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Effect of membrane stiffness and cytoskeletal element density on mechanical stimuli within cells:
an analysis of the consequences of ageing in cells

Feng Xuea, Alex B. Lennona, Katey K. McKayeda,b, Veronica A. Campbella,b and Patrick J. Prendergasta*
aTrinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin, UK; bDepartment of Physiology, School of

Medicine, Trinity College Dublin, Dublin, UK

(Received 19 October 2012; final version received 30 May 2013)

A finite element model of a single cell was created and used to compute the biophysical stimuli generated within a cell under
mechanical loading. Major cellular components were incorporated in the model: the membrane, cytoplasm, nucleus,
microtubules, actin filaments, intermediate filaments, nuclear lamina and chromatin. The model used multiple sets of
tensegrity structures. Viscoelastic properties were assigned to the continuum components. To corroborate the model, a
simulation of atomic force microscopy indentation was performed and results showed a force/indentation simulation with
the range of experimental results. A parametric analysis of both increasing membrane stiffness (thereby modelling
membrane peroxidation with age) and decreasing density of cytoskeletal elements (thereby modelling reduced actin density
with age) was performed. Comparing normal and aged cells under indentation predicts that aged cells have a lower
membrane area subjected to high strain as compared with young cells, but the difference, surprisingly, is very small and may
not be measurable experimentally. Ageing is predicted to have more significant effect on strain deep in the nucleus. These
results show that computation of biophysical stimuli within cells are achievable with single-cell computational models;
correspondence between computed and measured force/displacement behaviours provides a high-level validation of the
model. Regarding the effect of ageing, the models suggest only small, although possibly physiologically significant,
differences in internal biophysical stimuli between normal and aged cells.

Keywords: cytoskeleton; nucleoskeleton; tensegrity; ageing; cell mechanics

Introduction

The mechanisms by which extracellular mechanical

stimulation affects the differentiation of cells and

ultimately cell fate are not yet well understood, despite

their importance for tissue engineering and regenerative

medicine (Ingber 2008;Wang et al. 2009). In particular, the

role of ageing on the mechanoregulation of cell activities is

a subject that has not yet been given very much

consideration. Computational modelling can be used to

explore potential mechanisms of cell response to

mechanical stimuli. There have been several different

approaches tomodelling the complexity of individual cells:

(1) The continuum approach described a single cell as

a continuous cytoplasm covered within a cortical

membrane (Evans and Yeung 1989; Karcher et al.

2003). Although this approach has successfully

demonstrated several cellular behaviours, it

cannot describe the biophysical stimuli within

cells because the cytoskeleton (CSK) network is

not included.

(2) The tensegrity approach, where the CSK is

modelled as an interconnected network of cables

and struts (Ingber 1997; Stamenovic and Coughlin

1999), with tensional cables representing actin

filaments (AFs) and compressive struts represent-

ing microtubules. The stability of the structure is

achieved by a balance of tension transmitted by

cables and compression in the struts, which is

induced by applying a prestress in the cables

(Ingber 1993). This approach has been used to

model many experimentally observed aspects of

cellular structural behaviour (Wang et al. 2001),

such as prestress-induced stiffening and strain

hardening (Coughlin and Stamenovic 1998;

Wendling et al. 1999).

(3) A hybrid approach that combines the continuum

modelling with the tensegrity approach (McGarry

and Prendergast 2004; McGarry et al. 2005; De

Santis et al. 2011). These cell models consist of

cellular components modelled as continua, includ-

ing cytoplasm, nucleus, membrane and a CSK,

which was modelled as a tensegrity structure.

More recently, nuclear tensegrity, with struts

representing nuclear lamina and prestressed cables

denoting chromatin, has been suggested (Ingber

2008) and researchers have demonstrated the

importance of prestress in the nucleoskeleton
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(NSK) during cellular differentiation and devel-

opment (Mazumder and Shivashankar 2010). With

direct mechanical linkages between CSK and NSK

confirmed (Wang et al. 2001; Dahl et al. 2010), the

suggestion of an integrated CSK–NSK network,

with both CSK and NSK modelled as tensegrities

has been proposed (Dalby 2005; Ingber 2008).

