IL-33 is a recently discovered cytokine involved in induction of Th2 responses and functions as an alarmin. Despite numerous recent studies targeting IL-33, its role in vivo is incompletely understood. Here we investigated inflammatory responses to intraperitoneal IL-33 injections in wild-type and mast cell–deficient mice. We found that wild-type mice, but not mast cell–deficient Wsh/Wsh mice, respond to IL-33 treatment with neutrophil infiltration to the peritoneum, whereas other investigated cell types remained unchanged. In Wsh/Wsh mice, the IL-33–induced innate neutrophil response could be rescued by local reconstitution with wild-type but not with T1/ST2−/− mast cells, demonstrating a mast cell–dependent mechanism. Furthermore, we found this mechanism to be partially dependent on mast cell–derived TNF. As we observed reduced neutrophil infiltration in Wsh/Wsh mice reconstituted with TNF−/− bone marrow–derived mast cells compared with those reconstituted with wild-type bone marrow–derived mast cells. In agreement with our in vivo findings, we demonstrate that human neutrophils migrate toward the supernatant of IL-33–treated human mast cells. Taken together, our findings reveal that IL-33 activates mast cells in vivo to recruit neutrophils, a mechanism dependent on IL-33R expression on peritoneal mast cells. Mast cells activated in vivo by IL-33 probably play an important role in inflammatory reactions. (Blood. 2013;121(3):530-536)

Key Points

- IL-33–induced neutrophil recruitment in vivo is mast cell–dependent. This is partly mediated through the mast cell release of TNF-α.
- IL-33–treated human mast cells induce neutrophil migration in vitro.

Introduction

IL-33 is a recently described cytokine of the IL-1 family that is expressed by a variety of cell types, most notably by epithelial and endothelial cells. IL-33 promotes Th2 responses and has been suggested to function as an alarmin when released on necrosis. IL-33 is inactivated during apoptosis, and unlike IL-1β and IL-18, it does not require proteolytical processing for activation. Recently, we demonstrated that of all endogenous compounds released on necrosis, IL-33 alone is a key alarmin responsible for mast-cell activation. Furthermore, IL-33 has emerged as a potent regulator of mast cell activity; inducing cytokine release, adhesion, maturation, and IgE-mediated degranulation. In addition to mast cells, IL-33 activates several other cell types by signaling through the IL-33 receptor (IL-33R), including eosinophils, basophils, and dendritic cells. Furthermore, a new family of IL-33R–positive innate lymphoid cells, including nuocytes, has been described during the last years.

Moreover, IL-33 has been implicated in the pathogenesis of several diseases (reviewed by Liew et al.), including asthma and arthritis. Importantly, mast cells might have a central role in IL-33–associated diseases, as IL-33 for instance has been shown to exacerbate collagen-induced arthritis through a mast cell–dependent mechanism. On the other hand, IL-33 has been ascribed several beneficial functions, including a cardioprotective function, a protective role in atherosclerosis, as well as an important role in helminth infections. Thus, IL-33, similar to mast cells, exerts beneficial or detrimental effects depending on the local environment, which makes IL-33 an interesting cytokine with therapeutic potential.

Despite this accumulated knowledge, much remains to be investigated regarding IL-33 functions in vivo. It was previously reported that IL-33 participates in the recruitment of mononuclear cells, and a recent study reported that mice injected intravenously with IL-33 before cecal ligation and puncture recruited more neutrophils to the peritoneum than did mice treated with PBS, thus displaying a reduced sepsis mortality rate.

In this study we investigated the cellular responses to intraperitoneal IL-33 injections in mice and further addressed the responsiveness of human mast cells to IL-33. Our data demonstrate that a large proportion of the IL-33R+ cells in the peritoneal cavity are c-Kit/FcεR1+ mast cells, and that IL-33 induces neutrophil influx in the peritoneum of mice through a mast cell–dependent mechanism partly dependent on mast cell–derived TNF.
Methods

