then the block-centred
method is preferable (BC), otherwise the visual assessment confirms the objective results given from the PSNR.

5 Conclusion

With CMOS sensors, skip mode readout allows the resolution of the image to be reduced without affecting the
field of view of the camera. When skip mode is used with Bayer pattern sensors, pixels are read out in 2×2
blocks because of the colour filter array pattern. When demosaicing the raw image to produce a full colour
image, aligning the output pixels based on the block structure gives better results than aligning them based on
the input pixel locations. For downsampling by a factor of 2, aligning the pixels to the corners of the 2×2 Bayer
blocks gives slightly better results than aligning them to the block centres. This reduces the geometric distortion
resulting from the block structure of the sampling. Corner alignment does suffer from moderate zipper artefacts,
so if these are likely to be an issue either visually or for subsequent processing, then block-centred alignment
is preferable.

Future work involves investigating whether edge directed interpolation can reduce the artefacts (blur in
particular) and give an improvement in PSNR. This, and other more advanced interpolation techniques, are
complicated by the uneven sampling associated with skip mode readout.
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Abstract

Although image data can often be sparse for a variety of different reasons, standard image processing
techniques require the use of complete image data. Therefore sparse image data must undergo reconstruc-
tion to yield complete images prior to any subsequent processing. Highly accurate image reconstruction
techniques tend to be expensive to implement whilst simpler techniques, such as image interpolation, are
usually not adequate to support subsequent reliable image processing. A common approach to image re-
construction is normalised convolution; we present a modified approach to normalised convolution which
is based on the sparse image content and we demonstrate that accurate reconstruction is achieved yielding
better image processing results than the current standard normalised convolution.

Keywords: Image reconstruction, Normalised convolution.

1 Introduction

Sparsity is a well-documented problem in all branches of science; numerous methods including statistical
approaches and multi-resolution analysis do exist in the literature to overcome this problem whether in a time
series, a 2-D planar image or an unordered set [Rybicki and Press, 1992, Ford and Etter, 1998]. One of the key
points to be addressed when thinking of a solution for data incompleteness is the nature of such incompleteness.
As usual, regularity is always easy to deal with and when the image sparsity is regular conventional interpolation
techniques can reconstruct the image successfully [Jain, 1989]. However, this is not the case when the data are
irregularly distributed. This situation is often encountered in computer vision applications; for example the
use of omnidirectional cameras [Yagi and Kawato, 1990, Hong et al., 1992, Yamazawa et al., 1993] where un-
warping the omnidirectional images to planar images results in incomplete projections [Scotney et al., 2006].
This sparsity, which should be handled before proceeding with feature detection and managing the process of
feature detection on such sparse un-warped images, has attracted considerable research efforts over the last two
decades. Normalised convolution is one of the methods used for interpolating irregularly sampled images. It
was first introduced in [Knutsson and Westin, 1993] and has shown superiority over conventional grid-based
techniques [Foster and Evans, 2008]. It also has illustrated remarkable capabilities in dealing with low sub-
sampling rates [Piroddi and Petrou, 2004].

Feature detection is at the heart of all computer vision applications. There has been an incessant desire
to develop reliable and stable feature detectors that could reveal the actual informative content of an image
while withstanding possible image distortions and scale variations. In [Kerr et al., 2008], a novel technique
was presented for corner detection adopting the finite-element method and working directly on sparse images.
Within that framework, an adaptive gradient operator is formulated where an irregular image is represented by
an irregular mesh of triangular elements and piece-wise linear basis functions. We have extended the work in
[Kerr et al., 2008] by presenting a normalised convolution based approach called Gradient Magnitude-Weighted
Normalised Convolution (GMWNC). Using the gradient operator proposed in [Kerr et al., 2008] as a weighting
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function, GMWNC improves the reconstruction of sparse images compared with the conventional normalised
convolution (NC). For comparative purposes, feature detection evaluation methods have been applied to the
reconstructed images using GMWNC as well as standard normalised convolution (NC). While maintaining
low computational complexity, the proposed algorithm results in improved feature detection with consistently
improved root mean square error (RMSE) than the traditional NC approach.

The paper is organised as follows: in Section 2, an overview on the conventional NC technique is presented.
In Section 3, the GMWNC is proposed. Results are shown in Section 4 and Section 5 presents a conclusion and
suggested future work.

2 Normalised Convolution

Normalised convolution is an algorithm that operates on irregularly sampled or sparse data sets in order to fill-
in the missing information. Accordingly, it has been used extensively to deal with image data incompleteness
as a spatial interpolation technique. NC adopts a standard convolution filter, classically a Gaussian filter, in
addition to a certainty map. The idea of constructing a certainty map was suggested to differentiate between
the locations where we have a zero-valued pixel and the locations where we have missing data; this map is a
simple binary filter [Piroddi and Petrou, 2004].

Conventional NC is called normalised averaging and it involves two convolutions and an element-wise di-
vision [Knutsson and Westin, 1993]. The first convolution is where the standard filter, namely the applicability
filter is convolved with the sampled sparse data. This filter is responsible for the process of diffusing the infor-
mation from the areas where it exists to the areas where it is missed, according to a certain profile. According
to its properties, it defines the vicinity over which it operates. In the case of a Gaussian filter, interpolation takes
place within the function support according to a Gaussian profile. Equations (1), (2) and (3) shows the three
operations which are carried out in the simplest NC algorithm. The first step is to calculate

D(x, y) = f (x, y)⊗ g (x, y) (1)

where f (x, y) is the sampled input data and g (x, y) is the applicability filter. The second step is to calculate

N (x, y) = c(x, y)⊗ g (x, y) (2)

where c(x, y) is the binary valued certainly map.
The second convolution can be thought of as the certainties associated with the interpolations that took place

in the first convolution [Foster and Evans, 2008]. In order to normalise the first convolution, the reconstructed
image f̂ is determined by

f̂ = D(x, y)

N (x, y)
(3)

By using the available information and a map for data certainty, we are able to generate interpolated pixel
values in the locations where none were originally present. The NC technique is superior to many conventional
in-filling techniques such as the bi-linear and bi-cubic interpolation [Foster and Evans, 2008].

3 Gradient Magnitude-Weighted Normalised Convolution

Gradient Magnitude-Weighted Normalised Convolution GMWNC is a NC-based technique that enhances the
performance of the conventional NC for reconstructing sparse images. The approach in based on that presented
in [Kerr et al., 2008] and an overview is presented in the following subsections.

3.1 Overview of Gradient Operator Design

As in [Kerr et al., 2008], we consider sparse image to be represented by a spatially irregular sample of values
of a continuous function u(x, y) of image intensity on a domain Ω. The operator design procedure is then based
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on the use of a mesh generated using Delaunay triangulation. With each node i in the mesh is associated a
piecewise linear basis function φi (x, y) which has the properties φi (x j , y j ) = 1 if i = j and φi (x j , y j ) = 0 if i 6= j
where (x j , y j ) are the co-ordinates of the nodal point j in the mesh. We then approximately represent the image
function u by a function U (x, y) =∑N

j=1 U jφ j (x, y) in which the parameters {U1, . . . ,UN } are mapped from the
sparse image intensity values. The approximate image function representation is therefore piecewise linear on
each triangle and has value U j at node j .

The gradient operator design in [Kerr et al., 2008] is based on weak forms of operators in the finite element
method [Becker et al., 1981, Scotney and Coleman, 2007]. In order to be directly applicable to sparse image
data, the operator design needs to explicitly embrace the concept of operator size and shape, thus the design
procedure explicitly embodies a size parameter σ that is determined by the local point density. Therefore, we
use sets of Gaussian test functions ψσ

i (x, y), i = 1, . . . , N , when defining the derivative based operators; for first
order operators respectively, this provides the functionals

Eσ
i (U ) =

∫

Ωσ
i

¯
bi · ∇̄Uψσ

i dΩi (4)

where
¯
bi is the basis function and U is the image. Each Gaussian function ψσ

i (x, y) is restricted to have support
over a neighbourhoodΩσi , centred on node i , consisting of those triangular elements that have node i as a vertex
and therefore that the integral in the definition of the functional Eσ

i need be computed by integration over only
the neighbourhood Ωσi rather than the entire image domain Ω. This process enables us to compute the gradient
magnitude at each point within the sparse image for subsequent use in the reconstruction process.

3.2 Weighted Normalised Convolution

The algorithm commences by calculating the gradient magnitude responses across the sparse image using the
gradient operators presented. Referring to equations (1) and (2) in Section 2, the gradient magnitude is equiva-
lent to the applicability filter denoted here as the weighting function, and the presence of a gradient magnitude
value implies a value of 1 in the certainty map in equation (2). Depending on whether the current location
is non-zero-valued or not, D(x, y) and N (x, y) will be calculated and weighted by the gradient magnitude re-
sponse. Equations (5) and (6) demonstrate the steps of carrying out the GMWNC algorithm. First, D(x, y) is
calculated as follows

D(x, y) = f (x, y)⊗ [g (x, y)∗ (v −GM(x, y))] (5)

where v is the maximum gradient magnitude response and GM(x, y) is the gradient magnitude at the point
(x, y). Similar to NC, N (x, y) is identical to D(x, y) with the sampled input data is replaced by the certainty
filter c(x, y).

N (x, y) = c(x, y)⊗ [g (x, y)∗ (v −GM(x, y))]. (6)

This ensures that when the gradient magnitude is high (i.e. a potential feature point) the smoothing is reduced
and when the gradient magnitude is low (i.e. a background point) the smoothing is increased, thus retaining
the key images features during image reconstruction whilst removing noise. The reconstructed image is then
calculated in the same way as indicated by equation (3).

4 Performance Evaluation

Improving the reconstruction of features is the main goal of the proposed technique. Therefore for eval-
uation purposes we apply a feature detector and use the well-known Figure of Merit (FoM) technique
[Abdou and Pratt, 1979]. Taking into account the fairness of evaluation, FoM has been calculated over a range
of signal to noise ratios, typically 100, 50, 20, 10, 5 and 1. In addition, the assessment was made using different
percentages of sparsity. FoM was calculated using synthetic images for diagonal, vertical and horizontal edges.
However, the results obtained for 75% of the image data were similar for both the proposed GMWNC and NC
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techniques and are therefore not shown here; the significant improvements are found when the percentage data
is reduced as low as 25%.

Figure 1 and Figure 2 present graphs for the Figure of Merit versus Signal to noise ratio using only 25%
of the original image data for three edge types (diagonal, horizontal and vertical) using 3×3 and 7×7 filters
respectively. In all cases we can see that the proposed GMWNC technique outperforms the traditional NC
approach with respect to subsequent image processing, i.e., edge detection.

Edge image Method
RMSE
25% data 75% data

Diagonal
NC 25.845 26.6573
GMWNC 26.5877 26.0140

Horizontal
NC 28.0025 28.3764
GMWNC 28.2964 28.1106

Vertical
NC 25.896 26.3009
GMWNC 27.124 26.1031

Table 1: RMSE values for different sparsity ratios and edge orientations

In addition, Table 1 presents root mean squared errors (RMSE) for both approaches, comparing the re-
constructed images with the original images using 25% and 75% data. The RMSE values demonstrate that
both approaches have similar accuracy with respect to reconstruction; however the FoM results in Figure 1 and
Figure 2 illustrate that our proposed approach yields better edge detection and hence feature reconstruction.

5 Conclusion

Techniques that are based on image reconstruction without prior image knowledge do not generally provide re-
liable mechanisms for accurate feature extraction. The most accurate reconstruction technique currently avail-
able that is also computationally efficient is the Normalised Convolution approach. In [Scotney et al., 2006],
a design procedure was presented for edge detection operators for direct use on sparse image data. Here we
extend this existing approach by applying it to sparse image data to derive knowledge of the image content
that can be subsequently used to enhance the image reconstruction process. We have demonstrated the success
of this approach by presenting root mean squared errors that are similar to those obtained using the standard
Normalised Convolution method but also by demonstrating via the Figure of Merit technique that the images
reconstructed using the proposed GMWNC approach yield better results with respect to edge detection than
images reconstructed using standard NC even when using as little as 25% of the original image data. Hav-
ing obtained accurate results for image reconstruction the focus of our further work will be the use of real
omnidirectional images for robot localisation.
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(a) Diagonal Edge

(b) Horizontal Edge

(c) Vertical Edge

Figure 1: FoM Vs SNR using images with 25% data and a 3×3 filter
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(a) Diagonal Edge

(b) Horizontal Edge

(c) Vertical Edge

Figure 2: FoM Vs SNR using images with 25% data and a 7×7 filter
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Abstract

PatchCity is a new approach to the procedural generation of city models. The algorithm uses texture
synthesis to create a city layout in the visual style of one or more input examples. Data is provided in vector
graphic form from either real or synthetic city definitions. The paper describes the PatchCity algorithm,
illustrates its use, and identifies its strengths and limitations. The technique provides a greater range of
features and styles of city layout than existing generative methods, thereby achieving results that are more
realistic. An open source implementation of the algorithm is available.

Keywords: procedural modeling, texture synthesis, example-based

1 Introduction

Procedural modeling techniques have substantially reduced the effort required to create synthesised environ-
ments. In the computer games industry, for example, sandbox games [Sony Online Entertainment, 2014] can
now be set in vast explorable worlds, and the player presented with an ever-changing environment each time
they enter the game. Similarly, in film, generative modeling has greatly simplified the creation of wide envi-
ronment shots, backdrops, and the in-fill of detailed scenery [Planetside Software, 2014] [IDV Inc., 2014].