It has been reported that the osteogenic and

chondrogenic potential of mesenchymal stem cells

(MSCs) reduces with the age of donor (Mueller and

Glowacki 2001; Zheng et al. 2007). There are also reports

showing that MSCs from aged donors display typical

biomarkers of ageing. For example, McKayed et al. (2010)

found that there is a decrease of,35% in the expression of

actin and integrin-a and an increase of 50% lipid

peroxidation in MSCs of aged rats. Typically, in an aged

cell membrane, the accumulation of lipid oxidation

products in the cell membrane and growth of the domains

with polysaturated fatty acids and cholesterol with age

leads to an increase in averaged stiffness and viscosity of

the lipid bilayer (Morris et al. 2004; Staroddubtseva 2011).

Recently, Hale et al. (2011) have demonstrated that the

amount of lipid peroxidation products found in cell

membrane is approximately proportional to the membrane

elasticity.

In this study, a finite element model of a cell was

created using continuum modelling of the cell membrane,

nucleus and cytoplasm, with multiple tensegrity structures

included to represent both the CSK and the NSK. We aim

to show that such a modelling approach can give force/

displacement predictions within the bounds of experimen-

tal atomic force microscopy (AFM) indentation data.

Although this would not fully validate the model, it would

give confidence that it can be used to test the following

hypotheses regarding the effect of changes in both

membrane stiffness and cytoskeletal density (i.e. the

structural changes observed due to ageing) on biophysical

stimuli within the cell.

Methods

Geometry

The shape of the cell model was determined from

experimental observations (Frisch and Thoumine 2002).

The size of the cell model, including the proportion of

nucleus, was based on confocal images of mesenchymal

stem cells in our laboratory (Maguire et al. 2007). The

CSK–NSK structure was modelled as follows: micro-

tubules modelled as struts and AFs modelled as cables and

intermediate filaments (IFs) were combined in the CSK as

part of a prestressed tensegrity structure. Each tensegrity

structure consists of six compression-bearing struts (two in

each orthogonal direction) and 24 tensional cables

representing the aggregate behaviour of microtubules

and AF bundles, respectively. Twelve common nodes

were created at each end of the struts, where four cables

are connected, representing receptor sites, where actin

bundles cluster at adhesion complexes in adherent cells.

To fit into a spread cell, the tensegrity structures that are

derived from rounded configuration used by McGarry and

Prendergast (2004) were incorporated. To mimic the

complexity of the CSK, three tensegrity structures were

used (Figure 1(a)). Three tensegrities were also used for

the NSK, with struts representing nuclear lamina and

chromatin modelled as cables (Figure 1(b)). The nodes,

where NSK contacts the nuclear surface, represent nuclear

receptors spanning across the nuclear envelope that can

receive mechanical signals from the CSK. Each nuclear

receptor is connected to the corresponding cell receptor

pointing in the same direction (Figure 2). These direct

connections in the model represent the IFs. The cell model

was developed using the finite element code ABAQUS/

Standard version 6.8-1 (Simulia, Providence, RI, USA).

Cytoplasm and nucleus were meshed with four-node

tetrahedral elements. Cell membrane and nuclear envelope

were meshed with three-node shell elements. A ‘no-slip’

interaction condition was assumed at all nucleus–

cytoplasm and cytoplasm–membrane interfaces (by

employing the ‘tie’ constraint in ABAQUS). Beam

elements were used for struts and tension-only connecter

elements were assigned to all the cables. Prestress that is

equivalent to 2% of prestrain was assigned to all the cables

that constitute tensegrity structures by giving a reference

length to each of the connectors. A frictionless hard

contact was used between the indenter surface and the cell

membrane. Augmented Lagrange method was selected to

model the contact by monitoring the gaps between pairs of

nodes between the two surfaces.

Material modelling

Material properties for each of the cellular components are

not known precisely for mesenchymal stem cells and can

only be estimated from various sources. Viscoelastic

properties were assigned to the cytoplasm, nucleus and

membrane to incorporate time-dependant response to

biophysical stimulation. A standard linear solid model,

which consists of a spring k1 paralleled with a series of

another spring k2 and a dashpot m, was used to characterise
the viscoelastic behaviour. The shear modulus GðtÞ and the
bulk modulus KðtÞ at time t are given as follows:

GðtÞ ¼ Gð1Þð12 gPð12 e2
t
tÞÞ=ð12 gPÞ; ð1Þ

KðtÞ ¼ Kð1Þð12 kPð12 e2
t
tÞÞ=ð12 kPÞ; ð2Þ

where the parameters gP, kP and the relaxation time t are
viscoelastic material constants, and Gð1Þ and Kð1Þ are
the equilibrium shear and bulk moduli, respectively.

[Q1]
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Tables 1 and 2 present the specific material properties for

each cellular component from a young donor used in this

study.

Age-related changes regarding lipid peroxidation and

expression of actin and integrin found by McKayed et al.

(2010) were interpreted and modelled by the following

methods.

(1) In aged cells, both elastic modulus and apparent

viscosity of the cell membrane were doubled

( £ 2) relative to young cells to capture the effect

of lipid peroxidation, by assuming a proportional

relationship between membrane stiffness and the

amount of lipid peroxidation products (Hale et al.

2011). To identify the effects of membrane

stiffness, a parametric study with wider range,

from 0.1 time ( £ 0.1) to 10 times ( £ 10) of the

original young cells, was carried out.

(2) The reduced amount of actin bundles and

integrin receptors in aged cells was modelled

by structural differences in CSK–NSK formation

in our cell models. Specifically, two sets of

CSK–NSK tensegrity combinations were used

for the aged cells, whereas three sets were used

for the young cells.

Figure 2. NSK (Figure 1(a)) was then placed at the centre of the
CSK (Figure 1(b)) and the two structures are connected by direct
linkages representing IFs (shown in green lines).

Figure 1. (a) The formation of cytoskeletal network. It is formed by three sets of six-strut flattened tensegrity structures, with the
identical second and third set rotated along the y-axis by 408 and 808 clockwise, respectively and with struts (red lines) representing
microtubules and cables (blue dotted lines) representing actin bundles. (b) The formation of nucleoskeletal network. The same method
shown in (a) applies to three sets round-configuration tensegrity structures, with nuclear lamina and chromatin modelled by struts and
cables, respectively.
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Loading

A rigid conical indenter with a contact angle of 1418 was
used to indent the cell model. A 3 nN indenting force was

applied to the indenter during each simulation in a force-

control manner and the displacement at the indenter tip

was computed with each increment. Simulations were

carried out at two indenting positions on the cell

membrane: at one of the receptor sites where the CSK

contacts with cell membrane, and at the apex of the cell

where it is most distant from a receptor site. The stiffness

of the cell model was calculated using a Hertz formula that

relates the indenting force and indentation depth, which is

expressed as:

F ¼ 2E

p tanað12 n2Þ d
2; ð3Þ

where E is the stiffness of the cell, F is the reaction force at

the indenter tip, a is a half of opening angle of the indenter

tip, n is Poisson’s ratio and d is the indentation depth.

Results

Using Equation (3), the elastic moduli of the cell models

were calculated and averaged at 4.08 kPa at the apex and

5.87 kPa at the receptor site, indicating that indentation

location has a great influence on the predicted cell stiffness.

In comparison, age-related changes proposed in this study

are not predicted to impact greatly on the stiffness of cells.

A mere 5% increase in predicted stiffness is seen with the

addition of age-related changes from 4.85 kPa for young

cells to 5.09 kPa for aged cells. These predicted cell

stiffness values were within the range of experimentally

measured cell stiffness measured using AFM indentation

(see Table 3).

