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of highly concentrated, few-layer
graphene suspensions

Sebastian Barwich, Jonathan N. Coleman and Matthias E. Möbius*

For a wide range of applications of graphene suspensions, a thorough understanding of their rheological

properties is crucial. We probe the microstructure of dense suspensions of micron-sized, few-layer,

defect-free graphene platelets by measuring their viscoelastic properties at various concentrations up to

39 mg ml�1. We propose a model to relate the yield strain to the mesh size of the microstructure as a

function of volume fraction f. From the yield stress measurements we infer the typical bond energy

(z20 kBT) and f dependence of the bond number density. These results allow us to express the steady

shear viscosity for Peclet number Pe < 10 in terms of the platelet dimensions, bond energy and f using a

relaxation ansatz.
1 Introduction

The study of 2-dimensional (2D) materials is currently one of
the most dynamic areas of nanoscience. While graphene is
probably the most well-known 2D system, many others exist
including clays,1 transition metal dichalcogenides such as MoS2
and transition metal oxides such as MoO3.2 While such systems
can usually be grown directly, applications such as conductive
ink,3,4 coatings, composites and energy storage5 will be facili-
tated by the ability to produce suspensions of 2D nanosheets in
liquids.

Recently, liquid phase exfoliation6–9 has been developed to
produce dispersions of high quality, defect free nanosheets of
graphene, MoS2 and a range of other materials. While such
dispersions are ideal for the applications described above,
process development will require a thorough understanding of
the rheology of these suspensions.

In general, the rheological response of colloidal suspensions
beyond the rigidity threshold is dictated by the microstructure
of the stress-bearing network that is formed by these particles
and the nature of their interaction. In contrast to networks of
stiff rods such as carbon nanotubes (CNTs)10,11 the relationship
between microstructure and rheology of suspensions of high
aspect ratio graphene platelets beyond the rigidity percolation
remains unexplored. In particular it is unknown how yield
strain and yield stress scale with the volume fraction f and
platelet dimensions. In contrast to graphene oxide (GO)
suspensions and clays, whose structure and rheology is sensi-
tive to the surface charges present on these platelets,12–15 our
suspensions of pure, defect-free few-layer graphene platelets
provide a well dened model system to study stress bearing
ge Dublin, Dublin 2, Ireland. E-mail:

hemistry 2015
networks of high aspect ratio platelets whose interactions are
predominantly mediated via van der Waals forces.

In this letter we use suspensions of graphene platelets in N-
methyl-pyrrolidone (NMP) solvent that have been created
through liquid exfoliation.7,8 This process produces suspen-
sions of defect-free, few layer graphene akes with high aspect
ratios of �1000. The suspension is stabilized against aggrega-
tion by the solvent itself as its surface energy is closely matched
to that of graphene8 leading to a vanishingly small enthalpy of
mixing.9 At high concentrations the platelets can bond via the
van der Waals interaction leading to the creation of a stress
bearing microstructure which exhibits a so glassy rheological
response.14,16 In this work we probe the microstructure of these
suspensions by measuring their viscoelastic properties at
various concentrations beyond the rigidity percolation.
2 Experimental methods

The graphene suspensions have been prepared via liquid exfo-
liation.7,8 The solvent is NMP, for which we measure a viscosity
of 2.2 � 0.1 mPa s, which is somewhat larger than the literature
value 1.8 mPa s due to water absorption during sample prepa-
ration. The exfoliated graphene akes have typical a length of
D ¼ 1 � 0.5 mm and have on average 3 layers which corresponds
to a thickness of h¼ 1 nm (ref. 7) (see inset Fig. 1). The graphene
concentrations in our samples range from 1 to 39 mg ml�1,
which corresponds to volume fractions f between 4.8 � 10�4 to
0.019. In order to make these highly concentrated suspensions
in sufficient quantities, graphite was rst exfoliated in NMP
using shear exfoliation.6 The unexfoliatedmaterial was removed
using coarse ltration with the exfoliated material collected via
vacuum ltration and then redispersed in fresh NMP using
sonication.7
Soft Matter, 2015, 11, 3159–3164 | 3159
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Fig. 1 Viscosity versus graphene concentration measured at _g ¼ 200
s�1. The horizontal and vertical dashed lines denote the solvent
viscosity (hs ¼ 2.2 mPa s) and critical concentration cc ¼ 4.2 mg ml�1,
respectively. The black line denotes a logarithmic slope of 2.2. Inset:
TEM image of few-layer graphene flakes on a porous grid.

Fig. 2 Storage plateaumodulusG 0
0 versus the relative packing fraction

f� fc measured at 1 Hz. The line is a fit to the data:G 0
0 ¼ 0.65(f� fc)

3

GPa. Inset: (-) storage (G0) and (B) loss (G0) modulus as a function of
strain amplitude for f ¼ 0.00356 (7.5 mg ml�1).

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
2 

M
ar

ch
 2

01
5.

 D
ow

nl
oa

de
d 

by
 T

ri
ni

ty
 C

ol
le

ge
 D

ub
lin

 o
n 

05
/0

5/
20

15
 0

9:
24

:0
1.

 
View Article Online
The viscoelastic measurements are performed in a plate–
plate geometry using an Anton Paar MCR 301 rheometer. The
diameter of the plate and the gap size are 50 mm and 0.5 mm,
respectively, allowing oscillation measurements down to shear
stresses of 0.1 mPa. The samples were bath-sonicated for 60
minutes prior to loading to ensure a well dispersed suspension.
In order to avoid shear alignment we did not prestress the
samples. To check that the samples have settled into an equi-
librium, we performed consecutive oscillatory strain sweeps
which were highly reproducible. The suspensions are stable
over experimental time scales. We use the same geometry to
measure the viscosity up to strain rates of _g¼ 200 s�1. For lower
concentrations, we use a Couette geometry to measure the
viscosities at high shear rates up to 45 000 s�1. The radius of the
inner cylinder of the Couette cell is 14.36 mm and it has a gap of
100 mm, which is 2 orders of magnitude larger than the largest
platelet dimension.
3 Results

First we determine the critical concentration cc at which the
rigidity percolation occurs. At this point the effective viscosity h
of the suspensions increases dramatically and the storage
modulus G0 becomes non-zero. In order to determine cc we
measured h over a wide range of concentrations at a constant
shear rate of 200 s�1 as shown in Fig. 1. The viscosity changes
little up to 4mgml�1, presumably due to shear alignment of the
platelets, and then starts to increase dramatically beyond
4 mg ml�1 with �c2.2. A more precise determination of cc and
the corresponding volume fraction fc comes from measure-
ments of the plateau of the storage modulus, G 0

0, in the linear
response regime. The inset of Fig. 2 shows a typical strain sweep
measurement at constant frequency of 1 Hz at a concentration
above cc. In the linear regime, the storage modulus G0 exhibits a
plateau and is greater than the loss modulus G0 0. Beyond the
yield strain G0 decreases and eventually the suspensions is
uidized when G0 0 > G0. This viscoelastic behavior is typical of a
3160 | Soft Matter, 2015, 11, 3159–3164
so glassy material. Fig. 2 shows the plateau value of the storage
modulus G 0

0 as a function of the reduced volume fraction f� fc,
where fc corresponds to the critical volume fraction at which
rigidity percolation occurs. Beyond the percolation threshold
we expect G 0

0 f (f � fc)
a, where a is the percolation exponent.

We determine fc by tting this power law to the data and nd
fc ¼ 2 � 0.05 � 10�3 which corresponds to cc ¼ 4.2 �
0.1 mg ml�1.

How does the onset of rigidity fc depend on the dimensions
of platelets? This question has been addressed in the context of
conduction percolation17 and onset of solid-like behaviour in
silicate nanocomposites.18,19 Assuming randomly orientated,
monodisperse disc-shaped platelets in solution, one can esti-
mate the percolation threshold as follows.18 Approximating the
akes as discs with diameter D and thickness h, we embed them
in hypothetical spheres of diameter D. Below percolation they
are free to rotate within their embedding sphere. As the
concentration increases, the randomly dispersed spheres will
eventually touch and form a percolating network. At this point,
the akes in the percolating sphere cluster are not free to rotate
anymore and a percolating disc network can be formed. The
critical overlap concentration fo is therefore the ratio of the disc
volume to the embedding sphere with a prefactor fj that
accounts for the interstices between the spheres: fo ¼ fj1.5h/D.

Ren et al.18 have argued that fj corresponds to the percola-
tion threshold of (overlapping) spheres (fj ¼ 0.30), although the
random close pack density, fj ¼ 0.64, may be an equally
appropriate choice. In both cases, fo is around 2–4 times lower
than the experimentally determined critical concentration fc ¼
2 � 10�3.

However, this estimate can only be a lower bound. Simula-
tions of (overlapping), monodisperse ellipsoids20 in the extreme
oblate limit (h/D z 1000), which can be considered a good
approximation of discs, have shown that the conduction
percolation threshold is somewhat higher, namely 1.27h/D
while experiments on conductivity percolation of graphite
platelets17 have found critical concentrations in the range
1.3h/D to 1.7h/D. More importantly though, conductivity
This journal is © The Royal Society of Chemistry 2015
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Fig. 3 G0/G 0
0 versus g/gc, where gc is shown in the inset. (-) 5, (=) 7.5,

(<) 10, (A) 15, (;) 20, (:) 22, (C) 25, (+) 33. The dashed lines indicate
gc where G 0

0 has decreased by a factor of 10. Inset: gc versus (f � fc).
The red line is eqn (1). The black line denotes the logarithmic slope
�0.8.

Fig. 4 Estimating the pore size and the yield criterion. (a) Platelet
approximated as a disc of radius D/2 with thickness h embedded in an
ellipsoid to estimate pore size x. (b) Illustration of a platelet rotated by
qmax.

† An analogous analysis for rods of diameter D and length L embedded in prolate
ellipsoids yields f ¼ 3/2(Dx)2 which is equivalent to a cubic lattice of overlapping
rods with lattice constant x.10
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percolation is not sufficient for mechanical stability of the
network. For mechanical stability of the network, which is
necessary for the emergence of a nite yield stress, the platelets
require a minimum number of contacts on average. Recent
work on jammed packings of frictional ellipsoids have shown
that for rigidity the average contact number per particle must be
at least 4 in three dimensions.21 Therefore, one would expect the
onset of rigidity at concentrations that are somewhat larger
than fo. Nevertheless, there is agreement in the literature that
the critical concentration scales with the inverse aspect ratio h/
D. For simplicity we will set fj¼ 1 in the following, i.e. fo¼ 1.5h/
D ¼ 1.5 � 10�3, mindful that any small deviations from this
value reect the details of the network structure and are beyond
the scope of this study. Such an approach is valid as the exact
prefactor in fo, which is of order 1, is not crucial for modeling
the yield strain (eqn (1)).

The percolation exponent a is 3.0 � 0.1 and close to what is
found in graphene oxide composites.13 In these GO/PMMA
composites a is sensitive to the oxide content and goes from 2.4
to 3.1 for decreasing oxide content. Clays, such as Laponite,
usually exhibit a lower exponent a ¼ 2.35.15 This result may be
compared to simulations of rigidity percolation that incorpo-
rate both central and bond bending forces.22,23 In the absence of
bending forces, where bonds only stretch and contract, the
percolation exponent is 2.1 � 0.2, whereas networks in which
bonds resist bending as well, this exponent is predicted to be
3.75 � 0.1. Unlike CNT suspensions for which a¼ 2.3� 0.1 and
therefore correspond to central force networks,10 the exponent
for our graphene suspensions is clearly larger and suggests the
presence of bending forces. In contrast to the point-like
contacts between rods, graphene akes may form spatially
extended contacts that restrict their rotational degrees of
freedom. We therefore expect that bond bending forces play a
role. However, a is not close to 3.75 either, which suggests that a
fraction of bonds is point-like. A platelet may form bonds with
its edge or corner, where the latter would correspond to a point-
like bond.

We probe the microscopic structure of the graphene network
by measuring the non-linear rheological response as shown in
the inset of Fig. 2 which shows a typical strain sweep
measurement. At low strain amplitudes, the response is linear
and mostly elastic (G0 [ G0 0) as indicated by the plateau of the
moduli. At larger g, the suspension becomes uidized leading
to a rapid decay of G0. We dene the yield strain gc when G0 has
decreased by a factor of 10. This is illustrated in Fig. 3, where
the normalized storage moduli G0/G 0

0 for different f plotted
against g/gc collapse onto a master curve. The inset of Fig. 3
shows the f dependence of gc. Higher concentrations give rise
to a lower gc, a trend that is analogous to CNT's.10 Close to fc,
the yield strain appears to plateau at around 0.5.

The yield strain depends on the microstructure of the
network which in turn depends on f. Below the yield strain, the
response is elastic and determined by the bonds stretching and
bending and possibly the stiffness of the akes. At larger
strains, the bonds are broken and the response becomes non-
linear. For uidization to occur, the akes have to rotate
through angles large enough to disentangle from the network.
This journal is © The Royal Society of Chemistry 2015
In order to rationalize the observed scaling of the yield strain
with the packing fraction, we employ a model analogous to the
one proposed by Hough et al. for CNT's.10

The akes will assemble into some disordered network with
a typical mesh size x. We can establish a relation between x and
the packing fraction f by embedding the akes into a packing of
oblate ellipsoids with semi-axes D/2, D/2 and x/2 as shown in
Fig. 4(a). At the rigidity transition, the packing fraction corre-
sponds to akes being embedded in spheres. Approximating
the akes as discs of diameter D and thickness h, the packing
fraction is then simply f ¼ 3h/2x.† At fc, x ¼ D and therefore
fc¼ 3h/2D¼ 1.5� 10�3 as determined earlier. Next we estimate
the maximum angle of rotation required for uidization to
Soft Matter, 2015, 11, 3159–3164 | 3161
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occur. For CNT suspensions it was found previously10 that the
arc length of the maximum angle qmax corresponds to the mesh
size x assuming an affine deformation and stiff particles. The
maximum angle can then be estimated as follows10 as illus-
trated in Fig. 4(b):

gc ¼ tan qmax z
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 � x2
p ¼ 3h

2D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
f2 � fc

2
�q ; (1)

since x ¼ 3h/2f, D ¼ 3h/2fc.
The agreement between the data and eqn (1) is excellent as

shown in the inset of Fig. 3. However, the model predicts a
diverging yield strain at f ¼ fc, which is unphysical as the yield
strain should be nite at the rigidity transition of sticky parti-
cles. Despite this shortcoming this simple, local model captures
the behavior of the yield strain well for f far from fc.

The model by Shih et al.24 that has recently been used to
predict the scaling of G 0

0 and gc in nanoclay composites25 cannot
account for the observed behavior. Far from fc the model
predicts G0 f f(3+x)/(3�df) and gc f f�(1+x)/(3�df), where x and df
are the fractal dimensions of the elastic backbone and the
aggregates, respectively. In our case, where gc f �0.8 far from
fc (see inset Fig. 3), that wouldmean x¼�0.27 and df¼ 2.09. As
the fractal dimension should always be positive we conclude the
assumptions in that model do not hold here.

Next we look at the shear stress s measured at 1 Hz as a
function of strain amplitude. Fig. 5(a) shows the oscillatory
strain sweeps for various f. At low strains, the stress increases
linearly up to the yield point at which s starts to plateau. The
yield strain corresponds to rigidity loss due to bond breaking.
Fig. 5 (a) Shear stress s from oscillatory strain sweep measurements
for different concentrations (in mgml�1): (=) 5, (A) 7.5, (;) 10, (:) 15,
(C) 25, (-) 39.6. (b) Rescaled stress according to eqn (3) versus strain
normalized with the yield strain gc from eqn (1).

3162 | Soft Matter, 2015, 11, 3159–3164
The corresponding yield stress sy may therefore be used to
estimate the bond energy Eb between the akes assuming that
Eb is f independent. A similar analysis has been done to obtain
the interaction energy between CNT's10 and colloidal spheres.26

The f dependence of sy can be inferred from the elastic
response of the material. Up to the yield point the response is
elastic, therefore the yield stress scales as sy � G 0

0gc f

(f � fc)
3(f2 � fc

2)�0.5.
The stored elastic energy density at the yield point is E ¼

0.5Ggc
2 ¼ 0.5sygc. This may be related to the bond energy Eb

assuming that all bonds (or a xed fraction thereof) are broken
at the yield point and that Eb is f independent. Hence, E¼ nbEb,
where nb is the bond density. It follows that

Eb ¼ sygc

2nb
: (2)

For Eb to be f independent, the bond density nb has to scale
as sygc f (f� fc)

3/(f2 � fc
2). In order to obtain the prefactor of

nb, it is helpful to express the bond density as the product of the
number density nn and the average number of bonds per
particle z. The number density nn is simply nn ¼ f/Vg, where Vg
is the volume of the platelet, D2h. Therefore, the excess bond
density (beyond fc) scales as (f� fc)/D

2h. It follows that z scales
as (f � fc)/(f + fc) with an unknown prefactor. However,
simulations of other disordered jammed systems, such as
sphere packings, have shown that this prefactor is of order 1.27

Substituting eqn (1) and nb ¼ (f � fc)
2/D2h(f + fc) into eqn (2)

yields

Eb ¼ sy

3h2Dðfþ fcÞ0:5
4ðf� fcÞ2:5

: (3)

Interestingly, if ones uses an empirical power law t for the
yield strain (see inset Fig. 3), gc f (f � fc)

�0.8, instead of eqn
(1), then z f (f � fc)

0.4. The exponent is close to 0.5 found in
sphere packings.21,27 Note that these scalings only hold for large
f as one would expect a nite bond density and yield stress/
strain at f ¼ fc.

In order to obtain an estimate for Eb in terms of kBT we
rescale the shear stress, s3Dh2(f + fc)

0.5/(4kBT(f � fc)
2.5) (eqn

(3)), and plot it versus the strain normalized by the yield strain
(eqn (1)). Fig. 5 shows an excellent collapse of the data onto a
master curve. The plateau develops around z20 kBT. This
energy may be compared an estimate of the van der Waals
bonding energy between graphene akes. The surface energy is
known9 to be around �70 mJ m�2. The interaction energy
depends on the geometry of the bond. Bonds across an edge of a
ake with area�hD have energies of 1.7� 104 kBT, while a point
like contact with area h2 yields 17 kBT. The latter value agrees
well with the rheology data, we therefore conclude that most
bonds are point-like with limited spatial extend, but are not
purely central force in nature as indicated by the value of the
percolation exponent.

Finally we measure the steady-shear rheology of the gra-
phene suspension for various f above the rigidity transition
over a wide range of shear rates _g as shown in Fig. 6(a). At all f,
This journal is © The Royal Society of Chemistry 2015
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the suspensions exhibit shear thinning with a small plateau
developing at around _g ¼ 10 s�1, except for c ¼ 5 mg ml�1,
where the plateau starts at _g ¼ 1 s�1. At high shear rates the
viscosity approaches the solvent viscosity28 which is presumably
due to shear alignment of the platelets.

Using a relaxation ansatz, we can deduce the steady shear
viscosity at low shear rates from the storage modulus and the
yield strain. In this approach, steady shear is approximated as a
sequence of elastic deformations whose stored energy is dissi-
pated in irreversible microscopic processes on a characteristic
relaxation time scale tr.29 In our case this would be the bond
breaking between akes at the yield strain. Aer yielding, the
bonds quickly re-form through thermal motion, assuming that
the thermal time scale s is much smaller than the deformation
time scale _g�1, i.e. Pe h _gs � 1. For high aspect ratio nano-
particles such as graphene the relevant time scale is the rota-
tional diffusion time scale30 s ¼ 4hsD

3/3kBT ¼ 0.7 s, where we
approximate the akes as disks of diameter D.

The apparent viscosity of the suspension is approximately
h z G 0

0tr.29 Here, tr is simply the time between consecutive
yielding events, thus tr ¼ gc/ _g. It follows that h z G 0

0gc _g
�1,

which reduces to hz sy _g
�1. Expressing sy in terms of the bond

energy and platelet dimensions (eqn (3)), we obtain

hz
4Ebðf� fcÞ2:5

3h2Dðfþ fcÞ0:5g
: : (4)

In order to test this relation, we plot the rescaled viscosity
h3Dh2(f + fc)

0.5/4Eb(f� fc)
2.5 versus _g as shown in Fig. 6(b). For

Pe < 10, the rescaled viscosity agrees well with the predicted _g�1

scaling except for c ¼ 5 mg ml�1 which is close to fc. Even
Fig. 6 (a) Apparent viscosity versus Peclet number for different
concentrations (in mg ml�1): (-) 5, (C) 10, (:) 20, (;) 25, (A) 33. (b)
Rescaled viscosity versus strain rate _g for the same data. Here, Eb ¼ 10
kBT. Black line denotes _g�1 as predicted by the relaxation ansatz.

This journal is © The Royal Society of Chemistry 2015
though this model does not apply for Pe[ 1, where dissipation
is mainly viscous rather than due to bond breaking, the viscosity
still scales with (f � fc)

2.5/(f + fc)
0.5 for f [ fc. If one

approximates gc f (f � fc)
�0.8 (Fig. 3), then h f (f � fc)

2.2 as
seen in Fig. 1.
4 Conclusions

In conclusion, we have probed the microstructure of graphene
platelets beyond the rigidity percolation through rheological
measurements. The results are consistent with an elastic
network of stiff platelets held together by bonds with limited
spatial extent of the order of the width of the platelets with an
energy of z20 kBT. The yield strain decreases with concentra-
tion due to decreasing mesh size of the network. The steady
shear viscosity beyond the rigidity percolation is well described
by an relaxation ansatz for Pe < 10 and can be expressed in
terms of the platelet dimensions, bonding energy and volume
fraction. This result is an important step towards under-
standing the interplay between microstructure and mechanical
response of graphene suspensions.
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