Immunohistochemistry

Mouse mesenterium was prepared as previously described. Mesentry samples were first preincubated with blocking solution (1% BSA, 0.3% Triton X-100 in PBS) for 1 hour at RT, then treated overnight at 4°C with a combination of primary antibodies diluted in blocking solution. Samples were double-stained with antibodies against IL-33 (1:200, R&D Systems) and of 1 markers for endothelial cells; either CD31 (1:100, Serotec) or Griffonia simplicifolia (Bandeiraea) isolecitin B4 (IB4) directly conjugated with FITC (1:50, Jackson ImmunoResearch Laboratories). After washing in 0.25% Triton X-100 in PBS, the secondary antibody combination was applied and incubated for 4 hours at RT. These were donkey anti-mouse-FITC and/or donkey anti-goat-Cy3 (both 1:200, Jackson ImmunoResearch Laboratories). Slides were washed twice and mounted with DTG mounting media (2.5% DABCO [Sigma-Aldrich], 50mM Tris-HCl pH 8.0, 90% glycerol) with 0.375 ng/mL DAPI (Sigma-Aldrich). A Carl Zeiss AxioImager M2 fluorescence microscope (Carl Zeiss) with a 20x objective with a 0.8 numeric aperture was used for the images. The images were processed and arranged in Adobe Photoshop.

Cell cultures and experimental animals

Bone marrow cells were isolated from C57BL/6 wild-type, T1/ST2–/–, and TNF–/– mice and bone marrow–derived mast cells (BMMCs) were generated as previously described. Human cord blood–derived human mast cells were generated as previously described. Bone marrow from TNF–/– mice was a kind gift from Kerstin Steinbrink (Johannes Gutenberg-Universität, Mainz, Germany). Peritoneal cavity mast cells (PCMCs) were obtained by obtaining peritoneal cells from C57BL/6 mice by PBS-flushing and subsequent culturing in OptiMEM supplemented with 10% FCS, 1% PenSt, 1% L-glutamine, and 4% SCF conditioned medium for 30 days. Mast cell purity was ensured by toluidine blue staining and FACS analysis. For in vivo experiments, wild-type C57BL/6 and Wsh/Wsh mast cell–deficient mice on C57BL/6 background were used. All animal experiments were approved by the Swedish local ethics committee for animal welfare.

In vitro stimulations and monitoring of mast cell responses

For in vitro stimulations of PCMCs, 1 × 10^6 cells were seeded in 96-well plates and incubated with 10 or 100 ng/mL recombinant IL-33 (rIL-33, generating as previously described. Human mast cells were applied and incubated with 10 or 100 ng/mL recombinant IL-33 (rIL-33, generating as previously described. Bone marrow from TNF–/– mice was a kind gift from Kerstin Steinbrink (Johannes Gutenberg-Universität, Mainz, Germany). Peritoneal cavity mast cells (PCMCs) were obtained by obtaining peritoneal cells from C57BL/6 mice by PBS-flushing and subsequent culturing in OptiMEM supplemented with 10% FCS, 1% PenSt, 1% L-glutamine, and 4% SCF conditioned medium for 30 days. Mast cell purity was ensured by toluidine blue staining and FACS analysis. For in vivo experiments, wild-type C57BL/6 and Wsh/Wsh mast cell–deficient mice on C57BL/6 background were used. All animal experiments were approved by the Swedish local ethics committee for animal welfare.

In vivo administration of IL-33 and flow cytometry

Wild-type C57BL/6 mice and mast cell–deficient Wsh/Wsh mice were injected intraperitoneally with PBS or 0.1 to 1000 ng rIL-33. After 0.5 to 6 hours, the mice were killed and peritoneal lavage was collected. Peritoneal cells were analyzed by flow cytometry using a FACS Calibur (Becton Dickinson). The following antibodies were used: anti–mouse CD16/CD32 (2.4G2; BioLegend), APC-conjugated anti–mouse CD117 (2B8; BD Pharmingen), PE-conjugated anti–mouse CD11b (M1/70; BD Pharmingen), FITC-conjugated anti–mouse Ly-6G (1A8; BD Pharmingen), APC-conjugated anti–mouse CD10 (1D3; BD Pharmingen), PE-conjugated anti–mouse CD11b (M1/70; BD Pharmingen), FITC-conjugated anti–mouse CD117 (2B8; BD Pharmingen), FITC-conjugated anti–mouse Ly-6G (1A8; BD Pharmingen), and FITC-conjugated anti–mouse Ly-6G (1A8; BD Pharmingen). After washing in 0.25% Triton X-100 in PBS, the secondary antibody combination was applied and incubated for 4 hours at RT. These were donkey anti-mouse-FITC and/or donkey anti-goat-Cy3 (both 1:200, Jackson ImmunoResearch Laboratories). Slides were washed twice and mounted with DTG mounting media (2.5% DABCO [Sigma-Aldrich], 50mM Tris-HCl pH 8.0, 90% glycerol) with 0.375 ng/mL DAPI (Sigma-Aldrich). A Carl Zeiss AxioImager M2 fluorescence microscope (Carl Zeiss) with a 20x objective with a 0.8 numeric aperture was used for the images. The images were processed and arranged in Adobe Photoshop.
abdominal cavity express IL-33, and that mast cells constitute the majority of the IL-33R⁺ cells in the peritoneum, and that these cells respond to IL-33 in vitro by secreting proinflammatory mediators.