Existing procedural techniques for city generation use a variety of synthesis methods to produce road
layouts and building placements. These include manually created heuristics [Parish and Müller, 2001],
agent models [Lechner et al., 2003], tensor fields [Chen et al., 2008] and statistically based constraints
[Groenewegen et al., 2009]. Such techniques can produce realistic approximations of cities but have limita-
tions. In particular:

• The structure of a created city is an emergent property of the underlying heuristic rules that determine its
shape. The variety of cities produced is therefore constrained by the creative power of those heuristics.
As a result, existing procedural city techniques are often restricted to grid-based, metropolitan layouts.

• The fine tuning of a created city’s appearance is achieved through adjusting the parameters of the gener-
ative algorithm. As the heuristics become increasingly complex, the tuning of the associated parameters
also increases in difficulty [Lechner et al., 2003].

• When complex heuristics and constraints are applied, the time needed to generate structures can increase
significantly. This can reach a point where construction can no longer occur in real-time, relying instead
on offline generation; this may not be suitable for some applications.

This paper describes a texture synthesis approach to city generation, PatchCity, which was conceived as
a way of addressing these limitations. The strategy is to extrapolate from data provided in the form of vector
graphic city layouts to create a new, larger map, which maintains the consistency and visual style of the original.
The advantages of this approach are:
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• The variation in city styles and features is not constrained by the algorithm because they are produced
directly from the patterns in the user-supplied input.

• By adjusting the input data, subtle changes in city appearance can be achieved in an intuitive way. In
addition, texture synthesis methods can also be applied to fill holes around explicitly defined city features,
enabling precise adjustment of the city structure as required.

• Because the method uses a look-up table of city patches, the city structure can be produced efficiently
without requiring complex heuristic rules to create detailed results. In addition, the use of existing data
sources can also handle building and other feature placement implicitly, which requires significant addi-
tional processing within other city generation algorithms.

Section 2 of the paper examines existing work in procedural city generation. Section 3 then describes
the PatchCity algorithm and related work in texture synthesis. The section shows how vector-based texture
synthesis can be performed using urban layouts and identifies the adjustment steps that are applied to improve
the resulting structure. Section 4 presents the results of applying the PatchCity algorithm to four example urban
locations. The section highlights the strengths and limitations of the algorithm. The paper concludes with a
discussion of potential future work.

2 Procedural City Generation

CityEngine, designed by Parish and Müller [Parish and Müller, 2001] was the first algorithm developed for au-
tomatically constructing city road networks. CityEngine takes road network descriptions as input, and creates
a skeleton city layout. The heuristic rules for the city’s construction are expressed as a set of Lindenmayer Sys-
tem (L-system) formal grammars [Rozenberg and Salomaa, 1980]. During creation, consistency adjustments
are also made to ensure, for example, that roads do not overlap. The heuristics and constraints require additional
user input in the form of images representing water boundaries, terrain elevation, population density and street
patterns. The use of standard highway patterns, such as grid-aligned, radial, and population-density seeking,
helps give the generated city a realistic appearance.

CityEngine is effective in situations where a “good enough” output is acceptable, such as stylised video
games. One problem with this approach, however, is that the indirect nature of L-system descriptions makes
them difficult to adjust, especially as they increase in size to deal with detailed map features. Lechner et al.
[Lechner et al., 2003] proposed an alternative agent-based approach that helps overcome these issues. Their
technique delegates the handling of road and building placement to agents that follow specific rules, similar
to those used by city planners. Different agent types are assigned specific tasks, such as extending roads into
unexplored terrain, connecting existing roads to create shortcuts, and searching for available land on which to
construct buildings. Building construction is based on the type of zone being built and the estimated land value.

Lechner’s approach requires less user input than CityEngine, needing only one image. It also has the
advantage of allowing the user to set global parameters to fine tune the appearance of the generated city. In
later work, the authors combined their system with the SimCity engine for more aesthetically pleasing output
[Lechner et al., 2004]. There are, however, two limitations with an agent-based approach. One is that basing
generation on the emergent results of a set of heuristics limits the control over the resulting city appearance.
The second is that generation speed is relatively slow.

Groenewegen et al. [Groenewegen et al., 2009] introduced a strategy for using real-world exemplar data in
the generation of cities. The models govern how a city might be formed based on user-specified factors such as
city size, continent, historical background and number of highways passing through it. The generation process
divides a city into zones which represent various types of buildings, including light or heavy industrial zones,
commercial districts and transport nodes. These zones are grouped according to their statistical likelihood of
adjacency, based on the input parameters. For example, a city in Western Europe would have a different zone
grouping to one in North America. The Groenewegen approach has the obvious overhead of requiring a new
land use model for each specific country in which a city is generated, which implies having an understanding of
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building patterns in that situation. Also, it focuses on the high-level structure for a city, meaning that additional
work is needed to provide the detail in each case.

Another strategy for generating road networks from pre-existing data is described by Aliaga et al.
[Aliaga et al., 2008], where new roads are produced by analysing statistical properties of an existing network.
Their system uses a random walk algorithm, which iteratively adds road segments to the existing network in a
way that mimics the properties of road intersection points in the original, such as mean/variance of road dis-
tances and angles, tortuosity and intersection hierarchy levels. As a result, the road network generated is one
of the most accurate among those available. Its implementation is, however, much more complex than other
approaches. Also, it can be biased by highly atypical streets from an example map, which may skew the inter-
section property calculations. Texture warping is used to fill space between roads to create convincing satellite
imagery.

Tackling the difficulty of indirect adjustment of city descriptions, as required in CityEngine, Chen et al.
[Chen et al., 2008] proposed an alternative interactive approach. This allows users to create a road network
from scratch or modify an existing network. The underlying representation is a tensor field which can be
manipulated directly or modified through the graph representing the resulting road network. The creation
engine requires the user to know the general layout of the road network they wish to generate, which prevents
creation of a random but realistic city derived from common city patterns. This becomes an advantage, however,
if the user has a very specific city layout in mind. The key strength of the method is the realism of the output,
which improves on that of CityEngine.

From this analysis, five desirable properties of a city generation algorithm are evident: realism, detail, au-
tomation, control and speed of execution. Each existing approach varies in the degree to which these properties
are achieved. The next section presents an algorithm intended to improve on the detail and realism of existing
results. The approach can be fully automatic and has the potential for low level adjustment through explicit
patch placement and hole filling. It also operates sufficiently quickly for interactive applications.

3 PatchCity Approach

Figure 1: Results of applying texture synthesis to an image of text.

PatchCity generates new city structure through a technique based on texture synthesis. In general, texture
synthesis algorithms aim to extrapolate from data provided in the form of an image to create a new, larger image
which maintains the consistency and visual style of the original. Figure 1, for example, shows the technique
applied to a block of text. The visual appearance of the generated block on the right strongly resembles that of
the initial sample patch on the left from which it was produced. Note that no semantic information has been
used in the synthesis process so the generated text is meaningless.

PatchCity is based on a similar synthesis approach but uses patches in vector graphic form that include
important semantic information. More specifically, it uses patches in the form of maps from Geographic In-
formation Systems (GIS) such as OpenStreetMap [Haklay and Weber, 2008]. Its approach means that it can
handle building and other city feature placement, which previous city generation algorithms have had to pro-
cess separately.
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Current algorithms for texture synthesis largely fall into two categories: pixel-based
[Efros and Leung, 1999] and patch-based methods [Efros and Freeman, 2001] [Kwatra et al., 2003]. One
issue with per-pixel synthesis methods, such as non-parametric pixel sampling [Efros and Leung, 1999],
is that they fail to preserve the high-level structure of road networks, resulting in disorganised clusters of
road segments. Also, existing patch-based methods, such as Image Quilting or Graphcut, create frequent
repetition of certain sampled patches, and have road structure disconnection along patch seams. PatchCity
addresses these issues by performing texture synthesis using a vector representation. This format enables patch
constraints to be specified more precisely and provides a representation that enables patches to be merged
without noticeable errors.

3.1 Algorithm

The PatchCity algorithm takes one or more vector street maps as input, from which patches can be extracted.
For image based texture synthesis, sampling of the original image(s) can take place in real-time, as patches
can be calculated entirely using local pixel values. In a vector format, this process becomes more difficult, as
roads will be represented as a series of points marking their path, and buildings by a set of points denoting their
shape. To obtain the set of road points and buildings which lie within a patch, at a given point, requires clipping
of path segments, as well as exclusion of buildings which do not fall entirely within the patch area. The first
step in the algorithm is to divide each input map into its respective patches, and to store these in a lookup table.

Patch extraction takes place at a user-specified interval along each axis of the 2D image. Each extracted
patch stores the paths which cross through its area, clipped to the boundaries of the map region from which
it was taken. The Cohen-Sutherland algorithm [Sproull and Newman, 1973] is used to clip any lines that pass
through the patch, and store them. Buildings that fall entirely within the patch are also stored.

To prevent repeated iteration through each path node within a patch when locating nodes that lie on its
boundary, results are cached for further use. This includes the road count along each edge, the road locations
(as a distance from the edge’s top or leftmost point), and the road sizes. The use of the cache improves the
efficiency of the algorithm and also enables boundary values to be compared more conveniently. Specifically,
execution time is reduced because only those patches with equivalent road counts along the patch boundary
need to be considered as candidates.

Map generation takes place in a top to bottom, left to right fashion, following a grid of patch-sized areas. In
addition to the patch extraction interval, the user can also specify the width and height of the synthesised map
(the number of patches along each axis), as well as the size of each of the patches themselves. For each unfilled
space in the map, the algorithm will fetch the most appropriate patch from the lookup table.

While regular texture synthesis algorithms perform a nearest neighbour comparison with pixel values, the
PatchCity algorithm takes a different approach. Firstly, the top-left patch in the map is initialised to a random
fragment from the lookup table containing at least one road. Subsequent patches are chosen based on a cost
function which takes two patches as arguments. In choosing a new patch from the lookup table, only those with
an equivalent number of roads along the connecting edge are evaluated. The cost function must be calculated for
each edge which connects the target patch location to those which have already been placed in the synthesised
map. For patches in either the first row or the first column, only one evaluation takes place (against the patch
to the left and the patch above respectively). For each of the remaining patches, the choice of patch is based on
the sum of the cost function run against both adjacent patches. The algorithm chooses the candidate patch that
returns the lowest value from the cost function; in the case of multiple patches with the same value, the system
selects randomly from them.

The cost function itself attempts to minimise the visual error between placed patches, using two properties
of the roads which lie along the seam: their location and size. Specifically, the function was designed to return
a higher error cost when the roads on each side of the seam are further apart, and when they are of different
sizes. The function is evaluated as:
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cost(a, b) =

numRoads∑

i=1

(compat(ai, bi) ∗ aisize ∗ bisize) (1)

where

dist(r1, r2) = |r1− r2|2 (2)

ratio(s1, s2) = max(s1, s2)/min(s1, s2) (3)

compat(a, b) = dist(apos, bpos) ∗ ratio(asize, bsize) (4)

It is much more visually jarring in a synthesised map when a major road is disconnected from another along
a seam than when the same problem occurs with a side road or pathway. For this reason, each road pair cost
is also multiplied by the product of their sizes. This results in a lower contribution to the cost total by smaller
roads, and thus disconnects on major roads are discouraged more strongly.

The patches are therefore chosen as:

argmin
p

cost(patch(x− 1, y), p) (5)

for top row patches,
argmin

p
cost(patch(x, y − 1), p) (6)

for leftmost column patches, and

argmin
p

(cost(patch(x− 1, y), p) + cost(patch(x, y − 1), p)) (7)

for the remaining patch spaces.
For comparison purposes, each of the fragments stored by the lookup table is used as a template. On

choosing a fragment to fill a space within the grid, the path and building data are copied to a new patch, so that
the path and building data may be modified by further steps within the algorithm, without corrupting the patch
data stored in the lookup table.

Figure 2: Fix step applied to disconnected roads. Before (left) and after (right).

Figure 3: Fix step applied to floating roads. Before (left) and after (right).

The next stage of the process is to deal with road disconnects along patch seams (Figure 2) and floating roads
that are fully disconnected (Figure 3). To remove disconnection of roads along patch seams, the endpoint of
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Figure 4: Test inputs. Left to right: Chicago, IL; Southampton, UK; Northampton UK; Times Square, NY.

(a) (b) (c) (d)

Figure 5: Cities generated from a single input map. a) Southampton. b) Times Square. c) Chicago. d)
Northampton.

each road on a given patch edge is translated by half of the distance to the corresponding endpoint in the adjacent
patch. This results in a join between the roads, at the cost of introducing some heuristic modification to the
road network. The distance between corresponding road ends is usually small enough that these modifications
are hard to detect in all but the most regularly structured maps. This issue is discussed further in the results
section.

4 Results and Evaluation

Four test maps (Figure 4) were used to evaluate PatchCity. Together they represent four of the most common
styles of road network: (i) irregular city roads with varying shapes and directions (Southampton); (ii) irregular,
grid-aligned roads (New York); (iii) regular, grid-aligned roads with high building density (Chicago); and (iv)
sparse, disorganised country roads (Northampton).

Plausibly realistic cities are produced (Figure 5). There are, however, some issues: (i) removal of floating
road sections can produce large holes, (ii) buildings that cross patch boundaries are excluded, and (iii) cities
with a grid structure can show a visible seam.