A strain-hardening force–displacement behaviour was

predicted for all AFM indentation simulations with the

degrees of strain-hardening differing depending on indenta-

tion site. The indenting position2 at a receptor site versus at

the apex distant from the receptor site – dominates the cells

response to indenting force. An approximately 30% stiffer

response is predicted when indenting at the receptor site, as

compared with the case when indentation occurs at the apex

of the cell. Although slight, age-related changes do affect

the behaviour of cells under AFM indentation, indicating

that cell stiffness changes with ageing (solid green curve vs.

dashed brown curve; solid lime curve vs. dashed orange

curve in Figure 3). An increase in the membrane stiffness

stiffens cell’s response to indenting force at both indentation

locations, whereas a decrease in the complexity of CSK–

NSK network increases the predicted cell stiffness at both

indenting locations. The difference in cell stiffness caused

by ageing is most apparent when indentation takes place at

the apex of the cell (Figure 3). In the case of indenting at a

receptor site where the CSK is in contact with cell

membrane, a direct load transfer from indenter and CSK

diminishes the impact of CSK complexity and membrane

stiffness. In all cases, the indentation depth ranges from

13.7% to 23.4% of the original cell height, indicating that

simulations are reliable andwould return realistic results in a

real experimental environment (Moeendarbary et al. 2013).

There is a striking difference in the pattern of stress

inside a cell depending on indentation at the apex as

compared with receptor site, compare Figure 4(a) with

Figure 4(c) and compare Figure 4(b) with Figure 4(d).

However, the difference due to ageing is not so visually

obvious, compare Figure 4(a) with Figure 4(b) and

compare Figure 4(c) with Figure 4(d). Apart from a stress

concentration at the indenting location, the stress in the

nucleus is higher than any other location in the cytoplasm:

this is due to the IFs that transmit indenting force from cell

membrane directly to the nucleus.

To quantify the strain difference in cellmembranewhen

subjected to an indenting force, Von Mises strain was

compared across all scenarios (Figures 4 and 5). Despite the

Table 2. Elastic and geometric properties of cellular
components.

Elastic
modulus (Pa)

Poisson’s
ratio

Diameter
(nm)

Microtubulesa 1.2 £ 109 0.3 12
AF bundlesb 0.34 £ 106 0.3 250
Ifsc 7.6 £ 106 0.3 10
Laminad 1.4 £ 106 0.3 10
Chromatine 244 £ 106 0.3 1.2

aGittes et al. (1993). bDeguchi et al. (2005). cBertaud et al. (2010). dDahl
et al. (2004). eSmith et al. (1996).

Table 1. Viscoelastic properties of cellular components.

k1 (Pa) k2 (Pa) m (kPa s) Poisson’s ratio

Cytoplasma,b 50 100 5 0.37
Nucleusa,b 200 400 10 0.37
Membranec,d 720 280 25 0.3

aShin and Athanasiou (1999). bGuilak et al. (2000). cWaugh and Agre
(1988). dKamm et al. (2000).

Table 3. Experimentally measured cell stiffness using AFM
from previous studies.

Cell type Measured stiffness (kPa)

mESCa 1.49 ^ 0.09
Fibroblastb 6.00 ^ 2.30
Myoblastc 11.50 ^ 1.30
Osteoblastd 5.20 ^ 0.60 (S phase)

2.30 ^ 3.30 (G1 phase)

aPillarisetti et al. (2011). bAzeloglu et al. (2008). cCollinsworth et al.
(2002). dKelly et al. (2011).
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Figure 3. Force–displacement curves from indentation at two different indenting locations (apex and a receptor site) with the stiffness
of cell membrane varying from 0.1 time ( £ 0.1) to 10 times ( £ 10) of the original value for a normal (young) cell. The experimental data
are taken from a study measuring the stiffness of bovine chondrocytes using AFM indentation (Ng et al. 2007) and shown in the figure as
dotted black curves.