Intraperitoneal IL-33 administration induces rapid neutrophil recruitment

Although many recent studies have investigated various aspects of IL-33 biology, the initial mechanisms for IL-33–induced cell recruitment in vivo are still not fully explored or described. To address this, we first investigated acute responses to intraperitoneally injected IL-33 by monitoring peritoneal cellular composition 1 to 6 hours after injection. Using a neutrophil-specific antibody targeting Ly-6G (clone 1A8), we observed strong neutrophil infiltration in the peritoneum compared with PBS-injected mice (28.5% ± 7.8% Ly-6G⁺ neutrophils versus 0.98% ± 0.4%, P = .0079, n = 5) 6 hours after injection with 0.1 μg IL-33, whereas the levels of other investigated cell types (mast cells, macrophages, and B lymphocytes) remained unchanged (Figure 3A-B). These results suggest an innate function for IL-33 in early neutrophil recruitment in vivo, and we therefore further investigated dose and time dependency of the observed response. We found that administration of small amounts of IL-33 (1-10 ng) generated a small but insignificant recruitment of neutrophils, whereas administration of 0.1 to 1 μg generated a strong neutrophilic influx (Figure 4A). Furthermore, we found a significant neutrophil infiltration into the peritoneum already 1 hour after IL-33 injection and maximal peritoneal neutrophil infiltration was observed 3 to 6 hours after injection (Figure 4B).

IL-33–induced neutrophil influx is mast cell–dependent

Because IL-33 is a potent activator of mast cells and that we showed mast cells to constitute a major part of the IL-33R⁺ cells in the peritoneum, we speculated that mast cells might have a significant role in the neutrophil recruitment observed in response to IL-33. Therefore, we injected wild-type C57BL/6 and mast cell–deficient W^{sh}/W^{sh}-mice intraperitoneally with rIL-33 and monitored cells in the peritoneum 6 hours after injection.
mast cell numbers between wild-type mice and Wsh/Wsh-mice

cause a potent influx of neutrophils in the peritoneal cavity in wild-type but not in mast cell–deficient mice (28.35% ± 7.82% Ly-6G+ versus 4.32% ± 2.31%, P = 0.031, n = 5; Figure 5A-B). The percentage of Ly-6G+ cells in PBS control Wsh/Wsh-mice was 0.6 ± 0.37%. The defective neutrophil response in Wsh/Wsh-mice was rescued by reconstitution with wild-type but not with T1/ST2+/− BMMCs (21.94% ± 5.39% Ly-6G+ versus 4.15% ± 1.28%, P = 0.016, n = 5), thus clearly indicating that neutrophil influx into the peritoneal cavity in response to IL-33 is induced through a mast cell–dependent mechanism. There were no significant differences in mast cell numbers between wild-type mice and Wsh/Wsh-mice

