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 23 

Abstract 24 

Lophelia pertusa is a colonial cold-water coral species with a wide spatial distribution in recent marine 25 

waters. Analyzing the chemistry of its skeleton allows reconstruction of environmental parameters variations. 26 

While numerous studies have attempted to interpret such analyses, little information is available on the 27 

microstructures of Lophelia pertusa and their temporal constraints. 28 
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This study introduces newly recognised microstructures in the coral wall following growth along the radial axis. 29 

The thicknesses of these ‘micro-layers’ are correlated with strontium concentrations and can be used to estimate 30 

seasonal growth rates of single polyps from the colony. We propose that each of these micro-layers represents a 31 

period of one month of mineralization and can locate two decreasing periods in growth rate during a year: one 32 

caused by limited food availability during winter months and one in autumn linked to gametogenesis. High-33 

frequency study of strontium concentrations using this interpretation shows a lunar cycle. 34 

We demonstrate that while the micro-layers are present in all L. pertusa specimens from four locations in the 35 

Atlantic Ocean and the Mediterranean Sea, growth patterns reveal a complex organization that limits their 36 

visibility. Strontium fluctuations however appear to be a promising mechanism by which to establish a temporal 37 

calibration. 38 
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 41 

Introduction 42 

Azooxanthellate cold-water corals such as Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus are 43 

widely distributed in the marine environment, with the only known exceptions being the Bering Sea and the high 44 

Arctic regions (Roberts et al., 2009). The depth range of occurrence of these scleractinians is also wide, ranging 45 

from 40 meters in Norwegian waters (Trondheimsfjord) to 6,300 meters in the Aleutian Trench. This observation 46 

implies that water characteristics (e.g. temperature and salinity) rather than depth are a major factor in their 47 

distribution (Keller, 1976). The establishment and development of living colonies in specific areas are favoured 48 

by strong currents that generally promote oxygenation, food supply and removal of accumulated sediment 49 

particles and waste products (White, 2007; Foubert et al., 2008; Davies et al., 2009; Mienis et al., 2012). 50 

Lophelia pertusa (Linnaeus, 1758) is a colonial species that generally occurs in deep-sea areas around the world 51 

(Davies et al., 2008; Roberts et al., 2009). As a reef building species, this scleractinian constructs a three-52 

dimensional aragonitic structure that serves as a habitat for a large number of invertebrate and fish species that 53 

use it as a sheltered location for feeding, spawning and nursing. Habitats formed by L. pertusa colonies generally 54 
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display an overall increase in biodiversity and productivity compared with adjacent areas where these cold-water 55 

corals are absent (Costello et al., 2005; Henry and Roberts, 2007; Soffker et al., 2011; Biber et al., 2014). 56 

In terms of modes of growth, scleractinian corals build their skeletons with aragonitic needles from centres of 57 

calcification along the theca (Gladfelter, 1982). Unlike tropical corals that display differential density layers that 58 

facilitate tomographic imaging (Saenger et al., 2009; Cantin et al., 2010) cold-water corals do not appear to build 59 

such layers. Nevertheless, growth structures defined by opaque and translucent bands in the coral wall as 60 

revealed by transmitted light have been described in the skeletons of cold-water corals, including L. pertusa 61 

(Wainwright, 1964). These bands were originally interpreted as annual patterns (Lazier et al., 1999) but it has 62 

recently been demonstrated that this is not necessarily the case for either D. dianthus (Adkins et al., 2004) or L. 63 

pertusa (Gass and Roberts, 2011). As a result, their use in establishing temporal calibrations is in doubt.  64 

Biogenic carbonates produced by L. pertusa can be used as archives for environmental reconstruction through 65 

the use of geochemical proxies for various physico-chemical parameters such as temperature (Smith et al., 66 

2000; Case et al., 2010), pH (Blamart et al., 2007) and water mass circulation (Colin et al., 2010; Copard et al., 67 

2010; van de Flierdt et al., 2010). Productivity has also been investigated for other cold-water coral species (the 68 

scleractinian D. dianthus: Montagna et al., 2006; and for non scleractinian corals, such as bamboo corals: 69 

LaVigne et al., 2011). One advantage of colonial species for environmental studies is the timeframe over which 70 

reconstructions can be achieved, covering several hundred years as a colony grows. The wide distribution of L. 71 

pertusa makes it a coral of choice for this type of study, as a single reconstruction model can be used over a 72 

large latitudinal range in the Quaternary fossil record. 73 

Although several studies have attempted to use geochemical proxies from the skeletons of L. pertusa for 74 

environmental reconstructions, geochemical data which appear to follow the skeletal growth by crossing these 75 

visible bands have proved to be difficult to interpret (Lutringer et al., 2005; Rollion-Bard et al., 2010; Marali et al., 76 