Floating roads start and end within the boundaries of the map area. The removal of these problematic roads
is implemented by identifying the connected component subgraphs of the road network. Subgraphs that have
no roads leading off any of the boundaries of the map are identified as floating roads. When floating roads are
removed, buildings may become detached and so also need to be removed. This is achieved by creating a map
which associates each building with the nearest path node. After removing a floating road, any building which
maps to those paths is also removed. The removal of floating roads and their accompanying buildings can
introduce noticeable holes within the map. Consequently this stage is optional as it may or may not improve
the synthesised results. The algorithm could be improved with an additional step that connects floating road
subgraphs to the rest of the map by inserting an additional connecting road.

In addition, during the population of the lookup table, extracted patches contain only those buildings that
fall entirely within their boundaries. This is problematic when buildings are either too large to fit within the
specified patch size, or large enough that they are excluded from most patches in their area. This results in maps
which often contain large gaps in building density along seam lines (Figure 6). This issue could be addressed
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by including the clipped buildings within a patch, and only inserting them into the final synthesised map if this
does not result in a collision with neighbouring patch elements.

Figure 6: Example of building placement gaps occurring due to patch cropping.

A noticeable artifact within the synthesised Times Square result is that at scattered points around the map
the road network falls out of line with its intended grid structure, creating a knock on effect for the subsequent
patches (Figure 7). This problem exists largely because PatchCity operates on a fixed grid of lookup table patch
locations, which may not align precisely with the city’s grid structure. These artifacts could be reduced by
searching in the local neighbourhood of lookup table patches prior to placement to find the best possible match
between placed tiles.

Figure 7: Example of the synthesis method failing to fully preserve grid-based road alignment.

Despite these issues, grid network generation is still possible with the algorithm if the input road network
has regularity, i.e. blocks within the input grid network are regularly spaced, as shown in the Chicago synthesis
example (Figure 5 (a)).

Although no explicit optimisation has been performed, PatchCity’s main synthesis algorithm takes place in
real-time. The execution time for the selection of patches is proportional to the number of lookup table entries.
In addition, the removal of floating roads requires a calculation of the connected components which is linear in
the number of road segments and junctions. This implementation’s measured performance is linear in the area
of the output map. The ability to generate in real-time gives PatchCity a much wider range of applications. For
example, its use can be easily imagined in an open world video game which generates the environment around
the player as they travel, with the potential for ’infinite’ worlds.

5 Conclusions and Further Work

The key strength of PatchCity is its use of structural example data as input. This enables the algorithm to
generate a diverse range of city styles, from regular, grid-aligned modern cities to more organic, historic urban
centers. PatchCity is also able to capture instances of uncommon city features such as shortcut pathways and
roundabouts. This adds to the realism and variety of the output.

PatchCity’s building synthesis is a result of the algorithm’s extraction of building data from the input maps,
providing building placement as a built-in element of its execution. As further work, additional city metadata
could be included in the synthesis process. Terrain data, land use models, height maps and population density
information could all be added to the input and integrated into the patch extraction and placement process.
By adding more terms to the cost function, this additional data could provide more detailed and realistic city
structures.

Further improvements in city quality could also be achieved by performing user evaluations of synthetic
results. With such evaluations it may be possible to develop improved metrics for tile placement as well as
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a more global method of ranking different synthesised cities. Knowledge of what constitutes a high quality
output would allow the system to repeat the synthesis process until the quality reaches a specified threshold.

The PatchCity algorithm can also be viewed as a novel contribution to the field of texture synthesis. Highly
stylised structural data often produces artifacts using traditional pixel based methods. By adapting the cost
function described in Section 3.1, PatchCity could be generalised to other synthesis applications.
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Abstract

In this paper, we address the problem of template matching with scaling and in-plane rotation. To solve
this problem, huge amount of matching tests are potentially required and the common integral image is no
longer applicable. The effectiveness of template matching can be enhanced by adaptive sampling methods
under smooth assumption. As a solution, we simplify the simple genetic algorithm (GA) to a stochastic
adaptive sampling method. Our method introduces two operations called global sampling (GS) and local
sampling (LS) as the substitution of crossover and mutation. GS and LS utilize the property of binary code:
the left-most bit of a binary-coded individual affects the phenotype most significantly and vice versa. By
randomly updating the high-order bits, GS has the ability to sample in a wide scope of searching space to
approach the ground truth fast but roughly. On the contrary, LS has the ability to refine the final result in
a narrow scope which is hard to be realized by GS. We compare our method against the simple GA over
11 sequences, with each sequence contains 36 images. The results show that our method performs more
accurate and faster than the simple GA on adaptive template matching.

Keywords: Adaptive template matching, In-plan rotation, Global sampling, Local sampling, Genetic algorithm

1 Introduction

template

...

...

Figure 1: Template matching considering scaling and
in-plane rotation. Red rectangle represents the ground
true, green rectangle represents the matching result.

Template matching is a classical research topic of
computer vision. With the development of key point
based local features, template matching has been less
studied in recent years because of the inefficiency due
to exhaustive searching. However, it is worth noting
that under many situations, template matching is still
an efficient way to solve problems especially when
the key points are hard to be detected or easy to be
mismatched. Common template matching problem
without considering the rotation and scaling is easy
to be solved exhaustively by a modern personal com-
puter because the degree of freedom (DOF) is simply
two. However, when in-plane rotation, x-axis scal-
ing, and y-axis scaling are involved additionally, the
DOF grows to five, and is no longer suitable for ex-
haustive searching, because each sample is in a five
DOF space. Under the assumption that a template is
smooth, we can approach the ground truth adaptively
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instead of estimating all the candidate regions. The “adaptiveness” can be realized from the perspective of opti-
mization algorithms. In the situation of genetic algorithm (GA), we can treat the template matching problem as
a minimization problem of grey value difference. When applying GA to template matching problem, achieving
an accurate result usually requires a large number of populations and generations, because the optimization
time of GA is large. We wish to develop an adaptive sampling method by controlling the scope of sampling
space rather than utilizing evolutionary operations such as crossover, mutation. Figure 1 shows the task of our
paper.

The rest of this paper is structured as follows. In Section 2, we survey template matching methods dealing
with scaling and in-plane rotation. In Section 3, we introduce our method from two perspectives: 1) construc-
tion of a single individual, 2) GS and LS operations. In Section 4, we systematically compare our method
against GA to show the enhancement. Finally, we conclude this paper in Section 5.

2 Related Work

In this section, we mainly survey previous works on template matching considering scaling and in-plane rota-
tion. Despite the feature-based matching methods like SIFT [Lowe, 2004], ASIFT [Morel and Yu, 2009], direct
template methods also play an important role.

To accelerate matching procedure, [Kim and de Araújo, 2007] apply cascaded filters to exclude areas which
have low probability to be final result. [Akashi et al., 2007] treat template matching as an optimization problem
under genetic algorithm framework and apply their method into real-time eye detection by inheriting previous
frame’s evolutionary result to the next. Genetic algorithm can evolutionarily select “promising” candidate
areas to evaluate, thus can avoid exhaustive searching. [Korman et al., 2013] propose a method which can deal
with affine transformation including scaling and rotation. It constructs a discrete sampling net to approach
the ground truth sparsely. [Tsai and Chiang, 2002] decompose an input image into different multi-resolution
levels in the wavelet-transformed domain, and then use only the pixels with high wavelet coefficients in the
decomposed detail sub-image at a lower resolution level to compute the normalized correlation between two
compared patterns. [Choi and Kim, 2002] propose a method based on the combination of the projection method
and Zernike moments. At first stage, candidate regions are selected by computationally low cost features. After
that, rotation invariant template matching is realized by performing Zernike moments on candidates.

3 Proposed method

3.1 Problem Description

Two greyscale images I1 and I2 are given as the input with each pixel’s grey value in [0, 255]. I1 is defined as
a template image with size n1 ×n1. I2 is defined as a target image with size n2 ×n2. For clarity, we consider
I1 and I2 are both square images. An arbitrary transformation T = {r, tx , ty , sx , sy } respects to a candidate
region includes rotation r , x-axis’s translation tx , y-axis’s translation ty , x-axis’s scaling sx , y-axis’s scaling
sy . Greyscale intensity difference is used to measure the similarity between I1 and a candidate region in I2,
which can be represented as:

G(I1, I2,T ) =
∑

pi∈I1,pi∈I2

|pi −pT
i |, (1)

where pi is a pixel in template and pT
i represents a pixel in I2 after transformation T is involved.

Since minimizing the greyscale intensity difference is the task of our method, we can write it formally as:

T̂ = argmin
T∈S

G(I1, I2,T ). (2)

Sampling set S contains all the individuals we have estimated. Each individual is coded by a Gray code whose
construction will be introduced in the next subsection.
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3.2 Construction of each binary-coded individual

A binary Gray code is denoted by g , with each bit gi ∈ {0,1}, where |g | = 40 in our setting. Specifically, g0 ∼ g7

represents rotation, g8 ∼ g15 represents x-axis translation, g16 ∼ g23 represents y-axis translation, g24 ∼ g31

represents x-axis scaling, g32 ∼ g39 represents y-axis scaling. The phenotype of (i /8+1) th parameter ρi is
calculated from corresponding bit part. As an example, the phenotype of rotation (first parameter) can be
computed as follow,

ρ0 = decimal(g0 ∼ g7)/255×2π. (3)

After each parameter’s phenotype is calculated, the transformation matrices between each pi and pT
i can be

represented as:

M =



sx 0 0
0 sy 0
0 0 1


 , R =




cosr sinr 0
−sinr cosr 0

0 0 1


 , Tr =




1 0 0
0 1 0
tx ty 1


 . (4)

Matrix M represents the scaling, R is the rotation, and Tr is the translation.

3.3 Global sampling (GS) and Local sampling (LS)

For GS, we randomly reverse the bit values of high-order in each parameter with a certain GS probability α. On
the other hand, we randomly reverse the bit values of low-order in each parameter with a certain LS probability
β. The location to divide the bits into low-order or high-order is tunable. In our setting, the center position is
used. For example, if we have a bit part g j ∼ g( j+7), after GS and LS operations are performed, the value of a
certain bit gi in g j ∼ g( j+7) can be represented as:

gi =
{

1− gi with probability α, if i < j+4
1− gi with probability β, if i ≥ j+4

, α<β. (5)

By defining this, the probability of parameters’ changes can be controlled. Taking rotation as an example, after
GS and LS, the probability of individual 10001000 (192◦) to be within range [10000000,10001111]([180◦,202◦])
is nearly (1−α)4. Since α is suggested to be set smaller than β, sampling procedure will be done mainly around
the elite in each generation (similar with crossover), while has lower probability to start searching a new space
(similar with mutation). When α equals to β, our algorithm degenerates to a completely random sampling
method.

We use roulette selection scheme to select better individuals, which is the same with GA. Without selection,
the “adaptiveness” can not be realized. In summary, our method can be concluded in Figure 2.

Selection GS LS
Random 

initialization
Output elite

Iteration ends?

no yes

Figure 2: Overview of our algorithm.

4 Experiment

To evaluate our algorithm, we create a benchmark which contains 11 sequences, focusing on matching a capital
alphabet “F” by a given template. In each sequence, the ground truth position of “F” is rendered at different
places and rotated at an equal interval of 10 degrees. Thus, each sequence contains 36 images. Pixels in the
ground truth rectangle are all in the target image. In our experiment, only one template is used, which has a
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size of 15×17 pixels and shown in Figure 3. Overlap error is used to quantify the accuracy between matching
result T and ground truth T ′, which is defined as:

O(T,T ′) = 1.0− area(T)∩area(T′)
area(T)∪area(T′)

(6)

All the experimetns are done on a PC which has a Core i7 2.97GHz CPU and 16 GB memory.
For parameter setting of our method, we set α as 0.1 and β as 0.7. For GA, we set crossover rate as 0.9,

mutation rate as 0.05. For clarity, population number and generation number are set as the same. We allow
arbitrary rotation angles and both the x-axis and y-axis scaling are within [1.0,5.0].

Table 1 shows the minimum overlap error in each sequence by comparing our method with simple GA.
Number refers both the population number and generation number. As we can see, the minimum overlap error
of each sequence belongs to our method. Figure 4(a) ∼ (k) show the comparative results of each sequence in
curves. We can observe that with small population number and generation number, GA usually outperforms
our method. However, with the increase of population number and generation number, our method reduce
the overlap error rapidly. Figure 4(l) shows the comparative result of average processing time. Because our
method does not need to swap the genes on couples of individuals like crossover, the processing time required
is reduced, especially the population and generation number are large. Figure 5 shows some examples of
matching results. The matching results can well fit the ground truths and appear to be robust with scaling and
rotation.

Figure 3: Template used in experiment (truth size: 15 pixels × 17 pixels).

Table 1: Minimum overlap error in each sequence which is shown in bold.

Seq01 Seq02 Seq03 Seq04 Seq05
number Our GA Our GA Our GA Our GA Our GA

30 0.82 0.45 0.86 0.83 0.92 0.87 0.79 0.6 0.78 0.46
60 0.71 0.53 0.78 0.58 0.91 0.86 0.28 0.26 0.63 0.36
90 0.25 0.26 0.31 0.45 0.88 0.82 0.42 0.29 0.29 0.39
120 0.29 0.29 0.26 0.37 0.64 0.85 0.13 0.19 0.35 0.37
150 0.25 0.28 0.22 0.31 0.57 0.85 0.14 0.22 0.3 0.3
180 0.12 0.22 0.23 0.31 0.83 0.81 0.14 0.19 0.31 0.31
210 0.12 0.21 0.18 0.34 0.72 0.78 0.17 0.15 0.2 0.32
240 0.12 0.19 0.2 0.34 0.71 0.77 0.11 0.16 0.28 0.33
270 0.12 0.17 0.18 0.33 0.62 0.78 0.12 0.17 0.15 0.3
300 0.12 0.14 0.24 0.32 0.62 0.77 0.1 0.17 0.2 0.29

Seq06 Seq07 Seq08 Seq09 Seq10 Seq11
Our GA Our GA Our GA Our GA Our GA Our GA
0.67 0.5 0.55 0.5 0.81 0.44 0.8 0.5 0.41 0.61 0.63 0.72
0.44 0.44 0.77 0.27 0.19 0.32 0.55 0.38 0.42 0.24 0.25 0.38
0.43 0.33 0.27 0.23 0.35 0.36 0.64 0.3 0.14 0.2 0.36 0.31
0.26 0.37 0.27 0.24 0.19 0.22 0.29 0.27 0.25 0.26 0.22 0.39
0.35 0.37 0.15 0.18 0.17 0.21 0.26 0.32 0.11 0.23 0.2 0.3
0.24 0.37 0.17 0.14 0.11 0.15 0.27 0.31 0.13 0.19 0.26 0.34
0.18 0.28 0.17 0.17 0.1 0.16 0.19 0.29 0.11 0.18 0.25 0.28
0.21 0.31 0.13 0.17 0.1 0.17 0.22 0.28 0.11 0.17 0.23 0.27
0.23 0.27 0.11 0.15 0.12 0.16 0.17 0.3 0.1 0.14 0.26 0.29
0.24 0.27 0.1 0.15 0.1 0.16 0.18 0.26 0.11 0.17 0.14 0.28
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Figure 4: (a)∼(k) Comparative results over each sequence. (l) Average processing time of each test image.
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5 Conclusion

In this paper, we presented a method to solve template matching problem with scaling and in-plane rotation.
For efficiency, we proposed global sampling operation and local sampling operation to simplify the simple GA
algorithm. Instead of crossover and mutation, we locate and refine the matching result by controlling the search
scope of the whole sampling space. Experiments have shown that our algorithm is more accurate and faster than
existing simple GA algorithm. The drawbacks of our algorithm can be concluded as: 1) The smooth assumption
limits the application of our algorithm. For template with large variation, we will need larger population and
generation number to ensure the accuracy. 2) Due to the stochastic behaviour, there is no absolute assurance
that our algorithm can find the global optimum solution by the limited matching tests and the results change
with the change of random seed. As the future work, we plan to apply our algorithm to real-world applications.
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Abstract

The aim of the research is to devise an automatic way to view and segment a scene of discrete 3D objects
with or without ambient illumination and then to fully illuminate each object in turn without illuminating
other objects or the background. The structured illumination must be controlled in time and space to have
the same shape, size and position as the object. There is a need for such a system in the entertainment
and visual arts industries for sound and light shows at night outdoors for selectively illuminating buildings,
in caves or caverns for illuminating rock formations, or for illuminating mannequins, statues or waxwork
figures in theatres sequentially in synchrony with a voiceover narration discussing each in turn. In these
applications, such a technique has an advantage over the use of spotlights as only the object of interest is
illuminated and not nearby objects or the background so helping the viewer to concentrate on just the object
of interest. In this paper a video camera and projector system is reported with real time image processing
feedback via a computer. The way in which the image processing algorithms in the feedback loop were
developed to overcome various issues is explained.

Keywords: Object-Background segmentation, Structured illumination, Spotlight, Signal processing, Image
alignment

1 Introduction

Figure 1: Experimental Arrangement and Bird view of
the arrangement

The research aims to design and demonstrate a cam-
era and projector intelligent system to illuminate 3D
Objects within a 3D scene while minimizing illumi-
nation of other nearby objects and the background of
the scene. The system should be capable of illumi-
nating each individual object alone and alternatively
illuminating each individual object in a sequence in
turn. The system can be used to illuminate all of the
objects in the scene at the same time or a single ob-
ject can be illuminated while the rest of the objects
and the background are under background are kept
dark. The research has various applications in the
entertainment industry such as in outdoor sound and
light shows [1] in which individual buildings [3] or
statues are illuminated in turn either in time to music or synchronised with explanations about the objects
given by a speaker [2], in underground cave tours where individual rock formations are illuminated in turn as
a speaker explains them [4], recently it has also been popular to project images onto mannequins and statues
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to make them appear to be talking. In such situations, the events usually take place at night or in dark rooms
and the difficulty is how to arrange the projector to mainly illuminate just one object without illuminating other
nearby objects. The alignment and calibration of the projector can be very time consuming. In this paper we
describe the development of a camera and projector system with image processing software to carry out this
automatic alignment of the projected image and the 3D objects. In this paper only uniform illumination is
projected although in future it could be projected moving images.
The arrangement used for the paper is as shown in figure 1. A video camera is placed on top of the projector,
ans is secured to it, and the output of the camera and input of the projector are connected to a HP Pavilion
DV6 3107ax laptop computer which requires 90 W AC power and has 500 GB memory. The video camera was
chosen to be Microsoft Lifecam Cinema which has a USB 2.0 connection, a speed of 30 fps (frames per second)
and is powered by the computer through the USB 2.0 link. The resolution of the camera was 960 × 544. Thw
projector chosen for the project was an Infocus X9 DLP project with a brightness of 1800 ANSI lumen and
1400 × 1050 resolution. The camera is rotated so that its horizontal axis matches that of the projector so that
the captured images do not need to be rotated. The camera is placed on the top of the projector to minimise
the distance between the two. In the experiments reported in this paper the distance between the center of the
lenses of the camera and projector is 8 cm. This distance is measured vertically as the camera lens was placed
directly above the projector lens. A dark background is used to simulate the typical environments used in sound
a light shows. This also helps to achieve proper object background segmentation due to the intensity difference
between the background and the objects to be illuminated. A light background and dark foreground can be used
alternatively, in which case the picture needs to be inverted before further processing.
The paper focuses on three main issues which need to be solved. Firstly, the system should be able to auto-
matically detect and separate the objects from their background. Secondly, the projector must project image
such that it matches the objects detected by the camera exactly. Finally, only the specified objects should be
illuminated at a particular time keeping all of the other objects and the background in the dark. This whole
process should be carried out automatically in realtime and should be robust to changes in the ambient light.
In order to achieve this the camera-projector system is used in conjunction with image processing algorithms
written in LabVIEW is used.
The surroundings contain 3D objects, therefore, the detection technique should be such that the appropriate in-
formation of the surroundings is retrieved when the 3D environment is converted into a 2D image. Laboratory
Virtual Instrument Engineering Workbench (LabVIEW) is graphical programming language used for computer
vision and image processing and was chosen over MatLab due to its speed and graphical user interface which
enables various functions such as different filters to be used without changing the code or need to recompile
the code and due to LabVIEW’s better hardware-software interface. LabVIEW image acquisition was used to
capture the surroundings and the image was then processed as presented in section 2. The next step is to deter-
mine the best match between the projected illumination and the object such that the projected light is exactly
on top of the object. Normalised cross correlation between the transformed captured image with and without
projection was used for this purpose. The disadvantages of cross correlation includes sensitivity to illumination,
rotation and scale changes. However, in this research they prove to be advantageous as due to the difference in
normalised cross correlation value for different scale, illumination or rotation, the best match can be found. The
objects were then selected and lit sequentially using Magic Wand Processing, a function provided by National
Instruments as part of NI Vision, as presented in section 3.
The whole process takes about 35 seconds to one minute 15 seconds with a 4 GB AMD Phenom Quad-core
processor and is independent of the number of objects used. However, the speed of processing is highly depen-
dent on the processor used. Onboard FPGA image processing can give much higher processing speed than the
laptop computer. The speed of the program also depends on the RAM available with higher RAM increasing
the speed of processing significantly. The processing time is independent of number of objects detected, and,
hence, any number of objects can be detected by this method.
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2 Object-Background Segmentation and Image Processing

Each object needs to be segmented and separated from the background and other objects. Also the noise
(unwanted particles and bright spots due to details of the scene and light sources and unwanted reflections)
needs to be minimised [5–8]. LabVIEW 14.0 student edition together with IMAQ 2014, IMAQdx 2014, NI
VISA 2014 and NI Vision acquisition 2014 and NI Vision assistant 2014 [9, 10], all provided by National
Instruments, were used for this purpose as they conveniently have a variety of pre-written functions relating to
image processing and computer vision and they provide various drivers for hardware integration.

2.1 Spatial Image Filtering

The captured RGB image is converted to greyscale and is segmentation filtered to separate the object from the
background and from other objects. Different filters were tried to find the most appropriate filter. A Gaussian
filter [11–14] was first applied to separate the objects from their background. It has the effect of keeping
the important patterns while removing finer details, however, it also increases the noise present (figure 3). If
the light is equally distributed across the image and bright, the Gaussian filter saturates and the whole image
becomes white. In this case, the alternative is to use a low pass filter. The effect of the low pass filter is minimal,
except that it smooths the boundaries of objects. If lowpass filter is used for figure 2, which is not uniformly lit,
the object to background intensity difference will be low and the objects would not be detected, this is evident
in later stages of image processing, that is after thresholding as shown in figure 4. Even when the kernel’s
(Convolution matrix determining the weight of the pixels under consideration and their neighbouring pixels)
size is increased, the result is still the same as shown in figure 4. The final result after image transformations as
described is section 2.2 results in a black image if a low pass filter is applied for non-uniformly lit environment.
If no filter is applied, the result is the same as shown in figure 4. Hence, a Gaussian filter is suitable for non-
uniformly lit enviorment such as that of figure 2, whereas lowpass filter is ideal for uniformly lit enviorment.
Therefore, either a Gaussian or low pass filter is selected for object background segmentation depending on the
ambient illumination conditions. A Gaussian kernel of size 3×3 with the following dimensions were used as
they were found to give the best results.

G =
∣∣∣∣∣∣

1 2 1
2 4 2
1 2 1

∣∣∣∣∣∣

Figure 2: Captured image of the
arrangement of 3D objects within the

scene from the CCD camera

Figure 3: Image after
application of a Gaussian

Filter

Figure 4: Image after
application of a Low Pass

filter

2.2 Image Transformation and Morphology

The greyscale image is eroded [15] for four iterations to remove the finer details and bright spots, so that they
do not connect two adjacent objects and make them appear as one, and also so that they are not mistaken as
objects themselves. The number of iterations was varied and four was found to yield the best results. If a pixel
under consideration has the binary value 1 and if all of its cardinal neighbouring (pixels to the immediate left
and right, and top and bottom of the pixel under consideration) pixel values are 1 then the new pixel value is
set to 1, otherwise it is set to 0. The erode operation is defined by:
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Xnew =
{

0 i f xol d = 0

1 i f xol d & (C ar di nal = 1)

Next, the image is dilated for four iterations, to bring it back to its original size. The number of iterations
was varied and four was found to yield the best results. The dilation operation sets the new value of the pixel
to be 1 if the original pixel is 1 or if its cardinal neighbours are 1, otherwise the value is set to 0. The dilate
operation is defined by:

Xnew =
{

1 i f xol d O R(C ar di nal = 1)

0 i f other wi se

Figure 5: Exponential operation

A non linear exponential operation is applied to the pixel grey level intensities next using a look up ta-
ble [16] to improve the contrast ratio and to remove noise due to intensity variation. This operation decreases
the contrast and brightness in dark regions, whereas it increases the contrast in bright regions as can be seen
from the non-linear curve in figure 5.
Next, the image is thresholded to separate the bright object from the dark background. A high and low threshold
value is chosen, the pixels within this range is detected as the object whereas all the other pixels are darkened.
As a black background is used and objects nearer to the camera are brighter than those further from the video
camera, this essentially separates the object from its background. This step however, is greatly affected by the
brightness of the room and the camera used, and needs to be varied in different ambient illumination. If the
room is bright, the objects and background will reflect more light, and, hence, a high lower threshold value
needs to be set. Whereas, if the room is dark, the reflected light from the objects and the background will
be weaker, and, hence, a low lower threshold value needs to be set. Therefore, to avoid setting up a manual
threshold every time the program runs, the maximum intensity of the greyscale image is found and a percentage
of this (20 and 35 % were tried for the experiment) is taken as the lower threshold, the upper threshold is set
to a constant, which is its highest value (255 for 8-bit image). Bright spots on the border of the image can be
mistaken as objects and, hence, all the objects connected to the border are removed next. This step is optional,
as in many cases the object can be near the border. The image is then equalised by distributing the pixels in in-
tensity evenly and converting it to an 8−bit image from a binary image. These image transformation operations
are as shown in figure 6. These transformation were applied on images taken in a room with ceiling light and
windows opposite to the scene. If the room is completely dark in the detection stage, the program would not
be able to segment the objects from its background. However, the sequential illumination of the objects can be
done in a dark room using the information obtained in the previous stages. The thresholding operation is given
by:

i =
{

0 i f p < tl ow , p > thi g h

1 i f tlow ≤ p ≤ thi g h

3 Calibration and Projection

The video camera has a greater field of view than that of the projector. To detect the area of projection in the
captured image, a white image with the same pixel area as the projector is projected to illuminate the field of
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Figure 6: Image transformation: a) Erode b) Dilate c) Exponential d) Threshold e) Remove border objects f)
Equalise

view of the projector. This area also called, region of interest (ROI), is then extracted from the captured image
and image processing is subsequently only carried out within this area. This area selection can be carried out
automatically by setting a high value for the lower threshold (around 230) to detect the area of projection, as it
will very bright due to projection of a white image onto the scene. This area is then selected by using the magic
wand function, which compares the intensity of the pixel under consideration with its neighbours and their
neighbours, and selects all connected pixels which have a similar intensity within the set tolerance limit (20%).
The coordinates for a particle under consideration are found using the particle analyser function in LabVIEW
and correspond to the centroid of the bright particle with the maximum area. The maximum area is selected
because there might be some other regions with high intensity which can be taken as the ROI resulting in the
wrong selection. However, depending on the surface of the background, some regions in the projected area
might not fall into the threshold range and are ignored, resulting in an error; this error, however, does not affect
the final result significantly as the ROI selected is defined to be a rectangle.
After the ROI is extracted, one object is selected to be illuminated. Next, the processed image of the object is
projected back through the projector onto the object. Automatic thresholding on the image can now be used
(entropy [17–19] in this case), as the brightness of projected structured light is much greater than the other
ambient illumination, hence, the ambient illumination can be ignored.
There may still be some difference between the edge of the area of the projected light and that of the real
object due to the skew of the projector lens, the distance between the projector lens and the camera lens and
error in locating and extracting the ROI. This error is corrected using a feedback loop. The scene onto which
processed images are projected is continuously monitored using the video camera, and the latest captured and
processed image (which is dominated by the illumination area shape) is correlated with the initial captured and
processed image (Template). The dimensions and position of the projected image are altered until a maximum
correlation is achieved. The use of one object instead of all, decreases the processing time and reduces errors.
The projected structured light is rescaled, moved up and down and left and right, and the normalised cross
correlation is calculated for each position and size. The final algorithm which moves the image up, down, left,
right and varies the scale works well but it would be useful to incorporate additional transformations such as
keystone to correct for the skew due to the 8 cm offset between the camera and the projector lens. Once the
maximum correlation is reached when the projected image is exactly aligned with the real object, the calibration
process ends. The dimensions and coordinates of the projected image are then recorded for further use.
The acquired illuminated image is then analysed using NI Vision particle analyser. Particle analyser can detect
continuous regions or grouping of pixels with similar intensity, known as particles. The particle analyser then
makes measurements of these regions or particles and also determine their coordinates. This is often referred to
as BLOB (Binary Large Object) analysis. The particle analyser detects each particle and returns the coordinates
of each object detected. The program then takes these pixel coordinates and uses magic wand processing which
uses the intensity of neighbouring pixels, to select only one object and mask all the others, so that only one
object can be illuminated at one time. The projected individual object images can then be projected sequentially
to illuminate each object one after the other as required.
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4 Experimental Results Discussion

The research investigated different algorithms, to select the best possible method. It was also conducted at
different times of day to check the performance under different ambient background lighting conditions and
at different locations with different 3D scenes to verify its robustness. The results obtained are discussed in
this section. The area of interest is as shown in figure 7. The arrangement consist of a pen case, an orange,
a bottle, a sphere, a mug, an apple and a cucumber, from left to right, the camera-projector system is 1.26 m
from the objects. The sphere is illuminated for calibration purposes in figure 8 and 9, however, any object can
be selected for this purpose. When the projection is of a different size than the object it is resized using a scale
transformation as shown in figure 8. Next, the projection is moved in the x and the y directions to meet the
edges of the object as shown in figure 9.

The objects were lit sequentially and all at once as shown in figures 10, 11, 12 and 13. The algorithm was

Figure 7: Projected
image to detect ROI

Figure 8: Resizing of the projection to
match the sphere

Figure 9: Shifting the projected light
to the left

also applied to different types of object as can be seen in the figures. The objects had various shapes, colours,
textures and reflectivities. All of the objects were placed side by side at different positions on the table and
could all be lit at the same time. To check the validity of the algorithm objects were detected and illuminated
from different positions. It was found that the closest position the camera can detect the object and area of
interest without becoming saturated is 14 cm. The longest distance, however, is only limited by the power of
the projected light and in this case is about 15-16 m. There is no limit on the area of the largest detectable
object, as long as the camera can detect it and it comes within the projector’s field of view. The smallest object
which can be detected without being eliminated as background noise is about 5 pixels or 0.14 pixels per degree
according to camera’s resolution, and, hence, very small objects can be detected if they are close to the camera-
projector system but the same object is neglected as noise when it is far from the camera-projector system.
Objects were placed close and far from the system simultaneously and illuminated as shown in figure 14 and
the system was shown to illuminate them all correctly. Complicated and large shapes such as human beings can
also be detected by the system as can be seen in figure 15.

Figure 10: Light
projected onto a

Pen Case

Figure 11: Light
projected onto the

Sphere

Figure 12: Light
projected onto a

mug

Figure 13: Light
Projected on all the

objects

Figure 14: Arrangement (left) of and
light projection (right) onto Pen case
(closer to projector), post-it, bottle,

sphere and cup

Figure 15: Detecting a complex subject: a) Scene with
no projection on the person b) Light projected onto the

person c) The detected person projected onto the
background

Proceedings of the 17th Irish Machine Vision and Image Processing conference IMVIP 2015

August 26th-28th, 2015, Dublin, Ireland 102 ISBN 978-0-9934207-0-2



The camera has a divergence of 35 degrees or horizontal divergence of 27 pixels/degree and vertical diver-
gence of 16 pixels/degree, whereas, the projector has a horizontal divergence of 14 degrees or 100 pixels/degree
and vertical divergence of 12 degrees or 87 pixels/degree. As the field of view of the camera is larger and the
resolution is lower than the projector which decreases even more when part of the image is extracted, there is
a difference between the processed image and the image which is projected the and this sometimes results in
spillage of light into the background of about 1 pixel or more, even after the calibration is done. This is evident
from the background illumination in figure 12 around the mug. This spillage cannot be seen by the camera due
to the difference in divergence and point of view of the camera and can be solved by using another camera,
which can view this spillage from another angle and counter it by manipulating the light to match the object.

5 Conclusions

The project’s aim to make a robust system to illuminate discrete objects individually was achieved. The shifting
and resizing process can be calibrated to enable the illumination to automatically illuminate an individual
object to one pixel accuracy. The illumination became distorted when it is passes into the camera due to the
magnification factor between the scene and the camera’s detector array which affects the result of the filters and
the result of correlation. This in turn affects the output shift and size of the projected image as due to distortion
the position and size of the projection is deemed to be correct by the program, when in reality it may not be.
These effects can be minimised by using a high resolution, anti-glare camera.
The camera used for this project has a resolution of 960 × 544 whereas the projector has a resolution of 1400 ×
1050. In addition the angular divergence of the camera, 35 degrees, was much larger than that of the projector,
14 degrees, which aggravated the difference between their resolutions resulting in an angular resolution of 27
pixels per degree for the camera and 100 pixels per degree for the projector. Ideally the resolution of the camera
in pixels per degree should be higher than that of the projector in pixels per degree. This can be achieved by a
combination of selecting the number of pixels in the camera sensor plane and controlling the angular divergence
by narrowing the cameras field of view using a zoom lens. Another limitation of this method is that some light
was projected onto the background, which cannot be seen by the camera but is seen by the viewer at a different
angle from the camera. The program’s speed is processor dependent and takes about 35 seconds to 1 minute 15
seconds to complete with the current system. Therefore, the research was successfully able to achieve object-
background segmentation, calibration and sequential projection. However, the aforementioned limitations such
as projection on the backdrop of the object and effects due to environment; limit the application of this research
and makes it viable for further investigation.
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Abstract

A retrospective analysis of brachytherapy implant data was carried out on 351 patients that underwent
permanent I125 brachytherapy for treatment of low-risk prostate cancer. For each patient, the dose received
by 2cm3 of the rectum (D2cc) 30 days post implant was defined as belonging one of two classes, ”Low”
and ”High” depending on whether or not it was above or below a particular dose threshold. The aim of
the study was to investigate the application of a number of machine learning classification techniques to
intra-operative implant dosimetry data for prediction of rectal dose classes determined 30 days post implant.
Algorithm performance was assessed in terms of its true and false positive rates and Receiver Operator
Curve area based on a 10-fold cross validation procedure using Weka software. This was repeated for a
variety of dose class thresholds to determine the point at which the highest accuracy was achieved. The
highest ROC areas were observed at a threshold of D2cc = 90 Gy, with the highest area achieved by Bayes
Net (0.943). At more clinically useful thresholds of D2cc = 145 Gy, classification was less reliable, with the
highest ROC area achieved by Bayes Net (0.613).

Keywords: Brachytherapy, Prostate Cancer, Machine Learning, Classification, Weka.

1 Introduction

Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of cancer death in
males, accounting for 14% (903,500) of the total new cancer cases and 6% (258,400) of the total cancer deaths
in males in 2008 [Jemal et al., 2011].

The permanent transperineal interstitial placement of I125 seeds is a popular choice for Low Dose Rate
Brachytherapy of Prostate Cancer. The deposited-seed positions are imaged and the plan optimized in real-time
throughout the procedure. The dose distribution is updated dynamically based on the actual positions as the
seeds are deposited. The clinical and technological improvements that have emerged over the last decade in low
dose rate prostate brachytherapy such as the use of ultrasound and computed tomography-based treatment plan-
ning systems has led to a resurgence in the use of the technique for localized prostate cancer [Jemal et al., 2011].

As prostate cancer is being diagnosed at increasingly early stages, quality-of-life issues when choosing the
primary treatment modality are becoming of greater concern. Prostate brachytherapy has many advantages
over both external-beam radiation therapy and radical prostatectomy, however it has been shown that because
the rectum often receives a large radiation dose this may lead to radiation-induced rectal injury such as rectal
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bleeding, chronic radiation proctitis which if not managed correctly can result in fistula development and the
eventual need for a colostomy.

With regards to rectal dosimetry, the guidelines given by Snyder et al based rectal dose constraints on
an annular dose-volume histogram of the rectum, aiming to achieve less than 160 Gy to 1.3 cm3 for I125

monotherapy. This rule is often modified by practitioners who prescribe 145 Gy minimum peripheral dose
(mPD), and for doses to 2.0 cm3 of the rectum to be less than 145 Gy [Nath et al., 2009].

Due to the permanent nature of the implant the dose is determined by integrating the dose rate from the
time of implantation until the isotope has decayed to background levels, taking into account the physical decay
of the sources only and assuming that the geometry of implant and anatomy established at the date of scan does
not change over time.

To account for this time variance in prostate volume, seed position and the subsequent dosimetry calcu-
lations, the post-implant CT scan is often postponed for approximately 1 month after the procedure assuming
that the prostate volume, seed positions etc will change very little afterwards [Steggerda et al., 2007]. Changes
in rectal doses have been observed between measurements made intraoperatively and from a patient’s post-
implant CT. The differences have been largely attributed to changes in rectal proximity to the implanted seeds
as periprostatic edema resolves [Nag et al., 1999]. Discrepancies in rectal doses may also be as a consequence
of the different patient set-ups and the resulting variation in prostate positions during intra-operative transrectal
ultrasound (dorsal lithotomy position) and postplanning CT (supine position) [Pinkawa et al., 2009].

The aim of the study was to investigate the application of machine learning techniques to intra-operative
implant dosimetry data for prediction of rectal dose classes determined 30 days post-implant.

2 Methods

Figure 1: Patient dataset summary statistics.

A retrospective analysis of brachytherapy implant
data was carried out on 351 patients that underwent
permanent I125 brachytherapy for low-risk prostate
cancer. For each patient, the dose received by 2 cm3

of the rectum (D2cc) at day 30 was defined as belong-
ing to one of two classes, Low <(Dose Threshold),
and High >(Dose Threshold). The original dataset,
n = 351, contained approximately 40 intra-operative
measurements which was then reduced to a selection
of 10 predictors, using the ”Best First” method in
Weka [Hall et al., 2009]. Any data with missing val-
ues were excluded, leaving the final refined set of n
= 347. The day 0 predictors used in this study were,
(i) Treatment Type, (ii) Pre-Needle Prostate Volume,
(iii) Post-Needle Prostate Volume, (iv) Dose to 90%
of the Prostate (D90), (v) Minimum Dose to Prostate,
(vi) Mean Dose to Prostate, (vii) Dose to 30% of
the urethra (U30), (viii) Dose to 10% of the urethra
(U10), (ix) Dose to 5% of the urethra (U5), and (x)
the dose to 2 cm3 of the rectum (D2cc).

Changes of dose distribution for both the prostate
and the surrounding tissues after brachytherapy have
been reported in literature, and have been largely at-
tributed to factors such as edema, intra-observer variability, and the use of different imaging modalities with
different patient set-up between day 0 and day 30 [Moorrees et al., 2012]. In Figure 2. these changes in rectal
doses between day 0 and day 30 are evident, with an obvious overall shift towards higher rectal doses at day
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30.

Figure 2: Patient dataset summary statistics.