IL-33–induced neutrophil influx is partially dependent on mast cell–derived TNF

To test the importance of the IL-33 mast-cell axis on neutrophil migration in a human system, we generated human cord blood–derived mast cells (CBMCs) and treated these in vitro with 10 ng/mL IL-33. The supernatant of IL-33–treated CBMCs was then used in a migration assay with peripheral human blood neutrophils from healthy blood donors. Neutrophil migration was assayed as a measurement of MPO activity. In this experiment, we found that migration was increased in neutrophils migrating toward the supernatant of IL-33–treated CBMCs compared with those migrating toward supernatant from untreated CBMCs (Figure 7). Although CBMCs spontaneously released a chemotactic factor which induced neutrophil migration, the migration was significantly increased if the CBMCs had been treated with IL-33. Neutrophils did not migrate toward the negative control (medium alone) or toward IL-33 alone (10 ng/mL), although migration toward 2 different positive controls (1 ng/mL IL-8 and 10% zymosan activated serum) was observed. This taken together with our earlier results thus demonstrates that both murine and human mast cells treated with IL-33 induce neutrophil migration.
Discussion

We report here that IL-33 activates PCMCs in vitro to secrete proinflammatory cytokines and chemokines, and that intraperitoneal IL-33 administration in vivo induces rapid neutrophil recruitment to the peritoneal cavity through a mast cell–dependent mechanism. In addition, we found an abundant number of IL-33–positive cells in the mesothelium. A few of these had elongated nuclei and were seen in close contact with vessels, but they were stained for neither CD31 nor lectin. This is in accordance with previous reports that also found mouse endothelial cells to be IL-33–negative. Thus, the peritoneal cavity represents a sound choice of anatomical location for studies of acute responses to elevated IL-33 levels. The finding that mast cells are required for the early recruitment of neutrophils in response to IL-33 helps delineating the mechanism behind IL-33–induced immune responses, and also highlights the role of mast cells in innate immune responses.

Although many studies have shown that mast cells are activated by IL-33 to release cytokines and chemokines, many of these studies used mast cell lines or bone marrow–derived mast cells, which do not represent fully mature mast cells. Therefore, we here investigated whether mast cells obtained from the peritoneal cavity (PCMCs) display similar responses to IL-33. Our results show that IL-33 induces release of several proinflammatory cytokines and chemokines, including TNF, GM-CSF, MIP-2, and KC dose dependently.

It was recently described that mice injected with IL-33 before CLP display improved bacterial clearance, increased neutrophil influx, and reduced mortality compared with PBS-treated mice. Given our observation that c-Kit mast cells constitute a major part of the IL-33R population in the peritoneal cavity, we investigated whether mast cells play a role in neutrophil infiltration into the peritoneum. Interestingly, our results demonstrate that this process is entirely mast cell–dependent, as mast cell–deficient mice lack the neutrophil response to IL-33 administration seen in

![Figure 5. IL-33–induced peritoneal neutrophil influx is mast cell–dependent.](image)

![Figure 6. Neutrophil infiltration in response to IL-33 is partially dependent on mast cell–derived TNF.](image)

![Figure 7. IL-33–induced peritoneal neutrophil influx is mast cell–dependent.](image)
wild-type mice. This response could be rescued in mast cell–deficient mice by reconstituting the peritoneal cavity with wild-type mast cells, but not with mast cells lacking the IL-33R, T1/ST2. Mast cells thus appear to be important for neutrophil influx in the peritoneum. However, our results are in contrast to a recent study by Verri et al, where it was demonstrated that IL-33 participates in the orchestration of neutrophil migration in arthritis after intra-articular injections. Opposite to our data, the authors show that the neutrophil infiltration in this setting was induced through a mast cell–independent mechanism, and could instead attribute this effect to synovioocytes and macrophages. In addition, it was recently demonstrated that IL-33 injections into the ears of mice induces inflammatory skin lesions, partly through a mast cell–dependent mechanism and that IL-33 recruited neutrophils into the ear. Consequently, our and others’ data thus suggest that neutrophil recruitment in response to IL-33 treatment is not only dose and time-dependent, but also highly dependent on the tissue in which IL-33 is administered. This together with our data showing that IL-33–mediated neutrophil influx is mast cell–dependent might have important implications for future studies seeking to investigate various potentially therapeutic aspects of IL-33 biology. Given the fact that IL-33 has the potential to exert harmful as well as protective functions in vivo, administration route/location, dosage, and timing will be of vital importance in such studies.