2013; Raddatz et al., 2013; Robinson et al., 2014). Despite the relatively widespread use of L. pertusa in such 77 

environmental research, no studies to date have attempted to resolve skeletal microstructures and to correlate 78 

these in a systematic way with observed geochemical variations. 79 

Meaningful interpretations of high resolution (annual to infra-annual) geochemical fluctuations in biogenic 80 

structures require a robust understanding of growth rates and microstructures to ensure a coherent chronological 81 

model in relation to the sampling strategy. However, information on growth rates of organisms is exceedingly 82 
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difficult to obtain in deep-sea environments where direct long term monitoring is generally not feasible. Previous 83 

information on L. pertusa growth was determined under laboratory conditions (Orejas et al., 2011a; Larsson et 84 

al., 2013), or from living colonies that had attached to man-made structures, allowing calculation of a mean 85 

growth rate (Duncan, 1877). Growth rates for L. pertusa colonies inferred using this latter method are highly 86 

variable, in the range 3.2 mm a-1 (Larcom et al., 2014) to 34 mm a-1 (Gass and Roberts, 2006) depending on the 87 

geographic region and local hydrodynamics. These values however, which correspond to the growth of the whole 88 

colony, are primarily driven by the rate of new polyp addition rather than the growth rates of individual polyps 89 

(Lartaud et al., 2014), which hampers precise temporal calibration of geochemical profiles. Growth rates of 90 

corallites (i.e. of the wall and septal thickness) are even less well constrained and it remains unclear how long an 91 

individual polyp can live within the colony. Recent mark and recapture techniques developed to study the skeletal 92 

growth of individual corallites of L. pertusa indicate low growth rates for adult polyps (< 4 mm a-1) but with large 93 

variations according to environmental variability (Gulf of Mexico, Mediterranean Sea) (Brooke and Young, 2009; 94 

Lartaud et al., 2013). Additionally, a strong ontogenic trend is observed in the septal growth rate between newly 95 

formed (< 1 year old; 7.5 mm a-1) and old (> 1 year; 1.3 mm a-1) corallites (Lartaud et al., 2013). Generally, 96 

growth rates of invertebrates are not constant over ontogeny (von Bertalanffy growth model) or even over a 97 

single year, due to changes in environmental physicochemical parameters such as temperature as well as food 98 

supply (Anderson and Sabado, 1995; Houlbrèque et al., 2003; Herrera et al., 2012). Variation in growth rates 99 

may also result in a temporal modulation of the energy allocated by the organism for its growth (Mortensen, 100 

2001; Orejas et al., 2011b). Therefore, growth rates in L. pertusa remain difficult to estimate and are poorly 101 

constrained. 102 

This study addresses these problems by presenting a novel protocol for documenting microstructures in L. 103 

pertusa. Using acid etching followed by scanning electron microscope (SEM) imaging this technique is capable 104 

of revealing previously unrecognised structural micro-layers from which it is possible to define temporally 105 

coherent growth zones. It is thereby possible to estimate individual growth rates and construct a radial temporal 106 

calibration across the skeletal wall. To establish this protocol, several tests were carried out on L. pertusa 107 

specimens from various locations to ensure that the observed response was species-specific and not locality-108 

specific. Specimens were collected from the Whittard Canyon and Porcupine Seabight (Irish waters, north-109 
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eastern Atlantic), the Gulf of Cádiz (Spain, north-eastern Atlantic) and the Lacaze-Duthiers Canyon (France, 110 

western Mediterranean Sea) (Fig. 1).  111 

We have studied changes in microstructure patterns, distribution and thickness and performed geochemical 112 

analyses of strontium (Sr); a commonly used palaeothermometer proxy) to characterize fluctuations that we 113 

consider to have been induced by short-term (infra-annual) variations in environmental conditions, or in a specific 114 

metabolic response to those changes. 115 

 116 

Figure 1 117 

 118 

Material and Methods 119 

During several cruises, living and dead specimens of L. pertusa were collected in Irish waters from the Whittard 120 

Canyon (cruises CE-12006 and CE-13008) and the Porcupine Seabight (cruise CE-13001), in the Gulf of Cadiz 121 

(cruises Indemares-Chica 0610, 0211 and 0412) and from the Lacaze-Duthiers canyon in the Mediterranean Sea 122 

(UPMC-Fondation TOTAL cruises 2010, 2011 and 2013, R/V Minibex from the COMEX Company) as shown in 123 

Table 1 and Figure 1. Dead specimens were typically 5 to 15 cm long at most, usually representing several 124 

polyps as the colony grew. Specimens that were living at the time of collection were cut from the colony at the 125 

end of branches to extract pieces c. 4 to 5 cm long. 126 

 127 

Table 1 128 

 129 

Skeletal areas for microstructural analyses were preferentially selected where the distance between polyps was 130 

at its greatest. Following collection, all specimens were cleaned using hydrogen peroxide (H2O2, 3.4% at 60˚C or 131 

5% at room temperature) and rinsed in deionised water in an ultrasonic bath several times. To screen for 132 

possible diagenetic alteration of the aragonitic needles and to characterize any recrystallization in calcite, XRD 133 

analysis was performed in the School of Natural Sciences, Trinity College Dublin (Ireland) and 134 

cathodoluminescence observation was performed at the Institut des Sciences de la Terre de Paris (ISTeP, 135 
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Université Pierre et Marie Curie, Paris, France). Samples showing recrystallization were removed from the set of 136 

specimens to be analyzed. 137 

Three specimens were processed using serial cutting (slides approximately 0.5 mm thick) using an Isomet Low-138 

