Potential seasonal calibration for palaeoenvironmental reconstruction using skeletal microstructures and strontium measurements from the cold-water coral Lophelia pertusa
Abstract

Lophelia pertusa is a colonial cold-water coral species with a wide spatial distribution in recent marine waters. Analyzing the chemistry of its skeleton allows reconstruction of environmental parameters variations. While numerous studies have attempted to interpret such analyses, little information is available on the microstructures of *Lophelia pertusa* and their temporal constraints.
This study introduces newly recognised microstructures in the coral wall following growth along the radial axis. The thicknesses of these ‘micro-layers’ are correlated with strontium concentrations and can be used to estimate seasonal growth rates of single polyps from the colony. We propose that each of these micro-layers represents a period of one month of mineralization and can locate two decreasing periods in growth rate during a year: one caused by limited food availability during winter months and one in autumn linked to gametogenesis. High-frequency study of strontium concentrations using this interpretation shows a lunar cycle.

We demonstrate that while the micro-layers are present in all *L. pertusa* specimens from four locations in the Atlantic Ocean and the Mediterranean Sea, growth patterns reveal a complex organization that limits their visibility. Strontium fluctuations however appear to be a promising mechanism by which to establish a temporal calibration.

Keywords: Lophelia pertusa, microstructure, growth rate, cold-water corals, strontium

Introduction

Azooxanthellate cold-water corals such as *Lophelia pertusa*, *Madrepora oculata* and *Desmophyllum dianthus* are widely distributed in the marine environment, with the only known exceptions being the Bering Sea and the high Arctic regions (Roberts *et al.*, 2009). The depth range of occurrence of these scleractinians is also wide, ranging from 40 meters in Norwegian waters (Trondheimsfjord) to 6,300 meters in the Aleutian Trench. This observation implies that water characteristics (e.g. temperature and salinity) rather than depth are a major factor in their distribution (Keller, 1976). The establishment and development of living colonies in specific areas are favoured by strong currents that generally promote oxygenation, food supply and removal of accumulated sediment particles and waste products (White, 2007; Foubert *et al.*, 2008; Davies *et al.*, 2009; Mienis *et al.*, 2012).

Lophelia pertusa (Linnaeus, 1758) is a colonial species that generally occurs in deep-sea areas around the world (Davies *et al.*, 2008; Roberts *et al.*, 2009). As a reef building species, this scleractinian constructs a three-dimensional aragonitic structure that serves as a habitat for a large number of invertebrate and fish species that use it as a sheltered location for feeding, spawning and nursing. Habitats formed by *L. pertusa* colonies generally
display an overall increase in biodiversity and productivity compared with adjacent areas where these cold-water corals are absent (Costello et al., 2005; Henry and Roberts, 2007; Soffker et al., 2011; Biber et al., 2014).

In terms of modes of growth, scleractinian corals build their skeletons with aragonitic needles from centres of calcification along the theca (Gladfelter, 1982). Unlike tropical corals that display differential density layers that facilitate tomographic imaging (Saenger et al., 2009; Cantin et al., 2010) cold-water corals do not appear to build such layers. Nevertheless, growth structures defined by opaque and translucent bands in the coral wall as revealed by transmitted light have been described in the skeletons of cold-water corals, including L. pertusa (Wainwright, 1964). These bands were originally interpreted as annual patterns (Lazier et al., 1999) but it has recently been demonstrated that this is not necessarily the case for either D. dianthus (Adkins et al., 2004) or L. pertusa (Gass and Roberts, 2011). As a result, their use in establishing temporal calibrations is in doubt.

Biogenic carbonates produced by L. pertusa can be used as archives for environmental reconstruction through the use of geochemical proxies for various physico-chemical parameters such as temperature (Smith et al., 2000; Case et al., 2010), pH (Blamart et al., 2007) and water mass circulation (Colin et al., 2010; Copard et al., 2010; van de Flierdt et al., 2010). Productivity has also been investigated for other cold-water coral species (the scleractinian D. dianthus: Montagna et al., 2006; and for non scleractinian corals, such as bamboo corals: LaVigne et al., 2011). One advantage of colonial species for environmental studies is the timeframe over which reconstructions can be achieved, covering several hundred years as a colony grows. The wide distribution of L. pertusa makes it a coral of choice for this type of study, as a single reconstruction model can be used over a large latitudinal range in the Quaternary fossil record.

Although several studies have attempted to use geochemical proxies from the skeletons of L. pertusa for environmental reconstructions, geochemical data which appear to follow the skeletal growth by crossing these visible bands have proved to be difficult to interpret (Luttringer et al., 2005; Rollion-Bard et al., 2010; Marali et al., 2013; Raddatz et al., 2013; Robinson et al., 2014). Despite the relatively widespread use of L. pertusa in such environmental research, no studies to date have attempted to resolve skeletal microstructures and to correlate these in a systematic way with observed geochemical variations.