In our attempt to find the mechanism behind the mast cell–dependent neutrophil infiltration in response to IL-33, we first investigated a role for KC/CXCL1, because this chemokine recently was implicated in neutrophil recruitment after IL-33 administration. However, we could not find significant evidence for a role of KC/CXCL1 in this mechanism in contrast to results reported by Hueber et al, even though we used the same concentration of KC/CXCL1 neutralizing antibody. One possible explanation for this could be that we performed this experiment in C57BL/6 mice, whereas Hueber et al used Balb/c mice. Mast cell–derived leukotrienes have also been assigned an important role in neutrophil recruitment. Therefore, we pretreated mice with zileuton before IL-33 administration, to inhibit the formation of LTB4, a strong neutrophil chemoattractant, but we were unable to detect a significant decrease in neutrophil recruitment compared with vehicle-treated animals. Finally, we explored a possible role for mast cell–derived TNF, because this cytokine previously has been shown to be important in mast cell–mediated neutrophil recruitment. Here, we observed a significant reduction in neutrophil recruitment when TNF was absent, suggesting an important role for TNF in this mechanism (Figure 6C). Although the percentage of infiltrated Ly-6G+ cells in IL-33–treated WT mice differ in Figures 5 and 6, the absolute numbers of infiltrating Ly-6G+ cells did not differ significantly between these 2 experiments (supplemental Figure 1, available on the Blood Web site; see the Supplemental Materials link at the top of the online article).

Our results from in vivo and in vitro experiments using PCMCs, genetically modified mice, human mast cells and neutrophils, provide additional evidence for the notion that mast cells initiate inflammatory responses after IL-33 recognition, here manifested by neutrophil recruitment. Mast cell–mediated neutrophil recruitment in response to IL-33 might contribute to a beneficial outcome during for instance bacterial infection, but exaggerated neutrophil influx might on the other hand result in collateral damage to surrounding tissues.

In summary, we show here for the first time, that when injected intraperitoneally, IL-33 induces neutrophil influx to the peritoneal cavity through a mast cell–dependent mechanism, as wild-type mice but not mast cell–deficient mice respond to IL-33 with neutrophil influx. In addition, we show that this mechanism is partially dependent on TNF. Further proof for this conclusion is that local reconstitution of mast cell–deficient mice with wild-type BMMCs, but not with T1/ST2−/− BMMCs, restored the neutrophil response to IL-33 injection in these mice. In addition, we show that mast cells constitute close to 75% of the IL-33R+ peritoneal cells. Our results thus demonstrate that mast cells are crucial for the important early recruitment of neutrophils during acute stages of inflammation induced by IL-33 in vivo. Mast cells activated in vivo by IL-33 probably play an important role in both beneficial but also detrimental actions of IL-33. Our work presented here provides novel insights regarding the biology of IL-33, and clearly highlights mast cells as important orchestrators of IL-33–induced innate immune responses.

Acknowledgments
The authors thank Sara Lind Enoksson (Karolinska Institutet) for technical assistance, Kerstin Steinbrink and Talke Schmidt (Johannes Gutenberg-Universität, Mainz, Germany) for kindly providing bone marrow from TNF−/− mice, and Mikael Adner (Karolinska Institutet) for kindly providing Zileuton.

This work was supported by the Swedish Research Council, the Swedish Cancer Foundation, the Ellen, Walter and Lennart Hesselman Foundation, the Ollie and Elof Ericsson Foundation, the King Gustaf V:s 80-years Foundation, the Åke Wiberg Foundation, and Karolinska Institutet.

Authorship
Contribution: M.E. planned and performed the experiments and wrote the paper; C.M.-W. performed experiments, G.W. and...
Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Gunnar Nilsson, Department of Medicine, Clinical Immunology and Allergy Unit, Karolinska Institutet KS L2:04 SE-171 76, Stockholm, Sweden; e-mail: gunnar.p.nilsson@ki.se.
Intraperitoneal influx of neutrophils in response to IL-33 is mast cell–dependent

Mattias Enoksson, Christine Möller-Westerberg, Grzegorz Wicher, Padraic G. Fallon, Karin Forsberg-Nilsson, Carolina Lunderius-Andersson and Gunnar Nilsson

Updated information and services can be found at:
http://www.bloodjournal.org/content/121/3/530.full.html

Articles on similar topics can be found in the following Blood collections
Phagocytes, Granulocytes, and Myelopoiesis (492 articles)

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml