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ABSTRACT 

 

Traditional manufacturing processes are limited to either being fully 

automated (CNC machining, robotic packaging, robotic welding systems, etc.), or 

fully manual (assembly tasks, hand tool operation, etc.), with the automated 

processes being separated via safety barriers in work cells from the manual 

processes; however current collaborative robot systems are greying the divide in 

how human workers and machinery are separated in factories, by offering lower-

risk force compliant systems which can reduce or eliminate the requirement for 

bulky and restrictive guarding. This progress toward guard-less machinery which 

can operate directly next to human workers opens up not only new ways in which 

technology can assist human workers; but also how human workers can assist 

robots.  

Although collaborative robotics opens up new environments to operate in, 

many issues will remain which prevent the use of robots for new tasks, instead of 

human workers, due to a human’s cognitive capabilities. Human-in-the-loop 

control systems may present a way for robots to expand their task capabilities by 

off-loading some of the cognitive processing to a human co-worker, forming a 

Human-Robot team which can perform greater than either used alone. This paper 

presents the results of early-stage testing of a human-in-the-loop system in which 

human participants controlled a simulated robot to accomplish a list of tasks. 

Manual and semi-autonomous control schemes were tested, where time to 

completion and number of collisions were recorded to measure the effectiveness 

of human-in-the-loop control over the fully manual system. 
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1. INTRODUCTION 

 

1.1 Difficulties with existing industrial robotics 

Robotics has had a large impact on industry since robots were first 

introduced to factories in the 60’s, providing a level of precision, power and 

endurance which human workers cannot match. While robots have very clear 

advantages over a human worker with respect to these factors, several issues have 

limited their use in more widespread applications - capability, size and cost. 

Regarding capability, or a robot’s ability to accomplish a variety of tasks, 

perception of the environment is a key skill which robots are known to handle 

poorly. This particular skill has a host of implications regarding a robot’s 

capabilities, such as affecting its ability to manipulate objects (e.g. if it cannot see 

an object in an unstructured environment, it cannot interact with it). This lack of 

skill in perception results in traditional robots requiring confinement to safety 



enclosures, with highly structured environments – in turn affecting the second 

issue of size, which limits the use cases for robots by the floor space it would 

occupy, compared to having human operators. 

The floor space occupied by the robot is not only the actual dimensions of 

the robot, but includes the safety caging, along with any assistive object 

manipulation systems such as conveyors; however it is often the additional space-

cost of safety caging which is a limiting factor in industrial robotic automation 

deployment. 

Regarding cost, traditional robot systems will typically require specialist 

programmers and integrators to install a work cell, along with the required safety 

enclosures, resulting in large collateral costs being associated with a single 

automation task. 

Collaborative robotics have helped to alleviate many of these issues a great 

deal, moving robots out from work cells, and onto work floors next to human 

workers. Passive and active compliant actuation has been the key driving 

technologies in reducing the risk of serious injury from robots, reducing the need 

for safety enclosures (saving space and cost), and opening up possibilities for 

programming by demonstration which allows minimally trained operators to 

rapidly program robots to perform basic automation where it is needed, saving 

cost and increasing capability by allowing for more rapid deployment without the 

use of expert programmers. 

This new approach to robotics can be viewed as treating the robot as a tool 

rather than a machine, a tool which can be used if rapid automation for a specific 

task is required; however with robots now operating alongside humans, we can 

also consider how Human-Robot-Interaction (HRI) can be leveraged to improve 

the robot’s capabilities through Human In The Loop (HITL) control. 

 

1.2 Human in the Loop Control Systems 

With HITL control, the objective is to integrate the human operator as a key 

part of the robot’s control system. The exact manner in which the human is 

integrated can vary depending on what type of HITL system is being developed. 

As described in [1], HITL systems can be split into 2 overall categories, which 

each have 2 subcategories.  

The first is having a human in the loop where they provide control input – 

this is then subdivided based on whether they are providing supervisory control, 

adjusting various parameters in a machine’s control algorithm to get a desired 

response, or if they are providing direct control to the system. 

The second is having a human in the loop where the human is being 

monitored – this is then subdivided into open and closed loop monitoring, where 

in open loop the human is observed and the information is then used in other parts 

of the robot’s control system without feedback to the human, and closed loop is 

the case where some form of feedback is provided to the human. 

A 3rd category exists which is for the case where we have a blend of a human 

providing control input while also being observed. An example of this would be 

in modern cars which have driver fatigue alert systems – here the driver is in 

direct control of the car, while the car is observing the driver to determine if they 

are alert. If the car determines the driver is not alert, is not responding to attempts 

to wake them, and is drifting out of the lane, then the car could attempt to make 

adjustments to maintain the car in its lane. 



As well as benefits to the human operator of the system, HITL control could 

also allow robotic systems to take on challenges which have traditionally been too 

cognitively complex, either due to the actual task complexity or the complexity of 

the environment in which the robot must operate.  

As described in [1], with HITL the human can serve several functions as part 

of the system, with the key ones being acting as a form of sensor for data 

acquisition, acting as a processing node for handling cognitive tasks, or acting as 

an actuator to interact with the environment. By using a human to fill-in 

capability gaps of the robot system in these ways, the capabilities of either alone 

are expected to be exceeded by their HITL collaboration.  

We believe that advancement in HITL control will progress the new status 

quo of “robots as tools” to a situation where robots operate as true co-workers in 

general situations. By some accounts, it is believed that HITL can render a robot 

immune to an uncontrolled environment [5]. 

With regards the human-experience of incorporating robots to a shared 

workspace, there are many issues regarding safety-related trust; however with 

HITL systems there has been studies which have shown human operators have a 

greater sense of empowerment if they are part of the robot’s operation [2].  

HITL control can however in some cases present a greater mental load on the 

human operator, specifically for tasks which are highly complex and dynamic, 

where human input may be requested for assistance in critical situations – a good 

example of this being in [3], where astronauts have reported in the past preferring 

to land their craft manually versus an HITL automated system as they found it 

difficult to mentally catch up with what was happening; whereas in manual 

control they were constantly “in the flow” of the changes as they happened. 

 

1.3 Overview of Testing 

The objective of the testing performed was to investigate the potential 

benefits of HITL control, and to provide early stage proof-of-concept data for a 

larger study which will be conducted in the coming weeks and months. 

The test involved having human participants interact with a simulated robot, 

where they had to direct the robot through various navigation, search, and 

retrieval tasks in a home environment. The participant’s performance was 

quantified based on the time taken to complete each task, and the number of 

collisions between the robot and objects/walls in the environment. 

Although this simulator testing was predominantly focused on the operation 

of a robot in personal assistance tasks, the focus of the research was the potential 

performance increase of HITL control – by having users complete tasks which a 

layperson would be familiar with, this testing can incorporate users from all 

demographics. We believe that this control paradigm can be extended to a 

manufacturing system, and intend to show this in future work. 

 



2. METHOD 

 

2.1 Test System Architecture 

The control schemes implemented were a fully manual control scheme, and a 

semi-autonomous HITL system via a Microsoft Xbox controller and an Android 

app. 

The HITL system incorporates the human for the purpose of cognition in the 

event a difficult task is encountered (e.g. finding a soft drink in a kitchen for the 

user), while relying on the robot’s internal controller for more standard operations 

(e.g. navigating down a straight corridor).  

While the robot is operating by its internal autonomous control, the user can 

provide a confidence rating which indicates how reliably the user trusts the robot 

will complete its current action – with reduced confidence the robot will operate 

at a reduced speed. If the user decides to take over direct control of the robot, the 

robot is given zero confidence and control is switched to the user.  

Confidence is indicated in the app interface by the user placing their fingers 

on the tablet’s touch sensitive surface in a specified control zone, with 1 finger 

being low confidence and 3 fingers being high confidence.  

With the Xbox controller two schemes were explored where the user can 

either provide a discrete confidence signal which is all-or-nothing (press and 

release to turn on, repeat to turn off), or a continuous confidence signal which 

again is all-or-nothing (press and hold to turn on, release to turn off). These are 

referred to as “semi-autonomous 1” and “semi-autonomous 2” respectively in 

later discussion. 

Two embodiments of the human control interface (see Figure 1) were 

explored for two reasons. Firstly since a significant proportion of those involved 

with the study were competent computer game users, it was predicted that they 

would possess an inherent advantage over participants that were unfamiliar and 

untrained with using conventional computer game controllers. Ensuring that at 

least one controller was unfamiliar to all participants provides a means of 

desensitising against such an issue. Secondly since the study sought to investigate 

how the robot's performance changes with increased levels of human interaction, 

it was felt that a purpose built controller would better facilitate higher levels of 

interaction than purely retrofitting a generic game controller built for multi-

functional use. 

 
Figure 1: Human Control Interfaces. (a) Xbox game controller where left thumbstick was 

used for speed and direction control. The left trigger button was used for autonomy 

switching. (b) Custom built tablet control application. Coloured rings indicate speed, 

finger position in the circle dictated direction and the grey square at the bottom allowed 

the user to provide confidence ratings via finger placement. 



 

A system overview for this controller is provided in Figure 2, which shows 

both the separation and integration of the Human (box labelled remote) and Robot 

(local) control. Autonomous control for the simulated testing is effectively a 

black-box controller, with automation provided through tools in the simulation 

software to guide the robot character to the goal points from the robot’s current 

position. 

 
Figure 2: Human In The Loop Control Architecture, with dotted lines indicating what 

aspects are local to the robot and which are remote (i.e. part of the human process) 

 

In our testing, the local component of this architecture ran on a desktop 

computer and was integrated to our simulation tool. The simulator used for this 

testing was Blender, a free open-source 3D modelling tool which provides a basic 

physics engine that was used to monitor collision situations. In the tests that were 

conducted, the local component of this architecture remained consistent. 