Meaningful interpretations of high resolution (annual to infra-annual) geochemical fluctuations in biogenic structures require a robust understanding of growth rates and microstructures to ensure a coherent chronological model in relation to the sampling strategy. However, information on growth rates of organisms is exceedingly
difficult to obtain in deep-sea environments where direct long term monitoring is generally not feasible. Previous information on *L. pertusa* growth was determined under laboratory conditions (Orejas *et al.*, 2011a; Larsson *et al.*, 2013), or from living colonies that had attached to man-made structures, allowing calculation of a mean growth rate (Duncan, 1877). Growth rates for *L. pertusa* colonies inferred using this latter method are highly variable, in the range 3.2 mm a\(^{-1}\) (Larcom *et al.*, 2014) to 34 mm a\(^{-1}\) (Gass and Roberts, 2006) depending on the geographic region and local hydrodynamics. These values however, which correspond to the growth of the whole colony, are primarily driven by the rate of new polyp addition rather than the growth rates of individual polyps (Lartaud *et al.*, 2014), which hampers precise temporal calibration of geochemical profiles. Growth rates of corallites (i.e. of the wall and septal thickness) are even less well constrained and it remains unclear how long an individual polyp can live within the colony. Recent mark and recapture techniques developed to study the skeletal growth of individual corallites of *L. pertusa* indicate low growth rates for adult polyps (< 4 mm a\(^{-1}\)) but with large variations according to environmental variability (Gulf of Mexico, Mediterranean Sea) (Brooke and Young, 2009; Lartaud *et al.*, 2013). Additionally, a strong ontogenic trend is observed in the septal growth rate between newly formed (< 1 year old; 7.5 mm a\(^{-1}\)) and old (> 1 year; 1.3 mm a\(^{-1}\)) corallites (Lartaud *et al.*, 2013). Generally, growth rates of invertebrates are not constant over ontogeny (von Bertalanffy growth model) or even over a single year, due to changes in environmental physicochemical parameters such as temperature as well as food supply (Anderson and Sabado, 1995; Houbrèque *et al.*, 2003; Herrera *et al.*, 2012). Variation in growth rates may also result in a temporal modulation of the energy allocated by the organism for its growth (Mortensen, 2001; Orejas *et al.*, 2011b). Therefore, growth rates in *L. pertusa* remain difficult to estimate and are poorly constrained.

This study addresses these problems by presenting a novel protocol for documenting microstructures in *L. pertusa*. Using acid etching followed by scanning electron microscope (SEM) imaging this technique is capable of revealing previously unrecognised structural micro-layers from which it is possible to define temporally coherent growth zones. It is thereby possible to estimate individual growth rates and construct a radial temporal calibration across the skeletal wall. To establish this protocol, several tests were carried out on *L. pertusa* specimens from various locations to ensure that the observed response was species-specific and not locality-specific. Specimens were collected from the Whittard Canyon and Porcupine Seabight (Irish waters, north-
eastern Atlantic), the Gulf of Cádiz (Spain, north-eastern Atlantic) and the Lacaze-Duthiers Canyon (France, western Mediterranean Sea) (Fig. 1).

We have studied changes in microstructure patterns, distribution and thickness and performed geochemical analyses of strontium (Sr; a commonly used palaeothermometer proxy) to characterize fluctuations that we consider to have been induced by short-term (infra-annual) variations in environmental conditions, or in a specific metabolic response to those changes.

Material and Methods

During several cruises, living and dead specimens of *L. pertusa* were collected in Irish waters from the Whittard Canyon (cruises CE-12006 and CE-13008) and the Porcupine Seabight (cruise CE-13001), in the Gulf of Cadiz (cruises Indemares-Chica 0610, 0211 and 0412) and from the Lacaze-Duthiers canyon in the Mediterranean Sea (UPMC-Fondation TOTAL cruises 2010, 2011 and 2013, R/V Minibex from the COMEX Company) as shown in Table 1 and Figure 1. Dead specimens were typically 5 to 15 cm long at most, usually representing several polyps as the colony grew. Specimens that were living at the time of collection were cut from the colony at the end of branches to extract pieces c. 4 to 5 cm long.

Skeletal areas for microstructural analyses were preferentially selected where the distance between polyps was at its greatest. Following collection, all specimens were cleaned using hydrogen peroxide (H$_2$O$_2$, 3.4% at 60°C or 5% at room temperature) and rinsed in deionised water in an ultrasonic bath several times. To screen for possible diagenetic alteration of the aragonitic needles and to characterize any recrystallization in calcite, XRD analysis was performed in the School of Natural Sciences, Trinity College Dublin (Ireland) and cathodoluminescence observation was performed at the Institut des Sciences de la Terre de Paris (ISTeP,
Université Pierre et Marie Curie, Paris, France). Samples showing recrystallization were removed from the set of specimens to be analyzed.

Three specimens were processed using serial cutting (slides approximately 0.5 mm thick) using an Isomet Low-Speed Saw following mounting in EpoFix resin. All other specimens (21 from all locations) were mounted on regular thick (0.5 to 1 mm) sections. These were cut along the longitudinal axis following the maximum growth extension, as opposed to the radial axis where mineralization is slower (Fig. 2). Using a protocol modified from Nothdurft and Webb (2007), sections were then polished and etched on both sides with 2% formic acid for 50 seconds. Observations of the theca were performed at the Centre for Microscopy and Analysis at Trinity College Dublin using a Tescan Mira XMU SEM in secondary electron mode at 15 kV following gold coating.

Figure 2

Exceptionally well developed and continuous microstructures were studied in details and thicknesses of micro-layers revealed by the etching protocol were measured from the centres of calcification (COC) following the radial growth from a specimen collected in the Whittard Canyon (WhC-1). Sr concentrations were measured on the same section in the Trinity College Dublin geochemistry facility using a Thermo Scientific iCAP Q ICP-MS, coupled with an Analyte Excite laser ablation system performing 20 by 180 µm line rasters at 35 µm.s⁻¹ and a 5 Hz repetition rate. NIST 612 was used as a calibration standard. The error on Sr measurements was less than 2.1% (2 SE). Raw Sr concentrations were smoothed by moving average and this was subtracted from the raw data. A Fast Fourier Transform (FFT) was performed on the resulting residuals to isolate the cyclicities present in the high-frequency fluctuations in Sr content.

Results

SEM observations

Our etching-imaging protocol has revealed micro-layers along the radial growth direction of the wall in some sections for each of the 24 samples from all locations (Fig. 3). Importantly, no microstructures are visible along the longitudinal axis. Micro-layers observed along the radial growth direction are generally parallel to each other,
but in some areas the micro-layers present a curved pattern toward the outer part of the skeleton within a
restricted area (150 to 200 μm in length; Fig. 3-b). In these parts a bulge is visible on all micro-layers from the
inner-most part of the skeleton (near the COC) to the surface of specimen on the outer-most layer. There is no
compensation visible on the edges of the bulge to reduce the irregularity and thus the thicknesses of the micro-
layers overall remain unchanged. Some aragonite fibres are interrupted by the change of micro-layer direction,
but these fibres are observed to occur in the same general orientation from one layer to the next.

Only one section of a sample from Whittard Canyon (specimen WhC-1) shows micro-layers across the entire
wall. In order to reduce the possibility of missing these structures, serial cuts of an entire corallite specimen (each
section about 0.5 mm thick prior to polishing and etching) were performed on 3 samples. Despite this attention to
detail, we failed to produce a section with at least one face exhibiting all the sets of micro-layers as was the case
for specimen WhC-1. In all of the specimens treated with this technique, the outermost sections did not display
any layers in the microstructure. In the sections from the innermost part of the calyx, some micro-layers were
partially visible, but none presented continuous structures as observed in WhC-1.

For most coral sections examined as part of this study, micro-layers are not revealed in all areas of the theca but
they are always present in some parts of the wall (Fig. 4). Areas of dense, compact aragonite (not in the form of
fibres) are commonly visible and can be found either in continuity with the micro-layers or between two series of
micro-layers along the axial growth direction.

Opaque bands in most specimens seem to prevent the development of layered mineralization (Fig. 5). Micro-
layers are visible only in optically translucent bands. The specimen WhC-1 does not exhibit any opaque and
translucent bands in reflected light. This is likely to be significant in terms of formation of well-developed
microstructures described here.
Discontinuous micro-layers are also visible in some sections in areas filled with aragonite fibres (Fig. 6). In these cases, the continuity of the visible micro-layer can be observed only for a few dozen microns and it is never possible in this case to quantify them.

Micro-layer thickness

The micro-layers range in thickness from approximately 20 to 100 μm (Table 2) and are organized in successive groups of similar thicknesses. WhC-1 contains 23 micro-layers across the wall. Successive thicknesses measured from the COC to the outer edge of the wall show fluctuations with four observed cycles (Fig. 7).

Strontium concentrations

Sr measurements across the wall of WhC-1 show strong fluctuations (from 6041 ppm ± 126 ppm to 12067 ppm ± 252 ppm, mean 8703 ppm). Smoothed data (Fig. 7) reveal a negative trend, with lower values at the outer edge compared to the inner part of the skeleton. A comparison of layer thickness with Sr concentrations along the radial growth direction reveals that these two parameters fluctuate in phase, implying a distinct physio-chemical response presumably linked to some change in environmental conditions and/or growth rate (Fig. 7). It is apparent that higher values of Sr in the coral skeleton tend to be coincident with the occurrence of thick micro-layers.

Depending on the thickness of the micro-layers, each increment has between 3 and 14 measurements of Sr. By splitting the dataset equally as thin (3-8 points per micro-layer) and thick (9-14 points per micro-layer)
increments, the mean number of analysis are 5.47 points per thin micro-layer and 11.75 points per thick micro-
layer respectively.

A highly significant group of frequencies in the residuals from the smoothed data (Fig. 8) is revealed by FFT, centred at the value 6.25 points per cycle. Cycles corresponding to this frequency can be observed both in thick layers (two cycles per layer) and thin layers (one cycle per layer). A second frequency is also revealed at 12.5 points per cycle. No other frequencies are significant.

Figure 8

Discussion

Micro-layer occurrence

The micro-layers described here are thinner and more numerous than the optically visible opaque and translucent bands described in L. pertusa by Wainwright (1964). For specimen WhC-1 there is a conspicuous lack of opaque bands. The fact that micro-layers are not visible on all sections implies that L. pertusa skeletons display a more complex organization than a common linear growth model. This could be due to the growth of patches of aragonite fibres (related to different growth phases) in a three-dimensional sense, that do not follow the radial growth direction in a simple manner. This is particularly clear on sections where only some growth micro-layers can be found between areas where fibres are not visible (e.g. Fig. 6). This implies that the orientation and position of the section are important factors in obtaining visibly extensive micro-layers.

Micro-scale layers have previously been observed in solitary coral species (Sorauf and Jell, 1977; Lazier et al., 1999; Cheng et al., 2000; Marali et al., 2013). Growth structures of less than 10 μm in thickness were observed in D. dianthus (Lazier et al., 1999) and intrinsic timekeeping mechanisms (i.e. “biological clocks”) were proposed as the cause. Caryophyllia cyathus and Stenocyathus vermiformis were also investigated (Marali et al., 2013) but the authors observed features that impeded interpretation, as some layers were merging or pinching out, preventing a chronological tracking. The micron-scale space between these layers is revealed by etching. It is therefore possible this space is filled with a more porous, organic-rich carbonate structure that would deteriorate easily in the presence of acid.
Temporal Calibration of the micro-layers

The cyclic pattern of layer thickness may be caused by variations in growth rate over the life of the polyp. Sclerochronology uses layers in growth structures to establish temporal calibrations as they are assumed to have been built by the organism over similar timescales regardless of their thickness (Marchitto et al., 2000; Carré et al., 2005; Schöne and Gillikin, 2013). Accepting this hypothesis it is possible to consider here that narrow layers reflect periods with low growth rates compared to thicker layers. High growth rates generally correspond to periods of favourable conditions during which the organism can allocate more energy to growth, as has been established in different cnidarians (Mortensen, 2001; Houlbrèque et al., 2003; Orejas et al., 2011b) and other invertebrate groups (Jolivet, 2009; Lartaud et al., 2010). In corals, such cycles composed of a period of high growth rate followed by one of lower growth rate can be assumed to reflect diurnal patterns for shallow water species (Wells, 1963) or annual patterns for cold-water species (Cheng et al., 2000) with even longer periods possible as induced by local environmental influence such as the North Atlantic Oscillation (NAO) as observed in bivalves (Schöne et al., 2003).

There are several different possible causes for observed growth rate changes observed in our Lophelia pertusa specimens. Due to the thickness of some micro-layers (reaching 100 µm), it is unlikely that such structures can represent a single day of mineralization along the radial axis, particularly considering the colony (mainly longitudinal) growth rates recorded in the literature (3.2 to 34 mm.a⁻¹). A NAO case of annual banding can be proposed to explain a multi-annual fluctuation, however the colony growth rates are not compatible with this timeframe. Considering a radial growth of 20 to 100 µm per year while the colony grows at a rate of several mm per year, the polyps would generate brittle theca that would be prone to being broken in an area with strong water currents such as their natural habitat. A third possible cause for the observed microstructure banding implies a monthly characteristic of micro-layers based on the lunar cycle. Such a correlation is more consistent with the growth rates measured in Lophelia pertusa. Moreover, the cycles observed by the high-frequency fluctuations of Sr incorporation can be used to confirm the influence of the monthly moon revolutions on growth rates and formation of these micro-layers. Both cyclicities recorded (6.25 and 12.5 points per cycle) are close to the mean number of Sr measurements per layer (i.e. 5.47 and 11.75 points per layer, for thin and thick micro-layers respectively), and this must be taken into consideration when evaluating any periodicity in cyclicity. The
cycles corresponding to high growth rates (one cycle in thick micro-layers) and the 12.5 point cycle are compatible with a lunar influence. This pattern would be the equivalent of a lunar month considering the monthly pattern of micro-layer occurrence proposed here. The observed 6.25 point cycle, corresponding to exactly half the time of the cycle described above, can be related to a fortnightly influence. These cycles are only visible in thick micro-layers (i.e. two cycles per layer; Fig. 8). In thinner layers, due to changes in the measured number of points per layer, the fluctuations should be interpreted carefully. With layers measuring only half the thickness of the larger ones of similar temporal value, the observed cycle is most probably double the apparent one, which is the monthly fluctuation proposed above. In other words, due to differences in growth rates between layers, the 6.25 point cycle in thin layers is equivalent of the 12.5 point cycle observed in thicker layers. Such monthly and fortnightly lunar cycles (28 and 14 days, respectively) were previously observed on Mg/Ca measurements in coastal oyster shells from mark-and-recapture experiments (Mouchi et al., 2013). Time-related growth patterns have also been observed in deep-sea mussels and linked both to tidal influence (i.e. lunar cycle) on near-bottom currents and to biological clocks (Schöne and Giere, 2005; Schöne, 2008; Nedoncelle et al., 2013). As no long-term monitoring of benthic hydrodynamics is available in the sampled locations, neither phenomenon can be ruled out as an explanation for recording tidal influence in the growth increments. Recently, van Haren et al. (2014) however have recorded substantial (1.5-2°C) daily temperature fluctuations at 900 m in the North Atlantic and attributed this to bottom-intensified currents reflecting surface waters conditions. This illustrates that an indirect tidal effect is capable of causing significant and periodic temperature changes in deep benthic water environments. Moreover, Ingels et al. (2011) demonstrated that the Porcupine Seabight is subjected to a tidal input of organic matter from the Gollum Channels system. Such tidal currents however have not been described in the Whittard Canyon but turbidity currents have been recorded (Ingels et al., 2011).

Low-frequency change in growth rates

Based on the proposed micro-layer lunar monthly periodicity, the main cycles observed in increment counting, concomitant with those from the Sr signal (Fig. 7), do not correspond to an annual scale. This is contrary to the "classic" model found in calcifying species (Klein et al., 1996; Kirby, 2000; Saenger et al., 2009; Cantin et al., 2010; Butler et al., 2013; Schöne and Gillikin, 2013; Bougeois et al., 2014). In contrast to the situation in shallow environments, where high temperatures in summer are known to increase growth rates of some invertebrates
Most deep-sea environments are not subjected to the necessary seasonal thermal contrasts to explain this intra-annual variation in growth rates, with the possible exception of spatially restricted areas under the influence of bottom-intensified currents. Cold-water corals may have higher growth rates when food availability increases (Naumann et al., 2011) as is the case for other suspension feeders (Houlbrèque et al., 2003; Herrera et al., 2012). However, Larsson et al. (2013) showed that *L. pertusa* can maintain a high growth rate during extended periods of starvation with higher values than observed from previous studies (Orejas et al., 2011a; Form and Riebesell, 2012). The diet of *L. pertusa* however is still unclear; azooxanthellate corals were first thought to be detrital feeders only, but Porter (1976) proposed that coral species with larger polyps and long tentacles such as *L. pertusa* were adapted to capture zooplankton. In situ observations have provided evidence for some carnivorous behaviour of the species, with occasional consumption of zooplankton and copepods (Freiwald, 2002). In addition to this, Kiriakoulakis et al. (2005) have showed that the δ¹⁵N of *L. pertusa* confirmed an occasional carnivorous diet. Due to these uncertainties, diet alone cannot give unequivocal information on whether high growth rates areas occur in summer or winter months. Detrital materials should be present in larger amounts during the winter season, as more weathering occurs on land supplying more material to rivers and eventually to the oceanic waters. On the other hand, primary production in the photic zone is at a maximum during summer, inducing a more significant planktonic vertical flux to the deep benthos (Sigman and Hain, 2012). These uncertainties coupled with a poorly constrained time lag between increased nutrient flux in surface waters and their transport to deep benthic environments also inhibit an understanding of the timing of growth cycles in *L. pertusa*.

In terms of their reproductive biology, it is noteworthy that both *L. pertusa* and *M. oculata* seem to be seasonal broadcasters, with gametogenesis occurring over a seasonally limited time period estimated from August to October in the Porcupine area (Waller and Tyler, 2005). Considering that gametogenesis is a costly mechanism in terms of energy, a decrease in somatic and skeleton growth is expected. Using the seasonality of the reproductive clock of *L. pertusa* observed by Waller and Tyler (2005) and considering that each micro-layer has been synthesized in 28 days, the start of the first micro-layer in the last decrease in growth rate on the transect reported on Figure 7 has been assigned with having been formed on the 1st of August. Using this as a starting point, the rest of the skeleton was assigned months accordingly (Fig. 9). Regarding this interpretation, the August month from the previous year is also occurring during a slow growth period. The other main slow growth periods
on the transect correspond to assigned winter months, and may be caused by a decrease in food availability.

Importantly, a minor amplitude during the first year could be explained by development of the initial part of the skeleton. It is significant that faster growth rates have been observed in colonies that were fed nauplii under laboratory conditions (Orejas et al., 2011a; Larsson et al., 2013). Using geographically close populations of Mediterranean L. pertusa cultured in aquaria, Orejas et al. (2011a) recorded faster growth rate when feeding corals with Artemia salina 5 times per week, whereas Lartaud et al. (2013) recorded lower growth rates when feeding 3 times per week. These observations are compatible with our interpretation that at least some of the changes in micro-layer thickness, and hence growth rates, are linked to seasonal availability of nutrients.

Figure 9

Previous studies performed on solitary corals were not able to characterize timeframes between successive layers and growth rate changes (Lazier et al., 1999; Marali et al., 2013). Based on mean calculations of absolute dating with U-series techniques on multiple parts of the same specimens, it was however suggested that opaque and translucent bands in D. dianthus were formed at a rhythm of 0.3 to 3 per annum (Cheng et al., 2000). This implies that micro-scale layers are built at a much higher frequency. However, due to the complexity of the micro-increments in D. dianthus, it is difficult to create an inventory of the number of layers in a band, even when considering that bands and layers are both formed in cyclicities, which for L. pertusa is not certain.

Regarding microstructures along the longitudinal axis of L. pertusa, it seems unlikely that they can provide an effective temporal calibration along this direction. This is an important point, as some studies (Cohen et al., 2006; López Correa et al., 2010) have performed geochemical analyses along a longitudinal axis in an attempt to describe temporally constrained palaeoenvironmental perturbations. In contrast, micro-layers along the radial axis described here and observed on one specimen present a promising tool to establish a seasonal framework within which to interpret geochemical transects along the radial axis. In the case of specimen WhC-1 described above, this would allow reconstruction of a two year record of environmental fluctuations for this specimen. Longer periods could be studied by analyzing successive corallites from the same colony, each with a transect following the layers in the microstructure.
Potential misuse of strontium as an environmental proxy

A negative trend in elemental ratios along the growth direction in shells has previously been observed (Mg/Ca, Sr/Ca...) and in numerous taxa from shallow water environments (mussel: Rosenberg and Hughes, 1991; clam: Strasser et al., 2008; oyster: Higuera-Ruiz and Elorza, 2009). The processes involved in these ontogenic trends are still unknown. However, positive trends have also been observed in bivalves (Stecher et al., 1996; Carre et al., 2006; Mouchi et al., 2013). Moreover, several studies focusing on the same species and techniques reported positive and negative trends for bivalves (Higuera-Ruiz and Elorza, 2009; Mouchi et al., 2013). In deep-sea environments, an ontogenic trend can also be environmental and be caused by a long-term evolution of temperature, for instance. Thus, with respect to the incorporation of Sr, it is not ideal to interpret this trend either as an environmental or as a physiological influence.

In the L. pertusa specimen studied here (WhC-1), fluctuations in Sr concentrations are strongly in phase with variations in micro-layers thickness (Fig. 7). If the temporal calibration in Figure 9 is correct, Sr concentrations represent low values during winter months and during gametogenesis, and high values in other periods, showing two cycles in a year and thus refuting a seasonal cycle for Sr variations.

Cyclical fluctuations may be primarily structural in origin in that higher Sr concentrations have also previously been observed in inorganic carbonates (speleothems) when the growth rates increase (Huang and Fairchild, 2001). This observation was also reported in deep-sea (Weber, 1973) and tropical corals (Kuffner et al., 2012; Grove et al., 2013). However, most studies use Sr/Ca ratios as a proxy for temperature in tropical shallow-water corals (Beck et al., 1992; de Villiers et al., 1994; Alibert and McCulloch, 1997; Cardinal et al., 2001; Chen et al., 2013) and seasonal fluctuations have also been investigated for L. pertusa (Cohen et al., 2006). It has been demonstrated though that Sr incorporation is mainly dependant on calcification rate from studies with shallow water corals (Reynaud et al., 2004) and with inorganic aragonite growth experiments (Gaetani and Cohen, 2006). This explanation would indicate that the main process for Sr uptake in coral skeletons is growth rate over temperature. According to the interpretations in the present study, Sr/Ca fluctuations could be incorrectly interpreted as a seasonal pattern, whereas in fact two cycles of Sr incorporation represent a single year of mineralization in Irish waters where the gametogenesis/spawning calendar is as described by Waller and Tyler (2005). If two consecutive cycles (one “environmental” and one “metabolic”) present the same Sr amplitude (as it is the case here), then using this pattern as a temporal calibration to study longer-term (multi-annual) variations...
will not be accurate. Future studies should therefore try to discriminate whether Sr fluctuations reflect an annual or a semi-annual pattern in specific study locations in order to correctly interpret geochemical data as a proxy for palaeoenvironmental reconstruction.

In view of the kinetics potentially involved in elemental incorporation into the crystal lattice, it seems invalid to invoke a uniquely temperature dependency of the Sr incorporation in cold-water corals without a proper temporal calibration, as it is the case with shallow-water corals presenting annual density bands. It remains unclear for cold-water corals to what extent growth rate is influenced by the environment as opposed to metabolic processes.

Conclusions

This paper highlights the absolute necessity of microstructure characterisation in any study of geochemistry on biominerals other than bulk assays. Micro-layers have now been observed within the translucent layers of the wall of *L. pertusa* that can be used for intra-annual temporal calibration and analysis of growth rates of polyps. However, the characteristic chaotic pattern in the microstructure of opaque layers prevents formation of micro-layers. Furthermore, non-linear growth phases induce even more complexity and present a challenge to resolve these layers on a single surface.

If a means to study the orientation of growth phases prior to sectioning were to be developed, it would permit the definition of a direction of cutting to reveal the growth micro-layers and thus allow more temporally continuous high-resolution geochemical studies on the wall of *L. pertusa*. Microanalytical geochemical and isotopic studies of *L. pertusa* which are not supported by careful micro-textural characterisations of samples carry the risk of sampling from temporally disparate areas with the consequence of misinterpretation of apparently “seasonal” signals.

We describe a possible interpretation of Sr fluctuations as a means to estimate growth rate that can be used for temporal calibration where two consecutive cycles of Sr are induced by both environmental parameters fluctuation and gametogenesis during a single year. Future work could focus on an elemental mapping in the theca and study the fluctuations in 2-dimensions to characterize temporality on both growth axes.
Acknowledgements

The work presented in this paper was made possible by the ENS PhD programme. The Earth and Natural Sciences Doctoral Studies Programme is funded under the Programme for Research in Third-Level Institutions Cycle-5 and co-funded under the European Regional Development Fund.

Operation of the TCD ICP-MS was supported by FP7-PEOPLE-2011-CIG #293712.

This research was carried out under the Sea Change strategy with the support of the Marine Institute and the Marine Research Sub-program of the National Development Plan 2007-2013. The authors also wish to thank the captains and crews of the Celtic Voyager and Celtic Explorer along with the CE-12006 and CE-13001 chief scientists Louise Alcock and Glenn Nolan.

Sampling of L. pertusa colonies from the Gulf of Cádiz was supported by the INDEMARES/CHICA Project, EC contract INDEMARES-LIFE+ (07/NAT/E/000732) and FEDER funding assigned to equipment of R/V Cornide de Saavedra (FICTS-2010-01) and to construction of R/V Ramón Margalef (FICTS-2011-03-01).

Sampling of L. pertusa colonies from the Lacaze-Duthiers canyon was supported by the chair ‘Extreme environment, biodiversity and global change’ (Foundations TOTAL and UPMC, coordination: N. Le Bris), using the R/V Minibex (COMEX).

References

Duncan PM. 1877. On the rapidity of growth and variability of some Madreporaria on an Atlantic Cable, with remarks upon the rate of accumulation of foraminiferal deposits. *Proceedings of the Royal Society of London* **26**: 133-137.

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
<th>Water depth range (m)</th>
<th>Alive or dead polyps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whittard Canyon (WhC)</td>
<td>48°28'N, 10°45'W</td>
<td>650-800</td>
<td>Alive and Dead</td>
</tr>
<tr>
<td>Porcupine Seabight (PoS)</td>
<td>49°49'N, 13°57'W</td>
<td>340 to 365</td>
<td>Dead</td>
</tr>
<tr>
<td>Gulf of Cadiz (GoC)</td>
<td>36°41'N, 7°08'W</td>
<td>350 to 800</td>
<td>Dead</td>
</tr>
<tr>
<td>Lacaze-Duthiers Canyon (LDC)</td>
<td>42°15'N, 3°25'E</td>
<td>500 to 520</td>
<td>Alive</td>
</tr>
</tbody>
</table>

Table 1: Locations of sampled specimens.
<table>
<thead>
<tr>
<th>Micro-layers</th>
<th>Thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>95</td>
</tr>
<tr>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>45</td>
</tr>
<tr>
<td>18</td>
<td>105</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>21</td>
<td>45</td>
</tr>
<tr>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>23</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2: Micro-layers thicknesses in specimen WhC-1.
Figure captions

Figure 1: Map of sampling locations. PoS: Porcupine Seabight. WhC: Whittard Canyon. GoC: Gulf of Cadiz. LDC: Lacaze-Duthiers Canyon.

Figure 2: WhC-1 *Lophelia pertusa* specimen. Orientation of cutting is marked with a dashed line.

Figure 3: Micro-layers imaged in the theca wall of *L. pertusa*. a: In specimen WhC-1. The longitudinal growth direction is towards the bottom right and radial growth towards the upper right. The scale bar is 200 μm. b: Detail of the micro-layers on the area delimited by the white square in Figure 3a. Longitudinal growth direction is towards right. Radial growth direction is upward. Scale bar is 100 μm. c: Specimen LDC-5. The longitudinal growth direction is towards the upper right and radial growth towards the bottom right. The scale bar is 100 μm. d: Interpretation of c. e: Specimen GoC-2. The longitudinal growth direction is towards the right and radial growth towards the bottom. The scale bar is 50 μm. f: Interpretation of e. g: Specimen PoS-1. The longitudinal growth direction is towards the left and radial growth towards upward. The scale bar is 50 μm. h: Interpretation of g. COC: centres of calcification.