Speed Saw following mounting in EpoFix resin. All other specimens (21 from all locations) were mounted on 139 

regular thick (0.5 to 1 mm) sections. These were cut along the longitudinal axis following the maximum growth 140 

extension, as opposed to the radial axis where mineralization is slower (Fig. 2). Using a protocol modified from 141 

Nothdurft and Webb (2007), sections were then polished and etched on both sides with 2% formic acid for 50 142 

seconds. Observations of the theca were performed at the Centre for Microscopy and Analysis at Trinity College 143 

Dublin using a Tescan Mira XMU SEM in secondary electron mode at 15 kV following gold coating. 144 

 145 

Figure 2 146 

 147 

Exceptionally well developed and continuous microstructures were studied in details and thicknesses of micro-148 

layers revealed by the etching protocol were measured from the centres of calcification (COC) following the 149 

radial growth from a specimen collected in the Whittard Canyon (WhC-1). Sr concentrations were measured on 150 

the same section in the Trinity College Dublin geochemistry facility using a Thermo Scientific iCAP Q ICP-MS, 151 

coupled with an Analyte Excite laser ablation system performing 20 by 180 µm line rasters at 35 μm.s-1 and a 5 152 

Hz repetition rate. NIST 612 was used as a calibration standard. The error on Sr measurements was less than 153 

2.1% (2 SE). Raw Sr concentrations were smoothed by moving average and this was subtracted from the raw 154 

data. A Fast Fourier Transform (FFT) was performed on the resulting residuals to isolate the cyclicities present in 155 

the high-frequency fluctuations in Sr content. 156 

 157 

Results 158 

SEM observations 159 

Our etching-imaging protocol has revealed micro-layers along the radial growth direction of the wall in some 160 

sections for each of the 24 samples from all locations (Fig. 3). Importantly, no microstructures are visible along 161 

the longitudinal axis. Micro-layers observed along the radial growth direction are generally parallel to each other, 162 
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but in some areas the micro-layers present a curved pattern toward the outer part of the skeleton within a 163 

restricted area (150 to 200 μm in length; Fig. 3-b). In these parts a bulge is visible on all micro-layers from the 164 

inner-most part of the skeleton (near the COC) to the surface of specimen on the outer-most layer. There is no 165 

compensation visible on the edges of the bulge to reduce the irregularity and thus the thicknesses of the micro-166 

layers overall remain unchanged. Some aragonite fibres are interrupted by the change of micro-layer direction, 167 

but these fibres are observed to occur in the same general orientation from one layer to the next. 168 

 169 

Figure 3 170 

 171 

Only one section of a sample from Whittard Canyon (specimen WhC-1) shows micro-layers across the entire 172 

wall. In order to reduce the possibility of missing these structures, serial cuts of an entire corallite specimen (each 173 

section about 0.5 mm thick prior to polishing and etching) were performed on 3 samples. Despite this attention to 174 

detail, we failed to produce a section with at least one face exhibiting all the sets of micro-layers as was the case 175 

for specimen WhC-1. In all of the specimens treated with this technique, the outermost sections did not display 176 

any layers in the microstructure. In the sections from the innermost part of the calyx, some micro-layers were 177 

partially visible, but none presented continuous structures as observed in WhC-1. 178 

For most coral sections examined as part of this study, micro-layers are not revealed in all areas of the theca but 179 

they are always present in some parts of the wall (Fig. 4). Areas of dense, compact aragonite (not in the form of 180 

fibres) are commonly visible and can be found either in continuity with the micro-layers or between two series of 181 

micro-layers along the axial growth direction. 182 

 183 

Figure 4 184 

 185 

Opaque bands in most specimens seem to prevent the development of layered mineralization (Fig. 5). Micro-186 

layers are visible only in optically translucent bands. The specimen WhC-1 does not exhibit any opaque and 187 

translucent bands in reflected light. This is likely to be significant in terms of formation of well-developed 188 

microstructures described here. 189 

 190 
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Figure 5 191 

 192 

Discontinuous micro-layers are also visible in some sections in areas filled with aragonite fibres (Fig. 6). In these 193 

cases, the continuity of the visible micro-layer can be observed only for a few dozen microns and it is never 194 

possible in this case to quantify them. 195 

 196 

Figure 6 197 

 198 

Micro-layer thickness 199 

The micro-layers range in thickness from approximately 20 to 100 μm (Table 2) and are organized in successive 200 

groups of similar thicknesses. WhC-1 contains 23 micro-layers across the wall. Successive thicknesses 201 

measured from the COC to the outer edge of the wall show fluctuations with four observed cycles (Fig. 7). 202 

 203 

Table 2 204 

 205 

Figure 7 206 

 207 

Strontium concentrations 208 

Sr measurements across the wall of WhC-1 show strong fluctuations (from 6041 ppm ± 126 ppm to 12067 ppm 209 