We varied the form factor of the remote component of the test system, where 

one set of tests were run using a Microsoft Xbox controller and another set of 

tests were run using an application developed for an Android tablet, to investigate 

how a Human in the Loop control architecture depends on the form factor of the 

control interface. The Xbox controller communicated with the local system over a 

USB connection, and the application communicated via a wireless UDP link. 

 

2.2 Testing Scenario 

The test environment shown in Figure 4 was modelled to represent a 

standard home environment. Static and mobile obstacles were included in the 

environment to ensure the user was challenged, to prompt them into action. Static 

obstacles included furniture and doorways which had to be navigated around or 

through. Mobile obstacles included a robotic vacuum cleaner on patrol and a dog. 

Key test metrics measured during testing were the number of collisions while 

completing particular stages and the time taken to complete particular stages. 

Testing was split into 3 stages, with the user beginning at the house’s entrance. 

Stage 1 involved the user navigating to the kitchen to locate a drinks can from the 

start position. Stage 2 involved the user navigating to the bedroom and 

approaching a person to deliver the can. Stage 3 finally involved the user 

navigating the robot to a charging staging located in the home’s hallway. Before 



users engaged with the full time trials, they were given a brief test-run to grow 

accustomed to the control interfaces.  

 

 
Figure 3: Testing setup for control schema, control application displayed. 

 

It was found during preliminary testing that in an effort to record the fastest 

time users often placed little priority on avoiding collisions. To remedy this, a ten 

second penalty was added for every collision that the user incurred during the 

simulation. 

A cumulative frequency distribution and bar chart conveying the overall time 

taken (with and without time penalties) for each controller across the sample set is 

presented in the results section. 

 

 
Figure 4: Testing environment – Simulated home, which featured static and mobile 

obstacles such as furniture and a virtual dog respectively. 

 

3. RESULTS 

 

This initial study was undertaken with twenty volunteers. Of the sample set, 

80% were students under the age of 25 and 90% of were male. The overall 

performance of the users was assessed based on two metrics; firstly their ability to 

complete the level in the fastest time and secondly their ability to avoid collisions 

in the process.  

It can be seen in Figure 5 that when the performance of the users is notably 

improved in the use of semi-autonomous control, particularly when collisions 

become penalized. 

 



 
Figure 5: Results from testing, upper charts show test results where penalties for 

collisions are not included, charts below show results where a 10second penalty is applied 

in the event of a collision. 

Lessons learned from the testing regarding the control interface design 

mainly concerned the usability of the control app. It was found that while users 

were generally quite effective in using it, they tended to have a higher number of 

collisions using the app compared to using the Xbox controller, as observed in 

Figure 6. This was attributed to general familiarity with the control of mobile 

objects with a games controller, versus unfamiliarity with the mechanics of the 

control app, as well as tuning issues in the control app where the robot’s turning 

speed was deemed too fast. An additional point noted by the testers was that as 

the tablet lacked haptic feedback, users had to keep taking their eyes away from 

the robot to reorient their finger on the control surface. 

 

 
Figure 6: Average number of collisions, and average time per stage 

 

It is also observed from these figures that the semi-autonomous control mode 

is better realised through a process of continuous switching than the less involved 

discrete-switching approach when implemented using the Xbox control 

embodiment. Once more this indicates that increased levels of operator 

interaction improve the performance of semiautonomous controllers. 

It was found during testing that collisions were most likely to occur during 

movements which required fine-control and the spatial awareness of the operator 



with respect to the robot was low, e.g. manoeuvring the robot through a doorway 

while moving toward the operator. 
 

4. FUTURE WORK 

This stage 1 testing has provided key insights which will help direct an 

estimated further 2 stages of testing in the near-term.  

Stage 2 will seek to implement improvements to the control app usability, in 

terms of tuning turning speeds etc., are minor changes which we predict will help 

further in demonstrating the benefits of HITL control. Furthermore, as this initial 

test set was limited in numbers and variation, future testing will be conducted in a 

more public high-footfall venue where we hope to be able to gather greater 

sample numbers and variation in user demographic to further support our initial 

findings. Similar quantitative data to stage 1 will be gathered, but also qualitative 

data through standard questionnaire methods. 

In stage 3 it is projected that the issue of tuning parameters will be extended 

to develop a self-tuning system which can adapt the control scheme’s parameters 

to best suit the current user, based on qualitative data provided by the user and 

quantitative observations during trial runs. This adaptive system will be 

developed from the quantitative and qualitative data gathered in stage 2. 

While these stages directly build on the platform presented here in a personal 

robotics context, it is expected that this research will feed into HITL research we 

are conducting in industrial mobile manipulation systems. 
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