Figure 4: Absence of micro-layers in the middle of the wall near the corallite (on the left) in specimen WhC-1. Micro-layers are visible on the right hand side when moving away from the corallite (but are not visible in this view). The thick black curve highlights the COC. The scale bar is 200 μm long.

Figure 5: Opaque and translucent bands (centre) in relation to traces of micro-layers under SEM (left) in specimen WhC-3c and interpretation (right). On the right-hand side, white areas represent opaque bands and grey areas represent translucent bands, and black dashed lines represent micro-layers visible from the SEM figure. Longitudinal growth is towards the right; radial growth is towards the top. The scale bar is 100 μm long.

Figure 6: a: Micro-layers with no continuity visible in specimen GoC-2/2d. b: Interpretation of a. Black lines represent visible micro-layers and fine grey lines represent aragonite fibres. Note that micro-layers are visible
only where aragonite fibres can be seen. Longitudinal growth direction is towards the right; radial growth direction is towards the top. The scale bar is 100 μm long.

Figure 7: Strontium concentrations (in grey) across the wall of specimen WhC-1 in relation to micro-layer thickness (in black). The micro-layer thickness values are positioned at the center of each of these increments starting with the first complete (the space between the COC and the first increment was ignored). Sr concentrations have been smoothed using a moving average. Error bars for Sr concentrations are less than the line width. The arrow indicates the location of the COC.

Figure 8: Residuals of strontium measurements on WhC-1 (in black) in relation to micro-layers occurrence (vertical grey dashed lines).

Figure 9: Micro-layers thickness and interpreted monthly calibration (on top) across the wall of WhC-1. The micro-layer starting at 1160 μm was used as the starting point of the proposed temporal frame. In this interpretation, 1 micro-layer is formed in 28 days.

Table 1: Locations of sampled specimens.

Table 2: Micro-layers thicknesses in specimen WhC-1.
Figure 1: Map of sampling locations. PoS: Porcupine Seabight. WhC: Whittard Canyon. GoC: Gulf of Cadiz. LDC: Lacaze-Duthiers Canyon.

90x105mm (300 x 300 DPI)
Figure 2: WhC-1 Lophelia pertusa specimen. Orientation of cutting is marked with a dashed line.
72x62mm (300 x 300 DPI)
Figure 3: Micro-layers imaged in the theca wall of L. pertusa. a: In specimen WhC-1. The longitudinal growth direction is towards the bottom right and radial growth towards the upper right. The scale bar is 200 µm. b: Detail of the micro-layers on the area delimited by the white square in Figure 3a. Longitudinal growth direction is towards right. Radial growth direction is upward. Scale bar is 100 µm. c: Specimen LDC-5. The longitudinal growth direction is towards the upper right and radial growth towards the bottom right. The scale bar is 100 µm. d: Interpretation of c. e: Specimen GoC-2. The longitudinal growth direction is towards the right and radial growth towards the bottom. The scale bar is 50 µm. f: Interpretation of e. g: Specimen PoS-1. The longitudinal growth direction is towards the left and radial growth towards upward. The scale bar is 50 µm. h: Interpretation of g. COC: centres of calcification.
Figure 4: Absence of micro-layers in the middle of the wall near the corallite (on the left) in specimen WhC-1. Micro-layers are visible on the right hand side when moving away from the corallite (but are not visible in this view). The thick black curve highlights the COC. The scale bar is 200 µm long.
Figure 5: Opaque and translucent bands (centre) in relation to traces of micro-layers under SEM (left) in specimen WhC-3c and interpretation (right). On the right-hand side, white areas represent opaque bands and grey areas represent translucent bands, and black dashed lines represent micro-layers visible from the SEM figure. Longitudinal growth is towards the right; radial growth is towards the top. The scale bar is 100 µm long.

135x211mm (300 x 300 DPI)
Figure 6: a: Micro-layers with no continuity visible in specimen GoC-2/2d. b: Interpretation of a. Black lines represent visible micro-layers and fine grey lines represent aragonite fibres. Note that micro-layers are visible only where aragonite fibres can be seen. Longitudinal growth direction is towards the right; radial growth direction is towards the top. The scale bar is 100 µm long.

52x19mm (300 x 300 DPI)
Figure 7: Strontium concentrations (in grey) across the wall of specimen WhC-1 in relation to micro-layer thickness (in black). The micro-layer thickness values are positioned at the center of each of these increments starting with the first complete (the space between the COC and the first increment was ignored). Sr concentrations have been smoothed using a moving average. Error bars for Sr concentrations are less than the line width. The arrow indicates the location of the COC.

100x71mm (300 x 300 DPI)
Figure 8: Residuals of strontium measurements on WhC-1 (in black) in relation to micro-layers occurrence (vertical grey dashed lines).
80x48mm (300 x 300 DPI)
Figure 9: Micro-layers thickness and interpreted monthly calibration (on top) across the wall of WhC-1. The micro-layer starting at 1160 µm was used as the starting point of the proposed temporal frame. In this interpretation, 1 micro-layer is formed in 28 days.

84x51mm (300 x 300 DPI)