± 252 ppm, mean 8703 ppm). Smoothed data (Fig. 7) reveal a negative trend, with lower values at the outer 210 

edge compared to the inner part of the skeleton. A comparison of layer thickness with Sr concentrations along 211 

the radial growth direction reveals that these two parameters fluctuate in phase, implying a distinct physio-212 

chemical response presumably linked to some change in environmental conditions and / or growth rate (Fig. 7). It 213 

is apparent that higher values of Sr in the coral skeleton tend to be coincident with the occurrence of thick micro-214 

layers. 215 

Depending on the thickness of the micro-layers, each increment has between 3 and 14 measurements of Sr. By 216 

splitting the dataset equally as thin (3-8 points per micro-layer) and thick (9-14 points per micro-layer) 217 
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increments, the mean number of analysis are 5.47 points per thin micro-layer and 11.75 points per thick micro-218 

layer respectively. 219 

A highly significant group of frequencies in the residuals from the smoothed data (Fig. 8) is revealed by FFT, 220 

centred at the value 6.25 points per cycle. Cycles corresponding to this frequency can be observed both in thick 221 

layers (two cycles per layer) and thin layers (one cycle per layer). A second frequency is also revealed at 12.5 222 

points per cycle. No other frequencies are significant. 223 

 224 

Figure 8 225 

 226 

Discussion 227 

Micro-layer occurrence 228 

The micro-layers described here are thinner and more numerous than the optically visible opaque and 229 

translucent bands described in L. pertusa by Wainwright (1964). For specimen WhC-1 there is a conspicuous 230 

lack of opaque bands. The fact that micro-layers are not visible on all sections implies that L. pertusa skeletons 231 

display a more complex organization than a common linear growth model. This could be due to the growth of 232 

patches of aragonite fibres (related to different growth phases) in a three-dimensional sense, that do not follow 233 

the radial growth direction in a simple manner. This is particularly clear on sections where only some growth 234 

micro-layers can be found between areas where fibres are not visible (e.g. Fig. 6). This implies that the 235 

orientation and position of the section are important factors in obtaining visibly extensive micro-layers. 236 

Micro-scale layers have previously been observed in solitary coral species (Sorauf and Jell, 1977; Lazier et al., 237 

1999; Cheng et al., 2000; Marali et al., 2013). Growth structures of less than 10 µm in thickness were observed 238 

in D. dianthus (Lazier et al., 1999) and intrinsic timekeeping mechanisms (i.e. “biological clocks”) were proposed 239 

as the cause. Caryophyllia cyathus and Stenocyathus vermiformis were also investigated (Marali et al., 2013) but 240 

the authors observed features that impeded interpretation, as some layers were merging or pinching out, 241 

preventing a chronological tracking. The micron-scale space between these layers is revealed by etching. It is 242 

therefore possible this space is filled with a more porous, organic-rich carbonate structure that would deteriorate 243 

easily in the presence of acid. 244 
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 245 

Temporal Calibration of the micro-layers 246 

The cyclic pattern of layer thickness may be caused by variations in growth rate over the life of the polyp. 247 

Sclerochronology uses layers in growth structures to establish temporal calibrations as they are assumed to have 248 

been built by the organism over similar timescales regardless of their thickness (Marchitto et al., 2000; Carré et 249 

al., 2005; Schöne and Gillikin, 2013). Accepting this hypothesis it is possible to consider here that narrow layers 250 

reflect periods with low growth rates compared to thicker layers. High growth rates generally correspond to 251 

periods of favourable conditions during which the organism can allocate more energy to growth, as has been 252 

established in different cnidarians (Mortensen, 2001; Houlbrèque et al., 2003; Orejas et al., 2011b) and other 253 

invertebrate groups (Jolivet, 2009; Lartaud et al., 2010). In corals, such cycles composed of a period of high 254 

growth rate followed by one of lower growth rate can be assumed to reflect diurnal patterns for shallow water 255 

species (Wells, 1963) or annual patterns for cold-water species (Cheng et al., 2000) with even longer periods 256 

possible as induced by local environmental influence such as the North Atlantic Oscillation (NAO) as observed in 257 

bivalves (Schöne et al., 2003). 258 

There are several different possible causes for observed growth rate changes observed in our Lophelia pertusa 259 

specimens. Due to the thickness of some micro-layers (reaching 100 µm), it is unlikely that such structures can 260 

represent a single day of mineralization along the radial axis, particularly considering the colony (mainly 261 

longitudinal) growth rates recorded in the literature (3.2 to 34 mm.a-1). A NAO case of annual banding can be 262 

proposed to explain a multi-annual fluctuation, however the colony growth rates are not compatible with this 263 

timeframe. Considering a radial growth of 20 to 100 µm per year while the colony grows at a rate of several mm 264 

per year, the polyps would generate brittle theca that would be prone to being broken in an area with strong 265 

water currents such as their natural habitat. A third possible cause for the observed microstructure banding 266 

implies a monthly characteristic of micro-layers based on the lunar cycle. Such a correlation is more consistent 267 

with the growth rates measured in Lophelia pertusa. Moreover, the cycles observed by the high-frequency 268 

fluctuations of Sr incorporation can be used to confirm the influence of the monthly moon revolutions on growth 269 

rates and formation of these micro-layers. Both cyclicities recorded (6.25 and 12.5 points per cycle) are close to 270 

the mean number of Sr measurements per layer (i.e. 5.47 and 11.75 points per layer, for thin and thick micro-271 

layers respectively), and this must be taken into consideration when evaluating any periodicity in cyclicity. The 272 
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cycles corresponding to high growth rates (one cycle in thick micro-layers) and the 12.5 point cycle are 273 

compatible with a lunar influence. This pattern would be the equivalent of a lunar month considering the monthly 274 

pattern of micro-layer occurrence proposed here. The observed 6.25 point cycle, corresponding to exactly half 275 

the time of the cycle described above, can be related to a fortnightly influence. These cycles are only visible in 276 

thick micro-layers (i.e. two cycles per layer; Fig. 8). In thinner layers, due to changes in the measured number of 277 

points per layer, the fluctuations should be interpreted carefully. With layers measuring only half the thickness of 278 

the larger ones of similar temporal value, the observed cycle is most probably double the apparent one, which is 279 

the monthly fluctuation proposed above. In other words, due to differences in growth rates between layers, the 280 

6.25 point cycle in thin layers is equivalent of the 12.5 point cycle observed in thicker layers. Such monthly and 281 

fortnightly lunar cycles (28 and 14 days, respectively) were previously observed on Mg/Ca measurements in 282 

coastal oyster shells from mark-and-recapture experiments (Mouchi et al., 2013). Time-related growth patterns 283 

have also been observed in deep-sea mussels and linked both to tidal influence (i.e. lunar cycle) on near-bottom 284 

currents and to biological clocks (Schöne and Giere, 2005; Schöne, 2008; Nedoncelle et al., 2013). As no long-285 

term monitoring of benthic hydrodynamics is available in the sampled locations, neither phenomenon can be 286 

ruled out as an explanation for recording tidal influence in the growth increments. Recently, van Haren et al. 287 

(2014) however have recorded substantial (1.5-2˚C) daily temperature fluctuations at 900 m in the North Atlantic 288 

and attributed this to bottom-intensified currents reflecting surface waters conditions. This illustrates that an 289 

indirect tidal effect is capable of causing significant and periodic temperature changes in deep benthic water 290 

environments. Moreover, Ingels et al. (2011) demonstrated that the Porcupine Seabight is subjected to a tidal 291 

input of organic matter from the Gollum Channels system. Such tidal currents however have not been described 292 

in the Whittard Canyon but turbidity currents have been recorded (Ingels et al., 2011). 293 

 294 

Low-frequency change in growth rates 295 

Based on the proposed micro-layer lunar monthly periodicity, the main cycles observed in increment counting, 296 

concomitant with those from the Sr signal (Fig. 7), do not correspond to an annual scale. This is contrary to the 297 

"classic" model found in calcifying species (Klein et al., 1996; Kirby, 2000; Saenger et al., 2009; Cantin et al., 298 

2010; Butler et al., 2013; Schöne and Gillikin, 2013; Bougeois et al., 2014). In contrast to the situation in shallow 299 

environments, where high temperatures in summer are known to increase growth rates of some invertebrates 300 
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(Malone and Dodd, 1967; Schöne et al., 2006; Hiebenthal et al., 2013), most deep-sea environments are not 301 

subjected to the necessary seasonal thermal contrasts to explain this intra-annual variation in growth rates, with 302 

the possible exception of spatially restricted areas under the influence of bottom-intensified currents. Cold-water 303 

corals may have higher growth rates when food availability increases (Naumann et al., 2011) as is the case for 304 

other suspension feeders (Houlbrèque et al., 2003; Herrera et al., 2012). However, Larsson et al. (2013) showed 305 

that L. pertusa can maintain a high growth rate during extended periods of starvation with higher values than 306 

observed from previous studies (Orejas et al., 2011a; Form and Riebesell, 2012). The diet of L. pertusa however 307 

is still unclear; azooxanthellate corals were first thought to be detrital feeders only, but Porter (1976) proposed 308 

that coral species with larger polyps and long tentacles such as L. pertusa were adapted to capture zooplankton. 309 

In situ observations have provided evidence for some carnivorous behaviour of the species, with occasional 310 

consumption of zooplankton and copepods (Freiwald, 2002). In addition to this, Kiriakoulakis et al. (2005) have 311 

showed that the δ15N of L. pertusa confirmed an occasional carnivorous diet. Due to these uncertainties, diet 312 

alone cannot give unequivocal information on whether high growth rates areas occur in summer or winter 313 

months. Detrital materials should be present in larger amounts during the winter season, as more weathering 314 

occurs on land supplying more material to rivers and eventually to the oceanic waters. On the other hand, 315 

primary production in the photic zone is at a maximum during summer, inducing a more significant planktonic 316 

vertical flux to the deep benthos (Sigman and Hain, 2012). These uncertainties coupled with a poorly constrained 317 

time lag between increased nutrient flux in surface waters and their transport to deep benthic environments also 318 

inhibit an understanding of the timing of growth cycles in L. pertusa. 319 

In terms of their reproductive biology, it is noteworthy that both L. pertusa and M. oculata seem to be seasonal 320 

broadcasters, with gametogenesis occurring over a seasonally limited time period estimated from August to 321 

October in the Porcupine area (Waller and Tyler, 2005). Considering that gametogenesis is a costly mechanism 322 

in terms of energy, a decrease in somatic and skeleton growth is expected. Using the seasonality of the 323 

reproductive clock of L. pertusa observed by Waller and Tyler (2005) and considering that each micro-layer has 324 

been synthesized in 28 days, the start of the first micro-layer in the last decrease in growth rate on the transect 325 

reported on Figure 7 has been assigned with having been formed on the 1st of August. Using this as a starting 326 

point, the rest of the skeleton was assigned months accordingly (Fig. 9). Regarding this interpretation, the August 327 

month from the previous year is also occurring during a slow growth period. The other main slow growth periods 328 
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on the transect correspond to assigned winter months, and may be caused by a decrease in food availability. 329 

Importantly, a minor amplitude during the first year could be explained by development of the initial part of the 330 

skeleton. It is significant that faster growth rates have been observed in colonies that were fed nauplii under 331 

laboratory conditions (Orejas et al., 2011a; Larsson et al., 2013). Using geographically close populations of 332 

Mediterranean L. pertusa cultured in aquaria, Orejas et al. (2011a) recorded faster growth rate when feeding 333 

corals with Artemia salina 5 times per week, whereas Lartaud et al. (2013) recorded lower growth rates when 334 

feeding 3 times per week. These observations are compatible with our interpretation that at least some of the 335 

changes in micro-layer thickness, and hence growth rates, are linked to seasonal availability of nutrients. 336 

 337 

Figure 9 338 

 339 

Previous studies performed on solitary corals were not able to characterize timeframes between successive 340 

layers and growth rate changes (Lazier et al., 1999; Marali et al., 2013). Based on mean calculations of absolute 341 

dating with U-series techniques on multiple parts of the same specimens, it was however suggested that opaque 342 

and translucent bands in D. dianthus were formed at a rhythm of 0.3 to 3 per annum (Cheng et al., 2000). This 343 

implies that micro-scale layers are built at a much higher frequency. However, due to the complexity of the micro-344 

increments in D. dianthus, it is difficult to create an inventory of the number of layers in a band, even when 345 

considering that bands and layers are both formed in cyclicities, which for L. pertusa is not certain. 346 

Regarding microstructures along the longitudinal axis of L. pertusa, it seems unlikely that they can provide an 347 

effective temporal calibration along this direction. This is an important point, as some studies (Cohen et al., 2006; 348 

López Correa et al., 2010) have performed geochemical analyses along a longitudinal axis in an attempt to 349 

describe temporally constrained palaeoenvironmental perturbations. In contrast, micro-layers along the radial 350 

axis described here and observed on one specimen present a promising tool to establish a seasonal framework 351 

within which to interpret geochemical transects along the radial axis. In the case of specimen WhC-1 described 352 

above, this would allow reconstruction of a two year record of environmental fluctuations for this specimen. 353 

Longer periods could be studied by analyzing successive corallites from the same colony, each with a transect 354 

following the layers in the microstructure. 355 

 356 
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Potential misuse of strontium as an environmental proxy 357 

A negative trend in elemental ratios along the growth direction in shells has previously been observed (Mg/Ca, 358 

Sr/Ca…) and in numerous taxa from shallow water environments (mussel: Rosenberg and Hughes, 1991; clam: 359 

Strasser et al., 2008; oyster: Higuera-Ruiz and Elorza, 2009). The processes involved in these ontogenic trends 360 

are still unknown. However, positive trends have also been observed in bivalves (Stecher et al., 1996; Carre et 361 

al., 2006; Mouchi et al., 2013). Moreover, several studies focussing on the same species and techniques 362 

reported positive and negative trends for bivalves (Higuera-Ruiz and Elorza, 2009; Mouchi et al., 2013). In deep-363 

sea environments, an ontogenic trend can also be environmental and be caused by a long-term evolution of 364 

temperature, for instance. Thus, with respect to the incorporation of Sr, it is not ideal to interpret this trend either 365 

as an environmental or as a physiological influence. 366 

In the L. pertusa specimen studied here (WhC-1), fluctuations in Sr concentrations are strongly in phase with 367 

variations in micro-layers thickness (Fig. 7). If the temporal calibration in Figure 9 is correct, Sr concentrations 368 

represent low values during winter months and during gametogenesis, and high values in other periods, showing 369 

two cycles in a year and thus refuting a seasonal cycle for Sr variations. 370 

Cyclical fluctuations may be primarily structural in origin in that higher Sr concentrations have also previously 371 

been observed in inorganic carbonates (speleothems) when the growth rates increase (Huang and Fairchild, 372 

2001). This observation was also reported in deep-sea (Weber, 1973) and tropical corals (Kuffner et al., 2012; 373 

Grove et al., 2013). However, most studies use Sr/Ca ratios as a proxy for temperature in tropical shallow-water 374 

corals (Beck et al., 1992; de Villiers et al., 1994; Alibert and McCulloch, 1997; Cardinal et al., 2001; Chen et al., 375 

2013) and seasonal fluctuations have also been investigated for L. pertusa (Cohen et al., 2006). It has been 376 

demonstrated though that Sr incorporation is mainly dependant on calcification rate from studies with shallow 377 

water corals (Reynaud et al., 2004) and with inorganic aragonite growth experiments (Gaetani and Cohen, 378 