Machine learning techniques, developed using
Weka software, were trained on the refined dataset to
make predictions of rectal dose classification at day
30. Four algorithms were used;
(i) Radial Basis Function network (RBF) - Imple-
ments a normalized Gaussian radial basis function
network, with k-means clustering algorithm provid-
ing the basis functions for logistic regression. Sym-
metric multivariate Gaussians are fit to the data from
each cluster. All numeric attributes are standardized
to zero mean and unit variance.
(ii) J48 - A pruned decision tree based on the C4.8 al-
gorithm [Quinlan, 1993]. The number of folds used
was 3, with subtree raising when pruning, and with-
out binary splits on numeric data or Laplace smooth-
ing.
(iii) Random Tree - Constructs a desecion tree that
considers a number of randomly chosen attributes at each node. No pruning, and no backfitting was performed.
(iv) BayesNet - Uses the K2 hill climbing algorithm restricted by the Weka default variables. The maximum
number of parents in the Bayes Net was set to 1, resulting in a Naive Bayes classifier. Conditional probabilites
were determined by selecting the Simple Estimator option with alpha = 0.5.

The performance of a technique was assessed in terms of true and false positive rates, and area under
Receiver Operator Curves based on a 10-fold cross validation procedure. This process was repeated for a
number of different thresholds ranging from D2cc of 50 Gy to 180 Gy in order to determine the point at which
an algorithm demonstrated the highest accuracy.

3 Results

Figure 3: Shows both sensitivity and specificity results for J48 and Radial Basis Function algorithms at various
dose thresholds.

The four algorithms displayed a similar performance overall in the threshold ranges tested, with similar
changes in sensitivity and specificity clearly visible in Figures 3 & 4. The ROC areas in Figure 5 demonstrate
the variation across the threshold range depending on the choice of algorithm; however all appear to give the
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Figure 4: Shows both sensitivity and specificity results for BayesNet and Random Tree algorithms at various
dose thresholds.

best result close to a threshold of 90 Gy, with ROC areas of 0.928 (J48), 0.927 (Radial Basis Function), 0.943
(BayesNet), and 0.851 (Random Tree). At the more clinically important threshold of 145 Gy algorithms display
considerably less accuracy with ROC areas of 0.477 (J48), 0.660 (BayesNet), 0.613 (Radial Basis Function),
and 0.444 (Random Tree).

Figure 5: Reciever Operator Curves for all four algorithms.

4 Conclusion

All four of the algorithms appear to predict reliably at a rectal dose threshold of approximately 90 Gy. However,
it is prediction at the higher dose thresholds that would be of most use in a clinical setting but as the rectal dose
class threshold passes the 90 Gy mark predictions become steadily less reliable.

It may be worth exploring the effect that inclusion, or exclusion of combinations of the 10 predictor vari-
ables used in this study has on the accuracy of the algorithms. Some predictors may not be necessary for
optimum training of algorithms and may be impeding reliable classification. The possible inclusion of any
outliers in training data may also be reducing performance.

It has been by shown that implant variables, such as D90, do not depend on the post-implantation date of
the scan supplying the images for dosimetry however some parameters associated with morbidities strongly
changed within the first month after implantation, meaning that the time at which a scan is carried out may be
an important variable to consider and one which was not included as part of this study [Steggerda et al., 2007].
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Weka provides a much larger selection of classification algorithms than the four used in this study, such as
Mutli Layer Perceptrons and Support Vector Machines. It may be that one of these other algorithms is more
suited to this particular classification task, than those that were used. The inclusion of uncertainties associated
with classification predictions would also be of use clinically.
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Abstract

A method of enhancing the output of low resolution thermal sensors is investigated. Current thermal
imaging arrays are limited in pixel count with a large pixel size, resulting in output images of relatively poor
quality when compared with consumer camera modules in the visible spectrum. Due to physical limitations
this is likely to remain true for several years to come. Utilising small shifts in the thermal channel, an
enhanced output can be obtained that allows for a resizing of input images with no apparent loss in detail.
Simulation and theory are presented, together with some initial results.

Keywords: Super-resolution, image-processing, thermal imaging

1 Introduction

Interest has recently been growing in thermal imaging for consumer markets, with the advent of smartphone-
based thermal cameras. The current form factor of these cameras is limited and is likely to remain so due to
physical and manufacturing constraints. Although high resolution thermal cameras are available, the sensor
and system size greatly exceeds that available to smartphones. To this end a method of improving the output
of thermal cameras, while retaining the same form and size is sought. Current consumer thermal camera
resolutions are of the order of 200× 1501 pixels, which falls greatly below that of consumer grade imaging
sensors in the visible spectrum. A more typical pixel count is 80 × 602 as is common with many thermal
camera sensors. When imaging in the thermal spectrum, different materials are required. For standard uncooled
thermal imaging, Vanadium Oxide is used as detector material and the resistivity change with incident thermal
radiation is used to form an image. With a longer wavelength, the diffraction limited spot size increases,
leading to a necessary increase in pixel size. Glass is opaque across thermal wavelengths and so metal and
polymer lenses are used to focus light. Regardless of these differing materials, the underlying principles remain
the same regarding image formation and the same treatment can be applied as with visible spectrum imaging
[Dereniak and Boreman, 1996].

2 Aliasing

The detail captured by an optical system can be decomposed into constituent spatial frequencies. Higher spatial
frequencies correspond to fine detail. For a diffraction-limited system the upper limit on the spatial frequencies
passed by the optics is given by 1

Fλ , where λ is the wavelength and F is the F number, or ratio of focal length
to lens diameter. Imaging with a mean wavelength λ= 10µm and F = 1.2 gives a limiting spatial frequency of
80 l p mm−1, measured in lines per mm.

1SeeK Thermal: 206×156 element array, FLIR One generation 2: 180×160 element array
2FLIR One generation 1: 80×60 element array
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When discretely sampling a signal, to obtain a true representation of the signal we should sample at a
higher frequency than those present in the signal. The minimum sampling frequency is twice that of the highest
frequency present. If we sample below this frequency, higher frequency variations cannot be recorded faithfully
and are misinterpreted as lower spatial frequencies. With a lens with maximum spatial frequency of 80 l p mm−1

the signal should be sampled at 160 l p mm−1. A square pixel, with size δx , has associated sampling frequency
1
δx

, requiring a pixel size of 6.25µm to fully capture the information present in the scene.

Figure 1: Theoretical modulation transfer functions
(MTFs) for a thermal system with F # = 1.2, λ= 10µm
and pixel size of δx = 50µm. The lens MTF places an
upper limit of 80 l p mm−1 on the spatial frequencies
passed. The sensor response is the typical Sinc func-
tion, where the first zero occurs at δ−1

x . The system
MTF is a multiplicative combination of lens and sensor
MTFs. Spatial frequencies above (2δx )−1 are aliased
and appear at lower spatial frequencies. Shaded regions
denote spatial frequencies that reach the sensor but are
misinterpreted as low spatial frequencies. It is in this
shaded range that frequency recovery is possible.

The thermal camera used in this experiment has
pixel size of δx = 50µm and so only frequencies be-
low 10 l p mm−1 are faithfully captured. Frequencies
that reach the sensor above this are folded into the
lower frequency range. This is referred to as aliasing
and causes image artifacts.

Although frequencies above 1
2δx

are aliased, the
information carried is still present. By applying
known shifts to the image sequences, the frequency
content across each pixel will vary. With a knowl-
edge of the aliased components and their associated
shifts, the corresponding spatial frequencies can be
extracted [Ur and Gross, 1992]. In the case of alias-
ing, observing frequencies u below the 1

2δx
limit

results in a corrupted signal containing frequencies
above uN , the Nyquist frequency. [Figure 1] The
measured frequency, fmeas(u) contains aliases of fre-
quencies according to fmeas(u) = f (u)+ f (2uN −u)+
f (2uN +u)+ f (4uN −u)+ f (4uN −u)+. . . . The vari-
ation of spatial frequency content per pixel is of in-
terest and for this reason shifts should be applied at
a sub-pixel level to the thermal spectrum images. An
adaptation of a super-resolution model by Gilman &
Bailey [Gilman et al., 2008] was used in this work.

3 Experimental considerations

3.1 Simulation

Implementation of the super-resolution model was first applied to a set of simulated low spatial frequency data.
Utilizing knowledge of exact shifts presents an optimum scenario for which the algorithm can be tested for. By
discretely binning high resolution images, a set of low resolution shifted images can be simulated. An input
image from the visible spectrum was downsampled as the test input.

Pixel binning is necessary rather than interpolation, since this maintains higher spatial frequency content as
aliases in the low resolution output, as would occur in real systems. Applying the super-resolution algorithm
to this input set of data resulted in an output image without discrete jagged edges as visible in the interpolated
version of input frames. [Figure 2] Small details that were not resolvable in input images became clearer in the
super-resolution output.

3.2 Experimental setup

A joint imaging system consisting of a camera operating in the visible spectrum and a thermal imaging cam-
era was constructed with fixed spacing. To co-register the systems, a dichroic beamsplitter was used. Any
movement observed by the visible camera is subject to fixed transformations consisting of scaling and reflec-
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Figure 2: Comparison of super-resolution results applied to simulated low spatial frequency images. (left)
images obtained through Sinc interpolation of input images, (right) results of super-resolution. Sharp dis-
continuities across edges and periodic gradients are visible in the interpolated output. Upon application of
super-resolution, more continuous detail is visible along edges. The input sequence for the super-resolution
process was 23 randomly shifted images.

tion around the vertical axis in the thermal spectrum. As the visible pixels are much smaller than those in
the thermal spectrum, shifts can be measured in the visible spectrum with ease and converted to sub-pixel
thermal shifts. Many methods exist for image registration and sub-pixel shift estimation[Foroosh et al., 2002,
Lucas et al., 1981, Mas Candela et al., 2012]. In any potential final consumer product, input from both cameras
would likely be present and a simple phase correlation method was implemented in determining interframe
shifts. Other local methods are to be implemented in the future.

Lanczos interpolated Super−resolved image
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Figure 3: Results of the super-resolution technique ap-
plied to a images containing real shifts. (left) Sinc in-
terpolation of an input frame, (right) output from super-
resolution algorithm. The crosshair appears better re-
solved upon application of the super-resolution algo-
rithm. A finer profile is visible and undulating features
present in interpolations of input frames are not present.
The annular object is the mirror mount and is not super-
resolved. A total of 7 input frames were used.

Upon characterizing the entire system, the scaling
for transformations between visible shifts and ther-
mal shifts was measured to be 0.0769. For a shift of
one pixel in the thermal spectrum, the visible channel
would have undergone a shift of 13 pixels.

An autoregressive model was developed to sim-
ulate hand motion, as measured via gyroscopic data
using a smartphone. These generated shifts were then
applied using a Newport Fast-Steering Mirror. By
imaging a target through a mirror with tip and tilt
control it is possible to produce small, precise shifts,
measurable by the visible channel.

To produce a scene with sufficiently high spa-
tial frequencies, a heated wire was used. As a point
spread function cannot be created with ease in the
thermal spectrum, it was necessary to use a 1 dimen-
sional integration - a line spread function. This can be
repeated for any orientation. A crosshair allowed for
registration in both x and y directions and for visual-
ization of super-resolution along orthogonal axes.

Upon imaging with sub-pixel shifts, an output
was obtained using the super-resolution algorithm.

Proceedings of the 17th Irish Machine Vision and Image Processing conference IMVIP 2015

August 26th-28th, 2015, Dublin, Ireland 112 ISBN 978-0-9934207-0-2



[Figure 3] With a spatial frequency increase, an image size increase is possible with no apparent loss in detail.

3.3 Objective quality metrics

To truly determine if the output image contains sensible high spatial frequencies, a performance metric is
required. The MTF itself is not sufficient as a measurement, as high frequencies in the MTF are not necessarily
associated with meaningful detail. Work is ongoing by using methods such as SSIM (structural similarity), etc.

4 Further work

Work is ongoing in manipulation of temporal variations in an image sequence to extract additional information
from the scene. As part of this, an improvement in spatial resolution could be advantageous. If any output
from the super-resolution algorithm is to be useful in temporal processing, the number of frames needed per
output super-resolved frame must be minimized so that the temporal information is left mostly unaltered. A
previous paper has suggested that the minimum number of images necessary to sample at 1/K times the Nyquist
frequency is K images [Brown, 1981]. Extending this to the two-dimensional realm results in K 2 samples for a
1/K sampling. A new model of super-resolution is being developed to reduce the disparity between this theory
and observations to date.

5 Conclusion

It has been observed that a modest resolution increase is possible with the use of sub-pixel shifts. Sub-pixel
shifts were simulated and applied to produce an output image with improved resolution.
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Interpolating eigenvectors from second-stage PCA to find the pose
angle in handshape recognition.
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Abstract

In this paper we present a new technique to interpolate eivenspaces for handshape recognition. We use
a two stage Principal Component Analysis (PCA) to reduce the dimensionality and extract features and
then interpolate. We propose to apply PCA over the manifolds generated by a first stage PCA, creating a
second stage PCA. From these new manifolds, we use splines to create new artificial eigenspaces in between
different pose angles. Some results are presented such as accuracy of recognition of the correct pose angle
gap and a plot of the original and artificial projection of the eigenspaces.

Keywords: PCA, Handshapes Recognition, Splines.

1 Introduction

One very important application of Computer Vision (CV) is Human Computer Interaction (HCI). HCI can
be used to let humans interact with a computer or a mobile device using cameras. Handshape recognition is
a natural interaction for that propose. However, it is not an easy task since the hand is a deformable object
[Binh et al., 2005].

There are different techniques to extract features of images. Appearance-based methods is one of them.
Usually, these methods have the advantage of real-time performance. In addition, we can find different tech-
niques to build classifiers in this category [Wu et al., 2001].

According to [Han and Liu, 2014] Principal Component Analysis (PCA) is a very useful technique for
dimensionality reduction and feature selection. It is possible to apply PCA in numerous fields, such as face and
handshape recognition.

The use of PCA with more than one stage was successfully applied in [Chan et al., 2014], for face recog-
nition. For that reason we have decided to apply PCA for handshape recognition, over the manifolds extracted
from a first stage PCA. At that point, we have a second stage PCA where we could interpolate, using splines,
some points and recreate any shape in between pose angles. We used the second stage PCA for reduce even
more the dimensionality and make it possible to interpolate in few dimensions.

2 Dataset

The first step was to compute PCA over a range of raw images. The dataset used was created by Farouk
[Farouk et al., 2013], which contains 20 handshapes, Figure 1a. Each image was translated 5 pixels horizontally
and vertically, creating a total of 121 images for each handshape. In total we have 2420 images for each pose
angle.

These images were converted to grey scale and blurred using a Gaussian blurring function. It helps to
reduce the non-linearity in the manifolds within the eigenspaces. It is more efficient to analyse a flat manifold
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than a curved one, because curves tend to overlap. In this stage a 10 pixel radius of blurring was applied, though
the blurred image (Figure 1c) shows much less detail it is still good for recognition, since PCA uses every pixel
for computation.

Each image in Farouk’s dataset [Farouk et al., 2013] has 640×480 pixels. In this paper we reduce each of
these images to 12.5% of the original size turning into 80×60 pixels, in order to manipulate these images in
a personal computer. In Figure 1a is possible to view the Irish Sign Language alphabet, Figure 1b shows the
image corresponding to the letter A in this alphabet and Figure 1c shows the same shape after being converted
to grey scale and blurred.

(a) Original images from Farouk’s
dataset

(b) "A" Before blurring (c) "A" After convert to grey
scale and blurring

Figure 1: Irish sign language alphabet, followed by handshape of letter A and the same image blurred.

2.1 Training Dataset

The training dataset consists of the same 20 handshapes from Farouk [Farouk et al., 2013]. However, for train-
ing data they were rotated from 0 to -90 degrees, at intervals of 10 degrees, via Matlab, from the original
position.

2.2 Testing Dataset

In the testing dataset we obtained the same 20 images and rotated them from -5 degrees to -85 degrees in
intervals of 10 degrees. The main idea of this testing dataset is that each angle is the midpoint of a consecutive
pair of angles in the training dataset.

3 Principal Component Analysis

The first step was to combine images from the training dataset into the same array and then compute PCA.
Since each image has 60×80 pixels when vectorized it turned into 4800 pixels in a row, for each image. As a
result, we have a 4800×4800 covariance matrix. By applying PCA to the covariance matrix we obtained 4800
eigenvectors.

Multiplying the 10 first (most significant according to the eigenvalues) eigenvectors by each set of images
we have one eigenspace with 10 dimensions.

3.1 Perpendicular distance

In order to find the distance between a new unknown image and a space, we used perpendicular distance. Which
is the distance of a point to an eigenspace measured along a line perpendicular to the eigenspace.

di s =
√∑

(p −o)2 −
∑

(p ∗ v −o ∗ v)2

Where o is the origin (mean of all projected images at the same angle), v is the eigenspace and p is the new
image. This equation returns the distance between a new image and a space.
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3.2 Second Stage PCA

In order to interpolate eigenspaces it is essential to have just a few dimensions and elements in each eigenspace.
That is why we computed PCA again for each angle of the dataset separately. In other words, a new PCA is
computed for projected images for each pose angle from 0º to -90º at intervals of 10 degrees. As a result we
have 10 new eigenspaces. Algorithm 1 shows how this second stage PCA is computed.

Data: projection of each pose angle in the first stage PCA
Result: new eigenspace of the second stage PCA
initialization;
for each pose angle projection do

compute PCA;
end

Algorithm 1: Pseudo-code for the second stage PCA

3.3 Interpolating by splines

Once we have these 10 new eigenspaces, it is possible to interpolate new spaces in between. These spaces
consist of 10 eigenvectors each with 10 dimensions. Then we took the most significant eigenvectors (according
to the eigenvalues) and interpolate all elements across the 10 different spaces. We used splines to interpolate a
curve in a space of 10 dimensions (each dimension represents an element of the eigenvector). In our case we
considered only 4 eigenvectors. Figure 2 shows the interpolation of each one of these 4 eigenvectors.

Having some spaces interpolated between a pair of angles it is possible to determine any point in between.
As we have 10 spaces and each one is 10 degrees apart we interpolated 90 points in between all 10 spaces, then
that each new space corresponds to one angle from 0 to 90 degrees.

3.4 Methodology and Results

In the second stage PCA we obtained 10 new eigenspaces, from these spaces it is possible to measure the
perpendicular distance of a new unknown image from a space. Table 1 shows the accuracy as a percentage
of the recognition of unknown images in an unknown pose angle against the ten spaces. Each set of these
unknown images are at an intermediate pose angle, then we know the neighbour angles in advance. This
accuracy was measured after computing perpendicular distance of each image against all 10 eigenspaces and
taking the shortest one. The percentage is out of 2420 images, e.g. 95.61% means 2313 images out of 2420
were classified correctly.

Table 1: Accuracy of recognizing correct gaps in the first stage PCA

Angle Accuracy % Angle Accuracy % Angle Accuracy %
5 95.61 35 86.44 65 82.31
15 75.61 45 88.80 75 76.15
25 84.79 55 82.68 85 93.51

In Figure 2 we can view the quality of the interpolation between spaces. In Figures 2a and 2b each axis
represents one element, in total we have 10 elements. However, here we are plotting only 3 of them, because
plots are 3 dimensional. Each plot represents one eigenvector. The green dots are projections of the 3 elements
in the artificial eigenspace for the 10 interpolated points.
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(a) The first eigenvector (b) The second eigenvector (c) Projection of images in an artifi-
cial (red) and real eigenspace (blue).

Figure 2: Interpolated eigenvectors, where black are the original points, red are the interpolated and the green
are the 10 first interpolated in Figures (a) and (b). Figure(c) shows a projection of 242 images in an artificial
eigenspace in red, and the same projection into a real one in blue.

Figure 2c shows a projection of a set of 242 images in pose angle -25 into a 3 dimensional space. Blue points
represent a projection of these images in a real eigenspace and the red points represent the same projection into
an artificial eigenspace, both for the same pose angle. It is clear that points are close to each other.

4 Conclusion

In this work PCA was used as a feature extraction and dimensionality reduction method. Gaussian blur was
used to reduce the non-linearity of the manifolds in the PCA spaces. An incoming object can be classified
by computing the perpendicular distance between this point (new image) and a space. Splines were used to
interpolate between eigenspaces creating artificial new ones. In summary, interpolated eigenvectors might be
useful to create artificial new eigenspaces from a dimensionality-reduced space.

As future work we intend to try different numbers of eigenvectors to observe how these numbers influence
the results. We intend to find a classifier for images in the interpolated space. We will try a new technique to
interpolate eigenvectors in any dimension. Finally, we will test different levels of blurring.
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Abstract 

Research to date within the area of range image processing has highlighted the many advantages of 

using range data to represent scenes in a 3-D manner. However, given the large volume of data 

associated with range images, processing and extracting relevant information from these images has 

presented a challenge. Due to the irregular distribution of data in many range image types, a resampling 

process is required to map the irregular data to a regular grid structure, providing an opportunity to 

resample directly to a uniform hexagonal framework. This paper therefore proposes a novel framework 

for range image feature extraction, which utilises the efficiency and accuracy of the hexagonal pixel-

based framework.  

Keywords: Hexagonal Framework, Range Images, Feature Extraction. 

1      Introduction  

Due to the recent development of low-cost RGB-D sensors such as the Microsoft Kinect, the use of 

range images have become prominent in computer vision techniques, providing an approach to obtain 

reliable descriptions of 3-D scenes. A range image may be described as a 2-D image that contains 

distance measurements from a selected reference point or plane to surface points of objects within a 

scene [16]. Range images provide additional information over conventional intensity images allowing 

more information about the scene to be captured [3]. It should be noted a range image contains 

information about only the visible surfaces of the objects, and not their hidden surfaces, and hence is 

often referred to as 2 2
1 -D information [16].  

Range cameras can operate according to a number of different techniques, for example, laser 

scanning [4], stereovision [15], pattern projection [18] and time-of-flight lasers [12]. All of these range 

finders have their advantages and disadvantages depending on their application, where some example 

application areas include object recognition [13], surface reconstruction [17], surveillance [5], robot 

navigation [19], etc. Many of these application areas are dependent on the completion of feature 

extraction on range images, and the process of acquiring these features is significantly different from 

that when using conventional intensity images. There are two factors to consider when processing range 

images: the irregularity of the distribution of the range data [2], and the types of features that are 

acquired from range data feature extraction. Depending on the hardware sensor used to capture the 

range data, the acquired data may be distributed regularly or irregularly; this should be considered 

before processing the image. Unlike intensity images, where edges can be found by significant changes 

in grey level values and hence may be modeled as ramps or steps, range data extracts edges in three 

different categories: step edges, crease edges and smooth edges.  

A recent concept for image representation is the use of hexagonal pixels, introducing the area of 

hexagonal image processing. As well as the factor of hexagonally structured images mimicking the 
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structure found in the human fovea (a small region within the retina, consisting of a high density of 

cones shaped and placed in a hexagonal arrangement [9]), hexagonal grids have other advantages over 

the conventional rectangular grid. Equidistance of all pixel neighbours facilitates the implementation of 

circular symmetric kernels that is associated with an increase in accuracy when detecting edges, both 

straight and curved [1], and the improved accuracy of circular and near circular image processing 

operators has been demonstrated in [6]. Additionally, better spatial sampling efficiency is achieved by 

the hexagonal structure, leading to improved computational performance. In a hexagonal grid with unit 

separation of pixel centres, approximately 13% fewer pixels are required to represent the same image 

resolution as required on a rectangular grid with unit horizontal and vertical separation of pixel centres 

[14]. 

In previous work, the authors have shown how the hexagonal framework can be used to improve 

both efficiency and accuracy with respect to feature extraction on conventional intensity images [8]. 

This paper progresses this work by developing an approach for range data feature extraction that utilises 

the advantages acquired from using the hexagonal pixel-based framework. In Section 2 the range image 

representation using a hexagonal structure is outlined, and Section 3 details the process of applying 

hexagonal feature extraction operators to range images and determining the features using this approach. 

Section 4 presents resultant features maps and a conclusion is presented in Section 5. 

2      Range Image Representation 

If we consider a range image to be represented as a spatially irregular sample of values of a continuous 

function u(x, y)  of depth value, an additional process is required to map the range data to a regular 

rectangular grid for processing. As resampling is taking place in this process, it provides an opportunity 

to resample directly onto a regular hexagonal pixel-based structure, utilising the advantages obtained 

from processing in a hexagonal framework. For regularly distributed range images, for example those 

captured using an RGB-D sensor, the hexagonal resampling can be completed using the approach of 

[20] where hexagonal pixels are created through clusters of sub-pixels. We have modified this technique 

slightly by representing each pixel by a nxn  block of sub-pixels. Each sub-pixel inherits the original 

pixel intensity, as in [14], in order to create an effect that enables sub-pixel clustering; this limits the 

loss of image resolution. With this re-sampled hexagonal image, it is possible to represent the range 

image by using an array of samples of a continuous function u(x, y)  of range data on a domain Ω. 

Figure 1 (a) represents an image composed of hexagonal pixels with nodes placed in the centre of each 

pixel, overlaid by the triangular finite element mesh. These nodes are the reference points for the 

computation of finite element techniques throughout the domain Ω. 
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Figure 1 (a).  Hexagonal array of pixels and overlying mesh Figure 1 (b). 1D spiral addressing scheme 

 

As discussed in previous work [8], an efficient approach to addressing hexagonal pixel-based images is 

via the use of the Spiral Architecture. The addressing of the Spiral Architecture originates at the centre 

of the hexagonal image and spirals out using one dimensional indexing. This structure facilitates the use 

of base seven numbering to address each pixel within the image, which permits the grouping of pixels in 

clusters for efficient pixel access; these clusters are shown in Figure 1 (b). 
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3      Feature Extraction Approach 
 

As it is not possible to apply conventional square 

operators to images represented on a hexagonal grid 

structure, we have shown in recent work [11] how a 

finite element based approach can be used to create 

a hexagonally structured Linear-Gaussian operator 

(H1) based on the construction of two independent 

directional derivative operators aligned in the x- and 

y- directions. The resultant kernels derived from 

[11] are presented in Figure 2 and will be used for 

feature extraction on hexagonal range images. 

Applying the presented edge detection operator to an intensity image will identify edges at the 

maxima of the gradient output, however the same thresholding does not identify edges in a depth image 

but instead will identify surfaces [7]. Determining features in hexagonal range images requires that the 

change point of the surfaces, i.e. slope direction, is identified. This can be achieved by using the first 

order operator response to identify the different surfaces in the depth image and from this, detecting 

significant change in gradient output can be determined as an edge point. If we consider the gradient 

magnitude response at any point in the hexagonal range image as Ñ(Px ), where x denotes the pixel 

location using the 1-D addressing scheme presented in Section 2, and using a threshold value of T, we 

can characterize each of the roof edges in the range image using the following set of rules: 
 

For )(),(),()( )6()5()4( sss xxxR PPPP 
 

 

If TPP Rx  )()(  then )( xP  is an edge point. 

 

(PR )  is obtained by determining the location of neighbouring pixels 

in tri-directions from the pixel (Px ) as demonstrated in Figure 3. 

Spiral addition ( +s ) is used to obtain pixel neighbours in a spiral 

framework as previously described in [10]. Utilising this set of pixel 

values will ensure adequate comparison of neighbouring edge points 

when thresholding the obtained feature map.  

 

4      Resultant Feature Maps 
 

To demonstrate the framework described in Section 3, the Linear-Gaussian operator was applied to 

various depth images that have been resampled to a hexagonal pixel-based image structure. Using the 

proposed thresholding technique, specifically developed for hexagonal images, edge features were 

identified within the depth images. An example of an original intensity image, the associated depth 

image and the resultant feature map acquired from the proposed framework is presented in Figure 4 (a), 

(b) and (c) respectively. Visual results show merit in using depth information for feature extraction, for 

example, successful identification of edges of two occluding objects, i.e. the bowl and hat, have been 

completed using the proposed range image approach, see Figure 4 (c).  

 

5      Conclusion 
 

This paper presents a novel approach to range image feature extraction that utilises the advantages 

obtained from hexagonal pixel-based images. As resampling is often required to overcome the irregular 

distribution of range image data, resampling to a hexagonal framework does not require any additional 

steps, however as a processing framework it offers additional efficiency and accuracy when compared 

with the conventional rectangular framework. Visual results have shown the benefit of this approach 

and if used in conjunction with feature extraction on intensity images should provide further accuracy of 

detecting edge features in 3-D scenes.  
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  (a) Original intensity image   (b) Hexagonal depth image  (c) Hexagonal feature map  

Figure 4. Hexagonal pixel-based range images 
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Investigation of Face Tracking Accuracy by Obscuration Filters for
Privacy Protection

J. Sato & T. Akashi
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Abstract

By developing many applications such as social networking service, privacy protection of images and
videos becomes one of the important tasks to manage data. In order to obscure personal information such
as a face, there are some research using filters. Although they can obscure the information, the data utility
is basically lost. This is a big problem because the lost data cannot be used for any vision applications such
as a surveillance system. Therefore, we investigate the obscuration filters, which are blur, pixelation, and
shuffle and they are commonly used for the research of the privacy protection, based on face tracking since
it is applied to many applications. From experimental results, the detection accuracy with shuffle is higher.

Keywords: Face Tracking, Privacy Protection, Obscuration Filter

1 Introduction

Since captured images and videos can extract some personal information, such as faces and expressions, they
sometimes give a stress to people. In the computer vision, there are some research about obscuration methods to
protect the privacy [Upmanyu et al., 2009, Zhang et al., 2005]. Filtering the image is one of the easy technique
and commonly used in a news program. For example, blurring and pixelating methods are famous. However,
since they degrade the utility of the whole image, the degraded images cannot be applied to any vision applica-
tions. Therefore, it is necessary to investigate a practical filter. In this research, we evaluate the filters based on
face tracking because it is applied to many applications. Since the obscured image does not have local features,
such as corners and edges, the tracking is difficult task. Also, multi-view face must be considered. In order to
address these problems, color histogram template matching with genetic algorithm (GA) [Oikawa et al., 2015]
is used. Also, another obscuration filter, which is shuffle and proposed in [Oikawa et al., 2015], is investigated.

2 Obscuration Filter for Privacy Protection

Because it is difficult to define an infringement of privacy, there is no definitive obscuration filter. In this
research, the commonly used obscuration filters and shuffling [Oikawa et al., 2015] are focused. Blurring is a
smoothing algorithm and used for denoising. A centered pixel value in a filter is calculated by averaging all
pixel values in the filter. Figure 1(a) shows an example of the blurring. This algorithm is easy, however there
is a disadvantage that edges are lost. Pixelating is an algorithm, which produces mosaic effect. After a target
image is segmented into rectangles with an arbitrary size, average pixel values in each rectangle are calculated.
The averaged values are used in each rectangle as new pixel values. Figure 1(b) shows an example of the
pixelating. An obscuration filter of shuffling pixels is proposed by [Oikawa et al., 2015]. Because a centered
pixel in a filter is changed by other pixel, which is selected randomly in the filter, the color information is not
lost significantly. Also, since when the large size filter is used, spatial information is lost. Hence, it can protect
the privacy. Figure 1(c) shows an example of the shuffling pixels.
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(a) (b) (c)

Figure 1: Example of results of obscuration filters: a) blurring; b) pixelating; c) shuffling.

3 Face Tracking by Color Histogram Template Matching with GA

Face tracking on privacy protected images is difficult since some local features are lost. Also, if a practical use is
considered, there are many real problems, such as multi-view face (appearance change), noise, and illumination
change. Oikawa et al. [Oikawa et al., 2015] address these problems using color histogram template matching
with genetic algorithm (GA). From the next section, the method is explained.

3.1 Creation of Color Histogram Template

Firstly, a frontal face, which is tracked in privacy protected images, is detected on an original image using a
face detector [Lienhart and Maydt, 2002] (Figure 2(a)). Then, the 70% of the detected region is extracted to
remove background (Figure 2(b) and (c)). After that, the extracted region is resized to 1/9 (Figure 2(d)). In
order to remove the background near the chinbone, a half ellipse mask is created (Figure 2(e)). This mask is
created based on the size of the resized image. By masking the extracted region, the background is removed
(Figure 2(f)). Next, the resized image is converted to YCrCb color space, and color histograms of Cr and
Cb components are created. In addition, Cr and Cb color histograms from a forehead are created for higher
tracking accuracy. The forehead region is determined using the 70% region of the face. Letw andh be width
and height of the 70% region.x andy are the upper left vertex. The width and height of the forehead region
arew and1/3h. The upper left vertex is(x, y −2/5h). Figure 3(a) shows the forehead region. Figure 3(b) and
(c) represent the extracted image and resized image to 1/9. By using four color histogram templates, the face
can be tracked.

3.2 Template Matching with GA

Most object detection methods use sliding window. However, scanning the whole image in every frame is
inefficient. For fast processing, GA is applied to template matching [Oikawa et al., 2015]. Firstly,N individuals
are generated randomly. Each individual has parameters of a parallel translation(x, y), scale factors ofx and
y axis, and an angle of rotationθ as binary. After each individual is decoded to real numbers, candidate
regions are generated using the rectangles, which are resized to 1/9 from the 70% of the face detection results
and a forehead, and the real numbers. Next, four color histograms, which are Cr and Cb components, are

(a) (b) (c) (d) (e) (f)

Figure 2: Creation of color histogram template from a face: a) frontal face detection; b) extraction of 70%; c)
extraction result; d) resized to 1/9; e) half ellipse mask; f) masking result.
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(a) (b) (c)

Figure 3: Creation of color histogram template from a forehead: a) decision of the forehead region; b) extraction
of the region; c) resized to 1/9.

created. Then, squared euclidean distance between these histograms and template are calculated for objective
values. After that, fitness values are calculated by normalizing the objective values to [0.0,1.0]. Based on the
fitness value, genetic operations, such as selection, crossover, and mutation are performed. This procedure is
iterated multiple times (generation iteration). When a termination condition is satisfied, the generation iteration
is stopped, and an elite individual, whose fitness value is the highest in the final generation, is acquired as a
detection result.

4 Experiment

Used video sets were the same to [Oikawa et al., 2015]. They were 15 video sequences and five subjects
appeared with three different backgrounds. The only one subject appeared in each video with the great head
motion. The image size was320× 240 pixels. In order to judge results as success or failure, bounding box
evaluation, which evaluates results based on an overlap ratio (PASCAL threshold) between a system output
and a ground truth, was used [Everingham et al., 2010]. A threshold of the overlap ratio is generally 0.5.
However, this value is a little tight in this experiment because the local features are lost by the obscuration
filters. Therefore, 0.4 and 0.3 were used. As comparative methods, CAMSHIFT [Bradski and Clara, 1998]
and haar-like face detector [Lienhart and Maydt, 2002] were used. This is because that CAMSHIFT uses color
information and is robust to loss of the local features, and the face detector is a popular method. Used computer
had CPU of Intel Core (TM) i7-3770S (3.10 GHz) and RAM of 16.0 GB.

5 Result, Consideration, and Conclusion

Table 4(a) and (b) show detection accuracy (DA) with different PASCAL thresholds. Although filter size
changes, DA of OIKAWA’s method is stable and the highest in most filter sizes. The DA of face detector is
lower in all the filters. The reason is that the local features are lost. This method uses some relationships
of a difference of intensity of the face and they are extracted by using enormous face images and a machine
learning. However, the learned relationships cannot be used for the filtered images. The DA of OIKAWA’s
method is higher in most filter sizes with shuffling. Since the shuffling only changes locations of each pixel,
color histogram template is not changed drastically (Figure 5(a)). In contrast, because CAMSHIFT uses a high
probability skin color and main tracking is skin, the output rectangle is larger than the ground truth and it causes
the low DA. Hence, in order for the high DA, using another color feature of face parts such as palpebral fissures
is necessary for CAMSHIFT. Because the pixelating and blurring filters change the color information drastically
compared to the shuffling (Figure 5(b) and (c)), the DA of the OIKAWA’s method and the CAMSHIFT is low.
From these results, the shuffling with color histogram template matching is a better method for the face tracking.

Next, the average processing time by each obscuration filter per one image is considered. The time when the
filter size is3×3 and31×31 are used is investigated. When the size is3×3, the times by shuffling, pixelating,
and blurring are 1.2, 0.5, and 1.0 ms. When the size is31×31, the times are 1.0, 0.3, and 1.1 ms. All the filters
do not take a long time. Therefore, if we consider the face tracking accuracy, OIKAWA’s method with shuffling
is the best. However, if we consider a practical application, it is necessary to improve the OIKAWA’s method
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Figure 4: Detection accuracy with different PASCAL thresholds: a) PASCAL=0.4; b) PASCAL=0.3.

(a) (b) (c)

Figure 5: Example of detection results. The size for all obscuration filters is31×31. Red and green rectanges
represent the tracking result by CAMSHIFT and OIKAWA’s method and there is no detection by the face
detector: a) shuffling; b) pixelating; c) blurring.

because the DA is low when the PASCAL threshold is high. This is because that this method only uses color
histograms. For more stable system, additional features are required. In the future, we investigate this.
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Cone detection and blood vessel segmentation on AO retinal images
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Abstract

With the advent of Adaptive Optics (AO) for the high-resolution imaging of the retina, it is possible to
study the individual photoreceptors and their spatial distribution in vivo. The presence of the blood vessels
affects negatively the detections, and for this reason clinicians select manually the regions devoid from the
vessels to be analysed. We present here a method that we developed for the segmentation of blood vessels in
AO retinal images. With the choice of a suitable cone detection algorithm, we are now able to automatically
analyse the images acquired by an AO fundus camera in their entirety.

Keywords: image processing, ophthalmology, Adaptive Optics, segmentation

1 Introduction

Figure 1: Example of cone detection with
segmentation

Thanks to the advent of Adaptive Optics (AO) in vision sci-
ence, it has become possible for clinicians to study the human
retina in vivo with high-resolution images. The detection of
cone photoreceptors is important, as their spatial distribution is
strongly related to the quality of the subject’s vision and can in-
dicate the presence of clinical conditions (Figure 1). In previous
work [Mariotti and Devaney, 2015] we implemented and com-
pared the most commonly used cone detection algorithms.

It is common practice for clinicians to select small rectan-
gular windows on the image in which to perform cone detection
and to analyse the metrics related to cone spacing. The windows
are selected in order to exclude the shadow projected by blood
vessels on the photoreceptor layer, as the resulting detections
would be unreliable. There are already algorithms in the litera-
ture proposed for the segmentation of retinal vessels, but they are
developed for low-resolution retinal images, and did not perform
well on our high-resolution images.

2 Method

The two cone detection algorithms that we use in our analysis were developed by [Li and Roorda, 2007] and
[Chiu et al., 2013]. The Li and Roorda algorithm detects the cones as the local maxima in the image. The Chiu
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Figure 2: Diagram showing the selection of the blood vessels from the original image

et al. algorithm extends the detection by segmenting the cone profiles around the local maxima (Figure 1). A
portion of the image surrounding each maximum is transformed into quasi-polar coordinates, then the contour
of the cone is segmented as a layer using graph theory and dynamic programming.

In order to segment the blood vessels from the rest of the image, we examine the local standard deviation of
the images, as this will be reduced where there are the vessel shadows. We downsize the images by a factor of
four, in order to discard the high-frequency spatial information given by the cones. The local standard deviation
of the images is calculated, and multiplied by the original image to enhance the blood vessels, after correcting
both images for low-frequency background variations.

The vessel profiles were then found using region growing around the minimum intensity pixels of the
enhanced image. The threshold for selecting the seed points and the parameter that regulates the extension of
the region growing are chosen manually after visual inspection of the results (however, when using the same
instrument it does not vary significantly between patients). A diagram of the procedure is shown in Figure 2.
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3 Conclusions

The segmentation of the vessels allows us to perform a complete analysis on the cone mosaic, increasing
the area and the number of cones that can be included in the study (Figure 3) and removing the necessity to
manually select windows. This simplification will facilitate clinical use, resulting in an increased number of
patients that can be examined.

We thank Marco Lombardo for acquiring the images (with rtx1 camera of Imagine Eyes, Orsay, France)
and the Irish Research Council for financial support.

Figure 3: Detail of cone detections (green dots) with the exclusion of the blood vessel profile (blue)
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