Figure 4. Contour plots of Von Mises stress during indentation simulation with different indenting locations, at apex (a, b) and a receptor
site (c, d) of young cells (a, c) and aged cells (b, d). Cut-views are shown for visual comparison of Von Mises stress inside the cells.
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difference made by age of the cell and indentation location,

the total strained surface area decreases as strain range

increases (Figure 5). Although almost no difference can be

seen at mid-range, the differences are quite evident at low

strain ranges. At high strain range, possibly at the interface

between the cell and indenter, small differences in strained

area can also be found.

A comparative study was carried out on the hydrostatic

and deviatoric strain in the cell nucleus when undergoing

indentation simulation at the cell apex (Figure 6). Although

the young and aged cells exhibit no difference in terms of

hydrostatic strain, deviatoric strain does show a slight

difference, especially at low strain ranges. This suggests

that the nuclei of the cells may be strained differently
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depending on the degree of ageing,with particular emphasis

on the change in shape rather than volume.

Discussion

We tested the hypothesis that there is a change in the

biophysical stimuli inside a cell as a consequence of the

changes in membrane stiffness and cytoskeletal element

density that occur with age. This hypothesis has been

corroborated because the analysis predicted that strains,

both in cell membrane and nucleus, differ with age-related

changes known to occur in cellular components; however,

the changes are not as high as might be anticipated, except

for the differences of the area under low strains (Figure 5).

This study exemplifies the potential utility of a hybrid

continuum-tensegrity representation of a cell. A particular

strength of this approach is the ability to separate the

potential load transfer mechanisms within a cell due to

externally applied stimuli. Nevertheless, even this

relatively complex tensegrity representation of the

CSK–NSK does not capture the true complexity and

dynamic behaviour observed in real cells and should

therefore be considered as a tool to understand the

aggregate behaviour of cytoskeletal mechanics at instants

of time rather than an accurate representation of CSK–

NSK structure and mechanics under all circumstances.

Furthermore, because of the nature of a passive model, this

approach does not capture any active behaviour that a cell

would exhibit under mechanical loading.

Cellular finite element modelling provides insight into

the cell biomechanics, which could not be achieved

experimentally. The idea of using multiple units of

tensegrity structures presented in this paper enabled us to

investigate the influence of ageing on cells’ behaviour by

capturing aged-related structural changes in CSK. It also

provides us a closer-to-reality view on cell modelling, as

compared with single tensegrity approach (Ingber 1993).

By integrating the CSK and NSK networks in a cell model,

the presentation of direct mechanical linkages from cell

membrane to nucleus through AFs and IFs (Wang and

Stamenovic 2000, 2002), then reaching deep into the

nucleus via Linker of NSK and CSK (LINC)-complex that

were discovered recently (Wang et al. 2009; Dahl et al.

2010) allows us to explore the possibilities of how external

mechanical signal affects nuclear biophysical stimuli. The

difference found in CSK complexity with regard to donor

age alters the force-transfer pattern within the cells and

ultimately differentiate the biophysical stimuli received by

the nuclei (see Figure 6).

AFM is frequently used to investigate the mechanical

properties of biological cells (Radmacher et al. 1994). For

example, Ng et al. (2007) measured nonlinear strain

hardening in bovine chondrocytes using AFM indentation.

During AFM indentation simulation, common mechanical

nonlinear responses are present in all force displacement

curves. These strain-hardening behaviours are consistent

with previous experimental data in the literature (Figure 3).

There are several sources contributing to this typical strain-

hardening behaviour. First of all, it is most obvious that this

nonlinearity is because of the viscoelastic nature of the

cytoplasm, nucleus and membrane. Second, tensegrity

structures contribute to this nonlinear behaviour; it has been

demonstrated by Stamenovic et al. (1996) that six-strut

tensegrity structures of such a type used in this study have

strain-hardening and nonlinear characteristics. This con-

tribution can be further confirmed by a computational study

done by McGarry and Prendergast (2004), in which a

strain-hardening effect was achieved, even without

viscoelastic properties used in any cellular component.

Also, during the indentation process, the area of contact

surface between the indenter and the cell membrane

increases as the indenter travels deeper into the cell. An

increasing resistance to the indenter induced by this

enlarging contact area decelerates the indenter and

nonlinearity is achieved as a result.

Our results suggest that indentation location greatly

affects the measured cell stiffness using AFM (Figures 3

and 4). Although this is in agreement with the

experimental investigations in the literature (Ohashi

et al. 2002), a much stiffened behaviour is predicted in

the case of indenting at a receptor site, as compared with

experimental observations. In theory, this is due to the fact

that the indenting force is directly transferred to the CSK,

which is a much stiffer structure. In practice, such a

difference will not be evident due to slippage between the

indenter tip and cell membrane, with an exception that

coatings are applied to the indenter tip to specifically target

receptors on the membrane by chemical binding.

Most interestingly, we found age-related changes that

we assigned to the cell model spell influences on the

predicted cell stiffness. Specifically, the aged cell is slightly

stiffer than the young cell at both indenting locations. This

is largely due to the stiffer material properties used for cell

membrane that is caused by products of higher level of lipid

peroxidation in aged cells. In this study, we doubled the

membrane stiffness for the aged cells by assuming a

proportional relationship between the amount of lipid

peroxidation product and membrane stiffness (Hale et al.

2011). However, as much as 450% increase in the elasticity

of membrane is suggested when doubling the amount of

lipid peroxidation products according to Ajmani et al.

(2000). This would further increase the difference in

predicted cell stiffness at both indentation locations

(Figure 3). Differences caused by ageing can also be seen

deep in the nucleus. Despite the almost identical hydrostatic

strains found in the nuclei of both young and aged cells, the

deviatoric strain in the nucleus differs between young and

aged cells, which is due to the difference in the density of

cytoskeletal filament and the number of focal adhesion sites

which transmit extracellular mechanical stimuli into the
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cell. This could be important, as it has been demonstrated

that these direct linkages transmit mechanical signals many

times faster than biochemical responses (Wang et al. 2009).

The predicted results on cell membrane strain during

AFM indentation simulations suggest that young cells tend

to have a greater membrane area under high strain

(Figure 5). If this is true, it would lead to opening of more

mechanosensitive stretch-activated ion channels (Charras

and Horton 2002a, 2002b). It has been shown that

openings of mechanosensitive channel could give rise to

whole cell cytosolic calcium responses, thereby reinfor-

cing the putative role of mechanosensitive channels as the

first step in the transduction of external physiological

mechanical stimuli into whole cell responses (Charras

et al. 2004). The differences in the number of receptor sites

and the complexity of the CSK–NSK network that

mechanically connect the extracellular matrix to the

nucleus, between the young and the aged cells, could result

in a difference in stimulation patterning in the nucleus, as

shown in Figure 6. Nuclear strain has been suggested to

influence higher-order chromatin organisation, thereby

restricting or promoting the accessibility of transcription

factors or other regulatory factors to specific gene

sequences, which could similarly influence gene transcrip-

tion (Stein et al. 2007).

Conclusion

A 3D finite element model of a single cell with a complex

CSK–NSK network was developed. AFM indentation

tests were simulated on the cell model with age-related

changes applied. Our results show that indenting location

dominates cells behaviour under indentation loading

environment. In comparison, the effect of age-related

changes on the predicted cell stiffness is minor. However,

differences are found in both membrane strain and nuclear

strain, despite the small change in predicted cell stiffness

due to ageing, indicating that there is a change in the

biophysical stimuli inside a cell as a consequence of

ageing. In this study, only two configurations of CSK–

NSK structures were included. The authors recommend

future researchers to comprehensively look into CSK–

NSK complexity in order to capture the mechanical and

structural changes occurring with ageing.
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