2006). This explanation would indicate that the main process for Sr uptake in coral skeletons is growth rate over 379 

temperature. According to the interpretations in the present study, Sr/Ca fluctuations could be incorrectly 380 

interpreted as a seasonal pattern, whereas in fact two cycles of Sr incorporation represent a single year of 381 

mineralization in Irish waters where the gametogenesis/spawning calendar is as described by Waller and Tyler 382 

(2005). If two consecutive cycles (one “environmental” and one “metabolic”) present the same Sr amplitude (as it 383 

is the case here), then using this pattern as a temporal calibration to study longer-term (multi-annual) variations 384 
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will not be accurate. Future studies should therefore try to discriminate whether Sr fluctuations reflect an annual 385 

or a semi-annual pattern in specific study locations in order to correctly interpret geochemical data as a proxy for 386 

palaeoenvironmental reconstruction. 387 

In view of the kinetics potentially involved in elemental incorporation into the crystal lattice, it seems invalid to 388 

invoke a uniquely temperature dependency of the Sr incorporation in cold-water corals without a proper temporal 389 

calibration, as it is the case with shallow-water corals presenting annual density bands. It remains unclear for 390 

cold-water corals to what extent growth rate is influenced by the environment as opposed to metabolic 391 

processes. 392 

 393 

Conclusions 394 

This paper highlights the absolute necessity of microstructure characterisation in any study of geochemistry on 395 

biominerals other than bulk assays. Micro-layers have now been observed within the translucent layers of the 396 

wall of L. pertusa that can be used for intra-annual temporal calibration and analysis of growth rates of polyps. 397 

However, the characteristic chaotic pattern in the microstructure of opaque layers prevents formation of micro-398 

layers. Furthermore, non-linear growth phases induce even more complexity and present a challenge to resolve 399 

these layers on a single surface. 400 

If a means to study the orientation of growth phases prior to sectioning were to be developed, it would permit the 401 

definition of a direction of cutting to reveal the growth micro-layers and thus allow more temporally continuous 402 

high-resolution geochemical studies on the wall of L. pertusa. Microanalytical geochemical and isotopic studies 403 

of L. pertusa which are not supported by careful micro-textural characterisations of samples carry the risk of 404 

sampling from temporally disparate areas with the consequence of misinterpretation of apparently “seasonal” 405 

signals. 406 

We describe a possible interpretation of Sr fluctuations as a means to estimate growth rate that can be used for 407 

temporal calibration where two consecutive cycles of Sr are induced by both environmental parameters 408 

fluctuation and gametogenesis during a single year. Future work could focus on an elemental mapping in the 409 

theca and study the fluctuations in 2-dimensions to characterize temporality on both growth axes. 410 

 411 
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 671 

Location Coordinates Water depth range (m) Alive or dead polyps 
Whittard Canyon (WhC) 48°28'N, 10°45'W 650-800 Alive and Dead 
Porcupine Seabight (PoS) 49°49'N, 13°57'W 340 to 365 Dead 
Gulf of Cadiz (GoC) 36°41'N, 7°08'W 350 to 800 Dead 
Lacaze-Duthiers Canyon (LDC) 42°15'N, 3°25'E 500 to 520 Alive 
 672 

Table 1: Locations of sampled specimens. 673 

674 
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 675 

Micro-layers Thickness (µm) 
1 95 
2 65 
3 80 
4 85 
5 95 
6 65 
7 40 
8 35 
9 40 
10 95 
11 55 
12 45 
13 35 
14 20 
15 30 
16 30 
17 45 
18 105 
19 100 
20 55 
21 45 
22 40 
23 50 
 676 

Table 2: Micro-layers thicknesses in specimen WhC-1.677 
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Figure captions 678 

 679 

Figure 1: Map of sampling locations. PoS: Porcupine Seabight. WhC: Whittard Canyon. GoC: Gulf of Cadiz. 680 

LDC: Lacaze-Duthiers Canyon. 681 

 682 

Figure 2: WhC-1 Lophelia pertusa specimen. Orientation of cutting is marked with a dashed line. 683 

 684 

Figure 3: Micro-layers imaged in the theca wall of L. pertusa. a: In specimen WhC-1. The longitudinal growth 685 

direction is towards the bottom right and radial growth towards the upper right. The scale bar is 200 μm. b: Detail 686 

of the micro-layers on the area delimited by the white square in Figure 3a. Longitudinal growth direction is 687 

towards right. Radial growth direction is upward. Scale bar is 100 μm. c: Specimen LDC-5. The longitudinal 688 

growth direction is towards the upper right and radial growth towards the bottom right. The scale bar is 100 μm. 689 

d: Interpretation of c. e: Specimen GoC-2. The longitudinal growth direction is towards the right and radial growth 690 

towards the bottom. The scale bar is 50 μm. f: Interpretation of e. g: Specimen PoS-1. The longitudinal growth 691 

direction is towards the left and radial growth towards upward. The scale bar is 50 μm. h: Interpretation of g. 692 

COC: centres of calcification. 693 

 694 

Figure 4: Absence of micro-layers in the middle of the wall near the corallite (on the left) in specimen WhC-1. 695 

Micro-layers are visible on the right hand side when moving away from the corallite (but are not visible in this 696 

view). The thick black curve highlights the COC. The scale bar is 200 μm long. 697 

 698 

Figure 5: Opaque and translucent bands (centre) in relation to traces of micro-layers under SEM (left) in 699 

specimen WhC-3c and interpretation (right). On the right-hand side, white areas represent opaque bands and 700 

grey areas represent translucent bands, and black dashed lines represent micro-layers visible from the SEM 701 

figure. Longitudinal growth is towards the right; radial growth is towards the top. The scale bar is 100 μm long. 702 

 703 

Figure 6: a: Micro-layers with no continuity visible in specimen GoC-2/2d. b: Interpretation of a. Black lines 704 

represent visible micro-layers and fine grey lines represent aragonite fibres. Note that micro-layers are visible 705 
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only where aragonite fibres can be seen. Longitudinal growth direction is towards the right; radial growth 706 

direction is towards the top. The scale bar is 100 μm long. 707 

 708 

Figure 7: Strontium concentrations (in grey) across the wall of specimen WhC-1 in relation to micro-layer 709 

thickness (in black). The micro-layer thickness values are positioned at the center of each of these increments 710 

starting with the first complete (the space between the COC and the first increment was ignored). Sr 711 

concentrations have been smoothed using a moving average. Error bars for Sr concentrations are less than the 712 

line width. The arrow indicates the location of the COC. 713 

 714 

Figure 8: Residuals of strontium measurements on WhC-1 (in black) in relation to micro-layers occurrence 715 

(vertical grey dashed lines). 716 

 717 

Figure 9: Micro-layers thickness and interpreted monthly calibration (on top) across the wall of WhC-1. The 718 

micro-layer starting at 1160 μm was used as the starting point of the proposed temporal frame. In this 719 

interpretation, 1 micro-layer is formed in 28 days. 720 

 721 

 722 

Table 1: Locations of sampled specimens. 723 

 724 

Table 2: Micro-layers thicknesses in specimen WhC-1. 725 
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Figure 1: Map of sampling locations. PoS: Porcupine Seabight. WhC: Whittard Canyon. GoC: Gulf of Cadiz. 
LDC: Lacaze-Duthiers Canyon.  
90x105mm (300 x 300 DPI)  
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Figure 2: WhC-1 Lophelia pertusa specimen. Orientation of cutting is marked with a dashed line.  
72x62mm (300 x 300 DPI)  
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Figure 3: Micro-layers imaged in the theca wall of L. pertusa. a: In specimen WhC-1. The longitudinal 
growth direction is towards the bottom right and radial growth towards the upper right. The scale bar is 200 

µm. b: Detail of the micro-layers on the area delimited by the white square in Figure 3a. Longitudinal 
growth direction is towards right. Radial growth direction is upward. Scale bar is 100 µm. c: Specimen LDC-
5. The longitudinal growth direction is towards the upper right and radial growth towards the bottom right. 
The scale bar is 100 µm. d: Interpretation of c. e: Specimen GoC-2. The longitudinal growth direction is 
towards the right and radial growth towards the bottom. The scale bar is 50 µm. f: Interpretation of e. g: 
Specimen PoS-1. The longitudinal growth direction is towards the left and radial growth towards upward. 

The scale bar is 50 µm. h: Interpretation of g. COC: centres of calcification.  
229x256mm (300 x 300 DPI)  
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Figure 4: Absence of micro-layers in the middle of the wall near the corallite (on the left) in specimen WhC-
1. Micro-layers are visible on the right hand side when moving away from the corallite (but are not visible in 

this view). The thick black curve highlights the COC. The scale bar is 200 µm long.  
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Figure 5: Opaque and translucent bands (centre) in relation to traces of micro-layers under SEM (left) in 
specimen WhC-3c and interpretation (right). On the right-hand side, white areas represent opaque bands 
and grey areas represent translucent bands, and black dashed lines represent micro-layers visible from the 

SEM figure. Longitudinal growth is towards the right; radial growth is towards the top. The scale bar is 100 
µm long.  
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Figure 6: a: Micro-layers with no continuity visible in specimen GoC-2/2d. b: Interpretation of a. Black lines 
represent visible micro-layers and fine grey lines represent aragonite fibres. Note that micro-layers are 
visible only where aragonite fibres can be seen. Longitudinal growth direction is towards the right; radial 

growth direction is towards the top. The scale bar is 100 µm long.  
52x19mm (300 x 300 DPI)  
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Figure 7: Strontium concentrations (in grey) across the wall of specimen WhC-1 in relation to micro-layer 
thickness (in black). The micro-layer thickness values are positioned at the center of each of these 
increments starting with the first complete (the space between the COC and the first increment was 

ignored). Sr concentrations have been smoothed using a moving average. Error bars for Sr concentrations 
are less than the line width. The arrow indicates the location of the COC.  
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Figure 8: Residuals of strontium measurements on WhC-1 (in black) in relation to micro-layers occurrence 
(vertical grey dashed lines).  
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Figure 9: Micro-layers thickness and interpreted monthly calibration (on top) across the wall of WhC-1. The 
micro-layer starting at 1160 µm was used as the starting point of the proposed temporal frame. In this 

interpretation, 1 micro-layer is formed in 28 days.  
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